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1: Synopsis 

1.1 Introduction 
 

Pediatric brain tumours are a major cause of death in children among all known 

childhood cancers 1. These tumours are classified based on their localization, mainly 

supratentorial or infratentorial. They are further classified based on the age of 
diagnosis into three types – congenital brain tumours (CBT) (diagnosed in the first 60 

days of life), infancy tumours (diagnosed in children younger than 1 year of age) and 

tumours occurring in the older children1. Common treatment for most childhood brain 

tumours remains surgical resection or biopsy to relieve intracranial pressure caused 

by the tumour, followed by chemo- and/or radiotherapy23–5. Advancements in imaging 
techniques, genetics, and molecular biology, have played a big role in early diagnosis 

of these tumours6,7. Molecular analyses are typically performed using biopsy material. 
To increase the shelf-life of the material, without changing the underlying biological 

information, it is fixed in formalin and embedded in paraffin blocks (FFPE-samples). 
Besides histomorphological analyses, these FFPE-samples are used to study the DNA 

methylation patterns 8–10, transcriptome signatures 11,12 or protein abundances 13–16 out 
of many other applications. Sub-groups and types have been identified using mainly 

DNA methylome and transcriptome data 17. Although this has enhanced tumour 
classification and stratification, the route for targeted therapy for the identified 

subgroups and subtypes remains largely unexplored. 
 

 
1.1.1 Advancements of Omics for Understanding CNS Tumours 

 
According to the central dogma of biology, DNA gets transcribed to mRNA which 

undergoes translation to form proteins. Proteins are responsible for the phenotype. 

Epigenomic modifications such as DNA methylation regulate gene expression and are 
essential for normal functioning during growth, genomic imprinting and X-chromosome 

inactivation18. Dysregulation of DNA methylation results in diseases and plays a role in 

cancers19. Methylation of the promoters of certain genes will inhibit the binding of 

transcriptional factors which will thus prevent transcription of these genes into their 

respective mRNA20. Since DNA methylation patterns are specific for different types of 

cells and tissues, they can be a great tool for the identification of subgroups and 

subtypes in cancers21,22. 
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Further, the mRNA formed can undergo post-transcriptional regulation for example by 

microRNA, and lncRNA (long non-coding RNA) which can inhibit their translation into 

proteins. Since proteins are dynamic and closest to the functional element of the cell, 

they are essential to understand “most recent” changes in biological system. In order 

to fully understand the complex biological processes leading to cancer, it is essential 

to study the three main components of the central dogma of biology – DNA, RNA and 

proteins enabled with massive development in array and sequencing technologies as 

well as mass spectrometry-based approaches for relative quantification of proteins. 

 

 
Central Nervous System (CNS) tumours remain the major cause of death in children 

and adolescents. Some common brain tumours which majorly affect children include 

medulloblastomas (MB), high-grade gliomas (HGG) especially high-grade gliomas with 

MYCN amplifications (HGG-MYCN), ependymomas (EPN) and embryonal tumours 

with multilayered rosettes (ETMRs) arranged in decreasing order of frequency. While 

MB and HGG are extremely rare brain tumours they make up for about 12 % of CNS 

tumours in children. The average age of diagnosis for MBs is 7 years while that for 

HGG is below 3 years of age 23,24. Brain tumours such as MBs and recently discovered 

HGG-MYCN amplified commonly occur in the cerebellum or brain stem23,24. The 

current treatment strategy for MB patients remains complete surgical resection 

followed by cranial radiotherapy for patients over 3 years of age and adjuvant 

chemotherapy 25. HGG-MYCN amplified patients are treated as HGG patients which 

involves complete surgical resection of tumours followed by chemotherapy and 

radiotherapy. However, complete surgical resection of tumours in pediatric patients is 

often not possible and radiotherapy can have adverse effects that can have a long- 

term impact on the quality of life. Moreover, prognosis still remains poor with 53.8 % 5-

year survival rate for MB and 20% for HGG, respectively26,27. 

 

 
Brain tumours are histologically heterogeneous and display large differences in clinical 

representation, such as the age of onset, tumour localization, extent of possible 

surgical resection and prognosis. Thus, new emerging technology can be used for 

better characterisation of these rare brain tumours. It is essential to account for all three 

data modality levels of the central dogma – DNA, RNA and proteins - to accurately 

identify the biological dysregulations and identify new treatment targets. Multi-omic 
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analyses can be useful for predicting alternative therapeutics for the treatment of 

pediatric brain tumours. 

 

 
1.1.1.1 DNA Methylome Data 

 
The field of epigenetics has greatly revolutionised the understanding of diseases28. 

Epigenetics provides information on reversible and heritable changes in gene 

expression that do not involve changes to the underlying DNA sequence29. DNA 

methylation is one of the best characterized epigenetic changes, where a cytosine (C5) 

base is converted to 5-methylcytosine by DNA methyl transferase enzymes (DNMTs) 

(MB project1: Supplementary Figure 18A, page number 123) 30. DNA-methylation of 

the MGMT promotor has been shown to be important for stratification of brain tumour 

patients as it it predicts response to chemotherapy. The MGMT gene, a DNA repair 

enzyme, increases the resistance of tumours to alkylating agents, when expressed. A 

higher methylation of MGMT promoter is associated decreased MGMT expression and 

hence with better response to chemotherapy which is similar in HGGs31. Since the 

structural and functional heterogeneity of the cells is captured, DNA methylome data 

can be useful for the classification of tumours and the identification of new subtypes. 

In the brain tumour field, DNA methylome data is commonly used in diagnostics along 

with histology for accurate identification of the brain tumour subgroups and types and 

resulted in development of the brain tumour classifier 

(https://www.molecularneuropathology.org/mnp/)32. Rapid development in this field 

including ease of reproducible results with both Fresh Frozen (FF) and Formalin-Fixed 

Paraffin-Embedded (FFPE) tissues, relatively fewer amount of sample input needed 

and affordable costs further contributed to the inclusion of such omic data in molecular 

routine diagnositics33. 

 

 
1.1.1.1.1 Copy Number Variation (CNV) Analysis using DNA Methylome Data 

 
DNA methylation data is not only useful for the identification of the epigenetic 

signatures but also for visualization of chromosomal copy number aberrations 34. As 

specific chromosomal alterations, such as gains and losses of chromosomal arms, or 
specific amplifications are associated with certain tumor classes, this information is 

commonly used in the diagnostic workflow 35,36. For example, loss of TP53, or 

http://www.molecularneuropathology.org/mnp/)32
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amplification of the MYC gene are often associated with a poor prognosis in MB and 

can predict tumour subtype or survival probability 37–40. 

 

 
1.1.1.2 Transcriptome Data 

 
Although DNA methylation data is useful for subgroup identification and diagnosis, not 

all changes occurring in the DNA transcribe into the mRNA. The field of transcriptomics 

describes the examination of whole transcriptome, accounting for approximately 80% 

of RNA molecules, however only 2% mRNAs that will likely be expressed and 

translated into proteins41. This enables the characterization of the heterogeneity of 

these tumours by discovery of dysregulated pathways and processes, as well as 

driving gene fusions which further identifies new tumour subtypes within the 

methylation subgroups 42,43. Many changes can occur at the transcriptome level, post- 

transcriptional modifications such as capping, splicing and polyadenylation lead to the 

transport pre-mRNAs from nucleus to the cytoplasm where they are used to synthesize 

proteins 44. Normally, pre-mRNAs undergo constitutive splicing, where in all introns are 

removed and exons are ligated together in order as they appear in the gene, however, 

under certain circumstances, there can be a deviation from this from of splicing 

resulting in alternatively spliced variants. In such an event, some exons are skipped 

that can result in formation of shorter exon lengths. This process occurs due to gene 

mutations such as by single nucleotide polymorphisms (SNPs) or epigenetic 

modifications which can affect chromatin accessibility, or due to environmental stimuli 
45. This process is mediated by dynamic spliceosome mechanisms which can result in 

formation of proteins isoforms which can further affect the phenotype of diseases 46,47. 
Further, microRNAs are non-coding RNAs that can interact with mRNAs, inducing 

degradation of mRNAs and hence repression of translation to their respective protein 
48 (MB project 1: Supplementary Figure 18B, page number 123). Thus, although more 

information can be obtained from transcriptomics compared to DNA methylome, much 
of this information only contributes to the biological understanding of brain tumours and 

treatments based on dysregulated pathways found in the transcriptome have largely 

been unsuccessful 49. 
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1.1.1.3 Proteome and N-glycan Data 
 

To make a transition from biological process understanding to functional 

understanding, and to analyse patterns close to the final phenotype, global proteome 

analysis is essential. Global proteome analysis using mass spectrometry enabled 

quantitative and qualitative analysis of the proteome of samples from FF or FFPE 

tissues 13,15,50,51. Proteomics provide the final information based on all the changes 

incurred on different modality levels: such as at DNA and mRNA levels that contribute 

to the phenotype of the tumours (MB project 1: Supplementary Figure 18C, page 

number 123). Additionally, proteomic data enables us to identify new diagnostic 

biomarkers and provide a direct route to drug development since it gives us information 

on dysregulated pathways which can be targeted. It will also help us to identify clinically 

and phenotypically relevant subtypes of brain tumours and provide a better insight into 

the biological characteristics of these subgroups and identified subtypes 49,52. 

Glycosylation is a common type of post-translational modification. Glycans attach to 

the proteins and can manipulate the function of the proteins by changing its structure, 

conformation or interactions with other proteins. Glycans can be mainly classified into 
two types: N-glycans attached through nitrogen of asparagine and O-glycans attached 

through oxygen of serine or threonine 53. Since extracellular matrix proteins are mainly 
bounded with N-gylcans, we focus on N-glycan analysis in this thesis. N-glycans are 

further classified into three types – oligomannose, where only Man residues extend the 
core; complex, where GlcNAc-“antennae” extend the core and hybrid, which is a 

combination of Man and GlcNAc “antennae” which extend the core (MB project 1: Main 

Figure 9, page number 102) 54. These N-glycan modifications are involved in many 

biological processes, especially signal transduction and immune response55. It is well- 
known that N-glycan modifications are involved in tumour progression and also be 

used as biomarkers for identification of high-grade tumours 56–58. 
 

 
1.1.1.4 Multi-Omic Data Analysis 

 
Combining multiple omics levels provides a better platform for the characterization of 

tumours. Integrative analysis with sufficient sample number provides superior results 

and as it combines the information of DNA, RNA and proteome level. It enables us to 

understand tumour biology in more detail as the relation between data types can be 
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explored globally and give hints concerning the potential regulatory levels (e.g. rather 

posttranscriptional or posttranslational regulations). The link to the proteome is finally 

a close view on the phenotype of the brain tumours, especially when related to 

histomorphology. It further enables the translation of new findings into the innovation 

of new therapeutics and clinically relevant biomarkers. Translational research also 

involves the application of this knowledge to the development of mouse models to 

further study tumorigenesis and provide a resource for the development and testing of 

identified therapeutics. It is also essential to confirm whether developed mouse-models 

mimic their human counterpart for which we require multiomic data integration across 

species. 

While data integration can be extremely useful, it's highly challenging as different 

platforms are used for the generation of omics data. Although normalizations are often 

platform-specific, dimensionality reduction techniques need to be applied to reduce 

heterogeneity within different types of data. This will enable the identification of robust 

and reliable multi-omics signatures based on the phenotype of interest. We can further 

perform gene-specific correlations between different types of omics to identify the 

conservation patterns across different tumour subgroups and subtypes. 
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For the integration of different types of omics data, it is essential to have matched 

sample cases across omics. It is also essential to normalize the datasets independently 

before integration as normalizations are always platform-specific. Once normalized, 

datasets are harmonized and batch corrected to create a combined dataset (Figure 1, 

page number 7). Our group has previously developed algorithms for batch effect 

correction, such as HarmonizR, which are applied in this context59. Date is further 

reduced to matched samples, and the datasets from different omics are then ready for 

integration (see Figure 1 page number 7). A technique called “DIABLO” can be applied, 

that uses dimensionality reduction wherein each dataset to be integrated will be broken 

down into “n” number of components60,61. These components will be made up of 

calculated variables, called latent variables that capture the main information within the 

data. For example, if our dataset contains 3990 proteins, DIABLO will perform feature 

selection and use only a few proteins to represent the proteome data based on the 

phenotype of interest, e.g. the tumour subtypes. The phenotype of interest should be 

same for all datasets to be integrated. DIABLO aims to maximize the correlated 

information across the datasets and displays relevant correlations which could be 

useful biomarkers. Finally, DIABLO can also be used for classification using 

information about the phenotype of interest 60. 

 

 
1.1.1.4.2 Correlation Analysis 

 
Another important application of data integration is to identify the correlation across 

different omic types. This can be done on data confined to genes that are reflected in 

all data (as encoded DNA with promotor regions that can be differentially methylated, 

as mRNA transcript and finally as a protein). These analyses identify the conservation 

of biological features across different tumour subtypes. Pearson correlation is a 

technique that can determine the linear correlation between features of interest such 

as CpG site methylation at the DNA of a gene and it’s promotor in the DNA methylation 

data, levels of mRNA in the transcriptome data and also respective protein abundances 

in the proteome data. Multi-omic data integration thus gives us information about the 

dysregulated pathways and enables us to identify at which level the dysregulation 

occurred. Hypothetically, we expect there to be an inverse correlation between the 

CpG site DNA methylation and mRNA expression (transcriptome level) of a specific 
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gene. We further expect a positive correlation between the mRNA expression of a 

specific gene and its respective protein abundance. However, in the case of tumour 

biology, that is not always true 62. Such unexpected correlations always point to the 

underlying biology of the tumour under question and indicate where major regulatory 

steps may play a role. 

 

 
1.1.2. Pediatric Brain Tumours 

 
1.1.2.1 Medulloblastoma 

 
Traditionally, MBs were stratified based on their clinical characteristics such as age, 

metastasis, extent of surgical resection and histological grouping such as classic, 

desmoplastic or large-cell anaplastic histology to find the optimal treatment protocol 

and reduce the long-term effects of therapy63,64. However, recent advancements in 

next-generation sequencing technology such as whole genome /exome sequencing, 

epigenomics, and transcriptomics increased understanding and stratification of MB 

patients into further subgroups and subtypes correlating with clinical features (see also 

Figure 2, page number 11). 

MBs are classified into four main molecular subgroups namely, WNT-activated MB, 

occurring rarely but associated with a rather good prognosis and median survival of 

86%, Sonic Hedgehog (SHH)-activated MB comprising approximately 30% of cases, 

and showing intermediate prognosis and a median overall survival of 53%, Group 4 

MBs with a median overall survival of 60-70% and Group 3 MBs with a worse median 

survival of only 50% 65–67 both occurring more frequently than WNT and SHH MBs. 

Further, specific mutations such as TP53 mutations in SHH MBs, MYC amplification in 

group 3 MBs are associated with worse prognosis in patients. 

 

 
WNT MB 

 
WNT MB patients are characterized by over-activation of the WNT pathway. This can 

often be due to germline mutations of the adenomatous polyposis coli gene (APC) a 

WNT-pathway inhibitor or somatic mutation of the beta-catenin gene (CTNNB1) which 

inturn leads to overactivation of the WNT-pathway36. Monosomy of chromosome 6 is 

seen in 90% of WNT MB patients and is associated with a good prognosis. Currently, 
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monosomy of chromosome 6, nuclear beta-catenin staining, immunohistochemical 

staining of Dickkopf-related protein 1 (DKK1), which binds to LRP6 co-receptor and 

inhibits beta-catenin dependent WNT-signalling pathway, are commonly used for 

diagnosis of WNT MBs. While most of the WNT MB patients have classic histology, 

there have also been some cases which have anaplastic/ large-cell histology (LCA) 

and do not carry a monosomy of chromosome 6 causing them to deviate from their 

favourable prognosis and have a higher chance of relapse 68. Owing to the 

heterogeneity within the subgroup, WNT-MBs lack a gold standard for diagnosis. 

Deeper epigenomic and transcriptomic studies have identified two further subtypes 

within the WNT MBs (Figure 2, page number 11), namely WNTa consisting of younger 

patients with monosomy of chromosome 6 and WNTβ consisting of adult patients43. 

Although WNT MB patients have good survival, life expectancy is reduced due to the 

after-effects of the treatment 69. It is thus discussed if a proportion of patients may be 

over-treated using current strategies and there might be a need for therapy 

deacceleration 70–72. 
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Figure 2: Figure from Cavalli et al 43 (Copyright clearance from Elsevier granted, License number: 

5805210453358) displaying the four main molecular subgroups identified using DNA methylation data 

and their corresponding transcriptomic subtypes 

 
 
 

SHH MB 
 

Sonic Hedgehog (SHH)- MB patients are characterized by activation of the SHH 
pathway due to mutations of SHH pathway genes, such as germline mutations of the 

SHH receptor PTCH, the SHH inhibitor SUFU and somatic mutations of PTCH, SMO, 

SUFU and/or amplifications of GLI1, and MYCN 73,74. Mutations of the tumour 

suppressor gene TP53 were found to be enriched in WNT and SHH MBs. SHH MB 
harbouring germline TP53 mutations are often associated with poor prognosis and 

survival, especially in patients in the age range of 5 to 18 years37. Current diagnostic 
criteria for SHH MBs include immunohistochemical staining for P75, GAB1, and YAP1 

and loss of chromosome 9q22, as well as nodular desmoplastic histology that occurs 

in nearly 50% of SHH MBs33,68. Furthermore, the SHH MBs also differ based on patient 
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age, being either predominantly present in infants or adolescents75. All these factors 

led to the identification of four subtypes within this subgroup based on epigenomic and 

transcriptomic signatures (Figure 2, page number 11). SHHa - made up of TP53 

mutated, MYCN and GLI2 amplified patients, SHHβ – mainly consisted of infants and 

with a poor prognosis, SHHγ – also consisted of infants and MBEN histology, 

associated with good survival, and SHHδ – mainly adult patients with TERT 

mutations43. SHH MBs have an intermediate prognosis, with survival rates of 81 % for 

TP53 wildtype cases and 41 % for TP53-mutated cases 76. However, further diagnostic 

criteria and especially subtype specific treatment strategies for these four molecular 

types are still lacking. A few studies performed proteome analysis using mass 

spectrometry on a small MB cohort and identified two subtypes at the proteome level 

within the SHH MB subgroup. SHHa – consisted of canonical activation of the SHH 

pathway, and PTCH mutations while SHHb was more similar to the Group 4 tumours 

with higher activation of glutamate, calcium and Ras signalling pathways 77,78. A 

validation of these subtypes and potential clinical implication are still lacking and are 

part of the analyses performed within this PhD thesis work. 

 

 
Non-WNT/ Non-SHH MBs 

 
Group 3 MBs and Group 4 MBs are very heterogenous. Group 3 tumours mostly 

consist of patients with LCA histology, and MYC amplifications, which can be detected 

using immunohistochemical staining against MYC or observed by enhanced signals in 

copy number analyses from DNA methylome data. Group 3 MBs have the worst 

survival and often a high rate of metastasis. Transcriptomic studies have identified 

three subtypes within this subgroup (Figure 2, page number 11). Group 3a consisted 

of infants with metastasis but better outcomes, Group 3β – less metastatic patients 

with GFI activation and Group 3γ – consisted of infants and that exclusively was made 

up of MYC amplified patients. Out of all the three subtypes, Group 3γ was associated 

with poorest survival 43,68. 

Group 4 MB patients have classic histology and often show an isochromosome 17. 
While some features are common between Group 3 and Group 4 MBs, such as loss of 

chromosome 17p, and OTX2 amplification, they have very different prognoses. MYC 

amplifications are almost exclusively seen in Group 3 MBs, whereas Group4 MBs 
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display MYCN amplifications79. Advancements in transcriptomics identified further 

subtypes where Group 4a consisted of patients with MYCN amplification, Group 4β 

patients harboured SNCAIP duplications and the most common Group 4γ subtype was 

made up of patients with CDK6 amplifications (Figure 2, page number 11). Although 

Group 4 MBs have an occurrence rate of > 30 %, we know quite less about the 

tumorigenic pathways and biological dysregulation occurring in this group 43,68,80. 

Despite the differences between Group 3 and Group 4 MBs, they are more similar to 
each other than to SHH or WNT MBs. With progress in epigenomics and large-scale 

availability of samples, there were nearly eight subtypes identified within the Group 3 

and Group 4 MBs (Figure 3, page number 14). While MYC amplification was confined 
to epigenetic G3/4 subtype II, OTX2 amplifications were seen mostly in G3/4 subtype 

I81. MYCN amplifications were seen in the G3/4 subtype V. SMARCA4 structural 

variations were also seen in the G34 subtype II81. Further proteome analysis also 

identified three subtypes - G3a, G3b and G4. G3a corresponded to Group 3 MBs with 
MYC amplification, G3b without MYC amplification and G4 MBs which were most 

similar to Group 4 MB and showed enrichment of neuronal signatures and glutamate- 

associated pathways 77,78. 
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Figure 3: Figure from Northcott et al 81 (Material included under Creative Common License) displaying 

Group3 and Group4 DNA methylation subtypes 
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1.1.2.2 High-Grade Glioma MYCN amplified 
 

Primitive neuroectodermal tumours share an undifferentiated histomorphology and 

have been reclassified into several different tumour subtype based on molecular 

parameters22. Besides the previously introduced MBs, one such entity is pediatric high- 

grade glioma with MYCN amplification (HGG MYCN). HGG MYCN amplified are 

extremely aggressive with a median survival of only 14 months82–84. Histologically, they 

are different compared to other gliomas, characterized by undifferentiated cells, dense 

cell nuclei, and the absence of typical glial features. MYCN, a transcriptional factor for 

the MYC family is generally amplified in these tumours. Along with MYCN amplification, 

TP53 mutations are also common. This subtype also separates from other glioma 

subtypes using DNA methylome profiling22,23. While it can be identified as a separate 

entity compared to other HGG, HGG-MYCN amplified patients are still treated like HGG 

patients with a lack of distinct treatment regimens. Being a relatively new discovered 

tumour entity with aggressive growth and extremely poor survival, there is a dire need 

to understand the biology of these tumours and find treatment options. 
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1.2 : Aim of the work 
 

In an attempt to understand the biology of the two aggressive brain tumours namely 

MB and HGG MYCN amplified, we performed multi-omic data integration of the DNA 

methylome, transcriptome and proteome data of human MB patients (shared first 

author paper presented in section 4.1)), and compared omic data of mouse models to 

human MB (co-author paper presented in section 4.2) and human HGG MYCN 

amplified tumors (co-author paper presented in section 4.3). 

 
 

1.2.1 Aim 1 (Project 1): Identify clinically and phenotypically relevant MB subtypes 
 

We aimed to analyse 167 cases of MBs and perform a comprehensive analysis by 

integrating proteome, DNA methylome, and N-glycome data. Unsupervised analyses 

of integrated data were performed to reveal distinct proteome subtypes that we aimed 

to analyse concerning pathway activation and potential biomarker representation. We 

further aimed to perform multiomic analysis to unveil varying degrees of conservation 

of proteome features across MB subtypes. Molecular features were further integrated 

with clinical features to identify potential risk groups 85. These findings shall contribute 

to our understanding of novel targetable alterations in MBs and lay the groundwork for 

potential immunotherapies targeting glycan structures. 

 

 
1.2.2 Aim 2 (Project 2): Characterize a mouse model for the Group3 MBs with worse 

prognosis and survival 

To further understand MB tumorgenesis and develop suitable mouse models for these 

rare brain tumours, we also aimed to perform multi-omic analysis by integrating mouse 

and human DNA methylome and transcriptome data. Group3 MBs are one of the most 

aggressive brain tumours with 30% of patients having genetic alterations in MYC, 

SMARCA4 or both genes. While previous studies have established that MYC 

overexpression drives MB formation in mice, the functional impact of SMARCA4 

mutations remains unclear. Further, the therapeutic impact of these mutations also 

needs further investigation. To address this knowledge gap, we conducted 

experiments combining MYC overexpression with SMARCA4 loss in granule cell 

precursors86. The combination of MYC overexpression and SMARCA4 loss 
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successfully induced tumour formation in vivo following orthotopic transplantation into 

recipient mice. These tumours were histologically and molecularly (RNA-seq and DNA 

methylome data) analysed and compared to human tumours in order to proof the 

suitability of SMARCA4-deficient MB mouse models as a model for Group3 MB which 

could be further used for targeted therapeutic strategies. 

 

 
1.2.3 Aim 3 (Project 3): To understand the tumourgenesis and characterize the 

biology of aggressive HGG MYCN tumours 

In order to delve into the process of tumourgenesis and understand the molecular 

biology of HGG MYCN tumours, with the ultimate aim of proposing alternative 

treatment strategies, we established a genetically engineered mouse model displaying 

MYCN overexpression and TP53 knockout in neural precursor cells 87. In this model, 

all mice developed aggressive forebrain tumours early in their lifespan, and we 

analysed histology, DNA methylation patterns, and gene expression patterns to 

thoroughly compare murine tumours with HGG-MYCN tumours. The aim was to 

propose specific treatment strategies and develop a model system for preclinical 

treatment testing. 
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1.3 : Material and Methods 
 
 

1.3.1 Materials and Data 
 

1.3.1.1 DNA Methylome Data Generation 
 

1.3.1.1.1 Human Samples 
 

Human samples used for MB project 1: For the main cohort and biological validation 

cohort, we obtained FFPE Medulloblastoma samples dating from 1976 to 2022 from 

various neuropathology units in Germany, including cases collected within the HIT- 

MED study cohort. Additionally, single patients enrolled in the SIOP PNET5 study of 

the HIT-MED study centre were included. Tumour samples were obtained from 

patients with informed consent following the 1964 Declaration of Helsinki ethical 

standards. Samples were processed using standard protocols, namely, fixation of 

sample, dehydration of samples, embedding into formalin, and microdissection of 

tumour material only. DNA methylation data was generated using the Illumina Infinium 

HD FFPE DNA Restore Kit and EPIC BeadChip array. Data has been deposited under 

accession numbers GSE22247885 and GSE24376885. 

Mouse samples used for MB project 2 and HGG-MYCN project 3: Four mouse MB 

Group3 tumours with MYC overexpression and SMARCA4 loss were utilized and three 

murine HGG-MYCN tumours were used. DNA was isolated and bisulfite conversion 

was performed using standard kits, followed by analysis using Illumina Mouse 

Methylation Bead Chip Array. Data has been deposited under accession numbers 

GSE235924 and GSE227413 respectively86. 

 

 
1.3.1.1.2 Publicly Available DNA Methylome Data 

 
For MB project 1: Integration with publicly available DNA methylome data included 

datasets from Archer et al. (2018) EGAS0001001953 77 and Forget et al. (2018) 

GSE104728 78. 
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1.3.1.2 Transcriptome Data Generation 
 

For human samples of MB project 1: RNA was isolated from FFPE tissue sections 

using the Maxwell RSC RNA FFPE Kit, followed by library preparation and sequencing. 

Data is deposited under accession number GSE24379585. 

For mouse samples of MB project 2 and HGG-MYCN project 3: RNA was isolated 

using TRIzol, followed by library preparation and sequencing. Data is deposited under 

accession numbers GSE235625 and GSE227413 respectively. 

 

 
1.3.1.2.3 Publicly Available Transcriptome Data 

 
Publicly available Transcriptome data MB project 1: Cavalli et al. (2017), GEO 

GSE85218 and GSE37382 43 

Publicly available Transcriptome data MB project 2 and HGG-MYCN project 3: Sturm 

et al. (2016), GSE73038 88 

 

 
1.3.1.3 Proteome Data Generation 

 
For MB project 1: For 62 human samples, proteins were extracted from FFPE MB 

tissue sections and cell lines, followed by tryptic digestion and TMT labeling. LC-MS 

analysis was performed, and data processed using MaxQuant. Data available under 

PXD039319 (TMT data), and PXD048767 (validation cohorts)85. Integration with 

publicly available proteome data included datasets from Archer et al. (2018), 

MSV000082644 77, Forget et al. (2018), PXD006607 78, Petralia et al. (2021), 

PXD016832 52,. Data was integrated and batch corrected using HarmonizR59. Waszak 

et al. (2020), PXD016832 89 was integrated for validation. 

 

 
1.3.1.4 N-Glycan Data Generation 

 
For MB project 1: N-Glycan analysis was performed on 18 human samples, with data 

processed using Xcalibur Qual Browser and MaxQuant90. Further statistical analysis 

was performed using Perseus software91. 
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1.3.1.5 Mouse models for HGG MYCN and Group 3 MB 
 

The experimental procedures on animals were approved by Government of Hamburg, 

Germany (N113/16, N050/2018, N099/2019). The mice were subjected to a 12 hour 
dark/light cycle, with access to food and water. Male and female mice were ultilized for 

all experiments. hGFAP-cre 92, Blbp-cre 93, Sox2-cre 94, Trp53Fl/Fl95, and lsl MYCN96 

as well as Math1-cre::SmoM2Fl/wt97 were generated as previously described. 

Genotype was confirmed using polymerase chain reaction using DNA from ear or tail 
biopsies. 

 

 
1.3.2 Methods 

 
1.3.2.1 DNA Methylome Data Analysis 

 
Data preprocessing included quality control, probe filtering, and normalization using 

ssNoob. Integration with mouse data involved pre-processing with minfi98 and 

generation of a UMAP plot99. For an overview see Figure 4 and for details refer to 

respective publications in sections 4.1, 4.2 and 4.3. 
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Figure 4: Brief outline of the DNA Methylation Data Analysis and datasets used for integration in this 

study Left in Humans Right in Mouse 
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1.3.2.2 RNA Sequencing Data Analysis 
 

Raw fastq files were processed using FastQC and Trimmomatic for quality control in 

usegalaxy.eu100 and alignment to reference genomes GRh38 for human and 
mm39.ncbiRefseq.gtf.gz for mouse respectively. Gene expression quantification and 

normalization were performed using featureCounts 101 and DEseq2 102, respectively. 

 

 
 

 
Figure 5: Brief outline of the RNA-seq Data Analysis and datasets used for integration in this study Left 

in Humans Right in Mouse 
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1.3.2.3 Proteome Data Analysis 
 

Proteome data processing involved extraction and quantification using MaxQuant90, 

followed by normalization and integration with other datasets. External validation was 
performed using DIA-NN and data integration with the main cohort was performed 

using HarmonizR59. Further information on datasets can be found in Section: 1.3.1.1.1 

and 1.3.1.1.285 . 

 

 
1.3.2.4 N-Glycan Data Analysis 

 
N-Glycan data 85 were processed using Xcalibur, Glycoworkbench, and Skyline 

software, with further statistical analysis conducted in Perseus 91. 
 

 
1.3.2.5 Data Integration and Correlation 

 
DIABLO from mixOmics61 was used for integrating proteome and methylome data, with 

subsequent correlation analysis. Integration of mouse and human samples involved 
batch correction on orthologus genes in the RNA-seq data and orthologus CpG sites 

in DNA methylome data and visualization using umap and ComplexHeatmap103. 
 

 
1.3.2.6 Consensus Clustering 

 
Consensus clustering was applied to determine the ideal number of clusters from 

proteome and DNA methylation data, using the ConsensusClusterPlus 104 package in 
R. 

