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A B S T R A C T

Knowledge of the true rainfall variability at sub-kilometre and sub-hourly scales
is required for several meteorological and hydrological applications, especially in
urban areas due to the large proportion of impervious surfaces and the stormwater
infrastructure. However, variability at these scales is a blind spot for both operational
rain gauge networks and operational radar networks. In the urban area of Hamburg,
rainfall measurements of a local area X-band weather radar (LAWR) operating at
high temporal (30 s), range (60 m), and azimuthal sampling (1◦) resolutions within
a 20 km scan radius address this observational gap. This dissertation provides
new insights into (urban) rainfall variability based on the reanalysis of multi-year
high-resolution weather radar observations.

In a first study, the reanalysis of the raw radar data is described in detail, the
radar performance for the years 2013 to 2021 is outlined, and open issues and
limitations of the data set are discussed. Several sources of radar-based errors were
adjusted gradually affecting the radar reflectivity and rainfall measurements, e.g.
noise, alignment, non-meteorological echoes, radar calibration, and attenuation. The
deployment of additional vertically pointing micro rain radars (MRRs) yields drop
size distributions at the radar beam height. These MRR measurements serve as a
reference, effectively reduce errors concerning the radar calibration and attenuation
correction and monitor the radar data quality. The LAWR radar reflectivities and
rainfall rates are in very good agreement with independent MRR measurements. The
reanalysed, quality-tested radar reflectivities and rainfall rates were made available
as an open-access data set. This multi-year data set enables studies requiring rainfall
data at hectometre spatial and sub-minute temporal resolution.

In a second study, the added value of a refined spatio-temporal resolution for
weather radar observations at sub-hourly temporal and sub-kilometre spatial scales
using the reanalysed radar data set is discussed. In fact, the smaller radar volumes
of the LAWR result in a closer agreement in terms of radar reflectivity with lo-
cal radar observations by MRRs compared to C-band radar systems, which are
operational at coarser spatial (250 m) and temporal (5 min) resolutions than the
LAWR. However, this advantage does not translate in a better match to rainfall ac-
cumulations recorded by rain gauges, as differences in the Z-R relation and sample
volume sizes between radar and rain gauge dominate the uncertainty for both the
LAWR and operational radar systems. Nevertheless, spatial rainfall structures cap-
tured by LAWR and rain gauge measurements are similar at sub-hourly timescales.
Conventional available rainfall data sets, like the C-band radar measurement and
radar-rainfall climatology RADKLIM, fail to capture the sub-hourly rainfall variabil-
ity. As expected, RADKLIM underestimates rainfall variability due to the kilometre
spatial scale. But interestingly, the operational C-band radar observations tend to
overestimate spatial variability at sub-hourly temporal scale. This effect is caused
by their intermittent scan strategy, taking just a snapshot every five minutes. The
LAWR measurements benefit from its scan strategy, resulting to all measurements
taken every 2.5 s. As a consequence, the LAWR is clearly superior in describing
spatial rainfall structure. The refined spatio-temporal resolution and scan strategy
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is also beneficial for measuring rainfall peaks and measuring steeper gradients.
Consequently, the LAWR is capable to capture the microscale rainfall variability
better than conventional radars.

In summary, this dissertation provides an open-access data set of reanalysed radar
reflectivities and rainfall rates at sub-kilometre spatial and minute temporal scales,
that can be used for studies on the spatial and temporal scales of precipitation
and hydrological research, e.g. input data for high-resolution modelling, in an
urban area. The dissertation demonstrates that a LAWR operating at hectometre
spatial and 30 s temporal resolutions fills a gap in rainfall observations compared
to conventional rainfall measurements.



Z U S A M M E N FA S S U N G

Die Kenntnis der Niederschlagsvariabilität hinsichtlich der Akkumulation inner-
halb einer Stunde sowie in Auflösungen unter einem Kilometer ist für diverse
meteorologische und hydrologische Anwendungen erforderlich. Dies gilt insbe-
sondere für Städte aufgrund des hohen Anteils an versiegelten Oberflächen und
der Regenwasserinfrastruktur. Die Variabilität auf diesen Skalen wird jedoch von
operativen, in-situ-Netzwerken und Radarmessungen nicht erfasst. Um diese Be-
obachtungslücke zu schließen, wird im Stadtgebiet von Hamburg Niederschlag
mit einem lokalen X-Band-Wetterradar (LAWR) gemessen, das sicht durch eine
hohen zeitliche (30 s), räumliche (60 m) und azimutale (1◦) Auflösung innerhalb
eines Radius von 20 km auszeichnet. Die vorliegende Dissertation verfolgt das Ziel,
neue Erkenntnisse über die Variabilität von Niederschlag auf der Grundlage der
Reanalyse von mehrjährigen hochauflösenden Wetterradarmessungen zu gewinnen.

Im Rahmen einer ersten Studie erfolgt eine detaillierte Beschreibung der Reanaly-
se der LAWR-Rohdaten, eine Untersuchung der Datenqualität für die Jahre 2013

bis 2021 sowie eine Diskussion von Einschränkungen des Datensatzes. In den Mess-
daten wurden mehrere radarbasierte Fehler schrittweise korrigiert, zum Beispiel
Rauschen, Fehlausrichtung, nicht-meteorologische Echos, fehlende Kalibrierung
und Dämpfung. Zusätzlich messende vertikal ausgerichtete Mikro-Regen-Radare
(MRR) liefern Messungen der Tropengrößenverteilungen und dienen als Referenz-
messung in der Messhöhe des LAWRs. Die MRR-Messungen ermöglichen eine
Kalibration des LAWRs, eine Anpassung der Dämpfungskorrektur sowie eine Über-
wachung der Qualität der Radardaten. Die LAWR-Messungen stimmen sehr gut
mit MRR-Messungen, die nicht für die Kalibration verwendet wurden, überein. Die
korrigierten, qualitätsgeprüften Radarreflektivitäten und Niederschlagsraten wurde
als Datensatz öffentlich zur Verfügung gestellt.

Im Rahmen einer zweiten Studie wird der Mehrwert einer verfeinerten räumlich-
zeitlichen Auflösung für Wetterradarmessungen für zeitliche Skalen unter einer
Stunde und räumliche Skalen unter einem Kilometer diskutiert. In der Tat stim-
men die Radarreflektivitäten des LAWRs mit denen des MRRs besser überein im
Vergleich zum operationellen C-Band-Radar, das eine gröbere räumliche (250 m)
und zeitliche (5 min) Auflösunge als das LAWR verwendet, aufgrund der kleineren
Messvolumina des LAWRs. Dieser Vorteil führt jedoch nicht zu einer besseren
Übereinstimmung mit den Niederschlagsmengen von Regenmessern, da die Un-
terschiede der Z-R-Beziehung sowie die Größe der Messvolumina zwischen Radar
und Regenmesser die Unsicherheit für das LAWR als auch für das operationelle
Radar dominieren. Räumlichen Niederschlagsstrukturen werden vom LAWR und
dem Netzwerk von Regemessern für Niederschlagsakkumulationen unter einer
Stunde ähnlich gemessen. Auf dieser zeitlichen Skala wird die Niederschlagsva-
riabilität von herkömmlichen Niederschlagsdatensätzen, wie den C-Band-Radaren
oder der radargestützten Niederschlagsklimatologie RADKLIM, nicht richtig er-
fasst. Wie erwartet, unterschätzt RADKLIM die Niederschlagsvariabilität aufgrund
der räumlichen Skala von einem Kilometer und der Anpassung an ein Netzwerk
von Regenmessern, das größere Distanzen als das Netzwerk in dieser Studie hat.
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Interessanterweise neigen die operationellen C-Band-Radarmessungen dazu, die
räumliche Variabilität für Niederschlagsakkumulationen unter einer Stunde zu
überschätzen. Der Effekt ist auf die Messstrategie zurückzuführen, bei der alle fünf
Minuten eine instantane Messung an einem Ort erfolgt. Die LAWR-Messungen
profitieren von der Messstrategie, bei der alle 2,5 s die Messung wiederholt wird.
Folglich ist das LAWR bei der Messung der räumlichen Niederschlagsstruktur
deutlich überlegen. Die verfeinerte räumlich-zeitliche Auflösung und Messstrategie
ist zudem für die Erfassung von Niederschlagsmaxima und stärkeren räumlichen
Gradienten von Vorteil. Das LAWR ermöglicht somit eine präzisere Erfassung der
mikroskaligen Niederschlagsvariabilität als herkömmliche Radare.

Diese Dissertation präsentiert einen neuen, frei zugänglichen Datensatz, der
korrigierte Radarreflektivitäten und Regenraten mit einer mit einer räumlichen Auf-
lösung von 100 m und einer zeitlichen Auflösung von 30 s umfasst. Der Datensatz
eignet sich für Studien zur Verbesserung der radarbasierten Niederschlagsmessung
oder zur (städtischen) Niederschlagsvariabilität. Die Dissertation zeigt, dass ein
LAWR, welches mit einer räumlichen Auflösung von 100 m und einer zeitlichen
Auflösung von 30 s misst, im Vergleich zu konventionellen Niederschlagsmessungen
eine Beobachtungslücke schließt.
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Part I

U N I F Y I N G E S S AY





1
I N T R O D U C T I O N

The rainfall process is characterized by high variability in space and time (Krajewski
et al., 2003). Capturing the true rainfall variability at sub-kilometre and sub-hourly
scales with measurements remains a challenge because of spatio-temporal res-
olution, spatio-temporal sampling, and measurement uncertainty. However, the
knowledge of small-scale rainfall variability is needed for several meteorological
and hydrological applications, particularly in urban environments due to the large
proportion of impervious surfaces and the stormwater infrastructure (Einfalt et al.,
2004; Sokol et al., 2021; Thorndahl et al., 2017). In general, hydrometeorological and
fundamental studies of rainfall properties can benefit from long-term measurements
at small spatio-temporal scales, as described in the following.

Our knowledge on rainfall variability bases mainly on measurements by radars
and rain gauges. Both systems differ significantly in terms of sampling and res-
olution. Rain gauge networks provide reliable local precipitation measurements,
but due to their limited operational network densities, they are unable to repre-
sent the spatial rainfall variability (e.g. Berne et al., 2004; Lengfeld et al., 2019;
Ochoa-Rodriguez et al., 2019; Villarini et al., 2008). The spatial scale of rainfall is
smaller than the inter distance of most operational rain gauge networks exposed
with correlation distances of radar observations (Lengfeld et al., 2019; Marra and
Morin, 2018a). Conventional weather radar systems, mostly operating at S- and
C-band frequencies, are able to provide radar rainfall measurements over large
domains with a temporal resolution of several minutes and spatial resolution of
a few hundred metres. Long-term radar-based precipitation climatologies based
on these conventional radars are available for Germany with a 5 min temporal and
1 km spatial resolution (Winterrath et al., 2018b), and for Europe with an hourly
temporal and 2 km spatial resolution (Overeem et al., 2023). However, there is a gap
in long-term radar rainfall data sets at the sub-kilometre spatial scale and temporal
scales below 5 min.

Several studies have proven that the unmeasured rainfall variability in radar ob-
servations at sub-kilometre spatial scale is large. Jensen and Pedersen (2005) studied
the variability in accumulated rainfall within a single radar pixel of 500 × 500 m2

using 9 rain gauges and found an astonishing variation up to 100 % between neigh-
bouring rain gauges. Jaffrain and Berne (2012) investigated the spatial structure of
drop size distributions with a network of 16 optical disdrometers within an area
of approximately 1 × 1 km2. They found an error between 18.4 % and 24.5 % for
rainfall upscaled from a point to areal measurement at spatial scales of 100× 100 m2

and 1 × 1 km2. Gires et al. (2014) address the scale gap between rain gauges with a
sampling radius of 10 cm and a radar with a sampling range of 1 km with disdrom-
eter and rain gauge networks within an 1 km2 area. They perform a downscaling
with Universal Multifractals highlighting small-scale rainfall variability. Peleg et al.
(2018) simulated the spatial variability of extreme rainfall intensities below 1 km2

scale with a stochastic rainfall generator. They found that for extreme rainfall in-
tensities, the point measurement is on average 10 % larger than the radar estimate.
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4 introduction

Terink et al. (2018) conclude that at least 12 rain gauges per km2 are required to
capture the same spatial rainfall variability as radar rainfall estimates at 120 m
range and 16 s temporal resolution. Rainfall is also characterized by high temporal
variability, as Marra and Morin (2018a) found temporal autocorrelations between
1.8 and 6.4 min based on radar rainfall measurement at 1 min temporal resolution.
This temporal scale is not fully covered by conventional weather radars operating
with a 5 min sampling scale. There is a discontinuity in conventional observations
to capture rainfall variability at sub-kilometre spatial scales and temporal scales
below 5 min.

This small scale rainfall variability is relevant in application. In urban hydrol-
ogy, missing spatial rainfall variability causes problems that cannot be solved by
any model or finer resolution temporal data (Bárdossy and Anwar, 2023). Urban
hydrological applications demand high-quality radar rainfall data with at least
a temporal resolution of 1 min and spatial resolution of 100 m for small urban
catchment sizes (Berne and Krajewski, 2013; Einfalt et al., 2004; Gires et al., 2013;
Ochoa-Rodriguez et al., 2015; Thorndahl et al., 2017). Further studies call for the
highest possible spatio-temporal resolution of rainfall measurements (e.g. Alves
de Souza et al., 2018; Cao et al., 2023; Costabile et al., 2023). For example, Ferner
et al. (2022) require the highest possible resolution of rainfall data as forcing for a
microscale obstacle-resolving meteorological model. A higher temporal resolution
would also reduce temporal sampling errors (Fabry et al., 1994; Shucksmith et al.,
2011). Conventional radars perform a volumetric scan, resulting in an intermittent
scanning strategy. Advection correction procedures can reduce temporal sampling
errors in rainfall accumulations (e.g. Jasper-Tönnies and Jessen, 2014; Nielsen et al.,
2014; Seo and Krajewski, 2015). However, there are applications where advection
correction can not solve temporal sampling errors. For instance, for the study of the
initial phase of convective precipitation, a scan performed every 5 min is too coarse
(Kim et al., 2019). There is a need in hydrometeorological applications for rainfall
data sets at the sub-kilometre spatial scale and temporal scales below 5 min.

These demands are potentially covered with measurements by research X-band
radars. Research X-band radars monitor rainfall at temporal resolutions down to
16 s (van de Beek et al., 2010) and radial resolutions down to 3 m (Mishra et al.,
2016), but most of them operate at or below 100 m spatial and 1 min temporal
resolutions (e.g. Allegretti et al., 2012; Hosseini et al., 2020; Lengfeld et al., 2014;
Schleiss et al., 2020; van de Beek et al., 2010; Ventura and Russchenberg, 2009; Wang
and Chandrasekar, 2010; Yoon et al., 2017). Several X-band radars are deployed to
refine rainfall estimates in areas of special interest, like urban areas (e.g. Berenguer
et al., 2012; Lo Conti et al., 2015; Maesaka et al., 2011; van de Beek et al., 2010; Wang
and Chandrasekar, 2010; Yoon et al., 2017). Although most of the latest X-band
radars have dual-polarimetric capabilities (e.g. Anagnostou et al., 2018; Cao et al.,
2023; Hosseini et al., 2023; Neely III et al., 2021; Pejcic et al., 2022; Schleiss et al.,
2020), where dual-polarimetric quantities improve rainfall estimates, even low-cost,
single-polarized X-band radars provide valuable information on the spatio-temporal
variability of precipitation (Allegretti et al., 2012; Lo Conti et al., 2015; Marra and
Morin, 2018a; van de Beek et al., 2010). However, single-polarized X-band radars
require extensive post-processing and the deployment of independent additional
sensors, like micro rain radars, disdrometers, or rain gauges, to reduce errors and
uncertainty of rainfall estimates (Thorndahl et al., 2017; Villarini and Krajewski,
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Figure 1.1: Total precipitation observed by (a) a local area weather radar (LAWR), (b) a
C-band radar, and (c) the radar-rainfall climatology RADKLIM on a day with
a flooding event (10.05.2018). The black crosses mark the locations of available
rain gauges with 1 min temporal resolution. The maximal total precipitation is
(a) 110 mm for the LAWR, (b) 85 mm for the C-band radar, and (c) 60 mm for
RADKLIM. The south-east rain gauge measured the maximal total precipitation
of the rain gauge network with 57 mm.

2010). Despite several studies operating high-resolution X-band radars, not all data
is available and easy to use as recommended by Saltikoff et al. (2019) and Grimmond
et al. (2020). There is a gap of well-documented, high-quality, open-access radar
rainfall data sets at or below 100 m spatial and 1 min temporal resolutions.

One operational X-band radar can address this gap. A single-polarized X-band
weather radar monitors precipitation within a 20 km scan radius around Hamburg’s
city center since 2013, operated in synergy with two micro rain radars (MRRs) and
rain gauges. This local area weather radar (LAWR) operates at one elevation angle
with a high temporal (30 s), range (60 m), and azimuthal sampling (1◦) resolution,
refining coarser observations of the German nationwide C-band radars at 250 m
spatial and 5 min temporal resolution. Former studies on short time periods (several
months and a case study) show that the LAWR provides detailed information
on the structure of precipitation. Lengfeld et al. (2014) deployed a network of
four LAWRs and micro rain radars in a rural area of northern Germany. They
describe correction algorithms for single and networked LAWRs and discuss the
performance of measurements of 5 months. Lengfeld et al. (2016) and Lengfeld
et al. (2018) introduce a method to correct reflectivity measurements for attenuation
using less attenuated radars, and they compare attenuation correction methods for
single-polarized X-band radars using this LAWR network. The LAWR network was
dismantled in 2017. However, the LAWR located in Hamburg is still in operation,
extending a unique data set. Hoffmann et al. (2018) shows that the LAWR was able
to capture the circular pattern and variability in rainfall rates during a tornado
event with an approximate duration of 13 min and a path length of about 1.3 km.
For refined rainfall estimates, a LAWR was deployed for studies on cold pool
events during the Field Experiment on Sub-mesoscale Spatio-Temporal Variability
in Lindenberg (FESSTVaL) from June to August 2021 (Burgemeister et al., 2022b;
Hohenegger et al., 2023). The previous studies provide knowledge and algorithms
to reanalyse a consistent long-term data set based on LAWR measurements.
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The aforementioned challenges in capturing the true rainfall variability can be
demonstrated by an exemplary heavy rainfall event that occurred in the urban area
of Hamburg. Observations of the LAWR, the nationwide C-band radar network,
and different rain gauge networks and the climatology RADKLIM yield disparate
representations of this rainfall event (Figure 1.1). The rain gauge network misses the
area affected by heavy rainfall, while the conventional weather radar observations
(Fig. 1.1b) and the rainfall climatology RADKLIM (Fig. 1.1c) appear to underestimate
the rainfall accumulations in magnitude. Although the rainfall data sets concur in
the rainfall pattern, the LAWR measured significantly higher rainfall accumulations
(Fig. 1.1a) in comparison to the other rainfall data sets. Two additional rain gauges
of the municipal water and wastewater utility Hamburg Wasser, which provided
daily data and are not available for other dates, corroborate the extreme nature of
the event (A. Kuchenbecker, personal communication, August 8, 2022). One rain
gauge provided a daily rainfall accumulation of 122 mm at 10.19◦ E and 53.50◦ N
for this event, which lends confidence to the LAWR rainfall estimates. In general,
several rainfall events revealed strong differences in rainfall variability between the
rainfall data sets at different spatio-temporal resolution, highlighting the present
uncertainty of rainfall observations.

This dissertation aims to provide new insights into (urban) rainfall variability
based on the reanalysis of multi-year high-resolution weather radar observations at
hectometre and 30 s resolutions. In order to achieve this objective, I will address the
following research questions:

1. How can we create a consistent rainfall data set from the multi-year LAWR
measurements?

2. What is the uncertainty of the LAWR rainfall measurements?

3. What is the added value of high-resolution rainfall measurements at sub-
kilometre and sub-hourly scales?

In Chapter 2 of this thesis, I describe the synergy of rainfall observations and the
unique availability of rainfall data sets in Hamburg. Additionally, I outline the
existing measurement setup and present the recent extension of this measurement
network. Chapter 3 explains the reanalysis of the multi-year LAWR measurements
in Hamburg, which resulted in an open-access data set of radar reflectivities and
rainfall rates (Study A). I outline the radar performance for the years 2013 to
2021, and discuss open issues and limitations of the data set. In Chapter 4, I
examine the rainfall properties of the reanalysed radar data from the LAWR in
comparison with an operational C-band radar, a dense rain gauge network, and
the radar-rainfall climatology RADKLIM. This analysis leads to a comprehensive
discussion of the added value of a refined spatio-temporal resolution for weather
radar observations at sub-hourly temporal and sub-kilometre spatial scales (Study
B). Chapter 5 presents first thoughts and preliminary results on an experiment
on the uncertainty of the LAWR measurements, followed by the summary and
conclusions of this dissertation in Chapter 6.
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Figure 2.1: Sketch of the synergistic rainfall measurements in Hamburg combining obser-
vations of X-band radars, C-band radars, micro rain radars (MRRs), and rain
gauges (RGs). The lines indicate the radar beams at different heights.

2
S Y N E R G I S T I C R A I N FA L L M E A S U R E M E N T S

In order to capture the true variability of rainfall, it is necessary to deploy a
network of different measurement techniques (Fig. 2.1), as each method has inherent
limitations and uncertainties. The focus of this dissertation is on the single-polarized
X-band weather radar, as it provides rainfall measurements at hectometre spatial and
sub-minute temporal scales over several years in Hamburg. In this chapter, I give
a brief overview of the rainfall observations and data sets in Hamburg with their
specifications (Sect. 2.1). Furthermore, I elucidate the extension of the measurement
network and changes in measurement strategy in which I was involved and which
were not previously documented (Sect. 2.2).

2.1 rainfall measurements in hamburg

The study area around Hamburg, Germany (Fig. 2.2) is densely covered by rainfall
observations with two local area X-band radars (Sect. 2.1.1), the nation-wide C-band
radar network (Sect. 2.1.2), five micro rain radars (MRRs, Sect. 2.1.3), and networks
of rain gauges (Sect. 2.1.4).

2.1.1 X-band radar (LAWR)

The Universität Hamburg operates two single-polarized X-band weather radars
(Fig. 2.2), to investigate rainfall variability at hectometre spatial and sub-minute
temporal scales. The LAWR HHG is measuring in the city centre of Hamburg since
2013. The LAWR ALT is located 21.7 km apart from the LAWR HHG in the west
of Hamburg, measuring since 2021. These local area weather radars (LAWRs) are
modified ship navigation radars of type GEM scanner SU70-25E operating at a

7
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Figure 2.2: Rainfall observations in Hamburg. The local area weather radars (LAWRs, blue
points) are located on the rooftop of the Geomatikum building in Hamburg
(HHG) and on an 8 m mast on an apple farm in the Altes Land (ALT) region near
to Hamburg. The blue dashed lines show their coverage with the 20 km scan
radius. The locations of five micro rain radars (MRRs, red points) are by name
Blankenese Bauersberg (BBG), HafenCity Universität (HCU), Mittelnkirchen
(MIT), Sasel (SAS), and Wettermast Hamburg (WMH). Locations of rain gauges
are indicated by orange crosses.

frequency of 9.41 GHz (Lengfeld et al., 2014). In general, a weather radar transmits
microwaves, which are partially backscattered by hydrometeors, e.g. cloud droplets,
raindrops, snowflakes, and hailstones. As a result of this backscattered signal
(Doviak et al., 1993), the LAWR provides radar reflectivity measurements, at one
fixed elevation angle (≈ 3.5◦) with 30 s temporal, 60 m range, and 1◦ azimuthal
sampling resolution within a scan radius of 20 km. The radar reflectivity represents a
30 s average of approximately 67 pulses per 1◦ collected during 12 sweeps. The high
spatio-temporal resolution and the continuous measurement sampling distinguish
the LAWR from conventional radars. The measurements are affected by a number
of sources of error, including noise, alignment, non-meteorological echoes, radar
calibration, and attenuation. These factors limit the quantitative use of the resulting
measurement data. Therefore, the LAWR radar data were reanalysed, resulting in
corrected radar reflectivities and estimated rainfall rates, as described in detail in
Chapter 3.

2.1.2 C-band radar and RADKLIM

The German weather service (DWDs) operates a network of C-band weather radars
for nation-wide, volumetric rainfall observations every five minutes. All C-band
radars have dual-polarization and Doppler capabilities. For details on the C-band
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radar technical setup, data quality, and calibration, refer to Frech et al. (2017).
The DWD’s scan strategy includes an orography-following precipitation scan for
hydrological applications and volume scans at 9 elevation angles every five minutes
(Frech et al., 2023). This dissertation uses the precipitation scan from the nearest C-
band radar to Hamburg, located near Boostedt about 50 km north of Hamburg. The
distances between this C-band radar and the LAWRs are 48.7 km (HHG), 58.1 km
(ALT), respectively. The Boosted C-band radar’s precipitation scan provides radar
reflectivity measurements within a 150 km radius, covering the entire study area.
The scan operates at a constant elevation angle of 0.8◦ with a 5 min temporal, 250 m
range, and 1◦ sampling resolution. The measurements represent a 83 ms average of
approximate 50 pulses per 1◦ azimuth collected during 1 sweep within the 5 min
measurement interval. The radar reflectivities were corrected for attenuation using
the method of Jacobi and Heistermann (2016), implemented by Heistermann et al.
(2013). The rainfall rates R were derived from attenuation-corrected horizontal
reflectivities Z using a standard power-law relationship between these quantities,
the Marshall-Palmer Z-R relationship (Marshall et al., 1955).

Based on the C-band radar network and the rain gauge network, the DWD
provides the radar-based precipitation climatology RADKLIM (Winterrath et al.,
2018a). The observations of the C-band radar network were adjusted with rain
gauge measurement, corrected for errors, and quality-checked. Rainfall rates are
available at 5 min and hourly temporal resolution. For details on the climatology,
refer to Winterrath et al. (2017). In this dissertation, ground-based rainfall rates
of the YW product (Winterrath et al., 2018a), with a 5 min temporal and a 1 km2

spatial resolution, are used.

