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Abstract

Cognitive modeling is the creation of models of human behavior that can also be
used to inform the development of intelligent robots. A common cognitive modeling
task is saliency prediction. Saliency models predict regions in an image or video
where a group of observers are most likely to gaze. Existing work on saliency
models formulates the task as an end-to-end problem, predicting attention as a
function of the stimuli. In this thesis, we identify the importance of social cues in
directing attention, and therefore, introduce priors representing social cues into our
models. A model augmented with social cues is defined as a social attention model.
We show that the explicit representation of social cues improves the performance of
existing saliency models. In contrast to saliency models, scanpath models predict
the gaze trajectories of individual observers. We extend saliency models with a
fixation history module, transforming them into scanpath prediction models. This
transformation is necessary for deploying attention models on robots, especially in
Human-Robot Interaction (HRI) settings, as it allows robots to exhibit humanlike
gaze patterns rather than infer gaze transitions based on the aggregated attention
of a group of observers. Additionally, it allows for the personalization of scanpaths
using a single unified model, which in turn reduces the training time significantly,
as well as the number of models required to achieve the same objective.

Toward achieving our objective, we begin by evaluating the impact of non-verbal
social cues on audiovisual saliency models. We design deep-learning models that
integrate these social cues with existing saliency models, thereby improving saliency
prediction in social settings. Saliency and social cues are represented as spatiotem-
poral maps and integrated through neural attention and gating mechanisms. A
major advantage of our map representation approach is the ability to replace these
maps at inference time without having to retrain or fine-tune the social attention
model. We propose two architectures for integrating these maps. The first which
we term late integration, combines features from multiple modality streams using
convolutional Attentive Long Short-Term Memory (ALSTM) units. The resulting
feature maps are then propagated to a Gated Multimodal Unit (GMU) model.
The second integration architecture, which we term early fusion, lets one modality
influence another via the GMU, which precedes the ALSTM, while maintaining
separate streams for each modality. This allows us to weigh and quantify the impact
of each social cue on task performance.

Given that the saliency representation maps closely resemble our social attention
model output, there is a potential drawback for shortcut learning to occur. This
means that the model might become overly dependent on the most reliable cue,
ignoring all others. Thus, to mitigate shortcut learning, we develop a neural
attention inversion module, which we term the Directed Attention Module (DAM),
based on the Squeeze-and-Excitation network. The DAM predicts the inverse of
the social cue and saliency representation maps, thereby uniformly distributing
the attention weights among social cue modalities. Therefore, it allows our social
attention model to rely on all modality representations rather than those of the
most salient modality only.
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Furthermore, to investigate the performance of our models under real-world
conditions, we develop a software framework called Wrapyfi, which allows us
to deploy and distribute the models on multiple machines and robots. Wrapyfi
facilitates the distribution of models by introducing a common interface for different
message-oriented and robotics middleware. This framework reduces the boilerplate
code necessary for conducting robotic experiments by abstracting communication
protocols and providing plugins that enable the exchange of many data types,
including those defined by deep-learning frameworks. This allows us to focus on
the design of our experimental pipelines, rather than the communication protocols
between robots and software components. We utilize Wrapyfi to conduct HRI
studies exploring the influence of robot social cues, namely gaze direction and
facial expressions, on human behavior, collaboration, and perception. Moreover,
Wrapyfi is used to manage the communication exchanges for our cognitive robotic
simulations. These simulations rely on the embodiment of our social attention
models into a physical robotic platform, demonstrating their resilience to sensor
noise and their applicability in HRI. We introduce paradigms for quantitatively
evaluating these cognitive simulations, allowing us to scale up the assessment of
our models’ performance on robots, without requiring human feedback.

Realizing the impact of sound on attention and gaze, we extend an existing
audiovisual saliency prediction model with an additional auditory stream, effectively
transforming it into a binaural model. This enables the model to localize sound
in videos, thus expanding the capabilities of social attention models relying on its
representation maps. Additionally, given that the attention patterns of individual
observers are distinct from those of a group of observers, we extend our social
attention saliency model into a scanpath predictor by integrating a fixation history
module. Finally, the model is validated in a cognitive robotic simulation setup,
allowing us to compare the robot’s performance to that of humans.
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Zusammenfassung

Cognitive Modellierung dient dazu, Modelle zum Verhalten von Menschen zu er-
stellen, sowie die Entwicklung intelligenter Roboter zu unterstützen. Eine häufige
Aufgabe der kognitiven Modellierung ist die Salienzvorhersage. Salienzmodelle
sagen voraus, wenn Beobachter ein Bild oder Video anschauen, auf welche Bereiche
sie als Gruppe am ehesten schauen werden. Bestehende Forschungsarbeiten zu
Salienzmodellen formulieren die Salienzvorhersage als ein Ende-zu-Ende Problem,
bei dem die Aufmerksamkeit der Beobachter als Funktion der Eingabestimuli
vorhergesagt wird. In dieser Dissertation untersuchen wir die Bedeutung sozialer
Hinweise zur Lenkung der Aufmerksamkeit und führen daher A-Priori Faktoren, die
durch soziale Hinweise repräsentiert werden, in unsere Modelle ein. Ein Modell, das
mit sozialen Hinweisen erweitert wird, definieren wir soziales Aufmerksamkeitsmod-
ell. Wir zeigen, dass die Einbeziehung sozialer Hinweise die Leistung bestehender
Salienzmodelle verbessert. Im Gegensatz zu Salienzmodellen sagen Scanpfadmodelle
die Blickverläufe einzelner Beobachter voraus. Wir erweitern Salienzmodelle mit
einem Modul, das die Fixationshistorie einbezieht, und verwandeln sie in Scan-
pathmodelle. Diese Transformation ist notwendig, um Aufmerksamkeitsmodelle
in Robotern einzusetzen, insbesondere im Kontext von Mensch-Roboter Interak-
tion (Human-Robot Interaction, HRI), da sie es Robotern ermöglicht, individuelle
menschenähnliche Blickmuster zu generieren, anstatt Blickübergänge basierend auf
der aggregierten Gruppenaufmerksamkeit abzuleiten. Darüber hinaus erleichtert es
die Personalisierung von Scanpfaden mit einem einzigen vereinheitlichten Modell,
was wiederum die Trainingszeit und die Anzahl der spezifischen Modelle erheblich
reduziert, die erforderlich wären, um dasselbe Ziel zu erreichen.

Um unser Ziel zu erreichen, beginnen wir mit der Bewertung des Einflusses
nonverbaler sozialer Hinweise auf audiovisuelle Salienzmodelle. Wir entwickeln
Deep-Learning Ansätze, die diese sozialen Hinweise in bestehende Salienzmodelle
integrieren und dadurch deren Performanz in sozialen Umgebungen verbessern. Die
Salienz und die sozialen Hinweise werden als raumzeitliche Karten dargestellt und
durch neuronale Attention- und Gating-Mechanismen integriert. Ein großer Vorteil
unserer Kartenrepräsentation ist die Möglichkeit, diese Karten zur Inferenzzeit
austauschen zu können, ohne das soziale Aufmerksamkeitsmodell neu trainieren
oder feinabstimmen zu müssen. Wir schlagen zwei Architekturen zur Integration
dieser Karten vor. Die erste, die wir Late Integration nennen, kombiniert Merkmale
aus mehreren Modalitäten unter Verwendung des convolutional Attentive-LSTM
(ALSTM) Modells. Die resultierenden Merkmalskarten werden dann auf ein Gated
Multimodal Unit (GMU) Modell übertragen. In der zweiten Integrationsarchitektur,
die wir Early Fusion nennen, moduliert eine Modalität eine andere, indem das
GMU den ALSTM-Units vorausgeht, wobei die Modalitäten separiert bleiben. Dies
ermöglicht es, jeden sozialen Hinweis zu gewichten und dessen Einfluss auf die
Modellperformanz zu ermitteln.

Da die Salienzrepräsentationskarten den Ausgaben unseres sozialen Aufmerk-
samkeitsmodells ähneln, kann als Nachteil Shortcut Learning auftreten. Das heißt,
das Modell verlässt sich nur auf den zuverlässigsten Hinweis und ignoriert alle
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Abstract

anderen Hinweise. Daher entwickeln wir zur Reduzierung von Shortcut Learning
ein neuronales Aufmerksamkeitsinversionsmodul, das wir als Directed Attention
Module (DAM) bezeichnen, basierend auf dem Squeeze-and-Excitation Netzwerk.
Das DAM sagt das Inverse der sozialen Hinweis- und Salienzrepräsentationskarten
vorher und verteilt somit die Aufmerksamkeitsgewichte gleichmäßig auf die sozialen
Hinweise. Somit ermöglicht es unserem sozialen Aufmerksamkeitsmodell, sich auf
alle Modalitätsdarstellungen zu stützen und nicht nur auf die einer Modalität.

Darüber hinaus entwickeln wir, um die Leistung unserer Modelle unter realen
Bedingungen zu untersuchen, ein Software-Framework namens Wrapyfi, das es
uns ermöglicht, die Modelle auf mehreren Computern und Robotern zu implemen-
tieren und zu verteilen. Wrapyfi erleichtert die Verteilung von Modellen, indem es
eine gemeinsame Schnittstelle für verschiedene nachrichtenorientierte und robotis-
che Middleware bereitstellt. Dieses Framework reduziert die Codebausteine, die
für die Durchführung robotischer Experimente notwendig sind, indem es Kom-
munikationsprotokolle abstrahiert und Plugins bereitstellt, die den Austausch
vieler Datentypen, einschließlich derjenigen, die von Deep-Learning Frameworks
definiert werden, ermöglichen. Damit können wir uns auf das Design unserer ex-
perimentellen Pipelines konzentrieren, anstatt auf die Kommunikationsprotokolle
zwischen Robotern und Softwarekomponenten. Wir nutzen Wrapyfi zur Durch-
führung von HRI-Studien, die den Einfluss robotischer sozialer Hinweise, nämlich
Blickverhalten und Gesichtsausdrücke, auf menschliches Verhalten, Zusammenar-
beit und Wahrnehmung untersuchen. Darüber hinaus wird Wrapyfi verwendet,
um den Kommunikationsaustausch für unsere kognitiven robotischen Simulationen
zu verwalten. Diese Simulationen basieren auf der Einbettung unserer sozialen
Aufmerksamkeitsmodelle in eine physische robotische Plattform und demonstrieren
deren Robustheit gegenüber Sensorrauschen und ihre Anwendbarkeit in HRI. Wir
führen Paradigmen ein, um diese kognitiven Simulationen quantitativ zu bewerten
und ermöglichen so die Skalierung der Leistungsbewertung unserer Modelle auf
Robotern, ohne menschliches Feedback zu erfordern.

In Anbetracht des Einflusses von Geräuschen auf unsere Aufmerksamkeit und
unsere Blickrichtung erweitern wir ein bestehendes audiovisuelles Salienzmodell um
einen zusätzlichen auditiven Stream und verwandeln es effektiv in ein binaurales
Modell. Dies ermöglicht es dem Modell, Geräusche in Videos zu lokalisieren,
und erweitert so die Fähigkeiten sozialer Aufmerksamkeitsmodelle, die sich auf
seine Repräsentationskarten stützen. Da die Aufmerksamkeitsmuster einzelner
Beobachter sich von denen einer Gruppe von Beobachtern unterscheiden, erweitern
wir unser soziales Aufmerksamkeits-Salienzmodell zu einem Scanpathmodell mittels
eines Fixationshistorienmoduls. Das Modell wird schließlich in Experimenten mit
Probanden und mit dem Roboter in einer Cognitiven Simulation validiert.
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Chapter 1

Introduction

Upon entering a social environment, it is a common social behavior to observe the
directional focus of individuals’ gazes and to interpret their interpersonal reactions
in general. These reactions provide social cues (defined in Section 2.1.3) that are
essential tools for non-verbal communication. Social cues include gestures, like
gaze (defined in Section 2.1.3) direction, and facial expressions. Understanding
these cues is necessary for communication among humans. For robots to interact
similarly with humans, they need to process and respond to these social signals
as well. In this thesis, we aim to improve Human-Robot Interaction (HRI) by
developing social attention (defined in Section 2.1.3) models, that can integrate
social cues and direct robots to exhibit humanlike gaze. By endowing robots with
the ability to detect and react to social cues, they can adapt to social settings,
making them less intervenient and more relatable.

1.1 Motivation

We are exposed to social cues since birth. Our behaviors, decisions, and emotional
states are defined by the interactions that are made possible by the exchange of such
cues. The human species has evolved eyes to have a pupil and a sclera—a white
fibrous layer surrounding the significantly darker pupil. The contrast between the
pupil and the sclera makes the direction of a person’s gaze visible from a distance.
This enables us to perceive their gaze, which serves many purposes. One of these is
non-verbal communication, allowing us to express intentions such as alerting others
to danger, or expressing emotions such as joy, without speaking. Thus, gaze as a
cue is essential for both communication and social cohesion.

The majority of existing computational models of cognitive attention (defined
in Section 2.1.3) disregard the influence of social cues. Implicit features relating to
such cues could be represented in cognitive attention models, however, interpreting
those features could be challenging. For instance, at which neural layer would such
features be observable? Should we consider auxiliary social cue representations
as low-level features—edges, rotations, intensities—or high-level features—faces,
proto-objects, gaze direction? The ambiguity in defining how the auxiliary social
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cue features can be represented leads us to adopt a different approach. Rather than
observing whether cognitive attention models are capable of representing social cue
features, we explicitly represent those cues as spatiotemporal maps instead. We split
our models into two separate stages. In one stage, we detect social cues from images
and represent them as visual features. In the second stage, we augment a cognitive
attention model with those auxiliary features. Our two-stage approach serves the
purpose of allowing for feature interpretability (which social cue contributes to
the cognitive attention model’s output?), improving the model performance (does
the explicit representation of social cues improve the model performance?), and
modularity (can the social cue representations be replaced without retraining the
model?)

Moreover, allowing robots to exhibit humanlike gaze patterns, motivated by the
fact that gaze and social cues are fundamental elements of human communication
and interaction, is what we aim to tackle. We envision a future where robots could
be viewed as assistants, collaborators, and relatable social entities. This vision
for robotics is not a reflection of the current state, but a compelling argument
for why we should integrate social traits into robots’ behaviors. In addition to
the interactive elements brought to robots through social cognition, integrating
humanlike gaze and other social behaviors into robots brings potential therapeutic
value to individuals with neurodevelopmental disorders [29].

We address the challenge of enabling social robots to mimic human gaze by first
predicting and modeling social attention [223]. Social attention is an umbrella term
that describes non-verbal social communication—joint attention, gaze direction,
facial expressions—and its effect on attentional preferences, expressed in the form
of gaze and emotional expressions. By designing computational models capable
of integrating information arriving from different non-verbal social cues, we can
understand the effect of those cues on the attention of a group of observers. The task
of statistically representing the attention patterns of a group of observers is known
as saliency prediction (defined in Section 2.1.3). However, predicting the attention
of the group does not lend itself to being capable of assimilating human gaze
patterns. For one, individual gaze patterns differ from the group [126]. Moreover,
our eye fixations (defined in Section 2.1.3) are sequential, meaning that the point
in the space where we gaze affects subsequent fixations. The task of sequentially
inferring fixations is known as scanpath prediction (defined in Section 2.1.3). We
therefore adapt our social attention models to predict individual scanpaths. This
adaptation allows us to infer scanpaths that are aligned to those of humans, which
consequently elevates the naturalness of a robot’s gaze. Social attention, however,
is not only driven by non-verbal cues. Sounds capture our attention and guide our
gaze. This is evident from the fact that humans tend to direct their attention more
toward active speakers in social settings [272]. Thus, all our attention and gaze
prediction models are audiovisual, meaning that they rely on auditory features
in addition to visual features to accommodate such social interactions e.g., the
active speaker vocalizes the speech (auditory) while simultaneously moving their
lips (visual).
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1.2 Research Overview

Understanding the behavior of others as well as objects in our surroundings is
critical for interacting with and reacting to changes in our environment. However,
the large influx of stimuli deters us from acting responsively without a mechanism
to filter out irrelevant information. This mechanism is termed selective attention
in the field of cognitive psychology. Computational neural models have taken
inspiration from attentive selectivity, applying it to focus on relevant attributes
across the activations of an entire neural layer, limiting the attention to a local
scope of non-differentiable segments, or a combination of both [161]. Such advances
contribute a linkage between the two fields—cognitive psychology and computer
science—enabling the transferability of discoveries in human studies to algorithmic
implementations. Attention in artificial neural networks is especially important
for crossmodal systems, where multiple modalities influence the outcomes of one
another. For instance, when listening to a person speaking in a noisy environment,
we rely on auditory and visual stimuli for selectively attending to that person and
filtering out the noise. This phenomenon is known as the cocktail party effect and
is computationally modeled for the purpose of speech separation [248].

In previous work [3, 135], we constructed a deep-learning model that combines
visual and textual data for end-to-end visuomotor robot grasping. Although the
model relies on the Transformer [260] network, which employs self-attention for
modeling language, the integration of the two modalities is simply performed
through concatenation, i.e., attention is not utilized in selecting the most relevant
features across modalities. When addressing social situations, the sporadicity
and immensity of perceived stimuli are high, requiring an attention mechanism
for fusing multiple modalities. Arevalo et al. [17] propose a Gated Multimodal
Unit (GMU) for learning joint representations across different modalities through
an intermediate fusion approach. The model has several advantages, including
independence from the training task and the weighted combination of multiple
modalities. However, it was intentionally designed exclusive of attention mechanisms
to maintain agnosticism to the task. Nonetheless, employing attention is shown to
improve neural model performance [51]. Hence, we explore combining attention
mechanisms with the GMU, hereafter termed the Attentive GMU (AGMU).

One form of action exhibited in response to social stimuli is gaze. Our direction
of gaze is controlled by the ability to focus our attention, to follow the attention
of others, and the salience of objects in our receptive field. Typical and healthy
humans are capable of following the gaze of others effortlessly. Estimating the
direction of others’ gaze informs us on their intention, acting as a direct and deictic
form of communication [231]. Studies have shown that innate interests, goals, prior
knowledge, and social cues [208, p. 212] including the direction of the observed
individual’s gaze, can affect our ability to perceive their target of attention [231],
which in turn influences our own social attention.

In this thesis, we address the gap between robotic applications and psychological
findings that emphasize the importance of integrating social cues in predicting and
controlling gaze. Gaze prediction refers to the estimation of a location where an
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agent is to fixate, whereas gaze control refers to the actuation of an agent’s eyes and
head, along with the strategies involved in directing such an action. We develop
deep-learning models that combine features from multiple sensory and social cue
modalities by:

1. Representing saliency and social cues as spatiotemporal maps.

2. Attending to the most relevant map features using AGMUs, resulting in a
joint representation [22].

3. Decoding the joint representation using a model trained on a downstream
task (defined in Section 2.1.2).

Input to the proposed models is presented in the form of auditory and visual data.
These model and their variants, which we term GASP, rely on two stages, namely
a social cue detection stage followed by a social cue integration stage. In the first
stage, the social cue modules extract social cue representations by transforming the
detected cues into spatiotemporal maps. In the second stage, the representations
act as auxiliary features and are integrated using AGMUs and other hybrid fusion
approaches, resulting in a joint representation. The joint representation is then
propagated to a downstream model, which is then used to guide a gaze prediction
model.

To control the gaze and social cues of a robotic agent, we first develop a
framework called Wrapyfi, which acts as a bridge between different variants of
GASP models and robotic platforms. Wrapyfi simplifies the bridging between
deep-learning models, sensors, and actuators by providing a single interface for
multiple middleware. Based on Wrapyfi, we conduct two HRI studies to understand
the effect of robot gaze and social cues on humans interacting with social robots.

In the first HRI study, we present a triadic gameplay scenario, where two
human participants play a cooperative tabletop game, while the robot displays
facial expressions and establishes mutual or averted gaze with one of the players.
The player conducting gaze interaction with the robot decides whether the robot is
performing random or meaningful gaze shifts and facial expressions based on their
perception of the robot’s gaze patterns. The purpose of this study is to establish
whether a robot engaging with humans through social cueing would attract their
attention and affect their performance while performing collaborative tasks.

In the second HRI study, we focus on assessing the effect of using different
interfaces for mirroring the gaze and facial expressions of humans on a robot.
Moreover, we evaluate the responsiveness of models, sensors, and display interfaces
communicating through Wrapyfi. Such evaluation helps us understand the limits
of robots when conducting HRI studies, including a robot’s physical (mechanical)
capabilities and the communication latency between inferring social cues and
controlling the robot. This is especially important for enabling realistic gaze shifts
since both the communication latency and the mechanical limitations of the robot
affect the accuracy of gaze prediction.

Next, to assess the performance of our gaze prediction models in physical
settings, we use Wrapyfi to run these models on a robotic platform. We conduct
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two cognitive simulation studies on a physical iCub [171] robot. The gaze prediction
downstream model and evaluation methodology differ among the two. The goal
of these studies is to evaluate the robustness of our models to sensor noise and
their effectiveness in near-real-time settings. One study highlights the importance
of auditory cues in directing attention. However, the model used in this study
does not predict humanlike gaze patterns, since it is trained on the attention
maps representing a group of observers. This makes it unsuitable for HRI studies,
since gazing toward the peak of the attention map results in eye movement shifts
that are unnatural. We, therefore, conduct a second cognitive simulation study
with a similar setting but a different model that predicts personalized scanpaths.
This model accounts for differences in gaze patterns and as a result, reduces the
likelihood of eye movements that diverge from typical gaze patterns.

In the first cognitive simulation study, we compare human and robot attention
responses to conflicting visual and auditory cues, with the visual cue being a gaze
toward a direction, and the auditory cue being a speech utterance arriving from the
same or opposing location to the gaze target. This study requires sound localization
capabilities. However, two audio sources are needed to localize sound. This is
similar in humans, who are able to localize sound by perceiving auditory stimuli
through both ears. Therefore, we extend an audiovisual saliency prediction model
with an additional auditory stream, transforming it into a binaural audiovisual
sound localizer. The task for this study—localize sound regardless of the visual
cue—is goal-directed, meaning that the similarities across humans are higher than
they are when the goal is loosely defined, such as under the free-viewing [257, p. 26]
condition. Therefore, we use a downstream social attention model, trained for
predicting saliency. Attending to the most salient region as predicted by the model
would correspond to the gaze prediction used to control the robot. We replace the
saliency prediction model that feeds into the social attention model with a binaural
audiovisual sound localizer.

In the second cognitive simulation study, we evaluate the similarity between
individual human scanpaths and a robot’s gaze prediction. For this purpose, we set
the downstream task of our social attention model to scanpath prediction instead.
We introduce a fixation history (defined in Section 2.1.3) module that encodes the
preceding fixations for each stimuli observation per individual. This allows us to
distinguish the target gaze pattern during training and inference. By changing the
task to scanpath prediction, we can personalize gaze patterns and predict sequences,
making the comparison with different individuals under the free-viewing condition
possible. We devise a mechanism for projecting the ground-truth priority map
(defined in Section 2.1.3) to a monitor (screen) within a simulated environment.
We then match the positions of the predicted and ground-truth priority maps and
compare them using common saliency metrics [43]. The predicted map is the output
of the scanpath model, receiving input from the physical robot’s sensors, whereas
the ground-truth map is reprojected in simulation.
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1.3 Objectives and Research Questions

Our objectives in this thesis focus on exploring methods for multimodal integration
and fusion, employing attentive mechanisms in selecting the most relevant informa-
tion, utilizing social cues for directing the gaze of a robotic agent, and personalizing
robot gaze models—models for controlling the gaze direction of the robot. We aim
to address the following research questions:

RQ1.1 Does integrating social cues, like gaze direction and facial expressions, with
saliency models improve the models’ performances?

Evidence shows that head-related non-verbal social cues, such as the gaze
direction and facial expressions, as well as bottom-up and top-down saliency,
guide overt attention—gaze in the form of head and eye movements—in social
interactions. We investigate this question first by addressing the learning of
saliency. We integrate social cues into a deep-learning-based saliency model
and evaluate whether their integration contributes to an improvement in
performance. By ablating the representation modules and quantifying the
weight gain for each, we are able to assess the benefit of each social cue
independently.

RQ1.2 How can non-verbal social cues be integrated into social attention models?

We detect and represent social cues as spatiotemporal maps that are then
integrated into our social attention model through early fusion and late
integration. Our model relies on audiovisual saliency representations alongside
social cues. We explore different integration mechanisms to combine those
representations when modeling static and dynamic stimuli.

RQ1.3 How can social attention models be personalized?

Group saliency models indicate the most conspicuous regions in a scene.
However, looking toward such regions does not resemble natural human gaze,
nor does it account for differences in gaze patterns. To address this limitation,
we extend our social attention model with a fixation history module. The
fixation history accounts for the sequence of preceding fixation points for
each observer separately when viewing a scene. In other words, the fixation
history represents the scanpath of an observer prior to them viewing the
current scene, allowing us to specify which observer’s gaze we would like to
assimilate.

RQ1.4 Which methods are needed to embody social attention models in robots?

To embody our social attention models in robots, we develop the Wrapyfi
framework for communicating information to the actuators and from the
sensors of a robot. Along with pipelines to concurrently process and acquire
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stimuli, we transport audio and video to our social attention models, eventu-
ally directing the robot’s gaze toward the target of attention. The framework
is designed to support multiple message-oriented middleware and distribute
mirrored copies of scripts across machines, thereby allowing us to run com-
putationally demanding social cue and attention models in near-real-time
settings.

RQ1.5 How can we assess the performance of a physical robotic gaze implementa-
tion?

One method for evaluating robotic gaze involves conducting HRI studies,
followed by an assessment of the participants’ reactions and responses to
tailored questionnaires. In this work, we conduct HRI studies to evaluate
human perception of robots displaying social cues, in the form of gaze and
affect. Moreover, we devise methods to quantitatively evaluate a robot’s
performance under real-world conditions, by simulating studies conducted on
humans.

1.4 Novelties and Contributions

1. We introduce a novel approach for integrating social cues into social attention
models. Our approach relies on visual representations of social cues. Un-
like common approaches where latent neural representations or engineered
features are integrated into downstream models, our social cue features are
interpretable spatiotemporal representations that are consistent in shape.
This makes our features easily interchangeable with those of other models,
without needing to retrain the downstream model.

2. We devise two variants of neural attention mechanisms to integrate dynamic
(sequential audiovisual) input. Late integration (defined in Section 2.1.2) refers
to the combination of features from multiple streams using convolutional
attentive LSTM [63] units followed by the Gated Multimodal Unit [17].
Alternatively, the early fusion (defined in Section 2.1.2) variant reverses
the gating and attention operation order. This variant retains separable
representations for each stream, allowing for the examination of each stream’s
contribution to the downstream task’s performance.

3. We develop a neural attention inversion module based on the Squeeze-and-
Excitation [118] network making it possible to enhance neural models by
augmenting them with other representations while avoiding shortcut learn-
ing [95].

4. We discover that the reliance on fixation history—a sequence of previous
scanpaths for an observer—as an input feature enables the learning of per-
sonalized scanpaths using a single unified model. This approach obviates the
need to train separate models for each observer. Moreover, the simplicity
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of the approach in comparison to relatively more complex personalization
approaches, such as user embedding learning to represent individuals [160,
239], makes fixation history integration a suitable solution for training a single
model that can be personalized.

5. We design a software framework to simplify message-oriented and robotics
middleware communication. The framework adopts a non-opinionated design,
introducing three communication schemes for implementing experimental
pipelines. Moreover, the framework provides plugins to support deep-learning
data-type exchanges across multiple middleware.

1.5 Dissertation Outline
This thesis is split into two parts. In Part I, we present our social attention models.
Part II addresses robotic implementations and the experiments we conduct to
evaluate social attention models, embodied in physical robots. Figure 1.1 illustrates
the relation between the chapters and the components used to facilitate each study.
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Figure 1.1: Thesis outline.

• In Chapter 1 we motivate our work, provide an overview of the methodologies,
highlight novelties, and frame the outline of this thesis.
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• In Chapter 2, we summarize the background and related work.

• Part I: Modeling Social Attention

– In Chapter 3, we explore different means of integrating social cues, with
the goal of enhancing dynamic saliency prediction in social settings [6].

– In Chapter 4 we extend the social attention model developed in Chapter 3
by including a fixation history module, to predict scanpaths [5]. The
fixation history allows our model to personalize scanpaths.

• Part II: Controlling Social Robots

– In Chapter 5 we develop Wrapyfi, a message-oriented and robotics
middleware framework [4]. The framework provides plugins to exchange
data types across robot and deep-learning frameworks. Moreover, it
simplifies parallelized computation and abstracts the communication
boilerplate.

– In Chapter 6 we present two studies to demonstrate the practicality and
means of using the framework developed in Chapter 5. Additionally, we
study human perception of robots displaying social cues during HRI:

1. We conduct a study to assess whether the social cue expressions of a
robot affect human interaction and collaboration in Section 6.1 [89].

2. We conduct a study to evaluate the preferred means for robots
to convey social cue expressions and capture human social cues
in Section 6.2 [91].

– In Chapter 7, we employ the framework developed in Chapter 5 to deploy
models constructed in Chapter 3 and Chapter 4 on the physical iCub
robot for HRI-free evaluation:

1. We construct a binaural audiovisual sound source localization model
and propagate its predictions to the model developed in Chapter 3.
The model is deployed on the robot to evaluate its performance on
a social cueing task in Section 7.1 [88].

2. We evaluate the robustness of the model developed in Chapter 4
to physical environment noise, by deploying it on the robot with
different fixation histories in Section 7.2 [7]. This allows for the
personalization of the robot’s scanpath trajectories.

• We summarize and discuss the work developed during the course of this thesis
in Chapter 8. We additionally answer the research questions posed in relation
to the methodologies devised in Part I and Part II of our thesis.
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Chapter 2

Background

In this chapter, we describe the concepts that motivate our approaches. This thesis
introduces several artificial neural network (deep learning) models for integrating
different social cue modalities. As we address computational neural attention and
cognitive attention, we clarify the terminology surrounding those two concepts in
their respective domain. We also provide an overview of the existing literature,
highlighting our novelties and distinguishing our technical contributions from the
established body of work.

2.1 Definitions and Taxonomy

In this thesis, some terms may have different meanings depending on the context and
field of study. To avoid confusion, we provide an overview of these related concepts,
explaining each term and specifying how we use it throughout our discussions.

2.1.1 Gating and Attention in Neural Networks

Extracting information from sequences of input, whether they are text, video, audio,
or other sensory data, requires models that encode order, i.e., representing knowledge
while considering the order in which the information appears. Seminal approaches
in modeling sequential information using artificial neural networks include the
Recurrent Neural Network (RNN) [221], the Recursive Neural Network [100], the
Transformer [260], and more recently, structured state-space model [102]. For over
two decades, RNNs were the predominant architectures for modeling sequences,
following the invention of the Long Short-Term Memory (LSTM) [115]. The LSTM
mitigated the vanishing gradient problem [27], which was considered a major hurdle
for the adoption of RNNs in practice. The introduction of gating with LSTMs
allows for the selective propagation of activation, effectively bounding the outputs
of the recurrent units, and in turn, reducing the potential for gradients vanishing.
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Gating Mechanism

Gating not only mitigates the potential for vanishing gradients and enables the
association of dependencies across long sequences [115, 57], but also facilitates
selective propagation of neural activity [17]. A gate, as the name implies, allows or
disallows things to pass through. In its most simple form, a gate could be likened to
a function that requires certain conditions to be fulfilled, and results in a boolean
operation. When the condition is completely met, the input element is multiplied
by 1 and returned as itself, otherwise, it is multiplied by 0 resulting in no returns.
In terms of artificial neural networks, gating relies on sigmoid-like functions, which
are continuous and smooth step functions that are differentiable—differentiability
is a prerequisite for backpropagation, which is the standard learning rule for the
majority of artificial neural network models [227].

Soft and Hard Attention Mechanisms

Similar to gating, attention in artificial neural networks refers to mechanisms
embedded into deep learning models for weighting1 the interactions between units
based on learning the strength of relations between correlated events. In deep
learning, attention could be applied to a neural architecture, allowing for the
account of dependencies that span a longer range than most recurrent models are
capable of handling. Two overarching types of attention in deep learning are: Hard
attention [178], where a discrete non-differentiable mask is sampled stochastically
and applied to a region of interest; Soft attention [19], which models a continuous
differentiable distribution representing regions of high relevance.

Hard attention, being non-differentiable, relies on alternative training approaches
that allow its integration into neural architectures, such as reinforcement learn-
ing [178]. Soft attention is more prevalent in deep learning since it is learned as
part of a model’s parameter optimization process. Soft attention requires a matrix
of learnable parameters which are multiplied with the outputs of a latent layer in
the model, followed by a softmax operation applied to their product. The softmax
is a differentiable function, resulting in a probability distribution, thus enabling
backpropagation to the attention matrix parameters. Moreover, soft attention
results in a continuous decision on relevance, meaning that multiple regions in the
latent representation could be focused upon, unlike hard attention. In this thesis,
we generally refer to soft attention when describing neural attention or attention in
the context of deep learning architecture design.

1Throughout this thesis, we refrain from using the term “weights” to describe the learnable
parameters of a model. This is to avoid confusion with weighting, a term we use to describe
the scale of contribution different neural units have on each other. In the context of this thesis,
examining the scale of the weights allows us to quantify the contribution of different neural layers
or units, when attention or gating is applied to their representations post-activation.
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2.1.2 Multimodal Integration in Neural Networks

Sensory modalities in biological systems indicate receptors perceiving stimuli across
different mediums, such as vision, audition, touch, etc. However, multimodality in
neural networks is loosely defined with varying degrees of interpretation [196]. In
terms of computational modeling, a human-centered definition of multimodality
refers to a model’s ability to acquire input from multiple sources across media
perceived by humans. Models that fall under this category are those that can
integrate audiovisual [245, 256], visuotactile [79, 55], or a combination of multi-
sensory [244] information. A machine-centered perspective views multimodality in
reference to different encodings of representations, that carry distinctive information.
In this view, models that integrate images and text are considered multimodal,
even though both modalities are perceived visually by humans.

Both human-centered and machine-centered views do not cover the full spectrum
of multimodality in neural networks. Such is the case with models integrating
sensory information that could be encoded visually but perceived across different
media [99], or could provide additional context that is represented through the same
or multiple media [173]. The latter augments the visual medium with detections
from the visual and auditory media. This approach provides additional information
to a model in the form of visual representations, which might otherwise be difficult
to learn in an end-to-end manner.

To avoid any ambiguities, we instead adopt the task-relative [196] definition
of multimodality. Task-relative multimodality describes systems that integrate
modalities that could arrive from the same sensor or be represented in the same
medium, but provide different information for a given task. The term ‘modality’
in this thesis refers to a visual spatiotemporal representation providing unique
information for our downstream models, regardless of its representation medium or
acquisition source.

Downstream Model and Task

A backbone in deep learning is a foundation model trained on large datasets,
covering a wide range of classes or tasks. Backbones represent features that can be
generalized to subtasks within a domain and are commonly used for pretraining
task-specific models. The backbone model commonly feeds into task-specific models
or neural layers for further fine-tuning on narrow sub-tasks within a domain. These
task-specific layers are described as downstream models optimized for downstream
tasks. This reduces the computational cost and training time for downstream tasks,
while also integrating domain-general knowledge into downstream models.

Backbone models could be trained in supervised, unsupervised, semi-supervised,
or self-supervised fashion [290]. Very often, the parameters of a backbone are frozen—
parameters remain unchanged during the training phase. The downstream model’s
parameters are updated during training and fine-tuning. In this thesis, we present
downstream models, some of which rely on backbones with unfrozen parameters.
This is usually the case when the backbone is treated as a modality encoder [59,
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99], with no other layers representing the modality prior to the integration layers.

Late Integration and Early Fusion

[.] Concatenation

.........

[.]

(a) Late Integration JR

.........

[.]

(b) Early Fusion JR

... ... ...

(c) Early Fusion CR
JR: Joint Representation; CR: Coordinated Representation;
xN : Input for modality N ; MN : Modality representation N .

Figure 2.1: Multimodal integration categorized into early fusion and late integra-
tion. The (a) late integration models concatenate the modality representations
before propagating them to a joint representation layer, (b) early fusion models
gate or attend to each modality representation before concatenating their joint
representations and propagating them to a downstream model, and (c) early fusion
models with coordinated representations, where each modality exerts an influence
on other modalities, but their representations remain separate.

The most common form of combining multiple modalities is through the con-
catenation of their representations, which are then propagated to a fully connected
neural layer [117] or convolutional decoder [245]. Including concatenation, other
forms of integration, such as additive models [10], belong to the family of late
integration models, illustrated in Figure 2.1a. We describe such forms of integration
as ‘late’ since they take place after the unimodal (single modality) representations
are encoded, and are inseparable post-integration, i.e., late integration models
prevent us from measuring the influence of each modality on the downstream task.

Early fusion models in neural networks are not concretely defined, since the
term ‘early’ refers to the layer depth at which integration is commonly implemented,
rather than a specific state of representation. Moreover, accounts of early fusion
include its description as feature-based integration [22], whereas others [256] use the
term to describe coordinated representation [22] models as illustrated in Figure 2.1c.
We additionally describe early fusion models as those illustrated in Figure 2.1b,
that maintain separability between the different unimodal representations, unlike
late integration models. Early fusion is possible through gating [17], attention [274],
or a combination of both [286]. This is due to the fact that attention models
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and most gating approaches introduce additional parameters to the full model,
that are optimized conjointly with the unimodal layers, yet do not directly affect
the unimodal parameters. This results in the unimodal representations remaining
independent, while exerting an influence on other modalities [256, 139].

2.1.3 Cognitive Social Attention and Saliency

Cognitive attention, and more specifically, visual selective attention [183], refers
to our ability to selectively discard or emphasize visual stimuli. It describes the
attentional patterns of humans, conditioned on observable attractors—objects or
stimuli that attract human attention. Computational modeling of visual attention
has been beneficial for a wide variety of applications, including the enhancement
of object recognition systems [80], interaction between robots and humans [203],
and the guiding of robotic vision systems [86]. We note that although attention
in neural networks (described in Section 2.1.1) is inspired by cognitive attention,
neural attention is not modeled to assimilate intrinsic mechanisms of cognitive
attention [192].

Head Movement and Eye Gaze

The cognitive attention of a human is visible to others through overt orienting,
which refers to the head and eye movements of the individual. Gaze is the term
we use in reference to the overt orientation that leads to the fixation [13] of an
individual or the majority of group fixations upon a target. Fixation refers to stable
eye movements, more specifically, it describes the state of eyes being relatively
stationary for an extended period of time. For instance, when observers are looking
at a still or slowly moving object, their eyes would still oscillate. These oscillations
are called microsaccades [107], where the eye would remain fixated upon a target
with minimal but rapid movement. Saccades on the other hand, are sudden and
voluntary movements of the eye that precede fixation.

Most gaze prediction models are trained on eye fixations, rather than head
orientations. This is due to datasets used in this domain being collected using eye
trackers [138] that generally account for eye movements only. Moreover, the reason
fixations are used in such models rather than saccades, is that the latter’s signals
are rather noisy and require high sampling rates. We do not train any of the social
attention models on saccade data in the context of this thesis. Our models are
designed to be integrated into robotic platforms, thus, modeling saccades becomes
challenging or not possible, when accounting for the physical constraints of the
utilized robot.