 

 
1.3.2.7 Copy Number Variation Analysis 

 
Copy number analysis was performed on samples with both methylation and proteomic 

data, involving segmentation and individual sample CNV plot generation using 

conumee package . Frequency plots were generated using CNAppwebtool105 using 

the conumee segmentation data. Pearson correlation was performed between the 

segmenetation values in R. 
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1.4 : Summary of Results 
 

1.4.1 MB project 1: Multiomic profiling of medulloblastoma reveals subtype- 
specific targetable alterations at the proteome and N-glycan level 

In the following study, we performed multiomic characterization of MBs to identify novel 

biomarkers, altered pathways and clinically relevant subtypes. We aimed to improve 

diagnosis, classification and stratification of MB patients and to provide a basis for 

targeted therapies. In the following the main points of the manuscript are highlighted. 

Large-Scale Proteome Analysis of MB: 
 

• Integration of in-house proteome data generated in different measurement 

batches, enabled the analysis of 62 formalin-fixed paraffin-embedded (FFPE) 
MB tumours, comprising the four main established molecular subgroups of MB: 

SHH (n=57), WNT (n=19), Group 3 (n=36), and Group 4 (n=55), MB Project 1: 

Figure 1A, page number 87, Supplementary figures 4A, page number 109) 85. 

• The age of paraffin material did not affect sample clustering or protein detection, 
indicating FFPE tissue's suitability for proteome analysis (MB project 1: Figure 

1B,1C, page number 87, Supplementary figure 4B, page number 109) 85. 

• We further expanded our cohort by integration of fresh frozen (FF)-MB proteome 

datasets from public repositories to increase the cohort size. After data 
harmonization using the HarmonizR 16,279 proteins were quantified across 167 

samples, including 156 primary tumours and 11 recurrences (MB project 1: 
Figure 1D-1G, page number 87, Figure 2D, page number 89, Supplementary 

figures 1-C, page number 106 Supplementary figures 5A-B, page number 

110)85. 

• We confirmed that established protein biomarkers for molecular MB subtypes 
such as GAB1 for SHH and WNT MBs, CTNNB1 for WNT MB and FLNA for 
SHH MB showed expected abundance patterns in individual studies and in the 

combined and harmonized data (MB project 1: Figure 1H, page number 87)85. 
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Six Proteomic MB Subtypes: 
 

• Consensus Clustering was applied to detect sample clusters within the data in 
an unbiased manner. Six stable proteomic clusters were identified termed 
pWNT, pSHHs, pSHHt, pSHHs, pG3myc, pG3, pG485. 

• Proteome clusters were compared to established DNA methylome subtypes and 
transcriptomic subtypes revealing clear associations (N=117 DNA methylation 
data available and n= 56 RNA-seq data available, MB project 1: Figure 2A-D, 

page number 89 Supplementary figures 6A-C, page number 111)85. 

• Cluster Characteristics: Non-WNT/non-SHH MBs were divided into three 

proteome subgroups (pG3, pG3myc, pG4), while SHH MBs separated into two 
subgroups (pSHHs: synaptic profile, pSHHt: transcriptional profile). WNT MB 

formed a homogenous cluster pWNT (MB project 1: Figure 2B, page number 
89). These proteome clusters were confirmed in the sole FFPE cohort, and also 

in matched proteome and transcriptome data (MB project 1, Supplementary 

figures 3A-F, page number 108)85. 

• Proteome clusters associated with clinical parameters and survival rates. 

pG3myc MBs showed the worst overall survival and were associated with high- 
risk features such as anaplastic histology and MYC amplification, while pWNT 

patients showed the best survival rate (MB project 1: Figure 2E, page number 

89, Figure 6A, page number 96)85. 

• Potential protein Biomarkers for each proteome MB subtype werde defined: For 

high-risk pG3myc MBs, Palmdelphin (PALMD) was established as a highly 
conserved biomarker and confirmed in case-matched samples and RNA data 

(MB project 1: Figure 2F, page number 89, Supplementary figure 3G, page 

number 108, Supplementary figures 14 A-D, page number 119)85. 

• The six proteome subtypes matched to two main proteome profiles at super- 

ordinate level – one profile highly enriched for a transcriptional signature 
(pSHHt, pWNT and pG3myc) and the other group highly enriched for a synaptic 

signature (pSHHs, pG3 and pG4) with cell-cycle signaling and opiod signalling 
pathways as potential therapy targets, respectively (MB project 1: Figure 3A-E, 

page number 90, Supplementary figures 7A-B, page number 112)85. 
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Group-Specific Correlation of DNA Methylome and Proteome: 
 

• Multiblock data integration and Pearson correlation analyses between DNA 

methylation and proteome data revealed subtype-specific correlations, 

indicating different conservation levels of molecular characteristics across 
proteomic MB subtypes. WNT MB subtype showed the highest correlation and 

conservation of features followed by pG3 MB whereas the other MB subtypes 
showed low-correlation based on CpG sites as well as differentially methylated 

regions (DMRs, MB project 1: Figure 4A-B, page number 92, Supplementary 
figures 9A-E, page number 114, Supplementary figures 10A-B, page number 

115)85. 

• Identified protein biomarkers' reflection at DNA methylation level was also 
investigated, with generally a negative correlation for all top biomarker 
candidates but RPH3A protein and its respective gene’s CpG sites (MB project 

1: Figure 4B, 4D, page number 92)85. 
 
 

SHH MB Subtypes: 
 

• SHH MB divided into two proteome subtypes (pSHHt and pSHHs), associated 
with distinct DNA methylation subtypes. (MB project 1: Figure 5A, page number 

94)85. 

• Differential pathway enrichments were observed, with pSHHs showing synaptic 

and immunological processes upregulated, and pSHHt showing transcriptional 
and replicative signatures. Both subtypes showed a low correlation between 

DNA methylome and proteome copy number variation (CNV) profiles (MB 

project 1: Figure 5C, F, H, D, G, page number 94)85. 

• Nearly all TP53-mutated SHH MBs belonged to the pSHHt subtype (9/10), MB 
project 1: Figures 5A, I, page number 94)85. 

• Distinct metabolic patterns were identified, with pSHHs showing alterations in 
the TCA cycle and neurotransmitter metabolism (MB project 1: Supplementary 

figures 12A-C, page number 117)85. 
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High-Risk pG3myc MBs: 
 

• Three non-WNT/non-SHH MB subtypes were identified, with high risk pG3myc 

MBs characterized by enrichment of RNA processing, ubiquitinylation and 
sumoylation. pG3 and pG4 showed high enrichment of mRNA splicing, DNA 

damage response, VEGF signalling and vesicle mediated transport processes. 
All three subtypes showed a low correlation between the DNA methylome and 

proteome CNV profiles (MB project 1: Figure 2E, page number 89, 6B-J, K, Q, 

page number 96)85. 

 
 

pWNT MBs: 
 

• pWNT MBs did not divide into further subtypes and showed a low abundance 

of proteins of the TriC/CCT multiprotein complex. Significant changes in 
TriC/CCT components were not reflected by other omic modalities before. 

TriC/CCT abundance changes potentially impact on vincristine resistance and 
chemotherapy response, suggesting therapy deacceleration in pWNT patients 

(MB project 1: Figure 7A, page number 98, Figure 8A-E, page number 100, 

Supplementary figures 18A-B, page number 123)85. 

• Enrichment of extracellular matrix proteins and N-glycan biogenesis, transport 
and presentation were observed. Comparing CNV profiles calculated from the 

DNA methylome and proteome data revealed a high correlation with 

chromosome 6 loss also being reflected at the proteome level (MB project 1: 
Figure 7H, I, page number 98, Figure 4A-B, page number 92, Figure 7J, page 

number 98)85. 

• TNC was identified as a biomarker for the pWNT subtype and was confirmed 
using Immunohistochemistry (MB project 1: Figure 7B-G, page number 98)85. 

 
 

N-Glycan profiles of proteome MB subtypes: 
 

• N-Glycans represent a type of posttranslational modification. N-Glycan profiles 

varied across proteomic MB subtypes, with differential abundance of N-glycan 
species in proteome subtypes (MB project 1: Figure 9C-D, page number 102, 

Supplementary figures 16A-B, page number 121)85. 
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• Differential N-Glycan profiles could be used as a potential immune therapy 
targets for MBs with high resistance to chemo and radio therapy85. 

 

 
Validation and confirmation of the results: 

 
• The findings were validated in technical and biological validation datasets, 

confirming the six proteome subtypes and associated characteristics (MB 
project 1: Figure 10A-I, page number 104, Supplementary figures 17A-G, page 

number 122)85. 

• TriC/CCT complex emerged as a discriminator between pWNT and pG3myc MB 
subtypes, indicating potential clinical relevance which needs further in-vitro 

investigation (MB project 1: Figure 8, page number 100, Supplementary figure 

15, page number 120)85. 
 
 

Overall, integrated proteome analysis provides insights into MB subtypes, their 

molecular characteristics, and potential therapeutic targets, paving the way for 

personalized treatment strategies and improved patient outcomes. 
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1.4.2 MB project 2: MYC overexpression and SMARCA4 loss cooperate to drive 
medulloblastoma formation in mice 

In this study we aimed to characterize murine brain tumours with Myc overexpression 
and SmarcA4 loss (MYC/SMARCA4 tumours) on a molecular level using RNA 

sequencing and investigated their similarity to human Group 3 medulloblastoma. 

 

 
Characterization of MYC/SMARCA4 Tumours: 

 
• The study utilized RNA sequencing of FFPE biopsy punches from four mouse 

MYC/SMARCA4 tumours. RNA from a previously established SHH MB mouse 
(Math1-cre::Smofl/wt) model and Math1creERT2::Smarca4fl/fl cerebella at 

postnatal day 7 (P7) served as controls. The comparison revealed significant 
upregulation of Myc in MYC/SMARCA4 tumours, accompanied by 

downregulation of genes associated with neuronal development and 
differentiation (MB project 2: Figures 1A-J, page number 128, Figure 2A-O, 

page number 129, Figure 3A, page number 131)86. 

• Gene set enrichment analyses (GSEA) highlighted the upregulation of ribosome 

biogenesis and rRNA synthesis, a characteristic of MYC-driven cancers. 
Comparison with the SHH MB model confirmed Myc upregulation and 

downregulation of MycN, a target of SHH signalling. Additionally, 
MYC/SMARCA4 tumours exhibited upregulation of genes associated with 

increased malignancy in gliomas and downregulation of markers for granule 
cells, indicative of a less favourable prognosis (MB project 2: Figure 3B-C, page 

number 131)86. 

Molecular Resemblance of murine tumours to human Group 3 MB based on gene 
expression: 

• Integration of RNA sequencing data with previously published gene expression 
data from human pediatric brain tumours revealed that MYC/SMARCA4 
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tumours exhibited molecular resemblance to human MB, particularly Group 3 

MB (MB project 2: Figure 4 A, B, D, E, page number 132)86. 

• Uniform Manifold Approximation and Projection (UMAP) and Euclidean 

clustering analyses with human MB samples demonstrated shared similarities 

with both SHH MB and Group 3/4 MB. Further gene expression analysis 
confirmed the closest similarity to Group 3 MB, with MYC/SMARCA4 tumours 

clustering to this subgroup (Figure 4A, D, page number 132). These findings 

suggest that MYC/SMARCA4 tumours share molecular features with Group 3 
MB, supporting their classification within this subgroup (Figure 2C-O, page 

number 129)86. 
 
 

DNA Methylation Profile Analysis: 
 

• To further validate the classification of MYC/SMARCA4 tumours, DNA 

methylation analysis was performed on three mouse tumours and compared to 
human MB (n=228) based on orthologous CpG sites. MYC/SMARCA4 tumours 

clustered in close proximity to Group 3/4 MB, consistent with the gene 
expression analyses. Distance plot analysis confirmed the highest resemblance 

of MYC/SMARCA4 tumours to Group 3 MB based on DNA methylation profiles 

(MB project 2: Figure 5A-B, page number 133)86. 

 
 

 
In summary, the integrated molecular analyses indicate that MYC/SMARCA4 mouse 

tumours closely resemble Group 3 MB in humans based on gene expression and DNA 

methylation patterns. These discoveries advance our understanding of the 

development of Group 3 MB and their characteristics and may lead to targeted 

therapies tailored to specific molecular subtypes. 
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1.4.3 HGG- MYCN project 3: Mouse models of pediatric high-grade gliomas with 
MycN amplification reveal intratumoral heterogeneity and lineage signatures 

 
In this study we focused on comparing tumours generated in mouse models with MycN 

overexpression and Tp53 knockout (MycN/Tp53 tumours) with human high-grade 

gliomas with MYCN amplification (HGG-MYCN), particularly regarding molecular 

similarities. 

 

 
DNA Methylation Profiles: 

 
• In humans, tumours were found throughout the entire brain, with the majority 

located in the temporal and frontal lobes (HGG-MYCN project 3: Figure 1B-G)87. 

• CNV analysis revealed imbalanced profiles with clear MycN amplification, 
confirmed by FISH and Immunohistochemistry (HGG-MYCN project 3: Figure 
1H, L, page number 139)87. 

• Nuclear p53 accumulation indicative of impaired p53 function was detected by 
Immunohistochemistry (HGG-MYCN project 3: Figure 1I-K, page number 139). 

• Bead chip arrays were used to detect the methylation status of 285,000 CpG 
sites in the mouse genome, with 141 orthologous CpG sites compared to human 
CPG sites detected via the 850k array87. 

• The methylation data of murine MycN/Tp53 tumours (n=3), showed high 
similarity to human HGG-MYCN tumours when visualized using UMAP (HGG- 
MYCN project 3: Figure 2, page number 140)87. 

 
 

 
Transcriptomic Profiles: 

 
• Transcriptomic profiles of murine tumours were generated and compared to 

gene expression data of human HGG-MYCN and other pediatric brain tumours, 

revealing high similarity between mouse MycN/Tp53 tumours and their human 
HGG-MYCN counterparts using UMAP, Euclidean distance and Agreement of 

Differential Expression (AGDEX) analyses (HGG-MYCN project 3: Figure 3A- 

D, page number 141)87. 
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• Gene set enrichment analysis (GSEA) for MYCN target genes showed 
significant enrichment of corresponding mRNAs in both human and mouse 
tumours (HGG-MYCN project 3: Figure 3E-F, page number 141)87. 

 
 

Comparison of murine MycN/Tp53 tumours with other tumour models: 
 

• Comparison of Math1-cre::SmoM2Fl/wt mice, a model for SHH-MB, showed 

expected similarities between mouse and human SHH MB tumours 97 and was 
used as a positive control. While our tumour model showed similarity to HGG- 
MYCN amplified human samples. (HGG-MYCN project: Figure 3A-D, page 

number 141)87. 

• Histologically too, these mouse tumours resembled their human counterparts 
(HGG-MYCN project: Figure 2A-T, page number 140)87. 

 

 
Overall, the study demonstrates that mouse models with MycN overexpression and 

Tp53 knockout closely resemble their human HGG-MYCN counterparts both 

molecularly and histologically. These findings provide valuable insights into the biology 

of these rare and aggressive HGG-MYCN tumours and suggest that mouse models 

can serve as useful tools for studying human brain tumours and developing therapeutic 

strategies. 
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1.5 : Discussion 
 

To address the problem of ineffective treatment strategies and improve the biological 

understanding of tumours we characterized the most common- MBs and highly 

aggressive HGG MYCN-amplified tumours. In this study we used DNA methylome and 

transcriptome data for both MB and HGG MYCN patients and additionally proteome 

and N-glycome data of MB patients to unravel phenotypic subtypes and characterize 

post-translational changes. We integrated different omic datasets, found clinically 

relevant subtypes and discovered new features which have not been described in all 

our projects. Finally, to understand the tumerigenesis we developed mouse models for 

the aggressive Group 3 MBs and HGG MYCN-amplified tumours. We integrated the 

human and mouse data to confirm similarity to their human counterparts. This indeed 

enhanced our understanding about the biological dysregulations of the two tumour 

types and enabled the use of these models for testing alternate therapy options. 

 

 
1.5.1 Human Multi-omics analysis of MBs 

 
1.5.1.1 Six proteome subtypes of MB belong to two main molecular profiles 

 
Even though several subtypes have been identified for MBs at DNA methylome and 

transcriptome level, they proved to be unsuccessful for providing accurate therapy. 

One reason for this is the low mutation burden in these tumours and also that these 

omics are farthest from the phenotype of the disease 52. Thus, we characterized the 

proteome data, integrated and harmonized our data with publicly available proteome 

datasets to enhance our cohort size. We performed consensus clustering analysis and 

identified six subtypes at proteome level which correlated with the clinical data. These 

six proteome subtypes belong to two main subgroups – one showing transcriptional 

pattern consisting of the pG3myc, pWNT and pSHHt subtypes and the other showing 

a synaptic pattern consisting of pG3, pG4 and pSHHs subtypes. These two main 

profiles that the six proteome subtypes belong to, show some common features and 

dysregulated pathways which can be potential therapy targets. Using Ingenenuity 

Pathway Analysis (IPA) we found that CDK4 inhibitors can be useful for targeting the 

transcriptional profile subtypes (MB project 1: Figure 3E, page number 90). Various 

CDK4 inhibitors are already used for treatment of metastatic tumours and also used 

for targeting MB cells in vivo 106,107 For the synaptic profile subtypes, NMDA receptor 
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antagonist memantine can be used (MB project 1: Figure 3D, page number 90). It is 

known to be neuroprotective and decreases cognitive dysfunction in patients treated 

with radiotherapy 108. 

 

 
pWNT MBs did not form further subtypes. They had the highest overall survival which 
is in-line with literature. Staining for high expression of CTNNB1 is commonly used for 

diagnosis of WNT MBs, however not all cases show a strong positive 

immunohistochemical staining for this marker67. Thus, we discovered TNC as a 

potential biomarker for detection of pWNT MBs, wherein all cells show a strong positive 

staining for this protein85. TNC, an extracellular matrix protein is associated with tumour 

proliferation or reduction depending on the splice variant present. WNT-pathway 

activation is associated with blood brain barrier disruption. This permits high response 

to chemotherapy109. TNC could be further contributing to this feature as a high level of 

TNC is also associated with blood brain barrier disruption110. This factor also 
contributes to the better response of patients to chemotherapy and can be a potential 

marker for therapy deacceleration. 
 

 
SHH MBs further divided into two subtypes namely pSHHt and pSHHs showing higher 

amounts of transcriptional and synaptic signalling respectively85. pSHHt subtype 

mainly consisted of the TP53 - mutated patients, higher abundance of CHD6, DNAJB2 

and NNMT associated with aberrant TP53 – mutations, adult patients and comprised 

of SHH3 and SHH4 methylation subtypes (MB project 1: Figure 5A, J, page number 

94). pSHHt was associated with worse prognosis compared to pSHHs MBs (MB project 

1: Figure 5I, page number 94). pSHHt also resemble SHHa subtype described by 

Archer et al 77. This group showed high enrichment of cell cycle and DNA repair 

pathways. ALDH1A3 was identified as a good diagnostic biomarker for pSHHt, 

confirmed using immunohistochemistry (MB project 1: Figure 5E, page number 94 

Supplementary figure 11C-D, page number 116). We also confirmed higher 

proliferation of pSHHt compared to pSHHs MBs using Ki-67 staining (MB project 1: 

Supplementary figures 11E-F, page number 116). Further, recently identified ELP1 

mutations were found mutually exclusive with TP53 mutations and were mainly a part 

of pSHHt subtype. The pSHHs subtype resembles SHHb subtype discovered by 

Archer et al 77 showing high synaptic signalling, consisting mainly of infant patients and 
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SHH1 and SHH2 methylation subtypes. We also found a significantly higher 

abundance of GABA targets, further contributing to their synaptic profile and could be 

good therapy targets for treatment of pSHHs MBs (MB project 1: Figure 5B, page 

number 94, Supplementary figure 12C, page number 117). 

 

 
Non-WNT/ non-SHH MBs further divided into three subtypes. pG4 MBs, showed higher 

abundance of synaptic processes which is already known for Group 4 MBs 43,77. We 

also observed a higher enrichment of VEGF signalling associated with tumour 

angiogenesis (MB project 1: Figure 6B-C, page number 96). VEGF signalling has been 

proposed as a good target for Mebendazole 111. This group consisted mainly of 

methylation subtypes V, VI, VII and VIII. Next, we identified pG3myc tumours which 

consisted of not all but most of the patients with genetic cMYC amplification and all 

patients with a higher abundance of cMYC target proteins (MB project 1: Figure 6K, 

page number 96). cMYC amplified MBs are associated with a worse prognosis, which 

was also the case for pG3myc patients compared to all other proteome subtypes. Thus, 

proteome profiling can be useful for identification of high-risk patients which do not 

show genetic MYC amplification but still have a high abundance of MYC target 

proteins. Additionally, this group consisted of methylation subtype II which is also 

associated with poor prognosis. We identified PALMD as a good diagnostic biomarker 

for this group and confirmed with immunohistochemistry85. Finally, the pG3 MBs were 

the ones with lowest cluster certainty and showed features of both pG4 and pG3myc 

with high enrichment of mRNA splicing, DNA damage response and SMAD signalling 

(MB project 1: Figure 6E-F, page number 96). They mainly consisted of methylation 

subtype I, IV and VIII and some cMYC amplified patients, SMARCA4 loss was mostly 

seen in pG3 MBs. 

 

 
1.5.1.2 Multi-omic data integration provides insights into stream of biological 
information at different levels and identification of new features 

In order get novel biological insights and investigate especially the pWNT MBs – with 

best survival and pG3myc MBs – with worse survival, we performed multi-omic 

analysis. We wanted to decipher features which could indeed support therapy 
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deacceleration in pWNT MBs and identify specific characteristics for a poor prognosis 

of pG3 and pG3myc MBs. 

DNA methylation data is commonly used in diagnostics and has been employed for 

development of the brain tumour classifier32. To compare our proteome data with 

current gold-standard for diagnosis, we integrated our proteome data with DNA 

methylome data and found that the DNA methylome subtypes were reflected at 

proteome level. Loss of chromosome 6, a characteristic diagnostic criterion for pWNT 

MBs, was also reflected at the proteome level (MB project 1: Figure 7J, page number 

98). Further, we investigated if the identified proteome biomarkers already reflect at 

the DNA methylome level. However, very few of these biomarkers showed correlation 

with their respective CpG sites suggesting post-transcriptional or translational 

changes. To investigate this further, we correlated the protein abundance of these 

biomarkers with their respective gene at transcriptome level. A high correlation 

between the transcriptome and proteome data was observed. The conservation 

patterns were different across the six proteome subtypes. pWNT MBs showed the 

highest correlation between DNA methylome, proteome and transcriptome data, 

followed by pG3 MBs. The other subtypes showed low correlation between DNA 

methylome and proteome data and high correlation between transcriptome and 

proteome data. Since the conservation patterns were different for different proteome 

subtypes, we hypothesised that post-translational changes could account for this 

difference in correlation. Thus, we characterised the N-glycan patterns to attribute their 

effect on the post-translational changes. Indeed, in-line with our previous findings, non- 

WNT/non-SHH proteome subtypes had highest number of N-glycans quantified. This, 

along with a general low correlation between omics for these subtypes supports that 

there could be higher amount of post-translational changes in non-WNT/non-SHH 

subtypes. 

 

 
We discovered that, even though pWNT MBs and pG3myc MBs showed significant 

differences in survival, they showed highest similarity at the superordinate level, this 

could be attributed due to higher abundance of MYC target proteins in the pG3myc 

subtype and association of MYC with WNT-signaling (MB project 1: Supplementary 

figure 13, page number 118). In order to investigate this further, we compared the two 

groups across different omics. Such multi-omic data integration led to identification of 



37  

new features which have not been described for MBs before. We found a significant 

difference in the abundance for the TriC-/CCT complex in between pG3myc and pWNT 

MBs. This complex is made up of eight components TCP1-CCT8 and is associated 

with protein folding. Higher abundance of this complex is associated with resistance to 

chemotherapy 112,113. While it had highest abundance in pG3myc, it had lowest 

abundance in pWNT MBs. Further, there was no difference observed in the 

components of this complex at DNA methylome and transcriptome level across the six 

proteome subtypes (MB project 1: Figure 8C-E, page number 100, Supplementary 

figures 15A-B, page number 120). Thus, higher abundance of TriC/CCT complex along 

with identification of higher number of complex N-glycan structures in pG3myc MBs 

suggests that patients belonging to this group could potentially be treated with immune 

therapy rather than chemo or radiotherapy114–116. Confirming our previous proposal of 

therapy deacceleration for pWNT MBs, a higher abundance of TNC combined with low 

abundance of the TriC/CCT-complex could be a prognostic criterion which could 

indeed reduce therapy-based side-effect mortality in pWNT MB patients. Further 

validations using in-vitro experiments manipulating the TriC/CCT complex will help to 

strengthen these findings. 

 

 
1.5.2 Cross species data integration 

 
To understand tumorigenesis of the aggressive Group 3 MBs, mouse models with MYC 

amplification and SMARCA4 loss were generated. SMARCA4 loss or MYC 

amplification alone did not drive tumour formation in the mice. Genetically engineered 

mouse carrying both the alterations resembled human Group 3 MBs histologically. We 

then analysed the DNA methylome and transcriptome data of our mice and integrated 

this with publicly available human PNET dataset 88. While we can see that the 

generated mouse model clusters and lies closest to the human Group 3 MB subtype, 

we also observed a high similarity to the human SHH MB subtype. This could be 

attributed to the cellular origin of the tumours. SHH MBs are known to arise from 

granule cell precursors (GCPs) 117–119 they are also among many other neural 

progenitors which have been targeted for modelling Group 3 MBs 39,120,121. Although, 

recent publication points that Group 3 and Group 4 MBs arise from unified rhombic lip 

which are not present in the mice, the current mouse model could still be useful for 



38  

exploring therapeutic potential for patients with both genetic alterations or further 

investigation SMARA4-deficient MB mouse models. 

 

 
For HGG MYCN amplified, TP53 loss and forced MYCN expression in neural 

precursors were sufficient to develop large tumours in the mouse model. These 

tumours resemble their human counterpart histologically and based on known 

immunohistochemical markers. However, the age of onset differed between human 

and mice. While these tumours occur at a median age of eight years in humans, in 

mice they occurred at adolescence. This could be attributed to the species-specific 

differences. Further, TP53-loss and MYCN-amplification are also a characteristic 

mutations of other brain tumours such as MBs and EPNs, however, none of the mice 

had any tumours in the cerebellum or spine. While, human HGG MYCN amplified occur 

in the cerebellar regions, our mice form tumours in the olfactory bulb (OB) which could 

be due to differences in sensory input. It is well-known in literature that visual and 

hearing systems are more prone to tumour development in humans122,123. 

 

 
Thus, although the same genetic drivers are observed in humans, the combination of 

both TP53-loss and MYCN-amplification are only observed in 36% of human tumours. 

Therefore, even though histologically and at DNA methylome and transcriptome level, 

the genetically engineered mouse model is closest to its human counter-part, it is not 

necessarily the best method for translational evidence of this mouse model. Thus 

mouse-models along with human sample analysis, inclusion of cell-line experiments 

will better characterize the tumorigenesis and effects of different therapies. 

Nevertheless, currently, this mouse-model is the first ever HGG MYCN-amplified 

mouse model, that can be used for further characterizing the poorly defined brain 

tumour entity. 

 

 
1.5.3 Limitations and future scope 

 
In contrast to the benefits of these findings, there are also some limitations associated 

with our study. For all of our studies, we used FFPE tissues and micro dissected tumour 

dense areas. This method of micro dissecting tumour area could account for some bias 

in our results. While this cannot be completed avoided, we can attribute to 
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this bias by performing intratumoral analysis such as using spatial - transcriptomics 

and proteomics provided there is sufficient sample amount. The lack of correlation 

between DNA methylome and proteome data can also be due to the array design of 

the methylation chips and the CpG sites considered for correlation. Future studies 

focusing on CpG site-specific correlation could enable identification of CpG sites of 

genes which have an influence on gene expression. While we identified, TriC/CCT 

complex inhibitors as potential therapy targets for high-risk MBs, this needs to be 

confirmed using further in-vitro experiments by employing MB cell lines which have 

been knocked down for these complex components and then quantifying their 

response to chemo and radio therapeutics. 

 

 
In the developed mouse models, we could identify similarities to human counterparts, 

however, we cannot completely overlook the species-specific differences and these 

cannot be completely removed by batch-effect correction. While there can be some 

similarities to humans, in-vitro experiments can help in confirming the dysregulated 

pathways. To further overcome the species-specific differences, true results can be 

achieved by developing tumour organoids for deeper understanding of the disease as 

it evolves in humans and curb the use of animal models. 

 

 
In conclusion, different levels of biology identify unique features. To unravel the 

complexity of these diseases, multi-omic approach can be useful. It will enable us to 

understand the biological dysregulations and at which level the dysregulation occurs. 

Additionally, we can determine personalized treatment strategies and new therapeutic 

targets as mentioned for pG3myc and WNT MBs. 

 

 
Thus, this study, provides insights and new characteristics of the six clinically relevant 

subtypes of MBs, which can be diagnosed using novel biomarkers. Genetically 

engineered mouse models of Group 3 MBs and HGG MYCN-amplified characterize 

these rare tumour entities further and show similarities at different levels to its human 

counterpart, thus being a model for further studies. 
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2. List of abbreviations 

Congenital brain tumours (CBT) 

lncRNA (long non-coding RNA) 

Central Nervous system (CNS) 

Medulloblastoma (MB) 

High-Grade Gliomas (HGG) 
 

High-Grade Gliomas with MYCN amplifications (HGG MYCN) 

Ependymomas (EPN) 

Embryonal tumours with multilayered rosettes (ETMRs) 

DNA methyl transferase enzymes (DNMTs) 

both fresh frozen (FF) 
 

formalin-fixed paraffin-embedded (FFPE) tissues 
 

DIABLO (Data Integration for Biomarker Discovery using Latent component method 

for Omics studies) 

Wingless related Integration site (WNT) 

adenomatous polyposis coli gene (APC) 

beta-catenin gene (CTNNB1) 

Dickkopf-related protein 1 (DKK1) 

Large-Cell Anaplastic Histology (LCA) 

Sonic Hedgehog Pathway (SHH) 

Suppressor Of Fused Homolog (SUFU) 

Patched 1 (PTCH1), 

Smoothened, Frizzled Class Receptor (SMO) 
 

GLI Family Zinc Finger 1 (GLI1) 
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MYCN Proto-Oncogene, BHLH Transcription Factor (MYCN) 
 

Tumour Protein P53 (TP53) 
 

GRB2 Associated Binding Protein 1 (GAB1), 

Medulloblastoma with extensive nodularity (MBEN) 

Telomerase Reverse Transcriptase (TERT) 

Orthodenticle Homeobox 2 (OTX2) 

Synuclein Alpha Interacting Protein (SNCAIP) 

Cyclin Dependent Kinase 6 (CDK6) 

Palmdelphin (PALMD) 

Tenascin C (TNC) 
 

SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, 

Subfamily A, Member 4 (SMARCA4) 

Ingenuity Pathway Analysis (IPA) 
 

Elongator Acetyltransferase Complex Subunit 1 (ELP1) 

Granule Cell Precursors (GCPs) 

Vascular Endothelial Growth Factor A (VEGF) 

T-Complex 1 (TCP1) 

Chaperonin Containing TCP1 Subunit 2 (CCT2) 

Chaperonin Containing TCP1 Subunit 3 (CCT3) 

Chaperonin Containing TCP1 Subunit 4 (CCT4) 

Chaperonin Containing TCP1 Subunit 5 (CCT5) 

Chaperonin Containing TCP1 Subunit 6A (CCT6) 

Chaperonin Containing TCP1 Subunit 6B (CCT6) 

Chaperonin Containing TCP1 Subunit 7 (CCT7) 

Chaperonin Containing TCP1 Subunit 8 (CCT8) 
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Principle Component Analysis (PCA) 
 

Uniform Manifold Approximation and Projection (UMAP) 

Copy number variations (CNVs) 

Deoxyribonucleic Acid (DNA) 

Ribonucleic Acid (RNA) 

Illumina BeadChip Array with 450,000 CpG sites (450K) 

Illumina BeadChip Array with 850,000 CpG sites (850K/EPIC) 

Alpha (a) 

Beta (β) 

Gamma (γ) 

Delta (δ) 

FISH (Fluorescence In Situ Hybridization) 

Agreement of Differential Expression (AGDEX) 

Gene set enrichment analysis (GSEA) 

Single nucleotide polymorphism (SNP) 
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Abstract 

Medulloblastomas (MBs) are malignant pediatric brain tumors that are molecularly and 
clinically heterogenous. The application of omics technologies – mainly studying 
nucleic acids – has significantly improved MB classification and stratification, but 
treatment options are still unsatisfactory. The proteome and their N-glycans hold the 
potential to discover clinically relevant phenotypes and targetable pathways. We 
compile a harmonized proteome dataset of 167 MBs and integrate findings with DNA 
methylome, transcriptome and N-glycome data. We show six proteome MB subtypes, 
that can be assigned to two main molecular programs: transcription/translation (pSHHt, 
pWNT and pGroup3myc), and synapses/immunological processes (pSHHs, pGroup3 
and pGroup4). Multiomic analysis reveals different conservation levels of proteome 
features across MB subtypes at the DNA methylome level. Aggressive pGroup3myc 
MBs and favourable pWNT MBs are most similar in cluster hierarchies concerning 
overall proteome patterns but show different protein abundances of the vincristine 
resistance-associated multiprotein complex TriC/CCT and of N-glycan turnover- 
associated factors. The N-glycome reflects proteome subtypes and complex-bisecting 
N-glycans characterize pGroup3myc tumors. Our results shed light on targetable 
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alterations in MB and set a foundation for potential immunotherapies targeting glycan 
structures. 

