
Dynamics of Quantum-Classical Hybrid Systems with
Timescale Separation

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und Naturwissenschaften

Fachbereich Physik

der Universität Hamburg

vorgelegt von

Nicolas Tom Daniel Lenzing

Hamburg, Januar 2025



Gutachter der Dissertation: Prof. Dr. Michael Potthoff

Prof. Dr. Alexander Lichtenstein
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Abstract

In this thesis, the real-time dynamics of quantum-classical spin-impurity models with timescale

separation is investigated. These models consist of a small number (≤ 10) of classical impu-

rity spins that are exchange-coupled to a quantum mechanical host system. It is assumed

that the dynamics of the host system is fast compared to that of the classical spins.

The timescale separation motivates the introduction of an adiabatic constraint to the Hilbert

space of the host system. One can distinguish a strict adiabatic constraint, where the host

is restricted to the ground state only, and a relaxed constraint, which additionally includes a

few of the lowest excited states. The incorporation of either constraint into the theory via a

Lagrangian formulation yields a geometrical spin torque in the effective spin equations of mo-

tion that is not present in other treatments of effective spin dynamics, like, for example, the

Landau-Lifshitz-Gilbert equation. This geometrical spin torque can have a strong influence

on the spin dynamics, e.g., lead to an anomalous precession frequency, and is proportional to

the spin-Berry curvature of the host system. The concrete form of the spin-Berry curvature,

and thus the geometrical spin torque, strongly depends on the type of constraint used. While

some effects can already be captured with the strict adiabatic constraint, it is found that for

certain systems and parameter regimes the relaxation of the constraint is crucial.

For weak quantum-classical exchange coupling J the geometrical spin torque can also be

derived by perturbation theory. It is then an effect of order J2. However, it is shown that an

interplay of correlation, spontaneous symmetry breaking, and Goldstone modes can strongly

boost the geometrical spin torque and lead to a sizable long-range effect.

Finally, the adiabatic constraint can be treated using statistical mechanics, which results in

the so-called adiabatic response theory. Applied to spin systems, this yields a spin-Berry cur-

vature consistent with the Lagrangian approach and, for weak-J , is in agreement with linear

response results. Importantly, both the linear and adiabatic response approaches give ex-

pressions for another essential effect of spin dynamics, the Gilbert damping. Usually, Gilbert

damping is simply represented by a scalar quantity but it may be a highly nonlocal tensor in

some cases. It is found that the nonlocal elements of the Gilbert damping can have a strong

impact on the relaxation dynamics and may even counterintuitively cause longer relaxation

times. The magnitude of the effect depends on the number of impurity spins and also their

relative spatial locations.



Zusammenfassung

Diese Arbeit untersucht die Realzeitdynamik von quanten-klassischen Spin-Störstellen Mo-

dellen mit Zeitskalenseparation. Die Modelle bestehen dabei aus einer kleinen Anzahl (≤ 10)

von klassichen Störstellenspins, die an ein quantenmechanisches Substrat gekoppelt sind. Es

wird durchweg angenommen, dass die Dynamik des Substrats schnell ist im Vergleich zur

Zeitskala, auf der die Spindynamik abläuft.

Die Zeitskalenseparation motiviert die Einführung einer adiabatischen Zwangsbedingung auf

dem Hilbertraum des Substrats. Hierbei kann man zwischen einer strengen adiabatischen

Zwangsbedingung, bei der das Substrat auf seinen Grundzustand beschränkt wird, und ei-

ner gelockerten adiabatischen Zwangsbedingung, welche ein paar der niedrigsten angeregten

Zustände miteinbezieht, unterscheiden. Wenn man diese Zwangsbedingung in einer Lagrange-

schen Formulierung der Theorie einbezieht, ergibt sich ein geometrisches Spindrehmoment in

den effektiven Bewegungsgleichungen, das in anderen Behandlungen der effektiven Spindyna-

mik, wie z. B. der Landau-Lifshitz-Gilbert-Gleichung, nicht vorhanden ist. Dieses geometri-

sche Spindrehmoment kann einen starken Einfluss auf die Spindynamik haben, zum Beispiel

in Form einer anomalen Präzessionsfrequenz, und ist proportional zur Spin-Berry Krümmung

des Substrats. Die konkrete Form der Spin-Berry Krümmung, und somit des geometrischen

Spindrehmoments, hängt stark von der Art der Zwangsbedingung ab. Während einige Ef-

fekte bereits im Rahmen einer strikten adiabatischen Näherung beschrieben werden können,

findet man, dass für gewisse Systeme und Paramterregime die Lockerung der Zwangsbedin-

gung notwendig ist.

Für schwache quanten-klassische Austauschkopplung J kann das geometrische Spindrehmo-

ment auch perturbativ, mittels der adiabatisch-modifizierten linearen Antworttheorie her-

geleitet werden. Hier ist es ein Effekt der Ordnung J2. Es wird jedoch gezeigt, dass ein

Zusammenspiel von Korrelation, spontaner Symmetriebrechung und Goldstone-Moden das

geometrische Spindrehmoment stark erhöhen und damit einen beträchtlichen und langreich-

weitigen Effekt zur Folge haben kann.

Schließlich kann die adiabatische Zwangsbedingung auch im Rahmen der statistischen Me-

chanik behandelt werden, was in der sogenannten adiabatischen Antworttheorie resultiert.

Angewendet auf Spinsysteme erhält man eine Spin-Berry Krümmung, die konsistent mit den

Resultaten aus dem Lagrange Formalismus und der linearen Antworttheorie ist. Insbesondere

liefern die Antworttheorien auch Ausdrücke für einen anderen wichtigen Effekt der Spindy-

namik, die Gilbertdämpfung. Normalerweise wird diese als skalare Größe dargestellt, jedoch

kann sie auch die Form eines hochgradig nicht-lokalen Tensors annehmen. Man findet, dass

die nicht-lokalen Elemente des Gilbertdämpfungs-Tensors einen starken Enfluss auf die Rela-

xationsdynamik haben und kontraintuitiv die Relaxationszeit sogar vergrößern können. Die

Stärke dieses Effekts hängt hierbei von der Anzahl der Störstellenspins und ihren relativen

Abständen zueinander ab.
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1 – List of Publications

This cumulative thesis is based on three publications [I], [II], and [III]. These publications are

listed chronologically below and are also presented in the thesis in that order. Publication

[I] is presented in the last section of chapter 4, while publication [II] is found in the second

section of chapter 5. Both publications deal with the geometrical spin torque, which is closely

related to the spin-Berry curvature Ω. Chapter 4 introduces adiabatic spin dynamics (ASD)

theory. This is applied to a system of a single classical spin coupled to a one-dimensional

tight-binding model. In publication [I] ASD is extended to non-Abelian spin dynamics (NA-

SD) theory, which is then tested for the same system. Chapter 5 starts with the calculation of

Ω for a host system of a ferromagnetic Heisenberg model using spin wave and linear response

theory (LRT). This approach is then adapted in publication [II] for an antiferromagnetic

Heisenberg model. The last publication [III] is presented at the end of chapter 6, after the in-

troduction of adiabatic response theory (ART). This publication deals with the calculation of

the Gilbert damping via the two different theories ART and LRT and subsequently computes

and compares the corresponding spin dynamics, with the Rudermann-Kittel-Kasuya-Yosida

(RKKY) interaction playing a minor role.

Publications:

[I] N. Lenzing, A. I. Lichtenstein, and M. Potthoff, Emergent non-Abelian gauge theory in

coupled spin-electron dynamics, Physical Review B 106, 094433 (2022).

[II] N. Lenzing, D. Krüger, and M. Potthoff, Geometrical torque on magnetic moments

coupled to a correlated antiferromagnet, Physical Review Research 5, L032012 (2023).

[III] N. Lenzing, D. Krüger, and M. Potthoff, Microscopic theory of spin friction and dissi-

pative spin dynamics, Physical Review B 111, 014402 (2025).

Declaration of Contribution

[I] N. Lenzing wrote the computer code, performed the numerical simulations, created all

plots, and did the analytical calculations. All authors participated in the planning of

the project, the analysis of the numerical results, and the writing of the paper.

[II] N. Lenzing wrote the computer code, performed the numerical simulations, and created

all plots for the spin wave theory part of the paper. He also conducted the analytical

calculations for that part of the paper. All authors participated in the planning of the

project, the analysis of the numerical results, and the writing of the paper.

[III] N. Lenzing wrote the computer code, performed the numerical simulations, created all

plots, and did the analytical calculations for all parts except section VIJ. All authors

participated in the planning of the project, the analysis of the numerical results, and

the writing of the paper.
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2 – Introduction

The discovery of the electron in 1897 by Sir Joseph John Thomson and the accurate measure-

ment of its charge in 1909 by Robert Andrews Millikan and Harvey Fletcher in their famous

oil drop experiment [1] paved the way for the research area of electronics. Put simply, elec-

tronics uses the charge of the electron to store and transport information, and thus operate

technical devices. A pivotal advancement that furthered modern electronics was the invention

of the point-contact transistor by John Bardeen, Walter Brattain and William Shockley in

1947 at Bell Labs. In the following decades, transistors gradually replaced vacuum tubes as

the leading electronic component and nowadays most devices are solid-state based. Two of

the main advantages of transistors over vacuum tubes were that they are more compact and

have a better scalability, thus facilitating the construction of smaller devices. In particular,

this was crucial for integrated circuits also known as computer chips. Over the years, the

number of transistors in an integrated circuit grew exponentially, as conjectured by Gordon

Moore in the famous Moore’s law, enabling the rapid increase of computing power, which

shapes today’s digital age. It is predicted, however, that this growth will stop in the near

future, due to (fundamental) physical limitations. Therefore, it is prudent to look for other

means with which to drive technological progress.

One such opportunity lies in the field of spintronics [2–5]. In contrast to conventional elec-

tronics, the focus is not only on the charge of the electron but includes its spin degrees of

freedom as well. Early works in this direction study, for instance, the mobility of an electron

in a ferromagnetic material. It is found that the mobility is spin-dependent [6]. A pioneering

moment for spintronics was the discovery of the giant magnetoresistance (GMR) [7, 8] that

enabled the efficient control of electron movement by means of their spin. It is observed in

magnetic multilayer structures of alternating ferromagnetic and nonmagnetic metallic layers.

The GMR is the effect that the electrical resistivity depends on the relative orientation, i.e.,

parallel or antiparallel, between the magnetic layers. A concrete example for such a multi-

layer structure is a spin valve [9], which is a trilayer structure, where a nonmagnetic metallic

layer is sandwiched between two magnetic layers. One of the magnetic layers is pinned, i.e.,

the magnetic moments are fixed by an external field, while the other is free. Spin valves

have already been used successfully in real world applications such as sensors [10]. Another

promising platform for spintronics is that of magnetic tunnel junctions (MTJ) [11], which

differ from spin valves in that the nonmagnetic layer is insulating instead of metallic. Here,

one observes tunneling magnetoresistance (TMR), which is similar to GMR. Magnetic tunnel

junctions are key for magnetic random access memory (MRAM) [12,13], which is believed to

potentially combine short access times with less power consumption and nonvolatility, i.e.,

it does not require power to maintain the stored information [14]. Apart from novel stor-

age devices there is also research into novel logic devices using MTJ [15, 16], which promise

high-speed operations [16,17]. The advancement of spintronics is closely connected to nano-

magnetism [12] and relies on the understanding of the effects that govern spin dynamics on

9



2 Introduction

the atomistic scale, which is the overarching topic of this thesis.

One of the first widely used equations to describe spin dynamics theoretically is the Landau-

Lifshitz-Gilbert (LLG) equation [18,19], which describes the real-time dynamics of magnetic

moments in an (effective) magnetic field while also including damping effects. It is the suc-

cessor of the Landau-Lifshitz equation, whose phenomenological damping term was modified

by Gilbert to eliminate problems that existed for large damping. Hence, the prefactor α of

the damping term is commonly referred to as Gilbert damping. While the Gilbert damp-

ing parameter is often treated as a scalar, it is actually a nonlocal, potentially nonuniform,

tensor α [20–22]. The nonlocalities can have a significant impact on the spin dynamics [23]

and are also a major topic in publication [III]. As mentioned above, the Gilbert damping

and the LLG equation were originally a phenomenological description of spin dynamics and

were used only in the context of the macrospin approximation in micromagnetics [24], where

the magnetisation of entire domains is represented by a single classical macrospin S. How-

ever, this treatment glosses over many physical details and is often insufficient to accurately

explain all the relevant interactions like spin inertia effects [25–31] and the RKKY interac-

tion [32–34]. The RKKY interaction is an indirect exchange coupling that is mediated by

conduction electrons and has to be understood from an atomistic point of view. Thus, it is

preferable to derive α and LLG-like equations by an atomistic approach using first principles

[27,31,35–45]. In these kinds of derivations, the usual starting point is a lattice Hamiltonian

describing an electronic host system to which spins are coupled, i.e., a kind of Kondo model

[46, 47]. These models have already been applied in the context of the nonequilibrium dy-

namics of spin-valve-like structures under an external current, see for example [48–50].

This thesis deals exclusively with impurity models, where only a few (≤ 10) spins are cou-

pled to the host system. To get an effective LLG-like equation of motion for the impurity

spins, one has to “integrate out” the electrons. This can be done via linear response theory

(LRT) [45,51], where the influence of the host gets absorbed into the magnetic susceptibility

χ from which, for instance, the Gilbert damping can be computed [45, 52–54]. The effective

spin-only theory greatly simplifies the computation of the spin dynamics since the dynamics

of the host is not considered explicitly but is contained in χ. This approach will be explained

in chapter 3 and is applied to a ferromagnetic Heisenberg system in chapter 5. It is also

the method used in publication [II]. However, it is sensible, where possible, to compare the

results of the effective theory against results of the full theory including both spin and host

dynamics, to gauge the validity of the effective theory away from the domain where the full

theory is feasible. Computationally, it is very advantageous to treat the impurity spins as

classical vectors of fixed length, an approximation that will be used throughout this thesis

and is quite common in spin dynamics, cf. [45,48,49,55–57]. How to compute the dynamics

of quantum-classical impurity systems will be discussed in chapter 3.

An important consideration that is a main topic in this thesis, but is completely absent in

the LLG equation, is the treatment of different timescales. Arguably, the most prominent

example in physics is found in molecular dynamics. Here, it is common to assume a timescale

separation between nuclei and electrons due to their mass difference [58, 59]. This justifies

a separation of the total wavefunction into an electronic part and a nuclear part, which is

10



2 Introduction

known as the Born-Oppenheimer approximation [58,60]. If additionally the nuclei are treated

as classical point particles, their dynamical equations reduce to those of classical particles

in a potential, given by the effective potential of the electrons. The electrons, on the other

hand, are still treated as quantum particles but now their equations of motion depend on the

nuclei only parametrically through their classical position vectors. In quantum-classical im-

purity problems considered here, one has an analogous situation with a timescale separation

between fast electronic and slow spin degrees of freedom. Another approximation that is reg-

ularly invoked in the context of timescale separation is the adiabatic approximation [61–63].

It assumes that at every instance of time t the state of the fast variables is given by the

ground state for the instantaneous configuration of the slow variables. While in the case of

the quantum-classical impurity models, this is a holonomic constraint on the electronic host

system, it has a feedback effect on the dynamics of the spins. Namely, there is a geometrical

spin torque that enters the effective spin-only equations of motion. Such feedback effects are

connected to the Berry curvature [64–66] and have been explored for spin systems [67–69].

A theoretical framework is given by adiabatic spin dynamics (ASD) theory [56], which will

be introduced in chapter 4. ASD demonstrates that the inclusion of the adiabatic constraint

into the theory has to be done via a Lagrangian formulation, i.e., the geometrical spin torque

is non-Hamiltonian as opposed to the Hamiltonian spin torques in the LLG equation. How-

ever, in some cases, constraining the electrons to the ground state might be too strict of an

approximation to capture all the relevant physics, e.g., inertia effects [29], and one has to

relax the constraint to include a certain number of the lowest excited states. How this is done

systematically is explained in publication [I], where the extension of ASD called non-Abelian

spin dynamics (NA-SD) theory is worked out.

Timescale separation can be applied not only to coupled electron-spin systems, but also to

systems exclusively containing spins. In [70] this is done for a purely classical system consist-

ing of different types of spins, “slow” and “fast”, coupled via an isotropic Heisenberg exchange

interaction. Similar to the quantum-classical electron-spin case this yields an additional spin

torque. In Chapter 5 this is discussed in the context of a quantum-classical spin-spin model

with a classical impurity spin coupled to a Heisenberg model. Due to the interplay of corre-

lations, spontaneous symmetry breaking, and gapless Goldstone modes one expects a large

geometrical spin torque. Although this turns out to be false for the ferromagnetic case, see

section 5.1, the description serves as a good basis for the understanding of publication [II],

where an analogous procedure is applied to an antiferromagnetic host.

A weakness of ASD and NA-SD is that both are only valid at zero temperature and do not

produce an expression for the Gilbert damping. These problems can be addressed using

adiabatic response theory (ART) [71, 72] that is introduced in chapter 6. It formulates the

adiabatic approximation in a finite temperature, statistical mechanics framework and pro-

vides expressions for both, Gilbert damping and geometrical spin torque. ART describes the

response of a system to a slow perturbation, in contrast to linear response, which applies to

weak perturbations, but for certain situations both theories can be shown to yield qualita-

tively the same results. This is taken up in publication [III], which deals with dissipative spin

dynamics and compares the results for ART and LRT after putting both on equal footing.

11



3 – Quantum-Classical Spin Dynamics

The classical approximation of quantum mechanical quantities is an ubiquitous theme in

theoretical physics. Arguably, this is known best from molecular dynamics [58], where the

coordinates of the nuclei are usually treated as classical variables. However, it is also common

for magnetic moments, which can be modelled as classical spins. The focus of this work is on

magnetic moments coupled to a system of itinerant electrons, where treating the magnetic

moments as classical spins results in a quantum-classical hybrid model. The main motivation

for a classical treatment comes from the fact that this simplifies analytical and numerical

calculations, however, at the expense of quantum phenomena of the magnetic moments, such

as the Kondo effect [46]. This chapter introduces the quantum-classical spin models that

are used throughout this thesis and explains how to generally compute quantum-classical

dynamics.

3.1 – Hamiltonian and Equations of Motion

A generic quantum-classical spin Hamiltonian Ĥ(S), with M classical spins coupled to a

quantum system, has the form

Ĥ(S) = Ĥqu + Ĥint(S) +Hcl(S), (3.1)

where S ≡ (S1, . . . ,SM ) describes the entirety of classical spins, which in this work are

typically of fixed length Sm = |Sm| = 1. The Hamiltonian consists of three parts: Ĥqu is

the quantum part, in this work typically a system of itinerant electrons, Hcl the classical

part, e.g., interactions among the classical spins or with an external magnetic field, and

Ĥint describes the interaction between the quantum and classical degrees of freedom. The

interaction term is a quantum operator that depends parametrically on the classical degrees

of freedom. The classical approximation of the spins can be reasonable, e.g., for large spin

quantum numbers [30,73].

All models considered in this thesis are models on a discrete lattice. The interaction term

always takes the prototypical form

Ĥint = J
∑

m

ŝimSm(t), (3.2)

which is a quantum-classical version of the multi-impurity Kondo, or s-d exchange [74],

interaction. Here ŝim is a local magnetic moment of the quantum subsystem at lattice

site im and J denotes the quantum-classical exchange interaction, which is assumed to be

equally strong at every lattice site. Note also that the classical spins are explicitly time-

dependent. Assuming that Ĥqu describes a noninteracting system, the treatment of Sm as

either a classical vector or a quantum operator makes the difference between a free or a

correlated problem, i.e., if the computational complexity of the system scales polynomial

12



3 Quantum-Classical Spin Dynamics

or exponentially with the system size. In the latter case, one would deal with a Kondo

(multi-)impurity problem, which has to be solved using advanced numerical techniques. For

a single impurity or a one dimensional system one can use the density matrix renormalisation

group method [75–77], but even then accessing long timescales is difficult. Nevertheless, it is

prudent to study cases for which a comparison between quantum-classical and full-quantum

dynamics is possible, in order to estimate the reliability of the quantum-classical results in

regimes where a full quantum solution is not achievable [30,56].

The dynamics of the quantum system is governed by the Schrödinger equation

i~
d

dt
|Ψ(t)〉 =

[
Ĥqu + Ĥint(S(t))

]
|Ψ(t)〉 , (3.3)

where |Ψ(t)〉 is the multi-particle wavefunction. In the case of a noninteracting quantum part

Ĥqu, one is effectively on a one-particle level and it is thus possible to describe the system

dynamics via the one-particle reduced density matrix

ρiσi′σ′(t) := 〈c†i′σ′(t)ciσ(t)〉 (3.4)

with the fermionic creation and annihilation operators c†iσ and ciσ. As usual i, i′ refer to

lattice sites and σ, σ′ denote the spin projection with respect to the quantisation axis, which

in this thesis is always the z axis. Concretely, the quantum part of the Hamiltonian takes

the general form Ĥqu =
∑

ii′σσ′ Tii′σσ′c
†
iσci′σ′ with hopping amplitudes Tii′σσ′ . Since the local

magnetic moments can be expressed as ŝim = ~
2

∑
σσ′ c

†
im,σ

τ σσ′cim,σ′ , with the vector of Pauli

matrices τ := (τx, τy, τz)
ᵀ, the interaction term is also bilinear in c-operators and we can

formulate the model in terms of an effective hopping matrix T eff as

Ĥqu + Ĥint =
∑

ii′σσ′

T eff
ii′σσ′(t)c

†
iσci′σ′

=:
∑

ii′σσ′

(
Tii′σσ′ +

J

2
δii′ [Si(t)τ ]σσ′

)
c†iσci′σ′ , (3.5)

where we set ~ = 1. The elements of the hopping matrix T and the quantum-classical coupling

J determine the timescale on which the electron and spin dynamics take place, respectively.

The dynamics of the one-particle reduced density matrix is given by a von Neumann equation

i
d

dt
ρ(t) =

[
T eff(t), ρ(t)

]
. (3.6)

There exist several schemes to compute the dynamics of classical degrees of freedom in

a quantum-classical setup, the most common of which is the Ehrenfest dynamics [78–80].

Here, the expectation values of the quantum mechanical quantities are taken when deriving

the equations of motion (EOM) of the classical degrees of freedom. The time evolution of

functions depending on classical observables is then given by the Poisson bracket with the

expectation value of the full Hamiltonian (3.1). For functions in classical physics depending

on spin degrees of freedom, one has to use a generalised version of the Poisson bracket [81,82]

13



3 Quantum-Classical Spin Dynamics

that is defined as

{f, g} =
∑

i

[
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi
− ∂f

∂Si

(
Si ×

∂g

∂Si

)]
, (3.7)

where f = f({qi}, {pi}, {Si}) and g = g({qi}, {pi}, {Si}) denote two classical functions

depending on (generalised) position, momentum, and spin variables. Using this generalised

Poisson bracket, the EOM of the mth classical spin is given by

Ṡm = {Sm, 〈Ĥ〉t} =
∂〈Ĥ〉t
∂Sm

× Sm. (3.8)

In the case of the Kondo-like interaction term (3.2), this yields

Ṡm = J〈ŝim〉t × Sm +
∂Hcl

∂Sm
× Sm, (3.9)

where for noninteracting Ĥqu the expectation value of the local magnetic moment ŝim can be

computed as 〈ŝim〉 = 1
2

∑
σσ′ ρimσimσ′(t)τ σσ′ . In the case of an interacting system one has to

use the full multi-particle wavefunction |Ψ(t)〉.
An approximation that will play a central role is the adiabatic approximation. It leads

to a geometrical spin torque when analytically evaluating ∂〈Ĥ〉
∂Sm

giving new physical insight

concerning the feedback of the quantum system on the classical spin dynamics. This will be

explored in chapter 4 and is the topic of publication [I].

3.2 – Linear Response Theory

Concerning the quantum-classical coupling strength J , it is often sensible to assume it as

weak compared to the nearest-neighbour hopping amplitude or other couplings. In the weak-

J regime, one can use linear response theory [51,83] to compute the expectation value 〈ŝim〉t.
Linear response theory is generally applicable to calculate the response of a system under

small time-dependent perturbations. This is described by a Hamiltonian of the form

Ĥ ′(t) = Ĥ0 + λ(t)Ĥ1, (3.10)

where the unperturbed Hamiltonian Ĥ0 is time-independent and λ(t), describing the time-

dependent coupling to Ĥ1, is small for all t. The time-dependent expectation value of an

observable Â with regard to the full Hamiltonian Ĥ ′ can then be expressed as

〈Â〉t = 〈Â〉(0) − i
∫ t

−∞
dt′λB(t′)

〈[
Â(t), Ĥ1(t′)

]〉(0)
(3.11)

discarding terms of order O(λ2). This is Kubo’s formula [51]. Here 〈Â〉(0) is the expectation

value with regard to Ĥ0. Furthermore, Ĥ1 is now expressed in the interaction picture and thus

time-dependent. In terms of the quantum-classical Hamiltonian introduced in (3.1) and (3.2)

one has Ĥ0 = Ĥqu +Hcl and a sum of multiple time-dependent perturbations λm(t)Ĥm with

λm(t) = JSm(t) and Ĥm = ŝim . Using (3.11), the expectation value of the local magnetic
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moment at site im is

〈ŝim〉t = 〈ŝim〉(0) − iJ
∫ t

−∞
dt′

〈[
ŝim(t),

∑

m′

ŝim′ (t
′)Sm′(t

′)

]〉(0)

= 〈ŝim〉(0) + J
∑

m′

∫ t

−∞
dt′χ

mm′
(t, t′)Sm′(t

′) (3.12)

with the magnetic susceptibility χ defined by

χmα,m′α′(t, t
′) = −iΘ(t− t′)

〈[
ŝαim(t), ŝα

′
im′

(t′)
]〉(0)

. (3.13)

Using that 〈Â〉(0) = 1
Z Tr

[
eβĤ0Â

]
and ŝim(t) = eiĤ0tŝime

−iĤ0t, one can show that the sus-

ceptibility is homogenous, i.e., χmα,m′α′(t, t
′) = χmα,m′α′(t− t′), see Appendix A.

If one assumes the electron dynamics to be much faster than the spin dynamics, the magnetic

susceptibility will be strongly peaked at t′ ≈ t [45]. A Taylor expansion of Sm(t′) around

t′ = t yields Sm(t′) = Sm(t) + (t′ − t)Ṡm(t) + O((t′ − t)2). Due to χmα,m′α′(t − t′) being

peaked at t′ ≈ t, the first two terms are sufficient when inserting into (3.12). This gives

〈ŝim〉t = 〈ŝim〉(0) + J
∑

m′

Sm′(t)

∫ t

−∞
dt′χ

mm′
(t− t′) + J

∑

m′

Ṡm′(t)

∫ t

−∞
dt′(t′ − t)χ

mm′
(t− t′)

= 〈ŝim〉(0) + J
∑

m′

Sm′(t)

∫ t

−∞
dτχ

mm′
(τ)− J

∑

m′

Ṡm′(t)

∫ t

−∞
dττχ

mm′
(τ), (3.14)

where the second equality follows from the integral transformation t′ → τ = t−t′. In the limit

t→∞ the integrals can be written in terms of the Fourier transform of the susceptibility

χmα,m′α′(ω) =

∫ ∞

−∞
dωeiωτχmα,m′α′(τ) =

∫ ∞

0
dωeiωτχmα,m′α′(τ), (3.15)

where the lower bound of integration can be set to zero since the susceptibility contains a

Θ(τ). Note that the limit t → ∞ is only executed for the integral and not for the classical

spins Sm′(t). For the expectation value, one gets

〈ŝim〉t = 〈ŝim〉(0) + J
∑

m′

χ
mm′

(ω)

∣∣∣∣
ω=0

Sm′(t) + iJ
∑

m′

∂ωχmm′(ω)

∣∣∣∣
ω=0

Ṡm′(t) (3.16)

such that the EOM are

Ṡm(t) =

(
J〈ŝim〉(0) + J2

∑

m′

χ
mm′

(ω)

∣∣∣∣
ω=0

Sm′(t) + iJ2
∑

m′

∂ωχmm′(ω)

∣∣∣∣
ω=0

Ṡm′(t)

)
× Sm(t).

(3.17)

As a matrix in the multi-indices (m,α) and (m′, α′) the susceptibility can be split into a
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symmetric and an antisymmetric part as χmα,m′α′ = χSmα,m′α′ + χAmα,m′α′ with

χSmα,m′α′ =
1

2
(χmα,m′α′ + χm′α′,mα) (3.18)

χAmα,m′α′ =
1

2
(χmα,m′α′ − χm′α′,mα), (3.19)

i.e., symmetric and antisymmetric with respect to the multi-indices (m,α) and (m′, α′). The

symmetric part of the second term in (3.17) is the familiar RKKY coupling [32–34]

JRKKY
mm′αα′ := J2χSmα,m′α′(0), (3.20)

which is an indirect exchange interaction between local magnetic moments, that may be me-

diated by magnetic ions or localised electrons in partially filled electron shells [84]. Including

this term already on the Hamiltonian level, gives a term of the form

J2
∑

mm′

Smχ
S
mm′

(0)Sm′ . (3.21)

It is important to note that, actually, the symmetric part of the magnetic susceptibility can

itself be split into two different contributions. One part is symmetric not only with regard

to the simultaneous exchange of (m,α) with (m′, α′) but also under the individual exchanges

m↔ m′ and α↔ α′. This is the RKKY interaction from equation (3.20). The other part is

antisymmetric under both of the individual exchanges. This latter part, which we will denote

by Dmm′ , is thus an antisymmetric 3× 3 matrix in the spin indices for fixed m and m′. For

the cross product it holds that

v × S = A(v)S with A :=




0 −vz vy

vz 0 −vx
−vy vx 0


 , (3.22)

with any real 3-vector v. Hence, one can write

J2
∑

mm′

SmDmm′Sm′ = J2
∑

mm′

Sm(Dmm′ × Sm′) = J2
∑

mm′

Dmm′(Sm′ × Sm), (3.23)

where in the last equality we used the cyclic property of the triple product. With the 3-vector

Dmm′ changing sign under exchange of m and m′, this term is in fact a Dzyaloshinski-Moriya

[85,86] or antisymmetric exchange [87] interaction. However, for the models considered here

it is zero. This is because their respective hopping matrices are spin-diagonal and spin-

independent and therefore the corresponding magnetic susceptibilities are symmetric in the

spin indices.

The third term in (3.17) can be split into a symmetric and an antisymmetric part in exactly
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the same way and one can define

αmm′ := −iJ2∂ωχ
S
mm′

(ω)

∣∣∣∣
ω=0

(3.24)

Ω
(0)
mm′ := −iJ2∂ωχ

A
mm′

(ω)

∣∣∣∣
ω=0

, (3.25)

where αmm′ is the well-known Gilbert damping and Ω
(0)
mm′ produces a non-Hamiltonian spin

torque and has a geometric nature. It is closely related to the Berry curvature with regard

to the parameter space of classical spin variables, as will be discussed in section 4.4.

3.3 – Lehmann Representation

For analytical and numerical calculations, it is convenient to express the magnetic suscepti-

bility in terms of (multi-particle) eigenenergies and eigenstates. This can be done by inserting

an identity operator via the completeness relation 1 =
∑

n |n〉 〈n|. From now on we omit the

superscript (0) and it is understood that all expectation values are taken with regard to the

eigenstates of Ĥ0. This yields

χmα,m′α′(t) = −iΘ(t)
〈[
ŝαim(t), ŝα

′
im′

(0)
]〉

= −iΘ(t) Tr

[
1

Z
e−βĤ0(ŝαim(t)ŝα

′
im′

(0)− ŝα′im′ (0)ŝαim(t))

]

= −iΘ(t)
1

Z

∑

nn′

e−βEn(〈n| ŝαim(t)
∣∣n′
〉 〈
n′
∣∣ ŝα′im′ |n〉 − n↔ n′)

= −iΘ(t)
1

Z

∑

nn′

e−βEn(ei(En−En′ )t 〈n| ŝαim
∣∣n′
〉 〈
n′
∣∣ ŝα′im′ |n〉 − n↔ n′) (3.26)

with eigenenergies En and eigenstates |n〉 of Ĥ0 and the inverse temperature β. The notation

n↔ n′ symbolises that the second term in the brackets is equal to the first after exchanging

n and n′. Computing the Fourier transform involves the integral
∫∞
−∞ dte

i(ω+En−En′ )tΘ(t)

which does not exist as an integral over complex functions. However, instead we can treat

the integrand as the integral kernel of a distribution, i.e., see how it acts as a linear functional

Θ̃[ϕ] =

∫ ∞

−∞
dωΘ̃(ω)ϕ(ω), (3.27)

where ϕ(ω) is any test function. We can then regularise the integral as

∫ ∞

0
dt lim

η→0+
ei(ω+En−En′+iη)t 7→ lim

η→0+

∫ ∞

0
dtei(ω+En−En′+iη)t

= lim
η→0+

1

i(ω + En − En′)− η
ei(ω+En−En′ )te−ηt

∣∣∣∣∣

∞

0

= lim
η→0+

i

(ω + En − En′) + iη

=
i

(ω + En − En′) + i0+
. (3.28)
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Thus, the Fourier transform of χmα,m′α′(t) is given by

χmα,m′α′(ω) =
1

Z

∑

nn′

eβEn

(
〈n| ŝαim |n′〉 〈n′| ŝα

′
im′
|n〉

ω + (En − En′) + i0+
−
〈n| ŝα′im′ |n

′〉 〈n′| ŝαim |n〉
ω + (En′ − En) + i0+

)
. (3.29)

It is important to note that one cannot simply identify i0+ = 0 at this stage in general.

Instead, both sums have to be computed and in the resulting expression the regularisation

term might then be set to zero if the thermodynamic limit is taken beforehand [23].

Symmetrisation and antisymmetrisation of (3.29) yield

χSmα,m′α′(ω) =
1

Z

∑

nn′

eβEn Re
{
〈n| ŝαim

∣∣n′
〉 〈
n′
∣∣ ŝα′im′ |n〉

}( 1

ω + (En − En′) + i0+
− n↔ n′

)

χAmα,m′α′(ω) =
i

Z

∑

nn′

eβEn Im
{
〈n| ŝαim

∣∣n′
〉 〈
n′
∣∣ ŝα′im′ |n〉

}( 1

ω + (En − En′) + i0+
+ n↔ n′

)
.

(3.30)

Interestingly, the symmetric part vanishes if i0+ can be neglected. The Gilbert damping and

the spin torque from above are easily calculated to be

−i∂ωχSmα,m′α′(ω)

∣∣∣∣∣
ω=0

= − 2

Z

∑

nn′

eβEn Re
{
〈n| ŝαim

∣∣n′
〉 〈
n′
∣∣ ŝα′im′ |n〉

}
Im

{
1

(En − En′ + i0+)2

}

−i∂ωχAmα,m′α′(ω)

∣∣∣∣∣
ω=0

= − 2

Z

∑

nn′

eβEn Im
{
〈n| ŝαim

∣∣n′
〉 〈
n′
∣∣ ŝα′im′ |n〉

}
Re

{
1

(En − En′ + i0+)2

}
,

(3.31)

which in the zero temperature limit (β →∞) become

−i∂ωχSmα,m′α′(ω)

∣∣∣∣∣
ω=0

= −2
∑

n

Re
{
〈0| ŝαim |n〉 〈n| ŝα

′
im′
|0〉
}

Im

{
1

(E0 − En + i0+)2

}

−i∂ωχAmα,m′α′(ω)

∣∣∣∣∣
ω=0

= −2
∑

n

Im
{
〈0| ŝαim |n〉 〈n| ŝα

′
im′
|0〉
}

Re

{
1

(E0 − En + i0+)2

}
, (3.32)

where |0〉 denotes the ground state of Ĥ0.

In the case of a noninteracting quantum system, the Fourier transform of the magnetic

susceptibility and its ω derivative evaluated at zero can be expressed in terms of single-

particle quantities. To compute the susceptibility, one has to compute expectation values of

the form 〈ŝαir(t)ŝα
′
i′r′(0)〉, where the indices r and s denote orbital degrees of freedom. For a

noninteracting system, these expectation values can be calculated analytically using Wick’s

theorem [88, 89]. With this, it is possible to express higher order correlation functions in

terms of single-particle correlations. Wick’s theorem can be stated as

〈T (dα1(τ1) · · · dαn(τn))〉 = {sum over all fully contracted terms} (3.33)

with the time-ordering operator T and dα(τ) denoting either an annihilation or a creation
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operator whose time-dependence is given by dα(τ) = eiĤ0τdαe
−iĤ0τ . For operators at the

same time the ordering operator puts creators to the left of annihilators. Under T all fermionic

creation and annihilation operators anticommute such that

T (di1 · · · dis) = (−1)pdk1 · · · dks , (3.34)

where the operators on the right hand side of the equation are properly ordered and p is the

number of permutations needed to go from (i1, . . . , is) to (k1, . . . , ks).

A contraction always pairs two operators to give

didj := 〈T (didj)〉, (3.35)

which is a complex number. In order to compute 〈ŝαir(t)ŝα
′
i′r′(0)〉, one needs to calculate the

two-particle expectation value 〈c†irσ(t)cirσ′(t)c
†
i′r′τ (0)ci′r′τ ′(0)〉. Assuming that t > 0, it is

〈c†irσ(t)cirσ′(t)c
†
i′r′τ (0)ci′r′τ ′(0)〉 = c†irσ(t)cirσ′(t) c

†
i′r′τ (0)ci′r′τ ′(0)

+ c†irσ(t)ci′r′τ ′(0) cirσ′(t)c
†
i′r′τ (0)

= 〈c†irσ(t)cirσ′(t)〉〈c†i′r′τ (0)ci′r′τ ′(0)〉
+ 〈c†irσ(t)ci′r′τ ′(0)〉〈cirσ′(t)c†i′r′τ (0)〉

=: Iσσ
′ττ ′

iri′r′ (t). (3.36)

To evaluate the one-particle correlation functions, one can use the following identities:

cα(τ) = eiH0τ cαe
−iH0τ =

∑

β

(
e−iT τ

)
αβ
cβ (3.37)

c†α(τ) = (eiH0τ cαe
−iH0τ )† =

∑

β

c†β
(
eiT τ

)
βα

(3.38)

〈cα(τ)c†β(τ ′)〉 =
∑

γδ

(
e−iT τ

)
αγ
〈cγc†δ〉

(
eiT τ

′
)
δβ

(3.39)

〈cγc†δ〉 =
∑

k

Uγ,k
1

1 + e−β(ε(k)−µ)
U †k,δ =

(
1

1 + e−β(T−µ)

)

γδ

= (1− ρ)γδ (3.40)

〈c†γcδ〉 =
∑

k

Uδ,k
1

eβ(ε(k)−µ) + 1
U †k,γ =

(
1

eβ(T−µ) + 1

)

δγ

= ρδγ (3.41)

with the one-particle reduced density matrix ραβ. For the time being, it is useful to introduce

multi-indices α, β, γ and δ to combine lattice, orbital, and spin degrees of freedom, such

that for instance α = (i, r, σ). Also U is the matrix that diagonalises the hopping matrix
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T = U εU †. With these relations, a general single-particle correlation function is given by

〈cα(τ)c†β(τ ′)〉 =
∑

γδ

∑

k

(
e−iT τ

)
αγ
Uγ,k

1

1 + e−β(ε(k)−µ)
U †k,δ

(
eiT τ

′
)
δβ

=
∑

γδ

∑

k,k′,k′′

Uα,k′e
−iε(k′)τU †k′,γUγ,k

1

1 + e−β(ε(k)−µ)
U †k,δUδ,k′′e

iε(k′′)τ ′U †k′′,β

=
∑

k

Uα,k
e−iε(k)(τ−τ ′)

1 + e−β(ε(k)−µ)
U †k,β. (3.42)

with εkk ≡ ε(k), i.e., ε is a diagonal matrix in k. Analogously, it is

〈c†α(τ)cβ(τ ′)〉 =
∑

k

Uβ,k
eiε(k)(τ−τ ′)

eβ(ε(k)−µ) + 1
U †k,α. (3.43)

Plugging this into (3.36) and going back to explicitly writing out the spatial, orbital, and

spin indices, one ends up with the expression

Iσσ
′ττ ′

iri′r′ (t) =
∑

k,ν,a
k′,ν′,a′

Uirσ′,kνaU
†
kνa,irσUi′r′τ ′,k′ν′a′U

†
k′ν′a′,i′r′τ

(1 + e−β(ενa(k)−µ))(1 + e−β(εν′a′ (k
′)−µ))

+
∑

k,ν,a
k′,ν′,a′

Ui′r′τ ′,kνaU
†
kνa,irσe

iενa(k)tUirσ′,k′ν′a′U
†
k′ν′a′,i′r′τe

−iεν′a′ (k′)t

(1 + e−β(ενa(k)−µ))(eβ(εν′a′ (k
′)−µ) + 1)

. (3.44)

With this, the expectation value of two spin operators is easily computed as

〈ŝαir(t)ŝα
′
i′r′(0)〉 =

1

4

∑

σσ′
ττ ′

σασσ′σ
α′
ττ ′I

σσ′ττ ′
iri′r′ (t). (3.45)

For the susceptibility, which depends on the expectation value of the commutator, one needs

the adjoint 〈ŝα′i′r′(0)ŝαir(t)〉 as well. Here it is useful to note that 〈Â〉 = 〈Â†〉∗. Since the Pauli

matrices are Hermitian, it is (σασσ′)
∗ = σασ′σ. Thus, one gets

〈[
ŝαir(t), ŝ

α′
i′r′(0)

]〉
=

1

4

∑

σσ′
ττ ′

σασσ′σ
α′
ττ ′(I

σσ′ττ ′
iri′r′ (t)− (Iσ

′στ ′τ
iri′r′ (t))∗). (3.46)

In taking the difference Iσσ
′ττ ′

iri′r′ (t)− (Iσ
′στ ′τ

iri′r′ (t))∗ the time-independent terms cancel

Iσσ
′ττ ′

iri′r′ (t)− (Iσ
′στ ′τ

iri′r′ (t))∗ =
∑

k,ν,a
k′,ν′,a′

Ui′r′τ ′,kνaU
†
kνa,irσUirσ′,k′ν′a′U

†
k′ν′a′,i′r′τe

i(ενa(k)−εν′a′ (k′))t

(1 + e−β(ενa(k)−µ))(eβ(εν′a′ (k
′)−µ) + 1)

−
∑

k,ν,a
k′,ν′,a′

Uirσ,kνaU
†
kνa,i′r′τ ′Ui′r′τ,k′ν′a′U

†
k′ν′a′,irσ′e

−i(ενa(k)−εν′a′ (k′))t

(1 + e−β(ενa(k)−µ))(eβ(εν′a′ (k
′)−µ) + 1)

=: Ĩσσ
′ττ ′

iri′r′ (t). (3.47)
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The magnetic susceptibility expressed in single-particle quantities is therefore given by

χirα,i′r′α′(t) = − i
4

Θ(t)
∑

σσ′
ττ ′

σασσ′σ
α′
ττ ′ Ĩ

σσ′ττ ′
iri′r′ (t). (3.48)

From this expression the symmetric and the antisymmetric part as well as the Fourier trans-

form can be readily computed. Since the time dependence of χirα,i′r′α′(t) comes from the

Heaviside function and the phase factors ei(ενa(k)−εν′a′ (k′))t, the integral can be computed in

the same way as in the multi-particle case.
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4 – Adiabatic Spin Dynamics

In quantum mechanics the approximation of an observable as a classical variable is of-

ten accompanied by another approximation, the so-called adiabatic approximation. This

is again familiar from molecular dynamics, where it is often applied together with the Born-

Oppenheimer approximation [58]. The adiabatic approximation is an approximation concern-

ing the time evolution of a quantum system with time-dependent parameters and assumes

that the system is in the same energy eigenstate, usually the ground state, for all times and

corresponding instantaneous parameter configurations. The theoretical justification for the

applicability of the adiabatic approximation is given by the adiabatic theorem [61–63]. In the

following, it will be distinguished between strict and relaxed adiabatic approximations. The

former restrict the quantum subsystem to the (single) ground state, while the latter include

more than just a single state resulting in a state space of more than one dimension.