2.1.3 Micro rain radar (MRR)

The MRR is a vertically pointing frequency-modulated-contionus wave (FM-CW)
Doppler radar manufactured by METEK Meteorologische Messtechnik GmbH (Pe-
ters et al., 2002). The MRR retrieves drop size distributions (DSDs) from measured
Doppler spectra using the terminal fall velocity given by Atlas et al. (1973). Rainfall
rates and radar reflectivities are calculated from DSDs (Doviak et al., 1993). The
transmit frequency is at 24.23 GHz (K-band). Further details on the MRR are pro-
vided in Study A. The deployed MRRs provide DSD profiles for 31 range gates
(MRR-2 model) or 128 ranges gates (MRR-PRO model), with a range resolution of
35 m and a temporal resolution of 10 s. The MRR profiles intersect with the radar
beams of the LAWRs and the C-band radar. The rainfall rates and radar reflectivities
were adjusted with a rain gauge at the same location (Study A). Additionally, the
adjacent rain gauges monitor the MRR’s performance.

The MRRs are deployed at five measurement sites in the study area (Fig. B.2). The
MRR Blankenese Bauersberg (BBG) is deployed at a waterworks of the municipal
water and wastewater utility Hamburg Wasser in the west of Hamburg since 2017.
The MRR HafenCity University (HCU) is measuring on the rooftop of the HafenCity
University since 2021. The MRR Mittelnkirchen (MIT) is deployed on an apple farm
close to the LAWR ALT since 2020. The MRR Sasel (SAS) was installed by the
Meteorological Institute on an official measuring field of the DWD in 2022. The
MRR Wettermast Hamburg (WMH) is located at the scientific measuring site of the
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Meteorological Institute of the Universität Hamburg in the south-eastern part of
the city since 2008. The MRRs and the LAWR HHG are between 3.8 km (HCU) and
12.7 km (SAS) apart. The MRR MIT is outside the LAWR HHG scan radius. The
MRRs and the LAWR ALT are 0.3 km (MIT) and 9.8 km (BBG) apart, respectively.
The other MRRs are outside the LAWR ALT scan radius. The distances between
the MRRs and the C-band radar Boostedt are between 39.6 km (SAS) and 58.0 km
(MIT).

2.1.4 Rain gauges

60 rain gauges (Fig. 2.2) from different rain gauge networks were available over
the years 2013 to 2023. For the study of rainfall variability (Chapt. 4), 33 rain
gauges were used that were available for the year 2019. The University of Hamburg
operates a network of weather stations throughout Hamburg, covering, inter alia, 8
tipping bucket rain gauges (Campbell Young 52203) and 2 weighing rain gauges
(OTT Pluvio). Two weighing rain gauges and two tipping bucket rain gauges are
located close to the MRRs as ground reference. Hamburg Wasser, the municipal
water and wastewater utility, operates the largest rain gauge network and provided
measurements of 18 weighing rain gauges (OTT Pluvio) for the year 2019. The
DWD operates five weighing rain gauges (Lambrecht rain[e]H3) in and around
Hamburg. The combined rain gauge network has a maximal pair distance of 46 km
and median pair distance of 15 km. Although this rain gauge network is denser
than widely-used rain gauge networks, 4 rain gauge pairs are placed side-by-side,
and only 3 rain gauge pairs have a larger distance below 1 km, capturing the rainfall
variability at a sub-kilometre scale. All rain gauges were checked for the data
quality, by investigating the cumulative rainfall accumulation and the probability of
detecting with different rainfall thresholds (not shown).

2.2 enhanced rainfall measurements

Within the scope of this dissertation project, the networked rainfall observations
were expanded and improved:

• The LAWR ALT addresses the spatial limitation of rainfall observations at
hectometre spatial and sub-minute temporal scales. Since 2021, the LAWR
ALT expands the spatial coverage of rainfall measurements in the west of
Hamburg (Fig. 2.2). The additional coverage allows for an earlier observation
of rain cells approaching the urban area of Hamburg, as the wind direction
in the study area has a pronounced southwest to west maximum (Schlünzen
et al., 2010). This provides a solution to spatial limitations in nowcasting
of rain cells and general studies on rainfall in the area of Hamburg. Since
the LAWR ALT and LAWR HHG overlap in their coverage, the LAWR ALT
provides duplicated rainfall information in the western districts of Hamburg.
These duplicate measurements can reduce errors of rainfall estimates in these
areas, by filling measurement gaps, detecting clutter (e.g. Lengfeld et al.,
2014), or overcoming attenuation effects (e.g. Lim et al., 2011). Moreover, the
LAWR ALT measurements can benefit from its radar site in a rural area,
characterized by low apple trees and farms. The measurements in rural areas
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are less affected by non-meteorological echoes (clutter) than in urban areas
because of fewer objects, e.g. high buildings. The reduced occurrence of
clutter signals allows measurements at a lower beam elevation angle and
consequently measurements closer to the ground compared to the LAWR
HHG measuring in the city center. Measurements closer to the ground reduces
effects of the vertical rainfall variability, e.g. due to evaporation, wind drift, or
the transition between snow and rain (melting layer) (Villarini and Krajewski,
2010). A discussion on clutter and the radar alignment is provided in Study
A. For the LAWR ALT, I contributed to the site selection test measurements
and was responsible for maintaining the operational measurements, data
management and data processing.

• Three additional MRRs address the gaps in the representation of rainfall pro-
files at different sites. The MRR-2s have been recently set up at the HCU, MIT
and SAS sites, establishing a dense MRR network in the study area (Fig. 2.2).
All MRRs give insights about microphysical rainfall properties by measuring
drop size distributions and their vertical variability. The MRRs enable the
improvement of LAWR rainfall estimates by providing a relationship between
the rainfall rate and the radar reflectivity, which is unknown by the LAWR.
This relationship can be highly variable, even within the same storm (Villarini
and Krajewski, 2010), and additional MRR measurements may capture this
variability. Furthermore, the MRRs can provide the exact height of the melting
layer at their location (Brast and Markmann, 2020), a height, where the LAWR
radar reflectivity can be overestimated by a factor of 2-5, up to a factor of 10

(Villarini and Krajewski, 2010).

The new MRR sites were chosen due to individual reasons and availability.
The MRR HCU provides measurement in the city center of Hamburg and is
the closest MRR to the LAWR HHG. The LAWR measurements are less likely
affected by attenuation at this distance, thus the MRR HCU can evaluate the
calibration and performance of the LAWR HHG best. The MRR SAS closes
a gap in rainfall observations in the north-eastern districts of Hamburg. The
MRR MIT is located within the first range gates of the LAWR ALT and could
improve or replace the near-field measurements, which are often affected by
clutter, as shown in Study A. For all new MRR sites, I contributed to the site
selection, site planning, to maintain the operational measurements, and check
measurement data.

• A new MRR-PRO addresses the gap in rainfall profiles at altitudes between
105 m and 4480 m. The MRR BBG was upgraded by replacing the MRR-2
model by its successor model, MRR-PRO, in 2022. The specific site BBG was
chosen because both the measurements of LAWR HHG and LAWR ALT
cover this location. The MRR-PRO model comes along with an increased
sampling frequency and enhanced sensitivity in radar reflectivity. This allows
a higher number of range gates. Consequently, the MRR BBG is configured
with 128 range gates and a range resolution of 35 m. By measuring at higher
altitudes, this configuration solves the issues, where the LAWR radar beam
overshoots the MRR measurement volumes discussed in Study A. The MRR
BBG provides measurements matching the radar beam of the C-band radar
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precipitation scan. Furthermore, the observations of higher altitudes allows
studies of the melting layer and mixed-phase precipitation at more seasons.
For the MRR-PRO, I contributed to maintain the operational measurements
and check measurement data.

• The decreased range resolution at four MRR sites addresses the gap in rainfall
profiles at higher altitudes. The range resolution of the MRR HCU, MIT, SAS,
and WMH (MRR-2 model) was decreased from 35 m to 70 m on 01 January
2024. The MRRs provide profiles of drop size distributions between 210 m
and 2170 m. This configuration solve the same issues of partially mismatching
the measurement heights, similarly to the MRR-PRO model at the BBG site.

The improvements to the measurement network were partly informed by the
findings of the studies A and B. Due to the pandemic, some measurement setups
could only go into operation after a delay, so that the potential of the new measure-
ments could not be fully explored in this dissertation. Nevertheless, the presented
synergistic rainfall observations can be regarded as a foundation for future urban
precipitation studies in Hamburg.



Figure 3.1: LAWR observations of an exemplary rainfall event at different stages of data
reanalysis on 31.07.2023 at 18:13 UTC. (a) The level 0 radar reflectivity is su-
perimposed by several errors, including a range-dependent noise signal, and
is prior to the data reanalysis (Fig. 3.2). (b) The level 2 rainfall rate shows no
evident errors and represents the final stage of the data reanalysis.

3
R E A N A LY S I S O F M U LT I - Y E A R H I G H - R E S O L U T I O N X - B A N D
W E AT H E R R A D A R O B S E RVAT I O N S

Old measurements are precious: once lost, they cannot be replaced.
But without carefully saved information of how the data were measured,

we also create a risk of false conclusions.

— (Saltikoff et al., 2019)

The LAWR HHG has been in operation for over a decade, generating a multi-year
radar data set with higher spatio-temporal resolution than conventional radars
today. However, the rainfall estimates are affected by several radar-based errors
(Fig. 3.1) and prone to inconsistencies and breaks over the years, e.g. introduced by
advancement in the processing algorithms or delayed calibration after hardware
changes. As a result, processing a consistent rainfall data set has been a challenge,
which has limited the usability of the LAWR data in studies in recent years.

Users of a long-term data set of homogeneously reanalysed rainfall estimates from
LAWR observations will need to know the details on data processing, availability,
and accuracy. Study A makes the multi-year LAWR HHG radar reflectivities and
rainfall rates usable for further studies by providing a well-documented high-quality,
open-access radar data set (Burgemeister et al., 2024b). The data set was published
for the years 2013 to 2021. The reanalysis procedures of Study A also enabled
the creation of an additional LAWR rainfall data set (Burgemeister et al., 2022b),
which contributed to the study on cold pool events during the Field Experiment
on Sub-mesoscale Spatio-Temporal Variability in Lindenberg (FESSTVaL) from
June to August 2021 (Hohenegger et al., 2023). The documented data reanalysis
can be employed to extend the time series of the presented data sets and to any
measurements from the LAWR ALT or other single-polarized weather radars.

13
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Figure 3.2: Flow chart of the data reanalysis with in- and output data levels. The level 0

data set includes the radar reflectivity dBZ and the standard deviation of the
radar reflectivity factor of the averaged single pulses in hourly netCDF files. The
level 1 data set includes the calibrated radar reflectivity dBZ in daily netCDF
files. The level 2 data sets contain the attenuation-corrected radar reflectivity
dBZ and rainfall rate R in daily netCDF files.

This chapter details the reanalysis of the multi-year measurements, with a partic-
ular focus on the main procedures (Sect. 3.1). Section 3.2 provides an overview of
the radar performance over multiple years, along with a discussion of open issues
and limitations.

3.1 data reanalysis

Several sources of radar-based errors affect the radar reflectivity and rainfall mea-
surements of the LAWR, e.g. noise, alignment, non-meteorological echoes, radar
calibration, and attenuation (Fig. 3.1a). The reanalysis radar data set is based on a
set of consistent, state-of-the-art data processing procedures (Fig. 3.2) dealing with
these errors, which are detailed in Study A and outlined in the following.

Remove noise

The level 0 radar reflectivities are superimposed by microwave noise that comes
from the atmosphere and the radar itself. The radar cannot measure this background
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noise directly; however, an accurate estimation of the noise is mandatory to detect
weak weather signals. Therefore, as a first step in data processing (Fig. 3.2), the
background noise removal is dynamically fitted for every 30 s time step. In contrast
to the received signal, which is proportional to the squared distance to the radar,
the background noise is range-independent. The noise estimate is based on the 10th
percentile of the received signal multiplied with the inverse of the squared distance.
If more than 10 % of the radar bins are affected by rain, the prior noise estimate
is used. Furthermore, to stabilize the algorithm regarding radar artefacts, the 10

recent noise levels are averaged. The noise level is subtracted from the radar field,
yielding a noise-free radar reflectivity. Specific details on the noise removal can be
found in Lengfeld et al. (2014). The noise-free radar reflectivity enables subsequent
steps of data processing.

Determine radar alignment

The radar alignment of LAWR was adjusted manually at installation and after main-
tenance, leading to unknown uncertainties in antenna pointing. Without knowledge
about the radar alignment, the location of the measurements is unknown, thus
comparisons with other measurement devices are not possible. Fortunately, since
the beginning of operational measurements of the LAWR, spikes in radar reflectivity
are observed in the direction of the sun during sunrise and sunset (Fig. 3.3). These
solar signals facilitate the subsequent determination of the antenna azimuth and the
beam elevation angle (Huuskonen and Holleman, 2007), using the known position
of the sun, without interrupting the operational measurements (Reda and Andreas,
2008; Stafford et al., 2021). The solar signal in radar reflectivity is the strongest
spike in the direction of the sun position and is determined empirically in the radar
reflectivity after noise removal during rain-free events. The continuous maximal
reflectivity (Fig. 3.3) is detected at 3658 sunrises and sunsets for 23 min on average.
The mean calculated sun elevation angle of one sunrise or sunset is the radar beam
elevation angle. Changes in radar alignment due to maintenance are clearly visible.
The data reanalysis revealed six different beam elevation angles, ranging between
3.3◦ and 6.1◦, and seven different offsets of the azimuth angle up to 5.6◦. The high
variation of the beam elevation angles and offsets in the azimuth angle highlights
the importance of this step in data reanalysis implemented with Study A (Fig. 3.2).

Remove static and dynamic clutter

The noise-corrected and well-aligned radar reflectivities still contain static and
dynamic non-meteorological echoes (clutter) characterized by high values and
erroneous spatio-temporal gradients. Static clutter is caused by static objects, e.g.
trees and buildings. Dynamic clutter is caused by dynamic objects, e.g. planes, birds,
and other emitters at X-band frequencies. All these clutter values cannot be easily
detected within the LAWR measurements due to the lack of polarimetric or Doppler
quantities. The clutter detection requires the application of several gradient-based
and time-dependent correction algorithms. As a first step of clutter correction, static
clutter is removed by subtracting a static clutter field, where radar reflectivities
and clutter are assumed to be additive. The static clutter field is estimated from a
temporal median of rain-free radar measurements. The correction of static clutter
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Figure 3.3: Radar reflectivity after noise removal at sunset, 02.03.2020 16:20 UTC. (a) Radar
reflectivity at the 255.5◦ azimuth angle representing the solar signal. (b) Radar
reflectivity with continuous signal over range which is visible during the sun
set. The white lines indicate a 20◦ window around the true sun position in the
radar azimuth angle.

using the static clutter field subtracts clutter leaving the measurement, so there is
no need for interpolation. This additive static clutter field has not been used before
for long time series and is described in detail in Study A. Further dynamic clutter
signals are removed by several gradient-based correction algorithms, where five
different filter algorithms are applied: the texture of the logarithmic reflectivity
(TDBZ) filter (Hubbert et al., 2009), the SPIN filter (Hubbert et al., 2009), a spike
filter (Lengfeld et al., 2014), a ring filter (Lengfeld et al., 2014), and a speckle filter.
The dynamic clutter removal is initially described by Lengfeld et al. (2014), but
the application of the algorithms was refined in Study A. Identified and removed
clutter signals yield missing values in the reflectivity field. These missing values
are interpolated with ordinary Kriging (Cressie, 1993).

Calibrate

The observational synergy between the LAWR and MRR facilitates the calibration
and evaluation of the radar measurements, as the LAWR is a low-budget system
that has not been accurately calibrated in the laboratory and signal drift can occur
over time. The MRR provides the radar reflectivity factor derived from the drop
size distributions, which is used to directly calibrate the LAWR radar reflectivity
factor. Calibration and evaluation using MRR measurements have three main
advantages. The same variable and the same measurement height are compared
over sufficiently large sample volumes. A calibration with a disdrometer would
increase errors because of the height difference and different sampling volume sizes.
The calibration with a rain gauge would introduce an error based on uncertainties
associated with the relationship between the radar reflectivity and rainfall rate.

The calibration methodology is initially described by Lengfeld et al. (2014) and
the calibration coefficient cLAWR is defined as

cLAWR = 100.1·(dBZLAWR−dBZMRR) (3.1)
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Figure 3.4: Relation between the specific attenuation k and the radar reflectivity dBZ esti-
mated from micro rain radar measurements at 105 m height and 10 s temporal
resolution. Only measurements at temperatures above 0 ◦C are used to exclude
ice phase. The radar variables are computed at the X-band frequency from
measured drop size distributions with T-matrix calculations (Waterman, 1965)
implemented by Leinonen (2014) using raindrop axis ratios from Brandes et al.
(2002), a canting angle distribution with zero mean and 10◦ width, and the com-
plex refractive index of water from Liebe et al. (1991) at a temperature of 15 ◦C.
The power-law fit for the k-Z relation is based on measurements above 30 dBZ
(non shaded area) and is shown with a black solid line, including uncertainties
indicated as dashed black line.

with the radar reflectivity of MRR WMH dBZMRR averaged to altitudes and tem-
poral resolution matching to the LAWR radar reflectivity dBZLAWR. The calibrated
radar reflectivity factor Z′

LAWR is then derived from

Z′
LAWR =

ZLAWR

cLAWR
, (3.2)

with the measured radar reflectivity Z.
Study A revealed 13 calibration periods with a calibration parameter cLAWR be-

tween approximately 0.03 (strong overestimation) and 4.4 (strong underestimation).
In comparison to a perfect calibration characterised by a value of 1.0, the calibration
parameter varies a lot, due to maintenance including technical changes or drifts
in signal intensity. The wide range of calibration parameters underscores the ne-
cessity for calibrating the radar reflectivity for the general use and interpretation
of the measurements. The calibration ensures the comparability of the long-term
measurements taken at different times and enables subsequent processing steps.
Further details and results are given in Study A. The calibrated radar reflectivities
are provided as level 1 data set (Burgemeister et al., 2024b) (Fig. 3.2).
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Correct attenuation

The scattering and absorption of the emitted and reflected electromagnetic wave
propagating in precipitation is called attenuation. The power loss of the backscat-
tered signal due to attenuation leads to strongly underestimated reflectivities and
thus rainfall rates, specifically at X-band frequencies. The radar reflectivity factor
Z′ at range r suffers from attenuation integrated over the path,

Z′(r) = Z(r)− 2
∫ r

0
k(s)ds, (3.3)

where Z(r) is the unattenuated radar reflectivity factor at range r, and k(s) is the
specific attenuation of each range bin. The second term in Eq. (3.3) is known as the
two-way path-integrated attenuation (PIA). In Study A the attenuation is corrected
with the modified Kraemer (MK) approach (Jacobi and Heistermann, 2016) as
suggested by Overeem et al. (2021) for single-polarized radars. The attenuation
is corrected with a forward gate-by-gate attenuation correction (Hitschfeld and
Bordan, 1954) based on an iterative scheme to improve empirical parameters of a
relationship between the attenuation and radar reflectivity (Krämer and Verworn,
2008) including additional constraints of the attenuation PIA and radar reflectivity
Z (Jacobi and Heistermann, 2016). The attenuation k used in Eq. (3.3) is estimated
from Z (in mm6 m−3) using the power-law relation

k = αZβ, (3.4)

with empirical parameters α and β. These empirical parameters are determined
iteratively during the attenuation correction procedure between specific limits
depending on the radar frequency. The MK approach is detailed in the literature
(Jacobi and Heistermann, 2016; Overeem et al., 2021) and the specific settings of the
implementation are documented in Study A.

The specific attenuation k at X-band frequency is derived from the multi-year MRR
drop size distributions (Fig. 3.4). With the approach by Overeem et al. (2021) the
uncertainties of Eq. (3.4) and the limits of the empirical parameters are estimated.
The limits of α and β are αmin, max = [4.02 · 10−5, 9.52 · 10−5] and βmin, max =

[0.79, 0.90]. For details, how to estimate the uncertainties, refer to Study A. This
valid range of α and β is in agreement with estimates of other k-Z relations at
X-band frequencies (e.g. Berne and Uijlenhoet, 2006; Delrieu et al., 1999; Delrieu
et al., 2022; Diederich et al., 2015; van de Beek et al., 2010).

Study A makes the limits at X-band frequencies available, which are not defined
in existing literature, as Jacobi and Heistermann (2016) and Overeem et al. (2021)
applied the MK approach only at C-band frequencies. Other studies that seek to
implement the MK approach at X-band frequencies may benefit from the provided
specific settings, given that not every study has access to drop size distribution
measurements to adapt the algorithm parameters. The attenuation-corrected radar
reflectivities are provided as level 2 data set (Burgemeister et al., 2024b) (Fig. 3.2).
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Estimate rainfall rates

Rainfall rates R are estimated from the attenuation-corrected reflectivities Z using
a standard power-law relationship between these quantities, the Marshall-Palmer
Z-R relationship (Marshall et al., 1955):

Z = a Rb, (3.5)

where the multiplicative factor a = 200 and the exponent b = 1.6 are empirical
constants. Although, keeping in mind that Z and R depend on the drop size
distribution, which varies geographically, with rainfall rate, and over time (e.g. Berne
and Krajewski, 2013; Doviak et al., 1993; Villarini and Krajewski, 2010), consequently
the empirical constants can be highly variable. Nevertheless, the Marshall-Palmer
Z-R relation is an appropriate representation of average rainfall conditions in this
climate, as investigated with multi-year MRR drop size distributions in Hamburg
(not shown) and by Holleman (2006) and Kirsch et al. (2019). The estimated rainfall
rate R (Eq. 3.5, in mm h−1) is provided as a level 2 data set (Burgemeister et al.,
2024b) and constitutes the final data product of the data reanalysis (Fig. 3.2).

3.2 data quality

The data reanalysis of the multi-year LAWR measurements has led to an improve-
ment in the data quality of the radar reflectivity and, consequently, the rainfall
rate estimate, demonstrated in Study A. However, it should be noted that the data
reanalysis and discussion on data quality is constrained to the liquid phase, based
on a temperature threshold, which avoids effects from a decreased data quality
as caused by a melting layer. This section provides quantitative evidence for the
performance of the multi-year X-band radar observations, underlined by qualitative
examples.

The reanalysed LAWR measurements are quantitatively evaluated using MRR
measurements at matching heights and a matching temporal resolution of 30 s,
which comes with the same advantage as for the calibration. The same variable
and the same measurement height are compared over sufficiently large sample
volumes. The LAWR attenuation-corrected radar reflectivity (level 2 data set) is in
very good agreement with the MRR WMH reference, as evidenced by a low bias of
0.52 dB, a moderate root-mean-square error (RMSE) of 3.93 dB and a high Pearson
correlation coefficient of r = 0.88. The independent reflectivity measurements of
the MRR BBG confirm the data quality: bias of −0.30 dB, RMSE of 3.85 dB, and
r = 0.88. Therefore, the LAWR reflectivity is not biased in total.

The LAWR rainfall rates (level 2 data set) exhibit good agreement with the MRR
WMH reference, demonstrated with a low bias of 0.42 mm h−1, a moderate RMSE
of 4.69 mm h−1, and a correlation coefficient for the logarithmic rainfall rate of
r = 0.74. Since the reflectivities of LAWR and the MRRs are in good agreement, the
comparison of the rainfall rates mainly investigates the performance of the Marshall-
Palmer Z-R relation. The average underestimation of rainfall rates is consistent with
the findings of Kirsch et al. (2019), who show that the Marshall-Palmer Z-R relation
underestimates rainfall accumulation derived from drop size distributions by 6.3 %
to 17.4 %. The error increases in cases of strong convective precipitation because
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Figure 3.5: Frequency distribution of rainfall rates estimated from LAWR using a Z-R-
relation and MRR WMH and MRR BBG based on drop size distributions aver-
aged at beam height at a temporal resolution of 30 s.

Figure 3.6: Rainfall pattern during a tornado event on 07.06.2016 at 16:25:30 UTC, observed
by (a) the LAWR and (b) the C-band radar. The rainfall rate is shown for a
north-eastern section of the measurement domain in Hamburg.

raindrop size distributions begin to diverge from Marshall-Palmer distributions for
these cases (Schleiss et al., 2020).

Although, the rainfall rate estimates can deviate for individual time steps, LAWR
measurements reproduce the frequency distribution of rainfall rates as observed
by two MRRs very well (Fig. 3.5). In particular, the LAWR is able to identify rainy
time intervals. Consequently, the LAWR measurements yield reliable rainfall rate
estimates at beam height and sub-minute temporal scale. A qualitative example of
a rainfall event illustrates this point additionally (Fig. 3.6a). The LAWR resolved
a characteristic circular hook echo in the 30 s average rainfall rate, demonstrating
a rotating rainfall circulation around a tornado, first discussed by Hoffmann et al.
(2018). The hook echo is clearly visible for 8 min, in 16 measurement time steps, ac-
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Figure 3.7: Three-month total precipitation measured by the LAWR during June, July, and
August 2019. The radar estimates at four rain gauge locations (orange crosses)
are 174.7 mm (north), 146.7 mm (east), 132.1 mm (south), and 157.1 mm (west).

cordingly. The German nationwide C-band radars, measuring with 5 min temporal
and 250 m range resolutions, show the general rainfall pattern, but the hook echo is
only at one measurement time step (Fig. 3.6b). As a consequence, this event gives
a first hint that the LAWR, with its refined spatio-temporal resolution compared
to coarser resolved C-band radars, is capable of resolving rainfall patterns with a
short duration and relevant gradients at hectometre spatial scales. Consequently,
the LAWR measurements provide continuous spatio-temporal rainfall patterns.

This still holds for longer time scales. Fine-scale structures in rainfall patterns
are smoothed by temporal accumulation; nevertheless, spatial differences are still
visible in a three-month rainfall accumulation (Fig. 3.7). The rainfall accumulations
reveal long-term measurement errors, inter alia remaining clutter close to the radar
and three spikes. First, range gates close to the radar are still affected by clutter after
the application of correction algorithms, resulting in a small circle of high rainfall
accumulations. Approximately 500 m around the radar location, the first 8 of 333
range gates show the overestimated total precipitation. Second, three spikes are
characterized by an underestimation of total precipitation affecting multiple azimuth
angles over the whole range. Without these errors, the 3-month total precipitation is
in general not affected by clutter, noise, or attenuation (Fig. 3.7). However, note that
rainfall patterns at ground can deviate in comparison to measured rainfall pattern
at beam height because of vertical rainfall variability (Villarini and Krajewski, 2010).
Four rain gauges measured 194.8 mm (north), 127.6 mm (east), 134.0 mm (south),
and 172.9 mm (west) during the 3 months (Fig. 3.7). The absolute biases between
the radar rainfall accumulations and rain gauge measurements are low, ranging
from 1.9 mm to 20.1 mm. In general, the rain gauge observations are in agreement
with the estimated radar rainfall accumulations during this measurement period.