Saliency: Bottom-Up and Top-Down Attention

Cognitive attention driven by external stimuli is known as reflexive attention
(bottom-up attention) [61]. These include bright and luminous attractors, move-
ments, faces, and attractors with distinctive shapes or colors in comparison to

15



Chapter 2. Background

other perceived stimuli in view. We tend to respond immediately to such attractors
by looking toward them or reacting with some action, hence the name reflexive
attention. Seminal work on the computational modeling of reflexive attention [120]
aligns with feature integration theory [255]. This work relied on predefined trans-
formations that emphasized salient regions, hypothesized to attract attention [120].
These transformations are applied to images following findings from studies in
psychophysics, such as extracting color, light intensity, orientations, indicators
of motion, shapes of shadows in the image, etc. Models that follow a similar
bottom-up structure, where the transformations are engineered based on known
attractor features, produce a 2D heatmap. The heatmap called a saliency map,
indicates salient regions by intensifying the magnitude around those regions.

To simulate human gaze, further transformations are applied to the saliency
maps inferred by bottom-up saliency detection models. One such is the Inhibition of
Return (IoR) [120]. IoR can be roughly simulated by suppressing previously attended
salient regions, creating an approximation for natural gaze patterns. However,
not all saliency effects can be approximated, as some do not result from temporal
changes or stimuli conspicuity. They are also conditioned on the target task, which
could be performed in different ways depending on the observer. Such differences
are the result of innate factors, like past experiences or intrinsic motivation that are
specific to each observer. These task-related factors are described as innate attention
(top-down attention) [61]. Computationally, top-down attention and bottom-up
attention can be modeled by what are known as saliency prediction models [35].
Saliency prediction models receive visual stimuli in the form of static images or
dynamic videos and predict a Fixation Density Map (FDM), that represents group
attention under the free-viewing condition [257, p. 26]. The FDM, also known as an
attention map, is a 2D map with the accumulated fixation points of every observer
viewing an image or a video frame, collected using an eye tracker. The fixation
points are blurred by convolving them with 2D Gaussian functions, one centered at
each fixation point. On blurring, the fixation points are aggregated in a single map
and normalized, resulting in the FDM. The Gaussian function width is equivalent
to 1◦ of viewing angle, that is the area foveated by the eye at a distance from the
surface—monitor, screen, projection plane—upon which the stimulus is displayed.

Scanpaths: Personalized and Universal Attention

Gaze patterns are found to be similar in some aspects among healthy humans.
Depending on the task and stimulus, these patterns appear to be consistent. For
instance, when viewing natural images, humans tend to initially fixate on the center
of mass in an image [30]. This phenomenon is known as central bias [219]. Age plays
a role in altering the prominence of certain biases, such as pseudoneglect (leftward
bias). Typically, human attention is biased toward the left side of the visual field,
however, attention shifts rightwards with age [237]. The common attributes that
apply to a majority of the human population are known as universal attention [277].
These attributes alter the gaze behavior of each individual, resulting in sequences
of fixation points. These sequences are described as scanpaths [190]. Another
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(a) Individual Models

Unified Model
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(b) Unified Model

Figure 2.2: The (a) individual models are multiple models with identical structures,
trained on data belonging to a single set, distribution, or task, whereas a (b) unified
model is a single model trained on all tasks, with the task distinguishing token
embedded in the input to the model.

universal attribute applies to the distribution of scanpaths. For instance, human
scanpaths under the free-viewing condition—individual observers are not given a
task, but rather asked to view images or videos without a specific objective—follow
Lèvy flights at random. These are random walks based on steps with heavy-tailed
distributions, similar to the movement distribution of animals foraging for food,
with the difference being that human gaze is aimed at finding and maximizing
visually acquired information rather than nutrition [24, 69]. Universal attention
also describes the effects resulting from the physical properties of the stimuli, such
as salient regions (bottom-up attention), and physiological limitations [111], such as
the inability to rotate eyes at a velocity higher than 500◦ per second. Personalized
attention [277] is specific to an individual. Although scanpaths of an individual
are different on exposure to the same stimuli multiple times, they are idiosyncratic,
meaning they are more similar than to the scanpaths of others viewing the same
stimuli [84]. Moreover, depending on the individuals’ experiences, the context
provided to them on exposure, and their intrinsic goals, their attention could differ
from that of the general population [126].

Scanpath prediction is the computational task of modeling scanpaths, where
a sequence of fixations is inferred based on the stimuli. The output of such
models is in the form of Cartesian coordinates, indicating the positions of fixation
points. Another form of representation is a priority map [285], which is a 2D
spatial map that resembles a Fixation Density Map (FDM). Unlike the FDM, the
priority map indicates a high-intensity point around the attention target of an
individual, rather than the attention of a group of observers. Scanpath prediction
is a sequential task, meaning that preceding fixations alter the ones to follow. The
sequence of preceding fixations is known as the fixation history [146]. Most scanpath
prediction models encode the fixation history within the model [185, 276] since
the fixation history defines the past trajectory of the scanpath. Additionally, both
personalized and universal attention affect the trajectory of a scanpath prediction.
Early models of scanpaths were commonly designed to account only for universal
attention [120]. Data-driven approaches [67, 34], on the other hand, are inherently
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aware of personalized and universal attributes, since they infer scanpath patterns
according to human viewing experiences, which are conditioned on both. However,
the vast majority of such models are trained on the data of a single observer, or that
of multiple observers viewing unique scenes. Therefore, these models do not encode
the distinction between the two types of attention as they are exposed to samples
that contain both. We describe a scanpath model that is capable of encoding
personalized and universal attention separately as a unified model. As a result of
the separation in encoding, single unified models can be utilized for predicting the
scanpaths of multiple individuals independently. Alternatively, a model capable
of only encoding the scanpaths of a single individual is described as an individual
model. The main distinction between a unified and an individual model lies in the
input and ground-truth data each model is trained on, as illustrated in Figure 2.2.

Social Attention and Cues

Social cues are signals that form the basis of communication between humans. Social
cues are categorized into verbal and non-verbal, with the non-verbal cues being
body movements, gestures, gaze, and facial expressions. Social attention refers to
visual attention driven by orienting cues [32] such as body gestures and gaze—head
and eye movements. We additionally consider facial expressions as orienting cues,
given that they play a significant role in overt orienting. For instance, people are
more likely to attend to faces displaying fear or joy over boredom or calmness, as
they appear more salient, due to the fact that these expressions of emotion are
high on the affect arousal scale [264]. This phenomenon is known is affect-biased
attention [251, 204]. In this thesis, we focus on modeling non-verbal social cues
that are independent of cultural interpretations and fall under social attention.
These include gaze direction and orientation [191], gaze following [231], and facial
expressions [251]. When referring to gaze direction or orientation, we are describing
the coordinates of an observed individual’s head and eyes in tandem. However,
the eyes are considered the primary indicator of gaze, whereas head orientation is
used as a secondary cue when the eyes are not clearly visible or obscured. Gaze
following refers to the inference of a target upon which an individual gazes, i.e.,
gaze following is based on the estimation of gaze direction with the additional step
of inferring the specific region where a person looks. Facial expressions are the
categories of emotional displays visible on a person’s face. These include facial
gestures, such as a smile to indicate happiness or a frown to indicate sadness, that
reflect the affective state of the person displaying them. Computational models that
infer gaze direction or model attention, such as saliency and scanpath prediction
models integrating social cues are termed social attention models.

2.1.4 Robot Gaze Control

Human-Robot Interaction (HRI) addresses the study of robot behaviors and their
influence on human perception. Robot gaze has been a popular subject of study in
HRI and more so in the field of social robotics [9]. A majority of these studies rely on
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predefined templates of gaze behaviors that elicit the attribution of humanlikeness
to a robot [174]. Common gaze behaviors in robotics include joint attention [200],
mutual gaze [25], and gaze aversion [141]. Joint attention refers to the shared
attention between the robot and the human, where both look toward the same
region within their visual field. Mutual gaze is the establishment of eye contact
between the human and the robot. Gaze aversion is the opposite of mutual gaze,
whereby the robot deliberately looks elsewhere to avoid eye contact with humans.
Such behaviors are mimicked when evaluating a robot’s perceived agency [269],
humanlikeness [97], likeability [78, 145], and intelligence [243]. Other behaviors
relate to eye and head movements rather than social attention. One such is smooth
pursuit, whereby the robot follows a moving object or person with its eyes and
head. The Vestibulo–Ocular Reflex (VOR) [215] is an oculomotor function, specific
to robots that have eyes and a head. It stabilizes the eyes of the robot as its
head moves. VOR comes into play as well during gaze shifts, which describes
the reorientation of the head to follow the line of sight [104]. Other behaviors
such as saccadic movements mimicked by a robot are also implemented for specific
robotic platforms [171, 195]. However, saccades could lead to the distortion of
visual input when the cameras are attached to the eyes by design, as is the case
with the iCub [186] robot.

Robots with Eyes

The eyes of a robot could serve an aesthetic purpose, a functional purpose, or both.
The aesthetic aspect refers to the eyes enhancing the robot’s appearance to make
it more approachable or lifelike. Moreover, the robot’s eyes could signal a human
to direct their attention to the robot itself or a certain area in their surrounding.
On the other hand, the functional purpose of robotic eyes involves enabling the
robot to perceive and interact with its environment. Functional eyes are equipped
with cameras or sensors that provide visual information to the robot’s processing
system. In some robots, the eyes are designed to serve both aesthetic and functional
purposes. For instance, a robot might have eyes that are aesthetically designed to
look humanlike. The eyes could either be fixed in place [133] or employ mechanisms
for actuation that mimic natural eye movement [171], as well as sensors for visual
processing. This dual-purpose—aesthetic and functional—design can enhance the
robot’s social presence [220] and its operational capabilities by shifting its cameras
toward a region of interest.

Social humanoid robots exhibit eye movements in several forms [56]. Mechanical
eyes are driven by motors and tendons that rotate two spheres resembling eyes, along
the azimuth and pitch axes [137, 171], as shown in Figure 2.3a. Both eyes rotate in
the same direction, except in the case of vergence. Vergence is the movement of eyes
in opposing directions along the azimuth. When an object is nearby, a binocular
vision—relying on two eyes or two camera views—system perceives different views
of it. Vergence avoids double vision in such instances by pulling the eyes closer to
each other. For robots with functional eyes—a camera in each eye—such as the
iCub [171] robot, vergence impacts applications of stereo depth estimation requiring
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(a) Mechanical Eyes (b) Integrated Display

(c) Face Projection (d) Optical Illusion

Figure 2.3: The four common forms of robot eyes, with the (a) iCub [171] robot
featuring mechanical eyes, (b) Navel [254] robot fitted with two round displays in
place of the eyes, (c) Mirokaï [76] robot with a face projected on its display, and
(d) Pepper [235] robot with fixed eyes caving into sockets to elicit mutual gaze
with the observer.

both camera inputs [259]. Humanoid robot eyes were also engineered to enable
torsional eye movement, which is the rotation of the eye along the roll axis [48].
Torsional eye movement is not only triggered by the observer’s head movements
but also by the movement of the stimuli [74]. However, due to the complexity of
integrating torsional movement, the majority of humanoid robots with mechanical
eyes do not support movement along this axis. Moreover, stabilizing or reorienting
an image captured by a robot’s cameras can be performed computationally rather
than mechanically, which is less costly, more efficient, and can be readily adjusted.

Another form of robot eye movement relies on displays. All display-reliant
forms of robot gaze signaling are purely aesthetic. Some models feature integrated
displays that are localized to the region surrounding the eyes [254] as shown
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in Figure 2.3b, while others rely on projectors fitted behind the robot’s display as
shown in Figure 2.3c. These projectors cast an animated face with two eyes onto the
display [11, 76]. The quality of projection-based displays is more susceptible to light
conditions, yet offer greater flexibility than localized displays. The last common
form of eye movement in robots, as shown in Figure 2.3d, relies on optical illusions.
A common illusion that invokes a sense of eye movement is the Hollow-Mask illusion.
The Hollow-Mask illusion describes how the brain perceives images of faces that
are displaced on a concave surface to be protruded instead. Robots with eyes that
cave into the eye socket, elicit a sense of mutual gaze with the robot, regardless of
the angle from where the eyes are viewed [235, 137].

Cognitive Robotic Simulation

Cognitive simulation refers to methods that computationally model human behavior.
In this thesis, we adopt the term to describe social attention model simulation on a
robot, a process which we describe as cognitive robotic simulation. This process
differs from robotic simulation, which refers to the modeling of a robot’s kinematic
and physical properties using software [250, 252, 64]. Cognitive robotic simulation,
however, involves the design of a computational model that learns a sequence of
processes or actions that mimic human behavior, followed by the embodiment
of the model in a robot. These models are not necessarily cognitively inspired,
however, the resulting actions resemble prototypical human behavior. We design
cognitive robotic simulation models that actuate a physical and simulated (robotic
simulation) robot to evaluate our social attention models without involving humans
in the evaluation process. This allowed us to measure the performance of our social
attention models in physical environments while scaling the experiments to sizes
beyond what would be practical with human participants.

Message-Oriented and Robotics Middleware

Software interfaces and drivers are developed to control motors and acquire sensory
data, providing helper methods in multiple programming languages that enable con-
trol and acquisition. However, robots, and more so, social robots, are a composition
of devices that must act as a single entity. Exchanging signals to and from these
devices demands a near-real-time communication infrastructure, parallelization
capability, and robust transmission. These specifications are packaged into single
interfaces, known as middleware. Most existing middleware can be categorized into
message-oriented middleware and robotics middleware.

Message-oriented middleware are software libraries and frameworks that define
conventions for data exchanges, transmission of specific data types, and the support
of one or several communication patterns. Common communication patterns include
publish-subscribe, which is a non-blocking pattern for the transmission of data from
a single publisher to many subscribing nodes, and request-reply, a one-to-one pattern
where a single server awaits a request from one client and responds to the client
when a request is made. Message-oriented middleware is designed primarily as
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software communication interfaces, where some are built to fulfill one or more
goals, such as reliably exchanging big data [144], running on edge devices by having
lightweight APIs or optimizing for low latency [175], supporting a wide range of
communication patterns [113], and flexibly supporting infrastructure [143].

Robotics middleware generally employ their own communication protocols [206],
or rely on existing middleware packages, such as ROS 2 [163] which is built on
DDS [197]. Beyond the middleware itself, robotics middleware provide additional
tools and frameworks for simulation [140], motion planning [101], and control [249],
that communicate over specific middleware. The purpose of robotics middleware
is to enable full control and access to a supported robot’s actuators and sensors.
Moreover, robotics middleware are either specifically developed to support a certain
robot [170] or act as a framework that is robotic platform independent [206, 163].

Controlling social cue expressions on a robot, and more specifically gaze direction,
requires a number of signal exchanges between different devices. First, the robot
must perceive the stimuli through multiple sensors. For instance, in this thesis,
we only receive visual and auditory signals from the robot’s sensors. This requires
a camera to acquire an image and microphones to capture audio. The signals
from these sensors are then digitized and filtered through the robot’s onboard
hardware and software processors. Second, the signals are transmitted for further
processing or recording. The processing is handled on other devices and very often,
the transmission is handled by middleware incorporated into the robot’s framework.
Third, models that process and infer gaze actions from the transmitted signals could
also be distributed on multiple machines that communicate using message-oriented
middleware or remote procedure calls. Such approaches are followed to reduce the
load on a single machine or processor when the processes can be parallelized. Fourth,
the inferred gaze behaviors are transmitted over the middleware to a specific address,
topic, or port, depending on the middleware used. These addresses facilitate direct
communication with a client node or multiple subscriber nodes that listen to the
specific messages delivered to that address. Finally, a node that actuates a robot’s
eyes or head listens for the coordinates signaling a certain gaze movement and
processes or transforms them. On transformation from one coordinate system
to another, performing inverse kinematics when the coordinates are in Cartesian
space [217], or simulating the VOR, the node generates the necessary commands
to actuate the motors responsible for moving the robot’s eyes or head. These
commands are then sent to the actuators, which execute the movements, enabling
the robot to express the desired gaze behavior.

2.2 Related Work to Social Attention and Gaze
Control

We briefly describe some of the advances in both saliency and scanpath prediction,
with an emphasis on dynamic variants, i.e., models designed for predicting either
task on video content. Static variants are designed to operate on images. Such
models elicit different eye movement patterns from those trained on dynamic (video)
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content [72]. Interacting with and perceiving stimuli within real-world settings
necessitates the encoding of sequential knowledge due to the influence that such
information has on our behavior. Since the approaches presented in this thesis are
intended for robotic interaction in physical environments, dynamic models become
a requirement. Therefore, for the purpose of this thesis, we do not review static
models. For a comprehensive overview on static scanpath models, we refer the
reader to the work by Kümmerer and Bethge [146]. Furthermore, we exclusively
address audiovisual dynamic saliency models, since our goal is to develop audio-
aware models, given that auditory information plays a significant role in guiding
our visual attention, especially in social settings [83]. For a detailed overview on
static and dynamic saliency prediction models, we refer to the reviews by Borji [35]
and Yan et al. [279].

2.2.1 Audiovisual Dynamic Saliency Prediction

Auditory and multimodal features have become a target of interest in the context of
visual saliency modeling [245, 33, 173, 256]. Tavakoli et al. [245] propose a simple
deep learning model based on 3D-ResNet [105] for encoding the visual (video) and
auditory streams separately. The two streams are joined, reduced in dimensionality,
and decoded as two-dimensional priority maps with high intensity in regions where
participants (observers) tend to fixate. Their approach follows the late non-fusion
paradigm for integrating the auditory and visual feature representations. However,
Tsiami et al. [256] propose early fusion of audiovisual representations. At multiple
levels of the visual stream, they introduce supervised attention modules. At a
deep stage of the visual stream, the visual features guide the auditory stream
to the most salient regions, resulting in a more accurate localization of sound
sources. Eventually, the supervised attention modules and the auditory features
are concatenated, after which their representations are reduced to a single two-
dimensional feature map. The authors show that this approach of early fusion [256,
173] for integrating auditory and visual features outperforms late integration [245].

This model [256], however, is trained in an end-to-end fashion, leading to
long training times when saliency features are more difficult to determine solely
based on the stimuli. Such is the case in social settings, e.g., the gaze direction
of an active speaker influences the distribution of attention. A more explicit
form of embedding representations of known phenomena is required to address
complex settings. One such approach is proposed by Min et al. [173], who present a
multistage audiovisual saliency model that minimizes the discrepancy between the
proposed locations arriving from auditory and visual modalities. The modalities
generate spatiotemporal saliency maps, which are adaptively fused in the final stage.
We adopt a similar approach for our social attention models, however, instead of
introducing features representing visual and auditory spatial features [173], we
augment our models with social cue features to address saliency in social settings.

Jain et al. [121] present a 3D convolutional encoder-decoder model for pre-
dicting saliency. They explore different audiovisual fusion techniques and show
that introducing auditory input does not result in significant improvement to the
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performance of their model. Dynamic saliency models relying only upon visual
stimuli tend to perform on par with audiovisual models [263, 26, 72] supporting
the finding of Jain et al. [121]. The consensus on whether auditory stimuli play
a significant role in predicting saliency is not clear. Yang et al. [280] introduce
an audiovisual graph convolution-based model, emphasizing the importance of
multimodal input for predicting saliency in 360◦ videos. However, Xiong et al. [271]
argue that audiovisual saliency models may underperform due to temporal incon-
sistencies between auditory and visual streams. Despite some studies indicating
visual-only models might suffice, our work primarily focuses on social attention,
which inherently depends on both visual and auditory stimuli. Therefore, we include
auditory features in all our proposed models.

2.2.2 Dynamic Scanpath Prediction

Scanpath prediction on dynamic scenes requires accommodating changes to stimuli
along with the modeling of fixation trajectories. Most existing research addresses
the prediction of egocentric gaze in videos recorded using head-mounted cameras.
For instance, Li et al. [154] present a model for learning the temporal dynamics in
first-person activity videos, utilizing motion and pose features relating the head
and hand of the actor—first-person observer. However, this approach relies on
a set of predefined features and assumes the hands of an actor are visible. This
limitation is addressed by Huang et al. [119], who propose a multitask model
for predicting saliency and task-guided attention transitions using independent
3D-CNN streams. However, in their approach [119], the saliency is predicted for the
current visual frames. Other approaches anticipate saliency by generating future
frames and predicting saliency on those frames. Such is the model proposed by
Zhang et al. [287], which predicts gaze on the future frames generated using a
Generative Adversarial Network (GAN). The GAN is composed of a discriminator
model that receives future observations and anticipates future frames produced by
the 3D-CNN generator. Concurrently, an independent 3D-CNN predicts fixations
on the generated frames.

Most of these models are goal-directed, whereby the objective is known and the
gaze fixations are supervisory signals. However, Aakur and Bagavathi [1] address
egocentric gaze prediction as an unsupervised task. Their model is separated
into three stages, initially extracting appearance and motion features, followed
by a symbolically represented stage indicating the direction of information flow
between spatial regions in the video. Finally, the model generates an attention map
indicating the predicted fixation corresponding to locations with maximum energy.
However, in this thesis, we do not consider goal-directed models. More specifically,
our models are conditioned on free-viewing, where the goal is unspecified and the
observer is tasked with simply viewing the video.

Another line of research addresses the prediction of the egocentric scanpath
under the free-viewing condition [276, 273, 185, 278, 218, 153]. Xu et al. [276] train
their model on individual observer fixation trajectories while freely viewing 360◦
videos on a VR headset. The model receives a video frame at a given timestep,
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concatenated with local and global spatiotemporal saliency features. A recurrent
model encodes the fixation trajectories and its latent representation is concatenated
with the visual encoding of all saliency features to predict the displacement in
fixation for the next frames. Naas et al. [185] follow a similar approach, replacing
local features with an optical flow representation. These approaches predict the
scanpaths of a single observer for each video given their past fixation histories
as priors. However, all aforementioned architectures are trained to model the
scanpaths within a limited viewport [153], unique to each observer. Consequently,
the learned universal attention patterns are applicable to any individual, rather
than representing their personalized attention. Such approaches represent universal
behaviors but do not address individual differences among multiple observers. To
alleviate this gap, we design models that predict the personalized gaze patterns of
individuals. By doing so, we can evaluate the magnitude of these differences and
determine whether the uniqueness of gaze patterns necessitates the development of
personalized models, tailored for each individual observer.

Scanpath prediction on social videos is a less explored domain. One such
model is proposed by Coutrot et al. [67] who develop a generalizable framework
for predicting and classifying scanpaths based on a Hidden Markov Model (HMM)
and discriminant analysis. Their approach is examined on static natural scenes and
dynamic social scenes, identifying three location states for the HMM. These states
are then used for classifying information relating to the observers or the stimuli.
However, this approach is visual only. Audiovisual approaches such as the method
developed by Boccignone et al. [34] relies on multimodal social cues as priors to
a stochastic model, simulating the fixation patch transitions as a Poisson process.
Rather than simulating the transitions in eye movement, Lan et al. [148] design
a psychologically-inspired model for synthesizing gaze. Their method addresses
the detection of actions, including “verbal communication”, based on simulated
eye movements. The key difference between these approaches and our scanpath
prediction models is that we do not attempt to identify patterns that result in
scanpath trajectories under certain conditions, rather, we train our models to
predict fixations based on the fixation history of an observation. This means that
we do not embed knowledge pertaining to eye movement into the model, allowing
the model to represent the patterns through training.

2.2.3 Gaze Control in Social Robotics

Applying strategies of robot gaze control is very often required in human-robot inter-
action, influencing the perception of a robot by humans [184, 9]. Shiomi et al. [233]
present a robot control approach for attending to faces or objects, according to
their existence within either the foveal or peripheral regions in the camera views
of the robot. Their approach relies on the integration of visual features from the
periphery and fovea through particle filtering. Although the proposed approach
addresses a myriad of social cues, including lip movement detection, facial ex-
pressions, and motion recognition, it relies solely on visual information. However,
Csapo et al. [42] employ an approach that relies not only on visual cues but also
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design a state machine-based conversational system that acquires auditory and
tactile stimuli for controlling the gestures, speech, and gaze movements of a Nao
robot. Motor-controlling modules often register conflicting actions, resulting in
erratic motion by the robot. This occurs since the model [42] lacks an integration
mechanism for combining the module representations. To remedy this erratic mo-
tion, the model is designed to run conflicting modules in separate process threads.
Instead, Zaraki et al. [284] address conflicting signals arriving from different sensory
modalities including visual, auditory, and 3D sensors by introducing an attention
layer for computing the most prominent features. Moreover, their model handles
multi-person interactions, enlarging the effect of social stimuli on the behavior of the
robot. Their approach, however, does not mitigate abrupt transitions in attention.
To mitigate abrupt transitions, Duque-Domingo et al. [73] present a competitive
neural network model for selecting between social and physical cues without relying
on both simultaneously, which could lead to destructive interactions between their
features. Compared to the work of Zaraki et al. [284], Duque-Domingo et al. [73]
forego 3D sensors and enable smooth transitions between the regions of priority for
directing gaze. In this thesis, we follow a similar concept for integrating social cues,
however, using a gated multimodal attention mechanism [17] to propagate features
from all social cue modalities instead of propagating the winning nodes only as
proposed by Zaraki et al. [284], while simultaneously attenuating less meaningful
representations.

Other approaches for robot gaze control rely on assumptions relating to gaze
behavior and statistical data. Such approaches simulate cognitive processes to
convey socially plausible characteristics rather than reflect scanpaths of human gaze.
For instance, Lathuilière et al. [149] develop a recurrent gaze control model, based
on a Deep Q-Network [179]. In their approach, visual landmarks resulting from the
pose estimation of each observed person as well as speech locations are extracted
at each time step. Along with the current state of the robot (the observer), these
landmarks are then fed into a recurrent neural network as sequential observations.
The reward employed is shaped to maximize the number of observed individuals
in the robot’s field of view. Alternatively, Pan et al. [195] design a model that
controls the transition of gaze on a robot, according to a predefined library of
motion behaviors. Mishra and Skantze [176] adopt a similar approach, adding
a planner to their HRI pipeline, allowing for the anticipation of actions before
their execution. This allows for better head-eye coordination and humanlike gaze
behavior. Although the aforementioned gaze control approaches prove especially
useful in understanding human-robot interactions, they do not address measuring
the resemblance of generated eye movements to human gaze. The closest attempt
at this is by Saran et al. [224] who employ knowledge acquired from modeled gaze
patterns to enhance robot learning. However, their approach does not explicitly
measure how closely the robot’s camera movement resembles human gaze but rather
uses gaze information to improve task performance and policy learning.
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2.2.4 Differentiation from Related Work

There exists limited work on robots reproducing human scanpath trajectories based
on learned behavior. To the best of our knowledge, none of those models the
scanpaths of multiple individuals. Moreover, the performances of robot gaze control
approaches relying on social interactions are measured through HRI studies or
on the robot’s successful achievement of a goal-directed task. On the contrary,
our objective is to evaluate the efficacy of social attention models under the
free-viewing condition and how closely physical robots can mimic gaze behaviors
with the addition of social cue information. We propose methods for conducting
such evaluations, without necessarily carrying out HRI studies. Therefore, our
approaches allow for more efficient testing that can be performed on larger scales
and guarantee repeatability when environmental conditions are controlled.

27



Chapter 2. Background

28



Part I

Modeling Social Attention
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Chapter 3

Gated Attention for Saliency
Prediction

Saliency models were initially designed for bottom-up attention detection on images,
and more recently, built to model top-down and bottom-up attention on dynamic
videos using both visual and auditory input. However, most recent approaches [121,
280, 271] do not consider the effect social cues have on such models. In social
settings, such cues are known to attract cognitive visual attention more prominently
than other features [191, 204, 272]. In this chapter, we design a dynamic audiovisual
saliency prediction model that can be used to enhance end-to-end saliency models
by augmenting their features with auxiliary social cue representations. We explore
various methods of multimodal integration and measure the improvement brought
by the integration of these cues.

3.1 Introduction

Attending to regions or objects in our perceptual field implies an interest in acting
toward them. Humans communicate their attention by fixating their eyes on those
regions. By modeling fixation, we gain an understanding of the events that attract
attention. These attractors are represented in the form of a Fixation Density Map
(FDM), displaying blurred peaks on a two-dimensional map, centered on the eye
Fixation Point (FP) of each individual viewing a frame. The FDM is a visual
representation of saliency, a useful indicator of what attracts human attention.

Early computational research focused on bottom-up saliency, by which the
conspicuity of regions in the visual field was purely dependent on the stimuli [120,
39]. On the other hand, task-driven approaches are top-down models utilizing
supervised learning for performing tasks and allocating attention to regions or
objects of interest. Combining face detections with low-level features has been
shown to outperform bottom-up saliency models agnostic to social entities in a scene.
Birmingham et al. [31] corroborate the advantage of facial features in modeling
saliency. They establish that when social stimuli are present, humans tend to fixate
on facial features, a phenomenon weakly portrayed by bottom-up saliency detectors.

31



Chapter 3. Gated Attention for Saliency Prediction

Moreover, studies on human eye movements indicate that bottom-up guidance is
not strongly correlated with fixation, which is rather influenced by the task [82].
The existence of social stimuli in a scene alters fixation patterns, supporting the
notion that even with the lack of an explicit task, we form intrinsic goals for guiding
our gaze.

Although facial features attract attention, studies show that humans tend to
follow the gaze of observed individuals [44]. Additionally, psychological studies [204]
indicate a preference in attending toward emotionally salient stimuli over neutral
expressions, a phenomenon described as affect-biased attention. By augmenting
saliency maps with emotion intensities, affect-biased saliency models show consider-
able improvement over affect-agnostic models [81, 62]. These approaches, although
exclusive to static saliency models, are not limited to facial expressions, allowing
for a greater domain coverage irrespective of the presence of social entities in a
scene.

In light of the social stimuli relevance to modeling attention, we design a model
to predict the FDM of multiple human observers watching social videos. Such
models employ top-down and bottom-up strategies operating on a sequence of
images, a task referred to as dynamic saliency prediction [21, 35]. Our model utilizes
multiple social cue detectors, namely gaze following and direction estimation, as
well as facial expression recognition. We integrate the eye gaze and affective social
cues, each with its spatiotemporal representation as input to our saliency prediction
model. We describe the resulting output from each social cue detector as a feature
map (FM). We also introduce a novel FM weighting module, assigning different
intensities to each FM in a competitive manner representing its priority. Each
representation is best described as a target map (TM), combining top-down and
bottom-up features to prioritize regions that are most likely to be attended. We
refer to the final model output as the Predicted FDM (PFDM).

Our model architecture and task formulation—saliency prediction in social
settings—decisions are guided by findings from recent research. Three important
findings in the literature that are fundamental to the functionality of our approach:

F3.1 Task-driven strategies are pertinent to predicting saliency [82].

F3.2 Changes in motion contribute to the relevance of an object, underlining the
importance of spatiotemporal features for predicting saliency [173].

F3.3 Psychological studies indicate that attention is driven by social stimuli [223].

To address the first finding, we state that our approach is task-driven by virtue of
supervision since the objective is predicated on modeling multiple observer fixations.
Although the datasets employed in this study were collected under a free-viewing
condition, the top-down property is arguably maintained due to the intrinsic goals
of the observer. These goals are driven by socially relevant stimuli addressed in our
model through its reliance on multiple social cue modalities and facial information.
We detect the social and facial features in a separate stage, hereafter described as
the Social Cue Detection (SCD) stage.
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Figure 3.1: Overview of our sequential two-stage model. SCD (a) extracts and
transforms social cue features to spatiotemporal representations. GASP (b) acquires
the representations and integrates features from the different modalities. m̂

⟨t′⟩
x,y

represents the fixation density map predicted by the model at timestep t′.
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To address the second finding, our approach relies on temporal features extracted
or learned in two separate stages, respectively. Sequential learning in SCD is not
a requirement but a result of the models employed for social cue detection, e.g.,
recurrent models or models pre-trained on optical flow tasks. In the second stage
(GASP), we integrate social cues as illustrated in Figure 3.1, where sequences of
frames composed of social cue representations are propagated to the model and
attended independently. These representations act as auxiliary features that are
not required but bring about improvements to the saliency model, as they guide
the model to pay higher attention to social cues. GASP also employs sequential
learning, not only registering environmental changes such as color and intensity
but also features pertaining to motion. This is a direct result of the convolutional
and recurrent attention modules employed in our GASP model, where saliency
features (including motion) are emphasized should they contribute to the prediction
of saliency.

Finally, we consider social attention by employing an audiovisual saliency
prediction modality, as well as social cue detectors (also described as modalities)
that specialize in performing distinct tasks. Each of these tasks is highly relevant to
visual attention, from both behavioral and computational perspectives. We aim to
explore feature integration approaches for combining social cues. We present gated
attention variants and introduce a novel approach for directing attention to all
modalities. To the best of our knowledge, our model is the first to consider affect-
biased attention by using facial expression representations for dynamic saliency
prediction based on deep neural maps.

3.2 Social Cue Detection

In the first stage (SCD), we extract high-level features from three social cue detectors
and an audiovisual saliency predictor. We utilize the S3FD face detector [288]
for acquiring the face locations of actors in an image. The cropped face images
are passed to the social cue detectors as input. The window size W , i.e., the
number of frames fed simultaneously as input to each model, varies according to the
requirements of each model. We sample and transform modality representations at
output timestep T ′ for each social video in AVE [245] as shown in Algorithm 3.1.

Our motivation behind selecting social cue detectors lies in their ability to
generalize to various in-the-wild settings, regardless of the surrounding environment
or lighting conditions. All chosen models were trained on datasets consisting of
social entities, captured from different angles and distances. Following the detection,
we represent each social cue as a 2D spatiotemporal visual representation. We
employ such representations to facilitate modularity and interpretability in our
model. Modularity is made possible by enabling the replacement of social cue
detectors without having to retrain our social attention model. Since the predictions
of each social cue detection model are transformed into a predefined representation,
their architectures and pipelines do not directly affect our model’s functionality.
Moreover, given the representations can be visualized as images, we are able to
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3.2. Social Cue Detection

Algorithm 3.1 SCD sampling
1: Definitions:
2: Propagate: propagate transformed representations to GASP
3: DetectFaces: detect faces and return face crops + bounding boxes
4: Shift: shift left and discard first element
5:
6: Input:
7: Video and audio frames sampled from ds = AVE dataset
8: Parameters:
9: Window sizes WSP = 15, WGE = 7, WGF = 5, WFER = 0

10: O/P steps T ′
SP = 15, T ′

GE = 4, T ′
GF = 0, T ′

FER = 0
11: Output:
12: Modality windows mdlwin
13: O/P buffers bufmdl
14: for vid ∈ ds do
15: t← 0
16: for frm ∈ vid do
17: fcs← DetectFaces(frm)
18: for mdl ∈ {SP, GE, GF, FER} do
19: if Wmdl > t then
20: ∆←Wmdl − t
21: for δ ∈ {∆, . . . ,Wmdl} do
22: mdlwin[δ]←< frm, fcs >
23: end for
24: else
25: Shift(mdlwin)
26: mdlwin[Wmdl]←< frm, fcs >
27: end if
28: bufmdl[t]← mdl(mdlwin)[T

′
mdl]

29: end for
30: Propagate(buf[t])
31: t← t+ 1
32: end for
33: end for

identify failures in the social cue detectors, which may consequently result in
degrading our model’s performance. Given these representations are spatial, not
only can we visually identify the directions and positions of detected cues, but so are
the features spatially correlated across all social and saliency cue representations,
reducing our model’s training duration.

We additionally include a saliency prediction model in the stack of social cue
detectors. The representation of the saliency prediction model guides our social
attention GASP model by emphasizing regions predicted to be salient. This allows
us to augment the saliency prediction model, rather than predicting saliency from
raw images only. If we were to train our social attention model to predict saliency,
this would require it to rely on large pretrained vision backbones. Consequently,
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setting the raw image encoder to a pretrained backbone breaks symmetry across
other social cue modality encoders. This is due to pretrained backbone models
not correctly encoding the representations of social cue modalities and would
require retraining. Therefore, our model would have to accommodate differences in
modality encoders, which in turn could negatively affect modality weighting in our
gating model.

(a) IMG + SP Representation

(b) GE Representation (c) GF Representation (d) FER Representation
IMG: Input Image; SP: Saliency Prediction; GE: Gaze Estimation; GF: Gaze Following;
FER: Facial Expression Recognition.

Figure 3.2: SCD stage representations displaying the (a) fixation density map
predicted by the DAVE [245] model superimposed on the image, (b) gaze estima-
tion coordinates [130] rotating cones positioned over the actors’ heads, (c) gaze
following target maps [210] for both actors combined, and (d) Grad-CAM [229]
representations generated for each actor as produced by the ESR9 [234] model.
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3.2. Social Cue Detection

3.2.1 Audiovisual Saliency Prediction Model

In the SCD stage, we utilize DAVE Saliency Prediction (SP) model by
Tavakoli et al. [245], for predicting saliency based on visual and auditory
stimuli. Separate streams for encoding the two modalities are built using a
3D-ResNet with 18 layers. The visual stream acquires 16 images (WSP ), each
resized to 256 × 320 pixels. The auditory stream acquires log Mel-spectrograms of
the video-corresponding audio frames, re-sampled to 16kHz. The model produces
an FDM at the final output timestep T ′

SP considering all previous frames within
the window WSP .
Transformation and Representation. We transform the resulting FDM from
DAVE using a jet colormap as shown in Figure 3.2a. The color red indicates regions
of high conspicuity, whereas blue indicates non-salient regions.

3.2.2 Gaze Estimation Model

We employ the Gaze360 Gaze Estimation (GE) model by Kellnhofer et al. [130].
The model infers the 3D gaze direction of an actor. The model receives face crops
of the same actor over a predefined period, covering seven frames (WGE) centered
around timestep T ′

GE. Each crop is resized to 224 × 224 pixels. The model predicts
the azimuth and pitch of the eyes and head along with a confidence score.
Transformation and Representation. We generate cones and position their
tips on detected face centroids. The cones are placed upon a zero-valued map
with identical dimensions to the input image. The cone base is rotated toward the
direction of gaze. The apex angle of the cone is set to 60◦, corresponding to the
angle of vision for a typical human. The face furthest from the lens is projected first
with an opacity of 0.5, followed by the remaining faces ordered by their distances to
the lens. A jet colormap is then applied to the cone map as shown in Figure 3.2b.
Regions within the cone covering the angle of vision are displayed in red, whereas
angles beyond the peripheral angle of vision (200◦) are displayed in blue. The
intensity of color reduces gradually between 60◦ and 200◦. Moreover, the overlap in
cones changes the representation color.

3.2.3 Gaze Following Model

We employ the VideoGaze Gaze Following (GF) model by Recasens et al. [210].
The model receives the source image frame that contains the gazer, the target frame
into which the gazer looks, and a face crop of the gazer in the source frame along
with the head and eye positions as input to its pathways. All frames are resized to
227 × 227 pixels. The model acquires five consecutive frames (WGF ) at timestep
T ′
GF and returns a fixation heatmap of the most probable target frame for every

detected face in a source frame.
Transformation and Representation. The mean fixation heatmaps resulting
from each face in the source frame are overlaid on a single feature map in the
corresponding target frame timestep. We transform the fixation heatmaps using a
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jet colormap as shown in Figure 3.2c. The representation indicates high-intensity
regions that are estimated to be gazed upon by the actors in the video. A high
certainty of the gazed position is displayed in red, whereas a low certainty is closer
in color to blue (minimum intensity).

3.2.4 Facial Expression Recognition Model

We employ the Facial Expression Recognition (FER) model developed by
Siqueira et al. [234]. The model is composed of convolutional layers shared across 9
ensembles. The model receives all face crops in a frame as input, each resized to
96 × 96 pixels and recognizes facial expressions from 8 categories. Since the model
operates on static images, we set the window size WFER and output timestep T ′

FER

to 0.
Transformation and Representation. Grad-CAM [229] features are extracted
from all 9 ensembles. We take the mean of the features for all faces in the image
and apply a jet colormap transformation on them. A 2D Hanning filter is applied
to the features to mitigate artifacts resulting from the edges of the cropped Grad-
CAM representations. We center the filtered representations on the face positions
upon a zero-valued map with dimensions identical to the input image as shown
in Figure 3.2d. High Grad-CAM gradients are displayed in red to indicate high
intensity, and blue to indicate low intensity. We set regions beyond the detected
actors’ faces to black (no color), as expressions are localized to faces rather than
the entire visual input.