 
 

Keywords: 
Medulloblastoma subtypes, multiomics, proteome, mass spectrometry, DNA 
methylation, 850K, N-glycan, N-glycome, TriC/CCT, WNT, SHH, MYC, PALMD, TNC, 
HarmonizR 

 
 

Introduction: 

Medulloblastomas (MBs) are aggressive pediatric brain tumors that are 
histomorphologically, molecularly and clinically heterogenous33. Four main consensus 
subgroups have been described: WNT pathway activated MB (WNT MB), Sonic 
hedgehog pathway activated MB (SHH MB), Group 3 (G3) and Group 4 (G4) MB124. 
Molecular analyses, mainly using gene expression profiling, next generation 
sequencing and DNA methylation analysis predict further subdivisions with distinct 
clinical features43,125–127. Exemplary markers for poor survival comprise anaplastic 
histology, MYC amplification status, methylation subtype II/III, or TP53 mutations in 
WNT and SHH MB25,35,38,128–130. Conversely, methylation subtype VII, extensive 
nodularity (MBEN histology), a distinct whole chromosomal alteration signature in non- 
WNT/ non-SHH MB and WNT activation (e.g. nuclear accumulation of β-CATENIN or 
CTNNB1 mutations) were associated with a favourable prognosis in MB 
patients25,131,132. The clinical association to certain methylation subtypes and 
chromosomal aberrations has been clearly described, however, the underlying 
molecular mechanisms remain to be resolved and targeted treatment options are 
lacking. In contrast to nucleic acids, the proteome reflects a tumor’s phenotype in a 
more direct way and holds the potential to precisely dissect clinically relevant 
phenotypes and targetable alterations. Studies on small MB cohorts, using fresh- 
frozen (FF) tumor material, have shown that MBs display heterogeneity at the 
proteome level52,77,78. Formalin-fixed-paraffine-embedded (FFPE) material, enables 
the generation of larger datasets which is essential to deal with the heterogeneity but 
provides challenges to proteome analysis15. In addition to protein abundance, post- 
translational modifications (PTM) of proteins are important to understand cell 
physiology and disease-related signalling,52,77,78. The most complex and common PTM, 
N-glycosylation, has not been targeted in MB yet. Changes in the N-glycome are 
considered potential hallmarks of cancer and N-glycan structures hold strong potential 
as biomarkers and immunotherapy targets115,133–136. 

In this work, we integrate MB proteome datasets52,77,78 with data of 62 FFPE MB cases 
and establish a joint MB proteome dataset (n = 176) that is comprehensively compared 
to DNA methylome data – a current gold standard for molecular brain tumor 
classification137. Further, global N-glycosylation patterns of MB are assessed and 
correlated with identified proteome subtypes. Taken together, we present a large 
integrated study of the MB proteome, DNA-methylome and N-glycome, revealing new 
insights into MB phenotypes, potential biomarkers and therapeutic targets. 

 
 

Results: 
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Integration of in-house proteome data and publicly available datasets enables 
large scale proteome analysis of MB 

Proteome analysis was performed for 62 FFPE MB tumors (53 primaries, 9 recurrent 
cases). Additionally, 53 cases were analysed using DNA methylation profiling. Principal 
component analysis (PCA) and hierarchical clustering (HCL) distinguished the four 
main molecular subgroups of MB (SHH, WNT, G3, G4)2 similarly to published FF based 
MB proteome datasets (Figure 1A, Supplementary Figure 1A, Supplementary Figure 
3, Supplementary data file 1c, Source data are provided as a Source Data file)52,77,78. 
Proteome data of FF and FFPE tissue from matched MB cases further showed a high 
correlation (Supplementary Figure 2A). The age of used paraffine material did not 
impact sample clustering, detected protein numbers or abundance levels of 
housekeeping proteins138 (Figure 1B, Supplementary Figure 4, Supplementary Figure 
17D). Proteins detected in WNT and SHH MB, showed similar tendencies in FFPE- 
and FF-MB datasets77,78 (Supplementary Figure 1B). We concluded that FFPE tissue 
is suitable to study proteome patterns in MB. To increase cohort size, we next 
integrated and harmonized FF-MB proteome datasets from public repositories77;78;52 

(Figure 1D). Technical biases were reduced with HarmonizR139, and harmonized 
samples of the joint cohort clustered according to the main MB subgroups (Figure 1 E-
G, Supplementary Figure 5, Supplementary data file 1a). Established protein 
biomarkers for molecular MB subtypes67, showed expected subgroup-specific 
abundance patterns in individual studies and in the combined and harmonized data 
(Figure 1H). 16,279 proteins were quantified across 167 samples (19xWNT; 57xSHH; 
53xG4; 36xG3; 2xno initial main subgroup stated), including 156 primary tumors and 
11 recurrences. 

 
 

Six proteomic MB subtypes can be assigned to two main, potentially druggable 
molecular profiles 

To define proteome subtypes of MB, consensus clustering was applied 
(Supplementary data file 1b). 6 stable clusters were identified (Figure 2 A-D). Clusters 
were also reflected in RNA data of matched cases (n=60, Supplementary Figure 3D- 
F). The assignment reliability of a sample to a respective proteome subtype was 
indicated as cluster certainty (Figure 2D, Supplementary data file 1c). At the proteome 
level, non-WNT/ non-SHH MBs divided into three groups (pG4, pG3myc and pG3, 
p=proteome group), while SHH MBs separated into two groups (pSHHs, pSHHt, 
s=synaptic profile, t=transcriptional profile). WNT MB formed a homogenous cluster 
(pWNT, Figure 2D). In general, a high cluster stability was given for all proteome 
subtypes (median 6/6), except for pG3 samples, that showed high similarity to pG4 and 
pG3myc respectively (median pG3 5/6, Figure 2D). Except for one case, corresponding 
recurrent and primary tumors were assigned to the same proteome subtype (Figure 
2D). The case that switched subtype in the recurrence situation (from pSHHs to pSHHt) 
had a low cluster certainty in the primary sample (3/6, Figure 2D). 

Proteome MB subtypes were associated with previously described DNA methylation 
subtypes43,127,140 (https://www.molecularneuropathology.org/mnp/137, Supplementary 
data file 1c, Supplementary Figure 6B, Figure 2D). pG3myc patients showed reduced 
overall survival (Figure 2E). pWNT patients showed the best overall survival rate 
(Figure 2E). Out of 3,996 proteins found in at least 30% of samples for each proteome 
subtype, 529 showed a characteristic abundance in at least one subtype. The top 5 
proteins with the lowest p-value and highest mean difference were selected as 
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biomarker candidates (Figure 2F, Supplementary data file 2a). For high-risk non- 
WNT/non-SHH MBs (pG3myc) PALMD, DIEXF, MCN1, TPD52 and PYCR1 were 
identified. Of note, hedgehog-signalling induced proteins (MICAL1, GAB1, PDLIM3)141 

showed a higher abundance in both, pSHHt and pSHHs. Protein biomarkers were 
confirmed in case-matched MB cases (FF versus FFPE tissue, n=10, Supplementary 
Figure 2B) and on the RNA level (Supplementary Figure 3H). Subtype assignments 
were confirmed in an additional published MB dataset 89 and a technical validation 
dataset (Supplementary data file 5j,k, Supplementary Figure 17). 

The six proteome subtypes could be assigned to two superordinate clusters at the first 
hierarchy level in the joint (as well as all individual) datasets (Figure 3, Supplementary 
Figure 3). Comparing these two clusters revealed two main molecular profiles: profile 
1, comprising of pG3, pG4 and pSHHs and profile 2, comprising of pWNT, pG3myc 
and pSHHt MBs (Figure 3A). The two clusters were confirmed in a technical validation 
dataset (Supplementary Figure 17). Matched RNA expression profiles also confirmed 
a clustering of cases according to these defined profiles (n=60, Supplementary Figure 
3F). We next used gene set enrichment analysis (GSEA) to reveal potential underlying 
mechanisms and signalling pathways. Synaptic/immunological processes and 
phospholipid signalling were observed for profile 1 and a replicative/transcriptional 
signature was observed for profile 2 (Figure 3A,B, q-value <0.05, Supplementary data 
file 3a, 3b,3h, Supplementary data file 10e,f). In order to find drug targets and predict 
downstream effects we used the Ingenuity Pathway Analyses (IPA) tool and focused 
on the top two upregulated genesets based on differentially abundant proteins in profile 
1 (opioid signalling and SNARE complex) and profile 2 (EIF2 signalling and cell cycle 
control of chromosomal replication, Figure 3 B,C, Supplementary data file 3c-g)142. 
Tumors of profile 1 could potentially be targeted by several drugs, including the NMDA 
receptor antagonist memantine. Profile 2 tumors (replicative/transcriptional signature) 
could - besides others - be targeted by CDK4 or DNA polymerase inhibitors (Figure 
3B-E, Supplementary Figure 7, Supplementary data file 3c-g). 

 
 

Group-specific correlation of the DNA methylome and the proteome reveals 
different conservation levels of molecular characteristics across proteomic MB 
subtypes. 

Since DNA methylome data is routinely used in brain tumor diagnostics33, we decided 
to integrate our proteome data with DNA methylome data to investigate 1) the general 
correlation between the two data types and 2) if protein biomarkers are reflected at 
DNA methylome level. To integrate the data modalities, multiblock data integration 
using sparse partial least squares discriminant analysis (sPLS-DA) was performed 
between DNA methylation data (115 samples, 10,000 differentially methylated CpG 
sites between the MNP v12.5 defined subtypes) and proteome data (115 samples, 
3,990 quantified proteins present in 30% of samples, Supplementary Figure 8 A-C, 
Supplementary data file 1b,d)61. Only a fraction of features out of the 381717 probes 
and 3990 proteins showed correlation upon data integration using DIABLO from 
mixOmics, discriminating mainly the WNT subtype (Figure 4A, arrows, correlation cut- 
off > 0.7, Supplementary data file 4h, Supplementary Figure 9A-E). To refrain from any 
data bias, we next performed a MB subtype specific correlation between complete DNA 
methylome data (115 samples and 381,717 CpG sites) and proteome data (115 
samples, 3,990 proteins, Figure 4B, C). A significantly higher number of proteins of the 
pWNT (38.14%, 1,552 proteins) and pG3 subtype (45.41%, 1,812 proteins) correlated 
with at least one CpG site of their own gene, when compared to the other subtypes 
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(range 1.52 – 6.49 %, Figure 4B, Supplementary data file 4b-g). Only 12.2 % - 18% of 
protein correlating CpG sites were located at the transcriptional start site (TSS200, 
TSS1500, Exon1, Figure 4B). Integrating the proteome data with DNA methylome data 
based on differentially methylated regions (DMR) confirmed a high correlation of 
features in pWNT MB (Supplementary Figure 10 A-B). Focusing on the 31 previously 
selected biomarker candidates (Figure 2F), we found 10 proteins correlating with CpG 
sites of their own gene across subtypes (Figure 4C, D, Supplementary data file 4a). In 
summary, DNA-methylation changes were only partly reflected at the protein level, with 
different feature conservation levels for different proteome subtypes. 

 
 

SHH MB comprise two proteome subtypes showing a synaptic or DNA 
transcription/translation signature 

SHH MB split into two proteome subtypes (pSHHt and pSHHs, Figure 5A). All pSHHs 
cases with high cluster certainty (6/6) occurred in patients below 3 years of age. The 
DNA methylation subtypes SHH3 (8/29) and SHH4 (9/29) were exclusively found in 
pSHHt MBs (Figure 5A). Methylation subtypes SHH1 and SHH2 were seen in both 
pSHHs and pSHHt (SHH1: p=0.43, SHH2: p=0.10, Χ2 - test). We then analyzed the 
distribution of SHH pathway alterations, which are driver events in SHH MBs143. 
PTCH1 mutations were found exclusively but not mandatory in pSHHt tumors. SUFU, 
SMO, MYCN or GLI2 alterations did not distribute differentially (Figure 5A). Proteome 
subtypes of SHH MB were not clearly separated at the transcriptome level, which is in 
line with previous results77 (matched samples n=21, Supplementary Figure 11 A-B). 

In order to analyse how copy number alterations might be reflected at the proteome 
level, the proteome abundance for each gene was mapped to chromosomal arms, 
which will be referred to as “proteome copy number variation (CNV)” henceforth. Both 
pSHHt and pSHHs groups showed a low overall correlation between calculated CNVs 
using matched DNA methylation data and proteome data (rpSHHs =0.01, rpSHHt =0.20, 
Figure 5D, G, Supplementary data file 5g-h). 

To get insights into changed pathways in pSHH subtypes, a network clustering based 
on gene set enrichment using pSHHs or pSHHt specific proteins was performed 
(Figure 5B,C,E,F,H, Supplementary data file 5a-f, q-value < 0.05). Differential proteins 
in pSHHs revealed differences in synaptic, mitochondrial, and immunological 
processes, whereas proteins in pSHHt MB were involved in post-translational protein 
modification, transcription/translation, DNA repair and cell cycle. In accordance with 
the latter profile, pSHHt showed a significantly enhanced proliferation (assessed via 
ki67 staining, Supplementary Figure 11 E-F, Supplementary data file 5n). ALDH1A31 
was highly abundant in both pSHH groups (Figure 2F, Figure 5E), which could be 
confirmed via immunohistochemistry (Supplementary Figure 11 C,D). 

Analyses of hallmark gene sets additionally revealed a distinct upregulation of proteins 
involved in the TCA cycle in pSHHs, indicating metabolic differences between the 
subtypes (Figure 5H). Subsequent analyses of metabolites and aminoacids confirmed 
distinct metabolic patterns in pSHHt and pSHHs (Supplementary Figure 12). Of note 
pSHHs showed a lower abundancy of Isocitrate dehydrogenases, together with a 
decrease of Isocitrate, alpha-Ketoglutarate and Glutamine, indicating a higher 
consumption of the latter three (Supplementary Figure 12C, Supplementary data file 
5l-m). Alpha-Ketoglutarate and Glutamine can be further processed to Glutamate and 
then GABA, which are both involved in synaptic signalling. In line with these findings, 
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we detected a significant increase of GABA target proteins in pSHHs (Supplementary 
Figure 12C). 

We did not detect a significant difference in survival between pSHHs and pSHHt 
(Figure 5I). However, TP53 mutations, used for stratification of high-risk SHH MB144, 
mainly occurred in the pSHHt subtype (9/10, but differential distribution was not 
significant (p= 0.43, Χ2 - test)). As expected, TP53 mutations within the pSHHt group 
significantly correlated with bad prognosis (Figure 5I). TP53 mutated MBs did not form 
a distinct proteome cluster. However, 134 differentially abundant proteins were 
detected between pSHHt-TP53 wildtype and pSHHs-TP53 mutated MBs (Figure 5J, 
Supplementary data file 5i). 

 
 

High-risk pG3myc MBs are characterized by a MYC profile and high abundance 
of Palmdelphin 

We found three different non-WNT/ non-SHH MB proteome subtypes: pG3, pG3myc 
and pG4 (Figure 6A). pG4 exclusively included the main molecular subgroup G4, 
whereas pG3myc was dominated by G3 patients. pG3 included both molecular 
subgroups (Figure 2D). pG3myc were dominated by large cell anaplastic histology 
(LCA). LCA histology and MYC amplification are used for high-risk tumor stratification 
in non-WNT/ non-SHH MBs145. Accordingly, MYC amplifications were predominantly 
detected in pG3myc tumors. However, not all pG3myc classified cases were MYC 
amplified. In concordance with these high-risk characteristics, a broad fraction of 
pG3myc cases were assigned to the methylation subtype II (16/20 cases, 80%)137,146 

or group G3 δ43 (13/20 cases, 65 %, Figure 6A). Clinically, most pG3myc tumors were 
classified as M3 and tumors showed the worst overall survival compared to all other 
MB subtypes (Figure 6A, Figure 2E). Distinct protein abundance patterns and pathway 
enrichments were seen for pG3, pG4 and pG3myc each and all showed a low overall 
correlation between calculated proteome and DNA methylation CNV data (Figure 6 B- 
J, Supplementary data file 6a-l). Specifically, pG3myc MB showed a significant 
enrichment of MYC target proteins (FDR< 0.25; p-value <0.0001, Figure 6K). In line 
with this, p3Gmyc MB showed a high fraction of tumor cell nuclei with accumulation of 
MYC (Supplementary Figure 13). Moreover, pG3myc MB differed from pG3 and pG4 
showing enhanced signalling by ROBO receptors and an underrepresentation of 
proteins involved in MHCII class antigen presentation (Figure 6P, Supplementary data 
file 6m). To establish a diagnostic useful biomarker for histological identification of high- 
risk pG3myc tumors, we focused on the high differentially abundant protein 
Palmdelphin (PALMD, Figure 6 H). Digitally supported quantification of PALMD 
immunostainings confirmed a specific increase of the candidate in pG3myc tumors 
(Figure 6L, M, Source data are provided as a Source Data file). We additionally 
analysed how this biomarker is reflected at other omic levels. Indeed, a significantly 
higher PALMD mRNA expression and lower CpG site methylation was detected in 
pG3myc MBs compared to all other MB subtypes (Figure 6N)77. High PALMD mRNA 
expression was also associated with poor survival in MB (Figure 6O, Supplementary 
Figure 14A-D). Finally, all groups displayed a low overall correlation between 
calculated proteome CNV and DNA methylation CNV data (Figure 6D, G, J, 
Supplementary data file 6j-l). 

 
 

pWNT MB show low abundance of the multiprotein complex TriC/CCT 
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WNT MB did not divide into further subtypes based on proteome profiles (Figure 7A). 
Among differentially abundant proteins in comparison to other MB subtypes TNC 
showed the highest abundance (14.7 foldchange, Figure 7B, Supplementary data file 
7a). A significantly high intensity of TNC in pWNT MB was confirmed using digitally 
supported immunostaining quantification (Figure 7C, D, E, Source data are provided 
as a Source Data file). Using a publicly available dataset43, a higher mRNA expression 
of TNC in WNT MB was confirmed (Figure 7F). In contrast, CpG sites of the TNC gene, 
showed no significant difference of methylation (pWNT versus other subtypes (Figure 
7G, Supplementary Figure 14A-C). GSEA revealed an enrichment of extracellular 
matrix proteins and N-glycan biogenesis and transport (FDR< 0.25; p-value <0.0001, 
Figure 7H, I, Supplementary data file 7b, c). A high overall correlation between copy 
number plots extracted from proteome and DNA methylome data was observed for 
pWNT compared to all other subtypes (Figure 7J, Supplementary data file 7d), being 
in line with a general increased overall correlation of proteome and DNA methylome 
data (Figure 4A-B). 

The highest similarity of proteome profiles was observed for the pG3myc subtype, 
associated with high-risk features and the pWNT subtype-associated with relatively 
good overall survival (Figure 3A). Both subtypes showed a 
“transcriptional/translational” profile (Figure 3A-B) and a high abundance of MYC target 
proteins along with a high fraction of MYC-positive tumor cell nuclei (Figure 6K, 
Supplementary Figure 13). We therefore asked, what molecular changes could impact 
such diverse clinical behavior. Differentially abundant proteins between pG3myc and 
pWNT MBs included TriC/CCT proteins and the established WNT MB marker β- 
CATENIN147 (Figure 8A, Supplementary data file 8a). Among the top discriminating 
gene sets was the association with TriC/CCT target proteins and asparagine linked N- 
glycosylation (FDR< 0.25; p-value <0.0001, Figure 8B, Supplementary data file 8b-c). 

As the TriC/CCT complex has previously been reported to be associated with 
vincristine resistance and typical chemotherapy regimens for MB contain vincristine in 
the treatment combination147 , we further focused on this chaperonin containing 
multiprotein complex (Figure 8C-E, Supplementary Figure 15A). Among MB subtypes, 
pWNT MBs showed the lowest abundance of TriC/CCT proteins, whereas pG3myc 
MBs displayed the highest amount. High abundance of TriC/CCt proteins in pG3myc 
was confirmed at mRNA level. Matched cases, as well as publicly available 
transcriptome data43 did not show a statistically significant downregulation of all 
component mRNAs in pWNT MB when compared to other subtypes (Figure 8C, 
Supplementary Figure 15). Further, no difference of TriC/CCT gene methylation was 
detected among subgroups (Figure 8C, Supplementary data file 8d). Focusing on each 
TriC/CCT component individually, we saw a mainly negative association between DNA 
methylation and RNA expression and a mainly positive one between transcriptome and 
proteome data - as expected (Figure 8D). However, correlation of DNA methylome and 
proteome data did not point in such a clear direction (Figure 8D). Consequently, only 
CCT2 showed a high association among all omic levels with a correlation score ≥0.7 
(Figure 8E, Supplementary data file 8d). We therefore, identified the TriC/CCT complex 
as a feature discriminating pWNT and pG3myc MB. 

MB subtypes show distinct N-glycan profiles 

One of the major altered genesets between pWNT and pG3myc MB was N- 
glycosylation (Figure 8B), referring to a post translational modification which is 
unknown in the context of MB. As glycosylation plays a major role in immune system 
response and might therefore enable therapeutic options 148,149, we focused on this 
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aspect in more detail. Of note, proteins involved in all aspects of N-glycosylation 
(synthesis, processing, transport, and antigen presentation via MHC class II) were 
overrepresented in pWNT (Figure 9C). Quantitative analysis of N-glycans revealed 
differential N-glycosylation patterns across proteomic MB subtypes (Figure 9D-I). In 
total 302 N-Glycan species were identified (Figure 9 E-I; Supplementary data file 9a). 
For non-WNT/ non-SHH MB a higher number of N-glycans were identified in 
comparison to pWNT, pSHHs and pSHHt (Figure 9F, Supplementary data file 9a). At 
the quantitative level, proteome MB subtypes were reflected based on their N-glycan 
profiles (Figure 9G, Supplementary Figure 16A). 92 N-glycans were differentially 
abundant between the proteome MB types (Supplementary Figure 15B, 
Supplementary data file 9b). We identified the highest number of exclusive (complex) 
N-glycans in the subtypes pG3myc and pG4 (npG3nyc = 22, npG4 = 12, Figure 9H, I, where 
n represents (complex) N-glycans). Frequently described key factors in tumors are the 
upregulation of cancer associated sialynated N-glycans as well as aberrant 
fucosylation150. A higher proportion of sialynated N-glycans was found in non-WNT/ 
non-SHH tumors (non-WNT/ non-SHH MB: 59.7-62.0% versus pWNT/pSHH: 49.5- 
51.9%). A significantly lower proportion of fucosylated N-glycans was detected in 
pSHHt, compared to all other subtypes (66.7 % (n = 74)) versus 72.1 - 80% (n = 101- 
174, range of the other MB subtypes, where n represents number of fucosylated N- 
glycans). 

Taken together, integrated proteome analyses shed light on new characteristics in MB 
subtypes revealing potentially druggable targets. To show validity of results, we 
recapitulated the six proteome subtypes and two superordinate profiles found in the 
integrated cohort in a technical and biological validation dataset of FFPE samples 
(ntechnical cohort=57, nvalidation cohort=31, Figure 10A-G, Supplementary Figure 17, 
Supplementary data file 1c, Supplementary data file 10a-c,g). We further verified the 
differential feature conservation between DNA methylation and protein patterns in the 
biological validation dataset und underlined the TriC/CCT complex as a discriminator 
of pWNT and pG3myc MB (Figure 10H, I, Supplementary data file 10b,10h, Source 
data are provided as a Source Data file). 

 
 

Discussion 

Technical variability and missing values are a general challenge of mass spectrometry- 
based proteome analyses implying a need for large integrated datasets with reduction 
of technical biases. Using the HarmonizR integration strategy139, we could successfully 
identify clinically relevant proteome subtypes of MB in a large, integrated cohort of 167 
MBs. Herein, we show that FFPE material, which maintains chemical rigidity under 
cheap storage conditions13, enabled the identification and differentiation of molecular 
subtypes, as previously described for smaller cohorts of FF tissue77,78. Respective 
results could moreover be confirmed in a technical and biological FFPE validation 
dataset. In line with previous results151, sample age did not impact data quality, making 
FFPE tissue highly suitable for large-scale analysis of rare diseases 1916. 

Two overriding molecular patterns were observed across MB subtypes, indicating that 
MB either follow a transcriptional/replicative (pWNT, pSHHt, pG3myc) or synaptic/ 
immunological (pG4, pSHHs, pG3) profile. These profiles tempt to speculate, that MBs 
with a synaptic/ immunological pattern (in contrast to MBs with a 
transcriptional/replicative pattern) may depend more on external stimuli, such as e.g. 
(potential) synaptic input. Further studies are therefore needed to comprehend the 
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underlying functional background resulting in the observed patterns. To evaluate a 
therapeutic potential of these patterns, we used IPA 142 and identified, besides others, 
CDK4 inhibitors as potential drugs for targeting the groups belonging to the 
transcriptional profile. Various CDK inhibitors are already FDA-approved for treatment 
of different types of metastatic cancers and CDK4/6 inhibition has been shown to inhibit 
tumor growth of medulloblastoma cells in vivo106,107. In contrast, proteome subtypes 
belonging to the synaptic profile may be – besides others - targeted with the NMDA 
receptor antagonist memantine. Of note, memantine has neuroprotective properties 
and was shown to decrease cognitive dysfunction in patients receiving 
radiotherapy108,152. As radiotherapy is also applied to MB patients the drug may be of 
specific interest, however, further studies are needed to investigate the clinical 
potential of the mentioned drugs for MB patients. 

 
 

We found that DNA-methylation subgroups of MB - which are used for classification of 
brain tumors in the clinic33 - are associated with proteome subtypes. This underlines, 
that the proteome harbors a great potential for identifying subtype specific therapy 
targets43,126,127,140,137. However, only 30% of marker proteins showed a significant 
correlation with their respective gene’s CpG sites. In general, a low correlation between 
proteome and methylome data was found in MB, in line with the results of previous 
studies on other tumor entities153,154. Poor correlations might be attributed to the 850K 
array design since it mostly assesses promoter methylation sites whereas CpG sites 
correlating well with gene expression may be located further away from transcriptional 
start sites155. Of note, correlation levels of data modalities were not evenly distributed 
among subtypes. Especially in pWNT tumors, proteins showed a relatively high 
correlation with their respective gene’s CpG sites (38.9% of proteins). In addition, the 
commonly detected loss of chromosome 636 was also reflected in proteome data when 
mapping protein abundances to chromosomal arms. Molecular alterations may hence 
be more conserved for WNT MBs, whereas DNA-based methylation differences do not 
always result in an effective change in protein abundance, probably due to post 
transcriptional and post translational mechanisms (Supplementary Figure 18). These 
findings highlight the importance of proteome analysis to detect targetable alterations. 

 
 

We detected two proteome SHH MB subtypes, namely pSHHs and pSHHt. While we 
cannot fully exclude the possibility that differences in proteome patterns could be due 
to variations in tissue composition, our results confirmed previously reported proteome 
patterns in SHH MB77. pSHHs tumors reflect the SHHb subgroup defined by Archer et 
al.77 showing enrichment of synaptic pathways16. We found that pSHHs MBs are 
characterized by a high representation of the citric acid (TCA) cycle and respiratory 
electron transport, pointing at distinct metabolic profiles of SHH proteome subtypes. 
Metabolic analysis confirmed significant differences with isocitrate (ISO) and α- 
ketoglutarate (αKET) being significantly downregulated in pSHHs MBs. As pSHHs MBs 
also showed a high protein abundance of isocitrate dehydrogenases, this may indicate 
a higher consumption of these metabolites. As both αKET as well as the amino acid 
glutamine were significantly downregulated in pSHHs, we hypothesize that these 
factors might be further transformed to glutamate and further y-Aminobutyric Acid 
(GABA), the latter both being linked to synaptic signalling156. In line with this, pSHHs 
fell into the “synaptic” profile and GABA targets were significantly upregulated in these 
tumors. We further speculate that pSHHs tumors might be dependent on synaptic 
input, a principle that has been shown for other primary brain tumors, but still has to 
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be shown for medulloblastoma157,158. pSHHt MBs showed a high abundance of 
proteins involved in transcription/translation, DNA repair and cell cycle. In line with this, 
respective MB showed an increased proliferation compared to pSHHs. 

TP53-mutated SHH cases, stratified as high-risk SHH MB144, did not form a 
distinguishable cluster. However, among others, CHD6, DNAJB2 and NNMT, known 
to be associated with aberrant TP53 expression and high tumor progression 159–161, 

showed a differential abundance comparing TP53-mutated to TP53-wildtype cases. 
Further, CHD6 is suggested as a potential anti-cancer target for tumors with DNA- 
damage repair-associated processes160Mutations within the largest subunit of the 
elongator complex (ELP1) have lately been described in SHH MB89. These mutations 
were found mutually exclusive with TP53 mutations and ELP1 mutated SHH MBs were 
characterized by translational deregulation with upregulation of factors involved in 
transcription and translation89. Reanalysis of published proteome data from ELP1 
mutated SHH MB cases indeed revealed that all cases were attributed to the pSHHt 
MB subtype (Supplementary data file 5k)89 . As a limitation, the ELP1 status of the 
SHH MB cases in our cohort was only known for n = 3 pSHHs and n = 10 pSHHt tumors 
(all wildtype). However, all SHH MBs with methylation subtype 3 - associated with ELP1 
mutations - fell into pSHHt89,137. The clinical significance of the two proteome subtypes 
of SHH MB needs further validation in the future. 