Study A points out that the reanalysed radar reflectivities and rainfall rates can
be used for meteorological and hydrological studies, considering the following
limitations:

• The LAWR data set is limited to estimates during the precipitation’s liquid
phase.
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• The attenuation correction can become unstable; thus, radar reflectivities can
be overestimated. In rare cases, radar reflectivities are not corrected for cases
with a numerically unstable attenuation correction.

• Differences between the LAWR measurements at beam height and ground
observations are a result of vertical variability of rainfall due to wind advection
and evaporation of rainfall. Variations between measurement devices can be
caused by differences in measurement principles and mismatches in the
measured volumes.

• Single measurements can be overestimated because of remaining clutter and
noise. The measurements in the first range gates can be superimposed by
clutter.

• The beam of the LAWR HHG is blocked in three directions, resulting in three
distinct spikes in the measurements.

3.3 key findings

In brief, Study A answers the first two research questions and yields the following
key results:

• Quality-tested radar reflectivities and rainfall rate estimates with 30 s tem-
poral and hectometre spatial resolutions covering the years 2013 to 2021 are
provided as an open-access data set (Burgemeister et al., 2024b).

• The reanalysed multi-year LAWR measurements give insight into the spatio-
temporal structure of rainfall at 30 s temporal scale and hectometre spatial
scale in an urban area.

• A local-area X-band weather radar (LAWR) can provide reliable rainfall esti-
mates, despite the lack of polarization and Doppler information, as evidenced
by good agreement between LAWR and MRR measurements.
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A D D E D VA L U E O F S PAT I O - T E M P O R A L R E S O L U T I O N F O R
W E AT H E R R A D A R O B S E RVAT I O N S AT U R B A N S C A L E S

The recent available reanalysed LAWR observations of Study A enable further
studies on the spatial and temporal scales of precipitation between the scales
captured by rain gauges and conventional weather radars. The LAWR offers the
highest area-wide spatio-temporal resolution (60 m and 30 s) of measurements
compared to the network of available rain gauges (point measurement, 1 min),
the nearest operational C-band radar (250 m and 5 min), and the radar-rainfall
climatology RADKLIM (1 km and 5 min). However, the higher spatio-temporal
resolution does not need to translate to measurements close to the unknown
truth. Several rainfall events reveal strong differences in the spatial variability of
rainfall observed by different measurement devices, as already demonstrated in
Chapter 1 with disparate representations of a rainfall event observed by the different
measurements (Figure 1.1). Study B explores the added value of spatio-temporal
resolution for weather radar observations at sub-hourly and sub-kilometre scales
by addressing three research questions:

• Is the local rainfall rate of the LAWR superior to other rainfall estimates?

• Is the LAWR better in capturing spatial rainfall variability?

• Are there structures within the LAWR measurements not obtained by other
measurement devices?

In the following, I outline the main results of Study B, which answer the research
questions with a comparative study focussing on five months of measurements in
2019.

4.1 comparison to a local reference

The local rainfall observations are represented by MRRs and rain gauges as a refer-
ence. The LAWR and C-band radar both provide rainfall rates retrieved from their
radar reflectivities, but differ in spatio-temporal resolution and scanning strategy.
The LAWR measurements have a radial resolution of 60 m and represent a true 30 s
average of its measurement interval. In contrast, the C-band measurements have
a radial resolution of 250 m and measure just 83 ms per azimuth of a represented
5 min measurement interval.

The MRR reference reveals, that at a 30 s temporal resolution, both the LAWR and
C-band rainfall rates perform equally well (Fig 4.1a and b). This is also evidenced
by conventional statistical metrics, such as the bias and RMSE (Table 4.1). Both
radars are able to distinguish between rainfall and no rainfall, which is also defined
as rainfall intermittency. This is demonstrated by the critical success index (CSI,
Table 4.1), a statistical metric suggested for evaluating the performance of radar
rainfall measurements by Germann et al. (2006), which is also described in Study

23
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Figure 4.1: Joint distribution of radar rainfall rates estimated from LAWR and C-band radar
observations versus two MRRs as reference. The measurements are compared at
overlapping heights for the period May to September 2019. The MRR rainfall
rates were averaged to (a, b) 30 s and (c, d) 5 min. The LAWR rainfall rates
are shown at (a) 30 s temporal resolution and (c) were averaged to 5 min. The
C-band rainfall rates in (b, d) are the instantaneous measurements from the
5 min measurement interval.

B. At a temporal resolution of 5 min, the LAWR rainfall rates are superior to those
of the C-band radar (Fig 4.1c and d). Furthermore, at a 5 min temporal resolution,
the LAWR is more effective at detecting the intermittent nature of rainfall than the
C-band radar. The better performance of the LAWR is expected because the LAWR
rainfall rate is based on a continuous 5 min observation, whereas the C-band rainfall
rate is an instantaneous observational sample based on one 83 ms measurement
average.

This better performance does not translate in a better match to rainfall accu-
mulations recorded by rain gauges, as differences in the Z-R relation and sample
volume sizes between radar and rain gauge dominate the uncertainty for both
the LAWR and C-band radar. As a reference, the rain gauge network shows that
rainfall estimates from LAWR and C-band radar measurements perform equally
well at ground level, analysed with rainfall accumulations between 15 min and 1 d,
detailed in Study B. The LAWR and C-band radar measurements underestimate
rainfall accumulations from rain gauges slightly, evidenced by a bias ranging from
−0.11 mm for a 15 min duration to −0.40 mm for a daily duration.

In conclusion, Study B demonstrates that the LAWR rainfall estimates outperform
the C-band radar rainfall estimate at a 5 min temporal resolution shown with MRR
measurements at beam height. For point rainfall observations at the ground, the
LAWR and the C-band radar demonstrate comparable performance in capturing
rainfall accumulations across all durations. In order to investigate the performance
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Table 4.1: Evaluation metrics of rainfall rate distributions comparing the LAWR and C-
band radar with the MRRs, respectively. n is the number of observations above
0.1 mm h−1 for both rainfall rates. The standard statistical metrics are the bias
and the root-mean-square error (RMSE). Based on hits, misses, false alarms, and
correct negatives, the critical success index (CSI), the false alarm ratio (FAR), and
the probability of detection (POD) is calculated.

30 s 5 min

(a) LAWR (b) C-band (c) LAWR (d) C-band

n 45242 4183 4848 4224

bias / mm h−1 0.10 0.19 −0.04 0.00

RMSE / mm h−1 3.46 2.94 3.61 4.69

CSI 0.75 0.75 0.81 0.71

FAR 0.20 0.21 0.12 0.21

POD 0.92 0.94 0.91 0.87

of rainfall estimation, as intended with the first research question of this section, it
appears that the MRR is a more suitable reference than the rain gauge network.

4.2 spatial variability

The spatial rainfall structure is determined for the different rainfall data sets
using the spatial correlation. The Pearson’s product-moment correlation is used
to estimate the spatial correlation, as commonly done in many studies (e.g. Ciach
and Krajewski, 2006; De Vos et al., 2017; Krajewski et al., 2003; Leth et al., 2021;
Peleg et al., 2013; Tokay et al., 2014; Villarini et al., 2008). The correlograms are
calculated based on pairs of rain gauges and pairs of a randomly drawn sample
of 100 grid points using a bin size of 100 m and different timescales, ranging from
1 min to daily rainfall accumulations. The correlation decays as the separation
distance between two locations increases due to spatio-temporal rainfall variability.
The spatial correlation can be parameterised with an isotropic, three-parameter
exponential function:

r (d) = r0 exp
[
−

(
d
d0

)s0
]

(4.1)

where d is the separation distance between two locations, r0 is the nugget parameter,
d0 is the decorrelation distance and e-folding distance, and s0 is the shape parameter
(e.g. Ciach and Krajewski, 2006; Foelsche et al., 2019; Habib et al., 2001; Krajewski
et al., 2003; Peleg et al., 2013; Villarini et al., 2008).

The nugget parameter r0 represents the zero-distance correlation and thus de-
scribes the uncertainty of measurements at the same location. The analysis of
the rainfall data sets yields a nugget parameter of one. Accordingly, only a two-
parameter exponential function without the nugget parameter is used, as done by
other studies (Leth et al., 2021; Mascaro, 2017; Thomassen et al., 2022). The shape
parameter s0, characterising the shape of the exponential function, is below 1 for
every rainfall data set, and does not contribute any further insights within the
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Figure 4.2: Decorrelation distance for different timescales (30 s, 1 min, 5 min, 15 min, 30 min,
45 min, and 1 h; crosses) for the months May to September 2019. The colors
indicate the rainfall data sets: LAWR (blue), rain gauges (green), C-band radar
(orange), RADKLIM (red). The solid lines mark the median and the shaded area
is the 5- to 95-percentile range of a bootstrap sample.

scope of this investigation. Therefore, this dissertation focuses on the decorrelation
distance d0, describing the decay of the spatial correlation, which provides insight
into the spatial variability of rainfall.

The decorrelation distance increases with timescale, from a few kilometers for
rainfall accumulation of a few minutes to several tens of kilometres for hourly
rainfall accumulations (Fig. 4.2). The rainfall data sets capture a different rainfall
variability, with distances between 3.84 km and 23.28 km for the LAWR, 2.89 km
and 26.10 km for the rain gauges, 3.44 km and 19.97 km for the C-band radar, and
8.79 km and 36.03 km for RADKLIM. The uncertainty of the decorrelation distance
is analysed by calculating the correlograms for different samples of the same rainfall
data sets. For the rain gauge network, bootstrapping is applied using the same
sample size. For the gridded rainfall data sets, 100 randomly drawn samples of 100
grid points were created. The 5- to 95-percentile range of distances, as measure of
uncertainty, increases with timescale. The 5- to 95-percentile range, in relation to
the median, tends to be narrow and constant for timescales up to an hour.

The spatial rainfall structure of the LAWR and rain gauge measurements match
best for sub-hourly timescales, since differences of the decorrelation distances are
between 278 m and 1.58 km (Fig. 4.2). The differences between the distances can be
explained by different measurement principles, because point and areal measure-
ments are compared. Surprisingly, the C-band radar underestimates decorrelation
distances for timescales up to an hour. The 5 min C-band radar measurements have
a decorrelation distance of 3.44 km, which is lower than the 5 min rain gauge dis-
tance of 5.48 km. This underestimation contradicts the assumption that a decreased
spatio-temporal resolution comes along with a decrease in decorrelation distances,
but is a consequence of the C-band radar scan strategy. The C-band radar scans
83 ms per azimuth and needs 30 s for the measurement scan, therefore the C-band
radar measures at an expected timescale of 5 min, a mixture of spatial variabilities



4.3 rainfall peaks 27

below a timescale of 30 s. The RADKLIM rainfall underestimates the spatial rainfall
variability compared to the other observations. This underestimation comes along
with the lowest spatial resolution compared to the other rainfall data sets and is a
consequence of spatial averaging and the rain gauge adjustment to a rain gauge net-
work with larger separation distances, than used in this study. Kreklow et al. (2020)
and Pöschmann et al. (2021) outline the underestimation of high intensity rainfall
due to spatial averaging. Peleg et al. (2018) show that extreme rainfall intensities
within a radar pixel are on average at least 10 % larger than values estimated from
weather radars at a spatial resolution of 1 km. Rainfall accumulations of longer
timescales than an hour are discussed in Study B, but the decorrelation distances
become increasingly uncertain and therefore less meaningful due to the limited
spatial scope of the rainfall data sets, which encompass separation distances of up
to 40–55 km.

In conclusion, Study B finds that conventional available rainfall data sets fail to
capture the sub-hourly rainfall variability. The spatial rainfall structures captured
by LAWR and rain gauge measurements are similar at sub-hourly timescales. The
C-band radar overestimates the spatial rainfall variability at sub-hourly timescales
due to its intermittent scanning strategy every five minutes. The radar-rainfall
climatology RADKLIM underestimates spatial rainfall variability due to its coarser
spatial resolution. The matching variability of the LAWR and dense rain gauge
measurements create confidence in the LAWR rainfall data set. Therefore, the LAWR
measurements provide an added value at the sub-hourly scale compared to C-band
radar measurements and RADKLIM.

4.3 rainfall peaks

The link between spatio-temporal rainfall variability and flood response is complex
(Zhou et al., 2021). One driver for the hydrological response are rainfall peaks
(e.g. Bruni et al., 2015; Cao et al., 2023). Wang et al. (2023a) conclude that the
accuracy of rainfall estimates significantly impact modelled peak flows in cases
of heavy rainfall. Bárdossy and Anwar (2023) highlight that interpolation and
low rainfall data density can lead to peak flow underestimation in rainfall-runoff
modelling. Rain gauge networks sample less likely from the upper tail of the rainfall
distribution due to their limited spatial coverage. Contrastingly, weather radars fill
the gap in spatial coverage, they however represent volume samples and averages.
The differences in spatio-temporal resolution and scan strategy affect the spatio-
temporal variability of the observed rainfall distributions. Therefore, the effect of
spatio-temporal coarsening on rainfall peaks is investigated.

Following Cristiano et al. (2018, 2019), the peak attenuation ratio P (R) for rainfall
is calculated,

P (R) = −Rmax,ref − Rmax,∆s∆t

Rmax,ref
, (4.2)

where Rmax,ref is the peak rainfall rate at the highest spatio-temporal resolution and
Rmax,∆s∆t is the peak rainfall rate at radial resolution ∆s and temporal resolution
∆t. The peak attenuation ratio quantifies the rainfall peak underestimation as a
consequence of spatio-temporal coarsening.
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Figure 4.3: Peak attenuation ratio (Eq. 4.2) associated with the rainfall rate at different
temporal resolutions based on MRR measurements available at 10 s temporal
resolution. Variables were averaged (a) or the first sample of the interval was
used (b). The crosses show the median, the dotted lines show the interquartile
range, and the grey area is the range of the whiskers.

Firstly, Study B indicates that temporal coarsening has a strong impact on rainfall
peaks (Fig. 4.3). Rainfall peaks are reduced by 9 % in median for 30 s averages and
up to 70 % in median for hourly averages in comparison to the 10 s rainfall rates
(Fig. 4.3a). Using only the first 10 s measurement to represent the measuring period
reduces rainfall peaks by 4 % in median for the 30 s timescale and up to 83 % in
median for the hourly timescale compared to the 10 s rainfall rates (Fig. 4.3b). At
the 5 min timescale, both scan strategies underestimate the rainfall peaks by 43 %.
However, temporal sampling instead of averaging causes a larger variability, as
shown by the quantiles of the peak attenuation ratio in Figure 4.3. For timescales
longer than 5 min, temporal averaging outperforms temporal sampling in terms
of capturing rainfall peaks in the median. At all timescales, temporal coarsening
by sampling can result in the total loss of rainfall peaks by missing them, whereas
averaging smooths and hence preserves information about rainfall peaks.

Secondly, Study B indicates that temporal averaging exerts a greater impact on
rainfall peaks than spatial averaging (Fig. 4.4), which is in line with previous studies
by (Cristiano et al., 2018, 2019). Rainfall peaks are reduced up to 91 % in median at
1980 m and 60 min spatio-temporal resolution compared to the reference resolution
of 60 m and 30 s. On the one hand, spatial averaging reduces rainfall peaks by 4 % at
a spatial resolution of 120 m (Fig. 4.4b) up to 41 % at a spatial resolution of 1980 m
(Fig. 4.4f) for a temporal resolution of 30 s. On the other hand, temporal averaging
results reduces rainfall peaks by 9 % at a temporal resolution of 1 min up to 83 %
at a temporal resolution of 60 min (Fig. 4.4a) for a spatial resolution of 60 m. The
reduction in rainfall peaks is twice as great when the temporal scale is doubled (30 s
to 1 min, Fig. 4.4a) in comparison to the spatial resolution (60 m to 120 m, Figures
4.4a and b).

In conclusion, Study B shows the importance of spatio-temporal resolution
and scan strategy in accurately measuring rainfall peaks. Furthermore, Study
B highlights that the LAWR is able to capture rainfall peaks better than the C-
band radar due to the used scan strategy (Fig. 4.3) and spatio-temporal resolution
(Fig. 4.4). Consequently, the LAWR can provide an added value in measuring
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Figure 4.4: Peak attenuation ratio (Eq. B.6) associated with the rainfall rate at different
temporal resolutions based on LAWR measurements available at 60 m range
and 30 s temporal resolution. Rainfall rates were coarsened for spatial scales of
(a) 60 m, (b) 120 m, (c) 240 m, (d) 480 m, (e) 960 m, (f) 1980 m and for temporal
scales from 30 s to 60 min.

rainfall peaks compared to C-band radar measurements, that can be relevant for
the hydrological response, e.g. caused by a localized rainfall event in an urban area.

4.4 sub-kilometre structure

Since differences in spatio-temporal resolution and scan strategy affect peaks and
spatial structure of the measured rainfall distribution, Study B investigates observa-
tions of sub-kilometre spatial radar rainfall variability in more detail. To analyse
the continuity and new structures of radar rainfall variability at the microscale,
gradients of radar reflectivity are computed. Study B discusses the statistics of
radar reflectivity gradients of the LAWR derived at higher (60 m) spatial resolution
compared to the C-band radar at 250 m spatial resolution. To derive gradients, the
differences in radar reflectivities at different lag distances are computed first (Fig.
4.5).

The radar reflectivity difference distributions are unbiased for both radars and
all lag distances (Table B.4), represented by the distributional mean. Resulting
from spatial variability, the variances increase with lag distance. Derived from the
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Figure 4.5: PDF of (a) LAWR and (b) C-band radar reflectivity differences for radar reflectiv-
ities larger than 10 dBZ in beam direction using lag distances ∆r of 60 m, 250 m,
500 m, and 1000 m.

Table 4.2: Distribution moments of (a) LAWR and (b) C-band radar reflectivity differences
using lag distances ∆r of 60 m, 250 m, 500 m, and 1000 m.

LAWR C-band

∆r 60 m 240 m 480 m 1020 m 250 m 500 m 1000 m

mean (dB) −0.00 −0.01 −0.02 −0.05 −0.01 −0.01 −0.01

variance (dB2) 1.16 3.94 8.81 18.84 5.94 10.43 19.08

skewness 0.00 0.02 0.03 0.02 −0.02 −0.02 −0.04

kurtosis 4.17 5.88 7.16 6.90 13.31 8.07 7.45

second moment, the variance is used by many studies to describe the spatial rainfall
variability estimated from radar observations (e.g. Berne et al., 2004; Emmanuel et al.,
2012; Germann and Joss, 2001; Ochoa-Rodriguez et al., 2015). Contrastingly, higher
statistical moments, like the skewness and kurtosis, are not commonly discussed
in other studies, but may give insights in errors and extremes, as discussed in
Study B. The distributions are unskewed. The absence of biases and skewness
indicate that the attenuation correction is successful on average. Derived from
the fourth moment, the kurtosis is mainly influenced by the distribution tails
(Westfall, 2014). The kurtosis indicates that the C-band radar measures more radar
reflectivity gradients at the distribution tails than the LAWR, despite the coarser
spatial resolution.

The higher spatial variability of the C-band radar measurements compared to
the LAWR measurements has already been discussed in Section 4.2 and is also
represented by the variances at different lag distances (Fig. 4.6). At a 250 m lag
distance, the LAWR variance is reduced by 34 % in comparison to the C-band
radar variance (Fig. 4.6a). At zero lag distance, the variance is defined as nugget
variance and expected to be zero (Cressie, 1993). However, the variogram of the
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Figure 4.6: Variogram of radar reflectivities above 10 dBZ. (a) LAWR radar reflectivities at
60 m spatial resolution (blue) are compared with C-band radar reflectivities at
250 m spatial resolution (orange). (b) LAWR radar reflectivities at 60 m spatial
resolution (blue) are compared with averages at 240 m (orange) and 480 m
(purple) spatial resolution.

Figure 4.7: Variance of radar reflectivity gradients for LAWR and C-band radar reflectivities
above 10 dBZ.

radar reflectivities indicates a higher nugget variance than zero (Fig. 4.6a). The
non-zero nugget variance is a discontinuity caused by microscale variability and
measurement errors (Germann and Joss, 2001), which well explains that the C-
band radar measurements with a 250 m radial resolution seem to have a higher
discontinuity than the LAWR observations with a 60 m resolution. Thus, Study B
evidences that the LAWR is capable to measure microscale rainfall variability better
than the C-band radar due to its higher spatial resolution and scan strategy.

At higher spatial resolutions, the LAWR is capable of measuring steeper radar
reflectivity gradients than the C-band radar (Fig. 4.7). The variance of radar reflec-
tivity gradients decreases with increasing lag distances. Because the variance of
gradients is not constant, the radar reflectivities differ from a white noise field. At a
250 m lag distance, the LAWR and C-band radar are directly comparable. Despite
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the C-band radar having a coarser spatial resolution than the LAWR, the C-band
radar measures steeper gradients than the LAWR, due to differences in scan strategy
and hence temporal resolutions. However, the LAWR radar reflectivity gradients
exhibit higher variance at 60 m and 120 m lag distances than the C-band radar
reflectivity gradients at 250 m lag distance. The variance of C-band radar reflectivity
gradients with the native 250 m spatial resolution is reduced by 30 % compared to
LAWR with a native 60 m spatial resolution. Because of these steeper gradients,
measurements of the LAWR can capture distinctly finer rainfall structures.

A lower spatial resolution results in a reduction of the measured spatial variability,
as expressed by a lower variance of gradients (Fig. 4.6b). The variance of radar
reflectivity gradients for a lag distance of 240 m is reduced by 35 % at a radial
resolution of 240 m compared to the native radial resolution of 60 m. A comparable
reduction in variance is observed in the comparison of the C-band radar at a
radial resolution of 250 m to the LAWR at a radial resolution of 60 m, as discussed
with Figure 4.7. The spatial averages of LAWR radar reflectivities demonstrate the
importance of spatial resolution to capture the spatial variability of rainfall.

In conclusion, Study B shows that a radar with higher spatio-temporal resolution
is capable of measuring steeper gradients and captures microscale rainfall variabil-
ity more accurately than conventional radars at coarser resolutions. The LAWR
measurements can provide an added value at the sub-kilometre scales compared to
C-band radar measurements and RADKLIM.

4.5 key findings

In brief, Study B yields the following key results:

• For 5 min time scales, the LAWR measurements outperform observations of
the C-band radar due to the continuous scan strategy and temporal resolu-
tion. This better performance does not translate in a better match to rainfall
accumulations recorded by rain gauges, as differences in the Z-R relation and
sample volume sizes between radar and rain gauge dominate the uncertainty
of radar rainfall estimates.

• A high spatio-temporal resolution and continuous scan strategy results in
more accurate measurements of rainfall peaks.

• The most accurate measurements of spatial rainfall variability at sub-hourly
timescales are those made by a dense network of rain gauges or a radar
with high spatio-temporal resolution and a continuous scan strategy, like the
LAWR.

• The variance of the radar reflectivity gradients highlights that a radar with
higher spatio-temporal resolution, like the LAWR, is capable of measuring
steeper gradients and captures microscale rainfall variability more accurately
than conventional radars.
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U N C E RTA I N T Y O F H I G H - R E S O L U T I O N M E A S U R E M E N T S

Study A and Study B demonstrate the data quality and the added value of the
reanalysed LAWR measurements. The multi-year data set reanalysis of the LAWR
measurements are a result of the best estimate of parameters of the correction
algorithms for long-term applications. Despite the considerable effort invested, the
provided radar reflectivities and rainfall rates remain susceptible to errors up to a
certain degree. The uncertainty of the reanalysed radar data is the superposition of
the several error sources, which are discussed in Study A - these include among
other things noise, alignment, non-meteorological echoes, radar calibration, and
attenuation. The uncertainty of radar rainfall estimates has been investigated by
several studies (e.g. Germann et al., 2009; Green et al., 2024b; Krajewski and Geor-
gakakos, 1985; Villarini et al., 2014). For example, Germann et al. (2006) propose
the generation of an ensemble of radar rainfall fields through the addition of a
correlated stochastic perturbation. In this dissertation, I aim to propose an alter-
native simplified approach to estimating the uncertainty associated with LAWR
measurements as an outlook. In this approach, multiple realizations of radar fields
are generated by perturbing the parameters of the correction algorithms intro-
duced with the presented radar reanalysis in Study A, which is inspired by an
ensemble. For instance, multiple realizations of radar reflectivities can be processed
with the data reanalysis by disturbing the noise level, the calibration coefficient
or parameters of other applied processing procedures. This chapter presents first
thoughts and preliminary results on an experiment on the uncertainty of the LAWR
measurements.

In a first experiment towards the uncertainty of LAWR radar reflectivities, only
the noise level is disturbed within the processing chain of the radar reanalysis,
as it is the first step of the processing (Chapt. 3). The experiment is conducted
for a randomly selected summer rainfall event characterised by a high noise level
variability, on 31.07.2023 between 19 UTC and 23:30 UTC (Fig. 5.1). The two LAWRs
and five MRRs of the measurement network (Chapt. 2) were processed following
Study A. The MRRs serve as a reference and the LAWR ALT as a benchmark. The
reanalysed LAWR HHG radar reflectivities, without disturbed noise levels, vary
between non-rainy values below 10 dBZ and moderate to heavy rain of 42 dBZ (Fig.
5.1). The LAWR HHG radar reflectivities are in good agreement with the MRRs, as
evidenced with low biases below 2.1 dB and RMSEs between 2.53 dB and 3.62 dB
(Table 5.1). The radar reflectivities are highly correlated with Pearson correlation
coefficients ranging from 0.82 to 0.94. During this rainfall event, the noise level
estimate is temporally highly variable (Fig. 5.1a), yielding a dynamically changing
sensitivity of the radar reflectivity depending on the range (Fig. 5.2), which is the
lowest detectable radar reflectivity at a specific range. Given that noise is primarily
generated by the radar itself (Chapt. 3), the found noise level variability appears
unrealistic. Therefore, multiple temporally constant noise levels are selected for
the noise level disturbance. Eleven noise levels are randomly selected within the
range of the initially found noise level (Fig. 5.1a), generating multiple realizations
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Table 5.1: Validation metrics of radar reflectivities comparing the LAWR HHG and the four
MRRs, respectively, showing the Pearson correlation coefficient estimator (r), the
mean bias, the root-mean-square error (RMSE), and the sample size (n). Z0 refers
to the reanalysed LAWR HHG radar reflectivity without disturbed noise level.
Z∗ refers to the LAWR HHG radar reflectivity processed with the lowest noise
level of all radar reflectivity realizations.

