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Abstract

The interplay of electron correlations and unconventional superconductivity is a
pivotal area of condensed matter research, driven by the discovery of novel super-
conducting materials and the development of theoretical techniques. This thesis
contributes to this expanding field by examining different aspects of superconduc-
tivity in strongly correlated electron systems. A core focus is the development
and application of computational tools that enhance the efficiency and scope of
material-realistic studies of superconductors, thereby enabling the investigation
of previously inaccessible parameter regimes and properties of correlated super-
conducting matter. The findings of this thesis are contextualized within a broader
overview of recent advancements in superconductivity research, along with a review
of the theoretical methods and models employed.

For advancing the characterization of superconducting materials, we follow
two complementary paths. One direction leverages low-rank representations of
many-body correlation functions to address computational challenges posed by the
intrinsic complexity of real materials and their low-temperature behavior. Specifically,
we employ the intermediate representation basis for compact and efficient data
handling to study spin-fluctuation-mediated superconductivity across a variety
of multi-orbital materials. This includes a characterization of water-intercalated
sodium cobalt oxides, where the numerical improvement enables the study of
superconductivity and possible pairing symmetries at the experimentally relevant
temperature scales on the order of a few Kelvin. For the recently discovered bilayer
nickelate, we uncover the crucial role of inter-layer correlations in the formation of
high-temperature superconductivity. Shifting focus to moiré materials as highly
tunable quantum materials, we investigate possible superconductivity in twisted
transition metal dichalcogenides. Our analysis reveals a strong charge carrier density
dependence of the critical temperature for different pairing mechanisms, facilitating
simple experimental scrutiny between them. In addition, we thoroughly evaluate
the possibility of room-temperature superconductivity in copper-doped lead apatite,
for which we do not find sustainable evidence. In this context, we discuss the general
scientific challenges involved in achieving superconductivity at ambient conditions.

Furthermore, this thesis advances the microscopic understanding of superconduc-
tors by developing a Green’s function-based method to access intrinsic superconduct-
ing length scales, which were previously inaccessible in strongly correlated materials.
These length scales, namely the coherence length and magnetic penetration depth,
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Abstract

dictate many of the key properties of superconductors, including excitation energies,
critical fields, and condensate stiffness. We validate our approach through applica-
tion to alkali-doped fullerides. Here, our extended characterization reveals enhanced
superconductivity with resilient phase coherence in the strong coupling regime of
pairing interactions. The robust superconducting state is facilitated by multi-orbital
physics. It stands in contrast to conventional limitations seen in single-band systems,
where superconductivity is usually suppressed in the strong coupling regime due
to the high effective masses of tightly-bound pairs. Our results pinpoint towards
strategies for optimizing superconducting materials by surpassing traditional con-
straints with multi-orbital physics. The methodological advancements presented in
this thesis broaden the scope of theoretically accessible parameters, enhancing the
characterization of superconducting properties and laying a foundation for future
innovations in superconductor design.
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Zusammenfassung
German abstract

Die Erforschung des Zusammenspiels von Elektronenkorrelationen und unkonven-
tioneller Supraleitung ist ein zentrales Gebiet der Festkörperforschung, welches
durch die Entdeckung neuartiger supraleitender Materialien und die Entwicklung
theoretischer Methoden stetig vorangetrieben wird. Die vorliegende Arbeit trägt zu
diesem wachsenden Forschungsbereich bei, indem sie verschiedene Aspekte der
Supraleitung in stark korrelierten Elektronensystemen untersucht. Ein zentraler
Schwerpunkt liegt auf der Entwicklung und Anwendung von computergestützten
Rechenmethoden, welche die Effizienz und den Umfang materialrealistischer Si-
mulationen von Supraleitern verbessern. Dadurch wird die Untersuchung bisher
unzugänglicher Parameterbereiche und Eigenschaften korrelierter supraleitender
Materie ermöglicht. Die Ergebnisse dieser Arbeit sind in eine umfassende Übersicht
der aktuellen Fortschritte in der Supraleitungsforschung eingebettet und werden
durch eine Darstellung der verwendeten theoretischen Methoden und Modelle
ergänzt.

Zur umfassenden Charakterisierung supraleitender Materialien werden zwei
sich ergänzende Ansätze verfolgt. Eine Richtung fokussiert sich auf die Nutzung
von Niedrigrang-Darstellungen für Vielteilchenkorrelationsfunktionen, um rech-
nerische Hürden zu bewältigen, die aus der Komplexität realer Materialstrukturen
und der Herausforderung ihrer Beschreibung bei tiefen Temperaturen resultieren.
Insbesondere wird die sogenannte „Intermediate Representation Basis“ verwendet,
um eine kompakte und effiziente Datenverarbeitung während der numerischen
Simulation zu ermöglichen. Als Anwendung dieser wird die durch Spinfluktu-
ationen vermittelte Supraleitung in ausgewählten Materialien mit multiorbitaler
Elektronstruktur untersucht. Hierzu zählt die Charakterisierung der Supraleitung
und der möglichen Paarsymmetrien des supraleitenden Ordnungsparameters in
wasserinterkaliertem Natrium-Kobaltoxid. Die Verbesserung der numerischen
Effizienz ermöglicht Simulationen bei experimentell relevanten Temperaturen im
Bereich von wenigen Kelvin. Ein weiteres untersuchtes Material ist die Bilagen-
Nickeloxidstruktur, bei der kürzlich Hochtemperatursupraleitung entdeckt wurde.
Unsere Berechnungen zeigen dabei die tragende Rolle von Interlagenkorrelationen
bei der Ausbildung der Supraleitung auf. Zudem werden im Rahmen dieser Ar-
beit Moiré-Materialien untersucht, deren Eigenschaften experimentell vielseitig
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Zusammenfassung – German abstract

einstellbar und präzise kontrollierbar sind. Im Speziellen untersuchen wir mögliche
Supraleitung in verdrehten Übergangsmetalldichalkogeniden. Dabei wird eine
starke Ladungsträgerdichteabhängigkeit der kritischen Temperatur für verschiedene
Paarungsmechanismen gefunden, was eine einfache experimentelle Differenzierung
zwischen diesen Mechanismen ermöglicht. Darüber hinaus untersuchen und falsi-
fizieren wir die Möglichkeit von Raumtemperatursupraleitung in kupferdotiertem
Bleiapatit und diskutieren die allgemeinen Herausforderungen, die mit Supraleitung
unter Umgebungsbedingungen verbunden sind.

Als zweites zentrales Ergebnis verbessert die vorliegende Arbeit das mikros-
kopische Verständnis von Supraleitern, indem eine modellunabhängige Methode
basierend auf Greenschen Funktionen entwickelt wird, um intrinsische Längen-
skalen von Supraleitern zu berechnen. Diese Längenskalen, die durch die Kohärenz-
länge und die magnetische Eindringtiefe gegeben sind, lassen sich insbesondere in
stark korrelierten Materialien nur schwer bestimmen. Dennoch sind sie von hoher
Relevanz für eine Vielzahl an Eigenschaften supraleitender Materialien, darunter
Anregungsenergien, kritische Felder und die Kondensatsteifigkeit. Wir validieren
unseren Ansatz durch Anwendung auf alkalidotierte Fulleride. Durch die erweiterte
Charakterisierung des supraleitenden Phasendiagramms wird im Fall starker Paar-
wechselwirkung eine verbesserte Supraleitung mit stabiler Phasenkohärenz entdeckt.
Dieser robuste supraleitende Zustand wird durch Multiorbitalwechselwirkungen
ermöglicht und steht im Gegensatz zu den herkömmlichen Einschränkungen, die
in Einbandsystemen auftreten. In diesen wird Supraleitung im Grenzfall starker
Paarwechselwirkungen durch hohe effektive Massen stark gebundener Paare un-
terdrückt. Unsere Ergebnisse zeigen Strategien zur Optimierung supraleitender
Materialien auf, die durch gezielte Nutzung von Multiorbitalphysik ermöglicht wer-
den. Die methodischen Fortschritte erweitern zudem den numerisch zugänglichen
Parameterraum, verbessern die Charakterisierung der supraleitenden Eigenschaften
und legen den Grundstein für zukünftige Innovationen im Design von Supraleitern.
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Preface
An expert is a person who has found out by his own painful experience
all the mistakes that one can make in a very narrow field.

— Niels Bohr

I embarked on the journey of my doctorate with a deep fascination for how macro-
scopic properties of materials arise from the microscopic world, with new phases
of matter being repeatedly discovered by studying the interplay of quantum me-
chanical particles on the atomic scale. The focus of this work is the phenomenon
of superconductivity which, albeit having been researched for over a century, still
poses many unresolved questions, with new and unique superconducting materials
being continually reported. During the past decade, many novel platforms like
hydrides, nickelates, or twisted moiré systems have emerged that challenge and
enrich our understanding, truly making this a “golden age” of superconductivity
research [1].

This thesis is a cumulative work composed of introductory notes as well as pub-
lished and submitted original research on superconductivity in strongly correlated
electron systems. This work is devoted to comprehensively explore fundamental
aspects of superconducting materials and advance their theoretical understanding
through the improvement and extension of computational tools. Specifically, this
comprises compact data representation and compression techniques that enhance
numerical efficiency, thereby enabling the description of previously unavailable
parameter regimes, and the development of new methods to access a broader range
of properties in correlated superconducting matter. As the general field of (strongly)
correlated electron systems is broad and the number of superconducting materials
is ever increasing, the presentation in this thesis is selective with a focus on models
and methods applied in the publications and submitted preprints. Nonetheless,
this thesis aims at being self-contained, pointing to relevant references for extended
discussions.

The contributions of this thesis lie in both the theoretical advancements and the
practical insights they provide. I hope that this work not only takes a step of many in
advancing our understanding of superconductivity, but also inspires future studies
to build upon these findings. Since the insights presented in this thesis surfaced
from collaborative effort and for the sake of consistency, I will use the pronoun “we”
throughout, except when highlighting my individual contributions.
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Outline

Each chapter of this cumulative thesis has been structured to guide the reader and
systematically address the themes of the six publications making up this work.
A full list of included publications (I – VI) can be found on page xv while a key
point summary and the details of my personal contributions are given on the
page prefacing the respective publication. Each work is embedded into individual
chapters or sections, which provide the scientific context and advancements of
the publication. This thesis consists of three introductory chapters, three chapters
presenting the results, and a concluding chapter. They are organized as follows:

In the beginning, chapter 1 introduces the historical context, basic principles, and
categorization of superconducting materials. Further, we provide an overview of
current research developments and challenges in strongly correlated superconduc-
tors by highlighting a few of the many new material platforms that have emerged in
recent years.

Chapter 2 presents a comprehensive introduction to many-body physics and
the Green’s function method used to describe interacting systems and emergent
phenomena such as superconductivity. Approaches to effective low-energy models
and different approximations to the interacting problem are reviewed. An emphasis
is put on the fluctuation exchange (FLEX) approach and dynamical mean-field
theory (DMFT) to study the multi-orbital Kanamori–Hubbard model, which we
employ in this thesis to investigate electron correlations and superconductivity. An
integral part of the results shown in later chapters is based on low-rank represen-
tation of imaginary-time Green’s functions. This approach enables compact data
compression and numerically efficient implementations, mitigating some of the
limiting computational bottlenecks for material realistic calculations. We focus on
the intermediate representation (IR) basis in combination with sparse sampling for
which publication I provides an open-source code package.

To conclude the introductory part, chapter 3 gives an overview on the theory of
superconductivity. We start from the central idea of spontaneous symmetry break-
ing, which allows for a qualitative understanding of superconducting properties
like dissipationless charge currents and the Meissner–Ochsenfeld effect, as well as
the emergence of the (competing) characteristic energy and length scales of super-
conductors. Following this, we address the microscopic origin for superconducting
pairing as explained by the groundbreaking theory work of Bardeen, Cooper, and
Schrieffer (BCS). In this context, we review the Nambu–Gor’kov formalism to
describe superconductivity in the framework of Green’s functions and we briefly
describe Migdal–Eliashberg theory as an extension to BCS theory incorporating
retarded interactions. Lastly, we review spin fluctuations as an electronic pairing
mechanism pertinent to many unconventional superconductors. A focus of the
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thesis is to explore the possibility of spin-fluctuation-mediated superconductivity
in various multi-orbital materials. This is achieved by efficiently implementing the
FLEX approximation within the IR basis, thereby enabling calculations at previously
inaccessible temperatures down to the order of ∼ 𝒪(1 K).

In chapter 4, we turn to the investigation of superconductivity in correlated hetero-
structured materials, which present versatile and tunable platforms with multiple
degrees of freedom in the electronic system. We consider three different materials,
each focused on varying aspects of correlated superconductivity. First, we discuss
two distinct layered transition metal oxides. For the example of water-intercalated
sodium cobalt oxides (Na𝑥CoO2 · y H2O), we showcase the numerical efficiency of
the IR basis for multi-orbital systems in publication II. Our implementation enables
us to address the possibility of spin-fluctuation-mediated superconductivity at
the relevant temperature scale of the experimental critical temperature 𝑇c ∼ 4.5 K.
At these temperatures, we can clearly discern dominance of 𝑓 -wave symmetric
pair fluctuations, but we do not observe the establishment of a superconducting
transition from spin fluctuations. Additionally, as part of our code benchmark, we
compare the superconducting phase diagram of the Hubbard model on a square
lattice obtained from various many-body methods.
As the second example of layered transition metal oxides, we address the recently
discovered superconductivity in bilayer nickel oxides (La3Ni2O7), which belong to
the newer class of nickelate superconductors. The bilayer nickelate shows a much
enhanced critical temperature 𝑇c ∼ 80 K compared to other nickelate materials which
we attribute in publication III to the critical influence of inter-layer correlations.
Lastly, we turn to moiré superlattice systems, where twisting of individual material
layers creates a new length scale through the long-range modulations of lattice
stackings. These materials pose highly tunable quantum systems with rich phase
diagrams of many correlated phases. In publication IV, we study the possibility of
superconductivity in 𝚪-valley twisted transition metal dichalcogenides (TMDCs).
We compare different pairing scenarios which show a unique dependence on the
carrier density, enabling easy differentiation in experiment.

Chapter 5 deals with the potentials of room-temperature superconductivity
and the strict scientific scrutiny that any likely candidate material is put under.
Specifically, the case of copper-substituted lead apatite (Pb10−𝑥Cu𝑥(PO4)6O), aka
“LK-99”, is discussed which attracted a lot of attention due to its purported claims of
being a superconductor under ambient conditions. Our contribution to the scientific
scrutiny in publication V shows the absence of spin- and orbital-fluctuation-mediated
superconductivity, for which we analyze the underlying reasons preventing it.

Transitioning to chapter 6, we present an analysis of known constraints on the
critical temperature 𝑇c of superconducting materials, providing insight into routes
to further optimize 𝑇c. In our analysis, we focus on limits originating from the
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trade-off between pairing amplitude and macroscopic coherence as represented
by the intrinsic energy scales of the superconducting gap and condensate stiffness.
A physically insightful understanding of this paradigm is given by the BCS–BEC
crossover phenomenology, showcasing how attractive interactions can increase
pairing, but eventually lattice effects impair the kinetic energy of superconducting
carriers, thereby reducing the condensate stiffness. We discuss the potentials of
achieving high and robust stiffness in multi-orbital systems through mechanisms
allowing for a substantial kinetic energy or via quantum geometric effects. In
publication VI, we demonstrate how the competition of multi-orbital interactions
can enable such enhanced superconductivity. Specifically, we show for a model of
alkali-doped fullerides (A3C60) that increased inverted Hund’s coupling induces a
localized superconducting state with enhanced critical temperatures and robustly
high condensate stiffness. This analysis is enabled by the introduction of a novel
theoretical framework to compute the fundamental length scales in presence of
strong electron correlations.

In chapter 7, we summarize the findings presented in this dissertation and we
draw overarching conclusions that can be drawn from them. We discuss open
questions and we give an outlook on potential future research directions.
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Chapter

Introduction 1
This is why we’re here: Unobtanium.1 This little grey rock
sells for 20 million a kilo.

— Parker Selfridge

For more than a century, the study of superconductivity has been a cornerstone of
scientific progress in condensed matter physics and beyond, constantly pushing the
boundaries of our understanding of quantum mechanics and materials science [2].
A superconducting material is characterized by dissipationless charge transport
(zero resistance) and perfect diamagnetism (Meissner–Ochsenfeld effect) below a
critical transition temperature 𝑇c, enabled by the persistent quantum coherence of
electron pairs at the macroscopic scale. These properties have fueled significant
technological advancements in various fields, including medical imaging, particle
accelerators, and quantum computing hardware [3–5].

Superconductors belong to the recently established class of quantum materials [2,
3, 6, 7] which exhibit unique properties arising from quantum-mechanical effects,
like electron correlations and topology. Advancements in the precise control of
material parameters have propelled quantum materials design and discovery to the
forefront of research efforts [8]. Examples of other emergent properties besides su-
perconductivity include Mott insulators [9, 10], different flavors of the quantum Hall
effect [11, 12], topological insulators [13, 14], spin liquids [15], altermagnetism [16,
17], charge density waves [18], multiferroics [19, 20], moiré systems [21–24], and
light-induced states of matter [7, 25, 26]. In many cases, these quantum phenomena
do not appear in isolation but intertwine in complex ways. Embedded within this
paradigm is the interplay of electron correlations and superconductivity, which is
the focus of investigation in this thesis.

Understanding this interplay is one of the leading challenges in condensed matter
physics, as it lies at the heart of unraveling the microscopic mechanisms behind
high-temperature superconductors (HTSCs). The discovery of high-temperature
superconductivity in copper oxide layers (cuprates) [27, 28] has had arguably one of
the most profound influences on shaping our current view on quantum matter [2], as
it enticed the community to look more closely at the role of electron interactions. In

1Unobtanium is a fictional superconducting material at ambient conditions, which humankind
relentlessly harvests for its valuable properties on the exoplanet Pandora in the movie series “Avatar”.
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Figure 1.1 – Schematic phase diagrams of unconventional superconductors. (a) Phase
diagram of cuprate materials with superconducting (SC), antiferromagnetic (AF), and
pseudogap (appearance marked by 𝑇∗) phases. Above the superconducting dome, cuprates
are strange metals [36] and turn to a normal metallic (Fermi liquid) behavior in the large
doping regime. (b) Phase diagram of iron-pnictides with a spin density wave (SDW) around
half-filling in proximity to SC phases and nematic order on the elctron-doped side. These
phases coexist in some regions. (c) Phase diagram of magic-angle twisted bilayer graphene
(MATBG) with correlated insulating (CI) phases at integer moiré filling 𝜈 next to SC phases.
At 𝜈 = ±4, MATBG is a band insulator (BI). Adapted from Refs. [28, 35, 37, 38].

the past decades, numerous different correlated superconducting materials with rich
phase diagrams have been reported [29, 30], as discussed below. Figure 1.1 illustrates
three archetypal examples of such phase diagrams, belonging to cuprate materials,
iron-pnictides, and magic-angle twisted bilayer graphene (MATBG), respectively.
In each material, the superconducting phase emerges in proximity to correlated
electronic phases (magnetic/insulating), indicating that strong electron interactions
are crucial for the emergence of superconductivity [24, 29–35].

With the discovery of many different material platforms, research on correlated
superconductors has branched out into various fronts, each with its own unique
questions and challenges, while also sharing overarching questions across systems.
In the following, we provide an overview of significant discoveries and recent
developments in superconducting materials. We then introduce and clarify classifi-
cation schemes of superconducting materials. Lastly, we discuss open questions
in superconductivity research and describe the approach of this thesis to address
some of these issues, particularly in the context of the specific materials studied.

1.1 Overview on superconducting materials
To gain an overview of the different superconducting material classes and to under-
stand the current status of superconductivity research, we briefly review some of
the important experimental discoveries and theoretical developments in the field.
An intrinsic motivation of superconductivity research is to find superconductors
operable under ambient conditions, with achieving room-temperature superconduc-
tivity being a significant milestone. Figure 1.2 presents the historical development of
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1.1 Overview on superconducting materials

critical temperatures in various superconducting materials. It shows the increasing
trend in 𝑇c over the decades, with notable jumps introduced by the discovery of
new material classes like cuprates and hydrides. During the following discussion,
Figure 1.2 acts as a reference point to visualize the context of major advancements
in superconducting materials.

The early years of superconductivity research
Superconductivity was first observed in mercury at a temperature of 4.15 K by Heike
Kamerlingh Onnes in 1911, following his earlier success in liquefying helium [39,
40].2 After the initial discovery, it took almost half a century before a full microscopic
theory for superconductivity was developed by Bardeen, Cooper, and Schrieffer
(BCS) in 1957 [41]. They showed that an effective electronic interaction mediated by
phonons can be attractive, leading to the macroscopic condensation of electronic
pairs. BCS theory provides the foundation of our microscopic understanding of the
superconducting state, upon which more advanced theories are built. On the way to
formulating BCS theory, several intermediate steps were taken, including measure-
ments of the Meissner–Ochsenfeld effect, London’s local theory of electromagnetism,
the observation of the isotope effect, and the formulation of phenomenological
Ginzburg–Landau theory, see, e.g., chapter 1 in Ref. [42]. Following the introduction
of BCS theory, a quantum field theoretical approach was developed with important
contributions by Gor’kov, Nambu, and Eliashberg [43, 44].

Up to the 1980’s, superconductivity has been observed in many metals, alloys,
and intermetallic compounds, with the search being guided by Matthias’ rules [30,
45].3 In fact, more than half of the elemental metals with stable isotopes become
superconducting (36 out of 58) at temperatures below 10 K, with some requiring
additional pressure. This is illustrated in Figure 1.3. In addition, all stable semi-
metals and a few non-metals become superconducting under pressure, while some
of the long-lived radioactive elements, such as technetium (Tc), thorium (Th), and
uranium (U), are superconductors at ambient pressure. Significant discoveries of
that time period include the alloy NbTi and intermetallic compound Nb3Sn which
are the commercially most widely used superconducting materials for high-field
applications [4].4

2Unbeknownst to Onnes and his laboratory team, they had also observed the superfluid transition
of liquid helium at around 2.2 K on the same day of measuring zero resistance in mercury [40], marking
the discovery of two related quantum phenomena in the same experimental setup.

3A popularized version of Matthias’ rules states them as follows [46]: “One, a high symmetry is
good; cubic symmetry is the best. Two, a high density of electronic states is good. Three, stay away
from oxygen. Four, stay away from magnetism. Five, stay away from insulators. Six, stay away from
theorists.”

4With critical magnetic fields up to 20 K, these two materials alone make up a billion-dollar
industry producing superconducting wires [4, 30].
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Figure 1.2 – Timeline of superconductivity. Historical evolution of transition temperatures
𝑇c of different superconducting materials since the discovery in mercury in 1911. Materials
are grouped according to classes specified in the legend, with trends of the 𝑇c evolution
within a class being highlighted by shaded lines of the same color. 𝑇RT, 𝑇N2 , 𝑇H2 , and
𝑇He denote room temperature and the temperature where the respective gases turn into
liquids. Note the axis change at 50 K and year 1980. The bottom panel is a zoom-in of
recent discoveries of (unconventional) low-temperature superconductors in the time span of
2000 – 2025 (light gray shaded area in the top panel). This graphic is partially based on [47,
48] and extended by including data from Refs. [49–84]. Abbreviations: carbon nano tube
(CNT), single/multi-wall nano tube (SWNT/MWNT), mono layer (ML), electric double-layer
transistor (EDLT), rhombohedral trilayer graphene (RTG), Bernal bilayer graphene (BBG),
magic-angle twisted bilayer graphene (MATBG), magic-angle twisted trilayer graphene
(MATTG).
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The rise of unconventional superconductors

In 1979, the first case of unconventional superconductivity was found in the heavy-
fermion compound CeCu2Si2 [88]. Many more heavy-fermion superconductors
have been reported since then with one of the latest entries being UTe2 in 2019 [59,
89], which notably exhibits a re-entrant superconducting phase at high magnetic
fields 𝐻 > 30 T. Heavy fermion materials have a low critical temperature below 10 K
(with the exception of PuCoGa5) and several heavy fermion systems are believed
to host unconventional superconductivity [58]. While no mutual agreement exists
for the symmetry of the superconducting order parameter, some compounds are
suggested to be triplet superconductors due to the presence of strong ferromagnetic
fluctuations [58, 89, 90].

A paradigm shift was ignited by the discovery of cuprate superconductors by
Bednorz and Müller in 1986 [27]. Subsequent to their report, a record hunt of
unprecedentedly high critical temperatures was initiated, which lead to a rapid
increase of 𝑇c values in a very short time frame. To date, the highest observed 𝑇c

value under ambient conditions was found in Hg-based copper oxides at 134 K [91]
(under pressure up to 164 K [92]). Cuprate materials consist of layers of copper
oxide which are hole- or electron-doped depending on the chemical composition.
The superconducting state forms in the CuO2 planes with a characteristic dome
dependence of𝑇c on the doping (cf. Figure 1.1a). The stoichometric parent compound
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is an antiferromagnetic Mott insulator, because of which superconductivity cannot
be understood from BCS theory. Nowadays, the superconducting state is known
to emerge from the presence of antiferromagnetic fluctuations. While there is a
general consensus on the anisotropic 𝑑𝑥2−𝑦2-wave pairing symmetry and importance
of antiferromagnetic fluctuations for the formation of superconductivity [28, 31, 32,
34, 93, 94], no unifying theoretical framework exists that satisfyingly captures all
aspects of the phase diagram [95].

With the advent of HTSCs and the simultaneous rise in computational power,
numerous methods have been developed to address superconductivity in relation
to the electronic interaction problem. These advancements have contributed to the
current toolbox of microscopic theories and ab initio approaches to tackle material-
realistic calculations [33, 34, 85, 93, 96–120] (see also chapters 2 and 3 for more
details on some of these methods). On the experimental side, the discovery of novel
superconducting platforms has accelerated with the increased control over quantum
matter [3, 6, 7]. In particular, the past three decades showed a huge diversification in
superconducting material families (cf. Figure 1.2). Given the scope of this thesis, it is
not possible to cover all these developments. Therefore, we will focus on discussing
three major advancements during this period: the families of other layered transition
metal compounds, hydrides, and moiré materials.

This discussion will not cover other prominent superconducting materials such as
organic superconductors [121, 122], magnesium diboride (MgB2) [123], or the recently
discovered family of Kagome materials AV3Sb5 (A=K, Rb, Cs) [62–65]. Notably, MgB2

stands out among conventional superconductors with the highest critical temperature
of 39 K at ambient pressure.5 While we do not go into detail here, we will address
superconductivity in alkali-doped fullerides (A3C60, A=K, Rb, Cs) [126–129] later in
chapter 6 and publication VI.

Layered transition metal superconductors

One of the major developments in the past decades has been the discovery of
new families of unconventional superconductors among layered transition-metal-
based compounds, expanding beyond cuprates. The first notable discovery was
in the layered transition metal oxide perovskite Sr2RuO4 in 1994 [130], whose
pairing mechanism poses one of the most puzzling problems in superconductiv-
ity research [131]. The exploration of unconventional superconductivity in 3𝑑
transition metal compounds as potential cuprate analogues gained momentum
in 2003 with the report of superconductivity in water-intercalated sodium cobalt
oxide (Na𝑥CoO2 · y H2O, cobaltate), featuring a relatively low 𝑇c of 4.5 K [132–134].
Notably, the cobaltate is the only transition metal oxide superconductor with a

5Initially, it was hoped that MgB2 would replace NbTi and Nb3Sn in superconducting applica-
tions [4], but it could not meet the expectations due to its poor mechanical properties [124, 125].
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1.1 Overview on superconducting materials

triangular lattice structure.6 A comprehensive overview on cobaltates will be given
in section 4.1.1 and publication II.

Shortly after the discovery of the cobaltate, superconductivity was identified in
iron-based materials [35, 135, 136]. The initial finding came in 2006 with LaOFeP
(𝑇c = 5 K) [137], followed by a breakthrough in 2008 when superconductivity
was reported in LaFeAsO1−𝑥F𝑥 with a much higher 𝑇c of 26 K [138]. The prompt
verification by numerous laboratories led to a rapid increase in the observed critical
temperatures of iron-based superconductors [136], similar to the rise seen with
cuprates. These materials consist of conducting layers of iron and pnictides (typically
arsen (As) and phosphorus (P)) or chalcogenides (mostly selenium (Se) and tellurium
(Te)), with the highest observed critical temperature exceeding 100 K in thin FeSe
films on a SrTiO3 substrate [139]. Iron-based superconductors are multi-orbital
systems with many pockets on the Fermi surface, leading to discussions of inter-
band 𝑠±- or 𝑑-wave pairing symmetries in these materials [35, 135]. The electronic
structure has influenced investigations into many multi-orbital specific correlation
phenomena such as Hund’s metals [140] or orbital-selective Mott states [141–143].

The HTSC discoveries in cuprates and iron-based materials are often described
as marking the onset of the “Copper Age” and “Iron Age” of superconductivity
research, respectively, due to their high influence on the overall research landscape.
The most recent breakthrough of this kind occurred in 2019 with the observation of
superconductivity in layered nickel oxide materials (nickelates) [49], which initiated
the “Nickel Age” of superconductivity research [144–146]. One of the newest
additions to this material family is the bilayer nickelate (La3Ni2O7) with the high
critical temperature of around 80 K under pressure [56], yielding again a sizable
jump within just a few years. We will discuss nickelates in more detail in section 4.2
and superconductivity in the bilayer nickelate specifically in publication III.

Hydrides under pressure

Another significant advancement in the last decade was the discovery of high-
temperature superconductivity in pressurized hydrides [85, 98, 147]. Relatively
early after the introduction of BCS theory, Ashcroft proposed that metallic hydrogen
would exhibit superconductivity at very high temperatures due to the light weight
of hydrogen atoms [148]. He later extended this argument to hydrogen-containing
alloys, suggesting that chemical pre-compression in these materials could reduce
the enormous pressure required to metallize hydrogen [149]. This line of thought
led to the computational prediction for pressurized H2S to be a HTSC [150, 151],
which was experimentally verified just a year later with the observation of super-

6Recently, superconductivity was reported in experiments on a structurally similar layered
triangular lattice cobalt oxychalcogenide (Na2CoSe2O) [84]. Interestingly, the first-principles electronic
structure shows predominantly oxygen and selenium weight at the Fermi level.
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conductivity in H3S (formed from H2S under pressure) with a 𝑇c of about 203 K
at 155 GPa [152]. Another seminal achievement was the discovery of clathrate
LaH10, which demonstrated near-room-temperature superconductivity around
250 K (−23 ◦C) at 170 GPa [153, 154], setting the current record for the highest 𝑇c

of all known superconductors. The case of hydride materials is unique among
superconductors, because its discovery was guided by theoretical predictions before
experimental verification [147]. This serves as a striking example of the predictive
power enabled by ab initio materials design for conventional superconductors [85, 96,
105], a capability that can be further enhanced by machine-learning approaches [155,
156].

Two-dimensional materials and moiré systems

The last family of superconductors which we want to discuss comprises two-
dimensional (2D) materials. Since the successful exfoliation of graphene in 2004 [157],
the field of (quasi) 2D materials is thriving [158–160]. These materials characterize by
their unique properties arising from quantum confinement and their high tunability
via mechanisms such as environmental dielectric screening, electrostatic doping,
heterostructuring capabilities, or external field tuning [8, 22, 158, 160–162]. A
notable subclass of 2D materials are van der Waals (vdW) materials, where the bulk
structure is composed of individual layers held together by weak vdW forces, such
as graphene (graphite) or transition metal dichalcogenides (TMDCs). While some
bulk compounds, like 2H-NbSe [66], were known to be superconducting before the
advent of 2D materials, many mono- or few-layer vdW materials have since been
shown to exhibit superconductivity as well [69–71, 73–76].

In 2018, the field of 2D materials expanded significantly with the discovery of
moiré systems and their prospects of tuning quantum matter [21–24, 162]. This
breakthrough came with the successful fabrication of magic-angle twisted bilayer
graphene (MATBG) [77, 163], which exhibits a variety of correlated, topological,
and superconducting phases (cf. Figures 1.1c and 4.4b). Moiré materials are
characterized by a long-wavelength modulation of the lattice, which emerges from
twisting layers relative to each other or from introducing a lattice mismatch between
different material layers. Initially, superconductivity was only observed in twisted
bilayer and twisted trilayer graphene [38, 77, 78, 163, 164]. However, recently two
independent groups have reported (unconventional) superconductivity in twisted
WSe2 (t-WSe2) [79, 80], following an initial work in 2020 that only observed a zero-
resistance state [165]. We further discuss the class of moiré materials in section 4.3,
where we study superconductivity in Γ-valley twisted homobilayer TMDCs in
publication IV.
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1.2 Classification of superconductors
Given the vast number of superconducting materials, different terminological
classifications have been introduced, some of which have already been used in
the previous discussion. We aim to clarify their meanings here. We note that the
boundaries within some categories are not always clear-cut and may depend on
individual interpretations.

• Conventional vs. Unconventional: The notion of “conventionality” is commonly
assigned to superconductors that can be explained by the (adiabatic, harmonic)
phonon-mediated mechanisms of BCS and Migdal–Eliashberg theory [166]. In
contrast, unconventional superconductors often involve more complex pairing
mechanisms, mediated by magnetic fluctuations or other non-phononic interac-
tions. Another frequently used criterion is the symmetry of the superconducting
order parameter; superconductors with symmetries deviating from isotropic 𝑠-
wave pairing are considered unconventional [167]. While examples like hydrides
and alkali-doped fullerides do not fit neatly into this classification7, these criteria
nonetheless provide a useful framework for understanding the complexity and
the challenges involved in studying different types of superconductors.

• Low-temperature (LTSC) vs. high-temperature superconductor (HTSC): His-
torically, the discovery of cuprates marked a significant leap in achievable
critical temperatures, surpassing the previous record of 𝑇c = 23.3 K in Nb3Ge
films [168]. At the time, it was widely believed that 𝑇c values could not exceed
30 K (known as the Cohen–Anderson limit) [28, 169], leading to the designation of
cuprates as HTSCs and distinguishing them from conventional superconductors.
Consequently, 𝑇c values above 30 K are often classified as “high temperature” [30],
which coincides with the 𝑇c of La0.185Ba0.15CuO4 from Bednorz and Müller’s
pioneering work [27]. Outside the cuprate family, the term HTSC is commonly
used for iron-based superconductors, hydrides, and recently nickelates. Since
numerous other materials with 𝑇c values exceeding 30 K have been discovered,
including conventional superconductors like MgB2, an alternative and perhaps
more practical distinction for “high” and “low” temperature superconductors
could be the boiling point of liquid nitrogen at 𝑇N2 = 77 K.

• Weak vs. strong coupling: In the context of superconductivity, coupling strength
refers to the electronic pairing interaction. In BCS and Migdal–Eliashberg theory,
the dimensionless electron-phonon coupling constant 𝜆 = 𝑁(0)𝑈eff, determined
by the density of states at the Fermi level 𝑁(0) and an effective (static) interaction
7Hydrides are typically considered to be conventional, but with anti-adiabatic and anharmanoic

phonons playing an important role [85, 96, 166]. Fullerides, on the other hand, exhibit isotropic 𝑠-wave
superconductivity, but strong electron correlations also have a significant impact on the formation of
electron pairs, rendering the pairing mechanism rather unconventional [119, 128].
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𝑈eff, is used to gauge this strength (see, e.g., chapter 3 in Ref. [42]). Typically, 𝜆 ≥ 1
is considered the regime of strong coupling. In the context of a general attractive
interaction, independent of the pairing mechanism, the coupling strength is
indirectly used to characterize the spatial extent of electron pairs. This concept is
employed in the BCS–BEC crossover phenomenology, see section 6.1.2, which
describes the transition from a BCS regime of extended, largely overlapping
electron pairs to a Bose–Einstein condensation (BEC) regime of strongly localized
pairs by tuning the pairing strength or pair density.

• Weakly correlated vs. strongly correlated: The strength of electron correlations
describes the influence of electron-electron interactions. A commonly used
qualitative measure is the ratio of electronic interaction strength, such as the local
Hubbard interaction 𝑈 , to the kinetic energy, characterized by the bandwidth
𝑊 in periodic systems. Typically, a system is considered strongly correlated for
𝑈/𝑊 > 1. Similar to coupling strength, correlation strength is also associated
with a degree of electron localization. While weakly-correlated systems are
well-described by the Bloch band picture, strongly-correlated systems are better
characterized by the atomic limit. Many correlated superconductors lie in an
intermediate regime where neither picture is fully applicable.

1.3 Current challenges in superconductivity research
The preceding discussion showed that research on superconductivity is vast and
has grown immensely in the past decades. Here, we compile a brief, non-exhaustive
list of overarching problems that connect different superconducting materials. This
list is selective and subjective to the author’s view, reflecting both the current state
of the field and the specific scope of this dissertation. Following this, we summarize
which points we aim to address in this thesis.

1. Is there a unified theory of unconventional superconductivity?
Cuprates are the cornerstone of research into unconventional superconduc-
tivity. While many aspects of their phase diagram can be qualitatively and
sometimes quantitatively explained by different theories, a unified approach
covering all experimental observations is still lacking. This gap is well sum-
marized in the review by Singh [95]. Moreover, several parts of the phase
diagram remain not fully understood. Many of these unresolved issues are not
only pertinent to cuprates but also appear in other correlated superconducting
materials (iron-based, nickelates, moiré graphene systems, ...) [7, 28]. Overar-
ching open questions include the nature of the ground state as temperature
approaches zero in the absence of superconductivity (elucidating the nature
of the pseudogap) [170–173], the microscopic character of the strange metal
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phase [36] at 𝑇 > 𝑇c from which superconductivity emerges, and the role of
quantum critical points [174, 175].

2. What are the mechanisms of light-enhanced superconductivity?
Light-enhancement of superconductivity [25] refers to the phenomenon where
excitation of a superconducting material with ultrashort laser pulses can
induce a transient state exhibiting superconducting properties at a signifi-
cantly higher critical temperature. This type of transient superconductivity
has been observed in various materials such as cuprates [176–179], organic
salts [180, 181], and A3C60 [182–188]. Most experimental evidence for these
transient states is based on the observation that the material exhibits optical
conductivity characteristic of a superconductor. More recent and rigorous
experimental studies have provided additional compelling evidence. No-
tably, the latest measurements demonstrate light-induced field expulsion in
YBCO [179], resembling a photo-induced Meissner–Ochsenfeld effect. Despite
these experimental advances, a microscopic understanding of the mechanisms
underlying light-enhanced superconductivity remains elusive, as discussed in
various studies including Ref. [189] and references therein.

3. Can we find topological superconductors?
A longstanding goal in superconductivity research is to obtain rigorous experi-
mental evidence for topological superconductivity [190, 191], which is, e.g.,
relevant for the development of robust quantum computers [192]. Potential
candidates for topological superconductors can be roughly categorized in in-
trinsic and artificial materials [190]. Among these, triplet superconductors are
particularly promising, although experimental confirmation of such materials
remains challenging. A notable example is Sr2RuO4, which was considered to
be a 𝑝-wave triplet superconductor for over 20 years. However, recent experi-
mental results have essentially discredited this scenario [131], prompting a
renewed investigation into its pairing symmetry, see, e.g., Refs. [193–195].

4. How to characterize the superconducting state and distinguish underlying
pairing mechanisms?
In unconventional superconductors, the symmetry of the electron pairing
wave function and the associated superconducting gap can be more complex
than the isotropic 𝑠-wave pairing described by BCS theory. The gap symmetry
is intrinsically linked to the microscopic pairing mechanism, making it a
critical factor in scrutinizing different theoretical scenarios. Commonly, a
coherent understanding of the pairing mechanism is achieved by comparison
of experimental results and theoretical predictions. This is typically done
by examining critical temperatures, gap symmetries, and their responses to
various environmental changes such as strain/pressure, temperature, carrier
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density, or external electromagnetic fields. However, in experimental settings,
the properties of the gap symmetry can often only be inferred indirectly (see
section 3.1.6), leaving room for interpretation. This challenge is exemplified by
the case of Sr2RuO4 [131] (see point 3). Therefore, incorporating more rigorous
and diverse comparative dimensions would be desirable to reduce ambiguity
and enhance our understanding of the superconducting state.

5. How to address bottlenecks in material-realistic calculations?
The complexity of real materials frequently limits the accessible phase space of
computational methods. In particular, computational bottlenecks arise when
attempting to study the low-temperature regime pertinent to the experimentally
relevant scale set by 𝑇c, which for many materials is only on the order of a few
to tens of Kelvin. Overcoming these challenges necessitates the development
of advanced theoretical and numerical approaches to make material-realistic
studies of low-temperature superconductors feasible.

6. What limits superconductivity and how to achieve superconductivity at
ambient conditions?
This question is the elephant in the room. Answering it is intimately linked to
solving the aforementioned problems, as our understanding of the constraints
on critical temperatures and the ability to predict candidate materials are
fundamentally limited by our current knowledge. Early heuristic approaches,
like Matthias’ rules and the Cohen–Anderson limit, were useful to an extent,
but ultimately proved inadequate for predicting HTSCs, such as cuprates.
Given these limitations, it is essential to re-evaluate and expand our current
understanding, establish theoretical or empirical bounds on 𝑇c [196–203], and
seek ways to surpass these bounds [VI, 204].

Given the size of the field, addressing these questions in detail would be beyond
the scope of a single thesis. Therefore, we will focus on a subset of these broad
questions as they relate directly to the specifics of this dissertation:

To expand the theoretical characterization of the superconducting state (point 4),
we introduce a novel method in publication VI to calculate the intrinsic length scales
of a superconductor – the coherence length and penetration depth – in the presence
of (strong) electron correlations. These length scales determine critical magnetic
fields and currents as well as the characteristic energy scales of superconductors,
as detailed in chapter 3. Our method can be implemented in ab initio approaches
and microscopic theories, thereby enabling a more rigorous comparison between
theory and experiment and allowing for more precise scrutiny of different pairing
mechanisms. On another note, we illustrate that the doping degree of freedom in
(twisted) 2D materials can serve as a useful comparison axis. Specifically, we show
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1.3 Current challenges in superconductivity research

that for twisted Γ-valley homobilayer TMDCs, different pairing mechanisms result in
distinct doping dependencies of the critical temperature. This is easily verifiable in
experiment due to the possibility of in-situ changes in carrier density via electrostatic
doping, in contrast to chemical doping required in most other materials.8

To overcome some of the computational bottlenecks (point 5), we utilize new
compact representations of many-body propagators to enable efficient numerical
implementations. In publication I, we present a code package for the intermediate
representation (IR) basis and sparse modeling approach, which is subsequently
utilized in publications II to V to study unconventional superconductivity in
various multi-orbital materials. By leveraging these computational improvements,
we make significant contributions to understanding the superconducting properties
of individual materials.

Lastly, to address the constraints on possible room-temperature superconductivity
(point 6), we undertake two approaches. First, in chapter 5 and publication V, we
investigate an alleged room-temperature superconductor and discuss the factors that
hinder the emergence of spin-fluctuation-mediated superconductivity in this specific
case. Second, in chapter 6, we examine general limitations of superconductivity
by analyzing the competition between superconducting energy scales of pairing
amplitude and condensate stiffness. In publication VI, we demonstrate for a model
of A3C60 that these constraints can be circumvented and increased superconducting
temperatures can be achieved by tuning the pairing interaction without impairing
the condensate stiffness im multi-orbital systems. Our results reveal promising
pathways for pushing the boundaries of current 𝑇c limits and achieving higher 𝑇c’s.

8To stress this point, we note that the phase diagrams of cuprates and iron-pnictides shown in
Figure 1.1, panels a and b, are obtained from many different samples, while the phase diagram of
MATBG in panel c was measured from a single sample.
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Chapter

Many-body theory 2
子曰：「溫故而知新，可以為師矣。」1

— 孔子 (Confucius)

Understanding the interactions among many quantum particles is a key focus in
condensed matter physics. Our macroscopic world, composed of a vast number
of electrons and nuclei, fundamentally operates under the quantum mechanical
many-body Schrödinger equation 𝐻 |𝜓⟩ = 𝐸 |𝜓⟩. Describing the Hamiltonian 𝐻 of a
solid, including terms for kinetic energy and particle interactions, is straightforward.
However, solving this equation for real-world systems is impractical due to the
enormous number of particles ∼ 1023 involved–noted as early as 1929 by Dirac [205].

Even if one could theoretically solve the many-body Schrödinger equation exactly,
predicting the emergence of collective phenomena like magnetism and supercon-
ductivity is inherently challenging [2, 206–208]. These phenomena are hallmarks
of interacting many-body systems, yet understanding their nature and interplay
remains a difficult task. To address the interacting problem, theories for solid-state
systems have adopted numerous methods and approximations [209–212].

A central tool to describe interacting systems of many particles is given by Green’s
functions. They probe the correlations of particles, whereby they directly relate to
observable quantities in experiments (cf. Figure 2.3 in section 2.2). In this chapter, we
review the theoretical framework of Green’s functions, establishing the foundation
for investigating superconductivity in the presence of strong electron correlations in
subsequent chapters. We begin with a brief review of effective low-energy models
(section 2.1), which are crucial for simplifying the many-body problem by focusing
on relevant energy scales and degrees of freedom. In particular, we focus on the
approximation of a local Coulomb interaction which is captured in the Hubbard
model and its multi-orbital extension by Kanamori [140]. To describe interacting
models in thermal equilibrium, we introduce the formalism of Matsubara Green’s
functions in section 2.2 and we discuss important concepts like their spectral
representation, the quasiparticle picture, and the Luttinger–Ward functional for
constructing approximations to the interacting many-body problem.

1Zı̌ yuē: “Wēn gù’ér zhı̄ xı̄n, kěyı̌ wéi shı̄ yı̌.” — The Master said, “If a man keeps cherishing his old
knowledge, so as continually to be acquiring new, he may be a teacher of others.” (from 論語 –爲政第
二 (Lúnyǔ – Wéi zhèng dì èr), Confucian Analects – book II: Wei Chang).

15



2 Many-body theory

In this context, we discuss two complementary approaches given by perturbative
methods (section 2.3) and embedding schemes (section 2.4). Specifically, we
describe the fluctuation exchange (FLEX) approximation and dynamical mean-
field theory (DMFT), which are employed in the publications contained in this
thesis. In section 2.5, we address the computational challenges inherent in dealing
with realistic material systems. We propose low-rank representations of Green’s
functions as a viable tool to overcome computational bottlenecks, focusing on the
example of the intermediate representation (IR) basis.

2.1 Effective low-energy models
Generally, two philosophies are followed to tackle the interacting many-body
problem: applying approximate methods to solve the full problem, or formulating
simplified models with reduced degrees of freedom that can be addressed using
more exact methods. Here, we focus on the latter approach by deriving and studying
material-realistic models for the electronic interaction problem. In this section, we
discuss strategies to obtain such effective models.

In a solid, electrons move through a lattice of positively charged ions. By em-
ploying the Born–Oppenheimer approximation, electronic and ionic dynamics are
adiabatically decoupled, owing to their different masses and associated timescales.
As a result, electrons move in a potential of fixed atomic positions, while ionic
dynamics can be effectively described through harmonic oscillations, resulting in
phonons [44]. The remaining, purely electronic Hamiltonian with only electron-
electron interactions can be written in second quantization2 as

𝐻 =
∑
𝛼𝛽

ℎ𝛼𝛽𝑐†𝛼𝑐𝛽︸        ︷︷        ︸
𝐻kin≡𝐻0

+ 1
2

∑
𝛼𝛽𝛾𝛿

𝑈𝛼𝛿,𝛾𝛽𝑐†𝛼𝑐†𝛽𝑐𝛾𝑐𝛿︸                      ︷︷                      ︸
𝐻int≡𝐻1

, (2.1)

consisting of single and two-body terms which describe the kinetic and interaction
part, respectively. The corresponding matrix elements ℎ𝛼𝛽 and𝑈𝛼𝛿,𝛾𝛽 (cf. Eq. (2.7))
are determined by the chosen basis of single-particle states labeled by the combined
quantum numbers 𝛼. For instance, one can use real space basis with atomic (or
Wannier) orbitals {𝜙𝛼(𝑹)} where then 𝛼 = (𝑹𝑖 , 𝑙 , 𝜎) specifies an electron at lattice
site 𝑹𝑖 in the (Wannier) orbital 𝑙 with spin 𝜎.

Even though we simplified the solid state Hamiltonian, dealing with the electronic
problem remains challenging. This difficulty arises from the fact that the kinetic
energy and Coulomb interaction cannot be easily diagonalized simultaneously within
the framework of single-particle states. Hence, we rely on further approximations.

2For an introduction to the notation of second quantization, we refer to Refs. [44, 213–215].
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2.1 Effective low-energy models

The arguably most successful and matured approach is given by density functional
theory (DFT) [216–218], as its precision to describe ground state properties of
(weakly-correlated) materials is on par with experimental accuracy [210]. DFT is the
typical starting point for deriving material-realistic model Hamiltonians, so that we
briefly want to summarize the idea of DFT. General introductions can be found in
Refs. [219–221].

In DFT, the electron density 𝑛(𝒓) replaces the many-body wave function as the
central quantity to solve for, thereby reducing the degrees of freedom from 3𝑁 for
𝑁 particles to simply 3. The foundations of DFT were given by Hohenberg and
Kohn [216], who had shown that the ground state energy 𝐸0 is an exact functional
of 𝑛(𝒓), i.e., the variational principle

𝐸0 = 𝐸[𝑛0(𝒓)] ≤ 𝐸[𝑛(𝒓)] (2.2)

for the ground state density 𝑛0(𝒓) holds.3 The problem of DFT is to find a suitable
representation of the functional 𝐸[𝑛(𝒓)]. In practice, the Kohn–Sham ansatz [217] is
employed, where the electron density is represented by a set {𝜓𝛼} of non-interacting
single-particle wave-functions. Then, the kinetic energy and Hartree-term of the
electron interaction can be easily specified, while all remaining parts of 𝐸[𝑛(𝒓)]
are lumped into the generally unknown exchange-correlation functional 𝐸xc[𝑛(𝒓)].
Over time, a plethora of approximations with different levels of sophistication and
accuracy have been developed for 𝐸xc [224, 225].

The success of DFT derives from its accuracy [210] and it being a first-principles
or ab initio approach which does not rely on any free adjustable parameters. That
is, ground state properties of a material can be computed by only specifying
the lattice of the system and atoms occupying it. While DFT performs well in
describing most weakly-correlated materials (in particular 𝑠, 𝑝-electron metals)4,
it fails for systems with strong electron correlations like many 𝑑-shell and 𝑓 -shell
compounds [218]. For instance, DFT is generally unable to describe the properties
of Mott- or charge-transfer insulating states which are induced by strong on-site
Coulomb interactions [9, 10]. In these cases, one needs to go beyond DFT, where the
electronic structure obtained from DFT is a good starting point. In the following, we
will describe this process and show how to derive the Kanamori–Hubbard model
Hamiltonian via the approximation of a local Coulomb interaction (section 2.1.2).

3Later, Levy [222] and Lieb [223] generalized the Hohenberg–Kohn theorem to a constrained-search
formulation.

4An exception is the infamous “band gap problem” of DFT, see, e.g., Refs. [219, 220, 226]
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2 Many-body theory

2.1.1 Downfolding from first principles
The full Hilbert space spanned by the electronic Hamiltionian Eq. (2.1) is exponen-
tially large and unsolvable in practice. It is, however, often possible to separate a
correlated subspace with reduced complexity and less degrees of freedom. The
process of constructing an effective model of the correlated subspace from a larger
Hilbert space is referred to as downfolding [227]. Even though the physical idea
of downfolding is clear-cut, the question of how to apply it in practice can be
ambiguous [84, 228, 229].

Many different downfolding schemes have been developed [84, 227], like con-
strained theories [230–232] or DFT-based embedding schemes (“DFT++”) [114,
115, 233, 234]. Here, we only want to briefly outline the commonly employed
procedure of downfolding and we do not discuss the concomitant uncertainties like
double-counting corrections. Instead, we refer the reader to Refs. [106, 107, 114, 115,
227, 235] and references therein for in-depth discussions.

The first step involves finding a suitable subspace which contains most electron cor-
relations. For thermally activated phenomena like superconductivity (cf. Figure 2.11
in section 2.5), this typically involves bands in a low-energy window around the
Fermi energy. In addition, one needs to decide how many degrees of freedom
(bands/orbitals, spins, ...) need to be included in an effective model description to
faithfully capture the physics of the correlated subspace. For this, an analysis of the
band character or orbital weight composition of a material’s electronic structure is
crucial.5

Given that a subspace has been found, the corresponding effective Hamiltonian
needs to be constructed, i.e., the coefficients ℎ𝛼𝛽 and𝑈𝛼𝛿,𝛾𝛽 in Eq. (2.1) need to be
computed in a suitable basis of the reduced electronic Hilbert space. In this work, we
employ the approximation of a localized Coulomb interaction, which is reasonable
in systems with highly localized electronic wave functions, such as those found in
(open) 𝑑-shells or 𝑓 -shells of transition metals, lanthanides, or actinides. Hence, it is
desirable to construct a tight-binding Hamiltonian of localized orbitals for which,
e.g., Wannier functions (WFs) are used [106, 115, 236].

The eigenstates of (non-interacting) periodic quantum systems [106, 215] are given
by Bloch functions

𝜓𝑛𝒌(𝒓) = 𝑒 𝑖𝒌𝒓𝑢𝑛𝒌(𝒓) (2.3)

with a lattice-periodic function 𝑢𝑛𝒌(𝒓) = 𝑢𝑛𝒌(𝒓 + 𝑹) labeled by wave vector 𝒌 and
band 𝑛.

5 For instance, we consider in publication II the three-orbital 𝑡2𝑔 (𝑑𝑥𝑦 , 𝑑𝑥𝑧 , 𝑑𝑦𝑧) manifold of the Co
atoms in the cobalt-oxide layers of Na𝑥CoO2 · y H2O, or in publication IV, we study the inter-layer
correlations between the two-orbital 𝑒𝑔 (𝑑𝑥2−𝑦2 , 𝑑𝑧2 ) manifolds of the Ni atoms in each layer of the
bilayer nickelate La3Ni2O7.
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2.1 Effective low-energy models

WFs are the Fourier transform of Bloch functions6

𝑤𝑛𝑹(𝒓) = 1
𝑁𝒌

∑
𝒌

𝑒−𝑖𝒌𝑹𝜓𝑛𝒌(𝒓) (2.4)

that consequently get labeled by the Bravais lattice vector 𝑹 =
∑
𝑖 𝑚𝑖𝒂𝑖 with 𝑚𝑖 ∈ Z

and primitive lattice vectors 𝒂𝑖 . WFs form a complete orthogonal basis, but they are
not eigenstates of the periodic system’s Hamiltionian since localization in energy
is traded for localization in space [106]. Both the Bloch functions 𝜓𝑛𝒌 and hence
WFs 𝑤𝑛𝑹 are not unique. An equivalent set of Bloch functions can be generated by
applying a unitary transformation𝑈𝒌

𝑛𝑛′ that mixes the bands at a particular wave
vector 𝒌 as

𝜓𝑛𝒌 =
∑
𝑛′
𝑈𝒌
𝑛𝑛′𝜓𝑛′𝒌 , (2.5)

which corresponds to a phase shift 𝑒 𝑖𝜑𝑛(𝒌) for an isolated band. This gauge freedom
of the Bloch function transfers to the choice of WFs, allowing for the construc-
tion of “maximally localized Wannier functions” put forward by Marzari and
Vanderbilt [237]. The general idea is to choose a gauge 𝑈𝒌

𝑛𝑛′ that minimizes the
quadratic spread of WFs

Ω =
∑
𝑛

[ ⟨𝑛0|𝒓2|𝑛0⟩ − ⟨𝑛0|𝒓|𝑛0⟩2] =
∑
𝑛

[ ⟨𝒓2⟩𝑛 − ⟨𝒓⟩2
𝑛] (2.6)

written in ket notation |𝑛𝑹⟩ of the WF 𝑤𝑛𝑹(𝒓) = ⟨𝒓|𝑛𝑹⟩. The resulting orbital basis
can consist of atomic-like orbitals or more complex density distributions depending
on the mixing of different band characters. Since the construction of the full orbital
basis can almost be regarded as a science in its own right, we refer the reader to the
review by Marzari et al. [106] for further details.

We can specify the matrix elements of the electronic Hamiltonian (2.1) of our
correlated subspace using the WF basis. Let us establish a short-hand notation
1 = (𝑹1 , 𝑛1 , 𝜎1) for the WF basis. Then, the matrix elements are given by

ℎ12 =
∫

d3𝑟 𝑤∗
1(𝒓)

[
− ℏ2

2𝑚∇ +𝑉(𝒓)
]
𝑤2(𝒓) ≡ −𝑡12 , (2.7a)

𝑈14,32 =
∬

d3𝑟 d3𝑟′𝑤∗
1(𝒓)𝑤∗

2(𝒓 ′)
𝑒2

|𝒓 − 𝒓 ′|𝑤3(𝒓 ′)𝑤4(𝒓) . (2.7b)

We have introduced the common notation of 𝑡12 (with a minus sign) for the “hopping”
matrix elements of the single-body term which are determined by the overlap
(transfer) integrals of WFs at lattice sites𝑹1 and𝑹2. Because WFs are (by construction)

6Note that the sum over crystal momenta 𝒌 is restricted to the first Brillouin zone. We keep this
convention except when noted otherwise.
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2 Many-body theory

localized around lattice sites, the hopping elements 𝑡12 decay quickly with distance
|𝑹1 −𝑹2|. Often, it is sufficient to limit the description to hopping processes between
a few nearest-neighbor sites.

The kinetic Hamiltonian is often referred to as Wannier (projected) or lattice
Hamiltonian. We can fully specify it in Wannier basis as

𝐻kin = −
∑
𝑖𝑙 , 𝑗𝑚,𝜎

𝑡𝑖𝑙 , 𝑗𝑚𝑐†𝑖𝑙𝜎𝑐 𝑗𝑚𝜎 =
∑
𝑛,𝒌 ,𝜎

𝜀𝑛𝒌𝑐†𝑛𝒌𝜎𝑐𝑛𝒌𝜎 (2.8)

with quantum labels of lattice site index 𝑖=̂𝑹𝑖 , orbital 𝑙, and spin 𝜎. In the second
step, we diagonalized the Hamiltonian with dispersion 𝜀𝑛𝒌7 depending on band
index 𝑛 and (crystal) momentum 𝒌 by Fourier transforming the fermionic operators

𝑐†𝑗 =
1
𝑁𝒌

∑
𝒌

𝑒−𝑖𝒌𝑹 𝑗 𝑐†𝒌 , 𝑐 𝑗 =
1
𝑁𝒌

∑
𝒌

𝑒 𝑖𝒌𝑹 𝑗 𝑐𝒌 (2.9)

and inserting a unitary transformation𝑈𝑙𝑛 to switch between (Wannier) orbital and
(Bloch) band basis.

Both 𝑡12 and𝑈14,32 can be directly evaluated using computed WFs [238]. However,
important renormalization effects might be missing due to the projection onto the
correlated subspace. While these effects are often not substantial for the hopping
parameters 𝑡12 [106], they notably lead to an overestimation of the Coulomb matrix
elements𝑈14,32 when calculating Eq. (2.7b). This overestimation occurs because the
screening from the remaining bands outside the projected correlated subspace is
neglected. A widely used approach to derive effective Coulomb matrix elements
[239–243] is given by the constrained random-phase approximation (cRPA) [227, 231,
244]. Interactions from cRPA are frequency-dependent [231], which is not treatable
within most applied quantum field theoretical methods. A common approximation
is to take the static limit 𝑈eff = 𝑈cRPA(𝜔 = 0) which might underestimate the true
interaction value. Developing unambiguous methods to determine the interaction
value for a downfolded model is ongoing research [212, 245, 246].

2.1.2 Kanamori–Hubbard model
The complexity of the full, long-ranged interaction matrix in Eq. (2.7b) is too difficult
to treat within most methods. We can severely simplify the interaction Hamiltonian
by making a few assumptions:

7Note that we implicitly assume that the chemical potential 𝜇 has been absorbed into 𝜀𝑛𝒌 .
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2.1 Effective low-energy models

J J

Pair hopping Spin flip

U U‘ U‘ - J

Intra-orbital
 Inter-orbital

(opposite spin)
Inter-orbital
(same spin) Figure 2.1 – Multi-orbital interactions.

Schematic picture of different (instan-
taneous) intra-site interactions. They
include interactions between electrons
with opposite spins in the same orbital
(𝑈), opposite spins in different orbitals
(𝑈 ′), parallel spins in different orbitals
(𝑈 ′ − 𝐽), and processes involving pair
hopping and spin flips (𝐽).

First, we assume the on-site interaction 𝑈𝑖𝑖 ,𝑖𝑖 of electrons at the same lattice site 𝑖
to be the dominant contribution, i.e., 𝑈𝑖𝑖 ,𝑖𝑖 ≫ 𝑈𝑖𝑖 , 𝑗 𝑗 , 𝑈𝑖 𝑗 ,𝑖 𝑗 , etc.8 This is justified if
the WFs are well localized around their respective lattice site. Second, we want to
preserve SU(2) spin symmetry, which is satisfied in a paramagnetic state without
spin-orbit coupling (SOC). Last, we assume that our correlated subspace consists of
a (degenerate) orbital manifold for which the SO(3) orbital symmetry is sustained,
such as the triplet 𝑡2𝑔 and doublet 𝑒𝑔 splittings of the 𝑑-shell in an octahedral
environment (cf. footnote 5 on page 18).

Under these assumptions, only four local Coulomb integrals exist [140, 249] (site
index 𝑖 is suppressed)

𝑈 = 𝑈𝑙𝑙 ,𝑙𝑙 =
∬

d3𝑟 d3𝑟′ |𝑤𝑙(𝒓)|2𝑈c(𝒓 − 𝒓 ′)|𝑤𝑙(𝒓 ′)|2 , (2.10a)

𝑈 ′ = 𝑈𝑙𝑙 ,𝑚𝑚 =
∬

d3𝑟 d3𝑟′ |𝑤𝑙(𝒓)|2𝑈c(𝒓 − 𝒓 ′)|𝑤𝑚(𝒓 ′)|2 , (2.10b)

𝐽 = 𝑈𝑙𝑚,𝑙𝑚 =
∬

d3𝑟 d3𝑟′𝑤∗
𝑙 (𝒓)𝑤∗

𝑚(𝒓 ′)𝑈c(𝒓 − 𝒓 ′)𝑤𝑙(𝒓 ′)𝑤𝑚(𝒓) , (2.10c)

𝐽′ = 𝑈𝑙𝑚,𝑚𝑙 =
∬

d3𝑟 d3𝑟′𝑤∗
𝑙 (𝒓)𝑤∗

𝑙 (𝒓 ′)𝑈c(𝒓 − 𝒓 ′)𝑤𝑚(𝒓 ′)𝑤𝑚(𝒓) , (2.10d)

while all other terms, e.g.,𝑈𝑚𝑙,𝑙𝑙 have to vanish by symmetry. Note that𝑈c(𝒓 − 𝒓 ′)
denotes an effective screened interaction, e.g., from cRPA [227, 231, 241]. The inter-
action terms describe intra-orbital (Hubbard) interaction𝑈 , inter-orbital interaction
𝑈 ′, Hund’s exchange 𝐽, and correlated pair hopping 𝐽′. By choosing real-valued
(Wannier) functions 𝑤, we can identify 𝐽 = 𝐽′. Due to the (orbital) rotation symmetry,
the relation𝑈 ′ = 𝑈 − 2𝐽 holds and only two independent parameters exist.9 In most
cases, the strength of interactions follows the scheme𝑈 > 𝑈 ′ > 𝐽 [250].