3.3 Sequential Integration Model

We standardize all SCD features to a mean of 0 and a standard deviation of 1. The
input image (IMG) and FMs are resized to 120 × 120 pixels before propagation to
GASP. Based on the saliency prediction model by Tsiami et al. [256], we choose
image dimensions larger than those set by the authors (112 × 112 pixels), to ensure
that any performance degradation is not due to a reduction in image resolution.

3.3.1 Directed Attention Module

The Squeeze-and-Excitation (SE) [118] layer extracts channel-wise interactions,
applying a gating mechanism to weight convolutional channels according to their
informative features. The SE layer, however, emphasizes modality representations
having the most significant gain, mitigating channels with lower information con-
tent. For our purpose, it is reasonable to postulate that the most influential FM
channels are those belonging to the SP since it would result in the least erroneous
representation in comparison to the ground-truth FDM. However, this causes the
social cue modalities to have a minimal effect, mainly due to their low correlation
with the FDM as opposed to the SP.
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Figure 3.3: The direct (left) and inverted (right) streams of our Directed Attention
Module (DAM). The parameters of the direct stream are frozen and tied to the
inverted stream as indicated by the dashed borders.

To counter bias toward the SP, we intensify non-salient regions such that
the model learns to assign greater weights to modalities contributing least to
the prediction. Alpay et al. [14] propose a language model to skip and preserve
activations according to how surprising a word is, given its context in a sequence.
Similarly to how surprising words are propagated to the language model [14], we
propagate visual channel regions with an unexpected contribution to the saliency
model.

We construct a model for emphasizing unexpected features using two streams
as shown in Figure 3.3: 1) The inverted stream with output heads; 2) The direct
stream attached to the modality encoders of our GASP model. The inverted stream
is composed of an SE layer followed by a 2D convolutional layer with a kernel size
of 3 × 3, a padding of 1, and 32 channels. A max pooling layer with a window size
of 2 × 2 reduces the feature map dimensions by half. Finally, a 1 × 1 convolution
is applied to the pooled features, reducing the feature maps to a single channel. To
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emphasize weak features, we invert the input channels:

u−1
c′ = log

(
1

softmax(uc′)

)
= − log(softmax(uc′)), (3.1)

where uc′ represents the individual channels of all modalities. The spatially inverted
channels u−1

c′ are standardized and propagated as input features to the inverted
stream. The direct stream is an SE layer with its parameters tied to the inverted
stream and receives the standardized FM channels uc′ as input. Finally, the direct
stream propagates the channel parameters multiplied with each FM to the modality
encoders of GASP. The resulting weighted map is the target map (TM).

3.3.2 Modality Encoders

The modality encoder (Enc.) is a convolutional model used for extracting visual
features from the target maps. The first two layers of the encoder have 32 and 64
channels respectively. A maximum pooling layer reduces the input feature map to
half its size. The pooled layer is followed by two layers with 128 channels each.
Finally, the representations are decoded by applying transposed convolutions with
128, 64, and 32 channels. The last layer has a number of channels equivalent to the
input channels. All convolutional kernels have a size of 3 × 3, with a padding of 1.
For GASP model variants operating on single frames (static integration variants),
all modalities share the same encoder. For sequential integration variants, each
modality has a separate encoder shared across timesteps.

3.3.3 Recurrent Gated Multimodal Unit

Concatenating the modality representations could lead to successful integration.
Such a form of integration is commonly used in multimodal neural models, including
audiovisual saliency predictors. We describe such approaches as non-fusion models,
whereby the contribution of each modality is unknown. To account for all modalities,
we employ the Gated Multimodal Unit (GMU) [17]. The GMU learns to weigh the
input features based on a gating mechanism. For preserving the spatial features
of the input, the authors introduce a convolutional variant of the GMU. This
model, however, disregards the previous context since it does not integrate features
sequentially. Therefore, we extend the convolutional GMU with recurrent units
and express it as follows:

h(k)⟨t⟩ = tanh (W(k)
x ∗ x(k)⟨t⟩ +U

(k)
h ∗ h

(k)⟨t⟩ + b
(k)
h ),

z(k)⟨t⟩ = σ(W(k)
z ∗ [x(1)⟨t⟩, ...,x(K)⟨t⟩] +U(k)

z ∗ z(k)⟨t−1⟩ + b(k)z ),

h⟨t⟩ =
K∑
k=1

z(k)⟨t⟩ ⊙ h(k)⟨t⟩,

(3.2)

where h(k)⟨t⟩ is the hidden representation of modality k at timestep t. Similarly, z(k)⟨t⟩
indicates the gated representation. The total number of modalities is represented
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by K. The parameters of the Recurrent Gated Multimodal Unit (RGMU) are
denoted by W

(k)
x , W(k)

z , U(k)
h , and U

(k)
z . The modality inputs x(k) at timestep t

are concatenated channel-wise as indicated by the [·,·] operator and convolved with
W

(k)
z . The z(k)⟨t⟩ representation is acquired by summing the current and previous

timestep representations, along with the bias term b
(k)
z . A sigmoid activation

function denoted by σ is applied to the recurrent representations z⟨t⟩. The final
feature map h⟨t⟩ is the Hadamard-product between z(k)⟨t⟩ and h(k)⟨t⟩ summed over
all modalities.

The aforementioned recurrent approach suffers from vanishing gradients as the
context becomes longer. To remedy this effect, we propose the integration of GMU
with the convolutional Attentive Long Short-Term Memory (ALSTM) [63]. ALSTM
applies soft attention to single timestep input features over multiple iterations. We
utilize ALSTM for our static GASP integration variants. For sequential variants,
we modify ALSTM to acquire frames at all timesteps instead of attending to a
single frame multiple times:

x⟨t⟩ = softmax(z⟨t−1⟩)⊙ x′⟨t⟩, (3.3)

where z⟨t−1⟩ represents the pre-attentive output of the previous timestep, and x′⟨t⟩

represents the input of the current timestep before applying attention. We adapt
the sequential ALSTM to operate in conjunction with the GMU by performing the
gated fusion per timestep. We refer to this model as the Attentive Recurrent Gated
Multimodal Unit (ARGMU). Alternatively, we perform the gated integration after
concatenating the input channels and propagating them to the sequential ALSTM.
Since the modality representations are no longer separable, we describe this variant
as the Late ARGMU (LARGMU). We refer to the total number of timesteps as
the context size. Analogous to the sequential variants, we create similar gating
mechanisms for static integration approaches. Replacing the sequential ALSTM
with the ALSTM by Cornia et al. [63], we present the non-sequential Attentive
Gated Multimodal Unit (AGMU), as well as the Late AGMU (LAGMU).

3.4 Experimental Setup

We trained our GASP model on the social event subset of AVE [245]. AVE is a
composition of three datasets: DIEM [177], Coutrot Databases 1 [65] and 2 [66]. To
train the model, we employed the loss functions introduced by Tsiami et al. [256],
assigning the loss weights λ1 = .1, λ2 = 2, and λ3 = 1 to cross-entropy, CC, and
NSS losses respectively. The loss functions LPFDM were weighted, summed, and
applied to the final layer for optimizing the modality encoder and integration model
parameters. The model was trained using the Adam optimizer, having a learning
rate of .001, with β1 = .9 and β2 = .999. All models were trained for ∼10k iterations
with a batch size of 4. We conducted five trials, reporting the mean in our results.

The models were evaluated on the test subset of social event videos in AVE. We
employed five commonly used metrics in dynamic saliency prediction [245, 256]:
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Normalized scanpath saliency (NSS); Linear correlation coefficient (CC); Similarity
metric (SIM); Area under the ROC curve (AUCJ); Shuffled AUC (sAUC). The
negative fixations for the sAUC metric are sampled from all the mean eye positions
in the social event subset of AVE.

The inverted stream of our DAM layer has a separate output head for each
timestep. We computed the cross-entropy between the DAM prediction and the
FDM. For sequential integration models, the loss was summed over all timesteps.
The loss LDAM with a weight λDAM = .5 was computed for optimizing the inverted
stream parameters. The parameters were transferred to the direct stream with
frozen parameters.

An NVIDIA RTX 2080 Ti GPU with 11 GB VRAM and 128 GB RAM was
used for training all static and sequential models. To extract spatiotemporal maps
in the first stage (SCD), we employed an NVIDIA TITAN RTX GPU with 24 GB
VRAM and 64 GB RAM to accommodate all social cue detectors simultaneously.
We performed the SCD feature extraction in a preprocessing step for all videos in
the AVE dataset.

3.5 Results

3.5.1 Static Integration

Table 3.1: Static integration results. Top rows represent non-fusion methods and
bottom rows are fusion-based integration approaches. Bold denotes the best scores.

Model Architecture AUCJ ↑ sAUC ↑ CC ↑ NSS ↑ SIM ↑
Additive 0.5842 0.5912 0.0882 1.19 0.1878
Concatenative 0.8782 0.6303 0.6614 2.71 0.4743
ALSTM 0.6881 0.5727 0.4503 2.05 0.3316
SE 0.5367 0.5597 0.0359 1.03 0.0972
LAGMU (Ours) 0.8347 0.6376 0.5576 2.48 0.4361
DAM + LAGMU (Ours) 0.8791 0.6379 0.6606 2.76 0.5278
GMU 0.8792 0.6374 0.6545 2.75 0.5172
AGMU (Ours) 0.6829 0.6359 0.2046 1.47 0.2212
DAM + GMU (Ours) 0.8845 0.6397 0.6620 2.77 0.5233
DAM + AGMU (Ours) 0.8587 0.6372 0.6372 2.71 0.5066

We examined integration approaches operating on a single frame in GASP. The
Additive model refers to the integration variant in which the feature maps of all en-
coders are summed, followed by a 3 × 3 convolution with 32 channels and a padding
of 1. The Concatenative variant applies a channel-wise concatenation to the feature
maps, followed by the aforementioned convolutional layer. ALSTM, LAGMU, and
AGMU employ the non-sequential ALSTM variant by Cornia et al. [63]. The
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Squeeze-and-Excitation [118] (SE) model precedes the modality encoder. We note
that all models excluding SE and DAM replaced the integration model with their
own mechanisms, such as concatenation or element-wise addition. Finally, all model
variants were followed by a 1 × 1 convolution resulting in the final output feature
map.

In Table 3.1, the DAM + GMU (Ours) model achieved the highest AUCJ score,
outperforming other fusion-based methods such as GMU and DAM + AGMU
(Ours). This result indicated that the addition of DAM enhanced the integration
process in combination with GMU, leading to improved detection performance. We
also observed that DAM + GMU (Ours) produced the best CC score, demonstrating
a strong correlation with ground-truth. This was closely followed by Concatenative
and DAM + LAGMU (Ours), both of which performed well, showing that GMU,
when combined with DAM, provided more accurate visual saliency maps.

In terms of SIM scores, DAM + LAGMU (Ours) achieved the highest value,
indicating its greater similarity to ground-truth in pixel-wise predictions. It slightly
outperformed both DAM + GMU (Ours) and GMU, suggesting that the incorpora-
tion of LAGMU with DAM offered a small improvement in this aspect. Finally,
the AGMUs model, while showing moderate performance across most metrics,
underperformed compared to other fusion-based methods, especially in terms of
the CC and NSS scores.

3.5.2 Sequential Integration

We modified our GASP integration model to have a context greater than one. All
models employ batch normalization applied to the temporal axis. The integration
models are followed by a 1 × 1 convolution resulting in the final output feature map.
In Table 3.2, we experimented with context sizes ∈ {2, 4, 6, 8, 10, 12} and observed
an overall improvement in performance with a context size of 4. The directed
attention variant with late non-fusion gating DAM + LARGMU (Ours) achieved
the best scores on all metrics. This implies that gated integration is beneficial, even
though the representations preceding the GMU are not separable.

Comparing the results of static integration in Table 3.1 to dynamic integration
approaches in Table 3.2, we observed that several static approaches perform on
par with recurrent models. Nonetheless, the sequential DAM + LARGMU (Ours)
with context sizes of 8 and 10 outperformed all integration methods. In Table A.1,
we observed an insignificant difference in metric scores among the best sequential
models for all context sizes. Compared to the best static model, the variances of
sequential model scores were lower, indicating the stabilizing influence of attentive
LSTMs with the addition of context.
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3.5. Results

3.5.3 Modality Contribution

Table 3.3: Social cue modality ablation applied to our best GASP model (DAM +
LARGMU; Context Size = 10). Bold denotes the best scores.

IMG SP GE GF FER AUCJ ↑ sAUC ↑ CC ↑ NSS ↑ SIM ↑
✓ ✓ - - - 0.8767 0.6338 0.6542 2.72 0.5228
✓ ✓ - - ✓ 0.7535 0.5951 0.4466 2.17 0.3578
✓ ✓ - ✓ - 0.6893 0.5679 0.3222 1.84 0.2539
✓ ✓ - ✓ ✓ 0.8778 0.6442 0.6652 2.76 0.5350
✓ ✓ ✓ - - 0.8769 0.6272 0.6493 2.70 0.4798
✓ ✓ ✓ - ✓ 0.8859 0.6505 0.6840 2.86 0.5381
✓ ✓ ✓ ✓ - 0.8776 0.6367 0.6543 2.74 0.5216
✓ ✓ ✓ ✓ ✓ 0.8830 0.6527 0.6980 2.87 0.5566

IMG: Input Image; SP: Saliency Prediction; GE: Gaze Estimation; GF: Gaze Following;
FER: Facial Expression Recognition.

We measured the contribution of each modality to the final prediction by computing
the mean activation of the gates across channels and timesteps as shown in Figure 3.4.
This evaluation method is only applicable to fusion models in either static or
sequential forms of integration, since their representations are separable, unlike non-
fusion models. We observed that the DAM does not alter the modality contribution
of the static GMU. For sequential variants, introducing the DAM allows modalities
to have a uniform contribution to the final output.

We examined the modalities contributing an improvement to the best non-
fusion sequential model. We included the raw input image IMG modality for all
combinations since the model cannot operate without encoding the input image
as there is insufficient information represented solely in the social cues. The SP
was included as well since the model would require significantly more training
iterations to reach scores on par with the baselines having all cues included. This
would make the comparison unrepresentative of the cue contribution as models with
the SP included required fewer training iterations, and therefore, vastly different
performance from what we would observe in this experiment, should we have
excluded SP. As shown in Table 3.3, FER in combination with GE achieved results
on par with the best model. The exclusion of GF had a minimal effect on the
model due to the sparsity of its representation. Significant degradation in the model
variant with social modalities ablated implies the necessity of social cues in concert.
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Chapter 3. Gated Attention for Saliency Prediction
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(a) Static fusion variants.
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(b) Sequential fusion variants.
IMG: Input Image; SP: Saliency Prediction; GE: Gaze Estimation; GF: Gaze Following;
FER: Facial Expression Recognition.

Figure 3.4: Aggregated modality weights of (a) static and (b) sequential fusion
methods. Context sizes are shown within parentheses.

3.5.4 Comparison with State-of-the-Art

Table 3.4: Comparison with state-of-the-art by varying the SCD SP of our best
GASP model (DAM + LARGMU; Context Size = 10). Bold denotes the best
scores.

Model Architecture Test AUCJ ↑ sAUC ↑ CC ↑ NSS ↑ SIM ↑
UNISAL (Visual Only) AVE 0.8640 0.6545 0.4243 2.04 0.3818
TASED (Visual Only) AVE 0.8601 0.6515 0.4631 2.19 0.4084
DAVE (Visual Only) AVE 0.8824 0.6138 0.5136 2.45 0.4080
DAVE (Audiovisual Baseline) AVE 0.8853 0.6121 0.5453 2.65 0.4420
STAViS (Visual Only) STA 0.8577 0.6517 0.4690 2.08 0.4004
STAViS (Audiovisual) STA 0.8752 0.6154 0.4912 2.79 0.4774
UNISAL + GASP (Ours) AVE 0.8771 0.6334 0.6494 2.70 0.5244
TASED + GASP (Ours) AVE 0.8602 0.6195 0.5736 2.50 0.4725
DAVE + GASP (Ours) AVE 0.8830 0.6527 0.6980 2.87 0.5566
STAViS + GASP (Ours) STA 0.8910 0.6825 0.6052 3.08 0.4324
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3.6. Discussion

We compared the performance of our model with four dynamic saliency predictors.
We replaced DAVE [245] with STAViS [256], TASED [172] and UNISAL [72] in the
SCD stage during the evaluation phase. Due to the overlap in datasets between
DAVE and STAViS, we retrained our GASP model with STAViS as the SCD
audiovisual saliency predictor. We evaluated and trained our STAViS-based model
on social event videos according to the data splits concocted by Tsiami et al. [256]
to avoid data leakage, as the video samples overlap with those found in the AVE
dataset train and test splits.

Combining our best GASP model with different saliency predictors improved
their performances, as shown in Table 3.4. Although the GASP model was not
retrained, it extracted information from the social cue modalities and the saliency
predictor (SP) pertinent to the prediction. The sequential GASP also exhibits
greater resistance to central bias as shown in Figure A.1 (middle row) compared
to other models, where the actor closest to the center is incorrectly predicted as a
fixation target. The integration of social cue features and sequential inference in
both stages of GASP contributed to such resistance.

3.6 Discussion

In Section 3.5.1, we evaluated GASP on static images following common integration
and fusion techniques, as well as novel approaches proposed in this article. In most
cases, the DAM contributed to an improvement over all other variants excluding
the DAM. The DAM partially inverted the learning process—learns the opposite
social attention of the target—and deterred the model from shortcut learning [95],
whereby the model would rely heavily on the saliency representation arriving from
the social cue detection stage. Shortcut learning in this context refers to the
model propagating activations only from the saliency prediction model since its
representation most closely resembles the ground-truth, consequently ignoring all
other auxiliary social cue representations.

In Section 3.5.2, we extended the context of our model beyond one frame, to
account for dynamic changes in the audiovisual stimuli. The size of the context had
a significant influence on each model’s performance, with a context size of 8 resulting
in the best performance for most model architectures in terms of all saliency metrics.
Moreover, we observed that most integration architectures outperformed fusion
architectures. We hypothesize that integration architectures—attention precedes
gating—attend to relevant features across all modalities, which are then filtered
by the gating mechanism to emphasize the most salient modalities. Reversing the
operation with fusion architectures would filter out, or down-weigh, the modalities
that contribute the least to the task. Therefore, modality features that could
potentially be relevant are mitigated before the attention operation, resulting in a
lower overall performance.

In Figure 3.5, we observe that the attention is directed toward the face of
either speaker. The static and dynamic models predicted salient regions that were
centered on the faces of the individuals. However, in terms of attention distribution,

47



Chapter 3. Gated Attention for Saliency Prediction

G
ro

un
d-

tru
th

D
A

M
 +

 G
M

U
D

A
M

 +
 L

A
R

G
M

U

Figure 3.5: Frame predictions on the Coutrot Database 1 [65]. Our DAM + GMU:
Directed Attention Module followed by the Gated Multimodal Unit for static
integration (middle); Our DAM + LARGMU: Directed Attention Module followed
by the Late Attentive Recurrent GMU for sequential integration (bottom).

the dynamic model corresponded more closely to the ground-truth than the static
model. Since the dynamic model employs sequential integration for encoding the
context of the video, it can better represent attention when it is driven by temporal
changes. For example, since the person actively speaking attracts an observer’s
attention the most [158], a model aware of the dynamic changes indicating speech,
such as lip movement, is better suited for predicting attention in social videos.
The person speaking in Figure 3.5 is challenging to detect without relying on the
context. The context indicated changes in the lip movements over time, giving the
dynamic sequential integration model an advantage over the static model, which
lacks context.

We observed minimal influence of the gaze following modality on the model’s
performance in Section 3.5.3. Gaze following is a task that is much more challenging
than gaze estimation. The task is inherently a step beyond gaze estimation, in
that it not only estimates the direction of gaze but also detects the region upon
which the gazer looks. This results in higher noise, where the uncertainties produce
more false-positive detections. A higher noise would also affect our downstream
GASP model, as it would consider all modality representations. This contributed
to a reduction in the performance of our social attention model, especially when
the gaze following modality was the only social cue employed. When all three cue
modalities were included, the model still performed moderately better.
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3.6. Discussion

Finally, in Section 3.5.4, we evaluated our GASP model by replacing the
saliency predictor employed in the SCD stage, with other state-of-the-art models.
We found that our social attention approach—inclusion of auxiliary social cue
representations—improved all model performances. More importantly, replacing
the saliency predictor did not require retraining or fine-tuning our GASP model.
This trait makes our model adaptable to the other social cue detection and saliency
prediction models, meaning that any of the trained modality encoders can receive
input from another model performing the same task at inference time, and the
GASP model can still operate in the same fashion.
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Chapter 4

Unified and Individual Scanpath
Prediction

In Chapter 3, we show that augmenting saliency prediction models with auxiliary
social cue representations improves their predictions. However, saliency models
represent the attention of a group of observers. To develop models that can simulate
gaze, they should also be conditioned on sequences of fixations, also known as
scanpaths [190]. In this chapter, we extend our social attention model with a fixation
history module, and train it to instead predict the scanpaths of individual observers.
Unlike the vast majority of existing scanpath prediction approaches [287, 1, 153],
our model is capable of personalizing scanpaths, such that they are conditioned
on the fixation history, allowing us to train a single unified model rather than
individual models for each observer.

4.1 Introduction

Gaze shapes and guides social interactions, both for signaling and perceiving intent
of others [47, 223]. Similarities across human eye movement patterns are described
as universal attention [277] and are attributed to memory effects, bottom-up
saliency, oculomotor biases, and physical constraints [150]. However, gaze patterns
are influenced by socio-ecological factors and behavioral traits, that could differ
depending on the observer. These factors contrive personalized attention [277].

In this study, we focus mainly on modeling human gaze patterns, known
as scanpaths, to better simulate the cognitive behaviors exhibited during social
interactions. The ability to simulate scanpaths is especially necessary for conducting
human-robot interaction studies, where the gaze of the robot could greatly impact
humans’ perception and social acceptability of it [25, 149]. We model scanpaths
under the free-viewing condition, whereby the observer is instructed to freely watch
a video, without any predetermined objectives or tasks. The uniqueness of the
free-viewing condition lies in the fact that it does not require any explicit gaze
target. The viewing patterns under this condition are comparable to those exhibited
by animals when foraging for food [24, 69]. This implies a universal goal that can
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Chapter 4. Unified and Individual Scanpath Prediction

be associated with all observers. However, deviations in gaze patterns from the
norm can be attributed to the intrinsic motivation of observers, shaped by their
personalized attention [45].

Our task addresses the learning of scanpaths on observing dynamic (video)
visual scenes. A closely related task is saliency prediction [245, 271], in which
attention maps are learned based on the gaze of multiple observers. With minor
modifications, saliency models can be used as predictors of scanpaths [146]. Saliency
prediction models represent statistical measures of fixation distributions, visualized
as spatial attention maps. However, equating the peaks of these maps with the
fixation targets throughout a sequence might not accurately reflect an individual’s
scanpath. This could lead to abrupt transitions between fixations.

One potential solution is to train or fine-tune saliency models to predict individ-
ual scanpaths, maintaining traits emerging as a result of universal and personalized
attention. However, this approach could be hindered by the sparsity of the predicted
fixation maps (hereafter denoted as priority maps [285]), particularly if there’s
no input signal maintaining a record of fixation sequences for a single observer.
Nevertheless, saliency predictors have shown great effectiveness in modeling human
attention and could provide features pertaining to universal attention, therefore,
useful for predicting scanpaths. While both saliency and scanpath prediction are
closely related, there are critical differences that necessitate modifying the former
task to better address the latter. We motivate the need for modifications based on
the following observations:

O4.1 Saliency models predict group attention, whereas scanpath models
predict the sequential attention of an individual. Namely, saliency
models predict the distribution of fixation probabilities for multiple observers,
whereas scanpath models predict the fixation trajectory of an individual
observer viewing a scene. To repurpose a saliency model for predicting
scanpaths, we need to fine-tune the model for each observer independently in
order to represent their unique viewing patterns. To circumvent this limitation,
we could alternatively train a single unified model by additionally providing
a prior that can separate different scanpath trajectories. By focusing on
individual scanpaths, we can represent the prototypical personalized attention
patterns.

O4.2 Scanpaths of observers are non-deterministic and unique to the
individual, meaning that they can vary from one viewing of a scene to the
next. Previous research has shown that repetition of trials can increase the
similarity between subsequent scanpaths for each observer, suggesting that
humans have a natural tendency to follow different scanpaths without prior
exposure to a given stimulus [84]. This phenomenon highlights the importance
of using sequential models that can maintain the previous context, such as
a memory component for storing the fixation history. This is in contrast
to saliency prediction models, which infer fixation distributions that remain
unchanged given the same stimuli.

52



4.1. Introduction

O4.3 Salient stimuli and low-level features influence scanpaths. Unlike
saliency prediction, scanpath prediction models the unique fixations of a
single observer. Jiang et al. [124] have identified several factors that can
influence the uniqueness of individual scanpaths, including low-level visual
features, semantics, central bias, and fixation shift distribution. Based on
these findings, we introduce a sequential audiovisual scanpath prediction
model that can implicitly represent personalized patterns. More concretely,
our model is not designed to explicitly represent these factors, but it can infer
them from the input features, such as auxiliary social cue representations and
attention maps. This allows our model to infer the patterns of attention that
are characteristic of human observers.

Training a separate individual model for each observer could lead to the optimal
prediction of their scanpaths. However, this approach is prohibitively expensive,
given a large number of observers. We investigate whether individual models
are necessary as opposed to a single unified model, distinctively predicting each
scanpath based on the individual fixation histories. We pose the following questions:

RQ4.1 Are the fixation histories adequate priors for differentiating scanpath tra-
jectories?

RQ4.2 Does a model trained on individual viewing patterns independently, yield
better predictions of scanpaths compared to a unified model trained on all
fixations?

RQ4.3 How many multi-step-ahead fixations in a sequence can be reliably predicted
from a given scanpath and stimuli before model predictions diverge?

To tackle these questions, we propose a scanpath prediction model and framework
that allows for the exploration of each. Given that social cues play a crucial role
in modulating visual attention [112], we utilize GASP (detailed in Chapter 3), a
dynamic saliency prediction model employing sequential gating mechanisms to
augment raw audiovisual samples with representations of social cues. The best-
performing GASP model concatenates the social cue representations, weighing their
contributions by emphasizing weaker ones, and finally, combining them using an
attentive convolutional LSTM [63] followed by a gating module [17]. We discard
the gaze following social cue representation since it is shown to have an insignificant
or even detrimental effect on the performance of GASP. Moreover, we extend the
model with a fixation history channel that maintains a fixed number of previous
fixation masks—a sequence of fixation points blurred by a 2D Gaussian filter with
width equating to a 1◦ viewing angle.

In summary, we introduce a framework for modeling and evaluating dynamic
scanpaths, inspired by existing methodologies in scanpath prediction for images [146].
Additionally, we present a modular multimodal architecture, designed for flexibility
in accommodating various modules for detecting social cues. A key aspect of our
approach is the utilization of an observer’s fixation history, enabling the model to
learn the scanpaths of multiple observers using a single unified model.
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Chapter 4. Unified and Individual Scanpath Prediction

4.2 Gated Attention for Scanpath Prediction

We modify the GASP model for predicting scanpaths and adopt the two-stage
approach for extracting and representing social cues, followed by feature integration.
Separating the feature representation and scanpath modeling into two stages is
both biologically plausible and computationally efficient.

From a psychological standpoint, our approach follows the feature integration
theory [255], which states that low- and high-level features are processed in an
initial stage. During this stage, only features of all objects are extracted, since
prior knowledge about the relevance of an object is not yet processed. In the
second stage, the features are clustered into objects, and each object is assigned a
relevance, allowing for selectivity in attention toward the most conspicuous one.
From a computational perspective, each social cue and saliency representation can
be computed in parallel given that features relating to the interactions between
different modalities are not required. We note that the lower bound in terms of time
complexity, is determined by the slowest detection and representation modality.

4.2.1 Sampling and Social Cue Detection

We represent social cues following the paradigm introduced in Chapter 3. We
retain DAVE [245] as the saliency predictor, Gaze360 [130] as the gaze estimator,
and the facial expression recognizer developed by Siqueira et al. [234]. We discard
the gaze following modality [210] due to its high time complexity and insignificant
improvement to GASP.

During the fine-tuning phase, the image captures are downsampled to 10 frames
per second. This aligns with the finding that eye fixations change within an interval
of 100 to 500 ms [209]. The frames are pushed to a queue with a maximum size
matching that of the modality with the longest context: DAVE with a context size
of 16 visual frames.

Auditory signals are resampled to 16 kHz for accommodating videos irrespective
of their original sampling rate. Resampling requires audio recordings of at least
one second to avoid introducing artifacts. During training, we split one-second
recordings beginning with the first visual frame in the context window into 16
chunks. We then extract 64 bands of the log mel-spectrogram with overlapping
windows of .025s having a hop length of .01s following the same preprocessing
technique adopted by Tavakoli et al. [245]. The resulting coefficients are propagated
to the auditory stream of DAVE.

4.2.2 Fixation History Module

For predicting the scanpaths of individual observers, the model requires a mechanism
for recalling previous fixations. This becomes relevant considering the scanpath
differs for each observer exposed to the same stimuli and their scanpaths are
dependent on their previous fixation points. During training, the fixation history
is set to a sequence of 2D priority maps, created by applying Gaussian blur on
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4.2. Gated Attention for Scanpath Prediction

the fixation points. The Gaussian blur filter’s width corresponds to a 1◦ viewing
angle as a function of distance from the display monitor. This filter is applied to
the previous ground-truth fixation points preceding the last timestep for a given
sample. This translates to the teacher forcing strategy [266] during training i.e.,
the ground-truth maps of previous timesteps are fed as model inputs to predict the
map of the current timestep.

During evaluation, our model predicts a priority map indicating the target of
attention for an individual observer. The maps are then queued in the fixation
history. The previous fixations define the context of attention, enforcing a foveated
region upon the different input modalities and assisting in the prediction of the
next fixation for an observer. The overall process equates to scanpath prediction
with the added benefit of operating on dynamic contexts given an arbitrary number
of timesteps. For predicting scanpaths, the fixation history cannot be discarded,
especially in a unified model, as it serves as the primary mechanism for distinguishing
between scanpath trajectories.

In Algorithm 4.1, we present the scanpath evaluation pipeline for each observer.
The context size T ′ defines the number of recurrent timestep representations arriving
from the different cue detectors. The predicted fixation m̂⟨t′⟩ at timestep t′ is fed
back into the fixation history for an arbitrary number of multiple steps ahead. We
note the model’s performance is primarily evaluated based on the output from its
first prediction step. This output reflects the model’s initial predictions, without
extending into multi-step-ahead evaluations. To evaluate a model’s capability in
handling extended sequences without relying on the ground-truth after initializing
the fixation history, we can iteratively input the model’s predictions into the
fixation history queue. This approach resembles the detection pipeline, with the key
distinction of not acquiring the fixation history from ground-truth for subsequent
stimuli detection. Evaluating multiple steps ahead allows us to assess the model’s
accuracy in forecasting future steps, closely reflecting real-world scenarios where
we don’t have access to the ground-truth data.

4.2.3 Sequential Integration Model

We describe the components of the sequential integration method of the GASP
model presented in Chapter 3. The attentive recurrent gating mechanism as well as
its late integration variant are detailed in this chapter. We also provide an overview
of the directed attention module’s role in improving a model’s performance.

Directed Attention Module

The Directed Attention Module (DAM) is based on the Squeeze-and-Excitation [118]
model for extracting the channel-wise interactions between the input modalities.
The number of channels C ′ is defined by K×C where K is the total number of
modalities and C denotes the number of image channels per feature map, assuming
that all modalities have an equal number of image channels and dimensions. The
initial aggregation in the form of average pooling across the channel pixels is
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Algorithm 4.1 The dynamic scanpath evaluation pipeline incorporating the
fixation history, similar to Kümmerer and Bethge [146]
1: Definitions:
2: vf: video frames, ac: audio chunks
3: fh: fixation history
4: DetectCues: detect social cues
5: Shift: shift left and discard first element
6: UpdateFrame: update last video frame
7: UpdateChunks: update audio chunks if new 1 s sample reached
8: Integrate: sequential integration
9: Sample: get video or audio at specified rate

10: Eval: evaluate saliency metrics
11:
12: t′ ← current sub-sampled video frame index
13: vf← Sample(16 frames, 10 FPS)
14: ac← Sample(1 s audio, 16 chunks)
15: t′ ← t′ + 16
16: for t′′ ∈ {1, . . . , context size T ′} do
17: cues[t′′]← DetectCues(vf, ac)
18: fh[t′′]←m⟨t′⟩

19: vf← Shift(vf) & UpdateFrame(vf)
20: ac← UpdateChunks(ac)
21: t′ ← t′ + 1
22: end for
23: for n ∈ {0, . . . , multi-step-ahead predictions} do
24: m̂⟨t′⟩ ← Integrate(cues, fh, vf[16 - T ′:16])
25: Eval(m̂⟨t′⟩,m⟨t′⟩)
26: vf← Shift(vf) & UpdateFrame(vf)
27: ac← UpdateChunks(ac)
28: cues← Shift(cues)
29: cues[T ′]← DetectCues(vf, ac)
30: fh← Shift(fh)
31: fh[T ′]← m̂⟨t′⟩

32: t′ ← t′ + 1
33: end for

expressed as follows:

ℓ[1] =
1

H ×W

H∑
h=1

W∑
w=1

rc′(h,w), (4.1)

where ℓ[1] represents the squeeze operation, W and H represent the width and
height of the feature maps, respectively, whereas rc′ signifies the standardized
feature map channel representation. The aggregated representations of all channels
are then compressed and expanded using two linear fully-connected layers, with a
non-linear activation following the first:

ℓ[2] = σ(W
[2]
ℓ · relu(W

[1]
ℓ · ℓ

[1])), (4.2)
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where ℓ[2] is the non-linear channel weight vector for scaling the channel contri-
bution. The Sigmoid activation function σ is used as a gating mechanism rather
than an attention mechanism, simply to avoid having a single active channel as
would be the case if it were Softmax (attention) instead. The compression and
expansion layer parameters are W

[1]
ℓ and W

[2]
ℓ , respectively, where W

[1]
ℓ ∈ R

C′
γ

×C′

and W
[2]
ℓ ∈ RC′× C′

γ . The reduction ratio γ is a hyperparameter controlling the
factor by which the channels are compressed. Finally, each feature map rc′ is scaled
by its corresponding gain arriving from the ℓ[2] layer.

Following the approach presented in Chapter 3, we duplicate the Squeeze-
and-Excitation model, denoting one by the direct stream and the other by the
inverted stream. The former has a direct path to the scanpath model, whereas the
inverted stream has a separate output head. The output head is composed of a 2D
convolutional layer with 32 channels, a kernel shape of 3×3, and a padding of 1,
followed by a max-pooling layer with a 2×2 window size, effectively reducing the
feature map by half its size. The final layer aggregates the pooled representation
to a single channel by applying 1×1 convolution.

The direct stream receives the concatenated channels of the social cue, saliency
prediction, and fixation history representations. The final weighted feature maps
(target maps) of the direct stream are propagated to our scanpath model. The
number of target maps corresponds to the number of channels received by the
direct stream. As the name implies, the inverted stream acquires the chromati-
cally inverted modality representations by applying a non-linear transformation
r−1
c′ =−softmax(rc′) to the modality channels. The output of the inverted stream

predicts a sequence of fixation density maps (attention maps), corresponding to
universal attention learning. These fixation density maps represent the top-down
and bottom-up attention of multiple observers, which is prior knowledge that the
individual does not possess. However, the plausibility of a bottom-up saliency
detector is evaluated based on its resemblance to fixations of multiple individuals,
when the task is designed to minimize top-down effects [230].

We assume that these attention maps represent the ideal saliency maps since
a clear separation cannot be formed between bottom-up and top-down attention.
Moreover, we hypothesize that individual differences in attention should be large
enough to distinguish between the scanpath trajectories. This implies that extrinsic
factors that attract attention would have the highest impact on the fixation density
per frame on average.

The motivation behind introducing the directed attention module lies in avoiding
bias toward the saliency prediction representation, being both an input and target
of the model. As a result, autoencoding the saliency input would be the optimal
outcome, reducing all other modality connection parameters to zero. A more
performant saliency model would amplify the biased reliance on its representation,
leading to better performance overall, however, the generalization suffers. This
is evident from the observation that training models on biased datasets leads to
incorrect feature learning, albeit successful on the provided samples, a phenomenon
in deep neural networks known as shortcut-learning [95]. To address this bias, the
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model emphasizes weaker modality representations, i.e., modality representations
that have a low spatial match to the ground-truth maps. Stronger representations
are inhibited, causing the model to assign a larger gain weight to their represen-
tations during the learning phase. However, this is the case only when weaker
representations lack information content that is sufficient to guide loss minimization.

Modality Encoders

The modality encoders are 2D convolutional neural networks with a structure
similar to encoder-decoder models, i.e., feature compression of visual modalities
through a bottleneck followed by decompression. We follow the same encoder
structure described in Section 3.3.2 to initialize or model parameters with those of
the pretrained models.

Attentive Convolutional LSTM and Gated Multimodal Unit

The Attentive Convolutional LSTM (ALSTM) [63] is an adaption to the convo-
lutional LSTM model for recursively attending to feature maps. This structure
has demonstrable advantages over conventional recurrent convolutional models and
proves effective in modeling saliency as illustrated by Cornia et al. [63].

A convolutional LSTM is expressed as follows:

i⟨t⟩ = σ(Wi ∗ s⟨t⟩ +Ui ∗ h⟨t−1⟩ + bi),

f ⟨t⟩ = σ(Wf ∗ s⟨t⟩ +Uf ∗ h⟨t−1⟩ + bf ),

o⟨t⟩ = σ(Wo ∗ s⟨t⟩ +Uo ∗ h⟨t−1⟩ + bo),

g⟨t⟩ = tanh (Wc ∗ s⟨t⟩ +Uc ∗ h⟨t−1⟩ + bc),

c⟨t⟩ = f ⟨t⟩ ⊙ c⟨t−1⟩ + i⟨t⟩ ⊙ g⟨t⟩,

h⟨t⟩ = o⟨t⟩ ⊙ tanh(c⟨t⟩),

q⟨t⟩ = Wq ∗ tanh (Wa ∗ s⟨t⟩ +Ua ∗ h⟨t−1⟩ + ba),

(4.3)

where Wi, Wf , Wo, and Wc, represent the kernel parameters of the input i⟨t⟩,
forget f ⟨t⟩, output o⟨t⟩ gates, and cell state, respectively. The bias unit for each
projection layer is denoted by bi, bf , bc, and bo. The input map s⟨t⟩ is convolved
with all gate parameters at each timestep. The cell state is denoted by c⟨t⟩ and the
hidden state by h⟨t⟩. The hidden state is convolved with the recurrent parameters
Ui, Uf , Uo, depending on the projection layer to which they apply. The convolution
kernels are of size 3×3, with a padding of 1, having 32 channels each. We note
that q⟨t⟩ represents the pre-attentive output of the model at each timestep. The
pre-attentive output has separate Wq kernel parameters that are convolved with the
activated input map and previous hidden state. The input map and previous hidden
state are convolved with the attention kernel parameters Wa and Ua, respectively.
The corresponding bias unit is denoted by ba.