BBG HCU SAS WMH

Z0 Z∗ Z0 Z∗ Z0 Z∗ Z0 Z∗

n 362 421 436 436 420 454 427 440

r 0.88 0.91 0.90 0.90 0.82 0.87 0.94 0.96

bias (dB) −2.08 −1.02 1.07 1.18 −1.01 0.23 −1.10 −0.29

RMSE (dB) 3.62 2.74 2.53 2.55 3.03 2.31 2.67 2.10

of LAWR HHG radar reflectivities (Fig. 5.1b-e), hereafter referred to as ensemble of
LAWR reflectivities.

The ensemble of LAWR HHG reflectivities demonstrate the range of possible
reanalysed reflectivities (Fig. 5.1b-e). The ensemble indicates a high uncertainty
at periods with a large deviation between the ensemble radar reflectivities. For
example, at 20:10 UTC the initial LAWR HHG radar reflectivity measures a radar
reflectivity indicating no rain unlike the MRR SAS measuring light rain (Fig. 5.1d).
As the noise level increases, the sensitivity of the LAWR HHG radar reflectivity
declines (Fig. 5.2). However, ensemble members of the LAWR HHG reflectivities
with a low noise level indicate rain with the same intensity as the MRR. Notwith-
standing, the initial LAWR HHG reflectivity appears as a good solution during
most periods.

The ensemble of LAWR HHG reflectivities reveal that the noise level variability
is overestimated. The ensemble member with the lowest noise level performs best.
The biases are below 1.1 dB and demonstrate improvement at three of the four MRR
locations, and the bias remains equal at the MRR HCU location (Table 5.1). The
RMSEs exhibit a decrease at all MRR locations, with values between 2.1 dB and
2.7 dB. The correlations demonstrate improvement at all MRR locations, with values
ranging between 0.87 and 0.95. For ensemble members with higher noise levels, the
scores deteriorate noticeably.

The results demonstrate the constraints of the noise removal algorithm, which
can be revisited in future studies. The impact of the noise removal variability on
the multi-year reanalysed rainfall data set is beyond the scope of this work and
could be the subject of future investigations. This sensitivity study can be applied
for each processing procedure, with the aim to improve the parameters, or for
multiple steps simultaneously, with the objective to estimate the uncertainty of
the reanalysed measurements. In conclusion, this dissertation demonstrates an
approach to generate multiple representations of radar reflectivity by modifying
the parameters of the correction algorithms. The preliminary findings from the
experiment on the uncertainty of the LAWR measurements indicate the possibility
of improving the multi-year radar reanalysis. In addition, this chapter presents the
first measurements from the improved measurement network (Chapter 2), including
the added MRRs and the second LAWR.
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Figure 5.1: Radar observations of an exemplary rainfall event on 31.07.2023. (a) The noise
level of LAWR HHG is temporally variable (Study A). (b-e) The radar reflectiv-
ities from LAWRs and MRRs are shown at common volumes and a temporal
resolution of 30 s. The dashed black lines in (b-e) show MRR radar reflectivities.
The blue lines in (b-e) show LAWR HHG reflectivities. The grey lines in (b-e)
show an 11 different realizations of LAWR HHG reflectivities based on constant
noise levels in the range of the dynamically fitted noise level (a). The red line (b)
shows LAWR ALT reflectivities.
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Figure 5.2: Sensitivity of LAWR HHG radar reflectivities at specific ranges for the different
constant noise levels introduced in Figure 5.1. The vertical black lines indicate
the ranges, at which the MRRs are located.



6
S U M M A RY A N D C O N C L U S I O N S

This thesis investigates radar rainfall observations at sub-kilometre and sub-minute
scales. These are relevant scales for meteorological and hydrological applications in
urban environments, yet they are not adequately observed because of the spatio-
temporal resolutions of conventional radars. In Study A, I detail the data reanalysis
of multi-year measurements of a local area X-band weather radar (LAWR), which
resulted in an open-access data set of radar reflectivities and rainfall rates at
hectometre spatial and 30 s temporal resolutions (Burgemeister et al., 2024b). This
data set facilitates Study B, in which I investigate the added value of a refined
spatio-temporal resolution for weather radar observations at sub-hourly temporal
and sub-kilometre spatial scales compared to conventional measurements.

The networked rainfall observations in Hamburg are the measurement data
basis for the raised research question proposed in Chapter 1 and are described
in Chapter 2. As part of this dissertation project, I contributed to the expansion
and enhancement of the measurement network, with the objective to close gaps
and inaccuracies in the observations for futures studies. Chapters 3 and 4 describe
the key methods and findings of Study A and Study B, respectively. Both chapters
demonstrate the data quality and the added value of the reanalysed LAWR mea-
surements. However, the reanalysed LAWR measurements are a result of a number
of corrections that have been tuned to my best knowledge. These deterministic
results include a variable uncertainty, which I investigate in an outlook in Chapter 5.
Chapters 3, 4, and 5 answer the specific research questions proposed in Chapter 1:

1. How can we create a consistent rainfall data set from the multi-year LAWR measure-
ments?

Precipitation data sets that are generated by operational data processing
are prone to inconsistencies and breaks, e.g. introduced by advancement
in the processing algorithms or delayed calibration after hardware changes.
This dissertation describes the reanalysis of the radar data set, which is
based on a set of consistent, state-of-the-art data processing procedures. A
number of potential sources of error in radar data were identified and ad-
dressed in a step-by-step manner, with the aim of improving the precision
of precipitation estimates. These included issues related to noise, alignment,
non-meteorological echoes, radar calibration, and attenuation. In particular,
the multi-year operation of the LAWR introduce challenges for creating a
homogeneous data set. Any maintenance resulted in a slightly incorrect align-
ment of the LAWR. This unknown LAWR alignment is accurately determined
using the solar signal appearing in radar reflectivities during sunrise and
sunset, which facilitates comparisons with other measurement devices. The
replacement and ageing of the LAWR hardware over the years resulted in
unknown deviations from a well-calibrated measurement signal. Subsequent
calibration of the LAWR is mandatory because of strongly biased measure-
ment periods due to the maintenance, evidenced by MRR observations. The
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MRRs provide measurements at the LAWR beam height and enabled the
calibration. After calibration, the attenuation correction method, the modified
Kraemer (MK) approach, is applied. The MRR drop size distributions facilitate
the adjustment of the relationship between the radar reflectivity and specific
attenuation to apply the MK approach at X-band frequencies. This dissertation
facilitates the use of the MK approach at X-band frequencies and shows that
this method is a reliable attenuation correction for single-polarized X-band
radars, demonstrated with a long-term data set. The LAWR rainfall rates were
estimated from attenuation-corrected reflectivities using the Marshall-Palmer
Z-R relationship.

As a result, this dissertation provides radar reflectivities and rainfall rate
estimates with 30 s temporal and hectometre spatial resolutions covering the
years 2013 to 2021 (Burgemeister et al., 2024a), addressing the gap of well-
documented, high-quality, open-access radar rainfall data sets at sub-kilometre
and sub-minute scales.

2. What is the uncertainty of the LAWR rainfall measurements?

The reanalysis of the LAWR measurements reduces the uncertainty of the
rainfall estimates effectively, especially after successful calibration and attenu-
ation correction. However, the uncertainty of the LAWR rainfall estimation
can only be estimated by comparison with other measurement devices. The
reanalysed, multi-year LAWR radar reflectivities and rainfall rates are in very
good agreement with MRR measurements, which is also demonstrated with a
MRR as a reference that has been not used for calibration.

The LAWR spatio-temporal resolution and scan strategy can reduce the
uncertainty of rainfall measurements in comparison with conventional radars.
The LAWR operates with a radial resolution of 60 m and a temporal resolution
of 30 s. The radar reflectivity represents a 30 s average of approximately 67

pulses per 1◦ collected during 12 sweeps, therefore it is a true average within
the measurement interval. In contrast, the C-band radar operates with a radial
resolution of 250 m and a temporal resolution of 5 min. The radar reflectivity
represents a 83 ms average of approximate 50 pulses per 1◦ azimuth collected
during 1 sweep within 30 s every 5 min, therefore it is an instantaneous
sample. Notwithstanding these differences, the LAWR and C-band radar can
be compared spatially well, as the measurements are highly correlated up to
0.93, where the measuring heights and sampling volumes are at closest. The
MRR observations show that both the LAWR and C-band radar reflectivities
and rainfall rates perform equally well at 30 s temporal resolution. For 5 min
time scales, the LAWR measurements outperform observations of the C-band
radar due to a continuous scan strategy and temporal resolution. This better
performance does not translate in a better match to rainfall accumulations
recorded by rain gauges, as differences in the Z-R relation and sample volume
sizes between radar and rain gauge dominate the uncertainty for both the
LAWR and C-band radar.

Furthermore, the reanalysis of LAWR measurements includes a temporally
and spatially variable uncertainty. Each correction algorithm has its own
associated uncertainty, and consequently, the reanalysis of the data propagates
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errors. I provide an outlook on the uncertainty of radar measurements by
perturbing the parameters of the correction algorithms introduced during the
data reanalysis, which is inspired by an ensemble of measurements. In an
initial experiment addressing the uncertainty of LAWR radar reflectivities,
the parameter of the first correction algorithm, noise removal, is perturbed,
making this approach similar to a sensitivity study of noise removal. The
multiple realizations of LAWR HHG reflectivities reveals that the variability in
noise levels is overestimated. The variant with the lowest noise level performs
best, indicating potential improvements for this algorithm.

This dissertation proves the long-term performance of a local-area X-band
weather radar (LAWR) despite the lack of polarization and Doppler informa-
tion. The initial findings from the experiment on the uncertainty of LAWR
measurements are presented, suggesting potential avenues for enhancing the
multi-year radar reanalysis. This error source-based uncertainty investigation
may lead to improved handling of uncertainties.

3. What is the added value of high-resolution rainfall measurements at sub-kilometre
and sub-hourly scales?

This dissertation demonstrates that a LAWR operating at hectometre spatial
and 30 s temporal resolution fills a gap in rainfall observations capturing
variability at short-duration, sub-kilometre scales compared to conventional
radar measurements or rainfall data sets.

This dissertation highlights the importance of spatio-temporal resolution and
scan strategy in accurately measuring rainfall peaks, which can be relevant
for the hydrological response, e.g. caused by a localized rainfall event in an
urban area. The LAWR is capable to capture rainfall peaks better than the
C-band radar due to the used scan strategy and spatio-temporal resolution.
The temporal resolution exerts a greater impact on rainfall peaks than the
spatial resolution, as shown with measurements at different spatio-temporal
resolutions.

This dissertation finds that conventional available rainfall data sets, like the
C-band radar measurement and radar-rainfall climatology RADKLIM, fail
to capture the sub-hourly rainfall variability. The spatial rainfall structures
captured by LAWR and rain gauge measurements are similar at sub-hourly
timescales. The found matching variability of the LAWR and dense rain gauge
measurements create additional confidence in the quality of the LAWR rainfall
data set. Contrastingly, the C-band radar is overestimating spatial rainfall
variability at sub-hourly timescales, despite the lower spatio-temporal resolu-
tion but due to its intermittent scan strategy every five minutes. RADKLIM is
found to underestimate spatial rainfall variability due to its interpolation on
a coarser spatial resolution and adjustment to a coarser rain gauge network
than used in this study. Consequently, The LAWR measurements provide an
added value at the sub-hourly scale compared to C-band radar measurements
and RADKLIM.

This dissertation shows that a radar with higher spatio-temporal resolution
is capable of measuring steeper gradients, which is relevant to capture the
microscale rainfall variability. For instance, gradients of radar reflectivity
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are high in case of local heavy rainfall events. The bias, variance, skewness,
and kurtosis of radar reflectivity gradients can serve as an indicator of both
measurement errors and rainfall variability. The variance of the C-band radar
reflectivity gradients at 250 m spatial resolution is reduced by 30 % compared
to the LAWR radar reflectivity gradients at 60 m spatial resolution. The vari-
ance of the radar reflectivity gradients highlights that the LAWR is capable of
measuring steeper gradients and captures microscale rainfall variability more
accurately than conventional radars. Therefore, the LAWR measurements can
provide an added value at the sub-kilometre scale compared to C-band radar
measurements and RADKLIM.

Present operational measurements and their reanalyses do not, and will not,
fully capture the rainfall variability at short-duration and sub-kilometre scales. A
LAWR can fill this observational gap; however, its added value depends on data
quality, availability, and usability. Parts of this dissertation project depended on
collaboration with different institutions, and some operational measurement data
were not publicly available, highlighting the need for open-access measurement
data. The multi-year open-access radar rainfall data set introduced with this disser-
tation provides a foundation for further meteorological and hydrological research,
particularly to understand rainfall processes at these scales in urban areas. This
data set has already proven its utility in several meteorological studies (e.g. Ferner
et al., 2022; Kirsch et al., 2024, 2022; Schmitt et al., 2023). The spatial limitation of
the LAWR will be overcome in future rainfall studies by the introduced extension
and improvement of the measurement network.
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This work in this appendix has been published as:

F. Burgemeister, M. Clemens, and F. Ament (2024c). “Reanalysis of multi-year
high-resolution X-band weather radar observations in Hamburg.” In: Earth System
Science Data 16.5, pp. 2317–2332. doi: 10.5194/essd-16-2317-2024
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All authors conceptualized the project and reviewed the draft. FB planned and
processed the data sets, performed the evaluation, and wrote and revised the draft.
FB and MC maintained the X-band radar. FB and FA edited the draft. MC and FA
conceptualized and implemented the measurement network.
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Reanalysis of multi-year high-resolution X-band weather radar
observations in Hamburg

Finn Burgemeister1, Marco Clemens1, Felix Ament1

1Meteorological Institute, Center for Earth System Research and Sustainability
(CEN), Universität Hamburg

abstract

This paper presents an open-access data set of reanalysed radar reflectivities and
rainfall rates at sub-kilometre spatial and minute temporal scales. Variability at
these scales is a blind spot for both operational rain gauge networks and operational
radar networks. In the urban area of Hamburg, precipitation measurements of a
single-polarized X-band weather radar operating at a high temporal (30 s), range
(60 m), and azimuthal sampling (1◦) resolutions are made available for a period of
more than 8 years.

We describe in detail the reanalysis of the raw radar data, outline the radar
performance for the years 2013 to 2021, and discuss open issues and limitations
of the data set. Several sources of radar-based errors were adjusted gradually
affecting the radar reflectivity and rainfall measurements, e.g. noise, alignment,
non-meteorological echoes, radar calibration, and attenuation. The deployment
of additional vertically pointing micro rain radars yields drop size distributions
at the radar beam height, which effectively reduces errors concerning the radar
calibration and attenuation correction and monitors the radar data quality. A
statistical evaluation revealed that X-band radar reflectivities and rainfall rates are
in very good agreement with the micro rain radar measurements. Moreover, the
analyses of rainfall patterns shown for an event and accumulated rainfall of several
months prove the quality of the data set.

The provided radar reflectivities facilitate studies on attenuation correction and
the derivation of further weather radar products, like an improved rainfall rate.
The rainfall rates themselves can be used for studies on the spatial and temporal
scales of precipitation and hydrological research, e.g. input data for high-resolution
modelling, in an urban area. The radar reflectivities and rainfall rates are available
at https://doi.org/10.26050/WDCC/LAWR_UHH_HHG_v2 (Burgemeister et al., 2024b).

https://doi.org/10.26050/WDCC/LAWR_UHH_HHG_v2
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a.1 introduction

Knowledge of small-scale rainfall variability is needed for several meteorological
and hydrological applications, particularly in urban environments due to their
water-related sensitivity. For instance, urban hydrological applications demand
high-quality radar rainfall data with at least a temporal resolution of 1 min and
spatial resolution of 100 m (Berne and Krajewski, 2013; Einfalt et al., 2004; Gires
et al., 2013; Ochoa-Rodriguez et al., 2015; Thorndahl et al., 2017). In general, hy-
drometeorological and fundamental studies on rainfall properties may benefit from
long-term measurements at small spatio-temporal scales.

Rain gauge networks provide reliable local precipitation measurements, but
due to their limited operational network densities, they are unable to represent
rainfall variability for large domains at small temporal scales (e.g. Berne et al.,
2004; Lengfeld et al., 2019; Maier et al., 2020; Villarini et al., 2008). Conventional
weather radar systems, mostly operating at S- and C-band frequencies, are able to
provide radar rainfall measurements over large domains with a temporal resolution
of several minutes and spatial resolution of a few hundred metres. Long-term
radar-based precipitation climatologies based on these conventional radars are
available for Germany with a 5 min temporal resolution and 1 km spatial resolution
(Winterrath et al., 2018b), and for Europe with an hourly temporal resolution and
2 km spatial resolution (Overeem et al., 2023). Consequently, there is a gap in
long-term radar rainfall data sets at the sub-kilometre spatial scale and temporal
scales below 5 min. X-band radars are able to refine rainfall estimates at temporal
resolutions down to 16 s (van de Beek et al., 2010) and radial resolutions down
to 3 m (Mishra et al., 2016), but most of them operate at or below 100 m spatial
resolutions and 1 min temporal resolutions in areas of special interest, like urban
areas (e.g. Allegretti et al., 2012; Berenguer et al., 2012; Hosseini et al., 2020; Lengfeld
et al., 2014; Lo Conti et al., 2015; Maesaka et al., 2011; Schleiss et al., 2020; van de
Beek et al., 2010; Ventura and Russchenberg, 2009; Wang and Chandrasekar, 2010;
Yoon et al., 2017). However, long-term reanalyses of these radar observations are
not available. Therefore, the aim of this paper is to present the data reanalysis of
X-band radar observations at the sub-minute and hectometre scale in the urban
area of Hamburg for multiple years, which resulted in an open-access data set of
radar reflectivities and rainfall estimates (Burgemeister et al., 2024b).

The operational, single-polarized X-band weather radar monitors precipitation
within a 20 km scan radius around Hamburg’s city centre since 2013, operated in
synergy with two micro rain radars (MRRs) and rain gauges. The local area weather
radar (LAWR) operates at one elevation angle with a high temporal (30 s), range
(60 m), and azimuthal sampling (1◦) resolutions, refining coarser observations of the
German nationwide C-band radars at 250 m spatial and 5 min temporal resolution.
Although most of the latest X-band radars have dual-polarimetric capabilities (e.g.
Anagnostou et al., 2018; Cao et al., 2023; Hosseini et al., 2023; Neely III et al.,
2021; Pejcic et al., 2022; Schleiss et al., 2020), where dual-polarimetric quantities
improve rainfall estimates, even low-cost, single-polarized X-band radars provide
valuable information on the spatio-temporal variability of precipitation (e.g. Lo
Conti et al., 2015; Marra and Morin, 2018b; van de Beek et al., 2010). The single-
polarized X-band radars require extensive post-processing and the deployment of
independent additional sensors, like micro rain radars, disdrometers, or rain gauges
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(Thorndahl et al., 2017; Villarini and Krajewski, 2010). Former studies on short time
periods (several months and a case study) show that the LAWR provides detailed
information on the structure of precipitation. Lengfeld et al. (2014) deployed a
network of four LAWRs and micro rain radars in a rural area of northern Germany.
They describe correction algorithms for single and networked LAWRs and discuss
the performance of measurements of 5 months. Lengfeld et al. (2016) and Lengfeld
et al. (2018) introduce a method to correct reflectivity measurements for attenuation
using less attenuated radars, and they compare attenuation correction methods for
single-polarized X-band radars using this LAWR network. The LAWR network was
dismantled in 2017. However, the LAWR located in Hamburg is still in operation,
extending a unique data set. Hoffmann et al. (2018) shows that the LAWR is able to
capture the circular pattern in rainfall rates because of its higher resolutions in space
and time. In a recent study, a LAWR was deployed to provide rainfall estimates
for studies on cold pool events during the Field Experiment on Sub-mesoscale
Spatio-Temporal Variability in Lindenberg (FESSTVaL) from June to August 2021

(Burgemeister et al., 2022b). The previous studies provide knowledge and algorithms
to reanalyse a consistent long-term data set based on LAWR measurements.

Any user of the presented long-term data set of homogeneously reanalysed
rainfall estimates from X-band radar observations will need to know the details
on data processing, availability, and accuracy. In this paper, we describe the setup
of the LAWR in synergy with two MRRs and rain gauges in Hamburg (Sect. A.2).
We explain the reanalysis of the multi-year measurements, addressing the noise
removal, correction of non-meteorological echoes, calibration, attenuation correction,
and rainfall estimation (Sect. A.3). Finally, we check the performance of the multi-
year measurements with MRR observations, present rainfall patterns, and discuss
limitations of the data set (Sect. A.4).

a.2 radar observations in hamburg

In the urban area of Hamburg, synergistic precipitation observations of a local area
weather radar (LAWR) operating at X-band frequency, a micro rain radar (MRR),
and a rain gauge (RG) are available since 2013 (Fig. A.1). The measurements can
refine the observations of the German nationwide C-band radars and supplement
and cover additional rain gauges. The LAWR Hamburg Geomatikum (HHG) is
located on the rooftop of the Meteorological Institute of the Universität Hamburg
in the centre of Hamburg. The MRR Wettermast Hamburg (WMH) is located at the
scientific measuring site of the Meteorological Institute of the Universität Hamburg
in the south-eastern part of the city. The MRR Blankenese Bauersberg (BBG) is
deployed at a waterworks of the municipal water and wastewater utility Hamburg
Wasser in the west of Hamburg since December 2017. The MRR WMH and LAWR
HHG are 10.1 km apart. The MRR BBG and LAWR HHG are 12.3 km apart. The
closest C-band radar of the German Weather Service (DWD) covering the whole
measuring area of the LAWR HHG was in Hamburg Fuhlsbüttel (airport) with a
distance of 7.3 km until 2014 and is since then in Boostedt 48.7 km away.
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Figure A.1: Precipitation observations in Hamburg. The location of the local area weather
radar (LAWR) / X-band radar (WRX) on the rooftop of the Geomatikum
building in Hamburg (HHG) is indicated with a blue point. The dashed blue
line shows the coverage with the 20 km scan radius. The locations of two micro
rain radars (MRRs, red points) are, by name, Blankenes Bauersberg (BBG) and
Wettermast Hamburg (WMH). Rain gauges (RGs, orange crosses) are located
next to the MRRs and at sites of the German Weather Service (DWD).

a.2.1 X-band weather radar

The LAWR is a modified ship navigation radar of type GEM scanner SU70-25E.
This single-polarized X-band radar operates at a frequency of 9.41 GHz. The LAWR
provides horizontally radar reflectivity measurements at one fixed elevation angle
with 30 s temporal, 60 m range, and 1◦ azimuthal sampling resolutions. The eleva-
tion angle was adjusted several times over the years for optimal operation during
maintenance to reduce disturbances by non-meteorological echoes. The advantages
of the LAWR are its low costs, high spatio-temporal resolution, and scanning
strategy (Lengfeld et al., 2014). The LAWR costs less than 20 % of conventional
X-band radars. The radar reflectivity represents an 30 s average of approximately
67 pulses per 1◦ collected during 12 sweeps, whereas conventional weather radars
provides instantaneous measurements based on 1 sweep. The LAWR specifications
are summarized in Table A.1, and we refer to Lengfeld et al. (2014) for technical
details on the radar.

a.2.2 Micro rain radar

The MRR is a vertically pointing frequency-modulated contionus-wave (FM-CW)
Doppler radar manufactured by METEK Meteorologische Messtechnik GmbH (Pe-
ters et al., 2002). The MRR retrieves drop size distributions (DSDs) from measured
Doppler spectra using the terminal fall velocity given by Atlas et al. (1973). Rainfall
rates and radar reflectivities are calculated from DSDs (Doviak et al., 1993). Noise
and attenuation corrections are performed by the manufacturer’s software (Metek,
2015). The DSD retrieval assumes stagnant air. Vertical wind and turbulence effects



48 reanalysis of high-resolution weather radar observations

Table A.1: Technical LAWR specifications (Lengfeld et al., 2014)

Specification

Range resolution 60 m

Temporal resolution 30 s

Scan radius 20 km

Angular resolution 2.8◦

Azimuthal sampling resolution 1◦

Beam width 2.8◦

Transmit power 25 kW

Frequency 9.41 GHz

Pulse width 0.4 ¯s

Pulse repetition frequency 800 Hz

Rotation speed 24 rpm

are discussed in Peters et al. (2005) and are neglected in this study. The transmit
frequency is at 24.23 GHz (K-band). Before November 2014, the MRR WMH mea-
sured with a transmit frequency of 24.0 GHz. Both MRRs measure DSD profiles for
31 range gates, with a range resolution of 35 m and a temporal resolution of 10 s.
Adjacent rain gauges monitor the MRR’s performance.

a.3 data reanalysis

Precipitation data sets that are generated by operational data processing are prone
to inconsistencies and breaks, e.g. introduced by advancement in the processing
algorithms or delayed calibration after hardware changes. As a decisive advantage,
this reanalysis radar data set is based on a set of consistent, state-of-the-art data
processing procedures. To ensure traceability, we document in this section the
essential data processing procedures: removal of noise (Sect. A.3.1), correction of
misalignment (Sect. A.3.2), detection of non-meteorological echoes (Sect. A.3.3),
radar calibration (Sect. A.3.4), correction of attenuation (Sect. A.3.5), and the con-
version to rainfall rates by a Z-R relation (Sect. A.3.6). The availability of corrected
radar reflectivities and rainfall estimates will finally be summarized in the last
section (Sect. A.3.7).

a.3.1 Remove noise

The raw radar reflectivities measured by the LAWR are superimposed by microwave
noise that comes from the atmosphere and the radar itself. The radar cannot
measure the background noise directly; however, an accurate estimation of the
noise is mandatory to also detect weak weather signals. The background noise
removal is dynamically fitted for every 30 s time step following Lengfeld et al. (2014).
In contrast to the received signal, which is proportional to the squared distance(
r2) to the radar, the background noise is range-independent. Therefore, the radar
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reflectivity factor Z is multiplied by r−2 and an initial guess of the noise level
estimated from a rain-free field is subtracted from the radar field Z · r−2. The noise
level is multiplied by a factor of 1.03 to remove all noise artefacts. If more than 10 %
of the radar bins remain rain-free, the 10th percentile of the original Z · r−2 becomes
the new noise level estimate; otherwise, the noise level from the prior time step is
kept. The estimated noise level is used as an initial guess for the next time step.
The 10 recent noise level estimates are averaged to stabilize the algorithm regarding
radar artefacts. Finally, the dynamic background noise is subtracted from the radar
field, yielding the noise-free radar reflectivity factor after the multiplication by r2.

a.3.2 Determine radar alignment

The radar alignment of LAWR was adjusted manually at installation and after
maintenance, leading to unknown uncertainties in antenna pointing. Since the
beginning of operational measurements of the LAWR, spikes in radar reflectivity
are observed in the direction of the sun during sunrise and sunset (Fig. A.2). These
solar signals facilitate the subsequent determination of the antenna azimuth α and
the beam elevation angle ε (Huuskonen and Holleman, 2007), using the known
position of the sun (Reda and Andreas, 2008; Stafford et al., 2021).