 
 

Current standard treatment approaches for MB (surgical removal, craniospinal 
irradiation and combinational chemotherapy) cause severe neuro-cognitive and 
neuroendocrine late effects. Due to their high responsiveness to therapy, WNT-type 
MBs  are  evaluated  for  therapy  de-escalation162.  The  identification 
of CTNNB1 mutations, or chromosome 6 deletion (monosomy 6) are common markers 
for the identification of WNT-type MB. Immunohistochemistry is used to detect nuclear 
ß-Catenin staining in tumor cells that can be weak and found only a subset of cell nuclei 
163,164. Here, Tenascin C (TNC) was found elevated in pWNT MBs, in line with results 
of previous mRNA-based analyses165. TNC is a highly glycosylated extracellular matrix 
(ECM) protein, promoting or inhibiting proliferation and migration in cancer, depending 
on the present splice variant166, which will be a field of further study. Besides TNC, a 
general enrichment of ECM proteins was detected in pWNT MBs. While the ECM has 
not been investigated in-depth in WNT MB, ECM components have been described to 
predict outcomes in MB167. ECM degradation was found as a hallmark of tumor 
invasion, metastasis development and overall bad prognosis168. WNT pathway 
activation dependent disruption of the blood-brain barrier (BBB)168, was described to 
permit accumulation of high levels of intra-tumoral chemotherapy in WNT tumors, 
resulting in a robust therapeutic response. TNC could be another contributor to this 
phenotype, as high TNC levels contribute to BBB disruption110,168. Furthermore, other 
BBB contributors, such as EPLIN1, DSP and S100A4 were found differential in pWNT. 

 
 

In line with previous results, we found three proteome subtypes of non-WNT/ non-SHH 
MBs77. pG4 (predominantly comprising G4 tumors), followed the synaptic program. 
These findings go in line with the literature, as synaptic signatures for G4 tumors, have 
been described43,77. In pG4 MBs, we detected a higher abundance of VEGF signalling- 
related proteins, previously described in the context of tumor angiogenesis. VEGF 
signalling can be targeted in MB using Bevacicumab or Mebendazole 111,169 and hence 
might be beneficial for pG4 patients. pG3 MBs (composed of both G3 and G4 tumors) 
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showed the lowest cluster certainty and inherited the characteristics of both pG3myc 
and pG4. pG3myc tumors, showed a reduced survival rate and high-risk features, such 
as LCA histology and solid metastasis. Group 3 MB with MYC amplification are highly 
aggressive and exhibit a bad prognosis170,171. In our cohort, more than half of the 
patients showed a CMYC amplification, while all samples showed an upregulation 
of CMYC target genes, supporting the hypothesis that besides CMYC amplification, 
changes in its phosphorylation status result in a CMYC-driven high-risk proteome G3 
subtype77. Therefore, proteome signatures may be additionally important for 
stratification of MB patients, as the current stratification scheme for high-risk MB based 
on (genetic) MYC amplification may miss these non-amplified high-risk pG3myc 
patients. As potential protein biomarkers for pG3myc MB, DIEXF, MDN1, POSTN, 
TPD52 and PALMD were selected. TPD52 has recently been suggested as an 
immunohistochemistry (IHC) marker for high-risk non-WNT/ non-SHH patients129. 
PALMD showed the highest elevation in our cohort and was established as a suitable 
IHC marker for the identification of pG3myc MB. Further prospective trials need to 
evaluate its significance for stratification of high-risk non-WNT/ non-SHH patients. 
Further proposed markers for proteomic MB subtypes in this study have to be tested 
in prospective studies to verify their potential for classification and potential therapy 
prediction in the future. 

 
 

High-risk pG3myc MBs showed a high resemblance to pWNT tumors with favorable 
outcome. Comparing both groups, revealed the components of the Tric/CCT complex 
to be significantly different. A high abundance of CCT complex proteins has been 
linked to worse prognosis in cancer and was identified as a predominate driver of 
Vincaalcaloid resistance, including Vincristine, which is among the most frequently 
used drugs for MB 172. The general low abundance of CCT/TriC proteins in pWNT MB 
could therefore be a BBB-phenotype independent explanation for the relatively high 
response to chemotherapy173. The usage of CT20p, an amphipathic CCT inhibitor 
peptide, was described as a promising strategy for the treatment of high-risk tumors 
with high CCT abundance174,175. Based on our data, the approach should be further 
investigated as a potential strategy to enhance Vincristine-mediated cytotoxicity in 
high-risk pG3myc MBs, which were characterized by a particularly high abundance of 
CCT/TriC proteins. 

 
 

We further identified increased Asparagine-linked-N-glycosylation as a hallmark of 
WNT Medulloblastoma. Glycosylation patterns can be used as biomarkers for disease 
progression133 and aberrant N-glycosylation patterns have been described for brain 
cancer176. Of note, aberrant N-glycan structures in cancer could be targeted by 
immunotherapy and thus provide therapeutic strategies, especially for high-risk tumors 
that are not sensitive to classical treatment148,177 . As an example, chimeric-antigen- 
rceptor (CAR)-modified T cells, that can be specifically directed against tumor- 
associated carbohydrate antigens (TACAs) are rapidly evolving116. Differential, 
quantitative N-glycan analysis reflected proteome MB subtypes with high similarity for 
pSHHt and pSHHs MBs. The latter could be related to dominant SHH activation in 
these groups, knowingly having an impact on N-glycosylation178. 12 structures were 
identified only in high-risk pG3myc patients. Most of these structures are complex 
bisecting N-glycans, known to be associated with cell growth control and tumor 
progression133,178 and might be related to the unfavorable outcome for pG3myc 
patients. pG3myc-specific N-glycans do not appear in healthy brain cells, whose N- 
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glycome is characterized by dismissed N-glycan complexity, lack of complex N-glycans 
and truncated structures179 and might serve as suitable immunotherapy targets for 
high-risk patients. 

For pG4 patients, highest amounts of salivated N-Glycans were found, further 
supporting the immunological profile of pG4 MBs, observed at the proteome level180. 

 
 

Taken together, the integration of MB proteome, DNA-methylome and N-glycome data 
revealed (1) new insights into MB phenotypes, (2) potential biomarkers for rapid 
histological subtyping and for stratification, and (3) therapeutic targets for MB. 
Specifically, TriC/CCT-inhibitors or chimeric-antigen-receptor-modified T-cells to target 
tumor-specific carbohydrates may be applied for high-risk MBs. Superordinate 
transcription/translational or synaptic proteome profiles across subtypes further 
revealed targetable vulnerabilities, which may be addressed by e.g. CDK4 inhibitors or 
memantine. 

 
 

 
Methods: 

Subject Details: 

In house patient samples for main cohort and biological validation cohort: 

FFPE Medulloblastoma samples of tumors within the years 1976-2022 were obtained 
from tissue archives from various neuropathology units in Germany including cases 
that had been collected within the HIT-MED study cohort. Single patients were enrolled 
in the SIOP PNET5 study of the HIT-MED study center (for details see Supplementary 
data file 1c, Supplementary data file 11, clinical data for these patients was excluded 
from further analysis). All investigations were performed in accordance with local and 
national ethical rules of patient’s material and have, therefore, been performed in 
accordance with the ethical standards laid down in an appropriate version of the 1964 
Declaration of Helsinki. All patients gave their informed consent for scientific use of the 
data. All samples underwent anonymization. Tumor samples were fixed in 4 % 
paraformaldehyde, dehydrated, embedded in paraffin, and sectioned at 10 µm for 
microdissection using standard laboratory protocols. For further information on clinical 
details of samples, please refer to Supplementary data file 1c Supplementary data file 
11. 

 
 

Medulloblastoma cell lines: 

The human Medulloblastoma cell lines DAOY (Ca#HTB-186) and D283med (Ca#HTB- 
185) were obtained from ATCC, Manassas, VA, USA. DAOY and D283med were 
authenticated using Eurofins using STR-profiling analysis. UW473 was kindly provided 
by Michael Bobola. All lines were used as Standards for TMT batches. Cells were 
cultivated in DMEM (Dulbecco’s Modified Eagle Medium, PAN-Biontech) 
supplemented with 10 % FCS at 37°C, 5 % CO2. 

Publicly available datasets: 
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For the data integration and harmonization of in-house and publicly available DNA 
Methylation data the following datasets were used: Archer et al. (2018)77: 42 FF MB 
samples, accessible as a subset of European Genome-phenome Archive ID: 
EGAS00001001953. Forget et al. (2018)78: 38 FF MB samples, accessible via Gene 
Expression Omnibus (GSE104728). For the analysis of RNA Expression data, 
processed and normalized data from the following datasets were used: Cavalli et al. 
(2017)77: 763 MB samples, accessible via Gene Expression Omnibus (GPL22286)43. 
For the data integration and harmonization of in-house and publicly available proteome 
data, the following datasets were included: Archer et al. (2018)77: 45 FF MB samples, 
available via the MassIVE online repository (MSV000082644, Tandem Mass Tag- 
(TMT) label-based protein quantification); Forget et al. (2018)78: 39 FF MB samples, 
available via the PRIDE archive (PXD006607, stable isotope labeling by amino acids 
in cell culture- (SILAC) label-based protein quantification); Petralia et al. (2021)52, 23 
FF MB samples, , available through the Clinical Proteomic Tumor Analysis Consortium 
Data Portal (https://cptac-data-portal.georgetown.edu/cptacPublic/) and the 
Proteomics Data Commons (https://pdc.cancer.gov/pdc/, Tandem Mass Tag- (TMT) 
label-based protein quantification). For validation of determined proteome subtypes, 
as well as the investigation of the proteome profile of ELP1 mutated SHH MB, a dataset 
published by Waszak et al. (2020)89 was used (23 FF MB samples, available via the 
PRIDE archive (PXD016832, Data independent acquisition label free protein 
quantification). 

 
 

Sample preparation and data acquisition: 

DNA methylation profiling: 

DNA methylation data was generated from FFPE tissue samples. DNA was isolated 
using the ReliaPrepTM FFPE gDNA Miniprep system (Promega) following the 
manufacturer’s instructions. 100-500 ng DNA was used for bisulfite conversation using 
the EZ DNA Methylation Kit (Zymo Research). Then the DNA Clean & Concentrator-5 
(Zymo Research) and the Infinium HD FFPE DNA Restore Kit (Illumina) were applied. 
Infinium BeadChip array (EPIC) using manufacturer’s instructions were then used to 
quantify the methylation status of CpG sites on an iScan (Illumina, San Diego, USA). 
Data has been deposited using accession number GSE222478 and GSE243768 
(linked to Series GSE243796). Additionally, previously published data measured on 
Infinium Human Methylation 450 BeadChip array (450K) were included from 
EGAS0001001953181, from GSE10472878, and GSE13005180. 

 
 

Proteome profiling: 

FFPE MB tissue sections were deparaffinized with N-heptane for 10 minutes and 
centrifuged for 10 minutes at 14,000 g. The supernatant was discarded. Proteins were 
extracted in 0.1 M triethyl ammonium bicarbonate buffer (TEAB) with 1% sodium 
deoxycholate (SDC) at 99°C for 1 hour. Sonification was performed for 10 pulses at 
30% power, to degrade DNA, using a PowerPac™ HC High-Current power supply 
(Biorad Laboratories, Hercules, USA)) probe sonicator. For cell lines, proteins were 
extracted in 0.1M TEAB with 1% SDC at 99 °C for 5 minutes. Sonification was 
performed for 6 pulses. 

The protein concentration of denatured proteins was determined by the Pierce BCA 
Protein assay kit (Thermo Fischer Scientific, Waltham, USA), following the 

https://cptac-data-portal.georgetown.edu/cptacPublic/
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manufacturer’s instructions. 60 μg of protein for each tissue lysate and 30 μg protein for 
each cell lysate were used for tryptic digestion. Disulfide bonds were reduced, using 
10mM dithiothreitol (DTT) for 30 minutes at 60 °C. Alkylation was achieved with 20 
mM iodoacetamide (IAA) for 30 minutes at 37 °C in the dark. Tryptic digestion was 
performed at a trypsin:protein ratio of 1:100 overnight at 37 °C and stopped by adding 
1% formic acid (FA). Centrifugation was performed for 10 minutes at 14000g to pellet 
precipitated SDC. The supernatant was dried in a vacuum concentrator (SpeedVac 
SC110 Savant, (Thermo Fisher Scientific, Bremen, Germany)) and stored at -80°C until 
further analysis. 

 
 

For the main cohort, 50 μg sample per patient and internal reference, TMT-10 plex 
labeling (Thermo Fischer Scientific, Waltham, USA), was performed, following the 
manufacturer’s instruction. All 70 patients were run in 8 total TMT 10-plexes. Sample 
assignment to batches was performed in a semi-randomized manner, according to the 
four main molecular subtypes. In each batch, 1-2 internal reference samples were 
included, composed of equal amounts of peptide material from all 70 samples and cell 
lines. Isobarically labeled peptides were combined and fractionated, using high pH 
reversed phase chromatography (ProSwiftTM RP-4H, Thermo Fischer Scientific 
Bremen, Germany) on an HPLC system (Agilent 12000 series, Agilent Technologies, 
Santa Crara, USA). Separation was performed using buffer A (10 mM ammonium 
hydrogen carbonate (NH4HCO3) inH2O) and buffer B (10mM NH4HCO3 in ACN) within 
a 25-minute gradient, linearly increasing from 3-35% buffer B at a flow rate of 200 
nl/min. In total, 13 fractions were collected for each batch, dried in a vacuum 
concentrator , resuspended in 0.1 % FA to a final concentration of 1mg/ml and 
subjected to high pH liquid chromatography coupled mass spectrometry (LC-MS). All 
LC-MS measurements were performed on a UPLC system (Dionex Ultimate 3000, 
Thermo Fisher Scientific, Bremen, Germany, trapping column: Acclaim PepMap 100 
C18 trap ((100 μm x 2 cm, 100 Å pore size,5 μm particle size); Thermo Fisher Scientific, 
Bremen, Germany), analytical column: Acclaim PepMap 100 C18 analytical column 
((75 μm x 50 cm, 100 Å pore size, 2 μm particle size) ; Thermo Fisher Scientific, 
Bremen, Germany)), coupled to an quadrupole-orbitrap-iontrap mass spectrometer 
(Orbitrap Fusion, Thermo Fisher Scientific, Bremen, Germany). Separation was 
performed using buffer A (0.1% FA in H20) and buffer B (0.1% FA in H20) within a 60- 
minute gradient, linearly increasing from 2-30% buffer B at a flow rate of 300nl/min. 
Eluting peptides were analyzed, using a DDA based MS3 method with synchronous 
precursor selection (SPS), as described by McAlister et al.182. For MS – raw data 
please refer to the PRIDE archive (PXD039319). 

 
 

Proteome profiling for biological and technical validation cohort: 

The deparaffinization and quantification was conducted as previously described. 

20 µg of the provided samples were dissolved to a concentration of 70% ACN. 2 µL 
carboxylate modified magnetic beads (GE Healthcare Sera-Mag™, Chicago, USA) at 
1:1 (hydrophilic/hydrophobic) in methanol were added following the SP3-protocol 
workflow183. Samples were shook at 1400 rpm for 18 minutes RT and the supernatant 
was removed. Beads were washed two times with 100% ACN and two times with 70% 
EtOH. After resuspension in 50 mM ammonium bicarbonate, disulfide bonds were 
reduced in 10 mM DTT for 30 min, alkylated in presence of 20 mM IAA for 30 min in 
the dark and digested with trypsin (sequencing grade, Promega) at 1:100 

https://www.ebi.ac.uk/pride/archive/projects/PXD039319
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(enzyme:protein) at 37 °C overnight while shaking at 1400 rpm. Peptides were bound 
in 95% ACN and shook at 1400 rpm for 10 min RT. The supernatant was and the beads 
were again two times with 100% ACN. Elution of peptides was performed with 20 µL 
2% DMSO in 1% formic acid (FA). Samples were dried in a vacuum centrifuge and 
stored at-20°C until further use. 

For the measurement samples were resuspended in 0.1 % FA to a final concentration 
of 1mg/ml and measured on either a Quadrupole Orbitrap hybrid mass spectrometer 
(QExactive, Thermo Fisher Scientific) or on a quadrupole-ion-trap-orbitrap MS 
(Orbitrap Fusion, Thermo Fisher) in orbitrap-orbitrap configuration. For MS – raw data 
please refer to the PRIDE archive PXD048767. 

Quadrupole Orbitrap hybrid mass spectrometer set-up: Chromatographic 
separation of peptides was achieved by nano UPLC (nanoAcquity system, Waters) 
with a two-buffer system (buffer A: 0.1% FA in water, buffer B: 0.1% FA in ACN). 
Attached to the UPLC was a peptide trap (100 µm × 20 mm, 100 Å pore size, 5 µm 
particle size, Acclaim PepMap 100 C18 trap, Thermo Fisher Scientific) for online 
desalting and purification followed by a 25-cm C18 reversed-phase column (75 
µm × 200 mm, 130 Å pore size, 1.7 µm particle size, Peptide BEH C18, Waters). 
Peptides were separated using an 80-min gradient with linearly increasing ACN 
concentration from 2% to 30% ACN in 65 minutes. The eluting peptides were analyzed 
on a Quadrupole Orbitrap hybrid mass spectrometer (QExactive, Thermo Fisher 
Scientific). Here, the ions being responsible for the 15 highest signal intensities per 
precursor scan (1 × 106 ions, 70,000 Resolution, 240ms fill time) were analyzed by 
MS/MS (HCD at 25 normalized collision energy, 1 × 105 ions, 17,500 Resolution, 
50 ms fill time) in a range of 400–1200 m/z. A dynamic precursor exclusion of 20 s was 
used. 

Quadrupole-ion-trap-orbitrap mass spectrometer set-up: Chromatographic 
separation of peptides was achieved with a two-buffer system (buffer A: 0.1 % FA in 
water, buffer B: 0.1 % FA in ACN). Attached to the UPLC was a peptide trap (100 μm 
× 200 mm, 100 Å pore size, 5 μm particle size, Acclaim PepMap 100 C18 trap, Thermo 
Fisher Scientific) for online desalting and purification followed by a 25 cm C18 
reversed-phase column (75 μm × 250 mm, 130 Å pore size, 1.7 μm particle size, 
Peptide BEH C18, Waters). Peptides were separated using an 80-min gradient with 
linearly increasing ACN concentration from 2 % to 30 % ACN in 65 minutes. Eluting 
peptides were ionized using a nano-electrospray ionization source (nano-ESI) with a 
spray voltage of 1800, transferred into the MS, and analyzed in data-dependent 
acquisition (DDA) mode. For each MS1 scan, ions were accumulated for a maximum 
of 240 milliseconds or until a charge density of 1x106 ions (AGC Target) was reached. 
Fourier-transformation-based mass analysis of the data from the orbitrap mass 
analyzer was performed, covering a mass range of 400-1,200 m/z with a resolution 
60,000. Peptides with charge states between 2+ - 5+ above an intensity threshold of 
1x105 were isolated within a 2 m/z isolation window from each precursor scan and 
fragmented with a normalized collision energy of 25 % using higher energy collisional 
dissociation (HCD). MS2 scanning was performed at a resolution of 17,500 on the 
quadrupole-ion-trap-orbitrap MS in orbitrap-orbitrap configuration, covering a mass 
range from 100 m/z and accumulated for 50 ms or to an AGC target of 1x105. Already 
fragmented peptides were excluded for 15 seconds. 

https://www.ebi.ac.uk/pride/archive/projects/PXD048767
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Histology and Immunohistochemistry 

FFPE tissue samples were sectioned into 2 µm thick slices, according to standard 
laboratory protocols. Immunohistochemical stainings were performed on an automated 
staining machine (Ventana BenchMark XT, Roche Diagnostics, Mannheim, Germany). 
The following primary antibodies were used: ALDH1A3 (NBP2-15339, Novus 
Biologicals, 1:1000), c-myc (Z2734RL, Zeta Corporation, 1:25), TENASCIN C 
(SAB4200782, Sigma-Aldrich, 1:1000), PALMD (NBP2-55156, Novus Biologicals, 
1:750). Further information on the antibodies and staining program can be found in 
Supplementary methods Table 2. 

 
 

Transcriptome profiling: 

Maxwell RSC RNA FFPE Kit was used to isolate RNA from 10 × 10 µm sections of 
FFPE tissue (PROMEGA Maxwell RSC RNA FFPE kit). RNA 6000 Nano Chip on an 
Agilent 2100 Bioanalyzer (Agilent Technologies) was used to analyse RNA integrity. 
From 400 ng total per sample, ribosomal RNA was depleted with the help of the 
RiboCop rRNA Depletion Kit (Lexogen) followed by RNA sequencing library generation 
using the CORALL Total RNA-Seq Library Prep Kit (Lexogen), followed by the Lexogen 
CORALL total RNA-Seq V2 Library Prep Kit with UDIs (according to manufacture 
protocol, short insert size version). Illumina NextSeq2000 machine using the P3 
Reagents / 100 cycle kit as paired-end sequencing 2x 57 bp (+ 2x index read 12bp). 
Data has been deposited under accession number GSE243795. 

 
 

Metabolic and amino acid profiling: 

13C-Labeled Metabolite Yeast Extract (Catalog No. ISO-1, ISOtopic solutions e.U.) 
LOT: 20211007 and Canonical Amino Acid Mix (Catalog No. MSK-CAA-1, Cambridge 
Isotope Laboratories, Inc. (CIL)) were prepared according to instructions. Tissue 
sections of sSHH and tSHH medulloblastoma samples were deparaffinized by two 5 
min washes in xylene. 20 µL of 13C-Labeled Metabolite Yeast Extract and 1µL of 
diluted 0.1 M Canonical Amino Acid Mix were added, samples were then homogenized 
in 180µL water using the TissueLyser (Qiagen N.V., Netherlands) at 20Hz for 2 
minutes. Afterwards, protein precipitation and metabolite extraction were achieved by 
adding ice-cold methanol twice (800µL and 400µL) and 80% methanol (200µL). The 
supernatant was combined and dried in a vacuum concentrator centrifuge, and stored 
at -20 °C until further use. 

Polar and polar ionic metabolites were analyzed by single ion monitoring (SIM) mass 
spectrometry coupled to ion chromatography and IC-SIM-MS raw data processing was 
performed as described by van Pijkeren and Egger et al.184 using a quadrupole orbitrap 
mass spectrometer (Exploris 480, Thermo Fisher Scientific) and an ICS-6000 (Thermo 
Fisher Scientific). 

Amino acids were analyzed by multiple reaction monitoring (MRM) mass spectrometry 
using a triple quadrupole mass spectrometer coupled to ultra-high performance liquid 
chromatog-raphy (UPLC). Amino acids were separated using an Acquity Premier 
UPLC system (Waters) equipped with an Atlantis Premier BEH C18 AX column (1.7μm, 
2.1x150mm, Waters) heated to 45°C. A gradient of mobile phase A (water, 0.1% formic 
acid (FA)) and mobile phase B (acetonitrile, 0.1% FA) was applied as followed: 1% B 
at 0.350 mL/min for 1 min, to 20% B in 1 min at 0.350 mL/min, to 40% 
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B in 0.5 min at 0.350 mL/min, to 95% B in 1.5 min at 0.450 mL/min, hold for 0.5 min, 
for re-equilibration, switch to 1% B in 0.1 min at 0.450 mL/min, hold for 0.1 min at 0.450 
mL/min and hold for 1.3 min at 0.350 mL/min. Samples were measured on a Xevo-TQ 
XS Mass spectrometer (Waters) equipped with an electrospray ionization source 
operated in positive ion mode. The mass spectrometer was operated in multiple reac- 
tion monitoring (MRM) mode using individual cone and collision voltages for each 
amino acid and its internal standard (Supplementary data file 1). Raw files were 
analyzed by MS Quan in waters connect (Waters, V1.7.0.7). 

For MS raw data of the metabolites and amino acids please refer to MetaboLights 
repository185 MTBLS9830 and MTBLS9836, respectively. 

 
 

N-Glycan profiling: 

100 µg of protein for 18 samples was denatured, reduced, and alkylated as described 
above. Samples was concentrated by 3 kDa Amicon Ultra centrifugal filters (Merck 
Millipore, R0NB30416) with 100 mM NH4HCO3 to exchange the buffer and retain 
globular particles above 3 kDa. Thirty units of PNGase F were added to each sample 
and incubated in a 37 °C Thermomixer for 24 h. After PNGase F digestion, purified N- 
glycans were eluted by Sep-Pak C18 cartridges (Water, WAT023590) with 5% acetic 
acid and dried in a speed vacuum. The purified N-glycans were then permethylated 
using an optimized solid-phase permethylation method and analyzed via LC-MS 
measurement as mentioned here 186 85 . Glycan data has been deposited at 
GlycoPOST187 with the identifier GPST000414. 

Raw data processing: 

Processing of DNA Methylation Array Data: 

Idat files generated using the above protocol were processed in R (Version 4.0.5). The 
files were read in using the minfi package (Version 1.36.0)188. Further information of 
quality control in supplementary methods. Differentially methylated probes/ CpG sites 
were found using the limma package (Version 3.46.0)189, corrected for multiple testing 
using Benjamini Hochberg (cut-off 5% FDR). M-values of 10,000 differentially 
methylated CpG sites which could cluster subtypes based on biological differences 
were selected for further analysis. Similarly, DMR analysis was performed using 
DMRcate package (V4.30.0). For DMR analysis, we set a min of 10 CpGs per DMR (< 
1000 nt from each other) to minimize gene overlap, which resulted in ~9000 DMRs with 
each DMR having 10-200 CpGs 

 
 

Processing of Proteome raw data for main cohort: 

Processing of Proteome raw data for the integrated cohort: 

Obtained raw data from in-house generated and publicly available (Archer et al 
(2018)77, TMT 10-Plex; Petralia et al. (2021)52, TMT 11-Plex). TMT-based LC-MS 
measurements were processed with the Andromeda algorithm, implemented in the 
MaxQuant software (Max Plank Institute for Biochemistry, Version 1.6.2.10)90 and 
searched against a reviewed human database (downloaded from Uniprot February 
2019, 26,659 entries). ). The Carboxymethylation of cysteine residues was set as a 
fixed modification. Methionine oxidation, N-terminal protein acetylation and the 
conversion of glutamine to pyroglutamate were set as variable modifications. Peptides 

https://www.ebi.ac.uk/metabolights/MTBLS9830
https://www.ebi.ac.uk/metabolights/MTBLS9836
https://glycopost.glycosmos.org/entry/GPST000414
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with a minimum length of 6 amino acids and a maximum mass of 6,000 Da were 
considered. The mass tolerance was set to 10 ppm. The maximum number of allowed 
missed cleavages in tryptic digestion was two. A false discovery rate (FDR) value 
threshold <0.01, using a reverted decoy peptide databases approach, was set for 
peptide identification. Quantification was performed, based on TMT reporter intensities 
at MS3 level for LC-MS3 in-house data and at MS2 level for LC-MS2 data, acquired by 
Archer et al.77 and Petralia et al.52 All studies were searched separately. Fractions for 
each TMT batch were searched jointly. 

For stable isotope labeling by amino acids in cell culture (super-SILAC) data, acquired 
by Forget at al. (2018)78, log2 transformed SILAC ratios were directly obtained from 
the MassIVE online repository (MSV000082644). 

 
 

For the external validation the dataset published by Waszak et al. (2020)89 was used. 
The DIA raw data spectra were downloaded from PRIDE and processed using Data 
Independent Acquisition with Neural Networks (DIA-NN, version 1.8.1) 190. The spectra 
were searched against a peer reviewed human FASTA database (downloaded from 
UniProt April 2020, 20,365 entries). A spectral library was generated in silico by DIA- 
NN using the same FASTA database. Smart profiling was enabled for library 
generation. Methionine oxidation, carboxymethylation of cysteine residues as well as 
N-terminal methionine excision were set as variable modifications. The maximum 
number of variable modifications was set to three, the maximum number of missed 
cleavages was two. The peptide length range was set from 7 to 30. Mass accuracy, 
MS1 accuracy, and the scan window were optimized by DIA-NN. An FDR < 0.01 was 
applied at the precursor level - decoys were generated by mutating target precursors’ 
amino acids adjacent to the peptide termini. Interference removal from fragment elution 
curves as well as normalization were disabled. Neural network classifier was set to 
single-pass mode and the fixed-width center of each elution peak was used for 
quantification. 

 
 

Processing of the biological and technical validation cohorts: The spectra were 
searched with the Sequest algorithm integrated in the Proteome Discoverer software 
(v 2.4.1.15), Thermo Fisher Scientific) against a reviewed human database 
(downloaded from Uniprot in June 2021, Containing 20,683 entries)). 
Carbamidomethylation was set as fixed modification for cysteine residues and the 
oxidation of methionine, and pyro-glutamate formation at glutamine residues at the 
peptide N-terminus, as well as acetylation of the protein N-terminus were allowed as 
variable modifications. A maximum number of 2 missing tryptic cleavages was set. 
Peptides between 6 and 144 amino acids where considered. A strict cutoff (FDR<0.01) 
was set for peptide and protein identification. Quantification was performed using the 
Minora Algorithm, implemented in Proteome discoverer. 

 
 

Processing of N-Glycan raw data: 

N-Glycan raw data were open with Xcalibur Qual Browser (Version No 4.2.28.14). 
MaxQuant were used for extracting all the detected masses and m/z from MS raw data 
of permethylated reducing N-glycans. An in-house Python-script was used to extract 
and calculate monosaccharide compositions based on the molecular weight of each 
derivatized N-glycan191. The N-glycan structures were identified, matched to N-lycan 
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compositions and quantified using the Xcalibur, Glycoworkbench 2.1 and Skyline 
software (Version No 21.1.0.278)186. Further statistical analysis was performed with 
the Perseus software. 

 
 

Processing of raw transcriptome data: 

Raw fastq files of human samples were processed in usegalaxy.eu192.Low quality 
reads were detected using FastQC (Galaxy Version 0.73+galaxy0), and Trimmomatic 
(Galaxy Version 0.38.1) was used for trimming poor quality reads (reads with average 
quality <20). Reads were aligned to the GRh38 human reference genome using STAR 
aligner (Galaxy Version 2.7.8a+galaxy1). Gene expression was quantified with 
featureCounts (Galaxy Version 2.0.1+galaxy2) and VST-normalized files were 
generated by DEseq2 (Galaxy Version 2.11.40.7+galaxy2). Further processing of data 
was performed with R (v4.2.1). Transcriptome data was combined with publicly 
available transcriptome data77. Batch corrected with HarmonizR139. 

 
 

Processing of DNA Methylation Array Data: 

Raw signal intensities for EPIC and 450K files were read individually. Since ~ 93% of 
the loci of 450K array are also present on EPIC array, they can be combined using 
minfi’s combineArrays(). After combining the two arrays they can be output as a virtual 
array. In this study, 450K array was the output virtual array since a greater number of 
samples were measured on 450K. 

The detection P-value was used to identify sample quality and filter out bad quality 
samples (none were excluded, n=0). Further, probes having bad quality (n=49,091), 
probes with single nucleotide polymorphism (n = 12,868) and probes present on X and 
Y chromosomes (n=8,777) were filtered out. After normalization and probe filtering, the 
m-values log2(M/U) where methylation intensity is denoted by M and unmethylation 
intensity denoted by U were used for further analysis. 