8The effect of non-local interactions can approximately be taken into account by an effective
screening of the on-site interaction 𝑈 as 𝑈★ = 𝑈 − �̄� where �̄� is a weighted average of non-local
interactions [247, 248].

9The rotation symmetry is only approximate for screened interactions but the assumption works
reasonably well in many cases.
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2 Many-body theory

The corresponding Hamiltonian is called Kanamori–Hubbard Hamiltonian [249,
251, 252] which takes the form10 (local index 𝑖 suppressed)

𝐻int =𝑈
∑
𝑚

�̂�𝑚↑�̂�𝑚↓ +
∑

𝑚<𝑙 ,𝜎𝜎′
(𝑈 ′ − 𝐽𝛿𝜎𝜎′) �̂�𝑚𝜎 �̂�𝑙𝜎′

− 𝐽
∑
𝑚≠𝑙

𝑐†𝑚↑𝑐𝑚↓𝑐
†
𝑙↓𝑐𝑙↑ + 𝐽

∑
𝑚≠𝑙

𝑐†𝑚↑𝑐
†
𝑚↓𝑐𝑙↓𝑐𝑙↑

(2.11)

with occupancy operator �̂�𝛼 = 𝑐†𝛼𝑐𝛼. The first two terms account for density-density
interactions among electrons in the same (𝑈) and different (𝑈 ′ − 𝐽𝛿𝜎𝜎′) orbitals,
while the last two terms involve correlated pair hopping and spin-flip processes.
These interactions are schematically depicted in Figure 2.1. By introducing total
charge, spin, and orbital isospin operators

�̂� =
∑
𝑚𝜎

�̂�𝑚𝜎 , �̂� =
1
2

∑
𝑚,𝜎𝜎′

𝑐†𝑚𝜎𝝉𝜎𝜎′𝑐𝑚𝜎′ , �̂�𝑛 = 𝑖
∑
𝑙𝑚,𝜎

𝜖𝑙𝑚𝑛𝑐†𝑙𝜎𝑐𝑚𝜎 (2.12)

with Pauli-matrix vector 𝝉 = (𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧) and Levi–Civita symbol 𝜖𝑙𝑚𝑛 , we can
compactly write the Kanamori–Hubbard Hamiltonian as [140]

𝐻int = (𝑈 − 3𝐽) �̂�(�̂� − 1)
2 − 2𝐽�̂�2 − 1

2 𝐽�̂�
2 + 5

2 𝐽�̂� . (2.13)

This formulation of the interaction illustrates Hund’s rules which dictate the ground-
state configuration of atomic shells: The total spin 𝑆 is maximized first, followed
by the maximization of the orbital angular momentum 𝐿. We study the Kanamori-
Hubbard Hamiltonian for different materials in publications II to VI.

Hubbard Hamiltonian

Taking the single-orbital limit of the Kanamori–Hubbard model retrieves the
Hubbard model with only the local Hubbard interaction𝑈 :

𝐻𝑈 = −
∑
𝑖 𝑗 ,𝜎

𝑡𝑖 𝑗𝑐†𝑖𝜎𝑐 𝑗𝜎 +𝑈
∑
𝑖

�̂�𝑖↑�̂�𝑖↓ . (2.14)

The Hubbard model is the simplest description of interacting particles on a lattice.
A schematic illustration of the involved processes is drawn in Figure 2.2a. Despite
its simplicity, the Hubbard model is only exactly solvable in one dimension [254,
255] and in the infinite dimensional limit [256]. Over the past decades, the Hubbard
model has been immensely studied [171, 257] due to its paradigmatic relevance
for HTSCs [34, 93, 110, 118, 173, 258–260] and the surge of cold-atom quantum

10Note that the Kanamori–Hubbard Hamiltonian is not valid for an entire 𝑑-shell, where the full
(local) interaction matrix𝑈14,32 needs to be computed [140, 253].
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Figure 2.2 – Schematic of the Hubbard model on a square lattice. (a) Depiction of
the Hubbard model with (nearest-neighbor) hopping processes 𝑡 and on-site Coulomb
repulsion𝑈 . (b) Proposed phase diagrams of the Hubbard model with antiferromagnetic,
superconducting, pseudogap, strange metal, and Fermi liquid phases [171].

simulators [261–266]. Simultaneously, it serves as a significant benchmarking
hub for the development and comparison of numerical methods [II, 209, 211].
Recent algorithmic advances and increased computing power have led to consistent
results and growing consensus on the Hubbard model’s properties. A schematic
temperature and doping dependent phase diagrams of the Hubbard model on
a square lattice is shown in Figure 2.2b, which is qualitatively similar to that of
cuprates, cf. Figure 1.1a.

2.2 Green’s function method
Green’s functions are the backbone of quantum field theoretical methods to inves-
tigate systems of interacting particles. They encode spatio-temporal correlations
of many-body systems and their response to external perturbations, like electro-
magnetic fields or variations in temperature. With this, Green’s functions not only
provide a practical framework, but they also link to experimental observables [44,
267, 268], as is summarized in Figure 2.3. Most notably, single-particle Green’s
functions connect to spectral functions, which can be measured using spectroscopy
experiments like angular-resolved photoemission spectroscopy (ARPES). Higher-
order Green’s functions, involving two or more particles, are associated with linear
and nonlinear response functions. In this section, we will introduce the notation and
summarize the framework of fermionic Green’s functions. For detailed derivations
and a discussion of bosonic Green’s functions, we refer to textbooks on many-
body methods and quantum field theories (for condensed matter systems), such as
Refs. [43, 44, 213, 214, 269]. Throughout this chapter, we set ℏ ≡ 1.
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2 Many-body theory

▶  Spectrum: ρα(ω)
	 [(I)PES,	ARPES	(α=k),	STS	(α=r), ...]
▶ Magnetization m(T)
 [magnetometry (e.g. SQUID)]
▶ Fermi surface (momentum 
   distribution at ω=0):	ρk(ω=0)	
   [ARPES, quantum oscillations]

τ τ‘
V

(1P) self-energy Σ(1P) self-energy Σ

▶		Spin	susceptibility	χsp(ω, q)
 [NMR, INS, ... ]
▶	Charge	susceptibility	χch(ω, q)
 [EELS, RIXS, ...]
▶ Conductivity σ(ω) 
 [reflectivity, transport (ω=0)]
▶ (Dynamical) structure factor S(ω, q)
  [RIXS, Raman, ...]

(2P)	vertex	Γ
τ

τ‘ τ‘‘‘

τ‘‘

Figure 2.3 – Schematic picture of Green’s functions and their relation to experimental
observables. Green’s functions measure the probability amplitude of particle trajectories
between different times 𝜏, 𝜏′ in an interacting many-body environment, schematically drawn
for single-particle (1P) and two-particle (2P) correlation functions. The quantities that
encode the interaction𝑈 between particles are the self-energy Σ and vertex Γ, respectively.
Below each picture, we indicate physical observables, the respective correlation function
and experimental techniques to measure them [44, 267, 268]. Abbreviations: (inverse)
photoemission spectroscopy ((I)PES), angular-resolved photoemission spectroscopy (ARPES),
scanning tunneling spectroscopy (STS), superconducting quantum interference device
(SQUID), nuclear magnetic response (NMR), inelastic neutron scattering (INS), electron
energy loss spectroscopy (EELS), resonant inelastic X-ray scattering (RIXS).

2.2.1 Matsubara Green’s functions
In this thesis, we deal with systems at finite temperature and in thermal equilibrium
where the Matsubara formalism is most practical. In this framework, we work with
imaginary time instead of real time, which can be obtained from Wick rotation
𝑖𝑡 ↦→ 𝜏. The motivation for the imaginary-time formulation stems from the similarity
between the time translation operator 𝑒−𝑖𝐻𝑡 ↦→ 𝑒−𝜏𝐻 and statistical weight 𝑒−𝛽𝐻 with
inverse temperature 𝛽−1 = 𝑘B𝑇, which then can be regarded as time propagation in
imaginary time up to times 𝜏 = 𝛽. Hence, certain information11 about the dynamics
of a system can be extracted from its thermodynamic observables. The single-particle
Matsubara Green’s function is defined by

𝐺𝛼1𝛼2(𝜏1 , 𝜏2) = − ⟨𝒯𝜏𝑐𝛼1(𝜏1)𝑐†𝛼2(𝜏2)⟩ (2.15)

Here, 𝑐†𝛼 (𝑐𝛼) are fermionic creation (annihilation) operators of quantum states 𝛼

in the Heisenberg time-evolution picture �̂�(𝜏) = 𝑒𝜏𝐻 �̂�𝑒−𝜏𝐻 . Further, ⟨·⟩ = Tr{�̂� ·}
11In fact, it turns out that going to the imaginary-time formalism works as a very efficient filter

that suppresses high-energy (short-time) information. We can use this fact to compactly compress the
weakly filtered low-energy information; see section 2.5.1.
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2.2 Green’s function method

denotes the thermal expectation value with statistical operator �̂� = 𝑒−𝛽𝐻/𝑍, where
𝑍 is the partition function and 𝐻 the system’s Hamiltonian.12 Lastly, 𝒯𝜏 is the
time-ordering operator

𝒯𝜏𝑐1(𝜏1)𝑐†2(𝜏2) = 𝑐1(𝜏1)𝑐†2(𝜏2)Θ(𝜏1 − 𝜏2) − 𝑐†2(𝜏2)𝑐1(𝜏1)Θ(𝜏2 − 𝜏1) , (2.16)

where Θ is the Heaviside step function. The single-particle Green’s function probes
for the internal correlations by measuring the probability amplitude of a particle (or
hole) propagating through the system between times 𝜏1 and 𝜏2 and changing the
state from 𝛼1 to 𝛼2. Hence, they are often also referred to as propagators. Green’s
functions constitute practical tools because they filter out much of the (redundant)
information contained in the statistical operator �̂� regarding the full interacting
system. We want to note that the Green’s function (2.15) represents a specific
example of a correlation function. For instance, we can also define higher-order
Green’s functions like the two-particle correlation function

𝐺(2)
𝛼1𝛼2 ,𝛼3𝛼4(𝜏1 , 𝜏2 , 𝜏3 , 𝜏4) = ⟨𝒯𝜏𝑐𝛼1(𝜏1)𝑐†𝛼2(𝜏2)𝑐𝛼3(𝜏3)𝑐†𝛼4(𝜏4)⟩ , (2.17)

which contains four fermionic operators.
Since we are working in thermal equilibrium, the Green’s function only depends

on time differences 𝜏1 − 𝜏2 such that we can effectively work with a single time
𝜏 = 𝜏1 − 𝜏2 (shifting 𝜏2 = 0). Fermionic imaginary-time Green’s functions have the
property to be antiperiodic in time with periodicity 𝛽. For times −𝛽 < 𝜏 < 0, it
follows from the cyclic properties of the trace that

𝐺𝛼𝛾(𝜏) = −𝐺𝛼𝛾(𝜏 + 𝛽) . (2.18)

That means we can restrict the description to an interval 0 < 𝜏 < 𝛽. A finite
time interval results in discrete frequencies when Fourier expanding the Green’s
function. These discrete frequencies are called Matsubara frequencies given by
𝜔𝑛 = (2𝑛 + 1)/𝛽 with an integer 𝑛.13 The corresponding back and forth Fourier
expansion (transformation) is given by

𝐺(𝑖𝜔𝑛) =
∫ 𝛽

0
d𝜏𝐺(𝜏)𝑒 𝑖𝜔𝑛𝜏 and 𝐺(𝜏) = 1

𝛽

∑
𝑛

𝐺(𝑖𝜔𝑛)𝑒−𝑖𝜔𝑛𝜏 . (2.19)

12The chemical potential 𝜇 has been absorbed into the Hamiltonian, since we work in the grand
canonical ensemble to treat the Fock space of many particles.

13Note that bosonic Matsubara Green’s functions are periodic on the interval [0, 𝛽] and the
corresponding frequencies are given by 𝜈𝑛 = 2𝜋𝑛/𝛽 with 𝑛 ∈ Z.
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2 Many-body theory

Although the Matsubara frequencies are purely imaginary, we can analytically
continue the Green’s function to real frequencies 𝜔 and corresponding observables
like the excitation spectrum. We discuss this relation further in section 2.2.3.

Let us briefly address the spatial dependence of the Green’s function. Since we are
working in periodic lattice systems, 𝐺 only depends on distances 𝑹1 −𝑹2 and we can
easily Fourier transform between real-space and wave vector/(crystal) momentum
representation as

𝐺(𝒌) =
∑
𝑗

𝐺(𝑹 𝑗)𝑒 𝑖𝒌𝑹𝒋 and 𝐺(𝒓) = 1
𝑁𝒌

∑
𝒌

𝐺(𝒌)𝑒−𝑖𝒌𝒓 , (2.20)

where we have promoted the spatial dependence from an index to an argument. Let
us introduce some shorthand notation for the following discussion: We can consider
the Green’s function as a matrix in the remaining spin-orbital degrees of freedom
𝛼 = (𝑙 , 𝜎) which we denote by underlining 𝐺𝛼𝛾 ≡ [𝐺]𝛼𝛾. In addition, we will use the
four-vector notation 𝑘 = (𝑖𝜔𝑛 , 𝒌) and 𝑟 = (𝜏, 𝒓) combining the frequency-momentum
and time-space dependence, respectively.

2.2.2 𝑺-matrix expansion and self-energy
Evaluating the Green’s function (2.15) for the interacting (downfolded) lattice
Hamiltonian (2.1) is difficult as the computational cost scales with the exponentially
increasing size of the Fock space. Different approaches exist to introduce controlled
approximations to the computation of Green’s functions. For instance, the equation
of motion for the single-particle Green’s function generates an infinite hierarchy
of coupled differential equations between different orders of 𝑛-particle Green’s
functions, which can be systematically truncated at specific orders [213]. Another
typical approach is a perturbative expansion around a known reference frame.
Here, we want to briefly sketch the idea of many-body perturbation theory (MBPT)
for an expansion around the non-interacting limit 𝑈 = 0, where the remaining
(kinetic) part of the Hamiltonian 𝐻0 in (2.8) is diagonal in 𝒌 space and spin 𝜎. The
starting point is the non-interacting or bare (paramagnetic) Green’s function. In
(non-diagonal) orbital basis, it is given by

𝐺0(𝑖𝜔𝑛 , 𝒌) = [𝑖𝜔𝑛1 − ℎ(𝒌)]−1 ≡ 1

𝑖𝜔𝑛1 − ℎ(𝒌) , (2.21)

where 1 denotes the unity matrix in orbital space and [ℎ]𝑙𝑚(𝒌) = −∑
𝑗 𝑡 𝑗𝑙 ,0𝑚𝑒

𝑖𝒌𝑹 𝑗 is
the Fourier transform of the hopping matrix in Eq. (2.7a). We have introduced the
notation that a fraction denotes the inversion of the orbital matrix in the denominator.
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2.2 Green’s function method

In diagonal band basis, the bare Green’s function simplifies to

𝐺0,𝑚(𝑖𝜔𝑛 , 𝒌) = 1
𝑖𝜔𝑛 − 𝜀𝑚𝒌

. (2.22)

We see from these expressions that the poles of the Green’s functions encode the
excitation energies 𝜔 = 𝜀𝑚𝒌 of the system.

In order to incorporate interactions, we switch to the interaction picture where
the time dependence of an operator is expressed with respect to the non-interacting
Hamiltonian 𝐻0, i.e., �̂�I(𝜏) = 𝑒𝜏𝐻0 �̂�𝑒−𝜏𝐻0 . We then can introduce the time-evolution
operator in the interaction picture, also known as the 𝑆-matrix operator

𝑆(𝜏, 𝜏′) = 𝑒𝜏𝐻0 𝑒−(𝜏−𝜏
′)𝐻 𝑒−𝜏

′𝐻0

= 𝒯𝜏exp
(
−

∫ 𝜏

𝜏′
d𝜏′′𝐻1,I(𝜏′′)

)
=

∞∑
𝑛=0

(−1)𝑛
𝑛!

∫ 𝜏

𝜏′
d𝜏1 . . . d𝜏𝑛 𝒯𝜏[𝐻1,I(𝜏1) . . . 𝐻1,I(𝜏𝑛)]

(2.23)

with the interacting Hamiltonian 𝐻1,I in the interaction picture. The formal expres-
sion by a time-ordered exponential in the second line can be derived from a Trotter
decomposition of the time interval [𝜏′, 𝜏] [44], which is a short-hand notation for
the series expansion in the last line.

We can express the interacting Green’s function (2.15) by the 𝑆-matrix operator as

𝐺12(𝜏) = −Tr
[
𝑒−𝛽𝐻0𝒯𝜏𝑐1(𝜏)𝑐†2(0)𝑆(𝛽, 0)

]
Tr

[
𝑒−𝛽𝐻0𝑆(𝛽, 0)] = − ⟨𝒯𝜏𝑐1(𝜏)𝑐†2(0)𝑆(𝛽, 0)⟩0

⟨𝑆(𝛽, 0)⟩0
, (2.24)

where ⟨·⟩0 denotes the thermal expectation value with respect to 𝐻0. For brevity, we
dropped the index “I” with all time-dependent operators henceforth being in the
interaction picture. Inserting Eq. (2.23) allows us to expand the Green’s functions in
terms of the interacting Hamiltonian 𝐻1:

𝐺12(𝜏) = − 1
⟨𝑆(𝛽, 0)⟩0

∞∑
𝑛=0

(−1)𝑛
𝑛!

∫ 𝛽

0
d𝜏1 . . . d𝜏𝑛 ⟨𝒯𝜏𝑐1(𝜏)𝑐†2(0)𝐻1(𝜏1) . . . 𝐻1(𝜏𝑛)⟩0 .

(2.25)

This expression can be simplified because the expectation value of 4𝑛 + 2 fermionic
operators at order 𝑛, corresponding to a (non-interacting) 2𝑛 + 1-particles Green’s
function, is taken with respect to the non-interacting Hamiltonian. In this case,
Wick’s theorem [43, 44] applies and we can rewrite the expectation value as the
(permutation) product of 2𝑛 + 1 non-interacting single-particle Green’s functions.
One can introduce Feynman diagrams as a handy tool to pictorially express and
bookmark the Wick-factorized terms that occur in the expansion (2.25) [44, 213, 270].
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2 Many-body theory

Figure 2.4 – Components of
Feynman diagrams. Dia-
grammatic depiction of bare
(𝐺0) and dressed (𝐺) propaga-
tor, interaction vertex (𝑈) and
self-energy (Σ) in frequency-
momentum space 𝑘 = (𝑖𝜔𝑛 , 𝒌).

[𝐺𝐺0]12(𝑘𝑘) = 1 2
𝑘𝑘 [𝐺𝐺]12(𝑘𝑘) = 1 2

𝑘𝑘

𝑈𝑈14,32(𝑞𝑞) =
1 3

24
𝑞𝑞 [Σ]12(𝑘𝑘) = 1 Σ 2

Figure 2.4 shows diagrammatic depictions of the basic components that make up
Feynman diagrams (see, e.g., Figure 2.5 for example diagrams).

We can differentiate between two types of diagrams occurring in the expansion
(2.25): connected and factorizable disconnected diagrams. Analyzing the prefactor
⟨𝑆(𝛽, 0)⟩0 shows that it cancels exactly with all disconnected diagrams, which is
known as the linked cluster theorem [44]. Hence, one only needs to consider all
connected diagrams. This task quickly becomes unfeasible for high orders 𝑛 because
(2𝑛+1)! terms need to be considered. Nonetheless, the perturbative expansion (2.25)
enables physically motivated approximations by selecting certain classes of diagrams.
We discuss examples in section 2.3.

The self-energy

An important object that encodes the feedback of the interacting environment on the
propagation of a particle is the self-energy Σ. Within the diagrammatic formulation,
it consists of all connected (irreducible) diagrams which cannot be separated by
cutting a single-particle propagator line. Figure 2.5 shows a few of the low-order
diagrams that contribute to Σ. Using the self-energy, we can rewrite the expansion
of the interacting Green’s function (2.25) in frequency (and momentum) space as

𝐺(𝑘) = 𝐺0(𝑘) + 𝐺0(𝑘)Σ(𝑘)𝐺(𝑘) , (2.26)

which is known as the Dyson equation. It is a self-consistent equation for the
interacting Green’s function14 which is obtained from “dressing” the non-interacting
Green’s function with interaction feedback of the system contained in Σ. The self-
energy can be regarded as a complex-valued, frequency-dependent and non-local
single-particle potential, which becomes apparent from the solution of the Dyson
equation:

𝐺−1(𝑖𝜔𝑛 , 𝒌) = 1

[𝐺0(𝑖𝜔𝑛 , 𝒌)]−1 − Σ(𝑖𝜔𝑛 , 𝒌)
Eq. (2.21)

=
1

𝑖𝜔𝑛1 − ℎ(𝒌) − Σ(𝑖𝜔𝑛 , 𝒌) . (2.27)

14See the discussion of the Luttinger–Ward functional in section 2.2.4 and also appendix G of
Ref. [269] for notes on the convergence of this series expansion. A similar procedure as described here
can be performed for the two-particle Green’s function (2.17). The corresponding results for the Dyson
equation and self-energy are the Bethe–Salpeter equation (BSE) and the vertex Γ (often also denoted
𝐹), which can be further classified by the Parquet decomposition [271, 272].
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Σ = + + + + + + . . .

Figure 2.5 – Low-order diagrams of the self-energy. Feynman diagrams of the (irreducible)
self-energy in first and second order of the interaction. Note that not all second-order
diagrams are shown.

A qualitative interpretation of Σ is given by the spectral function which we discuss in
the next section. The self-energy acts as the general turning knob for approximations,
where the task of computing𝐺 is effectively shifted to determiningΣ. In section 2.2.4,
we will introduce the Luttinger–Ward functional as a powerful tool to generate
approximations for Σ. We note that the self-energy is an auxiliary quantity, as
it depends on the choice of the reference Green’s function 𝐺0 used in the Dyson
equation (2.26). Hence, the interacting Green’s function can also be expressed by
other quantities. For example, Ref. [273] introduces a time-dependent exchange-
correlation potential instead of the self.energy.

2.2.3 Spectral representation and quasiparticles
Before turning to approximation schemes for the self-energy, we want to summarize
a few important properties of Green’s functions. To this end, we want to link the
Green’s function to experimental observables (cf. Figure 2.3) for which we need to
extend the description to real frequencies 𝜔. This can be achieved by an analytic
continuation of the Matsubara Green’s function 𝐺(𝑖𝜔𝑛) to the retarded Green’s
function 𝐺R(𝜔 + 𝑖0+) evaluated slightly above the real axis (0+ is an infinitesimal
part) . This connection can be proven via the Lehmann representation [213].

If an analytic expression exists, one obtains the corresponding correlation function
on real-frequencies by replacing 𝑖𝜔𝑛 ↦→ 𝜔+ 𝑖0+. For example, the interacting Green’s
function (2.27) becomes

𝐺R(𝜔, 𝒌) = 1

(𝜔 + 𝑖0+)1 − ℎ(𝒌) − Σ(𝜔, 𝒌) . (2.28)

On the other hand, one can write down the spectral representation of the imaginary-
time Green’s function [47] (indices of the Green’s function suppressed)

𝐺(𝜏) = −
∫ ∞

−∞
d𝜔 𝑒−𝜔𝜏

1 + 𝑒−𝛽𝜔︸    ︷︷    ︸
𝐾(𝜏,𝜔)

𝜌(𝜔) . (2.29)

The kernel function 𝐾(𝜏, 𝜔) connects 𝐺(𝜏) to the spectral function 𝜌(𝜔) describing
the excitation spectrum of a system that is measured, e.g., in ARPES [44]. An
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Figure 2.6 – Lehmann representation.
Schematic representation of the
Lehmann representation’s kernel
𝐾(𝑖𝜔𝑛 , 𝜔) mapping the spectral
function 𝜌(𝜔) to the Matsubara
Green’s function 𝐺(𝑖𝜔𝑛) on discrete
frequencies 𝜔𝑛 marked by crosses on
the imaginary axis. The Matsubara
Green’s function is smooth and decays
with a characteristic 1/(𝑖𝜔𝑛) tail
at large frequencies. Note that the
spectral function is plotted with a
minus sign for illustrative purposes.

-ρ(ω)

G(iωn)

∝1/(iωn)

K(iωn,ω)

ω

iωn

analogous expression can be obtained in Matsubara frequency space as

𝐺(𝑖𝜔𝑛) =
∫ ∞

−∞
d𝜔 𝐾(𝑖𝜔𝑛 , 𝜔)𝜌(𝜔) =

∫ ∞

−∞
d𝜔

𝜌(𝜔)
𝑖𝜔𝑛 − 𝜔

(2.30)

with the Fourier transformed kernel 𝐾(𝑖𝜔𝑛 , 𝜔) = 1/(𝑖𝜔𝑛 − 𝜔).
In principle, one might try to obtain the spectral function by inverting the integral

equation, either in 𝜏 or 𝑖𝜔𝑛 formulation. It turns out, however, that the kernel is
ill-conditioned and the inversion is an ill-posed problem [274]. These circumstances
can be partially understood by noticing that the kernel is a very good filtering
function, schematically drawn in Figure 2.6: The spectral function can generally
have many (sharp) features, while the Matsubara Green’s function is smooth. This
smoothness makes the imaginary-time formalism so convenient for computational
methods because no sharp features need to be resolved.15 This “filtering” property
of the kernel arises from an exponential decay of singular values [I, 275], which
shows us that the Matsubara Green’s function carries less information than its
real-frequency counterpart. In section 2.5.1, we will discuss how this property
can be used to generate a compact basis representation for imaginary-time Green’s
functions.

Still, obtaining real-frequency information is of importance for comparison to
experiments. Many different approaches exist and are continuously being developed,
with numerous numerical libraries emerging. Commonly applied methods the
Padé approximation [276–278], the maximum entropy method [278–283], stochastic
approaches [284, 285], also combined with sparse modeling [286–288], neural
networks [289], or Nevanlinna analytic continuation [290–292].

From the spectral representation of the imaginary-time Green’s function, it is
possible to derive an approximate expression for the spectral weight at the Fermi

15There can, of course, arise numerical problems with the slow convergence of the Green’s function
at high frequencies due to the 1/(𝑖𝜔𝑛) decay. Typically, this can be mitigated by fitting of the moments
of the high-frequency decay.
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level (𝜔 = 0) [268, 293]

− 𝛽

𝜋
𝐺

(
𝜏 =

𝛽

2

)
≈ 𝜌(𝜔 = 0) . (2.31)

For low temperatures (𝛽 → ∞), this relation becomes exact. Thus, 𝐺(𝜏 = 𝛽/2) can be
used as a qualitative indication for metallic or insulating behavior. Another signal is
the low-frequency behavior of the imaginary part of the self-energy. To illustrate this
connection, let us analyze the impact of the self-energy on the excitation spectrum.
The spectral function can be obtained from the imaginary part of the retarded
Green’s function16

𝜌𝒌(𝜔) = − 1
𝜋

Im𝐺R(𝜔, 𝒌) Eq. (2.28)
=

1
𝜋

− ImΣ(𝜔, 𝒌)
[𝜔 − 𝜀𝒌 − ReΣ(𝜔, 𝒌)]2 + [ImΣ(𝜔, 𝒌)]2 . (2.32)

In the non-interacting case (Σ = 0), this expression reduces to a 𝛿-peak picking out
the energy 𝜀𝒌 . When interactions are introduced, two significant effects occur: The
peak’s position shifts due to the real part of the self-energy (ReΣ), and its width
increases because of the imaginary part of the self-energy (ImΣ), resulting in a finite
lifetime 𝜏 ∼ (ImΣ)−1 (cf. Figure 2.7).

If the imaginary part of the self-energy is small, the (shifted) excitation peak
remains sharp describing long-lived particles. These are called quasiparticles (QPs)
which can be regarded as non-interacting electrons with renormalized properties.
The QP picture describes a Fermi liquid [44] that relies on the adiabatic connection
between the ground states of interacting and non-interacting systems. Consequently,
its validity is assured only when no gapped states arise during the transition from
the non-interacting to the interacting system, as stated in the Gell-Mann and Low
theorem [44]. Evaluating the imaginary part of the self-energy at the Fermi level
(𝜔 = 0) is crucial for distinguishing between the existence of finite-lived, low-energy
single-particle excitations, characteristic of metallic states17, and the presence of
a gap in the spectrum, typical of insulating states. Specifically, a divergence in
| ImΣ(𝜔 → 0)| → ∞ indicates that the lifetime 𝜏 = 0, signifying an insulating
state. This is to be differentiated from band insulators which can arise from the
non-interacting single-particle picture alone or through a mean-field treatment of
interaction effects [294].

16Some authors use a slightly different definition 𝐴(𝜔) = −2 Im𝐺R(𝜔) [213] for the spectral
function, changing equations by a factor of 2𝜋 since 𝐴(𝜔) = 2𝜋𝜌(𝜔). Often, the notation of 𝐴 and 𝜌 is
interchangeably used without differentiating the definitions.

17The scattering rate in a Fermi liquid scales as 𝜏−1
𝒌 ∝ 𝜀2

𝒌 +𝜋2(𝑘B𝑇)2 [44] with quadratic dependence
on energy and temperature. As a consequence, the resistivity shares the same quadratic dependence
𝜌(𝑇) = 𝜌0 + 𝐴𝑇2 as that of a metal. Hence, Fermi liquids can be regarded as metals with charge
carriers similar to the underlying electrons but with renormalized properties. This is in contrast
to many unconventional superconductors which have a so-called strange metal phase above the
superconducting dome (cf. Figure 1.1a) with linear-in-𝑇 scaling of the resistivity [36].

31



2 Many-body theory

Figure 2.7 – Quasiparticle spectral
function. The spectral function 𝜌(𝜔)
of a non-interacting system is a sharp
delta peak (orange line) at the ex-
citation energy 𝜀𝒌 . In the interact-
ing case (blue), the corresponding QP
peak 𝜌QP is shifted to 𝜀QP

𝒌 while being
broadened to a width of Γ𝒌 and re-
duced weight 𝑍𝒌 ∼ 𝑚/𝑚∗ < 1, where
𝑚∗ is the effective mass. The QP peak
is on top of an incoherent background
𝜌inc due to interactions.

( )

QP
kk

inc

QP

k
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Interaction processes occur mostly at low-energies in an energy window of several
𝑘B𝑇 around the Fermi level. Close to the Fermi level, the self-energy can be linearized

Σ(𝜔, 𝒌) ≈ ReΣ(0, 𝒌) + (1 − 𝑍−1
𝒌 )𝜔 − 𝑖Γ0,𝒌 , (2.33)

where we introduced Γ0,𝒌 = − ImΣ(0, 𝒌) and the QP weight or renormalization
factor

𝑍𝒌 =
1

1 − 𝜕ReΣ(𝜔)
𝜕𝜔

���
𝜔=0

. (2.34)

Inserting the linearized self-energy in Eq. (2.32) yields

𝜌𝒌(𝜔) ≈ 𝑍𝒌

𝜋
Γ𝒌(

𝜔 − 𝜀QP
𝒌

)2
+ Γ2

𝒌︸                    ︷︷                    ︸
𝜌QP

+𝜌inc(𝜔) (2.35)

with the QP scattering rate Γ𝒌 = 𝑍𝒌Γ0,𝒌 = 1/(2𝜏𝒌) connected to the QP lifetime 𝜏𝒌
and the effective QP dispersion

𝜀QP
𝒌 = 𝑍𝒌[𝜀𝒌 + ReΣ(0, 𝒌)] . (2.36)

The spectral function of QP excitations (2.35) consists of the coherent part 𝜌QP of
the renormalized QPs, described by a Lorentzian shape, on top of an incoherent
background 𝜌inc. This is drawn in Figure 2.7. From the QP dispersion (2.36), it can be
seen that the QP weight 𝑍𝒌 = 𝑚/𝑚∗ < 1 describes an effective mass renormalization
𝑚∗ due to interaction effects. In addition, 𝑍 represents the magnitude of the
discontinuity in the occupation number at the Fermi surface, which for 𝑇 = 0 and
Γ𝒌 → 0 can be expressed as 𝑛𝒌 = 𝑍𝒌Θ(−𝜀QP

𝒌 ) + smooth background [44].

The information of low-energy QPs is also encoded in the Matsubara Green’s
function and self-energy. A similarly performed linearization of the self-energy
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2.2 Green’s function method

yields the following relations

Σ(𝑖𝜔𝑛 , 𝒌) ≈ ReΣ(𝑖𝜔𝑛 → 0, 𝒌) + (1 − 𝑍−1
𝒌 )𝑖𝜔𝑛 − 𝑖Γ0,𝒌 , (2.37a)

Γ𝒌 = 𝑍𝒌Γ0,𝒌 = −𝑍𝒌 ImΣ(𝑖𝜔𝑛 → 0, 𝒌) = 1
2𝜏𝒌

, (2.37b)

𝜀QP
𝒌 = 𝑍𝒌[𝜀𝒌 + ReΣ(𝑖𝜔𝑛 → 0, 𝒌)] , (2.37c)

𝑍𝒌 =

[
1 − 𝜕 ImΣ(𝑖𝜔𝑛 , 𝒌)

𝜕𝜔𝑛

����
𝑖𝜔𝑛→0

]−1

. (2.37d)

Most low-energy information is contained in the lowest Matsubara frequency [295],
because of which the limit 𝑖𝜔𝑛 → 0 is often replaced by an evaluation at 𝑖𝜔0.
Otherwise, the low-frequency behavior can be extracted by performing a polynomial
fit to the first few Matsubara frequencies.

To end this section, we want to highlight that the Green’s function encodes the
relation between excitation and equilibrium properties. An illustrative example is
the occupation 𝑛𝒌𝛼 of an energy state 𝜀𝒌𝛼. It is obtained from

𝑛𝒌𝛼 = ⟨𝑐†𝒌𝜶𝑐𝒌𝜶⟩ = 𝐺𝛼𝛼(𝜏 = 0− , 𝒌) =
∫ ∞

−∞
d𝜔 𝑓 (𝜔)𝜌𝛼(𝜔) (2.38)

with the Fermi function 𝑓 (𝜔) = 1/(𝑒𝛽𝜔 + 1). The connection to the spectral function
𝜌𝛼 is established by the Green’s function, as the last equality can be derived from
contour integration.

2.2.4 Luttinger–Ward functional
The Luttinger–Ward (LW) functional [296], denoted by Φ[𝐺], is a central object in
quantum field theoretical treatments of fermionic systems [269, 297]. It relates static
quantities given by the grand-canonical potential Ω = −𝛽−1 ln𝑍 and dynamical
quantities given by the single-particle Green’s function 𝐺 and self-energy Σ in the
following way [269] (indices suppressed)18

Ω[𝐺] = Ω0 +Φ[𝐺] − 𝔗𝔯[Σ𝐺] − 𝔗𝔯[ln(1 − 𝐺0Σ)] . (2.39)

Here, Ω0 = −𝛽−1 ∑
𝒌 ln

(
1 + 𝑒−𝛽𝜀𝒌 ) is the non-interacting grand potential, and𝔗𝔯[𝐴] =

1/(𝛽𝑁𝒌)∑𝑘 Tr𝐴(𝑘) denotes a trace over the spin-orbital matrix in combination with
a summation over Matsubara frequencies and momentum. The LW functional
Φ[𝐺] thereby connects the thermodynamic potentials of the interacting and non-
interacting system.

18We here do not write the additional dependence of the Ω and Φ functionals on the specific model
interaction𝑈 , which is implicitly assumed.
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2 Many-body theory

Φ[𝐺] = + + + + + + . . .

Figure 2.8 – Skeleton diagram expansion of Luttinger–Ward functional. Low-order expan-
sion of the LW functional in terms of skeleton diagrams where solid lines denote dressed
propagators. It includes first-order (Hartree–Fock (HF)), second-order, and a few third-order
diagrams.

Formally, Φ[𝐺] can be derived from the Legendre transform of the free energy with
respect to the bare propagator 𝐺0 [298] and it is possible to express it by an infinite
series of closed skeleton diagrams [297, 299]:

Φ[𝐺] =
∑
𝑛

1
2𝑛Φ

𝑛[𝐺] =
∑
𝑛

1
2𝑛𝔗𝔯(𝐺Σ

s,𝑛[𝐺]) . (2.40)

Σs,𝑛 denotes the 𝑛-th order skeleton diagram self-energy contribution. In a skeleton
diagram, bare propagator lines are replaced by dressed Green’s functions which
include possible insertions of lower-order self-energy diagrams. For instance, the
last two diagrams in Figure 2.5 include insertions of the second (Fock) diagram,
which can be captured by rewriting the first two diagrams with a dressed propagator
line. Figure 2.8 shows a few low-order diagrams contained in Φ[𝐺]. Importantly,
the full self-energy can be derived from the LW functional by taking the functional
derivative

Σ12(𝑘) = 𝛿Φ[𝐺]
𝛿𝐺21(𝑘) . (2.41)

This relation is obtained from the condition of Ω[𝐺] being stationary for the exact
Green’s function𝐺, i.e., 𝛿Ω/𝛿𝐺 = 0, which also reproduces the Dyson equation (2.26).
Since the LW functional is a generating functional of the self-energy, it allows for a
systematic construction of approximate self-energies, e.g., by only keeping certain
classes of diagrams in Φ[𝐺] (see section 2.3). Any such “Φ-derivable” self-energy
and hence Green’s function is guaranteed to obey conservation laws [300, 301],
because of which they are also called conserving approximation.

In addition to the perturbative expansion of the LW functional given in Eq. (2.40), it
is possible to derive Φ[𝐺] in a non-perturbative way [302]. This is important because
the LW functional and derived methods can encounter significant convergence
problems, leading to unphysical solutions. A first indication for this is that the
self-energy is a functional of the dressed Green’s function Σ[𝐺], rendering the Dyson
equation, 𝐺 = 𝐺0 + 𝐺0Σ[𝐺]𝐺, a non-linear equation which is not guaranteed to
converge [269]. Recently, it was more rigorously shown that these convergence issues
stem from a multivalued nature of the LW functional [303–310], which is linked
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to vertex divergences [113, 307, 311–315]. To mitigate these problems, applying
appropriate constraints to the approximation methods is essential [302, 309, 316–319].
This consideration is crucial for the accurate identification and interpretation of
phase transitions [320–322].19 For example, in the case of the FLEX approximation,
convergence to unphysical solutions is likely when the spin or charge susceptibility
[Eqs. (2.47)] diverge, because of which it is necessary to constrain calculations to the
paramagnetic case.

As a concluding thought, we want to mention that Φ-derivable approximations
fulfill conservation laws and the associated sum rules only on the one-particle level.
They violate rigorous relations on the two-particle level like crossing symmetries. It
is generally impossible to construct an approximation that is consistent on the single-
and two-particle level, which is only possible for the exact solution. An in-depth
discussion of this issue can be found in Ref. [324]. One can try to construct conserving
approximations that at least fulfill some of the two-particle sum rules. This is baked
into the two-particle self-consistency (TPSC) method [325–327], which enforces
the Pauli principle to hold, as encoded in local sum rules of the spin and charge
susceptibilities. This is achieved by adjusting effective spin and charge vertices while
neglecting (self-consistent) renormalization for the single-particle Green’s function.
Recently, self-consistent renormalization feedback from the self-energy was included
in variations of TPSC, which yields better agreement with diagrammatic Monte
Carlo (DiagMC) for the expense of some of the rigor in fulfilling sum rules [328].

2.3 Perturbative approaches
In the previous sections, we have introduced many-body perturbation theory
(MBPT) in the context of the LW functional to construct approximations to the full
interacting many-body theory. In practice, one resorts to taking a particular class of
diagrams since it is impossible to sum all diagrams.20 Generally, two philosophies
for constructing perturbative approaches can be followed.

The first method involves performing a truncated low-order expansion. For exam-
ple, the first-order expansion corresponds to the Hartree–Fock (HF) approximation,
which is represented by the first two diagrams of the LW functional in Figure 2.8.
The second-order expansion, depicted by the third and fourth diagram in the same
figure, is commonly known as second-order perturbation theory (SOPT), the GF2

method, or iterated perturbation theory (IPT) [330–332].

19Understanding the nature of the vertex divergencies and classifying convergence brackets of the
LW functional and derived methods is a very active area of current research, see, e.g., Refs. [309, 310,
323] and references therein.

20DiagMC [329] tries to approximate this task through importance sampling within the configuration
space of Feynman diagrams, systematically including contributions from both low- and high-order
diagrams.
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Alternatively, one can utilize partial resummation techniques which involve
summing an infinite series of certain classes of (repeating) diagrams. The selection
of diagrams is guided by their representation of specific physical processes that
are expected to be dominating. An important example is the 𝐺𝑊 approach [227,
269, 333], which sums up an infinite series of bubble diagrams, like the third and
sixth term depicted in Figure 2.8. The infinite series can be reformulated in terms
of an effective interaction 𝑊 that is screened by electronic interactions. The 𝐺𝑊
method can be performed with different degrees of self-consistency applied to the
propagator 𝐺(0), the interaction𝑊(0), or both, which all come with advantages and
disadvantages [269, 334]. In this thesis, we apply the fluctuation exchange (FLEX)
approximation [271, 335–337], which sums up an infinite series of ladder diagrams
(𝑇-matrix approach), like the fifth term in Figure 2.8, in addition to the bubble
diagrams also contained in 𝐺𝑊 . It is discussed further below.

We note that perturbative approaches are limited by the interaction strength
up to which either the truncation of the expansion becomes invalid or the partial
summation of a class of diagrams runs outside its radius of convergence [305, 321].
In addition, they are not able to capture strong-coupling physics and phenomena
like the interaction-induced Mott transition [9].

2.3.1 Fluctuation exchange approximation
The FLEX approximation [33, 271, 335–337] self-consistently incorporates the ex-
change of spin and charge fluctuations represented by an infinite series of bubble
and ladder diagrams (cf. Figure 2.9). This makes FLEX suitable for studying systems
with strong spin or charge fluctuations, e.g., close to magnetic phase transitions and
quantum critical points [33]. Therefore, FLEX is often applied to study spin- and
orbital-fluctuation-mediated superconductivity [33, 338–342], e.g., in cuprates [335,
343–346], organic superconductors [347–349], cobaltates [II, 350–352], iron-based
superconductors [108, 353], or nickelates [109, 354].

Initially, FLEX had been formulated for normal-state calculations of the single-
orbital Hubbard model on the square lattice to describe 𝑑-wave superconductivity in
cuprates [335–337], effectively providing a microscopic foundation for phenomeno-
logical spin fluctuation theory [33]. Later, FLEX was extended to general lattice
Hamiltonians [355] and multi-orbital systems [234, 356–358].21. Due to the form of
diagrams, FLEX can be regarded as a self-consistent generalization of the random-
phase approximation (RPA), where the bare propagator is replaced by the dressed
one [33].

21Often, only Ref. [357] is cited as it was the first work to include the FLEX equations for a local
multi-orbital interaction of the Kanamori form (2.11). Note, however, that the equations in [357]
contain a wrong second-order correction term, which incorrectly mixes spin and charge channel
vertices. The correct equations only appear later [358], leading to some erroneous implementations as
discussed in publication II.
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ΣFLEX[𝐺𝐺] = 𝛿𝛿ΦFLEX[𝐺𝐺]
𝛿𝛿𝐺𝐺

= + + + . . . = +
𝜒𝜒

Γ0
14,32 =

1 3

24

=

1 3

24
−

1 3

24

ΦFLEX[𝐺𝐺] = + + + . . .

a b

c

Figure 2.9 – Diagrammatic representation of the FLEX approximation. (a) Diagrammatic
representation of the (bare) anti-symmetrized vertex Γ0 in Eqs. (2.43 – 2.44). (b) FLEX
approximation of the LW functional Φ consisting of closed loop diagrams with Γ0. (c)
Self-energy of the FLEX approximation obtained from taking the functional derivative
ΣFLEX = 𝛿ΦFLEX/𝛿𝐺. The resulting infinite series of bubble and ladder diagrams can be
summed up to yield the susceptibility 𝜒.

The FLEX approximation can be regarded as a zeroth-order to the parquet approach,
where the irreducible vertex is replaced by the bare one and no coupling between
different channels exists [271]. A common approximation comprises neglecting
contributions of the particle-particle ladder diagrams to the normal-state self-energy,
which often goes unmentioned in the literature [321].22 We adopt this approximation
here and we summarize the FLEX formalism for local multi-orbital interaction of
the Kanamori form (2.11) in the following. A derivation can be found in Ref. [47]. In
section 3.4.1, we discuss spin-fluctuation-mediated superconductivity as described
by FLEX-like diagrams contributing to the particle-particle channel.

To treat multi-orbital interactions, it is convenient to introduce the anti-symmetrized
(particle-hole) vertex Γ [43]

𝐻int =
1
4

∑
1234

Γ14,32𝑐
†
1𝑐

†
2𝑐3𝑐4 , (2.42)

which connects to the general interaction𝑈14,32 matrix elements in Eq. (2.1) as

Γ14,32 = 𝑈14,32 −𝑈13,42 . (2.43)

By assuming the Kanamori-Hubbard interaction for 𝑈14,32, the vertex reduces to
Γ14,32 ≡ 𝛿𝑖1 𝑖2𝛿𝑖1 𝑖3𝛿𝑖1 𝑖4Γ

0
14,32 with the local and bare (unrenormalized) antisymmetrized

vertex Γ0
14,32. The bare antisymmetrized vertex is given by

Γ0
14,32 = −1

2𝑈
s
𝑙1 𝑙4 ,𝑙3 𝑙2

𝝉𝜎1𝜎4 · 𝝉𝜎2𝜎3 +
1
2𝑈

c
𝑙1 𝑙4 ,𝑙3 𝑙2

𝛿𝜎1𝜎4𝛿𝜎2𝜎3

=
1
2 [𝑈

s +𝑈c]𝑙1 𝑙4 ,𝑙3 𝑙2𝛿𝜎1𝜎4𝛿𝜎2𝜎3 −𝑈s
𝑙1 𝑙4 ,𝑙3 𝑙2

𝛿𝜎1𝜎3𝛿𝜎2𝜎4

(2.44)

22In the original work by Bickers et al. [335], the contribution of both particle-hole (ph) and
particle-particle (pp) ladder diagram series were considered. Numerous later works disregard the
latter and the name “FLEX” is ambiguously used to refer to both approaches, with and without pp
ladder.
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with the (bare) spin and charge vertex𝑈s and𝑈c, respectively. In the second line, we
have used the Pauli matrix identity 𝝉14 · 𝝉23 = 2𝛿13𝛿24 − 𝛿14𝛿23. The bare interaction
vertices are specified as

𝑈s
14,32 =



𝑈

𝑈 ′

𝐽

𝐽

, 𝑈c
14,32 =



𝑈 if 1 = 2 = 3 = 4

−𝑈 ′ + 2𝐽 if 1 = 3 ≠ 2 = 4

2𝑈 ′ − 𝐽 if 1 = 4 ≠ 2 = 3

𝐽 if 1 = 2 ≠ 3 = 4

. (2.45)

Since FLEX works with the bare vertex and neglects any corrections, the interaction
parameters𝑈,𝑈 ′, 𝐽 should be regarded as effectively screened quantities [33]. This
makes the direct comparison to other methods using the same interaction parameters
not straightforward.

The diagrammatic representation of the antisymmetrized vertex is a four-legged
box (Figure 2.9a) and diagrams generated with it are referred to as Hugenholtz
diagrams. The Hugenholtz diagrams of the bubble and ph-ladder series for the LW
functional and corresponding self-energy are drawn in Figure 2.9, panels b and c.
Starting from the second-order diagram, the irreducible (particle-hole) susceptibility
defined by

𝜒0
𝑙𝑙′,𝑚𝑚′(𝑞) = − 1

𝛽𝑁𝒌

∑
𝑘

𝐺𝑙𝑚(𝑘 + 𝑞)𝐺𝑚′𝑙′(𝑘) (2.46)

is inserted between bare vertices Γ0, which is infinitely repeated. Hence, the
diagrams can be resummed in terms of a geometric series, leading to the BSE of
the susceptibility �̃�. In case of SU(2) symmetry, the BSE can be solved for spin and
charge channel separately, leading to RPA-like expressions

𝜒s(𝑞) = 𝜒0(𝑞)
∑
𝑛

[
𝑈s𝜒0(𝑞)

]𝑛
= 𝜒0(𝑞)[1 −𝑈s𝜒0(𝑞)]−1 (2.47a)

𝜒c(𝑞) = 𝜒0(𝑞)
∑
𝑛

[
−𝑈c𝜒0(𝑞)

]𝑛
= 𝜒0(𝑞)[1 +𝑈c𝜒0(𝑞)]−1 (2.47b)

of the spin and charge susceptibility, respectively. We have written the susceptibilities
and bare interaction vertices as matrices in orbital space, since the 4-tensor indices
can be grouped as 14, 32 ≡ 𝑎, 𝑏, rendering expressions like𝑈s𝜒0(𝑞) a simple product
of matrices with size 𝑁2

𝛼 × 𝑁2
𝛼, where 𝑁𝛼 is the number of (Wannier) orbitals. The

effective interaction that is obtained after resummation is given by

𝒱 (𝑞) = 3
2𝑈

s
[
𝜒s(𝑞) − 1

2𝜒
0(𝑞)

]
𝑈s + 1

2𝑈
c
[
𝜒c(𝑞) − 1

2𝜒
0(𝑞)

]
𝑈c + 3

2𝑈
s − 1

2𝑈
c .

(2.48)
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Note that the subtracting terms ∼ 𝜒0/2 occur in order to not double count the second
order contributions. With this interaction, the FLEX self-energy can be calculated as

Σ𝑙𝑚(𝑘) = 1
𝛽𝑁𝒌

∑
𝑞

∑
𝑙′𝑚′

𝒱𝑙𝑙′,𝑚𝑚′(𝑞)𝐺𝑙′𝑚′(𝑘 − 𝑞) . (2.49)

In practical calculations, Eqs. (2.46) to (2.49) are solved self-consistently. The
typical starting point is the non-interacting Green’s function 𝐺0 (2.21) and mixing is
applied when calculating the full Green’s function from the Dyson equation (2.27),
i.e., 𝐺𝑛 = 𝜅𝐺𝑛 + (1 − 𝜅)𝐺𝑛−1 for iteration step 𝑛 with 𝜅 ≤ 0.5. In each iteration, the
chemical potential 𝜇 is adjusted by solving Eq. (2.38) for a set filling 𝑛 =

∑
𝒌𝛼 𝑛𝒌𝛼.

Note that in order to assure convergence to a physical solution, it is important to
constrain the calculations to the paramagnetic case by preventing the spin and
charge susceptibility from diverging.23 The largest eigenvalues of the respective BSE
kernels 𝛼s,c = max𝑞[±𝑈s,c𝜒0(𝑞)], called Stoner enhancement factors, can be used as
a proxy for the strength of spin and charge fluctuations and the system’s tendency
towards phase instabilities.

2.4 Green’s function embedding methods
A hallmark of strongly correlated systems is the interaction-driven metal-to-insulator
(Mott) transition [9, 10], which emerges as the interaction strength becomes com-
parable to the kinetic energy of electrons. In the process, the system begins to
behave more like an atomic system and bandstructure theory becomes invalid. In
the evolution between non-interacting limit and atomic limit, a gap opens and the
Gell-Mann and Low theorem is inapplicable. Hence, the perturbative treatment of
interaction effects becomes insufficient in case of strong correlations.

A different approach needs to be taken where quantum embedding methods [114,
269, 361, 362] are promising. The general idea is to treat correlations only in
a subsystem by self-consistently mapping the full system to an auxiliary system
describing the subsystem. An important example in this context is spatial embedding,
where an impurity (cluster) is locally embedded in a non-interacting background of
particles. This is the idea of dynamical mean-field theory (DMFT) [111, 363], which
we will review in the following. As DMFT has become a widely used approximation,
we refer to (pedagogical) reviews and books such as Refs. [111, 114, 115, 227, 269,
364, 365] for more details.

23FLEX obeys the Mermin–Wagner theorem [359] preventing antiferromagnetic long-range order to
occur in two dimensions [360], since the self-energy damping effect of the self-consistent feedback from
fluctuation exchange effectively keeps the susceptibility from diverging. In numerical calculations
however, this can only be assured by implementing constraints.
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Δ(iωn)

single-site 
impurity model

G-1
lat = Glat,0

-1 - Σlat

Check convergence 
of self-energy

Σimp ≡  Σlat

Update parameters of 
impurity model (Δ / Gimp,0)

Figure 2.10 – Schematic visualization of spatial embedding in DMFT. The lattice model,
described by the (momentum-dependent) lattice Green’s function 𝐺lat, is mapped onto
an auxiliary system represented by the single-site impurity model embedded into a bath
(visualized as a homogeneous background). The coupling to the bath is described by the
hybridization function Δ(𝑖𝜔𝑛) which encodes the information of the original lattice model.
Solving the impurity model yields a self-energy that is self-consistently fed back into the
lattice model.

2.4.1 Dynamical mean-field theory
DMFT is designed to describe correlated electron systems with strong local interac-
tions. It has become one of the most widely applied methods for studying strong
correlation effects in material calculations [114, 115]. The general approximation of
DMFT is to freeze out non-local fluctuations (in a spatial mean-field) and to treat all
local correlation effects, which allows to capture Mott physics [9, 111].

Historically, DMFT was developed by investigating the limit of infinite dimensions
𝑑, or equivalently, infinite coordination 𝑧 of a lattice, where 𝑧 is the number of
nearest-neighbor sites. A scaling argument by Metzner and Vollhardt [256], which
was generalized by Müller-Hartmann [366], showed that a normalization of the
kinetic hopping 𝑡 = 𝑡∗/√𝑧 is necessary to have a non-trivial, finite contribution of the
kinetic energy in the limit 𝑧 → ∞. As a consequence, only local skeleton diagrams
contribute to the self-energy, i.e., it simplifies to Σ𝑖 𝑗(𝑖𝜔𝑛) = 𝛿𝑖 𝑗Σ(𝑖𝜔𝑛). Building on
these results, Georges and Kotliar [363] recognized that in infinite dimensions, a
many-body lattice model like the Hubbard model can be mapped onto an Anderson
impurity model subject to a self-consistent bath.24 This is the core idea of DMFT:
Local correlations in an interacting lattice model can be described by mapping it
to a self-consistently embedded, auxiliary quantum-impurity model (Figure 2.10).
The mapping becomes exact in the limit of infinite coordination, e.g., for the Bethe
lattice, but remains a good approximation for (realistic) three-dimensional lattices
and serves as a reasonable starting point for two-dimensional systems.

24See also related works by Jarrel [367] and Ohkawa [368]. We note that making the connection to
impurity models accelerated the study of strongly correlated lattice systems as impurity models have
been well-studied at that time [369] with a variety of efficient numerical techniques such as quantum
Monte Carlo (QMC) methods to solve them.
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Many different techniques exist to derive the equations of DMFT [111, 115, 269],
such as the cavity construction within a path-integral formalism [44, 214], from the
lowest-order approximation of the dual fermion approach [370, 371], or via the LW
functional [114, 302], rendering DMFT a non-perturbative conserving approximation.
We do not show the full derivation here but summarize and motivate the results.

Mapping to a self-consistent impurity problem

The central idea of DMFT is the self-consistent mapping of the lattice Hamiltonian
[Eq. (2.1)] with local interactions [Eq. (2.11)] on an effective Anderson impurity
model:

𝐻AIM = 𝐻imp + 𝐻bath + 𝐻hyb . (2.50)

The model consists of impurity and bath electrons, which are coupled by a hybridiza-
tion term. The parts are specified for a multi-orbital model by

𝐻imp =
∑
𝛼𝜎

𝜀d,𝛼𝑑†𝛼𝜎𝑑𝛼𝜎 +
1
2

∑
𝛼𝛽𝛾𝛿,𝜎𝜎′

𝑈𝛼𝛿,𝛾𝛽𝑑†𝛼𝜎𝑑†𝛽𝜎′𝑑𝛾𝜎′𝑑𝛿𝜎 (2.51a)

𝐻bath =
∑
𝒌 ,𝑛𝜎

𝜀𝒌 ,𝑛𝑐†𝒌𝑛𝜎𝑐𝒌𝑛𝜎 (2.51b)

𝐻hyb =
∑
𝒌 ,𝛼𝑛𝜎

𝑉𝒌 ,𝛼𝑛𝑑
†
𝛼𝜎𝑐𝒌𝑛𝜎 +𝑉∗

𝒌 ,𝑛𝛼𝑐
†
𝒌𝑛𝜎𝑑𝛼𝜎 (2.51c)

with electrons on the impurity being described by 𝑑(†) operators for the impurity
levels 𝜀d,𝛼 labeled by 𝛼, bath electrons denoted by 𝑐(†) operators for (dispersing)
bath energies 𝜀𝒌𝑛 , and hybridization (“hopping”) 𝑉𝒌 ,𝛼𝑛 between impurity and bath.
The bath can be integrated out in a path-integral formalism25 [111], yielding the
effective action

𝑆imp[𝑑∗ , 𝑑] = −
∫ 𝛽

0
d𝜏d𝜏′

∑
𝛼𝛽,𝜎

𝑑∗𝛼𝜎(𝜏)[𝐺−1
imp,0]𝛼𝛽(𝜏 − 𝜏′)𝑑𝛽𝜎(𝜏′)

+ 1
2

∫ 𝛽

0
d𝜏

∑
𝛼𝛽𝛾𝛿,𝜎𝜎′

𝑈𝛼𝛿,𝛾𝛽𝑑∗𝛼𝜎(𝜏)𝑑∗𝛽𝜎′(𝜏)𝑑𝛾𝜎′(𝜏)𝑑𝛿𝜎(𝜏)
(2.52)

with Grassman variables 𝑑 and 𝑑∗ [44] and the non-interacting impurity Green’s
function 𝐺imp,0. On Matsubara frequencies, it is given by

𝐺imp,0 =
[
𝑖𝜔𝑛1 − 𝜀d − Δ(𝑖𝜔𝑛)

]−1
, (2.53)

25Equivalently, one can employ the equation-of-motion technique for the impurity Green’s function
to decouple bath degrees of freedom.
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which includes the frequency-dependent hybridization function

Δ𝛼𝛽(𝑖𝜔𝑛) =
∑
𝒌𝑛

𝑉∗
𝒌 ,𝛼𝑛𝑉𝒌 ,𝑛𝛽

𝑖𝜔𝑛 − 𝜀𝒌𝑛
(2.54)

obtained from integrating out the bath degrees of freedom. In the expression for
𝐺imp,0, the hybridization function takes on the role of a self-energy as an effective
potential that encodes the information about the bath by weighting the bath energy
poles with 𝑉𝒌 ,𝛼𝑛 . We note that 𝐺imp,0 is often referred to as dynamical Weiss field in
analogy to static mean-field theory.

The numerically demanding part of DMFT consists of solving the impurity prob-
lem defined by the action in Eq. (2.52). For this purpose, many different numerical
solvers have been developed [269], like the IPT [111, 363], exact diagonalization
(ED) [372, 373], numerical renormalization group (NRG) [374], density matrix renor-
malization group (DMRG) [375, 376], or continuous-time quantum Monte Carlo
(CT-QMC)-based methods [377]. In publications III and VI, we employ CT-QMC
within the hybridization expansion (CT-HYB) variant [378–382], which utilizes a
strong-coupling expansion. It has the advantage over weak-coupling expansion
methods like CT-INT [383] or CT-AUX [384] that the computational cost decreases
with correlation strength and it is easier to treat non-density-density interactions
like the Hund’s coupling [377, 385]. A pedagogical introduction to CT-QMC solvers
can be found in chapter 5 of Ref. [365].

The mapping of the full lattice model is effectively performed by demanding
that the local Green’s function 𝐺loc, obtained from summing over the momentum
dependence of the lattice Green’s function 𝐺lat [Eq. (2.27)], is equal to the impurity
Green’s function 𝐺imp, i.e.,

𝐺loc(𝑖𝜔𝑛) = 1
𝑁𝒌

∑
𝒌

[
𝑖𝜔𝑛1 − ℎ(𝒌) − Σ(𝑖𝜔𝑛)

]−1︸                            ︷︷                            ︸
𝐺lat(𝑖𝜔𝑛 ,𝒌)

!
= 𝐺imp(𝑖𝜔𝑛) (2.55)

with the non-interacting lattice Hamiltonian ℎ(𝒌) (2.7a). Here, we have already
inserted the local approximation of the self-energy, leading to the association
Σlat(𝑖𝜔𝑛 , 𝒌) ≈ Σimp(𝑖𝜔𝑛) ≡ Σ(𝑖𝜔𝑛). Since we have the identity between local and
impurity Green’s function, the lattice and impurity problems are connected by the
impurity model’s Dyson equation. Calculating 𝐺loc allows for determining the
Weiss function (frequency dependence suppressed)

𝐺imp,0 =
[
𝐺−1

loc + Σ
]−1 (2.56)
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or equivalently hybridization function Δ(𝑖𝜔𝑛). On the other hand, we can obtain
the self-energy given that the impurity problem (2.52) with 𝐺imp,0 as an input has
been solved, i.e., an interacting Green’s function 𝐺imp(𝑖𝜔𝑛) has been computed:

Σ = 𝐺−1
imp,0 − 𝐺−1

imp . (2.57)

To conclude, we summarize the DMFT self-consistency loop, as schematically shown
in Figure 2.10:

1. Start with an initial self-energy Σ (e.g., non-interacting Σ = 0 or previous
solution).

2. Calculate the local (on-site) Green’s function 𝐺loc(𝑖𝜔𝑛) from Eq. (2.55).

3. Calculate the non-interacting impurity Green’s function 𝐺imp,0(𝑖𝜔𝑛) from
Eq. (2.56).

4. Solve the interacting impurity model defined by the effective action in Eq. (2.52)
to obtain 𝐺imp(𝑖𝜔𝑛).

5. Calculate new self-energy Σ(𝑖𝜔𝑛) from Eq. (2.57).

6. Go back to step 2 until convergence of the self-energy. Additionally, the
equality 𝐺loc(𝑖𝜔𝑛) = 𝐺imp(𝑖𝜔𝑛) can be used to check convergence.