This chapter introduces the adiabatic spin dynamics (ASD) theory [56], which incorporates

the strict adiabatic approximation into quantum-classical spin dynamics. It starts by briefly

explaining the adiabatic theorem and then formulates the adiabatic constraint in the context

of quantum-classical spin dynamics. To correctly apply this constraint to the quantum-

classical spin models from chapter 3, one has to formulate those systems in terms of a

quantum-classical Lagrangian. The EOM of the classical spins, which are derived via the

Euler-Lagrange equations, show an additional spin torque, that results from a finite spin-

Berry curvature. This spin torque also connects to the non-Hamiltonian spin torque derived

above by linear response theory.

In some cases, the strict adiabatic approximation can be too restrictive to capture all relevant

physics and the constraint has to be relaxed. This is done via an extension of ASD called

non-Abelian spin dynamics (NA-SD), which is developed in publication [I] at the end of this

chapter.

4.1 – Adiabatic Theorem and Approximation

The adiabatic theorem states that a quantum system whose Hamiltonian Ĥ depends on

parameters that change in time stays in its instantaneous energy eigenstate for the whole

time evolution if the parameter change during that time is slow enough [61–63]. In its

original form, the theorem has been stated for the case of nondegenerate eigenstates and a

discrete spectrum of Ĥ [61] but has since been generalised to different scenarios [62,63].

The adiabatic theorem justifies the adiabatic approximation, where, for all times t, the time-

dependent state of a quantum system, which depends on parameters with a dynamics much

slower than the other degrees of freedom, is equal to an instantaneous energy eigenstate for

the given parameter configuration [90]. The instantaneous eigenstate is typically chosen to be

the ground state and the adiabatic approximation usually leads to a significant simplification

in the computation of observables.
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For the quantum-classical spin systems of chapter 3 the strict adiabatic approximation reads

|Ψ(t)〉 = |Ψ0(S(t))〉 ∀t, (4.1)

where the parameters are the classical spins and |Ψ0(S(t))〉 denotes the ground state of

the system at time t with respect to the classical spin configuration S(t). The physical

justification is that the timescale governing the dynamics of localised magnetic moments,

here modelled by the classical spins, is typically much longer compared to the timescale of

the dynamics of itinerant electrons such that the electrons almost instantaneously follow the

motion of the spins. In a quantum-classical spin model with an interaction term ∝ J ŝS(t),

the timescale of the classical spins is mainly determined by the quantum-classical exchange

coupling J , which thus has to be sufficiently small for the adiabatic approximation (4.1) to

be valid. Quantum-classical hybrid systems often exhibit timescale separation between a fast

quantum subsystem and a slow classical part [59].

4.2 – Berry Phase, Connection, and Curvature

A concept that is closely related to the adiabatic approximation is that of the geomet-

ric and Berry phase [64, 90]. Considering a Hamiltonian depending on parameters λ(t) =

(λ1(t), . . . ,λM (t)), the adiabatic time evolution of a state |Ψn(λ(t))〉 is associated with a path

on the parameter manifold M. Apart from the usual dynamical phase factor e−i
∫ t
0 dt
′En(t′),

the state acquires a second phase factor given by

eiγn = ei
∫ t
0 dt
′〈Ψn(λ(t))| d

dt
|Ψn(λ(t))〉, (4.2)

where γn is the so-called geometric phase. It can also be written in the form

γn = i

∫ t

0
dt′ 〈Ψn(λ(t))| d

dt
|Ψn(λ(t))〉

= i
∑

m

∫ λm(t)

λm(0)
dλm 〈Ψn(λ(t))| ∇λm |Ψn(λ(t))〉

=:
∑

m

∫ λm(t)

λm(0)
dλmC

n
m(λ) (4.3)

with the Berry connection Cn
m(λ) that describes parallel transport of |Ψn(λ(t))〉 on the

manifold M. One feature of the geometric phase is that, in contrast to the dynamical phase

factor, it cannot be removed by gauge transformations if the path in parameter space is

closed, i.e., if λ(0) = λ(t). It is then also known as Berry phase. A third quantity related to

both γn and Cn
m(λ) is the (Abelian) Berry curvature

Ωn
mα,m′α′(λ) :=

∂

∂λmα
Cnm′α′(λ)− ∂

∂λm′α′
Cnmα(λ), (4.4)

which is the exterior derivative of the Berry connection. From the definition it is immediately

obvious that the Berry curvature is antisymmetric, i.e., Ωn
mα,m′α′ = −Ωn

m′α′,mα. Importantly,
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4 Adiabatic Spin Dynamics

the Berry curvature is invariant under local gauge transformations of the ground states

|Ψ0(λ)〉 → |Ψ0(λ)〉′ = eiφ(λ) |Ψ0(λ)〉 with a single-valued function φ(λ). The connection

changes as Cn
m(λ) → Cn′

m(λ) = i 〈Ψn(λ(t))| ∇λm |Ψn(λ(t))〉 − ∂φ
∂λm

and a direct calculation

shows

Ωn′
mα,m′α′(λ) =

∂

∂λmα
Cnm′α′(λ)− ∂

∂λmα

∂φ

∂λm′α′

− ∂

∂λm′α′
Cnmα(λ) +

∂

∂λm′α′

∂φ

∂λmα

= Ωn
mα,m′α′(λ) (4.5)

with the derivatives of φ cancelling due to Schwarz’s theorem.

Since the classical parameters considered here are spins, the corresponding quantities Cn
m(S)

and Ωn
mα,m′α′(S) will be referred to as spin-Berry connection and curvature. While concepts

like the Berry curvature and connection can be defined for an arbitrary parameter dependence

λ(t), the name spin-Berry curvature is used to emphasise that the underlying parameter space

is different compared to the Berry curvatures usually found in physics, which are mainly

defined with regard to reciprocal space. The parameter manifold M of the classical spin

configuration is the M -fold Cartesian product of 2-spheres, i.e., M = S2 × · · · × S2. For the

rest of the chapter the superscript n will be omitted and it is understood that all quantities

are expressed via the ground state |Ψ0(S(t))〉.

4.3 – Adiabatic Equations of Motion

Equation (4.1) is an additional holonomic constraint on the system dynamics. The question

is how to properly incorporate it into the EOM of the system. The most straightforward way

would be to plug it directly into (3.8) resulting in

Ṡm =
∂〈Ĥ〉0
∂Sm

× Sm (4.6)

with 〈Ĥ〉0 = 〈Ψ0(S(t))| Ĥ |Ψ0(S(t))〉. This equation will be called the naive adiabatic EOM.

However, the naive adiabatic theory is often insufficient to correctly describe the adiabatic

dynamics, as will be shown in section 4.6 when examining a toy model.

The most natural framework for incorporating constraints into a dynamical system is the

Lagrange formalism. First, one has to define a Lagrangian from which the equations (3.3)

and (3.8) can be derived as Euler-Lagrange equations. Here, it is given by

L = L(S, Ṡ, |Ψ〉 , ˙|Ψ〉, 〈Ψ| , ˙〈Ψ|)
=
∑

m

A(Sm)Ṡm + 〈Ψ(t)| i∂t − Ĥ |Ψ(t)〉 (4.7)

with M classical spins S ≡ (S1, . . . ,SM ). The term A(S) satisfies ∇×A(S) = −S/S3 and

can therefore be interpreted as the vector potential of a magnetic monopole located at S = 0.
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4 Adiabatic Spin Dynamics

One has

A(S) = − 1

S3

e× S
1 + eS/S

(4.8)

with a unit vector e. Plugging the constraint (4.1) into (4.7) yields an effective Lagrangian

that depends on the classical spins only

Leff(S, Ṡ) =
∑

m

A(Sm)Ṡm + 〈Ψ0(S(t))| i∂t − Ĥ |Ψ0(S(t))〉 −
∑

m

λmS
2
m, (4.9)

where the λm are additional Lagrange multipliers that ensure the normalisation of the spins,

i.e., Sm = |Sm| = 1. From this Lagrangian the correct adiabatic EOM can be derived via

the Euler-Lagrange equations, which are given by

d

dt

∂Leff

∂Ṡm
=
∂Leff

∂Sm
, m ∈ {1, . . . ,M}. (4.10)

At first glance, it looks like the first term in (4.9) depends on both S and Ṡ, while the second

terms depends on S only. However, this is not the case since

∂t |Ψ0(S(t))〉 = ∇S |Ψ0(S(t))〉 Ṡ. (4.11)

Computing the right hand side of the Euler-Lagrange equations yields

∂Leff

∂Sm
=
∑

m′α′α

∂Aα′(Sm′)

∂Smα
Ṡm′α′eα +

∑

α

∂

∂Smα

(
〈Ψ0| i∂t |Ψ0〉 − 〈Ψ0| Ĥ |Ψ0〉

)
eα − 2λmSm

=
∑

α′α

∂Aα′(Sm)

∂Smα
Ṡmα′eα + i

∑

m′α′α

∂

∂Smα
〈Ψ0|

∂

∂Sm′α′
|Ψ0〉 Ṡm′α′eα

−
∑

α

〈Ψ0|
∂Ĥ

∂Smα
|Ψ0〉 eα − 2λmSm, (4.12)

where in the third term the Hellmann-Feynman theorem was used. For the derivative of Leff

with regard to Ṡm, one has

∂Leff

∂Ṡm
= A(Sm) + i

∑

α

〈Ψ0|
∂

∂Smα
|Ψ0〉 eα (4.13)

and it immediately follows

d

dt

∂Leff

∂Ṡm
=
∑

αα′

∂Aα′(Sm)

∂Smα
Ṡmαeα′ + i

∑

m′α′α

∂

∂Sm′α′
〈Ψ0|

∂

∂Smα
|Ψ0〉 Ṡm′α′eα. (4.14)

With the definitions of the spin-Berry connection and curvature from above, the Euler-
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4 Adiabatic Spin Dynamics

Lagrange equations can be written as

0 =
∑

αα′

(
∂Aα′

∂Smα
− ∂Aα
∂Smα′

)
Ṡmαeα′ +

∑

m′α′α

Ωm′α′,mαṠm′α′eα + 〈Ψ0| ∇SmĤ |Ψ0〉 − 2λmSm

= −Ṡm ×
(
∇Sm ×A(Sm)

)
+
∑

m′α′α

Ωm′α′,mαṠm′α′eα + 〈Ψ0| ∇SmĤ |Ψ0〉 − 2λmSm

= Ṡm × Sm +
∑

m′α′α

Ωm′α′,mαṠm′α′eα + 〈Ψ0| ∇SmĤ |Ψ0〉 − 2λmSm. (4.15)

Taking the scalar product with Sm from the right, yields an equation that determines the

Lagrange multipliers

λm =
1

2

( ∑

m′α′α

Ωm′α′,mαṠm′α′eα + 〈Ψ0| ∇SmĤ |Ψ0〉
)
Sm, (4.16)

while taking the cross product gives the effective EOM

Ṡm = 〈Ψ0| ∇SmĤ |Ψ0〉 × Sm + T (geo)
m × Sm. (4.17)

One can see that when treating the adiabatic constraint (4.1) via the Lagrange formalism

the resulting effective equations of motion exhibit an additional geometrical spin torque

T
(geo)
m × Sm compared to the naive adiabatic dynamics. The geometrical spin torque is

defined via

T (geo)
m = T (geo)

m (Sm, Ṡm) :=
∑

m′α′α

Ωm′α′,mαṠm′α′eα. (4.18)

The name geometrical spin torque derives from the geometric nature of the spin-Berry cur-

vature Ω. Note that (4.17) is an implicit equation for Ṡm since the right hand side still

depends on Ṡm via the geometrical spin torque. An explicit equation can only be derived for

Ṡ = (Ṡ1, . . . , ṠM ) as a whole. The geometrical spin torque can be written as

T (geo)
m × Sm =

∑

βγδ

εβγδ
∑

m′α′

Ωm′α′,mβṠm′α′Smγeδ

=:
∑

δ

∑

m′α′

Mmδ,m′α′Ṡm′α′eδ

=
∑

δ

(M Ṡ)mδeδ (4.19)

with the definition of Mmα,m′α′ :=
∑

βγ εβγαΩm′α′,mβSmγ . The first term in (4.17) can be

expressed as a matrix-vector product, see (3.22). Thus, one defines a block-diagonal matrix

A, Amα,m′α′ = δmm′B
(m)
αα′ , with the mth block B(m) given by

B(m) :=




0 −vmz vmy

vmz 0 −vmx
−vmy vmx 0


 with vm := 〈Ψ0| ∇SmĤ |Ψ0〉 . (4.20)
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4 Adiabatic Spin Dynamics

Therewith, the explicit form of the 3M -dimensional system of differential equations is

Ṡ = (1−M)−1AS. (4.21)

Note that to compute Ṡ at every time step the 3M -dimensional matrix 1 −M has to be

inverted, which is numerically demanding for a large number of classical spins and/or long

propagation times.

4.4 – Lehmann Representation of the Spin-Berry Curvature

It is useful to express the spin-Berry curvature in terms of energy eigenstates, as was done

for the magnetic susceptibility above. A straightforward calculation yields

Ωmα,m′α′ = i 〈∂SmαΨ0| ∂Sm′α′ |Ψ0〉 − i
〈
∂Sm′α′Ψ0

∣∣ ∂Smα |Ψ0〉
= i
∑

n 6=0

[
〈∂SmαΨ0|n〉 〈n| ∂Sm′α′ |Ψ0〉 −

〈
∂Sm′α′Ψ0

∣∣n
〉
〈n| ∂Smα |Ψ0〉

]
, (4.22)

where |n〉 ≡ |Ψn〉 denotes the nth eigenstate and for n = 0 both terms cancel. A further

simplification can be achieved by using the identity

〈
n′
∣∣ ∂Smα |n〉 =

〈n′| ∂Ĥ
∂Smα

|n〉
En − En′

for En 6= En′ , (4.23)

which can be derived by differentiating the time-independent Schrödinger equation with re-

spect to Smα

∂Smα(Ĥ(S) |Ψn(S)〉) = ∂Smα(En(S) |Ψn(S)〉)
⇔ 〈Ψn′ | (∂SmαĤ) |Ψn〉+ En′ 〈Ψn′ | ∂Smα |Ψn〉 = (∂SmαEn) 〈Ψn′ |Ψn〉︸ ︷︷ ︸

=0 for n 6=n′

+En 〈Ψn′ | ∂Smα |Ψn〉 . (4.24)

Plugging this into the spin-Berry curvature, one has

Ωmα,m′α′ = i
∑

n6=0


〈0|

∂Ĥ
∂Smα

|n〉 〈n| ∂Ĥ
∂Sm′α′

|0〉
(E0 − En)2

−
〈0| ∂Ĥ

∂Sm′α′
|n〉 〈n| ∂Ĥ

∂Smα
|0〉

(E0 − En)2




= −2 Im




∑

n 6=0

〈0| ∂Ĥ
∂Smα

|n〉 〈n| ∂Ĥ
∂Sm′α′

|0〉
(E0 − En)2



. (4.25)

Concretely, for a Hamiltonian of the form (3.1) and the interaction term (3.2) it is

Ωmα,m′α′ = −2J2 Im




∑

n6=0

〈0| ŝmα |n〉 〈n| ŝm′α′ |0〉
(E0 − En)2



, (4.26)

which is independent of Hcl. The eigenstates and eigenenergies can be expanded around the
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eigenstates and eigenenergies of Ĥqu, i.e., around J = 0,

|Ψn〉 =
∣∣∣Ψ(0)

n

〉
+O(J) (4.27)

En = E(0)
n +O(J). (4.28)

Since the spin-Berry curvature itself is of order J2, the corrections contribute only at O(J3)

such that one can write

Ωmα,m′α′ = −2J2 Im




∑

n6=0

〈
0(0)
∣∣ ŝmα

∣∣n(0)
〉 〈
n(0)

∣∣ ŝm′α′
∣∣0(0)

〉

(E
(0)
0 − E(0)

n )2



+O(J3). (4.29)

The first term in the expansion of Ω is equivalent to −iJ2∂ωχ
A(0), compare (3.32), if one

ignores the term i0+ in the denominator. This is justified in the case of a nondegenerate

ground state which is separated by a gap from the rest of the spectrum. In the weak-J

regime one can, therefore, interpret the spin-Berry curvature as the linear response of the

electron system, described by Ĥqu, to a weak perturbation Ĥint. Typically, this regime tends

to be the most relevant for physics. However, there is a caveat when dealing with time-reversal

invariant systems, for which the first term in (4.29) vanishes [57].

4.5 – The Role of Time-Reversal Symmetry

The time-reversal transformation T is a discrete transformation [91] that acts as

r̂ 7→ r̂, p̂ 7→ −p̂, ŝ 7→ −ŝ (4.30)

on position, momentum and spin operators. In contrast to most other transformations in

quantum mechanics, it has to be represented as an antiunitary, i.e., a unitary and antilinear,

transformation on Hilbert space. Let Θ̂ be the operator representing time-reversal transfor-

mation. A system is said to be time-reversal symmetric if Θ̂ commutes with the Hamiltonian

Ĥ. For a time-reversal symmetric system, it can be shown that it is either Θ̂2 = 1 or Θ̂2 = −1.

In the former case, one can find an orthonormal basis of time-reversal-invariant energy eigen-

states |Ψn〉 = Θ̂ |Ψn〉. In the latter case, a state and its time-reversal partner are orthogonal

and energy-degenerate such that each energy is at least two-fold degenerate. These two-state

pairs are called Kramer’s pairs and the resulting degeneracy Kramer’s degeneracy.

The action of the time-reversal operator Θ̂ on the fermionic field operators is defined by

Θ̂c†i↑Θ̂
† = c†i↓, Θ̂c†i↓Θ̂

† = −c†i↑. (4.31)

For the local spin operator ŝiα, this means

Θ̂ŝiαΘ̂† =
1

2

∑

σσ′

Θ̂c†iσΘ̂†Θ̂ciσ′Θ̂
†τ

(α) ∗
σσ′ = −ŝiα. (4.32)

Considering a time-reversal symmetric system with a nondegenerate ground state, we have

Θ̂2 = 1 since there is no Kramer’s degeneracy. The matrix elements of the local spin operator

28



4 Adiabatic Spin Dynamics

can then be calculated to be

〈Ψn′ | ŝiα |Ψn〉 =
〈

Θ̂Ψn′

∣∣∣ ŝiαΘ̂ |Ψn〉

= 〈Ψn′ | Θ̂†ŝiαΘ̂ |Ψn〉∗

= −〈Ψn′ | ŝiα |Ψn〉∗ , (4.33)

where the second equality results from the antilinearity of Θ̂. Equation (4.33) shows that

the matrix elements of ŝiα are imaginary and thus a product of two such matrix elements is

real. Consequently, the spin-Berry curvature vanishes since it is the imaginary part of such

a product, see (4.26).

If the quantum system Ĥqu in our general setup (3.1) is time-reversal symmetric, we find

that the first term of the J expansion of Ω is zero. On the other hand, higher order terms

are finite since the quantum-classical interaction Ĥint itself breaks time-reversal symmetry.

Accordingly, there are two ways to obtain a finite spin-Berry curvature. Either work in the

regime of intermediate to high J or with a quantum system that explicitly breaks time-reversal

symmetry, e.g., a system with spontaneous magnetic order, see chapter 5 and publication [II].

4.6 – Minimal Model

This section introduces the minimal model discussed in [56] to show how ASD is applied in

practice and closely follows the exposition therein. The same model is also used to illustrate

the non-Abelian extension of the theory in publication [I].

The minimal model consists of a chain of noninteracting itinerant electrons with a classical

impurity spin coupled to a single site. The Hamiltonian is given by

Ĥ = −T
∑

〈ii′〉σ

c†iσci′σ + J ŝi0S −BS (4.34)

with nearest-neighbour hopping amplitude T and an external magnetic field B that is used

mainly to initiate dynamics of the classical spin. Concretely, the state of the system is

prepared as an eigenstate for a magnetic field pointing in a certain direction, say the z

direction. The magnetic field is then instantaneously switched to a different direction, say

the x direction, initiating dynamics of the classical spin. The effective EOM (4.17) becomes

Ṡ = J 〈Ψ0| ŝi0 |Ψ0〉 × S −B × S + T (geo) × S (4.35)

with T (geo) =
∑

αα′ Ωα′αṠα′eα. The spin-Berry curvature is a rank-2 antisymmetric tensor

and can also be written as a pseudovector Ω with components Ωα. The pseudovector and

the rank-2 tensor are related by

Ωα =
1

2

∑

βγ

εαβγΩβγ ⇔ Ωαβ =
∑

γ

εαβγΩγ . (4.36)
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Therewith, the geometrical spin torque can be rewritten as

∑

αα′

Ωα′αṠα′eα × S =
∑

αα′γ

εγα′αΩγṠα′eα × S

= (Ω× Ṡ)× S
= (ΩS)Ṡ − (SṠ︸︷︷︸

=0

)Ω, (4.37)

where the last equality follows from the Graßmann identity of the double cross product and

SṠ = 0 since the spins are of fixed length. The effective EOM takes the explicit form

Ṡ =
J〈ŝi0〉0 × S −B × S

1−ΩS

= −B × S
1± ΩS

(4.38)

with Ω = |Ω| and S = |S|. The last equality follows since the classical spin S acts as a

local magnetic field such that the system exhibits a rotational symmetry around the axis eS .

Hence, the ground state expectation value of the local spin 〈si0〉0 is parallel to S and we find

Ω(S) = ±Ω(S)eS . The effective EOM (4.38) describes a precession of the classical spin S

around the axis given by the magnetic field B and one can read off the precession frequency

as

ωp =
ωL

1± ΩS
, (4.39)

where ωL = |B| denotes the classical Larmor frequency. Equation (4.39) shows clearly that

the geometrical spin torque results in a renormalised precession frequency. It can be shown

that for an even number of electrons one has Ω = 0 and therefore no renormalisation, while

for an odd number Ω = s/S2. In the present case, it is s = 1/2 and S = 1 which implies

that in the strict adiabatic limit the precession frequency is twice as large compared to the

Larmor frequency.

The predictions of ASD can be compared to numerical results of the full theory. Here the

dynamics is computed according to (3.6) and can be used to calculate the precession frequency

of the classical spin. In [56] this was done for different values of the nearest-neighbour hopping

amplitude T and the quantum-classical exchange coupling J for a chain at half-filling. In

the case of an odd number of electrons (N = L = 11 in [56]), the results are consistent with

ASD and show that the precession frequency can be up to two times the Larmor frequency as

predicted by (4.39). However, in the even case that kind of increase is found as well, although

in a smaller parameter range. This is inconsistent with ASD, which predicts Ω = 0 and thus

no renormalisation of the precession. An extension of ASD that rectifies this and predicts

the correct precession frequency for both an odd and an even number of electrons is NA-

SD. NA-SD is developed in publication [I] presented in the next section. Nevertheless, the

minimal model demonstrates that the effects of the geometrical spin torque on the classical

spin dynamics can be substantial and ASD has a significant advantage over the naive adiabatic

theory in which the renormalisation of the precession is completely absent.
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A clear separation of the timescales governing the dynamics of “slow” and “fast” degrees of freedom
often serves as a prerequisite for the emergence of an independent low-energy theory. Here, we consider
(slow) classical spins exchange coupled to a tight-binding system of (fast) conduction electrons. The effective
equations of motion are derived under the constraint that the quantum state of the electron system at any
instant of time t lies in the n-dimensional low-energy subspace for the corresponding spin configuration at t .
The effective low-energy theory unfolds itself straightforwardly and takes the form of a non-Abelian gauge
theory with the gauge freedom given by the arbitrariness of the basis spanning the instantaneous low-energy
sector. The holonomic constraint generates a gauge-covariant spin-Berry curvature tensor in the equations of
motion for the classical spins. In the non-Abelian theory for n > 1, opposed to the n = 1 adiabatic spin
dynamics theory, the spin-Berry curvature is generically nonzero, even for time-reversal-symmetric systems. Its
expectation value with the representation of the electron state is gauge invariant and gives rise to an additional
geometrical spin torque. Aside from anomalous precession, the n � 2 theory also captures the spin nutational
motion, which is usually considered as a retardation effect. This is demonstrated by proof-of-principle numerical
calculations for a minimal model with a single classical spin. Already for n = 2 and in parameter regimes
where the n = 1 adiabatic theory breaks down, we find good agreement with results obtained from the full
(unconstrained) theory.

DOI: 10.1103/PhysRevB.106.094433

I. INTRODUCTION

Classical-spin models [1,2] are a highly useful and widely
employed tool to understand the nonequilibrium dynamics
of magnetic materials. At the expense of disregarding the
quantum nature of the magnetic moments and related phe-
nomena, such as the Kondo effect [3,4], they provide a
numerically tractable framework for spin dynamics on an
atomistic length scale [5–8]. Typically, classical-spin models
may comprise a short-range isotropic Heisenberg-type ex-
change, various anisotropic couplings, and long-range, e.g.,
dipole interactions. The classical equations of motion are usu-
ally supplemented by Gilbert-damping terms to account for
dissipation effects.

Spin-only models can actually be seen as effective low-
energy theories emerging from a more fundamental level of
modeling, where the local magnetic moments (classical spins
Si) at sites i of a lattice are coupled to the local spins si of a
system of conduction electrons via a local exchange coupling
J . Such quantum-classical spin-electron hybrid models are
necessary to explain various phenomena, including indirect
spin-exchange interactions, like the Ruderman-Kittel-Kasuya-
Yoshida (RKKY) interaction [9], Gilbert spin damping due to
coupling to electronic degrees of freedom [10], spin-inertia
effects (nutation) [11,12], and other more strongly retarded
effective spin-spin interactions mediated by the conduction-
electron system.

The standard formal approach [13–17] that achieves the
derivation of the effective spin-only theory is based on the
(usually realistic) assumption that the local exchange coupling
J is weak as compared to the typical energy scales of the elec-
tron system. Consider the s-d model [18] with Hamiltonian
H = Hel + J

∑
i siSi as a prototype. The torque on the classi-

cal spin at site i is given by J〈si〉t × Si, where the expectation
value of the local electron spin si at site i is obtained from the
many-body state |�(t )〉 of the electron system (Hamiltonian
Hel) at time t . Since the electron state itself must be computed
in the presence of the local exchange interaction term ∝J for
the (time-dependent) classical-spin configuration {S}, there
is a retarded mutual effective interaction emerging. This is
uncovered, for example, by linear-response theory, i.e., by
lowest-order time-dependent perturbation theory in J . This
leads to an integrodifferential equation of motion for Si,

Ṡi(t ) = J2
∑

i′

∫ t

0
dt ′χ

ii′
(t − t ′)Si′ (t

′) × Si(t ) (1)

which involves the retarded magnetic susceptibility tensor
with elements χ

(αα′ )
ii′ (t − t ′) of the electron ground state as the

integral kernel (α, α′ = x, y, z). The resulting spin dynamics is
nonconservative, as Eq. (1) describes an open quantum system
and is known from Redfield theory [19].

Assuming that χ
ii′

(t − t ′) is strongly peaked at t ′ = t ,
we can replace Si′ (t ′) by the first few terms in its Taylor
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expansion around t ′ = t , i.e., Si′ (t ′) ≈ Si′ (t ) + Ṡi′ (t )(t ′ − t ) +
S̈i′ (t )(t ′ − t )2/2. Keeping the first term on the right-hand side
only and extending the integration over t ′ to infinity, one
obtains an effective Hamiltonian equation of motion for the
spins Si, which involves the instantaneous spin-spin interac-
tion mediated by the RKKY coupling J (RKKY)

ii′ = J2χii′ (ω =
0). Including the second term, in addition, gives rise to a
(nonlocal) Gilbert-damping tensor αii′ = −iJ2∂ωχ

ii′
(ω)|ω=0,

while the third term leads to spin-inertia effects, i.e., addi-
tional nutation of the spins. This derivation has been put
forward in Refs. [15,16] and can be employed in the context of
strongly correlated electron models [20] or, when combined
with band-structure theory, for an ab initio computation of
the Gilbert damping [21–24]. Nutation effects, as have been
discussed in Refs. [25–27], for example, find a natural expla-
nation in the same framework set by Eq. (1). Furthermore,
at least in principle, systematic extensions of the resulting
low-energy spin-only theory can be achieved by taking into
account terms of higher order in the expansion. One may also
drop the approximation on the t ′-integration range. This leads
to a time-dependent RKKY coupling J (RKKY)

ii′ (t ) and a time-
dependent Gilbert damping αii′ (t ), as has been mentioned in
Refs. [16,17].

The above-sketched standard theory misses, however, an
important effect pointed out recently [28]: The slow dynamics
of the classical spins results in a nontrivial Berry curvature
of the electronic quantum system as is well known since
long [29,30]. Quite generally, however, this Berry curva-
ture in turn has a feedback on the classical-spin dynamics
[28,31–34]. Namely, there is a geometrical spin torque which
comes with the same prefactor J2 as the RKKY coupling and
the Gilbert damping. This torque can give rise to unconven-
tional spin dynamics as has been demonstrated [28,35] not
only for a quantum-classical system as is considered here
as well, but also for slow classical spins locally exchange
coupled to a system of fast classical spins [36,37] and even
for the dynamics of a quantum spin in a Kondo model [28].

This geometrical spin torque emerges in an effective low-
energy spin-only theory that is derived by starting from the
full theory of classical spins coupled to conduction electrons
and by imposing the constraint that, at any instant of time
t , the electron system is in its ground state, i.e., |�(t )〉 =
|�0({S(t )})〉, for the spin configuration {S(t )} at time t . This
is analogous to molecular dynamics approaches [33,38,39]
where the slow nuclear coordinates are treated classically. If
the exchange coupling J is weak, the classical-spin dynamics
is slow compared to typical energy scales of the electron
systems. The adiabatic spin dynamics (ASD) thus addresses
the same parameter regime as the standard perturbative linear-
response approach discussed above.

With this paper we explore a systematic extension of the
ASD by relaxing the adiabatic constraint. The impact of elec-
tronic low-energy excitations from the instantaneous ground
state |�0({S(t )})〉 on the classical-spin dynamics can be taken
into account by imposing, as a weaker constraint, that the elec-
tron state |�(t )〉 be at time t in the subspace of the Fock space
spanned by the first n > 1 eigenstates of the Hamiltonian
for the spin configuration {S(t )} at t . This beyond-adiabatic
constraint leads to a non-Abelian Berry connection and cur-
vature [30,40]. Here, we will work out the general formalism

of the non-Abelian gauge theory that emerges as the effec-
tive low-energy theory. The formally correct incorporation
of the constraint is achieved within conventional Lagrange
formalism. A simple toy model will be considered and solved
numerically to study the effect of the geometric torque on the
classical-spin dynamics in the non-Abelian case. We discuss
the anomalies in the precessional spin dynamics and demon-
strate that spin nutation arises naturally in our framework.
The previously developed ASD represents the n = 1 limit
of our non-Abelian spin-dynamics (NA-SD) theory. In the
ASD for a single classical spin, the presence of an anomalous
precession frequency has been found [28] for an odd number
of conduction electrons only, while the full solution of the
coupled equations of motion for spin and electron dynamics
yields an anomalous frequency for both odd and even electron
numbers. In the broader framework of NA-SD we can resolve
this open issue.

The paper is organized as follows: Section II presents the
general Hamiltonian and Lagrangian formulation of the the-
ory. The equations of motion of the non-Abelian gauge theory
in the instantaneous low-energy sector are worked out in
Sec. III, and various formal aspects of the theory are discussed
in Sec. IV. Sections V and VI are particularly devoted to a
discussion of the impact of time-reversal symmetry and of
gauge transformations, respectively. A minimal model, suit-
able for proof-of-principle studies, is introduced in Sec. VII.
In Sec. VIII we present and discuss the results of numerical
calculations. Conclusions are given in Sec. IX.

II. GENERAL THEORY

Geometric forces or torques originate in the adiabatic limit
of hybrid systems consisting of quantum degrees of free-
dom interacting with classical degrees of freedom. Here, we
consider a quantum lattice model of N conduction electrons
interacting with M classical “spins” Sm of unit length |Sm| =
1. The system dynamics is governed by a quantum-classical
Hamiltonian of the form

Ĥ ({S}) = Ĥqu + Hcl({S}) + Ĥint ({S}) . (2)

The quantum Hamiltonian Ĥqu is constructed in terms of
fermion creation and annihilation operators c†

rσ and crσ , where
r refers to the sites of the lattice and σ =↑,↓ is the spin
projection. Additional orbital degrees of freedom may be
considered as well. The formulation of the theory is largely
independent of Ĥqu but requires a well-defined local quantum
spin sr at lattice site r:

sr = 1

2

∑
σσ ′

c†
rσσσσ ′crσ ′ . (3)

Here, σ is the vector of 2 × 2 Pauli matrices (and h̄ ≡ 1).
The dynamics of the subsystem of M classical spins

{S} ≡ {S1, . . . , SM} derives from a classical Hamilton func-
tion Hcl({S}) and may comprise an external magnetic field and
isotropic or anisotropic spin-exchange couplings. The third
term in (2) represents a quantum-classical interaction term.
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Here, we choose an isotropic local exchange interaction

Ĥint({S}) = J
M∑

m=1

Smsrm , (4)

between the mth classical spin Sm and the local spin srm of
the conduction-electron system at the site rm. The coupling
strength is J > 0. The theory is developed for an arbitrary
number of classical spins M, but we will later focus on a
single classical-spin Kondo model (M = 1) for the sake of
simplicity.

If the classical spins {S} were replaced by quantum spins,
(2) would represent the Hamiltonian of the multi-impurity or
lattice Kondo model. With the classical-spin approximation
we disregard typical correlation effects, such as Kondo screen-
ing and heavy-fermion behavior, and hence we are essentially
working on a mean-field-type level. The approximation may
be justified in cases where there are well-formed spin mo-
ments which are stable on timescales exceeding all remaining
timescales of the problem, e.g., in cases, where the Kondo
effect is suppressed by magnetism or in case of quantum
spins with large spin quantum numbers. An example has been
given in Ref. [28], where anomalous quantum-classical dy-
namics due to a geometrical torque has also been found in
the corresponding full quantum system. A consistent theory
for a system that is entirely quantum with a least two largely
different timescales has yet to be developed. This means that
the presence of slow classical degrees of freedom is nec-
essarily required for the very concept of geometrical forces
and torques. The classical degrees of freedom are required to
define the smooth manifold onto which the quantum dynamics
is restricted in the adiabatic limit.

A pure state of the quantum-classical hybrid system at
time t is specified by a Hilbert-space vector |�(t )〉 and by
the classical-spin configuration {S(t )} (see Refs. [41–43] for
a general discussion of hybrid dynamics). The trajectory of
the system state is obtained as the solution of a system of
coupled ordinary differential equations. These consist of the
Schrödinger equation, involving the quantum Hamiltonian
and the interaction term, which depends on the classical-spin
configuration

i∂t |�(t )〉 = [Ĥqu + Ĥint ({S(t )})]|�(t )〉 , (5)

and the Hamilton equations of motion for the classical-spin
configuration, involving the classical Hamilton function and
the expectation value of the interaction term in the quantum
state |�(t )〉:

Ṡm(t ) = {Sm(t ), Hcl({S(t )}) + 〈Ĥint ({S(t )})〉}S . (6)

Here, the overdot denotes the time derivative, and {·, ·}S is the
Poisson bracket. In case of spin systems, the latter is defined
for two arbitrary functions A({S}) and B({S}) as [44]

{A, B}S =
∑

m

∂A

∂Sm
× ∂B

∂Sm
· Sm. (7)

The coupled equations of motion (5) and (6) are gener-
ated as Euler-Lagrange equations by requiring stationarity
of an action functional S = ∫

L dt with the Lagrangian

L = L({S}, {Ṡ}, |�〉, ˙|�〉, 〈�|, ˙〈�|):
L =

∑
m

A(Sm)Ṡm + 〈�(t )|i∂t − Ĥ |�(t )〉. (8)

Here, A(S) is a function satisfying ∇ × A(S) = −S/S3, which
can thus be interpreted as the vector potential of a unit mag-
netic monopole located at S = 0. We have

A(S) = − 1

S2

e × S
1 + eS/S

, (9)

with a unit vector e. In the standard gauge [45] this is chosen
as e = ez. In this gauge, another representation is A(S) =
−(1/S) tan(ϑ/2)eϕ , using spherical coordinates (S, ϑ, ϕ). For
details of deriving Eqs. (5) and (6) from δS = 0, see Ref. [36]
(Supplemental Material).

We will address the parameter regime of the Hamiltonian,
where the system dynamics is characterized by two strongly
different timescales, a slow spin dynamics and a fast dy-
namics of the electron state, which almost instantaneously
follows the motion of the spins. In the extreme adiabatic
limit, the quantum many-body state |�(t )〉 of the electron
system at time t is given by the ground state |�0({S(t )})〉 of
Ĥqu + Ĥint({S(t )}), for the spin configuration {S(t )} at time
t . When approaching the adiabatic limit in parameter space,
the fast electron dynamics will be more and more constrained
to the ground manifold {|�0({S(t )})〉}. Adiabatic spin-
dynamics (ASD) theory [28,36,37] assumes that the dynamics
is perfectly constrained to the ground-state manifold and
employs

|�(t )〉 = |�0({S(t )})〉 (10)

as a holonomic constraint to completely eliminate the electron
degrees of freedom from the Lagrangian (8). In this way,
one arrives at a spin-only effective Lagrangian Leff ({S}, {Ṡ}),
and the resulting effective equations of motion include the
geometrical spin torque as a holonomy effect [28]. The uncon-
ventional spin dynamics originating from the corresponding
geometrical spin torque is missed by other approaches, such
as the standard linear-response approach to a spin-only theory
that has been discussed in the Introduction. On the other
hand, retardation effects, e.g., nutational motion, are excluded
within ASD by the very construction.

The validity of the basic assumption (10) strongly depends
on the specific system considered and on the considered pa-
rameter range. Even for gapped systems, however, the strict
adiabatic approximation is never perfectly satisfied, and the
true slow spin dynamics will be affected to some degree by
admixtures from (low-energy) excited electron states. As a
systematic generalization of ASD, we therefore propose to
relax the constraint (10) and to replace it by the weaker con-
straint

|�(t )〉 =
n−1∑
i=0

αi(t )|�i({S(t )})〉 . (11)

Here, |�i({S(t )})〉 is the ith excited state of Ĥqu + Ĥint({S(t )}),
i.e., we assume that at any instant of time t the conduction-
electron state |�(t )〉 is contained in the low-energy subspace
En({S}) spanned by the instantaneous ground state and the
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lowest n − 1 instantaneous eigenstates for the spin configu-
ration {S} = {S(t )} at time t . Choosing a fixed orthonormal
basis

{|�i({S})〉 | i = 0, . . . , n − 1} (12)

of En({S}) for any spin configuration, the electron state at
time t is fully specified by the set of expansion coefficients
{α(t )} ≡ {α0(t ), . . . , αn−1(t )} via (11).

For n = 1, we recover conventional ASD, and thus ob-
tain a true spin-only theory. For small n > 1, the effective
Lagrangian is obtained from (8) by substituting |�〉,
∂t |�〉, 〈�|, ∂t 〈�| using (11). It thereby becomes a func-
tion of {S} and {Ṡ} and furthermore a function of the
set of expansion coefficients {α}, i.e., we get Leff =
Leff({S}, {Ṡ}, {α}, {α∗}, {α̇}, {α̇∗}). Hence, aside from the spin
degrees of freedom, the resulting low-energy theory contains
a few electronic degrees of freedom as well.

We also define the eigenenergies Ei = Ei({S}) of Ĥqu +
Ĥint({S(t )}) corresponding to the basis states |�i({S})〉.
Ei({S}) is the analog of the ith potential-energy (Born-
Oppenheimer) surface known from molecular-dynamics the-
ory [33,38]. The spin configuration {S} takes the role of the
configuration of atomic nuclei. Note that the strict adiabatic
approximation (10) becomes invalid, if the trajectory of the
spin configuration {S(t )} passes a configuration {Scr}, at which
there is a crossing of the ground state with the first excited
state, i.e., E0({Scr}) = E1({Scr}), since this is in conflict with
the adiabatic theorem [46–48].

For n > 1, the relaxed condition (11) corresponds to a
generalized adiabatic theorem (see Ref. [46]) stating that the
condition is respected, if the low-energy sector En({S}) and
its orthogonal complement (the “high-energy sector”) remain
gapped for all {S(t )}) and, of course, if the electron dynamics
is sufficiently slow. In other words, for a given n, NA-SD
applies if there is no crossing En−1({Scr}) = En({Scr}), while
crossings of states within the low-energy sector are irrelevant.
One should note, however, that a crossing of two states be-
longing to the low- and the high-energy sector, respectively, is
in fact unproblematic, if the expansion coefficient αn−1(t ) = 0
for all t , since in this case the (n − 1)th excited eigenstate
would not contribute to |�(t )〉 anyway. This argument can
be extended to k < n − 1, as long as there are crossings be-
tween “unoccupied” states with αi(t ) = 0 and α j (t ) = 0 for
k � i, j � n only. We conclude that the relaxed condition (11)
for n > 1 also implies a less severe, relaxed approximation.

III. EFFECTIVE EQUATIONS OF MOTION

The effective Lagrangian that is obtained by using the con-
straint (11) to eliminate |�(t )〉 from the original Lagrangian
(8) is given by

Leff = Leff({S}, {Ṡ}, {α}, {α∗}, {α̇}, {α̇∗})

=
∑

m

Am(Sm)Ṡm + i
∑

i j

α∗
i 〈�i|∂t (α j |� j〉)

−
∑

i j

α∗
i α j〈�i|Ĥ |� j〉, (13)

where |�i〉 = |�i({Sm})〉, and where the {Ṡ} dependence, be-
sides the first term, is due to 〈�i|∂t |� j〉 = ∑

m〈�i|∂Sm |� j〉Ṡm.
The Euler-Lagrange equation ∂t (∂Leff/∂α̇∗

i ) − ∂Leff/∂α∗
i = 0

for the “wave function” αi is straightforwardly obtained as

i∂tαi =
∑

j

〈�i|(Ĥqu + Ĥint )|� j〉α j

− i
∑

m

∑
j

α j〈�i|∂Sm |� j〉Ṡm. (14)

The complex conjugate of this equation is just the equation of
motion that is obtained for α∗

i .
Note that the second term involves the non-Abelian spin-

Berry connection Cm = Cm({S}). Opposed to the (Abelian)
spin-Berry connection Cm = i〈�0|∂Sm |�0〉 of the (Abelian)
ASD, this is, for each m, a matrix-valued vector with
elements

C(i j)
m = i〈�i|∂Sm |� j〉 = i

∑
γ

〈�i|∂Smγ
|� j〉eγ =

∑
γ

C(i j)
mγ eγ .

(15)

The matrix dimension is given by the dimension of the low-
energy subspace n = dim En({S}). It is easy to see that this
is a real quantity. Its transformation behavior under gauge
transformations will be discussed in Sec. VI.