 
 

Data normalization and integration: 

Normalization and integration of DNA Methylation Array Data: 

Single-sample noob normalization (ssNoob) was performed since we combined 
samples from different arrays (EPIC and 450K). The detailed method development has 
been mentioned193,194. 

 
 

Normalization and integration of Proteome data: 

Prior to data integration, protein abundances were handled separately for each 
dataset. TMT reporter intensities were log2 transformed and median normalized across 
columns. Technical variances between TMT batches were corrected, using HarmonizR 
framework (Version 0.0.0.9). As described by here139, mean subtraction across rows 
was applied to batch-effect corrected TMT reporter intensities to mimic SILAC ratios, 
prior to data integration. Log2 transformed super SILAC ratios were median normalized 
across columns prior to data integration. 
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Processed data from individual studies was combined based on the UniProt identifier, 
data harmonization was performed as described above. Combined, harmonized 
protein abundances were mean-scaled across rows. Out of 176 analyzed cases, 9 
patients were excluded from further analysis, as high blood protein yields, suppressing 
tumor-specific signals, were detected from LC-MS/MS measurements (Supplementary 
data file 1a). 

For the external validation cohort protein abundances were log2 transformed and 
median normalized across columns. Samples were assigned to proteome subtypes 
individually. Protein abundances were reduced to the 3998 proteins, considered in the 
main cohort. Harmonized protein abundances from the main cohort were integrated 
with each individual sample. Mean row normalization was performed to adjust values 
from validation samples to the main cohort. Pearson correlation-based hierarchical 
clustering, with average linkage was applied using the Perseus software (Max Plank 
Institute for Biochemistry, Version 1.5.8.5)91. 

For biological and technical validation cohort the data was processed and harmonized 
as described above. For the biological validation one sample had to be excluded due 
to high blood protein yields as described above. The proteome subtypes for the 
biological validation were assigned via the ACF classifier195. The proteome subtypes 
for the technical validation were taken from the main cohort. Protein abundances were 
treated as above. 

 
 

Normalization of N-Glycan data: 

N-Glycan intensities were log2 transformed and median normalized across columns to 
compensate for injection amount variations. 

 
 

Quantification and statistical analysis: 
Dimensionality reduction and hierarchical clustering: 

Nonlinear Iterative vertical Least Squares (NIPALS) PCA and hierarchical clustering 
were performed in the R software environment (version 4.1.3). For Principal 
component calculation and visualization, the mixOmics package (Version 6.19.4.)61 

was used in Bioconductor (version 3.14). Hierarchical clustering was performed based 
on pheatmap package (version 1.0.12) and ComplexHeatmap (Version 2.6.2)103. 

Pearson correlation was applied as a distance metric. Ward.D linkage was used. 
Pairwise complete correlation was used, to enable the consideration of missing values. 

 
 

Consensus Clustering: 

To determine the ideal number of clusters from proteome and DNA-methylation data, 
Consensus Clustering was applied on normalized and integrated datasets, using the 
ConsensusClusterPlus package (Version 1.6) 104, in the R software environment 
(version 4.1.3). In correspondence with the current maximum number of suspected MB 
subtypes, the number of clusters was varied from 2 to 12 and calculated with 1,000 
subsamples for all combinations of two clustering methods (Hierarchical clustering 
(HC) and partition around medoids (PAM)) and three distance metrics (Euclidean, 
Spearman, Pearson). The Ward`s method was applied for linkage. Missing value 



74  

tolerant pairwise complete correlation was used, to enable the consideration of missing 
values. For each sample, the cluster certainty was calculated by how many times under 
the application of different distance metrics (Euclidean, Spearman, Pearson) and 
clustering approaches (k-medoids, hierarchical clustering) a sample was associated 
with a certain cluster, while allowing a total number of six clusters. 

 
 

Differential analysis and visualization: 

Statistical testing was carried out, using the Perseus software196. ANOVA testing was 
performed for the comparison across multiple subgroups/subtypes. Factors, identified 
with p-value <0.05 were considered statistically significant differential abundant across 
groups. For the identification of subtype-specific biomarkers, Students t-testing was 
applied (p-value <0.05, Foldchange difference > 1.5). Visualization of t-test results and 
abundance distributions across groups was performed in PRISM (GraphPad, Version 
5) and Microsoft excel (Version 16.5.). 

 
 

Functional annotation of data sets: 

REACTOME- based197 Gene Set Enrichment Analysis was performed by using the 
GSEA software (version 4.1, Broad Institute, San Diego, CA, USA)198. 1000 
permutations were used. Permutation was performed based on gene sets. A weighted 
enrichment statistic was applied, using the signal-to-noise ratio as a metric for ranking 
genes. No additional normalization was applied within GSEA. As in default mode, gene 
sets smaller than 15 and bigger than 500 genes were excluded from analysis. For 
visualization of GSEA results, the EnrichmentMap (version 3.3) 199 application within 
the Cytoscape environment (version 3.8.2) 200 was used. Gene sets were considered 
if they were identified at an FDR < 0.25 and a p-value < 0.1. For gene-set-similarity 
filtering, data set edges were set automatically. A combined Jaccard and Overlap 
metric was used, applying a cutoff of 0.375. For gene set clustering, AutoAnnotate 
(version 1.3) 201 was used, using the Markov cluster algorithm (MCL). The gene-set- 
similarity coefficient was utilized for edge weighting. 

 
 

Survival curves: 

Kaplan-Meier curves were generated for the overall survival of 121 patients. All Kaplan- 
Meier curves and log rank test p values were generated with PRISM (GraphPad, 
Version 5). A conservative log-rank test (Mantel-Cox) was used for the comparison of 
survival curves. A significant difference between curves was assumed at a p-value < 
0.05. 

 
 

Copy number frequency plots of Proteome and DNA Methylome data: 

Copy number analysis was performed on samples having both methylation and 
proteomic data (N=115). Samples from 450K and EPIC array were read in separately 
as mentioned above. Data were read using read.metharray.sheet() and 
read.metharray.exp() using the minfiData package (Version 0.36.0)188. For 
normalization, preprocessIllumina normalization using MsetEx data containing control 
samples for normalization of 450K array data, while for EPIC array data minfidataEPIC 
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(Version1.16.0)188 was used. IlluminaHumanMethylation450kanno.ilmn12.hg19 and 
IlluminaHumanMethylationEPICanno.ilm10b4.hg19 were used to generate the 
annotation files of 450K and EPIC array data respectively. 

Individual sample CNV plots were generated as mentioned in the Conumee package 
(Version 1.24.0) vignette, and the segmentation information from each sample was 
saved and used later for generation of cumulative CNV plot using CNAppWeb 
tool105(cut-off >= | 0.2|) for gain or loss). The segmentation information for all samples 
belonging to one subtype were combined into a single file in subgroup specific manner 
and then read into CNAppWeb tool. 

Combining the segmentation information from proteome data and methylome data in 
subgroup specific manner, pearson correlation-based distance plot was generated. 

To map the protein abundancies to each of the chromosomes, protein names were 
converted to their respective gene names and a column containing mapping 
information for these genes was added. Copynumber (Version 1.30.0) package in R 
was used to generate segmentation information for these proteins. CNAppWeb tool 
using the cut-off mentioned above was used to map the protein abundancies to 
respective chromosomes. 

 
 

Integration of Proteome and DNA Methylome data: 

DIABLO from mixOmics (Version 6.19.4)61 was used for integration of proteome and 
methylome data to correlate the two data types. Proteome data (3990 proteins,115 
samples) and methylome data (10,000 differentially methylated CpG sites, 115 
proteins) were pre-processed as mentioned above. Steps followed were same as 
explained in the mixOmics vignette. Briefly, datasets were integrated, an output 
variable containing information about which subgroup the samples belong to was also 
supplied. Each data set is broken down into components (5 components for this study) 
or latent variables which are associated with the data. Components were selected 
using 5-fold cross validation repeated 50 times and since the groups were imbalanced 
lowest overall error rate and centroid distance was used. For each dataset and for each 
component sparse DIABLO was applied which will select variables contributing 
maximally to the selected component. sPLS-DA was applied to the selected variables 
to generate the correlation circus plot (cut-off 0.7) which gives the variables that are 
either positively or negatively correlating with each other. DMRs between each 
methylome subtype was found in a pairwise manner, corrected for multiple testing 
using Benjamini Hochberg (cut-off 5% FDR) and integrated with proteome data in 
mixOmics. 

 
 

Global correlation of Proteome and DNA Methylation data: 

To check for overall correlation between the two datasets, subgroup specific (pWNT = 
13, pSHHt = 29, pSHHs = 6, pG4 = 36, pG3 = 11, pG3Myc = 20) pearson correlation 
(cut-off 0.7) was performed between the proteome (3990 proteins and 115 samples) 
and methylome (381,717 probes and 115 samples) in R (Version 4.0.5. The data was 
subsetted for correlation value ≥0.7 and matches of proteins to their respective probes 
using python script in anaconda JupyterLab (Version 3.0.14). Non-subgroup specific 
pearson correlation between the proteome and methylome data was similarly 
performed with focus on potential biomarkers for each subgroup and their correlation 
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with methylation probes. Scatterplots of biomarker’s protein abundance and the M- 
values of CpG sites of its own gene (crossing the pearson correlation cut-off of 0.7) 
were plotted to confirm the correlations. For correlating DMRs and proteins, mean of 
all CpG sites belonging to each DMR was taken to find correlation between all DMRs 
and proteins 

For correlation of CCT complex components, all samples for which we had all three 
datasets were considered (n=60) and Pearson correlation ≥ 0.7 were plotted using 
circlize(Version 0.4.15) and corrplot (Version 0.92) package in R (Version 4.3.0). 

 
 

Quantification of Immunohistochemical stainings 

Immunostained tissue sections were digitalized using a Hamamatsu NanoZoomer 2.0- 
HT C9600 whole slide scanner (Hamamatsu Photonics, Tokyo, Japan). Slide images 
were exported using NDP view v2.7.43 software. Digital image analysis was performed 
using ImageJ/Fiji software202 after white balance correction in Adobe Photoshop 2022 
(Adobe Inc., San Jose, USA). Tumor areas were labelled via manually drawn regions 
of interest (ROIs). Tissue areas not eligible for quantification (e.g. non-tumorous tissue, 
technical or digital artifacts) were excluded from the analysis. Total tumor tissue areas 
were measured in grayscale converted images via consistent global thresholding (0, 
241) and subsequent pixel quantification within the ROIs. DAB-positive pixels (i.e. 
brown immunostaining) were quantified on a three-tiered intensity scale after 
application of the color deconvolution plugin. In detail, pixels were successively 
quantified within three distinct thresholds [0, 134 (strong/ 3+); 135, 182 (medium/2+); 
and 183, 203 (weak/ 1+)]. Based on the conventional Histo-score, pixel quantities of 
strong, medium and weak intensity were multiplied by three, two and one, respectively, 
and then summed up. The hereby generated score is referred to as a digital Histoscore 
(DH-score). 

 
 

 
Data availability 

Proteome data have been deposited under PXD039319 (TMT data), and PXD048767 
(validation cohorts). DNA Methylation and RNA Seq data can be accessed via 
GSE243796 containing subsets GSE222478, GSE243768 and GSE243795. 
Metabolomics and amino acid data have been deposited to the EMBL-EBI 
MetaboLights database185 with the identifier MTBLS9830 and MTBLS9836. Glycan 
data has been deposited at GlycoPOST187 with the identifier GPST000414.  Source 
data are provided with this paper. 
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Figure 1: Harmonization and integration of proteome Medulloblastoma (MB) 
datasets 

NIPALS principal component analyses (PCA) of measured FFPE samples (n=62) 
withassignment to (A) the four main molecular MB subgroups124, (B) age of measured 
samples, (C) measured TMT batch. (D) Overview of analysed datasets. PCA of data 
before (E) and after (F,G) data harmonization using ComBat in the HarmonizR 
framework annotated for the source of the samples (F) and for main molecular MB 
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subgroups (G, n=167). (H) Protein abundance of the the WNT and SHH MB marker 
FILAMIN A (nSHH_Archer = 15, nWNT_Archer = 3, nOthers_Archer = 27, nSHH_Forget = 10, nWNT_Forget = 
5, nOthers_Forget = 23, nSHH_Petralia = 7, nWNT_Petralia = 1, nOthers_Petralia = 14, nSHH_FFPE = 25 , 
nWNT_FFPE = 10, nOthers_FFPE = 27, nSHH_combined = 57 , nWNT_combined = 19, nOthers_combined = 91, 
two-tailed, unpaired t-test, pshhArchervsOtherArcher = n.s., pWNTArchervsOtherArcher = n.s., 
pshhForgetvsOtherForget < 0.0001, pWNTForgetvsOtherForget < 0.0001, pshhPetraliavsOtherPetralia = 0.02, 
pwntPetraliavsOtherPetralia = n.s., pshhFFPEvsOtherFFPE < 0.0001, pwntFFPEvsOtherFFPE < 0.0001, 
pshhcombinedvsOthercombined< 0.0001, pshhcombinedvsOthercombined< 0.0001) SHH MB marker 
GAB1 (nSHH_Archer = 15, nOthers_Archer = 30, nSHH_Forget = 10, nOthers_Forget = 28, nSHH_Petralia = 
7, nOthers_Petralia = 15, nSHH_FFPE = 25 , nOthers_FFPE = 37, nSHH_combined = 57 , nOthers_combined = 
110, two-tailed, ,unpaired t-test, pshhArchervsOtherArcher = n.s., pshhPetraliavsOtherPetralia = 0.008, 
pshhFFPEOtherFFPE < 0.0001, pshhcombinedOthercombined < 0.0001 )., and the WNT MB marker 
CTNNB1 (nWNT_Archer = 3, nOthers_Archer = 42nWNT_Forget = 5, nOthers_Forget = 33, nWNT_Petralia = 
1, nOthers_Petralia = 21, nWNT_FFPE = 10, nOthers_FFPE = 52, nWNT_combined = 19, nOthers_combined = 
148, two-tailed, unpaired t-test, pwntArchervsOtherArcher = n.s., pwntForgetvsOtherForget < 0.0001, 
pwntPetraliavsOtherPetralia = n.s., pwntFFPEOtherFFPE < 0.0001, pwntcombinedOthercombined < 0.0001). 
Data are presented as mean values +/- SD in each dataset individually and in the joint 
dataset after harmonization PCAs are based on ≥70% valid values, *: p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001, n.d.= not detected, n.s.= not significant, n 
represents biologically independent human samples 



89  

 

Figure 2: MB segregate into six proteome subtypes 

(A) Proportion of ambiguous clustering (PAC) scores for k=2-12 in consensus 
clustering, using different cluster algorithms (nMB = 167, based on ≥30% valid values). 
(B) Optimal clustering of proteome data. Consensus scores shown in color scale from 
white (samples never cluster together) to blue (samples always cluster together). Six 
proteome subtypes, pWNT, pSHH-t, pSHH-s, pGroup3myc, pGroup3 and pGroup4, 
were defined. (C) Visualization of the first three principal components. (D) Clinical 
sample information. (E) Log-rank (Mantel-Cox) test comparing the survival curves of 
proteome subtypes (p value < 0.001, overall χ2-square test). (F) Group specific mean 
log 2 protein intensity of protein subtype marker candidate proteins. n represents 
biologically independent human samples. 
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Figure 3: Proteome subtypes of MB can be assigned to two main profiles 
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(A) Proteome cluster similarity hierarchy based on stepwise increasing k-means 
execution from k=2-6 with network analyses showing gene set overlap dependent MCL 
clustering of enriched gene sets, comparing pG3, pG4 and pSHHs (n=79, profile 1), to 
pWNT, pG3myc, pSHHt (n=88, profile 2). Gene set enrichment analysis (GSEA) was 
based on REACTOME pathways for all analysis. (B,C) Top two upregulated genesets 
based on differentially abundant proteins using Ingenuity Pathway Analyses (IPA) in 
profile 1 (opioid signaling and SNARE complex (two-tailed, unpaired t-test, log2 FC > 
1.5 and p-value < 0.05)) (B)) and profile 2 (EIF2 signaling and cell cycle control of 
chromosomal replication (log2 FC > 1.5 and p-value < 0.05) (C),. (D,E) IPA based 
pathway analyses of opiod signalling (D) and cell cycle control of chromosomal 
replication E) indicating therapeutic targets with respective drugs. n represents 
biologically independent human samples. 
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Figure 4: Correlation between DNA methylome and proteome features 

(A) Circular plot from mixOmics analyses based on selected features of the first five 
components from proteome and methylome data. The plot illustrates features with 
correlation r > 0.7 represented on side quadrants. Proteome group specific feature 
levels are shown in the outer circle. (B) Proteome subtype specific Pearson correlation 
calculated between matched proteins and CpG methylation sites. The number of 
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proteins correlating with CpG site methylation of their own gene (r > 0.7) is shown in 
colour. The pie chart shows the distribution of correlating CpG sites concerning the 
position in a gene. (C) Subtype independent Pearson correlation between 3,990 
proteins and 381,717 methylation probes focusing on subtype specific biomarkers. 
Pearson Correlations > 0.7 are shown, CpG sites correlating with the corresponding 
gene are highlighted in blue. Some biomarkers correlated with more than one CpG site 
of their own gene (GAB1: 7, GNB3: 2, IGSF21: 3, MICAL1: 3, and PALMD: 2). (D) 
Scatterplot of the 10 biomarker proteins correlating with the CpG site(s) of their own 
gene (pearson correlation > 0.7, p < 0.001). The linear regression line was aligned for 
all correlating CpG site(s), SE = 0.95. 
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Figure 5: SHH MB comprise two proteome MB subtypes 

(A) Histological, molecular, and clinical characteristics of the MB subtypes pSHHt 
(n=43) and pSHHs (n=14). (B) Volcano plot showing differentially abundant proteins 
comparing pSHHs tumors to all other proteome subtypes (two-tailed, unpaired t-test, 
p-value<0.05; log2FC > 1.5). (C) MCL clustering of enriched gene sets in pSHHs MBs. 
(D) Copy number variations (CNV) plots of matched pSHHs MB (n=6) calculated from 
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either DNA methylation or proteome data with pearson correlation between both omic 
types (r=0.01). (E) Differentially abundant proteins when comparing pSHHt tumors to 
all other proteome subtypes (two-tailed, unpaired t-test, p-value<0.05; log2FC > 1.5). 
(F) MCL clustering of enriched gene sets in pSHHt. (G) CNV plots for matched pSHHt 
MBs (n= 29) calculated from either DNA methylation or proteome data with pearson 
correlation between both omic types ( r=0.2) (H) Heatmaps showing mean MB subtype 
protein abundance hallmark genesets homology directed repair (GSEA differential 
expression analysis normalized enrichment score (NES), NESpSHHt = 2.2, p= <0.0001, 
FDR < 0.25), replication (NESpSHHt = 2.2, p= 0.01), TCA cycle and respiratory electron 
transport (NESpSHHs = 3.9, p = <0.0001, FDR < 0.25) and transmission across chemical 
synapses (NESpSHHs = 3.2, p = <0.0001, FDR < 0.25) based on differentially abundant 
proteins. (I) Overall survival of pSHHt MB (n= 23) and pSHHs MB (n=5) and overall 
survival of pSHHt MB depended on TP53 mutation status. TP53 mutated cases 
displayed a significantly worse survival (Mantel cox test p-value = 0.04). (J) Volcano 
plot, showing differentially abundant proteins when comparing TP53 mutated cases to 
wildtype cases in pSHHt tumors (two-tailed, unpaired t-test, p-value<0.05; log2FC > 
1.5). n represents biologically independent human samples. 
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Figure 6: pGroup3-Myc tumors display an enhanced MYC target protein profile 
and can be identified by Palmdelphin (PALMD) staining 
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(A) Histological, molecular, and clinical characteristics of the MB subtypes pG3myc 
(n=26), pG3 (n=15) and pG4 (n=40). (B) Volcano plot showing differentially abundant 
proteins when comparing pG4 tumors to all other proteome subtypes (two-tailed, 
unpaired t-test, p-value<0.05; log2FC > 1.5). (C) MCL clustering of enriched gene sets 
in pG4 MB. (D) CNV plots of pG4 MBs (n=40) calculated from either DNA methylation 
or proteome data with pearson correlation between both omic types (r=0.12). (E) 
Differentially abundant proteins when comparing pG3 tumors to all other proteome 
subtypes (two-tailed, unpaired t-test, p-value<0.05; log2FC > 1.5). (F) MCL clustering 
of enriched gene sets in pG3 MB. (G) DNA methylation or proteome CNV plots of pG3 
MB (n=11) with pearson correlation between both omic types (r=0.11). (H) Differentially 
abundant proteins in pG3myc MB. Palmdelphin (PALMD) was highly abundant in 
pG3myc tumors (two-tailed, unpaired t-test, p-value<0.05; log2FC > 1.5). (I) MCL 
clustering of enriched gene sets, in pG3myc MB. (J) DNA methylation or proteome 
CNV plots of pG3myc MB (n=20) with pearson correlation between both omic types 
(r=0.06). (K) Mean protein abundance in MB subtypes for hallmark gene sets MYC 
Targets V1 and MYC Targets V2. (L) Scheme and representative images of digitally 
supported immunostaining intensity quantification of PALMD immunostainings in MB. 
Quantified pixels of different staining intensities were used to calculate a digital Histo- 
score (DHS) , (M) Significantly enhanced digital histoscore for PALMD in pG3myc MB 
(npG3myc = 7) compared to all other MB subtypes (nOthers = 22, p<0.0001, data are 
presented as mean values +/- SD). (N) Protein abundance for PALMD in pG3myc MB 
(npG3myc = 21) compared to all other MB subtypes (nOthers = 84, unpaired t-test, 
p<0.0001, data are presented as mean values +/- SD). (O) PALMD gene expression 
in pGroup3myc MBs (npG3myc = 6) compared to all other MB subtypes (nOthers = 30, two- 
tailed, unpaired t-test, p<0.0001, data extracted from Archer et al. 2018, data are 
presented as mean values +/- SD). (P) Average DNA methylation at CpG sites of the 
PALMD gene (Mean M-values of n pG3myc = 6 CpG sites shown, two-tailed, unpaired t- 
test, pvalue < 0.001, data are presented as mean values +/- SD). pGroup3myc MBs 
show significant lower levels of methylation (two-tailed, unpaired t-test, ,p<0.0001). (Q) 
GSEA showing the top 10 up or downregulated pathways comparing pG3myc MB to 
pG3/4 MB (GSEA differential expression analysis normalized enrichment score (NES), 
p<0.01, FDR<0.25). n represents biologically independent human samples. For 
immunostaining, each sample was stained once. 
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Figure 7: pWNT MB show high feature conservation and can be identified by 
Tenascin C (TNC) staining. 

(A) Histological, molecular, and clinical characteristics of the pWNT MB subtype 
(n=19). (B) Differentially abundant proteins when comparing pWNT tumors to all other 
proteome subtypes (two-tailed, unpaired t-test, p-value<0.05; log2FC > 1.5). (C) 
Scheme and representative images of digital quantification of TNC immunostainings in 
MB. (D) Significantly enhanced DHS for TNC in pWNT MB (npWNT=9) compared to 
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all other MB subtypes (nothers=28, two-tailed, unpaired t-test, p<0.0001, data are 
presented as mean values +/- SD). (E) Protein abundance for TNC in pWNT MBs 
(npWNT=19) compared to all other MB subtypes (nothers=148, two-tailed, unpaired t-test, 
p <0.0001, data are presented as mean values +/- SD). (F) TNC gene expression in 
WNT MBs and other MB subtypes in a published dataset of MB (nWNT = 70, nnonWNT = 
693, two-tailed, unpaired t-test, p < 0.001, data are presented as mean values +/- 
SD)43. (G) Average DNA methylation at CpG sites of the TNC gene (mean value for 
npWNT=8 CpG sites shown, two-tailed, unpaired t-test, p = n.s., data presented as mean 
values +/- SD). (H) MCL clustering of eEnriched gene sets, comparing pWNT to all 
other subtypes in GSEA. (I) Heatmaps showing mean protein abundance in MB 
subtypes for hallmark genesets specifically enriched in pWNT MB (GSEA differential 
expression analysis normalized enrichment score (NES), NESGlycan=2.2, 
pGlycan=<0.001; NESEMP=1.7, pEMP=0.02). (J) CNV plots of pWNT MBs (n=8) calculated 
from either DNA methylation or proteome data with pearson correlation between both 
omic types (r=0.37). n represents biologically independent human samples. For 
immunostaining, each sample was stained once. n.s= not significant. 
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Figure 8: Differential proteomics reveal low abundance of all multiprotein 
complex TriC/CCT components as a hallmark of pWNT MB 

(A) Differentially abundant proteins when comparing pWNT (n=19) to pG3myc (n=26) 
MB (two-tailed, unpaired t-test, p-value<0.05; log2FC > 1.5). (B) GSEA showing the 
top 10 up or downregulated pathways comparing pG3myc MB to pWNT (GSEA 
differential expression analysis normalized enrichment score (NES), p<0.05, 
FDR<0.25). (C) Mean protein abundancies, gene expression values and methylation 
at CpG sites for all components of the tailless complex polypeptide 1 ring complex/ 



101  

Chaperonin containing tailless complex polypeptide 1 (TriC/CCT) per proteome 
subtype in matched cases (npWNT=4, npSHHt=14, npSHHs=4, npG3=6, npG4=17, np3Myc=11, 
data are presented as mean values +/- SD. Left: Heatmaps. Middle: Quantification 
(two-tailed, unpaired t-test). Right: p-values when comparing subtypes (ppWNTvspSHHt < 
0.0001, ppWNTvspSHHs < 0.0001, ppWNTvspG3 < 0.0001, ppWNTvspG3myc < 0.0001, ppWNTvspG4 
< 0.0001, ppSHHtvspSHHs < 0.001, ppSHHttvspG3 < 0.0001, ppSHHtvspG3myc < 0.0001, ppSHHtvspG4 
< 0.01, ppSHHsvspG3 < 0.01, ppSHHsvspG3myc < 0.0001, ppSHHsvspG4 < 0.05, ppG3vsG4 = n.s., 
ppG3vspG3myc < 0.0001, ppG4vspG3myc < 0.0001). (D) Correlation plot displaying mean 
correlation for each component in all three omic types. (E) Circus plot displaying 
correlations ≥ 0.7 for each component’s protein, gene and CpG site. Only CCT2 
significantly correlated on all three levels. n represents biologically independent human 
samples. n.s= not significant. 
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Figure 9: N-glycan analysis reveals significant differences across N-glycan 
profiles of proteomic MB subtypes 
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(A) STRING network analyses of differentially abundant proteins involved in N-linked 
glycosylation. (B) Scheme of N-glycan analyses. (C) Schematic visualization of N- 
glycan types. (D) Venn diagrams showing overlap of identified glycans per MB 
proteome subtype (npWNT=3, npSHHt = 3, npSHHs=3, npG3 = 3, npG3myc = 3, npG4=3). (E) 
PCA, based on N-glycan abundances, illustrating the separation of proteome MB 
subtypes at the N-glycan level. (F) 2D Structure visualization for pG3myc-specific N- 
glycans. GlcNAc=N-Acetylglucosamine; Gal=Galactose; Fuc=Fucose; ManNAc=N- 
Acetylmannosamine; Neu5AC=N-Acetylneuraminic acid. (G) Venn Diagram, 
comparing the identified hybrid-Type and complex N-glycans between proteome 
subtypes. n represents biologically independent human samples. 
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Figure 10: Confirmation of proteome subtypes and differential feature 
conservation in an independent biological FFPE dataset 

(A)Clinical sample information with proteome subtype assignments using ACF based 
classification195 (B) PCA, based on proteins found in ≥ 70% samples, illustrating the 
separation of proteome MB subtypes (C) Protein abundances of established 
biomarkers WNT and SHH biomarker FLNA (nWNT = 3, nSHH = 9, nOthers = 18, two-tailed, 
unpaired t-test, ppWNTvsothers = NS, ppSHHvsothers < 0.001), WNT biomarker CTNNB1 (nWNT 
= 3, nOthers = 27, two-tailed, unpaired t-test, ppWNTvsothers = n.s.) and SHH biomarker 
GAB1 (nSHH = 9, nOthers = 21, two-tailed, unpaired t-test, ppSHHvsothers < 0.001, data are 
represented as mean values +/- SD). (D) Significant higher abundance of TNC (npWNT 
= 3, nOthers = 27, two-tailed, unpaired t-test, ppWNTvsothers < 0.0001) and PALMD (npG3myc 
= 3, npOthers = 27, two-tailed, unpaired t-test, ppG3mycvsothers < 0.01) in pWNT and the 
pG3myc subtype, respectively. Data are represented as mean values +/- SD. (E) 
Correlation plot displaying mean Pearson correlation per subtype between the 
integrated cohort and the biological validation cohort. (F) Hierarchical clustering of 
biological validation samples with samples from the main cohort (Pearson correlation 
and ward.D2 linkage) (G) Heatmaps showing mean protein abundance for the top hit 
gene sets enriched in the transcriptional (top) and synaptic profile (bottom). (H) Bar 
plot displaying proteome subtype specific pearson correlation calculated for matched 
samples between proteins and CpG sites (r > 0.7, n=29, total number of samples 
having both DNA methylome and proteome data, 5880 proteins and 549,089 CpG 
sites). The number of proteins correlating with CpG site of their own gene are shown 
in colour. (I) Left : Heatmaps for Mean protein abundancies, gene expression values 
and methylation at CpG sites for all components of the tailless complex polypeptide 1 
ring complex/ Chaperonin containing tailless complex polypeptide 1 (TriC/CCT) per 
proteome subtype in matched cases (n=29, npWNT = 3, npSHHt = 8, npSHHs = 2, npG3 = 3, 
npG3myc = 3, npG4=11) samples having both DNA methylome and proteome data). 
Middle : Quantification (two-tailed, unpaired t-test, data are presented as mean values 
+/- SD) Right : p-values when comparing subtypes (ppWNTvspSHHt < 0.0001, ppWNTvspSHHs 
= NS, ppWNTvspG3 < 0.0001, ppWNTvspG3myc < 0.0001, ppWNTvspG4 < 0.001, ppSHHtvspSHHs < 
0.001, ppSHHttvspG3 < 0.001, ppSHHtvspG3myc < 0.0001, ppSHHtvspG4 < 0.01, ppSHHsvspG3 < 
0.001, ppSHHsvspG3myc < 0.0001, ppSHHsvspG4 < 0.05, ppG3vsG4 < 0.01, ppG3vspG3myc < 0.0001, 
ppG4vspG3myc < 0.0001). n represents biologically independent human samples. n.s.= not 
significant. 
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Supplementary Figures 
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Correlation between matched FF and FFPE samples 
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Theoretical Central dogma of brain tumour 
biology 
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Abstract 
 Group 3 medulloblastoma is one of the most aggressive types of childhood brain tumors. Roughly 30% of cases 

and exclusively consisted of SMARCA4-negative cells although a mixture of recombined and non-recombined 

and DNA methylation data of murine tumors with human samples revealed a high resemblance to human Group 
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Introduction 
The BAF (BRG1/BRM-associated factor) chromatin remodeling 
complex greatly influences gene expres- sion in mammals by 
regulating accessibility of DNA regions for the binding of 
transcription factors [2, 12]. Its catalytic activity depends 
on the presence of one of the mutually exclusive ATPase 
subunits SMARCA2 or SMARCA4 (SWI/SNF related, matrix 
associated, actin dependent regulator of chromatin, subfamily 
A, member 4; also known as BRG1 [BRAHMA related gene 1]) 
[31, 39]. In contrast to SMARCA2, SMARCA4 has proven 
indispensable in embryonic development as Smarca4- deficient 
mouse blastocysts die during the peri-implan- tation stage [8, 
53]. Moreover, several mouse models have confirmed that 
functional SMARCA4 is essential for cerebellar development, 
neurogenesis, and gliogen- esis [24, 25, 40, 43]. Consequently, 
alterations in the SMARCA4 gene have been associated with a 
variety of intellectual disorders such as the Coffin-Siris 
syndrome and autism spectrum disorders [6, 68]. Moreover, 
del- eterious SMARCA4 mutations can be found throughout 
various cancer entities, including small cell carcinoma of 
the ovary, hypercalcemic type (SCCOHT), non-small cell lung 
cancer (NSCLC), pancreatic cancer, hepatocel- lular 
carcinoma, head and neck cancer, and atypical/tera- toid 
rhabdoid tumors (ATRT) [15, 23, 27, 52]. In NSCLC and ATRT, 
SMARCA4 alterations are associated with a significantly worse 
prognosis than SMARCA4 wild-type cases [15, 20]. 
Medulloblastomas (MB), the most com- mon malignant 
pediatric brain tumors, mainly show somatic heterozygous 
missense mutations of SMARCA4, which are suggested to have 
a dominant-negative effect resulting in a loss of function [15, 
29, 44, 55]. MB can be divided into four main molecular 
subgroups accord- ing to their transcriptome and global DNA 
methylation: Sonic Hedgehog (SHH), Wingless/Int-1 (WNT), 
Group 3, and Group 4 [9, 65]. Alterations of SMARCA4 mostly 
affect WNT and Group 3 MB, occurring in around 20% and 9– 
15% of cases, respectively, which places it among the most 
frequently mutated genes in both subgroups [17, 44]. 
However, the functional significance of these SMARCA4 
alterations in tumor development remains unknown. In this 
study, we focused on Group 3 MB, which mostly affect younger 
children and infants and show the worst prognosis of all 
subgroups with a median 5-year survival below 60% [10, 17, 30, 
65]. Therefore, effective treatment regimens including 
targeted thera- pies are urgently needed. Besides SMARCA4 
muta- tions, recurrent alterations in Group 3 MB include MYC 
amplifications in 15–20% of cases, which correlate with poor 
survival [10, 17, 34]. MYC and SMARCA can also be 
concurrently altered as detected in around 1–6% of Group 3 MB 
[17, 29, 44, 55]. Several mouse models have convincingly 
demonstrated a tumor-driving role of MYC 

 
in the development of Group 3 MB [5, 32, 33, 47, 64]. However, 
none of the previously developed Group 3 MB mouse models 
include alterations of Smarca4. In this study, we present a new 
MB mouse model with combined MYC overexpression and 
SMARCA4 loss in granule cell precursors (GCPs) and provide 
evidence for a tumor- promoting role of a SMARCA4 deficiency 
in MB. 