The solar signal in radar reflectivity is the strongest spike in the direction of
the sun position and is determined empirically in the radar reflectivity after noise
removal during rain-free events. The continuous maximal reflectivity (Fig. A.2)
is detected at 3658 sunrises and sunsets during 23 min on average. The mean
calculated sun elevation angle of one sunrise or sunset is the radar beam elevation
angle ε. The mean difference of the sun azimuth angle αsun and the azimuth angle
of the detected solar signal αdetect is the azimuth offset:

∆α′ = αdetect − αsun. (A.1)

The detection of one sunrise or sunset is constrained to a minimal duration of 15 min
and maximal standard deviations of the beam elevation σε′ < 1◦ and the azimuth
offset σ∆α′ < 1◦. The determined ε′ and ∆α′ are averaged between maintenance
dates, resulting in the final beam elevation angle ε and azimuth offset ∆α (Table
A.2). Between 27.05.2013 and 11.08.2021 the radar alignment is characterized by six
ε values, ranging between 3.3◦ and 6.1◦, and seven ∆α values with a maximum of
5.6◦. The estimates of ε and ∆α are stable within periods of at least two months
up to several years, with a maximal standard deviation of ±0.4◦. The known radar
alignment and thus location and height of the measurements allows for comparisons
with other measurement devices and hence its calibration after clutter correction.

a.3.3 Detect clutter

The noise-corrected radar reflectivities contain static and dynamic non-meteorological
echoes (clutter) characterized by high values and erroneous spatio-temporal gra-
dients. Static clutter is caused by static objects, e.g. trees and buildings. Dynamic
clutter is caused by dynamic objects, e.g. planes, birds, and other radars measur-
ing at X-band frequencies. Consequently, measurements in urban areas are more
affected by clutter than in rural areas. Additionally, ship navigation radars located
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Figure A.2: Radar reflectivity after noise removal at sunset, 02.03.2020 16:20 UTC. (a) Radar
reflectivity at the 255.5◦ azimuth angle representing the solar signal. (b) Radar
reflectivity with continuous signal over range which is visible during the sun
set. The white lines indicate a 20◦ window around the true sun position in the
radar azimuth angle.

Table A.2: X-band radar (LAWR) HHG alignment, defined by the beam elevation angle ε
and azimuth offset ∆α.

Modification date ε (◦) σε (◦) ∆α (◦) σ∆α (◦)

27.05.2013 14 UTC 4.4 ±0.3 0.9 ±0.4

12.07.2014 00 UTC 6.1 ±0.1 2.5 ±0.1

23.09.2014 15 UTC 4.2 ±0.2 - -

12.03.2015 14 UTC - - 3.2 ±0.1

09.06.2015 13 UTC 5.4 ±0.2 - -

22.03.2017 15 UTC - - 4.1 ±0.2

20.04.2018 08 UTC - - 3.9 ±0.1

25.04.2020 16 UTC 3.3 ±0.1 5.0 ±0.1

03.07.2020 15 UTC 3.5 ±0.1 5.6 ±0.2

at the Hamburg harbour can cause interferences in the form of spikes or rings. All
these clutter values cannot be easily detected within the LAWR measurements due
to the lack of polarimetric or Doppler quantities. The clutter detection requires the
application of several gradient-based and time-dependent correction algorithms.

As a first step of clutter correction, static clutter is removed by subtracting a
static clutter field. Radar reflectivities and clutter are assumed to be additive. The
static clutter field is estimated from the temporal median of the noise-corrected,
rain-free radar reflectivity factor. A stable estimate of the static clutter field requires
the measurement’s stability, i.e. continuous relative calibration, alignment, and
adjustment of the radar receiver, which is valid over multiple weeks, months, or
years. Due to computing time, the static clutter field is updated on a roughly
monthly basis for periods with similar clutter signals. To restrict the temporal
median of the radar reflectivity factor to mainly rain-free cases, a rain threshold
based on the rain fraction is introduced, represented by the fraction of radar
reflectivities exceeding 5 dBZ for every time step. The radar reflectivity of 5 dBZ
represents a rainfall rate R of 0.1 mm h−1 using a standard Z-R relationship. The
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rain threshold was empirically set to the 75th percentile of the rain fraction, avoiding
rain patterns affecting the static clutter field. Furthermore, this threshold of the
rain fraction is also dependent on the measurement’s stability. Changes in the rain
fraction indicate technical maintenance of the radar, which is represented by a
change point of the rain fraction based on a different calibration or technical errors
of the radar receiver, which is represented by a drift of the rain fraction based on
a slow reduction of radar sensitivity. The correction of static clutter using a stable
estimate of a static clutter field subtracts clutter leaving the measurement, so there
is no need of interpolation.

Dynamic clutter signals are removed by several gradient-based correction algo-
rithms. Five different filter algorithms are applied: the texture of the logarithmic
reflectivity (TDBZ) filter (Hubbert et al., 2009), the SPIN filter (Hubbert et al., 2009),
a spike filter (Lengfeld et al., 2014), a ring filter (Lengfeld et al., 2014), and a speckle
filter. Since isolated clutter signals, spikes and rings vary in length and width, two
variants of the spike filter, two variants of the ring filter, and five variants of the
speckle filter are applied, each with different parameters.

The TDBZ filter calculates the TDBZ field as the mean of the squared logarithmic
reflectivity difference between adjacent range gates according to (Hubbert et al.,
2009):

TDBZ =

[
N

∑
i
(dBZi − dBZi−1)

2

]
/N (A.2)

where dBZ is the reflectivity and N is the number of range gates used. The TDBZ
filter labels a range gate as a clutter signal if the TDBZ field exceeds TDBZ > 9 dBZ
within N = 3 consecutive range gates. The filter was modified to computations
along range gates following Lengfeld et al. (2014).

The SPIN filter detects clutter based on a measure of how often the reflectivity
gradient changes sign along the radial direction according to Hubbert et al. (2009).
The reflectivity gradient and sign change is calculated between three consecutive
range gates, e.g. dBZi−1, dBZi and dBZi+1:

sign {dBZi − dBZi−1} = −sign {dBZi+1 − dBZi} , (A.3)

and

|dBZi − dBZi−1|+ |dBZi+1 − dBZi|
2

> spin_thres, (A.4)

where spin_thres is a reflectivity threshold, which is set to 3 dBZ. The SPIN filter
labels a range gate as a clutter signal if more than two range gates in a centred
window of five range gates meet the conditions of the equations A.3 and A.4.

The spike filter identifies clutter in the form of spikes by calculating the reflec-
tivity gradients for consecutive radar beams. The reflectivity gradient is calculated
between the reflectivity dBZi and the reflectivities with a distance of W degrees in
azimuth dBZi−W and dBZi+W :

[dBZi − dBZi−W > spike_thres] ∧ [dBZi − dBZi−W > spike_thres] (A.5)

where spike_thres is a reflectivity threshold, which is set to 3 dBZ. Two spike filters
are applied: one spike filter is configured with the parameters N = 3 and W = 1,
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and the second one is applied with N = 11 and W = 2. The spike filter labels a
range gate as clutter signal if more than 50 % in a window of N consecutive radar
beams meet the condition of Eq. (A.5). The ring filter identifies clutter in the form of
rings by calculating reflectivity gradients for consecutive range gates. Consequently,
the ring filter is similar to the spike filter but computes the reflectivity gradients
using Eq. (A.5) with a distance of W metres in range and a ring_thres of 3 dBZ. The
ring filter labels a range gate as clutter signal if more than 50 % in a surrounding
window of N range gates meet the condition of Eq. (A.5). Two ring filters are
applied: one ring filter is configured with the parameters N = 11 and W = 1, and
the second one is configured with N = 11 and W = 2. The choice of the parameters
for the four filters were determined empirically by processing different case studies
(not shown).

The application of one TDBZ filter, one SPIN filter, two spike filters, and two
ring filters removes dominant clutter patterns, but there remain isolated clutter
signals. For this purpose, the speckle filter assumes that rain areas are connected
and thus consist of more than a few isolated high reflectivities. This filter counts
radar reflectivities of grid cells dBZi,j greater than a rain threshold of 5 dBZ within
a two-dimensional window of size k × l:

k

∑
i=1

l

∑
j=1

f(dBZi,j) < speckle_thres (A.6)

where f(dBZi,j) = 0 for dBZi,j ≤ 5 dBZ and f(dBZi,j) = 1 for dBZi,j > 5 dBZ. If the
sum of Eq. (A.6) is smaller than the speckle_thres, the centre of the k × l window is
identified as clutter. Five speckle filters are applied using different window sizes and
thresholds: k = {3, 3, 5, 5, 7}, l = {3, 5, 5, 7, 7}, and speckle_thres = {3, 5, 10, 16, 26}.

To assess the effectiveness of these five filters, we have analysed exemplarily
the clutter detection from May to September 2019: the TDBZ filter is the most
effective filter by detecting 66.1 % of all clutter pixels. Many clutter pixels are as
well identified by the SPIN filter (25.7 %) and one of the five speckles filters (14.0 %
to 31.5 %). In contrast, the detection rate is low for the two spike filters (3.1 % and
0.4 %) and the two ring filters (1.0 % and 1.4 %).

Identified and removed clutter signals yield missing values in the reflectivity
field. Missing values are interpolated with ordinary Kriging (Cressie, 1993). The
temporal-constant spatial covariance is modelled by a Gaussian semivariance with
a length scale of 5 km and stationary random noise, which represents the nugget.
For computational efficiency, the Kriging method is spatially localized (Wesson and
Pegram, 2004) by using the 20 nearest neighbours to the grid points that should
be interpolated. However, it is important to keep in mind that some clutter signals
remain within the measurements and may affect the interpolation of missing radar
reflectivities.

a.3.4 Calibrate

The observational synergy of the LAWR, MRR, and RG facilitates calibration and
adjustment of the radar measurements. The MRR provides the radar reflectivity
factor ZMRR and rainfall rate RMRR derived from drop size distributions. With ZMRR,
the LAWR radar reflectivity factor ZLAWR is calibrated directly. The calibration
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and evaluation with MRR measurements has mainly three advantages. The same
variable and the same measuring height are compared at sufficiently large sampling
volume sizes. A calibration with a disdrometer would increase errors because of
the height difference and different sampling volume sizes. The calibration with a
RG would add an error based on uncertainties introduced by Z-R relationships.
However, the MRR measurements are adjusted with a RG at the same location. The
methodology is described by Lengfeld et al. (2014).

Before calibration, RMRR and consequently ZMRR are adjusted with RG measure-
ments. The logarithmic calibration factor for the MRR CMRR is derived from 3 h
averages of RMRR at 105 m height and RG rainfall rate RRG:

CMRR = dBRMRR − dBRRG (A.7)

with dBR = 10 · log(R). Wind-induced losses of RRG were corrected using the wind
speed of a wind sensor (Rubel and Hantel, 1999). Rainfall rates at temperatures
below 5 ◦C were not included to constrain the adjustment on the liquid phase. The
MRR variables, e.g. ZMRR and RMRR, are adjusted at all 31 height levels with CMRR

in logarithmic or linear units, respectively. CMRR is sufficiently stable for periods
covering multiple months (Table A.3) and changes were a result of maintenance.

Table A.3: Micro rain radar (MRR) logarithmic calibration factor CMRR

MRR Period CMRR σCMRR

WMH 01.01.2013 - 09.11.2014 −3.06 dB ±1.22 dB

10.11.2014 - 20.06.2015 0.87 dB ±1.06 dB

21.06.2015 - 31.08.2021 −1.61 dB ±1.34 dB

BBG 06.12.2017 - 31.08.2021 −1.37 dB ±1.49 dB

The adjusted MRR WMH radar reflectivity is used to calibrate the LAWR radar
reflectivity (Fig. A.3a), yielding a consistent calibration, because the MRR WMH
and the LAWR are measuring simultaneously since May 2013. The distance between
the MRR WMH and the LAWR is 10.07 km. At the MRR WMH location, the LAWR
mean radar beam height is between 680 m and 1170 m over the years, due to changes
in radar alignment (Sect. A.3.2), and the radar beam width is 490 m, covering a
maximum of 14 range bins of the MRR (Fig. A.3b). For radar beam elevation angles
above 4.2◦, the radar beam exceeds the maximal MRR range gate partly, increasing
the volume mismatch. The profile of ZMRR is averaged within the LAWR radar
beam using a Gaussian weighting function, with its maximum at the beam centre
(Fig. A.3b). ZMRR values at 10 s temporal resolution are averaged to the matching
30 s LAWR resolution. Following Lengfeld et al. (2014), the calibration coefficient
cLAWR is derived with

cLAWR = 100.1·(dBZLAWR−dBZMRR) (A.8)

with dBZMRR being the radar reflectivity of MRR WMH and dBZLAWR being the
radar reflectivity of the LAWR. cLAWR is calculated for radar reflectivities ≥ 10 dBZ
and < 60 dBZ. The calibration is constrained on the liquid phase; hence, radar
reflectivities affected by the melting layer and ice phase are not taken into account.
Therefore, the 0 ◦C isotherm level is estimated using a constant wet adiabatic
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lapse rate of 5.5 K km−1 and the 2 m temperature measured at the MRR WMH site.
Radar reflectivities below the 0 ◦C isotherm level are used for calibration only. The
calibrated radar reflectivity factor Z′

LAWR is derived from

Z′
LAWR =

ZLAWR

cLAWR
, (A.9)

with the measured radar reflectivity Z. The calibration results in 13 calibration
periods with cLAWR between ≈ 0.03 and ≈ 4.4 (Table A.4), due to maintenance
including technical changes or drifts in signal intensity. The calibrated radar reflec-
tivity dBZ′

LAWR is provided as level 1 data set (Burgemeister et al., 2024b).

Table A.4: Calibration parameters for the LAWR with the calibration coefficient cLAWR (Eq.
(A.8)), the mean bias, the root-mean-square error (RMSE), the sample size (n),
and the Pearson correlation coefficient (r). Measurements are only available in
these periods.

Period cLAWR Bias (dB) RMSE (dB) n r

27.05.2013 - 20.02.2014 0.062068 −12.07 12.47 7278 0.75

12.07.2014 - 23.09.2014 0.080461 −10.94 12.13 2061 0.50

23.09.2014 - 15.01.2015 0.026707 −15.73 16.16 728 0.43

17.01.2015 - 09.06.2015 3.865626 5.87 6.60 3362 0.84

09.06.2015 - 02.05.2016 2.053080 3.12 4.33 26017 0.87

02.05.2016 - 09.03.2017 1.761379 2.46 3.92 15710 0.87

22.03.2017 - 15.05.2017 0.342959 −4.52 5.78 1898 0.78

16.05.2017 - 05.07.2017 0.097155 −10.13 10.72 5658 0.72

05.07.2017 - 01.02.2018 0.971519 −0.13 3.12 25567 0.83

01.02.2018 - 18.04.2018 0.306367 −5.14 5.96 1603 0.86

20.04.2018 - 07.03.2020 2.837791 4.53 5.49 36207 0.86

25.04.2020 - 09.06.2020 4.409915 6.44 7.33 851 0.86

03.07.2020 - 11.08.2021 0.237148 −6.25 7.11 14379 0.79

a.3.5 Correct attenuation

Rain-induced attenuation at X-band frequencies leads to strongly underestimated
radar reflectivities and thus rainfall rate estimates. The radar reflectivity factor Z′

at range r suffers from attenuation integrated over the path,

Z′(r) = Z(r)− 2
∫ r

0
k(s)ds, (A.10)

where Z(r) is the unattenuated radar reflectivity factor at range r, and k(s) is the
specific attenuation of each range bin. The second term in Eq. (A.10) is known
as the two-way path-integrated attenuation (PIA). Overeem et al. (2021) suggest
the modified Kraemer (MK) approach (Jacobi and Heistermann, 2016) to correct
the attenuation for single-polarized radars. The MK approach is a forward gate-
by-gate attenuation correction (Hitschfeld and Bordan, 1954) based on an iterative
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Figure A.3: Calibration of LAWR radar reflectivities using height averaged MRR radar reflec-
tivities. (a) Comparison of uncalibrated LAWR radar reflectivities to calibrated
radar reflectivities of the MRR WMH of the period 03.07.2020 to 11.08.2021

(Table A.4). (b) Weights (dots) to average the MRR WMH radar reflectivity
profile within the LAWR beam (indicated by black dashed line) measuring at a
beam elevation of 3.5◦.

scheme to improve empirical parameters of a relationship between k and Z (Krämer
and Verworn, 2008) including additional constraints of the PIA and Z (Jacobi and
Heistermann, 2016). The attenuation k used in Eq. (A.10) is estimated from Z (in
mm6 m−3) using the power-law relation

k = αZβ, (A.11)

with empirical parameters α and β. These empirical parameters are determined
iteratively during the attenuation correction procedure. For details of this technique,
we refer to the literature (Jacobi and Heistermann, 2016; Overeem et al., 2021) and
document here only the specific settings of our implementation: the maximum
allowed corrected reflectivity to assume a stable correction scheme is set to 59 dBZ.
The PIA is constrained by 10 dB (Delrieu et al., 1999) to avoid numerical instabilities.
The number of iterations for α is 100 and for β is 6. The limits of α and β are set
to αmin, max = [4.02 · 10−5, 9.52 · 10−5] and βmin, max = [0.79, 0.90] (Figure A.4). This
valid range of α and β is in agreement with estimates of other k-Z relations at
X-band frequencies (e.g. Berne and Uijlenhoet, 2006; Delrieu et al., 1999; Delrieu
et al., 2022; Diederich et al., 2015; van de Beek et al., 2010).

However, these limits were not available from literature as Jacobi and Heister-
mann (2016) and Overeem et al. (2021) applied the MK approach only at C-band
frequencies. We applied the approach by Overeem et al. (2021) at X-band frequen-
cies. The k-Z relation is estimated from multi-year MRR measurements (Fig. A.4).
The fit of the k-Z relation (Eq. (A.11)) results in α̂ = 6.91 · 10−5 and β̂ = 0.85. The
fit is applied only to Z ≥ 30 dBZ to stabilize the solution for relevant values of k
affecting the attenuation correction. Overeem et al. (2021) introduced the uncertain-
ties of Eq. (A.11) based on the errors of k estimates, assuming that the uncertainties
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in log(α) and β are independent and contributing equally to the total uncertainty
in log(k):

εlog(α) =
log(k)− log(α̂Zβ̂)

2
, (A.12)

εβ =
log(k)− log(α̂Zβ̂)

2 log(Z)
. (A.13)

The uncertainties result in the aforementioned limits of the empirical parameters
αmin, max = α̂ exp(±2σεlog(α)) and βmin, max = β̂ ± σεβ

. The standard deviations are
estimated from the difference between the 0.16 and 0.84 quantiles of ε (Overeem
et al., 2021).

Figure A.4: Relation between the specific attenuation k and the radar reflectivity dBZ esti-
mated from micro rain radar measurements at 105 m height and 10 s temporal
resolution. Only measurements at temperatures above 0 ◦C are used to exclude
ice phase. The radar variables are computed at the X-band frequency from
measured drop size distributions with T-matrix calculations (Waterman, 1965)
implemented by Leinonen (2014) using raindrop axis ratios from Brandes et al.
(2002), a canting angle distribution with zero mean and 10◦ width, and the com-
plex refractive index of water from Liebe et al. (1991) at a temperature of 15 ◦C.
The power-law fit for the k-Z relation is based on measurements above 30 dBZ
(non shaded area) and is shown with a black solid line, including uncertainties
indicated as dashed black line.

Finally, the MK approach is applied to the radar reflectivity from the level 1

data set, resulting in attenuation-corrected radar reflectivity of the level 2 data set.
Additionally, the level 2 data set includes the parameter pia_stability describing
the stability of the attenuation correction for every time step. The parameter is 0
for a stable PIA estimate, 1 for a PIA > 10 dB, and 2 for a numerically unstable
PIA. The attenuation is not corrected if the PIA estimate is numerically unstable.
Since the attenuation correction is based on the reflectivity, a prior successful
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calibration (Section A.3.4) is mandatory for a stable attenuation correction. The
attenuation correction algorithm can be easily applied using the Python package
wradlib (Heistermann et al., 2013).

a.3.6 Estimate rainfall rates

For use in meteorological or hydrological studies, quantitative precipitation es-
timates are of interest. The attenuation-corrected radar reflectivity factor Z (in
mm6 m−3) is converted to a rainfall rate R (in mm h−1) by applying a power-law
Z-R relation,

Z = a Rb, (A.14)

where the multiplicative factor a and the exponent b are empirical constants. This
study uses fixed parameters a = 200 and b = 1.6 proposed by Marshall et al.
(1955), keeping in mind that Z and R depend on the drop size distribution, which
varies geographically, with rainfall rate, and time (e.g. Berne and Krajewski, 2013;
Doviak et al., 1993; Villarini and Krajewski, 2010). However, the Marshall-Palmer
Z-R relation is an appropriate representation of average rainfall conditions in this
climate, as investigated with multi-year MRR drop size distributions in Hamburg
(not shown) and by Holleman (2006) and Kirsch et al. (2019). The coefficients of
the Marshall-Palmer Z-R relation are commonly used for long-term studies in
similar climates (e.g. Imhoff et al., 2021; Overeem et al., 2021). Polarimetric rain
retrievals cannot be applied due to the lack of polarimetric measurements, but
would perform better compared to single radar reflectivity methodologies (e.g.
Delrieu et al., 2022; Schleiss et al., 2020). The estimated rainfall rate R (Eq. (A.14))
(in mm h−1) is provided as a level 2 data set (Burgemeister et al., 2024b).

a.3.7 Data sets and availability

The LAWR is measuring raw radar reflectivities since 27.05.2013 with a yearly data
availability of up to 98 % (Table A.5). Maintenance, radar errors or memory errors
have reduced the data availability. The LAWR measurements are saved at the listed
data levels following the data standard described by Lammert et al. (2018):

• The raw radar data are the direct radar output saved as hourly binary files.

• The level 0 data set includes the radar reflectivity dBZ and the standard
deviation of the radar reflectivity factor of the averaged single pulses in
hourly netCDF files.

• The level 1 data set includes the calibrated radar reflectivity dBZ (Sect. A.3)
in daily netCDF files and is freely available (Burgemeister et al., 2024b),
facilitating studies on attenuation correction and the derivation of further
weather radar products, e.g. an improved rainfall rate. Furthermore, new
interpolation methods can be tested because interpolated values are tagged
with a clutter mask.

• The level 2 data sets contain the attenuation-corrected radar reflectivity dBZ
and rainfall rate R in daily netCDF files. R is provided as open-access data
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set (Burgemeister et al., 2024b), facilitating refined studies on the spatial and
temporal scales of precipitation and further hydrological research, e.g. input
data for high-resolution modelling, in an urban area.

All data sets are gridded on the polar observation grid. Additionally, the level 2

data set includes the georeferenced grid information with the latitude, longitude,
and height.

Table A.5: LAWR data availability between the years 2013 and 2021

Year Percentage of availability (%)

2013 57

2014 61

2015 97

2016 98

2017 93

2018 96

2019 98

2020 79

2021 61

a.4 data quality

Several sources of radar-based errors were adjusted gradually (Sect. A.3), aiming
to improve the data quality of the radar reflectivity and, consequently, the rainfall
rate estimate. This section outlines the performance of the multi-year X-band radar
observations and discusses open issues and limitations of the reanalysed data set.

Quantitatively, the reanalysed LAWR measurements are evaluated using MRR
measurements at matching heights, following the same procedure as in Sect. A.3.4
for the calibration. Therefore, the MRR radar reflectivity factor and rainfall rate are
averaged at height levels within the LAWR radar beam using a Gaussian weighting
function. The MRR’s 10 s temporal resolution is averaged to the matching LAWR’s
30 s resolution. The comparison of measurements is constrained to the liquid phase,
using the 2 m temperature and a constant wet adiabatic lapse rate, which reduces
effects from a bright band.

The LAWR attenuation-corrected radar reflectivity dBZ (level 2 data set) is on av-
erage 0.52 dB higher than the MRR WMH reference (Fig. A.5). The root-mean-square
error (RMSE) equals to 3.93 dB and the reflectivities are highly correlated with a
Pearson correlation coefficient r = 0.88. The positive bias is a result of the performed
calibration without attenuation correction, because calibrated reflectivities are a
prerequisite for stable attenuation correction (Sect. A.3.5). Accordingly, all scores
improve, if only cases with moderate attenuation, below the PIA ≤ 10 dB threshold,
are considered: bias of 0.26 dB, a RMSE of 3.52 dB, and r = 0.89. Just 8.5 % of the
applied attenuation estimates are unstable with 10 dB < PIA < 27.12 dB. These un-
stable attenuation estimates appear as a slight visible overestimation of the LAWR
measurements at high reflectivities (⪆ 30 dBZ) (Fig. A.5), but these measurements
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are still usable with r = 0.79. In the case of a numerically unstable attenuation
estimate, radar reflectivities are not corrected (79 times; 0.03 %). Note that only
19.7 % of the LAWR measurements (Fig. A.5) are interpolated. The scores depicted
in Fig A.5 do not change if these measurements are discarded. The independent
reflectivity measurements of the MRR BBG (not shown) confirm the data quality:
bias of −0.30 dB, RMSE of 3.85 dB, and r = 0.88. Hence, the LAWR reflectivity is
not biased in total.

Figure A.5: 2d distribution of radar reflectivities estimated from LAWR and MRR WMH
based on drop size distributions at common volumes and a temporal resolution
of 30 s restricted to dBZ between 4.5dBZ and 59.5dBZ. The measurements are
compared for the reanalysed data set covering the years 2013 to 2021.