We proceed by deriving the second set of equations of
motion from the effective Lagrangian ∂t (∂Leff/∂Ṡm) −
∂Leff/∂Sm = 0. With (13) we straightforwardly find

∂Leff

∂Sm
= ∂

∂Sm
(AmṠm) + i

∑
k

∑
i j

α∗
i α j

∂

∂Sm
(〈�i|∂Sk |� j〉Ṡk )

−
∑

i j

α∗
i α j

∂

∂Sm
(〈�i|Ĥ |� j〉) , (16)

and with ∂Leff/∂Ṡm = Am + i
∑

i j α
∗
i α j〈�i|∂Sm |� j〉,

d

dt

∂Leff

∂Ṡm
=

∑
γ

∂Am

∂Smγ

Ṡmγ + i
∑

i j

[(∂tα
∗
i )α j + α∗

i (∂tα j )]

× 〈�i|∂Sm |� j〉 + i
∑

k

∑
i j

α∗
i α j

× (Ṡk∂Sk )(〈�i|∂Sm |� j〉) . (17)

Both Eqs. (16) and (17) involve the spin-Berry connec-
tion. The third term in (16) can be rewritten using the
identity

∂

∂Sm
(〈�i|Ĥ |� j〉) = 〈�i|(∂Sm Ĥ )|� j〉 − (Ej − Ei )〈�i|∂Sm |� j〉,

(18)

and for the second term in (17) it is convenient to get rid of
the time derivatives by using

i[(∂tα
∗
i )α j + α∗

i (∂tα j )]

= i
∑

k

∑
l

[α∗
l α j〈�l |∂Sk |�i〉

− α∗
i αl〈� j |∂Sk |�l〉]Ṡk + α∗

i α j (Ej − Ei ), (19)
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which directly follows from the equation of motion for the wave functions (14). Therewith, we arrive at

0 = d

dt

∂Leff

∂Ṡm
− ∂Leff

∂Sm

=
∑
βγ

(
∂Amβ

∂Smγ

− ∂Amγ

∂Smβ

)
Ṡmγ êβ +

∑
i j

α∗
i α j〈�i|(∂Sm Ĥ )|� j〉

+ i
∑

k

∑
i j

∑
γ

α∗
i α j[∂Skγ

(〈�i|∂Sm |� j〉) − ∂Sm (〈�i|∂Skγ
|� j〉)]Ṡkγ

+ i
∑

k

∑
i jl

∑
γ

[α∗
l α j〈�l |∂Skγ

|�i〉 − α∗
i αl〈� j |∂Skγ

|�l〉]〈�i|∂Sm |� j〉Ṡkγ . (20)

The first term on the right-hand side is a twofold cross
product, −Ṡm × (∇Sm × Am), and with (9) and with the nor-
malization |Sm| = 1, the curl can be written as ∇ × A(S) =
−S. The second term is an expectation value 〈∂Sm H〉 of
the “effective field” ∂Sm H in the state of the electron sys-
tem |�〉 [see Eq. (11)]. With (15), the third term reads as∑

k

∑
i j

∑
γ α∗

i α j[∂Skγ
C(i j)

m − ∂SmC(i j)
kγ

]Ṡkγ . Its βth component
involves the “curl”


(A)
kγ ,mβ

= ∂Skγ
Cmβ − ∂Smβ

Ckγ (21)

of the spin-Berry connection. Here, the underlines indicate
that the spin-Berry connection and its curl are matrices
in the indices i, j labeling the basis of the low-energy
subspace for given spin configuration. (A) has the form
of the spin-Berry curvature in the Abelian (n = 1) the-
ory. We refer to this as the “Abelian spin-Berry curvature.”
Again with (15), the βth component of the fourth term in
(20) reads as −i

∑
k

∑
i jl

∑
γ [α∗

l α jC
(li)
kγ

− α∗
i αlC

( jl )
kγ

]C(i j)
mβ Ṡkγ .

This involves the commutator [Ckγ ,Cmβ] of the spin-Berry
connection.

We define the (non-Abelian) spin-Berry curvature

kγ ,mβ = ∂Skγ
Cmβ − ∂Smβ

Ckγ − i[Ckγ ,Cmβ]

= 
(A)
kγ ,mβ

− i[Ckγ ,Cmβ], (22)

which differs from the Abelian one by the additional commu-
tator. Furthermore, we define the “expectation value” of the
spin-Berry curvature in the state given by the wave function
{α} as

〈〉kγ ,mβ =
∑

i j

α∗
i 

(i j)
kγ ,mβ

α j . (23)

With this, the effective equation of motion (20) for the
classical-spin configuration can be written in the compact
form

0 = d

dt

∂Leff

∂Ṡm
− ∂Leff

∂Sm
= Ṡm × Sm

+ 〈∂Sm Ĥ〉 +
∑

k

∑
βγ

Ṡkγ 〈〉kγ ,mβeβ (24)

or, exploiting the structure of the quantum-classical
Hamiltonian (2) and the normalization of the wave function

∑
i |αi|2 = 1,

0 = Ṡm × Sm + 〈∂Sm Ĥint〉 + ∂Sm Hcl +
∑

k

∑
βγ

Ṡkγ 〈〉kγ ,mβeβ.

(25)

This equation is an implicit equation for Ṡm. An explicit form
is derived in Appendix A. Finally, we rewrite (14) using the
definition of the spin-Berry connection (15):

i∂tαi =
∑

j

〈�i|(Ĥqu + Ĥint )|� j〉α j −
∑

m

∑
j

ṠmC(i j)
m α j .

(26)

Equations (25) and (26) represent a closed coupled set of
nonlinear first-order differential equations for the effective
many-body wave function {α} and for the classical-spin con-
figuration {S}.

IV. DISCUSSION

The respective last terms in the equations of motion (25)
and (26) originate from the strict treatment of the holonomic
constraint (11). Although the first time derivative of the local
spins is reminiscent of a dissipative Gilbert-type damping, the
resulting dynamics is strictly conserving, i.e., the total energy
given by the expectation value of the total Hamiltonian (2)
with the quantum state of the conduction-electron system is
a constant of motion. Unlike the standard approach discussed
in the Introduction, the equations of motion thus describe the
dynamics of a closed quantum system (at low energies).

For the derivation of the equations of motion, we have
treated all components of the spins and of the wave function as
independent and have thereby disregarded the normalization
conditions for the length of the classical spin and for the norm
of the wave function

|Sm(t )| = 1,
∑

i

|αi(t )|2 = 1, (27)

which must hold at any instant of time t . One can easily
check directly, however, that these are respected. The normal-
ization condition for the wave function can also be derived
by noting that the effective Lagrangian is invariant under
global U(1) phase transformations. Noether’s theorem yields
Q = ∑

i |αi(t )|2 as a conserved charge. Alternatively, the con-
ditions can be treated as additional constraints via appropriate
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Lagrange multipliers. As is shown in Appendix B, the result-
ing Euler-Lagrange equations are in fact unchanged.

Adiabatic spin-dynamics (ASD) theory [28] is recovered
for n = 1, where the conduction-electron dynamics is
constrained to the ground-state manifold |�(t )〉 =
|�0({S(t )})〉 and where the wave function is α0 ≡ 1 trivially
[see Eq. (11)]. In this case, the spin-Berry connection
C(i j)

m = i〈�i|∂Sm |� j〉 with i, j = 0, . . . , n − 1, reduces to a
vector with scalar entries only, Cm = i〈�0|∂Sm |�0〉. Hence,
the commutator in (22) vanishes, and the spin-Berry curvature
kγ ,mβ reduces to the corresponding expression 

(A)
kγ ,mβ

[Eq. (21)] of (Abelian) ASD theory.
In the opposite extreme case, i.e., when n is chosen as the

dimension of the full many-electron Fock space H, Eq. (11)
is actually no longer a constraint but rather represents the ex-
pansion of the electron state |�(t )〉 with respect to a complete
orthonormal system of time-dependent basis states {|�i(t )〉}
with |�i(t )〉 = |�i({S(t )})〉. In this case, it is straightforward
to see that (26) is just Schrödinger’s equation i∂t |�(t )〉 =
Ĥ |�(t )〉, i.e., (5), but formulated for the coefficients αi(t ) of
|�(t )〉 in that basis. The spin-Berry connection merely takes
care of the fact that the basis changes smoothly with the
parameters {S}. Equation (25) trivializes as well in this case:
We can rewrite the (non-Abelian) spin-Berry curvature in the
form (see Appendix C)


(i j)
kγ ,mβ

= i[〈∂Skγ
�i|Qn|∂Smβ

� j〉 − (kγ ↔ mβ )], (28)

where Qn := 1 − ∑n−1
i=0 |�i〉〈�i| projects onto the orthogonal

complement of the low-energy space En({S}). If n = dim H,
the complement is zero, and the spin-Berry curvature vanishes
identically, so that

0 = Ṡm × Sm + 〈∂Sm Ĥint〉 + ∂Sm Hcl. (29)

Taking the cross product with Sm from the right on both sides
of (25) and exploiting the normalization condition for the spin
length, we get

Ṡm = ∂Ĥ ({S})

∂Sm
× Sm. (30)

This is just the explicit form of (6).
Some general properties of the spin-Berry curvature can be

derived from (28). One immediately notes the antisymmetry


(i j)
kγ ,mβ

= −
(i j)
mβ,kγ

(31)

for fixed i, j. Furthermore, complex conjugation yields


(i j)∗
kγ ,mβ

= −
( ji)
mβ,kγ

. (32)

With these properties, one can immediately conclude that

〈〉kγ ,mβ =
∑

i j

α∗
i 

(i j)
kγ ,mβ

α j = 〈〉∗kγ ,mβ, (33)

i.e., the expectation value, which enters the effective
equation of motion (25), is real.

Quite generally, the (Abelian) Berry connection and Berry
curvature arise in the adiabatic problem, where a quantum
Hamiltonian Ĥ = Ĥ (λ) depends on a family of slowly vary-
ing parameters λ and has a nondegenerate ground state for
all λ. This gives rise to the famous Berry phase [29], which
the ground state picks up during a closed loop in parameter

space and which can be computed, e.g., as an integral of the
Berry curvature over the surface bounded by the loop. Mathe-
matically, the phase is a holonomy, i.e., it results from a twist
of the line bundle {(λ, |�0〉) | Ĥ (λ)|�0〉 = E0({λ})|�0〉} [49].
The Berry phase is gauge invariant and thus observable and
depends on the geometry of the closed loop only. Similarly,
non-Abelian gauge fields arise in the adiabatic time evolution
of an (n > 1)-fold degenerate ground state of a quantum sys-
tem [40] and produce a nontrivial phase after completing a
loop in parameter space.

Here, we consider a quantum system coupled to dynamical
classical degrees of freedom (classical spins). In case of a
clear timescale separation between the slow classical and the
fast quantum dynamics, the classical spins induce a spin-
Berry curvature in the quantum conduction-electron system.
Generically, it is highly unlikely, however, that the classical
state evolves along a closed path. The essential observation,
however, is that there is an additional feedback of the Berry
curvature on the classical-spin dynamics, seen in the last term
in (25) for  = (A). Already in the Abelian case n = 1, this
leads to an anomalous geometrical spin torque [28]. This geo-
metric feedback on slow classical dynamics has been pointed
out [28,31–37] but has not yet been studied for spin dynamics
in the non-Abelian case 1 < n = dim En{S} � dim H.

V. TIME REVERSAL

Time-reversal symmetry plays an important role for the
presence of a finite spin-Berry curvature in the adiabatic case
(n = 1) [28]. For n > 1, however, this is entirely different: We
assume that the electron system is time-reversal symmetric,
i.e., that the Hamiltonian Ĥqu commutes with the antiunitary
operator for time reversal �. The interaction term (4), on
the other hand, is odd under time reversal, �Ĥint�

† = −Ĥint ,
since �srm�† = −srm . The local spins Sm are classical degrees
of freedom, which act as local magnetic fields and explicitly
break time-reversal symmetry of the quantum system.

This effect, however, can be disregarded in the weak-J
regime, where the spin-Berry curvature, in the spirit of linear-
response theory, is a physical property of the electron system
Ĥqu only. Namely, expanding Ei = Ei0 + O(J ) and |�l〉 =
|�0

l 〉 + O(J ) and using the identity

〈�l |∂Sm� j〉 = 〈�l |∂Sm Ĥ ({S})|� j〉
Ej − El

, (34)

which holds for Ej = El , Eq. (28) can be rewritten as


(i j)
kγ ,mβ

= i
∑
l�n

[〈
�0

i

∣∣∂Skγ
Ĥ

∣∣�0
l

〉
Ei0 − El0

〈
�0

l

∣∣∂Smβ
Ĥ

∣∣�0
j

〉
Ej0 − El0

− (kγ ↔ mβ )

]
+ O(J3) (35)

since ∂Skγ
Ĥint = Jsikγ = O(J ), so that the spin-Berry curva-

ture is of order J2 for weak J and expressed in terms of
the eigenstates and eigenenergies of Ĥqu only. Note that 0 �
i, j � n − 1 in (35).

For a system with an even number of spin- 1
2 electrons,

the time-reversal operator squares to unity, �2 = +1. In this
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case, we can choose an orthonormal basis of time-reversal-
symmetric energy eigenstates |�0

i 〉 = �|�0
i 〉. This implies

that the matrix elements〈
�0

i

∣∣∂Skγ
Ĥ

∣∣�0
l

〉 = −〈
�0

i

∣∣�†∂Skγ
Ĥ�

∣∣�0
l

〉
= −(〈

��0
i

∣∣∂Skγ
Ĥ

∣∣��0
l

〉)∗

= −(〈
�0

i

∣∣∂Skγ
Ĥ

∣∣�0
l 〉)∗

(36)

are purely imaginary. Note that only the (odd) interac-
tion term Ĥint ({S}) contributes. Using this in (35) shows
that 

(i j)
kγ ,mβ

is purely imaginary. With (32) we can
conclude that


(i j)
kγ ,mβ

= 
( ji)
mβ,kγ

. (37)

In particular, Eqs. (31) and (37) imply that the i = j ele-
ments of the spin-Berry curvature must vanish in the weak-J
limit for �2 = +1. This is important for the Abelian case
n = 1. For i = j = 0 we have 

(00)
kγ ,mβ

= 0 and, hence, there
is no geometrical spin torque in the weak-J limit for a
time-reversal-symmetric system with �2 = +1. In the general
non-Abelian case, on the other hand, we find with (33) that

〈〉kγ ,mβ = −
∑

i j

Im(α∗
i α j )Im

(i j)
kγ ,mβ

(38)

since 
(i j)
kγ ,mβ

is imaginary. Generically, the coefficients αi =
αi(t ) in the expansion (11) will be complex and oscillatory
functions of time. The expression above thus shows that even
in the weak-J limit and for a time-reversal-symmetric system,
the geometrical spin torque in the equation of motion (25) is
generally finite.

Let us briefly discuss the case of an odd electron number
with �2 = −1. Here, the basis states can be grouped in or-

thogonal and energy-degenerate Kramers pairs {|�0
i 〉, |�0

i 〉}
with |�0

i 〉 ≡ �|�0
i 〉 for i = 0, . . . , (n/2) − 1. An even num-

ber of states must be included in formulating the constraint
(11). For the matrix elements, we have〈

�0
i |∂Skγ

Ĥ |�0
l

〉 = −〈
�0

i

∣∣�†∂Skγ
Ĥ�

∣∣�0
l

〉
= −(〈

��0
i

∣∣∂Skγ
Ĥ

∣∣��0
l

〉)∗

= −(〈
�

0
i

∣∣∂Skγ
Ĥ

∣∣�0
l

〉)∗
. (39)

This can be used in (35) since in the l sum with each term also
the Kramers partner is included. We find


(i j)
kγ ,mβ

= 
( j i)
mβ,kγ

, (40)

where the index i refers to the Kramers partner of |�0
i 〉 and,

furthermore, ((i j)
kγ ,mβ

)∗ = −
(i j)
kγ ,mβ

. As for the case �2 =
+1, time-reversal symmetry does not lead to a vanishing spin-
Berry curvature or a vanishing expectation value 〈〉kγ ,mβ .
Note that for �2 = −1 the adiabatic theory is not applicable
anyway (for the weak-coupling limit) since the ground state is
at least twofold Kramers degenerate.

VI. GAUGE TRANSFORMATIONS

The effective Lagrangian (13) can be written in a compact
form as

Leff =
∑

m

Am(Sm)Ṡm + iα†∂tα

+
∑

m

α†[Cm({S})Ṡm]α − α†H ({S})α, (41)

where α = (α0, . . . , αn−1)T and where H is the Hamilton ma-
trix with elements Hi j = 〈�i|Ĥ |� j〉 and the local basis states
|� j〉 = |� j ({S})〉. We consider a gauge transformation

|� j ({S})〉 �→ |� ′
j ({S})〉 =

∑
i

U †
i j |�i({S})〉,

α �→ α′ = Uα, (42)

where U (with elements Ui j) is the defining matrix repre-
sentation of SU(n) on the local low-energy subspace En({S})
for given spin configuration {S}. This transformation must
leave observables invariant since (42) just means a rotation
of the basis in En({S}), which leaves the quantum state |�〉 =∑n−1

j=0 α j |� j ({S})〉, and thus the constraint (11) invariant when
rotating the expansion coefficients (the wave function) ac-
cordingly. We distinguish between global SU(n) and local
SU(n) transformations. For the latter, the transformation ma-
trix U = U ({S}) is an arbitrary but smooth function of the spin
configuration {S}. The effective Lagrangian is invariant under
both global and local gauge transformations.

Note that the Hamilton matrix transforms in a
covariant way,

H �→ H ′ = U H U †, (43)

while the Berry connection transforms covariantly under a
global gauge transformation only. For a local gauge transfor-
mation we rather have

Cm �→ C′
m = U Cm U † + iU∂SmU †. (44)

The non-Abelian Berry curvature, opposed to its Abelian part
(21), transforms covariantly:

kγ ,mβ �→ ′
kγ ,mβ = U kγ ,mβ U †, (45)

so that its expectation value in the state given by the wave
function αi is invariant: 〈′〉′kγ ,mβ = 〈〉kγ ,mβ . Hence, (25) is
invariant under local gauge transformations. The Schrödinger-
type equation (26), on the other hand, is form invariant under
local transformations, i.e.,

i∂tα
′
i =

∑
j

〈� ′
i |(Ĥqu + Ĥint )|� ′

j〉α′
j −

∑
m j

ṠmC(i j)
m

′
α′

j, (46)

and the spin-Berry connection term on the right-hand side is
necessary to compensate the extra term appearing on the left-
hand side in case of an {S}-dependent transformation.

Concluding, the effective Lagrangian emerging in the low-
energy sector of hybrid spin-electron dynamics represents
a non-Abelian SU(n) gauge theory. This is reminiscent of
standard quantum field theories [50], where the Lagrangian is
invariant under simultaneous transformations of coupled mat-
ter and gauge fields, and where these gauge transformations
involve a gauge group, like SU(n), and are local in space-time.
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There are a couple of differences though: Within non-Abelian
spin-dynamics theory, space-time is not only replaced by a
compact parameter manifold, namely, the Cartesian product
of classical Bloch spheres representing the space of the spin
configurations, but furthermore the spin configurations have
their own dynamics. The theory is thus much more related to
gauge theories that have been devised for molecular physics
[33], where the state space of the nuclei, when treated clas-
sically, defines a dynamical parameter manifold, and where
the role of the gauge field is played by the non-Abelian Berry
connection.

Finally, it is worth mentioning that there is a second,
less important, class of gauge freedom. This concerns the
vector potential A(Sm) [see the first term of L in (8)], i.e.,
already in the full Lagrangian. Any transformation of the
unit vector e �→ e′ leads to a transformed potential A(Sm) �→
A′(Sm) but leaves its curl invariant. This even includes “local”
m-dependent transformations A(Sm) �→ A′

m(Sm) resulting
from e �→ e′

m. However, since only the curl ∇S × A(Sm) en-
ters the equations of motion resulting from the full or from
the effective Lagrangian [see Eq. (20) for instance], these are
invariant.

VII. MINIMAL MODEL

For a further discussion of non-Abelian spin-dynamics the-
ory, we will present numerical results for a minimal model,
which includes a few degrees of freedom only but is sufficient
to illustrate several key aspects. Our intention is to show by
example that and how our theoretical approach can be evalu-
ated in practice, how the numerical results compare with the
full solution of the equations of motion, and what improve-
ments the theory offers over the purely adiabatic (Abelian)
version. This may also be seen as a preparation for future ap-
plications to more realistic but also more complicated physical
systems, where various secondary issues become important.

The Hamiltonian of our toy model is given by

Ĥ = −T
∑

〈i, j〉,σ
c†

iσ c jσ + Jsi0 S − BS. (47)

It describes a single classical spin (M = 1) locally exchange
coupled (coupling constant J > 0) to a noninteracting tight-
binding model in an open chain geometry with a small
number of sites L hosting N = L electrons, i.e., a half-filled
conduction-electron system. The spin is coupled to the first
site of the chain i0 = 1. This is the s-d model [18] discussed
in the Introduction and the same model as in Ref. [28]. En-
ergy and time units are fixed by setting the nearest-neighbor
hopping amplitude to T = 1. In addition, the Hamiltonian
includes a local magnetic field of strength B coupling to the
classical spin S. The model is visualized in Fig. 1.

The field term is employed to initiate the real-time dynam-
ics: At time t = 0 the system is prepared in the ground state
of Ĥ with the field in the x direction, i.e., the spin S = Sex

is aligned to B = Bex, and the conduction-electron state is
the ground state |�(t = 0)〉 = |�0(S)〉. Time propagation for
t > 0 is driven by the same Hamiltonian but with the field
pointing in the z direction. Dynamics is thus initiated by a
sudden change of the field direction from x to z direction.

FIG. 1. Sketch of the minimal model studied numerically. A
classical spin S of length |S| = 1 is antiferromagnetically exchange
coupled with coupling strength J > 0 to the local spin moment si0

at the first site i0 = 1 of a system of conduction electrons on a one-
dimensional chain with open boundaries. T is the nearest-neighbor
hopping. Real-time dynamics is initiated by a sudden change of the
direction of a local magnetic field B coupled to S.

For t > 0 one expects that the spin starts precessing around
the z axis. In the adiabatic approximation with n = 1, the
electron system will follow the respective spin direction
instantaneously, and its state at time t would be the instan-
taneous ground state |�0(S(t ))〉. The timescale on which
the precession takes place is given by the inverse of the
Larmor frequency ωL = B. Depending on the field strength,
this timescale τL = 1/ωL = 1/B can be much shorter than the
inverse of the finite-size gap � = O(T/L). With T = 1 we
thus expect that the adiabatic approximation breaks down for
B � T/L and that excited states |� j (S)〉 with 0 < j < n − 1
will be populated. The number of states n included in the
S-dependent basis controls the accuracy of the non-Abelian
spin-dynamics approach.

For the single classical-spin model the effective equa-
tions of motion (25) and (26) are somewhat simplified. For
M = 1 we can skip the m index and take the cross product
with S on both sides of (25). Furthermore, we have 〈∂SĤint〉 =
J〈si0〉 − B and ∂SHcl = 0. Therewith we get

Ṡ = J〈si0〉 × S − B × S
1 − S〈�〉 , (48)

where 〈�〉 = ∑
i j α

∗
i �

(i j)α j is the expectation value of the

pseudovector �(i j) with components 
(i j)
α = 1

2

∑
βγ εαβγ 

(i j)
βγ

that can be constructed for M = 1 due to the antisym-
metry of the Berry curvature tensor under β ↔ γ for
each pair (i j) [see Eq. (31)]. Furthermore, 〈si0〉 = 〈si0〉t =∑

i j α
∗
i (t )〈�i(S(t ))|si0 |� j (S(t ))〉α j (t ).

Remarkably, there is a renormalization of the precession
frequency resulting from the geometrical spin torque, which
has already been studied for the adiabatic case [28,35–37].
This manifests itself as an additional factor 1/(1 − S〈�〉) in
(48). In the adiabatic case n = 1, the expectation value 〈�〉 is
strictly parallel or antiparallel to the classical-spin orientation
due to symmetry reasons [28]. For S ↑↑ 〈�〉 this results in
a faster precessional dynamics, and its orientation is even
reversed if S〈�〉 > 1, while for S ↑↓ 〈�〉 the precession is
slowed down. Exactly at S〈�〉 = 1 the right-hand side of
(48) becomes singular. This is linked to a divergence of the
precession frequency which, however, becomes relevant in an
extreme case only: For the adiabatic case and L = 1, it was
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found in Ref. [28] that singular dynamics can in principle
be approached, if the length of the classical spin |S| → 1

2 .
At the same time, however, to stay in the adiabatic regime
of the model, it was necessary to consider an ever-increasing
coupling strength, i.e., J → ∞.

Here, we see that the same type of singularity is in principle
also present in the nonadiabatic case (for M = 1). Generally,
however, we find 0 < S〈�〉 < 1 (for antiferromagnetic ex-
change coupling J > 0): A possible singularity is regularized
for n > 1 due to contributions from excited states and partly
also due to the fact that 〈�〉 and S are no longer necessarily
collinear.

The following NA-SD studies of the minimal model
are based on a numerical solution of the coupled effec-
tive equations of motion (48) for the classical spin S and
(26) for the wave function {α}. For the computation of
the expectation value of the spin-Berry curvature 〈�〉 we
profit from simplifications, which hold in case of a nonin-
teracting conduction-electron system. These are detailed in
Appendix D.

We also compare the results of the NA-SD theory with the
full solution of the fundamental equations of motion (5) and
(6), which is obtained independently. More explicitly, Eq. (5)
for the minimal model reads as

Ṡ = J〈si0〉t × S − B × S. (49)

Furthermore, in case of a noninteracting electron system,
Eq. (6) can be replaced by the equation of motion

i
d

dt
ρ = [T (eff), ρ] (50)

for the one-particle reduced density matrix ρ with elements

ρii′σσ ′ (t ) = 〈c†
i′σ ′ciσ 〉, and where the elements of the effective

hopping matrix T (eff) are given by

T (eff)
ii′σσ ′ = T δ〈ii′〉δσσ ′ + J

2
σσσ ′S δii0δi′i0 . (51)

VIII. NUMERICAL RESULTS

A. Full theory

The precession around the z axis defined by the local
magnetic field is expected to be the dominant effect in the
classical-spin dynamics. In fact, this is the main phenomenon
found by solving the full set of equations of motion (49) and
(50). Figure 2 displays numerical results obtained with the full
theory for a system with L = 10 sites at half-filling N = L,
and for generic parameter values J = 1 and B = 0.1. The
x component of the classical spin undergoes a quite regular
oscillation with a period close to 2π/ωL = 2π/B ≈ 62.8. The
y component exhibits the same but phase-shifted dynamics.
We note that, for the selected parameter set, the geometrical
spin torque is too small to produce a sizable renormalization
of the precession frequency.

Damping of the spin dynamics and eventual alignment of
the classical spin with the field B = Bez is typically a weaker
effect, which takes place on a much longer timescale (see,
e.g., the discussion in Refs. [10,15,16]). For a closed, finite
and with L = 10 small system, as considered here, relaxation
will be imperfect anyway, and even in the long-time limit, the

FIG. 2. Time evolution of the x and the z components of the
classical spin as obtained from the full theory for a system with
L = 10 sites at half-filling N = L. Parameters: J = 1, B = 0.1. The
energy and time units are set by fixing the nearest-neighbor hopping
at T = 1.

system cannot fully approach its ground state locally, in the
vicinity of i0. Uncovering this type of relaxation dynamics
requires much larger systems, as discussed in Refs. [51,52],
for example.

Figure 2 also displays the z component of the spin. In case
of a perfect precessional motion, one would expect a constant
Sz. As is seen in the figure, however, an almost oscillatory
motion of Sz with some additional irregularities is found in-
stead. This nutation of the spin is reminiscent of gyroscope
theory [11,12], but is not understood easily. An explanation
in terms of linear-response theory [see Eq. (1)], i.e., Redfield
theory for open quantum systems, involves the second-order
term in the Taylor expansion of the memory kernel [15,27].
For the parameters considered here, the nutation effect is
at least an order of magnitude smaller as compared to the
precessional dynamics (see Fig. 2). There are cases, however,
where precessional and nutational oscillations can be of the
same order of magnitude. The additional “irregularities” on
top of the nutation are even more subtle. At this level of reso-
lution at the latest, the complexity of the dynamics caused by
the nonlinearity of the quantum-classical equations of motion
appears to prohibit a simple explanation.

B. Anomalous precession

In the case of strong exchange coupling J � T , the classi-
cal spin S and the local magnetic moment 〈si0〉 at i0 are tightly
bound together. In this regime one would thus expect that 〈si0〉
follows the classical-spin direction almost instantaneously
such that 〈si0〉 is almost perfectly aligned antiferromagneti-
cally to S. The time evolution of the angle enclosed by S
and 〈si0〉 is shown in Fig. 3. For J = 1 the mean deviation of
the angle from 180◦ is in fact about 2◦ only, and it shrinks
with increasing J (see the result for J = 15). On the other
hand, the absolute value of the local moment 〈si0〉 of the
conduction-electron systems that is induced by S, increases
from |〈si0〉| ≈ 0.18 at J = 1 to |〈si0〉| ≈ 0.49 at J = 15. The
net effect, however, is that the spin torque on S originating
from the exchange term J〈si0〉 × S is weak compared to the
torque due to the field −B × S. Following naive adiabatic
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FIG. 3. Time evolution of the angle enclosed by the classical spin
S and the expectation value of the local spin of the electron system
at the impurity site 〈si0 〉. Results as obtained by the full theory for
J = 1 (blue) and J = 15 (orange). Other parameters as in Fig. 2.

theory one would therefore expect a precessional motion of
S in the x-y plane with a frequency ωp close to the Larmor
frequency ωL = B. However, this naive picture in principle
disregards the effect due to the geometrical spin torque, which
can be sizable. It is thus instructive to compare the naive
expectation as well as adiabatic spin-dynamics (ASD) theory
with the full solution of the fundamental equations of motion.

Numerical results for a strong coupling J = 15 are dis-
played in Fig. 4. The full theory (see red curve) does predict an
oscillatory motion of Sx as expected for precessional dynam-
ics. However, the precession is not perfect: Note, e.g., that Sx

does not reach its minimum value Sx = −1, while Sx ≈ +1
after a full period. In fact, the precession does not take place
in the x-y plane but within a plane that is a somewhat tilted
and, furthermore, the plane normal n ∝ S × Ṡ is slightly time
dependent.

The most important effect seen in Fig. 4, however, is the
strongly enhanced precession frequency ωp ≈ 0.19, which
is close to twice the Larmor freqency ωL = B = 0.1. This
anomalous precession frequency ωp is clearly at variance
with the naive expectation and must therefore result from the

FIG. 4. Time dependence of the x component of the classical spin
for L = 10, J = 15, T = 1, B = 0.1. Results as obtained from ASD
(n = 1, orange), NA-SD with n = 2 (blue), and the full theory (red).

FIG. 5. The same as in Fig. 4 for the NA-SD (blue curve) and the
full theory (red) but displayed on a classical Bloch sphere. The blue
dot marks the spin position at time t = 0. Green curve: unit vector
n normal to the instantaneous precession plane. The trajectories are
shown for 0 � t � 100.

renormalization factor 1/(1 − S〈�〉) in (48). In fact, the full
theory (red) almost perfectly agrees with the prediction of
the non-Abelian spin-dynamics (NA-SD) theory (blue), when
spanning the low-energy subspace En({S}) by the instanta-
neous ground and first excited states, i.e., for n = 2.

Figure 5 presents the same results of the NA-SD (blue
curve) and the full theory (red) in a classical Bloch-sphere
representation. At t = 0, the motion of S starts at S = (1, 0, 0)
(see blue dot) and completes about three full periods up to the
maximum propagation time t = 100. The dynamics is close
to a planar precession but the instantaneous plane normal n
(green curve) exhibits a weak time dependence and precesses
itself around an axis that is somewhat tilted against the z
axis. The full theory exhibits some additional wiggles which
can also be seen in Fig. 4 already and which are absent in
the NA-SD. A low-energy subspace with more than n = 2
dimensions would be necessary to capture this effect. Apart
from that, however, there is an almost perfect agreement of
the NA-SD results with the results of the full theory.

While this is very satisfying and underpins the construction
of the NA-SD, there is an interesting problem remaining:
Comparing with the n = 1 theory, i.e., with ASD, there is
strong discrepancy. ASD (see orange curve in Fig. 4) does
in fact yield the same result as the naive adiabatic picture
for the present setup since the (n = 1) spin-Berry curvature
vanishes identically: � = 0. This has been noted in Ref. [28]
already, and the anomalous precession frequency has been ex-
plained by referring to an effective two-spin model Htwo-spin =
Jsi0 S − BS which disregards the presence of the sites i = i0,
which can be argued to be justified in the strong-J regime. The
two-spin model indeed predicts � = 1

2 S, so that the renor-
malization factor 1/(1 − �S) = 2, which is in reasonable
agreement with the results of the full theory.

The remaining problem is to clarify why, for the full model
(47), the n = 1 spin-Berry curvature vanishes. One should
note that there is actually an odd-even effect. For an odd
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number of sites L, the spin-Berry curvature is in fact finite,
and the agreement with the full theory is satisfying already at
the n = 1 level, while extending the effective theory to n = 2
yields smaller corrections only.

The odd-even effect can in fact be explained by a com-
bination of time-reversal symmetry and the fact that a local
spin-dependent perturbation applied to a nonmagnetic ground
state cannot induce a finite spin polarization in one dimension.
For J = 0, the ground state |�0〉 of a spin SU(2)-symmetric
tight-binding model is a total-spin singlet. For J > 0, we
have |�0〉 = |�0(S)〉, where the S dependence is induced
by the local perturbation JSsi0 . Assuming, without loss of
generality, that S = Sez, it is given by a Slater determinant
of the form |�0(S)〉 = ∏

k

∏
k′ c†

k↑c†
k′↓|vac〉, where k, k′ refer

to the occupied spin-↑ and spin-↓ eigenstates of the full
Hamiltonian, including the perturbation, with eigenenergies
ε↑(k) and ε↓(k′), respectively.

For a one-dimensional particle-hole-symmetric tight-
binding model at half-filling, a local spin-dependent but
spin-diagonal perturbation JSzsi0z does not change the number
of ↑ and of ↓ eigenstates with eigenenergies ε↑(k), ε↓(k) < 0,
for arbitrary coupling strength J [53]. This implies that for
even L and at half-filling N = L, we must have N↑ = N↓ =
N/2. Consequently, the number of factors in the Slater deter-
minant, labeled by k and k′, is the same, and thus |�0(S)〉 is
still a total-spin singlet (constructed from S-dependent one-
particle states), irrespective of the strength of the perturbation
J . This argument holds for any direction of S and thus implies
that �|�0(S)〉 = |�0(S)〉, i.e., the ground state is invariant
under time reversal � for all S. Hence, the same holds for its
S derivative: �|∂S�0(S)〉 = |∂S�0(S)〉. Some details on the
invariance under time reversal are given in Appendix E.

Specializing (28) to the adiabatic case n = 1 we thus have
� = 1

2

∑
αβγ εαβγ eαβγ with

βγ = i[〈∂Sβ
�0||∂Sγ

�0〉 − (β ↔ γ )]

= −2 Im〈∂Sβ
�0||∂Sγ

�0〉
= −2 Im〈∂Sβ

�0|�†�|∂Sγ
�0〉∗

= −2 Im〈∂Sβ
�0||∂Sγ

�0〉∗ = 0, (52)

where we have exploited the antiunitarity of �. In an exten-
sion of the discussion of Sec. V for the weak-J case, we can
thus infer that the Abelian spin-Berry curvature must vanish
for even L and arbitrary J in one dimension. Let us emphasize
that the argument cannot be transferred to the non-Abelian
case. For n > 1, we have 〈�〉 = 0 in general.

C. Nutation

Apart from the precessional motion, the classical-spin dy-
namics also exhibits nutational oscillations with a frequency
that is in general different from the precession frequency. The
nutation is most easily seen in an oscillatory behavior of the
z component of the classical spin: The field points into the z
direction, B = Bez, such that the z component of the torque
on S due to the field must vanish (B × S)z = 0. A nonzero
time derivative Ṡz = 0 is, therefore, solely due to the exchange
coupling and directly proportional to J (〈si0〉 × S)z.

As such, a nutational motion cannot be captured by n = 1
adiabatic spin-dynamics (ASD) theory: The adiabatic con-

FIG. 6. Time dependence of the z component of the classical spin
as obtained from n = 2 (solid blue curve) and from n = 4 (dashed
blue curve) NA-SD, compared to the result (red curve) of the full
theory. L = 11, J = 1, B = 0.1.

straint and a simple symmetry argument immediately imply
that the ground-state local moment 〈si0〉 = 〈�0(S)|si0 |�0(S)〉
must be strictly antiparallel (for J > 0) to S, which in turn
implies that Sz is a constant of motion. The adiabatic spin dy-
namics is thus perfectly precessional albeit, opposed to naive
adiabatic theory, with a renormalized precession frequency, as
already discussed above.

Numerical results for L = 11 as obtained from non-
Abelian spin-dynamics theory with n = 2 [see Fig. 6 (blue
curve)] show that there can be a considerable variation of the
amplitude of the z component of S. The nutational oscillation
is perfectly harmonic and Sz stays non-negative, when starting
with Sz = 0 at t = 0. As compared with the Sz dynamics
predicted by the full theory (red curve), the step from n = 1
(ASD) to n = 2 (most simple variant of NA-SD) is in fact the
essential one, and the results for n = 2 are already close to
those of the full theory. The latter, however, predicts a slight
deviation from perfectly harmonic nutational motion, which
is not reproduced with n = 2 but can be captured with an im-
proved (n = 4) approximation within the NA-SD (dashed blue
curve). A further increase of n becomes technically more and
more involved and has also been found to improve the results
in a nonmonotonic way only. It is thus very fortunate that the
main improvement of the n = 1 ASD is already achieved with
n = 2 NA-SD. For the rest of the discussion, we will therefore
stick to the n = 2 case.

The physical cause of the nutation can be traced back
to the time-dependent admixture of the first excited state
|�1(S(t ))〉 to the instantaneous ground state |�0(S(t ))〉.
Figure 7 for J = 1 (blue curve) displays the absolute square
of the ground-state coefficient |α0|2 as function of propagation
time corresponding to the n = 2 NA-SD result for Sz in Fig. 6.
Note that we have |α1|2 = 1 − |α0|2 for n = 2. As for t = 0
the conduction-electron system is prepared as the ground
state of Ĥ , the ground-state weight |α0|2 = 1 initially. In the
course of time, there is a weight transfer to the first excited
state, which results in a significant reduction of the ground-
state weight down to a minimal value of |α0|2 ≈ 0.72. Within
the n = 2 NA-SD, the time-dependent weight transfer is
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FIG. 7. Time dependence of the ground-state weight |α0|2 as
obtained from NA-SD with n = 2 for a system with L = 11, for
B = 0.1, and for various coupling strengths J = 1 (blue), J = 2
(orange), and J = 10 (green).

perfectly harmonic, and its frequency is exactly the same as
the nutation frequency of Sz (see Fig. 6).

Increasing the coupling strength J results in a weaker ad-
mixture of the first excited state, as can be seen by the results
for J = 2 (orange) and J = 10 (green) in Fig. 7. This is ac-
companied by an increasing frequency of the time-dependent
weight transfer. Again, this frequency is precisely the nutation
frequency that is observed in the time dependence of Sz, which
is displayed in Fig. 8 for the different coupling strengths.
We also note that this is unrelated with the precession fre-
quency which is much less J dependent. Furthermore, also
the J dependence of the minimal (maximal) amplitude shows
the same trend for both the ground-state weight and for Sz,
respectively.

Compared to the standard perturbative linear-response
approach discussed in the Introduction, our approach thus pro-
vides an alternative explanation of nutational spin dynamics.
As in the standard theory, nutation is the first phenomenon
that is found in a systematic expansion starting around the
adiabatic limit, namely, Taylor expansion in the retardation
time on the one hand and expansion in the dimension of

FIG. 8. The same as Fig. 7 but for the time dependence of
Sz. Coupling strengths: J = 1 (blue), J = 2 (orange), and J =
10 (green).

FIG. 9. The same as Fig. 7 but for L = 10. Note that the
same color coding is used. Coupling strengths: J = 1 (blue), J = 2
(orange), and J = 10 (green).

the instantaneous low-energy subspace on the other. Another
important difference is that the NA-SD is formulated for a
closed system while the standard theory relies on a formalism
for open quantum systems. This also explains that the standard
approach necessarily predicts nonconserving Gilbert damping
accompanying the nutational motion.

The time dependence of the weight |α0|2, as shown in
Figs. 7 and 9, is reminiscent of the Rabi oscillations of the
ground-state occupation in a simple two-level system driven
by an oscillatory time-dependent external field. In our case the
driving is due to the classical spin which is precessing around
the axis of the magnetic field. However, the case is more
complicated. Opposed to the standard Rabi setup [54], the
“two-level system” emerging in the (n = 2) NA-SD is itself
time dependent, has a feedback on the classical spin induced
by the spin-Berry curvature via the geometrical torque, and
S couples locally rather than globally to a time-dependent
and in general only partially polarized local magnetic
moment.

Let us return to the results for the ground-state weight
for L = 11 shown in Fig. 7. It is tempting to interpret the
decrease of the amplitude of the oscillations of |α0|2 with

FIG. 10. The same as Fig. 9 but for the time dependence of
Sz. Coupling strengths: J = 1 (blue), J = 2 (orange), and J = 10
(green).
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FIG. 11. J dependence of the single-particle eigenenergies for
L = 10 (right) and L = 11 (left). B = 0.1.

increasing J as a consequence of approaching the adiabatic
limit, where |α0|2 = 1. In fact, this trend is consistent with the
time-averaged angle enclosed by S and 〈si0〉 approaching 180◦
with increasing J (see Fig. 3). However, for a tight-binding
chain with an even number of sites (L = 10), see the data in
Fig. 9, we find that the oscillation amplitude of |α0|2 grows
with increasing J . We conclude that there is an odd-even
effect not only with respect to the precessional, but also to
the nutational dynamics. This odd-even effect is also obvious
from the comparison of Figs. 8 and 10.

For an explanation of the effect, we consider the 2L single-
particle eigenenergies εk of the minimal model (47). Their
J dependence is shown in Fig. 11 for L = 10 (right, blue
lines) and L = 11 (left, orange lines). Only at J = 0 are
the eigenenergies spin degenerate, any finite J > 0 immedi-
ately lifts this degeneracy. Consistent with analytical results
available for tridiagonal pseudo-Toeplitz matrices [53], we
find that the εk (J ) curves do not intersect and that a finite
“critical” coupling J ≈ 2 is necessary to split off a pair of
bound states, localized in the vicinity of i0, from the “con-
tinuum” of delocalized states. Importantly, however, we note
that the finite-size gap �E between the highest occupied
and the lowest unoccupied eigenenergy, right below and right
above ε = 0, respectively, shows opposite trends for L = 10
and 11.

The J dependence of the gap is displayed in Fig. 12. We
note that �E monotonically shrinks with J for L = 10 (blue
lines) and grows with J for L = 11. This is also characteristic
in general, for systems with an even and odd number of
sites, respectively. According to the adiabatic theorem [54],
the real-time dynamics is close to adiabatic if the gap size is
large compared to the inverse τ−1 of the typical timescale τ .
Here, this can be estimated as given by τ−1 ∼ B = 0.1. For
the case L = 11, this indeed implies that the adiabatic limit is
approached with increasing J , while for L = 10 a decreasing
J favors adiabatic dynamics. This also explains the different J
dependence of the amplitudes of the nutational oscillations of
Sz shown in Figs. 8 and 10, respectively.

FIG. 12. The finite-size energy gap �E between the ground state
and the first excited state as function of J for L = 10 (blue) and L =
11 (orange). B = 0.1.

IX. CONCLUDING DISCUSSION

Systems of a single or a few quantum spins coupled to
an extended lattice fermion model pose notoriously difficult
quantum many-body problems. Here, by treating the impurity
spins as classical objects with a dynamics that is slow as
compared to the typical electronic timescales, we have con-
centrated on a simplified case with the ambition to exactly
trace out the high-energy scales and to arrive at an effec-
tive low-energy theory that, apart from the classical spins,
includes a minimal number of electronic degrees of freedom.
Our approach in fact represents a systematic extension of the
previously proposed adiabatic spin-dynamics (ASD) theory
[28], where unconventional spin dynamics was observed to
result from a geometrical spin torque.