Materials and methods 
Transgenic animals 
All experimental procedures on animals were approved by the 
Government of Hamburg, Germany (N113/16, N050/2018, 
N099/2019) and were performed accord- ing to national 
regulations. Mice were kept on a 12 h dark/light cycle, 
and water and food were avail- able ad libitum. Animals of 

both sexes were used for experiments. The strain Smarca4fl/fl 

(also known as Brg1fl/fl) has been previously generated and 

described [28, 62], Math1-creERT2 mice were obtained from 

Jackson Laboratories, ME, USA (#7684) [37], and CD1nu/nu mice 
were obtained from Charles River Laboratories, MA, USA (#086) 

[45]. Math1creERT2 and Smarca4fl/fl mice were maintained on 
a C57Bl6/J background. Genotyp- ing was performed by PCR 
using genomic DNA from ear or tail biopsies with the following 
primer pairs (5’-3’): cre (fw): 
TCCGGGCTGCCACGACCAA, cre 
(rv): GGCGCGGCAACACCATTTT, Smarca4 floxed (fw): 
GTCATACTTATGTCATAGCC,   Smarca4   floxed   (rv): 
GCCTTGTCTCAAACTGATAAG,   Smarca4 
recombined (fw): GATCAGCTCATGCCCTAAGG, Smarca4 
recombined (rv): GCCTTGTCTCAAACT- GATAAG. To induce 

Smarca4 recombination in Math1-creERT2::Smarca4fl/fl mice, 
pups received a single dose of 0.4 mg tamoxifen dissolved in 
corn oil by intra- peritoneal injection at postnatal day 3 (P3). 

 
Lentivirus production 
A lentiviral plasmid driving overexpression of MYC was 
generated by cloning the murine Myc gene from a pre- 
viously described MSCV-MYC-IRES-RFP construct [32] into a self- 
designed lentiviral expression vector backbone (pLV-CMV-IRES- 
GFP) ordered from VectorBuilder, IL, USA. Production and 
titration of second generation lentiviral particles was 
performed by transfection of HEK293T cells as previously 
described [57]. Viral parti- cles were concentrated by 
ultracentrifugation and stored at -80 °C before 
transduction. 

 
Culture of granule cell precursors (GCPs) 
Primary murine GCPs were isolated from Math1- 

creERT2::Smarca4fl/fl or Smarca4fl/fl pups at P7 or P8 as 
previously described [42]. Lentiviral trans- duction of GCPs 
with MYC (pLV-CMV-MYC-IRES- GFP) or Mock (pLV-CMV-IRES- 
GFP) constructs was 
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performed 4 h after isolation with addition of protamine 
sulfate (8 µg/ml) and centrifugation at 2,000 rpm for 1 h. 
Medium was changed the next morning with concurrent 
exchange of FCS-supplemented medium to serum-free 
medium containing 3 µg/mL SHH protein. Bromodeoxy- uridine 
(BrdU) was added to the cells at a concentration of 25 µg/mL 
for 2 h before fixation of cells. For orthotopic transplantation, 
transduced GCPs were dissociated with Accutase 24 h after 
isolation and were washed and resus- pended in a solution of 
3:1 medium and Matrigel on ice. 

 
Stereotactic transplantations 
During stereotactic transplantations, recipient mice (6- 

week-old CD1nu/nu) were anesthetized by isoflurane 
inhalation. They additionally received analgesia by sub- 
cutaneous injections of carprofen (6 mg/kg) before trans- 
plantation and on the day after. For the procedure, mice 
were placed in a stereotactic frame (David Kopf Instru- 
ments, CA, USA) on a heating pad, and eye ointment was 
applied to avoid dehydration. Local anesthesia (2% 
lidocaine) was applied before performing a skin incision and 

puncturing the skull for injection. A total of 1.5 ×	106 cells 
were injected using a Hamilton syringe (World Pre- cision 
Instruments, FL, USA) at coordinates x: +1 mm, y: 
-1 mm, and z: -2 mm from the lambda suture at 30° from the 
skull surface. Mice were monitored daily for any sign of tumor 
development within the following six months. 

 
Immunohistochemistry (IHC) 
For histological examination of brains, tissue was fixed in 
4% formaldehyde for at least 12 h. The tissue was dehydrated, 
embedded in paraffin, and sectioned at 2 µm according 
to standard protocols. Hematoxy- lin and eosin (HE) stainings 
were applied according to standard protocols. 3,3’- 
Diaminobenzidine (DAB) stainings were performed on a 
Ventana Benchmark system using the ultraView or OptiView 
DAB detec- tion kit (all Roche Diagnostics, Basel, CH). The 
follow- ing antibodies were used: Cleaved Caspase-3 (CC-3): 
Cell Signaling #9664, RRID:AB_2070042 (1:100); GFP: Abcam 
#ab290, RRID:AB_303395 (1:500); Ki67: Abcam #ab15580, 
RRID:AB_443209 (1:100); MYC: 
Zeta Corporation #Z2734RL (1:25); Nestin: Abcam #ab221660, 
RRID:AB_2909415 (1:2000); NeuN: Merck #MAB377, 
RRID:AB_2298772 (1:50); OLIG2: Merck #AB9610, RRID:AB_570666 
(1:200); SMARCA4: Abcam #ab110641, RRID:AB_10861578 (1:25); 
and SOX2: Abcam #92,494, RRID:AB_10585428 (1:200). 

 
Immunofluorescence (IF) stainings 
IF stainings of formalin-fixed paraffin-embedded (FFPE) tissue 
were performed manually after deparaffinization and antigen 
retrieval with citrate buffer. For IF staining of GCPs in vitro, 
cells were fixed with 4% formaldehyde 

for 10 min. In case of BrdU stainings, acidic pre-treat- ment 
(4 N HCl and 0.1 M sodium borate for 10 min each) was performed 
before blocking with 10% NGS in 0.3% Triton X-100. The following 
primary antibodies were used for incubation at 4 °C over night: 
BrdU: Invitrogen #B35128, RRID:AB_2536432 (1:100); MYC: Cell 
Signal- ing #5605, RRID:AB_1903938 (1:800); GFP (mouse): 
Invitrogen #A11120, RRID:AB_221568 (1:100); GFP 
(rabbit): Invitrogen #A11122, RRID:AB_221569 (1:100); and 
SMARCA4: Abcam #ab110641, RRID:AB_10861578 
(1:25). Secondary antibodies (1:500) and DAPI (1 µg/ml) were 
added for 1 h at room temperature on the next day: anti- 
mouse Alexa 488: Cell Signaling Technology #4408S, anti-mouse 
Alexa 555: Cell Signaling Technology #4409S, anti-rabbit Alexa 
488: Cell Signaling Technology #4412S, and anti-rabbit Alexa 
546: Invitrogen #A11035. 

 
Image quantifications 
IF stainings of GCPs were quantified automatically using the 
Automatic Measurement tool of the NIS-Elements (AR 
5.11.03) software. The threshold for fluorescence intensity 
and cell size was adjusted separately for each fluorescence 
channel and was applied to all samples to retrieve cell 
counts. At least three representative images were analyzed 
for each sample and staining. DAB stain- ings of tumors (MYC 
and GFP) were quantified with Image J (v 1.48a). All evaluated 
stainings were performed with the automated Ventana system 
and within the same run to ensure comparability of detected 
signals. Five pic- tures were taken from different areas 
within the tumor, DAB color deconvolution was applied, and 
resulting images (Color 2) were converted into 8-bit format. 
Masks with the following black/white thresholds were 
applied before measuring the corresponding area fraction: 
high signal: 0-125, medium signal: 125–150, low signal: 150– 
175, no signal: 175–255. 

 
Western blot 
For Western blotting, 30 µg of protein per sample were 
separated by SDS-PAGE (4–10% gradient) and were transferred 
onto a nitrocellulose membrane. After block- ing with 5% milk 
powder in TBS-Tween, the membrane was incubated with the 
primary antibody at 4 °C over- night. The following antibodies 
were used: β-tubulin: Sigma-Aldrich #T4026, RRID:AB_477577 
(1:500); GAPDH: GeneTex #100,118, RRID:AB_1080976; MYC: 
Cell Signaling #5605, RRID:AB_1903938 (1:500); and SMARCA4: 
Abcam  #ab110641,  RRID:AB_10861578 
(1:10,000). After washing, the secondary horse-radish 
peroxidase (HRP) coupled antibody was applied for 1 h at room 
temperature: Goat-anti-mouse-HRP: Dako #P0447 (1:10,000) 
or Goat-anti-rabbit-HRP: Dako #P0448 (1:10,000). The Clarity 
Western ECL Substrate (Bio-Rad 
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Laboratories Inc, CA, USA) was used for detection on X-ray 
films. 

 
RNA sequencing analysis 

RNA Isolation from FFPE tissue was performed using the 
Maxwell RSC RNA FFPE kit (Promega Corporation, WI, USA). 
Prior to sequencing, RNA concentration and integrity was 
determined on an RNA 6000 Nano Chip on the Agilent 2100 
Bioanalyzer system (Agilent Technolo- gies, CA, USA). At least 
100 ng total RNA per sample were used for sequencing. 
Ribosomal RNA was depleted with the RiboCop 
Human/Mouse/Rat V2 kit before library preparation with the 
CORALL Total RNA-seq V2 kit (both Lexogen GmbH, Vienna, 
AT). Pooled librar- ies were sequenced on a NextSeq500 
sequencing system (Illumina, CA, USA) by 1 ×	75 bp single-end 
sequencing for 75 cycles, generating at least 30 Mio reads per 
sample. Raw fastq files of mouse samples were processed in 
usegalaxy.eu [1]. Low quality reads were detected using 
FastQC (Galaxy Version 0.73 +	galaxy0), and reads with average 
quality <	20 were trimmed with Trimmomatic (Galaxy Version 
0.38.1). Reads were aligned to the GRCm39 (mm39) mouse 
reference genome using STAR aligner (Galaxy Version 2.7.8a 
+galaxy1). Gene expres- sion was quantified with 
featureCounts (Galaxy Version 2.0.1 +	 galaxy2), and VST-
normalized files were generated by DEseq2 (Galaxy Version 
2.11.40.7 +galaxy2). Further 
processing of data was performed with R (4.2.1). 

Differential gene expression analysis between mouse 
samples was performed using limma (3.52.2) [54]. Genes 
orthologous to humans were used for volcano plots gen- erated 
with ggplot2 (3.4.1) with genes considered differ- entially 
expressed if LogFC ≥	 2.5 and False Discovery Rate (FDR) 
adjusted p ≤	 0.01. For gene set enrichment analy- sis, all 
mouse genes with LogFC ≥	1.5 and FDR adjusted p ≤	0.01 were 
considered using multiple packages from clusterProfiler 
(4.4.4) visualized with in-built clusterPro- filer plots. 

Human gene expression data were obtained from a pre- 
viously published pediatric brain tumor cohort (Sturm et al. 
2016 [61]; GSE73038). To compare mouse and human gene 
expression data, 14,151 orthologous genes between both 
datasets were used, and data were batch corrected for species 
differences using an in-house pipeline. The previously 
identified 14,151 orthologous genes were used for differential 
gene expression analysis between human tumor subtypes using 
limma (3.52.2) [54]. The 6,000 most differentially expressed 
genes (or 5,000 for MB only) were selected using Benjamini- 
Hochberg correction for multiple testing and sorting by F- 
statistic. Visualizations were performed using RStudio 
packages umap (0.2.9.0) 
[41] and Complex Heatmap (2.12.1) [18] using Euclid- ian 
distance and Ward.D2 linkage for clustering. For the distance 
plots, Euclidean distance was measured (Stats 

4.1.2 package), and plots were generated with Complex 
Heatmap. 

DNA methylation analysis 
DNA from frozen tumor biopsies (tumors 3 +	4) was iso- lated 
using the NucleoSpin Tissue kit (Macherey-Nagel, Düren, DE), 
whereas DNA isolation from FFPE tissue (tumor 1) was 
performed using the Maxwell RSC DNA FFPE kit (Promega 
Corporation). At least 150 ng of total DNA were used for 
bisulfite conversion with the EZ DNA Methylation kit (Zymo 
Research, CA, USA). Then, samples were analyzed on the 
Infinium Mouse Methyla- tion BeadChip array covering >	
285,000 CpG sites within the mouse genome on an iScan array 
scanner (both Illu- mina). Human tumor samples were analyzed 
on the MethylationEPIC 850k BeadChip array (Illumina). The 
use of biopsy-specimens for research upon anonymiza- tion was 
always in accordance with local ethical stan- dards and 
regulations at the University Medical Center Hamburg-
Eppendorf. 

Data processing and analysis was performed with R 
(4.1.2). For preprocessing of raw data and extraction of 
beta values, the Minfi package [3] was used for human data, 
whereas the SeSAMe package [70] was used for mouse data. 
Then, quantile normalization of data was performed. For a 
comparison of murine samples to human brain tumor DNA 
methylation profiles, previ- ously published data by Capper 
et al. [9] and Sharma et al. [59] were combined with data 
generated in-house (in total n =	228). Within the human 
dataset including all brain tumor entities, the 15,000 most 
differentially meth- ylated CpG sites were identified. Out of 
these, 491 CpGs that are orthologous between the human 
and mouse genome were chosen for further analysis. Human 
and mouse datasets were combined and again, quantile nor- 
malization was performed. UMAPs [41] as well as hierar- chically 
clustered heatmaps (Complex Heatmap package [18]) were 
generated based on the differential methyla- tion of the 
previously chosen 491 CpGs. For the genera- tion of distance 
plots, Pearson correlation (Stats 4.1.2 package) was 
applied, and plots were generated with the Complex 
Heatmap package. 

 
Statistical analysis 
All statistical analysis was performed using the GraphPad Prism 
(9.4.1) or R (4.1.2) software. The statistical tests applied to 
the data shown are stated in the respective fig- ure legends. 
For each comparison, at least n =	3 samples per group were 
used and/or n =	3 independent experi- ments were conducted. 
P-values were corrected for mul- tiple testing. All graphs 
depict mean values +/- standard deviation. 
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Results 
Loss of SMARCA4 or MYC overexpression does not increase 
proliferation of granule cell precursors (GCPs) in vitro 
In a first step, we investigated the influence of both 
Smarca4 and Myc alterations on cell behav- ior in vitro. 
To induce a loss of SMARCA4 in GCPs, Math1- 

creERT2::Smarca4fl/fl mice received a single dose of tamoxifen 
at P3, and GCPs were isolated from the cer- ebella when pups 
reached an age of 7–8 days. Success- ful knockdown of 
SMARCA4 was detected in around 50% of cells as shown in 
Western Blot and IF stainings (Fig. 1A-C). Proliferation was 
significantly decreased 

 
in SMARCA4-negative cells at day 1 in culture, while no 
significant difference in proliferation was observed at day 3 
or 5 in culture (Fig. 1D). Next, we analyzed the effect of MYC 
overexpression in GCPs by transduc- tion with a lentiviral MYC-
GFP construct. Success- ful transduction was validated by the 
presence of MYC protein in Western Blot and by positive GFP IF 
stainings with mean transduction rates ranging between 
15.5 and 22.6% (Fig. 1E-G). Overall proliferation of non- 

induced Math1-creERT2::Smarca4fl/fl GCPs after transduction 
with MYC virus showed no difference compared to pro- 
liferation of cells transduced with a Mock-GFP construct 

 

 
 

Fig. 1 Loss of SMARCA4 or MYC overexpression does not increase proliferation of GCPs in vitro. (A) Tamoxifen-induced knockdown of SMARCA4 
is evident in Western Blot of P7/8 Math1creERT2::Smarca4fl/fl GCPs compared to controls (Smarca4fl/fl) after tamoxifen injection at P3. Two SMARCA4 bands are detected 
as seen in previously published studies [19, 46]. (B) IF staining of knockdown GCPs at day 3 in culture shows loss of SMARCA4 protein and proliferation 
indicated by BrdU incorporation. White arrowheads mark SMARCA4-negative areas. (C) Evaluation of SMARCA4 knockdown in IF on day 3 in culture of 
19 independent GCP cultures. (D) Proliferation as measured by BrdU incorporation in IF on day 1, 3, and 5 in culture, separately counted for SMARCA4-positive 
and -negative GCPs in knockdown cultures. Two-tailed paired t-tests were applied. (E) MYC expression is evident in Western Blot of wild-type P7/8 GCPs 
72 h after transduction. (F) IF staining shows GFP signal 72 h after transduction of GCPs. (G) MYC transduction rates were evaluated in IF stainings of GCPs 
72 h after transduction. The three groups include GCPs without tamoxifen (Tam) induction and GCPs of cre-negative (Smarca4fl/fl) and cre-positive (Math1-
creERT2::Smarca4fl/fl) genotype after tamoxifen induction at P3. Tukey’s multiple comparisons test was applied. (H) Overall prolif- eration as measured by BrdU 
incorporation in IF of Math1creERT2::Smarca4fl/fl GCPs without tamoxifen induction 72 h after transduction with Mock or MYC constructs. Paired two-tailed t-
test was applied. (I, J) IF staining of tamoxifen-induced Math1creERT2::Smarca4fl/fl GCPs 72 h after transduction with MYC virus. The subpopulation with 
SMARCA4 protein loss and GFP signal (white arrowheads) constitutes around 8.4% of the whole cell culture. (K) Overall proliferation of tamoxifen-
induced Math1creERT2::Smarca4fl/fl GCPs 72 h after transduction with Mock or MYC constructs. Paired two-tailed t-test was ap- plied. Scale bar in B 
corresponds to 20 µm, scale bars in F + I correspond to 50 µm 
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(Fig. 1H). Subsequently, we combined both SMARCA4 loss and 
MYC overexpression by transducing tamoxifen- induced 

Math1creERT2::Smarca4fl/fl GCPs. As shown in Fig. 1I-J, the 
subpopulation of SMARCA4-deficient GFP- positive GCPs 
constituted around 8.4% of the whole cell culture. Again, 
overall proliferation was not significantly increased after MYC 
transduction (Fig. 1K). However, proliferation of the SMARCA4- 
deficient and successfully transduced subpopulation could not 
be analyzed sepa- rately since acidic pre-treatment required 
for BrdU stain- ings destroys GFP epitopes [7]. 

 
Loss of SMARCA4 and MYC overexpression cooperate to 
drive brain tumor formation in vivo 
In a next step, we transplanted altered GCPs into immu- 

nodeficient CD1nu/nu mice to further explore their tumor- 
igenic potential in vivo. For this purpose, SMARCA4 knockdown 

GCPs were isolated from induced Math1creERT2::Smarca4fl/fl 

mice and were transduced with a lentiviral MYC construct as 
described above. On the next day, GCPs were dissociated and 

transplanted into the cerebella of CD1nu/nu mice without pre-
sorting 

for recombined or transduced cells (Fig. 2A). Within a 
cohort of 19 transplanted mice, five mice developed a 
tumor in the cerebellum, presenting with neurologi- cal 
symptoms earliest four weeks and latest five months after 
transplantation (Fig. 2B). Histologically, tumors pre- sented as 
a cell dense mass in HE stainings, with regions showing 
anaplastic features as well as apoptotic areas, consistent with 
large cell/anaplastic (LCA) histology fre- quently detected in 
MYC driven Group 3 MB (Fig. 2C- E) [13, 30]. IHC stainings 
revealed a loss of SMARCA4 in all tumor cells (Fig. 2F). The 
presence of recombined Smarca4 in tumor biopsies was also 
verified by PCR, which confirmed that the loss of SMARCA4 was 
caused by genetic recombination (Fig. 2G). Furthermore, 
tumors stained positive for both GFP and MYC, thereby validat- 
ing successful transduction with the MYC-GFP construct (Fig. 
2H +	I). Tumors were highly proliferative accord- ing to Ki67 
signals and displayed a high degree of apop- tosis as indicated 
by Cleaved Caspase-3 (CC3) staining (Fig. 2J +	K). Staining for 
neural markers revealed scat- tered expression of SOX2 and 
Nestin, whereas no signal for NeuN or OLIG2 was detected (Fig. 
2L-O). Altogether, 

 

 
 

Fig. 2 Loss of SMARCA4 and MYC overexpression cooperate to drive brain tumor formation in vivo. (A) Schematic overview of the cell culture and 
transplantation protocol for the generation of SMARCA4-deficient MYC-overexpressing tumors. (B) Tumor-free survival of transplanted CD1nu/nu mice; grey area 
represents the 95% confidence interval. Censored mouse at day 80 had to be sacrificed due to illness unrelated to tumor development. (C) Rep- resentative HE 
staining of tumors in the brains of n = 5 transplanted mice in sagittal brain section. (D,E) High-power HE stainings of distinct areas within the tumors showing 
(D) anaplastic or (E) apoptotic features. (F) Tumors show complete loss of SMARCA4 in IHC interspersed with SMARCA4-positive blood vessels. 
(G) PCR using DNA isolated from tumor biopsies confirms Smarca4 recombination on a genetic level. (H-I) Tumors stain positive for (H) GFP and (I) MYC, 
confirming transduction with the MYC-GFP construct. (J) Tumors are highly proliferative as indicated by Ki67 stainings; (K) with a high degree of apoptosis 
according to Cleaved Caspase-3 (CC3) signals. (L-O) Tumors show scattered expression of (L) SOX2 and (M) Nestin but no signal for (N) NeuN or (O) OLIG2. 
Scale bar corresponds to 2 mm in C, to 25 µm in D + F (also applicable to E, H, J-O), and to 50 µm in I 
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these results affirmed the origin of detected tumors in the 
subpopulation (8.4%) of GCPs harboring both recom- bined 
Smarca4 and overexpressed MYC and showed pro- liferative 
capacity as well as undifferentiated nature of tumors. 

Intratumoral heterogeneity of MYC amplification within 
Group 3 MB has been described as an important factor in 
metastasis and therapy resistance [51]. There- fore, we 
analyzed levels of MYC expression in different regions of our 
tumors, which revealed striking heteroge- neity in between 
but also within samples (Additional File 1, Fig. S1A-C). All 
tumors contained areas with varying degrees of MYC signal 
including cells without any MYC signal. In contrast, GFP signals 
were uniformly high in all tumors, suggesting regulation of MYC 
expression inde- pendent from successful transduction with 
the MYC- GFP construct (Additional File 1, Fig. S1D-F). 

Moreover, we examined brains and spines for lepto- 
meningeal dissemination, which is detected in around 40% of 
human Group 3 MB and has also been recapitu- lated in other 
MYC-driven medulloblastoma models [33, 38]. In our model, 
we observed leptomeningeal spread within the brain in four 
out of five tumor-bearing mice, affecting the cerebral cortex, 
the midbrain, and the brain stem (Additional File 1, Fig. S1G- 
J). However, we did not detect any dissemination in the spines 
of affected mice. 

 
Differential gene expression in MYC/SMARCA4 tumors 
To characterize MYC/SMARCA4 tumors on a molecu- lar level, 

we performed RNA sequencing using FFPE biopsy punches of 

four mouse tumors. As a control, we simultaneously 

sequenced FFPE-derived RNA of a previously established SHH 

MB mouse model (Math1cre::Smofl/wt [58]) andof 

Math1creERT2::Smarca4fl/fl P7 whole cerebella. The 

comparison    of    MYC/SMARCA4    tumors    to 

Math1creERT2::Smarca4fl/fl cerebella revealed Myc as the 

most significantly upregulated gene in our model (Additional 
File 1, Fig. S2A; Additional File 2, Table S1). Gene set 

enrichment analysis revealed down- regulation of terms 

associated with neuronal develop- ment and differentiation, 

while upregulated terms were mainly associated with ribosome 

biogenesis and ribo- somal RNA (rRNA) synthesis and 

processing, a charac- teristic hallmark for MYC-driven cancers 
(Additional File 1, Fig. S2B,C) [66]. Comparison of gene 

expression profiles of MYC/SMARCA4 tumors to the established 

SHH MB mouse model again confirmed upregulation of Myc, 

while MycN as a target of SHH signaling was sig- nificantly 

downregulated (Fig. 3A; Additional File 2, Table S2). Other 

downregulated genes included Atoh1 and Barhl1, both 
markers for granule cells, of which low levels of BARHL1 have 

been associated with a less favor- able prognosis in MB [50]. 

On the other hand, Hoxa5 and Fabp4, both associated with 

increased malignancy in 

gliomas, were upregulated in MYC/SMARCA4 tumors [11, 21]. 
Gene set enrichment analysis revealed downreg- ulated GO 
terms mostly linked to neuronal development (Fig. 3B). 
Meanwhile, terms associated with transmem- brane transport 
and synaptic signaling were upregulated in our model (Fig. 
3C). Pathway analysis confirmed the downregulation of SHH 
signaling but also reduction of Notch and PI3K-Akt-mTOR 
signaling, whereas gly- colysis/gluconeogenesis as well as G 
protein signaling pathways were upregulated in MYC/SMARCA4 
tumors (Fig. 3D +	E). 

 
MYC/SMARCA4 tumors show molecular resemblance to 
human Group 3 MB 
In a next step, we integrated our RNA sequencing data with 
previously published gene expression data to test 
comparability of our murine tumors to human brain tumors. An 
integration with a data set comprising sev- eral pediatric brain 
tumor entities (Sturm et al. 2016 [61]) revealed resemblance 
of our model to human MB in both UMAP and Euclidian 
clustering (Fig. 4A-B). While mouse SHH MB serving as a 
validation displayed unambiguous proximity to human SHH MB, 
MYC/ SMARCA4 tumors showed similarity to both SHH MB and 
Group 3/4 MB in both approaches. A distance plot analysis 
considering mean values for each subgroup indi- cated closest 
proximity of both mouse SHH MB and our MYC/SMARCA4 tumors 
to human SHH MB (Fig. 4C). Based on these results, we further 
evaluated the similar- ity to specific MB subgroups by 
comparing our mouse model exclusively to MB samples. Within 
the human MB cohort, we again performed gene expression 
analysis to identify the most differentially expressed genes 
between MB subgroups. An integration of our mouse data 
resulted in closest similarity of MYC/SMARCA4 tumors to Group 
3 MB in both UMAP and Euclidian clustering, whereas mouse 
SHH MB reliably clustered with human SHH MB (Fig. 4DE). In 
both approaches, tumor 3 formed an exception by clustering 
closely with SHH MB. How- ever, we did not detect apparent 
differences to the other three samples in histological 
appearance and levels of MYC or SMARCA4 in this tumor. 
Distance plot analysis further confirmed closest proximity of 
MYC/SMARCA4 tumors to Group 3 MB (Fig. 4F). 