The LAWR rainfall rate R (level 2 data set) is retrieved from the attenuation-
corrected radar reflectivity using the Marshall-Palmer Z-R relation (Sect. A.3.6).
The LAWR rainfall rate is on average 0.42 mm h−1 lower than the reference (Fig.
A.6). The RMSE equals to 4.69 mm h−1. The Pearson correlation coefficient for the
logarithmic rainfall rate dBR is r = 0.74. Since the reflectivities of LAWR and
the MRRs are in good agreement, the comparison of the rainfall rates mainly
investigates the performance of the Marshall-Palmer Z-R relation. The average
underestimation of rainfall rates is in line with Kirsch et al. (2019), who shows that
the Marshall-Palmer Z-R relation underestimates rainfall accumulation derived
from drop size distributions by between 6.3 % and 17.4 %. The error increases in
cases of strong convective precipitation because raindrop size distributions start to
deviate from Marshall-Palmer distributions for these cases (Schleiss et al., 2020).

Although, the rainfall rate estimates can deviate for individual time steps, LAWR
measurements reproduce the frequency distribution of rainfall rates as observed by
the two MRRs very well (Fig. A.7). In particular, the LAWR is able to identify rainy
time intervals. The overestimation of low rainfall rates R < 0.2 mm h−1 is probably
an issue of the MRR’s attenuation correction. The decrease at the lower tail of the
frequency distribution of MRR rainfall rate is only observable at high measurement
levels (Fig. A.8), where the uncertainty of the attenuation correction increases. At
near-ground measurement levels, the rainfall rate frequency distributions of MRR
and LAWR are equal at low rainfall rates of R < 1 mm h−1 and high rainfall rates
of R > 10 mm h−1. In hydrological applications, accurate rainfall estimates are of
interest at ground level (Thorndahl et al., 2017). The vertical variability of rainfall
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properties, e.g. due to evaporation or wind drift, may limit the application of the
provided LAWR rainfall rates at ground level (Villarini and Krajewski, 2010). The
evaluation of LAWR rainfall rate at beam height with the MRR WMH measurement
at 105 m shows differences in the frequency distribution between 2 mm h−1 and
10 mm h−1 as a possible result of vertical rainfall variability (Fig. A.8). Nevertheless,
the LAWR measurements yield reliable rainfall rate estimates at beam height and
sub-minute temporal scale.

Figure A.6: 2d distribution of rainfall rates estimated from LAWR using a standard Z-
R-relation and MRR WMH based on drop size distributions at a temporal
resolution of 30 s and for R is between 0.1 mm h−1 and 100 mm h−1.

Figure A.7: Frequency distribution of rainfall rates estimated from LAWR using a Z-R-
relation and MRR WMH and MRR BBG based on drop size distributions
averaged at beam height at a temporal resolution of 30 s.

Qualitatively, the LAWR measurements provide continuous spatio-temporal
rainfall patterns. The LAWR resolved a characteristic circular hook echo in the 30 s
average rainfall rate, demonstrating a rotating rainfall circulation around a tornado
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Figure A.8: Frequency distribution of rainfall rates estimated from LAWR using a Z-R-
relation and MRR WMH based on drop size distributions at a temporal resolu-
tion of 30 s at different height levels and averaged at beam height.

(Fig. A.9), as discussed by Hoffmann et al. (2018). The provided LAWR rainfall rate
R (level 2 data set) shows less remaining clutter compared to the processed rainfall
rate by Hoffmann et al. (2018). Differences between the rainfall rates occur due to
differences in processing steps, e.g. clutter removal, attenuation correction, and the
applied Z-R relationship. However, the qualitative statements remain the same. The
hook echo is clearly visible for 8 min, in 16 measurement time steps, accordingly.
The German nationwide C-band radars, measuring with 5 min temporal and 250 m
range resolutions, show the general rainfall pattern, but the hook echo is only at
one measurement time step. As a consequence, this event demonstrates that the
LAWR, with its refined spatio-temporal resolution compared to coarser resolved
C-band radars, is capable of resolving rainfall patterns with a short duration and
relevant gradients at hectometre spatial scales.

The fine-scale structures in rainfall patterns are smoothed by temporal accumu-
lation; nevertheless, spatial differences are still visible in the three-month rainfall
accumulation (Fig. A.10). The rainfall pattern is mainly driven by convective summer
rainfall events. The rainfall accumulations reveal long-term measurement errors, in-
ter alia remaining clutter close to the radar and three spikes. First, range gates close
to the radar are still affected by clutter after the application of correction algorithms,
resulting in a small circle of high rainfall accumulations. Approximately 500 m
around the radar location, the first 8 of 333 range gates show the overestimated
total precipitation. Second, three spikes are characterized by an underestimation
of total precipitation affecting multiple azimuth angles over the whole range. Two
spikes in the north-east of the radar are a result of metal poles installed at a few
metres distance to the radar on the rooftop, reaching into the radar beam. A third
spike is in the south of the radar as a result of Hamburg’s television tower, which
is located in 550 m distant from the radar. The spikes affect the azimuth angles
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Figure A.9: Rainfall pattern during a tornado event on 07.06.2016 at 16:20:30 UTC. The
rainfall rate is shown for a north-eastern section of the measurement domain in
Hamburg. An animation of this event is provided in the Supplement.

roughly from 19◦ to 30◦, 32◦ to 42◦, and 166◦ to 171◦. Note that measurements
within these azimuth sectors, comprising 25 of 360 azimuth angles, need to be
corrected for beam blockage or rejected for studies using this radar rainfall estimate.
Without these errors, the 3-month total precipitation is in general not affected by
clutter, noise, or attenuation (Fig. A.10). The total precipitation was on average
168.0 mm and the median is 165.1 mm within the measurement domain in summer
2019. The 3-month rainfall accumulations are spatially variable in Hamburg, with a
minimum of 111.6mm and a maximum of 271.3 mm. Note that the rainfall patterns
at ground can deviate in comparison to the measured rainfall pattern at beam
height because of vertical rainfall variability (Villarini and Krajewski, 2010). Four
rain gauges measured 194.8 mm (north), 127.6 mm (east), 134.0 mm (south), and
172.9 mm (west) during the 3 months (Fig. A.10). The absolute biases between the
radar rainfall accumulations and rain gauge measurements range from 1.9 mm to
20.1 mm. In general, the rain gauge observations are in agreement with the esti-
mated radar rainfall accumulations during this measurement period. Consequently,
the LAWR provides reliable rainfall estimates with accumulation times from 30 s to
multiple months.

All in all, the reanalysed multi-year LAWR measurements give insight into the
spatio-temporal structure of rainfall at 30 s temporal scale and hectometre spatial
scale in an urban area. The LAWR and MRRs are continuously in good agreement.
The reanalysed radar reflectivities and rainfall rates can be used for meteorological
and hydrological studies, considering the following limitations:

• The LAWR data set is constrained to the liquid phase.

• The attenuation correction can be unstable; thus, radar reflectivities can be
overestimated. In rare cases, radar reflectivities are not corrected for a numeri-
cally unstable attenuation correction.

• Differences between the LAWR measurements at beam height and ground
observations are a result of vertical variability of rainfall due to wind advection
and evaporation of rainfall. Variations between measurement devices arise
due to differences in measurement principle and volume mismatches.
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Figure A.10: Three-month total precipitation measured by the LAWR during June, July, and
August 2019. The radar estimates at four rain gauge locations (orange crosses)
are 174.7 mm (north), 146.7 mm (east), 132.1 mm (south), and 157.1 mm (west).

• Remaining clutter and noise may overestimate single measurements. The first
range gates can be superimposed by clutter.

• The LAWR is affected by beam blockage in three directions, resulting in three
spikes in range within the measurements.

a.5 code and data availability

The pylawr python package (Burgemeister et al., 2023) provides useful tools to
load, process, and plot the LAWR data and was used to process the provided data
sets. The LAWR HHG data set of rainfall rates (level 2) and radar reflectivities
(level 1) is available at WDCC: https://doi.org/10.26050/WDCC/LAWR_UHH_HHG_v2
(Burgemeister et al., 2024b). Further LAWR HHG observational data sets at different
processing levels and MRR observations are available upon request. We strongly
encourage anyone using the data set to be in contact with the authors.

a.6 conclusions

Firstly, this study describes quality-tested radar reflectivities and rainfall rate esti-
mates with 30 s temporal and hectometre spatial resolutions covering the years 2013

to 2021, which are provided as an open-access data set (Burgemeister et al., 2024b).
Secondly, this study proves the multi-year performance of a local-area X-band
weather radar (LAWR) despite the lack of polarization and Doppler information.
The LAWR is deployed in combination with a vertically pointing micro rain radar
(MRR) and rain gauge in the urban area of Hamburg, Germany, since 2013. The
synergy of observations yield reliable LAWR measurements, confirmed by a second
MRR.

Several sources of radar-based errors were adjusted gradually, affecting the precip-
itation estimate, e.g. noise, alignment, non-meteorologial echoes, radar calibration,
and attenuation. The manually adjusted LAWR alignment was accurately deter-
mined, using the solar signal appearing in radar reflectivities during sunrise and

https://doi.org/10.26050/WDCC/LAWR_UHH_HHG_v2
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sunset, facilitating comparisons with other measurement devices. The deployment
of MRRs yields drop size distributions at LAWR beam height. The LAWR reflectivi-
ties are calibrated using MRR reflectivities at intersecting volumes. The subsequent
calibration of the LAWR is mandatory because of strongly biased measurement
periods due to maintenance, shown by the MRR observations. After calibration, the
attenuation correction method, the modified Kraemer (MK) approach, is applied.
The MRR drop size distributions facilitate the adjustment of parameters based on
the relationship between the radar reflectivity and specific attenuation to apply the
MK approach at X-band frequencies. This study presents the adjusted parameters
and indicates that the MK approach is a reliable attenuation correction method
for single-polarized X-band radars, shown with a long-term data set as suggested
by Jacobi and Heistermann (2016). The LAWR rainfall rates were estimated from
attenuation-corrected reflectivities using the Marshall-Palmer Z-R relationship. The
MRR rainfall rates, estimated from drop size distributions, show an on average
underestimation of the LAWR rainfall rates estimated. Nevertheless, the retrieved,
multi-year LAWR radar reflectivities and rainfall rates are in good agreement with
MRR measurements.

Several issues may limit the performance of the LAWR measurements. This study
focuses on the liquid phase; hence, solid or mixed-phase precipitation, which is for
instance dominant during the winter months, introduces errors within the provided
data set, e.g. overestimated radar reflectivities due to the melting layer (Villarini and
Krajewski, 2010). Remaining clutter and noise may remain within the reanalysed
measurements. Rare unstable attenuation corrections overestimate the LAWR radar
reflectivity. Affected radar reflectivities are labelled within the data set. Furthermore,
LAWR measurements at beam height can differ from ground observations as a result
of vertical rainfall variability due to wind drift and evaporation of rainfall, limiting
the application of LAWR rainfall rates at ground level. The largest errors in rainfall
rate estimates at individual time steps arise from inherent uncertainties of the Z-R
relation, but they do not cause systematic deviation. The frequency distribution
of rainfall rates is very well reproduced. Variations between measurement devices
arise due to differences in measurement principles and volume mismatches. The
assessment of the LAWR alignment identified measurement periods with beam
elevation angles up to 6.1◦. A high beam elevation angle leads to, inter alia, partial
overshooting of MRR measurement volumes, which is a problem of measurement
design. The measurement design can be optimized by using lower LAWR beam
elevation angles, e.g. 3.5◦, or a coarser MRR range resolution, e.g. 50 m. In future,
the issue of overshooting will be avoided, by using lower beam elevation angles,
adding the benefit of measurements at lower altitudes. Measurements at lower beam
elevation angles than 3◦ are not recommended, because the LAWR beam elevation
setting is a compromise between measurement altitude and the occurrence of clutter
signals. Note that MRR measurements also need quality control (Reinoso-Rondinel
and Schleiss, 2021).

This multi-year urban radar rainfall data set is groundwork for further meteoro-
logical and hydrological research and is actively used in different meteorological
studies (e.g. Ferner et al., 2022; Kirsch et al., 2022; Schmitt et al., 2023). Prospec-
tive research may investigate conditional and event-based errors in the multi-year
LAWR measurements to quantify limitations of the LAWR. By including com-
parisons from the LAWR to additional independent sensors, the added value of
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the spatio-temporal information from low-cost, local-area X-band radars can be
investigated. For hydrological research, LAWR rainfall rates should be evaluated
with measurements at ground. Future urban precipitation studies will be improved
by the extension of networked observations with a second X-band weather radar
site and additional micro rain radars in Hamburg, measuring since the beginning
of 2021.
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abstract

Knowledge of short-duration, sub-kilometer-scale rainfall variability is needed
for several meteorological and hydrological applications, particularly in urban
environments due to their sensitivity to water-related issues. Variability at these
scales is a blind spot for both operational rain gauge networks and operational
radar networks. Reanalysed rainfall rates from a single-polarized X-band weather
radar are available at high temporal (30 s) and range (60 m) resolutions within a
scan radius of 20 km covering the urban area of Hamburg, Germany. This study
compares the reanalysed radar data from this local area weather radar (LAWR)
with observations from two micro rain radars (MRRs), an operational C-band radar,
combined networks of 33 rain gauges, and the radar-rainfall climatology RADKLIM.

What is the added value of a LAWR compared to operational C-band radar
systems? In fact, the smaller radar volumes result in a closer agreement in terms of
radar reflectivity with local radar observations by MRRs. However, this advantage
does not translate in a better match to precipitation accumulations recorded by
rain gauge, as differences in the Z-R relation and sample volume sizes between
radar and rain gauge dominate the uncertainty for both the LAWR and operational
radar systems. But the LAWR is clearly superior in describing spatial structure.
Interestingly, operational radar observations overestimate spatial variability. This
effect is caused by their intermittent scan strategy, taking just a snapshot every five
minutes. We identify the benefits of the X-band radar’s scan strategy results to all
measurements taken every 2.5 s. The refined spatio-temporal resolution and scan
strategy is also beneficial for capturing rainfall peaks. Finally, we demonstrate that
the LAWR can monitor steeper spatial gradients. In summary, the LAWR is not
able to provide better local rainfall estimates on the sampling scale of rain gauges,
but still we can prove an added value to characterize the local rainfall intensity and
spatio-temporal rainfall patterns.
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b.1 introduction

Capturing the true rainfall variability at sub-kilometre and sub-hourly scales with
measurements remains a challenge, but rainfall information at these scales is re-
quired for several meteorological and hydrological applications, especially in urban
areas that are highly sensitive to water-related issues (Cristiano et al., 2017; Sokol
et al., 2021; Thorndahl et al., 2017). Operational rain gauge networks provide reliable
local rainfall measurements, but are unable to represent spatial rainfall variability at
the urban scale due to limited network densities (Ochoa-Rodriguez et al., 2019). Con-
ventional weather radar systems are able to provide radar rainfall measurements
over large domains of a hundred kilometres, but are limited to temporal resolutions
of several minutes and spatial resolutions of a few hundred metres. Radar-based
rainfall reanalyses based on conventional radars are available for Germany with
a 5 min temporal resolution and 1 km spatial resolution (Winterrath et al., 2018a),
and for Europe with an hourly temporal resolution and 2 km spatial resolution
(Overeem et al., 2023). Gap-filling X-band radars are able to refine rainfall estimates
in areas of special interest, like urban areas (e.g. Berenguer et al., 2012; Burgemeister
et al., 2024c; Lo Conti et al., 2015; Maesaka et al., 2011; van de Beek et al., 2010;
Wang and Chandrasekar, 2010; Yoon et al., 2017).

The spatial scale of rainfall is smaller than the inter distance of most opera-
tional rain gauge networks, indicated with radar observations up to hourly scales
(Lengfeld et al., 2019; Marra and Morin, 2018a). However, there is an unmeasured
rainfall variability in radar observations at sub-kilometre spatial scale (Gires et al.,
2014; Peleg et al., 2018). Bárdossy and Anwar (2023) concluded that disregarding
spatial rainfall variability causes problems that cannot be solved by any model
or finer resolution temporal data. Therefore, in urban hydrology is a demand for
high quality radar rainfall data with at least a temporal resolution of 1 min and
spatial resolution of 100 m for small urban catchment sizes (Berne and Krajewski,
2013; Einfalt et al., 2004; Gires et al., 2013; Ochoa-Rodriguez et al., 2015; Thorndahl
et al., 2017). Some studies call for the highest possible spatio-temporal resolu-
tion of rainfall measurements (e.g. Alves de Souza et al., 2018; Cao et al., 2023;
Costabile et al., 2023). A higher temporal resolution would also reduce temporal
sampling errors (Fabry et al., 1994; Shucksmith et al., 2011). Conventional radars
perform a volumetric scan, resulting in an intermittent scanning strategy. Jordan
et al. (2000) found errors of 30 to 40 % for 5- and 10-minute accumulations of
large-scale stratiform precipitation, which increased to 50 to 60 % for small-scale
convective precipitation based on 5-minute measurements averaged over 1 km.
Advection correction procedures can reduce temporal sampling errors in rainfall
accumulations (e.g. Jasper-Tönnies and Jessen, 2014; Nielsen et al., 2014; Seo and
Krajewski, 2015). However, there are applications where advection correction could
not solve temporal sampling errors. For instance, for the study of the initial phase
of convective precipitation, a scan performed every 5 min is too coarse (Kim et al.,
2019).

Research X-band radars monitor rainfall at temporal resolutions down to 16 s
(van de Beek et al., 2010) and radial resolutions down to 3 m (Mishra et al., 2016),
but most of them operate at or below 100 m spatial and 1 m temporal resolutions
(e.g. Allegretti et al., 2012; Burgemeister et al., 2024c; Hosseini et al., 2020; Lengfeld
et al., 2014; Schleiss et al., 2020; van de Beek et al., 2010; Ventura and Russchenberg,
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Figure B.1: Total precipitation observed by (a) a local area weather radar (LAWR), (b) a
C-band radar, and (c) the radar-rainfall climatology RADKLIM on a day with a
flooding event (10.05.2018). The black crosses mark the locations of available
rain gauges with 1 min temporal resolution. The maximal total precipitation is
(a)

2009; Wang and Chandrasekar, 2010; Yoon et al., 2017). Although most of the latest
X-band radars have dual-polarimetric capabilities (e.g. Anagnostou et al., 2018; Cao
et al., 2023; Hosseini et al., 2023; Neely III et al., 2021; Pejcic et al., 2022; Schleiss et al.,
2020), where dual-polarimetric quantities improve rainfall estimates, even low-cost,
single-polarized X-band radars provide valuable information on the spatio-temporal
variability of precipitation (Allegretti et al., 2012; Lo Conti et al., 2015; Marra and
Morin, 2018a; van de Beek et al., 2010). Nevertheless, single-polarimetric X-band
radars require post-processing and the deployment of independent additional
sensors (Thorndahl et al., 2017; Villarini and Krajewski, 2010).

Recently reanalysed radar rainfall estimates from a single-polarized X-band
weather radar are available at hectometre and sub-minute scales within 20 km scan
radius for the urban area of Hamburg, Germany, for multiple years (Burgemeister
et al., 2024c). The local area weather radar (LAWR) operates at one elevation angle
with a high temporal (30 s), range (60 m), and azimuthal sampling (1◦) resolutions
(Lengfeld et al., 2014), refining coarser observations of the German nationwide
C-band radars at 250 m spatial and 5 min temporal resolution. Previous studies
show that the LAWR provides detailed information on the structure of precipitation
(Burgemeister et al., 2024c; Hoffmann et al., 2018; Lengfeld et al., 2018, 2016, 2014).
For instance, Hoffmann et al. (2018) show that the LAWR is able to capture the
circular pattern around a tornado in several measurements, in contrast to other
rainfall observations, because of its higher resolutions in space and time.

Several rainfall events revealed strong differences in the spatial variability of rain-
fall observed by different measurement devices (Fig. B.1). This work aims to explore
the added value of spatio-temporal resolution for weather radar observations at
sub-hourly and sub-kilometre scales by adressing three research questions:

• Is the local rainfall rate of the LAWR superior to other rainfall estimates?

• Is the LAWR better in capturing spatial rainfall variability?

• Are there gradients within the LAWR not obtained by other measurement
devices?
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Figure B.2: Precipitation observations in Hamburg. The location of the local area weather
radar (LAWR) / X-band radar (WRX) on the rooftop of the building "Geo-
matikum" in Hamburg (HHG) is indicated with a blue point. The blue dashed
line shows the coverage with the 20 km scan radius. The locations of two micro
rain radars (MRRs, red points) are by name Blankenese Bauersberg (BBG) and
Wettermast Hamburg (WMH). Locations of rain gauges are indicated by orange
crosses.

In this paper, we describe the unique availability of rainfall data sets combining the
LAWR, two micro rain radars (MRRs), a C-band radar, combined networks of 33 rain
gauges, and the radar-rainfall climatology RADKLIM (Sect. B.2. We evaluate the
reliability of the radar reflectivity (Sect. B.3.1) and rainfall measurements (Sect. B.3.2)
from the LAWR and C-band radar in comparison to the MRRs and rain gauges. We
investigate the spatial rainfall structure at sub-hourly and sub-kilometre scales for
the LAWR, the C-band radar, the rain gauge network, and RADKLIM (Sect. B.3.3).
We revisit the effect of spatio-temporal resolution on the measurements of rainfall
peaks (Sect. B.3.4). Additionally, we elaborate the sub-kilometre spatial rainfall
variability with radar reflectivity gradients to give insights in the performance of
measurements at the microscale (Sect. B.3.5). The different aspects of these analyses
allow the research questions to be answered (Sect. B.4).

b.2 rainfall observations

The study area around Hamburg, Germany (Fig. B.2) is disproportionately, densely
covered by rainfall observations: a local area X-band radar (Sect. B.2.1), the nation-
wide C-band radar network (Sect. B.2.2), two micro rain radars (MRRs, Sect. B.2.3),
and networks of rain gauges (Sect. B.2.4). This study focuses on a five-month period
from 1 May to 30 September 2019 to constrain measurements to the liquid phase.
Nevertheless, all rainfall observations are available for multiple years, facilitating
the validation of results. This section will give an overview about in-situ and remote
rainfall observations and introduces the used data sets briefly.
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b.2.1 X-band radar (LAWR)

The University of Hamburg operates a single-polarized X-band weather radar in
the city centre of Hamburg, Germany (Fig. B.2), to investigate rainfall variability
at hectometre spatial and sub-minute temporal scales (Burgemeister et al., 2024c;
Lengfeld et al., 2014). This local area weather radar (LAWR) is a modified ship
navigation radar of type GEM scanner SU70-25E operating at a frequency of
9.41 GHz. The LAWR provides horizontally radar reflectivity measurements at
one fixed elevation angle (5.4◦) with 30 s temporal, 60 m range, and 1◦ azimuthal
sampling resolution within a scan radius of 20 km. The radar reflectivity represents
an 30 s average of approximately 67 pulses per 1◦ collected during 12 sweeps. The
measurements were corrected for several sources of errors, e.g. noise, alignment,
non-meteorological echoes, radar calibration, and attenuation, and quality checked
(Burgemeister et al., 2024c).

The LAWR radar rainfall rates R (Burgemeister et al., 2024b) are estimated from
radar reflectivities Z by applying a power-law Z-R relationship

Z = a Rb, (B.1)

where a and b are empirical parameters. The values of these parameters depend
on the drop size distribution, which varies geographically, with rainfall intensity,
and time (e.g. Berne and Krajewski, 2013; Doviak et al., 1993; Villarini et al., 2008).
The rain retrieval can be improved with the parameters of the Z-R relationship.
However, this study aims to investigate the effect of spatio-temporal resolution and
scan strategy on the rainfall distribution, therefore one fixed Z-R relationship is
applied to both radars. The parameters of this study are a = 200 and b = 1.6 as
proposed by Marshall et al. (1955), representing average rainfall conditions in this
climate (Burgemeister et al., 2024c; Holleman, 2006; Kirsch et al., 2019).

b.2.2 C-band radar and RADKLIM

The German weather service (DWDs) operates a nation-wide network of C-band
weather radars. All C-band radars have dual-polarization and Doppler capabilities.
For details on the C-band radar technical setup, data quality, and calibration, refer
to (Frech et al., 2017). The DWD’s scan strategy includes an orography-following
precipitation scan for hydrological applications and volume scans at 9 elevation
angles every five minutes (Frech et al., 2023). This study uses the precipitation scan
from the nearest C-band radar to Hamburg, located near Boostedt about 50 km
north of Hamburg. The Boosted C-band radar’s precipitation scan provides radar
reflectivity measurements within a 150 km radius, covering the entire study area.
The scan operates at a constant elevation angle of 0.8◦, with a 5 min temporal,
250 m range, and 1◦ sampling resolution. The measurements represent an 80 ms
average of approximate 50 pulses per 1◦ azimuth collected during 1 sweep within
the 5 min measurement interval. Radar reflectivities were corrected for attenuation
using the method of Jacobi and Heistermann (2016), implemented by Heistermann
et al. (2013). The rainfall rates were derived from attenuation-corrected horizontal
reflectivities using the same power-law relationship between these two quantities
(Z-R relationship) as for the LAWR (Sect. B.2.1). Polarimetric rain retrievals, based



B.2 rainfall observations 73

on the specific attenuation and specific differential phase, would perform better than
single radar reflectivity methodologies (e.g. Ryzhkov et al., 2022). Consequently,
for the C-band radar, the rain retrieval can be improved based on polarimetric
measurements. However, the focus is on the general performance of both radars
and not on the variability of the Z-R relationship.

A further radar-rainfall data set used in this study, is the radar-based climatology
RADKLIM (Winterrath et al., 2018a) provided by the DWD. The observations of the
C-band radar network were adjusted with rain gauge measurement, corrected for
errors, and quality-checked. For details on the climatology, refer to Winterrath et al.
(2017). This study uses ground-based rainfall rates, the YW product (Winterrath
et al., 2018a), with a 5 min temporal and a 1 km2 spatial resolution.

b.2.3 Micro rain radar (MRR)

The MRR is a vertically pointing frequency-modulated-contionus wave (FM-CW)
Doppler radar manufactured by METEK Meteorologische Messtechnik GmbH (Pe-
ters et al., 2002). The MRR retrieves drop size distributions (DSDs) from measured
Doppler spectra using the terminal fall velocity given by Atlas et al. (1973). Rain-
fall rates and radar reflectivities are calculated from DSDs (Doviak et al., 1993).
Noise and attenuation corrections are performed by the manufacturer’s software
(Metek, 2015). The DSD retrieval assumes stagnant air. Vertical wind and turbulence
effects are discussed in Peters et al. (2005) and are neglected in this study. The
transmit frequency is at 24.23 GHz (K-band). The MRR measures DSD profiles for
31 range gates, with a range resolution of 35 m and a temporal resolution of 10 s.
The measurements represent an 8 s-average within its 10 s measurement interval.
The rainfall rates and radar reflectivities were adjusted with a rain gauge at the
same location (Burgemeister et al., 2024c). Additionally, the adjacent rain gauges
monitor the MRR’s performance.