For systems where the typical spin-dynamics timescale is
much slower than the timescale of the electron dynamics, the
adiabatic theorem, in case of gapped systems, tells us that
the electron state at an instant of time t is the ground state
of the electronic Hamiltonian for the given spin configuration
at t . Alternatively and more generally, one may argue that adi-
abatic dynamics is due to fast electronic relaxation processes
dissipating the excess energy to the bulk of the system or to
external baths. These standard arguments and more explicit
criteria, which typically motivate a purely adiabatic theory, are
rarely controllable and hardly ever fully met in applications
to realistic systems. In most practical cases, it is a priori
extremely difficult to decide whether or not the dynamics is
adiabatic. Our approach therefore aims at a straightforward
way to improve the adiabatic spin-dynamics theory in an, at
least in principle, systematic manner.

As the central and sole approximation we assume that
the electronic state at any instant of time t lies in the
n-dimensional low-energy sector spanned by the instan-
taneous ground state, realized for the classical-spin con-
figuration at time t , and the corresponding lowest n − 1
instantaneous excited states of the electron system. The
approximation is implemented as a holonomic constraint
within a Lagrange formalism. We have seen that the ef-
fective low-energy theory unfolds itself straightforwardly
and naturally takes the form of a non-Abelian gauge
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theory, where the non-Abelian spin-Berry connection and
spin-Berry curvature enter the resulting effective equa-
tions of motion for the electronic state and for the spins.
The gauge freedom is given by the arbitrary choice
of an orthonormal basis in the instantaneous low-energy
subspace of the electron system. SU(n) gauge transformations
leave observables invariant. The number n of states considered
in the non-Abelian spin dynamics (NA-SD) theory can be seen
as a control parameter, so that comparing results for different
n allows us to check the validity of the approach, at least in
principle.

The physically interesting point of the emergent low-
energy theory is that the spin dynamics is crucially affected by
the gauge-invariant expectation value of the (gauge-covariant)
spin-Berry curvature, i.e., by an additional geometrical spin
torque. In the ASD (n = 1) a nonzero spin-Berry curvature
is obtained for systems with broken time-reversal symmetry
only. Opposed to ASD (n = 1), however, the non-Abelian spin
dynamics (NA-SD) theory incorporates a spin-Berry curva-
ture tensor, the elements of which are generically nonzero
even in the more common time-reversal-symmetric case and
both for the antiunitary time-reversal operator squaring to +1
and to −1. The NA-SD formalism also provides an elegant
and straightforward explanation for the odd-even effect ob-
served as function of the system size in the simpler ASD [28].

Applications of the NA-SD theory are promising in cases,
where (i) the classical-spin approximation is reasonable,
e.g., for magnetic atoms with high-spin quantum numbers
or, more generally, with well-developed local magnetic mo-
ments, which are stable on timescales exceeding all other
relevant timescales of the full system. This excludes, e.g.,
Kondo systems with a fast screening of the local moment.
Strong magnetic anisotropies at surfaces or interfaces, on
the other hand, can favor extremely stable magnetic mo-
ments with respect to both longitudinal and transversal spin
fluctuations [55].

(ii) As regards the electron system, the amount of energy
pumped in with the initial excitation must be small com-
pared to the lowest electron excitation energies, such that a
low-dimensional instantaneous low-energy subspace can fully
capture the essential dynamics. Such situations could be re-
alized in case of magnetic atoms coupled to tight-binding
systems with essentially a finite number of orbitals, e.g.,
to metallic nanoislands supported by an insulating substrate
[55] or in nanowires [35], for example. Correlated molecular
magnetic systems are interesting as well, particularly in cases
with a degenerate ground-state manifold (see Ref. [56] for an
instructive example), which naturally defines the low-energy
subspace. In case of formally infinite, e.g., condensed-matter
systems, NA-SD may be applicable whenever there is a low-
energy sector with a finite gap to excited states at higher
energies, such as insulating systems with a symmetry-induced
degenerate ground state. Topological insulators with gapless
edge modes, e.g., Chern or Z2 insulators, represent another
class of systems which are worth to be considered, and the
study of the relation between different Berry curvatures, the
spin-Berry curvature considered here and the conventional

Berry curvature of topological band theory is expected to
be particularly instructive. The real-time dynamics of clas-
sical spins coupled to the edge of a one-dimensional spinful
Su-Schrieffer-Heger model [52] and to a two-dimensional
spinful Kane-Mele model [57] have been discussed recently.
In the former case, the low-energy subspace (at one edge) is
spanned by two quantum states only. For the Z2 Kane-Mele
nanoribbon, the helical edge modes form a continuum but
with an extremely small phase space for spin excitations,
which suggests that considering a finite number of basis states
for the low-energy sector could be a reasonably good approx-
imation.

For classical spins coupled to gapless metallic bulk sys-
tems, any low-energy sector is formally infinite dimensional.
While the adiabatic theorem does not apply to this case,
one still expects that a low-energy subspace defined by a
certain maximum excitation energy �E above the many-
electron ground state could reliably capture the electron
dynamics, depending on the initial excitation energy pumped
into the system. If the electron system may be treated in
the independent-electron approximation, the application of
NA-SD is well conceivable since it merely involves diagonal-
ization of the single-electron hopping matrix and computation
of matrix elements of two-electron operators with two-
electron and two-hole excited states above the Fermi sea (see
Appendix D). By varying �E , the reliability of the approxi-
mation can be tested.

Here, as a proof of principle, we performed numerical
calculations for a minimal but nontrivial model consisting
of a single impurity spin coupled to the first site of a one-
dimensional noninteracting tight-binding model with a small
number of L sites. The real-time dynamics is initiated by
a sudden change of the direction of a local magnetic field
coupled to the impurity spin only. Results obtained from ASD
(n = 1) and NA-SD (for n = 2 and 4) have been checked
against results obtained from the numerical solution of the
full, unconstrained set of equations of motion for the coupled
spin-electron system. We find that the NA-SD reproduces the
anomalous precession frequency that is already predicted by
ASD for systems with an odd number of sites L. For even
L, NA-SD correctly predicts anomalous precession, which is
absent in the purely adiabatic approach. This deficiency of the
ASD can be explained by a symmetry analysis. Depending
on the coupling strength J , the dynamics of the impurity spin
can exhibit a considerable nutational motion. As judged by
comparison with the full theory, this more subtle effect is
almost quantitatively covered with NA-SD for n = 2. NA-SD
calculations for n = 4 show an even closer agreement with the
full theory.
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APPENDIX A: EXPLICIT FORM OF THE EQUATIONS OF MOTION FOR THE CLASSICAL SPINS

The equations of motion (25) for the classical spins derived in Sec. III are implicit differential equations. An explicit form,
however, is more convenient for the numerical evaluation. Here, we briefly discuss a corresponding reformulation. We start with
(25) and apply ×Sm from the right. This yields

Ṡm = 〈∂Sm Ĥint〉 × Sm + ∂Sm Hcl × Sm +
∑

δ

∑
kγ

(∑
αβ

εαβδSmβ〈〉kγ ,mα

)
Ṡkγ eδ. (A1)

Next, we combine the components of all M spins in a single 3M-dimensional column,

S := (S1, S2, . . . )T =
M∑

m=1

eM
m ⊗ Sm. (A2)

Here eM
m is the mth canonical M-dimensional unit vector and ⊗ denotes the Kronecker product. Writing χmδ,kγ =∑

αβ εαβδSmβ〈〉kγ ,mα for short, the last term on the right-hand side of (A1) can be written as
∑

δ (χṠ )mδeδ , and we find the
explicit form of the 3M-dimensional system of differential equations of motion:

Ṡ = (1 − χ )−1

(∑
m

eM
m ⊗ (〈∂Sm Ĥint〉 × Sm + ∂Sm Hcl × Sm

))
. (A3)

This involves an inversion of the 3M-dimensional matrix 1 − χ .

APPENDIX B: NORMALIZATION CONDITIONS

The equations of motion (25) and (26) respect the normalization conditions (27). We start with the wave-function normaliza-
tion. Equation (26) implies

i
∑

i

α∗
i (∂tαi ) =

∑
i j

α∗
i α j〈�i|Ĥ |� j〉 − i

∑
i j

α∗
i α j〈�i|∂t |� j〉 = −i

∑
i

(∂tα
∗
i )αi. (B1)

This yields ∂t
∑

i |αi|2 = 0 as required. Conservation of the length of the classical spins can be verified directly from their
equations of motion (25) or, more conveniently, by taking the scalar product of both sides of (A1) with Sm. This yields SmṠm = 0
as required. However, conservation of the spin length has been exploited already in deriving (25), directly after (20).

Alternatively, we may thus explicitly take care of the normalization conditions S2
m = 1 by treating them as additional

constraints when deriving the equations of motion from the Lagrangian (13). This is done with M Lagrange multipliers λm,
i.e., we replace the Lagrangian by

L′
eff({S}, {Ṡ}, {α}, {α∗}, {α̇}, {α̇∗}, {λ}) = Leff({S}, {Ṡ}, {α}, {α∗}, {α̇}, {α̇∗}) −

∑
m

λm
(
S2

m − 1
)
, (B2)

such that the Euler-Lagrange equation for λm reads as S2
m = 1. Further, the equation of motion for a classical spin Sm is

modified as

0 = 1

|Sm|3 Ṡm × Sm + 〈∂Sm Ĥint〉 + ∂Sm Hcl +
∑

k

∑
βγ

Ṡkγ 〈〉kγ ,mβeβ + 2λmSm. (B3)

Acting on both sides of the equation with ×Sm and with ·Sm, respectively, gives a system of two equations, which is equivalent
with (B3):

0 = (Ṡm × Sm) × Sm

|Sm|3 + 〈∂Sm Ĥint〉 × Sm + ∂Sm Hcl × Sm +
∑

k

∑
βγ

Ṡkγ 〈〉kγ ,mβeβ × Sm,

0 = 〈∂Sm Ĥint〉 · Sm + ∂Sm Hcl · Sm +
∑

k

∑
βγ

Ṡkγ 〈〉kγ ,mβeβ · Sm + 2λmS2
m. (B4)

Exploiting S2
m = 1 in the second equation fixes the Lagrange multipliers as

λm = −1

2

(
〈∂Sm Ĥint〉 · Sm + ∂Sm Hcl · Sm +

∑
k

∑
βγ

Ṡkγ 〈〉kγ ,mβeβ · Sm

)
, (B5)

while using it in the first equation reproduces the familiar equation of motion (25).
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APPENDIX C: SPIN-BERRY CURVATURE IN TERMS OF A PROJECTION OPERATOR

To prove (28) we start from the definition (22) of the non-Abelian spin-Berry curvature and insert the definition for the
spin-Berry connection (15). This gives


(i j)
kγ ,mβ

= i[〈∂Skγ
�i|∂Smβ

� j〉 − 〈∂Smβ
�i|∂Skγ

� j〉]

+ i
n−1∑
l=0

[〈�i|∂Skγ
|�l〉〈�l |∂Smβ

|� j〉 − 〈�i|∂Smβ
|�l〉〈�l |∂Skγ

|� j〉], (C1)

where we have exploited the commutativity of the derivatives ∂Skγ
and ∂Smβ

. Using the completeness relation and inserting a
unity,

1 = Qn +
n−1∑
l=0

|�l〉〈�l |, (C2)

where Qn = ∑
i�n |�i〉〈�i| is the projector onto the orthogonal complement of the low-energy space En({S}), we find


(i j)
kγ ,mβ

= i[〈∂Skγ
�i|Qn|∂Smβ

� j〉 − 〈∂Smβ
�i|Qn|∂Skγ

� j〉]

+ i
n−1∑
l=0

[〈∂Skγ
�i|�l〉〈�l |∂Smβ

� j〉 − 〈∂Smβ
�i|�l〉〈�l |∂Skγ

� j〉]

+ i
n−1∑
l=0

[〈�i|∂Skγ
|�l〉〈�l |∂Smβ

|� j〉 − 〈�i|∂Smβ
|�l〉〈�l |∂Skγ

|� j〉]. (C3)

Noting that 〈∂Smβ
�i||� j〉 = −〈�i|∂Smβ

|� j〉, we see that the last two terms on the right-hand side cancel, and thus


(i j)
kγ ,mβ

= i[〈∂Skγ
�i|Qn|∂Smβ

� j〉 − 〈∂Smβ
�i|Qn|∂Skγ

� j〉]. (C4)

APPENDIX D: NUMERICAL COMPUTATION OF SPIN-BERRY CURVATURE AND CONNECTION

The equations of motion (25) and (26) form a coupled, nonlinear set of ordinary differential equations, which can be solved
numerically by standard techniques. Making use of the fact that the conduction-electron system is noninteracting, however,
is essential for an efficient computation of the key quantities of the electron system, namely, the spin-Berry curvature and
connection.

We start by specializing Eqs. (23) and (28) to the single-spin case M = 1,

〈〉βγ = i
n−1∑

i, j=0

α∗
i α j (〈∂β�i|Qn|∂γ � j〉 − 〈∂γ �i|Qn|∂β� j〉) = 2

n−1∑
i, j=0

∑
l�n

Imα∗
i α j〈�i|∂β |�l〉〈�l |∂γ � j〉, (D1)

and use the identity

〈�i|∂β |�l〉 =
〈�i| ∂Ĥ

∂Sβ
|�l〉

El − Ei
(Ei = El ) (D2)

to express 〈�〉 in the form

〈〉βγ = −2 Im
∑

i j

El =Ei,Ej∑
l

α∗
i α j

〈�i| ∂Ĥ
∂Sβ

|�l〉〈�l | ∂Ĥ
∂Sγ

|� j〉
(Ei − El )(Ej − El )

= −2 ImJ2
∑

i j

El =Ei,Ej∑
l

α∗
i α j〈�i|si0β |�l〉〈�l |si0γ |� j〉

(Ei − El )(Ej − El )
. (D3)

The matrix elements can be computed by plugging in the definition of the local spin si = 1
2

∑
σσ ′ c†

iσ σσσ ′ciσ ′ and by transforming
to the eigenstates of the effective hopping matrix:

c†
iσ =

∑
kσ̃

U †
kσ̃ ,iσ c†

kσ̃
, ciσ =

∑
kσ̃

Uiσ,kσ̃ ckσ̃ . (D4)
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This yields

El =Ei,Ej∑
l

〈�i|si0β |�l〉〈�l |si0γ |� j〉
(Ei − El )(Ej − El )

= 1

4

∑
σσ ′ττ ′

∑′′
kk′qq′
σ̃ σ̃ ′ τ̃ τ̃ ′

U †
kσ̃ ,i0σ

σ
(β )
σσ ′Ui0σ ′,k′σ̃ ′U †

qτ̃ ,i0τ
σ

(γ )
ττ ′ Ui0τ ′,q′ τ̃ ′

× 〈�i|c†
kσ̃

ck′σ̃ ′c†
qτ̃ cq′ τ̃ ′ |� j〉

(Ei − Ej + εq′ τ̃ ′ − εqτ̃ )(εq′ τ̃ ′ − εqτ̃ )
, (D5)

where
∑′′ means that the indices k, k′, q, q′, σ̃ , σ̃ ′, τ̃ , τ̃ ′ can only take values such that c†

k′σ̃ ′ckσ̃ |i〉 and c†
qτ̃ cq′ τ̃ ′ | j〉 are not contained

in the low-energy subspace. For the summation indices it is required that

(k, σ̃ ) = (k′, σ̃ ′) and (q, τ̃ ) = (q′, τ̃ ′) (D6)

since i = l and j = l . Plugging this into (D3) gives an expression that can be evaluated straightforwardly by numerical means.
We also have to compute the Berry connection, i.e., the matrix elements 〈�i|∂β |� j〉 in (26) [see also (15)]. For i = j we can

again use (D2) since the single-particle energies are generically nondegenerate for finite J and since this implies that states |�i〉
and |� j〉 with Ei = Ej must differ in more than one single-particle eigenstate. For i = j, on the other hand, 〈�i|∂β |�i〉 must be
computed differently. We exploit that the many-particle state |�i〉 is a Slater determinant:

|�i〉 = c†
n1

c†
n2

. . . c†
nN

|vac〉. (D7)

Therewith, we get

∂Sβ
|�i〉 =

N∑
i=1

c†
n1

. . . (∂Sβ
c†

ni
) . . . c†

nN
|vac〉 (D8)

with

∂Sβ
c†

ni
= ∂Sβ

∑
jσ

Ujσ,ni c
†
jσ =

∑
jσ

(∂Sβ
Ujσ,ni )c

†
jσ =

∑
jσ

∑
m

(∂Sβ
Ujσ,ni )U

†
m, jσ c†

m =
∑

m

(U †∂Sβ
U )mni c

†
m. (D9)

Multiplying (D8) with 〈�i| from the left yields

〈�i|∂β |�i〉 =
N∑

i=1

∑
m

(U †∂Sβ
U )mni 〈vac|cnN . . . cni . . . cn1 c†

n1
. . . c†

m . . . c†
nN

|vac〉︸ ︷︷ ︸
δnim

=
N∑

i=1

(U †∂Sβ
U )nini =

∑
n

′
(U †∂Sβ

U )nn =
∑

n

(U †∂Sβ
U )nn〈�i|n̂n|�i〉, (D10)

where
∑′

n indicates that the sum only contains those single-particle states that are occupied in the many-particle state |�i〉. The
derivative of the U matrix can be computed by standard numerical means.

APPENDIX E: TIME-REVERSAL-SYMMETRIC
GROUND STATE

We consider the minimal model with Hamiltonian H given
by (47). For J = 0 the (electronic part of the) model is in-
variant under SU(2) spin rotations. For a given direction of
the classical spin, say S = Sez, and for J > 0 the symmetry
breaks down to a U(1) symmetry under spin rotations around
the z axis. As argued in the main text, the local spin-dependent
perturbation is not strong enough to spin polarize the system,
irrespective of the coupling strength J . In this case the ground
state of H is invariant under time reversal, as is shown in the
following.

The antiunitary operator � representing time reversal in
Fock space is defined via its action on the creation and anni-
hilation operators as

�c†
i↑�† = c†

i↓, �c†
i↓�† = −c†

i↑, (E1)

where i refers to lattice sites and σ =↑,↓ to the spin pro-
jection with respect to the z axis. Due to the remaining U(1)

symmetry, the Hamiltonian can be diagonalized in the spin-↑
and spin-↓ sectors separately, i.e., the single-particle eigen-
states c†

kσ
|vac〉 of H are obtained via a spin-diagonal and

spin-independent unitary transformation:

c†
kσ

=
∑

i

Uikc†
iσ . (E2)

For the model (47) with S = Sez, the effective hopping matrix
(51) is real and symmetric, and we can thus assume a real and
orthogonal transformation matrix U . The creation operators
referring to the eigenbasis of H in the one-particle subspace
thus transform as

�c†
k↑�† = c†

k↓, �c†
k↓�† = −c†

k↑ (E3)

under time reversal.
For even N , the ground state of H is the Slater determinant

|�0〉 =
occ∏
k

c†
k↑

occ∏
k′

c†
k′↓|vac〉, (E4)
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where |vac〉 is the time-reversal-invariant vac-
uum, k = 1, . . . , N↑, and k′ = 1, . . . , N↓ with
N↑ = N↓ = N/2, as the ground state is unpolarized. Applying
� yields

�|�0〉 = (−1)N↓
occ∏
k

c†
k↓

occ∏
k′

c†
k′↑|vac〉, (E5)

and, after reordering,

�|�0〉 = (−1)N↑N↓ (−1)N↓
occ∏
k′

c†
k′↑

occ∏
k

c†
k↓|vac〉. (E6)

For N↑ = N↓ = N/2, however, the total sign is +1, and hence
the ground state is time-reversal symmetric

�|�0〉 = |�0〉. (E7)

[1] U. Nowak, Classical spin models, in Handbook of Magnetism
and Advanced Magnetic Materials (Wiley, Hoboken, NJ, 2007).

[2] G. Bertotti, I. D. Mayergoyz, and C. Serpico, Nonlinear Mag-
netization Dynamics in Nanosystemes (Elsevier, Amsterdam,
2009).

[3] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[4] A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, Cambridge, 1993).
[5] G. Tatara, H. Kohno, and J. Shibata, Phys. Rep. 468, 213 (2008).
[6] B. Skubic, J. Hellsvik, L. Nordström, and O. Eriksson, J. Phys.:

Condens. Matter 20, 315203 (2008).
[7] M. Fähnle and C. Illg, J. Phys.: Condens. Matter 23, 493201

(2011).
[8] R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A.

Ellis, and R. W. Chantrell, J. Phys.: Condens. Matter 26, 103202
(2014).

[9] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T.
Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys. Rev.
106, 893 (1957).

[10] L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153
(1935); T. Gilbert, Phys. Rev. 100, 1243 (1955); IEEE Trans.
Magn. 40, 3443 (2004).

[11] E. Butikov, Eur. J. Phys. 27, 1071 (2006).
[12] J.-E. Wegrowe and M.-C. Ciornei, Am. J. Phys. 80, 607

(2012).
[13] M. Onoda and N. Nagaosa, Phys. Rev. Lett. 96, 066603 (2006).
[14] N. Umetsu, D. Miura, and A. Sakuma, J. Appl. Phys. 111,

07D117 (2012).
[15] S. Bhattacharjee, L. Nordström, and J. Fransson, Phys. Rev.

Lett. 108, 057204 (2012).
[16] M. Sayad and M. Potthoff, New J. Phys. 17, 113058 (2015).
[17] U. Bajpai and B. K. Nikolic, Phys. Rev. B 99, 134409

(2019).
[18] S. V. Vonsovsky, Zh. Éksp. Teor. Fiz. 16, 981 (1946); C. Zener,

Phys. Rev. 81, 440 (1951); S. V. Vonsovsky and E. A. Turov,
Zh. Éksp. Teor. Fiz. 24, 419 (1953).

[19] H. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, New York, 2002).

[20] M. Sayad, R. Rausch, and M. Potthoff, Phys. Rev. Lett. 117,
127201 (2016).

[21] V. P. Antropov, M. I. Katsnelson, M. van Schilfgaarde, and
B. N. Harmon, Phys. Rev. Lett. 75, 729 (1995).

[22] J. Kuneš and V. Kamberský, Phys. Rev. B 65, 212411 (2002).
[23] K. Capelle and B. L. Gyorffy, Europhys. Lett. 61, 354 (2003).
[24] H. Ebert, S. Mankovsky, D. Ködderitzsch, and P. J. Kelly, Phys.

Rev. Lett. 107, 066603 (2011).
[25] M. Fähnle, D. Steiauf, and C. Illg, Phys. Rev. B 84, 172403

(2011).
[26] T. Kikuchi and G. Tatara, Phys. Rev. B 92, 184410 (2015).

[27] M. Sayad, R. Rausch, and M. Potthoff, Europhys. Lett. 116,
17001 (2016).

[28] C. Stahl and M. Potthoff, Phys. Rev. Lett. 119, 227203 (2017).
[29] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[30] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[31] X. G. Wen and A. Zee, Phys. Rev. Lett. 61, 1025 (1988).
[32] Q. Niu and L. Kleinman, Phys. Rev. Lett. 80, 2205 (1998).
[33] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and

J. Zwanziger, The Geometric Phase in Quantum Systems
(Springer, Berlin, 2003).

[34] Q. Niu, X. Wang, L. Kleinman, W.-M. Liu, D. M. C. Nicholson,
and G. M. Stocks, Phys. Rev. Lett. 83, 207 (1999).

[35] U. Bajpai and B. K. Nikolić, Phys. Rev. Lett. 125, 187202
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5 – Geometrical Spin Torque in a Magnet

Magnetic materials are an ideal platform for the geometrical spin torque arising in ASD and

NA-SD because they exhibit two key features. First of all, they break time-reversal symmetry,

which makes it possible to conduct the analysis in the weak-J limit using expressions from

linear response theory. Secondly, they spontaneously break a continuous symmetry, namely,

SU(2) spin-rotation symmetry, such that Goldstone’s theorem [92, 93] predicts the existence

of massless excitations in the energy spectrum. This can strongly boost the geometrical

spin torque, which is demonstrated for the Heisenberg model in the following. It is found

that there is a strong dependence on the type of interaction, i.e., if the coupling is ferro- or

antiferromagnetic, as well as the presence of anisotropies. Furthermore, the dimension of the

lattice plays a crucial role that is reminiscent of the Mermin-Wagner theorem [94–96].

5.1 – Ferromagnetic Heisenberg Model

The quantum Heisenberg model is one of the best known models to describe magnetic phe-

nomena on a microscopic scale. It is suitable for models with permanent, localised magnetic

moments whose interaction can be modelled by an exchange interaction. The Hamiltonian

of the model reads

H =
∑

ij

Jij

[
1

2
(s+
i s
−
j + s−i s

+
j ) + ∆szi s

z
j

]
(5.1)

with exchange couplings Jij and an anisotropy parameter ∆. In the following, it is assumed

that every quantum spin has the same spin quantum number s. For a negative exchange

coupling, the ground states of the model are the fully polarised states, i.e., |0〉 = |↑, ↑, . . .〉,
in which all spins are aligned parallelly. As is commonly done, we choose the spontaneously-

symmetry-broken ground state to be aligned with our quantisation axis. In general, the

eigenstates of H are given by product states

|s,m1〉1 ⊗ |s,m2〉2 ⊗ · · · ⊗ |s,mL〉L ≡ |m1,m2, . . . ,mL〉 , (5.2)

which constitute a basis of the Hilbert space. Assuming nearest-neighbour interaction only,

we get

Jij =




JH for Ri −Rj ∈ δ
0 otherwise,

(5.3)

where Ri is the position vector of the ith site and δ is the set of nearest-neighbour translation

vectors. For a hypercubic lattice in d dimensions with lattice constant a = 1, one has

δ = {ex1 ,−ex1 , . . . , exd ,−exd} (5.4)

49



5 Geometrical Spin Torque in a Magnet

with the canonical unit vector in the ith spatial direction exi . The Hamiltonian becomes

H =
∑

<ij>

JH(s−i s
+
j + ∆szi s

z
j ) (5.5)

since for nearest-neighbour sites i and j it is
[
s+
i , s

−
j

]
= 0. To describe the low-energy

excitations of the ferromagnetic Heisenberg model, it is convenient to introduce the Holstein-

Primakoff transformation [97]. This maps the spin operators onto bosonic operators ai

1

~
szi = s− ni (5.6)

1

~
s+
i =
√

2s

√
1− ni

2s
ai (5.7)

1

~
s−i =

√
2sa†i

√
1− ni

2s
(5.8)

with ni = a†iai. The bosonic operators fulfil the usual bosonic commutation relations and it

can be shown that the transformed spin operators still satisfy [siα, siβ] = εαβγsiγ . A Taylor

expansion in 1
s of the Holstein-Primakoff expressions gives

√
1− ni

2s
= 1− ni

4s
+O

(
1

s2

)
(5.9)

such that for large spin quantum numbers it is sufficient to only consider the zeroth order,

i.e., make the approximation

√
1− ni

2s
≈ 1. (5.10)

For the approximation to be valid, one has to argue that 2s is much larger than 〈ni〉. If

s = 1
2 , one needs ni � 1, which is typically true for small temperatures. The Hamiltonian

takes the form

H = JH
∑

<ij>

(2s~2a†iaj + ∆~2(s2 − sa†iai − sa
†
jaj + ninj))

= 2JH~2s
∑

<ij>

(
a†iaj −∆

(
a†iai +

1

s
ninj

))
+ JH∆~2s2Lz, (5.11)

where z is the coordination number. Since we assumed ni � 1, it makes sense to also discard

the term ∝ ninj . The terms of the resulting Hamiltonian are then at most bilinear in the

a-operators

H = 2JH~2s
∑

<ij>

(a†iaj −∆a†iai) + JH∆~2s2Lz. (5.12)
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5 Geometrical Spin Torque in a Magnet

This Hamiltonian can be diagonalised by Fourier transformation of the bosonic operators

ai =
1√
L

∑

k

e−ikRiak, ak =
1√
L

∑

i

eikRiai (5.13)

a†i =
1√
L

∑

k

eikRia†k, a
†
k =

1√
L

∑

i

e−ikRia†i (5.14)

with k ∈ BZ. Inserting this into (5.12), the first term transforms as

∑

<ij>

a†iaj =
∑

i

∑

δ

a†iai+δ

=
1

L

∑

i

∑

δ

∑

k,k′

eikRie−ik
′(Ri+δ)a†kak′

=
∑

k,k′

(
1

L

∑

i

ei(k−k
′)Ri

)∑

δ

e−ik
′δa†kak′

=
∑

k

∑

δ

e−ikδa†kak

=
∑

k

1

2

∑

δ

(
eikδ + e−ikδ

)
a†kak

=
∑

k

∑

δ

cos(kδ)a†kak, (5.15)

where it was used that 1
L

∑
i e
−i(k−k′)Ri = δkk′ and the second to last equality holds because∑

δ f(δ) =
∑
δ f(−δ). For the second term, one finds

∑

<ij>

a†iai = z
∑

i

a†iai

=
z

L

∑

i

∑

k,k′

ei(k−k
′)Ria†kak′

= z
∑

k

a†kak. (5.16)

The Fourier transformed Hamiltonian is diagonal and reads

H = 2JH~2s
∑

k

ω(k)a†kak + E0 (5.17)

with the dispersion ω(k) :=
∑
δ cos(kδ) − ∆z and ground state energy E0 = JH∆~2s2Lz.

In the thermodynamic limit, k is continuous and the spectrum of low-energy excitations is

gapless. This is predicted by Goldstone’s theorem since the ferromagnetic Heisenberg model

exhibits spontaneous symmetry breaking. Concretely, the Hamiltonian is invariant under

SU(2) spin rotations. In principle, this is true for the ground state as well since it is only

necessary for all spin moments to be parallel aligned, while the direction of alignment is

irrelevant. Thus, there is an infinite number of ground states connected by SU(2) transfor-

mations. However, as mentioned above, a single one of those states is picked as the true

ground state consequently breaking the SU(2) spin-rotation symmetry [98]. From the form
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of the diagonalised Hamiltonian (5.17), it is sensible to interpret the low energy excitations

as bosonic quasiparticles of momentum k. The quasiparticles are called magnons and rep-

resent small deviations from the complete alignment of the spins. From a classical point of

view, these excitations are also known as spin waves. The magnons are then the quanta of

spin waves in complete analogy to phonons as the quanta of lattice vibrations [84]. Taking

only the first term in the Taylor expansion of the Holstein-Primakoff expressions (5.9) into

account, is, hence, also referred to as linear spin wave theory [99].

To compute the spin-Berry curvature of a single classical impurity spin coupled to the ferro-

magnetic Heisenberg model at zero temperature and for small quantum-classical coupling J ,

one has to evaluate

Ωmα,m′α′ = −2J2

L
Im

{∑

k

〈0| smα |k〉 〈k| sm′α′ |0〉
(E0 − Ek)2

}
, (5.18)

where |k〉 denotes a single-magnon state of momentum k and Ek = 2JH~2sω(k) + E0 the

corresponding energy. A single-magnon state, without normalisation, is given by

|k〉 = s−(k) |0〉 , 〈k| = 〈0| s+(−k) (5.19)

with s−(k) = 1√
L

∑
i e
−ikRis−i and s−(k)† = s+(−k). The normalisation can be straightfor-

wardly computed as

〈0| s+(−k)s−(k) |0〉 = 〈0| (s−(k)s+(−k) +
2~
L

∑

i

szi (0)) |0〉 = 2~2s (5.20)

assuming that the ground state |0〉 is already normalised. To compute the matrix elements

〈0| smα |k〉 the normalisation will be ignored for now and only included in the final expression

for Ωmα,m′α′ . This yields

〈0| sxi |k〉 = 〈0| sxi s−(k) |0〉 =
1

2
e−ikRi 〈0| s+

i s
−
i |0〉

〈0| syi |k〉 = 〈0| syi s−(k) |0〉 = − i
2
e−ikRi 〈0| s+

i s
−
i |0〉

〈0| szi |k〉 = 0. (5.21)

The spin-Berry curvature is proportional to the imaginary part of the product of two such

matrix elements. Therefore, the only nonzero contributions come from α, α′ 6= z

〈0| sxi |k〉 〈k| syj |0〉 =
i

4
e−ik(Ri−Rj) 〈0| s+

i s
−
i |0〉 〈0| s+

j s
−
j |0〉

〈0| syi |k〉 〈k| sxj |0〉 = − i
4
e−ik(Ri−Rj) 〈0| s+

i s
−
i |0〉 〈0| s+

j s
−
j |0〉

〈0| sxi |k〉 〈k| sxj |0〉 = 〈0| syi |k〉 〈k| s
y
j |0〉 =

1

4
e−ik(Ri−Rj) 〈0| s+

i s
−
i |0〉 〈0| s+

j s
−
j |0〉 . (5.22)

52



5 Geometrical Spin Torque in a Magnet

In the case s = 1
2 with |↑〉 = (1, 0)ᵀ the matrix representation of s+

i and s−i is given by

s+ = ~

(
0 1

0 0

)
, s− = ~

(
0 0

1 0

)

⇒s+s− |↑〉 = ~2 |↑〉 , s+s− |↓〉 = 0

s−s+ |↓〉 = ~2 |↓〉 , s−s+ |↑〉 = 0. (5.23)

All in all, one has

Im
{
〈0| sxi |k〉 〈k| syj |0〉

}
=

~4

4
cos(k(Ri −Rj))

Im
{
〈0| syi |k〉 〈k| sxj |0〉

}
= −~4

4
cos(k(Ri −Rj))

Im
{
〈0| sxi |k〉 〈k| sxj |0〉

}
= Im

{
〈0| syi |k〉 〈k| s

y
j |0〉

}
= −~4

4
sin(k(Ri −Rj)). (5.24)

To include the normalisation, a factor of 1√
2~2s

has to be added per matrix element involving

|k〉 such that the final expression is

Ωixjx = Ωiyjy =
J2

2~2J2
HL

∑

k

sin(k(Ri −Rj))

ω(k)2
= 0 (5.25)

Ωixjy = −Ωjyix = − J2

2~2J2
HL

∑

k

cos(k(Ri −Rj))

ω(k)2
. (5.26)

Here, the xx and yy components vanish since the sum over k contains both k and −k
and sine is antisymmetric. For a hypercubic lattice in d dimensions, it is z = 2d and thus

ω(k) =
∑
δ cos(kδ)−∆2d = 2(

∑d
i=1 cos(ki))− 2∆d.

In the isotropic case, i.e. ∆ = 1, the denominator becomes zero if ki = 0, ∀i ∈ {1, . . . , d}.
The elements of the vector Rij := Ri−Rj are all integers for a hypercubic lattice with lattice

constant set to one, such that at the points where the denominator vanishes cos(k(Ri −Rj))

is nonzero. At the point where k = 0, one finds by Taylor expansion
cos(k(Ri−Rj))

ω(k)2
∝ 1
|k|4 . If

we are in the thermodynamic limit and in d dimensions, one has

1

L

∑

k

−→ VWS

(2π)d

∫
ddk ∝

∫
dk|k|d−1, (5.27)

where VWS is the volume of the Wigner-Seitz cell, which is ad for a hypercubic lattice. For

the transition from a sum to an integral, it was used that

VWSVBZ = (2π)d,
V

VWS
= L, ∆k =

VBZ

L
(5.28)

with ∆k the spacing between k points. This means that Ωixjy and Ωjyix diverge as 1
|k| in
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three dimensions. For arbitrary dimensions, one has

∫
dk|k|d−1 cos(kR)

ω(k)2
∝





|k|d−4, for d ≥ 5

ln |k|, for d = 4

|k|d−4, for d ≤ 3

. (5.29)

The lowest dimension for which the spin-Berry curvature does not diverge is five. In all

lower dimension, including the physical relevant d = 3, it is ill-defined and linear spin wave

theory breaks down. This is analogous to the so-called lower critical dimension in the context

of the Mermin-Wagner theorem. The theorem states that thermal fluctuations can prevent

spontaneous symmetry breaking in dimensions lower than two, which manifests itself by a

divergence of the variance of the order parameter [100]. The lower critical dimension is the

highest dimension for which this divergence occurs. Since for the ferromagnet the spin-Berry

curvature diverges for all dimensions d ≤ 4, the theory cannot be applied to spin dynamics

in a sensible way. However, it seems useful to apply the same considerations as above to

the antiferromagnetic version of the Heisenberg model. The reason is that there the magnon

dispersion is ∝ k at low energies such that the spin-Berry curvature is expected to be finite

already for dimensions lower than five. This is investigated in publication [II] below.
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The geometrical spin torque mediates an indirect interaction of magnetic moments, which are weakly
exchange coupled to a system of itinerant electrons. It originates from a finite spin-Berry curvature and leads
to a non-Hamiltonian magnetic-moment dynamics. We demonstrate that there is an unprecedentedly strong
geometrical spin torque in the case of an electron system, where correlations cause antiferromagnetic long-range
order. The key observation is that the anomalous torque is strongly boosted by low-energy magnon modes
emerging in the two-electron spin-excitation spectrum due to spontaneous breaking of SU(2) spin-rotation
symmetry. As long as single-electron excitations are gapped out, the effect is largely universal, i.e., essentially
independent of the details of the electronic structure, but decisively dependent on the lattice dimension and
spatial and spin anisotropies. Analogous to the reasoning that leads to the Mermin-Wagner theorem, there is a
lower critical dimension at and below which the spin-Berry curvature diverges.

DOI: 10.1103/PhysRevResearch.5.L032012

I. INTRODUCTION

A magnetic moment coupled to a system of itinerant
electrons via a local exchange interaction of strength J ex-
periences a spin torque which leads to precession dynamics.
For several magnetic moments Sm (with m = 1, . . . , M), usu-
ally described as classical fixed-length spins, there are further
torques caused by, e.g., indirect exchange interactions medi-
ated by the electron system. These Hamiltonian spin torques,
well known in micromagnetics [1] and in the theory of
coupled spin-electron dynamics [2–8], all derive from inter-
action terms in the quantum-classical Hamiltonian [9] for the
spin and electron degrees of freedom. In addition, there is
a non-Hamiltonian spin torque that has a purely geometric
nature. This geometrical spin torque represents the feedback
of the Berry physics [10] on the classical magnetic-moment
dynamics.

Generally, such feedback effects have been pointed out
early [11–13] but have not been studied in spin dynamics
theory until recently [14]. For weak J compared to the typ-
ical energy scales of the electron system, the classical spin
dynamics is slow, such that the electron system accumulates a
geometrical phase which is gauge independent in the case of a
cyclic motion [10,15,16]. This Berry phase is closely related
to the Berry curvature, a two-form which, when integrated
in classical parameter space over a two-dimensional surface
bounded by a closed path C, yields the Berry phase associated
with C. For example, in molecular physics [17] and when
treating the coordinates of the nuclei classically, the feedback

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

of the Berry physics produces an additional geometrical force,
where the Berry curvature plays the role of a magnetic field
in the nuclei equations of motion. This effect is known as
“geometrical magnetism” [18,19].

The geometrical spin torque resulting from the spin-Berry
curvature (SBC) [14] is the analogous concept in the field
of atomistic spin dynamics [4,20]. As opposed to the closely
related geometrical friction term [18,19], i.e., Gilbert damping
[21], it is energy conserving. But, importantly, the SBC is
non-Hamiltonian and emerges for weak J , i.e., in the limit of
slow classical spin dynamics. However, the effects are typi-
cally weak [22] for a solid [23], such that it appears difficult
to disentangle the effect of the geometrical spin torque from
other contributions [24].

In this Letter we study the geometrical spin torque for
magnetic moments coupled to a magnetic solid: a correlated
D-dimensional antiferromagnetic (AF) insulator. This is a
generic situation realized, e.g., by magnetic impurities in the
bulk or by magnetic adatoms on the surface of the antifer-
romagnet. We demonstrate that the magnitude of the SBC is
governed by the magnon-excitation spectrum. This has very
general consequences: the SBC must diverge for D = 1 but
is regular for D � 3, see Table I. For D = 2 the SBC gener-
ically exhibits a logarithmic divergence as a function of any
perturbation causing a gap in the magnon dispersion, such as
magnetic anisotropies or external magnetic fields. The magni-
tude of the SBC and thus the impact on the magnetic-moment
dynamics is studied for the Hubbard model at half-filling
and zero temperature as a prototype of a correlation-induced
insulator.

II. TIME-REVERSAL SYMMETRY

Within adiabatic spin-dynamics theory [14,22], geomet-
rical spin torque is obtained from the SBC of the electron

2643-1564/2023/5(3)/L032012(7) L032012-1 Published by the American Physical Society
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TABLE I. Spin-Berry curvature of a spontaneously symmetry-
broken antiferromagnetic state with gapped single-particle excita-
tions. k: wave vector. See text for discussion.

Lattice Distance Magnetic
dimension SBC dependence ground state

1 Divergent – –
2 Log. divergent – Stable
3 Regular 1/R Stable

D � 4 ∼ ∫ �cutoff
0 dk kD−3 1/RD−2 Stable

system, see Eq. (2) below. Importantly, a finite SBC gener-
ally requires time-reversal symmetry (TRS) breaking in the
electron system [22]. If J is strong, as assumed in Ref. [14],
TRS is broken by the classical spin moment itself, as this
acts like a local symmetry-breaking field. TRS breaking can
be waived only at the cost of working with a non-Abelian
extension of the theory well beyond the adiabatic limit [25],
where the dynamics is governed by the generically finite non-
Abelian spin-Berry curvature. Another approach is to replace
the electron system with an entirely classical model composed
of “slow” and “fast” spin moments [26,27]. This circumvents
the necessity of TRS breaking altogether but still exhibits the
feedback of holonomy effects in purely classical systems [28].
For magnetic moments coupled to quantum systems and in
the physically relevant weak-J regime, a finite SBC can be
achieved with an external magnetic field, or with a (staggered)
orbital field as considered recently [22] with the Haldane
model [29] as a prototype of a TRS-breaking Chern insulator
[30]. However, fine tuning of the parameters is required to
achieve considerable effects [22]. Here we consider an elec-
tron system in which correlations induce a TRS-breaking AF
state. The AF order not only enables a finite SBC but also
strongly boosts its magnitude due to magnon modes in the
spin-excitation spectrum.

III. DYNAMICS OF MAGNETIC MOMENTS

We are interested in the slow dynamics of M magnetic
moments, described as classical spins Sm of unit length, which
are coupled to a correlated electron system with Hamiltonian
Hel via a local exchange interaction Hint = J

∑M
m=1 sim Sm.

Here, im is the site the mth moment is coupled to, and si =
1/2

∑
σσ ′ c†

iσ τσσ ′ciσ ′ , where τ is the vector of Pauli matrices,
is the local spin moment at site i of the electron system.
The total Hamiltonian is H = H (S) = Hel + Hint (S) and de-
pends on the configuration S = (S1, . . . , SM ) of the magnetic
moments.

Assuming that the electron system at any instant of time
t is in its instantaneous ground state for the spin configura-
tion S(t ), i.e., |�(t )〉 = |�0(S(t ))〉, the equation of motion of
adiabatic spin dynamics is given by [14,22]

Ṡm = (
T (H)

m + T (geo)
m

) × Sm . (1)

Here T (H)
m × Sm with T (H)

m = ∂〈H (S)〉/∂Sm = J〈sim〉 is the
conventional (Hamiltonian) spin torque, where 〈· · · 〉 is the
instantaneous ground-state expectation value.

IV. GEOMETRICAL SPIN TORQUE

The second term, the geometrical spin torque T (geo)
m × Sm,

is necessary to enforce the constraint |�(t )〉 = |�0(S(t ))〉 and
has been derived within a quantum-classical Lagrange for-
malism in Refs. [14] and [22]. This assumes that the ground
state is nondegenerate (otherwise non-Abelian spin-dynamics
theory [25] must be used) and that J is sufficiently weak so
that the classical spin dynamics is much slower than typical re-
laxation time scales of the quantum system Hel. Alternatively,
the term may be derived within adiabatic response theory
[18,19,31] as the first nontrivial correction in a systematic
expansion of the response of a driven system with respect to
the driving speed, when applied to spin dynamics [32]. It is
given by

T (geo)
m =

∑
α

∑
m′α′

�m′m,α′α (S)Ṡm′α′eα, (2)

with α = x, y, z and the αth unit vector eα , and where

�mm′,αα′ (S) = ∂

∂Smα

Am′α′ (S) − ∂

∂Sm′α′
Amα (S) (3)

is the spin-Berry curvature. At each spin configuration S,
this is a real antisymmetric tensor (�m′m,α′α = −�mm′,αα′ ),
which is invariant under local gauge transformations of
the ground states |�0(S)〉 �→ eiφ(S)|�0(S)〉. It is the exterior
derivative of the spin-Berry connection Am = i〈�0| ∂

∂Sm
|�0〉,

which describes parallel transport of the ground state |�0(S)〉
on the manifold of spin configurations M. For M classical
spins Sm ∈ S2, this is given by the M-fold Cartesian product
of 2-spheres M ≡ S2 × · · · × S2.