Beyond the local limit of dynamical mean-field theory

A limiting factor of DMFT is that it only addresses local fluctuations, which is not
sufficient for many materials and phenomena like unconventional superconductivity,
where non-local fluctuations play a critical role [34, 117]. Over the past decades,
the toolbox of DMFT-based approaches has been greatly extended to also take into
account non-local fluctuations. These developments can be categorized into two
distinct routes of improving DMFT:

The first approach is given by cluster extensions of DMFT [112]. The idea is to
increase the size of the embedded impurity model by considering interacting cluster
of size 𝑁c in a non-interacting, self-consistent bath. Then, spatial correlations are
treated exactly up to length-scales of the cluster size, such that 𝑁c acts as a control
parameter and the solution becomes identical to the lattice model for 𝑁c → ∞. The
enlarged cluster can either be constructed via patching in momentum space within
the dynamical cluster approximation (DCA) [93, 94, 118, 386] or by larger real-space
clusters within cellular DMFT (CDMFT) [387–390].

The second approach comprises diagrammatic extensions [113] that incorporate
non-local corrections to the self-energy. These methods adopt various strategies,
including the assumption of locality in higher-order particle vertices, as utilized in the
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triply irreducible local expansion (TRILEX) [391, 392], the quadruply irreducible local
expansion (QUADRILEX) [393], and the dynamical vertex approximation (DΓA) [394–
396]. Other strategies involve combining DMFT with functional renormalization
group methods [397]; performing (diagrammatic) perturbation theory for a reference
system (dual space) with the local solution by DMFT as the starting point, as
implemented in dual fermion (DF) [370, 371], dual boson (DB) [398], or dual TRILEX
(D-TRILEX) [399–401]; and integrating DMFT with MBPT approaches [305] such as
DMFT+𝐺𝑊 [402, 403], DMFT+FLEX [404, 405], or DMFT+TPSC [406–409].

2.5 Low-rank representation of Green’s functions

The Green’s function method, as previously introduced, is a powerful tool for investi-
gating correlated materials and emerging phases therein. Significant advancements
in recent decades have been primarily fueled by improvements in computing power,
which have made it possible to employ more sophisticated techniques, such as exten-
sions of DMFT, across broader parameter ranges and with enhanced accuracy [211].
However, the application to realistic systems still poses considerable computational
challenges due to the intrinsic complexity of real materials. This complexity stems
from the interplay of many degrees of freedom and energy scales of different
(competing) phenomena in condensed matter physics, spanning multiple orders
of magnitude. An overview of characteristic energy scales in condensed matter
systems is provided in Figure 2.11. For instance, low-temperature phenomena such
as superconductivity occur at much smaller thermal energies (0.1 – 10 meV) than
electronic band excitation and electronic screening (0.1 – 10 eV), encompassing up to
four orders of magnitude.

In imaginary-time Green’s function-based methods, the relevant energy scales
are set by the system’s Hamiltonian (overall energy range / ultraviolet (UV) scale
limit, e.g., bandwidth𝑊), the characteristic energy of the investigated many-body
phenomenon (desired accuracy / infrared (IR) scale limit), and the temperature
(energy resolution Δ𝜔𝑛 ∼ 𝛽−1). The most common approach to numerically
represent Matsubara Green’s functions is by sampling frequency points on a uniform
grid. For this naive sampling, the required number of frequencies 𝑁𝜔𝑛 for a
numerical accuracy 𝜖 scales as 𝑁𝜔𝑛 ∼ 𝒪(Λ𝜖−𝑝), with 𝑝 ≥ 1 and Λ = 𝛽𝜔max being a
dimensionless cutoff that depends on inverse temperature 𝛽 and frequency cutoff
𝜔max (UV limit). The linear scaling of sampling points with respect to 𝛽 makes
calculations at low-temperatures prohibitively expensive. In combination with the
many degrees of freedom, which necessitate the employment of multi-orbital models,
the accessible parameter space and range of applicable methods for material-realistic
calculations is limited. These issues are amplified in the case of two-particle or
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Figure 2.11 – Energy scales of elementary excitations and collective modes in quantum
materials. Schematic representation of typical energy scales for different phenomena found
in condensed matter systems. This figure is adapted from Ref. [410].

higher-order response functions [411], as they dependend on multiple time, space,
and orbital indices.

Recently, theoretical progress has been made to address these computational
bottlenecks by constructing compact and compressed representations for the single-
particle Matsubara Green’s function. These include the expansion in orthogonal
polynomials, like the Legendre [412, 413] or Chebyshev [414] bases, power-mesh
representations [415, 416], construction of optimal quadrature rules for Matsubara
summation [417], or wavelet representations [418]. For instance, the orthogonal
polynomial expansion improves the frequency scaling26 to 𝒪(√Λ log 𝜖−1), because of
which it has become a standard implementation in QMC-based impurity solvers [380,
381, 419, 420].

An optimal basis representation for single-particle Green’s functions is given by
the intermediate representation (IR) basis [I, 274, 275, 421] in combination with
sparse sampling [330, 422], and the closely related discrete Lehmann representation
(DLR) [423, 424]. These approaches start from the a priori knowledge of the ill-
conditioning of the spectral representation kernel 𝐾(𝜏, 𝜔) that connects Matsubara
Green’s function and spectral function in Eq. (2.29), which is reflected in an exponen-

26A comparison of scaling behavior for different methods can be found in Ref. [413].
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tially fast decaying singular values [275]. This enables a low-rank decomposition of
the kernel, yielding very compact sets of basis functions whose size scales only with
𝒪(logΛ log 𝜖−1). In addition, the method of sparse sampling allows for the construc-
tion of compact grids in imaginary time and Matsubara frequency, from which the
IR coefficients can be derived. We developed the code library sparse-ir [I], which
provides routines to compute the IR basis and associated grids. This is discussed in
detail in the embedded publication I below.

A complimentary approach to the low-rank decomposition of many-body propa-
gators is given by quantics tensor train (QTT) representation [425–427], which is more
commonly known in the condensed matter community as matrix product states
used, e.g., in DMRG [375]. The low-rank tensor representation enables, in principle,
not only a compression of imaginary time or frequency information but of the whole
tensor structure of many-body correlation functions. The application of this approach
to practical many-body calculations remains to be shown, but the prospects from
proof-of-principle compression of typical many-body objects [425] appear promising.
One point where it could contribute to more efficient implementations is the
representation of lattice degrees of freedom. The momentum-grid construction and
corresponding resolution of lattice quantities like Green’s functions is a remaining
bottleneck at low temperatures, affecting the accuracy of momentum derivatives or
Brillouin zone integration pertinent to all condensed matter calculations. Approaches
to mitigate these problems have been developed, e.g., adaptive 𝒌-space sampling
methods [428–431], but they are typically model or problem specific approaches.

2.5.1 Intermediate representation basis

The IR basis in combination with sparse sampling provides a simple framework for
efficient implementations of quantum field theoretical methods. It has been applied
in many different contexts, such as phonon-mediated superconductivity [432–435]
(available in the Migdal–Eliashberg solver of the EPW code [436–438]), uncon-
ventional superconductivity [III] within the FLEX approximation [II, IV, V, 439],
estimation of magnetic interactions [440–442], analytic continuation [286, 287, 290,
291], or TPSC calculations [328, 406, 409]. In addition, extensions to two-particle
propagators with the overcomplete IR approach [443–446] have been developed.

We briefly want to summarize the general idea of the IR basis and sparse sampling
to compare it to the closely related DLR. More details can be found in the original
works [275, 330, 421], the pedagogical reviews in Refs. [274, 422], and publication I
describing the implementation within the sparse-ir code library. Explanations
and guides of how to use the IR basis in practical many-body calculations are
provided by the extensive tutorials of the code package [I].
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The IR basis is derived from the singular value expansion of the spectral kernel

𝐾(𝜏, 𝜔) = 𝑒−𝜏𝜔

1 + 𝑒−𝛽𝜔 =
∞∑
𝑙=0

𝑈𝑙(𝜏)𝑆𝑙𝑉𝑙(𝜔) (2.58)

with singular values 𝑆𝑙 , and the IR basis functions {𝑈𝑙(𝜏)}𝑙 and {𝑉𝑙(𝜔)}𝑙 . The
expansion (2.58) is unique for a given dimensionless parameter Λ = 𝛽𝜔max, where
the frequency cutoff 𝜔max is chosen such that the spectrum 𝜌(𝜔) is bounded in
the interval [−𝜔max , 𝜔max]. The sets of functions {𝑈𝑙(𝜏)}𝑙 and {𝑉𝑙(𝜔)}𝑙 constitute
complete orthogonal polynomial bases for which currently no analytic expression
exists. Their properties have been studied numerically [447], which showed that
Legendre polynomials are recovered from the IR basis functions in the limit Λ → ∞.

The singular values 𝑆𝑙 decay exponentially fast (cf. Figure 1 in publication I),
giving rise to the ill-conditioning of analytic continuation; see the discussion in
section 2.2.3. The exponential decay reflects that 𝐾(𝜏, 𝜔) can be represented to high
accuracy by a low-rank decomposition, i.e., only relying on a few basis functions. In
fact, the truncation error for truncating at order 𝐿 scales as 𝜖𝐿 ∼ 𝑆𝐿/𝑆0 ∼ 𝑒−𝑎𝐿.

We can utilize the low-rank structure and expand the imaginary-time Green’s
function in the𝑈𝑙(𝜏) basis, or the corresponding Fourier transformed expression, as

𝐺(𝜏) =
𝐿−1∑
𝑙=0

𝐺𝑙𝑈𝑙(𝜏) + 𝜖𝐿 , (2.59a)

𝐺(𝑖𝜔𝑛) =
𝐿−1∑
𝑙=0

𝐺𝑙𝑈𝑙(𝑖𝜔𝑛) + 𝜖𝐿 . (2.59b)

These series expansions are well controlled by a given Λ and desired accuracy 𝜖𝐿.
In order to accurately perform calculations on Matsubara frequencies (e.g. solving
the Dyson equation) or the imaginary time domain (e.g. evaluating self-energy
diagrams) it is sufficient to use a non-linear, sparsely sampled grid {�̄�𝑛}/{�̄�𝑘} that
can be generated from the extrema of the IR basis functions. The resulting 𝜏 mesh is
more densely sampled close to the interval edges of 0 and 𝛽, while the 𝜔𝑛 grid is
dense at small frequencies and almost logarithmically spaced at high frequencies,
see Figure 2 in Ref. [330]. To give a feeling for the reduction in size, we note that
for an IR parameter Λ = 104 – 105, the basis size and number of necessary grid
points are on the order of 100 or fewer, cf. Fig. 1 in publication II. These values for Λ
correspond to 𝛽 values between 103 to 104 for 𝜔max = 10. In comparison, achieving
the same level of accuracy with a uniform grid typically demands a few thousands
to tens of thousands Matsubara frequencies.

The construction of the IR basis and associated sparse grids is to be differentiated
from the DLR [423, 424]. The DLR is obtained from an interpolative decomposition
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of the kernel 𝐾(𝜏, 𝜔), which yields basis functions 𝐾(𝜏, 𝜔𝑙) ∼ 𝑒−𝜏𝜔𝑙 . This has the
advantage of an analytic expression for the basis functions (exponentials), at the
expense of them forming a non-orthogonal basis. The sparse sampling grid of the
IR basis is substituted by the interpolation grid used to compute the DLR basis
functions via the pivoted QR method. These differences do not show up in practice
for the user of these frameworks. Whether to choose the IR or DLR basis depends
on the particular type of application and given code environment.27

sparseIR code utility

We summarize the utilities of the code library sparse-ir with python, julia, and
fortran programming language support. The main features include:

• On-the-fly construction of basis functions {𝑈𝑙(𝜏)}, {𝑈𝑙(𝑖𝜔𝑛)}, and {𝑉𝑙(𝜔)} as well
as sparse sampling grids {�̄�𝑘}, {𝑖�̄�𝑛} for a given input Λ and 𝜖.

• Fitting routines to recover IR coefficients from arbitrary imaginary-time or
Matsubara frequency grids.

• Evaluation of IR coefficients on arbitrary imaginary-time or Matsubara frequency
grids.

• Extensive tutorials showcasing the utility for a variety of many-body calculations.

This code library is a newly developed, enhanced version of the earlier python
package irbasis [447] which only provided pre-computed basis functions for fixed
values of Λ. The following publication provides more details on the usage and
implementation.

27For example, the DLR basis has been applied to DMFT calculations for implementing the Dyson
equation part [448].
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Key points summary

• Development of stand-alone code library collection sparse-ir for python
and julia with Fortran support to enable optimal compression and sparse
modeling of imaginary-time and Matsubara frequency propagators based
on the intermediate representation (IR) basis.

• Overview on theoretical background and code architecture as well as
examples illustrating the API for simple applications.

• Extensive tutorials showcasing the usage of the sparse-ir package for
many different many-body techniques available at:
https://spm-lab.github.io/sparse-ir-tutorial/.
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Department of Physics, Tohōku University, Miyagi 980-8577, Japan
Department of Physics, Kyoto University, Kyoto 606-8502, Japan
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Meguro-ku, Tokyo, 153-8904, Japan
RIKEN Center for Emergent Matter Science (RIKEN CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
I. Institute of Theoretical Physics, University of Hamburg, 22607 Hamburg, Germany
Institute for Solid State Physics, University of Tokyo, Tokyo 113-8654, Japan
CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-0871, Japan
Mathematical Science Team, RIKEN Center for Advanced Intelligence Project (AIP), Tokyo 103-0027, Japan
JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

a r t i c l e i n f o

Article history:
Received 28 June 2022
Received in revised form 21 October 2022
Accepted 14 November 2022

Keywords:
Intermediate representation
Sparse sampling
Python
Julia
Fortran

a b s t r a c t

We introduce sparse-ir, a collection of libraries to efficiently handle imaginary-time propagators, a
central object in finite-temperature quantum many-body calculations. We leverage two concepts:
firstly, the intermediate representation (IR), an optimal compression of the propagator with robust
a priori error estimates, and secondly, sparse sampling, near-optimal grids in imaginary time and
imaginary frequency from which the propagator can be reconstructed and on which diagrammatic
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extensive set of sample codes showcasing the library for typical many-body and ab initio methods.
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. Motivation and significance

Computational quantum many-body physics is a major driver
f advances in materials science, quantum computing, and high-
nergy physics. Yet, in pushing these fields forward, we face a
hree-pronged challenge: firstly, the requirement to model more
omplicated systems in an effort to understand advanced many-
ody effects, secondly, speeding up the calculations to allow
arge-scale automatized system discovery, and thirdly, the need
or reliable error control to fortify predictive power of the results.

For diagrammatic methods working in imaginary (Euclidean)
ime—widely used to solve quantum many-body systems—these
hree prongs translate to the need to compactly store, quickly
anipulate, and reliably control the error, respectively, of many-
ody propagators and the diagrammatic equations in which they
ppear. Previous efforts either focused on optimizing imaginary
ime grids [1,2] or modeling generic smooth functions [3,4].

The intermediate representation (IR) [5,6] instead leverages
he analytical structure of imaginary-time propagators to con-
truct a maximally compact, orthonormal basis: the number of
asis functions needed to represent a propagator scales loga-
ithmically with the desired accuracy and logarithmically with
, the ultraviolet cutoff in units of temperature. (Related ap-
roaches either optimize for a different norm [7] or trade some
ompactness for simpler algorithms [8,9].) Sparse sampling [10]
s a complementary concept which connects the IR to sparse time
nd frequency grids, which allows us to efficiently move between
epresentations and restrict the solution of diagrammatic equa-
ions to those grids. Uniquely, error control is baked into the
R: each basis function comes with an a priori error level, which
lso means changing accuracy is simply a matter of changing the
umber of nonzero basis coefficients. The IR for the one-particle
asis also serves as a building block for compressing arbitrary n-
oint propagators [11,12] and fast solutions to the corresponding
iagrammatic equations [13].
Precomputed IRs for different cutoffs Λ have been released

reviously as the irbasis library [14]. Using this library, IR and
parse sampling has been successfully employed in numerous
hysics and chemistry applications [15–28].
In this paper, we introduce sparse-ir , a major step forward

rom the previous library: it computes the basis on the fly, usually
ithin seconds. This not only removes the need for precomputing
nd shipping databases, it also allows tailoring the cutoff Λ

nd even the type of kernel to the specific application. We also
implify the use of sparse sampling, which previously had to be
mplemented on top of irbasis by the user. Finally, we improve
he infrastructure for two-particle calculations by adding the pos-
ibility of augmented and vertex bases [11,13]. We also provide
set of small, self-contained Jupyter notebooks showcasing the
se of IR and sparse sampling for selected physics and quantum
hemistry applications, lowering the barrier of entry for new
sers. The library is available as three standalone Python, Julia
nd Fortran ports, each with minimal dependencies.
The remainder of this paper is organized as follows: after an

verview over IR and sparse sampling in Section 2, we showcase
he use of sparse-ir in a simple Feynman diagrammatic method in
ection 3. In Section 4, we then give an overview of the anatomy
nd function of the package. We state our final assessments in
ection 5.

. Software description

We are concerned with (retarded) many-body propagators and
elated functions in equilibrium:

R(ω) = −i
∫

∞

dt eiωt
⟨A(t)B(t ′) ∓ B(t ′)A(t)⟩, (1)

Fig. 1. Singular value expansion (4) of the (a) analytic continuation kernel
K (τ , ω) (3) for βωmax = 30 into (b) left-singular functions Ul , which share
the kernel’s imaginary-time axis τ , (c) singular values Sl , and (d) right-singular
functions Vl , which share the kernel’s real-frequency axis ω.

where both A, B are bosonic (-) or fermionic (+) operators, ⟨·⟩ =

Tr(e−βH
· )/Tr(e−βH ) is the expectation value, 1/β is tempera-

ture and H is the Hamiltonian. At its core, sparse-ir seeks to (i)
maximally compress the information contained in these prop-
agators and (ii) reliably reconstruct this compressed form from
sparse time and frequency grids to allow its use in diagrammatic
calculations.

To achieve (i) compression, sparse-ir relies on the fact that
information is lost in transitioning from the (observable) spectral
function ρ(ω) = −

1
π
ℑGR(ω) on the real-frequency axis to the

propagator G(τ ) on the imaginary-time axis:

G(τ ) := −⟨TτA(τ )B(0)⟩ = −

∫
dω K (τ , ω) ρ(ω), (2)

where K is an integral kernel mediating the transition (cf. Sec-
tion 4):

K (τ , ω) =
exp(−τω)

exp(−βω) ± 1
Θ(ωmax − |ω|), (3)

Tτ is the time-ordering operator, ωmax is a UV cutoff (upper bound
to the bandwidth), and 0 < τ < β is imaginary time. This
information loss is epitomized by the singular value expansion
(SVE) [29] of the kernel K [5,30]:

K (τ , ω) =

∞∑
l=0

Ul(τ ) Sl Vl(ω), (4)

where {Ul} are the left-singular functions, an orthonormal sys-
tem on the imaginary-time axis, and {Vl} are the right-singular
functions, an orthonormal system on the real-frequency axis. The
amount of information retained in the transformation from Vl to
Ul is encoded in the associated (scaled) singular value Sl/S0. The
decomposition (4) is illustrated in Fig. 1: the kernel (3) in panel
(a) is decomposed into ‘‘direct products’’ of left-singular functions
(b) and right-singular functions (d), scaled by singular values (c).
t ′

2
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For example, the lowest-order approximation to K (τ , ω) would
e U0(τ )V0(ω)S0.)
Crucially, the singular values Sl decay at least exponentially

uickly, log(Sl) = O(−l/ log(βωmax)). This information loss on
he other hand allows the imaginary-time propagator to be com-
ressed by storing the expansion coefficients of the left-singular
unctions (‘‘IR basis functions’’) Ul [6]:

(τ ) =

L−1∑
l=0

Ul(τ )Gl + ϵL(τ ), (5a)

here Gl = −Sl
∫
dω Vl(ω)ρ(ω) are the expansion coefficients

nd ϵL is an error term which vanishes exponentially quickly,
L ∼ SL/S0. Its Fourier transform is given by

ˆ (iω) =

∫ β

0
dτ eiωτG(τ ) =

L−1∑
l=0

Ûl(iω)Gl + ϵ̂L(iω), (5b)

here iω =
iπ
β
(2n + ζ ) is a Matsubara frequency, ζ = 0/1

or bosons/fermions, and ·̂ denotes the Fourier transform. The
ingular value construction means that the IR basis is (a) optimal
in terms of compactness:1 for, e.g., βωmax < 108, no more than
200 coefficients must be stored to obtain full double precision
accuracy; (b) orthonormal; and (c) unique, thereby providing a
robust and compact storage format.

To achieve (ii) reconstruction, we note that the ‘‘polynomial-
like’’ properties of Ul [13,31] guarantee that there exists [32,33]
a sparse set of O(L) times T = {τi} and frequencies W = {iωn}

rom which we can robustly infer the coefficients [10]. sparse-ir
olves the following ordinary least-squares problems:

l = argmin
{Gl}

∑
τ∈T

⏐⏐⏐G(τ ) −

L−1∑
l=0

Ul(τ )Gl

⏐⏐⏐2, (6a)

Gl = argmin
{Gl}

∑
iω∈W

⏐⏐⏐Ĝ(iω) −

L−1∑
l=0

Ûl(iω)Gl

⏐⏐⏐2. (6b)

Given a sensible choice for the sampling points, Eqs. (5) and
(6) now allow us to move between sparse imaginary-time and
frequency grids and compressed representations without any
significant loss of precision [10].

3. Example usage

As a simple example, let us perform self-consistent second-
order perturbation theory for the single impurity Anderson model
at finite temperature. Its Hamiltonian is given by

H = −µ(c†
↑
c
↑

+ c†
↓
c
↓
) + Uc†

↑
c†
↓
c
↓
c
↑

+

∑
pσ

(
Vpσ f†pσ cσ + V ∗

pσ c
†
σ fpσ

)
+

∑
pσ

ϵpf†pσ fpσ , (7)

here U is the electron interaction strength, µ is the chemical po-
ential, cσ annihilates an electron on the impurity, fpσ annihilates
n electron in the bath, † denotes the Hermitian conjugate, p ∈ R
s bath momentum, and σ ∈ {↑, ↓} is spin. The hybridization
trength Vpσ and bath energies ϵp are chosen such that the non-
nteracting density of states is semi-elliptic with a half-bandwidth
f one, ρ0(ω) =

2
π

√
1 − ω2, U = 1.2, β = 10, and the system is

alf-filled, µ = U/2.
We present the associated algorithm in Fig. 2. First, we con-

truct the IR basis for fermions and β = 10, intuit that ωmax = 8
is larger than the interacting bandwidth and content ourselves

1 The truncated IR expansion minimizes ∥ϵL∥ in the L2-norm sense if no
dditional information, i.e., a flat prior, for ρ(ω) is used.

Fig. 2. Self-consistent second-order perturbation theory for a single-impurity
Anderson model (7) with a semi-elliptic density of states and U = 1/2 at half
filling and β = 10 using sparse-ir.

with an accuracy of ϵ = 10−6 (line 2). We then compute the
basis coefficients as ρ0,l =

∫
dω Vl(ω)ρ0(ω) (line 6). The non-

interacting propagator G0,l = −Slρ0,l (line 7) serves as initial
guess for Gl (line 9). We then construct the grids and matrices
for sparse sampling (lines 10, 11), after which we enter the
self-consistency loop (line 12): At half filling, the second-order
self-energy is simply

Σ(τ ) = U2G3(τ ) (8)

(line 15). We construct this object at the sampling points {τi}

by first expanding Gl (line 14). The dynamical part of the self-
energy is propagator-like [34], so it can be modeled by the IR
basis (the Hartree and Fock term, if present, needs to be handled
separately). The Dyson equation

Ĝ−1(iω) = Ĝ−1
0 (iω) − Σ̂(iω) (9)

(line 19) is then solved by expanding both G0 and Σ on the sparse
set of frequencies (lines 17, 18). To complete the loop, the IR
coefficients for G are then updated (line 20). We converge if the
deviation between subsequent iterations (line 13) is consistent
with the basis accuracy (line 12).

The resulting self-energy Σ̂(iω) on the Matsubara axis is pre-
sented in Fig. 3 (only the imaginary part is plotted, since the
real part is merely a constant U/2 at half filling). Instead of a
dense mesh (plusses), the Dyson equation has to be solved only
on the sampling points (crosses). Since the IR coefficients for both
the Green’s function and the self-energy are guaranteed to decay
quickly (see inset), this is enough to reconstruct the functions
everywhere with the given accuracy bound of ϵ = 10−6. We note
that this bound and the UV cutoff ωmax are the only discretization
parameters we need to supply.

The code in Fig. 2 is short, simple—no explicit Fourier trans-
forms or models are required—yet guarantees the given accuracy
goal. Extending the approximation to Σ = GW would require
only the addition of a bosonic basis, the construction of the RPA
diagram, Π (τ ) = G2(τ ), and solving the Bethe–Salpeter equation,
Ŵ (iω) = U + UΠ̂ (iω)Ŵ (iω), where again sparse grids and
transformations can be used.

In addition to this example, sparse-ir ships a set of tutori-
als [35], demonstrating the use of the Python, Julia, and Fortran
libraries in typical many-body calculations. Each tutorial con-

tains a short description of the underlying many-body theory as

3
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Fig. 3. Imaginary part of the Matsubara self-energy Σ̂(iω) for the GF(2) calcu-
ation in Fig. 2. Black crosses mark the location of sampling points W on which
he Dyson equation (9) is solved and from which the full signal is reconstructed.
nset: normalized IR expansion coefficients of G (plusses) and Σ −ΣHF (crosses)
nd singular values (dots) for comparison. Lines are guides for the eye.

ell as sample code utilizing sparse-ir and its expected output.
urrently, we include tutorials on: (a) the GF(2) and GW ap-
roximation [36,37], (b) fluctuation exchange (FLEX) [19,23,38],
c) the two-particle self-consistent (TPSC) approximation [39,
0], (d) Eliashberg theory for the Holstein–Hubbard model [41–
4], (e) the Lichtenstein formula [45], (f) calculation of the or-
ital magnetic susceptibility [46–53], and (g) numerical analytic
ontinuation based on the SpM method [5].

. Architecture and features

The main functions of the library are (a) construction and
andling of the kernel (3), (b) performing the singular value
xpansion (4), (c) storage and evaluation of the IR basis functions
5), and (d) construction of the sampling points and solution of
he fitting problem (6). The sparse-ir package was split along
hese lines into modules, see Fig. 4, which we will briefly describe
n the following.

ernel. Two kernels are packaged with sparse-ir:

log
Λ (x, y) =

exp(−Λ
2 (x + 1)y)

1 + exp(−Λy)
Θ(1 − |y|), (10a)

KRB
Λ (x, y) =

y exp(−Λ
2 (x + 1)y)

1 − exp(−Λy)
Θ(1 − |y|). (10b)

Kernels are expressed in terms of dimensionless variables x and
y in the interval [−1, 1], where τ =

β

2 (x + 1) and ω = ωmaxy.
nstead of parametrization by both inverse temperature β and UV
utoff frequency ωmax, this allows one to consider only a single
cale parameter Λ = βωmax.
The logistic kernel (10a) is the default kernel used for both

ermionic and bosonic propagators for simplicity: even though
t is the analytic continuation kernel for fermions, it can also
e used to compactly model bosonic propagators [8,26,54]. The
egularized bosonic kernel (10b) is common in numerical analytic
ontinuation of bosonic functions [55,56] and is used by the
rbasis library for bosonic propagators. Thermal contributions to

the susceptibility, χ (ω = 0), can be modeled by augmenting the
basis [13]. User-defined kernels may be added.

Each kernel K can be evaluated by supplying x, y, however care
must be taken not to lose precision around x = ±1: in addition
to x we use x± := 1 ± x to full precision to avoid cancellation in
the enumerators of Eqs. (10).

Piecewise polynomials. To represent the IR basis functions (4), we
employ piecewise Legendre polynomials:

Pnq(x; {xm}) :=

√
1

∆xn
Pq

(
x − x̄n
∆xn

)
Θ(∆xn − |x − x̄n|), (11)

where x0 < x1 < · · · < xN are the segment edges, ∆xn :=
1
2 (xn − xn−1), x̄n :=

1
2 (xn + xn−1), and Pq denotes the qth Legendre

polynomial.
Given suitable discretizations of the axes, {xn} and {yn}, as well

as a Legendre order Q , the left and right IR basis functions can
then be expanded as follows:

ul(x) ≈

N∑
n=1

Q∑
q=0

ulnqPnq(x; {x0, . . . , xN}), (12a)

vl(y) ≈

N ′∑
n′=1

Q∑
q′=0

vln′q′Pn′q′ (y; {y0, . . . , yN ′}), (12b)

where ulnq and vln′q′ are expansion coefficients.
Legendre polynomials have the advantage that their Fourier

transform is given analytically [3]:

P̂nq(±ω; {xm}) :=

∫ xN

x0

dx e±iωxPnq(x; {xm})

= 2
√

∆xne±iωx̄n (±i)qjq(ω∆xn),
(13)

where ω ≥ 0 is a frequency and jq(x) is the qth spherical Bessel
function. Thus, no numerical integration is necessary, though
exp(iωx) must be analytically mapped back to small iωx to avoid
cancellation.

Singular value expansion (SVE). Given the discretization outlined
above, we can relate the SVE (4) needed for constructing the IR
basis to the singular value decomposition (SVD) of the following
(NQ ) × (N ′Q ) matrix [6,29]:

Anq,n′q′ =

√
(q +

1
2 )(q

′ +
1
2 )

×

∫∫
dx dy Pnq(x, {xm})Pn′q′ (y, {ym})K (x, y),

(14)

where the singular values of A are equal to the singular values
sl of the kernel, and the left and right singular vectors are the
(scaled) expansion coefficients of ul(x) and vl(y), respectively (12).
L is chosen such that sL < ϵs0, where ϵ is the desired accuracy
of the basis. In practice, we approximate the integral (14) by
the associated Gauss–Legendre rule and rewrite the problem as
equation for the Gauss nodes [8,29,32]. As the kernels (10) are
all centrosymmetric, K (x, y) = K (−x, −y), the SVE problem is
block-diagonalized for a four-fold speedup [57].

We empirically find that choosing {xm} and {ym} close to the
extrema of the highest-order basis functions, uL−1(x) and vL−1(y),
respectively, to provide an excellent discretization, only necessi-
tating Q = 16 for ϵ = 10−16. Since computing the basis functions
requires solving the SVE, each kernel maintains approximations
to {xm} and {ym} as hints. As only a fraction 1/Q of the singular
values of Eq. (14) are needed, we use a truncated SVD algorithm
(rank-revealing QR decomposition followed by two-sided Jacobi
rotations [58]) at the cost of O(N ′2NQ 3).

In order to guarantee an accuracy of ϵ for both singular values
and basis functions, one has to compute the SVE with a machine
4
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Fig. 4. Simplified UML class diagram of the core of sparse-ir . Classes with names in boldface are available from the top namespace.

precision of ϵ2 [58]. Thus we compute the SVD in standard double
precision for ϵ ≥ 10−8 and quadruple precision otherwise. For
the latter we have developed the xprec extension to numpy. Note
that quadruple precision is only needed in the SVE — the basis
functions are stored and evaluated in double precision.

Sampling. The sampling times {τi} and frequencies {iωn} are cho-
sen such that the highest-order basis functions, UL−1(τi) and
ˆ L−1(iωn), respectively, are locally extremal. To optimize con-
itioning, τ1 and τL are moved from ±1 to the midpoint of
etween the ±1 and the closest root of UL−1. Sampling in fre-
uency is conditioned somewhat worse due to the discrete nature
f the frequency axis, which is why {iωn} are augmented by four
dditional frequencies.
With the sampling points chosen, sparse sampling now in-

olves transitioning between IR basis coefficients and the value
t the sampling points. For evaluation (5) at the sampling points
e multiply with precomputed matrices, Fil := Ul(τi) and F̂nl :=

ˆ l(iωn), respectively, at a cost of O(L2). For fitting the IR coeffi-
ients, we need to solve the least-squares problems (6). However,
ultiplying with a precomputed pseudoinverse can lead to loss of
ackward stability [59], and we observe this in the case of basis
ugmentation. Instead, we precompute and store the SVD of F
nd F̂ and construct the pseudoinverse on the fly, again at a cost
f O(L2).
For propagators G(τ ) which are real-valued in imaginary time,

Matsubara sampling can be directed to infer negative frequencies
from the symmetry relation Ĝ(iω) = Ĝ∗(−iω) by setting the
ositive-only flag. This cuts the number of sampling frequencies
n half and yields a four-fold speedup at no loss of accuracy.

ulia and fortran libraries. This software package includes Ju-
ia [60] and Fortran [61] libraries. The Julia library implements
he full set of functionalities of the Python library with a sim-
lar interface. The Fortran library implements only their subset
equired for its use in ab initio programs: The Fortran library uses
he tabulated values of the IR basis functions computed by the
ython library. The Fortran interface is fully compatible with the
ortran95 standard and has no additional external dependencies.
ore detailed descriptions can be found in readme files of the

epositories and the tutorials described below.

. Impact and outlook

We expect that sparse-ir will be widely used in many-body
nd ab initio calculations based on diagrammatic theories such

as GW and quantum embedding theories such as the dynamical
mean-field theory and its extensions. The computational com-
plexity of diagrammatic calculations based on these technolo-
gies grows slower than any power law with respect to the in-
verse temperature. This makes these technologies particularly
efficient and useful in studying systems with a large bandwidth at
low temperatures. The library will make new studies for under-
standing the low-temperature properties of solids and molecules
feasible.

To facilitate its application to various fields, the library sup-
ports languages popular in many different areas (Python and
Julia for prototyping, Fortran, C, and C++ for existing ab initio
codes.) The library is shipped with many self-contained tutorials
on specific topics in different fields of physics.

6. Conclusions

We present intermediate representation (IR) and sparse sam-
pling for efficient many-body and ab initio calculations based
on imaginary-time propagators. These methods are implemented
in Python/Julia/Fortran libraries to allow researchers in a large
community of many-body physics and ab initio calculations to use
them.
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Chapter

Superconductivity 3
This is a piece of pure physics haiku.1

— Piers Coleman

Superconductivity is a prototypical example of emergent phenomena where the
collective pair condensation of electrons cannot be anticipated from the Schrödinger
equation of individual particles. The formation of the superconducting state necessi-
tates two distinct quantum phenomena: particle pairing and macroscopic phase
coherence. Their interplay creates a many-body state with broken global phase
symmetry manifesting in unique properties such as the Meissner effect with perfect
diamagnetism, dissipationless supercurrent flow, or the Josephson effect.

Electron pairing requires an attractive interaction allowing the electrons to avoid
repulsive Coulomb forces in time (retarded interaction), space (anisotropic interac-
tion), or orbital degrees of freedom (exchange interaction). The onset of macroscopic
coherence, on the other hand, warrants long-range order enabled by the (phase)
stiffness or rigidity of the superconducting condensate. The condensate stiffness
is closely linked to the pair density and electronic structure properties, like its
associated quantum geometry and effective masses [449–452]. Both requirements for
superconductivity introduce two distinct and often competing energy scales [453–
456], the pairing amplitude or energy gap Δ and the condensate stiffness 𝐷s. An
equivalent characterization is given by amplitude and phase mode energies or
intrinsic length scales of a superconductor, the correlation length 𝜉 and magnetic
penetration depth 𝜆L.

In this chapter, we review the theoretical concepts necessary to understand the
preceding premise and we introduce the methodological tools to study supercon-
ducting materials as applied in later chapters. There are many excellent textbooks
on the subject of superconductivity which may be consulted for a more detailed
treatment of some of the topics discussed here, such as Refs. [30, 42, 457–462].

A central classification of superconductivity is given by the notion of spontaneous
symmetry breaking which we discuss first in section 3.1. We introduce the super-
conducting order parameter associated with broken U(1) phase rotation symmetry,

1To not only humble the topic but fit the lyrical motif, the chapter’s title could aptly be named:
Theory at glance – Superconductivity – Comprehensively
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3 Superconductivity

which allows for a qualitative understanding of many properties of superconducting
matter. The description within Ginzburg–Landau theory shows how the afore-
mentioned intrinsic lengths or, equivalently, energy scales emerge and connect to
experimental observables like critical fields and currents. We briefly address the
Berezinskii–Kosterlitz–Thouless (BKT) transition pertinent to two-dimensional sys-
tems and we summarize the classification of the order parameter by spin-orbit and
point group symmetries which can be broken in unconventional superconductors
on top of a broken U(1) symmetry.

Building on the phenomenological motivation, we turn to a microscopic un-
derstanding of superconductivity. Its foundations are given by Bardeen–Cooper–
Schrieffer (BCS) theory which introduced the general idea of electrons forming
Cooper pairs through the presence of an effective attractive interaction. In section 3.2,
we summarize BCS theory and introduce the Nambu–Gor’kov formalism which
extends the framework of Green’s functions to describe superconductivity. This
approach allows us to address more generalized pairing interactions beyond the
local static approximation of BCS theory. An extension to retarded interactions
originating from electron-phonon coupling is given by Miglda–Eliashberg theory
(section 3.3).

A key focus of this thesis is the investigation of spin-fluctuation-mediated super-
conductivity [32–34, 117] in various materials [II, III, IV, V]. The central premise
is that electron scattering off magnetic fluctuations (paramagnons) induces an
anisotropic pairing potential, possibly facilitating more complex pairing symmetries
compared to those found in conventional, phonon-mediated superconductors. In
section 3.4, we provide an overview on the framework of spin-fluctuation-mediated
superconductivity with an effective interaction kernel derived from microscopic
spin fluctuation exchange (FLEX-type diagrams).

3.1 Spontaneous symmetry breaking

The notion of ‘symmetry’ is a powerful concept universally present throughout
physics. The presence of symmetries in a system implies that associated conservation
laws hold as captured in Noether’s theorem. Yet, the spontaneous breakdown of
symmetries has an equally profound consequence due to its connection to phase
transitions and the emergence of collective ordering. For instance, the crystallization
of solids breaks O(3) rotation and reflection symmetry as well as R𝑑 translation
symmetry in 𝑑 dimensions, magnetic systems reduce SU(2) spin rotation sym-
metry, and superfluidity or superconductivity is associated with breaking of U(1)
phase-rotation symmetry. Here, we will use the phenomenology of spontaneous
symmetry breaking (SSB) to identify and characterize fundamental properties of
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3.1 Spontaneous symmetry breaking

the superconducting condensate without the need to consider any details on the
microscopic origin. For this overview, we partially follow Refs. [44, 463].

SSB occurs when a stable state |𝜓⟩ has reduced symmetry compared to the Hamil-
tonian 𝐻 associated with the system.2 This means that the unitary transformation
�̂� = 𝑒 𝑖𝛼�̂� of a symmetry generator �̂� applied to |𝜓⟩ gives rise to an inequivalent
state while the energy of the two states |𝜓⟩ and �̂� |𝜓⟩ is the same. In fact, a whole
set of such symmetry-broken states can be generated by performing all symmetry
transformations �̂� starting from some initial symmetry-broken state |𝜓⟩. The
central quantity to characterize those states and distinguish between symmetric and
symmetry-broken phase is the order parameter which was originally introduced by
Landau in his general theory for second-order phase transitions [464].

The order parameter is zero in the disordered (symmetric) phase and becomes
finite in the ordered (symmetry-broken) phase, where it quantifies the “degree
of order” [464]. Microscopically, the order parameter describes the development
of long-range order due to SSB but its choice is not necessarily unique. Often,
the characterizing observable is motivated from the SSB itself. For instance, one
chooses the magnetization along the 𝑧-direction, 𝑚𝑧 =

〈
�̂�𝑧

〉
, for an Ising-type

ferromagnet or the Fourier-transformed density, 𝜌𝑮 =
∑

𝒌

〈
𝑐†𝒌𝑐𝒌+𝑮

〉
, for discrete

lattices. Nevertheless, it is possible to give a recipe for determining proper order
parameter. Following Beekman et al. [463], the (local) order parameter Ψ(𝒓) can be
found from the existence of an interpolating field Φ̂(𝒓) acting locally in space via

Ψ(𝒓) = ⟨𝜓| [�̂�, Φ̂(𝒓)] |𝜓⟩
{
≠ 0 𝑇 < 𝑇c

= 0 𝑇 ≥ 𝑇c
. (3.1)

Here, the commutator [�̂�, Φ̂(𝒓)] can be regarded as an operator Ψ̂(𝒓) pertinent to
the broken symmetry �̂�. The freedom in choosing Φ̂ allows for defining Ψ̂ to be
distinct for different classes of nonequivalent ordered states. This is useful if more
than one symmetry is broken, as is particularly the case for most unconventional
superconductors (see section 3.1.6).

To illustrate the definition (3.1), we want to discuss two examples. First, we
consider a ferromagnetic system where the principle axis of spin-alignment is
chosen to be along the 𝑧-direction. In this case, the SU(2) rotation symmetry of spin
space is reduced to just U(1) rotations about the 𝑧-axis, i.e., the symmetry of �̂�𝑥 and
�̂�𝑦 is spontaneously broken. We can obtain the order parameter (the magnetization)
by choosing �̂� = �̂�𝑥 and Φ̂ = �̂�𝑦 such that [�̂�𝑥 , �̂�𝑦] = 𝑖�̂�𝑧 and Ψ ∼ 〈

�̂�𝑧
〉 ≡ 𝑚𝑧 .

The second example concerns the order parameter for a superfluid (or supercon-
ductor). This ordered phase emerges from the coherent condensation of particles

2We will only consider the thermodynamic limit here. For an in-depth discussion of the impact on
finite-sized systems, we refer to the lecture notes by Beekman et al. [463].
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3 Superconductivity

(bosons or fermionic pairs) which breaks global U(1) phase-rotation invariance.
This is reflected in the symmetry-breaking macroscopic condensate developing
a particular phase 𝜑. An equivalent statement is that the particle number is not
conserved in the condensate. This relation might not be straightforward to see a
priori but it becomes clear by determining the order parameter. For simplicity, we
discuss a bosonic system in the following.3 The (broken) symmetry of the (indefinite)
total particle number is described by �̂� ≡ �̂� =

∫
d𝑑𝑟 �̂�(𝒓) =

∫
d𝑑𝑟 �̂�†(𝒓)�̂�(𝒓) [463]

with bosonic field operators �̂�(†). As the interpolating field we choose the field
operator �̂� itself. It follows from Eq. (3.1) that

[�̂�, �̂�(𝒓)] =
∫

d𝑑𝑟′ [�̂�†(𝒓 ′)�̂�(𝒓 ′), �̂�(𝒓)] = −�̂�(𝒓) (3.2)

using [�̂�†(𝒓), �̂�(𝒓 ′)] = −𝛿(𝒓 − 𝒓 ′). Hence, the order parameter is the expectation value
of a field operator, Ψ =

〈
�̂�
〉
, which can only be finite in case of a varying particle

number since �̂� links states |𝑁⟩ and |𝑁 + 1⟩ (or |𝑁 + 2⟩ for superconductors). Such
quantum states of indefinite particle numbers are described by coherent states [44,
459, 463] (cf. the BCS ground state in Eq. (3.98)) which can be thought of as the
many-body generalization of wave packets. They are the eigenstates of the field
operator given by

|𝜓⟩ = 𝒩 exp
(∫

d𝑑𝑟 𝑔(𝒓)�̂�†(𝒓)
)
|0⟩ ∼

∑
𝑛

(�̂�†)𝑛 |0⟩ (3.3)

with normalization constant 𝒩 . The presence of field operators with varying powers
𝑛 reveals the quantum nature of coherent states, which manifests as a coherent
superposition of infinitely many states with different particle numbers. The complex
function 𝑔(𝒓) = |𝑔(𝒓)|𝑒 𝑖𝜑(𝒓) is the eigenvalue of �̂�(𝒓) and can be identified as the
macroscopic wave function of the condensate [459] (see Eq. (3.5) below) with average
particle number 𝑁s =

∫
d𝑑𝑟 |𝑔(𝒓)|2. Acting with the symmetry transformation 𝑒 𝑖𝛼�̂�

on a coherent state translates the phase of the wave function as 𝑔(𝒓)𝑒 𝑖𝛼 which can be
used to show that �̂� and �̂� form a pair of conjugate variables, i.e., that they obey a
commutation relation [�̂� , �̂�] = 𝑖 and uncertainty principle Δ𝑁Δ𝜑 ≥ 1/2. [44]. This
demonstrates our initial assertion that the particle condensate has a precise phase at

3Some subtleties exist between superfluidity from Bose–Einstein condensation and Cooper pairing
in superconductors: First, composite fermionic pairs making up the superconducting condensate
are not necessarily proper bosons (see section 3.2.1 and the book by Leggett [460] for an in-depth
discussion). Second, superconductors are charged superfluids where the order parameter couples
locally to the electromagnetic gauge field. This manifests in gapping out the Nambu–Goldstone
mode in the Anderson–Higgs mechanism (section 3.1.2). This non-gauge invariant nature of the
order parameter is sometimes equivocally referred to as spontaneous breaking of local U(1) gauge
symmetry/redundancy [214], which is actually not possible due to Elitzur’s theorem [465]; see ch. 7.2
of the review by Beekman et al. [463] for a discussion of the local order parameter’s gauge-invariance.
Note, however, that these nuances are not important for most practical applications.
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3.1 Spontaneous symmetry breaking

the expense of an indeterminate particle number.4 It is not a bad description in a
macroscopic system with 𝑁 ∼ 1023: Writing the uncertainty principle of phase and
particle number Δ𝜑Δ𝑁/𝑁 ≳ 1/𝑁 in terms of particle number fluctuations Δ𝑁/𝑁
shows that the phase and particle density can be simultaneously measured with
high accuracy since, particle fluctuations and phase variations are small on the order
of 𝑁− 1

2 ∼ 10−11.
We want to conclude the discussion on the superfluid/superconducting order

parameter by making a connection to the classification in terms of off-diagonal
long-range order (ODLRO) [459, 460, 467] initially introduced by Onsager and
Penrose for the description of superfluidity in helium [468, 469]. The idea of ODLRO
is that long-range correlation between particles exists. This can be quantified by the
single-particle density matrix 𝜌(𝒓 , 𝒓 ′) being factorizable on long-distances [467]

𝜌(𝒓 , 𝒓 ′) = ⟨�̂�†(𝒓)�̂�(𝒓 ′)⟩ |𝒓−𝒓 ′|→∞−−−−−−→ ⟨�̂�†(𝒓)⟩ ⟨�̂�(𝒓 ′)⟩ + small terms , (3.4)

indicating that there is a macroscopic coherence between points 𝒓 , 𝒓 ′. Such macro-
scopic phase coherence ensures that all condensed particles behave in unison,
effectively rendering the entire system a single, coherent quantum entity. A key
distinction from the previous description is that ODLRO employs states of fixed par-
ticle number by utilizing correlation functions such as 𝜌(𝒓 , 𝒓 ′) [460]. Yet, Eq. (3.4) is
written in a way that connects to our previously found order parameter ⟨�̂�(𝒓)⟩ = 𝑔(𝒓)
and coherent states with macroscopic wave function 𝑔(𝒓). To make this concrete,
we consider a homogeneous condensate of superfluid density 𝑛s, where then
𝜌(𝒓 , 𝒓 ′) = 𝑛s for |𝒓 − 𝒓 ′| → ∞. Identifying this with ⟨�̂�†(𝒓)⟩ ⟨�̂�(𝒓 ′)⟩ = |𝑔|2 from
ODLRO in Eq. (3.4), we can write the macroscopic wave function as

𝑔 =
√
𝑛s𝑒 𝑖𝜑 ≡ Ψ (3.5)

with fixed phase 𝜑. An extended discussion of this relationship can be found
in chapter 5 of Annett’s book [459]. Thus, we can associate the superfluid order
parameter with the superfluid density |Ψ|2 = 𝑛s. For superconductors, where the
condensate is made up by electron (Cooper) pairs, the order parameter describes
the pair density. However, it is more common to denote the “superconducting
density” 𝑛s as the density of (single) electrons that form the Cooper pairs in the
superconducting condensate, such that 𝑛n = 𝑛 − 𝑛s represents the density of
unpaired electrons. We maintain this convention here and denote the (Cooper) pair
density by 𝑛P, which leads to the superconducting order parameter relationship
|Ψ|2 = 𝑛P = 𝑛s/2.

4This point of view was not easily accepted after the introduction of BCS theory for superconducting
pairing and its practicality can be criticized, see ch. 2.2 in the book by Leggett [460]. Physical implications
of a quantum state with definite phase are discussed, e.g., by Leggett and Sols [466].

61



3 Superconductivity

3.1.1 Ginzburg–Landau theory
We are interested in the properties of the superconducting condensate that emerge
upon entering the symmetry-broken phase. Landau’s theory for phase transitions
provides a phenomenological, yet insightful description to characterize changes
in thermodynamic properties. Central to this idea is the parameterization of the
partition function, 𝑍 = Tr 𝑒−𝛽𝐻 , and appropriate thermodynamic potentials in
terms of the order parameter Ψ. Formally, this is achieved by integrating out the
microscopic degrees of freedom in 𝑍 [214, 463] to obtain an effective path-integral

𝑍 =
∫

𝒟2[Ψ] 𝑒−𝛽ℱL[Ψ] (3.6)

with the Landau free energy ℱL being a functional of the complex order parameter.
In this sense, the order parameter can be seen as a coarse-grained representation of
the microscopic details. Landau’s theory is a mean-field theory where the functional
integral is simplified by a saddle-point integration, but Eq. (3.6) represents a good
starting point to systematically include fluctuations around the mean-field value of
the order parameter [459, 462].

The ground state and its properties are found from minimizing ℱL. Close to the
phase transition (𝑇 ≈ 𝑇c), Ψ is small and it was Landau’s astute proposal [464] to
expand ℱL in powers of Ψ:5

ℱL[Ψ]/𝑉 = 𝑓L[Ψ] = 𝑓n + 𝑎Ψ∗Ψ + 𝑏
2 (Ψ

∗Ψ)2 = 𝑓n + 𝑎|Ψ|2 + 𝑏
2 |Ψ|4 . (3.7)

The term 𝑓n is the free energy density of the disordered (“normal”) phase and
coefficients 𝑎, 𝑏 are material dependent parameters obtained from evaluating
Eq. (3.6) for a given microscopic model; see ch. 5.7 in the book by Leggett [460] for
expressions obtained from BCS theory as initially derived by Gor’kov [470]. We
constrain the description here to second-order phase transitions where terms up to
quartic order are sufficient and we set 𝑓n to zero.

The stationary point of 𝑓L is found from the condition

𝛿 𝑓L
𝛿Ψ∗ = 2Ψ

(
𝑎 + 𝑏|Ψ|2) !

= 0 ⇒ |Ψ0| = ±
√
− 𝑎
𝑏

∨ Ψ0 = 0 . (3.8)

In order to have a finite solution below the critical temperature 𝑇c, the sign of
𝑎 needs to change as 𝑏 > 0 is required for a stable system. We achieve this by
𝑎(𝑇) = 𝛼(𝑇 − 𝑇c) = −𝛼𝑇c(1 − 𝑡) with reduced temperature 𝑡 = 𝑇/𝑇c.

5Proper Taylor expansion around Ψ = 0 would yield different numerical prefactors but we follow
a common convention [44] to drop a factor of 1

2 when dealing with complex order parameters.
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Figure 3.1 – Landau free energy and order parameter (a) Landau free energy 𝑓L for a BCS
superconducting order parameter Ψ at different temperatures 𝑇. The evolution of the
minimum with 𝑇 being reduced below the transition temperature 𝑇c is indicated by orange
dots. (b) Temperature-dependent order parameter Ψ(𝑇). The solid blue line describes the
BCS order parameter, whereas the red dash-dotted line is the Landau order parameter. The
linear-in-temperature behavior of the squared order parameter at temperatures close to 𝑇c

is shown in the inset. Its extrapolation to
√
−𝛼𝑇c/𝑏 at zero temperature overestimates the

real value Ψ(0). In both panels, the effect of a pairing potential 𝜂 [471] is drawn with a teal
dashed line.

Thus, the finite order parameter takes the form

|Ψ(𝑇)| =
√
−𝛼
𝑏
(𝑇 − 𝑇c) = |Ψ(0)|

√
1 − 𝑡 (3.9)

with |Ψ(0)|2 = −𝛼𝑇c/𝑏 for 𝑇 < 𝑇c and the Landau free energy density becomes
𝑓𝐿 = −𝑎2/(2𝑏). In Figure 3.1, we show the shape of 𝑓L and the order parameter as a
function of temperature 𝑇 for the example of a BCS superconducting system. As
𝑇 crosses 𝑇c, minima at ±|Ψ0| arise that grow with decreasing 𝑇 – the renowned
double-well potential is formed.

Close to the phase transition, a superconducting system shows an infinitely strong
response to external applied fields. We can see this by adding a source term ∼ −𝜂Ψ
to 𝑓L, where the external pairing potential 𝜂 is coupled in via the proximity effect.
This results in a tilt of the potential energy landscape and it smears out the order
parameter at 𝑇c (see Figure 3.1). The response of the system is encoded in the
(zero-field) susceptibility6

𝜒0(𝑇) = 𝜕Ψ
𝜕𝜂

����
𝜂=0

=


− 1

4𝑎 𝑇 < 𝑇c

1
2𝑎 𝑇 ≥ 𝑇c

, (3.10)

which solely derives from the second order term 𝑎. Since 𝑎 → 0 for 𝑇 → 𝑇c, 𝜒0

diverges at the critical point 𝑇c which shows that any small stray fields 𝜂 can push
6The result is obtained from minimizing Eq. (3.7) with respect to 𝜂 after adding the source term.
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3 Superconductivity

the system into the symmetry-broken phase.7 Analyzing the divergence behavior of
susceptibilities is a common method to identify phase transition lines in microscopic
methods (sometimes referred to as Thouless criterion [472]). Equivalently, one can
investigate the eigenvalues of the corresponding Bethe–Salpeter equation kernel, i.e.,
a vertex and (irreducible) bubble term. For the superconducting pairing instability,
this is embodied by the linearized gap equation (see Eqs. (3.128) and (3.131)) which
we use to determine 𝑇c in publications II, III, IV, V. We note that care must be taken in
interpreting diverging susceptibilities (or vertices) within approximate many-body
techniques as signs of a phase transition [117, 321, 322], see also the discussion in
section 2.2.4.

Spatial fluctuations of the order parameter

So far we ignored the fact that the order parameter is a complex-valued function
Ψ = |Ψ|𝑒 𝑖𝜑 which is possible because Eq. (3.7) is𝑈(1) symmetric. The double-well
potential (Figure 3.1a) has, in fact, rotational symmetry in the complex plane that
is broken by the order parameter taking a finite value with a particular phase
(cf. Figure 3.4a in section 3.1.2). To account for variations in the amplitude or twists
of the phase, we need to add a gradient term to ℱL. The free energy then becomes
(neglecting the normal phase contribution 𝑓n and pairing field 𝜂(𝒓))

ℱGL[Ψ] =
∫

d𝑑𝑟 𝑓GL[Ψ(𝒓),∇Ψ(𝒓)]

=
∫

d𝑑𝑟
(
𝑎|Ψ(𝒓)|2 + 𝑏

2 |Ψ(𝒓)|4 + ℏ2

2𝑚∗
P
|∇Ψ(𝒓)|2

)
,

(3.11)

which is known as Ginzburg–Landau (GL) free energy [473]. The gradient term is
written to resemble a kinetic energy, i.e., the coefficient 𝑚∗

P is the effective mass of
the condensing particles. In superconductors, these particles are Cooper pairs, for
which we associate 𝑚∗

P = 2𝑚∗, where 𝑚∗ is the effective (or renormalized) electron
mass.8 By inserting Ψ(𝒓) = |Ψ(𝒓)|𝑒 𝑖𝜑(𝒓) and using the chain rule ∇Ψ = ∇(|Ψ|𝑒 𝑖𝜑) =
𝑒 𝑖𝜑(∇|Ψ| + 𝑖|Ψ|∇𝜑), we can separate terms relating to amplitude and phase as

𝑓GL = 𝑎|Ψ(𝒓)|2 + 𝑏
2 |Ψ(𝒓)|4 + ℏ2

2𝑚∗
P
∇|Ψ(𝒓)|2︸                                         ︷︷                                         ︸

amplitude fluctuations

+ ℏ2|Ψ(𝒓)|2
2𝑚∗

P
|∇𝜑(𝒓)|2︸                 ︷︷                 ︸

phase fluctuations

. (3.12)

7This is because the transition to a superconductor is of second order. First-order transitions are
not necessarily accompanied by a diverging susceptibility

8Our notation slightly differs from that found in most other discussions of GL theory, where 𝑚∗
is used to denote the (effective) pair mass instead of the single electron’s mass [V, 44, 458, 462]. The
distinction using 𝑚∗

P allows us to explicitly represent electron correlations contributing to an effective
mass 𝑚∗, while avoiding a factor of 2 discrepancy in subsequent equations.
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3.1 Spontaneous symmetry breaking

The dominating fluctuations are determined by the characteristic length scale
established through the gradient term – the correlation length 𝜉. It is defined as

𝜉(𝑇) =
√

ℏ2

2𝑚∗
P|𝑎(𝑇)|

= 𝜉0|1 − 𝑡|− 1
2 (3.13)

with the coherence length 𝜉(𝑇 = 0) = 𝜉0 = (2𝑚∗
P𝛼𝑇c)−1/2 [44]. The correlation length

sets the scale for macroscopic coherence, i.e., the coarse-grained resolution obtained
from integrating out microscopic degrees of freedom in Eq. (3.6). For lengths below
𝜉, amplitude fluctuations of the order parameter dominate while on distances above
𝜉 only phase fluctuations remain (see the discussion of phase rigidity in section 3.1.3).
The divergence of 𝜉 at 𝑇c indicates that microscopic details are not important close
to the phase transition whereas fluctuation effects have significant influence and the
mean-field treatment of GL theory loses validity as discussed in section 3.1.4. In
BCS theory, it turns out that the coherence length describes the distance between
paired electrons, i.e., the size of Cooper pairs, and is given by [459, 460]

𝜉0 =
ℏ𝑣F
𝜋Δ0

= 0.18 ℏ𝑣F
𝑘B𝑇c

(3.14)

with the zero-temperature superconducting gap Δ0 (3.95) and Fermi velocity 𝑣F.

The correlation length

To illustrate the nature of 𝜉, we briefly discuss three examples of nonuniform
solutions Ψ(𝒓) for Eq. (3.12). First, we consider the case of constant phase where we
can choose |Ψ| ≡ Ψ to be real-valued. The stationary point condition 𝛿ℱGL/𝛿Ψ = 0
yields a differential equation for Ψ. For convenience, we consider a one-dimensional
problem and introduce the normalized function 𝑔 = Ψ/Ψ0 with Ψ2

0 = −𝑎/𝑏 such
that the differential equation becomes [458]

𝜉2 d2𝑔

d𝑥2 + 𝑔 − 𝑔3 = 0 . (3.15)

To study how the order parameter changes towards the edge of a superconductor,
we set the boundary conditions 𝑔(𝑥0) = 0 and 𝑔(𝑥 → ∞) = 1, i.e., the homogeneous
value Ψ0 should be taken far inside the superconductor, away from the edge at 𝑥0.
The solution is given by

𝑔(𝑥) = tanh
(
𝑥 − 𝑥0√

2𝜉

)
for 𝑥 ≥ 𝑥0 . (3.16)

It shows that 𝜉 is indeed the characteristic length scale on which the order parameter
and hence condensate density 𝑛s = 2|Ψ|2 varies. Considering small variations
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from the homogeneous value 𝑔(𝑥) = 1 + 𝛿𝑔(𝑥) yields 𝛿𝑔(𝑥) ∼ −𝑒−
√

2(𝑥−𝑥0)/𝜉. That is,
disturbances to Ψ0 decay over distances 𝜉, because of which the correlation length
is sometimes called “healing length”.

In contrast, we can consider the case where direct amplitude fluctuations are
frozen out (i.e., ∇|Ψ(𝒓)| = 0) and only the phase varies. The corresponding stationary
point condition is similar to Eq. (3.8) with the additional term ∼ 𝜉2|∇𝜑|2. The order
parameter solution is

|Ψ| = |Ψ0|
√

1 − 𝜉2|∇𝜑(𝒓)|2 . (3.17)

Thus, short-ranged phase fluctuations on distances below 𝜉 reduce the amplitude
since phase and amplitude modes are coupled in the free energy (see section 3.1.2).
Large enough fluctuations destroy the macroscopic coherence and lead to a collapse
of the pairing condensate. By choosing the particular form of phase fluctua-
tions 𝜑(𝒓) = 𝒒 · 𝒓 describing Cooper pairs with finite center-of-mass momentum 𝒒

(cf. Eq. (3.73)), it is possible to probe this spatially induced breakdown of supercon-
ductivity as utilized in publication VI to calculate 𝜉 from microscopic models.