The MRRs are deployed at two measurement sites in the study area (Fig. B.2).
The MRR Wettermast Hamburg (WMH) is located at the scientific measuring site of
the Meteorological Institute of the Universität Hamburg in the south-eastern part
of the city. The MRR Blankenese Bauersberg (BBG) is deployed at a waterworks
of the municipal water and wastewater utility Hamburg Wasser in the west of
Hamburg. The MRRs and LAWR are 10.1 km (WMH) and 12.3 km (BBG) apart. The
distances between the MRRs and the C-band radar Boostedt are 54.02 km (WMH)
and 51.48 km (BBG), respectively.

b.2.4 Rain gauges

This study uses 33 rain gauges (Fig. B.2) from different rain gauge networks that
were available during the study period. The University of Hamburg operates a
network of weather stations throughout Hamburg, covering eight tipping bucket
rain gauges (Campbell Young 52203) and two weighing rain gauges (OTT Pluvio).
The two weighing rain gauges and two tipping bucket rain gauges are located
close to the MRRs. Hamburg Wasser, the municipal water and wastewater utility,
provided measurements of 18 weighing rain gauges (OTT Pluvio). The DWD
operates five weighing rain gauges (Lambrecht rain[e]H3) in and around Hamburg.
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The combined rain gauge network has a maximal pair distance of 46 km and median
pair distance of 15 km. Although this rain gauge network is denser than widely-
used rain gauge networks, only 7 rain gauge pairs have a distance below 1 km,
capturing the rainfall variability at a sub-kilometre scale. Note that two DWD rain
gauges and one Hamburg Wasser rain gauge are outside the LAWR scan radius
(Fig. B.2). All rain gauges were checked for the data quality by investigating the
cumulative rainfall accumulation and the probability of detecting with different
rainfall thresholds.

b.3 results and discussion

The LAWR offers the highest area-wide spatio-temporal resolution of measurements
compared to the network of available rain gauges, the nearest operational C-band
radar, and the radar-rainfall-climatology RADKLIM. However, the spatio-temporal
resolution does not need to translate to measurements close to the truth. In order
to ascertain the added value of the LAWR, we undertake a comparative analysis of
the LAWR measurements with those of comparable measurement devices. Firstly,
we verify the radar reflectivity (Sect. B.3.1) and rainfall distributions (Sect. B.3.2).
Secondly, we investigate the measured spatio-temporal rainfall variability with the
spatial correlation structure (Sect. B.3.3). Thirdly, we investigate features of radar
measurement patterns in relation to the spatio-temporal resolution: measurement
peaks (Sect. B.3.4) and spatial gradients (Sect. B.3.5).

b.3.1 Radar reflectivity distributions

The LAWR and C-band radar both measure radar reflectivity, but differ in spatio-
temporal resolution and scan strategy (Sect. B.2). The LAWR radar reflectivity has
a radial resolution of 60 m and represents a true 30 s average of its measurement
interval. In contrast, the C-band radar reflectivity has a radial resolution of 250 m
and measures 80 ms per azimuth of its represented 5 min measurement interval.
The aim is to assess how well the LAWR and C-band radar represent the respective
measurement intervals. Firstly, the MRR serves as reference, since the MRR profile
covers the LAWR and C-band radar beam height partially and the MRR has a higher
temporal resolution compared to the LAWR and C-band radar. Both MRRs are
used as a reference combined. Secondly, the LAWR and C-band radar reflectivity
distributions are compared spatially.

Micro rain radar as reference

The MRRs radar reflectivity factor profiles are averaged within the radar beam
heights using a Gaussian weighting function, with its maximum at the beam centre
(Burgemeister et al., 2024c). The two lowest MRR rain gates were excluded due to
inapplicable assumptions in radar signal processing for those gates (Peters et al.,
2005). The two highest MRR rain gates were excluded due to errors attributed to
noise and aliasing effects. The LAWR and C-band radar beams overlap with the
MRR at different heights and extents. The LAWR has a mean beam height of 1058 m
and 1273 m at the MRR sites, with a beam width of 489 m and 598 m. Accordingly,
the LAWR measurements are compared to an average of six and four MRR range
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Figure B.3: 2d distribution of radar reflectivities measured by the LAWR and the C-band
radar versus two MRRs as reference. The measurements are compared at com-
mon heights for the period May to September 2019. The MRR radar reflectivities
were averaged to (a, b) 30 s and (c, d) 5 min. The LAWR radar reflectivities
are shown at (a) 30 s temporal resolution and were averaged to (c) 5 min. The
C-band radar reflectivities are the (b, d) instantaneous measurements from the
5 min measurement interval.

gates. The C-band radar has a mean beam height of 1052 m and 1001 m at the two
MRR sites. The beam width is 848 m and 808 m. Due to the large beam width,
measurements of 12 and 15 MRR range gates are averaged and compared to the
C-band radar observations.

Prior to the comparison of radar reflectivities, the sensitivity of the MRR mea-
surements is investigated, because electronic and thermal noise affects the MRR
profile. The detectability of the MRR radar reflectivity is calculated with the 99 %
quantile covering 17 clear-sky days following Kneifel et al. (2011) (not shown).
Clear-sky days were found based on ceilometer data located near the MRR WMH.
Radar reflectivities above the 99 % quantile are assumed to be free of noise. For
30 s averages of radar reflectivity, the MRR WMH detectability decreases from the
third range gate with −4.03 dBZ (MRR BBG: −2.73 dBZ) up to 5.89 dBZ (MRR BBG:
9.15 dBZ) at range gate 29. In the case of 5 min averages of radar reflectivity, the
MRR WMH detectability is −6.49 dBZ (MRR BBG: −5.27 dBZ) for the third range
gate and 3.04 dBZ (MRR BBG: 7.48 dBZ) at range gate 28. We analyze only radar
reflectivities that exceed 9.5 dBZ at 30 s averages and 7.5 dBZ at 5 min averages,
respectively.

At a 30 s temporal resolution, both the LAWR and C-band radar reflectivities
perform equally well (Fig. B.3). Both radar reflectivities show a similar bias and root-
mean-square error (RMSE) (Table B.1). The LAWR and C-band radar reflectivities
are highly correlated with the MRR measurements, respectively.
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Table B.1: Validation metrics of radar reflectivity distributions comparing the LAWR and
C-band radar with the MRRs, respectively, showing the Pearson correlation
coefficient estimator (r), the mean bias, the root-mean-square error (RMSE), and
the sample size (n).

30 s 5 min

(a) LAWR (b) C-band (c) LAWR (d) C-band

n 42899 4056 5651 4577

r 0.89 0.92 0.94 0.84

bias (dB) 0.33 1.10 0.28 0.65

RMSE (dB) 3.40 3.12 2.58 4.40

At a temporal resolution of 5 min, the LAWR radar reflectivity measurements
are superior to those of the C-band radar. Although, the LAWR bias is nearly
unchanged, the RMSE decrease by 0.82 dB (Table B.1). The correlation coefficient
increases to 0.94. On the contrary, the C-band radar reflectivity RMSE increases by
1.28 dB and the correlation decreases to 0.84 but the bias decreases slightly. This is
expected because the LAWR radar reflectivity is a continuous 5 min observation,
whereas the C-band radar reflectivity is, as 80 ms average, a more instantaneous
observational sample.

Spatial analysis

LAWR and C-Band radar data need to be interpolated on the same Cartesian grid
for a spatial analysis, since the grid properties differ. For the regridding between the
polar and Cartesian grid a nearest neighbor algorithm is applied. We use the native
resolution of the C-Band radar and interpolate the C-Band radar on a 250 m× 250 m
Cartesian grid. The LAWR radar reflectivity is interpolated on the same Cartesian
grid. We analyse the agreement between LAWR and C-band radar for reflectivities
above 9.5 dBZ spatially (Fig. B.4), similar to the comparison to the MRRs at 30 s
temporal resolution. The C-band radar reflectivity scan every 5 min is compared to
the temporal closest 30 s LAWR radar reflectivity.

The LAWR underestimates the C-band radar reflectivity on average with 0.49 dB
(Fig. B.4a). The bias is spatially variable between −2.90 dB and 1.26 dB. The bias’s
spatial variability is a consequence of both rainfall conditions and radar perfor-
mance, as there are notable differences between periods (not shown). While the
radars are observing the same rainfall conditions, there can be discrepancies in
radar performance due to factors such as attenuation, sensitivity and maintenance.
Radar artefacts, such as a dependence on the radius of the scores, are not visible,
emphasising the data quality of the radar measurements. The LAWR and C-band
radar reflectivity are highly correlated with 0.86. The correlation coefficient estimate
varies spatially between 0.39 and 0.93 (Fig. B.4b). The RMSE equals to 3.97 dB and
varies spatially between 2.60 dBZ and 6.09 dBZ (Fig. B.4c). The lowest match be-
tween the radar reflectivities, represented by decreased correlations and increased
RMSE values, is at radar range gates affected by remaining clutter of both radars,
respectively. The clutter values are mainly shown in the C-band radar reflectivity
distribution as spikes (Fig. B.5). Additional to clutter values, spatial spikes appear
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Figure B.4: Spatial evaluation of the radar reflectivity, comparing LAWR and C-band radar
measurements, showing the additive bias (a), the correlation coefficient estimator
(r) and the root-mean-square error (RMSE). The large spikes are known (due to
the TV tower and masts on the rooftop).

in patterns of the correlation coefficient (Fig. B.4b) and RMSE (Fig. B.4c) in the
direction of the C-band radar location. These spikes are between two azimuths of
the C-band radar and are a result of the nearest neighbor interpolation, because the
250 m× 250 m Cartesian grid is at this distance poorly sampled by the C-band radar
observations (e.g. Brook et al., 2022). However, the best match between the radar
reflectivities, represented by increased correlations and decreased RMSE values,
is within a torus around the LAWR location (Fig. B.4b-c), where the LAWR and
C-band radar measuring height and sampling volume sizes are at closest.
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Figure B.5: Spatial evaluation of the radar reflectivity, comparing the X-band radar to the
C-band radar.

b.3.2 Rainfall distributions

Rainfall rates R are retrieved from LAWR and C-band radar reflectivities Z, and
from MRR drop size distributions, while rain gauges measure rainfall directly.
Firstly, we compare the LAWR and C-band rainfall rates with the MRR observations
as reference, which shows discrepancies between the used and actual Z-R relation.
Secondly, we compare LAWR and C-band rainfall accumulations with rain gauges
as a reference, which differ due to the Z-R relation variability, vertical rainfall
variability and differences in sampling volume sizes.

To measure the agreement between different rainfall measurements, we calculate
statistical standard metrics: the additive and multiplicative bias, the correlation
coefficient, and the root-mean-square error (RMSE), to describe the ability of the
radar to observe the correct rainfall amount. Following (Germann et al., 2006),
we calculate additional statistical metrics, to describe the ability of the radar to
distinguish between rainfall and no rainfall: the critical success index

CSI =
H

H + F + M
, (B.2)

the false alarm ratio

FAR =
F

H + F
, (B.3)

and the probability of detection

POD =
H

H + M
. (B.4)

H is the number of hits, when the tested radar and the reference both indicate
rainfall. M is the number of misses, when only the reference indicates rainfall. F
is the number of false alarms, when only the tested radar indicates rainfall. The
metrics were calculated with a rainfall threshold of 0.1 mm h−1 for rainfall rates
and 0.1 mm for rainfall accumulations. The metrics used in this study have been
used in several other measurement performance studies (e.g. Germann et al., 2006;
Habibi et al., 2021; Peleg et al., 2013). A perfect agreement between the radar rainfall
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Figure B.6: Joint distribution of radar rainfall rates estimated from LAWR and C-band radar
observations versus two MRRs as reference. The measurements are compared
at overlapping heights for the period May to September 2019. The MRR rainfall
rates were averaged to (a, b) 30 s and (c, d) 5 min. The LAWR rainfall rates
are shown at (a) 30 s temporal resolution and were averaged to (c) 5 min. The
C-band rainfall rates are the (b, d) instantaneous measurements from the 5 min
measurement interval.

distributions and the reference would result in an additive bias, RMSE, and FAR of
zero and a relative bias, correlation coefficient, CSI, and POD of one. The standard
metrics are also calculated for the logarithmic rainfall rate dBR to balance the
impact of rainfall rates across intensity scales.

Micro rain radar as a reference

Similar to Section B.3.1, the LAWR and C-band radar rainfall rates are compared to
the MRR measurements as reference for the two represented temporal scales: 30 s
and 5 min (Fig. B.6 and Table B.2). The LAWR and C-band radar rainfall rates are
unbiased in linear and logarithmic space for both temporal scales (Table B.2). At
30 s temporal resolution, the RMSE is equal for the C-band radar (3.46 dB) and the
LAWR (3.44 dB). The RMSE of the logarithmic rainfall rates is higher than the RMSE
of the radar reflectivities due to the climatological Z-R-relation (Eq. B.1). The C-band
radar has the lowest RMSE with 2.94 mm h−1 at 30 s resolution. However, at 5 min
resolution, the LAWR has a lower RMSE with 3.51 mm h−1 than the C-band radar
with 4.69 mm h−1. The Pearson correlation coefficient estimated for the logarithmic
rainfall rates (0.67 to 0.77, Table B.2) show decreased values compared to the radar
reflectivities (0.84 to 0.94, Sect. B.3.1) due to the climatological Z-R-relation (Eq. B.1).
In summary, the statistical standard metrics indicate that the LAWR and C-band
radar measure the rainfall amount at 30 s temporal resolution equally well. The
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Table B.2: Evaluation metrics of rainfall rate distributions comparing the LAWR and C-
band radar with the MRRs, respectively. n is the number of observations above
0.1 mm h−1 for both rainfall rates. The standard statistical metrics are the bias,
the relative bias mbias, the correlation coefficient estimator (r), the root-mean-
square error (RMSE). The bias, r, and RMSE are also computed for the logarithmic
rainfall rate dBR. Based on hits H, misses M, false alarms F, and correct negatives
N, the critical success index (CSI), the false alarm ratio (FAR), and the probability
of detection (POD) is calculated.

30 s 5 min

(a) LAWR (b) C-band (c) LAWR (d) C-band

n 45242 4183 4848 4224

bias / mm h−1
0.10 0.19 -0.04 0.00

mbias 1.08 1.15 0.97 1.00

r (R) 0.32 0.41 0.34 0.26

RMSE / mm h−1
3.46 2.94 3.61 4.69

bias / dB -0.01 0.51 -0.05 0.33

r (dBR) 0.74 0.75 0.77 0.67

RMSE / dB 3.44 3.46 3.15 3.97

H 45294 (5.1 %) 4191 (5.3 %) 4851 (5.5 %) 4231 (5.4 %)

M 3781 (0.4 %) 265 (0.3 %) 494 (0.6 %) 627 (0.8 %)

F 11286 (1.3 %) 1134 (1.4 %) 673 (0.7 %) 1094 (1.4 %)

N 820880 (93.2 %) 73442 (93.0 %) 82110 (93.2 %) 73080 (92.4 %)

CSI 0.75 0.75 0.81 0.71

FAR 0.20 0.21 0.12 0.21

POD 0.92 0.94 0.91 0.87

5 min average of the LAWR rainfall rate outperforms the one C-band radar rainfall
rate representing the 5 min temporal scale.

The CSI, POD, and FAR scores, which refer to rainfall intermittency, describe the
alternation between rainy and dry periods. For the LAWR and C-band radar at 30 s
temporal resolution (Table B.2), these scores are equal, indicating that both radars
can represent the occurrence distribution of rainfall for a 30 s average equally well.
For 5 min averages of the LAWR rainfall rates, the CSI increases from 0.75 to 0.81
because the FAR decreases from 0.23 to 0.13. Although the CSI and FAR improve
for longer temporal averages, which follows Peleg et al. (2013) for the comparison
of radar and rain gauge rainfall at different temporal scales, the POD remains
equal. For the 5 min measurement period of the C-band radar rainfall rate, the CSI
decreases slightly from 0.75 to 0.71, as well as the POD from 0.94 to 0.87. The CSI,
FAR and POD impairs for the 5 min C-band radar rainfall rate compared to the 30 s
because of the single 50 ms measurement within the measurement period.
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Figure B.7: Hourly rainfall accumulations estimated from (a) LAWR and (b) C-band radar
measurements versus observed rainfall from rain gauges as reference.

Rain gauge as a reference

The network of 33 rain gauges (Sect. B.2.4) provides accurate point rainfall informa-
tion at a 1 min temporal resolution. Wang et al. (2023b) noted that at small scales,
measurement uncertainties and spatial-temporal sampling differences between
radar and gauge observations prevail. For a more representative analysis, 15 min,
30 min, 1 h and 1 d accumulations of the LAWR and C-band radar rainfall are com-
pared to the rain gauge rainfall (Table B.3 and Fig. B.7). This analysis gives insight
in the consistency and limitations of the radar and rain gauge measurements.

Hourly rainfall accumulations estimated from LAWR and C-band radar measure-
ments are equally in agreement with observed rainfall from rain gauges as reference
(Fig. B.7. The LAWR measurements underestimate rainfall accumulations from rain
gauges (Table B.3). The absolute additive bias (bias) of the LAWR rainfall accumula-
tions increase with duration, from −0.11 mm for a 15 min duration to −0.40 mm for
a daily duration. Consequently, the multiplicative bias (mbias) improves for longer
accumulation durations up to 0.94. The RMSE increases for longer durations due to
increasing values of rainfall accumulations. The LAWR rainfall accumulations are
moderately correlated (0.68, 15 min) up to highly correlated (0.85, daily) with the
rain gauge measurements. The absolute bias of logarithmic rainfall accumulations
decrease from 15 min to hourly durations but increase for daily accumulations. In
logarithmic space, the RMSE is almost constant. The CSI and POD of the LAWR
rainfall accumulation increase with duration. In the case of the C-band radar, the
rainfall accumulations are found to be almost entirely unbiased in comparison to
the rain gauges (Table B.3). This may be attributed to a superior calibration of the
radar system. The mbias is between 0.94 for 15 min and 30 min durations and 0.98
for a daily duration. The RMSE, correlation coefficient estimate, and CSI of the
C-band radar and LAWR are nearly the same for the different durations. Only the
FAR and POD of the C-band radar rainfall accumulations (e.g. for daily durations,
FAR= 1.22 and POD= 0.95, daily) are higher than the LAWR estimates (FAR= 1.22
and POD= 0.95). Consequently, the improved POD is compensated by the FAR.
The statistical metrics indicate that the LAWR and the C-band radar capture the
rain gauge point rainfall observations equally well.



82 added value of spatio-temporal resolution

Table B.3: Evaluation metrics of rainfall accumulation distributions, comparing the LAWR
and C-band radar with rain gauges as reference. The used statistical metrics were
introduced in Table B.2.

LAWR

15 min 30 min 1 h 1 d

n 12568 9503 7261 2113

bias / mm -0.11 -0.13 -0.17 -0.40

mbias 0.83 0.85 0.86 0.91

r 0.65 0.69 0.73 0.83

RMSE / mm 0.80 1.05 1.35 3.16

bias / dB -0.51 -0.29 -0.08 0.40

RMSE / dB 2.76 2.81 2.92 2.81

H 12568 (1.5 %) 9503 (2.3 %) 7261 (3.5 %) 2113 (24.4 %)

M 4641 (0.6 %) 2762 (0.7 %) 1663 (0.8 %) 274 (3.2 %)

F 17340 (2.1 %) 13426 (3.2 %) 10339 (4.9 %) 2259 (26.1 %)

N 802610 (95.9 %) 392860 (93.9 %) 189984 (90.8 %) 4018 (46.4 %)

CSI 0.36 0.37 0.37 0.45

FAR 0.58 0.59 0.59 0.52

POD 0.73 0.77 0.81 0.89

C-band

15 min 30 min 1 h 1 d

n 12844 9619 7199 1815

bias / mm -0.06 -0.08 -0.10 -0.21

mbias 0.90 0.91 0.92 0.95

r 0.65 0.70 0.73 0.84

RMSE / mm 0.85 1.07 1.35 3.17

bias / dB -0.29 -0.16 0.01 0.43

RMSE / dB 2.79 2.90 3.03 2.82

H 12844 (1.6 %) 9619 (2.4 %) 7199 (3.6 %) 1815 (25.9 %)

M 3547 (0.4 %) 1992 (0.5 %) 1145 (0.6 %) 89 (1.3 %)

F 18764 (2.4 %) 14593 (3.7 %) 11196 (5.8 %) 2207 (31.4 %)

N 753965 (95.5 %) 367696 (93.3 %) 176780 (90.0 %) 2909 (41.4 %)

CSI 0.37 0.37 0.37 0.44

FAR 0.59 0.60 0.61 0.55

POD 0.78 0.83 0.86 0.95

b.3.3 Spatial correlations

The spatial rainfall structure is determined for the different rainfall data sets using
the spatial correlation (Fig. B.8). The Pearson’s product-moment correlation is used
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Figure B.8: Examples of the spatial correlation of the rainfall data sets for the months May
to September 2019: (a) LAWR at 30 s, (b) rain gauge network at 1 min, (c) C-band
radar at 5 min, and (d) RADKLIM at 5 min time scale.

to estimate the spatial correlation, as commonly done in many studies (e.g. Ciach
and Krajewski, 2006; De Vos et al., 2017; Krajewski et al., 2003; Leth et al., 2021;
Peleg et al., 2013; Tokay et al., 2014; Villarini et al., 2008). The correlograms were
calculated based on pairs of rain gauges and pairs of a randomly drawn sample of
100 grid points using a bin size of 100 m and different timescales, ranging from 1 min
to daily rainfall accumulations. The correlation decays as the separation distance
between two locations increases due to spatio-temporal rainfall variability (Fig. B.8).
The spatial correlation can be parameterised with an isotropic, three-parameter
exponential function:

r (d) = r0 exp
[
−

(
d
d0

)s0
]

(B.5)

where d is the separation distance between two locations, r0 is the nugget parameter,
d0 is the correlation distance and e-folding distance, and s0 is the shape parameter
(e.g. Ciach and Krajewski, 2006; Foelsche et al., 2019; Habib et al., 2001; Krajewski
et al., 2003; Peleg et al., 2013; Villarini et al., 2008).

The nugget parameter represents the zero-distance correlation and thus describes
the uncertainty of measurements at the same location. In this study, the analysis
of the rainfall data sets yield a nugget parameter of one. Therefore, we focus on
the two remaining parameters and use only a two-parameter exponential function
without the nugget parameter, as done by other studies (Leth et al., 2021; Mascaro,
2017; Thomassen et al., 2022).

The correlation distance d0, describing the decay of the spatial correlation, and
the shape parameter s0, characterising the shape of the exponential function, differ
for the different rainfall data sets at their observational time scales. The rain
gauge measurements (Fig. B.8b) observe the highest spatial rainfall variability
with d0 = 2.940 m and the radar-rainfall climatology RADKLIM (Fig. B.8d) shows
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Figure B.9: Correlation distance (a) and shape factor (b) for different timescales (30 s, 1 min,
5 min, 15 min, 30 min, 45 min, 1 h, 3 h, 6 h, 12 h, and 24 h; crosses) for the months
May to September 2019. The colors indicate the rainfall data sets: X-band radar
(blue), rain gauges (green), C-band radar (orange), RADKLIM (red). The solid
lines mark the median and the shaded area is the 5- to 95-percentile range of a
bootstrap sample.

the lowest spatial variability with d0 = 8.577 m. The estimated C-band radar (Fig.
B.8c) and LAWR (Fig. B.8a) spatial rainfall variability is in between those with
d0 = 3.414 m and d0 = 3.824 m. The shape parameters are between 0.40 and 0.46.

The correlation distance increases with timescale, from a few kilometers for
rainfall accumulation of a few minutes to several hundred kilometers for daily
rainfall accumulations (Fig. B.9a). The rainfall data sets capture a different rainfall
variability, where the LAWR correlation distance is between 3.84 km and 117.37 km,
the rain gauge correlation distance is between 2.89 km and 325.48 km, the C-band
radar correlation distance is between 3.44 km and 267.97 km, and the RADKLIM
correlation distance is between 8.79 km and 301.43 km. The uncertainty of the
correlation distance is analysed by calculating the correlograms for different samples
of the same rainfall data sets. For the rain gauge network, we apply bootstrapping
using the same sample size. For the gridded rainfall data sets, we create 100

randomly drawn samples of 100 grid points. The 5- to 95-percentile range of
correlation distances, as measure of uncertainty, increases with timescale (Fig. B.9a).
The 5- to 95-percentile range, in relation to the median, tends to be narrow and
constant for timescales up to an hour, in contrast to longer timescales (not shown).
The correlation length, which exceeds the maximal separation distance within
the measurement domain for all data sets for these timescales, can explain the
increasing uncertainty for timescales longer than an hour.

The shape parameter is between 0.34 and 0.73 (Fig. B.9a). It increases with
timescale up to an hour and decreases for longer durations. The rainfall data sets
spatial correlation shows a faster exponential decay at shorter separation distances
and a slower exponential decay at longer separation distances because the shape
parameter is smaller than one (e.g. Tokay et al., 2014). The 5- to 95-percentile range
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of shape parameters, as measure of uncertainty, increases with timescale (Fig. B.9b).
For timescales up to an hour, the 5- to 95-percentile range in relation to the median,
tends to be narrow and constant. This is in contrast to longer timescales (not
shown), except for the C-band radar measurements, where the shape parameter’s
uncertainty increases continuously.