V. SPONTANEOUS ANTIFERROMAGNETIC ORDER

We consider a coupling of the magnetic spin mo-
ments to the single-band Hubbard model [33,34] on a
D-dimensional hypercubic lattice as a prototypical model
for itinerant magnetic order. Its Hamiltonian is Hel =
−t

∑n.n.
i j

∑
σ=↑,↓ c†

iσ c jσ + U
∑

i ni↑ni↓, where the nearest-
neighbor hopping t = 1 fixes the energy and (with h̄ ≡ 1)
the time scales. ciσ annihilates an electron at site i with
spin projection σ , and niσ = c†

iσ ciσ . The sums over i, j are
restricted to nearest neighbors, and L is the total number of
sites. It is well known [35–39] that at half-filling, repulsive
Hubbard-U and for D � 2, the ground state of the system
in the thermodynamical limit L → ∞ develops long-range
AF correlations. SU(2) spin-rotation symmetry and therewith
TRS are spontaneously broken, and the ordered state is char-
acterized by a finite staggered magnetization m = mez with
m = L−1 ∑

i zi〈ni↑ − ni↓〉 and zi = ±1 for i in sublattice A or
B, respectively. We assume m > 0 for sublattice A.

At weak U , AF order is driven by the Slater mechanism
and perturbatively accessible [36,38]. Within self-consistent
Hartree-Fock theory [40], the one-electron excitation spec-
trum displays a gap 	 = Um at wave vector Q = (π, π, . . .)
in the conventional Brillouin zone. The two-electron spin-
excitation spectrum is well described by standard random-
phase approximation (RPA) but for the symmetry-broken AF
state [41–44].
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In the strong-U limit, the one-electron spectrum is dom-
inated by a large Hubbard gap 	 ∼ U and well-developed
local spin moments, coupled via Anderson’s superexchange
[35,38]. Here, the model maps onto the Heisenberg spin-1/2
Hamiltonian with AF exchange JH = 4t2/U and AF long-
range order, see Refs. [37], [45], and [46], for example. To
compute the low-energy magnon dispersion and states, we
can apply spin-wave theory (SWT) [47] to the AF Heisenberg
model and use the Holstein-Primakoff transformation [48]
at linear order. Linear SWT is motivated by the fact that
single-magnon decay requires overlap with the two-magnon
continuum, so that the picture of a stable magnon gas is
protected by kinematic restrictions at low energies [49–52].

VI. SPIN-BERRY CURVATURE
OF AN ANTIFERROMAGNET

To compute the geometrical spin torque, we make use
of a Lehmann-type representation of the SBC starting from
Eq. (3). This is straightforwardly derived [22] using a
resolution of the unity, 1 = ∑

n |�n(S)〉〈�n(S)|, with an or-
thonormal basis of instantaneous eigenstates of Hel + Hint (S):

�mm′,αα′ = −2J2Im
∑
n =0

〈�0|sα
im
|�n〉 〈�n|sα′

im′ |�0〉
(En − E0)2

. (4)

Note that, due to the J2 prefactor, the S dependence of
the eigenenergies and eigenstates will provide corrections to
Eq. (4) only at order J3. As we refer to the weak-J limit, these
will be neglected in the following.

In the AF phase and assuming that the order parameter is
aligned to the z axis, 〈si〉 = (−1)imez, there is a remaining
SO(2) symmetry of the energy eigenstates under spin rotations
around ez. This unbroken spin-rotation symmetry, together
with the spatial inversion and translation symmetries of Hel,
and the antisymmetry �mm′,αα′ = −�m′m,α′α [see Eq. (3)] im-
ply that the spin-Berry curvature tensor is entirely fixed by
a single real number � ≡ �mm′,xy = −�mm′,yx for each fixed
pair of sites im, im′ . All other elements must vanish, as is
detailed by the symmetry analysis in Sections A and B of the
Supplemental Material (SM) [53].

In a first step, for weak U , we compute the SBC via

�mm′ = −iJ2 ∂

∂ω
χimim′ ,xy(ω)

∣∣∣
ω=0

+ O(J3) , (5)

where χii′,αα′ (ω) = L−1 ∑
k eik(Ri−Ri′ )χαα′ (k, ω) is the real-

space retarded susceptibility, obtained by the RPA (see SM,
Sec. C [53]). The relation Eq. (5) is easily derived by compar-
ing the representation Eq. (4) of the SBC with the Lehmann
representation of the susceptibility (SM, Secs. A and B [53]).
Therewith, the susceptibility in the symmetry-broken AF state
is seen to play a dual role for the spin dynamics: (i) via
Eq. (5) and Eq. (2) its frequency derivative at ω = 0 yields
the geometrical spin torque T (geo)

m × Sm, and (ii) the static
susceptibility yields, in the weak-J regime, the conventional
RKKY spin torque T (H)

m × Sm with T (H)
m = ∂HRKKY/∂Sm,

where HRKKY = J2 ∑
χimim′ ,αα′ (ω = 0)SmαSm′α′ is the pertur-

bative RKKY Hamiltonian of the AF state.

FIG. 1. Left: Transversal retarded ground-state spin suscepti-
bility Im χ+−(k, ω) for U = 2 and U = 4 along high-symmetry
directions in the conventional D = 2 Brillouin zone, as obtained by
RPA. Right: Frequency derivative Im ∂ωχxy(k, ω) (absolute values)
in the mBz, related to the SBC at ω = 0. White dotted lines: Slater
gap 	 = Um (onset of the continuum). Lorentzian broadening ω →
ω + iη with η = 0.045. Energy scale: t = 1.

For the Hubbard model on the D = 2 square lattice the
spin-excitation spectrum χ+−(k, ω), see Fig. 1 (left) for U =
2 and U = 4, consists of a continuum at high frequencies
ω > 	 = Um (	 ≈ 0.75 for U = 2, 	 ≈ 2.76 for U = 4)
and, furthermore, within the gap an undamped transversal and
doubly degenerate magnon mode. This mode takes most of
the spectral weight. The magnon contribution to the deriva-
tive ∂ωχxy(k, ω) on sublattice A (Fig. 1, right) is even more
pronounced, especially for ω = 0, where it is related to the
SBC by Eq. (5).

VII. GOLDSTONE THEOREM, IMPLICATIONS

In our second step, we exploit the fact that the spin-
excitation spectrum of an AF insulator has a universal
structure at low frequencies. This is due to Goldstone’s the-
orem, which enforces the presence of gapless magnon modes
[54–56]. In the collinear AF state and corresponding to the
two broken generators of the spin SU(2) symmetry, there are
two degenerate modes with a linear and isotropic dispersion
in the vicinity of the � point in the magnetic Brillouin zone
(mBz). Linear SWT applied to the Heisenberg model that
emerges in the strong-U limit captures this physics, i.e., the
dispersion close to � is given by 1

2 JHω(k) = csk + O(k2),
where cs is the spin-wave velocity. Using the magnon energies
and eigenstates, we can compute the SBC in this limit from
Eq. (4) directly (SM, Secs. D and E [53]), ending up with

�mm′ = ∓2J2

J2
H

1

(2π )D

∫
mBz

dDk
cos

[
k
(
Rim − Rim′

)]
ω(k)2

, (6)

if both im, im′ belong to sublattice A (− sign) or B (+ sign),
and �mm′ = 0 else.

For D = 2, the linear dispersion close to � then implies
a 1/k2 singularity of the integrand and thus a logarithmic
infrared divergence. For D � 3, the local (m = m′) SBC
is finite. We note that the same arguments as invoked for
the Mermin-Wagner theorem [47,57], i.e., a divergence due
to the low-energy spin excitations, here lead to a lower

L032012-3



LENZING, KRÜGER, AND POTTHOFF PHYSICAL REVIEW RESEARCH 5, L032012 (2023)

FIG. 2. Local SBC as function of U for D = 3, as obtained
from RPA. Left: �loc/J2. Right: �loc/J2U 2. Diamonds: t⊥/t = 0.1,
see also Fig. 3 (left). Red arrow: D = 3 SWT (U → ∞) result.
η = 0.035.

critical dimension (Dc = 3) that is shifted by one, see
Table I. The numerical value for the D = 3 local SBC
is �loc ≈ −0.084 J2/J2

H = −0.084 J2U 2/16t4. When scaling
the hopping as t = t∗/

√
D with t∗ = const [58,59], the modu-

lus of the SBC decreases monotonically with D, and the SBC
approaches a finite mean-field value |�loc| → J2U 2/32t∗4 for
D → ∞ (SM, Sec. F [53]).

VIII. MAGNITUDE OF THE SBC

SWT predicts a U 2 dependence of the SBC in the Heisen-
berg limit for strong U . For U = 0, on the other hand, TRS
of the resulting paramagnetic state implies that it must vanish.
For U → 0, there is an intricate competition between the ex-
ponential suppression of the order parameter m ∝ e−1/U , i.e.,
of the “strength” of TRS breaking and thus of the SBC and, on
the other hand, the exponential closure of the single-electron
Slater gap 	 = Um and thus of the onset of the continuum
in the spin-excitation spectrum resulting in continuum con-
tributions that favor a large SBC. Our numerical results for
the local SBC in D = 3, as obtained from weak-coupling
RPA and strong-coupling SWT, are displayed in Fig. 2. With
increasing U we find a smooth crossover from the Slater to
the Heisenberg limit with a monotonically increasing |�loc|.

The nonlocal SBC at large distances R ≡ ‖Rim − Rim′ ‖ is
again governed by the linear dispersion at low frequencies.
Carrying out the integration in Eq. (6) for R → ∞ we find
�(R) ∝ 1/RD−2 (see Table I and SM, Sec. F [53]). For D = 3
this implies that the geometrical spin torque mediates a long-
range coupling in the spin dynamics.

Compared to previous studies [14,22,24–27] the D = 3
value of the local SBC |�loc| ≈ 0.084 J2/J2

H is several or-
ders of magnitude larger for realistic parameters J, JH �
t,U . Renormalization of cs → c′

s ≈ 1.1cs due to magnon
interaction [60] leads to a slightly smaller SBC, |�loc| →
(cs/c′

s )2|�loc|.
There are at least two routes that lead to an even larger

|�loc|: namely, we can take advantage of the formally infinite
SBC in D = 2 and regularize the theory (i) by dimensional
crossover to D = 3 [61–63], i.e., by switching on a small
hopping t⊥ in the third dimension (Fig. 2), implying J⊥

H �
JH,x = JH,y = JH, see Fig. 3 (left), or (ii) by switching on
a magnetic anisotropy to open a small gap in the magnon

FIG. 3. SWT results (dots) for anisotropic systems. Left, di-
mensional crossover: local SBC for D = 3 but with a spatially
anisotropic nearest-neighbor Heisenberg exchange J⊥

H � JH. Right,
spin anisotropy: SBC as function of the coupling anisotropy param-
eter δ.

spectrum (Fig. 3, right), i.e., by adding an Ising term δ JHSizS jz

to the standard Heisenberg coupling JHSiS j . A moderate
J⊥

H /JH = 0.1 yields a SBC |�loc| ≈ 0.22J2/J2
H. About the

same enhancement is obtained for an anisotropy parameter
δ ∼ 10−2.

IX. GEOMETRICAL SPIN DYNAMICS

For the AF ordered phase, Eq. (1) tells us that the dominat-
ing effect in the magnetic-moment dynamics is a precession
around the staggered magnetization m on a time scale 1/J .
This effect dominates the weaker (and slower) anisotropic
RKKY-type exchange on the scale J2. Importantly, the SBC
� ∼ J2 enters the equations of motion as a renormalization
factor (for M > 1 classical spins as a matrix factor) rather
than a summand and thus does not compete with the stronger
direct exchange of order J (SM, Sec. G [53]). For M = 1
this factor amounts to 1/(1 − �locSz ), such that the most pro-
nounced effects are found for a SBC of intermediate strength,
�loc = O(1). This holds true for M = 2 as well, as is detailed
in the SM, Sec. G [53]. Note that a singular renormalization
indicates a breakdown of the theory as this is the point where
the condition for nearly adiabatic spin dynamics is invalidated.
Note further that the precession comes with an inverted orien-
tation beyond the singular point.

X. CONCLUSIONS AND OUTLOOK

A hitherto unknown but generic interplay of electron cor-
relations, spontaneous symmetry breaking, gapless Goldstone
bosons, and a holonomy on the configuration space of classi-
cal spin degrees of freedom leads to non-Hamiltonian effects,
such as renormalization of precession frequencies, inverted
orientation of the precessional motion, or long-range inter-
actions, in the spin dynamics. This is due to a geometrical
spin torque which is finite for correlated AF ground states
in lattice models with dimension D � 3 and diverges for
D � 2, caused by the same mechanism that leads to the
Mermin-Wagner theorem, however, shifted by one dimension.
With a SBC �loc = O(1) for typical parameters, the effect is
unexpectedly large. It is boosted by electron correlations and
further enhanced by spatial and spin anisotropies.

We expect a strong overall impact on the phenomenol-
ogy of atomistic spin dynamics, in particular on the field of

L032012-4



GEOMETRICAL TORQUE ON MAGNETIC MOMENTS … PHYSICAL REVIEW RESEARCH 5, L032012 (2023)

antiferromagnetic spintronics [64–66], e.g., on spin-transfer
torques in antiferromagnets (see Ref. [67], for example).
An according concretization of the theory, however, has yet
to be worked out. Anisotropic one- and two-dimensional
magnetic-moment arrays, engineered atom by atom [68], or
two-dimensional (anti)ferromagnetic materials [69] represent
promising platforms for applications and comparison with
experiments.

Treating the magnetic moments Sm as classical vectors,
especially in the antiferromagnetic case [70], must be seen as
an approximation that avoids a full quantum many-body setup
but disregards correlation effects such as Kondo screening
or heavy-fermion behavior. The approximation may be jus-
tified for high spin quantum numbers, see, e.g., Refs. [70,71],
or generally in cases where there are well-formed spin mo-
ments that remain unscreened on timescales exceeding the
remaining timescales of the problem. The very presence of the
geometrical spin torque for the quantum-spin case, however,

has been demonstrated using time-dependent density-matrix
renormalization [14]. While this method and also exact time
propagation (TDSE) are limited to one-dimensional or small
systems and to very short femtosecond timescales, insightful
results for nonclassical spin-transfer effects [72] and quantum
spin transfer torque [73] were obtained recently. A consistent
effective low-energy theory for a system that is entirely quan-
tum mechanical with at least two largely different timescales
has yet to be developed.
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Section A: SO(2) symmetry analysis. The retarded
spin susceptibility is defined as

�ii0,↵↵0(t) = �i⇥(t)h[si↵(t), si0↵0(0)]i , (7)

where ⇥ is the step function, si↵(t) = eiHeltsi↵e�iHelt,
and h· · · i is the ground-state expectation value. Fourier
transformation to frequency space yields the Lehmann
representation in terms of an energy eigenbasis {| ni}:

�ii0,↵↵0(!) =
X

n

 
h 0|si↵| nih n|si0↵0 | 0i

! + i⌘ � (En � E0)

� h 0|si0↵0 | nih n|si↵| 0i
! + i⌘ � (E0 � En)

!
. (8)

We have the relation �ii0,↵↵0(!)⇤ = �ii0,↵↵0(�!). The
spectral density �(1/⇡)Im�ii0,↵↵0(!) = �ii0,↵↵0(!) �
�ii0,↵↵0(�!)/2i is an antisymmetric function of !.

In the AF phase with order parameter m = mez,
there is a remaining SO(2) symmetry of the nonde-
generate energy eigenstates under spin rotations around
ez, which is unitarily represented by UR = e�istot,z'

on the Fock space with the z-component of the total
spin stot =

P
i si as the unbroken generator and the

rotation angle '. We have U†
R| ni = ei�n | ni with

phases �n. Since si is a vector operator, we have
U†

Rsi↵UR =
P

� R↵�si� , where R = R(') is the stan-
dard real 3 ⇥ 3 matrix representation of SO(2) rota-
tions around ez. Hence, the first matrix element in
Eq. (4) can be written as h 0|URU†

Rsi↵URU†
R| ni =P

� R↵�(')ei�0h 0|si� | nie�i�n . The phase factors can-
cel with those from the second matrix element, and we
thus find: �ii0,↵↵0(!) =

P
��0 R↵�(')�ii0,��0(!)RT

�0↵0('),
i.e., [�

ii0
(!), R(')] = 0 for all i, i0 and '. It is easily ver-

ified directly that this implies

�
ii0

(!) =

0
@

�ii0,xx(!) �ii0,xy(!) 0
��ii0,xy(!) �ii0,xx(!) 0

0 0 �ii0,zz(!)

1
A , (9)

i.e., there are only 3 independent entries for each pair
i, i0 (note that R is reducible, and furthermore Schur’s
lemma does not apply to representations over R).

Section B: Spatial symmetries. With Eq. (8), we im-
mediately see that the spin-Berry curvature is related to
the spin susceptibility via

⌦mm0,↵↵0 = �iJ2 @

@!
�imim0 ,↵↵0(!)

���
!=0

(10)

up to correction terms of order J3, see Eq. (5). Therefore,
the same reasoning as above can be applied to the spin-
Berry curvature tensor and yields the same result for its
structure:

⌦mm0 =

0
@
⌦mm0,xx ⌦mm0,xy 0
�⌦mm0,xy ⌦mm0,xx 0

0 0 ⌦mm0,zz

1
A . (11)

In addition, for a given pair of sites im and im0 , we may
consider a combined transformation T � I, composed of
the space inversion Ri 7! Rim

� Ri with respect to im
followed by the translation Ri 7! Ri+(Rim

�Rim0 ) with
the translation vector Rim

�Rim0 . T �I is a discrete sym-
metry of the hypercubic lattice and interchanges im with
im0 . This implies that the Hamiltonian commutes with
the standard unitary (and also Hermitian) representation
UTI of T � I.

For im and im0 in the same sublattice, the symmetry-
broken ground state is an eigenstate of UTI as well. Anal-
ogously to the SO(2) spin-rotation symmetry discussed
above, we can thus immediately see from the analy-
sis of the matrix elements in Eq. (4) that ⌦mm0,↵↵0 =
⌦m0m,↵↵0 . For the spin-Berry curvature we have the ad-
ditional antisymmetry, ⌦mm0,↵↵0 = �⌦m0m,↵0↵, which
follows from Eq. (3). With this we get ⌦mm0,↵↵0 =
�⌦mm0,↵0↵, i.e., for each pair m, m0, the spin-Berry cur-
vature tensor is antisymmetric in the indices ↵,↵0 sep-
arately. Hence, with Eq. (11), we see that only the el-
ements ⌦mm0,xy = �⌦mm0,yx can be nonzero. Analo-
gously, for the spin susceptibility, the T � I symmetry of
the Hamiltonian implies �ii0,↵↵0(!) = �i0i,↵↵0(!). With
the additional symmetry, �ii0,↵↵0(0) = �i0i,↵0↵(0), which
follows from Eq. (8), this implies that the susceptibility
matrix Eq. (9) is diagonal for ! = 0.

For im and im0 in di↵erent sublattices, we concatenate
the transformation T �I with a flip F of the z-component
of all spins. This is unitarily represented by UF, which is
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defined via U†
Fci"UF = ci# and U†

Fci#UF = ci". We have
[UF, UTI] = 0 and [UF, Hel] = 0. The symmetry-broken
ground state and the corresponding excited states are
eigenstates of U ⌘ UTIUF. Hence, we find for the ↵ = ↵0

matrix elements

h 0|sim↵| nih n|sim0↵| 0i
= h 0|U†sim↵U | nih n|U†sim0↵U | 0i
= h 0|sim0↵| nih n|sim↵| 0i , (12)

and thus ⌦mm0,↵↵ = ⌦m0m,↵↵. With the antisymmetry
of the full tensor, ⌦mm0,↵↵0 = �⌦m0m,↵0↵, we thus find
⌦mm0,↵↵ = 0. On the other hand,

h 0|simx| nih n|sim0y| 0i
= h 0|U †simxU | nih n|U †sim0yU | 0i
= �h 0|sim0x| nih n|simy| 0i , (13)

since U†
FsixUF = six but U †

FsiyUF = �siy. This implies
⌦mm0,xy = �⌦m0m,xy, and with the antisymmetry of the
full tensor we find ⌦mm0,xy = ⌦mm0,yx. Together with
Eq. (11), we see that ⌦mm0,xy = 0, and hence the matrix
⌦mm0 = 0 in Eq. (11).

Summing up, for arbitrary sites im and im0 we have

⌦mm0 =

0
@

0 ⌦ 0
�⌦ 0 0
0 0 0

1
A , (14)

and hence the spin-Berry curvature is fixed by a single
real number ⌦ ⌘ ⌦mm0,xy = ⌦m0m,xy. Furthermore, ⌦ =
0 if im, im0 belong to di↵erent sublattices.

Section C: Random phase approximation. The ran-
dom phase approximation (RPA) represents a standard
weak-coupling approach to the magnetic susceptibility,
see, e.g., Refs. 41, 42. It can be motivated in various
ways, for example, via a partial diagrammatic summa-
tion. In general, the RPA Luttinger-Ward functional
�[G] [43, 44] is given as the sum of the two closed and
self-consistently renormalized first-order diagrams, i.e.,
by the Hartree and the Fock diagram. For the Hubbard
model the Fock diagram vanishes such that we are left
with

�[G] = U
X

i

1

�2

X

n,n0

Gii,"(i!n)Gii,#(i!n0) . (15)

Here, i runs over the sites of the hypercubic lattice,
� =", # refers to the spin projection relative to the z
axis, n labels the fermionic Matsubara frequencies i!n,
and � is the inverse temperature. Computations are
done in the zero-temperature limit 1/� ! 0, which is
taken at the end. Furthermore, Gii,� denotes the local
one-particle Green’s function at site i in the symmetry-
broken AF state, as obtained within the self-consistent

Hartree-Fock approximation. The Hartree-Fock self-
energy is generated by the Luttinger-Ward functional:
⌃ii,�(i!n) = ���/�Gii�(i!n) = U��1

P
n Gii,��(i!n) =

Uhc†
i��ci��i.

On the two-particle level, the RPA yields a local and
frequency-independent irreducible vertex

�
(loc)
�,��(i!n, i!n0) = �2 �2�

�Gii,��(i!n)�Gii,�(i!n0)
= U .

(16)
This means that there is no feedback of two-particle cor-
relations on the single-particle Green’s function. The
structureless vertex allows us to easily get the transver-
sal magnetic susceptibility �rs,+�(k,!) = hhs+

r,k; s�s,kii!
as the solution of a strongly simplified Bethe-Salpether
equation in the particle-hole channel:

�
+�(k, i⌫n) = �(0)

+�(k, i⌫n) + �(0)
+�(k, i⌫n)U�

+�(k, i⌫n) .

(17)
Here, �

+� is a 2 ⇥ 2 matrix in the sublattice degrees of

freedom, and �(0)
+� the bare susceptibility matrix, which

is computed with the Hartree-Fock one-particle propa-
gators. The equation is diagonal in the wave vectors k
of the first magnetic Brillouin zone and in the bosonic
Matsubara frequencies i⌫n. The transversal susceptibil-
ity �+� is related to the susceptibility tensor �↵↵0 in-
troduced in Eqs. (7) and (8), via �+� = 2(�xx � i�xy).
From the renormalized zeroth-order diagram, we get the
Hartree-Fock susceptibility in Eq. (17) as

�
(0)
rs,+�(k, i⌫n) =

�1

L

1

�

X

q,n0

Gsr,"(q, i!n0)

⇥ Grs,#(q + k, i⌫n + i!n0) . (18)

After performing the summation over the fermionic fre-
quencies i!n analytically, we can replace i⌫n 7! ⌫ + i⌘
to find the retarded susceptibility on the real-frequency
axis. The frequency derivative in Eq. (10) is done nu-
merically. In the thermodynamical limit, the q sum over
the magnetic Brillouin zone in Eq. (18) can be converted
into a q-space integration. The latter is computed in
two or three dimensions via a standard adaptive q-space
integration technique for arbitrary ⌫ 2 R and for each
allowed wave vector k in the magnetic Brillouin zone of
a finite lattice with L sites and periodic boundary condi-
tions. Practical computations are performed at a finite
Lorentzian broadening parameter ⌘ > 0 replacing the
infinitesimal ⌘, and convergence with respect to L is con-
trolled by runs for di↵erent system sizes L. The main
numerical error is due to extrapolation of the data for
⌘ ! 0.

Section D: Magnon spectrum of an antiferromagnet.
In the strong-U limit of the Hubbard model, the low-
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energy physics is captured by the s = 1/2 antiferromag-
netic Heisenberg model

H = JH

X

hiji

✓
1

2
(s+

i s�j + s�i s+
j ) +�sz

i s
z
j

◆
(19)

with JH = 4t2/U and � = 1. An anisotropy parameter
� > 1 can be used to discuss the e↵ect of opening a gap
in the dispersion. The sum runs over all nearest-neighbor
pairs hiji.

We apply the standard Holstein-Primako↵ transfoma-
tion for the model on the bipartite hypercubic lattice
with dimension D. For sites i in sublattice A, the spin
operators are expressed in terms of bosonic annihilators
and creators, i.e.,

sz
i = s � a†

iai ,

s+
i =

p
2s

r
1 � n̂i

2s
ai ,

s�i =
p

2sa†
i

r
1 � n̂i

2s
, (20)

while for sites j 2 B

sz
j = �s + b†

jbj ,

s+
j =

p
2sb†

j

r
1 � n̂j

2s
,

s�j =
p

2s

r
1 � n̂j

2s
bj . (21)

The transformed Hamiltonian reads

H = JHs
X

hiji
[(aibj +a†

i b
†
j)+�(a†

iai + b†
jbj)]�

L

2
zJH�s2 ,

(22)
where z = 2D is the coordination number, and L is
the number of lattice sites. Quartic and higher-order
magnon interaction terms resulting for the expansion of
the square root have been disregarded.

We drop the additive energy constant and block-
diagonalize H via Fourier transformation:

ai =
1p
L/2

X

k

e�ikRiak , bj =
1p
L/2

X

k

eikRj bk .

(23)

Here, Ri are the translation vectors of the magnetic A
sublattice (the same for Rj and the B sublattice), con-
sisting of L/2 unit cells, and k is an allowed wave vec-
tor of the first magnetic Brillouin zone (mBz). Defining
�k ⌘ P

� cos(k�) with nearest-neighbor vectors �, the
Fourier-transformed model reads as

H = JHs
X

k

[�k(akbk + b†
ka†

k) + z�(aka†
k + b†

kbk)] (24)

and can be diagonalized by Bogoliubov transformation

ak = uk↵k + vk�
†
k , bk = uk�k + vk↵

†
k (25)

with real coe�cients uk and vk. We require

u2
k � v2

k = 1 , (26)

to ensure that ↵k and �k satisfy bosonic commutation
relations, as well as

2z�ukvk + �k(u2
k + v2

k)
!
= 0 , (27)

as usual, to get the Hamiltonian to the form

H = JHs
X

k

!(k)(↵†
k↵k + �†

k�k) , (28)

where we again dropped an unimportant constant energy
term. The magnon spectrum consists of two degenerate
branches with dispersion JHs!(k) given by

!(k) =
q

(z�)2 � �2
k =

vuutz2�2 �
 X

�

cos(k�)

!2

.

(29)
Close to k = 0 and in the isotropic case � = 1, the
dispersion JHs!(k) is linear,

!(k) = 2
p

Dk + O(k3) , (30)

while for � > 1 the spectrum is gapped, and !(k) =
2S

p
�2 � 1 + O(k2).

From the conditions Eq. (26) and Eq. (27), we can
deduce the well-known results

u2
k =

1

2

 
z�p

(z�)2 � �2
k

+ 1

!
=

1

2

✓
z�

!(k)
+ 1

◆
,

v2
k =

1

2

 
z�p

(z�)2 � �2
k

� 1

!
=

1

2

✓
z�

!(k)
� 1

◆
(31)

and

ukvk = � �k

2
p

(z�)2 � �2
k

= � �k

2!(k)
, (32)

see Refs. 47, 48.

Section E: Computing the spin-Berry curvature from
the magnon Hamiltonian. The contribution of the
magnon excitations to the spin-Berry curvature is ob-
tained from

⌦mm0,↵↵0 = �2J2Im
X

k,⌘=1,2

h0|s↵im
|k, ⌘ihk, ⌘|s↵0

im0 |0i
(E0 � Ek)2

,

(33)
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where |k, 1i ⌘ ↵†
k|0i and |k, 2i ⌘ �†

k|0i are the single-
magnon states. Following Eq. (14), it is su�cient to
compute ⌦mm0 = ⌦mm0,xy = �⌦mm0,yx. Furthermore,
⌦mm0 6= 0 only for im and im0 in the same sublattice, as
also argued in section B. Expressing the spin components
in terms of the Bogoliubov operators,

s+
i =

p
2s

1p
L/2

X

k

e�ikRi(uk↵k + vk�
†
k)

s�i =
p

2s
1p
L/2

X

k

eikRi(uk↵
†
k + vk�k)

s+
j =

p
2s

1p
L/2

X

k

e�ikRj (uk�
†
k + vk↵k)

s�j =
p

2s
1p
L/2

X

k

eikRj (uk�k + vk↵
†
k) , (34)

we find

h0|sx
i |k, 1ihk, 1|sy

i0 |0i = i
s

L
u2

ke�ik(Ri�Ri0 ) ,

h0|sx
i |k, 2ihk, 2|sy

i0 |0i = �i
s

L
v2

keik(Ri�Ri0 ) (35)

for i, i0 in sublattice A, and

h0|sx
j |k, 1ihk, 1|sy

j0 |0i = i
s

L
v2

ke�ik(Rj�Rj0 ) ,

h0|sx
j |k, 2ihk, 2|sy

j0 |0i = �i
s

L
u2

keik(Rj�Rj0 ) (36)

for j, j0 in sublattice B. This implies

Im
X

⌘=1,2

h0|sx
i |k, ⌘ihk, ⌘|sy

i0 |0i =
s

L
cos(k(Ri � Ri0))

Im
X

⌘=1,2

h0|sx
j |k, ⌘ihk, ⌘|sy

j0 |0i = � s

L
cos(k(Rj � Rj0)) ,

(37)

and finally we get

⌦mm0 = ⌥1

s

J2

J2
H

2

L

mBzX

k

cos(k(Rim
� Rim0 ))

!(k)2
, (38)

where the upper sign refers to im, im0 in sublattice A and
the lower for im, im0 in sublattice B. Recall that ⌦mm0 =
0 if im, im0 belong to di↵erent sublattices.

Eq. (38) can be evaluated numerically. For D = 3, for
example, we find

⌦loc ⇡ �0.084
J2

J2
H

(39)

for the local element of the SBC with im = im0 in sub-
lattice A.

Section F: Di↵erent dimensions and distance depen-
dence. In the thermodynamic limit L ! 1 (and in the
isotropic case � = 1), the convergence of the resulting
integral in Eq. (38) over the magnetic Brillouin zone de-
cisively depends on the lattice dimension D. We consider
the critical contribution of the long-wave-length magnons
by integrating over a D-dimensional ball around k = 0
with small cuto↵ radius kc, such that we can make use of
Eq. (30), i.e., of the linearity and isotropy of the magnon
dispersion for k ! 0:

⌦mm0 ⇠ lim
!0

Z kc



dk kD�1 1

!(k)2
/ lim

!0

Z kc



dk kD�1 1

k2
.

(40)
This yields

⌦mm0 ⇠

8
><
>:

D�2 for D � 3

ln for D = 2

1/ for D = 1

. (41)

For  ! 0, the spin-Berry curvature diverges for D = 1
and D = 2. We conclude that a meaningful theory is
obtained in dimensions D � 3 only.

The magnitude of the spin-Berry curvature decreases
with increasing distance R ⌘ Rim

� Rim0 . For D � 3
its dependence in the large-R limit is governed by long-
wave-length magnon excitations, and we have:

⌦(R) /
Z kc

0

dk kD�1

Z
d⌦

cos(kR cos ✓)

k2
, (42)

where
R

d⌦ denotes the surface integral over the (D�1)-
dimensional unit sphere, and ✓ the angle between k and
R. Furthermore, we made use of Eq. (30) for k smaller
than the cuto↵ kc. We note that the distance dependence
at large R is isotropic. Substituting kR ! k in the one-
dimensional k integral immediately yields

⌦(R) / 1

RD�2
. (43)

For D = 3, we have ⌦(R) / 1/R. In the infinite-D limit,
we expect a local spin-Berry curvature

To compute the local element m = m0 of the spin-
Berry curvature Eq. (38) in this limit, we start from the
representation

⌦loc = �1

s

J2

J2
H

Z 1

�1
dx ⇢D(x)

1

z2�2 � Dx2
, (44)

where, for dimension D, we have defined the density func-
tion

⇢D(x) =
2

L

mBzX

k

�(x � �k/
p

D) , (45)

and where we have used Eq. (29). We have z = 2D for the
D-dimensional hypercubic lattice and, in the Heisenberg
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limit of the Hubbard model, JH = 4t2/U = 4t⇤2/DU ,
when using the scaling t = t⇤/

p
D with t⇤ = const. In the

limit D ! 1, this scaling of the hopping ensures that the
kinetic energy of the Hubbard model remains nontrivial
and balances the interaction term [59]. Moreover, the
density function converges to a Gaussian [59]:

⇢D(x) ! ⇢1(x) =
1

2
p
⇡

exp

✓
�x2

4

◆
. (46)

In the Heisenberg limit and with the scaled hopping, we
thus have

⌦loc(D) = �1

s

J2U2

16t⇤4

Z 1

�1

dx⇢D(x)

4�2 � x2/D
, (47)

which for D ! 1, and assuming s = 1/2 and � = 1
converges to

⌦loc(1) = � 1

32t⇤4
J2U2 . (48)

This represents the mean-field value of the (lcoal) spin-
Berry curvature in the antiferromagnetic state at large
U .

To compare with the result obtained for D = 3, we
must use the same scaling of the hopping. This yields

⌦loc(3) ⇡ �0.084
J2U2

16t⇤4 D2

�����
D=3

⇡ 1.51 · ⌦(1). (49)

For lattice dimensions D > 3 we find: ⌦loc(4) ⇡
1.22⌦(1), ⌦loc(5) ⇡ 1.16⌦(1), ⌦loc(6) ⇡ 1.12⌦(1).
Hence, given the standard scaling of the hopping with
D, the absolute value of ⌦loc(D) increases with decreas-
ing D and finally, for D = 2 diverges.

Finally, when addressing the dimensional crossover
[61–63], we consider the Heisenberg model given by
Eq. (19) again, but with spatially anisotropic nearest-
neighbor exchange couplings JH ⌘ JH,x = JH,y � JH,z.
Proceeding analogously to Sec. C, one ends up with a
modified magnon dispersion only:

!(k) =
q

(ze↵�)2 � �02
k . (50)

Here, we have defined an e↵ective coordination number
ze↵ = 2(JH,x + JH,y + JH,z)/JH,x. Furthermore, �0

k :=
2(JH,x cos kx + JH,y cos ky + JH,z cos kz)/JH,x.

Section G: Spin dynamics. The equations of motion Eq. (1) for the classical spins comprise the conventional
(Hamiltonian) and the geometrical spin torque, see Eq. (2). In the weak-J limit, the former results from the local
direct exchange J as well as from the indirect RKKY-type exchange. We have:

Ṡm = Jhsimi(0) ⇥ Sm + J2
X

m0

�
imim0

(0)Sm0 ⇥ Sm +
X

↵

X

m0↵0

⌦m0m,↵0↵(S)Ṡm0↵0e↵ ⇥ Sm , (51)

where h. . . i(0) denotes the expectation value at J = 0. For the non-vanishing components of the spin susceptibility
and of the spin-Berry curvature on sublattice A we have

�ii0 ⌘ �ii0,xx(0) = �ii0,yy(0) = �z�

JH

2

L

mBzX

k

cos k(Ri � Ri0)

!(k)2
(52)

and

⌦mm0 ⌘ ⌦mm0,xy = �⌦mm0,yx = �1

s

J2

J2
H

2

L

mBzX

k

cos(k(Rim
� Rim0 )

!(k)2
. (53)

Specializing Eq. (51) for M = 1, i.e., for a single classical spin, we get

Ṡ1 = T
(H)
1 ⇥ S1 + ⌦11(ez ⇥ Ṡ1) ⇥ S1 , (54)

where

T
(H)
1 = Jhsi1i(0) + J2�i1i1(ez ⇥ Sm) ⇥ ez . (55)

With

T
(H)
1 =

0
B@

0 �T
(H)
1,z T

(H)
1,y

T
(H)
1,z 0 �T

(H)
1,x

�T
(H)
1,y T

(H)
1,x 0

1
CA (56)
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the cross product can be written as a matrix-vector product, T
(H)
1 ⇥S1 = T

(H)
1 S1, and the equation of motion reads:

Ṡ1 =
1

1 � ⌦11S1z
T

(H)
1 S1 . (57)

The classical spin undergoes a purely precessional dynamics around the z axis, but with a renormalized precession
frequency. The renormalization is due to the local spin-Berry curvature ⌦loc = ⌦11 and is the strongest for ⌦loc = O(1).
Right at ⌦loc = 1/S1z, the precession frequency diverges. This implies that the spin dynamics is no longer adiabatic
and the theory breaks down.

In case of two classical spins, M = 2, the equations of motion (51) can be cast into the form

Ṡ1 = T
(H)
1 ⇥ S1 + T

(geo)
1 ⇥ S1 ,

Ṡ2 = T
(H)
2 ⇥ S2 + T

(geo)
2 ⇥ S2 , (58)

where

T
(H)
1 = Jhsi1i(0) + J2�i1i1(ez ⇥ S1) ⇥ ez + J2�i1i2(ez ⇥ S2) ⇥ ez ,

T
(H)
2 = Jhsi2i(0) + J2�i2i2(ez ⇥ S2) ⇥ ez + J2�i2i1(ez ⇥ S1) ⇥ ez . (59)

and

T
(geo)
1 = ⌦11(ez ⇥ Ṡ1) ⇥ S1 + ⌦12(ez ⇥ Ṡ2) ⇥ S1

T
(geo)
2 = ⌦22(ez ⇥ Ṡ2) ⇥ S2 + ⌦12(ez ⇥ Ṡ1) ⇥ S2 . (60)

Here, we have assumed that the two spins couple to sites in the same sublattice, as otherwise the spin-Berry curvature
vanishes. The local spin-Berry curvature term can be treated in the same way as in the M = 1 case, while the nonlocal
term can be written as a matrix-vector product:

(1 � ⌦11S1z)Ṡ1 = T
(H)
1 ⇥ S1 � ⌦12A(z)

1 Ṡ2 ,

(1 � ⌦22S2z)Ṡ2 = T
(H)
2 ⇥ S2 � ⌦12A(z)

2 Ṡ1 , (61)

with

A(z)
m =

0
@
�Smz 0 0

0 �Smz 0
Smx Smy 0

1
A . (62)

This allows us to cast the equations of motion into an explicit system of ordinary di↵erential equations:

✓
Ṡ1

Ṡ2

◆
= M�1

 
T

(H)
1 ⇥ S1

T
(H)
2 ⇥ S2

!
. (63)

Here, the 6 ⇥ 6 matrix

M =

 
(1 � ⌦11S1z)1 ⌦12A(z)

1

⌦12A(z)
2 (1 � ⌦22S2z)1

!
(64)

is given in terms of the components of the spin-Berry curvature tensor. Eq. (63) demonstrates that the e↵ect of the
geometrical spin torque is not simply additive and hence does not directly compete with the conventional spin torque,
but enters the spin dynamics as a multiplicative (matrix) factor.

The determinant of M can be computed analytically:

det M = (1 � ⌦11S1z)(1 � ⌦11S2z)
⇥
(1 � ⌦11S1z)(1 � ⌦22S2z) � ⌦2

12S1zS2z

⇤2
. (65)

The theory breaks down if det M = 0. We consider det M as a function of the local elements ⌦loc = ⌦11 = ⌦22 and
assume that the nonlocal elements are small, ⌦nonloc = |⌦12| ⌧ ⌦loc. We immediately see that the zeros of det M are
of the order of unity. This implies that anomalous spin dynamics, which is substantially a↵ected by the geometrical
spin torque, is expected if ⌦loc = O(1) and thus close to, but yet di↵erent from the zeros of M.
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5.3 – Linearisation of the Effective EOM

Above, the derivation of effective equations of motion for classical impurity spins coupled to an

antiferromagnet was limited to cases with one and two impurity spins. More generally one can

consider a setup where there is one classical spin at every lattice site. For an antiferromagnetic

quantum-classical exchange interaction, the classical spins order antiferromagnetically as well

and exhibit collective excitations, namely, spin wave excitations. Here, linearisation is used

in an attempt to derive the corresponding dispersion relation and analyse the impact of the

geometrical spin torque.

Linearisation can be an effective way to analyse the dynamics of a (nonlinear) differential

equation around an equilibrium point. A typical procedure is to determine an equilibrium

configuration as a starting point and then Taylor expand the differential equation up to linear

order in the deviation from that point. Here the differential equation of interest is the effective

equation of motion for the classical spins

dS

dt
= f(S), (5.30)

where f(S) = (1 − M(S))−1A(S)S is a nonlinear function of the complete classical spin

configuration S = (S1, . . . ,SM ). The Taylor expansion up to linear order is given by

dS

dt
= f(S∗) +

∂f

∂S

∣∣∣∣∣
S∗

δS +O(δS2) (5.31)

with the equilibrium configuration S∗ and δS := (S − S∗). Of course, ignoring everything

beyond linear order requires δS, i.e., the deviation from the equilibrium configuration, to be

small. Since S∗ is an equilibrium configuration, its time derivative is zero and thus Ṡ = ˙δS.