Lastly, we assess the linear response to a varying pairing field 𝜂(𝒓) compared to
the homogeneous case in Eq. (3.10). The result of a bit of algebra is (cf. p. 368 in
Ref. [44])

𝜒(𝒒) = 𝜒0𝜉−2

𝑞2 + 𝜉−2 (3.18)

in reciprocial space with 𝜒0 from Eq. (3.10). The Fourier-transform in three dimen-
sions yields a Yukawa-like function in position space

𝜒(𝒓) = 𝜒0
4𝜋𝜉2

𝑒−|𝒓|/𝜉

|𝒓| . (3.19)

Both expressions show that the response is short-ranged on the scale of 𝜉. The
susceptibility provides an alternative definition for the correlation length via [474]

𝜉−1 = − lim
𝑟→∞

𝜒(𝑟)
𝑟

. (3.20)

Coupling to electromagnetic fields

Superconductors are charged superfluids which couple to electromagnetic fields.
To take this into account in GL theory, we introduce the vector potential 𝑨 via
minimal-coupling, i.e., we replace ∇ ↦→ ∇ + 𝑖 𝑞ℏ𝑨 with 𝑞 = −2𝑒 for Cooper pairs of
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electrons.9 The free energy reads

ℱGL[Ψ,𝑨] =
∫

d𝑑𝑟
[
𝑎|Ψ(𝒓)|2 + 𝑏

2 |Ψ(𝒓)|4 + ℏ2

2𝑚∗
P

����(∇ − 𝑖 2𝑒
ℏ
𝑨

)
Ψ(𝒓)

����2 + 𝐵2

2𝜇0︸︷︷︸
𝑓EM

]
,

(3.21)

where the electromagnetic energy 𝑓EM of the magnetic field 𝑩 = ∇ × 𝑨 was added.
Since the vector potential appears in the gradient term, it establishes a second
characteristic length scale – the London penetration depth 𝜆L. We can identify it
more easily by focusing on the vector potential degree of freedom: Let us consider a
homogeneous condensate Ψ =

√
𝑛s/2, such that the free energy density depends

only on the vector potential as

𝑓GL[𝑨] ∼ 𝑒2𝑛s
2𝑚∗ 𝐴

2 + (∇ × 𝑨)2
2𝜇0

=
1

2𝜇0

(
1
𝜆2

L
𝐴2 + (∇ × 𝑨)2

)
(3.22)

inserting 𝑚∗
P = 2𝑚∗. In the second step, we inserted the London penetration depth10

𝜆L =
√

𝑚∗

𝑒2𝑛s𝜇0

Eq. (3.8)
=

√
− 𝑎𝑚∗

P
4𝑒2𝜇0𝑏

(3.23)

appearing as the prefactor of 𝐴2, i.e., it is associated with the variations of 𝑨.
Magnetic fields can only penetrate superconducting matter on distances up to 𝜆L

such that they are expelled from the inside of a superconductor. 1/𝜆L encodes
the coupling strength of the superconducting condensate to electromagnetic fields
which is (symbolically) captured by the inverse proportionality of 𝜆L to 𝑒: A large
penetration depth describes a weak coupling where the field can penetrate without
much screening over a greater distance while short𝜆L describe the opposite situation
with a strong coupling to the vector potential. The system parameter determining
the coupling strength is given by the ratio 𝑛s/𝑚∗ of superconducting carrier density
and effective mass, which represents the condensate stiffness 𝐷s (cf. Eq. (3.44))
further discussed in section 3.1.3.

9It is an interesting anecdote that in their original work Ginzburg and Landau, as they did not
yet know about electron pairs, made the choice of 𝑞 = −𝑒 “which there is no reason to consider as
different from the electronic charge” [473]. Yet, Ginzburg and Landau had different opinions on the
matter where Ginzburg believed in some effective charge. He deduced its value to be 𝑒eff = 2 – 3 𝑒
from comparison with experiments [475].

10We note that within GL theory, the temperature dependence of 𝜆L is proportional to 𝑛−1/2
s ∼

|Ψ| ∝ |1 − 𝑡|−1/2 just as the coherence length in Eq. (3.13). However, an empirically better description
of experimental data is given by the dependence 𝜆L(𝑇) = 𝜆L(0)|1 − 𝑡4|−1/2 originating from the
Gorter–Casimir two-fluid model [41, 458].
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That the superconducting phase contains no magnetic field lines is the well-known
Meissner–Ochsenfeld effect which we can derive from the stationary point condition
of the free energy for 𝑨. Taking the functional derivative yields [44]

𝛿ℱGL
𝛿𝑨

= 0 = −𝒋 + 1
𝜇0

∇ × 𝑩 , (3.24)

where we introduce the supercurrent density (cf. section 3.1.3)

𝒋 = −𝑖 𝑒ℏ
𝑚∗ (Ψ∗∇Ψ −Ψ∇Ψ∗) − 4𝑒2

𝑚∗ |Ψ|2𝑨 . (3.25)

Eq. (3.24) states Ampère’s law, underlining that Ψ describes a macroscopic quantity,
the wavefunction of the condensate, as established before solely from the consequence
of broken phase rotation symmetry. Taking the curl of Ampère’s law yields a
differential equation for the magnetic field(

∇2 − 1
𝜆L

)
𝑩 = 0 , (3.26)

to which the solution is an exponentially decaying function 𝐵(𝒓) ∼ 𝑒−|𝒓|/𝜆L over
the characteristic length 𝜆L. The expulsion of magnetic fields from the inside of
a superconductor (“Meissner phase”) is an immediate consequence and magnetic
field lines only penetrate the surface region up to 𝜆L. It is the result of perfect
diamagnetic response of the charged condensate where loop supercurrents generate
a compensating opposing field (cf. Eq. (3.24)).

As the current 𝒋 is proportional to the vector potential 𝑨11 (cf. Eq. (3.25)), a similar
expression of exponential decay holds for the current. It signifies that stationary
currents only exist in regions where the magnetic field can penetrate, i.e., surface
shells of thickness ∼ 𝜆L. We stress that it does not mean the absence of a persistent
supercurrent flow whose existence is, in fact, a direct consequence of macroscopic
coherence embodied by the order parameter Ψ [463]. This so-called rigidity of the
superconducting condensate is further discussed in section 3.1.3.

We remark that the preceding discussion adopts the simplified perspective of local
electrodynamics as initially discussed by the London brothers [476]. Pippard [477]
later expanded the theory to a non-local description which is in better agreement
with experimental observations and accommodates disorder and impurity effects.
Notably, Pippard introduced a length scale 𝜉P, known as the Pippard coherence

11The local relation 𝒋 = −𝑨/(𝜇0𝜆
2
L) ∝ 𝑨 is known as London equation which captures the

diamagnetic nature of current response and, effectively, the dissipationless nature of the supercurrent,
cf. section 18.5 in Ref. [213]. It implies 𝜕𝑡 𝒋 = 𝑬/(𝜇0𝜆

2
L) which is in contrast to Ohm’s law 𝒋 ∝ 𝑬

describing the typical dissipating currents in a material. Note that the London equation formally
requires one to work in the London gauge ∇ · 𝑨 = 0 or an equivalent constraint for a gauge field
𝑨′ = 𝑨 + ∇𝜒 [461].
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3.1 Spontaneous symmetry breaking

length, which characterizes the area over which 𝒋 and 𝑨 are non-locally correlated.
In case of small 𝜉P, the local limit of the London equation is recovered [461]. Note
that 𝜉P is closely related to 𝜉0 [Eq. (3.14)] [458].

Critical surface of a superconductor

A superconductor screens magnetic fields away such that field intensity decays
on distances 𝜆L. However, a superconductor cannot withstand arbitrarily high
magnetic fields. The limiting magnetic field strength is determined by the energetics
of the superconducting condensate and magnetic field. For this characterization, it is
more convenient to work with the Gibbs free energy 𝐺(𝑯) = 𝐹(𝑯) −𝑯 · 𝑩 which is a
function of the external magnetizing field 𝑯 = 𝑩/𝜇0. In the discussion of Figure 3.1,
we have seen that the energy density of the superconducting condensate without a
magnetic field is given by 𝑓s = 𝑔s = −𝑎2/(2𝑏). On the other hand, if we are in the
normal state outside the superconductor, e.g., a metal, the free energy density of the
magnetic field is given by 𝑔n = 𝑓n − 𝐻𝐵 = −𝐻2/(2𝜇0). The superconducting phase
breaks down when 𝑔n ≤ 𝑔s where the equality condition defines the thermodynamic
critical field

𝐻c,th =

√
𝑎2

𝜇0𝑏
. (3.27)

A domain wall separates the normal and superconducting state when 𝐻 = 𝐻c,th. Its
surface tension 𝜎sn = Δ𝐺/𝐴 (Gibbs free energy per area 𝐴 of the interface) can be
written as [44, 458]

𝜎sn =
𝜇0𝐻2

c
2

∫ ∞

−∞
d𝑥

[(
𝐻(𝑥)
𝐻c,th

− 1
)2

−
(
Ψ(𝑥)
Ψ0

)4
]
, (3.28)

which describes the difference of magnetic field energy and condensation energy at
the interface. Depending on the spatial dependence of the magnetizing field 𝐻(𝑥)
and order parameter Ψ(𝑥), 𝜎sn can be either positive or negative. These cases give
rise to the classification of type I (𝜎sn > 0) and type II (𝜎sn < 0) superconductors.12

The spatial dependence is controlled by 𝜆L and 𝜉 such that their ratio

𝜅 =
𝜆L
𝜉
, (3.29)

called the Ginzburg–Landau parameter, effectively determines the type of supercon-
ductor. The critical value can be found from the condition 𝜎sn = 0 yielding 𝜅 = 1/√2
(cf. p. 392 in Ref. [44]).

12Sometimes the declaration of Pippard superconductors (type I) and London superconductors
(type II) is used when the predominant character of electrodynamics is emphasized.
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Figure 3.2 – Classification types of superconductors. Schematic behavior of the order
parameter Ψ and magnetic field 𝐻 at the domain wall of type I (left) and type II (right)
superconductors. The insets show the typical 𝐻-𝑇 phase diagrams, where type I supercon-
ductors only have a Meissner phase (orange) with no penetrating field lines and type II
superconductors can host an additional vortex lattice phase (blue) with partially penetrating
magnetic flux lines.

The schematic behavior of magnetic field and order parameter (condensate density)
for type I and II superconductors is drawn in Figure 3.2. In type I superconductors
(𝜅 < 1/√2, i.e., 𝜉 >

√
2𝜆L), the coherence length is large and the condensate

can smoothly adapt to quickly decaying magnetic fields. Most pure elemental
superconductors (cf. Figure 1.3) are classified as type I, with the exceptions of
niobium (Nb) and vanadium (V) [30]. In contrast, type II superconductors (𝜅 > 1/√2)
have large penetration depths such that areas exist where the condensate order
parameter is recovered while magnetic field lines remain. For intermediate magnetic
field strength, it is then energetically more favorable to create a mixed phase of
coexisting superconducting and normal domains such that two critical magnetic
fields 𝐻c1 < 𝐻c2 exist. This mixed phase is realized for 𝐻c1 < 𝐻 < 𝐻c2, where an
Abrikosov lattice [270] of superconducting vortices emerges in which the magnetic
flux is contained. The magnitude of the flux Φ is quantized due to the fixed
phase of the condensate in units of the flux quantum Φ0 = ℎ/(2𝑒) = 𝜋ℏ/𝑒 [44, 458].
Most unconventional superconductors as well as conventional alloy and compound
superconductors are of type II, including the technologically relevant compounds
NbTi and Nb3Sn [4, 30].

The critical magnetic fields are related to each other and can be expressed by the
two characteristic length scales 𝜉 and 𝜆L. The thermodynamic critcal field (3.27) is
given by [458]

𝜇0𝐻c,th =
Φ0

2
√

2𝜋𝜆L𝜉
. (3.30)

It determines the first and second critical field of type II superconductors via

𝜇0𝐻c1 = 𝜇0𝐻c,th
ln𝜅√

2𝜅
=

Φ0

4𝜋𝜆2
L

ln 𝜆L
𝜉
, (3.31a)

𝜇0𝐻c2 =
√

2𝜅𝜇0𝐻c,th =
Φ0

2𝜋𝜉2 . (3.31b)
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Figure 3.3 – Critical surface of a superconductor. Supercon-
ducting performance is limited by the critical temperature
𝑇c, critical magnetic field 𝐻c, and critical current density 𝑗c.
The volume encompassed by the critical surface is typically
much larger in a high-temperature superconductor (HTSC)
compared to a low-temperature superconductor (LTSC).

As magnetic fields and currents are linked by Ampère’s law (3.24), a critical
supercurrent density 𝑗c has to exist. Upholding a stationary current implies charge
flow, i.e., Cooper pairs have to move through the material with finite center-of-mass
momentum 𝒒. The associated kinetic energy ℏ2𝑞2/2𝑚∗ at some point exceeds the
pairing energy of the condensate, leading to a breakup of Cooper pairs (cf. also
Eq. (3.80)). In GL theory, this limit is reached at the depairing current [458]

𝑗dp =
2
√

2𝐻c,th

3
√

3𝜆L
=

Φ0

3
√

3𝜇0𝜉𝜆2
L

. (3.32)

We use this relation in publication VI to obtain the penetration depth by calculating
supercurrents in the framework of microscopic theories. The depairing current
constitutes the theoretical upper maximum to achievable critical currents 𝑗c as they
crucially depend on sample geometry and defect densities through effects like
vortex pinning [458, 478]. In fact, elaborate experimental setups are necessary for 𝑗c
reaching 𝑗dp [479].

The limiting values 𝑇c, 𝐻c, and 𝑗c define the critical surface of a superconductor
drawn in Figure 3.3. An ideal superconducting material has a large volume encom-
passed by the critical surface where typically low-temperature superconductors
(of type I) have a smaller volume than high-temperature superconductors. For
engineering of superconducting materials, e.g., to optimize the critical surface, the
knowledge of the length scales 𝜆L and 𝜉 is pivotal as Eqs. (3.30 – 3.32) and the
preceding discussion showed.

We note in passing that𝐻c(2) is not the only limiting magnetic field. In addition, the
Clogston–Chandrasekhar limit [480, 481], also called the Pauli paramagnetic limiting
field, exists for singlet-paired superconductors. It arises from the competition of
the superconducting gap Δ and Zeeman splitting energy determining the critical
value [481]

𝐻p =
Δ

2𝜇B

BCS
=

1.76𝑇c
2𝜇B

≈ 2.6𝑇c
T
K (3.33)
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in BCS theory.13 Here, 𝜇𝐵 is the Bohr magneton. Early on, it was realized that 𝐻p

can be surpassed in systems with SOC [30] where, for instance, in recent years Ising-
type superconductivity was discovered in several transition metal dichalcogenides
(TMDCs) [73, 482–485]. On the other hand, the observation of critical magnetic
fields exceeding the Pauli paramagnetic limit is often interpreted as an indication
for triplet superconductivity where the parallel-aligned Cooper pair spins stay
unaffected by the Zeeman splitting. Recently, this has been discussed in magic-angle
twisted trilayer graphene (MATTG) [78, 486]) and in uranium-based ferromagnetic
heavy Fermion compounds [90] with the notable mention of UTe2 [59, 89], where
the re-entrant superconducting phase at high magnetic fields 𝐻 > 30 T is surpassing
the paramagnetic limit by far.

Order parameter with finite momentum

Although magnetism and superconductivity are competing, the possibility of their
coexistence has been independently conjectured by Fulde and Ferrel (FF) [487] and
Larkin and Ovchinnikov (LO) [488] for superconductors where Cooper pairs have
finite center-of-mass momenta. This is known as FFLO theory [489, 490] where the
generalized FFLO order parameter takes the form

ΨFFLO(𝒓) =
∑
𝒒

|Ψ𝒒|𝑒 𝑖𝒒𝒓 (3.34)

with a linear combination of different momenta 𝒒. Such an order parameter breaks
time-reversal symmetry as the 𝒒-dependent phase corresponds to a magnetic field
because of the coupling between phase gradient and vector potential. The initial
proposals by FF and LO are specific cases of the order parameter (3.34). FF-type
pairing assumes that a single momentum 𝒒 is taken, such that the order parameter
has a helical phase

ΨFF(𝒓) = |Ψ|𝑒 𝑖𝒒𝒓 , (3.35)

corresponding to a homogeneous phase twist along the direction of 𝒒. This or-
der parameter describes Cooper pairs with finite center-of-mass momentum 𝒒

(cf. Eq. (3.73)). The initial LO-type pairing, on the other hand, considers opposite
momenta ±𝒒 such that the order parameter becomes

ΨLO(𝒓) = |Ψ|(𝑒 𝑖𝒒𝒓 + 𝑒−𝑖𝒒𝒓 ) = 2|Ψ| cos
(
𝒒𝒓

)
. (3.36)

13If one instead compares the pair condensation energy 𝑁(0)Δ2/2 (cf. Eq. (3.99)) and paramagnetic
magnetization energy 𝜒𝐻2/2 = 𝑁(0)𝜇2

𝐵𝐻
2, the resulting limiting field strength is 𝐻p = Δ/(√2𝜇B) ≈

1.86𝑇c T/K [480].
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3.1 Spontaneous symmetry breaking

It describes a periodic amplitude modulation with wave vector 𝒒, which is commonly
also referred to as a pair density wave (PDW) [491]. Different to FF pairing with
constant amplitude, the LO and generalized FFLO states necessarily break the
point group symmetry of the lattice.14 Many systems with FFLO pairing have
been theoretically suggested [489, 490, 492–501] and also experimentally verified in
layered organic superconductors [502–505], heavy-fermion compounds [506–510],
iron-based superconductors [510–512], proximitized topological insulators [513,
514], TMDCs [515–518], or possibly cuprates [519].

The theoretical framework of Cooper pairs with finite momentum is a convenient
tool. For instance, it is used to describe an anisotropic supercurrent flow relevant
for the recently discovered superconducting diode effect [520–522], or to probe the
condensate response to small phase perturbations pertinent to the superconducting
stiffness [499, 523] discussed in section 3.1.3. Based on the finite-momentum pairing
formalism, we developed a microscopic approach to the intrinsic length scales (𝜉
and 𝜆L) in publication VI where we also further discuss the Ginzburg–Landau
phenomenology pertinent to an order parameter of FF-type (3.35).

Dimensionless GL equations

To conclude, we emphasize that the GL free-energy for superconductors (3.21)
contains two coupled components: the order parameter Ψ and vector potential 𝑨.
Each of them introduces an intrinsic length scale given by the correlation length
𝜉 and the London penetration depth 𝜆L, respectively. These characteristic scales,
𝜉 and 𝜆L, cast the stationary point conditions determined by 𝛿ℱGL/𝛿Ψ∗ = 0 and
𝛿ℱGL/𝛿𝑨 = 0, known as the Ginzburg–Landau equations, into a dimensionless
form [461]. By introducing 𝑔 = Ψ/Ψ0, 𝒂 = (Φ0/2𝜋𝜉)𝑨 and 𝜅 = 𝜆L/𝜉, the GL
equations can be written as follows:

(−𝑖∇ − 𝒂)2𝑔 + 𝑔 − 𝑔3 = 0 , (3.37a)

𝜅2∇ × (∇ × 𝒂)︸           ︷︷           ︸
=𝒋

+ 𝑖2 (𝑔
∗∇𝑔 − 𝑔∇𝑔∗) + 𝑔2𝒂 = 0 . (3.37b)

Here, 𝒋 is the dimensionless supercurrent. In analogy to atomic physics, 𝜆L and
𝜉 hold a similar significance to the Bohr radius 𝑎0 in relation to atomic binding
energies. For the discussion of various boundary conditions and solutions to the GL
equations, we refer to the books by Tinkham [458].

14The literature on FFLO-type pairing is not very strict in differentiating these two cases. Mostly,
LO pairing or PDW are discussed while FF superconductivity appears more rarely [490].
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Figure 3.4 – Mexican hat potential and excitation modes of a complex order parameter.
(a) The “Mexican hat”-shaped GL free-energy potential of the complex order parameter
Ψ = |Ψ|e𝑖𝜑. The Higgs (orange) and Nambu–Goldstone (NG; blue) mode excitations
associated with amplitude 𝛿|Ψ| and phase 𝛿𝜑 variations, respectively, are schematically
drawn. (b) Schematic excitation spectrum of a superconductor in GL theory. The Anderson–
Higgs mechanism gaps out the Nambu–Goldstone mode with an energy on the order of the
plasma frequency 𝜔p. As a consequence, the Higgs mode becomes the low-energy excitation
with gap 2Δ, overlapping with the quasiparticle continuum.

3.1.2 Anderson–Higgs mechanism and excitation modes
The complex order parameter of a superconductor has two degrees of freedom, the
amplitude |Ψ| and phase 𝜑 [524, 525]. They can fluctuate in the free energy potential
landscape (Eq. (3.12)) as drawn in Figure 3.4a, which is commonly referred to as
“Mexican hat” potential due to its geometric shape. Each of the possible fluctuations,
𝛿|Ψ| and 𝛿𝜑, give rise to a collective excitation mode.

The amplitude mode is called Higgs mode in analogy to the Higgs particle in
the standard model of particle physics15. Recently, the Higgs-mode spectroscopy
in superconductors has become experimentally feasible through the developments
of terahertz spectroscopy [410, 528, 529], which constitutes a further classification
tool of the superconducting state in and out of equilibrium and its interplay with
other collective modes [184, 524, 525, 530–532]. The Higgs mode has a mass due to
the radial curvature of the free energy which corresponds to an excitation gap of
energy 𝜔H at zero momentum. In BCS theory, this excitation energy is identical to
the superconducting gap ℏ𝜔H = 2Δ leading into the quasiparticle continuum [525].
Using Eq. (3.14), we can associate this energy to the correlation length 𝜔H ∼ 𝜉−1.

The phase mode, on the other hand, is called the Nambu–Goldstone mode. Its
appearance and the number of Nambu–Goldstone modes is corollary to SSB of
a continuous symmetry as captured in Goldstone’s theorem [463, 533, 534]. The

15In fact, Higgs first proposed the mechanism for the appearance of the particle now bearing his
name within a generic model of broken U(1) symmetry [526], drawing conceptual inspiration from
the phenomenon of superconductivity due to Anderson [527].
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Nambu–Goldstone mode is typically a massless mode, i.e., gapless and vanishing
for zero momentum. The best known example in condensed matter physics are
accoustic phonons (𝜔𝒒 = 𝑣s|𝒒|) that emerge from breaking of continuous translation
symmetry. In the case of broken U(1) symmetry, the Nambu–Goldstone mode
corresponds to phase translation of the order parameter, i.e., moving in azimuthal
direction within the brim of the Mexican hat potential.

In superconductors, the Nambu–Goldstone mode is gapped out due to the
coupling of the order parameter’s phase to the gauge field 𝑨. This phenomenon
is known as the Anderson–Higgs mechanism [526, 527] where the gauge field
acquires mass, giving rise to a plasmon mode of excitation energy 𝜔p (see Eq. (3.40)
below). Consequently, the Higgs mode becomes the lowest excitation as sketched in
Figure 3.4b. We can see this by considering fluctuations in the free energy given in
Eq. (3.21). By inserting Ψ(𝒓) = (|Ψ0| + 𝛿|Ψ(𝒓)|)𝑒 𝑖𝜑(𝒓) and only keeping terms up to
second order in fluctuations, we obtain [525, 535]

𝑓GL = −2𝑎︸︷︷︸
>0

𝛿|Ψ|2 + ℏ2

2𝑚∗
P
(∇𝛿|Ψ|)2 + 2𝑒2|Ψ|2

𝑚∗
P

(
𝑨 − Φ0

2𝜋∇𝜑
)2

+ 1
2𝜇0

(∇ × 𝑨)2 . (3.38)

The first two terms describe the gapped amplitude mode of excitation energy
−2𝑎 ∼ 2Δ and the last two terms belong to the phase mode. As the free energy must
be gauge invariant, only the combination 𝑨 − Φ0

2𝜋∇𝜑 of vector potential 𝑨 and phase
𝜑 is gauge independent. Hence, the gauge transformation 𝑨 ↦→ 𝑨 + Φ0

2𝜋∇𝜑 allows to
eliminate the phase from the free energy by generating a bare quadratic term of the
vector potential. To see its nature, we Fourier transforming the free energy (3.38)
yielding [535]

𝑓GL =
∑
𝒒

(
−2𝑎 + ℏ2

2𝑚∗
P
𝑞2

)
𝛿|Ψ𝒒|𝛿|Ψ−𝒒| + 1

2𝜇0

(
1
𝜆2

L
𝑨∥

𝒒𝑨
∥
−𝒒 +

[
1
𝜆2

L
+ 𝑞2

]
𝑨⊥

𝒒𝑨
⊥
−𝒒

)
,

(3.39)

where 𝑨𝒒 = 𝑨∥
𝒒 + 𝑨⊥

𝒒 is split into longitudinal and transversal components with
respect to the direction of 𝒒. The vector potential term ∝ 𝑞2 is the usual magnetic
energy corresponding to photons with energy ℏ𝜔𝑞 = 𝑞𝑐. The absorption of the phase
gradient introduced the constant terms proportional to 𝜆−2

L , such that notably all
components of the vector potential appear in Eq. (3.39). By including time dependent
variations in the free energy, one finds that this corresponds to a mass-carrying
photon dispersion ℏ2𝜔2

𝑞 = 𝑚2
𝐴𝑐

4 + 𝑞2𝑐2 [44, 535] with 𝑚𝐴 = ℏ/(𝑐𝜆L) inside the
superconductor. This equates to an excitation gap

𝜔𝑞=0 =
𝑚𝐴𝑐2

ℏ
=

𝑐
𝜆L

Eq. (3.23)
=

√
𝑚∗

𝑒2𝑛s𝜀0
= 𝜔p , (3.40)
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corresponding to the plasmon energy for charged particles of density 𝑛s. Thus, the
Goldstone mode has become a “massive plasmon excitation” [527] by absorbing the
vector potential, associating it with the length scale 𝜆L. The Meissner–Ochsenfeld
effect illustrated in section 3.1.1 is a direct consequence of this, cf. Eq. (3.22) with the
constant 𝐴2/𝜆2

L term.
We note that the first term of Eq. (3.39) implies the dispersion

ℏ𝜔𝑞 = 2|𝑎|(1 + 𝜉2𝑞2) (3.41)

for the amplitude mode. It shows that the cost of finite-momentum amplitude
excitations is dictated by the correlation length 𝜉, similar to the suppression of the
order parameter in Eq. (3.17).

3.1.3 Phase rigidity, supercurrent flow, and condensate stiffness
The existence of a disspationless supercurrent is an essential property of a supercon-
ducting system. We introduced the current density in Eq. (3.25) but it is insightful
to insert the order parameter Ψ = |Ψ|𝑒 𝑖𝜑 yielding

𝒋 = 2𝑒|Ψ|2 ℏ
𝑚∗

P

(
∇𝜑 − 2𝜋

Φ0
𝑨

)
︸               ︷︷               ︸

𝒗s

= 2𝑒𝑛P𝒗s = 𝑒𝑛s𝒗s . (3.42)

Here, we have inserted the superfluid velocity 𝒗s and replaced |Ψ|2 = 𝑛P = 𝑛s/2.
We see that not only an external vector potential but importantly also a twist of the
phase ∇𝜑 can induce a supercurrent flow. Hence, macroscopically coherent pair
movement is driven by the deformation of the ground-state phase, rather than by
excitations above the ground state which are responsible for conventional currents.

Bending or twisting the phase is associated with an energy cost due to the
well-defined phase of the order parameter. This resilience of the superconducting
condensate to phase changes is referred to as phase rigidity, which ultimately enables
persistent supercurrents. From a microscopic perspective, the phase rigidity can
be viewed as the kinetic energy of Cooper pairs in the condensate. The associated
(kinetic) phase-bending energy is given by

𝐸phase =
𝑚∗

P𝑛P

2

∫
d𝑑𝑟 𝒗2

s (𝒓) =
ℏ2𝑛s
8𝑚∗

∫
d𝑑𝑟 (∇𝜑(𝒓))2 =

𝐷s
2

∫
d𝑑𝑟 (∇𝜑(𝒓))2 , (3.43)

where we set 𝑨 = 0 in 𝒗s and we introduced the phase or condensate stiffness
𝐷s, see Eq. (3.44) below.16 The stiffness measures the energy cost associated with
phase gradients or, framed differently, the condensate’s resilience to phase twists. It

16Different naming conventions and nomenclature exist for the phase stiffness throughout the
literature. For instance, it is also called (phase) rigidity modulus or helicity modulus, and other
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3.1 Spontaneous symmetry breaking

is analogous to how mass measures the inertia of particles, opposing changes in
their velocity. A large value of 𝐷s indicates that the superconductor has a strong
resistance to phase fluctuations, thereby maintaining its phase rigidity. In GL theory,
we find 𝐷s ∝ 𝑛s/𝑚∗ depending on the effective mass of charge carriers. This is
intuitive, as lighter particles can carry a stronger supercurrent. Recently, it has been
shown that additional geometric contributions to the stiffness exist in multi-band
systems [450–452, 536].

The stiffness 𝐷s can be expressed by the measurable London penetration depth
(3.23). However, by our definition in Eq. (3.43), the units of the stiffness depend
on the dimensionality of the system.17 Notably, 𝐷s has the unit of energy in 𝑑 = 2,
whereas it needs for 𝑑 = 3 an additional length scale 𝐿 to produce the correct units.
The definition of a suitable length 𝐿 can be tricky and depends on the geometry
of the system at hand [537]. In the following, we focus on the discussion of the
two-dimensional stiffness given by

𝐷s =
ℏ2𝑛s
4𝑚∗ =

ℏ2𝑛P
𝑚∗

P
=

ℏ2

4𝑒2𝜇0𝜆2
L

CGS
=

ℏ2𝑐2

16𝜋𝑒2𝜆2
L
. (3.44)

We also state the stiffness in CGS units for comparison to the commonly found
expression in theoretical literature, e.g., Ref. [389]. The two-dimensional stiffness
(3.44) is also important for some three-dimensional systems, where it is possible
to determine a suitable length 𝐿 and reduce 𝐷3D

s = 𝐷2D
s /𝐿. The simplest case is

given for thin films with thickness 𝑤 smaller than the correlation length 𝜉. As phase
fluctuations are confined in-plane, the perpendicular direction can be integrated
out yielding 𝐿 = 𝑤. The corresponding areal density 𝑛3D

s 𝑤 ≡ 𝑛2D
s is often used as

an effective two-dimensional superconducting density entering Eq. (3.44) instead of
discussing 𝐷3D

s = 𝐷2D
s /𝑤. A similar argument applies for quasi-two-dimensional

layered systems, where superconductivity is confined to weakly coupled planes,
as found in cuprates or nickelates. The relevant length is the average interplane
distance 𝑧 which needs to be larger than the out-of-plane coherence length 𝜉⊥. The
corresponding penetration depth 𝜆⊥

L sets 𝐷s. Other cases of three-dimensional
superconductors are more complicated where 𝐿 should be considered as a spatial
cutoff for the integral. A good estimate is to choose the cut off on the order of the
correlation length 𝐿 ∼ 𝜉 [537].

The stiffness encodes the linear response of a system to small applied vector
potentials 𝑨 as can be seen by gauge transforming Eq. (3.47) to 𝒋 = −�̃�s𝑨. The
prefactor to the vector potential is called the superfluid weight, which is a different

symbols 𝜌(s), 𝐽(s), 𝐼(s), Υ(s), or 𝑄(s) are commonly used. We discuss an equivalent definition called
superfluid weight �̃�s in Eq. (3.45).

17The general units are [ℰ𝐿2−𝑑] with energy ℰ and length 𝐿 for given dimension 𝑑.
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convention of defining the superfluid stiffness:

�̃�s =
(2𝑒)2
ℏ2 𝐷s =

𝑒2𝑛s
𝑚∗ =

1
𝜇0𝜆2

L
. (3.45)

Its naming derives from the relation to the static (𝜔 = 0), long-wavelength limit
(𝑞 → 0) of the electromagnetic response function (see Eq. (3.49) below), giving rise
to the Meissner effect and its conceptual similarity to the Drude weight 𝐷 in normal
conductors [449, 538]. To evaluate the linear response and calculate 𝐷s, different but
equivalent viewpoints are employed.

On the one hand, the stiffness is obtained from the second derivative of thermo-
dynamic potentials [44, 389, 450, 451, 457, 523, 539–542]. Since phase gradient and
vector potential are gauge equivalent, the derivative can be taken with respect to
either of them which changes whether one probes for the definition of the stiffness
𝐷s or weight �̃�s. This can be seen from the phase fluctuation free energy by changing

ℱphase =
𝐷s
2

∫
d2𝑟

(
∇𝜑 − 2𝑒

ℏ
𝑨

)2
Eq. (3.45)

=
�̃�s
2

∫
d2𝑟

(
𝑨 − ℏ

2𝑒∇𝜑
)2

. (3.46)

For the current density, we need to take the first derivative of the free energy

𝒋 = −𝛿ℱphase

𝛿𝑨
= −�̃�s

(
𝑨 − ℏ

2𝑒∇𝜑
)
=

2𝑒
ℏ
𝐷s

(
∇𝜑 − 2𝑒

ℏ
𝑨

)
=

2𝑒
ℏ

𝛿ℱphase

𝛿
(∇𝜑) , (3.47)

where then the second derivative yields the stiffness (or superfluid weight)

𝐷s =
𝛿2ℱphase

𝛿
(∇𝜑)2

�����
∇𝜑→0

= − ℏ2

4𝑒2

𝛿2ℱphase

𝛿𝑨2

�����
𝑨→0

=
ℏ2

4𝑒2 �̃�s . (3.48)

These relations can be directly evaluated in mean-field theory [44, 450, 451, 523, 539,
543, 544] or expressed by Green’s functions to calculate the stiffness from microscopic
models, where typically further approximations apply [389, 451, 540–542]. We will
derive and discuss the corresponding BCS expression in section 3.2.4.

Another approach to 𝐷s evaluates the relevant linear response correlation func-
tions, which in case of an applied static vector potential is the current-current
correlation function. Here, the superfluid stiffness is obtained via18 [449, 455, 538]

𝐷s = 𝐷dia + 𝐷para = − ⟨𝐸kin⟩ − lim
𝒒→0

𝜒𝑗 𝑗(𝒒 , 𝜔 = 0) (3.49)

18Note that the short-wavelength limit 𝑞 → 0 is applied after taking the static limit 𝜔 = 0. Changing
the order of limits yields the Drude weight 𝐷 encoding the normal current response where 𝐷 and 𝐷s
can be used to differentiate between different types of conductive behavior [449, 538].
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with the kinetic energy ⟨−𝐸kin⟩ (diamagnetic term) and the paramagnetic current-
current response function

𝜒𝑗 𝑗(𝒓 , 𝜏) =
〈𝒯𝜏 𝑗𝑥(𝒓 , 𝜏), 𝑗𝑥(0, 0)〉 (3.50)

for the example of an applied current (operator) 𝒋 in 𝑥 direction. This approach
has been often applied in the context of DMFT studies by neglecting vertex correc-
tions [455, 545].

Both approaches become equivalent in the limit of small 𝒒 [451]. In practice, this
can be used to directly calculate 𝐷s from inducing a (small) current response instead
of evaluating the response function. It is achieved by imposing a constraint on
the order parameter with small coupled 𝑨, or equivalently, a small homogeneous
phase twist which generates a finite supercurrent flow in the system. Either the
current response or change in free energy due to additional kinetic energy of the
Cooper pair flow allows for computing the stiffness then [451, 523, 540, 542]. We
follow this idea and extend it in publication VI by calculating the supercurrent
for arbitrary 𝒒. We achieve this by imposing a finite-momentum order parameter
Ψ𝒒 = |Ψ|𝑒 𝑖𝒒𝒓 constraint, where the phase gradient ∇𝜑 = ∇(𝒒𝒓) = 𝒒 is characterized
by momentum 𝒒. We introduced this type of order parameter in the context of FFLO
theory in section 3.1.1. We recover the linear-response-based approaches described
here in the 𝑞 → 0 limit.

3.1.4 Limits of GL theory — Ginzburg–Levanyuk criterion
In our preceding discussions, we assumed small fluctuations of the order parameter
allowing for a low-order Taylor expansion of the GL free energy. Large fluctuations,
however, can result in a significant deviation from the mean-field description [462].
Levanyuk [546] and Ginzburg [547] independently proposed criteria that effectively
set limits to the applicability of such a mean-field treatment and hence GL theory.
The essential observation is that fluctuations affect the mean-field order parameter
only on length scales 𝑥 ≫ 𝜉, since the correlation length 𝜉 is the coarse graining
scale for the order parameter in the path integral (3.6). Conversely, the strength of
fluctuations on shorter length scales should be small for a valid description which
can be quantified via [44, 463]

1
𝜉𝑑

∫ 𝜉

0
d𝑑𝑟 ⟨𝜓(𝒓)�̂�(0)⟩ − ⟨𝜓(𝒓)⟩ ⟨�̂�(0)⟩ ≪ 1

𝜉𝑑

∫ 𝜉

0
d𝑑𝑟 ⟨�̂�(𝒓)⟩2 . (3.51)

The variance of the order parameter should be smaller than its average (𝛿Ψ2 ≫ Ψ2)
in a correlation volume 𝜉𝑑, effectively measuring when local fluctuations become
able to destroy local order. Evaluating this inequality gives a qualitative criterion
for the applicability of a mean-field description [44, 462, 463]. A way to formulate
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this is given by

Δ𝑇
𝑇c

≫
(

𝑘B

𝜉𝑑0Δ𝐶V

) 2
4−𝑑

≃ Gi𝑑 , (3.52)

where we introduced the Ginzburg–Levanyuk number Gi𝑑. This inequality quantifies
the temperature region Δ𝑇 around 𝑇c below which fluctuation effects become too
strong and mean-field theory becomes invalid. Δ𝐶V is the specific heat jump at the
phase transition and 𝜉𝑑0Δ𝐶V = 𝑆G can be interpreted as the entropy in the coherence
volume 𝜉𝑑0 associated with the emergence of order [44]. Note that Gi𝑑 does not
define a strict boundary but rather provides an estimate for the relevant order of
magnitude for Δ𝑇.

We can make two important observations here: First, the coherence length 𝜉0

is crucial in setting the temperature region Δ𝑇. For superconductors with large
𝜉0, deviations from mean-field theory are expected only very close to 𝑇c. Typical
values for Gi𝑑 are given by 10−16 for strongly type I superconductors to 10−4 for
strongly type II superconductor [463]. This is one reason why BCS theory is able
to describe conventional superconductors so well – corrections stemming from
fluctuation effects are relevant only on a tiny interval Δ𝑇 ≲ 10−12 𝑇c [462] many
orders of magnitude smaller than that accessible in experiment.

Second, Gi𝑑 shows a dependence on the (spatial) dimension 𝑑. The case 𝑑 = 4 is
called the upper critical dimension above which mean-field theory becomes exact
up to 𝑇c, whereas for lower dimensions 𝑑 < 4 thermal fluctuations qualitatively
impact the phase transition and render a mean-field description invalid. The
Ginzburg–Levanyuk number hints at fluctuation effects becoming stronger, the
lower the dimension is. In fact, also a lower critical dimension exists at or below
which fluctuations are so intense that they prevent long-range order entirely. For
superconductors, this lower dimension is 𝑑 = 2 because of which a different approach
to phase transitions needs to be taken as described in the next section.

3.1.5 Berezinskii–Kosterlitz–Thouless phase transition
Two-dimensional systems are special because the Hohenberg–Mermin–Wagner
theorem [359, 548] forbids SSB at finite temperature as formation of long-range order
is destroyed by thermal fluctuations.19 ,20 Despite this limitation, two-dimensional

19Often, this theorem is only named after Mermin–Wagner as their paper was published first.
However, their work was, in fact, inspired by Hohenberg’s work as stated by Mermin and Wagner [359].
The main difference is that Hohenberg discussed the case of superconductivity and superfluidity
while Mermin and Wagner showed the absence of magnetism in one and two dimensions.

20We note that the Hohenberg–Mermin–Wagner theorem is of importance for strict two-dimensional
systems and theoretical descriptions thereof, but its applicability to real materials is strongly lim-
ited [549].
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3.1 Spontaneous symmetry breaking

systems can still host a different kind of phase transition or ordering that is qualita-
tively similar to true long-range order. This alternative ordering was independently
proposed by Berezinskii [550] and by Kosterlitz and Thouless [551, 552].

The Berezinskii–Kosterlitz–Thouless (BKT) transition [463, 537, 553] is distinct
from conventional phase transitions because the decay of the correlation function
(single-particle density matrix) follows a power law

⟨�̂�†(𝒓)�̂�(𝒓 ′)⟩ ∝ |𝒓 − 𝒓 ′|𝜂(𝑇) for |𝒓 − 𝒓 ′| → ∞ (3.53)

with some system and temperature dependent exponent 𝜂(𝑇) rather than being
constant over long distances (cf. Eq. (3.4)) in the low-temperature phase. Such
systems are said to have algebraic long-range order or to be quasi-long-range
ordered. The emergence of this order constitutes a phase transition because the
power law behavior of the correlation function cannot be analytically connected to
the exponential decay seen in the disordered phase at higher temperatures. Yet,
the free energy remains continuous at the transition point because of which it is
classified as an “infinite-order” phase transition [463].

The mechanism driving the phase transition is the unbinding of vortex-antivortex
pairs (Figure 3.5a) or pairs of higher order topological defects that can form at
finite temperatures on the background of the SSB superconducting state at zero
temperature. To understand this premise, we turn to the two-dimensional XY model
for which the BKT transition was originally formulated in the context of (classical)
magnetic systems with spin 𝑆 = 1. For superconducting systems, the discrete XY
model describes an array of superconducting islands with locally fluctuating phases
connected by Josephson junctions, sometimes referred to as the Josephson lattice
model [214, 389]. The corresponding Hamiltonian is given by

𝐻XY = −𝐷s
∑
𝑖 𝑗

cos
(
𝜑𝑖 − 𝜑 𝑗

)
(3.54)

with the superconducting phase 𝜑𝑖 on site 𝑖 and the stiffness 𝐷s playing the role
of the coupling constant between sites. At low temperatures, we can expand
cos

(
𝜑𝑖 − 𝜑 𝑗

) ≈ 1− 1
2 (𝜑𝑖 − 𝜑 𝑗)2 and take the continuum limit of this model, replacing

𝜑𝑖 − 𝜑 𝑗 → ∇𝜑(𝒓) in the process, to obtain

𝐻XY = 𝐸0 + 𝐷s
2

∫
d2𝑟 (∇𝜑(𝒓))2 (3.55)

with ground state energy 𝐸0 = 2𝐷s𝑁 for a homogeneous (SSB) phase on all 𝑁 lattice
sites. The continuum model corresponds to the phase bending energy in Eq. (3.43)
from which we introduced the stiffness 𝐷s.
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Figure 3.5 – Vortex-antivortex pair and schematic BKT transition. (a) Pair of vortex (𝜈 = +1)
and antivortex (𝜈 = −1) as topological defects that can appear in the 𝑋𝑌 model. On larger
distances than their separation, the vortex pair appears topologically neutral (𝜈 = 0). (b)
Illustration of the BKT transition determined from the temperature 𝑇 dependence of the
superconducting stiffness 𝐷s. The transition occurs when the universal BKT line (solid
orange) intersects with 𝐷s, leading to a jump at 𝑇BKT. The lighter blue dashed line is the
mean-field BCS value of 𝐷s, which has a higher 𝑇c than 𝑇BKT.

Local minima of the Hamiltonian exist for continuous fields 𝜑(𝒓) satisfying

𝛿𝐻XY
𝛿𝜑(𝒓) = 0 ⇔ ∇2𝜑(𝒓) = 0 . (3.56)

While the homogeneous field 𝜑(𝒓) = const. is a trivial solution describing the ground
state, a second class of solutions is given by vortices. A vortex is a topological
excitation characterized by the phase winding around a singular point. It has a
topological charge 𝜈 corresponding to the winding number

𝜈 =
1

2𝜋

∮
𝒞
∇𝜑 · d𝒍 (3.57)

obtained by integrating over a closed contour 𝒞 around the vortex core. Neutral
bound pairs of topological defects with opposite charges, e.g., a vortex-antivortex
pair with 𝜈 = ±1 (Figure 3.5a), can form as finite-energy excitations from the ordered
(homogeneous) ground state. This induces a local disturbance of the superfluid’s
phase but it does not destroy global coherence for sufficiently strongly bound pairs.
Separating defect pairs and creating singular vortices costs significant energy21, such
that the thermally populated defects stay bound, yielding the algebraic long-range
order (3.53).

As the temperature increases, vortex-antivortex pairs become more widely sepa-
rated, with the distance between them growing as large as the separation between
different pairs. Hence, pairs unbind and single defect excitations exist in the system,
compromising the condensate’s coherence until even quasi-long-range order is lost.

21With their topological charge 𝜈, vortices are analogous to normal Coulomb charges, allowing for
a description of vortex fluctuations by a Coulomb gas model [553].
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An insightful heuristic argument by Kosterlitz and Thouless [552] illustrates this
idea: Let us consider the excitation of a singular vortex fulfilling ∇𝜑(𝒓) = 𝜈/𝑟 with
𝜈 = 1. Inserting this in Eq. (3.55) yields an energy 𝐸 − 𝐸0 = 𝜋𝐷s ln(𝐿/𝑎) for a system
of size 𝐿2 and lattice spacing 𝑎. The associated entropy is given by the number
of possible places to insert the vortex, i.e., 𝑆 = 𝑘B ln

(
𝐿2/𝑎2) = 2𝑘B ln(𝐿/𝑎). Taken

together, the free energy of creating a single vortex is given by

𝐹 = 𝐸 − 𝑇𝑆 = 𝐸0 + (𝜋𝐷s − 2𝑘B𝑇) ln(𝐿/𝑎) . (3.58)

At low temperature, the energy cost for creating the vortex is higher than the
entropy gain due to the logarithmic scaling with the system size. For high enough
temperatures, however, the entropy of creating a vortex dominates and any order
will be destroyed. This changes the sign of the free energy which diverges in the
thermodynamic limit 𝐿→ ∞, hinting at a phase transition around the sign-changing
point 𝜋𝐷s = 2𝑘B𝑇.

This argument is simplified, of course, as not a single vortex is created. Instead,
multiple defect pairs unbind, as discussed above, which interact and induce screening.
These effects were properly accounted for in a renormalization group (RG) treatment
where the stiffness 𝐷s gets renormalized in the process [553–555]. The fix point of
the RG flow yields a transition at the universal condition of

𝐷s(𝑇−
BKT) =

2
𝜋
𝑘B𝑇−

BKT . (3.59)

This relation is shown in Figure 3.5b in comparison to the mean-field expectation
from BCS theory. Coming from low temperatures, the superconducting stiffness
jumps discontinously from𝐷s(𝑇−

BKT) to𝐷(𝑇+
BKT) = 0 at the transition temperature𝑇BKT

which is distinct to the continuous vanishing of mean-field theory. Consequently,
𝑇BKT is lower than the mean-field value 𝑇c, stemming from the enhanced influence
of thermal fluctuations and topological defects.

Nowadays, the BKT transition has been measured in many different systems
like thin 4He films, ultracold atomic gases, or superconducting films, verifying
the universal jump in the superfluid stiffness [553]. For the discussion of super-
conducting materials, the BKT transition is important as many (unconventional)
high-temperature superconductors, like cuprates or FeSe thin films, are quasi-two-
dimensional materials. Here, the universal criterion (3.59) puts a strong constraint
on the possibility of superconductivity [198] as it implies (cf. Figure 3.5b)

𝑘B𝑇BKT ≤ 𝜋
2𝐷s , (3.60)

which is sometimes referred to as Nelson–Kosterlitz criterion [555]. That is, for the
(BKT) transition to occur, there must be a sufficient stiffness to support the bound
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vortex-antivortex pairs at lower temperatures. As the stiffness is linked to the kinetic
energy of electrons, 𝐷s can be effectively quenched by strong correlation effects,
which can lead to a suppression of 𝑇c. We discuss the consequences and limitations
for superconductivity further in chapter 6.

3.1.6 Symmetry classification of the order parameter
In the phenomenological characterization of the superconducting state, we have con-
centrated on properties that arise from breaking of the U(1) phase-rotation symmetry.
While it is the defining broken symmetry for a superconductor, in principle more
symmetries of the underlying Hamiltonian can be broken. The occurrence of such
additional symmetry breaking is the hallmark of unconventional superconductors,
manifesting, for instance, as broken rotation symmetry due to anisotropic pairing.
In unconventional superconductors, the superconducting gap can exhibit nodes
in momentum space or posses more complex spin-orbital structures [II, III, IV,
V, 108, 193–195, 346, 389, 556–559], leading to qualitatively different properties
compared to conventional superconductors. The analogy to anisotropic pairing
in superfluidity in 3He [560, 561] along with the discovery of heavy fermion and
cuprate superconductors has prompted more detailed symmetry characterization
of the superconducting state [167, 562]. Determining the pairing symmetry is a
crucial tool for understanding the underlying microscopic mechanisms driving
superconductivity in different material systems [478]. Pedagogical introductions
can be found in Refs. [167, 562–565].

Central to describing the symmetries of the superconducting state are the internal
degrees of freedom of the order parameter. For paired electrons in equilibrium and
translational invariant systems, the relevant correlation function takes the form22

Ψ𝑚𝜎,𝑚′𝜎′(𝜏 − 𝜏′, 𝒓 − 𝒓 ′) = ⟨𝒯𝜏𝑐𝑚𝜎𝒓 (𝜏)𝑐𝑚′𝜎′𝒓 ′(𝜏′)⟩ (3.61)

with time-ordering operator 𝒯𝜏 and the fermionic annihilation operators carrying
(Wannier) orbital or (Bloch) band 𝑚, spin 𝜎, position 𝒓 , and time 𝜏 dependencies.
The exchange of any of these indices must obey the Pauli principle encoded by the
anticommutation of the fermionic operators, i.e., the symmetry constraint

Ψ𝑚𝜎,𝑚′𝜎′(𝜏 − 𝜏′, 𝒓 − 𝒓 ′) = −Ψ𝑚′𝜎′,𝑚𝜎(𝜏′ − 𝜏, 𝒓 ′ − 𝒓) (3.62)

22Often, the energy gap Δ is equivalently used for symmetry classifications. In most cases, this
does not need to be differentiated from the pair wave function 𝑔 ∼ ⟨𝑐𝑐⟩ ≡ Ψ discussed here, as they
can be linked by Δ = 𝒰 ⟨𝑐𝑐⟩ for an effective attractive interaction 𝒰 (cf. BCS expression (3.87)). Care
must be taken, however, in case of non-diagonal 𝒰 and when changing between orbital and band
representation.
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must be fulfilled. Fourier transforming yields the equivalent antisymmetric condition

Ψ𝑚𝜎,𝑚′𝜎′(𝑖𝜔𝑛 , 𝒌) = −Ψ𝑚′𝜎′,𝑚𝜎(−𝑖𝜔𝑛 ,−𝒌) . (3.63)

In matrix and four-vector notation 𝑘 = (𝑖𝜔𝑛 , 𝒌), it can be compactly written as
Ψ(𝑘) = −Ψ𝑇(−𝑘). We can classify the order parameter symmetry by analyzing the
behavior of a symmetry operation acting on any of its degrees of freedom. This
entails the permutation of spins �̂�, relative coordinates (parity) �̂�, orbital indices �̂�,
and relative time �̂�23 according to:

�̂�Ψ𝑚𝜎,𝑚′𝜎′ = ±Ψ𝑚𝜎′,𝑚′𝜎 , (3.64a)

�̂�Ψ(𝒓 − 𝒓 ′) = ±Ψ(𝒓 ′ − 𝒓) or �̂�Ψ(𝒌) = ±Ψ(−𝒌) , (3.64b)

�̂�Ψ𝑚𝜎,𝑚′𝜎′ = ±Ψ𝑚′𝜎,𝑚𝜎′ , (3.64c)

�̂�Ψ(𝜏 − 𝜏′) = ±Ψ(𝜏′ − 𝜏) or �̂�Ψ(𝑖𝜔𝑛) = ±Ψ(−𝑖𝜔𝑛) . (3.64d)

By Fourier transforming, space and time permutation correspond to simple inversion
of momentum 𝒌 and frequency 𝑖𝜔𝑛 , because of which we focus on this notation in the
following. Each symmetry operator can be either symmetric (+) or antisymmetric (−),
but taken together have to fulfill the antisymmetry (3.63) of the order parameter. That
is, the relation �̂��̂��̂��̂�Ψ(𝑘) = −Ψ𝑇(−𝑘) holds. This so-called 𝑆𝑃𝑂𝑇 criterion [193,
194, 564] or Berezinskii classification scheme [560] can be symbolically written as

�̂��̂��̂��̂� = −1 . (3.65)

Altogether, this results in 23 = 8 distinct pairing classifications, as outlined in
Table 3.1. Consequently, we distinguish between spin triplet states (with even spin,
⟨|�̂�|⟩ = 1) and singlet states (with odd spin, ⟨|�̂�|⟩ = 0) states, as well as between even
parity (e.g. 𝑠, 𝑑, 𝑔-wave) and odd parity (e.g. 𝑝, 𝑓 -wave) symmetries, inter-orbital
and intra-orbital pairings, and even and odd frequency superconductors. Our focus
here lies on even frequency superconductors with odd-frequency pairings being
more exotic [564, 566, 567]. Moving forward, we will therefore omit the frequency
dependence.

Representation theory for the order parameter

The specific symmetry behavior of the order parameter depends on the symmetry
group 𝒢 of the underlying Hamiltonian. For condensed matter systems, this is
typically given by 𝒢 = 𝒢c ⊗ SU(2)S ⊗ SO(3)O ⊗ Θ with the crystal space group 𝒢c

23Note that �̂� is different to time reversal and sometimes referred to as braiding operator [564].
While for equilibrium systems the permutation 𝜏 → −𝜏 looks like time inversion, true time-reversal
Θ̂ = 𝑖𝜎𝑦 �̂� would also entail a complex conjugation Θ̂Ψ(𝜏) = ±Ψ∗(−𝜏). By the same reasoning, �̂� is a
permutation of (relative) positions, often identical to space inversion.
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Table 3.1 – Possible symmetry
combinations according to the
𝑺𝑷𝑶𝑻 classification. The overall
sign of applying spin �̂�, (spatial)
parity �̂�, orbital �̂�, and frequency
�̂� commutation must be odd (−).
The top four rows describe even
frequency pairing, while the bot-
tom four rows belong to more ex-
otic odd-frequency pairing [560,
564, 566, 567].

Spin Parity Orbital Frequency

− + + +
+ − + +
+ + − +
− − − +
+ + + −
− − + −
− + − −
+ − − −

containing translational and point group symmetry of the Bravais lattice, SU(2) spin
symmetry, SO(3) orbital symmetry, and time-reversal symmetry Θ. A symmetry
operator �̂� ∈ 𝒢 acts on the order parameter according to

�̂�Ψ(𝒌) = 𝑈𝑇(𝑔)Ψ(𝑅−1(𝑔)𝒌)𝑈(𝑔) , (3.66)

where 𝑅−1(𝑔) ∈ O(3) is a rotation matrix and𝑈(𝑔) denotes the direct product of two
operators acting on spin-orbital space. In the following, we assume the absence of
SOC such that we can separate the contributions of𝑈(𝑔) and spin is independent of
momentum.

The order parameter symmetry can be classified by the corresponding irreducible
representations (irreps) Γ𝑝 of the group 𝒢 .24 The orthogonality of irreps enables
the construction of the character projection operator �̂� 𝑝 specific to a given irrep 𝑝.
The order parameter transforming in accordance to the irrep 𝑝 can then be derived
using the projection operator:

�̂� 𝑝Ψ =
∑̂
𝑔∈𝒢

[𝜒𝑝(𝑔)]∗ �̂�Ψ = 𝛿𝑝𝑞Ψ , (3.67)

which is orthogonal to other irreps 𝑞. Here, 𝜒𝑝(𝑔) is the character (i.e., the trace of
the representation matrix of Γ𝑝) of the symmetry transformation 𝑔 associated with
the irrep 𝑝. We can generally write the order parameter as a linear combination of
basis functions 𝜓𝑝 obtainable from applying �̂� 𝑝 . It takes the form

Ψ𝑚𝜎,𝑚′𝜎(𝑘) =
∑
𝑝

𝑁𝑝∑
𝑟=1

𝜂
(𝑝)
𝑟 𝜓

(𝑝,𝑟)
𝑚𝜎,𝑚′𝜎′(𝑘) , (3.68)

where the summations go over irreps 𝑝 of dimensionality 𝑁𝑝 . The expansion
coefficients 𝜂(𝑝)𝑟 effectively take over the role as an order parameter in the GL free
energy (density).

24We do not discuss the mathematical foundations of representation theory of groups here, but we
refer the interested reader to books and pedagogical notes such as Refs. [565, 568, 569].
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3.1 Spontaneous symmetry breaking

The corresponding expansion is given by

𝑓GL = 𝑓n +
∑
𝑝

𝑎𝑝(𝑇)
𝑁𝑝∑
𝑟=1

|𝜂𝑝𝑟 |2 + 𝑓 𝑝(𝜂4)
 . (3.69)

The quadratic term keeps a simple, isotropic form whereas 𝑓 𝑝(𝜂4) contains all
fourth-order terms which overall must be positive definite to ensure the stability
of the free energy; see Refs. [167, 562] for examples of various point groups. Each
irrep has a distinct critical temperature 𝑇𝑝c with the irrep state possessing the
highest 𝑇c being the one realized. Additional phase transitions between irreps at
lower temperatures can also occur if multiple competing minima are present. In
cases involving higher dimensional irreps (𝑁𝑝 > 1) with the multidimensional
order parameter presented as a multicomponent vector 𝜼𝑝 ∈ C𝑁𝑝 , a specific linear
combination of components 𝜂

𝑝
𝑟 emerges based on material-specific coefficients

influencing the free energy. For instance, let us consider the 𝐷6 point group of a
triangular lattice. The two-dimensional 𝐸2 irrep contains the basis functions with
𝜂1 = 𝑑𝑥2−𝑦2 , 𝜂2 = 𝑑𝑥𝑦 form factor symmetries. An ordered state can be established
by either one of the two components, 𝑑𝑥2−𝑦2 or 𝑑𝑥𝑦 , or by a linear combination that
is either real (𝑑 ± 𝑑) or complex (𝑑 ± 𝑖𝑑) which correspond to nematic (rotational
symmetry-breaking) or chiral (time-reversal symmetry-breaking) states.

We now turn to specifying the basis functions. The individual degrees of freedom
can be separated as follows

𝜓
(𝑝,𝑟)
𝑚𝜎,𝑚′𝜎′(𝒌) =

∑
𝜅𝜈𝜌

𝑑(𝑝,𝑟)𝜅𝜈𝜇 𝑔
𝜅(𝒌)𝑂𝜈

𝑚𝑚′𝑆
𝜇
𝜎𝜎′ (3.70)

with amplitude 𝑑(𝑝,𝑟)𝜅𝜈𝜇 . Each factor – 𝑔(𝒌) for spatial dependence, 𝑂𝑚𝑚′ for orbital
structure, and 𝑆𝜎𝜎′ for spin – can be analyzed separately and then linked using a
tensor product.

The conventional way of writing the spin part is given by

𝑆𝜎𝜎′ =
[
𝑖(𝑑0𝜏0 + 𝒅 · 𝝉)𝜏𝑦

]
𝜎𝜎′ (3.71)

with the 2 × 2 identity matrix 𝜏0 and Pauli matrix vector 𝝉 = (𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧). The
first scalar term describes the singlet component and the vector 𝒅 = (𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧)
constitutes the triplet component. Without SOC, we can directly diagonalize the
spin sector and the pairing state (3.70) is either characterized by fixed scalar 𝑑0 (spin
pairing) or vector 𝒅 (triplet pairing). Then, only the combined spatial and orbital
part need to be classified in accordance to the irreps of the lattice’s point group
symmetry.
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The spatial part 𝑔(𝒌) is commonly referred to as the form factor. For a single-
band system or (degenerate) intra-orbital pairing (𝑂𝑚𝑚′ = 𝛿𝑚𝑚′), the parity of the
spatial part is determined by the spin state. The Pauli principle enforces singlet
superconductors to have even parity 𝑔(𝒌) = 𝑔(−𝒌), whereas triplet states have odd
parity 𝑔(𝒌) = −𝑔(−𝒌). The form factor transforms according to the basis functions
of the respective point group symmetry’s irrep, which is often labeled in terms
of angular momentum such as 𝑙 = 𝑠, 𝑝, 𝑑, and 𝑓 . Pairing symmetries of higher
angular momentum have symmetry-dictated nodes where the order parameter
and hence superconducting gap vanishes, i.e., finite spectral weight remains at the
Fermi energy. An example is the 𝑑-wave pairing pertinent to cuprate materials [28,
478]. Here, the spatial form factor is given by 𝑔𝑑𝑥2−𝑦2 (𝒌) ∝ cos(𝑘𝑥) − cos

(
𝑘𝑦

)
, which

belongs to the 𝐵1 irrep of the 𝐶4𝑣 point group symmetry of the square lattice.

Multi-orbital or multi-band systems are generally more complicated by allowing
for more pairing possibilities. Order parameter with off-diagonal orbital components
describe electrons from different orbitals participating in pairing. The group
theoretical classification of such pairing is more conveniently carried out in orbital
space because the band-basis functions carry an additional momentum dependence
from the unitary transformation to Bloch space. In band basis, the expansion (3.70)
becomes

𝑓 (𝑝,𝑟)𝑚𝜎,𝑚′𝜎′(𝒌) =
∑
𝜅𝜈𝜌

𝑑(𝑝,𝑟)𝜅𝜈𝜌 𝑔
𝜅(𝒌)𝐵𝜈

𝑎𝑎′(𝒌)𝑆𝜌𝜎𝜎′ . (3.72)

The group theoretical classification of superconducting pairing states is a powerful
tool; however, it cannot make dynamical predictions on the dominant pairing for a
given model. Such predictions require a more detailed analysis of a given pairing
interaction and microscopic calculations (cf. publications II to V).

Experimental probes of pairing symmetries

Determining the superconducting pairing symmetries in materials is crucial to
understanding the underlying mechanisms driving superconductivity. We aim here
to briefly outline common experimental methods [267] to identify these pairing
symmetries. Given the vast array of sophisticated experimental techniques, we give
only a rough overview. Broadly, experimental approaches can be categorized by the
targeted observable or specific symmetry probe:

• Measuring the single-particle excitation spectrum and gap structure:
ARPES, scanning tunneling microscopy/ spectroscopy (STM/STS), specific heat mea-
surements, low-temperature London penetration depth measurements
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3.2 Bardeen–Cooper–Schrieffer theory

• Analyzing the spin structure of Cooper pairs:
Nuclear magnetic response (NMR), nuclear quadrupole response (NQR), Knight shift
measurements

• Investigating time-reversal symmetry breaking:
Muon spin resonance (𝜇SR), polar Kerr effect measurements

• Resolving phase difference in the order parameter at different 𝒌 points:
Superconducting quantum interference device (SQUID) measurements, quasiparticle
interference, neutron scattering

• Probing of collective modes:
Raman spectroscopy, Higgs spectroscopy

Most of these techniques can either directly measure the presence or absence of
a specific symmetry or exhibit signatures that can be correlated with particular
pairing symmetries. For example, superconductors with nodal gaps typically exhibit
a “V”-shaped spectrum in their density of states and display power-law behavior in
the temperature dependence of specific heat. In contrast, fully gapped states show a
corresponding gapped spectral function and an exponential temperature decay in
the specific heat.

3.2 Bardeen–Cooper–Schrieffer theory
The original paper by Bardeen, Cooper, and Schrieffer [41] introduced a comprehen-
sive theory of superconductivity, which is able to describe properties of conventional
superconductors quantitatively well. It introduced the concept of Cooper pairs that
form due to an attractive interaction. These pairs can coherently condense by open-
ing an energy gap Δ in the single-particle spectrum. In BCS theory, the attraction
is mediated by phonons with the approximation of being local and constant in an
energy window on the order of the Debye frequency 𝜔D.