The spatial rainfall structure of the LAWR and rain gauge measurements match
best for sub-hourly timescales, since differences of the correlation distances are
between 278 m and 1.58 km (Fig. B.9a). However, at 1 min timescale, the rainfall vari-
ability is characterised by correlation distances of the LAWR of 4.35 km and the rain
gauge network of 2.88 km. The relatively high deviation of the correlation distances
at 1 min timescale compared to other sub-hourly timescales can be explained by
the different measurement principles. At an hourly timescale the LAWR correlation
distance is with 23.15 km slightly lower than the rain gauge correlation distance
with 26.01 km, which is within the uncertainty range. For longer timescales, the
LAWR correlation distance increasingly underestimates the correlation distance
compared to the other rainfall data sets. Increasing differences with increasing
correlation distances can be explained with the LAWR scan radius of 20 km. The
scan radius limits the maximal separation distance to 40 km, hence for correlation
distances larger than the maximal separation distance, rainfall variability is not
fully captured within the measurement domain. The other rainfall data sets contain
measurement points with slightly larger separation distances, up to 55 km. Contrary
to the LAWR, the C-band radar underestimates correlation distances for timescales
up to an hour. The 5 min C-band radar measurements have a correlation distance
of 3.44 km, which is lower than the 5 min rain gauge correlation distance of 5.48 km.
This underestimation contradicts the assumption that a decreased spatio-temporal
resolution comes along with a decrease in correlation distances, but is a reason of
the C-band radar scan strategy. The C-band radar scans 50 ms per azimuth and
needs 30 s for the measurement scan, therefore the C-band radar measures at an
expected timescale of 5 min, a mixture of spatial variabilities below a timescale
of 30 s. For the 3 h timescale, the correlation distances of the C-band radar and
rain gauges match best. Note that the C-band radar correlation distances have the
highest uncertainty (Fig. B.9). The RADKLIM rainfall underestimates the spatial
rainfall variability compared to the other observations up to the 3 h timescale. This
underestimation comes along with the lowest spatial resolution compared to the
other rainfall data sets. Kreklow et al. (2020) and Pöschmann et al. (2021) outline
the underestimation of high intensity rainfall due to spatial averaging. Peleg et al.
(2018) shows that extreme rainfall intensities within a radar pixel are on average at
least 10 % larger than values estimated from weather radars. However, for longer
timescales, the correlation distances of RADKLIM and the rain gauges match best.
This can be explained by the rain gauge adjustment of RADKLIM (Winterrath et al.,
2017). Although, the rain gauge network for RADKLIM adjustment is less dense
than the one used in this study within the study’s measurement domain.

Finally, it should be noted, that estimating Pearson’s product-moment correlation
from skewed and long-tailed distributions can result in biased and uncertain corre-
lation estimates (Habib et al., 2001). Habib et al. (2001) proposed a scheme to reduce
the uncertainty of correlation estimates by applying a logarithmic transformation
to the non-zero rainfall values, which is applicable for mixed lognormal rainfall
distributions. We decided not to apply the scheme by Habib et al. (2001), or the
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logarithmic transforms by Jaffrain and Berne (2012) and by Foelsche et al. (2019)
for various reasons. Firstly, Leth et al. (2021) follows the reasoning of Ciach and
Krajewski (2006) for rainfall in central Oklahoma and Villarini et al. (2008) for
rainfall in southwest England, expecting the probability density function of rainfall
rates to have a lighter tail than the mixed lognormal distribution. Therefore, they do
not apply the logarithmic transformation for rainfall in the Netherlands, which has
similar rainfall conditions like Hamburg. Secondly, our results on spatial rainfall
variability can be directly compared to previous studies (e.g. Ciach and Krajewski,
2006; De Vos et al., 2017; Krajewski et al., 2003; Leth et al., 2021; Peleg et al., 2013;
Tokay et al., 2014; Villarini et al., 2008). Thirdly, we expect that the estimation of
correlations is (un-)biased equally for the different rainfall data sets, since the mea-
surements sample from the same intrinsic rainfall distribution. Fourthly, the rainfall
distributions measured at short timescales show truncated distributions at lower
tails due to the sensitivity of the different measurement devices. A logarithmic
transformation would give the affected lower tail of the rainfall distribution more
weighting and therefore hamper the comparison of the correlation distances of the
different rainfall data sets. Fifthly, since we focus on the months May to September
2019, our focus lies in convective rainfall and hence in the spatial variability of
higher rainfall rates.

In conclusion, the spatial variability based on the spatial correlation has been
investigated for four different observational rainfall data sets within the same
measurement domain at sub-hourly to daily timescales. Spatial rainfall variability,
i.a. correlation distance, has been estimated from an isotropic, two-parameter
exponential function. The uncertainty has been estimated using bootstrapping. The
spatial rainfall structure captured by LAWR and rain gauge measurements is found
to be similar for sub-hourly timescales. For longer timescales, the 20 km scan radius
of the LAWR is limiting the performance of the radar in capturing the spatial
rainfall structure. The C-band radar is overestimating spatial rainfall variability
at sub-hourly timescales, due to its intermittent scan strategy every five minutes.
The radar-rainfall climatology RADKLIM is found to underestimate spatial rainfall
variability due to its coarser spatial resolution. The most accurate measurements
of rainfall patterns at sub-hourly timescales are those made by a dense network of
rain gauges or a radar with high spatio-temporal resolution and a continuous scan
strategy.

b.3.4 Peak attenuation

The link between spatio-temporal rainfall variability and flood response is complex
(Zhou et al., 2021). One driver for the hydrological response are rainfall peaks
(e.g. Bruni et al., 2015; Cao et al., 2023). Wang et al. (2023a) conclude that the
accuracy of rainfall estimates significantly impact modelled peak flows in cases
of heavy rainfall. Bárdossy and Anwar (2023) highlight that interpolation and
low rainfall data density can lead to peak flow underestimation in rainfall-runoff
modelling. Rain gauge networks sample less likely from the upper tail of the rainfall
distribution due to the limited spatial coverage. Whereas, weather radars fill the
gap of spatial coverage, nonetheless they represent volume samples and averages.
The differences in spatio-temporal resolution and scan strategy affect the spatio-
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Figure B.10: Peak attenuation ratio (Eq. B.6) associated with the rainfall rate at different
temporal resolutions based on MRR measurements available at 10 s temporal
resolution. Variables were averaged (a) or the first sample of the interval was
used (b). The crosses show the median, the dotted lines show the inner quartile
range, and the grey area is the range of the whiskers.

temporal variability of the observed rainfall distributions. Therefore, the effect of
spatio-temporal coarsening on rainfall peaks is investigated. Following Cristiano
et al. (2018, 2019), we calculate the peak attenuation ratio P (R) for rainfall,

P (R) = −Rmax,ref − Rmax,∆s∆t

Rmax,ref
, (B.6)

where Rmax,ref is the peak rainfall rate at the highest spatio-temporal resolution and
Rmax,∆s∆t is the peak rainfall rate at radial resolution ∆s and temporal resolution
∆t. The peak attenuation ratio quantifies the rainfall peak underestimation as a
consequence of spatio-temporal coarsening.

Firstly, the importance of the temporal resolution and scan strategy on the
measured rainfall peaks is investigated. The effects of temporal coarsening on
the peak attenuation ratio can be analysed with MRR measurements available at
10 s temporal resolution (Fig. B.10). This study distinguishes between temporal
coarsening methods, considering averages or instantaneous samples. For instance, a
radar system like the LAWR, which provides continuous measurements, represents
temporal coarsening as averages (Fig. B.10a), whereas a radar system with an
intermittent scan strategy, such as the C-band radar, represents temporal coarsening
as an instantaneous sample (Fig. B.10b). Therefore, averages of the radar reflectivity
factors or first samples of radar reflectivity within the timescales are used. The
corresponding rainfall rates are derived using a standard Z-R relationship (Z =

200 R1.6). The peak attenuation ratio (Eq. B.6) is calculated for the coarsened rainfall
rates at timescales between 30 s and 60 min with the 10 s rainfall rates as the
reference, when the 10 s reference rainfall rate is above 0.1 mm h−1 (Fig. B.10). The
results demonstrate that temporal coarsening has a strong impact on rainfall peaks.
Rainfall peaks are reduced by 9 % in median for 30 s averages and up to 70 % in
median for hourly averages in comparison to the 10 s rainfall rates (Fig. B.10a).
When only the first 10 s measurement is used to represent the measuring period,
rainfall peaks are reduced by 4 % in median for the 30 s timescale and up to 83 % in
median for the hourly timescale compared to the 10 s rainfall rates (Fig. B.10b). For
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Figure B.11: Peak attenuation ratio (Eq. B.6) associated with the rainfall rate at different
temporal resolutions based on LAWR measurements available at 60 m range
and 30 s temporal resolution. Rainfall rates were coarsened for spatial scales
(a) 60 m, (b) 120 m, (c) 240 m, (d) 480 m, (e) 960 m, (f) 1980 m and for temporal
scales from 30 s to 60 min.

the 5 min timescale, both scan strategies underestimate the rainfall peaks, with a
peak attenuation ratio of −0.43. However, the temporal sampling exhibits greater
variability compared to the temporal average, as shown by the quantiles of the peak
attenuation ratio in Figure B.10. For timescales greater than 5 min, the temporal
averaging outperforms temporal sampling in terms of capturing the rainfall peak
in the median. For every timescale, the use of temporal sampling for coarsening
can result in the total loss of the rainfall peak by missing it, whereas the temporal
averaging preserves some amount of the rainfall peak.

Secondly, we investigate the importance of spatio-temporal resolution combined
on measured rainfall peaks. Therefore, the impact of spatio-temporal coarsening on
the peak attenuation ratio can be evaluated with the LAWR measurements available
at 60 m range and 30 s temporal resolution (Fig. B.11). For the spatio-temporal
coarsening, the radar reflectivity factors Z are averaged and converted to rainfall
rates R using a standard Z-R relationship (Z = 200 R1.6) to avoid additional effects
due to the non-linear Z-R relationship. In order to avoid additional effects due
to interpolation schemes, the radar reflectivity factors are averaged on the native
polar radar grid. The computations are limited to the ranges around 4 km due
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to computational efficency. The peak attenuation ratio (Eq. B.6) is calculated for
the coarsened rainfall rates at spatial scales between 60 m (Fig. B.11a) and 1980 m
(Fig. B.11f) and timescales between 30 s and 60 min with the rainfall rates at 60 m
and 30 s as reference, when the reference rainfall rate is above 0.1 mm h−1. The
results indicate that spatio-temporal coarsening has a strong impact on rainfall
peaks (Fig. B.11). Rainfall peaks are reduced up to 91 % in median at 1980 m and
60 min spatio-temporal resolution compared to the reference resolution of 60 m
and 30 s. For a temporal resolution of 30 s, spatial averaging reduces the peak
attenuation ratio from −0.04 at a spatial resolution of 120 m (Fig. B.11b) down to
−0.41 at a spatial resolution of 1980 m (Fig. B.11b). For a spatial resolution of 60 m,
temporal averaging results in a reduction of the peak attenuation ratio from −0.09
at a temporal resolution of 1 min down to −0.83 at a temporal resolution of 60 min
(Fig. B.11a). Consequently, temporal averaging exerts a greater impact on rainfall
peaks than spatial averaging, which is consistent with previous studies (Cristiano
et al., 2018, 2019).

The results highlight the importance of spatio-temporal resolution and scan
strategy in accurately measuring rainfall peaks. The LAWR is able to capture
rainfall peaks better than the C-band radar due to the used scan strategy (Fig.
B.10) and spatio-temporal resolution (Fig. B.11). Note that the simple arithmetic
averaging or sampling of the radar rainfall only approximates the lower spatio-
temporal resolutions due to post-processing steps applied to the radar reflectivity
factor.

b.3.5 Gradients

Since differences in spatio-temporal resolution and scan strategy affect peaks (Sect.
B.3.4) and spatial structure (Sect. B.3.3) of the measured rainfall distribution, this
study investigates observations of sub-kilometre spatial radar rainfall variability
more closely. To work out the continuity and new structures of radar rainfall
variability at the microscale, gradients of radar reflectivity are calculated. Differences
of radar reflectivity gradients of the LAWR derived at higher (60 m) radial resolution
compared to the C-band radar at 250 m radial resolution are discussed. Furthermore,
the effect of spatial averaging on radar reflectivity gradients is analysed.

The radar reflectivity gradients are derived from radial difference of the radar
reflectivity on the native polar radar grid at highest spatio-temporal resolution,
which is for the LAWR 60 m and 30 s and for the C-band radar 250 m and 50 ms.
Because we focus on the radial direction, the C-band radar gradients are truly
representative at this high temporal resolution. The differences of scan strategies
and spatio-temporal resolutions are considered and discussed alongside the results.
The computation on the native polar grid in radial direction results in a fast com-
putation, uses regular distances over the range, and avoids additional effects due
to grid interpolation schemes. The gradients are calculated for radar reflectivities
exceeding a threshold of 10 dBZ, which is equivalent to a low intensity rainfall
rate. The gradients are computed for a second threshold of 40 dBZ, to prove the
results at radar reflectivities equivalent to high intensity rainfall rates. Gradients for
LAWR radar reflectivities were only computed for values with a stable attenuation
correction and directly measured, thus not influenced by interpolation schemes
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Figure B.12: PDF of (a) LAWR and (b) C-band radar reflectivity differences in radial direc-
tion using lag differences ∆r of 60 m, 250 m, 500 m, and 1000 m. The gradients
were calculated for radar reflectivities greater than a threshold of 10 dBZ. Statis-
tics of the distributions are shown in Table B.4.

Table B.4: Distribution moments of (a) LAWR and (b) C-band radar reflectivity differences
in radial direction using lag differences ∆r of 60 m, 250 m, 500 m, and 1000 m.

LAWR C-band

∆r 60 m 240 m 480 m 1020 m 250 m 500 m 1000 m

mean (dB) -0.00 -0.01 -0.02 -0.05 -0.01 -0.01 -0.01

variance (dB2) 1.16 3.94 8.81 18.84 5.94 10.43 19.08

skewness 0.00 0.02 0.03 0.02 -0.02 -0.02 -0.04

kurtosis 4.17 5.88 7.16 6.90 13.31 8.07 7.45

or an unstable clutter correction. The radial differences of radar reflectivities were
calculated for radial lag distance up to 1 km and shown for selected lag distances
(Fig. B.12 and Table B.4). Gradients are calculated from the radial radar reflectivity
differences (Fig. B.13). The terms of the difference distribution and gradient distri-
bution are used synonymously in this section, as most statements apply to both
distributions.

The statistical moments, i.e. mean, variance, skewness, and kurtosis, of the radar
reflectivity gradient distributions describe the gradients on average (Table B.4): the
gradient distributions are unbiased for both radars and all lag distances, repre-
sented by the mean of the distributions. The variance of the gradient distributions
increases with lag distance as a result of spatial variability. The variance is used
by many studies to describe the spatial radar rainfall variability (e.g. Berne et al.,
2004; Emmanuel et al., 2012; Germann and Joss, 2001; Ochoa-Rodriguez et al.,
2015). Higher statistical moments, like the skewness and kurtosis, of the radar
reflectiviy gradients are not commonly discussed in other studies, but may give
insights in errors and extremes. The distributions are not skewed. Since the gradient
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Figure B.13: PDF of (a) LAWR and (b) C-band radar reflectivity gradients in radial direction
using lag differences ∆r of 60 m, 250 m, 500 m, and 1000 m. The gradients were
calculated for radar reflectivities greater than a threshold of 40 dBZ.

distributions are unbiased and unskewed, the radar reflectivities were on average
successfully corrected for attenuation. The gradients are not normally distributed,
as shown with a kurtosis unequal three. The gradient distributions have more
outliers, i.a. stronger deviations from the mean, compared to a normal distribution,
because the kurtosis is greater than three.

There are notable differences between the LAWR and C-band radar reflectivity
gradients. The LAWR gradients are continuously distributed with a peak at 0 dB
(Figures B.12a and B.13a). The C-band radar reflectivity difference distribution
exhibits a decreased count for the centre bin between −0.5 dB and 0.5 dB (Fig. B.12b),
for which we have no logical explanation and this issue has to be investigated
in further studies. The decreased peak is not visible for gradients (Fig. B.13b)
independently of the radar reflectivity threshold due to the bin size (not shown).
Nevertheless, the diminished peak is not affecting the kurtosis, since the kurtosis is
mainly influenced by the distribution tails (Westfall, 2014). The kurtosis is observed
to be similar for lag distances greater than or equal to 500 m for both LAWR and
C-band radar reflectivities. For shorter lag distances, there are significant differences
in the kurtosis of the LAWR and C-band radar reflectivity differences. The LAWR
gradient distribution is at closest to a normal distribution for lag distances of
60 m and 240 m, whereas the kurtosis of the C-band radar reflectivity difference
distribution for a lag distance of 250 m is at maximum (Table B.4). The kurtosis of
the C-band radar reflectivity difference distribution for a lag distance of 250 m is
strongly affected by outliers in the vicinity of ±30 dB, which might be clutter signals
(Sect. B.3.1). Without these outliers, the kurtosis is 9.1, which is still higher than
the LAWR kurtosis. Radar reflectivity differences derived from radar reflectivities
above the 40 dBZ threshold have the same kurtosis for both radars (Fig. B.13), which
is around 3.9 and 4.9 (not shown). The lower kurtosis is due to the smaller possible
differences caused by the clipping of the lower radar reflectivity threshold. The
kurtosis indicate that the C-band radar measures more radar reflectivity gradients
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Figure B.14: Radial variogram of radar reflectivities above 10 dBZ for the months May
to September 2019. (b) LAWR radar reflectivities of 60 m radial resolution
(blue) are compared with C-band radar reflectivities of 250 m radial resolution
(orange). (b) LAWR radar reflectivities of 60 m radial resolution (blue) are
compared with spatial averages of 240 m (orange) and 480 m (purple) radial
resolution.

at the distribution tails than the LAWR, despite the coarser spatial resolution. The
higher radar reflectivity gradients of the C-band radar may be a result of outliers.
However, this kurtosis effect cannot be seen at high rainfall intensities.

The higher spatial variability of the C-band radar measurements compared
to the LAWR measurements was already discussed in Section B.3.3 and is also
represented by the variance of the radar reflectivity difference distributions at
different lag distances (Fig. B.14 and Table B.4). At a 250 m lag distance, the LAWR
variance is reduced by 34 % in comparison to the C-band radar variance (Fig. B.14a).
The variance reduction is less than 7 % for a 1 km lag distance. At zero lag distance,
the variance is defined as nugget variance and expected to be zero (Cressie, 1993).
However, the variogram of the radar reflectivities indicates a higher nugget variance
than zero (Fig. B.14a). The non-zero nugget variance is a discontinuity caused by
microscale variability and measurement errors (Germann and Joss, 2001), which well
explains that the C-band radar measurements with a 250 m radial resolution seem
to have a higher discontinuity than the LAWR observations with a 60 m resolution.
As expected, the LAWR is capable to measure microscale rainfall variability better
than the C-band radar due to its higher spatial resolution. The general results
remain unchanged for radar reflectivities at higher intensities, tested with a radar
reflectivity threshold of 40 dBZ (not shown).

Furthermore, the LAWR is capable of measuring steeper radar reflectivity gradi-
ents than the C-band radar (Fig. B.15). The variance of radar reflectivity gradients
decreases with increasing lag distances. Consequently, the radar reflectivity gradi-
ents differ from a white noise field, because the variance is not constant. At a 250 m
lag distance, the LAWR and C-band radar are directly comparable. The C-band
radar measures steeper gradients than the LAWR, due to differences in scan strategy
and hence temporal resolutions, despite the C-band radar having a coarser spatial
resolution than the LAWR. However, the LAWR radar reflectivity gradients exhibit
higher variance at 60 m and 120 m lag distances than the C-band radar reflectivity
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Figure B.15: Variance of radar reflectivity gradients for LAWR and C-band radar reflectivi-
ties above 10 dBZ for the months May to September 2019.

gradients at 250 m lag distance. The variance of C-band radar reflectivity gradients
with the native 250 m radial resolution is reduced by 30 % compared to LAWR with
native 60 m radial resolution.

A lower spatial resolution results in a reduction of the measured spatial variabil-
ity, as expressed by a lower variance of gradients (Fig. B.14a). The LAWR radar
reflectivity factor was averaged on the native polar grid for 240 m and 480 m ra-
dial resolutions to simulate conventional radar resolutions. The radar reflectivity
gradients remain unbiased, unskewed, and the kurtosis is unchanged (not shown).
The variance of radar reflectivity gradients for a lag distance of 240 m is reduced
by 35 % at a radial resolution of 240 m compared to the native radial resolution of
60 m. A comparable reduction in variance was observed in the comparison of the
C-band radar at a radial resolution of 250 m to the LAWR at a radial resolution
of 60 m, as discussed with Figure B.15. The variance reduction is less than 15 %
at lag distances of 980 m. For a radial resolution of 480 m the variance of radar
reflectivity gradients is reduced by 42 % at a lag distance of 480 m compared to the
radial resolution of 60 m. At a 1 km lag distance, the variance reduction is about
29 %. The spatial averages of LAWR radar reflectivities demonstrate the importance
of spatial resolution to capture the spatial variability of rainfall.

In conclusion, the statistical moments of radar reflectivity gradients have been
discussed. The bias and skewness can show effects of attenuation. The kurtosis
is sensitive to the tails of the gradient distribution and is mostly affected by mea-
surement errors. The variance of the radar reflectivity gradients highlights that a
radar with higher spatio-temporal resolution is capable of measuring steeper gradi-
ents and captures microscale rainfall variability more accurately than conventional
radars at coarser resolutions.

b.4 conclusions

This study presents a throughout discussion of the added value of a refined spatio-
temporal resolution for weather radar observations at sub-hourly temporal and
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sub-kilometre spatial scales, which are relevant scales for meteorological and hy-
drological applications in urban environments. The recently available reanalysed
radar-rainfall estimates of a single-polarized X-band weather radar measuring at
hectometre spatial and 30 s temporal scales (Burgemeister et al., 2024c) facilitate this
refined study on rainfall variability. The high-resolution measurements of this local
area weather radar (LAWR) were compared with measurements of one operational
C-band radar of the nationwide radar network, operating at 250 m radial resolution
and scanning every five minutes. The radar reflectivities and rainfall estimates
were checked with two micro rain radars operating at a 10 s temporal resolution.
As ground-based reference, 33 rain gauges from different institutions were com-
bined and quality-checked to set up a dense rain gauge network operating at 1 min
temporal scale. The radar-based precipitation climatology RADKLIM, available
at 1 km spatial and 5 min temporal scales, gave insights in rainfall variability of a
radar-rainfall reanalysis calibrated with rain gauges and interpolated on a regular
grid. This study focused on a five-month period from 1 May to 30 September 2019.
The unique availability of different rainfall data sets facilitates analysis answering
the research questions on the added value of spatio-temporal resolution for weather
radar observations.

• Is the local rainfall rate of the LAWR superior to other rainfall estimates?

The local rainfall observations are represented by MRRs and rain gauges.
The LAWR and C-band radar differ in spatio-temporal resolution and scan
strategy. The LAWR radar reflectivity has a radial resolution of 60 m and
represents a true 30 s average of its measurement interval. In contrast, the C-
band radar reflectivity has a radial resolution of 250 m and measures 80 ms per
azimuth of its represented 5 min measurement interval. The MRR observations
show that both the LAWR and C-band radar reflectivities and rainfall rates
perform equally well at 30 s temporal resolution. For 5 min time scales, the
LAWR measurements outperform observations of the C-band radar due to the
continuous scan strategy and temporal resolution. This better performance
does not translate in a better match to rainfall accumulations recorded by rain
gauges, as differences in the Z-R relation and sample volume sizes between
radar and rain gauge dominate the uncertainty for both the LAWR and C-band
radar.

A high spatio-temporal resolution and continuous scan strategy results in
more accurate measurements of rainfall peaks, which is known to be one
driver for the hydrological response (e.g. Bruni et al., 2015; Cao et al., 2023).
The LAWR is capable to capture rainfall peaks better than the C-band radar
due tot the used scan strategy and spatio-temporal resolution. This study
confirms findings from Cristiano et al. (2018, 2019) that temporal averaging
exerts a greater impact on rainfall peaks than spatial averaging.

• Is the LAWR better in capturing spatial rainfall variability?

Despite the differences in spatio-temporal resolution and scan strategy, the
LAWR and C-band radar can be compared spatially well, as the measurements
are highly correlated, where the measuring heights and sampling volumes
are at closest. The most accurate measurements of spatial rainfall variability
at sub-hourly timescales are those made by a dense network of rain gauges or
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a radar with high spatio-temporal resolution and a continuous scan strategy,
like the LAWR. For longer timescales, the 20 km scan radius of the LAWR
is limiting the performance of the radar in capturing the spatial rainfall
structure, which can be circumvented with a network of radars (Lengfeld
et al., 2014). The C-band radar is overestimating spatial rainfall variability at
sub-hourly timescales, due to its intermittent scan strategy every five minutes.
The C-band radar measurements represent a mixture of spatial variabilities
below a timescale of 30 s. The radar-rainfall climatology RADKLIM is found
to underestimate spatial rainfall variability at sub-hourly scales caused by its
coarser spatial resolution and interpolation.

• Are there gradients within the LAWR not obtained by other measurement devices?

The variance of the C-band radar reflectivity gradients at 250 m spatial resolu-
tion is reduced by 30 % compared to the LAWR radar reflectivity gradients at
60 m spatial resolution. The higher variance of the LAWR radar reflectivity
gradients is no additional noise, since the nugget variance of radar reflectivity
differences approximates zero. The variance of the radar reflectivity gradients
highlights that a radar, like the LAWR, with higher spatio-temporal resolution
is capable of measuring steeper gradients and captures microscale rainfall
variability more accurately than conventional radars.

A LAWR operating at hectometre spatial and 30 s temporal resolution fills a gap
in rainfall observations capturing variability at short-duration, sub-kilometre scales.
The effect of a spatio-temporal refinement of C-band radar measurements, like
advection interpolation (e.g. Jasper-Tönnies and Jessen, 2014; Nielsen et al., 2014;
Seo and Krajewski, 2015; Wang et al., 2015), on spatio-temporal variability can be
addressed in a further study, but goes along with additional computational costs.
The LAWR observation do not need such downscaling and will still outperform
the C-band radar in capturing spatio-temporal features, like rainfall peaks and
steep gradients, since the initial measurements fails to capture these features.
RADKLIM is too coarse to contain spatial rainfall variability at sub-hourly scales.
The free available reanalysed LAWR measurements can be used in further studies
on spatio-temporal rainfall variability, as different rainfall data sets proofed its
general performance. Statistics obtained from these measurements can parametrize
spatio-temporal rainfall generators (e.g. Andersen et al., 2024; Green et al., 2024a)
for urban hydrological applications. The spatial limitation of the LAWR can be
tackled in future urban rainfall studies by networked observations with a second
LAWR in Hamburg, measuring since the beginning of 2021.
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