The ALSTM is a simple extension of the convolutional LSTM by which the
input image s⟨t⟩ is repeatedly propagated to the recurrent model and multiplied
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(a) Fusion (DAM + ARGMU)
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(b) Late Integration (DAM + LARGMU)

Figure 4.1: Our two GASP variants extended with fixation history modules for
predicting scanpaths, where (a) is the modality fusion variant ARGMU, and (b)
is the non-fusion late integration model LARGMU. The directed attention module
(DAM) is applied to each variant with the fixation density maps for the entire
sequence as ground-truth during training. T ′ represents the context size for each
model, whereas t′ indicates the current timestep (frame index) in the video. m̂⟨t′⟩

represents the priority map predicted by the model at timestep t′.
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with softmax(q⟨t−1⟩). In Section 3.3.3 we modify the ALSTM by restoring its
sequential input property and attending to each element in the input sequence:

s⟨t⟩ = softmax(q⟨t−1⟩)⊙ s′
⟨t⟩
, (4.4)

where s′⟨t⟩ represents the input map of the current timestep before applying attention.
To integrate the modalities, we use the convolutional gating mechanism introduced
by Arevalo et al. (GMU) [17]:

j(k)⟨t⟩ = tanh (W
(k)
j ∗ s(k)⟨t⟩ + b

(k)
j ),

d(k)⟨t⟩ = σ(W
(k)
d ∗ [s

(1)⟨t⟩, ..., s(K)⟨t⟩] + b
(k)
d ),

j⟨t⟩ =
K∑
k=1

d(k)⟨t⟩ ⊙ j(k)⟨t⟩.

(4.5)

Here, j(k)⟨t⟩ and d(k)⟨t⟩ represent the gated projections for modality k of all modal-
ities K at timestep t, along with their respective kernel parameters W

(k)
j and

W
(k)
d . The corresponding bias units are denoted by b(k)j and b

(k)
d . The output j⟨t⟩

represents the final feature map of the gating module resulting from the Hadamard
product of all modality-specific projections j(k)⟨t⟩ and d(k)⟨t⟩. The modality inputs
{s(1)⟨t⟩, . . . , s(K)⟨t⟩} at timestep t are concatenated across the channels as signified
by the [·,·] operator, and convolved with W

(k)
d . We follow the integration paradigms

introduced in Section 3.3.3 and adapt the sequential ALSTM to operate in conjunc-
tion with the GMU. One such integration paradigm entails performing sequential
gating followed by modality gating. This model is referred to as the Attentive
Recurrent Gated Multimodal Unit (ARGMU), illustrated in Figure 4.1a. Alterna-
tively, performing the gated integration after concatenating the input channels and
propagating them to the sequential ALSTM is illustrated in Figure 4.1b and denoted
by the Late ARGMU (LARGMU) variant. We describe ARGMU as a fusion model,
since feature integration occurs on modality-specific representations. LARGMU
is a late integration model, since the modality representations are concatenated
before integrating them into a single representation.

4.3 Evaluation Metrics

Common scanpath prediction metrics measure the proximity of human fixation
trajectories to those generated by the model [68, 71]. One shortfall of such ap-
proaches is the requirement to temporally align the scanpaths under comparison.
This, however, adds a layer of complexity to streamed dynamic stimuli which could
potentially cause scanpaths to diverge over time. We instead follow the approach
detailed by Kümmerer and Bethge [146]. Each sequence of input features along
with fixation histories is used to generate a priority map for a single timestep.
These maps are fed recursively to the model by appending them to the fixation
history. One advantage to approaching scanpath evaluation as such is that it
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enables the usage of common metrics used to validate dynamic saliency models.
Saliency metrics are generally more robust to incorrect predictions and do not
require as many parametric assumptions as is the case with scanpath metrics [146],
for instance, ScanMatch [68] and MultiMatch [71]. Moreover, our models do not
generate sequences. Instead, they predict the last fixation map—blurred fixation
point—which is conditioned on previous ground-truth maps in the fixation history.
Comparing the entire sequence using scanpath metrics would not accurately rep-
resent the performance of our models, since they predict single fixation maps at
each timestep instead of the entire scanpaths. We, therefore, use the following
nonprobabilistic saliency metrics [147] to evaluate our model predictions:
Normalized Scanpath Saliency (NSS) is a location-based metric [43] to measure
the correspondence between ground-truth and predicted attention maps according
to fixated locations. False positives have an effect on the NSS score, making it
suitable for quantifying the quality of noisy predictions. A high positive NSS score
indicates that the model accurately predicts the locations of fixations as expressed
by:

NSS =
∑
x,y

m̂x,y − µ(m̂x,y)

ρ(m̂x,y)
⊙m<x,y>, (4.6)

where m<x,y> refers to the ground-truth fixation point rather than the continuous
priority map expressed as mx,y. The mean of the priority map is denoted by µ,
while the standard deviation is denoted by ρ. Our model predicts the probability
of fixations, which is not restricted to a single point in space. Having multiple
predicted fixations is the desired outcome in our scanpath modeling approach since
a single prediction is an unrealistic assumption and would imply that our model is
not robust, i.e., humans do not always look toward the same point when shown a
sequence of images multiple times, therefore, having a definite fixation prediction
indicates overfitting. Multiple fixations result in a lower NSS score for the priority
map of an individual as compared to the group attention map. We, therefore, rely
on the NSS rather as an indicator of the relative difference between the individual
scanpath prediction models.
Area Under the ROC-Curve (AUC) is another location-based metric, which
classifies whether a pixel in space is fixated or not. We rely on an AUC variant
developed by Judd et al. [127], denoted hereafter by AUCJ. The advantage of
using AUC as a measure of quality for our task is that the true and false positive
rates are functions of the number of fixated and unfixated pixels, respectively. Since
we have a single fixated ground-truth pixel for an individual, the weighing of true
positives avoids skewing our evaluation toward false examples, providing a clear
interpretation of our model’s performance.

4.4 Experimental Setup
In this section, we describe the components of our experimental pipeline for con-
ducting model training and evaluation. We also present the datasets used for
training our models and the hyperparameter values chosen for those models.
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4.4.1 Datasets

For our study, we used two existing datasets comprising eye-gaze data from observers
viewing conversational videos. These datasets, sourced from YouTube and Youku,
feature social videos with gaze data from a nearly identical observer count, ensuring
consistency in our comparisons between the datasets. We note that each observer
watched all the videos within a given dataset, enabling our model to distinguish
prototypical gaze patterns for predicting scanpaths.

A dataset by Xu et al. [272] consists of 65 conversational videos. The dataset
contains 39 participants (female = 13, male = 26) who took part in an eye-tracking
experiment. Participants were between 20 and 49 years of age. All participants had
normal, corrected-to-normal, or uncorrected vision. Two participants were experts
in the field of saliency prediction, while the remaining had no experience in the
field nor were they made aware of the purpose of the experiment. Hereafter, we
refer to this dataset as FindWho [272].

The MVVA [158, 205] dataset, on the other hand, is more extensive with 300
conversational videos. The dataset contains 34 participants (female = 13, male
= 21) who took part in an eye-tracking experiment. Participants were between
20 and 54 years of age, with a mean age of 24. All participants had normal or
corrected-to-normal vision. 34 subjects (out of 39) were included in the dataset
since they passed the eye tracking calibration procedure. In all analyses involving
the MVVA dataset, one observer was excluded due to noisy data, reducing the
total number of observers to 33.

4.4.2 Model Training and Evaluation

The individual and unified scanpath prediction models were trained on an NVIDIA
GeForce GTX 3080 Ti GPU with 12 GB VRAM and 32 GB RAM. The individual
model training process requires separate models for each observer. This is a highly
demanding procedure, necessitating the distribution of models across multiple
machines and GPUs. We orchestrated these processes through a custom workflow
manager, developed using the Wrapyfi (detailed in Chapter 5) framework, allowing
us to exchange completion logs across training instances over message-oriented
middleware. All social cue detectors and models are described in Section 3.2 and
are implemented in PyTorch [199].

The two model architecture variants, DAM + ARGMU (context size T ′ = 8)
and DAM + LARGMU (context size T ′ = 10) were initialized with their GASP
parameters, trained on the social subset of the AVE [245] dataset. We fine-tuned
the individual and unified models on the MVVA and FindWho datasets separately,
for 10 and 50 epochs, respectively. We used early stopping with δmin = .0001 and a
patience of 3. This resulted in all models and architectures converging on average
at epoch 6 for MVVA and epoch 11 for FindWho.

The individual models had a predefined observer set for all samples, whereas
the unified model randomly selected an observer for each training sample. During
training, frame samples overlapped by 90%. For the late integration architecture,
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this resulted in a training time of 90 minutes per epoch on the MVVA dataset and
20 minutes on the FindWho dataset. For the early fusion architecture, the training
time per epoch was 76 minutes on the MVVA dataset and 17 minutes on the
FindWho dataset. The time required to train a single individual and unified model
was identical given the same architecture and dataset. However, since individual
models were trained separately for each observer, this resulted in 33 × epochs for
the MVVA dataset and 39 × epochs for the FindWho dataset, in comparison to
the unified models.

The batch size was set to 48 with gradient accumulation over 4 mini-batches,
where each batch element contained the entire sequence of modality representations
to match the context size of any given trained model. Each model was trained using
the Adam optimizer, setting β1 = .9, β2 = .999, and the learning rate α = .001.

Models were evaluated on subsampled video frames at 10 FPS, with no overlap
between consecutive frames. The evaluation was performed on the basis of one-step-
ahead prediction unless specified otherwise. All observer predictions were evaluated
independently for both individual and unified models. All unified and individual
models were trained and evaluated over 5 trials.

4.4.3 Saliency Losses

To train our model, we employ the loss functions introduced by Cornia et al. [63].
The loss functions are weighted, summed, and applied to the final layer, implying
that the learnable parameters of our model, specifically the modality encoder and
fusion model parameters are optimized. We denote the overall loss function by
LPFDM and define it as:

LPFDM = LNLL + LKLD, (4.7)

where LNLL computes the negative log-likelihood loss as expressed by Sun et al. [240]
between the ground-truth and predicted priority maps, followed by minimization of
the Kullback-Leibler divergence.

LNLL = −λNLL ·
∑
x,y

m<x,y> ⊙ log(m̂<x,y>)

+ (1−m<x,y>)⊙ (1− log(m̂<x,y>)),

L+
KLD =

∑
x,y

mx,y ⊙ (log(mx,y)− log(m̂x,y)),

L−
KLD =

∑
x,y

(1−mx,y)⊙ ((1− log(mx,y))

− (1− log(m̂x,y))),

LKLD = −λKLD · (L+
KLD + L−

KLD).

(4.8)

Algorithmically, the cross-entropy loss utilized in GASP and LNLL are identical,
however, LNLL operates on the fixation point, replacing the priority map mx,y with
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m<x,y>. Without the negative log-likelihood loss, the models require more epochs
(3 to 7 additional epochs) to converge to similar states relying purely on LKLD.

The inverted stream of our DAM layer has a separate output head for each
timestep. We compute the cross-entropy between the DAM prediction and ground-
truth fixation density maps for all pixels summed over all timesteps. The LDAM

is computed to optimize the inverted stream parameters. These parameters are
transferred to the tied direct stream. The direct stream parameters are frozen
throughout the training phase. In this manner, we are able to emphasize weaker
modalities, intensifying the propagation of noisy signals to the sequential integration
model, effectively acting as a regularizer.

We employed the Tree-structured Parzen Estimator (TPE) method using Hy-
peropt [28] for hyperparameter optimization, to identify the optimal loss weights.1
The considered weight range was ∈ [.01, 1] sampled from a log-normal distribu-
tion. Based on the TPE’s results after 90 trials, the loss weight for LKLD is set to
λKLD = .94, whereas the loss weight for LNLL is determined to be λNLL = .03. For
LDAM , the loss weight is established as λDAM = .61.

4.5 Results

We evaluated our late integration and early fusion architectures on the FindWho
and MVVA datasets. This assessment was conducted by comparing each individual
model’s prediction against the last fixation in the individual observer’s scanpath
(1 vs 1 ) and against the group—all observers—fixation density map, excluding
the individual’s data (1 vs infinity). Moreover, we conducted statistical analyses
to compare the unified and individual models. We then performed a social cue
ablation study on the two unified model variants: late integration and early fusion.
Finally, we tested the unified models to quantify the degradation of predictions
over longer horizons beyond the next fixation point as detailed in Section 4.2.2,
under multi-step-ahead evaluation. The mean values of the metric scores represent
the performance of our models independently across all evaluation videos for every
observer. Trial mean values are reported in the results unless stated otherwise.

4.5.1 Individual Models

To examine the impact of the model architecture, dataset size, and their interaction
effects on the models’ performances, a 2 (integration vs fusion)×2 (FindWho vs
MVVA) mixed analysis of variance (ANOVA) was conducted. Specifically, the
model architecture was a within-subject factor, and the dataset size was a between-
subject factor. The performances of the models were measured in terms of the
AUCJ score (mean and std) and NSS score (mean and std). All metrics were

1All search trials were applied to the late integration variant (DAM + LARGMU, T ′ = 10)
with encoders pretrained on the AVE [245] dataset—excluding the fixation history module—and
fine-tuned for 6 epochs on the MVVA [158] dataset. The TPE minimized the validation loss on
the MVVA dataset.
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Figure 4.2: The individual model 1 vs 1 and 1 vs infinity evaluations on the
FindWho [272] and MVVA [158] datasets, across the two GASP variants extended
with fixation history modules. (a,d) visualize the mean values of the scores across
all samples.

measured between observers, except for ‘variance across videos’ experiments, where
the metrics measure the variance in video results per observer—the score variances
across the videos averaged for all observers.

1 vs 1 Evaluations

Significant main effects and interaction effects were observed in terms of the AUCJ
and NSS metric scores. Assessing model performance on the datasets, we observe
that the models trained on the smaller FindWho dataset outperformed the larger
MVVA dataset, with significant differences (AUCJ: F (1, 68) = 7.04, p < .05,
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Figure 4.3: The individual model 1 vs 1 and 1 vs infinity evaluations on the
FindWho [272] and MVVA [158] datasets, across the two GASP variants extended
with fixation history modules. (a,d) visualize the standard deviation of the scores
across all testing videos per individual observer.

η2p = .09 as shown in Figure 4.2a; NSS: (F (1, 68) = 11.79, p < .01, η2p = .14)
as shown in Figure 4.2c). The interaction effect between model architecture and
dataset size was significant in terms of the AUCJ score (F (1, 68) = 11.08, p < .01,
η2p = .14), where the integration architecture significantly outperformed the fusion
architecture on evaluating the MVVA dataset (p < .01). However, no significant
differences were found on evaluating the models trained on the FindWho dataset
(p = .19). The NSS metric, however, did not show a significant interaction between
architecture and dataset size (F (1, 68) = .19, p = .67, η2p = .003).

Variance across videos indicates instability in the model predictions. In terms
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of the AUCJ score, the integration architecture resulted in a significantly larger
variance compared to the fusion architecture (F (1, 68) = 20.94, p < .01, η2p =
.23). The models trained on the MVVA dataset performed significantly better—
lower variance—within the integration architecture (p < .05) and no significant
performance difference within the fusion architecture (p = .62) in terms of the
AUCJ score as shown in Figure 4.3a. The interaction effect between architecture
and dataset size was also significant in terms of the AUCJ score (F (1, 68) = 6.44,
p < .05, η2p = .08). Similarly, for the NSS score, the fusion architecture outperformed
the integration architecture (F (1, 68) = 17.96, p < .001, η2p = .20), and a significant
interaction between architecture and dataset size was observed (F (1, 68) = 10.78,
p < .01, η2p = .13). The models trained on the MVVA dataset again performed
significantly better within the integration architecture (p < .05) but no significant
differences were observed within the fusion architecture in terms of the NSS score
as shown in Figure 4.3c.

1 vs infinity Evaluations

In terms of the AUCJ and NSS metric scores, significant main effects were observed
for both architecture and dataset size, with no significant interaction effects in some
cases. In terms of the AUCJ mean values, the integration architecture demonstrated
better performance compared to the fusion architecture (F (1, 68) = 36.91, p < .001,
η2p = .35). The models trained on the FindWho dataset outperformed those trained
on the MVVA dataset in terms of the AUCJ score (F (1, 68) = 40.98, p < .001,
η2p = .37) as shown in Figure 4.2b. However, the interaction between architecture
and dataset size was not significant in terms of the AUCJ score (F (1, 68) = 1.32,
p = .26, η2p = .02). Similar trends were also observed in terms of the NSS score,
where the integration architecture also resulted in better performance compared
to the fusion architecture (F (1, 68) = 24.35, p < .001, η2p = .26). The models
trained on the FindWho dataset significantly outperformed those trained on the
MVVA dataset in terms of the NSS score (F (1, 68) = 82.88, p < .001, η2p = .54) as
shown in Figure 4.2d, due to the smaller size of the former dataset’s test set. A
significant interaction effect between architecture and dataset size was observed in
terms of the NSS score (F (1, 68) = 6.79, p < .05, η2p = .088). More specifically, the
integration architecture models trained on the FindWho dataset outperformed the
fusion architecture (p < .001), with no significant difference observed when trained
on the MVVA dataset (p = .12).

Unlike 1 vs 1 variance across videos, a higher variance in 1 vs infinity is inter-
preted as a positive outcome, since it indicates that the model predicts scanpaths
that are personalized to the individual observer. Significant effects were observed
for the architecture and dataset size in terms of the AUCJ and NSS metric scores.
In terms of the AUCJ score, the integration architecture outperformed the fusion
architecture (F (1, 68) = 27.10, p < .001, η2p = .28). The FindWho dataset per-
formed better than the MVVA dataset in terms of the AUCJ score (F (1, 68) = 9.94,
p < .01, η2p = .12) as shown in Figure 4.3b. A significant interaction effect was also
observed, particularly within the integration architecture, where the models trained
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on the FindWho dataset significantly outperformed those trained on the MVVA
dataset in terms of the AUCJ score (p < .001). Similar significant main effects
were observed for both architecture (F (1, 68) = 15.36, p < .001, η2p = .18) and
dataset size (F (1, 68) = 16.59, p < .001, η2p = .19) in terms of the NSS score. The
integration architecture models trained on the FindWho dataset also performed
significantly worse than the models trained on the MVVA dataset in terms of the
NSS score (F (1, 68) = 12.36, p < .01, η2p = .15) as shown in Figure 4.3d. However,
no significant differences were observed within the fusion architecture.

Comparison Between 1 vs 1 and 1 vs infinity Evaluations

A group of paired-samples t-tests showed that for both architectures, performance
in the 1 vs 1 evaluation was significantly better than in 1 vs infinity, in terms of
AUCJ and NSS metric scores, ps < .001. Details of the analyses on the FindWho
and MVVA datasets can be found in Table 4.1 and Table 4.2, respectively. The
results are shown in Figure 4.4 and Figure 4.5.

Table 4.1: Individual models trained and evaluated on the FindWho [272] dataset
with 1 vs 1 and 1 vs infinity comparisons in terms of AUCJ and NSS scores. The
t-test degrees of freedom are shown within parentheses.

Integration Fusion
AUCJ↑ NSS↑ AUCJ↑ NSS↑

1 vs 1 0.962 1.488 0.963 1.467
1 vs infinity 0.895 0.719 0.885 0.682
t-value (df = 38) 23.23 27.89 27.45 36.90

Table 4.2: Individual models trained and evaluated on the MVVA [158] dataset
with 1 vs 1 and 1 vs infinity comparisons in terms of AUCJ and NSS scores. The
t-test degrees of freedom are shown within parentheses.

Integration Fusion
AUCJ↑ NSS↑ AUCJ↑ NSS↑

1 vs 1 0.956 1.383 0.952 1.353
1 vs infinity 0.876 0.567 0.869 0.556
t-value (df = 32) 25.54 32.57 27.41 36.42

4.5.2 Unified vs Individual Models

To examine the impact of the model, model architecture, dataset size, and their
interaction effects on the models’ performances, a 2 (unified model vs individual
model)×2 (integration vs fusion)×2 (FindWho vs MVVA) mixed analysis of variance
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Figure 4.4: The individual model 1 vs 1 and 1 vs infinity evaluations on the
FindWho [272] dataset, across the two GASP variants extended with fixation
history modules. The AUCJ scores are measured for the (a) integration and (b)
fusion architectures, as well as NSS scores for the (c) integration and (d) fusion
architectures.

(ANOVA) was conducted. Specifically, the model and model architecture were
within-subject factors, and the dataset size was a between-subject factor.

In terms of both the AUCJ and NSS metric scores, significant main effects were
observed. The unified model demonstrated better performance over the individual
models (AUCJ: unified .964± .001 vs individual .958± .002, p < .001; NSS: unified
1.480 ± .022 vs individual 1.424 ± .016, p < .01). The integration architecture
significantly outperformed the fusion architecture (AUCJ: integration .964± .001
vs fusion .959 ± .001, p < .001 as shown in Figure 4.6a and Figure 4.6b; NSS:
integration 1.548± .020 vs fusion 1.356± .016, p < .001 as shown in Figure 4.6c
and Figure 4.6d). Additionally, the models trained on the smaller FindWho dataset
achieved better results compared to the those trained on the larger MVVA dataset
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Figure 4.5: The individual model 1 vs 1 and 1 vs infinity evaluations on the
MVVA [158] dataset, across the two GASP variants extended with fixation his-
tory modules. The AUCJ scores are measured for the (a) integration and (b)
fusion architectures, as well as NSS scores for the (c) integration and (d) fusion
architectures.

(AUCJ: FindWho .968 ± .002 vs MVVA .955 ± .002, p < .001; NSS: FindWho
1.561± .023 vs MVVA 1.344± .024, p < .001).

For two-factor interactions, we observed a significant interaction in the unified
model which performed better with the integration architecture compared to the
fusion architecture (AUCJ: unified with integration .968± .001 vs fusion .961± .001,
p < .001; NSS: unified with integration 1.660± .023 vs fusion 1.302± .020, p < .001).
The unified model significantly outperformed individual models when trained on the
FindWho dataset (AUCJ: unified .973±.002 vs individual .963±.002, p < .001; NSS:
unified 1.645± .030 vs individual 1.478± .023, p < .001). However, this difference
diminished with models trained on the MVVA dataset. The integration architecture
consistently yielded better results across both datasets, with particularly better
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Figure 4.6: The unified and individual model comparisons across the two GASP
variants extended with fixation history modules. The AUCJ scores are measured
when evaluating the models on the (a) MVVA [158] and (b) FindWho [272] datasets.
The NSS scores are also measured for the (c) MVVA and (d) FindWho datasets.

performance on the FindWho dataset (AUCJ: integration .969 ± .002 vs fusion
.966± .002, p < .01; NSS: integration 1.763± .028 vs fusion 1.360± .023, p < .001).

For three-factor interactions, we observed a significant interaction across the
dataset, model architecture, and model (p < .05). The unified model performed
better when trained on the FindWho dataset regardless of the architecture used in
terms of the AUCJ score (integration .98± .002 vs fusion .97± .002). The unified
model performed significantly better with the integration architecture model trained
on the FindWho dataset in terms of the NSS score (2.035 ± .038 vs individual
1.488 ± .025, p < .001), but individual models performed better with the fusion
architecture model when trained on the MVVA dataset.

71



Chapter 4. Unified and Individual Scanpath Prediction

4.5.3 Social Cue Ablation

Table 4.3: The unified models of the two GASP variants extended with fixation his-
tory modules having social cue modalities ablated. The fusion and integration model
architectures are trained and evaluated on the MVVA [158] and FindWho [272]
datasets. The first combination group from the top signifies models with a single cue
modality, the second combination group signifies models with two cue modalities,
and the final combination group signifies models with all cue modalities included.
Bold denotes the best scores for each combination group and dataset.

Model Cue MVVA [158] FindWho [272]
Architecture IMG SP FER GE AUCJ↑ NSS↑ AUCJ↑ NSS↑

Fusion ✓ - - ✓ 0.842 0.424 0.966 1.022
Integration ✓ - - ✓ 0.925 0.820 0.967 1.294

Fusion ✓ - ✓ - 0.938 0.846 0.968 1.072
Integration ✓ - ✓ - 0.954 1.140 0.965 1.691

Fusion ✓ ✓ - - 0.949 0.999 0.962 0.900
Integration ✓ ✓ - - 0.928 1.171 0.968 1.519

Fusion ✓ - ✓ ✓ 0.945 0.860 0.949 0.805
Integration ✓ - ✓ ✓ 0.951 1.051 0.963 1.591

Fusion ✓ ✓ - ✓ 0.947 1.040 0.968 1.183
Integration ✓ ✓ - ✓ 0.932 0.580 0.951 1.489

Fusion ✓ ✓ ✓ - 0.947 0.926 0.801 0.121
Integration ✓ ✓ ✓ - 0.943 1.104 0.950 1.050

Fusion ✓ ✓ ✓ ✓ 0.952‡ 1.352‡ 0.969‡ 1.252‡

Integration ✓ ✓ ✓ ✓ 0.960‡ 1.283‡ 0.976‡ 2.035‡

IMG: Input Image; SP: Saliency Prediction; FER: Facial Expression Recognition;
GE: Gaze Estimation.
‡ denotes the mean of 5 trials.

To measure the contribution of each social cue, we ablated each modality
of the unified integration and fusion models independently and in combination
with other modalities. We then trained the models on the MVVA and FindWho
datasets separately. For this set of experiments, we report the best of 5 trial scores
in Table 4.3, since the variance across trials was large and the mean value was not
representative of any of the trained model scores.

When we compared the model’s performance with single cue modalities, we
observed that the model had the best performance with the Facial Expression
Recognition (FER) modality only and the worst with the Gaze Estimation (GE)
modality only. When we trained the model with two social cue modalities, we
found that on ablating the GE modality, the model performance was negatively
impacted with the smaller FindWho dataset but not the larger MVVA dataset. The
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degradation in the MVVA dataset performance was due to the discrepancy between
the number of faces visible in a video and those detected by the GE modality’s face
detector [288]. The FindWho dataset contains 30/65 (46%) videos and the MVVA
dataset 142/300 (47%) videos with two or fewer faces. However, when measuring
the majority (80%) of face counts per video frames detected by the GE model,
the FindWho dataset had 23/65 (35%) videos, whereas the MVVA dataset had
211/300 (70%) videos with two or fewer faces. Moreover, on ablating the saliency
prediction or FER modality, there was no impact on the model’s performance. We
also observed that the inclusion of all social cues consistently yielded the highest
performance for both datasets.

4.5.4 Multi-Step-Ahead Fixation Prediction

We measured the performance degradation of the two unified model architecture
variants (DAM + LARGMU: integration vs DAM + ARGMU: fusion) in terms
of the NSS and AUCJ scores, over the step-ahead increments t′ + n , where
n ∈ {1, . . . , 4}. The evaluation was carried out on the MVVA and FindWho
datasets independently. For each dataset and model architecture, we selected the
top-performing model in one out of five training trials. On the MVVA dataset, the
fusion model architecture showed a degradation of 22.42% in the NSS score and
13.17% in the AUCJ score by t′ + 4. The integration model architecture exhibited
smaller declines of 13.02% in the NSS score and 8.24% in the AUCJ score. More
significant drops in performance were observed on the FindWho dataset. The
fusion model architecture had a 47.53% decrease in the NSS score and a 28.55%
decrease in the AUCJ score. The integration model architecture exhibited the
highest declines with 52.42% in terms of the NSS score and 21.85% in the AUCJ
score by t′ + 4. The results indicate a trend of performance reduction over extended
prediction horizons across all model variants due to the accumulation of errors.
Models trained and evaluated on the FindWho dataset, particularly, showed more
significant degradation. Figure 4.7 illustrates that models trained on the small
FindWho dataset are less robust in predicting multiple steps ahead than when
trained on the larger MVVA dataset, as indicated by the steeper negative trends in
terms of both the NSS and AUCJ score. In Table A.4, we also observe that the
late integration architecture tends to outperform early fusion over longer horizons.

4.6 Discussion

Studies on goal-directed human attention indicated insignificant differences in
scanpaths among individuals [281, 282]. Contrary to such findings, free-viewing
entails complex top-down influences, resulting in significant variance across viewing
patterns among different observers [43, 53, 67]. We introduced a framework for
predicting and evaluating individual scanpaths in social videos. We focused mainly
on social videos due to their complexity, offering varied audiovisual cues and
interactions for our scanpath prediction framework to analyze. Our main finding
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was that the introduction of fixation history into the model was a sufficient prior
for allowing a single unified model to predict scanpaths. However, this does not
imply that the unified models can identify individual observers through their
scanpath trajectories. In Section 4.5.1, we analyzed the individual models with two
architectures (late integration vs early fusion) on the FindWho and MVVA datasets.
We observed that when training and evaluating on the FindWho dataset, the fusion
architecture performed on par with the integration architecture in terms of the NSS
and AUCJ scores. Additionally, the fusion architecture exhibited lower variance
across videos per participant when measuring scanpath correspondence between
each individual model’s prediction and its own (1 vs 1 ) as well as other observers’
(1 vs infinity) ground-truth data. This suggests that the fusion architecture is
more stable than the integration variant. Another important finding was that all
model architectures performed significantly better on 1 vs 1 than on 1 vs infinity.
This indicates that each model learned the scanpath of one individual, and did not
simply represent the group’s attention. On the contrary, saliency prediction models
would score significantly better on 1 vs infinity (in this case, infinity vs infinity)
than on 1 vs 1 (in this case, infinity vs 1 ) evaluations [43].

Moreover, the integration architecture’s stability was contingent on the dataset.
When a model architecture performs well on the FindWho dataset—which has
fewer videos than the MVVA dataset but a similar distribution—it suggests that
the model effectively infers patterns of attention that are shared or common across
the majority of observers. This is related to understanding universal attention,
where most observers converge in their attention patterns due to the limited
video variability. On the other hand, with the MVVA dataset having a larger
set of videos, there’s a higher likelihood for individual variations in attention
patterns to emerge. Thus, a model’s success on MVVA can indicate its ability
to discern and adapt to these individualized attention behaviors. This aligns
with the notion of personalized attention, where the attention patterns might be
more specific to individual inclinations, experiences, or abilities. Training and
evaluating on the MVVA dataset resulted in significantly lower variance across
videos compared to FindWho, in terms of NSS and AUCJ scores on both 1 vs 1 and
1 vs infinity evaluations. As the number of observation videos increases, scanpath
patterns begin to align among individual viewers. This suggests that although the
models are exposed to more samples of personalized attentional behavior, on longer
exposure to stimuli, universal attention exerts greater influence on viewing patterns.
Consequently, integration models trained on the MVVA dataset underperform
counterparts trained on the FindWho dataset, however, the variance across videos
is also significantly lower. The lower variance in the case of the MVVA dataset
is both due to “regression toward the mean” and bottom-up saliency affecting
participants in relatively equal proportions, given its larger number of videos.

Training a separate model for each individual is costly in terms of computational
resources, making it an impractical approach for training models on larger datasets
with many observers. To overcome such a limitation, we devised a unified training
approach, whereby the model is exposed to scanpaths of all individuals during
training. Each scanpath is fed into the unified model in the same manner as it was
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for the individual models, with the main difference being the sampling strategy.
The individual models are only fed samples from a single observer during training.
However, the unified model samples a random observer’s scanpath, and is trained
with the corresponding stimuli and fixation histories.

In Section 4.5.2, we compared unified and individual models. The unified model
performed significantly better than the individual models. This improvement can
be due to the fact that the unified model is trained on data from all observers,
subjecting it to greater variability in the samples. As a result, the unified model
is exposed to a larger spectrum of traits relating to universal attention. More
importantly, the unified model, regardless of the architecture, can predict different
scanpaths given the same stimuli, conditioned only on the fixation history. This is
evident from the scores being comparable to the individual models, which represent
the baseline for acceptable performance. According to these results, we infer that
the fixation history is a sufficient prior since:

1. Scores of the unified model are on par or better than those of the individual
models.

2. The fixation history is the only prior available to the model for it to differen-
tiate scanpath trajectories. Without it, the model would generate arbitrary
scanpaths, consequently performing significantly worse than the individual
models.

In Section 4.5.3, our results showed that including all social cue modalities
improved the performance of our models. Moreover, ablating the gaze estimation
modality degraded the performance of both model architectures when trained and
evaluated on the smaller FindWho dataset, yet had negligible effect on the larger
MVVA dataset. The gaze estimations were represented as gaze cones, superimposed
on the face positions of actors visible in a video frame. These cones were oriented
according to the estimated gaze direction of each actor, after which they were
normalized and aggregated. Having more than two gaze cones—more than two
faces detected—in any frame distorts the gaze estimation representation. We
therefore assume that occurrences of two or fewer face detections are optimal for
gaze estimation. The MVVA dataset was found to result in more detections (70%)
of videos with two or fewer faces than the FindWho dataset (35%), even though
both datasets contained ∼ 46% videos with two or fewer faces. This implies that
gaze estimation representations of the MVVA samples were inaccurate, resulting in
our models relying less on that social cue.

Predicting one step ahead for each scanpath is useful only when the model
has access to the ground-truth fixation history of an individual. In practice,
however, this requirement renders a model unusable for most applications. Küm-
merer and Bethge [146] present an evaluation framework that addresses this lim-
itation. By feeding the output of a model recursively into its fixation history
module, we can evaluate the model for multiple steps ahead without relying on the
ground-truth fixations (as input) beyond the initial steps. This form of evaluation
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Figure 4.8: Our unified late integration model (DAM + LARGMU, context size
T ′ = 10) predicting scanpaths of three observers (G1 - G3). At each timestep
of multi-step-ahead (five steps) fixation, predictions (P1 - P3) indicate that the
slightest divergence from the ground-truth has an impact on future predictions.
The fixation history t′ − T ′, . . . , t′ − 1 (left) is fed into the model during inference
and training.

informs us on the performance of a model during inference, and how likely the
output predictions are to diverge from the ground-truth over multiple steps.

In Section 4.5.4, we followed a similar approach in evaluating our unified
models. Results indicated that although the unified integration model was not the
most performant under one-step-ahead evaluation, it exhibited higher robustness
compared to the fusion architecture as the number of steps ahead increased. This
result implies that the late integration of cue representations, namely, applying
recurrence before gating, is more beneficial for learning sequences, and vice versa.
Moreover, training on the MVVA dataset stabilized the predictions of a model
over longer horizons, as shown by the least reduction in scores over multiple steps
ahead. We hypothesize that MVVA-trained models are exposed to more samples
and therefore are less affected by the accumulation of errors as the number of steps
ahead increases due to higher variability in the samples.

In Figure 4.8, we show the scanpaths predicted for three individual observers
over multiple steps ahead. At any timestep, inaccurate predictions resulted in
increasingly different fixations from the observer’s ground-truth fixations at the cor-
responding steps ahead. The fixation of the first observer from the top in Figure 4.8
was predicted with an offset from the ground-truth at t′. Since the fixation at t′
was appended to the fixation history, it led to a major divergence in subsequent
predictions. Nonetheless, the predicted scanpaths of observers were closer to their
own than to those of others.

Our findings, however, do not imply that our unified models could identify
individuals from their scanpath trajectories. Individuals’ scanpaths can be separated
into clusters [67], indicating that although they are distinct from the group, they
do not differ significantly with respect to all other individuals independently. Since
the fixation history—covering no longer than a few seconds of low-dimensional
data—allows the unified model to perform on par with the individual models,
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we deduce that the viewing patterns of individuals are not significantly different.
Differences in past scanpaths do influence subsequent fixations, but the unified
model still ensures privacy because it does not tie predictions to specific observers,
unlike the individual models where the observer is known a priori.

Overall, we introduced a mechanism for integrating fixation history into dy-
namic video models, designed to personalize scanpaths to a specific observer. A
comparative analysis with existing models could be considered for measuring per-
formance, yet many factors limit our ability to do so. For instance, an essential
component for enabling the personalization of scanpaths is the fixation history.
However, most existing dynamic models do not include a fixation history module.
Moreover, dynamic models that encode fixation history [185, 276] are commonly
designed for scanpath prediction in 360◦ videos, and adopt approaches such as
image patching—splitting the visual frames into smaller segments to simulate
foveation—that make them unsuitable for the dataset videos used in this work,
due to their limited resolution. Additionally, adapting these models would require
major modifications to their architectures and tasks, ranging from introducing a
fixation history module, performing hyperparameter optimization, to retraining or
fine-tuning the models on the FindWho and MVVA datasets. Consequently, any
adapted models would deviate from their implementations, resulting in the creation
of new models. Given these constraints, we evaluated our approach using our
own models with different integration architectures and ablation studies, providing
baselines for future comparisons.

In future work, we will extend our dynamic scanpath prediction model to handle
the non-deterministic nature of eye movements. We intend to integrate techniques
from static scanpath prediction models, particularly Generative Adversarial Imita-
tion Learning [281] and Reinforcement Learning [53], adapting these methods for
dynamic video inputs. We will also study the effect of introducing further auxiliary
social cue representations into the model, such as full-body gestures, biological
motion, intonation, and prosodic features.
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Chapter 5

A Framework for Message-Oriented
and Robotics Middleware

Our goal is to provide the means for communicating between neural network models
and robots in order to facilitate the control of gaze on robotic platforms. How-
ever, robotic platforms support different middleware [170, 206, 163], each with
its own API, communication properties, communication patterns, and limitations.
Moreover, the integration of deep-learning models and external components into
robotic pipelines requires modifications to every module involved. Since our goal
is to provide solutions for controlling robot gaze, we do not want to restrict our
approaches to a certain platform, robot, or model. Therefore, in this chapter, we
introduce Wrapyfi, a Python framework designed specifically to be modular and
non-opinionated, requiring minimal modifications to existing code bases. Wrapyfi
supports multiple message-oriented and robotic middleware, as well as other com-
munication patterns and schemes. Wrapyfi also provides plugins for deep learning,
computer vision, and mathematical frameworks, enabling direct exchange of their
data types without having to encode and decode them on transmission.

5.1 Introduction

Real-time robotic applications require exchanging multimodal data arriving from
a variety of sensors. A framework that distributes sensory information across
processes is necessary, especially for robot-robot and human-robot interaction [180].
Multiprocess and multithread instances are used to parallelize independent methods.
However, such parallelization approaches are limited to single machines and may
not be sufficient for applications with a large number of sensors or computationally
expensive processing methods. Eventually, this leads to performance bottlenecks
on consumer-grade computers. Message-oriented and robotics middleware, such as
ZeroMQ [113], YARP [170], ROS [206], and ROS 2 [163], were developed to tackle
such challenges. Middleware frameworks use communication protocols to exchange
data and distribute operations across several machines and nodes [75].

ROS [206] is a middleware commonly used in the robotics community. ROS
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Figure 5.1: Overview of our Wrapyfi framework. From top to bottom: 1) Data
types are encoded or decoded depending on the transmission mode; 2) Encoded
objects are prepared for transmission using the Request/Reply or Publish/Subscribe
communication pattern; 3) Messages are transmitted through the selected middle-
ware protocol; 4) Messages sequenced according to the communication scheme; 5)
Messages exchanged between robots, applications, and sensors.1

provides control hardware interfaces, visualization tools, and communication models
for many robotic platforms [8]. Its widespread use is a direct result of its early
adoption of open source and the vast amount of robotic tools provided by its
developers and contributors. However, ROS is scheduled for deprecation in favor of
ROS 2 [163]. Many robotic platforms and packages, nonetheless, have not been
updated to support this transition yet. Cross-platform bridges were developed to
enable communication between ROS, ROS 2, and WebSocket. However, integrating
such bridges into existing pipelines entails major modifications to the underlying
code and its structure. Middleware designed for certain robotic platforms, for
example, YARP [170] which was developed specifically for the iCub [171] robot,
provides a interface ROS [186] as well. However, the usage of such bridges dictates
modifying the existing scripts to accommodate specific message types. This poses
a hurdle for developers aiming to integrate robots and middleware, as a result,
restricting the cross-compatibility of their applications with existing systems.