As an important part of contemporary physics, the description is standard in every
book on solid state physics and interacting many-body systems in the condensed
matter context. Here, we only aim at giving a brief introduction which provides
the foundations for advanced theories applied to tackle more complex systems
and materials. This is particularly relevant for strongly correlated superconductors
where conventional BCS theory fails. In-depth discussions on BCS theory can be
found, for instance, in the classic text books by Schrieffer [457] or Tinkham [458].

3.2.1 Pair creation and Cooper pair instability
Our microscopic view on superconductivity is shaped by the picture of electrons
condensing into Cooper pairs. In these pairs, electrons behave as composite particles
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which mostly act as bosonic particles but still obey the Pauli principle. It was
Cooper’s ingenious idea [570] that lead to this microscopic picture as he showed
that the Fermi sea |FS⟩ = ∏

|𝒌|≤𝑘F ,𝜎 𝑐
†
𝒌𝜎 |0⟩, i.e., the non-interacting ground state of

electrons, is unstable in the presence of an arbitrarily small attraction between the
electrons.

Central to this idea is the Cooper pair creation operator

Υ†
𝒒 =

∬
d𝑑𝑟 d𝑑𝑟′ 𝑔(𝒓 − 𝒓 ′)𝜓†

↑(𝒓)𝑒 𝑖𝒒(𝒓+𝒓
′)/2𝜓†

↓(𝒓 ′) (3.73a)

=
∬

d𝑑𝑅 d𝑑𝑥 𝑔(𝒙)𝑒 𝑖𝒒𝑹𝜓†
↑(𝑹 + 𝒙/2)𝜓†

↓(𝑹 − 𝒙/2) , (3.73b)

which creates a fermionic singlet pair25 of center-of-mass momentum 𝒒. The
internal wave function 𝑔(𝒓 − 𝒓 ′) describes the spatial distribution of the Cooper
pair depending on the electron’s individual positions 𝒓 , 𝒓 ′. In the second line, we
transformed the arguments of the fermionic field operators 𝜓† to the center-of-mass
position 𝑹 = (𝒓 + 𝒓 ′)/2 and relative position 𝒙 = 𝒓 − 𝒓 ′. Fourier transforming this
expression with 𝜓†

𝜎(𝒓) = 1
𝑁𝒌

∑
𝒌 𝑐

†
𝒌𝜎𝑒

−𝑖𝒌𝒓 yields

Υ†
𝒒 =

∑
𝒌

𝑔𝒌𝑐
†
𝒌+ 𝒒

2 ↑
𝑐†−𝒌+ 𝒒

2 ↓
(3.74)

with 𝑔𝒌 =
∫

d𝑑𝑥 𝑔(𝒙)𝑒 𝑖𝒌𝒙 . The Cooper pair wave function, as we will see, serves as
the superconducting order parameter. In the following, we show the instability of
the Fermi sea against pair addition.

We consider the Hamiltonian

𝐻 =
∑
𝒌 ,𝜎

𝜀𝒌𝑐†𝒌𝜎𝑐𝒌𝜎 + �̂� (3.75)

with single-particle dispersion 𝜀𝒌 (Fermi energy 𝐸F = 0) and electron-electron
interaction term �̂� . An electron pair can only be added above the filled Fermi sea as
|Ψ(𝒒)⟩ = Υ†

𝒒 |FS⟩. Applying 𝐻 on this pair state 𝐻 |Ψ(𝒒)⟩ = 𝐸(𝒒) |Ψ(𝒒)⟩ yields

𝐸(𝒒) |Ψ(𝒒)⟩ =
∑

|𝒌± 𝒒
2 |>𝑘F

(𝜀𝒌+ 𝒒
2
+ 𝜀−𝒌+ 𝒒

2
)𝑔𝒌 |𝒌 , 𝒒⟩ +

∑
|𝒌|,|𝒌′|>𝑘F

⟨𝒌 , 𝒒| �̂� |𝒌′, 𝒒⟩ 𝑔𝒌′ |𝒌 , 𝒒⟩ ,

(3.76)

where we introduced |𝒌 , 𝒒⟩ = 𝑐†
𝒌+ 𝒒

2 ↑
𝑐†−𝒌+ 𝒒

2 ↓
|FS⟩.

25We focus on the case of single-orbital, isotropic singlet pairing as in the original work by BCS [41].
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The drastic but physically well-motivated approximation by BCS [41] is to set26

⟨𝒌 , 𝒒| �̂� |𝒌′, 𝒒⟩ ≡ 𝑉𝒌 ,𝒌′ =

{
−𝑈/𝑁𝒌 , |𝜀𝒌|, |𝜀𝒌′| < ℏ𝜔D

0 , else
(3.77)

with 𝑈 > 0, i.e., to adopt an attractive local interaction in an energy window of
the Debye frequency 𝜔D. This effective interaction derives from electron-phonon
scattering which is attractive for energies smaller than the typical phononic energy
scale as characterized by 𝜔D. We additionally assume that it is independent of the
center-of-mass momentum 𝒒. By comparing coefficients and removing the pair
function 𝑔𝒌 , we obtain the condition

1 =
𝑈
𝑁𝒌

∑
0<𝜀±𝒌+ 𝒒

2
<ℏ𝜔D

1
𝜀𝒌+ 𝒒

2
+ 𝜀𝒌− 𝒒

2
− 𝐸(𝒒) . (3.78)

To find a solution to this condition, we take the continuum limit and linearize the
dispersion for small 𝒒 by dropping 𝒪(𝑞2), which effectively shifts the zero from the
Fermi energy by 𝑣F𝑞/2. Thus, Eq. (3.78) becomes

1 = 𝑈
∫ 𝑣F𝑞

2 +ℏ𝜔D

𝑣F𝑞
2

d𝜀 𝑁(𝜀)
2𝜀 − 𝐸(𝒒) . (3.79)

Assuming the density of states to be constant within the integration window,
𝑁(𝜀) ≈ 𝑁(0), we can solve for the binding energy 𝐸(𝒒) given by

𝐸(𝒒) = − 2ℏ𝜔D

𝑒
2

𝑈𝑁(0) − 1
+ 𝑣F𝑞 . (3.80)

This result shows the possibility of having a bound electron pair, necessitating
only the existence of an attractive interaction (3.77). The first term describes the
energy gain of adding an electron pair to the Fermi sea and the second indicates that
the center-of-mass movement of Cooper pairs compromises this binding energy,
eventually breaking up the pair [44, 457, 571]. Interestingly, the dispersion is linear
in 𝑞. In the limit 2 ≫ 𝑈𝑁(0), we can simplify the binding energy to yield

𝐸(𝑞 = 0) = −2ℏ𝜔D𝑒
− 2
𝑈𝑁(0) ≃ Δ0 . (3.81)

This result is very similar to the outcome of BCS theory with the zero-temperature
gap Δ0 in Eq. (3.95), but here an additional factor of 2 appears in the exponential.
The reason is that following Cooper’s argument, we only considered a single pair
added above the Fermi energy. BCS theory, on the other hand, takes into account

26The normalizing factor 1/𝑁𝒌 ≃ 1/𝑉 of the volume 𝑉 is necessary to make the interaction term
extensive [44].
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pairing between all electrons. It is possible to generalize the argument presented
here to also include the removal of electron pairs below the Fermi energy which
recovers the BCS result, cf. chapter 12 in Ref. [571].

Based on the equation (3.80), we can determine the momentum 𝑄 at which the
binding energy of the Cooper pair is significantly reduced. Replacing the binding
energy with Δ0, we find 𝐸(𝑄) = 0 for

𝑄
ℏ

=
Δ0
ℏ𝑣F

∼ 𝜉−1
0 , (3.82)

which is the reciprocal Cooper pair size 𝜉0 in Eq. (3.14) up to some numerical
factor. Typical values are on the order of 𝜉0 ∼ 0.1 – 1𝜇m, i.e., Cooper pairs are
weakly-bound and largely overlapping due to their big pair size spanning hundreds
of lattice constants.

Nature of composite pairs

We briefly want to discuss the physical nature of the pair operator (3.74), where we
keep 𝒒 = 0 for simplicity. Let us define the operators

𝑏†𝒌 = 𝑐†𝒌↑𝑐
†
−𝒌↓ , 𝑏𝒌 = 𝑐−𝒌↓𝑐𝒌↑ , (3.83)

which fulfill the following commutation relations

[𝑏†𝒌 , 𝑏†𝒌′] = [𝑏𝒌 , 𝑏𝒌′] = 0 , (3.84a)

[𝑏𝒌 , 𝑏†𝒌′] = 𝛿𝒌𝒌′(1 − �̂�𝒌↑ − �̂�−𝒌↓) . (3.84b)

Hence, the operators 𝑏(†)𝒌 obey bosonic commutation relations as long as 𝒌 ≠ 𝒌′.
For equal momenta, they still have to obey the Pauli principle which enforces that
only one fermionic pair can exist for a given momentum. To reflect this, Eq. (3.84b)
can be expressed as an anticommutator {𝑏𝒌 , 𝑏†𝒌′} = 𝛿𝒌𝒌′ [572]. Thus, Cooper pairs
are not proper bosons undergoing Bose–Einstein condensation (BEC), but they still
condense into a macroscopic coherent state (cf. Eq. (3.98)), albeit as weakly-bound
pairs. The reason lies in the number of particles 𝑁 being so large that particle
number fluctuations become negligibly small.

Nevertheless, a deep connection exists to the purely bosonic picture of a BEC,
because the wavefunction of the BCS and BEC states continuously connect.27 This is
known as the BCS–BEC crossover which is further discussed in section 6.1.2 and
publication VI. Already from Eq. (3.84b), we can see that, in the dilute and localized
case with 𝑛𝒌𝜎 ≪ 1, we obtain a bosonic relation [𝑏𝒌 , 𝑏†𝒌′] ≈ 𝛿𝒌𝒌′, enabling the

27Before Cooper’s proposal, it was suggested by Schafroth, Blatt, and Butler [573] that supercon-
ductivity can be described by a BEC of electron pairs in localized bound states. In the original BCS
paper [41], it is stressed that their pairing picture is different to a BEC.
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description by a BEC. Since the electron density is small, fermions can easily ignore
the Pauli exclusion as exchange interactions are negligible [574, 575]. Hence, Cooper
pairs loose their internal fermionic degrees of freedom and behave as strongly
coupled bosons.

3.2.2 BCS Hamiltonian and ground state
In the following, we discuss the BCS model Hamiltonian for singlet pairing in a
single-band system:

𝐻BCS =
∑
𝒌𝜎

𝜀𝒌𝑐†𝒌𝜎𝑐𝒌𝜎 +
∑
𝒌 ,𝒌′

𝑉𝒌 ,𝒌′ 𝑐†𝒌↑𝑐
†
−𝒌↓︸  ︷︷  ︸

𝑏†𝒌

𝑐−𝒌′↓𝑐𝒌′↑︸   ︷︷   ︸
𝑏
𝒌′

. (3.85)

Here, we focus on the isotropic interaction𝑉𝒌 ,𝒌′ = −𝑈 of Eq. (3.77).28 For a discussion
of anisotropic pairing in general and the illustrative example of 𝑑-wave pairing on a
square lattice, we refer to chapter 15 of Coleman’s book [44]. For our discussion, we
follow the presentation in Ref. [44]. To solve the Hamiltonian, we adopt a mean-field
approach by performing the standard decoupling29

𝑏†𝒌𝑏𝒌 = 𝑏†𝒌 ⟨𝑏𝒌⟩ + ⟨𝑏†𝒌⟩ 𝑏𝒌 − ⟨𝑏†𝒌⟩ ⟨𝑏𝒌⟩ +(((((((((((
(𝑏†𝒌 − ⟨𝑏†𝒌⟩)(𝑏𝒌 − ⟨𝑏𝒌⟩) , (3.86)

where fluctuations 𝛿𝑏 = 𝑏 − ⟨𝑏⟩ are neglected. For a BCS superconductor, this is
well justified as the Cooper pairs have significant overlap due to their large size 𝜉0;
see also the discussion in section 3.1.4. From this decoupling, we can introduce the
(mean-field) pairing potential

Δ = − 𝑈
𝑁𝒌

∑
𝒌

⟨𝑐−𝒌↓𝑐𝒌↑⟩ = −𝑈 ⟨𝑐𝒓=0↓𝑐𝒓=0↑⟩ ≃ 𝑈Ψ , (3.87)

which will turn out as the superconducting gap (Eq. (3.91)). It connects to the
local pairing amplitude, which corresponds to the order parameter Ψ analyzed in
section 3.1. The resulting BCS mean-field Hamiltonin takes the form

𝐻BCS =
∑
𝒌𝜎

𝜀𝒌𝑐†𝒌𝜎𝑐𝒌𝜎 +
∑
𝒌

[
Δ𝑐†𝒌↑𝑐

†
−𝒌↓ + Δ∗𝑐−𝒌↓𝑐𝒌↑

]
+ |Δ|2

𝑈
. (3.88)

Gapped quasiparticle spectrum

The pairing term Δ𝑐†
𝒌↑𝑐

†
−𝒌↓ can be interpreted in two different ways: Either as two

electrons combining to form a Cooper pair (𝑒− + 𝑒− ⇌ pair2−) or, alternatively,
an electron scattering into a pair and hole (𝑒− ⇌ pair2− + ℎ+) which is known as

28In the following, we drop the constraint of |𝜀𝒌 | < ℏ𝜔D on the 𝒌-sums for brevity.
29Alternatively, one can perform a Hubbard–Stratonovich transformation with saddle-point

approximation of the corresponding path integral [44, 214].

93



3 Superconductivity

Andreev reflection [44]. The latter perspective allows for an insightful analogy
between superconductivity and magnetism, where superconducting pairs are
characterized by an isospin in charge space analogous to the magnetic spin. This
picture originated from Anderson [576] and Nambu [577]. To elucidate this analogy,
we introduce the Nambu spinor

𝜓𝒌 =

(
𝑐
𝒌↑

𝑐†−𝒌↓

)
, 𝜓†

𝒌 =
(
𝑐†𝒌↑ 𝑐−𝒌↓

)
(3.89)

fulfilling the anticommutation
{
𝜓𝒌 ,𝜓𝒌′

}
= 𝛿𝒌𝒌′ . Instead of up and down electrons,

the Nambu spinor encompasses electrons and holes. The spinor notation enables a
more compact representation of the Hamiltonian (3.88) in terms of a single vector
field [44]

𝐻BCS =
∑
𝒌

𝜓†
𝒌[𝒉𝒌 · 𝝉]𝜓𝒌 + const. . (3.90)

Here, 𝝉 = (𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧) is the Pauli matrix vector and the vector field 𝒉𝒌 = (Δ1 ,Δ2 , 𝜀𝒌)
acts as a Zeeman field in isospin space. Its in-plane components are given by
Δ1 = ReΔ = (Δ∗ + Δ)/2 and Δ2 = ImΔ = (Δ∗ − Δ)/(2𝑖).

Drawing the analogy to an antiferromagnet, we can identify the vector 𝑩𝒌 = −𝒉𝒌

as a momentum-dependent Weiss field30 to which the isospin 𝝉𝒌 = 𝜓†
𝒌𝝉𝜓𝒌 couples.

The direction of 𝑩𝒌 sets the quantization axis in isospin space at a given momentum
𝒌, thereby determining the quasiparticle charge. In a metallic state (Δ = 0), 𝑩𝒌

points up below the Fermi surface (occupied, electronic states) and down above
(unoccupied, hole-like states). In a superconductor, however, the direction of
𝑩𝒌 rotates and mixes electron and hole states close to the Fermi energy (inset of
Figure 3.6). Completely turning the Weiss field around, corresponding to the
creation of a quasiparticle pair, costs the energy 2|𝑩𝒌|. Hence, a single quasiparticle
excitation is described by

𝐸𝒌 = |𝑩𝒌| =
√
𝜀𝒌 + |Δ|2 . (3.91)

As a result, the excitation spectrum is gapped by |Δ| as illustrated in Figure 3.6. In
the ground state, each isospin aligns with the Weiss field 𝑩𝒌 = −𝐸𝒌 �̂�𝒌 . The unit
vector �̂�𝒌 stands at an angle 𝜃𝒌 to the electron charge axis (“𝑧-axis”). We can specify
the components of the isospin 𝝉𝒌 by the angle 𝜃𝒌 . We use the gauge freedom and
choose the gap to be real valued, i.e., Δ ≡ Δ1 and Δ2 = 0. Then, the 𝑧-component
and transverse component are given by

30Weiss fields are effective fields in mean-field theory that approximate the collective influence of
all interactions within a system by averaging them into a single representative field.
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Figure 3.6 – Quasiparticle excitation spectrum of a superconductor. Electron (blue) and
hole (orange) excitation spectra are mixed in a superconductor by Andreev scattering. This
is characterized by the rotation of the isospin Weiss field 𝑩𝒌 about an angle 𝜃𝒌 as the
momentum passes through the Fermi surface (inset). As a result, the quasiparticle spectrum
𝐸𝒌 shows a gap Δ at the Fermi wavevector 𝑘F. Electrons and holes participate equally at this
point, yielding an indefinite charge state of the quasiparticle. The quasiparticle factors 𝑢𝑘
and 𝑣𝑘 characterize the hole-like or electron-like character of the quasiparticle, respectively.

⟨𝜏𝒌 ,𝑧⟩ =
〈
𝑛𝒌↑ + 𝑛𝒌↓ − 1

〉
= − cos𝜃𝒌 = − 𝜀𝒌

𝐸𝒌
= − 𝜀𝒌√

𝜀2
𝒌 + Δ2

, (3.92a)

⟨𝜏𝒌 ,𝑥⟩ = ⟨𝑐†𝒌↑𝑐†−𝒌↓ + 𝑐−𝒌↓𝑐𝒌↑⟩ = − sin𝜃𝒌 = − Δ
𝐸𝒌

= − Δ√
𝜀2
𝒌 + Δ2

. (3.92b)

The 𝑧-component indicates the number of pairs, as the up (𝜏𝒌 ,𝑧 = 1) and down
(𝜏𝒌 ,𝑧 = −1) states describe doubly occupied (𝑛𝒌↑ = 𝑛𝒌↓ = 1) and empty pair states
(𝑛𝒌↑ = 𝑛𝒌↓ = 0), respectively. The transverse component describes pair creation and
annihilation from which we find the pairing amplitude ⟨𝑐−𝒌↓𝑐𝒌↑⟩ = − 1

2 sin𝜃𝒌 since
Δ2 = 0. We can insert this into Eq. (3.87) to obtain the BCS gap equation at 𝑇 = 0:

Δ =
𝑈
𝑁𝒌

∑
𝒌

Δ

2
√
𝜀2
𝒌 + Δ2

. (3.93)

We solve the gap equation by replacing the restricted 𝒌 summation with an energy
integral over the interval |𝜀𝒌| < ℏ𝜔D:

1 =
𝑈𝑁(0)

2

∫ ℏ𝜔D

−ℏ𝜔D

d𝜀 1√
𝜀2 + Δ2

= 𝑈𝑁(0) sinh−1
(
ℏ𝜔D
Δ

)
. (3.94)

For the weak-coupling condition𝑈𝑁(0) ≪ 1, we find the ground state gap as

Δ0 = Δ(𝑇 = 0) = ℏ𝜔D

sinh
(

1
𝑈𝑁(0)

) ≈ 2ℏ𝜔D𝑒
− 1
𝑈𝑁(0) . (3.95)
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BCS wave function

We utilize the isospin representation to construct the ground state wave function:
Each isospin is rotated by 𝜃𝒌 relative to the vacuum |0⟩, representing zero excited
pairs. Consequently, the corresponding wave function is obtained by applying a
spin rotation about the 𝑦-axis at each momentum:

|ΨBCS⟩ =
∏
𝒌

𝑒 𝑖
𝜃𝒌
2 𝜏𝒌 ,𝑦 |0⟩ =

∏
𝒌

(
cos 𝜃𝒌

2 + sin 𝜃𝒌

2 𝑐†𝒌↑𝑐
†
−𝒌↓

)
|0⟩ . (3.96)

The BCS wave function thereby incorporates a superposition of states with different
particle numbers𝑁 and𝑁 +2. Let us introduce abbreviations for the coefficients [41]

𝑢𝒌 = cos 𝜃𝒌

2 =

√
1
2 (1 + cos𝜃𝒌) =

√
1
2

(
1 + 𝜀𝒌

𝐸𝒌

)
, (3.97a)

𝑣𝒌 = sin 𝜃𝒌

2 =

√
1
2 (1 − cos𝜃𝒌) =

√
1
2

(
1 − 𝜀𝒌

𝐸𝒌

)
. (3.97b)

called the coherence factors satisfying the normalization |𝑢𝒌|2 + |𝑣𝒌|2 = 1. 𝑢𝒌 and 𝑣𝒌
describe the vacancy and occupation of a pair state at momentum 𝒌 or, equivalently,
the electron-like and hole-like character of the excited quasiparticle (cf. Figure 3.6),
respectively. It turns out that the coherence factors (𝑣𝒌 , 𝑢𝒌) and their complex
conjugates (−𝑣∗𝒌 , 𝑢∗𝒌) represent the eigenvectors of the Nambu matrix 𝒉𝒌 · 𝝉, i.e., they
diagonalize 𝐻BCS in Eq. (3.88). This is known as the Bogoliubov transformation
further discussed in, e.g., Refs. [44, 215, 457, 458].

Using the coherence factors, we can rewrite the ground state as a coherent state

|ΨBCS⟩ =
∏
𝒌

(𝑢𝒌 + 𝑣𝒌𝑐†𝒌↑𝑐†−𝒌↓) |0⟩ =
∏
𝒌

𝑢𝒌
(
1 + 𝑣𝒌

𝑢𝒌︸︷︷︸
=𝑔𝒌

𝑐†𝒌↑𝑐
†
−𝒌↓

) |0⟩
=

∏
𝒌

𝑢𝒌︸︷︷︸
≡𝒩

∏
𝒌

𝑒 𝑔𝒌 𝑐
†
𝒌↑𝑐

†
−𝒌↓ |0⟩ = 𝒩 𝑒

∑
𝒌 𝑔𝒌𝑏

†
𝒌 |0⟩ = 𝒩 𝑒Υ

†
𝒒=0 |0⟩

(3.98)

of the Cooper pair creation operator Υ† (3.74). In the process, we identified
the Cooper pair wave function as 𝑔𝒌 = 𝑣𝒌/𝑢𝒌 and introduced the normalization
𝒩 . The coherent state representation is enabled by the Pauli principle yielding
(𝑐†

𝒌↑𝑐
†
−𝒌↓)𝑛 = 0 for 𝑛 ≥ 2 in the expansion of the exponential, thus connecting to the

phenomenological discussion of section 3.1.
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Knowing the ground state wave function, we can calculate the energy that is gained
from pair condensation. It is given by

𝐸cond = ⟨ΨBCS|𝐻BCS|ΨBCS⟩ − ⟨FS|𝐻BCS|FS⟩ = −1
2𝑁(0)Δ . (3.99)

A similar result holds for anisotropic gap functions [167], which shows that many
nodes at the Fermi level (𝐸F = 0) are energetically unfavorable for condensation.
Moreover, we can determine the occupation number

𝑛𝒌𝜎 = ⟨ΨBCS|�̂�𝒌𝜎|ΨBCS⟩ = ⟨0|(𝑢∗𝒌 + 𝑣∗𝒌𝑐−𝒌↓𝑐𝒌↑)𝑐†𝒌𝜎𝑐𝒌𝜎(𝑢𝒌 + 𝑣𝒌𝑐†𝒌↑𝑐†−𝒌↓)|0⟩ = |𝑣𝒌|2 .
(3.100)

Thus, the average number of condensed electrons is 𝑛𝒌 = ⟨�̂�𝒌↑⟩ + ⟨�̂�𝒌↓⟩ = 2|𝑣𝒌|2,
which is consistent with the fact that there is a probability of |𝑣𝒌|2 to find a pair of
electrons at momentum 𝒌. The total particle number follows as

𝑁s =
〈
�̂�

〉
=

∑
𝒌𝜎

⟨�̂�𝒌𝜎⟩ = 2
∑
𝒌

|𝑣𝒌|2 . (3.101)

Analogously, one can show that the fluctuation of particle number is given by

𝛿𝑁2 =
〈(�̂� − ⟨�̂�⟩)2〉 = ⟨�̂�2⟩ − ⟨�̂�⟩2 = 4

∑
𝒌

|𝑢𝒌|2|𝑣𝒌|2 . (3.102)

It is easy to show that 𝛿𝑁2 is maximal for |𝑣𝒌|2 = 1/2 = |𝑢𝒌|2, i.e., for particles from
the non-interacting Fermi surface (𝜀𝒌 = 0).

3.2.3 Nambu–Gor’kov formalism
To solve the BCS Hamiltonian at finite-energy, we introduce the Nambu–Gor’kov
(NG) Green’s function formalism in the following, which allows to describe super-
conducting systems in the framework of Green’s functions. While BCS theory can
be solved without the usage of Green’s functions, doing so provides a good example
for the formalism, which can be transferred to more general Hamiltonians than the
BCS Hamiltonian in Eq. (3.88).

The Green’s function formalism was introduced in section 2.2, but it does not
work right-away for symmetry-broken phases like superconductivity. The problem
can be understood from the perturbative expansion of the interacting electron
propagator [Eq. (2.25)], which does not converge for the naive insertion of the BCS
interaction [578]. This is captured in the Cooper pair binding energy in Eq. (3.95),
which is non-perturbative in the instantaneous BCS interaction𝑈 .

In order to describe the emergence of symmetry-broken phases like superconduc-
tivity, one needs to include the correlation functions, which describe long-range
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order pertinent to the SSB [578]. To describe superconductivity, we thus have to
introduce correlation functions that describe scattering of electron pairs or equiva-
lently Andrev scattering of electrons and holes (cf. Eqs. (3.4) and (3.87)). These are
given by

𝐹𝛼𝛽(𝜏, 𝒌) = − ⟨𝒯𝜏𝑐𝒌𝛼↑(𝜏)𝑐−𝒌𝛽↓(0)⟩ , 𝐹∗𝛼𝛽(𝜏, 𝒌) = − ⟨𝒯𝜏𝑐†−𝒌𝛼↓(𝜏)𝑐†𝒌𝛼↑(0)⟩ (3.103)

and they are called anomalous or Gor’kov Green’s functions. Both the propagation
of electrons and holes as well as Andrev scattering terms of electrons and holes
can be represented collectively in a matrix propagator in isospin space. This is the
NG Green’s function which is defined as the correlation function of Nambu spinors
(3.89), forming the (2 × 2) matrix31

𝒢𝛼𝛽(𝜏, 𝒌) = − ⟨𝒯𝜏𝜓𝒌𝛼(𝜏) ⊗ 𝜓†
𝒌𝛽(0)⟩

=

( − ⟨𝒯𝜏𝑐𝒌𝛼↑(𝜏)𝑐†𝒌𝛽↑(0)⟩ − ⟨𝒯𝜏𝑐𝒌𝛼↑(𝜏)𝑐−𝒌𝛽↓(0)⟩
− ⟨𝒯𝜏𝑐†−𝒌𝛼↓(𝜏)𝑐†𝒌𝛽↑(0)⟩ − ⟨𝒯𝜏𝑐†−𝒌𝛼↓(𝜏)𝑐−𝒌𝛽↓(0)⟩

)
=

(
𝐺𝛼𝛽(𝜏, 𝒌) 𝐹𝛼𝛽(𝜏, 𝒌)
𝐹∗𝛼𝛽(𝜏, 𝒌) �̄�𝛼𝛽(𝜏, 𝒌)

)
. (3.104)

Here, �̄�𝛼𝛽(𝜏, 𝒌) = − ⟨𝒯𝜏𝑐†−𝒌𝛼↓(𝜏)𝑐−𝒌𝛽↓(0)⟩ is the propagator of a hole, which connects
to the electron’s Green’s function via �̄�(𝜏, 𝒌) = −𝐺𝑇(−𝜏, 𝒌). The benefit of the NG
Green’s function formalism is that the usual framework of many-body approxima-
tions discussed in chapter 2 can be transferred to the matrix Green’s function. For
instance, we can write the Dyson equation (2.26) as

𝒢−1(𝑘) = 𝒢−1
0
(𝑘) − 𝒮(𝑘) (3.105)

with the non-interacting Green’s function

𝒢
0
(𝑘) =

(
𝑖𝜔𝑛1 − ℎ0(𝒌) 0

0 𝑖𝜔𝑛1 + ℎ0(−𝒌)

)
(3.106)

containing only diagonal entries with particle and hole propagation. We denote the
one-body Hamiltonian as ℎ0(𝒌) with an index 0, which differs from the notation
in chapter 2. This is to emphasize that it comprises only the electronic (or hole)
component without any mean-field superconducting pairing, i.e., that it is not to be
confused with the BCS Weiss-field 𝒉𝒌 contribution, see Eq. (3.112) below.

31For spin triplet pairing, the NG Green’s function becomes a 4 × 4 matrix, see, e.g., section 15.5 in
Ref. [44] on spin triplet superfluidity in 3He.
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𝐺𝐺 = 𝐺𝐺0 + ΣN
𝐺𝐺0 𝐺𝐺 + ΣA

𝐺𝐺0 𝐹𝐹∗ 𝐹𝐹 = ΣN
𝐺𝐺0 𝐹𝐹 + ΣA

𝐺𝐺0 �̄�𝐺
𝐺𝐺 = 𝐺𝐺0 + ΣN

𝐺𝐺0 𝐺𝐺 + ΣA
𝐺𝐺0 𝐹𝐹∗ 𝐹𝐹 = ΣN

𝐺𝐺0 𝐹𝐹 + ΣA
𝐺𝐺0 �̄�𝐺𝐺𝐺 = 𝐺𝐺0 + ΣN

𝐺𝐺0 𝐺𝐺 + ΣA
𝐺𝐺0 𝐹𝐹∗ 𝐹𝐹 = ΣN

𝐺𝐺0 𝐹𝐹 + ΣA
𝐺𝐺0 �̄�𝐺

𝐺𝐺 = 𝐺𝐺0 + ΣN
𝐺𝐺0 𝐺𝐺 + ΣA

𝐺𝐺0 𝐹𝐹∗ 𝐹𝐹 = ΣN
𝐺𝐺0 𝐹𝐹 + ΣA

𝐺𝐺0 �̄�𝐺

𝐺𝐺 = 𝐺𝐺0 + ΣN
𝐺𝐺0 𝐺𝐺 + ΣA

𝐺𝐺0 𝐹𝐹∗ 𝐹𝐹 = ΣN
𝐺𝐺0 𝐹𝐹 + ΣA

𝐺𝐺0 �̄�𝐺
𝐺𝐺 = 𝐺𝐺0 + ΣN

𝐺𝐺0 𝐺𝐺 + ΣA
𝐺𝐺0 𝐹𝐹∗ 𝐹𝐹 = ΣN

𝐺𝐺0 𝐹𝐹 + ΣA
𝐺𝐺0 �̄�𝐺

Figure 3.7 – Nambu–Gor’kov Dyson equation. Diagrammatic representation of Eq. (3.109).
The anomalous propagator 𝐹 (and self-energy ΣA(N)) have two outgoing lines, while their
complex conjugate has two inward-directed lines. The hole propagator �̄� goes into the other
direction of the electron propagator 𝐺.

In addition, the self-energy matrix

𝒮(𝑘) =
(
ΣN(𝑘) ΣAN(𝑘)
Σ∗

AN(𝑘) −Σ∗
N(−𝑘)

)
(3.107)

with normal and anomalous (off-diagonal) components enters the Dyson equation.
The anomalous self-energy describes the effective pairing potential of Cooper pairs
and it is closely related to the superconducting gap. In case of inversion symmetric
systems, this relation can be expressed via [579]32

Δ(𝑖𝜔𝑛 , 𝒌) =
ReΣAN(𝑖𝜔𝑛 , 𝒌)
1 − ImΣN(𝑖𝜔𝑛 ,𝒌)

𝜔𝑛

≃ 𝑍ΣAN (3.108)

with quasiparticle weight 𝑍.33 If 𝑍 = 1, we can directly associate ΣAN ≡ Δ. The
matrix formulation of the Dyson equation (3.105) corresponds to two coupled
equations of the normal and anomalous Green’s function

𝐺(𝑘) = 𝐺0(𝑘) + 𝐺0(𝑘)ΣN(𝑘)𝐺(𝑘) + 𝐺0(𝑘)ΣAN(𝑘)𝐹∗(𝑘) , (3.109a)

𝐹(𝑘) = 𝐺0(𝑘)ΣN(𝑘)𝐹(𝑘) + 𝐺0(𝑘)ΣAN(𝑘)�̄�(𝑘) . (3.109b)

The equations for �̄� and 𝐹∗ are connected to 𝐺 and 𝐹 by symmetry. In Figure 3.7,
we show the diagrammatic representation of these equations. For small anomalous
self-energy ΣAN, we can linearize this set of equations to recover the Dyson equation.
This is easily done by rewriting Eq. (3.109a) to obtain

𝐺(𝑘) = [
𝐺−1

0 (𝑘) − ΣN(𝑘)
]−1 (1 + ΣAN(𝑘)𝐹∗(𝑘)) ≈

[
𝐺−1

0 (𝑘) − ΣN(𝑘)
]−1

. (3.110)

32Inversion symmetry Σ(𝒌) = Σ(−𝒌) implies that the spin-orbital matrix is symmetric, i.e., Σ = Σ𝑇 .
Only then, we can write the expression as stated here. For the general expression, see Refs. [579, 580].

33We note that the relation Δ ≃ 𝑍ΣAN is typically used for correlated superconductors with
electronic pairing interaction. It follows from applying the linearization of the self-energy (2.37a)
to 𝒮 ∼ (1 − 𝑍−1)𝑖𝜔𝑛𝜏0. In Migdal–Eliashberg theory with phononic pairing interaction, it is more
common to expand 𝒮 ∼ (1 − �̃�)𝑖𝜔𝑛𝜏0, which results in the relation of Δ ≃ ΣAN/�̃� [581].
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Rearranging Eq. (3.109b) then yields for the linearized anomalous Green’s function

𝐹(𝑘) = [
𝐺−1

0 (𝑘) − ΣN(𝑘)
]−1︸                   ︷︷                   ︸

𝐺(𝑘)

ΣAN(𝑘)�̄�(𝑘) = −𝐺(𝑘)ΣAN(𝑘)𝐺†(−𝑘) (3.111)

with �̄�(𝑖𝜔𝑛 , 𝒌) = −𝐺†(−𝑖𝜔𝑛 ,−𝒌).

BCS theory in Nambu–Gor’kov formalism

To illustrate the NG framework, we apply it to the single-band BCS Hamiltonian
(3.88). The one-body Hamiltonian entering the NG Green’s function is given by
(cf. Eq. (3.90))

ℎ𝒌 = 𝒉𝒌 · 𝝉 = 𝜀𝒌𝜏𝑧 + Δ1𝜏𝑥 + Δ2𝜏𝑦 , (3.112)

where we can associate ℎ0(𝒌) ≡ 𝜀𝒌 and ΣAN ≡ Δ. Since this Hamiltonian only
contains Pauli matrices 𝜏𝑖 , its square can be easily calculated as ℎ2

𝒌 = 𝜀2
𝒌+Δ2

1+Δ2
2 = 𝐸2

𝒌 .
This is useful when evaluating the NG Green’s function, which yields

𝒢(𝑘) = [𝑖𝜔𝑛𝜏0 − ℎ𝒌]−1 =
1

(𝑖𝜔𝑛)2 − 𝐸2
𝒌

(
𝑖𝜔𝑛 + 𝜀𝒌 Δ

Δ∗ 𝑖𝜔𝑛 − 𝜀𝒌

)
(3.113)

where we explicitly used 1 = 𝜏0 to denote the unity matrix. We can directly read of
normal and anomalous Green’s function this way

𝐺(𝑘) = − 𝑖𝜔𝑛 + 𝜀𝒌
𝜔2
𝑛 + 𝐸2

𝒌

, (3.114a)

𝐹(𝑘) = − Δ

𝜔2
𝑛 + 𝐸2

𝒌

. (3.114b)

Using Eq. (3.87), we obtain a self-consistent equation for the superconducting gap

Δ = − 𝑈
𝑁𝒌

∑
𝒌

⟨𝑐↓𝒌𝑐↑𝒌⟩︸    ︷︷    ︸
𝐹(𝜏=0+ ,𝒌)

= − 𝑈
𝛽𝑁𝒌

∑
𝒌 ,𝑛

𝐹(𝑖𝜔𝑛 , 𝒌) Eq. (3.114b)
=

𝑈
𝛽𝑁𝒌

∑
𝒌 ,𝑛

Δ

𝜔2
𝑛 + 𝐸2

𝒌

. (3.115)

This is the well-known BCS gap equation. We can perform the Matsubara summation
via contour integration [44, 213]

1
𝛽

∑
𝑛

1
𝜔2
𝑛 + 𝐸2

𝒌

= − 1
2𝜋𝑖𝛽

∮
d𝑧

𝑓 (𝑧)
(𝑧 − 𝐸𝒌)(𝑧 + 𝐸𝒌) = − 𝑓 (𝐸𝒌) − 𝑓 (−𝐸𝒌)

2𝐸𝒌
(3.116)

with Fermi function 𝑓 (𝐸) = 1/(𝑒𝛽𝐸 + 1).
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3.2 Bardeen–Cooper–Schrieffer theory

By using 𝑓 (𝐸) − 𝑓 (−𝐸) = − tanh
(
𝛽𝐸/2

)
, we obtain the more common expression of

the gap equation

Δ =
𝑈
𝑁𝒌

∑
𝒌

Δ
2𝐸𝒌

tanh
(
𝛽𝐸𝒌

2

)
. (3.117)

Generally, one has to solve this self-consistent equation numerically, see Figure 3.1b.
However, we can also find analytical expressions in two limiting cases. In the
limit of 𝑇 → 0, we recover Eq. (3.93) from which we were able to determine the
zero-temperature gap Δ0 in Eq. (3.95). On the other hand, we can calculate the
critical temperature𝑇c where Δ(𝑇 = 𝑇c) = 0. The Matsubara summation in Eq. (3.115)
yields (see p. 518 in Ref. [44])

𝑘B𝑇c =
𝑒−𝛾

2𝜋︸︷︷︸
≈1.13

ℏ𝜔D𝑒
− 1
𝑈𝑁(0) (3.118)

with Euler constant 𝛾 = 0.577. 𝑇c has the same exponential dependence on coupling
strength 𝜆 = 𝑈𝑁(0) and the proportionality to 𝜔D as the zero-temperature gap. The
ratio of Δ0 and 𝑇c is universal in BCS theory:

Δ0
𝑘B𝑇c

= 𝜋𝑒−𝛾 ≈ 1.76 . (3.119)

With the expression for the superconducting Green’s function, one can easily derive
further experimental quantities like the spectral function (cf. Figure 2.3). We refer to
Ref. [44] showing some of these calculations.

3.2.4 Superconducting stiffness in BCS theory

In the previous section, we have introduced the BCS gap equation (3.117) to determine
the pairing amplitude or superconducting gap Δ. As discussed in section 3.1.3, the
superconducting condensate has the stiffness 𝐷s as a second fundamental energy
scale. Here, we want to derive the BCS expression from Eq. (3.48) for which we
utilize the Green’s function formalism.

To this end, we put the constraint of a small phase twist ∇𝜙(𝒓) = ∇(𝒒 · 𝒓) = 𝒒

on the system (see section 3.1.3 and also publication VI), which is analogous to
a vector potential 𝑨 = −Φ0𝒒. This effectively shifts the dispersion 𝜀𝒌 ↦→ 𝜀𝒌− 𝒒

2
(cf. section 3.2.1), such that the diagonal elements of ℎ𝒌 (3.112) change according to(

𝜀𝒌
𝜀−𝒌

)
↦→

(
𝜀𝒌− 𝒒

2

𝜀−𝒌− 𝒒
2

)
=

(
𝜀𝒌− 𝒒

2

𝜀𝒌+ 𝒒
2

)
≡ 𝜀𝒌− 𝒒

2 𝜏𝑧
𝜏𝑧 (3.120)
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3 Superconductivity

using inversion symmetry 𝜀𝒌 = 𝜀−𝒌 . We note that writing 𝜏𝑧 in the index of the
dispersion is only a symbolic abbreviation for compact writing. The introduction
of a finite 𝒒 (i.e., vector potential) breaks time-reversal symmetry due to which the
diagonal is strictly not proportional to 𝜏𝑧 anymore and also some contributions
proportional to 𝜏0 mix in (see Supplementary Note 4 in publication VI). For the
initial steps of calculating the stiffness, we summarize the steps detailed on p. 535ff
in Ref. [44]. We start from the free energy density, which is given by [44]

𝑓 = − 1
𝛽𝑁𝒌

∑
𝒌 ,𝑛

Tr ln [𝜀𝒌− 𝒒
2 𝜏𝑧

𝜏𝑧 + Δ𝜏𝑥 − 𝑖𝜔𝑛𝜏0]︸                           ︷︷                           ︸
−𝒢−1

+Δ2

𝑈
. (3.121)

For simplicity, we chose the gap to be real-valued (Δ ≡ Δ1 , Δ2 = 0). The stiffness is
given by the second derivative (cf. Eq. (3.48)), which evaluates to

𝐷s,𝑖 𝑗 =
𝜕2 𝑓

𝜕𝑞𝑖𝜕𝑞 𝑗

����
𝒒=0

=
1

4𝛽𝑁𝒌

∑
𝒌 ,𝑛

( 𝜕2𝜀𝒌
𝜕𝑘𝑖𝜕𝑘 𝑗

Tr[𝜏𝑧𝒢(𝑘)]︸                 ︷︷                 ︸
diamagnetic part

+ 𝜕𝜀𝒌
𝜕𝑘𝑖

𝜕𝜀𝒌
𝜕𝑘 𝑗

Tr[𝒢(𝑘)𝒢(𝑘)]︸                       ︷︷                       ︸
paramagnetic part

)
.

(3.122)

This expression can be more compactly rewritten by integrating the diamagnetic
term by parts as [44]

𝐷s,𝑖 𝑗 = − 1
8𝛽𝑁𝒌

∑
𝒌 ,𝑛

𝜕𝜀𝒌
𝜕𝑘𝑖

𝜕𝜀𝒌
𝜕𝑘 𝑗

Tr
[[𝜏𝑧 ,𝒢(𝑘)]2] = 1

𝛽𝑁𝒌

∑
𝒌 ,𝑛

𝜕𝜀𝒌
𝜕𝑘𝑖

𝜕𝜀𝒌
𝜕𝑘 𝑗

Δ2

[𝜔2
𝑛 + 𝐸𝒌2]2 .

(3.123)

Ref. [44] continues from here to determine the 𝑇 = 0 value of the stiffness. Here,
we want to find an expression for arbitrary temperatures. For this, we evaluate the
Matsubara summation as

1
𝛽

∑
𝑛

1
(𝑖𝜔𝑛 − 𝐸𝒌)2(𝑖𝜔𝑛 + 𝐸𝒌)2 =

−1
4𝐸2

𝒌

[
𝑓 (𝐸𝒌) − 𝑓 (−𝐸𝒌)

𝐸𝒌
− 𝑓 ′(𝐸𝒌) − 𝑓 ′(−𝐸𝒌)

]
.

(3.124)

Using the identity 𝑓 ′(𝐸) + 𝑓 ′(−𝐸) = 2 𝑓 ′(𝐸) = −𝛽/[2 cosh2(𝛽𝐸/2)], we arrive at

𝐷s,𝑖 𝑗(𝑇) = 1
4𝑁𝒌

∑
𝒌

𝜕𝜀𝒌
𝜕𝑘𝑖

𝜕𝜀𝒌
𝜕𝑘 𝑗


tanh

(
𝛽𝐸𝒌

2

)
𝐸𝒌

− 𝛽

2 cosh2
(
𝛽𝐸𝒌

2

) 
Δ2

𝐸2
𝒌

. (3.125)

This expression extends to multi-band systems, which necessitate an additional
summation over bands 𝑛. Moreover, inter-band processes can significantly con-
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3.3 Migdal–Eliashberg theory

tribute through the quantum geometric tensor of the Bloch bands, giving rise to
a quantum geometric term 𝐷s,geom [451]. This contribution enables robust super-
conductivity in (twisted) flat band systems such as magic-angle twisted bilayer
graphene (MATBG) [450, 536, 543, 544, 582], see also section 4.3. The underlying
reason is that the conventional stiffness contribution, as derived here, depends on
the effective mass of electrons 𝐷s ∼ 𝑛s/𝑚∗ (cf. Eq. (3.44)). Hence, 𝐷s vanishes in the
limit of flat bands (𝑚∗ → ∞), which strongly limits superconductivity without other
contributions (cf. Eq. (3.59)).

To see the dependence on effective mass, i.e., the relevance of kinetic energy,
we consider the zero-temperature limit. In this case, 𝛽/cosh2(𝛽𝐸𝒌/2) → 0 and
tanh

(
𝛽𝐸𝒌/2

) → 1, such that

𝐷s,𝑖 𝑗(𝑇 = 0) = 1
4𝑁𝒌

∑
𝒌

𝜕𝜀𝒌
𝜕𝑘𝑖

𝜕𝜀𝒌
𝜕𝑘 𝑗

Δ2

𝐸3
𝒌︸︷︷︸

=−2𝜕𝜀𝒌 𝑣
2
𝒌

=
1

2𝑁𝒌

∑
𝒌

𝑣2
𝒌

𝜕2𝜀𝒌
𝜕𝑘𝑖𝜕𝑘 𝑗

, (3.126)

where we inserted the derivative of the coherence factor 𝑣2
𝒌 [Eq. (3.97b)] with

respect to the dispersion 𝜀𝒌 and integrated by parts. The second derivative of
the dispersion is connected to the effective mass of the carriers. For a parabolic
dispersion 𝜀𝒌 = ℏ2𝑘2/(2𝑚∗), we obtain the simple result 𝐷s(0) = ℏ2𝑛s/(4𝑚∗) known
from Eq. (3.44) with 𝑛s/2 = 𝑁/(2𝑉) = ∑

𝒌 𝑣
2
𝒌/𝑁𝒌 from Eq. (3.101).

3.3 Migdal–Eliashberg theory

BCS theory offers a solid framework for understanding superconductivity in many
conventional superconductors with weak coupling strength 𝜆 = 𝑈𝑁(0). However,
the approximation of an instantaneous interaction limits its quantitative accuracy for
many materials with stronger coupling or higher critical temperatures. To overcome
these limitations, the Migdal–Eliashberg theory extends BCS theory by incorporating
the full dynamical nature of electron-phonon interactions. This approach accounts
for the frequency-dependence of interactions in a 𝐺𝑊0-like approximation in the
NG framework, where the screened interaction𝑊0 considers both electron-phonon
and Coulomb interactions [85]. Since this thesis does not primarily focus on phonon-
mediated superconductivity, we will only briefly review the Migdal–Eliashberg
theory to show how its framework is similarly applied to spin-fluctuation-mediated
superconductivity by replacing the interaction kernel in the gap equation. For
in-depth discussions of the Migdal–Eliashberg theory, particularly in the context of
nonempirical approaches of superconducting DFT (SCDFT) and ab initio embedding,
we refer to Refs. [85, 96, 97, 438, 581].
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3 Superconductivity

The starting point of the (conventional) Migdal–Eliashberg theory is the application
of diagrammatic perturbation theory (cf. section 2.3) to the Hamiltonian of electrons
and phonons, where the (harmonic) electron-phonon interaction is considered as the
perturbation. Compared to the purely electronic interaction problem, the electron-
phonon coupled system is significantly simplified by Migdal’s theorem [583]. It
states that vertex corrections can be neglected due to the much smaller energy scale
of phonons compared to electrons. By dressing Green’s functions and interaction
lines in a fashion similar to the 𝐺𝑊 method, one arrives at the expression for the
anomalous self-energy in Migdal–Eliashberg theory [583, 584]:34

ΣAN,𝑚(𝑘) = 1
𝛽𝑁𝒌

∑
𝑘′,𝑚′

𝒦𝑚𝑚′(𝑘 − 𝑘′)𝐹𝑚′(𝑘′) . (3.127)

Here, 𝐹 is the anomalous Green’s function and the interaction kernel𝒦 = 𝒱e−ph+𝒱C

consists of the screened, effective electron-electron interaction 𝒱e−ph mediated by
phonons and the screened Coulomb interaction 𝒱C. By including 𝒱C in the
interaction kernel, the negative effect of electron repulsion on pairing is captured.35

The indices refer to the band basis and band off-diagonal terms are neglected,
as commonly done when studying electron-phonon superconductivity [96, 97].
Eq. (3.127) is commonly referred to as the Eliashberg equation [584] or gap equation
due to the close relation between ΣAN and the gap Δ. We can obtain the BCS
gap equation (3.115) with Δ ≡ ΣAN by neglecting 𝒱C and inserting the static
approximation 𝒱e−ph = 𝑈 in an energy window |𝜀𝒌| < ℏ𝜔D.

When calculating the transition temperature 𝑇c of a material, it is sufficient to
work with the linearized anomalous Green’s function 𝐹 ≃ 𝐺ΣAN�̄� [Eq. (3.111)], i.e.,
dropping higher-order terms of the anomalous self-energy. The corresponding
linearized gap equation reads

ΣAN,𝑚(𝑘) ≈ − 1
𝛽𝑁𝒌

∑
𝑘′,𝑚′

𝒦𝑚𝑚′(𝑘 − 𝑘′)𝐺𝑚′(𝑘′)𝐺∗
𝑚′(−𝑘′)ΣAN,𝑚′(𝑘′) . (3.128)

This equation represents an eigenvalue problem 𝜆SCΣAN ≃ ℬΣAN, where the
superconducting transition is found for the temperature at which the eigenvalue
𝜆SC reaches unity. The diagrammatic representation of the full and linearized gap
equation is drawn in Figure 3.8.

For many materials, solving the Eliashberg equation is demanding due to the high
number of Matsubara frequencies necessary at low temperature. The introduction

34We do not state the equation for the normal self-energy here. For that, we refer to Refs. [339, 438,
581]

35Due to the comparably fast nature of Coulomb forces, often a static approximation is used [85].
However, some materials can exhibit strong plasmonic excitations and explicitly treating these dynamic
effects enhances critical temperatures [96, 101, 585], while the inclusion of spin fluctuations decreases
𝑇c [102, 103, 438].
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3.4 Spin-fluctuation-mediated superconductivity

ΣAN =
𝒦𝒦

≈
a

𝒦𝒦

ΣAN =
𝒦𝒦

≈
a

𝒦𝒦
Figure 3.8 – Eliashberg equation. Diagrammatic repre-
sentation of the Eliashberg equation (3.127). The second
diagram represents the linearized version (3.128) with
𝐹 ≃ 𝐺ΣAN�̄� inserted. The interaction kernel 𝒦 depends
on the pairing mechanism.

of the IR basis [I] mitigates these problems [432, 433, 435, 438]. A common
approximation to simplify calculations of 𝑇c in Migdal–Eliashberg theory is to
replace the Coulomb interaction 𝒱C by an effective pseudo-potential 𝜇∗ [586, 587],
trying to capture retardation effects. Often, 𝜇∗ is not calculated but treated as an
effective parameter. In addition, instead of solving the Eliashberg equation exactly
(for 𝜇∗), the semi-empirical McMillan–Allen–Dynes equation [588, 589] is used to
calculate the critical temperature [96, 97]

𝑘B𝑇c =
ℏ ⟨𝜔⟩

1.2 exp
(
− 1.04(1 + 𝜆)
𝜆 − 𝜇∗(1 + 0.62𝜆)

)
, (3.129)

where ⟨𝜔⟩ denotes a logarithmic average of phonon frequencies (“typical phonon
energy”) and 𝜆 is the electron-phonon coupling strength. This expression resembles
the BCS expression in Eq. (3.118), but it includes the Coulomb pseudo-potential
𝜇∗ which can significantly suppress achievable critical temperatures. We use
the McMillan–Allen–Dynes formula in publication IV to investigate (conventional)
phonon-mediated-superconductivity induced by moiré phonons in twisted transition
metal dichalcogenides.

3.4 Spin-fluctuation-mediated superconductivity
Theories of phonon-mediated pairing fall short in explaining experimental obser-
vations in most unconventional and strongly correlated superconductors, such as
non-uniform superconducting gaps like nodal singlet 𝑑-wave in cuprates or 𝑠±-wave
in iron-pnictides. Instead, other pairing scenarios pertinent to purely electronic
interaction effects have been suggested. Among these, spin-fluctuation-mediated su-
perconductivity is believed to capture many aspects across different unconventional
superconductors, owing in part to the proximity of the superconducting phase to
magnetic order [33, 34, 117]. In this scenario, the attractive interaction is induced by
electrons scattering off of magnetic fluctuations instead of phonons.36 In contrast
to phonon-mediated superconductivity, the pairing interaction induced by spin
fluctuations involves the polarization of the electronic medium itself rather than
the ionic lattice. The resulting pairing potential is anisotropic in space and captures
exchange interaction effects in multi-orbital systems.

36These spin fluctuations are not necessarily proper bosons with a sharp dispersion relation 𝜔(𝒒)
but rather have spectral weight spread out in momentum and frequency. Critical temperatures of
different superconductors were shown to scale with the spread of 𝜔SF of spin fluctuations [32, 34].
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Historically, the idea of electron pairing arising from purely repulsive interactions
was first noted by Kohn and Luttinger [217]. They discussed how Friedel oscillations
of the electron density (as a higher order interaction process from screening) can
create spatial regions which are attractive to electrons and thus facilitate pairing.
To utilize the spatial structure for pairing, the pair wave function has to carry
a non-zero angular momentum. Shortly after, Berk and Schrieffer [590] laid the
groundwork for spin-fluctuation-mediated superconductivity by introducing an
effective interaction based on the RPA susceptibility, primarily framing it as a
mechanism where ferromagnetic fluctuations inhibit spin singlet pairing. These
observations were later identified to be the key to the triplet superfluidity seen in
3He [561]. The discovery of unconventional superconductivity in heavy fermion
compounds, Beechgaard salts, and notably high-temperature cuprates catalyzed
significant progress in developing superconducting pairing mechanisms deriving
from spin fluctuations. We refer to Refs. [32–34, 95, 117] for a broader overview
and in-depth discussions. In the following, we summarize the details of the pairing
interaction induced by spin fluctuations.

3.4.1 Effective pairing interaction from fluctuation exchange
The pairing interaction from spin fluctuations is represented by the irreducible
vertex Γpp in the particle-particle (pairon/cooperon) channel. The conventional
approach involves only accounting for particle-hole exchange contributions to Γpp,
while neglecting computationally more expensive feedback from particle-particle
fluctuations [33, 34, 117].

In the publications included in this thesis [II, III, IV, V], we employ the FLEX
(RPA-like) approximation, where we use the bare local vertex Γ0 (2.44) as the building
block of the particle-hole ladder making up Γpp. The interaction kernel 𝒦 ≡ Γpp of
the Eliashberg equation (Figure 3.8) is thus analogously constructed to the interaction
entering the FLEX self-energy in section 2.3.1 (cf. Figure 2.9c). For preserved SU(2)
symmetry, we can decompose the interaction into singlet (S) and triplet (T) pairing
channels, for which the respective expressions are given by [47]

𝒱 S(𝑞) = 3
2𝑈

s𝜒s(𝑞)𝑈s − 1
2𝑈

c𝜒c(𝑞)𝑈c + 3
4𝑈

s + 1
4𝑈

c , (3.130a)

𝒱 T(𝑞) = −1
2𝑈

s𝜒s(𝑞)𝑈s − 1
2𝑈

c𝜒c(𝑞)𝑈c − 1
4𝑈

s + 1
4𝑈

c (3.130b)

with the spin and charge bare vertices in Eq. (2.45) and susceptibilities 𝜒s/c in
Eq. (2.47).
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3.4 Spin-fluctuation-mediated superconductivity

The corresponding linearized gap equation for multi-orbital systems reads (𝜂 = S, T)

𝜆
(𝜂)
SCΣ

(𝜂)
AN,𝑙𝑚(𝑘) = − 1

𝛽𝑁𝒌

∑
𝑘′,𝑙′𝑚′, 𝑗 𝑗′

𝒱 (𝜂)
𝑙𝑙′,𝑚′𝑚(𝑘 − 𝑘′)𝐺𝑙 𝑗(𝑘′)𝐺∗

𝑚′ 𝑗′(−𝑘)Σ(𝜂)
AN, 𝑗 𝑗′(𝑘′) . (3.131)

Our implementation of the gap equation in the IR basis (see section 2.5.1 and
publication I) enables the efficient evaluation of the gap equations for various different
pairing symmetries following the 𝑆𝑃𝑂𝑇 principle, as discussed in section 3.1.6. By
analyzing the corresponding eigenvalues 𝜆𝜇

SC of a given symmetry 𝜇 (including spin
pairing channel 𝜂), we can identify the dominant instability as the one for which
𝜆SC reaches unity first.
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Chapter

Superconducting pairing in
layered materials 4

Ἀγεω𝜇έτρητος 𝜇ηδεὶς εἰσίτω.1

— Motto on the entrance of Plato’s academy

Layered materials have taken an important role in condensed matter research due
to the unique electronic properties that stem from their structural anisotropy. These
materials often feature strong intra-layer bonding and moderate to weak inter-layer
coupling, which can be attributed to, e.g., weak wave-function overlap due to large
inter-layer distances or weak bonding electronic interactions such as vdW forces.
This results in a quasi-two-dimensional electronic structure, where the reduced,
effective dimensionality within the layers can amplify electron correlations and
fluctuation effects, making layered materials a prime platform for various quantum
phenomena [6, 97]. For instance, spin-fluctuation-mediated superconductivity
tends to be stronger in (quasi-)two-dimensional materials compared to fully three-
dimensional systems, because the fractional phase volume for spin-fluctuation
scattering is larger [339].

Indeed, many unconventional and, in particular, high-temperature superconduc-
tors are layered materials with varying degree of coupling strength in the direction
perpendicular to the layers. The most prominent examples are cuprates, which
share a common structure consisting of copper oxide layers (with one or more
Cu-O planes) stacked between block layers. The composition of these block layers
then determines the doping of the copper oxide layers [28]. In contrast to such
intrinsically layered materials, the class of vdW materials offer a much higher degree
of control over material properties, allowing for the design of quantum matter on
demand through methods such as heterostructuring and twisting to form moiré
structures [22, 24, 158]

In this chapter, we examine superconductivity in both intrinsic and artificially
engineered layered materials. Specifically, we consider spin-fluctuation-driven
superconductivity in layered transition metal oxides in section 4.1, with a focus
on hydrated sodium cobalt oxide (Na𝑥CoO2 · y H2O) and the recently discovered

1Ageōmétrētos mēdeìs eisítō. — Let no one untrained in geometry enter.
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bilayer nickelate (La3Ni2O7, cf. section 4.2.1). Additionally, we study different
superconducting pairing mechanisms in twisted TMDC homobilayers in section 4.3.

4.1 Layered transition metal oxides
The orbital character of valence electrons forming covalent bonds in a solid sig-
nificantly influences the material’s properties. In band theory, this is reflected by
the bandwidth that develops from the overlap of orbital wave functions. Outer 𝑠
and 𝑝 electrons are itinerant because of their strong wave function overlap with
neighboring atoms, whereas 𝑓 electrons are highly localized and screened by core
electrons. In contrast, valence 𝑑-shell electrons possess an intermediate charac-
ter, placing transition metal elements with open 𝑑-shells in a unique position for
properties emerging from chemical bonding. The bandwidth in transition metal
compounds is often determined by indirect charge transfer between 𝑑 orbitals via
ligand 𝑝 orbitals, which further narrows the 𝑑 bandwidth and enhances interaction
effects and electron correlations. As a result, even simple monoxides such as NiO or
CuO are incorrectly classified as metals in band theory due to partially filled bands.
Instead, they are magnetic charge transfer insulators induced by sizable interactions
in the narrow 𝑑-bands [10].

Due to their mixed-valence and coordination possibilities, transition metals can
form a variety of compositions. Among these, transition metal oxides have been
intensively studied as they can host different correlated phases [591, 592]. Several
families of (unconventional, high-temperature) superconducting transition metal
oxides have been reported, with most prominent examples containing copper
(cuprates) [28], ruthenium (Sr2RuO4) [131], cobalt (hydrated Na𝑥CoO2), and nickel
(nickelates); we also refer to the overview in chapter 1 and Figure 1.2. In these
materials, the superconducting pairing primarily resides in individual transition
metal oxide layers. Often, superconductivity emerges in proximity to magnetic
phases (cf. Figure 1.1a for cuprates), which led to proposals of purely electronic
pairing mechanisms, e.g., based on spin fluctuations. Here, we will discuss super-
conductivity in layered cobalt oxides. The family of nickelate materials, especially
the bilayer nickelate La3Ni2O7, will be addressed separately in section 4.2.

4.1.1 Cobalt oxide hydrate – Na𝒙CoO2 · 𝒚H2O
In order to understand unconventional superconductivity found in cuprates,
researchers were on the search of superconductivity in oxides of related 3𝑑 tran-
sition metals. In 2003, Takada et al. [132] discovered superconductivity in water-
intercalated sodium cobalt oxide (Na𝑥CoO2 · y H2O) with a critical temperature of up
to 4.7 K. This material is synthesized through the hydration of the layered sodium
cobalt oxide Na𝑥CoO2, a compound previously studied for its high thermoelectric
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power [591]. Despite extensive research on Na𝑥CoO2 · y H2O, the nature of its
superconducting state remains controversial due to conflicting experimental and
theoretical findings of its Fermi surface topology and superconducting pairing
symmetry. In the following, we briefly summarize the structural and electronic
properties of Na𝑥CoO2 · y H2O (the crystal and band structure are depicted in Fig. 4
of publication II embedded below). Afterwards we give an overview on the unre-
solved issues contributing to the ongoing controversy. An in-depth discussion can
be found in the reviews in Refs. [133, 134].

The properties of Na𝑥CoO2 · y H2O mostly derive from its parent compound
Na𝑥CoO2. Its structure consists of cobalt oxide layers formed by edge-shared CoO6

octahedra, which are separated by sodium ions. In the CoO2 planes, positioning
Co ions on a perfect triangular lattice. This triangular lattice geometry is unique
among layered transition metal oxide superconductors and introduces lattice frus-
tration effects. However, superconductivity only emerges upon hydration, which
introduces water molecules between the oxide layers while Na ions are extracted.
The intercalated water block layers push the cobalt oxide layers further apart and
reduce their height, thereby enhancing the two-dimensional character of the system.