The quantum-classical coupling considered here is positive such that in the ground state local

quantum spins and classical spins are ordered antiferromagnetically. On the other hand, this

also means that the classical spins are ordered antiferromagnetically among themselves, with

the classical spins in sublattice A (B) pointing in negative (positive) z direction. Expanding

the factor (1−M(S))−1 yields

(1−M(S))−1 = (1−M(S∗))−1 +
∑

m

(∂Sm(1−M(S))−1)|S=S∗δSm +O(δS2). (5.32)

The derivative can be evaluated by the rule

∂xU
−1(x) = −U−1(∂xU)U−1

⇒ ∂Sm(1−M(S))−1 = (1−M(S))−1(∂SmM(S))(1−M(S))−1. (5.33)

For the other factor, one gets

A(S) = A(S∗) +
∑

m

∂SmA(S)|S=S∗δSm +O(δS2). (5.34)
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Plugging both expressions into the EOM and ignoring terms of order δS2, it is

˙δS =

[
(1−M∗)−1A∗ + (1−M∗)−1

∑

m

∂SmA|S∗δSm +
∑

m

(∂Sm(1−M)−1)|S∗δSmA∗
]
S

= (1−M∗)−1A∗δS +

[
(1−M∗)−1

∑

m

∂SmA|S∗δSm +
∑

m

(∂Sm(1−M)−1)|S∗δSmA∗
]
S∗

= (1−M∗)−1

[
A∗δS +

∑

m

∂SmA|S∗δSmS∗ +
∑

m

(∂SmM)|S∗(1−M∗)−1δSmA
∗S∗

]

= (1−M∗)−1

[
A(S∗)δS +

∑

m

∂SmA|S∗δSmS∗
]
, (5.35)

where M∗ ≡M(S∗), A∗ ≡ A(S∗), and in the last equality it was used that A(S∗)S∗ vanishes

since vm(S∗) points into the z direction for all m. In the next step, one can calculate the

equilibrium quantities M∗ and A∗. Starting from the definition, this gives

M∗mα,m′α′ =
∑

βγ

εβγαS
∗
mγΩm′α′,mβ

=
∑

β

εβzαS
∗
mzΩm′α′,mβ

= ∓|S|
∑

β

δαα′εβzαΩm′α′,mβ, (5.36)

where sign ∓ signifies whether m is from sublattice A (-) or from sublattice B (+). However,

for the spin-Berry curvature computed in publication [II] this sign does not matter, since

Ωm′α′,mβ is nonzero only when m and m′ are from the same sublattice and picks up a minus

sign when changing the sublattice. Also note that M∗ is symmetric under the exchange

m,α↔ m′, α′. The matrix A can be written as

Amα,m′α′ = δmm′B
(m)
αα′ = δmm′

∑

β

εα′αβvmβ

= δmm′
∑

β

εα′αβ(J 〈sim,β〉+ J2
∑

m′′γ

χmm′′,βγ(0)Sm′′γ). (5.37)

In this section, 〈sim〉 denotes the expectation value at J = 0, dropping the superscript (0)

used in [II]. Here both 〈sim〉 and χ
mm′

(0) are independent of the Sm’s. This means that

(∂SmαA(S))m′α′,m′′α′′ = δm′m′′J
2∂Smα

∑

m̃βγ

εα′′α′βχm′m̃,βγ(0)Sm̃γ

= δm′m′′J
2
∑

β

εα′′α′βχm′m,βα(0)

= δm′m′′J
2εα′′α′αχm′m,αα(0) (5.38)

since in the antiferromagnetic model it is χm′m,βα(0) = χm′m,αα(0)δβα. The derivatives of A
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are actually independent of the classical spins. Furthermore, one has

Amα,m′α′(S
∗) = δmm′

∑

β

εα′αβ(J 〈sim,β〉+ J2
∑

m′′

χmm′′,βz(0)S∗m′′z)

= δmm′εα′αzJ 〈sim,z〉 , (5.39)

which is antisymmetric under the exchange m,α ↔ m′, α′. Therefore, the first term of the

linearised EOM can be written as XδS with an antisymmetric matrix

Xmαm′α′ =
∑

m′′α′′

(1−M(S∗))−1
mαm′′α′′A(S∗)m′′α′′m′α′

= J
∑

m′′α′′

(1−M(S∗))−1
mαm′′α′′δm′′m′

〈
sim′′ ,z

〉
εα′α′′z. (5.40)

Similarly, one can formulate the second term in the form X̃δS. Writing everything in com-

ponents, yields

(1−M∗)−1
∑

mα

∂SmαAδSmαS
∗ =

∑

mα

[(
(1−M∗)−1∂SmαA

)
S∗
]
δSmα

=
∑

mα

∑

m′α′
m′′α′′

[(
(1−M∗)−1∂SmαA

)
m′α′,m′′α′′

S∗m′′α′′em′α′
]
δSmα

=:
∑

m′α′

∑

mα

X̃m′α′,mαδSmαem′α′ , (5.41)

where X̃ is defined as

X̃m′α′,mα =
∑

m′′α′′

(
(1−M∗)−1∂SmαA

)
m′α′,m′′α′′

S∗m′′α′′

= J2
∑

m̃α̃

(1−M∗)−1
m′α′,m̃α̃εzα̃αχm̃m,αα(0)S∗m̃z. (5.42)

All in all, the linearised EOM can be written as δṠ = M̃δS with M̃ := X+X̃. In components

one has

M̃mαm′α′ =
∑

m̃

(1−M∗)−1
m,m̃εα′αz

(
Jδm̃m′ 〈sim̃,z〉 − J2χm̃m′,α′α′(0)S∗m̃z

)
, (5.43)

where it was used that (1 − M∗)−1
mα,m̃α̃ = (1 − M∗)−1

m,m̃δαα̃. The linearised EOM can be

formally solved by

δS(t) = exp
(
M̃t
)
δS0. (5.44)

To get a sensible solution, it is important for the eigenvalues λi of M̃ to have a real part

Re{λi} ≤ 0. Otherwise, there are unphysical modes that diverge exponentially over time.

Imaginary eigenvalues, for instance, can be ensured if the matrix M̃ is antisymmetric. The

first term
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(1−M∗)−1
m,m′

〈
sim′ ,z

〉
Jεα′αz (5.45)

is indeed antisymmetric under exchange of m,α ↔ m′, α′. This can be seen as follows:

(1−M∗)−1 is only nonzero for m and m′ from the same sublattice and also symmetric under

their exchange. If m and m′ are from the same sublattice, then 〈sim,z〉 =
〈
sim′ ,z

〉
, i.e., the

term as a whole is symmetric under the exchange of m and m′. Under the exchange of α and

α′, it is obviously antisymmetric and thus antisymmetric under the simultaneous exchange.

The second term is

∑

m̃

(1−M∗)−1
m,m̃J

2εzαα′χm̃m′,α′α′(0)S∗m̃z (5.46)

and is antisymmetric under the exchange of α and α′. This is because the only nonzero

terms have α 6= α′ and α, α′ ∈ {x, y} such that χ is invariant under the exchange. Con-

cerning the spatial indices, note that (1−M∗)−1 and χ are symmetric under their exchange

and, due to (1 −M∗)−1 being nonzero only for spatial indices from the same sublattice, m̃

only takes on values from the same sublattice as m. When m and m′ are from the same

sublattice their exchange leaves the expression invariant, since (1−M∗)−1
mm̃ and χm̃m′,α′α′(0)

have the sublattice translation invariance and m̃ does not change sublattices, such that S∗m̃z
remains unchanged too. On the other hand, for m and m′ from different sublattices, one has∑

m̃(1−M∗)−1
m,m̃ =

∑
m̃(1−M∗)−1

m′,m̃ as (1−M∗)−1
m,m̃ depends only on the distance between

sites m and m̃, and has the same value on both sublattices. For χ there is also no significant

change since its spatial indices are from different sublattices before and after the exchange.

Furthermore, it still has sublattice translational invariance. However, after the exchange of

m and m′ from different sublattices the sum in (5.46) filters m̃ for a different sublattice, such

that S∗m̃z changes sign, and we have an overall sign change.

Therefore, (5.46) is antisymmetric under the simultaneous exchange of spatial and spin in-

dices only if the spatial indices are from the same sublattice and symmetric otherwise. In

conclusion, M̃ as a whole is not antisymmetric under said exchange in general. Although

this does not exclude M̃ from only having eigenvalues with real part Re{λi} ≤ 0, it is found

numerically that for the parameter configurations we are interested in M̃ typically does have

some eigenvalues with Re{λi} > 0. Thus, for our purposes the linearisation of the EOM is

not beneficial.
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6 – Dissipative Spin Dynamics

So far, in the derivation of spin-only theories for classical spins coupled to a quantum me-

chanical host system, the main focus was on the geometrical spin torque connected to the

antisymmetric part of the magnetic susceptibility χ. In contrast, the contribution of the sym-

metric part of χ has been mentioned only briefly. This contribution gives rise to the Gilbert

damping, which can be crucial for the spin dynamics. Above, it is was shown how this can be

derived via linear response theory. This chapter introduces another kind of response theory

called adiabatic response theory (ART) [71, 72], which focusses on an expansion around the

adiabatic limit rather than the strength of the quantum-classical interaction. ART can be

seen as a finite temperature generalisation of ASD. Its derivation and subsequent application

to spin dynamics will take up the first part of this chapter. It will be shown that ART yields

expressions for both, the spin-Berry curvature and the Gilbert damping. This will provide

the theoretical foundation for the results of publication [III] found at the end of this chapter.

There, the results for the Gilbert damping from ART and LRT will be compared at the

example of a single impurity spin coupled to a one-dimensional host system of conduction

electrons. The publication also deals with dissipative spin dynamics of multiple impurities in

two dimensions. Overall, the nonlocalities of the Gilbert damping will play a decisive role.

6.1 – Adiabatic Response Theory

The question answered by adiabatic response theory is how a driven system responds to

a slow perturbation. The connection to adiabaticity comes due to the perturbation being

slow and the theory can be seen as a generalisation of concepts like adiabatic evolution

and Berry’s phase. Berry and Robbins [71] developed the first theory of this kind using

the microcanonical ensemble from statistical mechanics. More recently, Campisi, Denisov

and Hänggi [72] developed an adiabatic response theory for open quantum systems using

a canonical ensemble. The important steps in the derivation of the latter theory will be

reproduced here with the goal to apply it to quantum-classical spin systems. The starting

point is a quantum-classical Hamiltonian of the form

H(S) = HB +HSB +HS(S) (6.1)

describing a system coupled to an ideal thermal bath of fixed temperature T modelled by

the bath Hamiltonian HB, the system bath coupling HSB, and the system Hamiltonian HS

that depends on time-dependent classical parameters S(t) = (S1(t),S2(t), . . . ), which in this

thesis are classical spins. As usual, the system Hamiltonian can itself be separated in a

similar fashion as HS(S) = Hqu + Hint(S) + Hcl(S). Further important quantities are the
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instantaneous equilibrium density operator and the corresponding partition function [72]

ρeq(S(t)) =
e−βH(S(t))

Z(S(t))
, Z(S(t)) = tr

(
e−βH(S(t))

)
. (6.2)

Also recall the definition of a Heisenberg operator O(t) = U †(t)OU(t), where U(t) is the time

evolution operator, and its expectation value as well as the equilibrium expectation defined

by

〈O(t)〉 := tr(ρeq(S(0))O(t)) = tr(ρ(t)O), 〈O〉eq
S(t) := tr(ρeq(S(t))O). (6.3)

An important quantity that will be needed to develop the theory is the dissipated work Wdis,

which is defined as the difference between the work performed when changing the external

parameters and the adiabatic work. The adiabatic work is the work that is performed if the

change of parameters is infinitely slow. The work due to parameter change is defined as [101]

W =

∫ t

0
dt′λ̇∇λHλ, (6.4)

where λ denotes the external parameters and Hλ the parameter dependent Hamiltonian.

Note that in the quantum case W is represented by an operator but is not an observable

[102,103]. On the other hand, the adiabatic work is given by

Wad =

∫ λt

λ0

dλ 〈∇λHλ〉eq
λ

=

∫ t

0
dt′λ̇ 〈∇λHλ〉eq

λ . (6.5)

For the dissipated work, one has

Wdis = W −Wad

=

∫ t

0
dt′λ̇

[
∇λHλ − 〈∇λHλ〉eq

λ

]
. (6.6)

The reason that the dissipated work is useful in adiabatic response theory is that it will be

very small if the evolution of the system is near adiabatic. Concretely, its nonequilibrium

expectation value in the adiabatic limit is zero [72]. Thus, the important physical quantities

can be perturbatively expanded up to first order in Wdis, namely, the expectation values

of observables. This will be shown using the example of quantum-classical spin systems.

Here, the “external” parameters are the classical spins, i.e., λ = S(t) = (S1(t),S2(t), . . . )

and Wdis =
∫ t

0 dt
′∑

m Ṡm(t′)
[
∇SmH(t′)− 〈∇SmH〉eq

St′

]
. For an interaction term of the form
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Hint = J
∑

m simSm, it is

Wdis = J

∫ t

0
dt′
∑

m

Ṡm(t′)
[
sim(t′)− 〈sim〉eq

St′

]

= J

∫ t

0
dt′
∑

m

Ṡm(t′)∆sim(t′). (6.7)

Writing the work as W = H(S(t), t) − H(S0), one can prove the important intermediate

result

〈O(t)e−βH(S(t),t)eβH(S0)〉eq
S0

= 〈U †(t)OU(t)e−βH(S(t),t)eβH(S0)〉eq
S0

= tr
(
ρeq(S0)U †(t)OU(t)e−βH(S(t),t)eβH(S0)

)

(6.2)
=

Z(S(t))

Z(S0)
tr

(
e−βH(S0)U †(t)OU(t)U †(t)

e−βH(S(t))

Z(S(t))
U(t)eβH(S0)

)

= e−βWad tr(Oρeq(S(t)))

= e−βWad〈O〉eq
S(t), (6.8)

which can also be written in the form

〈O(t)e−βH(S(t),t)eβ(H(S(t),t)−Wdis)〉eq
S0

= 〈O〉eq
S(t). (6.9)

Further, one needs the operator expansion formula [104]

eβAe−β(A−B) = 1 +

∫ β

0
dueuABe−u(A−B)

= 1 +

∫ β

0
dueuABe−uA +O(B2), (6.10)

where the first equality can be proven by differentiating both sides with respect to β and

exploiting that it is true for β = 0. Using this, one gets for the difference between the expec-

tation value of an operator O(t) in the Heisenberg picture and the corresponding equilibrium

expectation value in the Schrödinger picture:

〈∆O(t)〉 := 〈O(t)〉 − 〈O〉eq
S(t)

= 〈O(t)〉 −
〈
O(t)e−βH(S(t),t)eβ(H(S(t),t)−Wdis)

〉eq

S0

=

∫ β

0
du
〈
O(t)e−uH(S(t),t)Wdise

uH(S(t),t)
〉eq

S0

+O(W 2
dis). (6.11)

With the explicit expression of Wdis for our spin system and setting O(t) = Js
(α)
im

(t), i.e., the

αth component of the mth local spin, one has

J〈∆s(α)im
(t)〉 = J2

∫ t

0

dt′
∫ β

0

du
∑

m′

〈
s
(α)
im

(t)e−uH(S(t),t)∆sim′ (t
′)euH(S(t),t)

〉eq
S0

Ṡm′(t′)−O(W 2
dis),

(6.12)
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where the expectation value in the integrand can be written as

tr
[
ρ(t)s

(α)
im
e−uH(S(t))U(t, t′)∆sim′U

†(t, t′)euH(S(t))
]

(6.13)

with U(t, t′) = U(t)U †(t′). Up to first order in Wdis, one can replace ρ(t) with ρeq(S(t)). In

order to develop adiabtaic response theory, one also has to make the assumption that the

correlation function in (6.11) decays quickly compared to the variation of the classical spin,

which is, therefore, frozen at S = S(t). This is again justified by the timescale separation

between the fast quantum and the slow classical degrees of freedom. Then one can write

U(t, t′) ≈ e−iH(S(t))(t′−t) (6.14)

and replace S(t′) with S(t) everywhere. Put together, we can simplify (6.13) as

tr
[
ρeq(S(t))s

(α)
im

(−iu)∆sim′ (t
′ − t)

]
=
〈
s

(α)
im

(−iu)∆sim′ (t
′ − t)

〉eq

S(t)
, (6.15)

where it is s
(α)
im

(−iu) = euH(S(t))s
(α)
im
e−uH(S(t)) and we used that ρeq(S(t)) and euH(S(t))

commute. All in all, one has the result

J
〈

∆s
(α)
im

(t)
〉

= J2

∫ t

0
dt′
∫ β

0
du
∑

m′

〈
s

(α)
im

(−iu)∆sim′ (t
′ − t)

〉eq

S(t)
Ṡm′(t)

= J2
∑

m′α′

K
(αα′)
imim′

(S(t))Ṡ
(α′)
m′ (t), (6.16)

or in matrix-vector notation

J 〈∆sim(t)〉 = J2
∑

m′

Kimim′
(S(t))Ṡm′ . (6.17)

Here K is a matrix with elements given by

K
(αα′)
imim′

(S(t)) =

∫ t

0
dt′
∫ β

0
du
〈
s

(α)
im

(−iu)s
(α′)
im′

(t′ − t)
〉eq

S(t)

−
∫ t

0
dt′
∫ β

0
du
〈
s

(α)
im

(−iu)
〉eq

S(t)

〈
s

(α′)
im′

(t′ − t)
〉eq

S(t)
. (6.18)

The single-operator expectation values appearing in the second term are actually time-

independent as a straightforward calculation shows

〈sim(−iu)〉eq
S(t) = tr

[
ρeq(S(t))euH(S(t))∆sime

−uH(S(t))
]

= tr[ρeq(S(t))∆sim ]

= 〈sim〉eq
S(t). (6.19)

In the first term of (6.18), one can make the substitution t′ 7→ τ = t − t′ and then rename
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τ → t′. Thus, it is

K
(αα′)
imim′

(S(t)) =

∫ t

0
dt′
∫ β

0
du
〈
s

(α)
im

(−iu)s
(α′)
im′

(−t′)
〉eq

S(t)

−
∫ t

0
dt′
∫ β

0
du
〈
s

(α)
im

〉eq

S(t)

〈
s

(α′)
im′

〉eq

S(t)
. (6.20)

Like in the case of the magnetic susceptibility in linear response theory, it is useful to separate

K into a symmetric and an antisymmetric contribution

K
S(αα′)
imim′

=
1

2

∫ t

0
dt′
∫ β

0
du
〈
s

(α)
im

(−iu)s
(α′)
im′

(−t′) + s
(α′)
im′

(−iu)s
(α)
im

(−t′)
〉eq

S(t)

−
∫ t

0
dt′
∫ β

0
du
〈
s

(α)
im

〉eq

S(t)

〈
s

(α′)
im′

〉eq

S(t)
(6.21)

K
A(αα′)
imim′

=
1

2

∫ t

0
dt′
∫ β

0
du
〈
s

(α)
im

(−iu)s
(α′)
im′

(−t′)− s(α′)
im′

(−iu)s
(α)
im

(−t′)
〉eq

S(t)
. (6.22)

In the literature [71, 72] the antisymmetric part is called geometric magnetism, while the

symmetric part is known as geometric friction. The reason for these names is that in the

EOM derived by adiabatic response theory the symmetric part has a damping effect, while

the antisymmetric part appears in a way similar to the Lorentz force. The latter can be

shown as follows. Locally KA is a skew-symmetric 3 × 3 matrix. In three dimensions, its

product with a column vector can be written as a vector product

KA =




0 −K3 K2

K3 0 −K1

−K2 K1 0




⇒ KAA = KA ×A with KA = (K1,K2,K3)ᵀ, i.e., KA
i = −1

2

∑

jk

εijkK
A
jk. (6.23)

In terms of spin operators, we have

KA
imim′

:= −1

2

∫ t

0
dt′
∫ β

0
du
〈
sim(−iu)× sim′ (−t′)

〉
. (6.24)

Using the symmetric and the antisymmetric part, 〈∆sim(t)〉 can be expressed as

〈∆sim(t)〉 = J
∑

m′

Kimim′
(S(t))Ṡm′

= J
∑

m′

(KS
imim′

(S(t)) +KA
imim′

(S(t)))Ṡm′ . (6.25)

In the effective EOM resulting from ART, the full expectation value of the local magnetic

moment sim is replaced by its equilibrium expectation and its first non-equilibrium correction

〈∆sim〉

dSm
dt

= J〈sim〉eq
S(t) × Sm + J 〈∆sim〉 × Sm. (6.26)
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6.2 – Lehmann Representation

Similar to the magnetic susceptibility from linear response theory, it can be advantageous to

express the symmetric and the antisymmetric part of the conductance matrix in the instan-

taneous energy eigenbasis of the system defined by

H(S(t)) |m,S(t)〉 = Em(S(t)) |m,S(t)〉 . (6.27)

Applied to the integrand of the antisymmetric part of K, which will be referred to as

IAmα,m′α′(−iu,−t′) to save space, one finds

IAmα,m′α′(−iu,−t′) = tr
[
ρeq
St
euHs

(α)
im
e−uHe−it

′Hs
(α′)
im′

eit
′H − α,m↔ α′,m′

]

=
1

Z

n6=n′∑

n,n′

e−βEne(u+it′)(En−En′ )
(
〈n| s(α)

im

∣∣n′
〉 〈
n′
∣∣ s(α′)
im′
|n〉 −H.c.

)
, (6.28)

where all the Hamiltonians are given for the parameter configuration at time t, i.e. H =

H(St). To do the t′ integral in the limit t→∞, one needs to introduce a regularising factor

of e−ηt
′
, cf. section 3.3, with an infinitesimal η. This yields

∫ ∞

0
dt′eit

′(En−En′ )e−ηt
′

=
i

En − En′ + iη
. (6.29)

Remember that in the end η has to be taken to zero but only after taking the thermodynamic

limit. For finite systems, calculations have to be carried out with a small but finite η, the

specific value depending on the system size, see for example the discussion in [23]. Combined

with the u-integral, which gives

∫ β

0
dueu(En−En′ ) =

eβ(En−En′ ) − 1

En − En′
, (6.30)

one has for the antisymmetric part

K
A(αα′)
imim′ =

i

2Z

n 6=n′∑

n,n′

(e−βEn′ − e−βEn)


 〈n| s(α)im

|n′〉 〈n′| s(α
′)

im′ |n〉
(En − En′ + iη)(En − En′)

−
〈n| s(α

′)
im′ |n′〉 〈n′| s

(α)
im
|n〉

(En − En′ + iη)(En − En′)




= − 1

Z

n6=n′∑

n,n′

Im
{
〈n| s(α)im

|n′〉 〈n′| s(α
′)

im′ |n〉
} e−βEn′ − e−βEn

(En − En′ + iη)(En − En′)

=
2i

Z

n 6=n′∑

n,n′

Im
{
〈n| s(α)im

|n′〉 〈n′| s(α
′)

im′ |n〉
}

Im

{
1

(En − En′ + iη)

}
e−βEn

En − En′
, (6.31)

where going from the second to the third line one has to exchange n ↔ n′ in the first term.

If nondegenerate states are assumed, one can discard the regularisation of iη such that

K
A(αα′)
imim′

=
2

Z

n6=n′∑

n,n′

e−βEn
Im
{
〈n| s(α)

im
|n′〉 〈n′| s(α′)

im′
|n〉
}

(En − En′)2
. (6.32)
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In the case of weak J and weak coupling to the bath, the energy eigenstates and the cor-

responding eigenvalues might be expanded in both. The lowest-order quantities are then

independent of J as well as the system-bath coupling. The conductance matrix becomes

K
A(αα′)
imim′

(J = 0) =
2

Z

n6=n′∑

n,n′

e−βE
(0)
n

Im
{〈
n(0)

∣∣ s(α)
im

∣∣n′(0)
〉 〈
n′(0)

∣∣ s(α′)
im′

∣∣n(0)
〉}

(
E

(0)
n − E(0)

n′

)2 , (6.33)

where
∣∣n(0)

〉
and E

(0)
n are eigenstates and eigenenergies of HS(S). The zero temperature

limit, i.e., β →∞, of (6.33) yields

K
A(αα′)
imim′

= 2
∑

n 6=0

Im
{
〈0| s(α)

im
|n〉 〈n| s(α′)

im′
|0〉
}

(E0 − En)2
, (6.34)

again dropping the superscript (0). This is the same as (3.32), i.e., in the weak-J limit the

expressions for the geometrical spin torque in linear and adiabatic response theory coincide.

In the symmetric part (6.21), the first term can be written as

1

Z

∑

n,n′

e−βEneu(En−En′ )eit
′(En−En′ )

(
〈n| s(α)

im

∣∣n′
〉 〈
n′
∣∣ s(α′)
im′
|n〉+ H.c.

)
. (6.35)

For the single-operator expectation value, one gets

〈
s

(α)
im

〉eq

St
= tr

[
ρeq
St
s

(α)
im

]
=

1

Z

∑

n

e−βEn 〈n| s(α)
im
|n〉 , (6.36)

such that the second term is

〈
s

(α)
im

〉eq

S(t)

〈
s

(α′)
im′

〉eq

S(t)
=

1

Z2

∑

n,n′

e−β(En+En′ ) 〈n| s(α)
im
|n〉
〈
n′
∣∣ s(α′)
im′

∣∣n′
〉
. (6.37)

One ends up with

K
S(αα′)
imim′ =

1

2Z

∫ t

0

dt′
∫ β

0

du

[∑

n,n′

e−βEneu(En−En′ )eit
′(En−En′ )

(
〈n| s(α)im

|n′〉 〈n′| s(α
′)

im′ |n〉+ H.c.
)

− 2

Z2

∑

n,n′

e−β(En+En′ ) 〈n| s(α)im
|n〉 〈n′| s(α

′)
im′ |n′〉

]

=
1

2Z

∫ t

0

dt′
[∑

n,n′

e−βEneit
′(En−En′ ) e

β(En−En′ ) − 1

En − En′

(
〈n| s(α)im

|n′〉 〈n′| s(α
′)

im′ |n〉+ H.c.
)

− 2β

Z2

∑

n,n′

e−β(En+En′ ) 〈n| s(α)im
|n〉 〈n′| s(α

′)
im′ |n′〉

]
, (6.38)

where the first sum has a divergence at n = n′. In the thermodynamic limit, however,

the spectrum of eigenenergies is continuous and one finds limEn→En′
eβ(En−En′ )−1

En−En′
= β using

L’Hospital’s rule. For SU(2) spin-rotation invariant systems and in the absence of spontaneous

magnetic order, the expectation value 〈n| s(α)
im
|n〉 vanishes such that in the first sum the term

n = n′ can be excluded, while the second sum is zero as a whole. This strongly simplifies the
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expression for KS and yields

K
S(αα′)
imim′ =

1

2Z

∫ t

0

dt′
∑

n 6=n′

eit
′(En−En′ ) e

−βEn′ − e−βEn
En − En′

(
〈n| s(α)im

|n′〉 〈n′| s(α
′)

im′ |n〉+ H.c.
)

=
1

Z

∫ t

0

dt′
∑

n 6=n′

eit
′(En−En′ ) e

−βEn′ − e−βEn
En − En′

Re
{
〈n| s(α)im

|n′〉 〈n′| s(α
′)

im′ |n〉
}

= − 1

Z

∫ t

0

dt′
∑

n 6=n′

e−βEn Re
{
〈n| s(α)im

|n′〉 〈n′| s(α
′)

im′ |n〉
}eit′(En−En′ ) + e−it

′(En−En′ )

En − En′
. (6.39)

With the usual procedure of evaluating the t′ integral in the limit t→∞, one gets

K
S(αα′)
imim′

=
2

Z

∑

n6=n′
e−βEn Im





Re
{
〈n| s(α)

im
|n′〉 〈n′| s(α′)

im′
|n〉
}

(En − En′)(En − En′ + iη)



, (6.40)

which in the zero temperature limit β →∞ gives

K
S(αα′)
imim′

= 2
∑

n6=0

Im





Re
{
〈0| s(α)

im
|n〉 〈n| s(α′)

im′
|0〉
}

(E0 − En)(E0 − En + iη)



. (6.41)

In the equations of motion, the symmetric part of the conductance matrix produces spin

dissipation analogous to the Gilbert damping. This will be investigated in publication [III],

found directly below, for a tight-binding model of conduction electrons. The setup of a single

classical impurity spin will be used to compare the expression for the Gilbert damping derived

via ART with the one from LRT derived in chapter 3.
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The real-time dynamics of local magnetic moments exchange coupled to a metallic system of conduction
electrons is subject to dissipative friction, even in the absence of spin-orbit coupling. Phenomenologically, this
is usually described by a local Gilbert damping constant. Here, we use both linear response theory (LRT)
and adiabatic response theory (ART) to derive the spin friction microscopically for a generic single-band
tight-binding model of the electronic structure. The resulting Gilbert damping is time dependent and nonlocal.
For a one-dimensional model, we compare the emergent relaxation dynamics as obtained from LRT and ART
against each other and against the full solution of the microscopic equations of motion and demonstrate the
importance of nonlocality, while the time dependence turns out to be irrelevant. In two dimensions and for a
few magnetic moments in different geometries, it is found that the inclusion of nonlocal Gilbert damping can
counterintuitively lead to longer relaxation times. Besides the distance dependence, the directional dependence
of the nonlocal Gilbert damping turns out to be very important. Our results are based on an expression relating the
nonlocal Gilbert damping to the nonlocal tight-binding density of states close to the Fermi energy. This is exact
in the case of noninteracting electrons. Effects due to electronic correlations are studied within the random-phase
approximation. For the Hubbard model at half filling and with increasing interaction strength, we find a strong
enhancement of the nonlocality of spin friction.

DOI: 10.1103/PhysRevB.111.014402

I. INTRODUCTION

The understanding of the relaxation dynamics of local
magnetic moments on an atomistic level represents an essen-
tial step for further progress in the field of nanospintronics
[1–4]. A prototypical model within atomistic spin-dynamics
theory [5–8] is given by the multi-impurity Kondo model with
a few localized spins, replaced by classical vectors of unit
length to represent the local magnetic moments. This is also
known as the s-d exchange (Vonsovsky-Zener) model [9]. Its
Hamiltonian has the form Ĥ = Ĥel + Ĥint, where Ĥel is a tight-
binding model of the electronic structure on a D-dimensional
lattice, and where Ĥint is a generic local exchange interaction
between the classical spins Sm (with m = 1, . . . , M) and the
local spin-moment operators ŝim at the sites im of the lattice.
In its most simple form, assuming a single spin-degenerate
orbital per site, one has

Ĥ =
∑
〈ii′〉

∑
σ=↑,↓

Tii′c
†
iσ ci′σ + J

∑
m

ŝim Sm. (1)

Here, Tii′ is the hopping amplitude between sites i and i′, and
J > 0 is the local exchange-coupling strength.

The time dependence of the electron and the classical-spin
degrees of freedom follows the general rules for quantum-
classical dynamics [10,11]. As the model is quadratic in the
electron annihilators and creators, ciσ and c†

iσ (i = 1, . . . , L
sites, σ =↑,↓ spin projection), for each spin configuration
S ≡ (S1, . . . , SM ), there is a closed system of equations of
motions, for the one-particle reduced density matrix and for
the classical spins. The dynamics of the latter is governed by
classical Landau-Lifshitz equations Ṡm = ∂〈Ĥ〉/∂Sm × Sm.

Here, we are interested in the relaxation dynamics of
systems with a few impurity spins, M = 1, . . . , 10, for the
single-orbital model given by Eq. (1) in the thermodynam-
ical limit L → ∞. The computational effort for solving the
related coupled system of nonlinear ordinary differential
equations roughly scales quadratically in the number of lat-
tice sites L = lD and linearly in the propagation time t [11].
To avoid unwanted reflections (or interferences) of propa-
gating excitations from the system boundaries (or due to
periodic boundary conditions), however, systems with a linear
extension l ∼ vt must be considered if v is the (ballistic)
propagation speed. The Gaussian electronic part can be for-
mally integrated out within a path-integral formalism, but at
the cost of a highly time-nonlocal effective action for the
classical spins, which, if treated exactly, does not improve
the scaling.

For one-dimensional (1D) systems, absorbing bound-
ary conditions, e.g., using a generalized Lindblad master-
equation approach to couple the edge sites of the conduction-
electron tight-binding model to an external bath, have turned
out to be helpful [12,13]. It has been demonstrated that this
allows one to exceed the characteristic femtosecond electronic
scale set by the inverse nearest-neighbor hopping by more
than five orders of magnitude. For D � 2, however, an ex-
act time propagation of an initial state on the pico- or even
nanosecond scale appears out of reach, but is quite relevant
from general considerations of the timescales of magnetic pro-
cesses [14]. Even at thermal equilibrium and using advanced
Monte Carlo techniques, quantum-classical hybrid systems
with a linear extension l � 30 in D = 3 are computationally
challenging [15].
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On the other hand, for physically relevant applications,
the classical-spin dynamics takes place on a characteristic
timescale τsp, which is more than an order of magnitude
slower than the femtosecond (τel ∼ 1/T ) electron dynamics
set by the nearest-neighbor hopping T . This implies that
the electronic quantum state follows the classical dynamics
almost instantly, i.e., the electron dynamics is almost adia-
batic and characterized by a typical retardation time τret much
shorter than τsp.

This situation has motivated theoretical efforts to approx-
imately “integrate out” the fast electron degrees of freedom,
using the interrelated assumptions of weak J and small
τret. These justify a double expansion, namely, (i) a pertur-
bative treatment of the exchange coupling J , followed by
(ii) an expansion in the retardation time as put forward in
Refs. [16–19]. This results in an effective spin-only theory,
given by a (generalized) Landau-Lifshitz-Gilbert (LLG) equa-
tion [20],

Ṡm =
∑

m′
Jmm′Sm′ × Sm +

∑
m′

αmm′Sm × Ṡm′ , (2)

where both the Gilbert damping αmm′ and the indirect
Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange interac-
tion Jmm′ [21–23] must be computed from the J = 0 ground
state of the electron system.

It has been pointed out [11,24,25] that the Gilbert damping
αmm′ is usually nonlocal, i.e., dependent on two spatial indices
m, m′ with αmm′ �= 0 for m �= m′. In addition, and depending
on the translational symmetries of the underlying system, the
Gilbert damping can be inhomogeneous, i.e., αmm can be m
dependent or, more generally, αmm′ can depend nontrivially
on both m and m′. Here, assuming a hopping matrix that fully
respects the translational symmetries of the lattice, we con-
sider the homogeneous case only and focus on the nonlocality
of the damping. Moreover, the purely electronic part Ĥel of
the Hamiltonian (1) is invariant under SU(2) spin rotations.
With this choice, we also disregard anisotropy effects and thus
assume for a 3 × 3 Gilbert-damping tensor that αmα,m′α′ =
αmm′δαα′ with α, α′ = x, y, z.

Importantly, even for the conceptually simple model
Hamiltonian given by Eq. (1), the local and the nonlocal
elements of the Gilbert damping are nonzero and actually
comparatively large. The physical mechanism is a retardation
effect, as described in Refs. [11,26]: Although the impurity-
spin dynamics is slow compared to the femtosecond timescale
of the electron dynamics, the quantum state does not instantly
follow the time-dependent impurity-spin configuration, i.e.,
the electron dynamics is slightly nonadiabatic. Already for
the (M = 1) single impurity case, this implies that S and
〈ŝ〉 are noncollinear, which in turn produces spin damping.
This view should be contrasted with previous work, where the
local damping αmm is attributed to relativistic effects, i.e., to
spin-orbit coupling [27–41]; see, also, the related discussion
in Ref. [25].

In the quite common continuum (as opposed to the discrete
tight-binding) approach, the nonlocality of the Gilbert damp-
ing is typically accounted for by additional gradient terms
∂αS(r, t ) [42–48]. This assumes a weak spatial variation of the
damping on the atomic scale and that the leading correction
beyond a fully local damping suffices. On the contrary, we

will demonstrate that αmm′ is typically even more nonlocal
than, e.g., the RKKY interaction Jmm′ , at least for the model
studied here.

With the present paper, we focus on the generic, nonrel-
ativistic model given by Eq. (1) on the D = 1 chain and on
the D = 2 square lattice, and study the local and nonlocal ele-
ments of the Gilbert-damping matrix. To this end, we derive a
compact expression for αmm′ based on the local and nonlocal
tight-binding density of states.

Furthermore, we discuss the impact of the spin damp-
ing on the relaxation dynamics for systems with different
number M of impurity spins coupled to the electron sys-
tem in various geometries. For two classical spins (M = 2)
coupled to next-nearest-neighbor sites of a one-dimensional
tight-binding chain, it has been observed [49] that the lo-
cal and the nonlocal elements of αmm′ are exactly identical,
α11 = α22 = α12 = α21, and that this results in a completely
undamped spin dynamics. This counterintuitive effect actually
represents a general feature of D = 1 classical, quantum, and
quantum-classical bipartite multi-impurity models [25,49]. If
and how this still manifests itself in higher dimensions is an
obvious question to be answered.

The LLG equation (2) is rederived for the model given by
Eq. (1) by invoking linear response theory and, subsequently,
by an expansion in the retardation time and corresponding
truncation, i.e., using the two above-mentioned approxima-
tions controlled by (i) weak local exchange J and (ii) short
typical retardation times. We demonstrate that the result
is essentially the same when interchanging the order of
the approximations, i.e., when first starting from the com-
pletely different formalism of adiabatic response theory [50],
adapted to the present case, and make use of a weak-J
approximation thereafter. For D = 1, the impurity-spin re-
laxation dynamics from both approaches will be checked
against the fully numerical solution of the exact equations of
motion.

Both formalisms show that αmm′ = αmm′ (t ) is actually time
dependent. However, very different time dependencies are
obtained when evaluated numerically. This and the impact on
the long-time dynamics and the relaxation time is studied for
the D = 1 case, where the linear and the adiabatic response
approaches can be checked against the full solution.

The paper is organized as follows: In the next section, we
discuss the fundamental equations of motion for the coupled
spin-electron dynamics. The linear response and the adia-
batic response approaches are introduced in Secs. III and IV,
respectively. Section V is devoted to computational details.
Results are presented in Sec. VI, which address the time de-
pendence and the nonlocality of the spin friction (Secs. VI A
and VI B), the dynamics of a single spin driven by a mag-
netic field (Sec. VI C), and the breakdown of the effective
theory if there is a van Hove singularity at the Fermi energy
(Sec. VI D). The anomalous dynamics of two impurity spins in
D = 1 is discussed in Sec. VI E. We then proceed with dimen-
sion D = 2 and analyze the local and nonlocal spin friction in
Sec. VI F and the distance and directional dependencies of the
Gilbert damping in Sec. VI G. The effects of spin friction on
the dynamics of two impurity spins and of impurity-spin ar-
rays are analyzed in Secs. VI H and VI I. Electron-correlation
effects, on the level of the random-phase approximation,

014402-2



MICROSCOPIC THEORY OF SPIN FRICTION AND … PHYSICAL REVIEW B 111, 014402 (2025)

are touched in Sec. VI J. Our concluding remarks are
given in Sec. VII.

II. FULL SPIN DYNAMICS

Starting from the Hamiltonian, given by Eq. (1), the exact
equations of motion for the classical spins Sm, with m =
1, . . . , M and |Sm| = 1, and of the one-particle reduced den-
sity matrix ρ(t ) with elements

ρiσ,i′σ ′ (t ) = 〈�(t )|c†
i′σ ′ciσ |�(t )〉, (3)

are readily derived (see, e.g., Ref. [11]). We find

d

dt
Sm(t ) = J〈sim〉t × Sm(t ) −

∑
m

Bm × Sm(t ), (4)

where 〈sim〉t is the expectation value of the local spin at
site im of the electron system in the N-electron state |�(t )〉.
If τ denotes the vector of Pauli matrices, we have si =
1
2

∑
σσ ′ c†

iσ τσσ ′ciσ ′ . The last term on the right-hand side results
from local magnetic fields Bm coupling to the impurity spins
Sm, i.e., we have replaced the Hamiltonian in Eq. (1) by Ĥ �→
Ĥ − ∑

m BmSm. This will be convenient in the following. The
equation of motion for the density matrix is given by

i
d

dt
ρ(t ) = [T (eff)(t ), ρ(t )], (5)

where T (eff)(t ) is an effective hopping matrix with elements

T (eff)
iσ,i′σ ′ (t ) = δσσ ′Tii′ + J

2
δii′

M∑
m=1

δiimτσσ ′Sm(t ). (6)

Initially, at time t = 0, we specify a certain start con-
figuration S(0) = [S1(0), . . . , SM (0)] for the impurity spins.
Furthermore, we assume that the electron system, at time
t = 0, is in its ground state for J = 0. The corresponding
ground-state one-particle reduced density matrix,

ρ(0) = 	(μ1 − T ), (7)

is formally given in terms of the Heaviside step function
	(· · · ) and can be computed by diagonalizing the hopping
matrix T .

In the multi-impurity-spin case (M > 1), real-time dynam-
ics is initiated by suddenly switching on Ĥint. For M = 1, we
suddenly switch the direction of a local magnetic field B that
couples to the impurity spin S.

Equations (4) and (5) form a closed set of nonlinear or-
dinary differential equations for the spin configuration S =
(S1, . . . , SM ) and ρ. This can be solved numerically by stan-
dard techniques for a D-dimensional lattice with a finite
number of sites L = lD. Accessible propagation times τ are
limited by the requirement τ � l/v, where v is the (ballistic)
propagation speed.

III. LINEAR RESPONSE THEORY

The effective spin-only dynamics, determined by the
LLG equation (2), is obtained in the limit of weak J and
short retardation times. In the linear response approach,
we start by treating J perturbatively. The corresponding

Kubo formula reads

〈sim〉t = J
∑

m

∫ t

0
dτ χmm′ (τ )Sm′ (t − τ ) + O(J2). (8)

The integral kernel is given in terms of the unperturbed (J =
0), retarded, nonlocal, and time-homogeneous magnetic sus-
ceptibility,

χαα′
mm′ (t ) = −i	(t )e−ηt

〈[
sα

im (t ), sα′
im′ (0)

]〉(0)
. (9)

Here, 〈· · · 〉(0) denotes the expectation value with respect to
the unperturbed system at J = 0. Furthermore, η > 0 is an in-
finitesimal, and α = x, y, z. Since Ĥel is invariant under SU(2)
spin rotations, the susceptibility is diagonal with respect to
the directional indices and also α independent: χαα′

mm′ (t ) =
δαα′

χmm′ (t ).
As a second approximation, we assume that the retardation

time τ in Eq. (8) is small, i.e., that the integral kernel χmm′ (τ )
is peaked at small τ , on the characteristic timescale 1/T of the
electron system, as compared to the much slower timescale
on which the classical spins evolve. This justifies a Taylor ex-
pansion Sm′ (t − τ ) = Sm′ (t ) − τ Ṡm′ (t ) + · · · . Truncating the
expansion after the first order and inserting into Eq. (8) yields

〈sim〉t = J
∑

m′

[∫ t

0
dτ χmm′ (τ )

]
Sm′ (t )

− J
∑

m′

[∫ t

0
dτ τχmm′ (τ )

]
Ṡm′ (t ). (10)

With Eq. (4), we then get

d

dt
Sm(t ) =

∑
m′

Jmm′ (t )Sm′ (t ) × Sm(t )

+
∑

m′
αmm′ (t )Ṡm′ (t ) × Sm(t )

−
∑

m

Bm × Sm(t ), (11)

where we have defined the time-dependent RKKY exchange
interaction,

Jmm′ (t ) = J2
∫ t

0
dτ χmm′ (τ ), (12)

and the time-dependent Gilbert damping,

αmm′ (t ) = −J2
∫ t

0
dτ τ χmm′ (τ ). (13)

Equation (11) should be compared with the LLG Eq. (2).
Apart from the additional magnetic-field term, the main dif-
ference is the time dependence of the coupling constants.

The time-independent RKKY interaction, defined as
Jmm′ = limt→∞ Jmm′ (t ), corresponds to an effective RKKY
Hamiltonian, HRKKY = 1

2

∑m �=m′
mm′ Jmm′SmSm′ . We furthermore

define the time-independent Gilbert damping as αmm′ =
limt→∞ αmm′ (t ). The sign in the definition (13) of the damping
matrix is chosen such that αmm > 0. (This is opposite to the
convention used in Refs. [11,49]). Through Fourier transfor-
mation of the susceptibility, χmm′ (ω) = ∫

dτ eiωτχmm′ (τ ), we
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get the alternative representation,

αmm′ = iJ2 d

dω
χmm′ (ω = 0) = −J2 d

dω
Imχmm′ (ω = 0).

(14)

Most convenient for the numerical simulations, however, is
the representation of the damping matrix,

αmm′ = π

2
J2Aimim′ (ω = 0)2, (15)

in terms of the local or nonlocal tight-binding density of states
Aii′ (ω). In the context of a single impurity spin and local
Gilbert damping (m = m′), a derivation of Eq. (15) is given in
Refs. [51–54]. A general derivation is given in the Appendix;
see, also, Refs. [11,18,55,56].

Assuming a translation-invariant system with lattice vec-
tors Ri and periodic boundary conditions, we have

Aii′ (ω) = 1

L

∑
k

eik(Ri−Ri′ )δ[ω + μ − ε(k)], (16)

where ε(k) = ε(−k) is the tight-binding dispersion and μ

is the chemical potential, which fixes the average particle
number 〈N〉.