1The “nine dots” ROS and ROS 2 logos are trademarks of Open Source Robotics Foundation.
TensorFlow, the TensorFlow logo, and any related marks are trademarks of Google Inc. The
OpenCV logo is a trademark of https://opencv.org. The NumPy logo is used in accordance
with the NumPy logo guidelines. The pandas logo is used in accordance with the brand and
logo guidelines. PyTorch, the PyTorch logo and any related marks are trademarks of The Linux
Foundation. The name ZeroMQ and the “ØMQ” logo are used in compliance with creative
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To improve interoperability between different robotic platforms and reduce
reliance on a particular middleware, we have developed the open source Wrapyfi2

(overview illustrated in Figure 5.1) framework, a Python wrapper supporting multi-
ple middleware bindings. Wrapyfi is a simpler alternative to GenoM3 [165]. GenoM3
adopts a model-driven approach and uses templates to define the components and
data exchanges across middleware. Since it is specifically developed for Python
scripting, Wrapyfi eliminates the need for having to learn another language or to
define templates, unlike GenoM3. REMS [241] is a middleware built in Python
with simplistic interfaces for educational purposes. Although REMS supports a
large set of robots and simulation environments, it does not address interoperability
between different middleware operating on them.

Wrapyfi’s decorator-based design integrates easily with existing workflows, pri-
oritizing minimal modifications for improved multi-robot communication. Beyond
robotic applications, its adaptability is observed in supporting message-oriented
middleware, facilitating communication even with interfaces that do not neces-
sarily include the additional packages and tools provided by robotics middleware.
deep-learning frameworks like JAX [36] and PyTorch [199], support multi-machine
parallelization mainly through remote procedure calls. The approaches adopted in
distributing models and data differ greatly, including the communication patterns
used and the orchestration of communication, having either a single or several
controllers. By offering a standard approach for multiple frameworks, and support-
ing two of the most common communication patterns, namely publish-subscribe
and request-reply—also known as the request-response or client-server pattern—
Wrapyfi offers greater control over communication dynamics in comparison to each
framework’s parallelization protocol.

Open Neural Network Exchange (ONNX) [20] is a deep-learning framework
designed to standardize model structure and configuration, allowing for cross-
compatibility with a wide range of deep-learning frameworks. However, using
ONNX with any existing framework requires adapting the model formats. In
contrast, Wrapyfi does not enforce such a constraint. Moreover, it not only allow
for native Python object exchanges but also transports data structures such as
arrays and deep-learning framework-specific tensors. This also makes Wrapyfi useful
for developers wanting to create prototype applications, where they could take
advantage of both robotics and deep-learning ecosystems.

commons license Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). The logos for
Dask, Apache MXNet, PaddlePaddle, PIL (Pillow), JAX, and YARP are included with respect to
their trademark policies; we acknowledge that these are subject to copyrights, trademarks, or
registered trademarks of their respective holders. We do not claim ownership of these copyrights or
trademarks. The use of these logos does not indicate endorsement by the trademark or copyright
holders, nor does it suggest any affiliation or endorsement by the authors of this work.

2https://github.com/fabawi/wrapyfi
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5.2 Communication Patterns and Middleware
The publish-subscribe pattern is a messaging communication pattern commonly
used in distributed systems, where the message publisher is not pre-programmed to
send its messages to specific receiving subscribers. Instead, the published messages
are categorized into classes. Subscribers receive messages published to the classes
without interacting directly with the publisher . The decoupling of publishers
and subscribers allows for more flexibility as the number of subscribers grows.
In Wrapyfi, th publish-subscribe pattern enables different nodes to communicate
asynchronously, allowing nodes running on machines with vastly different capabilities
to communicate at their own rates, thus enabling the the distributed of compute
across heterogeneous systems.

The request-reply pattern, is a communication pattern for remote procedure
calls, by which a requester sends a request message to a replier, and the replier
responds back with another message. This pattern is usually synchronous, meaning
that the requester blocks all its operations up until it receives a reply. However,
asynchronous implementations also exist where the requester can perform other
tasks while awaiting a reply. Wrapyfi currently exclusively supports the synchronous
variant of this pattern. However, synchrony is usually a requirement when the
communication between two endpoints is expected is contingent on the exchange of
information between those two end-points. Moreover, Wrapyfi provides a common
interface for selecting any of the supported middleware, including:

YARP [170] is a middleware for robotics and data exchanges. It provides support
for hardware abstraction, device control, and communication. YARP is designed
to be flexible and interoperable with other middleware, allowing developers to
integrate it into their systems easily. YARP supports a wide range of communication
protocols, including TCP, UDP, and shared memory, making it suitable for various
applications. To use YARP with Wrapyfi, the yarpserver, which is the name server
enabling port discovery, must be running.

ROS [206] is a common open-source middleware in robotics. ROS is structured to
support modularity, allowing developers to reuse and combine different components
using standardized message types. To use ROS with Wrapyfi, the roscore must be
running. The roscore starts the name server and provides the central point of com-
munication for ROS nodes, allowing them to exchange messages and data. Wrapyfi
additionally supports custom ROS message types, which allows for communication
with robots without adjusting their underlying library code.

ROS 2 [163] is a remodel of ROS, introducing enhanced security and support for
industry-level communication patterns. Many of the core concepts from ROS are
carried over to ROS 2, making it easier for developers familiar with ROS to transition
to ROS 2. Unlike ROS, a server is not required to run ROS 2. Based on the Data
Distribution Service (DDS) [197], ROS 2 provides low-latency communication,
making it a suitable middleware for applications where fast and reliable data
transfer is necessary. ROS 2 supports multiple distributions of DDS. Wrapyfi is
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not designed with support for specific DDS distributions, nor is it explicitly tied
to specific ROS 2 versions. However, we introduce custom ROS 2 message types
for allowing Wrapyfi to communicate over ROS 2. These messages are compiled
independently and would require further modification to their configurations in
order to support message exchanges for different ROS versions.

ZeroMQ [113] is a messaging library that supports many communication patterns
and protocols, making it a conveniant option for distributing applications across
different systems. Wrapyfi provides a proxy broker implementation for ZeroMQ,
allowing reliable message exchanges between mirrors. This implementation uses
a polling mechanism to transfer messages between script mirrors. Currently,
Wrapyfi exclusively supports TCP-based communication with ZeroMQ, as only
the experimental radio-dish pattern supports UDP communication. Other pattern-
specific communication protocols, such as PGM and NORM, have also not been
integrated with Wrapyfi.

5.3 Wrapyfi Features
Configuring methods and middleware. Wrapyfi enables the adjustment
of method behavior through either script or configuration files. The Wrapyfi
activate_communication method allows users to establish the communication pattern
between nodes by selecting appropriate modes for different patterns, such as 'publish'

or 'listen' for the publish-subscribe pattern, and 'request' or 'reply' for the request-
reply pattern. These configurations determine how messages are processed or
returned over the middleware. Moreover, configuration files can be utilized to
define properties for each system, which results in triggering the corresponding
configurations for a specific middleware (e.g., ROS or YARP) on the first call
to a method using that middleware. This eliminates the need to pass verbose
configurations to all the register decorated methods, which would lead to unexpected
behavior if the order of method calls changes or if there are differences in the
arguments passed to the method decorators.

Blocking and non-blocking methods. In a publish-subscribe pattern, the
should_wait argument determines whether the publisher waits for subscribers. By
default, a method is non-blocking. When should_wait is True, the publisher waits for
a subscriber to listen before messaging. Conversely, a subscriber blocks until a
message is sent if should_wait is True. In request-reply patterns, both client and server
are blocking, awaiting requests and replies.

Serializing device-specific tensors. Wrapyfi supports selecting a device or
automatically mapping it from the received tensor. This allows users the option
to allocate tensor listener decoders to specific devices, such as CPUs or GPUs,
facilitating direct GPU|TPU mapping and re-mapping on mirrored nodes. This
mechanism is supported for MXNet, PyTorch, and PaddlePaddle tensors, facilitating
the adjustment of device allocation according to user preferences. For example,
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in MXNet, specifying map_mxnet_devices={ 'cuda:0': 'cuda:1' } enables users to manually
relocate device tensors mapped originally to GPU 0 onto GPU 1 on reception.

5.4 Data Types
Wrapyfi employs a type-aware serialization method that automatically transforms
the objects exchanged between script mirrors into a format compatible with the
selected middleware and library.

5.4.1 Native Object, Array, and Tensor Messages

Wrapyfi transmits many data types defined by popular Python frameworks and
libraries. Before transmission, these data types are converted into JSON strings.
Wrapyfi supports NumPy [106] arrays and enables their sharing across mirrored
scripts. Moreover, Wrapyfi offers a plugin interface that can be used to customize
the transmission of other types of objects other than the ones originally supported
by Wrapyfi. The plugins feature allows encoding objects as strings, which can
eventually be decoded back into their structure before encoding. Wrapyfi comes with
built-in plugins for exchanging Arrow [213] vectors, pandas [168, 246] data frames,
and Pillow3 images. It also supports tensors from major deep-learning frameworks
such as TensorFlow [2], PyTorch [199], MXNet [52], JAX [36], PaddlePaddle [162],
and Dask [214]. These plugins make it possible to exchange data between different
frameworks and to integrate deep-learning models into robotic systems. When
specified, the tensors transmitted using Wrapyfi can be mapped to GPUs or CPUs
different from the ones specified on a publishing script’s end, allowing for the
distribution of computationally demanding deep-learning models.

5.4.2 Image Messages

ROS, ROS 2, and YARP provide specialized message types for transmitting images.
We use image messages to stream raw monochrome, RGB, and JPEG-encoded
images. ZeroMQ does not provide such specialized message structures. Therefore,
we make use of the multipart message structure to create an image interface,
allowing us to standardize middleware behavior and transmit the image properties
to a specified topic.

5.4.3 Audio Chunk Messages

ROS and ROS 2 do not provide messages structured for audio transmission, so we
create custom messages and services to transmit audio along with its properties.
The number of audio channels transmitted can vary in size, as long as the audio
chunk structure follows the python-sounddevice format4. For YARP, we use the

3https://github.com/python-pillow/Pillow
4https://github.com/spatialaudio/python-sounddevice
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existing sound port and transmit the audio as a sequence. Whereas, for ZeroMQ,
we transmit a string, encoding the auditory signal along with its properties as a
single multipart message.

5.5 Communication Schemes

Wrapyfi manages script interactions by introducing three communication schemes—
Mirroring, Forwarding, and Channeling. Unlike communication patterns, schemes
are agnostic to the communication protocol or blocking mechanism, and are rather
interfaces along with guidelines for implementing concurrent functionality without
introducing additional handlers. Mirroring enables concurrent execution of multiple
scripts with synchronized actions. Forwarding creates chains of methods to tunnel
arguments and return values across different middleware configurations. Channeling
allows for the broadcasting of multiple return values via one method, each using
potentially different middleware. Each scheme addresses a different set of challenges.

The MiddlewareCommunicator is a Wrapyfi class for establishing communication meth-
ods. It implements the register decorator for setting the middleware types, topics,
and various communication parameters. Each method set to publish, subscribe,
request, or reply should be encapsulated within this decorator. Listing 5.1 illus-
trates the use of the register decorator to register a method for YARP middleware
communication, specifying object type, middleware, name of the class, YARP port
(topic), communication protocol, and whether the method should await a response,
which results in blocking the subscribing method until the publisher transmits a
message. The read_msg method obtains user input from one process, allowing all other
subscribing processes to acquire user input from a single process.

Listing 5.1: Decorated method registering the data type, middleware, topic, con-
nection protocol, and blocking behavior. '$0' passes the first argument (mware) from
the method to the decorator. Similarly, '$blocking' passes the keyword argument.

1 class MirrorCls(MiddlewareCommunicator ):
2 @MiddlewareCommunicator.register('NativeObject ',
3 '$0', 'MirrorCls ', '/example/read_msg ',
4 carrier='tcp', should_wait='$blocking ')
5 def read_msg(self , mware , msg='', blocking=True):
6 msg_ip = input('type message:')
7 obj = {'msg': msg , 'msg_ip ': msg_ip}
8 return obj ,

In Listing 5.2, setting the mode to 'publish' triggers read_msg upon method call,
whereas 'listen' returns the message received over the middleware. These modes
enable the establishment of communication following the publish/subscribe pattern.
Alternatively, setting the activate_communication mode to 'request' or 'reply' triggers the
request/reply pattern.
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Listing 5.2: Activating a method in 'publish' mode. When the method is called, its
results are returned to the caller and transmitted to the listener.

1 mirror = MirrorCls ()
2 mirror.activate_communication(
3 'read_msg ', mode='publish ')

5.5.1 Mirroring Scheme

Mirrors are identical scripts running simultaneously within different processes.
These scripts share their arguments and return values, after which they execute the
same pipeline. However, their methods could either run a specific functionality in
place or could acquire their return values from another publisher. By calling read_msg

in Listing 5.1 using a single publishing script, all subscribing mirrors receive the
same return object when invoked as well. Regardless of the communication pattern
or blocking behavior, all scripts follow the same pipeline with similar method
returns.

5.5.2 Forwarding Scheme

Listing 5.3: Demonstration of forwarding with two methods each using a different
middleware.

1 class ForwardCls(MiddlewareCommunicator ):
2 @MiddlewareCommunicator.register('NativeObject ',
3 'yarp', 'ForwardCls ', '/example/native_yarp_msg ',
4 carrier='mcast ', should_wait=True)
5 def send_yarp(self , msg):
6 return msg ,
7
8 @MiddlewareCommunicator.register('NativeObject ',
9 'zeromq ', 'ForwardCls ', '/example/native_zmq_msg ',

10 carrier='tcp')
11 def send_zmq(self , msg):
12 return msg ,

The forwarding scheme in Wrapyfi is designed for passing arguments across
multiple methods, each with a employing a different middleware. With forwarding,
we form chains of methods, each passing the arguments and return values within
the script, and transferring the acquired and transmitted values to other methods
with different middleware and topics. Forwarding works by assigning unique
functionionality to each script. The scripts contain bridging methods that are
connected by register decorators, which share middleware and topic. These bridging
methods exchange data across multiple middleware, and acquire whichever data
they receive depending on the available or enabled middleware. In Listing 5.3, we
demonstrate data transmission between a system without ZeroMQ support and
another without YARP support, using an intermediary system that supports both.
The first system dispatches the message using YARP by invoking send_yarp. The
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intermediary system then forwards it using ZeroMQ to send_zmq. The final system,
with YARP disabled, receives the message via ZeroMQ by listening to send_zmq. This
scheme is needed when strict specifications are required regarding the compatibility
of software and middleware between systems, as in the case of robots.

5.5.3 Channeling Scheme

In the channeling scheme, Wrapyfi enables broadcasting to multiple middleware by
encapsulating a method with numerous decorators, each corresponding to a return
value with its own data type and middleware. The number of a method’s returns
defines the number of decorators specified for that method, following the same
order of definition, i.e., the first decorator defines the communication properties
of the first return, the second decorator for the second return, and so on. This is
illustrated in Listing 5.4, where a method transmits three different data types over
varied middleware, such as a YARP native object message comprising a NumPy
image and an audio chunk, a ROS image (OpenCV [37] compatible), and a ZeroMQ
audio chunk. This scheme supports the simultaneous reception of different data
types. Should an environment lack support for a specified middleware, a 'None' type
object is returned instead. Channeling is especially useful for handling multiple
sensory inputs from different sources, allowing selective acquisition and disregard of
unnecessary sensory input. The channeling scheme can be considered a combination
of both mirroring and forwarding. However, we provide this scheme to avoid forcing
developers to adapt their existing methods to accommodate Wrapyfi’s model, which
adopts a non-opinionated design.

Listing 5.4: Demonstration of Channeling with one method reading multiple returns
of different data types through multiple middleware.

1 class ChannelCls(MiddlewareCommunicator ):
2 @MiddlewareCommunicator.register('NativeObject ',
3 'yarp', 'ChannelCls ', '/example/native_yarp_msg ',
4 carrier='mcast ', should_wait=True)
5 @MiddlewareCommunicator.register('Image ',
6 'ros', 'ChannelCls ', '/example/image_ros_msg ',
7 carrier='tcp', width='$img_width ',
8 height='$img_height ', rgb=True , queue_size =10)
9 @MiddlewareCommunicator.register('AudioChunk ',

10 'zeromq ', 'ChannelCls ', '/example/audio_zmq_msg ',
11 carrier='tcp', rate='$aud_rate ',
12 chunk='$aud_chunk ', channels='$aud_chann ')
13 def read_mulret_mulmware(self ,
14 img_width =200, img_height =200,
15 aud_rate =44100 , aud_chunk =8820, aud_chann =1):
16 ros_img = np.random.randint (256,
17 size=(img_height , img_width , 3), dtype=np.uint8)
18 zeromq_aud = (np.random.uniform(-1,1, aud_chunk),
19 aud_rate ,)
20 yarp_native = [ros_img , zeromq_aud]
21 return yarp_native , ros_img , zeromq_aud
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5.6 Experimental Setup
Wrapyfi encodes and decodes data types that are employed by commonly used
scientific computing, image processing, and deep-learning frameworks. To assess
the overhead introduced by the encoding and decoding mechanisms, we transmitted
these object types using the supported middleware—ROS, ZeroMQ, YARP, and
ROS 2. The evaluation was carried out in the publish-subscribe mode on the same
machine with an Intel Core i9-11900 running at 2.5 GHz, with 64 GB RAM and an
NVIDIA GeForce RTX 3080 Ti GPU with 12 GB VRAM.

5.7 Results
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Figure 5.2: Latency between publishing and receiving 200×200 tensors of ones
transmitted using each middleware independently with blocking methods. 2000
trials are conducted with a publishing rate of 100 Hz for each middleware and
plugin combination. Latency indicates the time difference between transmission
and reception including de/serialization.

The results in Figure 5.2 show that NumPy array transmission resulted in the
lowest latency compared to other data types. Variances in performance were most
significant with the ROS middleware, which also resulted in the highest latency
on average. The ROS Python bindings serialize messages natively, resulting in
additional overhead. GPU tensor mapping to memory showed insignificant delay
compared to memory-mapped counterparts in the case of MXNet, PyTorch, and
PaddlePaddle. pandas data frames were transmitted with the highest latency5.
Compared to NumPy, pandas provides a vast range of tools for statistical analysis
and data filtration, making it a more favourable framework for data scientists.
However, since pandas relies either on NumPy or pyArrow as a backend, the
latency of encoding and decoding its data types is constrained by the backend.

5pandas version 1 with NumPy as a backend
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Additionally, the data structures of pandas objects have to be encoded into a
structures compatible with those of the backend, accumulating the computational
overhead.

5.8 Discussion
Wrapyfi is a framework that simplifies data transfer across different middleware
platforms. Two of Wrapyfi’s key strengths are the transmission of custom data
types and support for multiple middleware. We introduced three communication
schemes—mirroring, forwarding, and channeling—each serving a different set of
applications. The framework currently supports two common communication
patterns: publish-subscribe and request-reply. In future work, we plan to extend
Wrapyfi to support more communication patterns available in some middleware
platforms, such as actions in ROS 2, which are similar to asynchronous request-reply.
We also aim to provide interfaces for custom messages and middleware-specific data
types.

Wrapyfi’s non-opinionated design provides the flexibility required to construct
complex pipelines, extending from parallelized scripts to robotic interfaces. In Chap-
ter 6, we demonstrate how the mirroring, forwarding, and channeling schemes can
be applied in practice. In Chapter 7, we further demonstrate how Wrapyfi can
be used to conduct robotic experiments that require precise scheduling and com-
munication between multiple deep-learning models. Having a framework that can
encode messages from all the platforms needed meant that our models and robot in-
terfaces were not tied to a specific middleware. Also, distributing the deep-learning
models that interacted with the robots was made simple, as the scripts could be
mirrored, while some functionality could be switched off on machines with limited
computational capability and delegated to more powerful systems.
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Chapter 6

Social Human-Robot Interaction

In this chapter, we present two human-robot-interaction studies addressing the
display of social cues on robots. Both studies are developed using Wrapyfi (detailed
in Chapter 5). The first study explores the influence of a robot’s social cue
expression, namely gaze direction and affect, on human-human collaboration. In
the second study, we assess humans’ perception of a robot mirroring their gaze
direction and affective signals in real-time settings. Our primary objective is to
adopt the methods by which social robots are commonly evaluated as evidence
of Wrapyfi’s applicability and utility in practice. Moreover, we aim to study how
robot social cue expression is perceived by humans, and whether the integration of
robots into social settings affects the course of interactions.

6.1 Human-Human-Robot Collaboration

6.1.1 Introduction

Collaboration is a fundamental aspect of human social behavior, which plays an
important role in achieving common goals and solving problems [193]. However,
collaboration can be compromised by conflicts that may arise [123]. Conflicts
could be task-related, where differences arise in viewpoints and ideas between
collaborators [122]. Another form of conflict could be relationship-based, arising
from tension or animosity between collaborators or team members [122]. One
potential mitigation to task and relationship conflict is the integration of humanoid
robots into human collaboration settings. Humanoid robots can potentially assist
humans in enhancing their collaboration skills [128]. For instance, they can be
useful in engaging children with autism spectrum disorders [238] or in reducing task
conflicts during collaboration [226]. However, while robots can be helpful in such
interaction scenarios, they may only have limited influence due to the complexity
of social dynamics, where personal traits and cultural differences could lead to
different interpretations of an expressed social cue.

These social cues provide vital information that allows us to understand social
norms, establish trust, and form positive relationships. Humans are more likely to
collaborate and work together toward common goals when they perceive positive
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social cues. Negative social cues, on the other hand, can lead to mistrust, conflict,
and a breakdown in collaboration [253]. As a result, social cue expression is essential
for shaping human behavior and influencing collaboration [242]. To examine the
validity of such influences in real-world scenarios where robots are involved, we
design a human-human robot collaboration game. Rather than a typical Human-
Robot Interaction (HRI) setting, where humans tend to adjust their behaviors and
expectations to accommodate the robot, we instead design our study to prioritize
the human-human collaboration, involving the robot as an additional social entity.
This is known as triadic HRI, and through it, we maintain the naturalness of the
interaction while still influencing the collaboration through the robot’s social cue
expression.

Eye gaze and facial expressions are particularly important social cues in HRI
and collaboration. Humanoid robots are designed to simulate human behaviors and
express emotions through movement and facial expressions. When robots display
positive social cues like maintaining eye contact, nodding, and smiling, they can
establish a connection with humans and gain their trust [18]. This can lead to more
effective human-robot collaboration in a variety of tasks, including manufacturing,
healthcare, and education [247]. Furthermore, social robots can facilitate human-
human or human-robot collaboration by signaling humans—signaling is the act
of displaying indications or performing gestures to guide behavior—and acting as
mediators during the interaction [15]. Overall, social cues in HRI can enhance
communication, making their integration into robots a positive design choice.

In collaborative settings, a humanoid robot that expresses social cues can
influence human interaction by reducing personal biases, managing conflicts, and
improving efficiency, encouraging constructive discussion and collaboration [188].
Robot gaze direction significantly influences human decision-making and perception.
Kompatsiari et al. [142] study the effects of mutual and non-mutual robot gaze.
Their findings reveal that participants attribute greater engagement and humanlike
traits to a robot that establishes eye contact. Another study shows mutual gaze
between robots and humans to influence the latter’s decision-making time [25]:
Participants were slower at making decisions when the iCub [171] robot established
eye contact with them. Neural activity in the brain evoked by the robot’s gaze
direction draws similarity to gaze influences observed during social interactions with
other humans, indicating that the robot gaze direction has a similar effect as human
gaze direction [25]. Moreover, eye contact with robots elicits physiological changes
associated with positive affect and higher attention allocation [136]. Gillet et al. [98]
investigate how a social robot could use adaptive gaze behavior to balance the
participation of native speakers and second language learners in a game. These
results show that the robot’s gaze direction could influence interaction among
players, leading to an even (equal) contribution in participation between them.

Robot emotional cues, whether through speech, gestures, facial expressions, or
other indications of affect, alter humans’ perception of the robotic agent [225]. Their
mental states are also influenced through emotion contagion [187]. Reyes et al. [211]
study how a humanlike robot’s negative facial expressions on failing to complete
the task, affects human-robot collaboration. The task involves placing ten objects
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within a container in collaboration with a robot. The authors [211] show that the
robot’s expression of sadness signaled a need for human help and consequently
improved task performance. In follow-up work [212], the authors suggest that
negative facial expressions signaling failure attract humans’ attention and lead
them to collaborate better.

Unlike previous studies that focus on direct HRI, our main objective is to
evaluate the influence of non-verbal cues, namely, robot facial expressions and
gaze behavior, on triadic HRI. We hypothesize that this can lead to a better
understanding of how a robot can facilitate social dynamics among humans without
interfering with or interrupting their verbal communication. A robot, as an observer,
can also elicit different responses from humans depending on how they perceive the
robot’s humanlikeness, intelligence, and intentionality. Therefore, studying how a
robot can use non-verbal cues to modulate human-human interaction guides us in
designing social robots that can improve human collaboration.

Although previous studies indicate that robot gaze and facial expressions have
an impact on HRI, limited research has explored the impact of humanoid robots
in triadic—human-human-robot — collaboration scenarios. Moreover, few studies
investigated the interaction effect between gaze direction and facial expressions
from robots on human collaboration behaviors. Thus, in this study, we design a
collaborative game between two human participants, with the objective of inserting
objects into a shape sorter [92]. One participant serves as a guide, giving instructions
to the other participant, who acts as an actor by placing occluded objects in
the sorter. A humanoid robot is incorporated into the setting, displaying facial
expressions while directing its gaze toward either the actor or guide.

This research explores robots’ potential as collaborators in human-human team
settings and their ability to communicate effectively through non-verbal cues.
However, we do not aim to study whether a robot’s presence can influence human-
human interaction. Instead, we assume it to be present and investigate how, and
to what extent its non-verbal social cues—especially facial expressions and gaze
communication—influence human-robot triadic collaboration and human perception.
More concretely, we aim to answer the following Research Questions (RQ):

RQ6.1.1 How can a robot’s facial expressions and gaze communication impact
triadic collaboration?

RQ6.1.2 How do humans perceive the intelligence of a robot during triadic collab-
oration? Is it consistent with humans’ general impressions of the robot?

from which we derive the following hypotheses:

H6.1.1 The robot’s positive facial expressions will improve human-human collab-
oration performance compared with neutral facial expressions. A mutual
gaze between the guide and the actor could impact the performance of the
task differently. There may be an interaction effect on human collaboration
between facial expressions and gaze direction.
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H6.1.2 The robot’s positive facial expressions will make individuals perceive the
robot as more intelligent than the neutral and negative facial expressions. A
mutual gaze between the guide and the actor could elicit participants to have
different impressions of the robot. There could be an interaction effect on
human perception of the robot between facial expressions and gaze.

6.1.2 Study Design

To investigate our research questions and examine our hypotheses, we tasked pairs of
participants with playing a collaboration game while the iCub robot observed their
interaction and detailed the task they should perform after each interaction. We
measured participants’ completion time of the game and recorded their evaluation
of the robot’s intelligence during the game—participants pushed buttons on game
round completion to indicate whether they thought the robot behaved intelligently
or randomly. Participants were also asked to fill in the Godspeed questionnaire
after the game to report on their impression of the iCub robot.

Task and Procedures

Expression

     
    Happy  Neutral    Sad

Gaze

        Left              Right

Speech

Buttons

       Random    Intelligent 

ZeroMQ

ZeroMQ

YARP

YARP

Experiment 
Manager

Interface
Controller

Robot
Controller

ZeroMQ ZeroMQ

ZeroMQ

X S

"Put the orange lion
in the shape sorter"

Figure 6.1: Experiment manager defines the game flow and communicates with
controllers (represented by dotted arrows). Controllers connect unidirectionally to
devices except for buttons since they register the user input and transmit it to the
controller, requiring bidirectional communication.

In our study, we randomly matched participants in pairs. Each pair played
multiple rounds of a triadic collaboration game while the iCub robot observed
their interaction. Additionally, the iCub robot adopted the role of an instructor,
requesting participants to place a particular object in its corresponding hole on
a shape sorter. One of the two participants played the role of an actor and was
capable of manipulating the objects and the shape sorter, which were obscured
from their view. The other participant, having an unobstructed view of the objects
and shape sorter, guided the actor in placing the selected object into its designated
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Figure 6.2: Game flow under different conditions after pressing either rating button.
Speech is uttered initially on fulfilling a condition. Once the utterance is completed,
follow-up actions are executed (e.g., switching on the button lights). Action blocks
with dashed borders are executed in parallel after follow-up actions are completed,
or previous conditions are fulfilled.

hole. Guidance was restricted to non-physical contact, conveyed mainly through
verbal instructions and physical gestures.

The participants played a total of 10 rounds. Before each round started, the
iCub robot displayed an initial facial expression, which could be neutral or happy,
as depicted in Figure 6.1. During the game, they were tasked with the successful
insertion of an object into the shape sorter. After 5 rounds of gameplay, participants
changed seats, consequently switching their roles as actors and guides. During
each round, the iCub robot displayed its final facial expressions. The participants
were asked to guess the intention behind the robot’s facial expressions. In doing
so, the participants would distribute their attention between the task at hand and
the iCub robot, rather than primarily focusing on completing the task quickly and
disregarding the robot in the process. Each round completion time was recorded
as the collaboration time for each pair. On round completion, participants were
requested to rate the iCub robot as either intelligent or random according to its gaze
behavior and facial cues during the round. The robot rating was performed by the
participant assuming the role of a guide. Using two separate buttons to categorize
the iCub robot as either intelligent or random, we acquired their responses following
each round, along with their round completion time. If the participants finished
one round within 30 seconds, the robot maintained its initial facial expression and
gaze direction. If the participants failed to complete the task within 30 seconds,
the iCub robot displayed a sad final facial expression as depicted in Figure 6.1 and
shifted its gaze either toward the actor or the guide. After completing all 10 rounds,
the participants filled in the Godspeed questionnaire [23] to report their impression
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of the iCub robot based on its appearance and behavior. The overall flow of the
game is illustrated in Figure 6.2.

Experimental Setup

Figure 6.3: The two participants adopting the roles of a guide (left) and an actor
(center) while the iCub [171] robot (right) observes their gameplay. The actor
inserts an object into the sorter following the guide’s instructions.

The experimental setup shown in Figure 6.3 consisted of a round table where
the iCub head was placed and at which two human participants were seated. The
distance between the iCub’s head and each participant was approximately 140 cm.
A shape sorter with 12 holes, each with a color—6 colors in total—corresponding
to an animal and a basic-shaped object, was placed on the table. The sorter and
objects were occluded from the actors’ view by opaque surfaces covering the sides
of a plastic wireframe. The guide had a clear view of the shape sorter in order to
guide the actor in inserting an object specified by the iCub robot.

After each trial, the guide rated the iCub robot’s intelligence by pressing one
of two labeled red buttons with lights. The ‘X’ labeled button indicated the iCub
robot’s observed behavior followed an unspecified pattern that did not correlate
with the participants’ actions. The ‘S’ labeled button signified an intelligent pattern
of the iCub robot’s behavior, which is associated with the participants’ gameplay.
The button lights signaled the ongoing running of the experiment round. Pressing
either button momentarily switched it off until instructions for the next round
were verbally delivered through a loudspeaker situated behind the iCub robot.
Instructions were simply structured phrases to convey the target for each round,
e.g., ‘Put the orange lion in the shape sorter’. These instructions were uttered
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using Amazon Polly speech synthesis, spoken with a child voice labeled as ‘Justin’
to match the iCub robot’s appearance.

We define the game flow as the full experimental pipeline, beginning with the
iCub robot introducing the game to participants, followed by providing instructions
on which objects to insert, and eventually thanking the participants for taking part
in the experiment. Further processes involved in the game flow include providing
instructions on switching seats and filling in the questionnaire, keeping track of the
participants’ game completion time, performing gaze movements, and displaying
facial expressions. The game flow involves three computers with different roles as
depicted in Figure 6.1:

1. The Experiment Manager (PC:EM) runs the main script, which co-
ordinates the tasks of controllers that interact with external devices and
sensors. PC:EM receives feedback from the controllers and delegates actions
to them, such as moving the iCub’s head in either direction, changing the
iCub robot’s facial expression, or uttering instructions. It communicates
over the ZeroMQ [113] middleware using Wrapyfi (detailed in Chapter 5), a
Python wrapper with multi-middleware support for exchanging native Python
objects, tensors, and arrays.

2. The Interface Controller (PC:IC) awaits button presses by the participants
who had to rate the iCub robot’s behavior as intelligent or random. It also
controls the embedded button lights and sends audio signals to the speech
interface via ZeroMQ. The buttons are connected to an Arduino AT-Mega
2560 microcontroller that communicates with PC:IC over USB serial. PC:IC
also uses Wrapyfi for communicating over ZeroMQ.

3. The Robot Controller (PC:RC) sends control signals to the iCub robot
to direct its gaze toward the guide or the actor based on predefined estimated
positions. It also sends emotion templates to the robot through the emotion
interface. Since the iCub robot runs YARP [170], we utilize both YARP
and ZeroMQ on PC:RC to communicate with the iCub robot and PC:EM,
respectively.

Data Analyses

Completion time (CT) and rating of the robot are measurements of participants’
game performance and perception of the robot, respectively. We conducted a
two-factor repeated measures ANOVA with facial expressions (neutral vs. happy)
and gaze direction (actor vs. guide) on the game completion time to examine
the impact of the robot’s initial facial expressions and gaze direction on triadic
collaboration. The final facial expressions and the gaze from the iCub robot were
displayed while the participant played each round of the game.

To investigate how the robot’s initial facial expression and gaze direction
influence participants’ perception of the robot’s intelligence, a two-factor repeated
measures ANOVA with facial expressions (neutral vs. happy) and gaze direction
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(actor vs. guide) was performed on participants’ ratings. We encoded participants’
‘intelligent’ rating of the robot with a value of ‘1’, and ‘random’ with a value of ‘0’.
Thus, the higher the robot rating, the more intelligent participants perceived it.

To measure the impact of the robot’s final expression and gaze direction on
participants’ ratings of the robot, one paired t-test was performed between sad
and happy expressions—neutral expressions were excluded considering their rare
occurrence as final facial expressions. Another paired t-test was performed between
the ratings of the actors and the guides. We did not analyze the interaction
effect between the final expressions and gaze direction. This is due to participants
observing more negative expressions than happy and neutral expressions since their
completion time was usually longer than 30 seconds. Under the sad expression
condition, gaze direction was balanced. However, under the happy and neutral
expression conditions, gaze direction was not balanced, resulting in a majority of
participants experiencing only a subset of the condition combinations.

Additionally, we also investigated whether there would be any differences between
the first and last 5 rounds of participants’ game performances and robot ratings by
using paired-samples t-tests, given that participants switched roles after 5 rounds.
Eventually, we analyzed the correlation between completion time, robot rating,
and five sub-dimensions of the Godspeed questionnaire to study the relationship
between participants’ general impression of the robot and their perception of it
during the game. All post hoc tests in the current study used Bonferroni correction.

Participants

50 participants (female = 13, male = 37) took part in this experiment. Participants
were between 21 and 55 years of age, with a mean age of 29.02 ± 5.60 years. All
participants reported no history of neurological conditions (seizures, epilepsy, stroke,
etc.) and had either normal or corrected-to-normal vision and hearing. This study
was conducted following the principles expressed in the Declaration of Helsinki.
Each participant signed a consent form approved by the Ethics Committee of the
Department of Informatics, University of Hamburg.

6.1.3 Results

Initial Facial Expressions and Gaze on Collaboration

To evaluate the impact of the initial facial expressions and gaze direction on the
collaborative game performances, a repeated measures ANOVA with a Greenhouse-
Geisser correction was applied. Results displayed in Figure 6.4a showed that
the main effect of facial expressions was significant. The participants’ RT differs
significantly between different facial expression conditions, F (1, 23) = 15.73, p <
.01, η2p = .40. Post hoc tests show that the participants finished the game signifi-
cantly faster under the happy condition (mean ± SE = 38.66± 2.04ms) than the
neutral condition (mean ± SE = 54.22 ± 4.15ms). However, the main effect of
the initial gaze direction was not significant. There was no significant difference
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Figure 6.4: Participants’ (a) completion time of the game and (b) their rating of
the robot’s intelligence under its different initial facial expression and gaze direction
conditions. Their rating of (c) the robot’s intelligence given its different final gaze
directions, and (d) facial expressions.

in participants’ game performances, whether or not the robot’s initial gaze was
toward the actor or the guide, F (1, 23) = .93, p = .35, η2p = .04. There was no
significant interaction effect between the initial facial expressions and the initial
gaze direction, F (1, 23) = .01, p = .94, η2p = 0.
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Initial Facial Expressions and Gaze on Rating the Robot

To evaluate the impact of the initial facial expressions and gaze direction on rating
the iCub robot, a repeated measures ANOVA with a Greenhouse-Geisser correction
was applied. Results presented in Figure 6.4b showed that the main effect of
facial expressions was not significant. There were no significant differences in
participants’ ratings of the robot between neutral (mean ± SE = .61± .06ms) and
happy conditions (mean ± SE = .68 ± .06ms), F (1, 23) = .79, p = .38, η2p = .03.
However, the main effect of the initial gaze direction was significant, F (1, 23) =
4.94, p < .05, η2p = .17. Post hoc tests show that participants perceived the iCub
robot as significantly more intelligent when the robot initially looked at the guide
(mean ± SE = .70± .05) than when looking at the actor (mean ± SE = .59± .06).
There was no significant interaction effect between the initial facial expression and
the initial gaze direction on participants’ ratings of the robot, F (1, 23) = 1.18, p =
.29, η2p = .05.

Final Facial Expressions and Gaze on Rating the Robot

Paired-samples t-tests were conducted to study the influence of the final emotion
on rating the robot. Results in Figure 6.4d showed that participants rated the iCub
robot significantly more intelligent when the robot displayed happiness (mean ±
SE = .81± .07) than sadness (mean ± SE = .61± .05), t (24) = −2.46, p < .05.

Paired-samples t-tests were also conducted to investigate how the final gaze
direction impacted the robot’s rating. No significant difference was found between
the two conditions (actor: mean ± SE = .68± .05, guide: mean ± SE = .65± .05,
t (24) = .52, p = .61), as shown in Figure 6.4c.

Learning Effects in the Collaborative Game

Figure 6.5 shows that there was a reduction in completion time for the first 5
rounds of the game. After switching roles, participants’ completion time in the last
5 rounds also decreased, indicating that learning effects persisted throughout the
game. Furthermore, we conducted a paired-samples t-test showing that participants
took significantly less time completing the last 5 rounds (mean ± SE = 38.38±2.12
s) than the first 5 rounds (mean ± SE = 51.62 ± 3.32 s), t (24) = 3.94, p <
.01. These findings imply that repeated exposure to the collaborative game and
increased familiarity with the partner’s role improved performance, emphasizing the
importance of experience and practice in enhancing collaborative skills. However,
robot ratings did not follow a consistent trend. The paired-samples t-test performed
on robot ratings indicated no significant difference between the first 5 rounds
(mean± SE = .64±.05) and the last 5 rounds (mean± SE = .67±.06), t (24) = −.44,
p = .67. These results suggest that participants’ perception of the robot did not
change with more practice of the game (rating counts after different rounds are
shown in Figure 6.6).
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decline as participants gain collaboration and gameplay experience.
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Godspeed Questionnaire

Table 6.1: Statistics and correlation matrix of ratings and Godspeed dimensions.

Dimension Mean ± SD Rating AT AN LI IN SF
Rating 0.66 ± 0.29 1
AT 2.48 ± 0.86 0.24 1
AN 2.74 ± 0.83 0.22 0.82*** 1
LI 3.51 ± 0.86 0.27 0.61*** 0.66*** 1
IN 3.10 ±0.84 0.41** 0.74*** 0.68*** 0.71*** 1
SF 3.66 ± 0.72 -0.08 0.36** 0.48*** 0.56*** 0.27 1

Rating: Participants’ evaluation of the robot after each game round; AT: Anthropomorphism;
AN: Animacy; LI: Likeability; IN: Intelligence; SF: Safety.
∗ denotes .01 < p < .05, ∗∗ .001 < p < .01, ∗∗∗ p < .001, and n.s. denotes no significance.