The low-energy electronic structure of Na𝑥CoO2 · y H2O is formed by the 𝑡2𝑔
orbitals of the Co atoms which are hole-doped by the Na ions. The reduced layer
height induces a trigonal distortion in the oxygen octahedra, leading to crystal field
splitting ΔCF which partially lifts the Co 𝑡2𝑔 degeneracy into 𝑎1𝑔 and 𝑒′𝑔 . The LDA
Fermi surface of Na𝑥CoO2 [593], that is studied in effective multi-orbital models of
Na𝑥CoO2 · y H2O [133, 134], shows a Γ-concentric 𝑎1𝑔 hole pocket and small oval 𝑒′𝑔
hole pockets along the Γ-K direction. The 𝑒′𝑔 pockets allow for nearly perfect nesting
conditions, which is crucial for enabling spin-fluctuation-driven superconductivity
as investigated in publication II. However, the Fermi surface topology remains a
controversial issue as will be discussed below.

Open questions and challenges

The origin and nature of the superconducting state in Na𝑥CoO2 · y H2O remains
elusive. Here, we summarize key issues contributing to this controversy (see also
the review by Sakurai et al. [134]):

• Structural instability: The Na𝑥CoO2 · y H2O compound generally suffers from
instability due to water evaporation which significantly impacts sample conditions
and reproducibility. The water concentration is crucial for the emergence of
superconductivity as it influences the Na concentration 𝑥 and induces compression
of the CoO6 layers, affecting the crystal field splitting. Both factors play a critical
role in determining the Fermi surface topology.
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fluctuations in the charge ordering, which can cause local magnetic
moments on Co sites. In Raman scattering measurements, the char-
acteristic peak related to the charge ordering of Na0.5CoO2 [60] has
been observed below 150 K. On the other hand, as will be men-
tioned below, nuclear quadrupole resonance (NQR) and nuclear
magnetic resonance (NMR) measurements strongly suggest that
the enhancement of the susceptibility is caused by magnetic
fluctuations due to itinerant electrons. At present, there is some
uncertainty as to how directly the DOS reduction is correlated with
the occurrence of the superconductivity. Detection of MLH super-
conductivity below 2 K may help answer this question.

4. Superconducting phase diagram

Before the presence and importance of the H3O+ ions were
recognized to be important, three contradictory compositional
phase diagrams were proposed [61–63]. In two of them [61,62],
the superconducting transition temperature, TC, exhibited a dome
shape as a function of the Na content, x, or the Co valence, s. On the
other hand, in the other phase diagram [63], the superconducting
region had a trapezoid shape. This inconsistency is obviously due
to ignorance concerning the presence of H3O+ ions, and indicates
that both the x and s parameters must be used to develop a com-
plete phase diagram.

The superconducting phase diagram for the s ’ 3:40 and 3.48
sections is shown in Fig. 4 [64,65], and details of the synthesis of

these samples are described elsewhere [10,11,64,65]. In the former
section, the non-superconducting (NS) phase appears for
0:33 < x < 0:35 (0:27 > z > 0:25) and the superconducting phases,
SC1 and SC2, appear at the both sides of the NS phase. A similar
phase diagram has been constructed for BaTi2Pn2O (Pn = As, Sb,
and Bi) [66] and LaFeAs1�xPxO [67]; the former system has a reen-
trant superconducting phase with promotion of the isovalent ion
substitution, as in the case of BLH, and the latter system has a
dip in the superconducting region. In the s ¼ 3:48 section, on the
other hand, the dome-shaped superconducting region appears for
0:33 < x < 0:38 (0:19 > z > 0:14), and it therefore completely cov-
ers the x range of the NS phase on the s ¼ 3:40 section. This clearly
indicates that both of x and s are critical parameters for the phase
diagram.

The magnetic susceptibility of a compound in the NS phase
shows an anomaly at approximately TN ¼ 6 K and a steep increase
below it. This anomaly is due to the occurrence of a static and
homogenous internal field [68–70]. The specific heat measure-
ments have revealed that a non-superconducting sample exhibits
a sharp peak at 7 K, which most likely corresponds to the magnetic
transition although the peak is thought to be caused by a charge-
density-wave (CDW) formation [71,72]. Interestingly, supercon-
ducting sample #1 in Fig. 4 displays a transition from the SC1 to
the NS phase under a magnetic field [10,11,64]. Thus, the H–T
phase diagram at x ¼ 0:350 and s ¼ 3:40 is depicted as shown in
Fig. 5. The rapid decrease in TC between 5 T and 6 T strongly sug-
gests that the two transitions at constant H are intrinsic to the
compound, and are not due to extrinsic factors like compositional
inhomogeneity. Sample #2 also shows a similar transition under a
magnetic field, whereas samples #3 and #4 do not [10,11,65].
Thus, the superconducting phase on the s ¼ 3:48 section in Fig. 4
corresponds to the SC1 phase, and the NS phase is located just
below x ¼ 0:33 on the section. These results indicate that the
superconducting phases appear in the immediate vicinity of the
NS phase, which then suggests that the characterization of the NS
phase is important. The other superconducting samples, apart from
samples #3 and #4, show clear drops in their magnetic sus-
ceptibilities at approximately 4 K under 7 T [10,11,64,65], which
suggests they have very high HC2. Note that samples #3 and #4
show a bending of the susceptibility at approximately 4 K under
7 T [10,11,65].

Unfortunately, no consensus has been established regarding the
characteristics of the NS phase. Magnetic ordering and charge mod-
ulations, including charge ordering, charge disproportionation, and
CDW, have been proposed [54,68–70,72,73,75,77]. Intuitively, it
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fluctuations in the charge ordering, which can cause local magnetic
moments on Co sites. In Raman scattering measurements, the char-
acteristic peak related to the charge ordering of Na0.5CoO2 [60] has
been observed below 150 K. On the other hand, as will be men-
tioned below, nuclear quadrupole resonance (NQR) and nuclear
magnetic resonance (NMR) measurements strongly suggest that
the enhancement of the susceptibility is caused by magnetic
fluctuations due to itinerant electrons. At present, there is some
uncertainty as to how directly the DOS reduction is correlated with
the occurrence of the superconductivity. Detection of MLH super-
conductivity below 2 K may help answer this question.

4. Superconducting phase diagram

Before the presence and importance of the H3O+ ions were
recognized to be important, three contradictory compositional
phase diagrams were proposed [61–63]. In two of them [61,62],
the superconducting transition temperature, TC, exhibited a dome
shape as a function of the Na content, x, or the Co valence, s. On the
other hand, in the other phase diagram [63], the superconducting
region had a trapezoid shape. This inconsistency is obviously due
to ignorance concerning the presence of H3O+ ions, and indicates
that both the x and s parameters must be used to develop a com-
plete phase diagram.

The superconducting phase diagram for the s ’ 3:40 and 3.48
sections is shown in Fig. 4 [64,65], and details of the synthesis of

these samples are described elsewhere [10,11,64,65]. In the former
section, the non-superconducting (NS) phase appears for
0:33 < x < 0:35 (0:27 > z > 0:25) and the superconducting phases,
SC1 and SC2, appear at the both sides of the NS phase. A similar
phase diagram has been constructed for BaTi2Pn2O (Pn = As, Sb,
and Bi) [66] and LaFeAs1�xPxO [67]; the former system has a reen-
trant superconducting phase with promotion of the isovalent ion
substitution, as in the case of BLH, and the latter system has a
dip in the superconducting region. In the s ¼ 3:48 section, on the
other hand, the dome-shaped superconducting region appears for
0:33 < x < 0:38 (0:19 > z > 0:14), and it therefore completely cov-
ers the x range of the NS phase on the s ¼ 3:40 section. This clearly
indicates that both of x and s are critical parameters for the phase
diagram.

The magnetic susceptibility of a compound in the NS phase
shows an anomaly at approximately TN ¼ 6 K and a steep increase
below it. This anomaly is due to the occurrence of a static and
homogenous internal field [68–70]. The specific heat measure-
ments have revealed that a non-superconducting sample exhibits
a sharp peak at 7 K, which most likely corresponds to the magnetic
transition although the peak is thought to be caused by a charge-
density-wave (CDW) formation [71,72]. Interestingly, supercon-
ducting sample #1 in Fig. 4 displays a transition from the SC1 to
the NS phase under a magnetic field [10,11,64]. Thus, the H–T
phase diagram at x ¼ 0:350 and s ¼ 3:40 is depicted as shown in
Fig. 5. The rapid decrease in TC between 5 T and 6 T strongly sug-
gests that the two transitions at constant H are intrinsic to the
compound, and are not due to extrinsic factors like compositional
inhomogeneity. Sample #2 also shows a similar transition under a
magnetic field, whereas samples #3 and #4 do not [10,11,65].
Thus, the superconducting phase on the s ¼ 3:48 section in Fig. 4
corresponds to the SC1 phase, and the NS phase is located just
below x ¼ 0:33 on the section. These results indicate that the
superconducting phases appear in the immediate vicinity of the
NS phase, which then suggests that the characterization of the NS
phase is important. The other superconducting samples, apart from
samples #3 and #4, show clear drops in their magnetic sus-
ceptibilities at approximately 4 K under 7 T [10,11,64,65], which
suggests they have very high HC2. Note that samples #3 and #4
show a bending of the susceptibility at approximately 4 K under
7 T [10,11,65].

Unfortunately, no consensus has been established regarding the
characteristics of the NS phase. Magnetic ordering and charge mod-
ulations, including charge ordering, charge disproportionation, and
CDW, have been proposed [54,68–70,72,73,75,77]. Intuitively, it
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fluctuations in the charge ordering, which can cause local magnetic
moments on Co sites. In Raman scattering measurements, the char-
acteristic peak related to the charge ordering of Na0.5CoO2 [60] has
been observed below 150 K. On the other hand, as will be men-
tioned below, nuclear quadrupole resonance (NQR) and nuclear
magnetic resonance (NMR) measurements strongly suggest that
the enhancement of the susceptibility is caused by magnetic
fluctuations due to itinerant electrons. At present, there is some
uncertainty as to how directly the DOS reduction is correlated with
the occurrence of the superconductivity. Detection of MLH super-
conductivity below 2 K may help answer this question.

4. Superconducting phase diagram

Before the presence and importance of the H3O+ ions were
recognized to be important, three contradictory compositional
phase diagrams were proposed [61–63]. In two of them [61,62],
the superconducting transition temperature, TC, exhibited a dome
shape as a function of the Na content, x, or the Co valence, s. On the
other hand, in the other phase diagram [63], the superconducting
region had a trapezoid shape. This inconsistency is obviously due
to ignorance concerning the presence of H3O+ ions, and indicates
that both the x and s parameters must be used to develop a com-
plete phase diagram.

The superconducting phase diagram for the s ’ 3:40 and 3.48
sections is shown in Fig. 4 [64,65], and details of the synthesis of

these samples are described elsewhere [10,11,64,65]. In the former
section, the non-superconducting (NS) phase appears for
0:33 < x < 0:35 (0:27 > z > 0:25) and the superconducting phases,
SC1 and SC2, appear at the both sides of the NS phase. A similar
phase diagram has been constructed for BaTi2Pn2O (Pn = As, Sb,
and Bi) [66] and LaFeAs1�xPxO [67]; the former system has a reen-
trant superconducting phase with promotion of the isovalent ion
substitution, as in the case of BLH, and the latter system has a
dip in the superconducting region. In the s ¼ 3:48 section, on the
other hand, the dome-shaped superconducting region appears for
0:33 < x < 0:38 (0:19 > z > 0:14), and it therefore completely cov-
ers the x range of the NS phase on the s ¼ 3:40 section. This clearly
indicates that both of x and s are critical parameters for the phase
diagram.

The magnetic susceptibility of a compound in the NS phase
shows an anomaly at approximately TN ¼ 6 K and a steep increase
below it. This anomaly is due to the occurrence of a static and
homogenous internal field [68–70]. The specific heat measure-
ments have revealed that a non-superconducting sample exhibits
a sharp peak at 7 K, which most likely corresponds to the magnetic
transition although the peak is thought to be caused by a charge-
density-wave (CDW) formation [71,72]. Interestingly, supercon-
ducting sample #1 in Fig. 4 displays a transition from the SC1 to
the NS phase under a magnetic field [10,11,64]. Thus, the H–T
phase diagram at x ¼ 0:350 and s ¼ 3:40 is depicted as shown in
Fig. 5. The rapid decrease in TC between 5 T and 6 T strongly sug-
gests that the two transitions at constant H are intrinsic to the
compound, and are not due to extrinsic factors like compositional
inhomogeneity. Sample #2 also shows a similar transition under a
magnetic field, whereas samples #3 and #4 do not [10,11,65].
Thus, the superconducting phase on the s ¼ 3:48 section in Fig. 4
corresponds to the SC1 phase, and the NS phase is located just
below x ¼ 0:33 on the section. These results indicate that the
superconducting phases appear in the immediate vicinity of the
NS phase, which then suggests that the characterization of the NS
phase is important. The other superconducting samples, apart from
samples #3 and #4, show clear drops in their magnetic sus-
ceptibilities at approximately 4 K under 7 T [10,11,64,65], which
suggests they have very high HC2. Note that samples #3 and #4
show a bending of the susceptibility at approximately 4 K under
7 T [10,11,65].

Unfortunately, no consensus has been established regarding the
characteristics of the NS phase. Magnetic ordering and charge mod-
ulations, including charge ordering, charge disproportionation, and
CDW, have been proposed [54,68–70,72,73,75,77]. Intuitively, it
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fluctuations in the charge ordering, which can cause local magnetic
moments on Co sites. In Raman scattering measurements, the char-
acteristic peak related to the charge ordering of Na0.5CoO2 [60] has
been observed below 150 K. On the other hand, as will be men-
tioned below, nuclear quadrupole resonance (NQR) and nuclear
magnetic resonance (NMR) measurements strongly suggest that
the enhancement of the susceptibility is caused by magnetic
fluctuations due to itinerant electrons. At present, there is some
uncertainty as to how directly the DOS reduction is correlated with
the occurrence of the superconductivity. Detection of MLH super-
conductivity below 2 K may help answer this question.

4. Superconducting phase diagram

Before the presence and importance of the H3O+ ions were
recognized to be important, three contradictory compositional
phase diagrams were proposed [61–63]. In two of them [61,62],
the superconducting transition temperature, TC, exhibited a dome
shape as a function of the Na content, x, or the Co valence, s. On the
other hand, in the other phase diagram [63], the superconducting
region had a trapezoid shape. This inconsistency is obviously due
to ignorance concerning the presence of H3O+ ions, and indicates
that both the x and s parameters must be used to develop a com-
plete phase diagram.

The superconducting phase diagram for the s ’ 3:40 and 3.48
sections is shown in Fig. 4 [64,65], and details of the synthesis of

these samples are described elsewhere [10,11,64,65]. In the former
section, the non-superconducting (NS) phase appears for
0:33 < x < 0:35 (0:27 > z > 0:25) and the superconducting phases,
SC1 and SC2, appear at the both sides of the NS phase. A similar
phase diagram has been constructed for BaTi2Pn2O (Pn = As, Sb,
and Bi) [66] and LaFeAs1�xPxO [67]; the former system has a reen-
trant superconducting phase with promotion of the isovalent ion
substitution, as in the case of BLH, and the latter system has a
dip in the superconducting region. In the s ¼ 3:48 section, on the
other hand, the dome-shaped superconducting region appears for
0:33 < x < 0:38 (0:19 > z > 0:14), and it therefore completely cov-
ers the x range of the NS phase on the s ¼ 3:40 section. This clearly
indicates that both of x and s are critical parameters for the phase
diagram.

The magnetic susceptibility of a compound in the NS phase
shows an anomaly at approximately TN ¼ 6 K and a steep increase
below it. This anomaly is due to the occurrence of a static and
homogenous internal field [68–70]. The specific heat measure-
ments have revealed that a non-superconducting sample exhibits
a sharp peak at 7 K, which most likely corresponds to the magnetic
transition although the peak is thought to be caused by a charge-
density-wave (CDW) formation [71,72]. Interestingly, supercon-
ducting sample #1 in Fig. 4 displays a transition from the SC1 to
the NS phase under a magnetic field [10,11,64]. Thus, the H–T
phase diagram at x ¼ 0:350 and s ¼ 3:40 is depicted as shown in
Fig. 5. The rapid decrease in TC between 5 T and 6 T strongly sug-
gests that the two transitions at constant H are intrinsic to the
compound, and are not due to extrinsic factors like compositional
inhomogeneity. Sample #2 also shows a similar transition under a
magnetic field, whereas samples #3 and #4 do not [10,11,65].
Thus, the superconducting phase on the s ¼ 3:48 section in Fig. 4
corresponds to the SC1 phase, and the NS phase is located just
below x ¼ 0:33 on the section. These results indicate that the
superconducting phases appear in the immediate vicinity of the
NS phase, which then suggests that the characterization of the NS
phase is important. The other superconducting samples, apart from
samples #3 and #4, show clear drops in their magnetic sus-
ceptibilities at approximately 4 K under 7 T [10,11,64,65], which
suggests they have very high HC2. Note that samples #3 and #4
show a bending of the susceptibility at approximately 4 K under
7 T [10,11,65].

Unfortunately, no consensus has been established regarding the
characteristics of the NS phase. Magnetic ordering and charge mod-
ulations, including charge ordering, charge disproportionation, and
CDW, have been proposed [54,68–70,72,73,75,77]. Intuitively, it
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fluctuations in the charge ordering, which can cause local magnetic
moments on Co sites. In Raman scattering measurements, the char-
acteristic peak related to the charge ordering of Na0.5CoO2 [60] has
been observed below 150 K. On the other hand, as will be men-
tioned below, nuclear quadrupole resonance (NQR) and nuclear
magnetic resonance (NMR) measurements strongly suggest that
the enhancement of the susceptibility is caused by magnetic
fluctuations due to itinerant electrons. At present, there is some
uncertainty as to how directly the DOS reduction is correlated with
the occurrence of the superconductivity. Detection of MLH super-
conductivity below 2 K may help answer this question.

4. Superconducting phase diagram

Before the presence and importance of the H3O+ ions were
recognized to be important, three contradictory compositional
phase diagrams were proposed [61–63]. In two of them [61,62],
the superconducting transition temperature, TC, exhibited a dome
shape as a function of the Na content, x, or the Co valence, s. On the
other hand, in the other phase diagram [63], the superconducting
region had a trapezoid shape. This inconsistency is obviously due
to ignorance concerning the presence of H3O+ ions, and indicates
that both the x and s parameters must be used to develop a com-
plete phase diagram.

The superconducting phase diagram for the s ’ 3:40 and 3.48
sections is shown in Fig. 4 [64,65], and details of the synthesis of

these samples are described elsewhere [10,11,64,65]. In the former
section, the non-superconducting (NS) phase appears for
0:33 < x < 0:35 (0:27 > z > 0:25) and the superconducting phases,
SC1 and SC2, appear at the both sides of the NS phase. A similar
phase diagram has been constructed for BaTi2Pn2O (Pn = As, Sb,
and Bi) [66] and LaFeAs1�xPxO [67]; the former system has a reen-
trant superconducting phase with promotion of the isovalent ion
substitution, as in the case of BLH, and the latter system has a
dip in the superconducting region. In the s ¼ 3:48 section, on the
other hand, the dome-shaped superconducting region appears for
0:33 < x < 0:38 (0:19 > z > 0:14), and it therefore completely cov-
ers the x range of the NS phase on the s ¼ 3:40 section. This clearly
indicates that both of x and s are critical parameters for the phase
diagram.

The magnetic susceptibility of a compound in the NS phase
shows an anomaly at approximately TN ¼ 6 K and a steep increase
below it. This anomaly is due to the occurrence of a static and
homogenous internal field [68–70]. The specific heat measure-
ments have revealed that a non-superconducting sample exhibits
a sharp peak at 7 K, which most likely corresponds to the magnetic
transition although the peak is thought to be caused by a charge-
density-wave (CDW) formation [71,72]. Interestingly, supercon-
ducting sample #1 in Fig. 4 displays a transition from the SC1 to
the NS phase under a magnetic field [10,11,64]. Thus, the H–T
phase diagram at x ¼ 0:350 and s ¼ 3:40 is depicted as shown in
Fig. 5. The rapid decrease in TC between 5 T and 6 T strongly sug-
gests that the two transitions at constant H are intrinsic to the
compound, and are not due to extrinsic factors like compositional
inhomogeneity. Sample #2 also shows a similar transition under a
magnetic field, whereas samples #3 and #4 do not [10,11,65].
Thus, the superconducting phase on the s ¼ 3:48 section in Fig. 4
corresponds to the SC1 phase, and the NS phase is located just
below x ¼ 0:33 on the section. These results indicate that the
superconducting phases appear in the immediate vicinity of the
NS phase, which then suggests that the characterization of the NS
phase is important. The other superconducting samples, apart from
samples #3 and #4, show clear drops in their magnetic sus-
ceptibilities at approximately 4 K under 7 T [10,11,64,65], which
suggests they have very high HC2. Note that samples #3 and #4
show a bending of the susceptibility at approximately 4 K under
7 T [10,11,65].

Unfortunately, no consensus has been established regarding the
characteristics of the NS phase. Magnetic ordering and charge mod-
ulations, including charge ordering, charge disproportionation, and
CDW, have been proposed [54,68–70,72,73,75,77]. Intuitively, it
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Fig. 4. Superconducting phase diagram as a function of Na content. The panels a
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the superconducting phase and NS is the non-superconducting phase. The dotted
lines connect the same x values between the sections.
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Figure 4.1 – Experimental phase diagram of Na𝒙(H3O)𝒛CoO2 · y H2O. Superconducting
phase diagram as a function of Na concentration for different valences of (a) 𝑠 = 3.40
and (b) 𝑠 = 3.48. The superconducting phases are termed SC1 and SC2, while NS is a
non-superconducting phase, whose nature is not clearly determined (presumably magnetic
ordering [596]). Reproduced from [134] with permission from © 2015 Elsevier. Not covered
by the CC BY 4.0 license.

• Unclear Co valence: The hole doping from Na leads to a Co atom valence of
𝑠 = 4 − 𝑥 (electron filling 𝑛 = 9 − 𝑠 = 5 + 𝑥). However, later studies identified the
presence and importance of H3O+ ions (with concentration 𝑧) in the water block
layers, refining the chemical composition to Na𝑥(H3O)𝑧CoO2 · y H2O [134, 594].
Consequently, the valence is adjusted to 𝑠 = 4 − 𝑥 − 𝑧 and the presence of H3O+

modifies the possible doping-dependent diagrams, as shown in Figure 4.1. The
additional doping with H3O+ introduces uncertainty about the precise location
of the superconducting phase within the Na concentration 𝑥-dependent phase
diagram of the parent compound Na𝑥CoO2. Without accounting for H3O+, the
superconducting phase was originally placed at low doping, where the normal
state is characterized as a Pauli paramagnetic metal [595]. However, the additional
H3O+ doping could potentially shift the superconducting phase into a Curie-Weiss
magnetic regime at higher doping [596].

• Fermi surface topology: Experimental and theoretical studies have not provided
clear evidence for the existence of 𝑒′𝑔 hole pockets on the Fermi surface. Theo-
retical modeling indicates that the presence of 𝑒′𝑔 pockets is highly sensitive to
the surrounding conditions (doping, crystal field splitting strength from layer
squeezing, correlation effects). Experimental evidence is also inconclusive. While
several ARPES measurements of Na𝑥CoO2 do not detect 𝑒′𝑔 pockets at the Fermi
level, Shubnikov-de-Haas data, photo-emission spectroscopy, and X-ray Compton
scattering measurements support their presence.

• Pairing symmetry: Various theoretical models proposed different pairing mecha-
nisms and symmetries [133, 597], each with both supporting and contradictory
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experimental results [134]. One highly contested pairing scenario is spin-triplet
𝑝- or 𝑓 -wave pairing driven by the presence of ferromagnetic fluctuations origi-
nating from the 𝑒′𝑔 pockets. However, most theoretical studies have been unable
to investigate this scenario at the experimentally relevant temperature scale of
𝑇c ∼ 5 K, leaving the dominance of 𝑝-wave or 𝑓 -wave symmetry undetermined.

Our embedded publication II addresses the question of spin-fluctuation-driven
superconductivity at experimentally relevant temperatures around 𝑇c and their
dependence on Fermi surface topology. To facilitate this study, we utilize the
enhanced efficiency of the FLEX approximation implemented in the IR basis,
which allows us to perform calculations at 2 K using a maximum of 62 Matsubara
frequencies. We benchmark our method using a previously established Wannier
construction of the 𝑡2𝑔 bands, incorporating 𝑒′𝑔 pockets on the Fermi surface [350].2

Our investigation reveals a dominance of 𝑓𝑦(𝑥2−3𝑦2)-wave symmetry fluctuations at
low temperatures, although we do not observe a superconducting phase transition
within the studied temperature range. An additional study of the Fermi surface
topology shows the largest superconducting eigenvalue on the order of 0.7 at the
lowest calculation temperature of 2 K.

Before performing the multi-orbital model study of Na𝑥CoO2 · y H2O, we also
benchmark our code implementation against the single-band Hubbard model on a
square lattice. In this context, we draw a comprehensive superconducting phase
diagram comparing different many-body methods, specifically for the particle-hole
symmetric lattice model with only nearest-neighbor hopping 𝑡 and intermediate
interaction𝑈/𝑡 = 4.

2We note that the studied model [350] does not consider the influence of H3O+ ions, as their
presence was not yet known at the time the Wannier construction was proposed.
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Superconductivity arises mostly at energy and temperature scales that are much smaller than the typical bare
electronic energies. Since the computational effort of diagrammatic many-body techniques increases with the
number of required Matsubara frequencies and thus with the inverse temperature, phase transitions that occur at
low temperatures are typically hard to address numerically. In this work, we implement a fluctuation exchange
(FLEX) approach to spin fluctuations and superconductivity using the “intermediate representation basis” (IR)
[Shinaoka et al., Phys. Rev. B 96, 035147 (2017)] for Matsubara Green functions. This FLEX + IR approach is
numerically very efficient and enables us to reach temperatures on the order of 10−4 in units of the electronic
bandwidth in multiorbital systems. After benchmarking the method in the doped repulsive Hubbard model on
the square lattice, we study the possibility of spin-fluctuation-mediated superconductivity in the hydrated sodium
cobalt material NaxCoO2 · yH2O reaching the scale of the experimental transition temperature Tc = 4.5 K and
below.

DOI: 10.1103/PhysRevB.103.205148

I. INTRODUCTION

The physics of unconventional superconductivity has
been a longstanding problem in condensed-matter physics.
Over the course of decades, many different systems have
been discovered, such as heavy-fermion compounds [1,2],
cuprates [3,4], iron-based superconductors [5,6], twisted
two-dimensional (2D) materials [7,8], and infinite-layer
nickelate [9].

Finding a microscopic description for these materials is a
difficult task since correlations as well as complexity need
to be accounted for appropriately. The inherent complexity
of real materials arises from the interplay of many internal
degrees of freedom and typically covering multiple energy
scales. For instance, screening of the Coulomb interaction of-
ten involves electronic bands reaching up to 100 eV in energy.
On the other side, superconductivity emerges when thermal
energies are on a scale of 10 meV for Tc cuprate systems
down to a few 10 μeV in several heavy-fermion systems.
Hence, four or even more orders of magnitude of electronic
energies are typically involved in the electronic structure of
superconducting materials. For the theoretical modeling, this
has practical consequences. Distinct energy scales require
large but accurate frequency grid sampling and processing.
This frequently limits the phase space that can be studied by
diagrammatic many-body methods.

One particular material example for this complex interplay
of different degrees of freedom and energy scales is given by

*niwitt@uni-bremen.de

the water intercalated sodium cobalt oxide, NaxCoO2 · yH2O,
which features superconductivity with transition temperatures
reaching Tc = 4.5 K [10]. This material consists of layered
cobalt oxide planes being separated by sodium ions and wa-
ter molecules. The Co atoms are arranged on a triangular
lattice and hole-doped, rendering it a possible realization of
a resonating-valence-bond state, related to high-temperature
superconductivity [11,12]. However, until now neither an ex-
perimental nor a theoretical consensus has been reached on
the origin of the superconducting pairing.

Theoretically proposed pairing types include a spin triplet
p - or f -wave driven by ferromagnetic fluctuations [13–16],
a spin singlet extended s-wave [17,18], a chiral (d + id )-
wave [19,20], an odd frequency gap [15,21], or conventional
phonon-assisted s-wave pairing [22,23]. For each of them,
experimental results can be found that support or deny their
realization [24], making the analysis quite delicate. This
controversy about the pairing type originates from several
problems. They include a general instability of the NaxCoO2 ·
yH2O compound due to water evaporation with an accompa-
nying large dependence on sample conditions [24]. On the
theoretical side, a multiorbital model is necessary to accu-
rately describe the electronic structure [25], which makes
computational studies very challenging. It might be one of the
reasons why no microscopic studies of the superconducting
instability have been reported on the temperature scale of
Tc ∼ 5 K.

In this work, we implement a fluctuation exchange
(FLEX) approach [14,26–32] using the intermediate rep-
resentation (IR) basis [33–36] and study the possi-
bility of spin-fluctuation-mediated superconductivity in

2469-9950/2021/103(20)/205148(12) 205148-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2607-4986
https://orcid.org/0000-0002-5436-290X
https://orcid.org/0000-0002-4333-6773
https://orcid.org/0000-0001-5725-072X
https://orcid.org/0000-0002-5579-2231
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.205148&domain=pdf&date_stamp=2021-05-26
https://doi.org/10.1103/PhysRevB.96.035147
https://doi.org/10.1103/PhysRevB.103.205148


NIKLAS WITT et al. PHYSICAL REVIEW B 103, 205148 (2021)

NaxCoO2 · yH2O. The IR basis provides a compact represen-
tation of imaginary-time quantities that additionally enables
the usage of sparsely sampled data grids [37]. As a result, the
numerical cost of calculations can be considerably reduced
permitting, e.g., new ab initio approaches [38]. Here, we use
this combined FLEX + IR approach to perform calculations
at very low temperatures. We study the magnetic properties
of NaxCoO2 · yH2O and investigate the possibility of triplet
superconductivity occurring on the scale of the experimental
Tc.

The remainder of this work is structured as follows: In
Sec. II we will briefly review the FLEX approximation and
explain the application of the IR basis. To illustrate the accu-
racy and efficiency of our approach, we first show benchmark
studies on the single-orbital Hubbard model in Sec. III. Sub-
sequently, we use our method to research the possibility of
spin-fluctuation-driven superconductivity in the NaxCoO2 ·
yH2O system at very low temperatures. For this, we study the
Fermi surface, filling, and interaction dependence of the spin
susceptibility and superconducting instability in Sec. IV.

II. METHODS

A. Fluctuation exchange approximation

The FLEX approximation introduced by Bickers et al.
[26,27] is a perturbative diagrammatic approach that treats
spin and charge fluctuations self-consistently. It can be de-
rived from a Luttinger-Ward functional [39] containing an
infinite series of closed bubble and ladder diagrams. As such,
it is a conserving approximation [40,41]. Due to its perturba-
tive nature, FLEX cannot sufficiently capture strong-coupling
physics, but it performs well in the weak-coupling regime. It
is suitable for studying systems with strong spin fluctuations
in Fermi liquids and near quantum critical points.

In this paper, we employ the multiorbital extension of
FLEX [29,42] for which we consider the (antisymmetrized)
local interaction Hamiltonian

Hint = 1

4

∑
i

∑
ξ1ξ2ξ3ξ4

�0
ξ1ξ4,ξ3ξ2

c†
iξ1

c†
iξ2

ciξ3
ciξ4

, (1)

where the operators c†
iξ (ciξ ) create (destroy) an electron at

site i in a state ξ = (l, σ ), which is a combined orbital and
spin index. The bare vertex �0 is expressed as

�0
ξ1ξ4,ξ3ξ2

= − 1
2U S

l1l4,l3l2σσ1σ4 · σσ2σ3

+ 1
2U C

l1l4,l3l2δσ1σ4δσ2σ3 (2)

with the interaction matrices

U S
i j,kl =

⎧⎪⎨
⎪⎩

U
U ′
J
J ′

, U C
i j,kl =

⎧⎪⎨
⎪⎩

U if i = j = k = l,
−U ′ + 2J if i = k �= l = j,
2U ′ − J if i = j �= l = k,

J ′ if i = l �= k = j,

where U and U ′ are the local intra- and interorbital inter-
actions, J is the interorbital exchange interaction or Hund’s
coupling, and J ′ is the pair-hopping between two orbitals. Due
to symmetry, they are related by U = U ′ + J + J ′ and J = J ′.

In FLEX, the self-energy can be calculated from

�lm(k) = T

N

∑
q

∑
l ′,m′

Vll ′,mm′ (q)Gl ′m′ (k − q), (3)

where k = (iωn, k) and q = (iνm, q) denote crystal momen-
tum and Matsubara frequencies ωn = (2n + 1)πT (νm =
2mπT ) for fermions (bosons), T is the temperature, and N is
the number of sites. The interaction consists of contributions
from the spin and charge channel as

V (q) = 3
2U S[χS(q) − 1

2χ0(q)
]
U S + 3

2U S

+ 1
2U C

[
χC(q) − 1

2χ0(q)
]
U C − 1

2U C. (4)

The charge and spin susceptibility entering Eq. (4) are defined
by

χC(q) = χ0(q)

1 + χ0(q)U C
, χS(q) = χ0(q)

1 − χ0(q)U S
, (5)

with the unity operator 1 and the irreducible susceptibility

χ0
ll ′,mm′ (q) = −T

N

∑
k

Glm(k + q)Gm′l ′ (k). (6)

We use Eqs. (3)–(6) to self-consistently solve the Dyson equa-
tion

G(k)−1 = G0(k)−1 − �(k) (7)

with the bare Green function given by

G0(iωn, k) = 1

iωn1 − [H0(k) − μ1]
. (8)

H0(k) is the noninteracting Hamiltonian, and μ denotes the
chemical potential, which needs to be adjusted in every it-
eration to keep the electron density n fixed. The fractions in
Eqs. (5) and (8) are to be understood as inversions.

In the presence of strong magnetic fluctuations, it is pos-
sible to study the superconducting phase transition within
FLEX. For this purpose, we consider the linearized Eliashberg
theory with the gap equation reading

λ�
η

lm(k) = T

N

∑
q

∑
l ′,m′

V η

ll ′,m′m(q)F η

l ′m′ (k − q). (9)

It is diagonal in the spin singlet- and triplet-pairing chan-
nel (η = s, t) with the anomalous Green function F η(k) =
−G(k)�η(k)GT(−k) and respective interactions

V s(q) = 3
2U SχS(q)U S − 1

2U CχC(q)U C + 1
4 (3U S + U C),

V t (q) = − 1
2U SχS(q)U S − 1

2U CχC(q)U C − 1
4 (U S − U C).

(10)

λ and � in the linearized gap equation (9) represent an
eigenvalue and eigenvector of the Bethe-Salpeter equation, re-
spectively [26,43]. We solve this eigenvalue problem by using
the power iteration method. The superconducting transition
temperature is found if the eigenvalue λ reaches unity.

B. Intermediate representation basis

The basic objects of diagrammatic many-body methods
like FLEX are Green functions and derived quantities that
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are computed numerically on finite imaginary-time and Mat-
subara frequency grids. Using conventional uniform grids to
represent Green functions, calculations require grid sizes that
increase linearly with inverse temperature upon cooling the
system. In practice, this prohibits calculations at low temper-
atures, as the required amount of data becomes too large to
be stored or processed. One of several approaches [44–46]
to tackle these problems is to use a compact representation
of Green functions as given by (orthogonal) continuous ba-
sis functions, like Legendre polynomials [47,48], Chebyshev
polynomials [49], or numerical basis functions [50].

The IR basis [33–36] is such an orthogonal numerical basis
in which Green functions can be efficiently and compactly
represented. The basis functions are defined by the singular
value expansion of the kernel that connects Green function
and spectral function [51]:

Kα (τ, ω) = ωδα,B
e−ωτ

1 ± e−βτ
=

∞∑
l=0

Sα
l U α

l (τ )V α
l (ω). (11)

Here, {U α
l (τ )}, {V α

l (ω)} denote the IR basis functions, and
Sα

l are the exponentially decaying singular values. The ex-
pansion is uniquely defined by fermionic or bosonic statistics
α ∈ {F, B} and a dimensionless parameter � = βωmax, where
β is the inverse temperature, and ωmax is a cutoff frequency
that captures the spectral width of the system.

The representation within the IR basis provides a con-
trolled way to store Green functions. This means that the
truncation error δ of the expansion

Gα (x) =
lmax∑
l=0

Gα
l U α

l (x) [x = τ, iωn] (12)

with Nα
IR = lmax + 1 basis functions is controllable. It is deter-

mined from the singular values by δ � Slmax/S0. Due to their
exponential decay, only a small number Nα

IR is necessary to
compactly represent Green function data with high accuracy,
as is shown in Fig. 1. Compared to other basis sets like Legen-
dre or Chebyshev polynomials, the IR basis holds a superior
compactness, especially at low temperatures.

Another advantage of the IR basis is the possibility to
generate sparse imaginary-time and frequency grids with a
size equal to the number of basis functions [37]. This scheme
ideally requires an even (odd) number for fermionic (bosonic)
quantities because of which the lines in Fig. 1 are step func-
tions. The sparse grids offer the benefit of decreased data
storage while performing intermediate steps of solving di-
agrammatic calculations efficiently, like computing Fourier
transformation by simple matrix multiplications [52].

In practical calculations, a desired accuracy δ is chosen,
and � is set such that � � βωmax holds for a fixed ωmax.
Then, the {U α

l } functions are precomputed on imaginary-time
and Matsubara frequency grids. The evaluation of Eq. (11)
is numerically expensive. However, the open-source IRBASIS

software package [35] provides numerical basis functions as
solutions to Eq. (11) that can be quickly accessed and imple-
mented easily. Throughout this paper, we employed � = 104

and δ = 10−8, which corresponds to small basis and grid sizes
of NF

IR = 62 and NB
IR = 57.

FIG. 1. Number of IR basis functions Nα
IR needed to sufficiently

expand (a) fermionic or (b) bosonic Green functions within an error
bound δ. The imaginary-time and Matsubara frequency grid sizes can
be chosen equally large.

III. BENCHMARK: SINGLE-ORBITAL SQUARE
LATTICE HUBBARD MODEL

The Hubbard model is a fundamental model used to
study correlated electron physics, particularly the interplay
of magnetism and unconventional superconductivity. Despite
its simplicity, it captures many essential physics important to
interacting quantum systems. Thus, a multitude of many-body
approaches has been developed to simulate the properties
of the Hubbard model [53,54]. Therefore, it constitutes an
excellent system to benchmark our FLEX + IR approach
to former FLEX and further studies of magnetism and
superconductivity.

In this regard, we consider the repulsive single-orbital Hub-
bard model on a square lattice, which also serves as a relevant
study case for cuprates [4]. Taking into account nearest- and
next-nearest-neighbor hoppings t and t ′, the single-particle
dispersion is given by

εk = 2t[cos(kx ) + cos(ky)] + 4t ′ cos(kx ) cos(ky). (13)

In the following, t is the unit of energy. We set the local inter-
action to an intermediate value of U/t = 4. For an assessment
of the performance of the FLEX + IR method introduced,
here we first compare to an earlier FLEX work of one of
the current authors [28]. To this end, we adapted the N =
642 lattice sites in our calculations and replaced the uniform
2048 Matsubara frequency grid of Ref. [28] with the IR basis
sampling.

The Hubbard model contains different magnetic fluctua-
tions whose relative strength can be controlled by the Fermi
surface shape, i.e., by changing t ′ and the electron filling n.
To contemplate different physical situations, we inspect the
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FIG. 2. Comparison of static spin susceptibility (left column) at
T/t = 0.03 and eigenvalue of the Eliashberg equation as well as
inverse magnetic susceptibility at the leading instability (right col-
umn) as calculated with our FLEX + IR implementation with results
from Ref. [28] (dashed lines). The rows show two different situations
with dominant (a) antiferromagnetism (AF: t ′/t = 0, n = 0.85) and
(b) ferromagnetism (F: t ′/t = 0.5, n = 0.3) for U/t = 4.

possibility of both dominant antiferromagnetism (AF) and fer-
romagnetism (F) by using the parameters t ′/t = 0, n = 0.85
and t ′/t = 0.5, n = 0.3, respectively.

First we examined the spin susceptibility χ s. The results for
the static spin susceptibility χ s(iν0 = 0, q) are shown along
high-symmetry paths in the Brillouin zone in the left column
of Fig. 2. For a direct comparison, we also included the results
of Ref. [28]. Clearly, the agreement between both data sets
is excellent. The dominant structures and magnitude of the
incommensurate antiferromagnetic and the weaker ferromag-
netic fluctuations are reproduced exactly.

The presence of strong magnetic fluctuations can drive
unconventional superconductivity. To study its appearance,
we calculated the superconducting eigenvalue λ. In the case
of dominant AF fluctuations, we consider a singlet-pairing
gap with dx2−y2 ≡ d-symmetry while we choose the degen-
erate triplet p-wave state for dominant F fluctuations. Their
respective eigenvalues are shown in the right column of Fig. 2
together with the inverse of χ s(0, Q) at the wave vector Q of
the leading instability, which signifies magnetic ordering. As
can be seen, the AF fluctuations are strong enough to enable
d-wave superconductivity with a Tc ≈ 0.02t , whereas the p-
wave solution is not realized. This is mainly due to stronger
self-energy renormalization for t ′ > 0 and a smaller prefactor
in the triplet-pairing potential V t (q) in Eq. (10). Once again,
we included data from Ref. [28], which agree very well. This
demonstrates that by employing the IR basis we can reduce
the necessary frequency points by a factor of ∼33 while
achieving the same results under persistent accuracy.

In a second step, we use our FLEX + IR approach to
study the superconducting and magnetic phase diagram of
the square lattice Hubbard model with t ′/t = 0. An addi-

FIG. 3. Phase diagram of the Hubbard model with t ′/t = 0 and
U/t = 4. (a) Comparison of different magnetic (AF) and supercon-
ducting (SC) eigenvalues calculated by the FLEX + IR approach
with results from Ref. [55]. (b) Comparison of calculated phase
boundaries from FLEX + IR to a variety of methods including
DMFT + FLEX [55], TPSC [59], DCA on a 16-site cluster [60], and
DCA+ [61].

tional comparison to numerical methods beyond FLEX will
be made.

To map out the phase diagram, we performed calcu-
lations for different fillings and temperatures. Regions of
strong magnetic and superconducting fluctuations can be
identified by analyzing and extrapolating the corresponding
magnetic (λm = Uχ0

max) and superconducting (λd ) eigenval-
ues. In Fig. 3(a) we show the n − T diagram for two extracted
values of λm and λd to indicate the evolution of the phase
boundaries for λ → 1. Additionally, we included indepen-
dent FLEX results by Kitatani et al. [55] (λm,d = 0.99) to
verify our accuracy. This latter comparison yields excellent
agreement.

The results show that Tc grows monotonically with the
electron filling with some flattening of the curve around a
hole doping of 0.15, as has been reported previously [56].
We cannot, however, make a statement about the underdoped
region near half-filling due to strong AF fluctuations prevent-
ing the FLEX cycle from converging. This can be seen from
λm → 1, which masks the superconducting domain below 0.1
hole-doping. This issue is inherently a part of the theory due
to the diverging denominator of the spin susceptibility. Here,
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(a)

(d) (e)

(b) (c)

FIG. 4. Crystal and electronic structure of the NaxCoO2 · yH2O compound. (a) Vertical layered structure of CoO2 planes (light and dark
gray) with intercalated Na+, H2O, and H3O+. (b) Top view on CoO2 planes showing a triangular sublattice of Co ions with surrounding O ions.
(c) CoO6 octahedron, which is trigonally deformed by the layered structure. (d) Electronic band structure with orbital character projections
indicated by surrounding color patches. Model details are given in the Appendix. Energies are measured with respect to the chemical potential
ξk = εk − μ. (e) Fermi surface corresponding to the band structure of panel (d).

the strong fluctuations result from better nesting conditions on
the Fermi surface with less doping, which becomes even more
profound for larger U .

At this point, we should comment on the designa-
tion of phase boundaries at finite temperatures, since the
Mermin-Wagner theorem [57,58] actually prohibits the for-
mation of (perfect) long-range-ordered phases associated with
spontaneous breaking of continuous symmetries at finite tem-
peratures in two dimensions. The results shown here are best
understood in the context of quasi-two-dimensional systems:
It has been shown that purely two-dimensional systems show
very similar results to quasi-two-dimensional systems with
a weak but finite three-dimensional character as long as the
out-of-plane coherence length is large [28].

In Fig. 3(b) we compare our phase diagram obtained from
FLEX for λm,d = 0.99 with phase diagrams reported in the
literature which have been calculated using DMFT + FLEX
(dynamical mean-field) [55], two-particle self-consistency
(TPSC) [59], the diagrammatic cluster approximation (DCA)
on a 16-site cluster [60], and DCA+ [61]. On a qualitative
level, all approaches under consideration yield maximally
achievable superconducting critical temperatures on the same
order of magnitude. Also the shape of the phase bound-
ary of the AF region agrees between FLEX and FLEX +
DMFT.

On a close, more quantitative level, however, there are
profound differences between the phase diagrams revealed by
the different methods: The most prevalent difference between
all methods lies in the structures of the superconducting dome
in the phase diagram. The filling dependence of this dome
shape varies significantly. Due to the reasons of the previous

discussion, FLEX does not establish this dome structure. It
can be retrieved by incorporating strong correlation effects as
contained in DMFT, DCA, and also in TPSC. The level at
which correlations are incorporated, however, strongly influ-
ences the exact doping dependence.

IV. SODIUM COBALT OXIDE

The pairing type of superconductivity and its interplay with
magnetism in NaxCoO2 · yH2O is a very controversial issue as
we have elucidated in the Introduction. In the following, we
apply the FLEX + IR approach to study this problem.

A. Crystal and electronic structure

NaxCoO2 · yH2O is commonly synthesized by soft-
chemical methods from the parent compound Na0.7CoO2. The
latter is a layered material consisting of cobalt oxide planes
that are separated by sodium ions; cf. Fig. 4(a). The CoO2

planes are composed of edge-shared CoO6 octahedra that
place the Co ions on a perfect triangular lattice as depicted
in Figs. 4(b) and 4(c). During hydration, water molecules and
hydronium ions are intercalated between the CoO2 planes. As
a consequence, the separation between the CoO2 planes in
the c-direction increases while the CoO6 octahedra contract
in that direction. The material becomes thus more anisotropic,
i.e., H2O intercalation enhances two-dimensionality in the
CoO2 planes.

The Co atoms have partially filled t2g bands that are
electron-doped by the Na ions. In the simplest approximation,
their filling is n = 5 + x, where x is the Na content. Upon Na
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doping, a rich phase diagram [24,62] with weak correlations
for low dopings (x ∼ 0.3) and strong correlations for high
dopings (x ∼ 0.7) emerges. In this phase characterization, the
superconducting region is placed around x ≈ 0.3. However,
this classification had been made without consideration of
possible additional doping from the H3O+ ions because their
presence was only discovered at a later time [24]. Due to this,
the filling of the t2g-bands might be larger in the superconduct-
ing phase, locating it in the strongly correlated region [16,63].

To model the electronic structure, we use a three-band
tight-binding model for the t2g bands as formulated by
Mochizuki et al. [14], which describes the low-energy char-
acteristics of LDA band-structure calculations [64] quite well.
This model includes a crystal field term accounting for the
trigonal deformation of the CoO6 octahedra because of the
plane height reduction. It leads to a splitting of the t2g or-
bitals into a higher a1g and lower twofold e′

g levels. The
exact details on this model are presented in the Appendix.
The corresponding band structure is shown orbitally resolved
for a Co valence of s = 3.645 or respective electron filling
of n = 5.355 in Fig. 4(d). Panel (e) contains the associated
Fermi surface. It consists of one large a1g hole pocket around
the Brillouin zone center and six elliptically shaped e′

g hole
pockets near the K points. The latter play an important role
in creating strong ferromagnetic fluctuations since they have
a large density of states and offer good nesting conditions for
Q ≈ (0, 0) [14,21,25].

There has been much discussion on the actual existence
of the e′

g pockets on the Fermi surface in the literature. It
stems from the fact that ARPES measurements [65–69] locate
them below the Fermi level. However, these results might be
due to surface effects [70] since PES [71] and Shubnikov–de
Haas measurements [72] seem to support their existence. The-
oretical studies showed that the e′

g pockets are suppressed in
charge self-consistent LDA + DMFT calculations [73], while
LDA + DFMT performed with a realistic Hund’s coupling J
can stabilize them [74]. The problem of locating the e′

g pock-
ets in energy is very delicate since variations in the crystal
field splitting (layer height), electron filling, and bandwidth
renormalization influence the fermiology of NaxCoO2 · yH2O.
In this work, we study the interplay of spin fluctuations and
superconductivity for different models of the Fermi surface.
We start with the type of Fermi surface considered also in Ref.
[14] and vary the Fermi surface shape and topology afterward.

To this end, we first reproduce the results given in Ref. [14]
within FLEX + IR and then extend the calculations to lower
temperatures. We adapted the interaction strength of U = 6
in units of the hopping t3 (U ∼ 1.1 eV; see the Appendix)
and we vary the Hund’s coupling J as a ratio of U . For
the initial comparison, we use a k-mesh of 32 × 32 as in
Ref. [14], but the low-temperature calculations demand a
denser grid sampling for which we found Nk = 2102 lattice
sites to be converged.

B. Spin susceptibilities

To check the accuracy of our implementation, we calcu-
lated the static spin susceptibility and compare our results to
Ref. [14], where calculations were carried out for a temper-
ature of T/t3 = 0.02 and different J/U values. It should be

FIG. 5. Comparison of the largest eigenvalue of the static spin
susceptibility to results from Ref. [14] at T/t3 = 0.02 using a 32 ×
32 k-mesh. The second-order correction used in the calculations is
different between both panels [see the text and Eqs. (14) and (15)].

noted that a different second-order correction V̄ (2)(q) to the
FLEX interaction has been employed in Ref. [14], which is
given by

V̄ (2)(q) = − 1
4 (U S + U C)χ0(q)(U S + U C). (14)

Comparing it to the second-order contribution from Refs.
[42,75–78] as implemented in our code

V (2)(q) = − 3
4U Sχ0(q)U S − 1

4U Cχ0(q)U C (15)

it becomes evident that V̄ (2)(q) incorrectly includes mixing
between spin and charge channel contributions. In Fig. 5 we
show the largest eigenvalue of the static spin susceptibility χ̂ s

for both interactions together with data by Mochizuki et al.
from Ref. [14]. It can be seen that the results are very well
reproduced if V̄ (2)(q) is implemented (left panel). Comparing
it to the implementation of V (2) (right panel) shows that the
incorrect mixing of fluctuation channels leads to a reduction
of fluctuation strength.

Generally, the system contains F as well as AF fluctua-
tions. By increasing J , ferromagnetism is strongly enhanced
while the AF fluctuations are slightly decreased. The lat-
ter are generated by scattering on the a1g surface as well
as between different e′

g pockets, whereas the F fluctuations
emerge mostly from intrapocket scattering in the e′

g sheets.
The charge fluctuations are negligibly small and not shown
here.

The previously discussed results were at a relatively high
temperature of T/t3 = 0.02, which corresponds to ∼50 K. To
properly understand the superconducting transition, a lower
temperature range on the order of the experimental critical
temperatures needs to be investigated. In Fig. 6 we show
the temperature evolution of the largest eigenvalues of static
irreducible susceptibility χ̂0 and spin susceptibility χ̂ s for two
exchange interaction ratios J/U . χ̂0 does not show a strong
dependence on T . The peak at the M point becomes slightly
enhanced while the structure around the � point changes
a bit.

Contrary to this, χ̂ s shows a strong T dependence. By cool-
ing the system, the ferromagnetic fluctuation strength exhibits
a nonmonotonous behavior with a strong enhancement of the
peak at Q = (0, 0) for T/t3 ≈ 0.02. This nonmonotonous evo-
lution traces back to an almost divergent χ̂ s stemming from
the denominator in Eq. (5) approaching zero. In other words,
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FIG. 6. Evolution of the largest eigenvalues of static (iν0 = 0) irreducible susceptibility χ̂ 0 and spin susceptibility χ̂ s for two exchange
interactions J/U .

the simulated case is close of a ferromagnetic instability. In-
deed, we could not converge calculations for larger Hund’s
couplings J/U � 0.22 since J favors the formation of ferro-
magnetic order. For J/U = 0.2 we find that the maximum in
χ̂ s jumps at some intermediate temperature T ∼ 0.01 from
having an absolute maximum at Q = (0, 0) to an absolute
maximum at finite q-vectors. Hence, some long-wavelength
spin waves are the favored type of fluctuation in this regime.
The q-vectors associated with these spin waves match well to
the minor and major axes of the e′

g pockets. Since the Fermi
surface becomes less thermally smeared out, the scattering
between opposite edges is favored.

C. Triplet superconductivity possible?

The ferromagnetic fluctuations investigated in the previous
section seem promising to mediate triplet superconductivity
in NaxCoO2 · yH2O. To address this question, we solve the
Eliashberg equation for different pairing symmetries. Possible
triplet pairings compatible with the point group of the trian-
gular lattice are f1 ≡ fy(x2−3y2 )-, f2 ≡ fx(3x2−y2 )-, and p -wave,
for which px and py are degenerate. The k-dependence of the
respective order parameter is depicted in Fig. 7(a).

The temperature dependence of the corresponding su-
perconducting eigenvalues is shown in Fig. 7(b) for three
different Hund’s couplings. At high temperatures, the p- and
f1-wave solutions coexist with a near degeneracy that is lifted
for low T . There, the f1-gap clearly shows up as the dominant
pairing symmetry. Since it has line nodes between the � and
M points, the f1-gap fits well to the e′

g pockets of the Fermi
surface in the sense that the nodes do not intersect them.
Contrarily, the f2-gap has line nodes that intersect also the
e′

g pockets, which explains why the f2-symmetric gap appears
unfavorable in our calculations.

While we do find an enhancement in the f1- (dominant) and
p-wave (subdominant) superconducting eigenvalues of the
linearized Eliashberg equation upon lowering the temperature,
we do not find triplet superconductivity to be realized on the
order of experimental Tc. The eigenvalue of the leading f1-

symmetric gap stays below 0.6 at T/t3 = 10−3 corresponding
to approximately 2 K. Comparing λ f1 for different J/U indi-
cates an increase of superconducting pairing strength since the
F fluctuations are enhanced. Therefore, it might be possible
that the f1-pairing is realized for larger J/U , but we cannot
access this regime since it is masked in our FLEX calculations
by the magnetic instability.

FIG. 7. (a) Possible triplet-pairing symmetries of the supercon-
ducting gap. Shown is the orbital trace of the converged order
parameter �(iω1, k) for T/t3 = 0.003 and J/U = 0.2. The line
nodes (solid white) intersect differently with the Fermi surface
(dashed black) depending on the gap symmetry. (b) Temperature
dependence of the superconducting eigenvalue λκ for different gap
symmetries κ = f1, f2, p. The panels show different exchange inter-
actions J/U . Note that the T -axis is logarithmic.
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FIG. 8. Dependence of magnetic fluctuations and eigenvalues of the superconducting Eliashberg equation on Fermi surface topology. Each
row shows the noninteracting Fermi surface, maximal eigenvalue of irreducible and spin susceptibility, and superconducting eigenvalue at
T/t3 = 0.003 for the maximally convergable interaction parameters. The top row corresponds to a Fermi surface composed of the a1g pocket
only (�CF = −1.2), the middle row to both pocket types being present (�CF = 0.4), and the bottom row to only the e′

g pockets existing
(�CF = 9.0).

D. Influence of the Fermi surface

The Fermi surface topology naturally affects the magnetic
and superconducting fluctuations, whereas the exact shape of
the Fermi surface for NaxCoO2 · yH2O is an open question,
as explained in Sec. IV A. Therefore, it is insightful to inves-
tigate how the magnetism and superconductivity depend on
Fermi surface topology. We compare the situation with a1g

and e′
g pockets present [Fig. 4(e)] considered so far to the

cases in which either the a1g or e′
g pockets are absent (Fig. 8).

The Fermi surface with suppressed e′
g pockets corresponds

to the results observed in ARPES measurements [65–69].
The latter case, on the other hand, avoids any nodes of the
f1-symmetric gap on the Fermi surface, which leads to the
realization of f -wave superconductivity in the single-band
case [13].

We control the Fermi surface shape in our model via the
filling n and crystal field splitting �CF. In the following cal-
culations, we set the filling to n = 5.6. If we consider the
Fermi surface with only the e′

g pockets being present, then
their effective hole doping of 0.4 is equal to the hole doping of
the e′

g pockets in our previous calculation for n = 5.355 and
�CF = 0.4. By this, we can directly estimate the influence of
neglecting the a1g pocket. Furthermore, n = 5.6 corresponds
to the t2g filling reported for measurements of superconduc-
tivity when considering the additional H3O+ doping [24]. We
choose the crystal field splitting as �CF = −1.2, 0.4, 9.0 to
create the three different Fermi surface topologies as shown in
the left column of Fig. 8. For each, we performed calculations
with different interaction parameters U and J .

In the remaining panels of Fig. 8, we present χ̂0 and χ̂ s at
T/t3 = 0.003 and the superconducting eigenvalue λκ for the
maximal values of U and J for which we were able to con-

verge the FLEX loop. In the case of a single a1g Fermi sheet,
strong magnetic fluctuations do not emerge. If e′

g pockets
exist, intrapocket scattering strongly enhances F fluctuations.
This can be seen both in the case with a1g and e′

g pockets
being present and in the case of only e′

g pockets existing, as we
can stabilize FLEX solutions with sizable F or more generally
long-wavelength spin fluctuations.

Evaluating the eigenvalues of the linearized Eliashberg
equation shows that any spin-fluctuation-induced supercon-
ducting pairing is strongly suppressed in the absence of the
e′

g pockets. Since the AF fluctuations are dominant in this
scenario, we also tried to solve the Eliashberg equation for
d-wave symmetry. However, we could not find a converged
solution. If the material actually exhibits an a1g Fermi surface
only, a different mechanism has to be considered to explain
the superconductivity. In the cases with the e′

g pockets present
and correspondingly stronger F fluctuations, we again find the
dominant f1-wave together with subdominant p-wave sym-
metric solutions of the linearized Eliashberg equation. By
excluding the a1g pocket from the Fermi surface, the supercon-
ducting pairing strength in the aforementioned f1- and p-wave
channels is increased, likely due to the absence of gap nodes
intersecting with the Fermi surface in this case. Nonetheless,
even in the absence of the a1g Fermi pockets, we do not find
the superconducting transition on the order of experimental Tc.
As previously discussed, the transition might occur for larger
values of U or J , which are, however, outside the region where
we could stabilize the FLEX self-consistency loop.

V. CONCLUSION

We implemented the FLEX approximation using the IR ba-
sis to study magnetism and superconductivity in the Hubbard
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model and NaxCoO2 · yH2O. Benchmark calculations on the
Hubbard model showed an excellent agreement with previous
FLEX calculations but at a much lower numerical cost.

This gain in numerical efficiency allowed us to turn to
more realistic multiband systems and to approach so far unex-
plored low-temperature regimes. We studied the dependence
of magnetic and superconducting fluctuations on temperature,
Fermi surface topology, and interaction strength in NaxCoO2 ·
yH2O. We found the existence of e′

g pockets on the Fermi
surface to be crucial in order to generate strong ferromag-
netic fluctuations. Concerning superconducting pairing, we
find the fy(x2−3y2 )-wave symmetry to be dominant over other
triplet-pairing symmetries at low temperatures. We do not,
however, find the superconducting transition on the order of
the experimental Tc, but our calculations indicate that the
spin-fluctuation-driven transition takes place at significantly
lower temperatures. This situation might still change for larger
interactions, which are, however, inaccessible within FLEX
because of too strong magnetic fluctuations. Studies employ-
ing other methods could give more insight on this question.
If the e′

g Fermi pockets are absent, we only find weak mag-
netic fluctuations, which cannot establish superconductivity.
In this case, the pairing mechanism has to be of a different
origin.

In summary, we have shown that the FLEX + IR ap-
proach enables the study of complex multiorbital systems
at low-temperature scales not accessible with conventional
Matsubara frequency grid sampling. This should bring further
systems featuring possibly an interplay of spin fluctuations
and superconductivity into the reach of FLEX calculations
at experimentally relevant temperature scales. Since another
limiting factor of Green function methods is the momentum
integration in the Brillouin-zone, a combination with, e.g.,
adaptive k-space sampling methods [79–81] could further
extend the range of possible systems. Interesting grounds to
be explored range from moiré superlattice systems to realistic
multiband models of infinite-layer nickelate compounds.
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APPENDIX: TIGHT-BINDING MODEL
FOR NaxCoO2 · yH2O

The tight-binding model to describe the electronic structure
of NaxCoO2 · yH2O is constructed following Ref. [14] and
reads

HTB =
∑

γ ,γ ′,σ

(
ε

γγ ′
k + �CF

3
(1 − δγ γ ′ )

)
c†

kγ σ
ckγ ′σ . (A1)

Here, the summation goes over spin σ and the d-orbitals γ of
the t2g manifold. The first term describes the kinetic energy,
and the second term includes the crystal electric field �CF due
to the trigonal distortion of the CoO6 octahedra [cf. Fig. 4(c)].
The band dispersion is given by

ε
γγ

k = 2t1 cos kγ γ
α + 2t2

[
cos kγ γ

β + cos
(
kγ γ

α + kγ γ

β

)]
+ 2t4

[
cos

(
2kγ γ

α + kγ γ

β

) + cos
(
kγ γ

α − kγ γ

β

)]
+ 2t5 cos

(
2kγ γ

α

)
,

ε
γ γ ′
k = 2t3 cos kγ γ ′

β + 2t6 cos kγ γ ′
β + 2t7 cos

(
kγ γ ′

α + 2kγ γ ′
β

)
+ 2t8 cos

(
kγ γ

α − kγ γ

β

) + 2t9 cos
(
2kγ γ

α + kγ γ

β

)
,

where kxy,xy
α = kxy,zx

α = k1, kxy,xy
β = kxy,zx

β = k2, kyz,yz
α =

kxy,yz
α = k2, kyz,yz

β = kxy,yz
β = −(k1 + k2), kzx,zx

α = kyz,zx
α =

−(k1 + k2), and kzx,zx
β = kyz,zx

β = k1, with k1 and k2 being the
reciprocal-lattice vectors defined by the triangular lattice in
Fig. 4(a).