According to the derivation given in the Appendix, the
temperature dependence of the damping parameters can be
obtained via

αmm′ = −π

2
J2

∫
dx f ′(x)Aimim′ (x)2. (17)

In the low-temperature (β → ∞) or in the wide-band limit,
we can replace the one-electron spectral density by a constant,
Aimim′ (x) → ρmm′ . This yields

α
(∞)
mm′ = π

2
J2ρ2

mm′ . (18)

Hence, a nontrivial temperature dependence at low tempera-
tures is due to the variation of the spectral density near ω = 0.
We can make use of the Sommerfeld expansion in powers of
β−2 to make this explicit. A straightforward calculation yields

αmm′ = α
(∞)
mm′ + π3

6

J2

β2
[(ρ ′

mm′ )2 + ρmm′ρ ′′
mm′ ] + O(β−4),

(19)

where we have defined

ρ
(n)
mm′ = dn

dxn
Aimim′ (x)

∣∣∣∣∣
x=0

. (20)

IV. ADIABATIC RESPONSE THEORY

In the limit of weak J and short retardation times, the
same effective spin-only dynamics, given by Eq. (2), is ob-
tained when first assuming that the electron system almost
adiabatically follows the spin dynamics, while the weak-J
approximation is done at a later stage. This can be seen
by starting with the adiabatic response theory as outlined in
Ref. [50] and adapted to the case of spin dynamics.

The considered setup is that of an open quantum system,
driven by external parameters S = (S1, . . . , SM ) and in con-
tact with a large thermal bath at temperature 1/β. The total

Hamiltonian is

Ĥtotal = Ĥ + ĤB + ĤSB, (21)

where Ĥ is the Hamiltonian given by Eq. (1), ĤB denotes the
Hamiltonian of the thermal bath, and ĤSB is the system-bath
interaction. The latter terms, ĤB and ĤSB, are introduced for
formal reasons only and can be disregarded at the end of the
consideration, assuming that the system-bath coupling is suf-
ficiently weak. Finally, we will also take the zero-temperature
limit β → ∞.

The goal is to determine the expectation value 〈sim〉t of the
local spin of the electron system at site im in the many-electron
quantum state, for a given trajectory of the classical spins S(t ′)
with t ′ � t . This is needed for Eq. (4) to obtain a closed set
of equations of motion for the classical spins S only. To this
end, we start with the thermal (canonical) equilibrium value
〈sim〉(eq)

S(t ) for a fixed spin configuration S(t ) at time t . In the

adiabatic approximation, we would have 〈sim〉t = 〈sim〉(eq)
S(t ) .

Within adiabatic response theory, the difference,

〈�sim (t )〉 = 〈sim〉t − 〈sim〉(eq)
S(t ), (22)

is computed perturbatively in the deviation from a strictly
adiabatic, infinitely slow spin dynamics S(t ). The “small pa-
rameter” is given by the dissipated work [50,57],

W =
∫ t

0
dt ′ Ṡ(t ′)

{∇SĤ [S(t ′)] − 〈∇SĤ [S(t ′)]〉(eq)
S(t ′ )

}
, (23)

where Ĥ [S(t )] is the total Hamiltonian (1) for a given spin
configuration. Note that W is an operator, but not an observ-
able [58,59]. The dissipated work can be interpreted as the
difference between the work performed on the system along
a certain trajectory S(t ) in the spin-configuration space and
the work along the same path but traversed adiabatically. For
an isothermal process, the second contribution is given by the
free-energy difference between the initial and the final state at
S(0) and S(t ), respectively.

As detailed in Ref. [50], one finds

〈�sim (t )〉 = J
∑

m′
Kmm′ [t, S(t )] Ṡm′ (t ), (24)

up to first order in W . Here, Kmm′ is a 3 × 3 matrix for each
index pair m, m′, which depends on t explicitly, and also
implicitly via S(t ). The elements of this matrix are given by

Kαα′
mm′ [t, S(t )] =

∫ t

0
dt ′

∫ β

0
du

〈
sα

im (−iu)sα′
im′ (t

′ − t )
〉(eq)

S(t )

−
∫ t

0
dt ′

∫ β

0
du

〈
sα

im (−iu)
〉(eq)

S(t )

× 〈
sα′

im′ (t
′ − t )

〉(eq)

S(t ). (25)

Here, α, α′ = x, y, z and u refers to imaginary time. Inserting
〈sim〉t , as obtained from Eqs. (22) and (24), into Eq. (4), we get

Ṡm(t ) = J〈sim〉(eq)
S(t ) × Sm(t ) −

∑
m

Bm × Sm(t )

+ J2
∑

α

∑
m′α′

Kαα′
mm′ [t, S(t )]Ṡm′α′eα × Sm(t ). (26)
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In the second step, we additionally assume that J is weak.
For a fixed spin configuration S(t ), the static, equilibrium
expectation value 〈sim〉(eq)

S(t ) in the first term on the right-hand
side of Eq. (26) can be expanded in powers of J as

〈sim〉(eq)
S(t ) = 〈sim〉(eq)

J=0 + J
∑

m′
χmm′Sm′ (t ) + O(J2), (27)

where χmm′ ≡ χmm′ (ω = 0) is the static and unperturbed (J =
0) magnetic susceptibility, i.e., the ω = 0 Fourier component
of χαα′

mm′ (t ) = δαα′
χmm′ (t ) defined in Eq. (9). The first term,

〈sim〉(eq)
J=0, vanishes as there is no spontaneous magnetic order

for a system of noninteracting conduction electrons and since
the magnetic field Bm only couples to the impurity spin Sm.
With this, the first term on the right-hand side of Eq. (26) re-
duces to the RKKY term

∑
m′ J2χmm′Sm′ (t ) × Sm(t ), if terms

of the order of J3 are neglected. Since the K matrix in Eq. (26)
already carries a J2 factor, we can then disregard its de-
pendence on S(t ) as this would produce terms of O(J3) as
well. With the same argument and since the model is SU(2)
symmetric and does not support spontaneous magnetic order,
the second term on the right-hand side of Eq. (25) can be
disregarded. We are left with

Kαα′
mm′ (t ) = δαα′

∫ t

0
dt ′

∫ β

0
du

〈
sα

im (−iu)sα′
im′ (t

′ − t )
〉(0)

. (28)

Inserting a resolution of the identity 1 = ∑ |�n〉〈�n|
with energy eigenstates between the spin operators
in Eq. (28) and expressing the expectation value as
Z−1 ∑

e−βEn〈�n′ | · · · |�n′ 〉, one can derive a Lehmann-type
representation. This involves matrix elements 〈�n|sα

i |�n′ 〉
with eigenstates of the J = 0 Hamiltonian Ĥel. In the sector
with even total particle number N , the latter is invariant
under time reversal, [	, Ĥel] = 0, where the representation
of time reversal is given by an antiunitary operator 	 with
	2 = 1, 		† = 1, and 	si	

† = −si. A straightforward
consequence is that the matrix elements 〈�n|sα

i |�n′ 〉 =
〈	�n|sα

i |	�n′ 〉 = 〈�n|	†sα
i 	|�n′ 〉∗ = −〈�n|sα

i |�n′ 〉∗ ∈ iR
are purely imaginary (see, also, Ref. [60]). This immediately
implies that K is symmetric, Kαα′

mm′ (t ) = Kα′α
m′m(t ).

It is important to see that there is a finite antisymmetric
part for strong J , i.e., in the regime where the weak-J ap-
proximation does not apply, e.g., for systems directly coupled
to an external magnetic field or systems where time-reversal
symmetry is explicitly broken in the electronic sector, as in
the case of the Haldane model [61]. In the equations of mo-
tion for the classical spins, this would lead to an additional
geometrical spin torque,∑

α

∑
m′α′

�αα′
mm′ [S(t )]Ṡm′α′eα × Sm(t ), (29)

resulting from the spin-Berry curvature,

�αα′
mm′ (S(t )) = J2 1

2

{
Kαα′

mm′ [S(t )] − Kα′α
m′m[S(t )]

}
. (30)

Previously, this was derived within the framework of adiabatic
spin dynamics [60,62–64]. The spin-Berry curvature repre-
sents the feedback [65] of the Berry-phase physics [66] in the
electron system on the dynamics of the classical degrees of
freedom. Here, we see that the same geometrical spin torque
can be derived within the context of adiabatic response theory

[50] as well. Importantly, the spin-Berry curvature is a geo-
metrical object and only depends on t via S(t ), if the explicit
t dependence of Kαα′

mm′ [t, S(t )] in Eq. (25) can be disregarded,
i.e., in the long-time limit.

Let us return to our main focus, namely, spin damping.
Generally, we define

K
αα′

mm′ (t ) = 1
2

{
Kαα′

mm′ [t, S(t )] + Kα′α
m′m[t, S(t )]

}
. (31)

Specifically, for the time-reversal and spin-SU(2) symmetric
model Ĥel considered here and in the weak-J limit, the sym-
metrization is superfluous and, furthermore, the 3 × 3 tensor

is actually isotropic, i.e., K
αα′

mm′ (t ) = δαα′
Kmm′ (t ). Hence, the

last term on the right-hand side of Eq. (26) reads∑
m

αmm′ (t )Ṡm′ (t ) × Sm(t ), (32)

when identifying

αmm′ (t ) = J2Kmm′ (t ). (33)

With the term Eq. (32) and with Eq. (27) inserted into Eq. (26),
we find the same spin-only effective equation of motion (11)
that was derived within linear response theory and the sub-
sequent perturbative treatment of retardation effects, but with
two exceptions: The RKKY coupling constants are time inde-
pendent and the expression given by Eq. (32) for the damping
constants differs from Eq. (13).

V. COMPUTATIONAL DETAILS

The fundamental equations of motion (4) and (5) as well
as the effective equations of motion (2) can be solved using
standard numerical techniques [67–69]. On timescales up to
∼109 in units of the inverse nearest-neighbor hopping 1/T ,
the achieved numerical accuracy is sufficient, i.e., the effects
of numerical errors are invisible in all the spin-dynamics plots
shown below.

We consider a tight-binding model of noninteracting elec-
trons Ĥel on a D-dimensional lattice with periodic boundary
conditions such that diagonalization of the hopping matrix
T = UεU† is achieved analytically via Fourier transforma-
tion. Hence, the tight-binding dispersions are given by

ε(k) = −2T cos(k) − 2T ′ cos(2k), (34)

for D = 1, where the nearest-neighbor hopping T = 1 fixes
the energy (and with h̄ ≡ 1 the timescale) and where T ′ is the
next-nearest-neighbor hopping. The lattice constant is set to
unity as well. For D = 2, we have

ε(k) = −2T [cos(kx ) + cos(ky)] − 4T ′ cos(kx ) cos(ky). (35)

The necessary ingredients for the effective equations (2)
or, more generally, for the effective equations of motion with
time-dependent parameters, given by Eq. (11), can be com-
puted numerically as follows.

We start with the RKKY interaction parameters Jmm′ (t ).
These are obtained from Eq. (12) by performing the τ

integration numerically. For the integrand, we use the
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representation

χmm′ (τ ) = 	(τ )e−ητ Im

[(
eiTτ

eβ(T−μ1) + 1

)
im′ im

(
e−iTτ

1 + e−β(T−μ1)

)
imim′

]
(36)

of the (J = 0) retarded magnetic susceptibility, where we made use of the fact that the hopping matrix is diagonal in
the spin indices σ, σ ′ and spin independent. With Uik = 1√

L
e−ikRi , and in the zero-temperature limit β → ∞, one gets

χmm′ (τ ) = 	(τ )e−ητ Im

⎡
⎣ 1

L2

occ∑
k

eiε(k)τ eik(Rim′ −Rim )
unocc∑

k′
e−ik′(Rim −Rim′ )e−iε(k′ )τ

⎤
⎦. (37)

We see that the susceptibility is symmetric with
respect to m, m′. As argued above, this is a con-
sequence of the time-reversal symmetry of Ĥel.

Importantly, the wave-vector summations over the occu-
pied or unoccupied points in the first Brillouin zone factorize.
This allows us to address fairly large systems and to control
the thermodynamic limit. The L → ∞ limit should be taken
with a finite η > 0 in the regularization factor e−ητ , which
appears in the definition of the retarded susceptibility given by
Eq. (9) and which ensures the convergence of the limit t → ∞
in Eq. (12). The latter is necessary for the computation of the
time-independent RKKY coupling, Jmm′ = limt→∞ Jmm′ (t ) =
J2χmm′ (ω = 0). The limit η ↘ 0 should be taken in the end.

Within linear response theory, the time-dependent Gilbert-
damping parameters αmm′ (t ) are obtained from Eq. (13) via
numerical integration. The time-independent parameters αmm′

are obtained from Eq. (A9).
Within adiabatic response theory and for weak J , the

identification Eq. (33) leads us exactly to the same effective
equations of motion (11) that were obtained within linear
response theory, albeit with a different expression for αmm′ (t )
as compared to Eq. (13). For its numerical evaluation, we first
consider Eq. (28). Making use of isotropy and time-reversal

symmetry, Kαα′
mm′ (t ) = K

αα′

mm′ (t ) = δαα′
Kmm′ (t ), inserting a reso-

lution of the identity with an orthonormal basis of eigenstates
of Ĥel as described below Eq. (28), and evaluating the corre-
sponding matrix elements of sα

im
and sα′

im′ yields

Kmm′ (t ) = 1

2

∫ t

0
dt ′

∫ β

0
du

(
eT (it ′+u)

eβ(T−μ1) + 1

)
m′m

×
(

e−T (it ′+u)

1 + e−β(T−μ1)

)
mm′

, (38)

and, after diagonalization of the hopping matrix T ,

Kmm′ (t ) = 1

2

1

L2

∑
kk′

f [ε(k) − μ] f [μ − ε(k′)]eik(Rim −Rim′ )

× e−ik′(Rim −Rim′ )
∫ t

0
dt ′

∫ β

0
du e[ε(k)−ε(k′ )](u+it ′ ).

(39)

Here, f (x) = 1/(eβx + 1) is the Fermi function. We carry out
the integration over imaginary time u with the case distinction
(i) ε(k) �= ε(k′) and (ii) ε(k) = ε(k′). Using the iden-
tity (eβ(x−x′ ) − 1) f (x) f (−x′) = f (−x) f (x′) − f (x) f (−x′) in

addition and carrying out the t ′ integration, we arrive at

Kmm′ (t ) = 1

L2

ε(k)�=ε(k′ )∑
kk′

f [ε(k) − μ) f (μ − ε(k′)]

× Im[ei(k−k′ )(Rim −Rim′ )(1 − ei[ε(k)−ε(k′ )]t )]

[ε(k) − ε(k′)]2

+ K (deg)
mm′ (t ), (40)

where the first term refers to case (i) and where the second
term refers to case (ii), and is given by

K (deg)
mm′ (t ) = 1

2

βt

L2

ε(k)=ε(k′ )∑
kk′

f [ε(k) − μ) f (μ − ε(k′)]

× eik(Rim −Rim′ )e−ik′(Rim −Rim′ )
. (41)

In the thermodynamic limit L → ∞, this second term van-
ishes, unless there is a macroscopic number of degeneracies in
the tight-binding dispersion ε(k). Assuming that this is not the
case, taking the zero-temperature limit β → ∞, and inserting
into Eq. (33) we find

αmm′ (t ) = J2 1

L2

occ∑
k

unocc∑
k′

× Im[ei(k−k′ )(Rim −Rim′ )(1 − ei[ε(k)−ε(k′ )]t )]

(ε(k) − ε(k′))2
. (42)

Unfortunately, the numerical evaluation is much more time
consuming as compared to linear response theory, i.e.,
Eq. (13) and Eq. (37).

VI. RESULTS

A. Time-dependent spin friction

In the effective spin-only theory, the relaxation towards the
ground-state spin configuration is determined by the Gilbert
damping αmm′ (t ). As shown above, there are at least three
different ways to calculate this quantity, namely, (i) via linear
response theory (LRT), resulting in Eq. (13); (ii) via adiabatic
response theory (ART), resulting in Eq. (33), and, finally,
(iii) one usually assumes time-independent damping constants
αmm′ = limt→∞ αmm′ (t ). We start the discussion by a corre-
sponding comparison. This is done for a one-dimensional
tight-binding model with dispersion Eq. (34) at half filling.
The next-nearest-neighbor hopping is set to T ′ = 0, for sim-
plicity.
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FIG. 1. Time-dependent local Gilbert damping α0(t )/J2 as ob-
tained from linear response theory (blue) and from adiabatic response
theory (green) for the one-dimensional system at half filling. T = 1
sets the energy scale (and with h̄ ≡ 1 the timescale). Orange line:
Linear response theory with η = 0.01. Calculations for T ′ = 0, L =
105, and periodic boundary conditions.

Figure 1 shows results for the local Gilbert damping for a
system with L = 105 sites. Periodic boundary conditions are
assumed such that αmm(t ) = α0(t ) is m independent. Within
LRT, we find that α0(t ) exhibits an undamped oscillation, after
some initial decay at shorter times. Fourier analysis yields a
dominating frequency ωvH ≈ 2.0, which stems from the van
Hove singularities at ωvH = ±2 in the local density of states,
as already explained in Ref. [11]. Within ART, the same oscil-
lation frequency is found, but there is a strong damping of the
oscillation such that α0(t ) converges to an essentially constant
value α0 ≈ 0.040J2 on a timescale of roughly t = 50.

For the nearest-neighbor Gilbert damping α1, the same
qualitative behavior is observed for both approaches, LRT and
ART, as can be seen in Fig. 2. However, the time-independent
nearest-neighbor damping constant vanishes, α1 ≈ 0. The
same values for the local and the nearest-neighbor damping,
α0 ≈ 0.040J2 and α1 ≈ 0, are obtained from LRT with a finite
regularization parameter η. In Figs. 1 and 2, results are shown
for η = 0.01 (orange lines). However, within numerical accu-
racy, the damping constants, α0 and α1, do not depend on the
choice for η, as long as η is sufficiently small (but η � 1/L,
since the limit η ↘ 0 must be taken after the limit L → ∞).
This independence of η is expected; see the discussion in
Refs. [11,49] and the discussion of the two-dimensional sys-
tems below. It is remarkable, however, that both approaches,

FIG. 2. The same as Fig. 1, but for the nearest-neighbor damping
α1(t )/J2, i.e., d = im′ − im = 1.

FIG. 3. Local and next-nearest-neighbor damping parameters, α0

and α2, for the D = 1 system at half filling as a function of the next-
nearest-neighbor hopping T ′. Calculations for L = 106.

LRT and ART, yield the same local and nonlocal damping
constants.

B. Nonlocal spin friction

We have also calculated αd for larger distances, d =
im′ − im. Both approaches precisely reproduce the finding of
Refs. [25,49], namely, αd+2 = αd = const > 0 for even dis-
tances d = 0, 2, 4, . . . and αd+2 = αd = const = 0 for odd d .
This distance (in)dependence of αd is a characteristic feature
for the D = 1 model at half filling.

Another, at first sight nonintuitive, numerical result is the
T ′ dependence of the local and the next-nearest-neighbor
Gilbert damping. This is shown in Fig. 3. We find that
α0(T ′) = α2(T ′) = const for all T ′ with −T ′

c < T ′ < T ′
c . The

critical next-nearest-neighbor hopping is given by T ′
c = T/2.

Furthermore, α1(T ′) = α3(T ′) = 0 within the same T ′ range
(not shown). For |T ′| > T ′

c , the T ′ dependence of αd (T ′) is
nontrivial. Again, this result is characteristic for D = 1 and
half filling.

There is a simple proof for both the peculiar d and T ′
dependencies of αd (T ′), which is based on the density-of-
states formula given by Eq. (15). We first note that T ′

c = T/2
is the critical value for a Lifshitz transition of the Fermi
“surface.” If −T ′

c < T ′ < T ′
c , the occupied k points lie in

the range −kF < k < kF, with kF = π/2 in the first Brillouin
zone [−π, π ], i.e., kF is independent of T ′ in this T ′ range.
However, for |T ′| > T ′

c , the “Fermi-surface volume” splits
into three disconnected parts. This is illustrated with Fig. 4.

For D = 1, −T ′
c < T ′ < T ′

c , and for L → ∞, we can ex-
press the spectral density Ad (0) ≡ Aimim′ (ω = 0) with d =
im′ − im in the form

Ad (0) = 1

2π

∫ π

−π

dk eikdδ[μ − ε(k)]

= 1

2π

∑
kF

eikFd

(
dε(k)

dk

∣∣∣∣
k=kF

)−1

= 1

π
cos

(π

2
d
) 1

2T
, (43)

with Fermi wave vectors kF = ±π/2. With Eq. (15), this
demonstrates that αd (T ′) is independent of T ′ and oscillates
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FIG. 4. Dispersion (34) for various T ′. Blue: T ′ = 0.0 (no off-
set). Green: T ′ = 0.25, with vertical offset �ε = 0.5. Red: T ′ =
0.50 (�ε = 1.0). Violet: T ′ = 0.75 (�ε = 1.5). Horizontal dashed
lines: respective chemical potentials μ, corresponding to half filling.
Thick lines indicate occupied states.

between 0 and α0 = J2/8πT 2 ≈ 0.0398J2 (with T = 1) for
odd and even d , respectively.

C. Single-spin dynamics in D = 1

While LRT and ART yield the same Gilbert damping
constant αmm′ = limt→∞ αmm′ (t ), the time dependence of the
damping is very different, as discussed above (Figs. 1 and 2).
The resulting spin dynamics, however, turns out to be essen-
tially independent of the approach used, at least in the regime
where the effective spin-only theory applies. In addition, the
time dependence of the damping is practically irrelevant for
the spin dynamics.

We start the related discussion with Fig. 5, which shows
the time evolution of the x component of a single impurity
spin coupled to a site of the one-dimensional model with
T ′ = 0. Initially, the impurity spin points in the x direction,
and the electron system is prepared in its ground state for

FIG. 5. Time dependence of the x component of a single impurity
spin S coupled to a site of the D = 1 tight-binding model via a local
exchange interaction J . At time t = 0, where J is suddenly switched
on, the spin points in the x direction. For t > 0, the spin dynamics
is driven by a finite local magnetic field B = (0, 0, B) in the z di-
rection, which couples to S. Dashed blue line: LRT calculation with
time-dependent damping. Solid orange line: LRT calculation with
constant damping. Parameters: L = 4000, T ′ = 0, J = 0.3, B = 0.5,
half filling.

J = 0. At time t = 0, we suddenly switch on the exchange
coupling J and, in addition, a local and time-independent
magnetic field B = (0, 0, B) in the z direction, which couples
to the spin, i.e., Ĥ �→ Ĥ − BS (see, also, the discussion at the
end of Sec. VI C). The purpose of the field is to drive the
spin dynamics. In fact, for t > 0, the spin starts to precess
around B with the Larmor frequency ω ≈ B, as seen in the
oscillations of Sx and of Sy (not shown). On a timescale of a
few thousand inverse hoppings, the spin finally aligns to the
field, i.e., Sz → 1 (not shown) and Sx, Sy → 0. Importantly,
Fig. 5 shows the prediction of LRT, as obtained from the
equation of motion Ṡ(t ) = α0(t )Ṡ(t ) × S(t ) − B × S(t ) with
time-dependent α0(t ) (dashed blue line) and for the same
equation of motion but replacing α0(t ) �→ α0, i.e., for time-
independent α0 (solid orange line).

There are no significant differences, either at early times or
for times close to the relaxation time. Furthermore, inspection
of the numerical data shows that the agreement becomes even
better with decreasing field strength. The obvious interpre-
tation is that the precession timescale 1/B set by the field
strength B is long compared to the timescale for the oscilla-
tions of αd that is set by the electronic band width, such that
only the average over many α oscillations is actually relevant.
This argument becomes increasingly pertinent with weaker
(and thus more physical) field strengths B.

We have also calculated the spin dynamics within ART.
The result perfectly agrees with that shown in Fig. 5. After the
previous discussion, this was only to be expected since, within
ART, α0(t ) oscillates with the same frequency as seen within
LRT (cf. Fig. 1) and converges to the constant α0 after a few
oscillations anyway. We conclude that the time dependence of
the Gilbert damping is practically irrelevant for the resulting
spin dynamics within both approaches, LRT and ART. From
this point on, we therefore use LRT with time-independent
damping constants αmm′ .

The predictions of the effective spin-only theory agree very
well with the results obtained from the full theory, i.e., from
Eqs. (4) and (5). For a numerical evaluation of the full theory
up to a propagation time tprop and avoiding unwanted finite-
size effects, i.e., interferences due to excitations propagating
back to the impurity spin (in the case of periodic boundary
conditions), one must consider systems with L � vtprop, where
v = dε(kF)/dk is the Fermi velocity. At half filling and for
T ′ = 0, we have vF = 2. This implies that a system with L =
1000 sites is sufficiently large to see complete spin relaxation,
if the relaxation time is τ � 500.

As can be seen in Fig. 6, this is the case when choosing
J = 0.5 and B = 1.0 (see top panel). While Sx (and Sy, not
shown) oscillates with the Larmor frequency ω ≈ B, the z
component of the spin monotonously increases from Sz = 0
for t = 0 to Sz ≈ 1 for t ≈ 300. The dynamical evolution is
qualitatively the same for both the full theory and the effective
spin-only theory. The agreement is even quantitative; there is
merely a small difference of a few percent between the full
and the effective theory visible in the z component of S(t )
around t = 100, and the relaxation is somewhat faster in the
full theory.

Physically relevant coupling strengths J and magnetic
fields B (or effective “Weiss” fields produced via RKKY
exchange in a multi-impurity-spin system) are generically
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FIG. 6. Time dependence of Sx and of Sz as obtained from the full theory (solid orange line), Eqs. (4) and (5), compared to the effective
theory (dashed blue). Top: Calculations with J = 0.5 and B = 1.0 for a chain of length L = 1000 with periodic boundaries; T ′ = 0. Middle:
The same, but for J = 0.5 and B = 0.5. System size: L = 2000. Note the different timescale. Bottom: The same, but for J = 0.3 and B = 0.5.
System size: L = 4000. Note the different timescale.

much weaker. A weaker field B implies a smaller preces-
sion frequency and thus a slower spin dynamics. Hence,
this implies a more adiabatic motion and thus improves the
short-retardation-time approximation. In fact, comparing the
results at fixed J = 0.5, for B = 1.0 (Fig. 6, top panel) with
those obtained for B = 0.5 (Fig. 6, middle panel), one finds
an even better agreement between the full and the effective
theory for the smaller field strength. Note that the relaxation
time increases with decreasing B. We have thus extended the
maximum propagation time to tprop = 1000 and, accordingly,
the system size to L = 2000.

Similarly, a weaker J , at fixed B, improves the weak-
coupling approximation. In the bottom panel of Fig. 6, for
J = 0.3 and B = 0.5, the agreement between the full and
the effective theory is perfect on the scale of the figure. The
relaxation time increases once more.

The results discussed so far have been obtained by simul-
taneously switching on the coupling J and the field B at time
t = 0. This setup for initiating the dynamics is the one that
is conceptually consistent with the linear response approach.
Alternatively, we have tentatively initiated the dynamics by
starting from the coupled system at finite J and switching
on the field B only. Using this second setup and within the
full theory, we did not find any significant differences in the
spin dynamics. This is easily understood since, (i) for the
considered coupling strengths, there is only a very weak po-
larization of the conduction-electron local magnetic moment
〈si0〉 at t = 0. At J = 0.5, for example, its magnitude amounts

to |〈si0〉| ≈ 0.064, i.e., almost an order of magnitude smaller
that the saturation value, and hence its feedback effect on the
spin dynamics is weak. (ii) While in the first setup 〈si0〉 = 0 at
time t = 0, the moment very quickly polarizes in the course
of time to the same value |〈si0〉| ≈ 0.064 that is found at t = 0
in the second setup. In fact, the polarization takes place on the
fast electronic timescale and is fully completed already after
t = 1/T = 1. We can thus state that the spin dynamics practi-
cally does not depend on the preparation of the initial state.

D. Van Hove singularities

Besides J , the strength of the (local) Gilbert damping
also depends on the density of states at the Fermi energy, as
Eq. (15) demonstrates. A divergence of the density of states at
the Fermi energy then implies a divergent damping constant
α0. The analysis of the effective equation of motion for a
single spin [11,56,70],

Ṡ(t ) = α0 Ṡ(t ) × S(t ) − B × S(t ),

gives the exact analytical result,

τ ∝ 1 + α2
0

α0

1

B
, (44)

for the relaxation time τ . The relaxation time diverges for
α0 → ∞.

We have checked this against the numerical evaluation of
the full theory, given by Eqs. (4) and (5), for the half-filled
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FIG. 7. Time evolution of the x component of S1 in a setup with
two spins S1 and S2 at distance d = 2 and for J = 0.1. Results for
T ′ = 0 (blue line), T ′ = 0.6 (orange). The green line is the result
of a calculation for T ′ = 0.6, where α2 is set to zero. Parameters:
L = 106, η = 10−5.

system, J = 0.5, B = 1.0, and next-nearest-neighbor hopping
T ′ = −0.5, where the density of states exhibits a strong 1/

√
ω

van Hove singularity at the Fermi energy (see Fig. 3). In
addition, slightly smaller T ′ � −0.5 have been considered.
Contrary to the prediction of the effective theory, we find a
finite relaxation time of the order of τ = O(102). This shows
that the effective theory fails if the (dimensionless) parameter,
given by the product of J with the density of states at the Fermi
energy, is large.

E. Two-spin dynamics in D = 1

In the case of two impurity spins at distance d = im′ − im
and vanishing magnetic field, the effective equations of mo-
tion read

Ṡ1 = Jd S2 × S1 + α0S1 × Ṡ1 + αd S1 × Ṡ2, (45)

Ṡ2 = Jd S1 × S2 + α0S2 × Ṡ2 + αd S2 × Ṡ1. (46)

Here, we have disregarded the time dependence of αd (t ), as
discussed above, but also of the RKKY coupling Jd (t ) [see
Eq. (12)]. The latter shows an oscillatory time dependence
with the same characteristic frequency ωvH = ±2 that was
found for αd (t ), but decays quickly on a timescale of a few
tens of inverse hoppings. Using the same reasoning as for the
damping, we can also ignore the t dependence of Jd (t ), if J is
sufficiently small.

As discussed above, for half filling and if −T ′
c < T ′ < T ′

c ,
the damping parameters αd for all even d are equal, while
αd = 0 for arbitrary odd d . Hence, coupling the two impurity
spins to neighboring lattice sites, the nonlocal damping van-
ishes and, independent of the initial spin configuration, one
finds a relaxation of the spin system to its ground state that is
driven by the local damping parameter α0 only.

For distance d = 2, the situation is completely different
(see, also, the discussion in Ref. [49]): Exploiting the fact that
α0 = α2 and adding the two Eqs. (45) and (46) immediately
implies that Stot = S1 + S2 is a constant of motion and, con-
sequently, S1S2 is constant as well. We conclude that the spin
system does not relax at all, if d is even.

This is demonstrated with Fig. 7, where the time depen-
dence of the x component of S1 is shown for a system with

FIG. 8. Local Gilbert-damping parameter α(0, 0)/J2 as a func-
tion of the regularization parameter η for different system sizes L.
Calculations for the D = 2 square lattice with next-nearest-neighbor
hopping T ′ = −0.3.

two impurity spins at distance d = 2, initially prepared as
mutually orthogonal, S1S2 = 0. In fact, there is no relaxation
for T ′ = 0 and S1x exhibits an undamped oscillation. This
appears to be counterintuitive.

On the contrary, for T ′ = 0.6 > T ′
c = 0.5, the two-spin

system relaxes to its (ferromagnetic) ground-state spin config-
uration. The rather long relaxation time τ ∼ 106 is due to the
chosen weak coupling strength J = 0.1. The relaxation is due
to the fact that α0 = α2 is no longer enforced by the arguments
leading to Eq. (43): At T ′ = 0.6, we find α0 = 1.169 and
α2 = 0.581.

Figure 7 also shows the time evolution of S1x(t ) for the
same T ′ = 0.6, but neglecting the nonlocal damping, i.e., the
result of a calculation where we have ad hoc set α2 = 0.
Intuitively, one would expect that switching off the nonlocal
damping would lead to a longer relaxation time. However, as
is seen in the figure, the opposite behavior is found and τ , in
fact, decreases if one sets α2 = 0.

F. Local and nonlocal spin friction in D = 2

The numerical computation of the local and the nonlocal
elements of the (time-independent) Gilbert damping αmm′ on
the D = 2 square lattice proceeds along the lines described in
Sec. V. As for D = 1, a proper choice of the regularization
parameter η is decisive.

Due to translational symmetry, the damping parameters
αmm′ only depend on the distance vector R = (Rx, Ry) between
the two sites im and im′ in the square lattice. Figure 8 shows
the local damping parameter α(0, 0), and Fig. 9 shows the
nonlocal damping parameter α(9, 9), i.e., for two spins S1 and
S2 along the diagonal with distance vector R = (9, 9), which
is the maximum distance considered here.

Note that the limit L → ∞ should be taken for a finite
η > 0, and that the η ↘ 0 limit should be taken in the end.
For R = (0, 0) (Fig. 8) and for η = 10−3, the thermodynamic
limit is reached with L � 4 × 106 in practice. The same result
for α(0, 0) is obtained with larger parameters, e.g., with η =
10−2, where the thermodynamical limit is reached even earlier
(L = 1 × 106 is sufficient). Computations with, e.g., L = 106

and η = 10−2 are fully converged. A too small η requires
larger system sizes, otherwise one only resolves finite-size
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FIG. 9. The same as Fig. 8, but for the nonlocal Gilbert-damping
parameter α(9, 9)/J2 for sites linked by the distance vector R =
(9, 9).

artifacts. For a too large η, on the other hand, results start to
get an unphysical η dependence (even for sufficiently large L).

Achieving convergence, i.e., limη↘0 limL→∞(· · · ), is more
difficult for longer distance vectors R. At R = (9, 9) (see
Fig. 9), there is an η-independent plateau for sufficiently large
L (e.g., L = 4 × 106) in a smaller η range, η = 10−3–10−2

[note the logarithmic scale for α(R)/J2].
In the rest of the paper, we consider classical spins that

are exchange coupled to a half-filled conduction-electron
system with nearest-neighbor hopping T = 1 and finite next-
nearest-neighbor hopping T ′ on the D = 2 square lattice. The
tight-binding dispersion is given by Eq. (35). Considering a
finite next-nearest-neighbor hopping is essential for D = 2
and at half filling since for T ′ = 0 the density of states ex-
hibits a logarithmic van Hove singularity at the corresponding
chemical potential.

This is also seen in Fig. 10, which shows the μ dependence
of the local damping α(0, 0) for different T ′. For T ′ = 0, the
chemical potential corresponding to half filling is μ = 0, i.e.,
the Gilbert damping diverges and the effective theory would
break down, as discussed in Sec. VI D. With decreasing
T ′, the location of the divergence shifts to lower chemical
potentials. At T ′ = −0.3, the singularity is located at

FIG. 10. Local Gilbert damping α(0, 0) for the D = 2 tight-
binding model as a function of the chemical potential μ for different
values of the next-nearest-neighbor hopping. Blue line: T ′ = 0.
Orange: T ′ = −0.1. Green: T ′ = −0.3. Parameters: L = 106, η =
10−2. At T ′ = −0.3, half filling is achieved with μ ≈ −0.66.

FIG. 11. Distance dependence of the RKKY interaction J (R)
(upper panel) and of the Gilbert damping α(R) (lower panel), both
normalized to unit local exchange J , along the y axis of the square
lattice, R = (0, Ry ). T = 1, T ′ = −0.3, L = 4 × 106, η = 1 × 10−3.
Inset: A ground-state spin configuration.

μ ≈ −1.19, while half filling is achieved with μ ≈ −0.66,
where α(0, 0) ≈ 0.055 is still small.

G. Distance and directional dependence

In the one-dimensional case and for T ′ with −T ′
c < T ′ <

T ′
c , the counterintuitive relaxation dynamics of two spins at

distance d results from the extremely nonlocal spin friction
given by αd = 1

2 [1 + (−1)d ]α0, as has been discussed in
Sec. VI B.

For higher-dimensional lattices, D � 2, the dependence
of the Gilbert damping α(R) with R = |R| can be computed
analytically, when assuming a free dispersion ε(k) = k2

2m . One
easily finds

α(R) ∝ 1

RD−1
for R → ∞. (47)

This may be compared to the well-known distance depen-
dence of the RKKY interaction,

J (R) ∝ 1

RD
for R → ∞, (48)

which decays more rapidly with R. Analytical results for α(R)
for all R and including the proportionality constants (but still
assuming a free dispersion) can be found in Ref. [25].

Here, for the tight-binding dispersion and for not too large
distances, we show that the distance dependencies are less
regular and that the directional dependencies are much more
important. Numerical results for the D = 2 tight-binding sys-
tem and a generic value for the next-nearest-neighbor hopping
T ′ = −0.3 are shown in Figs. 11 and 12. Along the y axis
with R = (0, Ry) (see Fig. 11), we find an oscillatory depen-
dence of J (0, Ry) with decreasing amplitude as Ry increases.
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FIG. 12. The same as Fig. 11, but along the diagonal
R = (Rd , Rd ) with Rx = Ry = Rd . Inset: A ground-state spin
configuration.

The nonlocal Gilbert damping α(0, Ry) is positive and shows
slight oscillations with decreasing amplitude. Remarkably, all
nonlocal elements α(0, Ry) with Ry � 1 are smaller by more
than one order of magnitude as compared to the local Gilbert
damping α(0, 0).

Along the diagonal of the square lattice (see Fig. 12), the
RKKY coupling is negative (ferromagnetic) rather than oscil-
latory at short distances Rx = Ry � 4. Likewise, the Gilbert
damping exhibits a strong directional dependence. For nearest
and next-nearest neighbors along the diagonal, i.e., for R =
(1, 1) and for R = (2, 2), it is much stronger as compared to
nearest- and next-nearest-neighbor positions along the y axis,
R = (0, 1) and R = (0, 2), for example.

H. Effect of nonlocal Gilbert damping in D = 2

To study the effect of the nonlocal Gilbert damping on
the relaxation dynamics of impurity spins in two dimensions,
we first consider a setup with two classical spins that are
exchange coupled to next-nearest-neighbor sites, i.e., R =
(1, 1). Figure 13 shows the relaxation time τ as a function of
the next-nearest-neighbor hopping T ′, starting from an initial
state where the two classical spins are orthogonal.

Of course, the definition of τ is somewhat arbitrary. As an
operational criterion for (almost) full relaxation of R impurity
spins, we employ the condition

1

R − 1

R−1∑
r=1

|SrSr+1 ∓ 1| < ε, (49)

with the − sign in the case of a ferromagnetic alignment in
the ground state and with the + sign for antiferromagnetic
alignment. Furthermore, we choose ε = 0.001. We find that
the criterion given by Eq. (49) is completely fulfilled for a
sufficiently long time evolution so that we can define the

FIG. 13. Relaxation time τ as function of the next-nearest-
neighbor hopping T ′ for a system with two classical spins that are
locally exchange coupled with J = 0.1 to next-nearest-neighbor sites
of the square lattice, R = (1, 1). In the initial state, the two impurity
spins enclose the angle π/2. Blue: Computation including the non-
local Gilbert damping. Orange: Computation with nonlocal Gilbert
damping set to zero. The conduction-electron system is at half filling.
Parameters: L = 4 × 106, η = 0.01.

relaxation time τ as the latest time for which Eq. (49) no
longer applies.

As can be seen in Fig. 13, τ monotonously increases
with increasing |T ′| up to |T ′| = 0.6, while for |T ′| � 0.7,
the τ dependence becomes more complicated. This is partly
related to the T ′ dependence of the ground-state spin con-
figuration, which is determined by the RKKY interaction.
For T ′ = 0 and R = (1, 1), we have J (R) < 0, i.e., ferromag-
netic coupling. A finite (positive or negative) T ′ increases
the tendency towards antiferromagnetic coupling. In fact, we
find J (R) < 0 (ferromagnetic) for the data points up to T ′ =
0.6, and for T ′ = 0.8, while J (R) > 0 (antiferromagnetic)
for T ′ = 0.7, 0.9, 1.0. This “irregularity” in the ground-state
spin configuration and in the relaxation time is due to the
nontrivial T ′ dependence of both the RKKY coupling and
the Gilbert damping. In all cases, the impurity-spin configu-
ration in the fully relaxed state is identical to the ground-state
configuration.

The relaxation timescale crucially depends on J and is
clearly unreachable in practice by full quantum-classical the-
ory at a local exchange coupling J = 0.1. The numerical
results of the effective spin-only theory (Fig. 13) show that
roughly, the relaxation time is of the order of τ ∼ 108 (see
blue symbols) and thus, at the same value for J , about two
orders of magnitude larger than for the D = 1 case (see
Sec. VI E).

Let us note here that the spin dynamics is numerically very
stable and does not significantly change when sharpening the
tolerances for numerical errors in the solution of the system
of differential equations. Furthermore, slight deviations in the
initial state, e.g., a small change of the angle enclosed by the
two spins, only leads to small changes of τ .

Interestingly, a clearly shorter relaxation time is obtained
when disregarding the nonlocal Gilbert damping. At T ′ =
±0.3, where the value for α(1, 1) is about 18% of the local
damping (see Fig. 12), a decrease of τ by about 10% is found,
when ad hoc switching off the nonlocal damping. The effect
becomes stronger with decreasing |T ′|.
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Let us mention that for T ′ = 0, the relaxation time is infi-
nite in the effective theory due to the van Hove singularity at
the Fermi energy of the half-filled conduction-electron system
(see the discussion in Sec. VI D). The equations of motion
given by Eq. (2) are meaningless in this case since α(R) is
divergent.

The finding that including nonlocal Gilbert damping leads
to longer relaxation times is reminiscent of the results found
for the D = 1 lattice. For the D = 1 case, the effect could be
explained analytically as the result of an emergent conserved
quantity that is not caused by a symmetry of the Hamiltonian;
see Sec. VI E. The main point is that an infinite relaxation
time is obtained if α0 = αd , which is exactly realized for
impurity spins coupled to next-nearest-neighbor (distance d =
2) sites on the D = 1 lattice. For the D = 2 case, the ratio
α(1, 1)/α(0, 0) is clearly smaller than unity (see Fig. 12 for
T ′ = −0.3) and, therefore, there is a weak reminiscence of
the effect only, but still the relaxation time increases due to
nonlocal damping. This is corroborated by the observation
that the effect is practically absent if the impurity spins couple
to nearest-neighbor sites along the y axis of the square lat-
tice, where we find α(0, 1)/α(0, 0) ≈ 0.001 (see Fig. 11 for
T ′ = −0.3).

I. Relaxation of spin arrays

For the above-discussed setup with two impurity spins cou-
pled to the square lattice, the local Gilbert damping dominates
the relaxation dynamics. Considering more impurity spins
introduces additional complexity: The spatial structure of the
RKKY interaction might lead to magnetic frustration, and the
growing number of nonlocal damping terms might result in a
qualitatively different relaxation dynamics.

Here, we study systems in two different chain geometries:
(i) nearest-neighbor chains of R impurity spins along, say, the
y direction, as visualized with the inset in Fig. 11, and (ii)
next-nearest-neighbor chains of length R along a diagonal of
the square lattice; see the inset in Fig. 12. The respective re-
laxation times τ , defined via Eq. (49), are shown as a function
of the chain length R in Figs. 14 and 15.

We start with the discussion of the chain along the y axis.
Two different initial spin configurations have been considered.
The filled circles in Fig. 14 refer to the first initial configura-
tion, a π/2-spin spiral state at time t = 0, where each spin
Sm is obtained from Sm−1 by a π/2 rotation around an axis
perpendicular to the first spin S1.