Means and standard deviations for completion time, robot rating, five sub-
dimensions (Anthropomorphism, Animacy, Likeability, Perceived Intelligence,
Safety) of the Godspeed questionnaire, as well as the correlation coefficients
between them, are displayed in Table 6.1. The rating of the robot during the
game was positively correlated to Perceived Intelligence (r = .41, p < .01). The
Completion time was not significantly correlated with any other measurements
(ps > .05). Additionally, a weak positive correlation was measured between robot
rating and Likeability (r = .27, p = .063). Within the sub-dimensions of the
Godspeed questionnaire, only the association between Perceived Intelligence and
Safety was marginally significant (r = .27, p = .056). Associations between other
dimensions reached significance (ps < .05).

6.1.4 Discussion

Our study shows that a robot displaying a positive (happy) facial expression on
initiating interaction improves collaboration between humans: participants complete
the task within a shorter period of time—less than 30 seconds—when the iCub robot
appears happy. We hypothesize that emotional contagion plays a role in altering
the participants’ emotions. The iCub robot’s expression of happiness reflects
positively on the participants’ mood, resulting in them being more productive and
collaborative. This hypothesis is supported by studies examining the relationship
between emotional states and productivity [194], indicating that happy individuals
tend to have better performance.

Participants completing the task within 30 seconds also rated the iCub robot
as more intelligent, even though the robot followed the same strategy in every
interaction. One influencing factor could be that the iCub robot displays a negative
(sad) facial expression when the participants take longer than 30 seconds to complete
the task. A robot that displays a happy facial expression may be perceived as
more friendly, trustworthy, and competent than a robot that displays a negative
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emotion [46]. However, we were unable to examine the effect of deferred facial
expressions—shown after 30 seconds—due to the limited sample size. Examining
whether a display of negative emotions has an effect on the robot’s intelligence rating
would only be possible if we were to vary the facial expressions when participants
took longer than 30 seconds to complete a round. Given the infrequent occurrence
of the event, the two conditions would not result in sufficient samples for a statically
sound comparison.

On establishing mutual gaze with the guide, the iCub robot is regarded as more
intelligent than when looking at the actor. Given that the guide rates the robot,
we compared their ratings under the condition of mutual gaze—the iCub robot
looking at the guide—and looking elsewhere. Our results aligned with prior findings,
showing that mutual gaze caused participants to perceive the robot as more engaged,
humanlike, and attentive, eliciting them to attribute higher intelligence to it [142,
25].

Several limitations in the current study could be addressed in future research.
First, the gaze directions and the final facial expressions should be balanced to
study the interaction effect on rating the robot. Second, more measurements
could be conducted on participants’ personality traits and their trust in the robot.
This could lead to a more in-depth understanding of the current results. Finally,
involving more emotions and increasing human-human interaction rounds could
yield more concrete findings. Addressing these limitations would lead to an even
more comprehensive understanding of the impact of non-verbal social cues on
triadic collaboration.

6.2 Social Cue Mirroring

6.2.1 Introduction

The mirror neuron system (MNS) has inspired many computational methods for
intelligent robotics [265]. The MNS in humans facilitates the understanding of
others by simulating their behaviors via sensorimotor processes [49]. Mirroring,
a fundamental element of social interaction, involves subconsciously imitating
another individual’s nonverbal cues, such as gestures, expressions, and postures [96].
It can reflect an adaptive integration and utilization of social cues within the
social context [258]. This mechanism often leads individuals to collaborate with
those who exhibit similar and familiar behaviors [77]. Moreover, mirroring plays a
significant role in human-robot social interaction. By mimicking non-verbal social
cues, humans feel socially closer to the robot and perceive the robot as more aware
of the intentions behind their social behaviors [151].

Humans mirror facial expressions as a means of social bonding and communi-
cation. Mirroring assists in expressing emotions, empathy, and intentions, conse-
quently enhancing understanding among individuals [87]. Similarly, for robots to
be part of social environments, they must recognize and replicate natural affective
signals. Affective mirroring leads to the perception that the robot is capable of
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conveying internal states, displaying social intelligence, and expressing humanlike
characteristics [70, 38]. Current research in this area focuses on using deep-learning
approaches to enable robots to recognize and mimic emotions [58]. However, a
significant challenge is the robots’ limited ability to mirror human affect in real-time
accurately. Most robots can replicate basic emotions but the means of those ex-
pressions could lead to a lowering in perception of intuitiveness and relatability. To
examine whether the means by which robots express affect influence the outcomes
of a study, we conduct an experiment with two different robots. The iCub [171]
robot is capable of expressing affect through light patterns assimilating human
facial expressions, whereas the Pepper [235] robot can convey facial expressions
through color changes. We illustrate the technical overview in Figure 6.7a.
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Figure 6.7: Technical overview of the two tasks demonstrating the (a) forwarding
and mirroring schemes, and (b) the channeling and mirroring schemes.

Studies also indicate that gesture imitation during human conversations leads
to decreased social distance and increased prosocial behavior [87]. In human-
robot social interaction, movement mirroring enhances robots’ sociability during
human-robot interactions, making them more humanlike, empathetic, and socially
intelligent [40]. Two primary methods of enabling robots to mirror human move-
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6.2. Social Cue Mirroring

ments include Inertial Measurement Unit (IMU)-based and vision-based control.
IMU-based control refers to teleoperated robots that are controlled by readings
arriving from IMU sensors attached to the bodies of human operators, offering
precision and adaptability [275]. They also allow for real-time transmission of
orientation readings, facilitating a more rapid response. We define vision-based
control mirroring as a computer vision-driven approach, relying on external sensors
to capture and estimate the movements of a human operator. To assess the preferred
means of movement capture and how it influences the perception of the robot, we
conduct an experiment on the iCub robot, which is capable of moving both its eyes
and head. The iCub robot mirrors a participant’s head movements either through
IMU-based readings or vision-based estimates. We illustrate the technical overview
in Figure 6.7b.

The performance of robots’ mirroring behaviors is measured from multiple
dimensions during human-robot interaction. For instance, some studies reported
that affective mirroring makes the robot more socially intelligent, humanlike, and
less mechanical [41]. This observation stems from the robots’ capabilities to adapt by
understanding and responding to human emotions and social signals [131]. Metrics
such as humanlikeness and responsiveness are used to assess how well robots’
emotional responses align with human anticipations. In the context of movement
mirroring, the mechanical and responsiveness criteria rate the precision, fluidity, and
adaptability of robots as perceived by humans [93]. In this study, we evaluated robot
performance based on four impression dimensions: social intelligence, mechanical
attributes, responsiveness, and humanlikeness, as described by Seifert et al. [228].

Social robots are designed with the goal of assisting and adapting to humans.
However, very often the opposite occurs, where individuals find themselves adapting
to the robots instead. This issue arises since the robot or agent is not always built
with human preferences and interactive needs in mind [155, 222]. Therefore, we
also focus on improving real-time human-robot communication by reducing latency
to make interactions more fluent and natural. We created a mirroring framework
for easily interchanging robots and sensors, and selected specific neural models
and communication methods based on their potential to address these issues. We
conduct two experiments to compare the performance of different robot platforms
on mirroring tasks and assessed the impact of using different control methods on
the same robot platform. Our goal is to better understand these variations and
improve how robotic design aligns with human expectations. We aim to address
these problems by investigating the following research questions (RQ):

RQ6.2.1 How do different robotics platforms, specifically the iCub and Pepper
robots, compare in during affective mirroring?

RQ6.2.2 How do various robotic control methods, especially vision-based control
and IMU-based control methods, impact the iCub robot’s performance in
movement mirroring tasks?
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Chapter 6. Social Human-Robot Interaction

6.2.2 Study Design

Affective Mirroring Task

In this experiment, participants were asked to make eight facial expressions—Anger,
Fear, Happiness, Disgust, Sadness, Neutral, Surprise, and Contempt—in front of the
Pepper or iCub robots. The expressions were to be performed within one minute
in any order. The robot mirrored participants’ expressions either through affective
signaling—by changing the Pepper robot’s eye and shoulder LED colors [157, 125]—
or robotic facial expressions—by changing the iCub robot’s eyebrow and mouth
LED patterns [16]. Next, participants were asked to match the colors displayed on
the Pepper robot and the facial expressions on the iCub robot to emotion categories.
The experiment conducted on the physical iCub and Pepper robots is depicted
in Figure 6.8.

Upon task completion, participants were asked to scan a QR code appearing
on the Pepper robot’s tablet using their cell phones to complete a three-item
questionnaire, evaluating their experiences with either robot. In both questionnaires,
participants were requested to rate their interaction with the robots on a 5-point
Likert scale (Q1-1 and Q1-2):

1. How precise was the robot in mirroring your facial expressions? (1 = very
imprecise, 5 = very precise)

2. Did the robot mirror your expressions with major delay? (1 = no significant
delay, 5 = significant delay)

Participants rated their impression of the robots on four dimensions —Socially
Intelligent, Mechanical, Responsive, and Humanlike—on a 5-point Likert scale (1 =
not at all, 5 = yes, a lot).

Figure 6.8: Facial expression imitation on the Pepper and iCub robots.

For recognizing facial expressions, we relied on the emotion categories inferred
by the ESR9 [234] model. Siqueira et al. [234] present a neural model called ESR9
for facial expression recognition, composed of an ensemble of convolutional branches
with shared parameters. The model provides inference in real-time settings, owing
to its relatively small number of parameters across the ensemble branches, unimodal
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6.2. Social Cue Mirroring

visual input, and non-sequential structure. For the last timestep n, a majority vote
is cast on the output categories resulting from each ensemble branch ei:

c(f)n =
E∑
i=1

[ei = f ]

cn = argmax
f

c(f)n
(6.1)

where E = 9 is signifying the number of ensemble branches. The emotion category
index is denoted by f ∈ [1, 8]. The resulting c(f)n holds counts of the ensemble
votes for each emotion category f at n.

Given the model’s sole reliance on static visual input, falsely recognized facial
expressions lead to abrupt changes in the inferences. To mitigate sudden changes
in facial expressions, we apply a mode smoothing filter to the last N discrete
predictions—eight emotion categories—where N = 6 corresponding to the number
of visual frames acquired by the model per second:

k(f)n =
n∑

i=n−N+1

[ci = f ]

kn = argmax
f

k(f)n
(6.2)

resulting in the emotion category kt being transmitted from the inference script
running the facial expression recognition model to the managing script executed on
PC:A as shown in Figure 6.7a. The managing script forwards data to and from
the model and robot interfaces. We executed the inference script on four machines.
The shared layer weights were loaded on an NVIDIA GeForce GTX 970 (denoted
by PC:A in Figure 6.7a) with 4 GB VRAM. Machines S:1, S:2, and S:3 shown
in Figure 6.7a, shared similar specifications, each with an NVIDIA GeForce GTX
1050 Ti having 4 GB VRAM. We distributed nine ensemble branches among the
three machines in equal proportions and broadcasted their latent representation
tensors using ZeroMQ. The PyTorch-based inference script was executed on PC:A,
S:1, S:2, and S:3, all having their tensors mapped to a GPU.

Depending on the experimental condition, images arrived directly from each
robot’s camera:

1. The iCub robot image acquired from the left eye camera having a size of
320×240 px and transmitted over YARP at 30 FPS.

2. The Pepper robot image acquired from the top camera having a size of
640×480 px and transmitted over ROS at 24 FPS.

The image was directly forwarded—the forwarding scheme is detailed in Sec-
tion 5.5.2—to the facial expression model, resulting in a predicted emotion returned
to the corresponding robot’s LED interface.
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Gaze and Head Movement Mirroring Task

In this experiment, participants interacted with the iCub robot given two conditions.
Under the vision-based control condition, the iCub robot’s movements were actuated
by a vision-based head pose estimation model. Under the Inertial Measurement
Unit (IMU)-based control condition, the orientation readings arrived instead from
an IMU attached to a wearable eye tracker. Participants wore the eye tracker
and were asked to look at the iCub robot, freely moving their eyes and head.
Participants observed the movements of the iCub robot to evaluate the interaction.
The experiment demonstrated on a simulated iCub robot is depicted in Figure 6.9.

Participants were requested to rate their interaction with the iCub robot on a
5-point Likert scale (Q2-1 – Q2-5):

1. How precise was the robot in mirroring your head movements? (1 = very
imprecise, 5 = very precise)

2. Did the robot mirror your head movements with major delay? (1 = no
significant delay, 5 = significant delay)

3. Did the robot move its eyes? (yes/no)

4. How precise was the robot in mirroring your eye movements? (1 = very
imprecise, 5 = very precise)

5. Did the robot mirror your eye movements with major delay? (1 = no
significant delay, 5 = significant delay)

Participants rated their impression of the iCub robot on four dimensions—Socially
Intelligent, Mechanical, Responsive, and Humanlike—on a 5-point Likert scale (1 =
not at all, 5 = yes, a lot).

For vision-based control, we relied on the orientation coordinates inferred by
the 6DRepNet [110] model. Hempel et al. [110] present 6DRepNet, a novel end-
to-end neural network model for head pose estimation. The authors proposed a
unique solution that leverages a 6D rotation matrix representation and a geodesic
distance-based loss function. The 6D rotation matrix utilized in their approach
is highly efficient for representing the orientation of objects in three-dimensional
space by encoding six parameters p[1,6] instead of the typical nine:

px = [p1, p2, p3] py = [p4, p5, p6] (6.3)

resulting in a rotation matrix R:

rx =
px√∑3
n=1 p2

x,n

rz =
rx × py√∑3

n=1 (rx,n × py,n)
2

ry =
rz × rx√∑3

n=1 (rz,n × rx,n)
2

(6.4)
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Figure 6.9: Head and eye movement imitation using either an IMU-fitted eye tracker
for IMU-based readings or vision-based head pose estimation model coordinates
to control a robot. The method is demonstrated on the simulated iCub robot
using iCubSim [250] (top right). A fixed camera facing the participant transmits
the image (bottom right) to 6DRepNet [110], which in turn estimates the head
orientation, displayed as a wireframe cube (bottom right). Simultaneously, the
IMU readings are received and displayed as coordinate axes (bottom right). The
eye tracker’s eye camera views (bottom left) and world view (top left) are used to
estimate the participant’s fixation point, which controls the robot’s eye movements.

R =

 | | |
r⊺x r⊺y r⊺z
| | |

 ≡
R11 R12 R13

R21 R22 R23

R31 R32 R33

 (6.5)

which is utilized to acquire the Euler angles following the standard order (roll ϕ,
pitch θ, yaw ψ):

α =

√
R2

11 + R2
12 β =

{
1, if α ≥ 10−6

0, otherwise

ϕM = (1− β) · atan2(R12,R11)

θM = (1− β) · atan2(R23,R33) + β · atan2(−R32,R22)

ψM = atan2(−R13, α)

(6.6)

where ϕM , θM , ψM define head orientation when the 6DRepNet model is used as
the source for controlling the iCub robot.

The gaze coordinates were inferred from the Pupil Core [129] eye tracking
glasses, worn by the participant. We attached a Waveshare 9-DOF ICM-20948
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IMU to a Raspberry Pi Pico RP2040 microcontroller mounted on the upper-left
rim of the Pupil Core. The eye tracker readings were inverted on the y and z axes
to mirror the eye movements of the participants. We performed a single-marker eye
tracker calibration prior to conducting the experiment with each participant. The
two experimental conditions involved eye movements, but the orientation estimation
source varied between vision-based and IMU-based control:

1. The 6DRepNet [110] model for vision-based head orientation estimation. The
model is implemented in PyTorch and runs with GPU support. We executed
the inference script on an NVIDIA GeForce GTX 1050 Ti (denoted by S:4
in Figure 6.7b) with 4 GB VRAM, receiving 320×240 px images over ROS 2
captured using a Logitech C920 webcam with 30 FPS. The head orientation
coordinates were inferred at a rate of 20 Hz.

2. The ICM-20948 attached to the Pupil Core eye tracker. Readings from the
IMU were filtered using the Mahony algorithm [164] running on the RP2040
with a sampling frequency of 50 Hz. Both the IMU and the Pupil Core
were connected to PC:E running the IMU interface, and the Pupil Capture
software interfacing directly with the eye tracker. Since the Pupil interface
communicates directly over ZeroMQ, we chose ZeroMQ for transmitting the
IMU readings as well. In order to mirror the participant’s head movement,
we inverted the values of the roll ϕ and yaw ψ. However, given the IMU
returns the yaw angle relative to the true north, this leads to an offset between
orientation as measured by the IMU and the orientation of the participant
relative to the robot. To account for this offset, we asked the participant to
look straight at the robot before initiating the experiment. We then used the
initial readings from 6DRepNet to shift the readings from the IMU.

The managing script running on PC:A as shown in Figure 6.7b, initialized the
experiment by transmitting a trigger over ZeroMQ. A direct connection between
machines PC:C and S:4 was established, as shown in Figure 6.7b, where PC:C
received a trigger, starting the video feed which was directly transmitted to S:4
over ROS 2. To select the most suited middleware for this task, we evaluated the
transmission latency of the 6DRepNet and IMU orientation coordinates with all
four middleware. Two participants conducted five trials each, performing cyclic
head rotations on θ, ψ, and ϕ—corresponding to the x,y, and z axes—independently.

The orientations inferred from the 6DRepNet and IMU were recorded for six
seconds and channeled concurrently in real-time. Figure 6.10 shows the best-of-
five attempts with the Euclidean distance being used as a measure of alignment
when performing dynamic time warping between the two orientation estimation
sources. YARP presents the lowest latency since it was configured to acquire the
last message. Due to the differing sampling rates between the 6DRepNet and IMU,
the accumulation of messages in the ZeroMQ subscriber resulted in a bottleneck
leading to increasing latency between transmission and acquisition. With ROS and
ROS 2, we set the subscriber queue size to 600 messages, allowing the subscribers
to maintain all transmitted orientation coordinates without discardment. Setting
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their queue sizes to 1 led to behavior matching that of YARP. However, the
rate of dropped messages superseded YARP significantly, with YARP dropping
approximately 2% of the messages, whereas ROS and ROS 2 exceeded 11% and
9%, respectively. The lowest distance offset between the two orientation estimation
sources was achieved using ROS, however, we set YARP as the middleware of choice
due to its consistent latency and relatively synchronized transmission of coordinates
compared to other middleware in the channeling scheme mode—the channeling
scheme is described in Section 5.5.3.

Next, PC:E as denoted in Figure 6.7b forwarded the head and fixation co-
ordinates over YARP to the mirrored script in PC:A. Depending on the task at
hand—head orientation coordinates arriving from the vision-based 6DRepNet model
or IMU-based sensor—the channeling scheme method set either of the orienta-
tion estimation sources to 'None' and transmitted the other along with the fixation
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Figure 6.10: Channeling orientation coordinates received from the IMU (horizontal)
and 6DRepNet model (vertical) to a non-blocking subscriber. Latency between
de/serialization of IMU-based and vision-based model coordinates is measured for
the best-of-five attempts using each middleware. The diagonal lines display the
dynamic time-warping distances between the orientation estimation sources. Bold
denotes the best (minimum) latency across middleware.
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coordinates to the iCub robot over YARP.

Experimental Setup

(a) Affect Mirroring – iCub robot (b) Affect Mirroring – Pepper robot

(c) Movement Mirroring – IMU-based (d) Movement Mirroring – Model-based

Figure 6.11: The experimental setup showing a participant performing the four mir-
roring tasks in random order: (a) The iCub [171] robot mirroring facial expressions,
(b) the Pepper [235] robot affectively signaling through LED color changes, (c) the
iCub robot mirroring head movement based on an inertial measurement unit (IMU)
readings with a red circle surrounding the IMU, and (d) the iCub robot mirroring
head movement according to a vision-based model with a red circle surrounding
the camera.

The participants were seated ∼80 cm away from the iCub robot’s head, adjusting
its height to match their eye level. A circular marker was placed beside the iCub
robot to calibrate the Pupil Core eye tracker. Situated in front of the iCub robot
was a Logitech C920 webcam facing the participants to perform tasks requiring
a fixed view of their faces while the iCub robot moved its head and eyes. The
Pepper robot stood facing the participants at an angle of 45◦ with a distance of
1.2 m. The Pepper robot displayed an illustration of the ongoing task on its tablet
and communicated the instructions verbally. The interaction was one minute long
per task condition and the condition order was randomized. The task conditions
are shown in Figure 6.11. We used the Wrapyfi (detailed in Chapter 5) framework
for managing the task order, transmitting data between models and robots using
multiple middleware, and orchestrating the experimental pipeline.

Participants

30 participants (female = 7, male = 22, preferred not to say = 1) took part in
both studies. Participants were between 24 and 41 years of age, with a mean age
of 28.7. All participants reported no history of neurological conditions—seizures,
epilepsy, stroke, etc.—and had normal or corrected-to-normal vision and hearing.
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One participant’s data was excluded from the Pepper robot’s affective mirroring
experiment because of self-reported color blindness. Another participant’s data was
excluded from the iCub robot’s movement mirroring experiment due to technical
issues. This study adhered to the principles expressed in the Declaration of
Helsinki. Participants signed consent forms approved by the Ethics Committee at
the Department of Informatics, University of Hamburg.

6.2.3 Results

We evaluated the results of both mirroring tasks, studying the perceived impression
of the robot in each separate condition, as well as comparing the paired conditions
within each respective task. Normality tests were conducted on the participants’
answers to each dimension of the questionnaires. Results showed that their responses
were normally distributed. In addition, all Post hoc tests in this study used
Bonferroni correction.

Affective Mirroring

Anger Fear Happiness Disgust Sadness Neutral Surprise Contempt

Pe
pp
er

iC
ub

86.2% 3.4% 65.5% 24.1% 34.5% 37.9% 10.3% 6.9%

73.3% 46.7% 100% 16.7% 26.7% 80.0% 60.0% 20.0%

Figure 6.12: Eight emotion categories mimicked on the Pepper (top) and iCub
(bottom) robots in the form of affective signaling and robotic facial expressions,
respectively. Results of the human study are reported below each image in terms
of the average accuracy in matching each affective signal or facial expression to an
emotion category. Bold denotes the highest accuracy across emotion categories.

For the affective mirroring task on either robot, the recognition accuracy is
listed in Figure 6.12. For the Pepper robot, participants were most accurate in
recognizing anger (86.2%) and least accurate in recognizing fear (3.4%). Overall,
the Pepper robot’s affective signals were correctly matched to the corresponding
emotion categories with a 33.6% accuracy. For the iCub robot, participants were
most accurate in recognizing happiness (100%) and least accurate in recognizing dis-
gust (16.7%). Overall, the iCub robot’s facial expressions were correctly recognized
with a 52.9% accuracy.

For participants’ rating of interaction with the robots, results of paired-samples
t-tests displayed no significant difference in precision (Q1-1) between the Pepper
(mean ± SE = 2.79± .18) and iCub (mean ± SE = 2.90± .15) robots, (t (28) = .46,
p = .65). No significant difference in delay (Q1-2) was found between the Pepper
(mean ± SE = 2.38± .18) and iCub (mean ± SE = 2.48± .20) robots, (t (28) = .52,
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Table 6.2: Impressions of the robots on a 5-point Likert scale (1 = not at all, 5 =
yes, a lot) under different task conditions (Mean ± SE).

Dimension
Affect Affect Mov. (Model) Mov. (IMU)

iCub [171] Pepper [235] iCub [171] iCub [171]
Soc. Intelligent 2.81 ± 0.22 2.89 ± 0.21 2.65 ± 0.20 2.46 ± 0.22
Mechanical 3.08 ± 0.24 2.93 ± 0.21 3.65 ± 0.24 3.85 ± 0.18
Responsive 3.31 ± 0.21 3.19 ± 0.16 3.65 ± 0.15 3.23 ± 0.22
Humanlike 2.81 ± 0.22 2.15 ± 0.16 2.46 ± 0.19 2.39 ± 0.21

p = .61). For participants’ rating of the impression of the robots, results of paired-
samples t-tests displayed that the iCub (mean ± SE = 2.86± .20) robot was rated
significantly more humanlike than the Pepper (mean ± SE = 2.10 ± .16) robot,
(t (28) = 3.45, p < .01). No significant differences were found for the other three
dimensions—Socially Intelligent, Mechanical, and Responsive—between the two
robots (ps > .05) as shown in Table 6.2.

Movement Mirroring

A paired-samples t-tests showed that participants rated the vision-based controlled
robot (mean ± SE = 3.55± .24) significantly more precise (Q2-1) than the IMU-
based controlled robot (mean ± SE = 2.90 ± .19), (t (26) = 2.19, p < .05). The
vision-based controlled robot (mean ± SE = 2.00 ± .17) was rated significantly
less delayed (Q2-2) than the IMU-based controlled robot (mean ± SE = 2.66 ±
.21), (t (26) = −3.09, p < .01). Under the vision-based controlled condition, all
participants observed that the robot mirrored their eye movements, whereas two did
not under the IMU-based condition (Q2-3). Therefore, we only analyzed data from
27 participants who reported observing eye movement under both conditions. The
paired-samples t-test showed no significant difference in the precision rating of the
eye movement between the vision-based controlled robot (mean ± SE = 2.48± .19)
and the IMU-based controlled robot (mean ± SE = 2.37± .19) (p > .05) (Q2-4).
Also, no significant difference was found in the delay rating of the eye movement
between the vision-based controlled robot (mean ± SE = 3.07 ± .23) and the
IMU-based controlled robot (mean ± SE = 3.48± .24) (p > .05) (Q2-5). For the
impression of the robot, participants reported that the vision-based controlled robot
(mean ± SE = 3.66± .22) robot was significantly more responsive than the IMU-
controlled robot (mean ± SE = 3.17± .21), (t (26) = 2.39, p < .05). However, no
significant differences were found in the remaining dimensions —Socially Intelligent,
Mechanical, and Humanlike—between the two conditions (ps > .05) as shown
in Table 6.2.
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Figure 6.13: Participants’ impressions (5-point Likert scale) of robots under different
affective and movement mirroring conditions.

6.2.4 Discussion

Participants associated the iCub robot’s facial expressions with emotions more
than the Pepper robot’s affective signaling and found the iCub robot to be more
humanlike. Another observation relates to the accuracy of recognizing different
affective signals conveyed by either robot. Participants could accurately associate
Anger with the color red and Happiness with green on the Pepper robot. This is
complemented by findings associating exposure to different colors with physiological
and psychological responses [267, 236]. Participants more accurately identified
expressions of Happiness, Neutral, and Surprise on the iCub robot compared to the
Pepper robot. This can be attributed to humans primarily relying on observing
the mouth and eyebrows to recognize these facial expressions [103], features that
the Pepper robot lacks.

On comparing the movement mirroring methods, we found that the vision-based
control method resulted in smoother, more precise, and more responsive movements
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than the IMU-based control method, as shown in Figure 6.13. The IMU-based
control method transferred the IMU readings at a faster rate, however, this caused
jittery movements due to hardware limitations. In our study, both methods were
perceived as equally humanlike, suggesting that lower responsiveness doesn’t negate
humanlikeness.

Several limitations could be addressed and investigated in future research. We
were unable to compare movement mirroring on the two humanoid robots. This
is due to the Pepper robot’s inability to roll its head or move its eyes, unlike the
iCub robot. Our iCub robot does not have a full body, hence, we cannot compare
the limb movement mirroring between the iCub and Pepper robots. Future studies
could address the interaction effect between affective and movement mirroring.
Moreover, researchers could investigate how different humanoid robots and control
methods are received by children with autism spectrum disorders, and whether it
affects their social functions [289].
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Cognitive Robotic Simulation

This chapter covers cognitive robotic simulation studies. The first study addresses
multimodal audiovisual social cueing, where the social and auditory cues are
congruent (matching direction) or incongruent (opposing direction). This study
relies on the GASP model (DAM + LARGMU) developed in Chapter 3 deployed
on a physical robot, that is exposed to congruent and incongruent social stimuli.
The second study details an engineered solution for evaluating a scanpath model
on a physical robot. The unified late integration variant of the GASP model (DAM
+ LARGMU) with fixation history developed in Chapter 4, is used to compare
the performance of individuals to those of the model. This approach allows us to
evaluate scanpath models on a physical robot without having to conduct separate
human-robot interaction studies to validate every modification applied to those
models. Moreover, these studies show that although the models developed in
the course of this thesis do not yet measure up to human performance, they are
utilizable under real-world conditions. This is evident from the trends in the models’
predictions, closely matching those observed in human behaviors when performing
the same tasks, under similar conditions.

7.1 Audiovisual Social Cueing

7.1.1 Introduction

Conflicting cues often occur during social interactions e.g., speaking to one per-
son while looking at another, pointing at something unrelated to the subject of
conversation, illusions such as the ventriloquism effect, where speech appears to
emit from a different speaker due to lip movement [12], etc. How we process these
conflicts is shaped by our attentional tendencies, preconditioned on the forms of
stimuli, their conspicuity, and our physiology. When presented with conflicting cues,
humans learn to pay attention to one or either depending on the task presented to
them. The Posner cueing task [202] is a psychological test that assesses cognitive
visual attention by presenting participants with arrows—located in the center of
the monitor—pointing left or right, toward or opposing the direction of a target
cue. Trials are considered valid when the arrow points in the same direction as the
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target cue that appears shortly after it. Invalid trials denote incongruence, that is,
when the arrow points in one direction, and the cue appears on the opposite side of
the monitor. A third trial condition, described as neutral, refers to the stimulus
appearing on either side of the monitor, however, two arrows appear pointing both
left and right. The typical study takes place by having participants seated in front
of a monitor, and tasked with immediately reporting the direction of the target
stimuli. This is done by pressing a key on a computer keyboard, representing
the direction of the target cue. In this study, we devise a similar task to the
Posner cueing task. This task is designed to measure the reaction time between
the appearance of the target cue and keyboard press under three conditions. In
studies presented as part of this thesis, we disregard the reaction time, as we employ
models that infer the output at constant time intervals. Instead, we focus solely on
the difference in accuracy between a robot and humans performing our variant of
the Posner cueing task. We replace the arrows and target stimuli utilized in the
original Posner cueing task with multimodal social cues. This allows us to evaluate
the ability of humans in localizing sound direction of arrival, in the presence of
non-verbal visual social cues.

Social cues attract attention more prominently than salient (bottom-up) objects.
Studies show that head orientation is a primary social cue for triggering the reflexive
attention of an observer [191]. Studies by Parisi et al. [198] and Fu et al. [90] on
audiovisual social cueing show that lip movements are more salient to humans than
arm movements when tasked with localizing sound. This is due to the physical
association between lip movement and speech [283]. Consequently, this imposes
a strong bias on the participants, directing their attention toward the auditory
target’s location. Therefore, we conduct a study similar to that introduced by
Parisi et al. [198] while obscuring lip movements and replacing the deictic social
gestures used in their study with head orientation. We present the participants
with short videos of three virtual avatars, two standing on either side facing each
other, and one avatar in the middle facing the observer. The avatars wear medical
masks to conceal their lip movements. The avatar in the middle orients its head
toward the avatar on either side, while the word ‘hello’ is transmitted through
stereo speakers. In Figure 7.1, we illustrate the conditions to which the observers
(participants) are exposed. When the direction of the avatar’s gaze and sound
location match, this is what we describe as the congruent condition. A mismatch
in direction is referred to as the incongruent condition and the neutral condition
does not involve gaze movement, while the sound arrives from either side.

To assess whether a social attention model exhibits similar cognitive attention,
we adapt the GASP model introduced in Chapter 3 to the social cueing task and
mount it on a robotic platform. The GASP model integrates social cues to predict
saliency. The social cues required for our task match those integrated by the
GASP model, namely, gaze-following, which indicates the observed social actor’s
target of attention, and gaze estimation, which informs the model on the actor’s
gaze direction. The GASP model additionally integrates an audiovisual saliency
predictor with the aforementioned social cues. However, the saliency predictor
operates on monaural auditory input, which is insufficient to localize sound. We,
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Right Audio
Incongruent

Left Audio
Congruent

(a) Left Gaze

Left Audio
Incongruent

Right Audio
Congruent

(b) Right Gaze

Left Audio
Neutral

Right Audio
Neutral

(c) Neutral Gaze

Figure 7.1: The six combinations covering the three congruence conditions—
congruent, incongruent, and neutral. The avatar is the middle either (a) looks to
the left while the audio arrives from the left (congruent) or right (incongruent)
speaker, (b) looks to the right while the audio arrives from the right (congruent)
or left (incongruent) speaker, and (c) looks straight-ahead while the audio arrives
from either speaker (neutral).

therefore, modify the DAVE [245] saliency predictor used by the GASP model, by
extending it with an additional auditory input channel to encode stereo audio. We
describe it as the binaural DAVE model hereafter. Binaural DAVE is an audiovisual
Sound Source Localization (SSL) model that attends to regions in the observable
visual field from which the sound is estimated to arrive.

Our objective in this study is to adapt our social attention model for predicting
the target of attention rather than exclusively localizing sound. For instance, using
a unimodal SSL model will likely yield better results than an audiovisual SSL, since
the former receives auditory input that is undistorted by visual cues. However, we
rely on a binaural audiovisual model to evaluate the effect of incongruency between
visual and auditory social cues on our social attention model. Additionally, by
using the binaural audiovisual model, we can evaluate how our social attention
model measures in comparison to humans under similar conditions. Finally, we
assess the efficacy of using the GASP model in tandem with binaural DAVE on
a physical robot. To achieve that, we employ the iCub [171] robot, a humanoid
robot that is compatible with our study design due to its anthropomorphic and
biomechanically-inspired structure—binaural microphones mounted on either ear
and cameras attached to the pupils of its eyes.
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7.1.2 Sound Source Localization

Recent studies have shown that the typical human brain partially processes natural
sounds in the visual cortex [261]. Interestingly, blind individuals who rely on
echolocation also localize sounds in the visual cortex [189] as evidenced by the
observation of retinotopic-like1 maps in the early visual cortical processing areas,
on exposure to binaural sound recordings. These findings show that the human
processes auditory information in the same regions dedicated to processing vision,
and that brain regions are organized by task rather than sensory modalities. More
importantly, we infer that auditory stimuli can influence our visual perception, and
consequently, our visual attention.

By relying solely on visual stimuli, we can, for instance, attend to active speakers
by observing their lip movements, or know with great certainty that a musician is
playing an instrument by simply watching them perform. Inferring that a sound
results from motion is reasonable, yet is not a sufficient assumption. However,
knowing that a sound is produced by a source at a given location, would no longer
require us relying exclusively on such inductive reasoning. We can do so by jointly
localizing the sound source and attending to the movement. To localize sound,
humans rely on several cues, including the interaural time and level differences
between the auditory stimuli arriving at either ear. In other words, perceiving
sound from both ears (binaurally) is a prerequisite for accurate sound localization.
However, measuring the time or level difference only allows us to estimate the
azimuth of sound. The shape of the pinnae, the Head-Related Transfer Function
(HRTF) [182], learned experiences, spectral features, and cues from other modalities
such as vision, all assist in estimating the elevation of sound.

Researchers have more recently sought to integrate auditory information into
computational models, designed for predicting visual attention [245, 256, 121,
270]. However, these approaches rely on monaural audio, which does not allow for
the accurate localization of sound in videos. To create robotic or computational
systems that can localize binaural sound sources in the vertical and horizontal
planes, the most prevalent techniques involve estimating the HRTF [116], conducting
spectral feature extraction [85], and integrating audio and visual information [207].
Wu et al. [268] propose a binaural audiovisual model for localizing sound. Their
training procedure involves applying spatial perturbations to the auditory signal.
The auditory stream encoders are gated with the visual streams at multiple stages,
maintaining sequential and spatial knowledge by utilizing ConvLSTM [232] blocks.
Finally, the model predicts the sound location map indicating the sound intensity
at various locations within the visible field of view. Rachavarapu et al. [207] design
an end-to-end model that localizes sound based on synthesized binaural audio. The
synthesis model is supervised by the localization model, which in turn relies on
the generative synthesis model. Such a closed-loop approach allows the model to
constantly refine the predictions as it is further trained. These models either apply

1Retinotopic maps are fMRI representations matching visual input from the retina to the
visual cortical neurons. Retinotopic-like mapping measures eccentricity in sound and matches it
to visual eccentricity in the visual cortex.
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multiple transformations to images and audio [268] or involve multiple stages [207].
Our approach uses a two-stage inference pipeline. Integrating it with existing
binaural models would significantly increase execution time, making it unsuitable
for real-time applications.

To assess the influence of auditory stimuli on visual attention and localization,
we construct a deep neural model that predicts visual attention in videos with
stereo sound, primed by binaural audio to enable localization. We extend a saliency
prediction model [245], trained to predict the attention of a group of observers
watching audiovisual content, under the free-viewing condition. Our extension
involves the addition of an auditory stream to learn features arriving from two
separate audio channels instead of one. Given the feed-forward structure and
relatively low parameter count of the model, it allows for the parallelization of
the auditory and visual stream encoders during inference. This makes it suitable
for near-real-time applications, as the latency is negligible compared to previous
binaural audiovisual localization models.

7.1.3 Binaural Deep Audiovisual Embedding Model
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Figure 7.2: Our binaural DAVE model architecture for multimodal audiovisual
sound source localization. The model receives two audio channels and a video
sequence as input, and encodes each stream using a separate 3D-ResNet [105].

Our architecture is based on the Deep Audiovisual Embedding (DAVE) [245]
model. In its original form, the audiovisual monaural DAVE model encodes input
from one video and one audio stream, which are projected onto a feature space
of 3D-ResNets [105] (one for each input stream). 3D-ResNet extends the ResNet
model [109] to operate on multiple frames by replacing 2D convolutional layers
with their 3D counterparts. Its encoder is followed by a convolutional saliency
decoder that upscales the latent representation and provides the corresponding
saliency map.
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In this work, we extend the DAVE model to accept binaural input. This
binaural extension follows a similar structure to the monaural DAVE model, as
shown in Figure 7.2. However, the main difference is that we employ two 3D-
ResNets to process the auditory modality rather than the original single 3D-ResNet
for processing monaural audio. The output of each stream is concatenated, encoded,
and downsampled using a two-dimensional 1× 1 convolutional layer. This layer is
responsible for guaranteeing that the dimension of the feature produced by this
branch of our architecture matches that of the features produced by the original
DAVE model’s audio-stream 3D-ResNet. Our extension of the DAVE model not
only introduces another source of input but enables sound localization as it allows
the model to learn patterns that distinguish the audio signals arriving at either
auditory stream.

We initialize the binaural DAVE with the pre-trained parameters of the audiovi-
sual DAVE [245]. The left and right auditory streams are initialized with identical
parameter weights extracted from the 3D-ResNet auditory stream of the monaural
variant. The 1× 1 convolutional layer that encodes the concatenated audio features
is initialized using the normalization method proposed by He et al. [108]. All
model parameters are optimized except for the video 3D-ResNet’s, which are frozen
throughout optimization following the DAVE model’s training procedure [245].

7.1.4 Dynamic Saliency Prediction

The process of predicting social attention in GASP (introduced in Chapter 3
is separated into two stages. The first stage, Social Cue Detection (SCD), is
responsible for extracting social cue representations from a given audiovisual
sequence. Figure 7.3a depicts the architecture of the SCD stage. Given a sequence
of images and their corresponding representations, the GASP saliency prediction
model then infers the corresponding salient region by integrating the social cue
representation sequences. The overall integration pipeline followed by the GASP
model is shown in Figure 7.3b and detailed in Chapter 3.