We employ the hopping parameters t1 = 0.45, t2 =
0.05, t3 = 1, t4 = 0.2, t5 = −0.15, t6 = −0.05, t7 =
0.12, t8 = 0.12, and t9 = −0.45, where t3 is the unit of en-
ergy. Setting �CF = 0.4 and t3 ≡ 0.18 eV reproduces LDA
band-structure calculations [64] well, particularly around the
Fermi level. The value of �CF significantly influences the
Fermi surface topology.
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4.2 Nickelate materials

4.2 Nickelate materials
Layered nickel oxides have long been considered potential analogues to cuprates,
given the proximity of nickel and copper in the periodic table [598–600]. For instance,
infinite-layer compounds CaCuO2 and NdNiO2 are isostructural and isoelectronic,
inviting a comparison of their similarities and differences [144, 601, 602]. In 2019,
Li et al. [49] successfully synthesized superconducting thin films of hole-doped
infinite-layer nickelates Nd0.8Sr0.2NiO2, achieving a critical temperature of 9 – 15 K.
Subsequent defect-free samples showed that 𝑇c can be enhanced up to 20 K [55]
(cf. Figure 4.2). Since then, the family of infinite-layer nickelates, denoted as RNiO2

(𝑅 = trivalent rare-earth element), has expanded to include La- and Pr-based variants
hole-doped with Sr or Ca [50–52, 54].

Recent efforts have identified two promising strategies to enhance superconduc-
tivity in nickelates. One approach involves utilizing pressure as an additional
tuning parameter alongside doping. Experimental work demonstrated an increase
of 𝑇c to 31 K at 12 GPa in Pr-based nickelates [54]. Building on these results, DΓA
calculations suggest that high-temperature superconductivity might be achievable in
PrNiO2 without doping at even higher pressures [603]. In addition, research efforts
are focused on finding other nickel oxide multilayer structures. Recently, supercon-
ductivity has been observed in Ruddlesden-Popper phase nickelates 𝑅𝑛+1Ni𝑛O3𝑛+1

for 𝑛 = 2, 3, 5 [53, 56, 57].3 While the pentalayer compound Nd6Ni5O12 becomes
superconducting at ambient pressure, the bilayer La3Ni2O7 and trilayer La4Ni3O9

require finite pressure.
In the following, we briefly review the electronic structure and emergence of

superconductivity in infinite-layer nickelates, contrasting these with the bilayer case
discussed in section 4.2.1 and publication III. We do not address the normal/non-
superconducting phases of infinite-layer nickelates here, which feature elements
such as strange metal behavior and charge ordering. These phases, like the super-
conducting phase, are still subjects of active experimental investigation [146]. This
overview is based on the reviews in Refs. [144, 146] in which further details and
references can be found.

Infinite-layer cuprates and nickelates share similarities in their crystal and elec-
tronic structure, yet also decisive differences exist. Most importantly, the band
structure of nickelates features not only a cuprate-like Ni 3𝑑𝑥2−𝑦2 band at the Fermi
level, but also additional electron pockets appear at the Γ and A points. These
pockets arise from the rare-earth 5𝑑𝑧2 orbital (which hybridizes with Ni 3𝑑𝑧2) and
5𝑑𝑥𝑦 (or alternatively an interstitial 𝑠 orbital [604]). These pockets cause a self-doping
effect on the Ni 𝑑𝑥2−𝑦2 band by approximately 10 %. Moreover, the charge-transfer
energy Δdp is larger in infinite-layer nickelates than in cuprates, and the oxygen

3The structure of Ruddlesden-Poppers nickelates 𝑅𝑛+1Ni𝑛O3𝑛+1 consists of a repeated sequence
of 𝑛 layers of LaNiO3 followed by a LaO layer, stacked along the 𝑐-axis.
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4 Superconducting pairing in layered materials

Figure 4.2 – Superconducting phase diagram of SrxNd1 – xNiO2. Critical temperature
𝑇c vs. Sr-doping 𝑥 and effective doping of the single-orbital 𝑑𝑥2−𝑦2 model. The 𝑑-wave
phase diagram from DΓA calculations [260] is compared to experimental data collected at
different time points relative to the calculations [49, 55, 605] (see Ref. [606]). The pentalayer
Nd6Ni5O12 [53] with 20 % doping of the 𝑑𝑥2−𝑦2 orbital also fits into this description. The blue
background indicates the doping area for which the single-band description is assumed to
be valid. Reprinted with permission from [606]. Copyright © 2024 the American Physical
Society. Not covered by the CC BY 4.0 license.

𝑝-orbitals are situated considerably lower in energy concomitant to a weaker Ni-O
hybridization than the respective Cu-O.

Theoretical studies have largely discounted conventional phonon-mediated
mechanisms for nickelate superconductivity [604, 607, 608]. Instead, infinite-layer
superconductors are considered unconventional superconductors, calling for alter-
native pairing mechanisms. It is an ongoing debate whether superconductivity
in infinite-layer nickelates can be described by a single-orbital [260, 602, 606] or
multi-orbital [109, 609–612] picture. For a more detailed discussion of various
multi-orbital scenarios, we refer the reader to Ref. [144]. Here, we want to briefly
summarize the single-band approach suggested in Ref. [260] (see also Refs. [602,
606]) due to its success in describing the experimental phase diagram. This approach
adopts the standpoint that correlations in the Ni 𝑑𝑥2−𝑦2 band are most important,
while the Γ and A pockets on the Fermi surface only act as effective charge reservoirs.
Figure 4.2 shows the superconducting phase diagram of 𝑑-wave pairing obtained
from a spin-fluctuation mechanism calculated using DΓA.4 The results closely match
the experimentally measured superconducting dome [49, 55, 605].

4Optimizing this single-band model points to palladium-based compounds as promising candi-
dates for enhanced superconducting properties [613].
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4.2 Nickelate materials

Figure 4.3 – Phase diagram of bilayer
nickelate. Temperature-pressure
phase diagram of La3Ni2O7 –δ. At
low pressure, a density wave emerges,
which is suppressed as pressure in-
creases. A structural phase transition
occurs around 10 GPa, leading to the
onset of the superconducting state.
The inset displays the inverse Hall co-
efficient at 80 K. Reprinted from [614]
with permission from © 2024 Springer
Nature. Not covered by the CC BY 4.0
license.

4.2.1 Bilayer nickelate – La3Ni2O7

Recently, high-temperature superconductivity was discovered in the Ruddlesden-
Poppers perovskite bilayer La3Ni2O7 under high pressure, achieving a 𝑇c around
80 K [56] above 14 GPa. The current view of the phase diagram is drawn in
Figure 4.3 [146, 614]. By applying pressure, the system undergoes a phase transition
from a Amam to a more symmetric Fmmm phase, which involves the reorientation of
apical oxygen octahedra from a tilted arrangement to a rectified, linear alignment
with 180° angles between them. Other experimental studies report that, instead
of the Fmmm structure, an even higher I4/mmmm symmetry is adopted in the
superconducting phase at low temperatures [615, 616]. Superconductivity emerges
alongside the structural phase transition and exhibits a weak decreasing trend in 𝑇c

as pressure is further increased. The structural transition is accompanied by a rapid
change in the Hall carrier coefficient [617], possibly indicating a reconstruction of
the low-energy electronic structure and Fermi surface.

At ambient pressure, a density-wave-like phase emerges, the nature of which is
poorly understood. There are speculations about whether it constitutes a spin or
charge density wave, or perhaps a coexistence of both [618, 619]. A spin density
wave has been detected around 150 K using µSR [619, 620], NMR [621], and resonant
inelastic X-ray scattering (RIXS) [622]. However, its connection to the density wave
state is still unclear. This represents just one of many questions in the early-stage
research on bilayer nickelates. Other unresolved issues include the aforementioned
nature of the low-temperature and high-pressure structure (Fmmm vs. I4/mmm) [615,
616], the origin of the strange metal phase [617] observed at temperatures above
the superconducting phase (similar to many other correlated superconductors [36]),
and the filamentary nature of superconductivity [56, 616, 623]. Furthermore, the
precise structural composition remains unclear, with superconductivity being found
in two polymorphs of repeating two-layer nickel oxides (“2222”) [56, 624–626] and
alternating monolayer-trilayer (“1313”) stackings [624, 625, 627, 628]. In particular, a
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recent study was able to stabilize the 2222 structure by substitution of La with Pr in
La2PrNi2O7 [626]. For a timely review on bilayer nickelates, see Ref. [629].

We here concentrate on the electronic structure and superconductivity in bilayer
nickelates of the 2222 structure. As further detailed in publication III, the low-energy
electronic structure consists of strongly hybridizing Ni 𝑑𝑧2 and 𝑑𝑥2−𝑦2 orbitals from
both layers. Currently, it is unclear whether superconductivity is dominantly driven
by the 𝑑𝑧2 (weak-coupling picture) or 𝑑𝑥2−𝑧2 (strong coupling picture) orbitals. In the
embedded publication, we demonstrate that strong inter-layer correlations induce
a Lifshitz transition in the pressurized phase, thereby suppressing ferromagnetic
fluctuations originating from the 𝑑𝑧2 bonding orbital and enhancing 𝑠±-wave super-
conductivity driven by antiferromagnetic fluctuations. These results derive from a
comparison between cellular dynamical mean-field theory (CDMFT) and DMFT cal-
culations, with the former allowing for a direct treatment of inter-layer correlations.
We use the IR basis for solving the linearized Eliashberg equation, which enables us
to explore a large range of (effective) interaction parameters and pairing symmetries
within a spin-fluctuation-driven pairing mechanism. This approach facilitates the
construction of comprehensive superconducting phase diagrams for both DMFT and
CDMFT solutions. Furthermore, we assess the influence of pressure by scaling the
out-of-plane hopping, revealing that the effect of inter-layer correlations diminishes
significantly at lower pressures.
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Publication

Quenched Pair Breaking by Interlayer Correlations
as a Key to Superconductivity in La3Ni2O7

Siheon Ryee, Niklas Witt, Tim O. Wehling

Key points summary

• Study of inter-layer correlations in the novel bilayer nickelate material
La3Ni2O7 under pressure and its influence on superconducivity within
cluster dynamical mean-field theory (CDMFT) based on a wannierized ab
initio model.

• Comparison of ab initio, DMFT and CDMFT Fermi surfaces, spectral
functions and self-energies shows suppression of hole-like 𝛾-pockets
around the (𝜋,𝜋)-point with inter-layer correlations increasing the effective
Ni 𝑑𝑧2 bonding-antibonding splitting between layers.

• Observation of enhanced singlet 𝑠±-wave superconductivity through inter-
layer correlations as pair-breaking ferromagnetic fluctuations are quenched,
which originate from the 𝛾-pockets.

• Qualitative assessment of pressure by scaling of out-of-plane hopping
shows strong influence on the strength of inter-layer correlations.
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The recent discovery of superconductivity in La3Ni2O7 with Tc ≃ 80K under high pressure opens up a
new route to high-Tc superconductivity. This material realizes a bilayer square lattice model featuring a strong
interlayer hybridization unlike many unconventional superconductors. A key question in this regard concerns
how electronic correlations driven by the interlayer hybridization affect the low-energy electronic structure and
the concomitant superconductivity. Here, we demonstrate using a cluster dynamical mean-field theory that
the interlayer electronic correlations (IECs) induce a Lifshitz transition resulting in a change of Fermi surface
topology. By solving an appropriate gap equation, we further show that the leading pairing instability, s±-
wave, is enhanced by the IECs. The underlying mechanism is the quenching of a strong ferromagnetic channel,
resulting from the Lifshitz transition driven by the IECs. Based on this picture, we provide a possible reason of
why superconductivity emerges only under high pressure.

The recent discovery of superconductivity in bilayer nick-
elate La3Ni2O7 under high pressure [Fig. 1(a)] heralds a new
class of high-Tc superconductors [1]. Without doping, this
material exhibits superconductivity under pressure exceeding
14GPa with maximal critical temperature of Tc ≃ 80K [1–
5]. Notable feature in La3Ni2O7 is a multiorbital nature of
low-lying states already at the level of density functional the-
ory (DFT) [1, 6–20] [Fig. 1(b)]. Namely, three electrons
per unit cell are distributed over Ni-eg orbitals in the top
and bottom square-planar lattices, whereas Ni-t2g orbitals are
fully occupied, thereby inactive for the low-energy physics.
The two layers are coupled dominantly via interlayer nearest-
neighbor hopping (or hybridization) between Ni-dz2 orbitals
(tz⊥ ≃ −0.63 eV) [6, 8, 13]. The hopping between Ni-
dx2−y2 is much smaller (|tx⊥| < 0.05 eV) [6, 8]. Most im-
portantly, tz⊥ is deemed to be crucial for the noninteracting
Fermi surface (FS) topology and theories of superconductiv-
ity in La3Ni2O7 [12, 13, 16, 18, 19, 21–29].

In this respect, an important open question concerns how
interlayer electronic correlations (IECs) driven by t

x/z
⊥ mod-

ify the low-energy electronic structure and how they affect su-
perconductivity. Since tz⊥ is the largest among all the hop-
ping amplitudes [6, 8], one can identify the interlayer nearest-
neighbor electronic correlations in the Ni-dz2 states as the
leading “nonlocal” correlations.

In this paper, we employ a cluster (cellular) dynamical
mean-field theory (CDMFT) [30–32] to address nonperturba-
tively the nonlocal as well as the local electronic correlations
within the two-site clusters (dimers) of the bilayer square lat-
tice model for La3Ni2O7 [Fig. 1(a)]. One of the key findings
of our study is a Lifshitz transition resulting in a change of
the FS topology which does not occur when only local corre-
lations are taken into account. By solving an appropriate gap
equation, we show that the IECs promote s±-wave pairing.
The underlying mechanism is the quenching of ferromagnetic
(FM) fluctuations resulting from the Lifshitz transition due to
IECs. Based on this picture, we provide a possible reason of
why superconductivity emerges only under high pressure.

We consider a Hamiltonian on the bilayer square lattice:
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FIG. 1. (a) Left: Crystal structure of La3Ni2O7 under high pressure
drawn using VESTA [33]. Right: The bilayer square lattice model
for La3Ni2O7. Dimers consisting of top and bottom layer Ni sites
(blue circles) coupled via t

x/z
⊥ are highlighted with red-dotted ovals.

(b) Left: MLWF bands of the DFT electronic structure. The colorbar
indicates the orbital character. Right: Sketch of the formation of four
BA orbitals within the dimer consisting of the Ni-eg orbitals in the
top and bottom layers.

H = H0 + Hint. Here, H0 is a tight-binding term for the
Ni-eg subspace describing the band structure for which we
use the maximally localized Wannier function (MLWF) de-
scription for the DFT result of La3Ni2O7 under high pres-
sure (29.5 GPa) [8] [Fig. 1(b)]. Hint is the local interaction
term between Ni-eg orbital electrons on the same Ni site, and
is given by the standard Kanamori form consisting of U (in-
traorbital Coulomb interaction), J (Hund’s coupling), and U ′

(interorbital Coulomb interaction; U ′ = U − 2J). We use
U = 3.7 eV, J = 0.6 eV, and U ′ = 2.5 eV by taking ab ini-
tio estimates for the eg MLWF model [34]. See Supplemental
Material (SM) for more information [35].
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The impurity problem is solved using the hybridization-
expansion continuous-time quantum Monte Carlo method
[36, 37]. We investigate the system at a temperature of
T = 1/145 eV ≃ 80 K corresponding to the maximum ex-
perimental Tc [1]. To mitigate the Monte Carlo sign problem
resulting from the large interlayer hybridization in CDMFT,
we solve the model in a bonding-antibonding (BA) basis de-
fined as the + or − combinations of the top and bottom layer
eg orbitals:

|d̃iη±σ⟩ = (|diη̄σ⟩ ± |diησ⟩)/
√
2 . (1)

Here, ket symbols indicate the corresponding Wannier states
with site index i for the bilayer square lattice and spin σ ∈ {↑
, ↓}. η̄ and η represent Ni-eg orbitals (η ∈ {x2 − y2, z2}) in
the top and bottom layers, respectively. Hereafter x2 − y2 is
denoted by x and z2 by z. Site and spin indices are omitted
unless needed. In this BA basis the CDMFT self-energy be-
comes orbital-diagonal and momentum-independent, so our
CDMFT is equivalent to “four-orbital single-site DMFT”.
The interlayer hopping tη⊥ between eg orbitals |dη̄⟩ and |dη⟩
turns into a hybridization gap of 2|tη⊥| between BA orbitals
|d̃η+⟩ and |d̃η−⟩. Thus a small (large) splitting is realized for
η = x (η = z) [schematically shown in the right panel of
Fig. 1(b)].

We first investigate how interlayer correlations affect the
low-energy electronic structure by contrasting DMFT (in
which all the interlayer correlations are neglected [38]) and
CDMFT results for the same model. Note that, in a reason-
able range around the ab initio interaction parameters, neither
a Mott transition nor a bad metal behavior emerges within our
calculations [35], which is in line with experiments [1–4].

Figure 2 presents the FSs obtained within DMFT and
CDMFT. We find from DMFT that the local correlations alone
do not affect the FS topology [Fig. 2(a)]. The size and the
shape of three FS pockets obtained from DFT, namely α, β,
and γ pockets, remain intact. This result is consistent with
previous DFT+DMFT studies [7, 9, 24].

The IECs, however, significantly modify this picture
[Fig. 2(b)]. While the α pocket remains nearly unchanged, the
β and the γ pockets are largely affected by IECs. The β pocket
becomes more diamond-shaped with spectral weight at the
first Brillouin zone (FBZ) boundary being shifted toward the
X point. We also find redistribution of electron occupations in
favor of half-filled z̄ and z orbitals with ⟨nz̄⟩ = ⟨nz⟩ ≃ 0.93
compared to the DMFT value of 0.85. Most interestingly, the
γ pocket disappears which results in a Lifshitz transition of
the FS. Looking at the orbital character of the FS [Fig. 2(c)]
reveals that x− and z− (for the β pocket around X point) and
z+ (for the γ pocket around the M point) BA orbitals underlie
the FS modification.

More information can be obtained from the momentum-
dependent CDMFT spectral function [Fig. 2(d)]. Near the X
point, the second lowest band moves upward such that x− and
z− states get closer to the Fermi level. The flat z+ character at
the M point, on the other hand, sinks below the Fermi level,
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FIG. 2. (a) FSs obtained from the MLWF model of the DFT band
structure (white lines) and DMFT (color map). (b) FS from CDMFT.
The FSs of DMFT and CDMFT in (a) and (b) are approximated via
−
∑

lm δlmℑGlm(k, iω0) where l,m ∈ {x+, z+, x−, z−}. (c) The
orbital character of the CDMFT FS. (d) The momentum-dependent
spectral function obtained from CDMFT using the maximum entropy
method [39, 40] (color map). The white solid lines indicate the DFT
bands. The Fermi level is at ω = 0. (e) The real part of the CDMFT
self-energy on the Matsubara frequency axis.

leading to the disappearance of the γ pocket.
To further pinpoint the microscopic role of IECs, we in-

vestigate the CDMFT self-energy Σl(iωn) where ωn =
(2n + 1)π/T is the fermionic Matsubara frequency with n
being integer and l ∈ {x+, z+, x−, z−}. Without IECs,
Σx+/z+(iωn) = Σx−/z−(iωn), so IECs are manifested by a
difference of the self-energies between the BA orbitals. We
first find that Σx+

(iωn) ≃ Σx−(iωn) over the entire fre-
quency range due to small tx⊥ resulting in negligible IECs.

In contrast to the x± components, large tz⊥ gives rise to
strong IECs in the z± components. We investigate the real
part ℜΣl(iωn) which modifies the on-site energy level of the
orbital l; see Fig. 2(e). See SM for the imaginary part [35].
We note first that the Hartree-Fock self-energy, ℜΣl(iω∞),
does not modify the FS topology because ℜΣx±(iω∞) −
ℜΣz±(iω∞) is only about 0.1 eV and ℜΣx+/z+(iω∞) =
ℜΣx−/z−(iω∞).

In a low-frequency regime (ωn ≪ 10 eV), however,
ℜΣz+(iωn) is smaller and ℜΣz−(iωn) is larger than the value
at infinite frequency. This, in turn, shifts effectively the on-
site energy levels of z± upward (z−) and downward (z+) with
respect to their DFT counterparts, thereby enhancing the hy-
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FIG. 3. (a) Superconducting phase diagram in the αsp–J/U space at T = 1/145 eV ≃ 80 K. The superconductivity sets in (i.e., λsc ≥ 1) in
the regions above the dashed lines; blue for the DMFT and red for the CDMFT. Inset: the CDMFT gap functions in the FBZ for the parameter
set marked by the yellow star which corresponds to αsp = 0.95 and J/U = 0.2. (b) The irreducible susceptibilities at the lowest bosonic
frequency χ0

lmlm(q, iν0) calculated using DMFT (left) and CDMFT (right) Green’s functions. Q and the associated χ0(q, iν0) components
are highlighted with colored arrows. (c) Upper panel: the spin-singlet pairing interaction Γs

z̄z̄zz(q, iν0) between top and bottom layer z orbitals
in the FBZ. Lower panel: χsp

z̄z̄zz(q = 0), Γs
z̄z̄zz(q = 0), and λsc (inset) as a function of scaling factor ζ for DMFT χ0

z+z+z+z+(q). αsp = 0.95

and J/U = 0.2 for both panels.

bridization gap. In fact, this low-energy behavior is the origin
of the shifts of spectral weight and concomitant FS change
seen in Fig. 2(b). Near the X point z− has substantial weight
in the β pocket of the noninteracting FS. Thus the large upturn
of ℜΣz−(iωn) as ωn → 0 makes an upward shift in energy
near the X point, leading to the change of the β pocket in
CDMFT; see also SM [35]. The physics here bears a close
resemblance to that of VO2 in which intersite correlations
within dimers promote intradimer singlets with an enhanced
hybridization gap [41–43].

Having analyzed the effects of IECs on the electronic struc-
ture, we below investigate how they affect superconductiv-
ity. In light of the reported signatures of a spin density wave
(SDW) in La3Ni2O7 at ambient pressure [44–51], it may be
natural to consider spin-fluctuation-mediated pairing.

A phase transition to the superconducting state occurs when
the corresponding pairing susceptibility diverges, which re-
quires numerical evaluation of the pairing vertex Γs/t for
singlet (s) or triplet (t) Cooper pairs [52, 53] (bold symbols
will be used to denote vectors and matrices). The spin and
charge susceptibilities (χsp/ch) and the related irreducible
vertices (Γsp/ch) contribute to Γs/t. Calculating frequency-
and momentum-dependent Γsp/ch and χsp/ch, however, is
highly nontrivial for multiorbital systems. We thus follow
an idea previously employed to study cuprates, ruthenates,
and iron-based superconductors [54–57]. Namely, Γsp/ch are
parametrized by effective intraorbital Coulomb interaction U

and Hund’s coupling J , i.e., Γsp/ch → Γ
sp/ch

(U, J) (we as-
sume the interorbital value U

′
= U − 2J). The effective ver-

tices Γ
sp/ch

(U, J) are independent of frequency and momen-
tum, see SM [35]. This leads to the gap equation

λsc∆lm(k) = − T

2N

∑

q,l1l2m1m2

Γ
s/t
ll1m1m

(q)

×Gl1l2(k − q)Gm1m2(q − k)∆l2m2(k − q),

(2)

where λsc is the eigenvalue, G(k) the (C)DMFT Green’s
function, and ∆(k) the gap function. k ≡ (k, iωn) and
q ≡ (q, iνn) with k and q being the crystal momentum and
νn = 2nπ/T the bosonic Matsubara frequency. N indicates
the number of k-points in the FBZ. Γs/t

lm1l1m
(q = k − k′) de-

scribe the particle-particle scattering of electrons in orbitals
(l,m) with four-momenta (k,−k) to (l1,m1) with (k′,−k′).
The transition to the superconducting state is indicated by the
maximum eigenvalue λsc reaching unity. Since Γ

sp/ch
(U, J)

are more sparse in the original eg basis than the BA basis, so
are the resulting χsp/ch and Γs/t. We therefore discuss χsp/ch

and Γs/t in the eg picture.

We find the predominance of singlet over triplet pair-
ings arising from antiferromagnetic (AFM) fluctuations. Fig-
ure 3(a) presents the resulting superconducting phase dia-
gram for the leading singlet channel. Since we cannot pin-
point the precise magnitude of U and J , we scan a range
of values. The vertical axis is given by the Stoner enhance-
ment factor αsp which indicates the maximum eigenvalue
of Γ

sp
(U, J)χ0(q, iν0) and gauges the proximity to a mag-

netic instability. Here, χ0 is the irreducible susceptibility,
χ0
lml′m′(q) = − T

N

∑
k Gll′(k + q)Gm′m(k), which is the

lowest-order term of the spin susceptibility, χsp = χ0[1 −
Γ
sp
(U, J)χ0]−1. Thus, αsp is determined entirely from U

and J , provided χ0(q, iν0) is given [35]. For both DMFT and
CDMFT cases, the leading pairing symmetry in the eg-orbital
basis is always the intraorbital s-wave/interorbital dx2−y2 -
wave pairing; see the inset of Fig. 3(a). Projecting to the
noninteracting FS, this pairing corresponds to the s±-wave
where the gap changes sign between the neighboring FS pock-
ets [35]. This leading pairing symmetry is in line with many
previous studies [8, 12, 13, 18, 21–23, 25]. The qualitative
features of the gap functions remain unchanged over the en-
tire parameter range while Q (the crystal momentum at which
the maximum eigenvalue of Γ

sp
(U, J)χ0(q, iν0) emerges)



4

changes from Q = (π, 0) for J/U ⪅ 0.06 to an incommen-
surate wave vector around the M point for J/U ⪆ 0.06 for
both DMFT and CDMFT as highlighted in Fig. 3(b); see SM
for the details [35].

The most notable feature of the phase diagram presented
in Fig. 3(a) is the enhanced superconducting instabilities in
CDMFT compared to DMFT. This result is quite surpris-
ing because the γ pocket which disappears by IECs within
our CDMFT calculation has been argued to drive the spin-
fluctuation-mediated superconductivity throughout the litera-
ture [9, 13, 16, 18, 21]. It thus raises the question: What is the
role of the γ pocket in the pairing?

We first find that the γ pocket has a “Janus-faced” role:
It hosts both obstructive and supportive magnetic fluctua-
tions for the singlet pairing. This can be, in fact, traced
back to the behavior of χ0

lmlm(q, iν0) by investigating the
(l,m) = (z+, z+) and (z+, z−) components of the DMFT
calculation in Fig. 3(b). While the γ pocket allows for small-
q particle-hole excitations resulting in the q = (0, 0) inter-
layer FM χ0

z+z+z+z+(q, iν0), the q = (π, 0) nesting between
the γ and β pocket gives rise to AFM χ0

z+z−z+z−(q, iν0).
Thus, the γ pocket promotes two different competing (i.e., FM
vs. AFM) magnetic channels. Importantly, however, the FM
χ0
z+z+z+z+(q, iν0) predominates in DMFT as clearly shown

in the left panel of Fig. 3(b).
The disappearance of the γ pocket from the FS due to IECs

within CDMFT results in the suppression of both channels,
especially the χ0

z+z+z+z+ component involving solely the γ
pocket [Fig. 3(b)]. This change is more apparent from the
sign of the pairing interaction. In the singlet channel, the FM
fluctuation is directly manifested by a repulsive (rather than
attractive) interaction Γs

z̄z̄zz(q = 0) [upper panel of Fig. 3(c)],
which hinders the singlet Cooper pairing between z̄ and z
orbitals. Quenching of the FM χ0

z+z+z+z+ as in CDMFT
yields the attractive pairing interaction Γs

z̄z̄zz over the entire
FBZ; see Fig. 3(c). Hence, the enhanced pairing tendency in
CDMFT is mainly attributed to the suppression of this FM
channel upon undergoing the Lifshitz transition.

To further corroborate this argument, we analyze how
the DMFT superconducting instabilities are affected by
the FM fluctuation by introducing a scaling factor ζ for
χ0
z+z+z+z+(q). Namely, χ0

z+z+z+z+(q) is rescaled to
ζχ0

z+z+z+z+(q) before constructing χsp/ch and Γs. Indeed,
as shown in the lower panel of Fig. 3(c), the interlayer FM
spin susceptibility χsp

z̄z̄zz(q = 0) turns AFM with decreasing
ζ followed by an attractive pairing interaction Γs

z̄z̄zz(q = 0)
and an increase of λsc. See SM for additional data [35]. Note
also that since the γ pocket is the only FS pocket dispersive
along the kz direction [19], the disappearance of the γ pocket
by IECs makes La3Ni2O7 effectively two-dimensional.

We now turn to the question of “Why does superconduc-
tivity emerge only in the high-pressure phase?”. A useful in-
sight is obtained from a recent experiment which reports that
pressure mainly shrinks the out-of-plane Ni-O bond length
while the in-plane one is weakly affected [58]. Thus, the

main effect of pressure can be addressed with the change of
tz⊥ which is sensitive to the out-of-plane Ni-O bond length.
Since tz⊥ ≃ −0.63 eV at 29.5 GPa under which superconduc-
tivity emerges [6, 8, 13], a smaller magnitude of tz⊥ should
correspond to the lower pressure case. In light of this ob-
servation, we investigate two “low pressure” cases, namely
tz⊥ = −0.45 eV and tz⊥ = −0.55 eV, using CDMFT.

In Fig. 4(a), we find that large χ0
z+z+z+z+(q, iν0) emerges

for the two low-pressure cases, in sharp contrast to the high-
pressure result (tz⊥ ≃ −0.63 eV) which we have already no-
ticed in Fig. 3. Interestingly, this result provide a plausible
scenario of why La3Ni2O7 is not superconducting in the low-
pressure phase because FM χ0

z+z+z+z+(q, iν0) obstructs the
singlet pairing as detailed above. While the γ pocket gives
rise to strong FM fluctuations, the actual magnetic transi-
tion occurs at a finite q as shown in Fig. 4(b) which presents
the maximum eigenvalue of the spin susceptibility at each q,
χsp
max(q, iν0), for tz⊥ = −0.45 eV. χsp

max(q, iν0) shows a peak
at q = QSDW which is different from but close to the SDW
wave vector Qexp.

SDW = (0.5, 0.5)π reported by experiments
[50, 51]. See SM for further discussion [35].
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FIG. 4. (a) χ0
z+z+z+z+(q, iν0) calculated using CDMFT Green’s

functions for three different values of tz⊥ (in units of eV). (b)
χsp
max(q, iν0) at αsp = 0.95 and J/U = 0.2 for tz⊥ = −0.45 eV.

(c) FSs obtained from DMFT and CDMFT for the same values of
tz⊥. We used U = 3.7 eV, J = 0.6 eV, and U ′ = U − 2J for all the
cases. QSDW in (b) is highlighted with the orange arrow.

To trace the origin of the difference between the two low-
pressure cases and the high-pressure (tz⊥ ≃ −0.63 eV) case,
we investigate the CDMFT FSs [lower panels in Fig. 4(c)].
The strength of IECs is controlled by |tz⊥|, so the shape of the
β and the γ pockets in CDMFT FS is basically the same as
the DMFT FS for the smallest |tz⊥| (tz⊥ = −0.45 eV). As |tz⊥|
increases, however, the γ pocket gets suppressed in CDMFT
which is consistent with the evolution of χ0

z+z+z+z+(q, iν0)
presented in Fig. 4(a); see SM for further discussion on the
microscopic origin, especially on the change of the β pocket
[35]. At tz⊥ ≃ −0.63 eV, the FS which we have already seen
in Fig. 2(b) is realized. In contrast, the FS is almost unaffected
by tz⊥ in DMFT. Hence, it can be seen that the concerted effect
of pressure (as modelled via tz⊥) and IECs induces the Lifshitz
transition. This transition quenches the FM channel resulting



5

in an enhancement of the singlet pairing mediated by AFM
fluctuations.

We finally discuss implications of the above pressure-
induced FS change for the available experimental data. Since
the SDW is known to emerge in the ambient-pressure phase
[44–51], direct comparison of our FS for small |tz⊥| with ex-
perimental FS obtained from angle-resolved photoemission
spectroscopy under ambient pressure [59] may be misleading.
Also, considering that there is a discrepancy as to whether or
not the γ pocket crosses the Fermi level in La4Ni3O10 even
between experiments [60, 61], the same issue may also per-
tain to La3Ni2O7. Further study is required. Rather, a tanta-
lizing signature of the Lifshitz transition of FS is seen in the
pressure dependence of Hall coefficient (RH) [62]. While the
sign of RH is positive for the entire pressure range, a sudden
drop of RH occurs near ∼ 10 GPa followed by the emergence
of superconductivity [62]. Since the γ pocket is a hole-like
FS [Fig. 2(d)] and is destructive for pairing, the drop of RH

and the emergence of superconductivity is quite naturally ex-
plained from our Lifshitz transition scenario.

To conclude, we have demonstrated that IECs play a crit-
ical role in La3Ni2O7 by inducing a Lifshitz transition. The
superconducting instability is found to be enhanced by this
transition due to the quenching of the FM fluctuation, which
may also explain why superconductivity emerges only under
high pressure.
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S2

SM1. MICROSCOPIC MODEL

We consider a Hamiltonian on the bilayer square lattice: H = H0 + Hint. Here, H0 is a tight-binding term describing the
noninteracting band structure, which reads

H0 =
∑

il,jm,σ

til,jmd
†
ilσdjm,σ, (S1)

where d†il,σ (djm,σ) is the electron creation (annihilation) operator for site i, j of the bilayer square lattice, spin σ ∈ {↑, ↓},
and orbital l,m ∈ {η̄, η} where η̄ and η represent Ni-eg orbitals η ∈ {x2 − y2, z2} in the top and bottom layers, respectively.
We simply denote x2 − y2 by x and z2 by z. {til,jm} are the hopping amplitudes for which we use values obtained from the
maximally localized Wannier function (MLWF) description of the DFT result for La3Ni2O7 under high pressure (29.5 GPa)
[S1]. Note in particular that tη⊥ ≡ tiη̄,iη = tiη,iη̄ with tx⊥ = −0.049 eV and tz⊥ = −0.628 eV [S1]. The band dispersion of H0

is presented in Fig. 2(c) in the main text. Hint is the onsite interaction term given by the standard Kanamori form

Hint =
1

2

∑
i,lm′ml′,σσ′

Uσσ′
lm′ml′d

†
ilσd

†
il′σ′dim′σ′dimσ, (S2)

where l, l′,m,m′ ∈ {x̄, z̄, x, z}. Uσσ′
lm′ml′ is nonzero only for U ≡ Uσσ

η̄η̄η̄η̄ = Uσ−σ
η̄η̄η̄η̄ = Uσσ

ηηηη = Uσ−σ
ηηηη , U ′ ≡ Uσσ

η̄η̄′η̄η̄′ =

Uσ−σ
η̄η̄′η̄η̄′ = Uσσ

ηη′ηη′ = Uσ−σ
ηη′ηη′ , and J ≡ Uσσ

η̄η̄′η̄′η̄ = Uσ−σ
η̄η̄′η̄′η̄ = Uσσ

η̄η̄η̄′η̄′ = Uσ−σ
η̄η̄η̄′η̄′ = Uσσ

ηη′η′η = Uσ−σ
ηη′η′η = Uσσ

ηηη′η′ = Uσ−σ
ηηη′η′

(η ̸= η′). We take U = 3.7, J = 0.6 eV, and U ′ = U − 2J by taking ab initio estimates for the eg MLWF model [S2].
To mitigate the Monte Carlo sign problem of the two-site cluster impurity, we solve the model in a bonding-antibonding (BA)

basis in which the electron annhilation operator d̃iη±σ is defined as the symmetric (+) and antisymmetric (−) combinations of
the top and bottom layer eg orbital operators:

d̃ix+σ

d̃iz+σ

d̃ix−σ

d̃iz−σ

 = A

dix̄σdiz̄σ
dixσ
dizσ

 =
1√
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


dix̄σdiz̄σ
dixσ
dizσ

 , where A =
1√
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 . (S3)

Under this basis transformation, H0 and Hint are rewritten as

H0 =
∑

il,jm,σ

( ∑
l1,m1

til1,jm1Al1lA
∗
m1m

)
d̃†ilσd̃jm,σ, (S4)

Hint =
1

2

∑
i,lm′ml′,σσ′

( ∑
l1m2m1l2

Uσσ′
l1m2m1l2Al1lAl2l′A

∗
m1mA

∗
m2m′

)
d̃†ilσd̃

†
il′σ′ d̃im′σ′ d̃imσ. (S5)

The transformed Coulomb interaction tensor to the BA basis, namely Ũσσ′
lm′ml′ =

∑
l1m2m1l2

Uσσ′
l1m2m1l2

Al1lAl2l′A
∗
m1mA

∗
m2m′ ,

has in general nonzero four-index elements. While the four-index terms cause the Monte Carlo sign problem, it is actually
largely alleviated in the BA basis compared to the eg basis thanks to the orbital-diagonal hybridization function.

SM2. IMAGINARY PART OF THE CDMFT SELF-ENERGY

The imaginary part of the CDMFT self-energy, ℑΣl(iωn) is presented in Fig. S1. Noticeable is the strong orbital dependence
of ℑΣl(iωn): the z± components are more correlated than the x±, i.e., |ℑΣz±(iωn)| > |ℑΣx±(iωn)|. The result is qualitatively
consistent with the available experimental data on the ambient-pressure structure of La3Ni2O7 [S3, S4]. The origin is traced back
to the resulting electron occupation of the z̄ and z orbitals (⟨nz̄⟩ = ⟨nz⟩ ≃ 0.93) being much closer to half filling than the x̄ and x
(⟨nx̄⟩ = ⟨nx⟩ ≃ 0.57). The IECs between z̄ and z orbitals further differentiate z+ and z−, namely |ℑΣz−(iωn)| > |ℑΣz+(iωn)|,
leading to a larger mass enhancement m∗/mDFT (mDFT is the bare DFT mass) in the z− component. The mass enhancements
directly extracted from ℑΣl(iωn) using fourth-order polynomial fitting [S5–S7] are m∗/mDFT ≃ 2.8 for z+ and 5.1 for z−. On
the other hand, m∗/mDFT ≈ 2 for both weaker-correlated x+ and x− orbitals.

SM3. INFLUENCE OF DIFFERENT ONSITE INTERACTION PARAMETERS ON THE FERMI SURFACE

We have used ab initio estimate of U (U = 3.7 eV) and J (J = 0.6 eV) obtained from the constrained random phase
approximation (cRPA) [S2] for our presentation in the main text. Since we have neglected i) frequency dependence of U and
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FIG. S1. The imaginary part of the CDMFT self-energy on the Matsubara frequency axis.

J by using their static limits and ii) spatially long-ranged Coulomb tails by taking only onsite values, it would be necessary to
check how the low-energy electronic structure is affected by different values of U and J . Here, we change U and keep the ratio
J/U fixed.

We present the calculated FSs in Fig. S2. As is expected, the strength of IECs increases with U and J . Namely, the γ pocket
at theM point gets suppressed and the β pocket becomes more diamond-shaped with increasing U and J in CDMFT results. On
the other hand, we find no appreciable change within DMFT in which only onsite electronic correlations are taken into account.
In any case, we find that in a reasonable range around the cRPA estimates IECs significantly modify the FS making the γ pocket
largely suppressed.

DMFT ( )U = 3.33 eV, J = 0.54 eV DMFT ( )U = 3.7 eV, J = 0.6 eV DMFT ( )U = 4.07 eV, J = 0.66 eV
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FIG. S2. The calculated FSs by DMFT (top panels) and CDMFT (bottom panel) for different interaction parameters. The FSs are approximated
to −∑

lm δlmℑGlm(k, iω0) where l,m ∈ {x+, z+, x−, z−}. The FSs in the middle panels are obtained from the ab initio interaction
parameters as discussed in the main text. U ′ = U − 2J for all the sets.

SM4. INFLUENCE OF INTERLAYER DENSITY-DENSITY INTERACTION V

Using the BA basis for CDMFT calculations, the nearest-neighbor interlayer interactions can be addressed on the same footing
as onsite interactions (U and J) without invoking further computational complexity. In light of this, we here consider the effects
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of density-density interaction V within CDMFT by introducing an additional term HV to our Hamiltonian. HV reads

HV =

iσσ′∑
η,η′∈{x,z}

V d†iη̄σd
†
iη′σ′diη′σ′diη̄σ (eg basis)

=

iσσ′∑
l,m∈{x+,z+,x−,z−}

( ∑
η,η′∈{x,z}

V Aη̄lAη′mA
∗
η̄lA

∗
η′m

)
d̃†ilσd̃

†
imσ′ d̃imσ′ d̃ilσ (BA basis).

(S6)

We use the cRPA estimate of V : V = 0.5 eV [S2].
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FIG. S3. (a) The calculated FSs by CDMFT for V = 0 (top) and V = 0.5 eV (bottom). (b) The real (top) and imaginary (bottom) parts of the
CDMFT self-energies. U = 3.7 eV, J = 0.6 eV, and U ′ = U − 2J = 2.5 eV.

Figure S3 presents the FS and the self-energy calculated by CDMFT with V = 0.5 eV. For comparison, we also show the
results with V = 0. We first find that the FS is basically unaffected by V , although V slightly suppresses the γ pocket at the
M point. This minor difference can be traced back to the small difference in the real part of the self-energy [upper panels in
Fig. S3(b)]. For all orbital characters, the effect of V induces at most a ∼ 0.1 eV decrease in the magnitude of the real part. Note
that for comparison of the two cases on the same footing, we subtracted the infinite-frequency Hartree-Fock self-energy from
the real part. We also find basically negligible modifications in the imaginary part of the self-energy [lower panels in Fig. S3(b)],
albeit them being systematically decreased in magnitude by V . We can ascribe these suppressed real and imaginary parts of the
self-energy in the finite V case to the generic effect of V which reduces the “effective” onsite interaction strength by screening
[S8–S12]. At any rate, these small changes in the FS and the self-energy legitimately allow us to employ only onsite interactions
as we did in the present paper.

SM5. INFLUENCE OF HUND’S COUPLING J

Since La3Ni2O7 realizes a multiorbital system, it would be informative to investigate how Hund’s coupling J affects the low-
energy physics. Figure S4 presents the effect of J on the imaginary part of the CDMFT self-energy. Interestingly, the magnitude
of ℑΣl(iωn) increases for all the orbital character once we turn on J . Thus, the system becomes more correlated by J , which
in this sense can be identified as a ”Hund’s metal” [S13]. This is because the formation of large local spin moments promoted
by Hund’s coupling suppresses Kondo screening, thereby prohibiting the emergence of long-lived quasiparticles [S7, S13–S17].
We also find a strong orbital dependence of ℑΣl(iωn) for both J = 0 and J = 0.6 eV (the ab initio estimate) due to the fact that
the electron occupation of the z̄ and z orbitals is much closer to half filling than that of the x̄ and x orbitals in both cases. The
redistribution of electron filling by turning on J is found to be almost negligible in this system.
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FIG. S4. The imaginary parts of the CDMFT self-energies for J = 0.6 eV (blue) and J = 0.0 (red). U = 3.7 eV and U ′ = U − 2J for both
cases.

SM6. MIMICKING CHARGE-SELF-CONSISTENT DFT+(C)DMFT

In this paper, we have addressed the (C)DMFT results to the ab initio lattice model derived from DFT as defined in Sec. SM1.
We here argue that charge self-consistency in the spirit of DFT+(C)DMFT may not affect the findings of our paper.

To mimic the charge self-consistency in the low-energy lattice model H = H0 +Hint, we here resort to a strategy by noting
that a redistribution of electrons by (C)DMFT modifies a charge-density profile ρ(r) and the resulting local electron occupation,
from which the subsequent DFT would result in new on-site energy levels of x and z orbitals for the kinetic part H0. In short,
we iterate (C)DMFT calculations for the updated H0, which we call H̃0 in which the on-site energy levels (εx/z) are adjusted
such that the noninteracting electron occupation (⟨nx/z⟩0) is equal to the self-consistently determined (C)DMFT occupation
(⟨nx/z⟩(C)DMFT) of the previous iteration; see Fig. S5(a).
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H = H̃0 + Hint

FIG. S5. (a) Schematic of mimicking DFT+(C)DMFT charge self-consistency by adjusting the on-site energy levels (εx/z) for top and bottom
layer x and z orbitals. (b) The (C)DMFT electron occupation ⟨nx/z⟩(C)DMFT as a function of iteration steps. (c) The resulting (C)DMFT FSs
for each iteration step. The FSs in Iteration 1 correspond to the (C)DMFT results presented throughout this paper.

Figure S5(b) presents ⟨nx/z⟩(C)DMFT as a function of the iteration step. Note that iteration 1 corresponds to the (C)DMFT
result which we have discussed throughout the paper. We find that ⟨nx/z⟩(C)DMFT almost converges at the third iteration, albeit
⟨nx/z⟩(C)DMFT does not change significantly during the iteration. Most importantly, FS remains almost unchanged [Fig. S5(c)],
which validates (C)DMFT approach employed in this paper. Indeed, our DMFT FS is consistent with the charge-self-consistent
DFT+DMFT results reported in Refs. [S18, S19] .

SM7. WHY THE β FERMI-SURFACE POCKET BECOMES MORE DIAMOND-SHAPED WITH PRESSURE

To model lower pressure cases, we look at a recent experimental study on the evolution of Ni-O bond length as a function
of pressure [S20]. Here, it is reported that pressure mainly shrinks the out-of-plane Ni-O bond length while the in-plane one is
very weakly affected [S20]. Thus, the main effect of pressure can be addressed with the change in the magnitude of tz⊥ which
is sensitive to the out-of-plane Ni-O bond length. Since tz⊥ ≃ −0.63 eV at 29.5 GPa under which superconductivity emerges,
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a smaller magnitude of tz⊥ should correspond to the lower pressure condition. In light of this observation, we investigate two
different “low pressure” cases, namely tz⊥ = −0.45 eV and tz⊥ = −0.55 eV, using CDMFT as well as DMFT.
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FIG. S6. (a) Fermi surfaces obtained from the noninteracting Hamiltonian (left panels), DMFT (middle panels), and CDMFT (right panels)
for the three different values of tz⊥ (in units of eV). (b) The momentum-dependent spectral function obtained from DMFT (left panel) and
CDMFT (right panel) for tz⊥ = −0.63 eV. The green solid lines indicate the DFT bands. The Fermi level is at ω = 0. (c) The weight of x−
(top panel) and z− (bottom panel) orbitals in the DFT band structure at the high-pressure phase where tz⊥ = −0.63 eV. (d) The real part of the
DMFT and CDMFT self-energies for x− (top panels) and z− (bottom panels) on the Matsubara frequency axis for the same values of tz⊥. (e)
The calculated êβ(X) according to Eq. (S14).

Figure S6(a) presents Fermi surfaces (FSs) for three different values of tz⊥. DFT-like noninteracting FS remains almost
unchanged albeit the γ pocket gets slightly suppressed as |tz⊥| increases (or, equivalently as the applied pressure increases).
In CDMFT, FS is also basically the same as the noninteracting FS for the lowest pressure case in which tz⊥ = −0.45 eV.
Interestingly, however, as |tz⊥| increases, the β pocket becomes more diamond-shaped in CDMFT. The shape change of the β
FS pocket in CDMFT is traced back to the upward energy shift of the spectral weight near the X point of the Brillouin zone in
the CDMFT spectral function compared to the DMFT as highlighted with white arrows in Fig. S6(b). Furthermore, the shape
change of the β FS pocket with |tz⊥| presented in Fig. S6(a) implies that the spectral weight near theX point gets pushed upward
in CDMFT with |tz⊥|.

The reason for such change of the β pocket is two-fold: i) the β pocket contains the z− orbital character near the X point
as highlighted with black dotted ovals in Fig. S6(c) and ii) the real part of the CDMFT z−-orbital self-energy ℜΣz− increases
with pressure as presented in Fig. S6(d). For a more quantitative understanding of this argument, let us now investigate in detail
how the energy level at the X point is modified in DMFT and CDMFT. To this end, we first write down the interacting Green’s
function which reads

G−1(k, ω) = (ω + µ)I−H0(k)−Σ(ω), (S7)

where ω is real frequency, k the crystal momentum, µ a chemical potential. A bold capital letter represents a 4× 4 matrix in the
space of BA orbital l (l ∈ {x+, z+, x−, z−}). I is the identity matrix. H0(k) is a one-particle Hamiltonian derived from DFT,
and Σ(ω) a self-energy calculated by DMFT or CDMFT. We are interested in how the poles of G(k, ω) are shifted by electronic



S7

correlations, so it is useful to investigate the quasiparticle energies which are the solutions ω(k) of

Det[(ω + µ)I−H0(k)−ℜΣ(ω)] = 0. (S8)

Near the Fermi level (ω = 0), ℜΣ(ω) can be expanded to the linear order in ω:

ℜΣ(ω) ≃ ℜΣ(0) + ω(I−Z−1) ≃ ℜΣ(iω0) + ω(I−Z−1), (S9)

where Z−1 = (I− ∂ℜΣ(ω)/∂ω)|ω=0 = (I− ∂ℑΣ(iωn)/∂ωn)|ωn=0 is the inverse of the quasiparticle weight Z. In practice,
we evaluate Z using ℑΣ(iωn) defined in the Matsubara frequency space ωn by employing the fourth-order polynomial fitting
[S5–S7]. ℜΣ(iω0) is the real-part of the self-energy at the lowest Matsubara frequency, which approximates ℜΣ(ω = 0). We
then express Z−1 as a symmetrical product:

Z−1 = Z−1/2Z−1/2. (S10)

By plugging Eq. (S9) in Eq. (S8) we arrive at

Det[ωI−
√
Z{H0(k)− µI+ ℜΣ(iω0)}

√
Z] = 0. (S11)

One can identify a Hermitian matrix
√
Z{H0(k) − µI + ℜΣ(iω0)}

√
Z as the quasiparticle Hamiltonian whose eigenvalues

at each k correspond to the quasiparticle energies. A useful insight can be obtained from the change of basis of Eq. (S11) to the
“band basis” by which H0(k) becomes diagonal:

√
Z{H0(k)− µI+ ℜΣ(iω0)}

√
Z

band basis−−−−−−→
√̂
Z{Ĥ0(k)− µÎ+ ℜΣ̂(iω0)}

√̂
Z, (S12)

where bold capital letters with hat represent 4 × 4 matrices in the band basis. Ĥ0(k) is the diagonal matrix whose elements

en(k) (n: band index) are the band energies. We find that off-diagonal elements of
√̂
Z and ℜΣ̂(iω0) are much smaller than

the diagonal elements. Thus the band energy en(k) approximately turns into a quasiparticle energy ên(k):

en(k) → ên(k) ≡
√̂
Znn{en(k)− µ+ ℜΣ̂(iω0)nn}

√̂
Znn, (S13)

where
√̂
Znn and ℜΣ̂(iω0)nn are the n-th diagonal elements, respectively, of

√̂
Z and ℜΣ̂(iω0). Equation (S13) allows us to

trace how en(k) is shifted in energy due to electronic correlations. Evaluating Eq. (S13) at k = X for the β pocket (n = β)
yields the approximate quasiparticle energy êβ(X) which reads

êβ(X) ={|cx− |2
√
Zx− + |cz− |2

√
Zz−}{eβ(X)− µ+ |cx− |2ℜΣx−(iω0) + |cz− |2ℜΣz−(iω0)}

× {|cx− |2
√
Zx− + |cz− |2

√
Zz−},

(S14)

where
√
Zl and ℜΣl(iω0) are the diagonal elements corresponding to the orbital l of

√
Z and ℜΣ(iω0), respectively. |cl|2 is

the weight of the Wannier function |d̃l⟩ in the β pocket eigenstate |ψβ(k)⟩ of H0(k) at k = X; |ψβ(k = X)⟩ =
∑

l cl|d̃l⟩.
We find that cx+

= cz+ = 0 in this case. Furthermore, near the X point of the β pocket x− and z− orbitals have almost equal
weight as highlighted with dotted black ovals in Fig. S6(c), so |cx− |2 ≃ |cz− |2 ≃ 0.5. Thus, Eq. (S14) implies that the electronic
correlations emerging from x− and z− orbital components influence êβ(X) as a weighted average.

Now, let us see the result of our analysis. Figure S6(e) presents how êβ(X) changes with tz⊥ according to Eq. (S13). Indeed,
êβ(X) increases with |tz⊥| in CDMFT, which is consistent with how the β pocket changes with |tz⊥| in Fig. S6(a). The reason
for this increase of êβ(X) is because ℜΣz−(iω0) is enhanced significantly with tz⊥ in CDMFT as presented in Fig. S6(d), in
contrast to the other terms of Eq. (S13) which are found to vary only weakly with tz⊥. Thus, how êβ(X) changes with pressure
is almost entirely dependent on how ℜΣz−(iω0) changes with tz⊥. In this respect, it is useful to examine êβ(X) in DMFT since
ℜΣz−(iω0) weakly changes with tz⊥ in DMFT; see Fig. S6(d). Indeed, êβ(X) remains almost unchanged with tz⊥ in DMFT as
shown in Fig. S6(e), which also explains why the β pocket in DMFT remains almost intact.

SM8. THE LOW-PRESSURE FERMI SURFACE

Figure S7 summarizes which theoretical method results in which FS pockets. We once again clarify here that, to simulate
the high-pressure phase, we have employed DMFT and CDMFT for the ab initio model with one-body part of the Hamiltonian
being derived from DFT (dubbed “DFT H0”), as highlighted in Fig. S7.
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FIG. S7. The table summarizes which method results in which FS pockets at the low-pressure and high-pressure phases of La3Ni2O7. Here
“model H0” indicates the H0 obtained from DFT in the high pressure phase with tz⊥ being tuned to mimic the low-pressure phase. The
ARPES FS by Yang et al. [S3] for the ambient-pressure phase is composed of the α and the β pockets. For the low-pressure DFT FS, see,
e.g., Refs. [S21, S22]. For the high-pressure DFT FS, see, e.g., Refs. [S1, S21–S28]. For both the low-pressure and the high-pressure DFT+U
FSs, see, e.g., Refs. [S29, S30]. Our high-pressure DMFT FS is also consistent with that in Refs. [S18, S19].

Having established the role of the interlayer correlations for the high-pressure phase, it is tempting to reach out to a picture
also commenting on the low-pressure phase. To this end, we have used a simplified model, where we have only rescaled tz⊥
of DFT H0 (dubbed “model H0” in Fig. S7). With this model we could possibly explain the evolution of RH [S31] and the
emergence of superconductivity by comparing high- and low-pressure phases; see Fig. S7. Furthermore, the calculated CDMFT
spin susceptibility for the low-pressure “model” is close to the spin-density wave (SDW) ordering vector reported by experiments
[S32, S33] as discussed in the main text and Sec. SM12.

The γ pocket is absent in the available ARPES data [S3], which is not consistent with our “low-pressure” phase results; see
also Fig. S7. Drawing a definite conclusion would be premature at the moment, however, considering the delicacy of ARPES
experiment on nickelates due to the oxygen vacancies (which are prevalent in the actual La3Ni2O7 samples), the sample-to-
sample variation of NiO6-plane stacking in La3Ni2O7 (trilayer–monolayer vs. bilayer–bilayer), and surface effects. In this
regard, it is noteworthy that there is a discrepancy exactly on the fermiology even between the two experiments on La4Ni3O10.
Namely, while Du et al. [S34] reported that the γ pocket constitutes the FS and its position remains unchanged with temperature
(presumably down to ∼ 20 K), a previous ARPES study by Li et al. [S35] reported in contrast that this γ pocket is gapped
out at a low temperature (∼ 30 K), thereby being disappeared from the FS. Further theoretical as well as experimental study is
requested to establish the fermiology of the ambient-pressure phase.

SM9. HOW NESTING OF THE β FERMI-SURFACE POCKET IS AFFECTED BY INTERLAYER CORRELATIONS

The β Fermi surface pocket is also modified by the interlayer electronic correlations (IECs) in CDMFT as discussed in the
previous section. This change is beneficial for the nesting of the irreducible susceptibility χ0

x−x−x−x−(q, iν0) as shown in
Fig. S8.

In Fig. S8(a) and Fig. S8(b), we present the DMFT and CDMFT β pockets and their associated orbital character. Since the
shape of the β pocket becomes more “diamond-shaped” in CDMFT, the FS sectors in which the x− orbital occupies the entire
weight, as highlighted with dotted white ovals in Fig. S8(a) and Fig. S8(b), become less curved. In addition to the shape change,
spectral weight of x− orbital near the X point gets enhanced in CDMFT. These changes in CDMFT result in i) an overall
enhancement of χ0

x−x−x−x−(q, iν0) and ii) a better-nesting for the nesting vectors connecting the two dotted white ovals facing
each other along the zone diagonal direction; see, e.g., QDMFT and QCDMFT, as can be confirmed from Fig. S8(c).
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SM10. GAP EQUATION

A. Pairing interactions

To obtain the effective singlet and triplet pairing interactions, we begin with the spin and charge irreducible vertices in the
particle-hole channel, which read

Γsp/ch(q, k, k′)l1l2l3l4 = Γph(q, k, k
′)↑↑↓↓l1l2l3l4

∓ Γph(q, k, k
′)↑↑↑↑l1l2l3l4

. (S15)

Γph(q, k, k
′)σ1σ2σ3σ4

l1l2l3l4
is displayed in Fig. S9. k ≡ (k, iωn) and q ≡ (q, iνn). The spin and charge susceptibilities are obtained

Γph(q, k , k′ )σ1σ2σ3σ4
l1l2l3l4

k′ + q, l3, σ3

k′ , l4, σ4

k + q, l1, σ1

k , l2, σ2

Γpp(q, k , k′ )σ1σ2σ3σ4
μ1μ2 μ3μ4

k′ + q, μ3, σ3

−k′ , μ4, σ4

k + q, μ1, σ1

−k , μ2, σ2

FIG. S9. The particle-hole irreducible vertex.

using these vertices from the Bethe-Salpeter equation:

χsp/ch(q)l1l2l7l8kk′ = χ0(q)l1l2l7l8kk′ ± T 2

N2
χsp/ch(q)l1l2l3l4kk1

Γsp/ch(q, k1, k2)l3l4l5l6χ
0(q)l5l6l7l8k2k′ , (S16)

where χ0(q)lml′m′
kk′ = −N

T Gll′(k + q)Gm′m(k′)δkk′ . Here indices repeated twice should be summed over. We below keep
this summation convention. By employing the parquet equations, one can formally express the singlet (s) and triplet (t) pairing
interactions using Γsp/ch and χsp/ch as [S36, S37]

Γs
l1l4l3l2(k, k

′) = Λirr,s(k, k′)l1l4l3l2 +
3

2
Φsp(−k + k′,−k′, k)l2l4l3l1 −

1

2
Φch(−k + k′,−k′, k)l2l4l3l1

+
3

2
Φsp(k + k′,−k′,−k)l1l4l3l2 −

1

2
Φch(k + k′,−k′,−k)l1l4l3l2 ,

(S17)

Γt
l1l4l3l2(k, k

′) = Λirr,t(k, k′)l1l4l3l2 −
1

2
Φsp(−k + k′,−k′, k)l2l4l3l1 −

1

2
Φch(−k + k′,−k′, k)l2l4l3l1

− 1

2
Φsp(k + k′,−k′,−k)l1l4l3l2 −

1

2
Φch(k + k′,−k′,−k)l1l4l3l2 ,

(S18)



S10

where ladder vertices Φsp/ch(q, k, k′)l1l2l7l8 = T 2

N2Γ
sp/ch(q, k, k1)l1l2l3l4χ

sp/ch(q)l3l4l5l6k1k2
Γsp/ch(q, k2, k

′)l5l6l7l8 . Λirr,s/t(k, k′)l1l4l3l2
are the fully irreducible vertices in the singlet (s) and triplet (t) channels. The bare constant terms of Λirr,s/t, namely
Λ0,s/t, are linear combinations of bare spin and charge interaction tensors U sp/ch: Λ0,s

l1l4l3l2
= 1

2 [3U sp + Uch]l1l4l3l2 and
Λ0,t
l1l4l3l2

= − 1
2 [U sp − Uch]l1l4l3l2 . Since the interaction tensor Hint [Eq. (S2)] is more sparse in the original eg-orbital basis

than the BA basis, so are the resulting U sp/ch which are given by U sp/ch
l1l4l3l2

= U↑↓
l1l3l4l2

∓ (U↑↑
l1l3l4l2

− U↑↑
l1l4l3l2

). In the eg-orbital
basis, elements of U sp/ch read

U sp
l1l4l3l2

=


U

U ′

J

J

, Uch
l1l4l3l2 =


U if l1 = l2 = l3 = l4,

− U ′ + 2J if l1 = l3 ̸= l2 = l4,

2U ′ − J if l1 = l4 ̸= l2 = l3,

J if l1 = l2 ̸= l3 = l4,

(S19)

for the Kanamori interaction with U ′ = U−2J . Using above formulas, a superconducting instability can be formulated in terms
of a non-Hermitian eigenvalue problem, namely the gap equation, which reads

λsc∆l1l2(k) =− T

2N

∑
k′,l3l4l5l6

Γ
s/t
l1l4l3l2

(k, k′)Gl4l5(k
′)Gl3l6(−k′)∆l5l6(k

′), (S20)

where λsc is the eigenvalue, Glm(k) the (C)DMFT Green’s function, and ∆lm(k) the anomalous self-energy (gap function).
The transition temperature Tc corresponds to the temperature at which the maximum (leading) eigenvalue λsc reaches unity.