The computations have been performed for T ′ = −0.3,
where we have a strongly positive RKKY coupling between
nearest neighbors and a smaller but still positive RKKY
coupling between next-nearest neighbors; see Fig. 11. While
this implies significant magnetic frustration, we find that the
ground-state spin configuration of the chain is antiferromag-
netic for all R = 2, . . . , 10. This ground-state configuration is,
in fact, reached on roughly the same timescale τ ∼ 108 (at J =
0.1) for all chain lengths R. We find that the relaxation time
is clearly shorter for chains with even R, opposed to chains
with an odd number of spins. This implies a rather regular
oscillation of τ with R and might be traced back to the choice
of the initial state. Indeed, a less regular R dependence of τ is
seen for the second initial spin configuration, where we have

FIG. 14. Relaxation time τ as function of the number of spins,
R, as determined via Eq. (49) for ε = 0.001. Computations for
a system of R impurity spins (R = 2–10) coupled to the sites
(0, 0), (0, 1), (0, 2), . . . , (0, R − 1) of the square lattice; see inset
of Fig. 11. Filled circles: data obtained for an initial spin con-
figuration with Sm = Om−1S1 for m = 2, . . . , R, where O is the
orthogonal 3 × 3 matrix representing a π/2 rotation around a fixed
axis perpendicular to S1 (π/2 spin spiral). Open circles: initial
spin configuration given by Sm = (−1)mS2 for m = 3, . . . , R and
S1 = OS2 (antiferromagnetic configuration with first spin rotated by
π/2). S1 is kept fixed during the time evolution. Orange and red
symbols: relaxation time as obtained from computations with all
nonlocal Gilbert-damping parameters set to zero. Blue and green
symbols: computations including the full nonlocal Gilbert damping.
Parameters: L = 4 × 106, η = 10−3, T ′ = −0.3.

assumed all spins aligned antiferromagnetically, except for the
first, which is rotated by π/2 around an axis perpendicular to
the directions of the remaining spins and kept fixed during the
subsequent dynamics.

For both types of initial states, there is no general overall
increase or decrease of τ with increasing R, i.e., the relax-

FIG. 15. The same as Fig. 14, but for impurity No. of spins
coupled to the sites (0, 0), (1, 1), (2, 2), . . . , (R − 1, R − 1) along a
diagonal on the square lattice; see inset of Fig. 12. As in Fig. 14,
the first initial spin configuration (filled circles) is a π/2-spin spiral.
Contrary to Fig. 14, however, the second configuration (open circles)
is given by a ferromagnetic spin configuration, except for the first
spin S1, which is rotated by π/2 (and kept fixed during the time
evolution).
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ation timescale τ ∼ 108 roughly remains constant. This hints
towards a dominantly local relaxation mechanism, where the
relaxation time is mainly dominated by the approach of the
local ground state, while reaching the overall collinear spin
structure is not very crucial.

This view is corroborated by the observation that the local
Gilbert damping still dominates the relaxation dynamics: For
both types of initial conditions, we have performed computa-
tions with all nonlocal damping switched off, i.e., α(R) = 0
for all R except for R = (0, 0). Results are displayed by or-
ange and red circles in the figure. While there is some effect
of the nonlocal damping, it is generally small. This is remark-
able since the number of nonlocal damping terms grows as
R(R − 1)/2 with R, i.e., quadratically for large R opposed
to the number R of local damping terms. We also note that
switching off the nonlocal damping counterintuitively leads
to shorter relaxation times τ for some R, as discussed above
for R = 2, but there seems to be no clear trend.

This is very much different for chains along the diagonal
of the square lattice; see the results in Fig. 15. Here, the
RKKY couplings J (R) for the first three distance vectors
R = (1, 1), (2, 2), (3, 3) are non-negligible and all negative
(ferromagnetic); see Fig. 12. Hence, there is no significant
magnetic frustration. In fact, the ground-state spin configu-
ration turns out to be ferromagnetic for all R and is always
reached as the final state of the relaxation dynamics.

For the diagonal spin chain, we find that the relaxation time
τ increases with the number of spins, R, for both initial spin
configurations, the global π/2-spin spiral (filled circles) and
for an initial configuration (open circles) with only the first
spin S1 rotated by π/2 out of the ferromagnetic ground-state
configuration. The growth of τ with R is plausible in both
cases since there is a total impurity-spin difference between
the initial and the final configurations, which linearly grows
with R. As the total spin of the full quantum-classical system
(including the conduction electrons) is a constant of motion,
this difference must be compensated in the course of time
by a corresponding difference in the conduction-electron sys-
tem. In other words, the necessary amount of spin dissipation
grows with R and leads to a (superlinearly) growing relaxation
time. Note that for the second type of initial conditions, only
the component of the total spin along the direction of S1 is
constant. This reasoning is also supported by the fact that
overall the relaxation times are about an order of magnitude
larger (of the order of τ ∼ 109) for the spin chain along the
diagonal compared to the chain along the y axis (τ ∼ 108).

The data obtained for the initial R = 4 spin spiral represent
an exception and, to a lesser extent, those for R = 8 as well;
see the respective peaks of τ (R) in Fig. 15. As already dis-
cussed above (Fig. 14), this appears related to the period of
the π/2-spin spiral, as for R = 4, 8, 12, . . . the total impurity
spin is zero and thus the necessary spin dissipation is at a
maximum. We have checked this by analogous computations
for a 2π/3-spin spiral. As expected, the corresponding relax-
ation times peak at R = 3, 6, 9 with strongly decreasing peak
heights as R increases.

Finally, switching off all nonlocal Gilbert damping con-
stants, α(R) = 0 for R �= (0, 0), has a substantial impact on
the relaxation time for the spin chain on the diagonal. Very
consistently, the relaxation time slightly decreases for both

types of initial states, if R = 1, 2, 3—this is the counterintu-
itive effect observed and discussed earlier. For R = 5, 6, . . . ,
on the other hand, we find an increasing relaxation time. We
attribute this trend reversal to the fact that the overall larger
nonlocal damping (see Figs. 11 and 12), in combination with
the growing number of nonlocal terms as R increases, now
substantially adds to the local damping mechanism.

J. Weakly interacting systems

The derivation (see the Appendix) of Eq. (15) is based on
the application of Wick’s theorem and thus cannot be used to
compute the Gilbert damping in the case of a correlated elec-
tron system. Therefore, we compute αmm′ via the frequency
derivative of the magnetic susceptibility at ω = 0, i.e., via
Eq. (14). Addressing weakly interacting systems, the random-
phase approximation (RPA) [64,71–73] is employed here. We
start from Eq. (37) for the noninteracting retarded magnetic
susceptibility, denoted here as χ

(0)
mm′ (t ), to get χ (0)(k, ω) via

Fourier transformation from real to k space and from time to
frequency representation. The interacting RPA susceptibility
is then obtained as

χ (k, ω) = χ (0)(k, ω)

1 + Uχ (0)(k, ω)
, (50)

for the D = 2 Hubbard model on the square lattice,

Ĥel =
∑
〈ii′〉

∑
σ=↑,↓

Tii′c
†
iσ ci′σ + U

∑
i

ni↑ni↓, (51)

where U is the strength of the on-site Hubbard interaction.
On the level of one-particle excitations, the RPA cor-

responds to the Hartree-Fock approach. We consider the
paramagnetic phase of the Hubbard model at weak U and fi-
nite next-nearest-neighbor hopping T ′ �= 0. As has been found
within Hartree-Fock theory [74], the paramagnetic state of the
system becomes unstable towards an antiferromagnetic state
at a finite critical interaction Uc = Uc(T ′).

Our numerical calculations have been performed for lat-
tices with L = 512 × 512 sites, periodic boundary conditions,
a large inverse temperature β = 500, and using a small reg-
ularization parameter η = 0.015. We have checked that the
results do not significantly depend on these choices and are
representative for the zero-temperature and the thermodynam-
ical limit. In particular, we recover the known results for Uc

[74]. At T ′ = −0.3, for instance, we find Uc ≈ 2.53, which
is straightforwardly obtained as the singularity of χ (k, ω) at
k = (π, π ) and ω = 0.

In reciprocal space, the frequency derivative of the suscep-
tibility can be computed analytically,

d

dω
χ (k, ω) = dχ (0)(k, ω)/dω

[1 + Uχ (0)(k, ω)]2
. (52)

Via Fourier transformation of χ (k, 0) and of dχ (k, 0)/dω,
we find the distance-dependent RKKY interaction J (R) and
the Gilbert damping α(R) in real space. Figure 16 shows the
nearest-neighbor RKKY coupling J (0, 1)/J2 as well as the
local Gilbert damping α(0, 0)/J2 as functions of U for T ′ =
−0.3. In reciprocal space, on approaching the phase transi-
tion via U → Uc ≈ 2.53, we have χ (k, 0) ∼ (Uc − U )−1 at
k = (π, π ), while dχ (k, 0)/dω ∼ (Uc − U )−2. The stronger
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FIG. 16. U dependence of the RKKY interaction J (R)/J2 be-
tween nearest neighbors R = (0, 1) (blue) and the local Gilbert
damping α(R) with R = (0, 0), as obtained from RPA calculations
for the half-filled Hubbard model with T ′ = −0.3 on the square
lattice. Parameters: L = 512 × 512, η = 0.015, β = 500.

divergence of dχ/dω compared to χ leads to the stronger
enhancement of α(R), compared to J (R), which can be seen
in the figure.

Generally, the increase of the local Gilbert damping with
increasing U for the square lattice is consistent with the re-
sults of a previous study performed for a single impurity spin
coupled to the D = 1 Hubbard model [75], where a decreasing
relaxation time with increasing U has been found in the weak-
interaction regime.

More importantly, however, we find that the Hubbard in-
teraction causes a strongly nonlocal Gilbert damping. This
is demonstrated by the results shown in Fig. 17, where the
full spatial dependence of the RKKY interaction J (R) and
of the Gilbert damping α(R) is plotted, after normalization
to the respective local element. For U = 0 (left panels), one
recovers the above-discussed directional dependence of the

FIG. 17. Distance and directional dependence of the RKKY in-
teraction J (R)/J (0) and the Gilbert damping α(R)/α(0), normalized
to the local values (color scale) for Rx, Ry = −8, −7, . . . , 7, 8. RPA
calculations for the half-filled Hubbard model at T ′ = −0.3 and for
U = 0, U = 2, and U = 2.5, as indicated. Parameters: L = 512 ×
512, η = 0.015, β = 500.

Gilbert damping (bottom panels). As compared to the RKKY
interaction (top panels), this is much more pronounced. With
increasing U (see the middle panels for U = 2.0), the direc-
tional dependence of α(R) is strongly enhanced due to the
strong increase of the nonlocal damping parameters, relative
to α(0, 0).

At U = 2.5 (upper right panel of Fig. 17), the RKKY
coupling exhibits a checkerboard pattern with J (R) strongly
oscillating between positive (antiferromagnetic) and negative
(ferromagnetic) values. Comparing with U = 2.0, we see that
this pattern extends spatially and is expected to eventually
cover the entire lattice upon approaching the phase transition
at Uc ≈ 2.53. This is indicated by the closed nodal line of
RKKY-coupling zeros extending spatially with increasing U .

Similarly, in the same spatial region enclosed by this
line, the Gilbert damping at U = 2.5 (lower right panel)
is found to oscillate. Eventually, for U → Uc, the spatial
structure of the Gilbert damping is expected to be given by
α(Rx, Ry)/α(0, 0) → (−1)Rx+Ry . This is very reminiscent of
the distance dependence of the Gilbert damping on the D = 1
chain, αd/α0 = 1

2 [1 + (−1)d ], which has been discussed in
Sec. VI B for the noninteracting case.

For a system with, e.g., two impurity spins coupled to
next-nearest-neighbor sites with R = (1, 1), and if one trusted
the effective theory right at the phase transition, the spatial
structure of the (divergent) Gilbert damping would imply that
the total spin S1 + S2 and the enclosed angle arccos(S1S2)
are constants of motion and thus the system never relaxes
to its ground-state spin configuration. However, it remains
an open question as to what the relaxation dynamics would
look like in D = 2 and for U → Uc since the absolute (unnor-
malized) Gilbert damping is divergent (Fig. 16) and, hence,
the effective spin-only theory is likely to break down at the
critical point.

VII. CONCLUSIONS

Local magnetic moments, modeled as classical spins and
locally exchange coupled to an extended metallic system
of conduction electrons at zero temperature, undergo a re-
laxation dynamics. To reduce the computational complexity,
it is tempting to describe this dynamics within an effec-
tive spin-only theory. Actually, this is necessary to access
the emergent relaxation timescale, which can be orders of
magnitude longer than the fast femtosecond timescale of the
conduction-electron dynamics.

This reduction to a spin-only theory is possible by in-
voking two mutually interrelated approximations: (i) The
exchange-coupling strength J is small compared to, e.g., the
nearest-neighbor hopping matrix element T . (ii) The electron
dynamics follows the spin dynamics almost adiabatically, i.e.,
the retardation time of the electron system is short compared
to the spin-dynamics timescale. Within the framework of lin-
ear response theory (LRT), one focuses on step (i) first, and
adopts step (ii) in a subsequent step, while in the framework of
adiabatic response theory (ART), one starts from step (ii) and
later on adopts the weak-J approximation of step (i). Both ap-
proaches, LRT and ART, yield a system of nonlinear differen-
tial equations of motion involving the impurity-spin Sm only,
as well as time-dependent and nonlocal parameters, namely,
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the RKKY interaction strengths Jmm′ (t ) and the Gilbert-
damping parameters αmm′ (t ), and possibly external magnetic
fields coupling to the spins. The parameters Jmm′ (t ) and
αmm′ (t ) are properties of the conduction-electron system only
and are closely related to its retarded magnetic susceptibility.

The reliability of the effective spin-only theory has been
tested against the numerical solution of the full coupled
quantum-classical electron-spin dynamics for a single spin,
driven by an external field B, coupled to a one-dimensional
tight-binding electron system. The expressions for Jmm′ (t )
and αmm′ (t ), as obtained within LRT and ART, exhibit a
quite different time dependence. It has been found, how-
ever, that the static RKKY interaction and the static Gilbert
damping Jmm′ = limt→∞ Jmm′ (t ) and αmm′ = limt→∞ αmm′ (t )
perfectly agree. Furthermore, the strong temporal oscillations
of Jmm′ (t ) and αmm′ (t ) seen within LRT are irrelevant for
the spin dynamics as they take place on the fast electron
timescale only. In fact, if J is sufficiently weak and if the
spin-dynamics timescale ∼1/B is sufficiently slow, then al-
most perfect agreement is found when comparing the LRT and
ART results against each other and against the results of the
full theory.

To achieve computationally manageable relaxation times
(within the full theory), this comparison was done for val-
ues of J and B of the order of T . Realistic values for J
are very specific to the concrete system being considered,
but will typically be an order of magnitude smaller than T :
Assuming a nearest-neighbor RKKY exchange of the order of
JRKKY ∼ 0.01T (with JRKKY ∼ 1 meV) or smaller (see, e.g.,
Ref. [76]), we may deduce from JRKKY = J2χ ∼ J2/T a typi-
cal value J = 0.1T for the local exchange. Realistic values for
B are even smaller. Hence, for computations addressing real
systems, one may expect that the reliability of the effective
theory is even better.

In the absence of an external driving field B, the timescale
on which the spin dynamics takes place is governed by the
RKKY coupling. Since Jmm′ ∝ J2, one actually has to control
the exchange-coupling strength J only. We have derived a
simple expression for the Gilbert damping in the wide-band
limit, αmm′ = π

2 J2ρ2
mm′ , which involves the (nonlocal) densi-

ties of states ρmm′ at the Fermi energy. This shows that the
dimensionless parameter Jρmm is a suitable control parameter
for the reliability of the effective theory. In fact, if the local
density of states ρmm diverges, as in the case of a van Hove
singularity, the effective theory is found to break down.

The D = 1 case turns out to be critical in the sense that
the Gilbert damping αd does not decay as a function of the
distance d = im − im′ but rather oscillates between the local
value α0 and zero for even and odd d , respectively. This causes
an anomalous spin dynamics where relaxation is prohibited
by an emergent conserved quantity that does not derive from
a symmetry of the full Hamiltonian. This anomaly has al-
ready been discussed in Ref. [49] for T ′ = 0. Here, we could
demonstrate that it occurs for the absolute value of the next-
nearest-neighbor hoppings T ′ that are smaller than a critical
value T ′

c = T/2 and were able to relate the critical value to
a Lifshitz transition of the Fermi “surface.” Our analysis also
explains why the relaxation time counterintuitively decreases
when disregarding the nonlocal terms m �= m′ in the matrix of
Gilbert-damping parameters αmm′ .

This is actually a recurring theme in the discussion of
relaxation dynamics in D = 2 dimensions: For two, initially
orthogonal impurity spins coupled to next-nearest-neighbor
sites on the square lattice and for all values of T ′ (|T ′| < T ),
we again find a decrease of the relaxation time when ad hoc
switching off the nonlocal Gilbert damping. As compared to
D = 1, however, the effect is much smaller such that even
disregarding the nonlocality of the Gilbert damping might be
a reasonable approximation, depending on the value for T ′.

For the D = 2 square lattice and distances R = |R| up to
R ∼ 10 lattice constants, we did not see a universal simple
power law α(R) ∝ R−(D−1), which is expected for large R
(assuming a free, ∝ k2 dispersion). More importantly, the
nonlocal Gilbert damping exhibits a strong directional de-
pendence. This reflects itself, e.g., in the relaxation dynamics
of one-dimensional spin chains coupled to the square lattice.
For chains with 2–10 impurity spins coupled to nearest-
neighboring sites along the x or, equivalently, the y direction,
the relaxation time τ turns out to oscillate with the length
of the chain without a significant overall increase of τ , in-
dependent of the initial spin configuration. On the contrary,
for chains of spins coupled to next-nearest-neighboring sites
along a diagonal direction, there is an overall superlinear in-
crease of τ with the chain length. The same behavior is found
for an initial π/2-spin-spiral configuration, as compared to an
initial state, where all spins are in their ground-state (ferro-
magnetic) configuration, except for an edge spin rotated by
π/2 that is kept fixed during the time evolution. The strong
increase of τ with the chain length can be explained with the
necessarily increasing amount of spin dissipation.

There are several main lines of relevant future research: (i)
Our studies can straightforwardly be extended to more realis-
tic models for the electronic structure and also combined with
ab initio band-structure calculations. In particular, it would
be interesting to consider multiorbital systems and to see the
effect of band degeneracy on the nonlocality of the Gilbert
damping.

(ii) The present study had focused on systems with a gap-
less metallic electronic structure and weak local exchange J ,
where Gilbert damping is the dominant leading-order effect.
For gapped systems, on the other hand, the spin dynam-
ics is additionally affected by the geometrical spin torque
[60,62,64,77]. Semimetals, where one would expect a dras-
tically reduced damping and a still well-defined geometrical
spin torque [60], are worth studying. Furthermore, somewhat
relaxing the almost adiabatic time evolution, by truncating
at the next higher order in the expansion in the typical
retardation time τret, brings in additional effects such as
nutation [63,78–80].

(iii) Modeling the impurity local magnetic moments as
classical spins can only be a first step towards a theory of spin
friction and dissipative dynamics of quantum spins. Clearly,
this is a hard correlation problem as it essentially requires
a conceptually and computationally feasible treatment of the
long-time dynamics in a multi-impurity Kondo model.

More promising is (iv) to study the effect of electron
correlations on the relaxation dynamics of classical impurity
spins. This type of problem can be addressed within the pre-
sented LRT and ART frameworks. It essentially requires a
computation of the zero-temperature (or the finite-temperature
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equilibrium) retarded magnetic susceptibility close to ω = 0.
In a first attempt to address a weakly correlated conduction-
electron system, here we have applied the RPA to the
half-filled Hubbard model at finite next-nearest-neighbor hop-
ping T ′. This is already interesting since with increasing U the
paramagnetic phase of the electron system becomes unstable
towards a k = (π, π ) antiferromagnetic phase. Close to the
phase transition, the Gilbert damping matrix αmm′ is found
to be overall strongly enhanced and strongly nonlocal. The
numerical data suggest that right at the phase transition, the
distance dependence is simply given by α(R) ∝ eikR with k =
(π, π ), which would cause spin dynamics without any dis-
sipation. However, right at the phase transition, the effective
spin-only theory itself is expected to break down. Important
next steps would therefore be to replace the RPA by a more
advanced technique, to study the system for U above the
critical interaction, and to address the strong-coupling regime.
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APPENDIX: REPRESENTATION OF THE NONLOCAL
GILBERT DAMPING IN TERMS OF THE NONLOCAL

DENSITY OF STATES

To derive Eq. (15) for the Gilbert damping matrix, we
start from the definition of the retarded susceptibility given
by Eq. (9). The computations are done at finite temperature
1/β, and the zero-temperature limit β → ∞ is taken at the
end. Since 〈[sα

im
(t ), sα′

im′ (0)]〉 is a free expectation value, Wick’s
theorem applies and can be used to decompose the two-
particle correlation into products of one-particle correlations.
A straightforward calculation yields

χαα′
mm′ (t ) = δαα′

	(t )e−ηt

× Im[〈cimσ (t )c†
im′ σ (0)〉〈c†

im′ σ (0)cimσ (−t )〉]. (A1)

The one-particle correlation functions can be obtained from
the (nonlocal) one-particle density of states, given by
Eq. (16), as

〈ciσ (t )c†
i′σ (0)〉 =

∫
dx f (−x)Aii′ (x)e−ixt ,

〈c†
i′σ (0)ciσ (−t )〉 =

∫
dy f (y)Aii′ (y)eiyt . (A2)

Here, f (x) = 1/(eβx + 1) denotes the Fermi function. Using
Eq. (A2), we find, for the frequency-dependent susceptibility,

χαα′
ii′ (ω) = δαα′

∫∫
dxdy f (−x) f (y)Aii′ (x)Aii′ (y)ρ(x, y),

(A3)

with

ρ(x, y) =
∫

dt eiωt	(t )e−ηt Im(e−ixt eiyt )

= 1

2

(
1

ω − x + y + iη
− 1

ω + x − y + iη

)
. (A4)

Note that Aii′ (x) is real. Inserting this result in Eq. (A3) and us-
ing the identity f (−x) f (y) − f (x) f (−y) = f (y) − f (x), we
arrive at

χαα′
ii′ (ω) = δαα′

2

∫∫
dxdy [ f (y) − f (x)]

Aii′ (x)Aii′ (y)

ω − x + y + iη
.

(A5)

For the second representation of the Gilbert damping in
Eq. (14), we only need the imaginary part of χαα′

ii′ (ω). Using
the identity (−1/π )Im(x + iη)−1 = δ(x), taking the ω deriva-
tive of Im χαα′

ii′ (ω), and evaluating the result at ω = 0, yields

αii′ = π

2
J2

∫∫
dxdy δ′(y − x)[ f (y) − f (x)]Aii′ (x)Aii′ (y).

(A6)

The prime at the δ function denotes the derivative with respect
to the argument. After exchanging the integration variables
x ↔ y for the summand involving f (x) and using δ′(−x) =
−δ(x), this simplifies to

αii′ = πJ2
∫∫

dxdy δ′(y − x) f (y)Aii′ (x)Aii′ (y). (A7)

To carry out the integration over y, we use integration by parts.
This leaves us with

αii′ = −πJ2
∫

dx f ′(x)Aii′ (x)2

−πJ2
∫

dx f (x)Aii′ (x)A′
ii′ (x). (A8)

Consider the second term. We have Aii′ (x)A′
ii′ (x) =

1
2 (d/dx)Aii′ (x)2, so that we can use integration by parts
once more. For a tight-binding density of states, there is no
residual boundary term. Hence, we finally get the result

αii′ = −π

2
J2

∫
dx f ′(x)Aii′ (x)2. (A9)

Since f ′(x) → −δ(x) in the zero-temperature limit, this gives
Eq. (15).
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7 – Summary and Outlook

This thesis analysed the microscopic dynamics of local magnetic impurities coupled to a host

system to understand the different effects that are at play on the atomistic level. This anal-

ysis covered mainly three effects, namely, the RKKY interaction, the Gilbert damping, and

the geometrical spin torque. The second overarching topic is that of the different theories

that can be used to describe the spin dynamics: adiabatic spin dynamics (ASD), non-Abelian

spin dynamics (NA-SD), linear response theory (LRT), and adiabatic response theory (ART).

Throughout this thesis, the impurity spins were approximated as classical vectors to make

numerical computations more feasible, while the host system is always quantum mechanical.

The first part of the thesis addresses the geometrical spin torque that can be traced back to

the spin-Berry curvature Ω and is absent in the standard treatment of spin dynamics using

the LLG equations. It arises if the dynamics of the classical impurity spins is treated as slow

compared to the dynamics of the host system. On a mathematical level, this is implemented

by constraining the host system to always be in the instantaneous ground state corresponding

to any given classical spin configuration. The adiabatic constraint, upon being incorporated

in a Lagrangian formulation of the theory, results in a geometrical spin torque influencing the

dynamics of the classical spins. This adiabatic spin dynamics (ASD) theory was originally

formulated in [56] and was discussed in chapter 4. Publication [I] builds upon the Lagrangian

formulation and shows that ASD can be expanded to the case where the adiabatic constraint

is relaxed. Namely, the state of the host system is not constrained to only the ground state

but to a low-energy subspace consisting of the n lowest multi-particle eigenstates for a given

spin configuration. This new theory is called non-Abelian spin dynamics (NA-SD) theory

with the term non-Abelian stemming from the fact that the spin-Berry curvature and hence

the geometrical spin torque is no longer a one-dimensional scalar object but an n > 1 dimen-

sional matrix-valued one [105, 106]. In publication [I] NA-SD is tested with the same model

system as in [56], a single classical spin coupled to a one-dimensional chain of conduction

electrons. Two phenomena that could not be explained within the framework of ASD can

now be resolved. Namely, the effective spin dynamics resulting from NA-SD shows spin nu-

tation, which is a higher order effect not present in ASD, and the non-Abelian spin-Berry

curvature is nonzero for any number of particles, whereas the Abelian one is only nonzero for

an odd number of particles [56]. The latter observation can be explained by the fact that the

ground state of the model system for even N is always time-reversal symmetric, irrespective

of the strength of the quantum-classical exchange coupling J . In general, the non-Abelian

spin-Berry curvature in a time-reversal symmetric system is finite as opposed to the Abelian

one, see publication [I].

To build on the findings of publications [I], one can look for more systems to which NA-SD

can be applied. Especially considering their physical relevance since [I] mainly builds up the

theoretical framework of NA-SD and applies it only to a minimal model. Systems for which

the application of NA-SD is expected to be fruitful are systems in which we expect the ground
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7 Summary and Outlook

state to become degenerate with at least one other state at some point throughout the induced

dynamics. This includes system with symmetry-induced ground-state degeneracy [107, 108].

In these cases one naturally has to include multiple states when constraining the host system

to its ground-state manifold. Additionally, NA-SD can also be used to systematically expand

the restriction to the ground-state manifold to include low-lying excitations relevant for the

low-energy physics and corresponding dynamics. Another class of interesting systems is that

of topological insulators where only a few energy eigenstates are separated from the rest by

an energy gap. One example would be a Chern insulator with a boundary and edge states

lying in its band gap [109, 110]. At half-filling such a system has a degenerate ground state

due to these edge modes. A similar reasoning can be given for topological superconductors

with defects featuring Majorana zero modes inside the superconducting gap [111].

While ASD and NA-SD are in principle applicable for all values of J , one is often only in-

terested in the weak-J regime, e.g., weak coupling between classical spin impurities and the

host system. In this regime, the natural theory to use is linear response theory. It has been

shown that applying a weak-J approximation to ASD [57] and comparing with results from

linear response theory with an additional adiabatic approximation [45] yields the same ex-

pressions for the geometrical spin torque. However, one has to be careful because for weak

J the geometrical spin torque vanishes if the host system is time-reversal invariant. A class

of systems that are not time-reversal invariant are systems with spontaneous magnetic or-

der, described, for instance, by a Heisenberg model. Due to the mechanism of spontaneous

symmetry breaking, they also exhibit gapless excitations called Goldstone modes. This is

important since the Lehmann representation of the spin-Berry curvature features the energy

difference between the ground state and excited states as a denominator. Thus, if gapless

excitations are present, the Lehmann representation has divergent terms. Of course, for an

actual divergent Ω the theory becomes meaningless but for certain systems and dimensions

the divergences can be regularised to yield a finite but large quantity. In such systems, the

geometrical spin torque is then especially significant. That the spin-Berry curvature can be

enhanced by a divergence of an energy-difference denominator was first shown in [57]. The

second publication [II] investigates this with an antiferromagnetic Heisenberg model for a

host system. In the thermodynamic limit, and using well-known spin wave theory, one gets

an analytical expression for the spin-Berry curvature in terms of a k integral, which can be

shown to converge in d = 3 and produce an exceptionally large result.

While from a purely theoretical point of view the spin-Berry curvature as a concept is already

quite interesting, boosting its magnitude is relevant for real world applications. Therefore,

the discussed setup may be a good candidate for measuring the geometrical spin torque

in an experimental setting. Suitable systems can be atom-by-atom engineered nanomag-

nets [112, 113]. Measurements might be achieved using ferromagnetic resonance techniques

[114,115], for instance using spin-polarized scanning tunneling microscopy [116,117]. Looking

further ahead, a large geometrical spin torque might prove useful in applications to antifer-

romagnetic spintronics [15,118,119].

Apart from the geometrical spin torque, two other crucial effects govern the microscopic dy-

namics of local magnetic impurities: the RKKY interaction JRKKY and the Gilbert damping
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α. The former is an indirect exchange interaction between local magnetic entities mediated

by conduction electrons. It was absent in the first two studies since these were done for

systems with only a single classical impurity spin. The Gilbert damping mechanism, on the

other hand, is a phenomenological damping mechanism refining the equations of motion for

damped magnetisation dynamics devised by Landau and Lifshitz. Originally, it was used on a

macrospin level within the framework of micromagnetics but in recent times it has also been

derived from first principles on an atomistic level. The third publication [III] contributing to

this thesis analyses the impact of JRKKY and α on the spin dynamics of quantum-classical

impurity models with one or several impurities in one and two spatial dimensions. Both

effects can be computed via the magnetic susceptibility using LRT [45]. Publication [III] also

adapts ART to quantum-classical spin systems to compute the microscopic dynamics. ART is

suited for describing slow perturbations, as opposed to the weak perturbations of LRT. When

putting both theories on equal footing, by applying a weak-J approximation to ART and an

adiabatic expansion to LRT, they yield the same results for the spin dynamics. From a phys-

ical point of view, the focus of the analysis in [III] is the nonlocality of the Gilbert damping

tensor, in contrast to its common treatment as a scalar parameter. Here, the main insight

is that the Gilbert damping in d = 2 has a strong directional dependence and nonlocalities

can have a significant impact on the relaxation dynamics. Counterintuitively, one finds that

in some cases the inclusion of nonlocal terms even hinders relaxation. The publication also

considers the effect of small correlations U in the host on the values of JRKKY and α. These

lead to an even stronger nonlocality.

Adding to this it would be interesting to see the effect of stronger correlations [55] on the

nonlocalities. In the large-U limit it might be possible to apply the spin wave calculations

from [II] to the calculation of α and get an analytical expression. As in the case of the spin-

Berry curvature, an experimental verification of the theoretical results would be significant.

The Gilbert damping has already been measured for different materials [114] also including

its nonlocalities [120]. Again, atom-by-atom engineered magnetic structures are the most

promising candidates for an experimental realization of the spin chain dynamics studied in

[III]. In this context the computation of spin relaxation dynamics for real materials is also a

worthwhile direction of research.

As described above, the Gilbert damping and the spin-Berry curvature can be seen as different

sides of the same coin, since they are respectively proportional to the frequency derivative

of the symmetric and the antisymmetric part, or alternatively the real and the imaginary

part, of the magnetic susceptibility evaluated at ω = 0. This raises the question of how α is

connected to the so-called quantum metric g, because g and Ω can be seen as the real and the

imaginary part of the quantum geometric tensor [121, 122], reminiscent of the relationship

between α and Ω. A natural follow-up is then to investigate the relation between α and g,

and a possible impact of g on the spin dynamics. The arguably most important question

for all setups considered in this thesis is how to apply timescale separation in the case of

quantum impurity spins. To this end, a workable theory concerning the application of an

adiabatic constraint to two coupled quantum systems with largely different timescales would

have to be worked out [65,123].
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Auxiliary Calculations

Homogeneity of the Magnetic Susceptibility

It is

〈ŝi(t)ŝi′(t′)〉 =
1

Z
Tr
[
e−βĤeiĤtŝie

−iĤteiĤt
′
ŝi′e

−iĤt′
]

=
1

Z
Tr
[
e−βĤeiĤ(t−t′)ŝie

−iĤ(t−t′)ŝi′
]

= 〈ŝi(t− t′)ŝi′(0)〉, (A.1)

where we used the cyclic property of the trace. For the magnetic susceptibility, it follows

χiα,i′α′(t, t
′) = −iΘ(t− t′)〈

[
ŝi,α(t), ŝi′,α′(t

′)
]
〉

= −iΘ(t− t′)〈
[
ŝi,α(t− t′), ŝi′,α′(0)

]
〉, (A.2)

i.e., the susceptibility is homogenous.

Spin-Berry Curvature of a Magnet via the Susceptibility

The frequency representation of the antisymmetric part of the magnetic susceptibility χAiα,i′α′(ω)

is related to the spin-Berry curvature Ωiα,i′α′ via

Ωiα,i′α′ = −iJ2∂ωχ
A
iα,i′α′(ω)

∣∣∣∣∣
ω=0

(A.3)

with the quantum-classical exchange coupling J . Hence, it is possible to compute Ω by first

computing the Fourier transform of χA(t) and then taking the derivative, instead of working

directly with the Lehmann representation of the spin-Berry curvature. Here this alternative

way is explored for the antiferromagnetic system discussed in publication [II]. To this end,

the ground-state expectation values 〈ŝi,α(t)ŝi′,α′(0)〉 are needed. First the expectation values

for t = 0 will be calculated. The step to the time-dependent quantities is then simple. For

zero temperature and in the spin-wave approximation, it is

〈
s+
i s
−
i′
〉

=
4s

L

∑

k,k′

e−i(kRi−k
′Ri′ )

〈
(ukαk + vkβ

†
k)(uk′α

†
k′

+ vk′βk′)
〉

=
4s

L

∑

k,k′

e−i(kRi−k
′Ri′ )ukuk′

〈
αkα

†
k′

〉

=
4s

L

∑

k

e−ik(Ri−Ri′ )u2
k, (A.4)

where the spin operators are expressed in terms of Bogoliubov operators and the expectation
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value is taken in the corresponding vacuum state. Analogously, one gets

〈
s−i s

+
i′
〉(0)

=
4s

L

∑

k

eik(Ri−Ri′ )v2
k (A.5)

〈
s+
i s

+
i′
〉(0)

=
〈
s−i s

−
i′
〉(0)

=
〈
s+
j s

+
j′

〉(0)
=
〈
s−j s

−
j′

〉(0)
= 0 (A.6)

〈
s+
j s
−
j′

〉(0)
=

4s

L

∑

k

e−ik(Rj−Rj′ )v2
k (A.7)

〈
s−j s

+
j′

〉(0)
=

4s

L

∑

k

eik(Rj−Rj′ )u2
k (A.8)

〈
s+
i s
−
j

〉(0)
=

4s

L

∑

k,k′

e−ikRieik
′Rj
〈

(ukαk + vkβ
†
k)(uk′βk′ + vk′α

†
k′

)
〉(0)

=
4s

L

∑

k

e−ik(Ri−Rj)ukvk (A.9)

〈
s−j s

+
i

〉(0)
=

4s

L

∑

k

e−ik(Ri−Rj)ukvk (A.10)

〈
s+
j s
−
i

〉(0)
=
〈
s−i s

+
j

〉(0)
=

4s

L

∑

k

e−ik(Rj−Ri)ukvk (A.11)

〈
s+
i s

+
j

〉(0)
=
〈
s−i s

−
j

〉(0)
=
〈
s+
j s

+
i

〉(0)
=
〈
s−j s

−
i

〉(0)
= 0 (A.12)

〈szi 〉(0) = −
〈
szj
〉(0)

= s− 2

L

∑

k

v2
k. (A.13)

The time evolution of the spin operators can be computed straight forwardly as

s+
i (t) = eiHts+

i e
−iHt =

√
4s

L

∑

k

eikRi(uke
iHtαke

−iHt + vke
iHtβ†ke

−iHt), (A.14)

where the time evolution of the Bogoliubov operators is

eiHtαke
−iHt =

∞∑

m

1

m!
[iHt, αk]m = e−itJHsω(k)αk (A.15)

with ω(k) :=
√

(∆z)2 − γ2
k and the m times nested commutator [·, ·]m. In deriving (A.15), it

was used that [H,αk] = −JHsω(k)αk, which in turn follows from [n̂αk, αk′ ] = −δkk′αk′ and[
n̂βk, αk′

]
= 0. For α†k, βk, β

†
k analogous results hold. Therewith:

〈
s+
i (t)s−i′ (0)

〉(0)
=

4s

L

∑

k

e−ik(Ri−Ri′ )u2
ke
−itω′(k) (A.16)

〈
s−i (t)s+

i′ (0)
〉(0)

=
4s

L

∑

k

eik(Ri−Ri′ )v2
ke
−itω′(k) (A.17)

〈
s+
j (t)s−j′(0)

〉(0)
=

4s

L

∑

k

e−ik(Rj−Rj′ )v2
ke
−itω′(k) (A.18)

〈
s−j (t)s+

j′(0)
〉(0)

=
4s

L

∑

k

eik(Rj−Rj′ )u2
ke
−itω′(k) (A.19)
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〈
s+
i (t)s−j (0)

〉(0)
=
〈
s−j (t)s+

i (0)
〉(0)

=
4s

L

∑

k

e−ik(Ri−Rj)ukvke
−itω′(k) (A.20)

〈
s+
j (t)s−i (0)

〉(0)
=
〈
s−i (t)s+

j (0)
〉(0)

=
4s

L

∑

k

e−ik(Rj−Ri)ukvke
−itω′(k) (A.21)

with the definition ω′(k) = JHsω(k). One can use those expectation values to compute the

elements of the magnetic susceptibility

χiαi′α′(t) = −iΘ(t)e−ηt
〈[
sαi (t), sα

′
i′ (0)

]〉(0)
. (A.22)

In the spin-wave approximation it is

〈[sxi (t), sxi′(0)]〉(0) =
〈[
syi (t), s

y
i′(0)

]〉(0)

=
1

4

[〈
s+
i (t)s−i′ (0)

〉(0)
+
〈
s−i (t)s+

i′ (0)
〉(0) −

〈
s+
i′ (0)s−i (t)

〉(0) −
〈
s−i′ (0)s+

i (t)
〉(0)
]

〈[
sxi (t), syi′(0)

]〉(0)
= −〈[syi (t), sxi′(0)]〉(0)

= − i
4

[〈
s−i (t)s+

i′ (0)
〉(0) −

〈
s+
i (t)s−i′ (0)

〉(0)
+
〈
s−i′ (0)s+

i (t)
〉(0) −

〈
s+
i′ (0)s−i (t)

〉(0)
]
,

which is true even if i and i′ are not from the same sublattice. Thus, one has

χixi′x(t) =− is

L
Θ(t)e−ηt

∑

k

(
u2
k

(
e−ik(Ri−Ri′ )e−itω

′(k) − eik(Ri−Ri′ )eitω
′(k)
)

−v2
k

(
e−ik(Ri−Ri′ )eitω

′(k) − eik(Ri−Ri′ )e−itω
′(k)
))

χjxj′x(t) =− is

L
Θ(t)e−ηt

∑

k

(
v2
k

(
e−ik(Rj−Rj′ )e−itω

′(k) − eik(Rj−Rj′ )eitω
′(k)
)

−u2
k

(
e−ik(Rj−Rj′ )eitω

′(k) − eik(Rj−Rj′ )e−itω
′(k)
))

χixjx(t) =− is

L
Θ(t)e−ηt

∑

k

ukvk

(
e−ik(Ri−Rj) + eik(Ri−Rj)

)(
e−itω

′(k) − eitω′(k)
)

=− 4s

L
Θ(t)e−ηt

∑

k

ukvk cos(k(Ri −Rj)) sin
(
ω′(k)t

)

χixi′y(t) =
s

L
Θ(t)e−ηt

∑

k

(
u2
k

(
e−ik(Ri−Ri′ )e−itω

′(k) + eik(Ri−Ri′ )eitω
′(k)
)

−v2
k

(
e−ik(Ri−Ri′ )eitω

′(k) + eik(Ri−Ri′ )e−itω
′(k)
))

χjxj′y(t) =
s

L
Θ(t)e−ηt

∑

k

(
v2
k

(
e−ik(Rj−Rj′ )e−itω

′(k) + eik(Rj−Rj′ )eitω
′(k)
)

−u2
k

(
e−ik(Rj−Rj′ )eitω

′(k) + eik(Rj−Rj′ )e−itω
′(k)
))

χixjy(t) =
s

L
Θ(t)e−ηt

∑

k

ukvk

(
e−ik(Ri−Rj) − eik(Ri−Rj)

)(
e−itω

′(k) − eitω′(k)
)

= 0,

i.e., the susceptibilities on the different sublattices are connected by exchanging uk and vk.

Calculating the Fourier transform
∫∞
−∞ dtΘ(t)ei(ω±ω(k)+iη)t and evaluating it at ω = 0 yields

106



Appendices

χixi′x(ω = 0) = − s
L

∑

k

u2
k + v2

k

ω′(k)

(
e−ik(Ri−Ri′ ) + eik(Ri−Ri′ )

)
(A.23)

χjxj′x(ω = 0) = − s
L

∑

k

u2
k + v2

k

ω′(k)

(
e−ik(Rj−Rj′ ) + eik(Rj−Rj′ )

)
(A.24)

χixjx(ω = 0) = − s
L

∑

k

2ukvk
ω′(k)

(
e−ik(Ri−Rj) + eik(Ri−Rj)

)
(A.25)

χixi′y(ω = 0) = −i s
L

∑

k

u2
k + v2

k

ω′(k)

(
e−ik(Ri−Ri′ ) − eik(Ri−Ri′ )

)
= 0 (A.26)

χjxj′y(ω = 0) = −i s
L

∑

k

u2
k + v2

k

ω′(k)

(
e−ik(Rj−Rj′ ) − eik(Rj−Rj′ )

)
= 0, (A.27)

where η was set to zero after doing the integral. Some components of the susceptibility

become zero due to the summand being antisymmetric regarding k. The derivative with

respect to ω evaluated at ω = 0 gives

−iJ2∂ωχixi′x(ω)

∣∣∣∣∣
ω=0

= i
sJ2

L

∑

k

1

ω′(k)2

(
e−ik(Ri−Ri′ ) − eik(Ri−Ri′ )

)

=
2sJ2

L

∑

k

sin(k(Ri −Ri′))

ω′(k)2
= 0 (A.28)

−iJ2∂ωχjxj′x(ω)

∣∣∣∣∣
ω=0

= −2sJ2

L

∑

k

sin
(
k(Rj −Rj′)

)

ω′(k)2
= 0 (A.29)

−iJ2∂ωχixjx(ω)

∣∣∣∣∣
ω=0

= 0 (A.30)

−iJ2∂ωχixi′y(ω)

∣∣∣∣∣
ω=0

= −sJ
2

L

∑

k

1

ω′(k)2

(
e−ik(Ri−Ri′ ) + eik(Ri−Ri′ )

)

= −2sJ2

L

∑

k

cos(k(Ri −Ri′))

ω′(k)2
(A.31)

−iJ2∂ωχjxj′y(ω)

∣∣∣∣∣
ω=0

=
2sJ2

L

∑

k

cos
(
k(Rj −Rj′)

)

ω′(k)2
, (A.32)

where due to
〈[
sxi (t), sxi′(0)

]〉(0)
=
〈[
syi (t), s

y
i′(0)

]〉(0)
the xx elements have the same value as

the yy elements. One sees that the only nonvanishing components are the xy terms and their

value is the same as the one calculated via the Lehmann representation of the spin-Berry

curvature in publication [II].
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