Based on the implementation detailed in Section 3.2, the SCD stage comprises
four modules, three of which are dedicated to extracting a different social cue
and one for audiovisual saliency prediction. Those modules include gaze following,
gaze estimation, and facial expression recognition. For the current task, however,
the facial expression recognition module is not integrated into the SCD pipeline.
This is due to the virtual avatar faces being partially occluded and therefore, not
displaying complete facial expressions. In order to closely replicate the human study
described by Fu et al. [88], the iCub robot receives auditory stimuli from both of
its microphones, simulating binaural hearing in humans. The audiovisual saliency
prediction module integrated into the SCD stage is designed with a monaural audio
stream. To operate on binaural stimuli, we replace the saliency prediction module
with a binaural audiovisual Sound Source localization (SSL) model, denoted by
the SSL model in Figure 7.3a. The binaural SSL model architecture is shown
in Figure 7.2 following the structure described in Section 7.1.3.

The video streams used as input are split into frames and their corresponding
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(b) The GASP model for sequential integration.
IMG: Input Image; SSL: Sound Source Localization; GE: Gaze Estimation;
GF: Gaze Following.
Rep.: Representation Transformation; Enc.: Modality Encoder.

Figure 7.3: The SCD (a) is the social cue detection stage in which the representa-
tions of the sound source localization (SSL) and social cues are extracted, whereas
GASP (b) is our social attention model receiving input from the SCD stage. m̂⟨t′⟩

x,y

represents the fixation density map predicted by the model at timestep t′. For
illustration purposes only, the prediction is colorized (RGB jet colormap), with the
color red indicating the peak on the fixation density map.
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auditory chunk. For every video frame and corresponding audio chunk, the SCD
stage extracts social cue and SSL representations, which are then propagated to the
GASP model. The Directed Attention Module (DAM) weighs the representation
feature map channels to emphasize those that represent high unexpectedness with
respect to their predictions. Convolutional layers further encode those weighted
feature map channels. In Figure 7.3b, these layers are denoted by Enc. (for encoder).
The encoded feature maps of all video frames are then integrated using a recurrent
extension of the convolutional Gated Multimodal Unit (GMU) [17]. The GMU’s
mechanism weighs the features of its multimodal input. The convolutional variant
of the GMU which we employ accounts for learning spatial properties of the input
features. The recurrent integration module of the GASP model considers the entire
sequence of frames by performing the gated integration at every timestep.

In this work, we rely on the Late Attentive Recurrent Gated Multimodal Unit
(LARGMU) GASP variant due to its better performance compared to other model
variations as shown in Section 3.5.2. The LARGMU’s recurrent structure allows
it to integrate sequential features. Adding a soft-attention mechanism based on
the convolutional Attentive Long Short-Term Memory (ALSTM) [63] prevents
gradients from vanishing as feature sequences get sufficiently large. LARGMU is
a late integration model, meaning that the gated integration is performed after
the input channels are concatenated and, in sequence, propagated to the ALSTM.
Additionally, we retain the Directed Attention Module (DAM) of LARGMU to
avoid the GASP model relying exclusively on the binaural DAVE SSL model.

7.1.5 Binaural Gated Attention for Saliency Prediction

We employ the pretrained DAM+LARGU variant of the GASP model excluding
the facial expression recognition input stream. We replace the audiovisual saliency
detector with the sound localization variant of the DAVE model, binaural DAVE.
In Section 3.5.4, we show that replacing saliency predictors does not require re-
training GASP, allowing us to plug in the SSL model in place of the saliency
prediction model without fine-tuning the sequential integration model’s parameters.

GASP receives four sequences of data as input, one sequence of consecutive
frames of the original video, and three sequences of feature maps, one for each
model in the SCD stage. In our study, we capture sequences of 10 frames (timesteps
t′ : 0 to t′ : 9 as shown in Figure 7.3b). The number of frames received as input by
each model in the SCD stage varies due to dissimilarity in their expected inputs.
The sound localization model receives a sequence of 16 frames as input, whereas the
gaze estimation and following models receive sequences of 7 frames each. A more
detailed explanation of how the frames are selected based on the timestep being
processed is provided in Chapter 3. The auditory input is captured as a one-second
chunk and propagated to each audio 3D-ResNet of the SSL model. In this study,
the GASP model is embodied in the iCub robot which is exposed to the same series
of one-second videos as were the participants. The one-second chunk used as input
to the binaural SSL model corresponds to the entire audio recording per video.

126



7.1. Audiovisual Social Cueing

7.1.6 iCub Eye Movement Determination

The social cue detectors and saliency predictor extract features for the previously
acquired audiovisual frames during the auditory and visual acquisition phase.
Following the detection and generation of spatiotemporal maps, the GASP model
predicts a fixation density map m̂⟨t⟩ : Z2 → [0, 1] for a given frame. The peak is
registered in pixel coordinates and remapped to scalar values within the range of
∈ {−1, 1} in both x and y axes, such that:

p̂x,y = −1 +
2 · argmaxx,y m̂(x, y)

m̂X,Y

, (7.1)

where p̂x,y represents the peak location in the normalized range and m̂X,Y are the
width and height of the predicted fixation density map in pixels. We actuate the
robot to look toward the peak. For simplicity, we assume the camera view to be
independent of its location relative to the playback monitor. For all experiments,
we control the eye movements of the iCub, disregarding vergence effects, microsac-
cades, and fixation duration. The positions are expressed in Cartesian coordinates,
assuming the monitor to be at a distance of ∼ δz from the image plane. We scale
p̂x,y by a factor of αx,y = {.35, .3} to limit the viewing range of the eyes. We then
convert the Cartesian coordinates to spherical coordinates:

p̂ϕ = atan

(
αy · p̂y

δz

)
,

p̂θ = atan

(
αx · p̂x√

δ 2
z + (αy · p̂y)2

)
,

(7.2)

where p̂ϕ and p̂θ are the pitch and yaw angles respectively. These angles are used
to actuate the eyes of the iCub such that they tilt ∼24◦ and pan ∼27◦ at most2.

7.1.7 Study Design

Task and Procedure

The participants began the experiment with 30 practice trials and entered into the
formal test when their accuracy of practice trials reached 90%. Each condition was
repeated 96 times, with a total of 288 trials separated into four blocks. There was
a 1-minute rest break between every two blocks. The time duration for each trial
was set to 1900-2300 ms, and the formal test lasted for 12 minutes per participant.

In each trial, participants watched short video clips with congruent, incongruent,
or neutral social cues. The trials were repeated with the iCub robot as shown
in Figure 7.4. The videos showed three virtual avatars, with one in the middle
looking to the right or left. Virtual avatars were chosen over recordings of humans,
as the experiment requires strict control over the avatar’s behavior, both in terms of
timing and exact motion. By using synthetic data as the experimental stimuli, it can

2The iCub can tilt and pan its eyes in ranges of ∈ {−40◦, 40◦} and ∈ {−45◦, 45◦} respectively.
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(a) Human Study (b) Robot Study

Figure 7.4: The experimental setup shows a participant (a) engaging in the formal
test with headphones to hear the auditory stimulus, and a keyboard to input
whether the sound arrived from the left or right speaker. Similarly, the iCub robot
is shown (b) engaging in the test having headphones playing back the auditory
signal and responding to the target by gazing toward it.

be ensured, for instance, that looking to the left and right are exactly symmetrical
motions, thus avoiding any possible bias. Moreover, using three identical avatars
that are only different in terms of clothing color also alleviates a bias towards
individuals in a real setting. The avatars were created using a data generation
framework for research on shared perception and social cue learning [134]. The
localized sounds were created using a head-related transfer function3 that modifies
the left and right audio channels to simulate different latencies and damping effects
for sounds arriving from different directions.

During the experiment, the participants were asked to determine as soon and
as precisely as possible, whether the auditory stimulus originated from the avatar
on the left or the right. The participants decided on the direction by pressing
the keys ‘F’ and ‘J’ on the keyboard, corresponding to the left and right avatars,
respectively. The participants’ responses during the display of the auditory target
and the second fixation were then recorded. The stimulus display and response
recording were both managed by E-prime 2.0 4.

We reported the Stimulus-Response-Compatibility (SRC) in our results. The
SRC effect measures performance in the stimulus-response by comparing the error
rates under the congruent and incongruent conditions:

SRC = ERINC − ERCON , (7.3)

where SRC represents the difference between the error rates under the incongruent
ERINC and congruent ERCON conditions. The larger SRC effect may be accom-
panied by the weaker top-down control, dysfunction, or immaturity of conflict
control [60, 169].

3https://sound.media.mit.edu/resources/KEMAR.html
4https://pstnet.com/products/e-prime/
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Experimental Setup

The binaural DAVE was fine-tuned on a subset of the FAIR-Play dataset [94]. The
FAIR-Play dataset consists of 1,871 video clips of single or multiple individuals
playing musical instruments indoors. Auditory input is binaural with the sound
source location maps provided by Wu et al. [268]. We fine-tuned the DAVE
variants using the 5-fold splits with five training trials per model variant and
fold—monaural, binaural, and visual-only—each trial with a random seed used for
parameter initialization. Eventually, each model variant was trained for a total of
25 trials (5-folds × 5 random initialization of parameters).

Similar to the monaural DAVE, the loss of the binaural DAVE model was
computed as the Kullback-Leibler divergence between the predicted and ground-
truth sound location maps at the last timestep of the 16-frame sequence. The input
frames, sound channels, and ground-truth maps were together flipped at random
during training as an augmentation transform. We used the Adam optimizer
with β1 = .9, β2 = .999, and a learning rate of .001. The model was trained for
five epochs with mini-batches containing four sequences of 16 visual frames, each
corresponding to one-second stereo recordings of audio. An NVIDIA RTX 3080 Ti
with 11 GB VRAM and 32 GB RAM was used to train all DAVE variants.

Given the close resemblance of audiovisual sound localization to the saliency
modeling task, we relied on metrics commonly used to evaluate the latter [43]. We
measured Pearson’s Correlation Coefficient (CC) and similarity (SIM) between the
ground-truth and predicted maps, to quantify the performance of our model. CC
measures the linear correlation between two normalized variables, whereas SIM
signifies the similarity between two distributions. A similarity of 1 indicates that
any two distributions are identical.

Participants watched the short, 3-avatar videos under normal indoor light
conditions. Auditory noise in their surroundings was minimal, and the room
acoustic effects were negligible since the sound was played directly through on-ear
headphones. In our 3-avatar scenario, the auditory directions were frontal left and
frontal right at 60◦, corresponding to the positions where the peripheral avatars
stand. During the experiment, the participants sat positioned 55 cm from the
monitor at a desk and wore headphones, as depicted in Figure 7.4a The human and
robot experimental setups closely resembled each other as shown in Figure 7.4b,
allowing us to simulate the environmental setting experienced by the participants.

However, some adjustments were required to replicate the human experiments
on the iCub head as closely as possible. First, the iCub head was placed at a
distance of ∼30 cm from a 24-inch monitor (1920× 1200 px resolution), as depicted
in Figure 7.4b. This distance is, however, shorter than the 55 cm distance the
participants sat from the computer monitor. The distance reduction was performed
so that the iCub robot’s field of vision covers a larger portion of the monitor.
Since the robot lacks foveated vision, the attention is distributed uniformly to all
visible regions, causing the robot to attend to irrelevant environmental changes
or visual distractors. Second, the previous robot’s eye fixation position needed
to be retained as a starting point for the next trial to provide scenery variations
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to the model. Direct light sources also needed to be switched off to avoid glare.
Once the experimental setup was ready, the pipeline started the video playback in
full-screen mode, simultaneously capturing a 30-frame segment of the video using a
single iCub camera5 along with one-second audio recordings from each microphone6

mounted on the iCub robot’s ears. The video segments were propagated directly
from the iCub robot to the neural model pipeline using the YARP [170] middleware.
Since YARP transmits messages with a low latency and is supported by the iCub
robot, we chose YARP for image transfer. The audio chunks on the other hand
were transmitted using the ZeroMQ [113] middleware given its lower packet drop
rate compared to YARP. Switching between different middleware was facilitated
using Wrapyfi (detailed in Chapter 5), a Python wrapper with multi-middleware
support, to distribute computing and integrate robots with deep neural models.

The iCub head shifted its eyes toward the auditory target. This differs from
how participants responded to the stimuli. The participants provided feedback by
pressing a key indicating direction. The robot’s direction of gaze on the monitor,
whether closer to its leftward or rightward edges, is analogous to humans pushing a
button indicating the side, allowing us to compare humans and the robot on this
basis. ER can be adequately measured and analyzed as the robot response. One-way
repeated measures ANOVA is used to test the SRC effects of the robot’s response
under the three congruency conditions (congruent, incongruent, and neutral). All
post hoc tests in the current study use Bonferroni correction. Additionally, an
independent t-test is conducted to compare the difference in SRC effects between
humans and the robot.

Participants

37 participants (female = 20, male = 17) took part in this experiment. Participants
were between 18 and 29 years of age, with a mean age of 22.89 years. All participants
reported no history of neurological conditions (seizures, epilepsy, stroke, etc.) and
had either normal or corrected-to-normal vision and hearing. This study was
conducted following the principles expressed in the Declaration of Helsinki. Each
participant signed a consent form approved by the Ethics Committee of the Institute
of Psychology, Chinese Academy of Sciences.

7.1.8 Results

Binaural Sound Source Localization

We compared the predicted sound location maps against the ground-truth maps for
all video frames. The input consisted of the preceding 15 frames of a given video’s
final frame at timestep t : 15 including the final frame. The evaluation results were
reported following the fifth training epoch, given that the validation loss increased
after the fifth epoch. The binaural DAVE outperformed both the audiovisual and

5http://wiki.icub.org/wiki/Cameras
6http://wiki.icub.org/wiki/Microphones
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Table 7.1: Average 5-fold cross-validation results on the FAIR-Play dataset using
our binaural audiovisual DAVE model for sound source localization. Bold denotes
the best scores.

Model Architecture CC↑ SIM↑
Visual Only DAVE 0.5030 ± 0.0032 0.3972 ± 0.0018
Audiovisual DAVE 0.6068 ± 0.0027 0.4398 ± 0.0017
Binaural Audiovisual DAVE (Ours) 0.6411 ± 0.0016 0.5050 ± 0.0009

visual-only variants of DAVE, as shown in Table 7.1. The variance across five trials
was also lower for the binaural DAVE indicating higher stability given the implicit
information about the source locations.

Error Rates in Robot Prediction

A repeated measures ANOVA with a Greenhouse-Geisser correction revealed that the
robot’s ER differed significantly between different congruency conditions, F (2, 34) =
8.02, p < .01, η2p = .18 (see Figure 7.6c and Figure 7.6d). Post hoc tests showed
that the robot presented significantly lower ER under the congruent condition
(mean ± SE = .37± .01) than the incongruent condition (mean ± SE = .41± .01),
p < .01. However, there was no statistical significance in the difference between
the neutral condition (mean ± SE = .38 ± .01) and the two other congruency
conditions, p > .05 in both cases.

Human-Robot Comparison

Results of the t-test displayed that the robot had a significantly larger SRC effect
(mean ± SE = .04± .001) than humans (mean ± SE = .01± .01), t (72) = 2.35,
p < .05 (see Figure 7.5).
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Figure 7.5: SRC effects comparison between humans and the iCub robot.
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Figure 7.6: Error rates of (a) participants under different congruency conditions –
group level, (b) participants under different congruency conditions – individual
level, (c) the iCub robot under different congruency conditions – group level, and
(d) the iCub robot under different congruency conditions – individual level.

These results verify that similarly to humans, the robot’s response accuracy is
significantly better (p < .01) in a congruent condition than in an incongruent one.
This similarity is further corroborated by the lack of significant difference (p > .05)
in both the humans’ and the robot’s ER in the neutral condition compared to the
other two conditions (see Figure 7.6a and Figure 7.6c).

7.1.9 Discussion

In Section 7.1.8, we observed a significant gap in SIM, but not in CC, between the
binaural DAVE model and other variants. The SIM metric is highly sensitive to false
negatives [43]. Given the objective of localizing sounds in the visual stream, saliency
prediction models would produce maps uncorrelated with regions having high sound
activity. In the case of audiovisual and video-only variants, the models are unaware
of the sound location and rely on the activity observed in the audiovisual and visual
streams, respectively. This implies that those model variants behave like saliency
predictors rather than sound localizers.

In Figure 7.7, we observe that the predictions highly corresponded to the ground-
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Figure 7.7: Qualitative examples showing the binaural audiovisual DAVE predic-
tions on the FAIR-Play [94] test subset.

truth maps, with the exception of incorrect predictions displayed in the last two
columns. We note that such false predictions often occur due to the labels being
provided as constant sound location maps for entire video clips [268]. Changes
during the video in which one musician begins playing at a later time beyond the
start of the clip were ignored, as seen from the example shown in the last column
of Figure 7.7. The musician played the cello as indicated by the hand movement in
transition between the timesteps t : 0 and t : 15. The model accurately inferred
the location of the sound source (the cello), given that a majority of the training
samples did not present transitions between sources along the entire clip. We
hypothesize that datasets labeled with higher granularity across time would lead to
better performance.

Compared to the results reported by Wu et al. [268] on the FAIR-Play dataset,
our binaural DAVE model did not perform as well. However, our training and
evaluation schemes are not directly comparable since we have opted for a 5-fold
cross-validation scheme, whereas Wu et al. [268] trained and evaluated on predefined
data splits. Our choice was driven by the fact that all frames in any video clip
were labeled according to the sound source midway through the clip, resulting in a
non-representative ground-truth map for some videos. Using predefined train and
test sets as those proposed by Gao and Grauman [94] for the FAIR-Play dataset
would not have been suitable for this task specifically, given the labels provided by
Wu et al. [268]. A worse score achieved on those sets is not indicative of the model’s
generalization capability, since more videos with final-midway frame mismatch—in
terms of sound source—could hypothetically belong to the test set. This could
lower the model’s score but does not necessarily indicate worse performance, since
the model could accurately localize sound, even when the ground-truth is incorrect.

In Section 7.1.8, the robot showed significantly larger SRC effects with higher
variability than humans. Although minimal, the iCub robot’s ego noise makes audio
localization more challenging than it is for a human, who is capable of adjusting
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to the surrounding noise in a relatively short period. In contrast, the iCub robot
relied solely on the learned behaviors of its pretrained model, without any form
of adaptation. Moreover, the form of response differed between humans and the
robot. The human participants responded to the stimuli by pressing a key that
corresponds to the auditory cue’s direction, whereas the iCub robot shifted its gaze
toward the target. The social attention model running on the robot predicts a
fixation density map, representing the most likely region a human would tend to
fixate in a multimodal audiovisual scenario. However, the difference between the
tasks presented to the participants and for which the robot was trained led to a
higher difference in the SRC effects.

We additionally attribute the lower performance of the robot to the difference
in training and evaluation environments. The model was trained on streamed
videos—original video files from the datasets on which our models were trained
and evaluated—that covered the entire perceptual field and were of higher quality
than what the robot perceived with its sensors. This includes the robot’s camera
resolution and its distortion effects, the quality of the headphones and the robot’s
microphones in terms of signal-to-noise ratio and sampling rate, aliasing effects
arising from capturing the display monitor, and the display monitor’s resolution
and refresh rate. Physical environmental factors, such as the lighting conditions,
reflections on the monitor, and distractors such as the edges of the monitor or items
within the robot’s view, place the robot at a disadvantage compared to humans.

The trends in error rate difference across the three congruency conditions were
similar for humans and the robot as shown in Section 7.1.8. This indicates that when
social and auditory cues are in conflict, human attention to the target audio reduces,
which is a trait that is learned by the social attention model as well. Moreover, it
is evident that the social attention model attends to sounds and that the sound
source is often identified by the SSL model. When the visual cue guides attention
to a target opposing the sound location inferred by the SSL model, it leads to
lower accuracy in prediction. Therefore, we deduce that the social attention model
does consider the information arriving from the SSL model. Otherwise, changing
the location of the sound would not affect the model, and more importantly,
the congruent condition would not result in a better performance. However, our
model performs better under congruent and neutral conditions, indicating that the
direction of the social cue and the sound location, guide our model’s attention.

The purpose of our study was to examine whether conscious decisions made in
solving an audiovisual social cueing task are reflected in the attention behaviors
learned with a social attention saliency model. However, such models represent the
attention patterns of a group of observers, yet humans express different attention
behaviors on an individual level [126]. Therefore, we design a study in Section 7.2,
to evaluate robots deploying models that consider these differences.
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7.2 Personalized Social Attention

7.2.1 Introduction

Scaling social robot studies is challenging since most depend on human perception
arising from interactions with the robots. Recruiting a large number of human
participants for conducting these studies is generally impractical in terms of time
and resource investment. Robotics simulators have emerged as a solution to the
scaling problem in the social robotics sphere. However, although the physics and
aesthetic realism of robotics simulators has been advancing rapidly, the fidelity
of social cue (socialness) simulation is still limited. For instance, automating the
testing of embodied social models, such as those employed for the social navigation
task [50], is made possible with large generative language and multimodal models.
Such approaches rely on simulating social behavior in the form of abstract action
primitives using generative models [166]. However, the level of abstraction and
quality of generated outputs could misrepresent real-world conditions under which
the robot operates, potentially leading to inaccurate and unsafe behavior [167].

Moreover, the spectrum of social cues displayed by humans during social inter-
actions is broad and context-dependent. Such social cues include facial expressions
and gaze direction among other [262]. Considering social cues is especially relevant
when evaluating social attention models. Social attention—saliency and scanpath
prediction—models predict human gaze by integrating social cues. To address the
limitations of social cue simulation, we present a cognitive robotic simulation scheme
that allows us to evaluate social attention models in physical environments. We
simplify the problem while still maintaining similarity to the human data collection
setup. Additionally, we assume that the physical environment provides a means for
allowing the robot to perceive the pre-recorded stimuli. Our approach, although
tailored specifically for social attention models, can be applied to other social tasks
with varying degrees of complexity.

In more detail, we evaluate our dynamic scanpath prediction model described
in Chapter 4, which infers priority maps, indicating the attention region of the
individual observer. The peak of the priority map defines the gaze target. Actuating
a robot to gaze toward that target, as well as the targets to follow in sequence
would effectively simulate human scanpaths. Our approach involves projecting the
ground-truth priority maps to a simulated environment. The map is projected to a
monitor within the simulator at a distance from the simulated robot, approximately
equivalent to the distance of a real monitor from the physical robot. By controlling
the gaze of the simulated robot to match the physical robot, the view of the
ground-truth priority map resembles the view of the physical robot’s predicted map.
This allows us to compare the ground-truth to the predicted map using common
saliency metrics [43].

Scanpath prediction in near-real-time settings requires models that are robust
to intrinsic factors such as camera resolution, focal length, microphone sampling,
and sensitivity. Additionally, they must be resilient to extrinsic factors like lighting
conditions, background clutter, motion blur, and auditory reverberation. Moreover,
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structuring the acquisition and execution pipelines greatly influences the perfor-
mance of a model, since the movement duration of a robot has to be factored in.
To evaluate the applicability of our scanpath prediction models in physical settings,
we closely mimic the experimental setup in which the datasets—Findwho [272] and
MVVA [158]—were collected, replacing the human observers with the iCub [171]
robot. These datasets are composed of social videos that were watched under
the free-viewing condition [257, p. 26] by multiple human observers, whose eye
movements were collected using an eye tracker. The iCub robot is chosen since it
is capable of moving both its head and eyes, with cameras attached to its pupils
and microphones mounted on both its ears.

7.2.2 Cognitive Robotic Simulation of Scanpath Prediction

Sample Video Frames 

Sample Audio Chunks 

Social 
Cue

Detection

Fixation History

Sequential Integration Peak Detection

Robot Gaze Controller

O/P Buffers Coordinate Conversion

Figure 7.8: The scanpath control pipeline for actuating the robot. Assuming the
current timestep at ⟨t′⟩ : 0, we show the output availability for each component at
the relative timestep. Video and audio sampling are performed in parallel, blocking
all other components to avoid interrupting the atomicity of real-time capture.

Videos in the MVVA [158] and FindWho [272] datasets are played on a monitor
facing the iCub robot [171]. The robot captures those videos with its camera and
microphones. Following capture, the social cue and saliency prediction modalities
are executed and their representations are generated. These representations are
queued in the output buffer along with the fixation history—the preceding fixations
of the observer under test. Concurrently, the sequential integration model operates
on the representations of previous timesteps and predicts an individual observer’s
priority map. The predicted map is propagated to the peak detector. The peak
coordinates are converted to yaw and pitch which are then used to actuate the
physical and simulated robot simultaneously using YARP [170]. The ground-truth
priority map for the last video frame of a given context is channeled to a simulated
monitor. Finally, the metrics are computed and the pipeline is looped until all
videos in the evaluation set are completed. An overview of the execution pipeline is
shown in Figure 7.8. The pipeline defines the steps taken to evaluate our unified
scanpath models in real-time.
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Figure 7.9: The videos are played back in segments on a monitor facing the iCub
robot. Audio chunks and video frames are captured through the iCub’s sensors.
The social cue and saliency features are represented as 2D maps and propagated to
the unified scanpath model, which predicts a priority map.

Audio and Video Sampling

Initially, the videos are played on the physical monitor in one-second chunks and
are paused until the pipeline repeats. During playback, the iCub robot facing
the monitor captures a sequence of images at 10 FPS and audio at 16 kHz. The
video playback is executed as a separate process that awaits a signal to resume.
This signal is transmitted before the iCub begins capturing one-second chunks of
audiovisual frames using its integrated sensors. The communication between the
sampling and playback processes is handled by Wrapyfi (detailed in Chapter 5).
This is performed in a blocking manner to avoid interrupting the capture process.
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Social Cue Detection

We utilize the social cue detectors proposed in Chapter 4. This includes the facial
expression [234] and gaze estimation [130] cue modalities, along with the saliency
prediction [245] modality. The cues are detected, transformed, and represented
as shown in Figure 7.9, following the procedure detailed in Section 3.2. The cue
detectors extract the representations sequentially and maintain frames and chunks
from previously sampled video and audio. As long as the same video is playing, the
frames are queued and processed by the detectors according to their context lengths.
At the beginning of a video, the frames collected are not sufficient to cover the
context length of all detection models. For instance, the DAVE saliency prediction
model requires 16 video frames, however, our samplers return 10 frames only. The
remaining 6 frames would be padded with the last acquired frame and shifted as
more samples are collected. At every timestep, the detected representations are
propagated to the output buffers in the form of a single 2D representation per
modality.

Fixation History

The fixation history is the sequence of fixations that precede the one being predicted
by our sequential integration model (detailed in Chapter 3 and Chapter 4) in the
form of a priority map. The fixation history serves the purpose of providing context
to our model, in order to inform it on the observer priority map to be predicted.
Moreover, the next fixation depends on the previous fixation positions. Without
representing the previous scanpath—sequence of fixations—, the predictions would
be arbitrary. The fixation history module extracts the ground-truth priority map
for a given timestep t′ and propagates it to the output buffers.

Output Buffers

The output buffer represents all queues storing the latest state representations
for each modality, agnostic to the input sampling mechanism. At every output
timestep t′, each modality-specific buffer is queued with a single 2D feature map.
The maximum size for all queues is governed by the context size of the sequential
integration model.

Sequential Integration

We use the scanpath model developed in Chapter 4. We employ two models trained
with the FindWho [272] and MVVA [158] observer data. More specifically, we
evaluate the unified integration model. The unified integration model is similar in
structure to the sequential integration GASP variants, additionally extended with
the fixation history module. The Directed Attention Module (DAM) is trained
on the fixation density maps of a group of observers, whereas the Late Attentive
Recurrent Gated Multimodal Unit (LARGMU) is trained on the priority maps of
all observers individually.
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(a) Physical environment showing video playback on a monitor facing the iCub robot.
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(b) Projection of priority map in simulation.

Figure 7.10: Environmental setup where the (a) external view of the physical
environment (left) and the region of capture (right) upon which the priority map is
inferred, and (b) captured camera view from the simulated environment (right), in
which the ground-truth priority map is projected on a virtual monitor followed by
color-correction and evaluation against the inferred map.

We detail the peak detection and coordinate conversion schemes in Section 7.1.6,
replacing the GASP model with our scanpath model predicting a priority map in
place of the fixation density map. On extracting the priority map from the scanpath
prediction model’s output, the peak of the priority map is registered as the target
of gaze. The robot captures the images and audio from the environment, applies
the scanpath prediction model to the captured stimuli, and directs the robot’s gaze
toward the peak. Simultaneously, the ground-truth priority map is projected to a
monitor within a simulated environment as shown in Figure 7.10, and the peak of
the priority map is detected relative to the monitor. Finally, the predicted priority
map is evaluated against the simulator-projected ground-truth map.

Robot Gaze Controller

The iCub [171] robot is used in all experiments for evaluating performance on the
MVVA [158] and FindWho [272] datasets as shown in Figure 7.11. The MVVA data
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collection procedure does not enforce fixing the head pose. To accommodate the
influence of the head rotation, we utilize the iKin [217] library. More specifically,
we aim to evaluate gaze shifts by relying on the iCub robot’s vestibulo-ocular reflex
functionality to compensate for the head movements resulting from fixating on a
target location. The integration of such an effect is necessary due to its impact
on stimuli capture as well as the fixations following the current one at any given
timestep. For the FindWho evaluation trials, the head pose is fixed such that the
iCub’s line-of-sight is perpendicular to the monitor. We, therefore, control the eyes
directly by specifying the target of gaze as the peak of the predicted priority map
in the visible pixel space.

(a) MVVA Evaluation (b) FindWho Evaluation

Figure 7.11: The iCub robot executing the evaluation pipeline based on the (a)
FindWho [272] dataset allowing for eye movements only, and (b) MVVA [158]
dataset allowing for head and eye movements. The physical robot (bottom right)
observes clips (left) and predicts a priority map (top right) according to the observer
under test. The ground-truth priority map is projected to a monitor in simulation
(center right), after which the projected ground-truth map and predicted map are
compared in terms of the NSS and AUCJ metrics.

7.2.3 Study Design

Mapping Prediction to Ground-Truth Gaze

Videos displayed on a monitor would naturally require a different ground-truth
mapping methodology to direct streamed video comparisons. To avoid ambiguity
in mapping fixation positions, we project the ground-truth priority map onto a
monitor within the iCub simulator, as shown in Figure 7.10b. Knowing the robot’s
distance from the monitor within the physical environment, we mirror the head
and eye movements registered on the physical robot within the simulator, providing
an approximate position of the intended fixation. We adjust the ground-truth
priority maps to match the size of the monitor in the physical environment from
the perspective of the observer. Given the distance from the monitor δz during the
data collection phase, we can approximate the width and height of the projected
ground-truth map by repositioning the simulated monitor at a distance of δz from
the robot. Next, the simulated monitor is resized to match the size of the physical
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Table 7.2: Experimental setup and dataset properties collected under the free-
viewing condition.

Property MVVA [158] FindWho [272]
Distance to monitor ∼ 55 cm ∼ 60 cm
Monitor resolution 1280×720 px 1280×720 px

(16:9) (16:9)
Monitor size 23-inch 23.8-inch

Video duration 10-30s ∼ 20s
Frames per second 30 25

Audio channels Stereo Monaural
Head-pose Free Fixed
Eye tracker EyeLink1000 Plus7 Tobii X2-608

No. training videos 210 (70%) 46 (70%)
No. validation videos 30 (10%) -

No. test videos 60 (20%) 19 (30%)
No. observers 34 (1 excl.) 39

one and the view from the robot’s left eye is captured. Finally, the simulated
capture is compared to the predicted priority map from the physical environment.

Experimental Setup

In this study, we utilized the pretrained unified scanpath model with the best per-
formance. The integration architecture (DAM + LARGMU, context size T ′ = 10),
yielded the best results for a majority of the experiments on both the MVVA [158]
and FindWho [272] datasets. The training pipeline is detailed in Section 4.4.

Given the procedural differences in the collection of the MVVA and FindWho
datasets, we considered the properties shown in Table 7.2. However, accounting for
the robot’s visual field and camera resolution, we did not fully align our setup with
those properties. For evaluating the MVVA dataset, the corresponding integration
model was deployed on the robot. We placed the robot at a distance of ∼ 30 cm
from a 23-inch monitor. For the FindWho dataset evaluation, we moved the robot
further from the monitor to a distance of ∼ 35 cm and deployed the integration
variant of our scanpath prediction model, trained on the FindWho dataset. In
alignment with the datasets’ collection protocols, we set the robot to move its eyes
only when evaluating the FindWho dataset. As for the MVVA dataset evaluation,
we used the iKin [217] library to direct the robot’s gaze shift through head and
eye movements. Both datasets were evaluated separately. The stimuli videos were
replayed a number of times equivalent to the number of individual observers. For
each observer, the fixation history consisted of the preceding ground-truth fixations
on observing the specific video frames and audio chunk. The videos were played
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back at 1 s intervals and captured using the iCub robot’s left camera. Audio was
played back also for 1 s intervals through on-ear headphones, placed on the iCub
robot’s microphones.

During the physical evaluation, the social cue detectors and the GASP model
were distributed among two NVIDIA GeForce GTX 970 GPUs with a total of 8GB
VRAM and 32GB RAM.

7.2.4 Participants

Experiments on the physical robot, evaluating all observers individually required
∼ 13 hours in total for the FindWho dataset (39 observers, 19 videos), and ∼ 42
hours for the MVVA dataset (33 observers, 60 videos). We provide more details
about the participants in Section 4.4.1.

7.2.5 Results

Pearson correlation analyses were conducted to measure the alignment between
robot-captured metrics and direct streamed video metrics over one-step and multi-
step-ahead time intervals. The robotic experiments were only conducted for one-
step-ahead predictions. Multi-step-ahead predictions refer to evaluations extending
over multiple future steps. This describes feeding the predicted priority map
back into the fixation history module as future samples are collected, where every
additional step into the future is denoted by t′+N . Here, t′ refers to one-step-ahead
prediction, and N to the number of additional steps ahead.

We evaluated the FindWho [158] dataset on the robot, and measured its
performance in terms of the NSS [43] and AUCJ [43] (described in Section 4.3)
metrics against one-step-ahead and multi-step-ahead streamed video predictions as
shown in Figure 7.12. For the NSS metric, moderate correlations were observed
between the robot-captured and direct streamed videos (r = 0.498), which decreased
with the addition of the steps ahead (r = 0.442 at t′ + 1, r = 0.401 at t′ + 2, r =
0.279 at t′ + 3, and r = 0.336 at t′ + 4). In contrast, the AUCJ metric exhibited
a weak initial correlation (r = 0.165) that turned negative for future predictions
(r = -0.142 at t′ + 1 through r = -0.098 at t′ + 4), indicating a divergence in
attention distribution metrics with step-ahead increments. The full results are
listed in Table A.2.

We evaluated the MVVA [158] dataset on the robot, and measured its per-
formance in terms of the NSS and AUCJ metrics against one-step-ahead and
multi-step-ahead streamed video predictions as shown in Figure 7.13. For the NSS
metric, strong correlations were observed between the robot-captured and direct
streamed videos, starting at r = 0.76 for one-step-ahead, with a gradual decrease
through the steps ahead (r = 0.74 at t′+1, r = 0.68 at t′+2, and r = 0.63 at t′+3).
For the AUCJ metric, a moderate initial correlation (r = 0.48) was observed, which

8https://www.sr-research.com/eyelink-1000-plus
9https://connect.tobii.com/s/x2-downloads
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Figure 7.12: Robot one-step-ahead predictions using the unified late integration
model (DAM + LARGMU, context size T ′ = 10) trained on the FindWho [272]
dataset, compared to the streamed multi-step-ahead predictions in terms of the
(a) NSS and (b) AUCJ metrics. The angular axis indicates the observer identifier,
whereas the radial axis shows the metric score.
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Figure 7.13: Robot one-step-ahead predictions using the unified late integration
model (DAM + LARGMU, context size T ′ = 10) trained on the MVVA [158]
dataset, compared to the streamed multi-step-ahead predictions in terms of the
(a) NSS and (b) AUCJ metrics. The angular axis indicates the observer identifier,
whereas the radial axis shows the metric score.
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gradually increased for future predictions (r = 0.52 at t′ + 1, r = 0.57 at t′ + 2, and
r = 0.59, t′ + 3, and r = 0.59 at t′ + 4), suggesting a strengthening of predictive
alignment in visual attention metrics with step-ahead increments. The full results
are listed in Table A.3.

7.2.6 Discussion

Expectedly, the robot scored lower than the streamed video evaluation in terms of
the NSS and AUCJ metric scores. We found that the observer scores were correlated
for streamed and robot-captured videos, when evaluating on the MVVA dataset.
The correlation was weaker on the FindWho dataset, even tending towards negative
values for the AUCJ correlation, as the number of steps ahead was increased. The
AUCJ metric is sensitive to false-positive predictions. When training and evaluating
on a relatively small dataset, the mean scores are higher, however, the variance is
significantly larger. The unified model trained on the FindWho dataset observed
fewer patterns that are universal (universal attention), biasing the model more
toward the scanpaths of the individual (personalized attention). This resulted in
fewer erroneous predictions overall as evident from the higher NSS score. However,
given the small size of the dataset, some of the observers’ scanpaths were not
learned sufficiently, while others were more similar to the average among the group
of observers, and therefore, predicted accurately.

As for the MVVA dataset, which is approximately three times as large as
the FindWho dataset, the unified model was exposed to more universal attention
patterns. We saw that the robot’s predicted gaze was robust to noise, as the scores
of all participants were highly correlated with one-step-ahead and multi-step-ahead
predictions, both in terms of NSS and AUCJ. Moreover, the larger size of the dataset
meant that the evaluation was a better representative of the model’s performance
in comparison to the smaller FindWho dataset.

We conclude that the unified model is robust to noise, since the input arriving
from the robot’s camera and microphones differed to a large degree from the
streamed videos. The lighting effects, distractors, and lower resolution were not very
detrimental to the robot’s performance, suggesting that our social attention model
can be used in real-world settings to predict personalized scanpaths. We presume,
however, that increasing the number of steps ahead during the robot evaluation
would degrade its performance further. This reduction in performance was observed
for the streamed videos under multi-step-ahead evaluation, suggesting a similar
pattern for the robot as well. Our cognitive robotic simulation approach makes it
possible to improve our social attention models and evaluate their performances on
a physical robot or possibly several robotic platforms, without needing to conduct
Human-Robot Interaction (HRI) studies. This has significant advantages, including
the enabling of reproducible experiments and scaling of experiments beyond what is
possible through HRI. Evaluating the humanlikeness or naturalness of an interaction
with a robot would still require conducting HRI studies. However, our approach
makes it possible to conduct such studies after the models have been refined and
were shown to work sufficiently well in the physical world.
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Discussions and Conclusions

Throughout this thesis, we have tackled challenges extending over several domains,
including machine and deep learning, middleware communication systems, Human-
Robot Interaction (HRI), robotics, and psychology. We primarily focused on
designing an artificial neural network model that integrated information from
multiple social cue modalities to assimilate human social attention. We then
embodied the model architecture and its variants in robotic platforms to evaluate
the robustness of such systems in response to real-world environments and changes.
In order to embody our models, we created a multi-middleware wrapper called
Wrapyfi for establishing communication across different robots, deep-learning models,
and devices. This wrapper allowed us to realize and implement two HRI studies,
providing us with insights into human responses to robotic gaze and social cue
behaviors. Moreover, Wrapyfi made it possible for us to easily replace neural models
according to the task under study, allowing us to evaluate our neural models in
real-world environments on two cognitive simulation studies using a physical robot.
This capability allowed for comparison between human and robot performance on
social attention-related tasks.