Human brain tumors and biologically relevant tumor 
subgroups can be reliably classified according to their DNA 
methylation profile [9]. Therefore, we additionally isolated 
DNA of three mouse tumors (tumors 1, 3, and 4 from RNA 
sequencing analysis) and performed global DNA methylation 
analysis using the Mouse Methylation Bead Chip. These data 
were integrated with a human MB dataset comprising in-house 
analyzed samples and pre- viously published cohorts [9, 59]. 
UMAP and Euclidian clustering according to differential 
methylation of 491 
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Fig. 3 Differential gene expression of MYC/SMARCA4 tumors compared to an established mouse SHH MB mouse model. (A) Volcano plot depict- 
ing differential gene expression between our MYC/SMARCA4 tumor model (n = 4) and the Math1-cre::Smofl/wt SHH MB mouse model (n = 3) as assessed 
by RNA sequencing analysis. Only genes orthologous in mice and humans were visualized, and differential expression with logFC ≥ 2.5 and p ≤ 0.01 was 
considered significant (blue/red coloring) after Benjamini-Hochberg correction. A detailed list of differentially expressed genes is included in Additional File 
2, Table S2. (B,C) Gene set enrichment analysis was performed based on significantly differentially expressed genes considering all mouse gene s with logFC ≥ 
1.5 and p ≤ 0.01. (D,E) Deregulated wiki pathways considering differentially expressed genes across all mouse genes with logFC ≥ 1.5 and p ≤ 0.01 
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Fig. 4 MYC/SMARCA4 tumors show similarities to Group 3 MB in gene expression analysis. (A) UMAP clustering of mouse tumors profiled by RNA 
sequencing and published expression data of pediatric brain tumors (Sturm et al. 2016 [61]). Out of the 14,151 orthologous genes identified between 
both datasets, the 6,000 most differentially expressed genes within the human dataset were used for clustering. Mouse SHH MB show resemblance to 
their human counterpart, whereas MYC/SMARCA4 tumors display similarity to both SHH MB and Group 3/4 MB. (B) Hierarchical clustering according to 
differentially expressed genes shows proximity of MYC/SMARCA4 tumors to the Group 3/4 MB cluster for three samples, whereas tumor 3 clusters with a subset 
of SHH MB (black arrows). (C) Distance plot shows closest resemblance of both mouse tumor models to SHH MB. Asterisks mark shortest distance. 
(D) UMAP clustering of mouse tumors and human MB subgroups only (Sturm et al. 2016) according to the 5,000 most differentially expressed genes 
within the human MB dataset out of 14,151 orthologous genes. MYC/SMARCA4 tumors appear closest to Group 3 MB. (E) Hierarchical clustering confirms 
proximity of MYC/SMARCA4 tumors to the Group 3/4 MB cluster with exception of tumor 3 (black arrows). (F) Distance plot shows closest resemblance of 
MYC/SMARCA4 tumors to Group 3 MB. EFT, CIC = Ewing sarcoma family tumor with CIC alteration; HGNET, BCOR = High-grade neuroepithelial tumor with BCOR alteration; 
NB, FOXR2 = Neuroblastoma with FOXR2 activation; EPN, RELA = Ependymoma with RELA fusion; EPN, YAP = Ependymoma with YAP fu- sion; ETMR 
= Embryonal tumor with multilayered rosettes; HGG, G34 = H3F3A G34 mutant high-grade glioma; HGG, IDH = IDH mutant high-grade glioma; HGG, K27 = 
H3F3A K27 mutant diffuse midline glioma; HGG, MYCN = MYCN-amplified high-grade glioma; HGG, RTK = IDH/H3F3A wild-type high-grade glioma of 
the receptor tyrosine kinase (RTK) subtype; MB, G3 = MB, Group 3; MB, G4 = MB, Group 4 

 
orthologous CpG sites showed good separation of human MB 
subgroups, with MYC/SMARCA4 tumors cluster- ing in close 
proximity to Group 3/4 MB (Fig. 5A-B). A distance plot 
confirmed highest resemblance of MYC/ SMARCA4 tumors to 
Group 3 MB (Fig. 5C). 

Discussion 
In this study, we successfully generated SMARCA4-defi- cient 
tumors in mice resembling human Group 3 MB both 
histologically and molecularly. Although SMARCA4 loss or MYC 
overexpression did not increase proliferation 

of GCPs in vitro, the combination of both alterations 
induced tumor formation after orthotopic transplanta- tion 
in vivo. An important role of altered SMARCA4 in MB 
development was suspected before since the overex- pression of 
SMARCA4 wild-type represses tumor devel- opment in an 
OTX2/MYC Group 3 MB mouse model [5]. Our study now 
confirmed these assumptions by showing a selection for 
SMARCA4-deficient cells in all detected MYC/SMARCA4 
tumors. 

On its own, a loss of SMARCA4 in GCPs does not harbor 
tumorigenic potential as indicated by decreased 
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Fig. 5 MYC/SMARCA4 tumors show similarities to Group 3/4 MB in DNA methylation analysis. (A) UMAP clustering according to DNA methylation 
of mouse tumors (Mouse Methylation BeadChip) and human MB (Capper et al. 2018 [9], Sharma et al. 2019 [59], and in-house analyzed samples, n = 228) using 
491 orthologous CpG sites out of the 15,000 most differentially methylated CpG sites within the human dataset. Mouse MYC/SMARCA4 tumors (n = 3) 
show most similarity to MB, Group 3/4. (B) Heatmap clustering according to DNA methylation of the same samples and CpG sites similarly shows proximity 
of the MYC/SMARCA4 tumors to MB, Group 3/4 (black arrow). (C) Distance Plot using the mean methylation values summarized for every sub- group shows 
lowest distance of MYC/SMARCA4 tumors to MB, Group 3. MB, G3 = MB, Group 3; MB, G4 = MB, Group 4; MB, SHH CHL AD = Medulloblastoma SHH-activated 
(children and adults); MB, SHH INF = Medulloblastoma SHH-activated (infants) 

 
proliferation of SMARCA4-deficient GCPs in vitro. This 
observation could be attributed to the previ- ously 
described failure of SMARCA4-deficient GCPs to respond to SHH 
protein, which is added to cell cul- tures as a mitogen [69]. 
Moreover, we have shown before that a postnatally induced 

loss of SMARCA4 in Math1-creERT2::Smarca4fl/fl mice delays 
migration of GCPs to the internal granular layer in vivo but does 
not affect the cerebellar phenotype seen later in develop- 
ment [26]. Similarly, overexpression of MYC alone did not 
increase proliferation of GCPs in vitro. In contrast, Pei et al. 
have shown higher proliferation and increased ability to form 
neurospheres after transducing cerebellar stem cells with a 

stabilized MYCT58A construct [47]. Len- tiviral transduction of 

SOX2-positive cerebellar progeni- tors with MYCT58A is even 
sufficient to drive formation of Group 3-like MB in mice 
[64]. However, the choice of a wild-type MYC construct in our 
study could play a crucial role. Kawauchi et al. did not detect 
development of MB after overexpression of wild-type MYC 
alone by in utero electroporation [33]. Moreover, Swartling 

et al. have shown that overexpression of stabilized MYCNT58A 

in neural stem cells results in the development of brain 
tumors, while overexpression of wild-type MYCN does not [63]. 
Consequently, aberrant chromatin remodeling by the loss of 
SMARCA4 in our model might cause stabi- lization of wild-type 
MYC required for the development of tumors. 

The fact that MYC/SMARCA4 tumors did not only show 
high resemblance to the transcriptome of Group 3 MB but 
also displayed similarities to SHH MB could be attributed to 
the cellular origin of our tumors. SHH 

MB are derived from GCPs as previously demonstrated in 
several mouse models and confirmed by compari- sons to 
single-cell RNA sequencing data of murine and human cell 
populations [4, 58, 60, 67]. In our model, we specifically 
targeted Math1-positive GCPs by tamoxifen- induced Smarca4 
recombination at P3. GCPs are among many other neural 
progenitor populations that have been used before to model 
Group 3 MB in mice [33, 38, 64]. This fits to the fact that the 
exact cellular origin of Group 3 MB cannot be clearly 
assigned to a single murine cell population in the brain [67]. 
Indeed, recently published work provides evidence for both 
Group 3 and 4 MB origi- nating from a distinct cell population 
in the subventricu- lar zone of the human rhombic lip that 
does not exist in mice [22, 35, 60]. This divergence from 
previously used cells of origin should be considered in future 
attempts at modeling Group 3 MB in mice. 

Nevertheless, SMARCA4-deficient MB mouse mod- els could 
provide a valuable platform to explore tar- geted 
therapeutic options for affected patients. For now, the limited 
penetrance of our tumor model restricts its suitability for such 
studies. Pre-sorting for successfully transduced cells before 
transplantation could increase the fraction of MYC- 
overexpressing SMARCA4-deficient cells within the injected 
mixture, possibly also enhancing engraftment. However, this 
would also entail one more day of in vitro culture before 
transplantation for the GFP signal to be detectable. 
Consequently, fragile SMARCA4- deficient GCP cultures might 
show reduced viability and proliferative capacity by then. 
Alternative approaches include the introduction of an 
additional SMARCA4 deficiency in a recently developed 
transgenic MYC 
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driven MB mouse model or the use of other promoters such 
as Blbp-cre or GFAP-cre to drive earlier deletion of SMARCA4 
[38]. 

In comparing gene expression profiles of our MYC/ SMARCA4 
tumors to an established SHH MB model, we identified 
upregulation of G protein signaling and glucose metabolism in 
our tumor model. Tao et al. have previously shown altered 
glucose metabolic pathways in a MYC driven MB mouse model 
and were successful in treating tumor cells with specific 
inhibitors of upregu- lated lactate dehydrogenase A [64]. 
Furthermore, sev- eral studies have suggested histone 
deacetylase (HDAC) inhibitors for treating MYC-driven Group 3 
MB with effi- cacy shown both in cell lines in vitro and in mouse 
mod- els in vivo [14, 16, 36, 48, 49]. It might be of great 
interest to explore similar treatment regimens in SMARCA4- 

SMARCA4 SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily A, member 4 

SOX2 Sex determining region Y 
Tam Tamoxifen 
UMAP Uniform Manifold Approximation and Projection for Dimension 

Reduction 
WNT Wingless/Int-1 
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4.3. HGG-MYCN amplified project in original format 
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carry amplification of the MYCN	gene and somatic or constitutional 
mutations in TP532,4,5. Usually, these tumors are treated according to 
protocols for high-grade glioma with no specificities or targeted 
therapies available. 
MYCN is a transcription factor of the MYC family, which consists of 
three paralogues: cellular (c-), lung-carcinoma derived (l-), and 
neuroblastoma-derived (n-)–myelocytomatosis (myc). Even though all 
three share a common structure containing so-called MYC boxes and a 
basic helix-loop-helix domain, they show a distinct expression profilein 
normal tissue and disease. MYCN is expressed in neural tissues and is 
essential for normal central nervous system (CNS) development6,7. It 
was discovered in 1983 as an amplified gene in neuroblastoma, a 
childhood tumor of the neural crest, with similarities to the c-MYC	
gene8,9. Shortly after its discovery, MYCN was associated with high-risk 
neuroblastoma and poor prognosis10–12. 

MYCN	 has also been described to be involved in a number of 
further tumor entities, spanning hematologic malignancies13,14, lung 
cancers15, and malignancies of the nervous system16. In CNS tumors, 
MYCN is mainly involved in tumorigenesis of retinoblastoma17, 
medulloblastoma18–22, and glioblastoma23–25. 

Although a few mouse tumor models driven by alterations of 
MYCN have been described, none of them have developed gliomas 
with similarities to human HGG-MYCN. The most prominent MYCN- 
driven tumor models mimic human neuroblastoma, in which MYCN 
expression, driven by tyrosine-hydroxylase (TH)- or dopamine-β- 
hydroxylase- (Dbh)-cre, leads to the development of aggressive 
tumors, modeling the human disease26,27. Forcing MYCN expression in 
the hindbrain by the Glt1-promoter induced the development of 
tumors, which resemble human medulloblastoma (MB) with the 
highest similarity to group 3 MB28. This mouse model is well estab- 
lished as a group 3 MB model although MYCN is usually associated with 
group 4 MB29. Furthermore, mutated MYCN is able to transform 
different types of neural stem cells (NSCs) leading to medullo- 
blastoma- and glioblastoma-like tumors in hind- and forebrain, 
respectively30. On the other hand, forced expression of wild-type 
MYCN in the hindbrain or entire CNS does not necessarily lead to brain 
tumor development31,32. Given the lack of existing mouse models for 
HGG-MYCN on one hand and the urgent need for alternative treatment 
modalities for this aggressive disease on the other hand, we here aimedto 
develop a murine model for HGG-MYCN mimicking their human 
counterparts. As HGG-MYCN often carry both alterations, MYCN	
amplifications and TP53	mutations, we generated a mouse model with 
combined expression of wild-type human MYCN	and a loss of Trp53, 
which, on its own, induces glioma development in mice with a long 
latency and reduced penetrance33. 

In this work, we successfully generate a mouse model for HGG- 
MYCN by inducing MYCN	expression and simultaneous Trp53	deletionin 
hGFAP-cre	expressing cells (hGFAP-cre::Trp53Fl/Fl::lsl-MYCN), and show 
that these mice develop large forebrain tumors with 100% penetrance 
within 90 days. These tumors recapitulate human HGG- MYCN 
histologically and molecularly. We use a multi-omic approach todissect 
the tumor biology of murine gliomas as well as high- throughput drug 
screening to identify alternative treatment options for these 
aggressive tumors. 

Results 
HGG-MYCN tumors represent a distinct tumor 
entity and fre-quently carry alterations in TP53 
and MYCN 
Studies published on the recently discovered rare HGG-MYCN entity 
describe a group of aggressive pediatric gliomas, which form a distinct 
cluster in global DNA methylation analysis1,2,34,35. We collected respec- 
tive data from published and five in-house cases of HGG-MYCN diag- 
nosed by DNA methylation profiling and used a reference set of 
pediatric brain tumors to confirm the distinctiveness of these tumorsby 
Uniform Manifold Approximation and Projection (UMAP). We 

 
included the most common brain tumors as well as potential differ- 
ential diagnoses and analyzed the global DNA methylation of 2514 
tumors, including 47 HGG-MYCN (Fig. 1a). Clinical information of the 
HGG-MYCN patients revealed a median age of 8 years with only 4 outof 
89 patients older than 20 years (range: 1–56 years, Fig. 1b). Sex 
distribution was almost balanced (Fig. 1c). DNA sequencing informa- 
tion was available for 47 cases, and we found TP53	mutations in 68% 
and MYCN	amplifications in 60% of those cases (Fig. 1d, e). Thirty-six 
percent of the analyzed cases carried both a loss of TP53	 and an 
amplification of MYCN	(Fig. 1f). HGG-MYCN were detected throughout 
the entire brain with a preponderance of tumors occurring in the 
frontal and temporal lobe (Fig. 1g). The tumors presented with multi- 
ple chromosomal aberrations and, in part, a clearly visible MYCN	
amplification (n	= 19) as visualized in a heatmap of the copy number 
variations of 47 tumors as well as by Fluorescence-in situ hybridization 
(FISH) or immunohistochemistry (IHC). IHC showing accumulated p53 
indicating a mutated TP53	(Fig. 1h–l). 

hGFAP-cre driven loss of p53 and expression of 
MYCN inducebrain tumor formation in mice 
In order to generate an appropriate mouse model for HGG-MYCN, we 
exploited the Cre-LoxP system to simultaneously induce the deletion 
of Trp53	and force expression of human wild-type MYCN under the 
control of the hGFAP	 promoter. This promoter is active from 
embryonic day (E) 13.5 onwards and targets radial glia, whichlater 
differentiates to distinct cell types of the CNS, including neu-rons, 
oligodendrocytes, astrocytes, and adult neural stem cells36. Loss of 
p53 is accomplished by an allele carrying loxP-sites after exon 1 and 
10 in the Trp53	gene, leading to a large deletion in the gene upon 
recombination. The expression of MYCN is achieved by inserting an 
allele into the ubiquitously expressed Rosa26	 locus, where a stop 
codon flanked by two loxP sites is preceding the MYCNopen-reading- 
frame (Fig. 2a). 

All hGFAP-cre::Trp53Fl/Fl::lsl-MYCN	animals (n	= 24) developed neu- 
rological symptoms within 90 days of life with the first animals being 
symptomatic around postnatal day 40 (Fig. 2b). The animals abruptly 
presented with hydrocephalus and akinesia and were sacrificed as soon 
as symptoms appeared. Upon necropsy, large forebrain tumors and 
enlarged ventricles were macroscopically found (Fig. 2c). Midbrain and 
hindbrain as well as the spinal cord and other organs appeared macro- 
and microscopically normal. This was of particular interest, since 
MYCN	amplifications and/or TP53	mutations have also been observed 
in a subset of spinal ependymoma as well as in pediatric 
medulloblastoma21,22,37. In this model, none of the microscopically 
analyzed mice (n	 = 17) showed overexpression of MYCN in these 
regions. 

Histological examination of the murine brains revealed large, cell- 
dense tumors of the forebrain with a heterogeneous cell morphology 
(Fig. 2d, S1). To determine the timing of tumor initiation, we sacrificed 
animals at postnatal day (P) 7 and 37 prior to the establishment of any 
symptoms. At P7, no tumor lesion was detected by histological 
examination of the brains of six mice, whereas at P37, tumor lesions 
were detected in all analyzed mice (n	= 5). These small tumor lesions 
presented with densely packed, highly proliferating cells in the out- 
ermost layer of the olfactory bulb (OB) (Fig. S1). 

Genetic analysis of the tumors developing in hGFAP-cre::Trp53Fl/Fl::lsl-	
MYCN	mice showed a recombined stop codon as well as a recombined 
Trp53	allele as expected (Fig. 2e). We also analyzed potential copy 
number variations (CNVs) of three representative mouse tumors (Fig. 2f). 
Due to the genetic engineering, all three mouse tumors revealed an 
amplification of the Rosa26-locus with the inserted MYCN	on chromo- 
some6 (asterisk in Fig. 2f). Moreover, they showed chromosomal aber- 
ration private to one tumor as well as recurrent chromosomal 
aberrations appearing in at least two of three tumors at chromosomes 7, 
14, or 16 (Fig. 2f). This suggests that the combination of MYCN	and Trp53	



139  

	
	

Fig. 1 | Tumors of the DNA methylation class HGG-MYCN carry MYCN amplifi- 
cations and TP53 mutations. a UMAP of global DNA methylation profiling of 2514 
cases of multiple brain tumor entities including the most common brain tumors aswell as 
potential differential diagnoses including 47 HGG-MYCN using the 10,000 most 
differentially methylated CpG sites. b Age distribution of n	= 89 HGG-MYCN tumors with 
a median age of 8 years (bounds of box= 3–13, whiskers = min:1, 
max:22). c Sex distribution of 106 HGG-MYCN. d 47 HGG-MYCN were screened for 
TP53 mutations, of which 68% carried a mutation. e The same 47 cases as in (d) wereanalyzed 
for their MYCN status. f Ofthe same 47 cases shown in (d) and (e), only 8%carried no TP53 or 
MYCN alteration, whereas 36% of those carry both alterations. g Tumors can be found 
throughout the entire brain with the majority of cases 

located in the temporal and frontal lobes. h Heatmap showing copy number var- iations of 
47 HGG-MYCN. The copy number profile of such tumors is imbalanced with a clearly 
visible MYCN	amplification (Chr. 2), highlighted by the arrow. MYCN	amplifications can also 
be detected by FISH analysis (representative case shown in(i), three independent tumors 
showing this amplification were analyzed), while IHC may serve as a surrogate marker 
(representative case in (j), the same three tumorswere analyzed). k Nuclear p53 accumulation 
indicating impaired p53 function canbedetectedby IHC(representativecase, threeindependent 
tumorswereanalyzed).l Representative CNV plot of a HGG-MYCN with a magnification of 
chromosome 2with the MYCN	amplification (CNV plots of 47 tumors were generated). Scale 
bar ini =5 µm, in j &k = 50 µm. Source data are provided as a Source Data file. 

 
 

alterations induce further genomic changes that may be needed for 
tumor development. 
We next characterized the mouse tumors by microscopy to see 
whether they resemble their human counterparts. Tumors of both 
species showed irregularly shaped, densely packed cell nuclei (Fig. 
2g, n) and were positive for MYCN (Fig. 2h, o). They were alsohighly 
proliferative (Fig. 2i, p) and expressed Nestin (Fig. 2j, q), SOX2(Fig. 2k, 
r), OLIG2 (Fig. 2l, s), and GFAP (Fig. 2m, t). Other histologicalmarkers 
were also similarly expressed in mouse as well as human tumors: 
Neurofilament, NeuN, and Synaptophysin were not expressed but 
tumors of both, mouse and human, expressed TubB3 (Fig. S2). 

So far, the cell-of-origin as well as time and place of tumor onsetfor 
HGG-MYCN is unknown. Therefore, we decided to investigate tumor 
development in other cell populations of the developing CNS by 
breeding animals with the same genetic alterations in other target 

cell populations. We bred Sox2-cre::Trp53Fl/Fl::lsl-MYCN	 and Blbp-	
cre::Trp53Fl/Fl::lsl-MYCN	mice, which initiate recombination upon E6.5or 
E9.5, respectively. The Sox2-mediated recombination was embry- 
onically lethal (Fig. S3a) with severely underdeveloped animals at 
E16.5 (Fig. S3b–d). The Blbp-mediated recombination also led to 
prenatal lethality except for two animals surviving until P0 and two 
until P18, on which they presented with hydrocephalus (Fig. S3e). 
Histologic examination of the P18 brains showed no signs of tumor 
development, suggesting rather a developmental defect as the cause 
for the hydrocephalus (Fig. S3f–h). 

Mouse HGG-MYCN molecularly resemble their 
humancounterparts 
We next investigated whether murine and human tumors shared 
similarities regarding their DNA methylation profiles. We used bead 
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chip arrays to detect the methylation status of 285,000 CpG sites of 
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Fig. 2 | Mouse HGG-MYCN develop within the first 100 days of life and match 
their human counterparts histologically. a Genetics of the HGG-MYCN mouse 
model. Cre is expressed under control of the hGFAP	promoter, which targets dif-ferent cell 
populations shownonthe right. The floxedalleles of Trp53	and MYCN	aredepicted, loxP sites 
are shown as red arrowheads, and primers for genotyping andproof of recombination are 
shown as green arrows. b Kaplan–Meier survival curve 
of mice with HGG-MYCN (n	= 24) as percent survival, light red area showing the 
asymmetrical 95% confidence interval. c Macroscopic image of a mouse brain carrying an 
HGG-MYCN (arrow). d Hematoxylin and Eosin (H&E) stained brain witha large forebrain 
tumor (arrow). e Representative PCR result of genotyping and thedetection of allele 
recombination. Results are shown for cultured mouse tumor cells (1), fresh mouse tumor 
tissue (2), ear biopsy of a mouse not carrying the Crerecombinase (3), ear biopsy of a mouse 
with an HGG-MYCN (4), and (5) a wild-type 

mouse carrying none of the transgenes. Bands result from the primers indicated bygreen 
arrows in (a). The same PCR was performed for all animals generated in thestudy including 
the n	= 24 animals included in the Kaplan-Meier survival analysis.f Copy number variation 
plots of three mouse HGG-MYCN. An amplification of theRosa26-locus, in which the 
MYCN	is inserted, is visible in all three samples (markedby the star). Other recurrent copy 
number changes are observed in at least two ofthe tumors (marked by the rectangle). g–t 
Immunohistochemical comparability of 
mouse and a human HGG-MYCN. The pictures show representative micrographs, 
all stainings were performed independently on at least three samples. EP ear punch,Fl Floxed 
allele, M marker, Rec recombined allele, WT wild-type allele. The scale bar in c and d 
corresponds to 2 mm, and the scale bar in (g–t) corresponds to 20 µm. 
Source data are provided as a Source Data file. 

 
 

the mouse genome. Of these sites, 141 CpG sites were identical to the 
human 850k (EPIC) array. The beta-values of these 141 sites were suf- 
ficient to distinguish different human brain tumor entities according to 
the visualization via UMAP. When clustering the methylation data of 
the murine tumors with the most common pediatric brain tumors as 
well as potential differential diagnosis, mouse HGG-MYCN (hot pink) 
showed the highest similarity to the human HGG-MYCN (light pink, 
Fig. 3a). As a control, we included tumors of Math1-cre::SmoM2Fl/wt	
mice, which are a well-known murine model for sonic hedgehog 
medulloblastoma (SHH-MB)38 and which were located nearest to 
human SHH MB, as expected (Fig. 3a). 

Next, we generated transcriptomic profiles of the murine 
tumors and compared them to gene expression data of human HGG- 
MYCN and other pediatric brain tumors1. The visualization of gene 
expression profiles by UMAP analyses revealed the highest simi- 

larity between mouse HGG-MYCN (hot pink) to their human 
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counterparts (light pink, Fig. 3b). Again, SHH-MBs served as an 
internal control with high similarities between murine (red) and 
human SHH-MB tumors (dark red). We further analyzed the simi- 
larity of gene expression profiles by calculating the Euclidean dis- 
tance of averaged transcriptome data per group and performed an 
agreement of differential expression (AGDEX39) analysis. Both ana- 
lyses confirmed the high similarity between mouse and humanHGG- 
MYCN (Fig. 3c, d, Euclidean distance: HGG-MYCN – mouse HGG- MYCN 
= 24.4, AGDEX: HGG-MYCN – mouse HGG-MYCN, 
AGDEX cos: 0.190659811, p-value = 0.007). When we comparedMYCN	
expression in human and mouse HGG-MYCN relative to other human 
gliomas or healthy mouse tissue of the OB and cerebellum and the 
SHH-MB mouse model, and performed gene set enrichmentanalysis 
(GSEA) for MYCN target genes, we found that MYCN itself as well as 
its target gene sets are significantly enriched in tumors of 

both species, human and mouse (Fig. 3e, f, two-sided Welch’s-t-test, 
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Fig. 3 | Mouse HGG-MYCN match their human counterparts molecularly. 
a UMAP of global DNA methylation. Betavalues of 141 identical CpG sites betweenmouse 

respectively. The values of the Euclidean distance are displayed, and the asteriskmarks the 
smallest values and thereby highest similarity. d AGDEX analysis of mouse HGG-MYCN 

and human were used for comparison of similarity. Mouse methylome datawere generated with also shows the high similarity between murine and human tumors (analysis based on 
the Illumina Mouse Methylation bead chip array and com- pared to humandatageneratedwith 14,416 orthologous genes). The values of the AGDEX analysis with their respective p- 
the EPICarray. The three mouse tumors (inhotpink) show most similarity to the human HGG- values are given. The asterisk marks the smallest p-value and thereby highest similarity. e, 
MYCN group (pink). b UMAP of global gene expression data. Eleven mouse tumors were 
profiled by RNA sequen- cing andtheirgeneexpression profile wascompared to published 
gene expression 
data of human „CNS PNET“ tumors 1. Data were normalized for interspecies dif- 
ferences by employing RNA Seq. data of Math1-cre::SmoM2Fl/wt	mouse tumors and 
human SHH medulloblastoma. c Distance plot of mouse HGG-MYCN and mouse 
SHH-MBs and humantumorsbased on the 500 most significantly expressed genes.Mouse 
tumors showed most similarity to human HGG-MYCN and human SHH-MB, 

f Human and mouse HGG-MYCN show significantlyhigher MYCN	expression compared to 
other glioma entities or controltissue(from mouse olfactory bulb(OB) or cerebellum) and 
comparable expressionto the SHH-MB mouse model as well as highly significant 
enrichment for MYCN 
target genes. Human tumors: non-mycn, n	= 40, HGG-MYCN n	= 7. Mouse data: OBtissue n	
= 3, mouse HGG-MYCN n	= 11., two-sided Welch’s-t-test, human: p	= 0.0002,95% confidence 
interval = 2.001 to 4.320, murine= p	= 0.0002, 95% confidence 
interval= 2.143 to 4.085. Source data are provided as a Source Data file. 
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human: p	= 0.0002, 95% confidence interval = 2.001 to 4.320, mur- 
ine= p	= 0.0002, 95% confidence interval = 2.143 to 4.085). 

 

Single-cell transcriptomics of mouse HGG- 
MYCN revealed a highintratumoral 
heterogeneity with neuronal and 
oligodendroglialtumor cell population 

 
As knowledge about the cellular architecture and the cell-of-origin of 
HGG-MYCN is lacking and no single cell RNA sequencing (scRNA seq) 
data of HGG-MYCN is available, we employed scRNA seq to dissect the 
cellular composition of these murine tumors. We profiled the single 
cell transcriptomes of seven mouse tumors using 10X genomics 
technology. The cells were harvested from OB/tumor tissue on P43(n	
= 2), P70 (n	= 2), P77 (n	= 2), and P92 (n	= 1). ScRNA seq. resulted in 23 
distinct clusters (Fig. 4a). The tumor cell clusters were clearly identified 
based on their increased expression of human MYCN	and the firefly 
luciferase (FLUC) reporter gene (Fig. 4b). The remaining clusters were 
unequivocally assigned as non-malignant cells of different types by a 
combination of differential gene expression (DGE) analysis and com- 
parison with known highly specific marker genes of distinct tumor 
microenvironment (TME) cell types (Fig. 4c, S4). 

 
Based on their similarities in the gene expression patterns, theseurat 
algorithm divided the tumor cells into distinct clusters (Fig. 4a–c). 

These tumor cell clusters were split into three larger areas: clusters 0 
and 13 were composed only of cells of the most mature tumor (P92 
tumor), clusters 1/2/3/4/9/15/18 were composed of cellsresembling 
oligodendrocytic-lineage (OL) cells and cluster 5 expressesa neuronal- 
like signature. 

 
In order to define the gene expression signatures of the differenttumor 
cell populations, we employed a combination of DGE and functional 
gene network analysis as well as gene ontology (GO) annotation to 
identify the differences and similarities of distinct clus-ters within the 
murine HGG-MYCN (Fig. 4d). These analyses clearly show an 
oligodendrocytic tumor cell population, a neuronal tumor cell 
population, and a third tumor population, which is transcriptionally 
clearly distinct and expresses markers of neither cell lineage. Tumor 
cells of this cluster were solely harvested from the most mature tumorof 
a 92-day-old mouse. 

 
In order to determine the potential cellular origin of the murinetumor 
cells, we compared gene expression profiles of the different tumor 
cell clusters to a reference dataset of the ventricular zone/ 
subventricular zone (VZ/SVZ) of the mouse. We used logistic regres- 
sion to identify similarities between the reference clusters and our 
tumor cells. This analysis reveals a high similarity of HGG-MYCN tumor 
cells with adult neural stem (aNSC) and transit-amplifying neural pre- 
cursor cells (TAC). Some tumor cell clusters (5,0,13,3) also show 
similarities to neuroblasts (NB) and some clusters to cells of the oli- 
godendrocytic lineage (1,15,0,13,3). These results suggest that murine 
HGG-MYCN may originate from multipotent stem or progenitor cellsin 
the SVZ that differentiate into both glial and neuronal lineages. 

 
To understand the tumor development further, we investigatedthe 
tumor cells of the different stages of tumor development. The 
comparison of the TME and the tumor cell clusters at P43, P70, P77, 
and P92 revealed a reduction of TME cells throughout tumor devel- 
opment and a change in tumor cell populations (Fig. 4f). The tumor 
cells of the youngest mice are mostly OL-like. At P70, the NB-like tumor 
cell population appears which is also detectable at P77. At P92, only a 
small proportion of tumor cells can be assigned to the OL- or NB-like 
type but instead most cells belong to a unique cell population which 

we therefore called P92-tumor. 

 

Sensitivity of HGG-MYCN cells to Doxorubicin, 
Etoposide andIrinotecan in an in vitro drug screen 

Next, we used our mouse model to identify improved therapeutic 
options to treat HGG-MYCN, since standard treatment is still ineffi- 
cient. For this, we performed a high-throughput drug screening of 639 
compounds in a human HGG-MYCN cell line (pbt-04) and a cell line 
isolated from our mouse model (pn003, Fig. 5a, Supplementary 
data 1). To expedite clinical use, we analyzed drug response using a 
clinical anticancer library comprising nearly 80% of FDA-approved 
drugs. The chosen drugs encompass both standard chemotherapy and 
targeted therapy for various types of cancer. The selection doesn’t 

limit to the blood-brain barrier permeability since, due to the recent 
development of materials science and nanotechnology, multiple stra- 
tegies could be used to deliver drugs across BBB. 

 
We determined the drug response by comparing the normalizedarea 
under the curve (AUC) of a cell viability assay. We then focused onthe 
100 compounds, that were most efficient in reducing cell viabilityin 
both, mouse and human cells. Among these 100 compounds, we 
found 18 drug classes represented by more than two drugs, suggesting 
a specific mechanism of action against these tumors (Fig. 5b). Thirty of 
these drugs are FDA approved, and for 14 of those, CNS permeability 
has been described (Fig. 5c). By focusing on the FDA approved drugs, 
we identified 12 compounds that are already used for the treatment of 
pediatric brain tumor patients and can therefore be considered rela- 
tively safe to use also in HGG-MYCN patients (Fig. 5d, e). 