We believe our approaches have brought value and expanded the body of science
relating to social robotics. Our social attention models surpassed other saliency
prediction models at the time of development, indicating that the integration of
social cues helped improve saliency model predictions in social interaction contexts.
However, transferring such models to the real world is still challenging. Although
we have circumvented many hurdles that come along with such a transfer, a few
fundamental issues remain to be solved. In this chapter, we discuss challenges that
were addressed and those yet to be tackled, in relation to social attention modeling
and robotic gaze control implementation. We also frame our work within the scope
of the research questions posed in Section 1.3, discuss the application potentials of
our models, and the future directions for extending and improving the methods
elaborated on in this thesis.
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8.1 Modeling Social Attention

In the first part of this thesis, we studied common mechanisms of integrating
and fusing auxiliary social cue representations using neural attention and gat-
ing mechanisms. The objective was to predict the attention target of groups
(saliency) and individuals (scanpaths) under the free-viewing condition upon ob-
serving dynamic audiovisual social scenes. We observed that training our saliency
and scanpath prediction models, given all factors included—gating, attention, inte-
gration method, audiovisual input, dynamic input (video), social cues, and fixation
history—contributed to our social attention models’ state-of-the-art performance.
Our novel procedure in representing social cues as images not only allowed for the
replacement of social cue detectors without retraining the social attention model
but also increased the interpretability of our models. Additionally, we are able to
retain the information resulting from the visual social cue representations.

An alternative approach would have been to project the social cue representations
to a modality other than vision, for instance, describing facial expressions as text
categories or gaze direction in the form of numerical coordinates would hinder
spatial attention and, at best, the training phase would require significantly more
iterations to learn spatial associations. In other words, the location of an event
would potentially be irrelevant given that the shared neural representation of the
map—fixation density map (attention map), sound location map, priority map—
and the social cue category (or coordinates) do not align spatially or correlate
across dimensions.

Another approach, which is more conventional in computer vision and deep
learning, relies on the extraction of features from the latent representations of
backbone models. These backbones would be the social cue detection models
for the purpose of this work. Although the information contained within such
representations could potentially deliver more features than our approach, they
are likely to have different shapes with varying numbers of neural units. This
would therefore require separate encoders for each social cue modality, rendering
the different encoders incomparable to each other. Measuring the contribution of
each modality to the final prediction is not possible, given that the encoder shapes
and unit counts do not match. Moreover, encoding often implies a reduction in
dimension. Although we encoded the saliency and social cue representations, our
encoders are identical in architecture. Hence, the reduction ratio of encoder input
to output is the same, allowing us to replace the saliency and auxiliary social cue
modalities with other models trained for the tasks while reusing the trained encoder
parameters without further fine-tuning.

We note that while our model architectures are suited for representing social
interactions, they underperform when predicting social attention in dynamic scenes
not involving humans (non-social interactions). Although intended by design—our
thesis is aimed at social interactions—such a limitation becomes more prominent
with longer video sequences. Humans could appear in the scene at some point in
time but not during the full interaction. Our approaches employed neural gating
and attention mechanisms that allowed for the propagation of relevant social cue
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and saliency features to the social attention model. This would result in our model
greatly relying on the saliency prediction model fed into it as a prior among other
features, for non-social interactions. However, we also introduced the Directed
Attention Module (DAM) described in Section 3.3.1 within the context of saliency
prediction and its relevance to predicting scanpaths in Section 4.2.3. The DAM
served as a mechanism to avoid shortcut learning [95], which was inevitable given
the approach we followed, where our social attention models relied on pretrained
saliency prediction models. This mechanism, nonetheless, also distorts the saliency
representation, which is detrimental in the case of non-social interactions.

A necessary consideration when adopting an approach such as ours—GASP
variants described in Chapter 3 and extended the variants to operate as a unified
scanpath predictor in Chapter 4—is the reliance on visual representations of features.
In this thesis, we focused on integrating a limited number of nonverbal social cues.
For multimodal social cue detectors or saliency predictors, where the output of each
detector could be represented visually, GASP would be an appropriate choice of
model. However, once features extend beyond the topographical or spatiotemporal
representation domain, projecting those features to the visual domain becomes
challenging. For instance, representing an audio spectrogram as a 2D visualization
is possible, yet the magnitude at each frequency bin is not tied to the location of a
sound source. Although the gating and attention mechanisms in the GASP model
are not restricted to operations on spatiotemporal or 2D representations, we lose
the homogeneity across the modality encoders and the target maps of the DAM.
Due to the reliance of the DAM on the Squeeze-and-Excitation [118] model, which
applies channel-wise attention to the different representations—in the GASP model,
those channels are the social cue modality and saliency prediction representations,
separated by their RGB channels—, learning the saliency based on the inverse (the
inverted stream) of the features as performed by the DAM would potentially assign
arbitrary weights to each channel. Therefore, excluding the DAM from the GASP
model and adapting the modality encoders according to the input shapes would
make GASP suitable for non-spatial representations. However, caution must be
taken when discarding the DAM to avoid propagating a prior to the model that is
highly correlated with the final output representation.

8.2 Controlling Social Robots

In the second part of this thesis, we conducted HRI experiments and performed cog-
nitive simulations on the iCub [171] robot. We also developed a Python framework
for cross-communicating between different neural models, robots, applications, and
platforms using common message-oriented and robotics middleware. Our objective
was to create a tool that would simplify the setting of robotic experiments, enabling
us to evaluate our saliency and scanpath prediction models on physical robots.

We conducted two HRI studies detailed in Chapter 6, which were developed
using our multi-middleware Python framework—Wrapyfi is described in Chapter 5.
In one study described in Section 6.1, we found that the facial expression displayed
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by a robot influenced the collaboration between two humans. Humans completed
the task at a faster rate and attributed higher intelligence to the iCub robot when
the robot expressed ‘happiness’ before initiating the collaborative task. Additionally,
the iCub robot was perceived to be more intelligent on initially establishing mutual
gaze—eye contact with the participant on starting the collaborative game task with
another participant—with the guide, whose role was to verbally assist an acting
participant—human performing the physical action—in completing a collaborative
task and to evaluate the robot on task completion.

In another study described in Section 6.2, we measured the influence on human
perception of having different robots and sensors for accomplishing the same tasks.
We observed that the robot’s interface used for conveying affect impacted the
outcomes of the experiment. For instance, the Pepper [235] robot lacking an
interface for facial expressions, only allowing for LED color changes, reduces the
interpretability of the affective signals in comparison to the robotic facial expressions
expressed by the iCub robot. Moreover, acquiring head poses from a vision-based
model or Inertial Measurement Unit (IMU) readings to orient the iCub robot’s head,
also affected the participants’ impressions of the robot in terms of responsiveness.

These studies were used as a testbed to evaluate Wrapyfi in real-world settings.
Additionally, we demonstrated that with Wrapyfi, sensors, robots, and deep-learning
models can be easily exchanged according to experimental requirements. We note
that the communication between the different components and the number of
interdependent modules required for the operation of such studies demands fine
calibration. Without Wrapyfi, conducting and implementing such studies would
consume significantly more time and effort. Replacing sensors like cameras with
IMUs, allowing an eye tracker with a ZeroMQ [113] API to communicate with a
robot interface running on YARP [170], or readily distributing deep-learning models
across multiple machines, demands careful engineering and major code duplication,
which is what Wrapyfi was designed to simplify.

In Chapter 7, we utilized Wrapyfi to embody the models described within Chap-
ter 3 and Chapter 4 in the iCub robot. These models targeted social attention tasks,
all of which can be expressed through overt attention, namely gaze toward salient or
prioritized regions. We chose the iCub robot as the platform of embodiment for its
advanced gaze capabilities, expressed through humanlike head and eye movements.

In Section 7.1, we studied human attention responses under social audiovisual
incongruence—incongruence occurs when gaze gestures oppose the speech sound
source in direction, congruence occurs when both gaze and speech sound source
directions match, whereas the neutral condition refers to nondirectional gaze (no
head movements) and speech sound direction (monaural audio). Our GASP model
was embedded into the iCub robot in tandem with our binaural audiovisual model
based on the DAVE [245] model. This binaural model allowed for the localization
of sound in audiovisual videos, a task closely related to saliency prediction, differing
only in the training data. The latter receives binaural audio input as opposed
to monaural audio, and its ground-truth maps indicate the location of sound
rather than the attention maps of a group of observers. The robot was exposed to
similar congruency conditions as humans by observing videos of three animated
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humanlike avatars wearing masks. In these videos, one avatar looked straight ahead,
to the left, or the right, while a short speech sound arrived from the location of
either the left, right, or center avatar; under free-viewing on a monitor, the robot
listened to binaural audio and gazed toward a target that was not explicitly defined.
Humans significantly surpassed the robot in recognizing the direction of sound
under all congruency conditions. However, the robot and humans exhibited similar
localization trends under all three conditions. This finding indicates that our social
attention models, although trained on human data for a different task (saliency
prediction), and the participants in this experiment had to simply identify the
direction of sound arrival, the patterns of the cognitively simulated eye movements
on the robot closely matched the human goal-driven decision making patterns.

In Section 7.1, we simulated human responses on the iCub robot by directing its
gaze toward the peak of the attention map predicted by the GASP model. However,
the attention patterns of the individuals differ from those of a group of observers.
Therefore, we adapted our GASP saliency prediction model to predict the scanpaths
of individual observers instead. Following the adaptation, we proceeded to embed
this model on the iCub robot in Section 7.2. In this study, we placed the robot in
front of a monitor, playing videos from the two datasets on which our scanpath
prediction model was trained, and let the robot attend toward the prioritized region
for each observer, independently. We observe that the reduction in the robot’s
performance in comparison to the individual humans’ performance was not as
prominent as it was in Section 7.1. This indicates that accounting for differences in
gaze patterns is critical, as it avoids convergence of gaze points toward the spatial
mean point as was the case in Section 7.1, which is generally distributed around
the center of the monitor (central bias [219]).

The approach followed in Section 7.2 requires a simulated environment that
very closely resembles the physical environment. To evaluate saliency maps in the
physical world, one could realize a pipeline that projects a priority map from the
physical monitor, to the coordinates of the ground-truth map’s plane. This is known
as homography, a technique that has evolved from local image feature mapping [159]
to deep learning-based view synthesis [156, 54]. Such methods might render more
accurate transformations that reflect the current setting of an environment, rather
than an approximated simulation. However, such an approach does not account
for the robot’s state and the camera’s orientation as the robot actively views the
environment. Therefore, we would additionally need to consider the camera’s
orientation in order to accurately reproject the predicted priority map. This would
eventually result in an approach similar to ours, with the distinction being that our
approach does not distort the predicted priority map through any transformations.
In Section 7.2, we instead overlaid the predicted priority map upon the robot’s
view in simulation, then evaluated the match between the ground-truth—priority
map displayed on a simulated monitor at a distance similar to that between the
physical monitor and the robot—and predicted priority maps.
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8.3 Relevance to Research Questions

RQ1.1 Does integrating social cues, like gaze direction and facial expressions, with
saliency models improve the models’ performances?

In Chapter 3, we created a social attention model that integrates social
cues with audiovisual saliency representations, to eventually predict saliency.
To investigate the relevance of each social cue to the task, we performed
an ablation study in Section 3.5.3. We observed that the inclusion of all
three cue representations—gaze estimation, gaze following, facial expression
recognition—results in the highest performance as per all saliency metrics [43],
excluding the AUCJ metric. The AUCJ metric is sensitive to false positives.
Therefore, a model predicting fixation density maps with uniformly distributed
magnitudes—interpreted as more fixation points predicted than the number
of observers—would be scored lower in terms of AUCJ, which equates to worse
performance. The gaze following [210] task is the most difficult cue detection
task among all three. The model has to estimate the gaze direction, which
could point outside the visual field. Following this estimation, it additionally
detects the target of fixation, which could lie at any distance from the gazer.
Moreover, it generates a probability density that indicates the likelihood that
a region will be gazed upon. These limitations result in the model estimating
noisy maps. Since our social attention model with the DAM included should
weigh the cue modality contributions uniformly, a noisy representation will
contribute to a noisy prediction and, thus, more false positives.

Our hypothesis concerning the noisiness of the gaze following representation
is supported by Table 3.3, given that it scores lowest on all metrics, even
compared to the model excluding all social cues. We also observed that
the facial expression and gaze estimation representations independently lead
to worse performance. However, the combination of the two leads to an
improvement. We deduce that the quality of the representation plays a major
role in valuing the contribution of each social cue. Moreover, the introduction
of social cues, namely gaze and facial expressions, improves a saliency model’s
performance in the presence of social stimuli.

RQ1.2 How can non-verbal social cues be integrated into social attention models?

Feature engineering—extracting features from raw data that are known to be
informative to a task, based on expert knowledge of that task—is the most
prevalent approach to raw data processing in machine learning. However, as
deep-learning models were developed further, feature engineering became less
necessary as the tasks increased in complexity, and the former led to powerful
feature extraction capabilities. Most modern deep-learning models trained
for one or multiple tasks rely on backbones [290] or have their parameters
initialized with those of other pretrained models. These backbones are usually
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trained for simple tasks on large amounts of data with high variability. A
latent layer in the backbone feeds its representations into a downstream model
during training, allowing the model to extract features from the processed
backbone representations rather than raw data. Backbones can significantly
speed up the training of a model for a new task. However, once a model is
trained, the backbone cannot be replaced without further fine-tuning.

Deep-learning models are rapidly improving. Enhancing existing downstream
models by integrating them with the latest and best-performing backbones
is costly. We therefore developed a solution in Chapter 3 that combines the
strengths of feature engineering and deep-learning modeling. We used existing
deep-learning models that detect and extract social cues. These are analogous
to backbones, however, we did not extract their latent representations. Instead,
we transformed their outputs into spatiotemporal maps as shown in Figure 3.2,
which can be both interpretable and flexible, in that they can represent any
output of a model that can perform a similar task. Such representations
limit the features available to our models. However, we know from existing
literature that humans rely on social cues when directing their attention in
social settings. Equipped with this knowledge, we augmented the models
with additional features that can improve their performance, as is commonly
done when engineering features.

On representing social cues, we proceeded to address the problem of integrat-
ing those representations. We evaluated different integration and approaches
on images (static) in Section 3.5.1 and sequences of frames (dynamic) in Sec-
tion 3.5.2. In general, we found dynamic models to outperform static models
given the additional context information, which is necessary for predicting
saliency. We compared dynamic fusion and integration approaches and ob-
served that integration, namely the LARGMU (described in Section 3.3.3)
resulted in the best performance. The difference between integration and
fusion lies in the order of gating and attention. For fusion models, gating
precedes attention, whereas integration applies attention before gating. Fu-
sion models, unlike integration models, maintain separable representations
for each modality, allowing us to assess the independent contributions of the
modalities to the task. We hypothesize that integration models outperform
fusion models since the attention mechanism allows for the propagation of
more distributed features, arriving from all modalities. On the other hand,
fusion models first apply gating, allowing or disallowing certain modality
representations through. Attention being more granular than gating, it can
be seen as a filter that emphasizes the most relevant features propagated
to the gate. When the gate precedes attention, some modality features are
weighted to be more relevant, limiting the operation of attention to the
weighted features only.
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RQ1.3 How can social attention models be personalized?

Our main aim in this thesis was to develop models that can simulate human
gaze on robots. In Section 7.1, we evaluated a saliency prediction model
on a robot. This model, which we developed in Chapter 3, was trained on
the attention maps of all observers watching social videos. We extracted
the peaks of the attention maps predicted by the model and controlled the
robot to gaze toward that peak. The peak represents the region to which
most observers would likely look, upon perceiving the same stimuli as the
robot. Our goal in Section 7.1 was to assess whether social attention models
implicitly derive patterns that correspond to those of humans when presented
with conflicting social and auditory cues. This experiment was aimed at
assessing the performance of our social attention model in physical settings,
and whether it infers attention cues from the visual and auditory stimuli as
humans would. However, this approach was not designed to, nor would it
accurately simulate human gaze patterns.

Gaze patterns are sequential, meaning that previous fixations affect the
ones to follow. Consequently, accurate gaze modeling inherently implies
that a scanpath must be modeled. Therefore, in Chapter 4, we developed
a scanpath prediction model that extends our saliency prediction model,
developed in Chapter 3. This extension involved the integration of a fixation
history module, that retains the previous fixations of an observer. The
fixation history serves two purposes, one being the retention of previous
fixations to predict the ones to follow and another being the specification of
the gaze pattern to be followed. The latter is especially important for our
approach. In Chapter 4, we developed a single unified scanpath prediction
model, and compared it to individual models, each trained exclusively on
the scanpaths of a single observer. The individual models served as baseline
models, following the reasoning that the best prediction of scanpaths that
our model can achieve is made so by training the model on one task only,
that is the prediction of a single observer’s gaze patterns. However, this
does not take into account that universal attention, or the attention traits
that are common among all observers, is not sufficiently represented in an
individual model, due to the limited variability in its training samples. This
was confirmed in Section 4.5.2, where we showed that the unified model
significantly outperformed individual models in terms of the AUCJ and NSS
metric scores. By integrating the fixation history, we were able to transform
our saliency model into a scanpath prediction model. Moreover, the fixation
history acts as a prompt that personalizes the unified model, by enabling us
to choose the gaze pattern that we would want the model to mimic. Without
the fixation history module, our unified model cannot predict scanpaths,
since it has no other prior that informs it on how to personalize the gaze
predictions.
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RQ1.4 Which methods are needed to embody social attention models in robots?

In this thesis, we conducted four studies on physical robots, each comprising
multiple tasks and experiments. The heterogeneity in the sensors and robots
used in these experiments, their data types, their communication packages and
middleware, their APIs, and their sampling rates, made it necessary to have a
software package that can handle and abstract the complexity resulting from
these differences. As a solution to fulfill all these requirements, we developed
the Wrapyfi framework in Chapter 5 that wraps all the middleware required
for exchanges within a single API, allowing us to switch middleware without
having to rewrite our scripts. Moreover, most of our studies relied upon several
deep-learning models, all of which had to communicate data to the robots,
acquire readings from their sensors, and even exchange tensors or signals
with other deep-learning models. Our framework was designed to provide
plugins for many popular and niche Python frameworks, whether they were
developed for deep-learning-based applications, image and audio processing,
or numerical analysis. We also introduced three communication schemes with
this framework, by which scripts and models can be easily distributed across
different machines according to their capabilities and supported libraries.
Since our social attention models relied on several social cue detectors, each
a deep-learning model on its own, distributing them was a necessity. Some
machines were dedicated to sensory data acquisition at high sampling rates,
others were dedicated to the running of one or several models, while a few were
managing the experiment pipelines and scheduling communication between
other machines.

The main purpose of our framework was to run our models on robots, without
tying a model’s implementation to a certain robot or middleware. We provided
examples as part of our open-source repository, such as scripts enabling the
control and sensor acquisition from specific robots. Thus, demonstrating how
our framework could also lead to standardizing interfaces. By standardizing
the conventions and interface formats, we were able to easily replace social cue
detectors and sensors depending on the study, without rewriting or modifying
our robot interfaces.

RQ1.5 How can we assess the performance of a physical robotic gaze implementa-
tion?

Social robotic tasks are usually evaluated by conducting Human-Robot In-
teraction (HRI) studies, by which the responses of participants are analyzed.
These responses are either provided directly by the participants in the form
of questionnaires or inferred from their behaviors. We conducted two HRI
studies in Chapter 6 on human responses to robots displaying social cues.
Our studies combined the two forms of analyses, where we asked participants
to fill out questionnaires in Section 6.1 and Section 6.2, and measured their
task completion times in Section 6.1. The questionnaire-based and human-
inference-based approaches are the conventional forms of evaluation in social
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scenarios since measuring a robot’s performance based on a ‘humanlikeness
metric’ is not practically realizable. However, conducting HRI studies requires
a number of participants to perform a task that is time-consuming, subject
to confounding and bias effects, prone to failed or illegible trials, difficult or
impossible to scale, and not easily reproducible or replicable.

To mitigate these limitations, we performed what we termed as cognitive
robotic simulation in Chapter 7. This allowed us to test our models in physical
environments to observe their robustness to sensor noise and feasibility as
the cameras of our robot were active—active vision refers to cameras that
are attached to actuators and can move within their environments as they
apply a task that allows them to explore those environments. Our first study
in Section 7.1 addressed a relatively simple cognitive simulation, where we
compared a robot running the models developed in Chapter 3 and Section 7.1)
to humans selecting the direction of sound arrival as it aligns (congruent) or
conflicts (incongruent) with the direction of a visual (non-verbal) social cue.
The model predicted an attention map, from which the peak was extracted
and the robot was actuated to look toward. The human participants and the
robot watched the same videos under the same conditions and with the same
set of aligning or conflicting stimuli. After which, we compared the direction
chosen by the participants, as key presses indicating sound arrived from the
right or left, to the robot gazing upon the monitor, and assuming it is looking
toward the left or right side of the monitor in correspondence with humans
pressing the directional keys. We measured the success and failures of the
robot and the humans in locating sound under congruent and incongruent
conditions in Section 7.1.8. We found the robot and humans to locate sound
more accurately when the social and auditory cues were congruent, compared
to the incongruent and neutral—auditory cue without a gaze direction as a
social cue—conditions.

Our second study conducted in Section 7.2 addressed a more complex evalu-
ation scheme. We designed a physical setup similar to that in Section 7.1,
with different stimuli and evaluation procedures. The stimuli consisted of
social videos viewed by participants whose gaze data was collected while
watching the videos. In this setup, we embodied a scanpath prediction model
developed in Chapter 4 on the robot. Instead of comparing the accuracy of
the robot and humans in making binary decisions as was the case in Sec-
tion 7.1, we measured the match between the priority maps predicted by
the model when streaming the videos and the videos acquired by letting
the robot watch the videos on a monitor and acquiring the stimuli from
its camera and microphones. We were able to utilize the AUCJ and NSS
metrics for this comparison by projecting the ground-truth priority maps to a
simulated monitor, such that its distance and angle from the robot matched
the physical setup. Next, we compared the reprojected map in simulation
to the predicted map, based on the physical stimuli. We then measured
the model’s performance between streamed video and physical robot video
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input. In Section 7.2, we showed that the robot displayed patterns similar
to the streamed input in terms of the NSS and AUCJ metric scores. This
indicated that although distractors and low-fidelity sensor data from the
physical environment degraded the model’s performance, given that scores
followed similar trends for each observer, the model was inferring patterns
that aligned with those on streaming the input. This finding verified that our
scanpath model is robust to noise and was able to attend to stimuli correctly.

8.4 Limitations and Future Work

Unlike virtual and augmented reality models of gaze that receive a full 360° view of
the simulated or real environment [216], our models were developed to operate on
salient stimuli within the perceivable visual field. However, in real-world scenarios,
attractors could lie beyond that field. For instance, an alerting sound occurring
behind the perceiver would trigger a reaction, such as a head rotation toward the
alert. Peyrache et al. [201] show that the neural activity of the head direction
neurons in animals conveys true spatial information, which, along with egocentric
information, can be translated to spatial code. Following this finding, we will
extend our models to translate their multimodal integration representations to a
universal map that is encoded relative to the environment rather than being limited
to the perceivable visual field of the observer. This would require gaze data that is
not only accompanied by binaural audiovisual data but also includes videos with a
sufficiently wide angle of the visual-input view, such that stimuli beyond the local
visual field are visible. A wide-angle view is necessary so that we would be able to
incorporate elements that are outside the perceivable visual field into our model
predictions. This approach will allow us to cognitively simulate the way humans
and animals navigate and interact with their environments, taking into account
not only what is directly visible but also what can be inferred or anticipated from
auditory cues and wide peripheral vision. Embodying such a model in a robot
might also play a role in influencing the perception of its personality [181]. In
preparation for this task, we provide an overview of the data collection and HRI
evaluation procedures [92].

Another limitation arises with our choice of learning paradigm. Our scanpath
models were trained in a supervised fashion, which consequently resulted in them
yielding deterministic gaze predictions. This simplifies the evaluation process since
the predicted priority or attention map similarity can be measured against the
ground-truth maps. However, even though the scanpaths of an individual are
idiosyncratic on repeated views of stimuli, they are still unique [84]. Adapting our
approaches to integrate variability into the learning process, for instance, through
Inverse Reinforcement Learning (IRL) could result in more realistic scanpath
prediction. Yang et al. [281] propose a static scanpath prediction model that
learns goal-directed scanpaths through IRL using Generative Adversarial Imitation
Learning (GAIL) [114]. The model extracts semantic segmentation features from
the input image, along with an encoding of the goal. It is then trained for visual
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search, with the goal defined by the target object in the scene. The GAIL model
generates scanpaths while its discriminator must distinguish generated scanpaths
from those of humans tasked with finding specific objects in an image. Another
approach by Chen et al. [53] addresses scanpath prediction in a Reinforcement
Learning (RL)-based visual question-answering framework, predicting the fixations
of human observers for attending to certain regions in an image based on a proposed
question. The authors introduce a mechanism that maximizes the distinction
between scanpaths resulting from different questions, as well as a loss function
that measures the inconsistency between training and inference phase contexts.
Moreover, the loss function is also designed to maximize the ScanMatch [68] score
of the predicted trajectories. We note that Yang et al. [281] and Chen et al. [53]
address goal-directed scanpath prediction in images only. However, both could be
adapted to benefit from our social attention model architectures by replacing their
visual encoders with our sequentially encoded cue and saliency representations,
their attention modules with our sequential integration modules, and finally, their
task embeddings with the fixation history representations.

Nonetheless, in typical IRL and RL settings, the reward is either learned by
the model or shaped specifically for achieving a predefined objective, respectively.
Although these approaches are practical in structured environments with minimal
noise, adapting them to our models might result in suboptimal performance when
embodying the models in robots. This is due to noisy signal readings that distort the
model’s ability to learn accurate behaviors and patterns in physical environments.
As a remedy to noisy reward signals, Li et al. [152] propose to separate the reward
model into external and internal components. The external reward is acquired
from the environment and may be susceptible to noise, while the internal reward is
generated by an internal model that reflects the RL agent’s intrinsic motivation.
This allows the reward and policy models to be learned separately, mitigating the
model’s performance degradation due to noise. By integrating this paradigm into
our future IRL- or RL-based social attention models, we can further improve their
robustness in real-world settings.
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Table A.2: Multi-step-ahead predictions for each observer using the unified integra-
tion model fine-tuned on the small FindWho [272] dataset. All models are based
on the DAM + LARGMU (T ′ = 10) GASP [6] variant with the additional fixation
history module. Multi-step-ahead experiments conducted only on streamed input
and one-step-ahead on the robot-acquired input.

ID
t′ t′ + 1 t′ + 2 t′ + 3 t′ + 4 Robot (t′)

AUCJ↑ NSS↑ AUCJ↑ NSS↑ AUCJ↑ NSS↑ AUCJ↑ NSS↑ AUCJ↑ NSS↑ AUCJ↑ NSS↑
1 0.970 1.898 0.972 1.744 0.817 1.512 0.683 1.241 0.661 0.967 0.955 1.823
2 0.981 1.695 0.966 1.495 0.898 1.450 0.789 1.383 0.765 0.704 0.964 1.473
3 0.980 2.082 0.969 1.844 0.841 1.619 0.723 1.332 0.709 1.007 0.962 1.801
4 0.970 1.847 0.961 1.780 0.869 1.351 0.790 1.203 0.774 0.805 0.955 1.753
5 0.973 1.612 0.955 1.398 0.832 1.206 0.782 0.987 0.758 0.691 0.960 1.684
6 0.947 1.930 0.948 1.568 0.814 1.500 0.722 1.242 0.696 0.890 0.924 1.473
7 0.981 2.557 0.967 1.618 0.901 1.471 0.851 1.266 0.822 0.872 0.964 1.773
8 0.979 2.419 0.976 2.032 0.878 1.933 0.813 1.672 0.798 1.187 0.961 1.747
9 0.981 1.920 0.960 1.645 0.811 1.485 0.742 1.205 0.715 1.010 0.962 1.281
10 0.974 1.641 0.961 1.247 0.870 1.181 0.783 0.993 0.754 0.727 0.953 1.268
11 0.984 1.816 0.949 1.514 0.834 1.341 0.732 1.115 0.715 0.789 0.973 1.444
12 0.986 2.105 0.980 1.967 0.857 1.823 0.807 1.245 0.777 0.902 0.963 1.734
13 0.967 2.118 0.965 1.807 0.907 1.625 0.819 1.136 0.795 1.154 0.959 1.659
14 0.965 1.753 0.962 1.835 0.871 1.635 0.827 1.337 0.804 0.878 0.953 1.160
15 0.975 2.003 0.977 1.925 0.880 1.692 0.830 1.306 0.797 0.991 0.958 1.651
16 0.980 2.190 0.967 1.963 0.911 1.829 0.826 1.526 0.796 1.131 0.958 1.324
17 0.962 2.169 0.956 1.922 0.847 1.663 0.746 1.397 0.722 0.989 0.954 1.733
18 0.976 2.119 0.973 1.968 0.854 1.667 0.779 1.010 0.754 0.962 0.955 1.654
19 0.980 2.122 0.951 1.759 0.839 1.586 0.749 0.925 0.723 0.981 0.955 1.955
20 0.978 1.955 0.973 1.896 0.922 1.816 0.811 1.527 0.791 1.065 0.957 1.381
21 0.965 1.946 0.960 1.843 0.854 1.639 0.772 1.533 0.709 0.810 0.947 1.595
22 0.982 2.035 0.974 1.973 0.851 1.813 0.779 1.466 0.740 1.129 0.963 1.988
23 0.986 2.318 0.972 2.082 0.910 1.958 0.826 1.457 0.830 1.040 0.970 2.126
24 0.977 1.820 0.968 1.678 0.895 1.233 0.809 1.199 0.760 0.910 0.956 1.783
25 0.975 2.133 0.972 1.998 0.890 1.820 0.782 1.529 0.779 1.186 0.963 1.853
26 0.976 2.113 0.961 1.879 0.878 1.872 0.803 1.363 0.787 0.863 0.939 1.844
27 0.988 2.234 0.985 1.844 0.923 1.766 0.833 1.460 0.808 1.310 0.925 1.985
28 0.977 2.038 0.952 1.875 0.826 1.771 0.769 1.335 0.751 1.011 0.959 1.265
29 0.974 2.511 0.961 2.267 0.858 2.133 0.763 1.833 0.747 0.995 0.969 2.047
30 0.970 1.525 0.969 1.358 0.829 0.981 0.782 0.820 0.755 0.614 0.951 1.375
31 0.983 2.486 0.981 2.337 0.839 2.192 0.796 1.850 0.768 1.348 0.970 1.970
32 0.981 2.243 0.978 1.975 0.846 1.510 0.771 1.453 0.764 0.930 0.961 1.624
33 0.977 1.905 0.969 1.777 0.892 1.560 0.842 1.414 0.816 0.993 0.963 1.754
34 0.978 1.936 0.971 1.456 0.884 1.316 0.818 1.289 0.788 1.122 0.963 1.473
35 0.979 2.061 0.964 1.730 0.826 1.576 0.705 1.266 0.681 0.878 0.961 2.037
36 0.989 2.698 0.984 2.036 0.915 1.927 0.859 1.550 0.827 1.196 0.895 1.563
37 0.966 1.782 0.965 1.205 0.874 1.116 0.781 1.062 0.750 0.779 0.948 1.750
38 0.973 1.517 0.972 1.504 0.847 1.319 0.761 1.315 0.760 0.782 0.948 1.356
39 0.981 2.140 0.971 2.017 0.895 1.616 0.853 1.525 0.801 1.176 0.965 1.724
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Table A.3: Multi-step-ahead predictions for each observer using the unified integra-
tion model fine-tuned on the small MVVA [158] dataset. All models are based on
the DAM + LARGMU (T ′ = 10) GASP [6] variant with the additional fixation
history module. Multi-step-ahead experiments conducted only on streamed input
and one-step-ahead on the robot-acquired input.

ID
t′ t′ + 1 t′ + 2 t′ + 3 t′ + 4 Robot (t′)

AUCJ↑ NSS↑ AUCJ↑ NSS↑ AUCJ↑ NSS↑ AUCJ↑ NSS↑ AUCJ↑ NSS↑ AUCJ↑ NSS↑
1 0.974 1.558 0.972 1.551 0.938 1.480 0.904 1.458 0.893 1.309 0.920 1.427
2 0.969 1.339 0.962 1.339 0.935 1.173 0.900 1.149 0.888 1.028 0.930 1.112
3 0.949 1.075 0.941 1.058 0.919 1.005 0.892 0.991 0.879 0.912 0.895 0.775
4 0.959 1.145 0.946 1.163 0.921 1.074 0.889 1.070 0.874 1.006 0.909 0.926
5 0.976 1.365 0.972 1.330 0.955 1.251 0.924 1.258 0.913 1.141 0.968 1.404
6 0.974 1.683 0.960 1.677 0.930 1.585 0.903 1.587 0.888 1.436 0.925 1.525
8 0.969 1.357 0.958 1.346 0.936 1.293 0.903 1.295 0.893 1.142 0.937 0.934
9 0.961 1.224 0.954 1.196 0.929 1.150 0.899 1.133 0.883 1.080 0.941 1.043
10 0.947 1.504 0.930 1.481 0.907 1.470 0.875 1.406 0.863 1.297 0.908 1.214
11 0.957 1.270 0.948 1.247 0.927 1.180 0.892 1.183 0.881 1.132 0.898 1.141
12 0.965 1.243 0.948 1.233 0.917 1.194 0.886 1.169 0.874 1.068 0.926 0.951
13 0.963 1.239 0.953 1.184 0.922 1.179 0.892 1.171 0.882 1.113 0.926 0.908
14 0.964 1.267 0.963 1.245 0.936 1.198 0.903 1.183 0.894 1.117 0.936 1.171
15 0.975 1.433 0.970 1.421 0.945 1.386 0.914 1.385 0.897 1.159 0.931 1.215
16 0.937 0.956 0.932 0.950 0.914 0.905 0.882 0.899 0.869 0.821 0.924 0.725
17 0.961 1.237 0.958 1.219 0.926 1.163 0.896 1.149 0.879 0.974 0.918 0.827
18 0.961 1.187 0.950 1.210 0.923 1.127 0.888 1.123 0.873 1.081 0.909 0.921
19 0.937 1.227 0.928 1.209 0.897 1.184 0.868 1.249 0.852 1.056 0.908 0.783
20 0.960 1.337 0.947 1.308 0.922 1.265 0.895 1.248 0.884 1.371 0.947 0.947
21 0.962 1.251 0.951 1.261 0.932 1.176 0.896 1.161 0.885 1.121 0.944 0.949
22 0.963 1.193 0.956 1.156 0.929 1.124 0.897 1.113 0.884 1.113 0.915 0.739
23 0.937 0.972 0.926 0.966 0.906 0.924 0.875 0.920 0.865 0.866 0.925 0.922
24 0.971 1.555 0.954 1.539 0.923 1.479 0.892 1.414 0.882 1.276 0.938 1.291
25 0.970 1.403 0.968 1.396 0.942 1.331 0.906 1.129 0.889 1.087 0.932 1.377
26 0.982 1.540 0.973 1.538 0.952 1.473 0.920 1.456 0.910 1.371 0.930 1.154
27 0.964 1.222 0.947 1.174 0.931 1.200 0.901 1.166 0.890 1.110 0.920 1.086
28 0.943 1.192 0.940 1.173 0.914 1.135 0.886 1.119 0.869 1.087 0.915 1.159
29 0.949 1.109 0.936 1.107 0.911 1.062 0.883 1.044 0.869 1.003 0.936 0.832
30 0.958 1.199 0.952 1.192 0.925 1.148 0.890 1.120 0.875 1.040 0.903 0.942
31 0.965 1.359 0.948 1.351 0.916 1.296 0.888 1.294 0.878 1.189 0.918 1.180
32 0.977 1.561 0.964 1.552 0.934 1.491 0.903 1.475 0.889 1.411 0.939 1.109
33 0.959 1.105 0.957 1.098 0.933 1.048 0.900 1.058 0.885 1.008 0.938 1.082
34 0.936 1.042 0.933 1.031 0.908 0.981 0.875 0.978 0.864 0.954 0.902 0.887
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Resulting Publications

B.1 Publications and Workshop Articles Associated
with this Dissertation

Parts of the following manuscripts were included in this thesis1:

[6] © 2021 IJCAI organization http://www.ijcai.org. Reprinted, Fares
Abawi, Tom Weber, and Stefan Wermter. “GASP: Gated Attention for
Saliency Prediction”. In: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI). IJCAI Organization, 2021, pp. 584–591.
doi: 10.24963/ijcai.2021/81

[88] Creative Commons Attribution International 4.0 License. Di Fu,
Fares Abawi, Hugo Carneiro, Matthias Kerzel, Ziwei Chen, Erik Strahl,
Xun Liu, and Stefan Wermter. “A Trained Humanoid Robot can Perform
Human-Like Crossmodal Social Attention and Conflict Resolution”. In:
International Journal of Social Robotics 15 (2023), pp. 1325–1340. doi:
10.1007/s12369-023-00993-3

[89] © 2023 IEEE. Reprinted, with permission, Di Fu, Fares Abawi, and
Stefan Wermter. “The Robot in the Room: Influence of Robot Facial Expres-
sions and Gaze on Human-Human-Robot Collaboration”. In: Proceedings
of the IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN). IEEE. 2023, pp. 85–91. doi: 10.1109/RO-
MAN57019.2023.10309334

[4] Creative Commons Attribution International 4.0 License. Fares
Abawi, Philipp Allgeuer, Di Fu, and Stefan Wermter. “Wrapyfi: A Python
Wrapper for Integrating Robots, Sensors, and Applications Across Multiple
Middleware”. In: Proceedings of the ACM/IEEE International Conference
on Human-Robot Interaction (HRI). ACM, 2024, pp. 860–864. doi: 10.
1145/3610977.3637471. url: https://wrapyfi.readthedocs.io

1Grammarly (https://grammarly.com) and Writefull (https://writefull.com) were used to
assist with grammar and language editing of the manuscripts adapted to this thesis
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Appendix C

Resources: Videos and Code

[6] In Chapter 3 we present the GASP saliency prediction model.
The associated model parameters and code (training and inference) are
available at:
http://software.knowledge-technology.info#gasp.
Video presentation:
https://www.youtube.com/watch?v=e4HFTmEgirk.

[5] In Chapter 4 we develop a unified scanpath prediction model integrating
fixation history to enable scanpath personalization.
The associated model parameters and code (training and inference) are
available at:
http://software.knowledge-technology.info#gasp.

[4] In Chapter 5 we present a Python framework for integrating message-
oriented and robotics middleware.
The associated code is available at:
http://software.knowledge-technology.info#wrapyfi.
Documentation:
https://wrapyfi.readthedocs.io.
Video demos:
https://raw.githubusercontent.com/fabawi/wrapyfi/main/assets/
tutorials/vid_demo_ex2-1.mp4,
https://raw.githubusercontent.com/fabawi/wrapyfi/main/assets/
tutorials/vid_demo_ex1-1.mp4.

[89] In Chapter 6 (Section 6.1) we study the influence of robot social cues on
human-human-robot collaboration.
Video presentation:
https://fares.abawi.me/assets/video/robotintheroom_video.mp4.
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Appendix D. Dissertation Resources: Videos and Code

[91] In Chapter 6 (Section 6.2) we study the difference in perception on displaying
affective signals on the Pepper and iCub robots. We also study the influence
of using different sensory modalities to control the same robot.
Video presentation:
https://www.youtube.com/watch?v=Qn0xo4JyG9c.

[88] In Chapter 7 (Section 7.1) we present our audiovisual sound localization
model and we integrate it with the GASP model to deploy it on the iCub
robot for studying the correlation between audiovisual congruency in humans
and the robot.
Video presentation:
https://www.youtube.com/watch?v=bjiYEs1x-7E.

[7] In Chapter 7 (Section 7.2) we embody this model on the iCub robot to
evaluate its robustness to noisy real-world conditions, simulating the envi-
ronment to which the human participants were exposed.
Video demo:
https://fares.abawi.me/assets/video/usp_eval_video.mp4
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