 
The top three compounds, that are FDA approved and used to treat 
pediatric brain tumor patients, are Doxorubicin, Etoposide, andSN38 
as the active metabolite of Irinotecan. All three compounds showed 
high efficacy against our HGG-MYCN cell lines, mixed 
response in other adult and pediatric glioblastoma reference cells and 
had almost no effect on healthy fibroblasts (Fig. 5f–h). 

 

Discussion 
 

We show that combined loss of p53 and forced expression of MYCN in 
neural precursor cells is sufficient to drive brain tumor formation. Mice 
carrying these alterations in cells targeted by hGFAP-driven recombi- 
nation develop large forebrain tumors. These murine tumors show a 
similar histology and marker expression as human tumors of the 
methylation class “pediatric high-grade glioma MYCN”. In addition, we 
found the highest similarity between mouse tumors and HGG-MYCN 
compared to other aggressive pediatric brain tumors in DNA methy- 
lation and gene expression profiles. 

 
We investigated the single cell transcriptomic landscape of the 
tumors and could show a tumor evolution of the mouse tumors by 
analyzing different mouse ages and stages of tumor development. We 
included mouse samples of early tumor onset at P43, further devel- 
oped tumors at P70 and tumors of symptomatic mice at P77 and P92. 
During tumor development, we observed changes in the TME but also 
a change in the tumor cell populations. At P92, a unique tumor cell 
population is detected. This mouse was exceptional in survival, as only 
4.4% of animals survive until P90. This might explain the differentness 
of the observed tumor cell population from the other six mouse 
tumors but as we could only generate data of this one exceptionally 
long surviving mouse, we cannot draw definite conclusions. 

 
The age of disease onset differed between mice and humans, with 
children having a median age of disease onset of eight years and mice 
becoming symptomatic in adolescence. This difference might be due 
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to species differences in maturation of neural cells or depending on 
environmental influences. As the age of disease onset is before adult- 
hood in both species and the molecular biology of mouse and human 
tumors is very similar, we consider our model as a reliable model for 
the human disease. 

Alterations in MYCN	and TP53	also occur in other human brain 
tumor entities, such as medulloblastoma. To investigate whether the 
same transgenes will lead to different brain tumors in other target cells 
and further characterize the cell-of-origin of our tumors, we used dif- 
ferent promoters to drive Cre expression in the developing brain. We 
employed the Sox2	promoter, which is expressed earlier in embryonic 
development (E6.5 instead of E13.5), and the Blbp	promoter, which is 
expressed from E9.5 onwards. In fact, Swartling et al. described that 
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Fig. 4 | Mouse HGG-MYCN reveal a high intratumoral heterogeneity with oli- 
godendroglial and neural cell populations and a time-resolved change in 
tumor composition. a UMAP of single cell RNA sequencing data of seven mouse 
HGG-MYCN (2xP43, 2xP70, 2xP77 and 1x P92) including 24.938 cells. 23 cell clus-tered 
were identified by the Seurat algorithm. b To identify tumor cell clusters, expression of 
human MYCN	and Luciferase (FLUC), were plotted. c, d Cell clusterswere annotated by 
analysis of marker gene expression. This revealed immune aswell as stromal cell clusters 
and three main superclusters of tumor cells. Tumor superclusters consist of an 
oligodendroglial-like, a neuronal-like, and a cluster which was only detected in the most 
mature mouse tumor. e Cell clusters were compared to a reference atlas of the VZ/SVZ of 
the mouse by logistic regression.Similarity in gene expression is displayed in red, less 
similarity in blue. Mousetumor 

cell clusters show similarity to precursor cells of the stem cell niche, suggesting a tumor 
origin in this region. f UMAP and bargraph depiciting the changes in cell composition of 
samples of different mouse ages. The TME content is reduced inlater tumor stages. Early 
tumors are only OL-like, during tumor development, anNB-like population appears. At 
P92, a unique tumor cell population is detected, showing neither OL nor NB-like features. 
AC astrocyte, aNSC adult neural stem cell,DC dendritic cell, EC endothelialcells, EPN 
ependymalcells, MES mesenchymal, MGmicroglia, migr. DC migratory dendritc cells, 
MOL mature oligodendrocyte, muralfibroblasts, pericytes, smooth muscle cells etc., NB 
neuroblast, OL oligoden- drocytic, OPC oligodendrocytic precursor cell, PC pericytes, 
SMC smooth muscle cells, TAC transit amplifying cell, TME tumor microenvironment, 
UMAP uniform manifold approximation and projection. 
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Fig. 5 | High throughput drug screen indicates efficacy of Doxorubicin, Eto- 
poside, and Irinotecan for the treatment of HGG-MYCN. a Heatmap of the AUCin 
a drug screen of 639 substances in human (pbt-04) and murine (pn003) HGGMYCNcell 
lines. Adarkercolorindicatesastrongerresponse. b Amongthetop100 substances of the drug 
screen, we detected 18 drug classes with at least two substances. The most prominent were 
anthracyclins, aurora inhibitors, Hsp90- inhibitors, multikinase inhibitors, and 
topoisomerase inhibitors. c Of the top 100 most effective substances in the screen, 30 were 
FDA approved. Of those, 14 have 

been described to be delivered into the CNS. d Of the 30 FDA-approved substances,12 have 
beenused to treat pediatric brain tumor patients as depicted in (e). f–h Thetop three substances 
Doxorubicin, SN-38 (active metabolite of Irinotecan) and 
Etoposide are efficiently impairing growth of HGG-MYCN cells, while showing a mixed 
effect on other glioma cell lines and almost no effect on healthy fibroblasts.Depicted is the 
negative AUC (1 minus the respective AUC). AUC area under the curve. AUC values are 
supplied in Supplementary data 1. Source data are providedas a Source Data file. 

 
 

MYCN drives different brain tumor types depending on the cell of 
origin30. However, although both promoters have previously been 
described to drive medulloblastoma formation in mice40,41, none of the 
generated animals developed any brain tumors. The embryonal leth- 
ality of MYCN expression and TP53 loss in Sox2- as well as Blbp- 
expressing cell populations implies that the physiologic expression ofat 
least one of the two genes is essential during normal CNS devel- 

opment in this timeframe. This indicates a similar function in human 
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CNS development which could be a hint to the time of human HGG- 
MYCN development. 
We particularly examined the cerebellum and the spine of our hGFAP-	
cre::Trp53Fl/Fl::lsl-MYCN	mice for signs of tumor development.Since no 
tumors were detected we conclude that loss of p53 and overexpression 
of MYCN, despite being expressed there, is either not sufficient for the 
development of medulloblastoma or spinal ependy- moma or other 
promoters may be needed. However, we cannot rule 
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out that hGFAP-cre::Trp53Fl/Fl::lsl-MYCN	mice died from their forebrain 
tumors prior to the development of further lesions. Together with the 
scRNAseq data, we can deduce that the cell of origin for the murine 
HGG-MYCN is most likely a relatively undifferentiated precursor cell 
that is able to differentiate into the oligodendroglial and neuronal 
lineage as we identified cells differentiating along both lineages in our 
tumors. 

We neither detected any glioma in the cerebellum of the mice, 
although in humans, at least a few cerebellar cases of HGG-MYCN have 
been described in the literature42. In our mice, tumors appear to 
initiate in the OB, which may be caused by differences in the sensory 
input of mice and humans. Brain tumor development and especially 
glioblastoma formation is known to be dependent on sensory input, 
and in humans, other brain regions, such as visual and hearing systems, 
might be more prone to tumor development43,44. In addition, tumor 
development in our mouse model coincides with the area of adult 
neurogenesis in mice, which is highest in the SVZ, from where cells 
migrate into the OB. In humans, the highest rate of adult neurogenesis 
can be found in the striatum and almost no neurons are added to the 
OB after initial development45. This species difference in neurogenesis 
might also contribute to differences in tumor location. 

Concluding, our mouse model of HGG-MYCN has limitations in 
modeling the human disease. The genetic alteration driving the mouse 
tumors are observed in humans, but the combination of both is only 
found in 36% of human tumors. Therefore, our mouse model is 
genetically only mimicking this subset of human tumors. In addition, 
also the age of tumor onset, the localization of tumors, as well as the 
exact copy number alterations are different between mouse and 
human HGG-MYCN. We show similarities between the two species on a 
molecular level including gene expression and DNA methylation, but 
these methods are also not a definite proof for the translational rele- 
vance of our model. However, all employed methods for comparing 
mouse and human tumors including histology, transcriptomic, and 
epigenomics indicate a resemblance of human HGG-MYCN by mouse 
HGG_MYCN. The observed differences most likely depend on species- 
dependent differences in neurogenesis and external stimuli as dis- 
cussed above. A genetically engineered mouse model has inherent 
limitations as mice are different from human in many aspects. There- 
fore, conclusions drawn from mouse models can only answer some 
questions of human tumor development. Anyways, modeling a tumor 
in an intact organism with a functional immune system and a complete 
organ system, will help understand aspects of the tumor. Employing a 
mouse model together with other techniques of modeling human 
tumors will help increasing the treatability and survival of patients. 
MYCN was discovered in 1983 by its tumor-driving role in 
neuroblastoma8,9, a tumor of the sympathetic nervous system, and 
mouse models, in which tumors were initiated by amplification or 
forced expression of MYCN, were neuroblastoma models. Apart from 
these murine neuroblastoma, a few MYCN-driven brain tumor models 
have been described. One model, generated by transduction of NSCs 
with a mutationally stabilized MYCN and transplantation of respective 
cells into nude mice, generated forebrain tumors with features of 
glioma. However, at that time, techniques were limited to thoroughly 
compare the molecular landscapes of mouse and human tumors30. 

We combined MYCN	amplification with an hGFAP-mediated loss of 
Trp53. The latter alone has been described to induce formation of 
IDHwt/H3wt glioblastoma with a penetrance of 100%, although tumor 
formation occurs significantly later in life than tumor development in 
our HGG-MYCN mice33. So, neither a hGFAP-mediated MYCN	
amplification32 nor a hGFAP-mediated TP53	loss33 is sufficient to drive 
HGG-MYCN formation. Only the combination of both alterations 
cooperate to induce such tumors. A possible mechanism of how these 
two alterations co-act to induce tumor formation is that MYCN drives 
cell proliferation, but only in cells that are genetically unstable for 
example by a loss of Trp53. This increased proliferation can lead to 

tumor formation, whereas cells with a functional p53 will activate cell 
cycle checkpoints and prevent uncontrolled proliferation. 

We show that cells derived from our mouse model can be 
cultivated in vitro and be employed for preclinical testing, which is 
required as a preparation for the in vivo application of potential 
drugs. 

We employed our mouse model and a human cell line to find 
potential therapies in a high-throughput drug screen. Thereby, we 
identified Etoposide, Doxorubicin, and Irinotecan as potential treat- 
ment options in patients with HGG-MYCN. All these substances are 
used in the treatment of pediatric brain tumors and can therefore be 
considered safe to use. We think that using these substances instead or 
in addition to the current treatment with radiation and optionally 
Temozolomide might substantially improve patient survival, although 
further in vivo studies are required. These in vivo studies could include 
the comparison of the current treatment with radiation and Temozo- 
lomide and Irinotecan, Etoposide, Doxorubicin and any combination 
of those substances. In addition, more targeted treatments described 
for other MYCN driven tumors like for example AURKA-, CDK2/9- and 
DNA replication repair inhibitors could be tested. In addition, it might 
be useful to employ our mouse model as well as PDX models of HGG- 
MYCN in such treatment studies. Our here described mouse model 
mimics the human disease regarding histology, DNA methylation as 
well as gene expression. In summary, we believe that it can serve as a 
reliable preclinical model for this poorly understood brain tumor 
entity. 

Methods 
All work performed in this project complies with all relevant ethical 
regulations including animal protection laws of the state of Hamburg 
and the local ethical standards and regulations at the University 
Medical Center Hamburg-Eppendorf (§12 HmbKHG). Only anonymized 
human data were included in the project and informed consent of all 
human patients was obtained. 

 

Transgenic animals 
The generation of hGFAP-cre36, Blbp-cre46, Sox2-cre47, Trp53Fl/Fl48, and lsl-	
MYCN26 as well as Math1-cre::SmoM2Fl/wt38 transgenic mouse lines has 
been described previously. All animal procedures were performed in 
accordance with applicable animal protection laws and approved by 
the state of Hamburg (Reference N2019/99). Genotyping was per- 
formed by polymerase-chain reaction with primer pairs described in 
the original publications (Supplementary Table 1). For all analyses, 
mice of both sexes were used in equal numbers. The mice were kept at 
22 °C and 45–65% humidity on a 12 h light/dark cycle and water and 
food was available ad libitum. The animals were monitored daily by 
experienced personnel. All animals were sacrificed upon detectable 
neurological symptoms including ataxia and hydrocephalus as 
approved by the state of Hamburg. The termination criteria defined 
were never exceeded in the study. 

 
Human cell line culture 
Pbt04 cells (SCRI, Brain tumor resource lab) were grown in NeuroCultNS-A 
Basal Medium (Human) supplemented with NeuroCult NS-A 
Proliferation Supplements—Human, Epidermal Growth Factor (EGF); 
Fibroblast Growth Factor (FGF) and penicillin/streptomycin (P/S) inlaminin 
coated flasks. 

 
Primary murine tumor cell culture 

For the establishment of murine tumor cell lines, fresh tumors were 
dissected and dissociated with Accutase and DNase. After dissociation, 
cells were seeded in mouse NSC medium (DMEM/F12 + Glutamax, 
HEPES, MEM-Non Essential Amino Acids, P/S, B27 Supplement, EGF, 
FGF) and grown in a humidified incubator at 37 °C. As soon as large 
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spheres formed, they were dissociated with Accutase and re-seeded. 
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High-throughput drug screening 
High-throughput drug screening using an in-house semi-automated 
platform was performed. For this approach, we measured the drug 
responses of pbt-04 and a murine HGG-MYCN cancer cell line to 639 
small-molecule compounds (including FDA-approved, phase I–IV, and 

experimental drugs). All compounds were dispensed using a D300e 
Digital printer (Tecan) in a 6–8-point serial dilution covering a con- 

centration range from 0.0043 to 25 µM in 1536-well plates (Corning). 
After 72 h treatment, cell viability was detected by CellTiter-Glo 
Luminescent cell viability assay (Promega) using a Spark plate reader 
(Tecan). Dose-response to compounds was measured based on a 
normalized area under the curve (AUC). The AUC values for all com- 
pounds can be found in Supplementary data 1. AUC data of additional 
glioma cell lines as well as healthy control fibroblasts were generously 
provided for comparison by Marc Remke and Nan Qin. 

Histology, immunohistochemistry, and FISH- 
analysis 

For hematoxylin and eosin (H&E) and immunohistochemistry (IHC) 
stains, brain tissue was fixed in 4% paraformaldehyde/PBS for at least 
12 h. The tissue was dehydrated, embedded in paraffin, and sectioned 
at 4 µm according to standard protocols. All IHC stains were per- 
formed on a Ventana System (Roche) using standard protocols. The 
following antibodies were employed: MYCN (Cell Signaling, 517053, 
1:1000), P53 (Dako, M7001, 1:800), Ki67 (Abcam, ab16667, 1:100), 
Nestin (Abcam, ab221660, 1:2000), SOX2 (Abcam, ab97959, 1:200), 
OLIG2 (Millipore, AB9610, 1:200), Cre (Covance / DCS-diagnostics, PRB- 
106P, 1:100) and GFAP (Dako, M0761, 1:200). FISH analyses were 
performed to detect possible amplifications at the MYCN	 locus using 
standard procedures and a SPEC MYCN/2q11 dual color probe (Zyto- 
vision, Germany). 

 

RNA Sequencing (RNA Seq) 
We employed 11 mouse HGG-MYCN tumor samples (6 male and 5 
female) as well as 6 mouse SHH-MBs (sex not determined) and three 
control samples (2 male and 1 female) of the cerebellum and three of 
the olfactory bulb (2 male and 1 female). After isolation of total RNA 
with TRIzol (Invitrogen), RNA integrity was analyzed with the RNA 
6000 Nano Chip on an Agilent 2100 Bioanalyzer (Agilent Technolo- 
gies). From total RNA, mRNA was extracted using the NEBNext Poly(A) 
mRNA Magnetic Isolation module (New England Biolabs) and RNA-Seq 
libraries were generated using the NEXTFLEX Rapid Directional qRNA- 
Seq Kit (Bioo Scientific) as per the manufacturer´s recommendations. 
Concentrations of all samples were measured with a Qubit 2.0 Fluo- 
rometer (Thermo Fisher Scientific), and distribution of fragment 
lengths of the final libraries was analyzed with the DNA High Sensitivity 
Chip on an Agilent 2100 Bioanalyzer (Agilent Technologies). All sam- 
ples were normalized to 2 nM and pooled equimolarly. The library pool 
was sequenced on the NextSeq500 (Illumina) with 1 × 75 bp read 
length and 16.1 to 18.6 Mio reads per sample. 

For each sample, sufficient quality of the raw reads was confirmed 
by FastQC	v0.11.849. Afterwards, the reads were aligned to the mouse 
reference genome GRCm38 with STAR	v2.6.1c50 and simultaneously 
counted per gene by employing the –quantmode	GeneCounts	option. 
Counts are based on the Ensembl annotation release 95. Differentially 
expressed genes were estimated with DESeq2	v1.22.251. 

RNA Sequencing analysis 
Raw fastq files of mouse samples were processed in usegalaxy.eu52. 
Low quality reads were detected using FastQC (Galaxy Version 
0.73+galaxy0). Trimmomatic (Galaxy Version 0.38.1) was used for 
trimming poor quality reads (reads with average quality <20). Reads 
were aligned to the mm39.ncbiRefseq.gtf.gz using STAR aligner 
(Galaxy Version 2.7.8a+galaxy1) and gene expression was quantified 
using featureCounts (Galaxy Version 2.0.1+galaxy2). 
Deseq2(GalaxyVersion 2.11.40.7+galaxy2) was used for generating 
VST-normalized 

 
files for all samples. Human gene expression data was obtained from 
GSE730381. Mouse samples were measured in two different batches, 
and the VST-normalized files were combined and corrected for batch 
effect using ComBat from sva package (3.44.0) in Rstudio (4.2.1). For 
comparing mouse (11 tumors with MYCN amp and Trp53	mutation and 
6 SHH tumors) and human data (173 samples), only orthologous genes 
were used (n	= 14,416). In order to correct for species-specific batch 
effect, ComBat was applied after combining the mouse and human 
data (GSE730381). Average tumor subgroup-specific gene expression 
was used for calculating euclidean distance. Sample-sample distance 
plot was visualized using ComplexHeatmap (2.12.1). Limma (3.52.2) was 
used for performing differential expression analysis. Top 500 differ- 
entially expressed genes (adjusted for multiple testing using 
Bonferroni-Hochberg correction and sorted by F-statistic) were 
visualized using umap (0.2.9.0) and ComplexHeatmap (2.12.1) in 
Rstudio. AGDEX was performed in C++ as described previously53. 
AGDEX was based on 14,416 orthologues genes with human sonic 
hedgehog medulloblastoma (SHH MB) and mouse SHH MB as refer- 
ence group for differential expression of tumor samples in each spe- 
cies, respectively. The statistical significance of the observed AGDEX 
value was determined via permutation as described39,53. The sig- 
nificance of changes in expression of MYCN was determined by 
Welch’s t-test of non-MYCN and HGG-MYCN human tumors and mouse 
OB vs. mouse HGG-MYCN. Gene set enrichment analysis (GSEA) was 
performed using the software GSEA v4.2.0 of the Broad Institute54,55. 
The gene set comprised 344 genes with transcription factor binding 
evidence in the MYCN-21190229-SHEP-21N-HUMAN profile from the 
CHEA Transcription Factor Binding Site Profiles dataset56,57. Genes 
were ranked by signal-to-noise ratio and statistical significance was 
determined via 1000 gene set permutations. P	< 0.05 was considered 
significant. 

 

Global DNA-methylation analysis 
Three mouse HGG-MYCN tumors were employed to methylation array 
(two male and one female). After isolation of genomic DNA, 200– 
500 ng DNA was used for bisulfite conversion by the EZ DNA 
Methylation Kit (Zymo Research). Then, the Mouse Methylation Bead 
Chip Array (Illumina) covering 285,000 CpG sites on the mouse gen- 
ome was used on an iScan device (Illumina). 

In order to compare the global DNA-methylation profile of mouse 
tumors with that of human samples, we collected human methylation 
profiles generated with the Illumina EPIC array, consisting of 850,000 
CpG sites. The use of biopsy-specimens for research upon anonymi- 
zation was always in accordance with local ethical standards and reg- 
ulations at the University Medical Center Hamburg-Eppendorf. Apart 
from data generated for diagnostic purposes in-house and by coop- 
eration partners, we included data generated and published by Capper 
et al. in 2018 (GSE73801)42 for the overview of human brain tumor 
entities. The raw data were preprocessed and beta values were 
extracted with minfi58. The 10,000 most differentially methylated CpG 
sites were used to generate a UMAP with the UMAP package59. 

For the comparison of mouse and human tumors, only EPIC data 
were employed and n	= 431 human brain tumors were included. Beta 
values were extracted from human idat files using minfi and the entire 
human dataset was quantile normalized. Mouse data were processed 
with SeSAMe60 (v1.12.9), beta values were extracted and the data were 
quantile normalized. 141 identical CpG sites were extracted from both 
datasets and human and mouse datasets were combined. After com- 
bination, the mixed mouse-human dataset was quantile normalized 
and an UMAP was generated. 

The heatmap of the copy number variation (CNV) of 47 HGG- 
MYCN was created from idat files. CNV data was generated with the 
Conumee package (v1.28.0)61. CNV values of the bin signals were cal- 
culated and depicted as a heatmap using ComplexHeatmap. Mouse 
CNV plots were created similarly by employing the conumee pipeline 
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with a few modifications including using an in-house generated 
reference set of normal mouse tissue. 

 

Single-cell RNA sequencing analysis 
Mouse tumors of seven hGFAP-cre::Trp53Fl/Fl::lsl-MYCNFl/wt	 mice (43– 
92 days old, 5 male and 2 females) were isolated and minced. 
Samples were digested for 30 min at 37 °C in a freshly prepared solu- 
tion of papain (Worthington) in pre-warmed DMEM/F12 medium 
(Thermo Fisher) with DNase (Worthington) and passed through a40 
µmcell strainer (Corning). Red blood cells were depleted using ACKlysis 
buffer (Thermo Fisher), and single-cell suspensions were cryo- 
preserved. After thawing, non-vital cells that stained positive for 7- 
Aminoactinomycin D (eBioscience) were removed using a BD FACS 
Aria II cell sorter (BD Biosciences). Approximately 10,000 vital cells 
were used as input for scRNA-seq. Single-index libraries were gener- 
ated with Chromium Single Cell 3’ v3.1 technology (10x Genomics) and 
sequenced using a NextSeq 2000 sequencing instrument (high- 
throughput kit, 100 cycles) at the Genomics Core Facility (University 
Hospital Münster, Germany) after quality control using a Tapestation 
2200 (Agilent Technologies). The samples were analyzed with the 10x 
Genomics CellRanger v6.0.2 pipeline62 and Seurat R package v4.0.563. 
Raw data were converted to fastq format with the CellRanger mkfastq 
function and then aligned against the murine reference transcriptome 
mm10 v2020-A with CellRanger count and default values. Seurat 
objects were generated for the samples based on the following filter 
criteria: at least three cells, a minimum feature count of 200, and cells 
with <25% of mitochondrial genes. Outlier cells with a high 
nCount_RNA value were classified as doublets and removed (thresh- 
old: 40,000–60,000). The filtered data were then normalized, inte- 
grated, and clustered with Seurat, using a resolution parameter of 0.5. 
Feature plots, UMAPs, dotplots, and heatmap visualizations were cre- 
ated with Seurat functions; a cluster-based cell type annotation was 
conducted based on the expression of characteristic marker genes per 
cell type. Lists of differentially expressed genes per cluster were cal- 
culated with Seurat’s findMarkers function, using the MAST test “hin- 
ter” using a resolution parameter of 0.5. The genes for each signature 
depicted in Fig. 4 are shown in Supplementary Fig. 4. 

Finally, a logistic regression analysis based on the approach of 
Young et al.64 was used to identify similarities between the murine 
scRNA-seq clusters and a reference dataset by Mizrak et al.65 
(GSE134918). Briefly, a multinomial regression model was trained on 
the chosen reference dataset with the R package glmnet66, and cell 
types were predicted for the original mouse data based on this model. 
Probabilities per reference cell type were aggregated on cluster level 
using R’s mean function, and visualized as heatmaps with the package 
pheatmap67. 

 

Statistical information 
Animal survival was depicted as a Kaplan–Meier curve, made and 
assessed using GraphPad Prism 9 software. Significant p	values are 
reported for appropriate figures in the figure legend. The sample size 
(n) is given in the figure legend or in the respective figure panel. 
Error bars represent the standard error of mean. The cut-offvalues 
for bioinformatic analyses are noted in the respective methods 
section. Further information is included in the Reporting summary. 

 

Reporting summary 
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article. 

Data availability 
The DNA methylation and RNA sequencing data including the raw data 
generated in this study have been deposited in the GEO database 
under accession code GSE227413. The scRNA sequencing data has 

 
been deposited in the GEO database under accession code GSE237237. 
The human gene expression data was obtained from GSE73038. 
Human DNA methylation data was obtained from GSE73801 and 
GSE215240. Mouse scRNA sequencing data publicly available from 
GSE134918 was employed in this study. AUC data from other glioma 
cell lines were provided by Marc Remke and Nan Qin. Source data are 
provided with this paper. 
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5. Summary in German 
 
 

Diese Studie liefert umfassende Einblicke in die molekulare Charakterisierung von 

Medulloblastomen (MB) und pädiatrischen hochgradigen Gliomen (HGG) sowie die 

Ähnlichkeiten gentechnisch veränderter Mausmodelle von HGG MYCN-amplified und 

Group3 MB mit menschlichen Gegenstücken und hilft bei der Identifizierung von 

mögliche therapeutische Ziele und personalisierte Behandlungsstrategien. 

 

 
Zunächst konzentrierten wir uns auf die multiomische Profilierung von MB mit dem Ziel, 

klinisch relevante Subtypen und alternative Behandlungsziele zu identifizieren. Durch 

eine groß angelegte Proteomanalyse von FFPE-MB-Tumoren, die mit öffentlich 

verfügbaren Daten harmonisiert wurde, wurden sechs stabile Proteomcluster entdeckt, 

die jeweils mit unterschiedlichen DNA-Methylom- und Transkriptom-Subtypen 

assoziiert sind. Die Überlebensanalyse ergab, dass pG3myc MB die geringste 

Gesamtüberlebensrate aufwies, während pWNT-Patienten die beste Überlebensrate 

aufwiesen. Darüber hinaus enthüllte eine gruppenspezifische Korrelationsanalyse von 

DNA-Methylom- und Proteomdaten subtypspezifische Korrelationen, wobei PALMD 

als potenzieller Biomarker für den Hochrisiko-Subtyp pG3myc identifiziert wurde. 

Darüber hinaus deutete die N-Glykan-Profilierung auf unterschiedliche Ziele der 

Immuntherapie bei Hochrisiko-MB-Subtypen hin. 

 

 
Anschließend untersuchten wir Mausmodelle von HGG mit MYCN-Amplifikation und 

betonten deren Ähnlichkeit mit menschlichen Gegenstücken. DNA-Methylierung und 

transkriptomische Profile von murinen Tumoren zeigten eine hohe Ähnlichkeit mit 

menschlichen HGG-MYCN-Tumoren. Der Vergleich von SHH-Mausmodellen mit 

ihrem menschlichen Gegenstück bestätigte erwartete Ähnlichkeiten und weist auf die 

Nützlichkeit von Mausmodellen bei der Untersuchung menschlicher Hirntumoren und 

der Entwicklung therapeutischer Strategien hin. 
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Schließlich haben wir uns mit der MYC/SMARCA4-gesteuerten MB-Bildung bei 

Mäusen befasst, diese Tumoren auf molekularer Ebene charakterisiert und ihre 

Ähnlichkeit mit menschlichen MB der Gruppe 3 aufgeklärt. Die RNA-Sequenzierung 

zeigte eine Hochregulierung von Myc und eine Herunterregulierung von Genen, die mit 

der neuronalen Entwicklung verbunden sind. Die Integration mit menschlichen MB- 

Datensätzen ergab eine molekulare Ähnlichkeit mit MB der Gruppe 3 basierend auf 

Genexpressions- und DNA-Methylierungsmustern. 

 

 
Insgesamt liefert die Studie ein umfassendes Verständnis von MB- und HGG-MYCN- 

amplifizierten Tumoren, wobei der Schwerpunkt auf molekularen Subtypen, 

potenziellen Biomarkern und therapeutischen Zielen liegt. Diese Erkenntnisse ebnen 

den Weg für personalisierte Behandlungsstrategien und verbesserte 

Patientenergebnisse bei diesen verheerenden Hirntumoren bei Kindern. 
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6. Summary English 
 
 

This study provides comprehensive insights into the molecular characterization of 

medulloblastoma (MB) and pediatric high-grade gliomas (HGG), along with the 

similarities of genetically engineered mouse models of HGG MYCN-amplified and 

Group3 MB to human counterparts, aiding in the identification of potential therapeutic 

targets and personalized treatment strategies. 

 

 
Firslty, we focused on multi-omic profiling of MB, aiming to identify clinically relevant 

subtypes and alternative treatment targets. Through large-scale proteome analysis of 

FFPE MB tumours, harmonized with publicly available data revealed six stable 

proteomic clusters, each associated with distinct DNA methylome and transcriptome 

subtypes. Survival analysis highlighted pG3myc MB with least overall survival, while 

pWNT patients exhibited the best survival rate. Moreover, group-specific correlation 

analysis of DNA methylome and proteome data unveiled subtype-specific correlations, 

with PALMD as a potential biomarker identified for high-risk pG3myc subtype and TNC 

as a biomarker for the pWNT MB subtype with a good sruvival. Additionally, N-glycan 

profiling suggested differential immune therapy targets across high-risk MB subtypes. 

 

 
Then we investigated MYC/SMARCA4-driven MB formation in mice, characterizing 

these tumours on a molecular level and elucidating their similarity to human Group 3 

MB. RNA sequencing highlighted upregulation of Myc and downregulation of genes 

associated with neuronal development. Integration with human MB datasets revealed 

molecular resemblance to Group 3 MB based on gene expression and DNA 

methylation patterns. 

 

 
Finally, we investigated mouse models of HGG with MYCN amplification, emphasizing 

their resemblance to human counterparts. DNA methylation and transcriptomic profiles 

of murine tumours demonstrated high similarity to human HGG-MYCN tumours. 

Comparison of SHH mouse models with its human counterpart confirmed expected 
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similarities, indicating the utility of mouse models in studying human brain tumours and 

developing therapeutic strategies 

 

 
Overall, the study provides a comprehensive understanding of MB and HGG MYCN 

amplified tumours, emphasizing molecular subtypes, potential biomarkers, and 

therapeutic targets. These findings pave the way for personalized treatment strategies 

and improved patient outcomes in these devastating pediatric brain tumours. 
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