B. Approximations for the pairing interactions and the resulting gap equation

Evaluating Eqs. (S17) and (S18) for the full vertex is a formidable task, it thus requires some approximations. First, we em-
ploy the well-known parquet approximation, which approximates Λirr,s/t by Λ0,s/t. Within DMFT and CDMFT for our model,
Γsp/ch(q, k, k′)l1l2l3l4 can be approximated by the momentum-independent impurity vertices Γ

sp/ch
imp (iνm, iωn, iωn′)l1l2l3l4 ,

which are in principle feasible to be numerically evaluated using the continuous-time quantum Monte Carlo methods [S38].
However, for multiorbital systems huge stochastic noise prohibits us from using the measured Γ

sp/ch
imp (iνm, iωn, iωn′)l1l2l3l4 in

practice. Following an idea employed in Refs. [S39–S42], we parametrize Γsp/ch using effective screened Coulomb interaction
U and Hund’s coupling J , i.e., we substitute Γsp/ch → Γ

sp/ch
(U, J). As we used for the bare interaction, the effective screened

interorbital Coulomb interaction U
′

obeys U
′
= U − 2J . Note that U and J are generally different from bare U and J which

enter Λ0,s/t. In the eg-orbital basis, Γ
sp/ch

(U, J) are then given by

Γ
sp

l1l4l3l2 =


U

U
′

J

J

, Γ
ch

l1l4l3l2 =


U if l1 = l2 = l3 = l4,

− U
′
+ 2J if l1 = l3 ̸= l2 = l4,

2U
′ − J if l1 = l4 ̸= l2 = l3,

J if l1 = l2 ̸= l3 = l4,

(S21)

Using this approximation,

Φsp/ch(q, k, k′)l1l2l7l8 → Φ
sp/ch

(q)l1l2l7l8 = Γ
sp/ch

l1l2l3l4χ
sp/ch(q)l3l4l5l6Γ

sp/ch

l5l6l7l8 . (S22)

Here χsp/ch(q)l1l2l3l4 ≡ T 2

N2

∑
kk′ χsp/ch(q)l1l2l3l4kk′ obtained from using Γ

sp/ch
(U, J) for the irreducible vertices in Eq. (S16):

χsp/ch(q)l1l2l3l4 ≡ T 2

N2

∑
kk′

χsp/ch(q)l1l2l3l4kk′ = χ0(q)l1l2l7l8 ± χsp/ch(q)l1l2l3l4Γ
sp/ch

l3l4l5l6χ
0(q)l5l6l7l8 ,

=
[
χ0(q)[1∓ Γ

sp/ch
χ0(q)]−1

]
l1l2l3l4

,

(S23)

where χ0(q)l1l2l3l4 ≡ T 2

N2

∑
kk′ χ0(q)l1l2l3l4kk′ = − T

N

∑
kGl1l3(k + q)Gl4l2(k) and 1 is identity matrix in orbital space. We

finally arrive at the gap equation presented in the main text

λsc∆l1l2(k) =− T

2N

∑
k′,l3l4l5l6

Γ
s/t
l1l4l3l2

(k − k′)Gl4l5(k
′)Gl3l6(−k′)∆l5l6(k

′). (S24)
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Using the symmetry relations of singlet and triplet gap functions [S41, S42] the effective singlet and triplet pairing interactions
Γs/t in Eq. (S24) are given by

Γs(k − k′)l1l4l3l2 = Λ0,s
l1l4l3l2

+ 3Φ
sp
(k − k′)l1l4l3l2 − Φ

ch
(k − k′)l1l4l3l2 ,

= Λ0,s
l1l4l3l2

+ 3[Γ
sp
χsp(k − k′)Γ

sp
]l1l4l3l2 − [Γ

ch
χch(k − k′)Γ

ch
]l1l4l3l2 ,

(S25)

Γt(k − k′)l1l4l3l2 = Λ0,t
l1l4l3l2

− Φ
sp
(k − k′)l1l4l3l2 − Φ

ch
(k − k′)l1l4l3l2 ,

= Λ0,t
l1l4l3l2

− [Γ
sp
χsp(k − k′)Γ

sp
]l1l4l3l2 − [Γ

ch
χch(k − k′)Γ

ch
]l1l4l3l2 .

(S26)

C. Solving the gap equation using the intermediate representation basis

We solve the gap equation [Eq. (S24)] on a 96× 96 k-mesh using the power iteration method. We converge up to a tolerance
of 5 · 10−5 for the eigenvalue λsc of the dominant gap function. In order to efficiently solve this self-consistent problem, we
use the sparse-sampling approach [S43–S46] of the intermediate representation (IR) basis [S47, S48] and its python library
sparse-ir [S49] for efficient data compression. To set up the IR basis functions, we use the IR basis parameter ΛIR =
βωmax = 1450 with inverse temperature β = 145 eV−1 ≃ 80K and cutoff frequency ωmax = 10 eV. We transform the
(C)DMFT lattice Green’s function G(k, iωn) = [(iωn + µ)1−H0(k)−Σ(iωn)]

−1 data (1 is unity matrix in orbital space
and µ the chemical potential) on its full and equidistantly sampled frequency mesh (Nωn = 1846 for ωn > 0) to the IR basis
functions Ul from the expansion

G(iωn) =

lmax∑
l=0

GlUl(iωn) (S27)

via least-square fitting. We set the truncation error to δIR = 10−5 to not overfit the statistical noise from the quantum Monte
Carlo (QMC) simulations. This corresponds to using NIR = lmax − 1 = 31 basis coefficients. Note, that we here use the
notation ab instead of lm for orbital indices {x̄, z̄, x, z} in the eg basis to prevent confusion with the IR basis index l. We set the
basis size from analyzing the decay of the local (C)DMFT Green’s function expansion coefficients Gloc

l [Fig. S10(a)]. Beyond
lmax (gray shaded area), the coefficients do not decay anymore and become larger than the exponentially decaying singular
values Sl/S0 (red dashed line) of the IR basis kernel due to fitting of QMC noise. The singular values approximately set the
truncation error [S49]. By taking coefficients larger than the singular values into account, the conditioning of the transformation
between IR basis and Matsubara frequency/imaginary time becomes bad, i.e., the numerical error can potentially amplify in an
uncontrolled manner during calculation. Fig. S10(b) shows the corresponding reconstructed Green function data on a sparsely
sampled frequency grid with N IR

ωn
= lmax = 32 frequency points.

SM11. MAPPING OF INTERACTION VALUES TO STONER ENHANCEMENT FACTORS

Throughout the paper, we discuss the superconducting phase diagram in terms of the Stoner enhancement factor αsp. It is a
proxy for the system’s tendency towards a magnetic instability that we obtain from analyzing where the spin susceptibility χsp

[Eq. (S23)] diverges, i.e., where the denominator becomes zero. This is true, if the largest eigenvalue αsp = maxq{Γ
sp
χ0(q)}

reaches unity. Here, we comment further on the Stoner enhancement of the (C)DMFT calculations.
For a given χ0(q), αsp is a a function of the effective Hund’s coupling J and the effective intraorbital Coulomb interaction U .

By fixing the value of J/U , the ratio αsp/U is uniquely determined, as we show in Fig. S11(a). This function exhibits a kink
around J/U ≈ 0.05 – 0.06 which is manifested as a kink in the superconducting phase boundary (λsc = 1) shown in Fig. 3(a) of
the main text and Fig. (S16). The kink originates from two different wave vectors Q at which the eigenvalue of Γ

sp
χ0(Q, iν0)

has its maximal value: around the X point Q ≈ (π, 0) for J/U ⪅ 0.06 and an incommensurate wave vector around the M point
for J/U ⪆ 0.06 which we here denote by Q ≈ (κπ, κπ) with κ < 1. The change between these two dominant momenta Q
depends on the momentum structure of χ0(q) [c.f. Fig. 3(b) of the main text and Fig. S14 in Sec. SM13] and on how J, U mix
different orbital components of χ0(q). The exact location of the kink is, hence, different for the DMFT and CDMFT irreducible
susceptibilities. It is noticeable that αsp/U of the DMFT calculation is generally larger than that of the CDMFT calculation.

For completeness, we mention that an identical analysis of possible charge instabilities can be made. Here, the charge Stoner
enhancement αch = maxq{−Γ

ch
χ0(q)} needs to be analyzed [Fig. S11(b)]. This system, however, does not host any charge

instability because αch is too small.



S12

1

10−3

10−6

10−9

|G
lo

c
l
| DMFT

(a)

0 10 20 30 40 50

l

1

10−3

10−6

10−9

|G
lo

c
l
| CDMFT ωn/eV

−1.0

−0.5

0.0

0.5

G
lo

c
a
b

(i
ω
n
) x̄x̄ = xxx̄x̄ = xx

(b)

<GDMFT
IR

<GDMFT
full

10−1 100 101 102

ωn/eV

−1

0

1

G
lo

c
a
b

(i
ω
n
) z̄z̄ = z zz̄z̄ = z z

=GDMFT
IR

=GDMFT
full

ωn/eV

x̄x = xx̄x̄x = xx̄

<GCDMFT
IR

<GCDMFT
full

10−1 100 101 102

ωn/eV

z̄z = zz̄z̄z = zz̄

=GCDMFT
IR

=GCDMFT
full

FIG. S10. Representation of local (C)DMFT Green’s functions Gloc
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Nk

∑
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function of expansion order l. Colored lines with dots correspond to coefficients for different orbital components in the eg basis. The red
dashed line corresponds to the truncation error set by the singular values. We cut the expansion after lmax = 31 coefficients (vertical solid
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Markers and lines represent data on the sparse IR grid and full equidistant grid, respectively. Note the logarithmic frequency axis.
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FIG. S11. Stoner enhancement factor in the (a) magnetic and (b) charge channel for the irreducible susceptibility of the (C)DMFT as a function
of interaction ratio J/U . The kink around J/U ≈ 0.05 – 0.06 originates from different Q vectors contributing to the maximal eigenvalue of
Γ

sp
χ0(Q, iν0) as indicated by arrows.

SM12. SPIN SUSCEPTIBILITY

While the γ pocket gives rise to strong ferromagnetic fluctuations, the actual magnetic transition occurs at a finite transfer
momentum as shown in Fig. S12. Figure S12 presents the calculated maximum eigenvalue of the spin susceptibility at each q,
χsp
max(q, iν0). A peak of χsp

max(q, iν0) at q = Q would result in a spin-density wave (SDW) with the ordering vector Q.
For tz⊥ = −0.45 eV, χsp

max(q, iν0) shows a peak at QSDW which is different from but close to the SDW ordering wave
vector Qexp

SDW = (0.5, 0.5)π (or Qexp
SDW = (0.25, 0.25) if we follow the notation of Ref. [S32]) reported by experiments under

ambient pressure [S32, S33]. On the other hand, in the high-pressure phase (tz⊥ = −0.63 eV) χsp
max(q, iν0) forms an arc not a

peak; see the rightmost panels in Fig. S12. The strong ferromagnetic fluctuation by the γ pocket is captured in Fig. S12 in that
depressurizing the system (by reducing the magnitude of tz⊥) enhances χsp

max(q, iν0) at q = 0, in accordance with the evolution
of the Fermi surface in Fig. 4(b) of the main text.

Importantly, the aforementioned peak of χsp
max(q, iν0) at q = QSDW in the low-pressure phase is not driven by the γ

pocket, but by the α–β nesting. To see this, we present in Fig. S13 the orbital-resolved spin susceptibilities, χsp
lmml(q, iν0)

and χsp
lmlm(q, iν0) for both the smallest and the largest tz⊥ we used. For simplicity we hereafter use indices 1, 2, 3, and 4 for

x+, z+, x−, and z− orbitals, respectively. Interestingly, the left panel in Fig. S13 shows that χsp
2222(q, iν0) is the largest element

for tz⊥ = −0.45 eV and exhibits the maximum at q = 0 because of the γ pocket crossing the Fermi level. It looks first at odds
with χsp

max(q, iν0) presented in Fig. S12, where q shows a peak at QSDW, not at q = 0. It should be noted that the two sublead-
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FIG. S12. χsp
max(q, iν0) at αsp = 0.95. The suggested magnetic ordering vector under ambient pressure in experiments, Qexp

SDW [S32, S33], is
highlighted with red circles in each panel.

ing elements, namely χsp
3131(q, iν0) and χsp

4242(q, iν0) show the peak at q = QSDW. Thus these two elements dominate over
χsp
2222(q, iν0), giving rise to the largest value of χsp

max(q, iν0) at q = QSDW. The QSDW corresponds to the vector connecting
the α and the β FS pockets as depicted in Fig. 4(b) of the main text. The discrepancy between the Qexp

SDW and QSDW can be
attributed to the size of the α and β pockets in simulating the low-pressure phases for which we neglected the change of in-plane
hoppings due to the octahedral distortions present in the ambient-pressure structure.

In the high-pressure phase (tz⊥ = −0.63 eV) χsp
2222(q, iν0) is quenched due to the disappearance of the γ pocket; see the right

panel in Fig. S13. Here χsp
3131(q, iν0) and χsp

4242(q, iν0) are the largest elements which lead to the strong pair scattering between
the bonding α and the antibonding β pockets in line with the s±-wave gap symmetry.

SM13. ADDITIONAL DATA: STRUCTURE OF PAIRING VERTEX AND THE s±-WAVE GAP FUNCTION

In the main text, we discuss the dominant pairing symmetry which is the intraorbital s-wave/interorbital dx2−y2 -wave pairing
in the original eg-orbital basis, which corresponds to the s±-wave symmetry by projecting it to the noninteracting FS. Apart from
this symmetry, we checked many possible trial gap functions with different sign combinations of spin (S), parity (P ), orbital
(O), and time-reversal (T ) symmetry which are in line with the D4h symmetry of the model. Importantly, throughout the whole
αsp - J/U plane, none of these pairing channels have an eigenvalue larger than that of the s±-wave symmetry. Only a subleading
channel with intraorbital dx2−y2 /interorbital s-wave pairing reaches for the CDMFT electronic structure an eigenvalue λsc of
unity in the region of αsp ⪆ 0.96 and J/U ⪆ 0.06.

Here, we discuss the full orbital and momentum structure of the dominant gap function ∆lm(k, iω0) and dominant matrix
elements of the singlet pairing vertex Γs

llmm(q, iν0) obtained from the CDMFT electronic structure. We show those in Fig. S14
for J/U = 0.04 and 0.2 at αsp = 0.95 in the eg-orbital basis; see Fig. S15 for the corresponding gap functions projected
to the noninteracting FS, which shows clearly the s±-wave symmtery. The vertex generally has an orbital block structure
with intralayer components being positive and interlayer components being negative which originates from the interlayer AFM
fluctuations. The different dominant pairing vectors Q discussed in the main text and in Sec. SM11 can be easily distinguished
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for each tz⊥.
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FIG. S14. Orbital and momentum space structure of the dominant singlet pairing vertex components Γs
llmm(q, iν0) and gap function

∆lm(k, iω0) for αsp = 0.95 and two values of the interaction ratio J/U = 0.04 (a) and 0.2 (b). Note that the quantities are presented
in the eg-orbital basis.

by comparing panels (a) and (b). However, increasing J/U does not only change the dominant Q vector, but it also changes
the relative weight of the orbital components. Namely, for small J/U mostly intraorbital components Γs

llll and the interlayer
z components Γs

z̄z̄z z play a role, whereas for larger J/U the magnitude of the components increases and evens out. This, in
turn, affects the orbital structure of the dominant gap. By increasing J/U , the gap function gains more weight in the interlayer
x-component ∆x̄x, i.e., the gap opening on the FS pockets with x± character is enhanced.
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αsp = 0.95, J/U = 0.2

FIG. S15. Gap functions ∆̂n(k, iω0) (in meV) obtained by projecting ∆lm(k, iω0) at each k to the band n closest to the Fermi level.
∆̂n(k, iω0) =

∑
lm P−1

nl ∆lm(k, iω0)Pmn where Pmn (P−1
nl ) is the basis-transformation matrix from the eg-orbital m (l) to the band n

closest to the Fermi level. The black solid lines indicate the noninteracting FS obtained from DFT.

SM14. ADDITIONAL DATA: THE CRITICAL ROLE OF FM χ0
z+z+z+z+(q) IN THE SINGLET PAIRING

As we have discussed in the main text, the disappearance of the γ pocket from the FS due to IECs within CDMFT results leads
to the suppression of the FM fluctuation arising from χ0

z+z+z+z+(q, iν0). In the singlet channel, this FM fluctuation is directly
manifested by a repulsive (rather than attractive) interaction Γs

z̄z̄zz(q = 0). Quenching of the FM χ0
z+z+z+z+ as in CDMFT

yields the attractive pairing interaction Γs
z̄z̄zz(q = 0) between top and bottom layer z orbitals as clearly shown in Fig. S16(b–

d) for three distinct J/U values. This, in turn, promotes the singlet pairing as evidenced by the enhanced superconducting
instabilities in CDMFT [Fig. S16(a)].

To further corroborate this argument, we analyze how the DMFT superconducting instabilities are affected by the FM fluctua-
tion by introducing a scaling factor ζ for χ0

z+z+z+z+(q). Namely, χ0
z+z+z+z+(q) is rescaled to ζχ0

z+z+z+z+(q) before construct-
ing χsp/ch and Γs, and then we monitor how λsc behaves due to this change.

Interestingly, indeed, λsc increases with decreasing ζ for all the J/U values we investigated. Looking into the related spin
susceptibilities, the components involving solely z̄ or z characters are found to be most affected by the rescaled χ0

z+z+z+z+(q)

as expected. In effect, as presented in Fig. S16(b–d), the interlayer FM spin susceptibility χsp
z̄z̄zz(q = 0) at ζ = 1 becomes

AFM with decreasing ζ. Through Eq. (S25) χsp
z̄z̄zz(q) directly affects the corresponding pairing interaction Γs

z̄z̄zz(q), whereby
it should faithfully follow the behavior of χsp

z̄z̄zz(q). As such, the repulsive pairing interaction Γs
z̄z̄zz(q = 0) at ζ = 1 turns

attractive below ζ ≃ 0.9 (for all the J/U values) at which χsp
z̄z̄zz(q = 0) changes its sign; see orange lines in the lower panels of

Fig. S16(b–d).
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FIG. S16. (a) Superconducting phase diagram in the αsp–J/U space at T = 1/145 eV ≃ 80 K. The superconductivity sets in (i.e., λsc ≥ 1)
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z̄z̄zz(q, iν0) between top and bottom layer z orbitals in the FBZ. Lower panel: χsp

z̄z̄zz(q = 0), Γs
z̄z̄zz(q = 0), and λsc (inset) as a function of

scaling factor ζ for DMFT χ0
z+z+z+z+(q).



S16

[S1] Y. Gu, C. Le, Z. Yang, X. Wu, and J. Hu, Effective model and pairing tendency in bilayer Ni-based superconductor La3Ni2O7 (2023),
arXiv:2306.07275 [cond-mat].

[S2] V. Christiansson, F. Petocchi, and P. Werner, Phys. Rev. Lett. 131, 206501 (2023).
[S3] J. Yang, H. Sun, X. Hu, Y. Xie, T. Miao, H. Luo, H. Chen, B. Liang, W. Zhu, G. Qu, C.-Q. Chen, M. Huo, Y. Huang, S. Zhang, F. Zhang,

F. Yang, Z. Wang, Q. Peng, H. Mao, G. Liu, Z. Xu, T. Qian, D.-X. Yao, M. Wang, L. Zhao, and X. J. Zhou, Nature Communications 15,
4373 (2024).

[S4] Z. Liu, M. Huo, J. Li, Q. Li, Y. Liu, Y. Dai, X. Zhou, J. Hao, Y. Lu, M. Wang, and H.-H. Wen, Electronic correlations and energy gap
in the bilayer nickelate La3Ni2O7 (2023), arXiv:2307.02950 [cond-mat].

[S5] J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar, and A. Georges, Physical Review Letters 106, 096401 (2011), publisher:
American Physical Society.

[S6] S. Ryee, M. J. Han, and S. Choi, Physical Review Letters 126, 206401 (2021), publisher: American Physical Society.
[S7] S. Ryee, S. Choi, and M. J. Han, Physical Review Research 5, 033134 (2023), publisher: American Physical Society.
[S8] T. Ayral, S. Biermann, and P. Werner, Physical Review B 87, 125149 (2013), publisher: American Physical Society.
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4 Superconducting pairing in layered materials

4.3 Moiré materials

Two-dimensional vdW materials and their functionalization in heterostructures
represent one of the most versatile platforms for studying, tuning, and simulating
emergent quantum phenomena [22, 158, 162]. These materials offer a high degree
of (non-invasive) control over key system parameters, such as the electron density
through electrostatic doping from gate voltage or chemical doping via adatoms [69,
77, 162], interaction strength modified by environmental screening [163, 630–632],
and responses to electromagnetic fields [74, 75, 633].

In this context, moiré materials serve as a new quantum platform that took over
the condensed matter community in the past six years [21–24]. These materials
are formed either by rotational misalignment of identical two-dimensional atomic
crystals or by lattice mismatch of dissimilar ones, as depicted in Figure 4.4(a,d). Such
incommensurability results in long-wavelength interference patterns between the
two constituent atomic lattices, forming an enlarged moiré superlattice with lattice
constant 𝜆M on the order of 𝒪(10 nm). The emergence of this additional length scale
effectively enables the decoupling of low-energy physics, governed by 𝜆M, from the
high-energy physics, dictated by the original lattice spacing 𝑎.

The moiré pattern creates a periodic potential with periodicity 𝜆M, which leads
to a modulation of electronic properties, such as the emergence of flat bands and
correlated electronic phases [24, 77, 163, 634]. A simple scaling argument illustrates
the flattening of electronic bands and tuning of correlation strength in twisted
materials: The emergent moiré length scale as a function of twist angle 𝜃 is given by
𝜆M(𝜃) = 𝑎/(2 sin(𝜃/2)) ∼ 𝜃−1 [635]. Assuming free electrons (parabolic dispersion),
the kinetic energy𝑊 and Coulomb interaction𝑈 scale with the twist angle as

𝑊 =
ℏ2

2𝑚
1
𝜆2

M
∝ 𝜃2

𝑈 =
𝑒2

𝜅
1
𝜆M

∝ 𝜃

 ⇒ 𝑈
𝑊

∝ 1
𝜃
. (4.1)

Thus, by adjusting the twist angle and the screening environment (represented
by the dielectric constant 𝜅), one can fine-tune the degree of correlation strength
(cf. supplemental Fig. SM5(b) of publication IV).

The experimental breakthrough of moiré materials began with the successful
synthesis of magic-angle twisted bilayer graphene (MATBG) [77, 163], which itself
hosts a wide array of correlated and topological phases (see Figures 1.1c and 4.4b).
Since then, a plethora of moiré materials have been experimentally discovered and
theoretically suggested [21–24], giving rise to complex and rich phase diagrams
filled with correlated electronic and topologically protected states, as illustrated
in Figure 4.4 for MATBG and different TMDC-based morié materials. The high
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4.3 Moiré materials

Figure 4.4 – Phase diagrams of moiré materials. Schematic of moiré structures created from
(a) rotational misalignment or (d) a lattice mismatch. Panels b, c, e, and f show schematic
phase diagrams of different moiré materials as a function of out-of-plane magnetic or electric
fields, temperature, and filling factor 𝜈. They host different correlated and topological
states including unconventional superconductivity (SC), a high-field pseudogap regime,
correlated Mott or charge-transfer insulators (corr. ins.), different types of quantum Hall
insulators (QH ins.), different types of Chern insulators (CI), magnetic phases, or generalized
Wigner crystal states. Further abbreviations: symmetry-broken CI (SBCI), fractional CI
(fCI), quantum anomalous Hall (QAH), quantum spin Hall (QSH). Reprinted from [24] with
permission from © 2024 Springer Nature. Not covered by the CC BY 4.0 license.

Figure 4.5 – Angle-dependent correlation strength in twisted bilayer graphene. Compar-
ison of bandwidth 𝑊 of the flat band in twisted bilayer graphene and on-site energy 𝑈
(screened as indicated by colored lines for different values of 𝜅, cf. Eq. (4.1)) as a function of
twist angle 𝜃. The correlation strength𝑈/𝑊 is tuned by 𝜃 and the magic angles emerge in
regions of𝑈 >𝑊 . Reprinted from [163] with permission from © 2024 Springer Nature. Not
covered by the CC BY 4.0 license.
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4 Superconducting pairing in layered materials

tunability of system parameters allows for characterizing these phase diagrams in
great detail, thus making moiré material an excellent platform for studying quantum
phenomena.

Superconductivity, in particular, has only been observed in twisted graphene-based
systems and more recently also in twisted WSe2, as discussed below. The graphene-
based superconductors are specifically MATBG [163] and magic-angle twisted
trilayer graphene (MATTG) [78], where superconductivity occurs at characteristic
“magic angles” of approximately 1.1◦ and 1.6◦, respectively. The reason for the
existence of magic angles is related to the vanishing of the moiré Bloch bands’
renormalized Fermi velocity as a function of twist angle [634] which originates from
the linear dispersion of the original Dirac cones. The corresponding twist-angle
dependence of the bandwidth𝑊 leads to a different scaling of correlation strength
as that in Eq. (4.1) which is illustrated in Figure 4.5 for MATBG.

The superconducting phases in MATBG and MATTG are far from being under-
stood.5 Discussing the theoretical proposals and experimental evidence regarding
the nature and pairing mechanism of these systems is beyond the scope of this
thesis.6 Instead, we refer interested readers to recent comprehensive reviews [24, 536,
635, 639]; see also the references in Ref. [638] for MATBG specifically. Nonetheless,
we want to highlight a few important properties of superconductivity in these
materials: For instance, the superconducting phase occurs at exceptionally low
electron densities on the order of 1011 cm−2, the ratio of critical temperature (𝑇c)
to Fermi temperature (𝑇F) is notably high (on the order of 0.1, cf. Uemura plot in
Figure 6.1), and the superconducting condensate has a short coherence length on the
order of a few moiré lattice spacings [77, 78, 639]. In addition, different studies have
revealed the importance of quantum geometric contributions to the superconducting
stiffness [450, 451, 536, 543, 544, 582], which would otherwise vanish in the limit of
flat bands and thus hinder superconductivity.

4.3.1 Twisted transition metal dichalcogenides
A different class of two-dimensional vdW materials is given by transition metal
dichalcogenides (TMDCs). Even without twisting, these materials host a range of
correlated phases, such as superconductivity [69–73], charge density waves [70,
229], or insulating states [640, 641]. Depending on the specific transition metal
and chalcogen elements, the electronic structure of TMDCs can vary from metallic
to insulating behavior [158]. Here, we will focus on the class of twisted semi-
conducting TMDCs (𝑀𝑋2, 𝑀=Mo, We and 𝑋=S, Se), which have a characteristic

5Many of MATBG’s non-superconducting, correlated low-energy phases can be understood
within an effective heavy fermion model of MATBG [636] from the interplay of correlation effects,
symmetry-broken phases, and reshuffling of electronic charges [637, 638].

6This topic could easily form the basis for one or more PhD projects.
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4.3 Moiré materials

layer-dependent bandgap that becomes direct in the monolayer case. TMDCs show
a few important differences to graphene-based moiré materials which include the
absence of a magic-angle condition, interaction strengths that can be up to ten times
larger than in graphene, and the possibility of spin-valley locking when inversion
symmetry is broken in conjunction with SOC, unlike degenerate spin and valley
degrees of freedom in twisted graphene systems. For a comprehensive overview of
semiconducting moiré materials, we refer to the review by Mak and Shan [23].

Moiré structures of TMDCs can be created both from homobilayers and hetero-
bilayers. The crucial difference is the dependence on twist angles: homobilayers
exhibit a strong dependence, whereas heterobilayers show negligible sensitivity.
Recently, superconductivity in twisted homobilayer WSe2 has been reported by two
independent groups at 220 mK for a twist angle of 3.65◦ [79] and up to 426 mK at
5◦ [80]. These studies highlight the proximity of the superconducting phase to insu-
lating and antiferromagnetic states. An earlier experimental work from 2020 already
suggested the presence of a superconducting state [165] up to 3 K for a twist angle
of 𝜃 = 5.1◦ adjacent to an insulating state, but the robustness of superconductivity
was not conclusively established.7 Understanding the superconductivity in twisted
WSe2 and its interplay with possible other correlated states is an open question for
future research.

Twisted homobilayer WSe2 has a more complex moiré valence low-energy elec-
tronic structure than the other semiconducting TMDCs, namely MoS2, MoSe2, and
WS2. A good description for the electronic structure is a continuum model of the
valley that the moiré valence band structure originates from, i.e., the maximum of
the monolayer valence band.8 In case of WSe2, the moiré band structure is formed
by the states at the band maxima located at the K and K′ points of the individual
layers. As the K point hosts large SOC, this results in a spin-valley locking of the
moiré valence band structure [643]. The resulting low-energy electronic structure
hosts a variety of correlated phases depending on environmental conditions [120,
644–646]. In contrast, the low-energy states in the other TMDCs originate from the
Γ valley, thereby simplifying the electronic structure. Within the continuum model
of Γ-valley twisted TMDCs [647], the lowest energy bands can be characterized by a
simple honeycomb lattice using an 𝑠-orbital tight-binding model with higher-energy
bands being described by a 𝑝-orbital model. These bands only begin to mix at larger
twist angles exceeding 5◦.

In the embedded publication below, we study superconductivity in Γ-valley
twisted TMDCs by constructing a Wannier model of the of the continuum model’s
low energy bands [647]. We investigate spin-fluctuation-driven superconductivity

7One reason for the difficulty in observing superconductivity in various moiré systems is given by
the challenges associated with fabricating high-quality experimental samples [23, 642].

8As we are discussing the valence band, “lower” and “higher” energy states refer to the viewpoint
of hole carriers in the following.
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4 Superconducting pairing in layered materials

using the FLEX approximation and compare it to conventional phonon-mediated
mechanisms. Notably, the improvement of the IR-based FLEX implementation
allowed us to access 𝑇c and to perform a full characterization of the phase diagram
of the underlying honeycomb lattice model, which has not been possible in earlier
calculations [648, 649]. Our findings reveal for spin-fluctuation-mediated pairing
a dome-shaped critical temperature structure as a function of doping, reaching
temperatures 𝑇c ∼ 𝒪(1 K). We identify the non-trivial doping dependence to arise
from the interplay of the density of states and the spatial profile of spin fluctuations.
This contrasts with phonon-mediated superconductivity which primarily depends
on the available density of states. To gauge the strength of conventional supercon-
ductivity, we estimate the effective pairing potential strength for different moiré
phonon modes.

We note that our modeling approach has been extended to address the lower-lying
multi-orbital bands of the continuum model [650].
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Twisted Van der Waals systems offer the unprecedented possibility to tune different states of correlated
quantum matter with external noninvasive electrostatic doping. The nature of the superconducting order
presents a recurring open question in this context. In this work, we assess quantitatively the case of spin-
fluctuation-mediated pairing for �-valley twisted transition metal dichalcogenide homobilayers. We calculate
self-consistently and dynamically the doping-dependent superconducting transition temperature Tc revealing a
superconducting dome with a maximal Tc ≈ 0.1–1 K depending on twist angle. We compare our results with
conventional phonon-mediated superconductivity, and we identify clear fingerprints in the doping dependence
of Tc, which enable experiments to distinguish between different pairing mechanisms.

DOI: 10.1103/PhysRevB.105.L241109

Introduction. Twisting layers of two-dimensional (2D) ma-
terials leads to a moiré pattern, where flat bands can emerge
close to the Fermi level [1–3]. The associated quenching of the
kinetic energy leads to strong electronic correlations, which
often interplay with topology [4–6]. Among these effects are
Mott and topological Chern insulators, and different kinds
of magnetic, nematic, and superconducting ordered states
[7–28]. One can precisely tune between these states and
change the filling of the flat bands from completely empty
to filled by electrostatic doping [29], which is special in the
domain of correlated materials.

The nature of superconducting states in twisted 2D sys-
tems is highly controversial. On the one hand, unconventional
pairing mechanisms based on spin, orbital, and/or nematic
fluctuations are regularly hypothesized [27,30–34]. The rea-
sons are that superconductivity emerges next to a strongly
correlated state [8,9,20,27,35] and that the ratio of criti-
cal temperature Tc and Fermi temperature TF fits within the
boundary of other unconventional superconductors [8,24,36].
On the other hand, recent experiments in magic-angle twisted
bilayer graphene (MATBG) showed that the strongly corre-
lated states and superconductivity are affected differently by
the dielectric environment [17,18,28], which might point to a
conventional origin, i.e., electron-phonon coupling.

Twisted 2D systems can be classified according to the
symmetry of the low-energy Hamiltonian associated with the
moiré pattern [37]. Honeycomb twisted 2D systems hold
promise for hosting correlated Dirac fermions and topological

*niklas.witt@physik.uni-hamburg.de
†jose.pizarro@mpsd.mpg.de
‡tim.wehling@physik.uni-hamburg.de

d + id chiral superconductivity [30,38,39]. Examples of hon-
eycomb systems are MATBG [3,40], twisted double bilayer
graphene [41–43], magic-angle twisted trilayer graphene
(MATTG) [44–46], and twisted transition metal dichalco-
genides (TMDCs) [47–49]. Most of the experimental and
theoretical work has been focused on graphite-based systems.
However, their complicated low-energy electronic structure
makes theoretical many-body studies difficult [42–46,50–52].
The low-energy electronic structure of twisted TMDC ho-
mobilayers is simpler than that of twisted graphitic systems
since it can be described by an effective single-orbital model
(see below) and it does not show topological obstruction
preventing simple Wannier constructions [40,53]. As such,
they are good candidates for establishing a link between ex-
periments and theoretical many-body modeling. Recently, a
zero-resistance state has been reported in a twisted TMDC ho-
mobilayer [20], the nature of which remains to be understood.

In this Letter we provide a quantitative study of the critical
temperature Tc due to spin-fluctuation-mediated pairing in
�-valley twisted TMDCs in terms of doping and twisting,
which we obtain dynamically by means of the fluctuation
exchange approximation (FLEX) [54,55]. We additionally
provide a qualitative understanding of spin fluctuations versus
electron-phonon coupling, and we propose that experimental
measurements on the doping-dependent Tc can help to unveil
the nature of the superconducting states.

Band Structures, Wannierization and Hartree Potential Ef-
fect. We consider the twisting of TMDC homobilayers with
respect to the untwisted (θ = 0◦) situation. In Fig. 1(a) we
show the emergent moiré pattern, where the AA regions
form a triangular superlattice surrounded by AB and BA
regions arranged in a honeycomb pattern. We focus on the
so-called �-valley twisted TMDCs (WS2, MoS2, and MoSe2)
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FIG. 1. �-valley twisted TMDCs. (a) Moiré pattern of twisted
TMDCs. AA (gray shaded), AB (blue shaded), and BA (red shaded)
regions in the moiré pattern correspond to different stackings of the
two layers, as shown on the right side. Dashed black lines serve as
a guide to the eye to identify the honeycomb superlattice. The most
relevant hopping processes are sketched with black arrows. (b) Con-
tinuum model for WS2 at a twist angle of θ = 3.5◦ (black solid
line) with a third-nearest-neighbor hopping tight-binding model (red
dashed line) of the highest valence bands. The effective honeycomb
lattice is formed by the AB and BA moiré sites. The right panel
shows a zoom of the flat Dirac bands. (c) Twist-angle dependence of
the hopping parameters for different �-valley twisted TMDCs, WS2,
MoS2, and MoSe2 obtained via Wannier projection.

[49,56,57], in which the valence band maximum of the un-
twisted homobilayer is located at the center of the Brillouin
zone � due to the hybridization between the transition metal
d and chalcogen p orbitals. The valence band maximum is
an antibonding state energetically separated from its bonding
counterpart by hundreds of meV. Also the conduction band is
separated from the valence band maximum by more than an
eV [58,59]. Based on this observation, Angeli and MacDonald
constructed a low-energy continuum model in which only the
antibonding state is included [49]. The emergent symmetry of
these moiré valence bands is that of a 2D honeycomb lattice.

In the plane-wave basis defined by the moiré vectors G =
mGM

1 + nGM
2 , with integers m, n and GM

1,2 spanning the recip-
rocal lattice, the Hamiltonian of the continuum model takes
the form

H = − h̄2|k + G|2
2m∗ δG,G′ + VM(G − G′), (1)

where k are the reciprocal vectors defined in the mini Bril-
louin zone, m∗ is the effective mass, and VM(G) is the Fourier
transformation of the moiré potential [60]. This Hamiltonian
is expanded up to a plane-wave cutoff Gc = 5GM, where
GM = |GM

1,2|.
The low-energy electronic structure of �-valley twisted

TMDCs shows 2D honeycomb Dirac bands for the highest
valence band; see Fig. 1(b). The Dirac point can be accessed
by hole doping and the Dirac bands are well isolated from
higher energy bands for twist angles 1◦ < θ < 5◦. In this

twist angle range, the bandwidth of the flat Dirac bands varies
between 0.5 and 100 meV [60].

We next construct a tight-binding Hamiltonian to describe
the flat Dirac bands with one orbital per honeycomb superlat-
tice site. Here, the AB and BA regions play the role of the A
and B sublattice degrees of freedom in the honeycomb lattice.
We include up to three nearest-neighbor hoppings t1, t2, t3
in our model, which we obtain by Wannier projection [60].
The tight-binding and continuum model band structure agree
very well in the twist angle range 1◦ < θ < 5◦ [60]. We ob-
serve that, when comparing among different �-valley twisted
TMDCs, the transition metal does not influence the hopping
amplitudes significantly, while the chalcogen atoms do. We
also find dominant nearest-neighbor hopping t1 � t2, t3, and
that t1 ∼ α sin2(θ ) ≈ αθ2 with α ≈ 2 eV/rad2.

In other twisted 2D systems, such as MATBG [61–64] or
MATTG [34], the effect of the purely electrostatic and long-
range (Hartree) potential in doped flat bands is important.
Thus, we also consider its influence in our model [60]. We find
that, contrary to MATBG and MATTG, the flat Dirac bands
remain unaffected. Therefore, we disregard doping-dependent
long-range Coulomb reconstructions on the flat bands from
now on.

Doping- and Interaction-dependent Spin Fluctuations.
Since the nearest-neighbor hopping t1(θ ) dominates over t2
and t3 for twist angles 1◦ < θ < 5◦, we neglect t2 and t3 here.
We discuss their influence in the Supplemental Material [60].
We study the Hubbard Hamiltonian

HU = −
∑

〈im, jn〉,σ
t (c†

imσ c jnσ + H.c.) + U
∑
im

nim↑nim↓, (2)

where the hopping amplitude t ≡ t1(θ ) sets the energy scale,
and 〈im, jn〉 denotes that the sum is limited to neighboring
lattice sites of a moiré unit cell i, j and sublattice m, n. c†

imσ

(cimσ ) creates (annihilates) an electron with spin σ , and U is
the local Coulomb repulsion between electrons on the same
lattice site. In the simplified tight-binding model, the system
is particle-hole symmetric with respect to the Dirac point and
has a logarithmically diverging density of states (DOS) at the
Van Hove singularities (VHS) that are present in the M points
of the Brillouin zone [65]. We redefine our zero-doping level
δ = 0 to correspond to a Fermi energy at the Dirac point; see
Fig. 1(b). Then, the VHS are at δ = 0.25.

The Hubbard model for the honeycomb lattice has pre-
viously been studied, indicating a rich phase diagram of
competing many-body instabilities [39,66–72]. The emer-
gence of spin-density waves (SDWs) and superconductivity
in close proximity suggests an unconventional pairing mech-
anism mediated by spin fluctuations. Following this premise,
we study the magnetic and superconducting excitations us-
ing FLEX [60] in the model described above [73–75] as
a representation of spin-fluctuation-mediated pairing in �-
valley twisted TMDCs. A recently developed sparse sampling
method [76,77] enabled us to perform the numerically de-
manding calculations at low temperatures.

In FLEX, the exchange of spin and charge fluctuations
is treated dynamically and self-consistently with an effective
electron-electron interaction of a random phase approxi-
mation (RPA) type. Estimates of the Hubbard interaction
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FIG. 2. Spin fluctuation characteristics of �-valley twisted
TMDCs at T/t = 0.003. (a) Leading Stoner enhancement factor
αS = maxq{Uχ 0(q)} for different Coulomb interaction strengths U/t
and dopings δ with respect to the Dirac point as obtained from
FLEX. A transition to a quasiordered magnetic state is assumed for
αS � 0.99. (b) Real-space components of the static spin susceptibil-
ity χ s(r) for U/t = 6. Up to eighth-nearest-neighbor components are
shown, with |r| denoting the distance between two spins in terms of
the moiré unit length λM. Solid (dashed) lines correspond to the AA
(AB) components of χ s, i.e., correlations between same (different)
sublattice sites. The area around the Van Hove singularities (VHS) is
not accessible because of too strong fluctuations; it is marked by a
gray shaded area [cf. panel (a)].

parameter given in the Supplemental Material [60] show that
U is highly tunable via twist angle and the dielectric en-
vironment [17,18,28,78–84]. For example, for θ = 5◦, the
interaction strength is tunable in the range 4 < U/t < 8 [60].
In addition, vertex corrections that are neglected in FLEX
could contribute to further screening [85–87]. In what follows,
we treat U as a free parameter.

We analyze the emergence of magnetic fluctuations by
inspecting the leading Stoner enhancement factor αS =
maxq{Uχ0(q)} with the static irreducible susceptibility
χ0(q); see Fig. 2(a). If αS � 0.99, the transition to a
quasiordered magnetic phase is assumed [60]. This situation
occurs in two locations of the phase diagram: at the Dirac
point (δ = 0) and in the vicinity of the VHS (δ = 0.25). Be-
tween these two points, αS is strong but does not reach the
quasiordering criterion. When doping beyond the VHS (δ �
0.3), the relative spin fluctuation strength decreases rapidly
and the system stays paramagnetic. Increasing the interaction
strength amplifies αS, but the doping dependence remains
largely unaffected.

The presence of strong spin fluctuations can induce an
effective electron-electron interaction with nonlocal attractive
regions, which gives rise to superconducting pairing [88,89].
FLEX captures this effect with the dominant contribution
to the effective interaction coming from the spin suscepti-
bility χ s. Optimal pairing conditions can be inferred from

its real-space profile. In Fig. 2(b), we show the doping de-
pendence of up to eighth-nearest-neighbor components of
χ s(r) for U/t = 6. For doping levels in the vicinity of the
Dirac point, antiferromagnetic fluctuations with respect to
the sublattices A and B emerge, i.e., the AB (intersublattice)
components have a negative sign, whereas the AA (intrasub-
lattice) components are positive. Upon doping, initially the
longest range and successively the more short-range com-
ponents of χ s change their sign. Hence, antiferromagnetic
fluctuations are suppressed, and an admixture of ferromag-
netic components to χ s is triggered away from the Dirac point.
Beyond the VHS, fluctuations turn increasingly ferromagnetic
and their relative strength weakens. Further insight into the
emerging SDWs and their origin from nesting conditions can
be gained by inspecting the momentum-resolved structure
of χ s [60].

To investigate the dominant superconducting pairing sym-
metry and transition temperature Tc, we solve the linearized
Eliashberg equation for different possible order parameters.
In all our calculations, the degenerate singlet d-wave pairings
(dxy, dx2−y2 ) emerge as the dominant pairing symmetries [60].
This is in agreement with the antiferromagnetic fluctuations as
they favor singlet-pairing symmetries. Below Tc, the order pa-
rameter forms a time-reversal symmetry-broken chiral d + id
pairing state [38,39,69].

In Fig. 3(a), we show the doping dependence of Tc for
different U/t . We find a superconducting dome that is charac-
terized by a nonmonotonous behavior with a maximal value
T max

c at an optimal doping δopt. The existence of such a
maximum results from the interplay of the pairing interaction
pattern and the electronic DOS at the Fermi level [60]. Doping
away from the Dirac point increases the DOS at the Fermi
level, which supports d-wave pairing via antiferromagnetic
spin fluctuations. As the doping level increases further, how-
ever, an increasing amount of pair-breaking ferromagnetic
spin fluctuations emerges [cf. Fig. 2(b)]. Thus, we reach a
situation of optimal doping around δopt = 0.06 and a decrease
in Tc upon further doping.

We obtain increasing Tc with increasing interaction U un-
til the highest Tc curve for U/t = 8 with a maximal value
of T max

c /t = 4.8 × 10−3 at δopt = 0.06 is reached. For larger
interactions U/t � 9, the superconducting transition tempera-
tures decrease again.

Near the VHS, possible superconducting order
[39,67,68,90] is masked by magnetic fluctuations in
FLEX, that is, αS exceeds 0.99. As the spin fluctuations
turn ferromagnetic towards and beyond the VHS doping,
singlet-pairing emerging from antiferromagnetic spin
fluctuation exchange is strongly suppressed. In addition,
triplet superconductivity does not arise for any temperature
T/t > 10−3 due to the weakened fluctuation strength [60].
The material and twist-angle-dependent hopping amplitudes
given in Fig. 1(c) set the temperature scale. Tc takes values on
the order of 0.1–1 K, which is in agreement with reports on
other twisted 2D systems [8,9,20,27].

Spin Fluctuations Versus Electron-phonon Coupling. The
previous discussion showed that superconductivity arising
from a spin-fluctuation-mediated pairing mechanism exhibits
a characteristic doping-dependent transition line with a clear
maximum near Dirac filling. To contrast this pairing scenario,
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FIG. 3. Doping dependence of the superconducting transition
temperature Tc in �-valley twisted TMDCs. (a) Phase diagram
for spin-fluctuation-mediated pairing for different local Coulomb
interaction strengths U/t from FLEX calculations. The critical
temperature Tc/t belongs to the dominant singlet d-wave pairing
symmetry. (b) Phonon-mediated Tc for an Einstein-Holstein phonon
mode ω0 and for different Coulomb pseudopotentials μ∗ = 0.0
(blue), 0.1 (gray), and 0.2 (red). From left to right, the effective at-
tractive interaction Ueff from electron-phonon coupling is increased.
The trend of the density of states (DOS) is indicated by black
dashed lines. (c) Comparison of the doping-dependent phase diagram
of the maximum Tc obtained for spin fluctuations and phonons.
This phase diagram holds qualitatively for all �-valley twisted
TMDCs.

we assess how the doping characteristics appear in the con-
ventional case of phonon-mediated superconductivity.

We estimate the transition temperature T ph
c by means of

McMillan’s formula [91,92]

T ph
c = h̄〈ω〉

1.20 kB
exp

{ −1.04(1 + λ)

λ − 0.62λμ∗ − μ∗

}
, (3)

where 〈ω〉 is an effective phonon frequency, λ denotes the
effective pairing strength, and μ∗ is the Tolmachev-Morel-
Anderson Coulomb pseudopotential [93,94]. 〈ω〉 and λ are
generally obtained from the phonon spectral function α2F (ω).
Here, we consider the limiting case of an Einstein-Holstein
phonon mode, i.e., with a constant electron-phonon coupling g
and a constant phonon frequency ω0. We discuss the opposite

limit of nonlocal Peierls coupling with dispersive phonons in
the Supplemental Material [60].

When discussing phonon-mediated superconductivity, it is
simplest to do so in terms of a BCS-like effective attractive
interaction Ueff such that λ = UeffN (δ) with the DOS N (δ)
per spin and unit cell for a particular doping δ. In the Einstein-
Holstein model, we explicitly have Ueff = 2g2/h̄ω0 and 〈ω〉 =
ω0. The exact values of ω0, Ueff , and μ∗ are material-specific
and they depend on factors such as twist angle or external
screening [95–101]. Twisted TMDCs display phonon modes
at energies on the order of a few 10 meV as in the bulk
and in addition feature moiré phonons in the range 2–5 meV
[100–102]. We estimate Ueff to be in the large range of
0.05–8t [60], and typical values of μ∗ are in the range 0.0–0.2
[94].

The key observation is that the generic doping dependence
of T ph

c derives mainly from the DOS. To illustrate this point,
we show in Fig. 3(b) results for T ph

c in units of ω0 for different
Ueff and μ∗ together with the DOS. We tune Ueff to yield
weak to intermediate coupling strengths (λ � 1). Increasing
μ∗ suppresses T ph

c , while increasing Ueff has the opposite
effect. The quantitative details may vary, but the qualitative
shape of the T ph

c curve is unaffected in both cases, mainly fol-
lowing N (δ). Our findings for nonlocal coupling [60] support
the robustness of the doping dependence of T ph

c : A peaked
structure emerges around the VHS and extends over the whole
range of dopings δ ∈ [0, 1], i.e., in particular also beyond the
VHS in the region of δ > 0.25. The relevant temperature scale
is set by ω0, with T ph

c taking values on the order of 0.1–10 K.
Note that we excluded the immediate region around the VHS
in our discussion since the competition of different instabili-
ties complicates the determination of the doping dependence
[103–105].

A direct comparison of the doping-dependent supercon-
ducting phase diagram obtained for the different pairing
mechanisms—spin fluctuations and phonons—is given in
Fig. 3(c). We use the normalized results of Fig. 3(a) for U/t =
8 and those of Fig. 3(b) for Ueff/t = 3 and μ∗ = 0.0. Each
pairing mechanism shows unique fingerprints for which we
identify two key differences. First, phonon-mediated super-
conductivity shows a clear increase towards the VHS, whereas
for spin-fluctuation-mediated pairing, a global maximum ap-
pears close to the Dirac point at δopt. Second, phonon-induced
superconductivity persists over a wider doping range and is
closely linked to the DOS, while spin-fluctuation-mediated
superconductivity is confined to a narrow doping region near
an antiferromagnetic instability, which diminishes rapidly
after the VHS due to the emergence of pair-breaking ferro-
magnetic fluctuations.

Summary and Outlook. We have shown that the super-
conducting response to doping in �-valley twisted TMDCs
depends decisively on the quantum nature of the pair-
ing fluctuations. Superconducting pairing mechanisms and
their experimental determination present a major open prob-
lem in twisted 2D systems. Thus, the question is, are
there simple experimental ways to discern different pairing
mechanisms?

Our analysis demonstrates that different pairing mech-
anisms can be distinguished by simple doping-dependent
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transport experiments of Tc. Fingerprints unique to the partic-
ular microscopic mechanism can be found with respect to the
doping levels of maximal Tc or the doping extent over which
superconductivity persists.

This possibility has not been explored in other un-
conventional superconductors [106] because of the diffi-
culties of performing systematic doping-dependent studies.
The consideration of multiple local and nonlocal electron-
phonon coupling profiles [60] indicates that the distinct
doping dependence between T sp

c and T ph
c is generic.

Hence, our conclusions are not only valid for the �-valley
twisted TMDCs, but they can help to elucidate pairing
mechanisms in other twisted 2D Van der Waals materials, such
as MATBG or MATTG.
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In Section S1 of this Supplemental Material, we give a short description of the low-energy continuum model devel-
oped in Ref. [S1] for Γ-valley twisted transition metal dichalcogenides (TMDCs) which we employed here. We show
the band structure for all Γ-valley twisted TMDCs, WS2, MoS2, and MoSe2, at different twist angles θ. In Section
S2, we present the Wannier construction for the two top-most superlattice valence bands in a twist angle range of
1◦ < θ < 5◦. In Section S3, we discuss the effect of the long-range Coulomb interactions on the low-energy flat
bands in presence of doping in the Hartree approximation. We follow the procedure from Refs. [S2, S3] for magic-
angle twisted bilayer graphene (MATBG). Section S4 gives estimations of the of the electronic Coulomb interaction
strength, in particular the on-site and nearest-neighbor interaction parameters U and V . In Section S5, we explain
the calculations in the fluctuation exchange (FLEX) approximation [S4, S5]. In Section S6, we discuss the nature
of magnetic ordering, analyze the momentum dependence of the static spin susceptibility at different dopings δ and
temperatures T/t, and show its real space profile. In Section S7, we investigate the leading superconducting order
parameter and possible pairing symmetries in the honeycomb Hubbard model at various dopings and temperatures.
Section S8 discusses the influence of longer-ranged hopping terms on spin fluctuations and superconductivity. In
Section S9 we investigate the influence of non-local electron-phonon coupling as well as dispersive phonon frequen-
cies on the doping dependence of phonon-mediated superconductivity. In Section S10 we provide an estimation of
the effective electron-phonon interaction Ueff used for the Holstein model calculations in the main text and for the
non-local Peierls coupling employed in Section S9.

S1. LOW-ENERGY CONTINUUM MODEL FOR Γ-VALLEY TWISTED TMDCS

We outline here the low-energy continuum model which we used for the description of the moiré valence band
structure of Γ-valley twisted TMDCs. The model was introduced in Ref. [S1], from where we outline here the main
points. In this continuum model, only the valence antibonding state at the Γ point is considered, which is isolated
from other bands by hundreds of meV because of the interlayer coupling. Since the bands around the Γ-point are
mainly of transition metal dz2-character, spin-orbit coupling effects are small and can be neglected. Because of this,
the description of these Γ-valley twisted TMDCs is easier than other TMDC systems like homobilayer WSe2, where
the valence band maximum is at the K-point with strong spin-orbit coupling [S6]. The low-energy Hamiltonian of
the continuum model can be written as

H = −~2k2

2m∗
+ VM(r), (S1)

where m∗ is the effective mass and VM(r) is the moiré potential felt by the holes at the valence band maximum in Γ.
The moiré potential has the following expression in real space:

VM(r) =
3∑
s=1

6∑
j=1

V sei(g
s
j ·r+φs). (S2)

Here, s is the s-th shell of six moiré reciprocal lattice vectors gsj = R(j−1)π/3G
s (j = 1, . . . , 6) with Rα being the

two-dimensional (2D) rotation matrix about an angle α. We choose reciprocal lattice vectors pointing to the s-th

∗ niklas.witt@physik.uni-hamburg.de
† jose.pizarro@mpsd.mpg.de

mailto:niklas.witt@physik.uni-hamburg.de
mailto:jose.pizarro@mpsd.mpg.de


II

Table S1. Continuum model parameters for Γ-valley twisted TMDCs. a0 is the lattice constant in Å, m∗ is the effective mass
in bare electron mass units, and V s are in meV. Data taken from Ref. [S1].

WS2 MoS2 MoSe2

a0 3.18 3.182 3.295
m∗ 0.87 0.9 1.17
V 1 33.5 39.45 36.8
V 2 4.0 6.5 8.4
V 3 5.5 10.0 10.2
φ1,2,3 π π π

shell as G1 = GM
2 , G2 = GM

1 +GM
2 , and G3 = 2GM

2 , where GM
1,2 span the reciprocal moiré lattice. The phase factors

φs are constrained by the C6z symmetry of the moiré lattice to be either 0 or π.
The continuum model parameters (m∗, V s, φs) were obtained from the ab initio calculation of the fully relaxed

twisted bilayers, and they are given in Table S1 for the different Γ-valley twisted TMDCs, WS2, MoS2, and MoSe2

[S1]. The maximum of the moiré potential of Eq. (S2) felt by the holes in the valence band maximum is found in the
AB/BA regions (see Fig. 1B of Ref. [S1]), so that the low-energy physics of the Γ-valley twisted TMDCs is controlled
by orbitals sitting in the honeycomb AB/BA regions.

The diagonalization of H is performed in reciprocal space, where the Hamiltonian of Eq. (S1) is given by (see
Eq. (1) in the main text)

H = −~2|k + G|2

2m∗
δG,G′ + VM(G−G′). (S3)

k and G denote moiré crystal momentum and vectors from the moiré reciprocal lattice, respectively. VM(G−G′) is the
Fourier transformation of VM(r). This Hamiltonian is expanded up to a plane-wave cutoff Gc for a given twist angle
θ. In Fig. S1 we show the band structures for Γ-valley twisted TMDCs at twist angles in the range 1◦ < θ < 5◦. The
zero energy is defined as the top of the valence band. For this twist angle range it is sufficient to use Gc = 4 – 5 GM,
where GM = |GM

1,2|.
From the valence band edge, two flat bands emerge which touch at a Dirac point in the corner of the Brillouin zone

and at a certain negative energy. We refer to these bands as ”flat Dirac bands” for brevity. These bands are well
isolated from other higher energy bands for θ < 5◦. The bandwidth of the flat Dirac bands continuously increases
approximately quadratically with the twist angle.

Another approach to calculate band structures is the derivation of atomistic tight-binding models, which, for
instance, has been done in Ref. [S7] for MoS2. This approach yields the same results and reproduces ab-initio
calculations consistently.

S2. WANNIER PROJECTION OF FLAT DIRAC BANDS

Based on our observations in the previous section, we construct a tight-binding Hamiltonian for the isolated flat
Dirac bands via Wannier projection with one orbital per sublattice site. The AB and BA regions play the role of the
A and B sublattice sites in a honeycomb lattice. The eigenstates of the low-energy continuum model are

Φαk(r) ≡ |Φαk〉 =
∑
G

cαkGei(k+G)·r, (S4)

where α is the band index and cαkG are the plane-wave coefficients obtained from the diagonalization of the Hamiltonian
from Eq. (S3). We set Gc = 5GM and use a k-mesh of 15× 15. We consider Gaussian functions centered on A and B
sites as the trial orbitals |gmk 〉, whose plane-wave expansion coefficients are given by

gmkG = e−(∆K)2/2e−iK·lm . (S5)

Here, m ∈ {A,B} is the sublattice (orbital) index, K = k + G, and lA = LM
1 /3 + 2LM

2 /3 and lB = 2LM
1 /3 + LM

2 /3
are vectors pointing from the moiré unit cell origin to A and B sites, respectively. LM

1,2 are the moiré lattice vectors,

λM = |LM
1,2|, and ∆ = λM/3 is the extent of the trial orbitals. These trial orbitals are then projected onto the
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Figure S1. (Color online) Band structures for the Γ-valley twisted TMDCs, WS2 (top row), MoS2 (middle row), and MoSe2

(bottom row). We show the low-energy band evolution for the twist angle range 1◦ < θ < 5◦.

eigenstates manifold of the low energy Dirac bands |φmk 〉 =
∑
α 〈Φαk |gmk 〉 |Φαk〉, which yields the corresponding plane-

wave expansion coefficients of the state |φmk 〉 [S8]

φmkG =
∑
α

cαkGP
αm
k . (S6)

The projection matrix Pαmk = 〈Φαk |gmk 〉 ≡
∑

G(cαkG)†gmkG allows to calculate the overlap matrix as

Smnk = 〈φmk |φnk〉 = (P †kPk)mn . (S7)

Eqs. (S6) and (S7) are used to calculate the so-called smooth gauge plane-wave expansion coefficients of the smooth

gauge Bloch states |Φ̃mk 〉

c̃mkG =
∑
n

φnkG · (S
−1/2
k )nm . (S8)

The resulting set of well-localized Wannier orbitals can be constructed in real space as

WRm(r) =
1

Nk

√
AM

∑
k

∑
G

c̃mkGeiK·(r−R) , (S9)

where AM =
√

3λM/2 is the moiré unit cell size, r denotes the real space coordinates, and R describes the Bravais
lattice. In Fig. S2(a) we show the real-space probability density |W|2 for the two Wannier orbitals m from the unit
cell at the origin of the Bravais lattice obtained from the flat Dirac bands.

Now, the Hamiltonian in the Wannier orbital basis can be calculated by projecting the continuum Hamiltonian
onto the smooth gauge Block states |Φ̃m〉

H̃mn
k = 〈Φ̃mk |H|Φ̃nk〉 ≡

∑
G,G′

(c̃mkG)
†
c̃nkG′HkGG′ , (S10)
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Figure S2. (Color online) Wannier tight-binding model for twisted WS2 at 3.5◦. (a) Wannier densities |Wm|2 for each orbital
centered in the sublattices A (green dots) and B (blue dots). White dots denote the Bravais lattice R and white arrows are
the moiré lattice vectors LM

1,2. (b) Band structure and (c) density of states N(δ) per spin and unit cell of the honeycomb
tight-binding model with nearest-neighbor hopping only (t2, t3 = 0, blue line) and including also longer-ranged hopping terms
(t2/t1 = −0.136, t3/t1 = 0.105, red line). The doping δ is counted relative to the Dirac point. Van Hove singularities (VHS)
appear at the M -points in the Brillouin zone, corresponding to a doping of δ = ±0.25 (δ ≈ −0.2, 0.17) in the particle-hole
symmetric (asymmetric) case.

where HkGG′ are the matrix elements of the Hamiltonian in Eq. (S3). Fourier transformation of Eq. (S10) gives the

real space Wannier Hamiltonian H̃mn
r whose matrix elements m, n are the hopping integrals entering the tight-binding

model used in the main text. We find that including up to three nearest-neighbor hoppings is sufficient to describe
the band structures found by the continuum model in the twist angle range 1◦ < θ < 5◦, as shown in Fig. 1(b) of the
main text for WS2 at θ = 3.5◦. The angle dependence of the hopping amplitudes is shown in Fig. 1(c) of the main
text.

The resulting honeycomb tight-binding model is

H0(k) =

(
HAA(k) HAB(k)
HBA(k) HBB(k)

)
with

HAA(k) = HBB(k) = 2t2
[
cos(k · LM

1 ) + cos(k · LM
2 ) + cos(k · (LM

1 + LM
2 )
]
,

HAB(k) = H∗BA(k) = t1

[
1 + eik·L

M
1 + eik·(L

M
1 +LM

2 )
]

+ t3

[
2 cos(k · LM

2 )eik·(2L
M
1 +LM

2 )
]
.

(S11)

The corresponding band structure and density of states (DOS) per spin and unit cell can be found in Figs. S2(b) and
(c), respectively. The DOS is shown as a function of doping δ that is counted relative to the Dirac point. We show
the third nearest-neighbor hopping model with t2/t1 = −0.136 and t3/t1 = 0.105 for WS2 at θ = 5◦ using t ≡ t1 as
unit of energy. It reveals a slight particle-hole asymmetry around the Dirac point. We also show a simplified model
which only accounts for nearest-neighbor hopping and which is particle-hole symmetric. In both cases there are Van
Hove singularities (VHS) emerging at the M points of the moiré Brillouin zone.

Since t1 � t2, t3, the character of the VHS does not change to higher order VHS [S9, S10] and the qualitative
physics occurring in the system are not expected to change significantly (c.f. Section S8 for an explicit demonstration).
Therefore, we neglect t2 and t3 and consider the particle-hole symmetric model with nearest-neighbor hopping t1 ≡ t
only in the main text.

S3. LONG-RANGE COULOMB INTERACTIONS

Several twisted 2D systems are known to show a strong reconstruction of their band structure upon doping caused
by the Hartree potential resulting from the long-range Coulomb interaction [S2, S3, S11–S13]. Here, we study the
effect of the Hartree potential in Γ-valley twisted TMDCs. We follow the method developed in Ref. [S2]. The Hartree
potential contribution to the total Hamiltonian of Eq. (S1) is given by

VH(r) =

∫
d2r′VC(r− r′)δρ(r′), (S12)



V

Figure S3. (Color online) Hartree potential effect in the doped band structures of twisted WS2. From left to right, we show
results for different twist angles θ. The undoped bands are shown with black solid lines. Band structures corresponding to
Fermi levels Ei

F and hole doping ni
h set between the undoped valence band maximum and the Dirac point (dashed red, i = 1),

at the Dirac point (dashed gray, i = 2), and between the Dirac point and the bottom of the flat Dirac bands (dashed blue,
i = 3). The solid horizontal lines represent the corresponding Fermi energies. Calculations were performed at T = 0.

where VC(r) = e2

ε|r| is the Coulomb potential, ε = 4.5 is the dielectric constant of the environment as produced by

hBN, and δρ(r) is the deviation of the charge density from charge neutrality. δρ = 0 corresponds to the undoped
continuum model, i.e., when the Fermi level is at the top of the flat Dirac bands. We can then write

δρ(r) =
1

AM

∑
G

δρ(G)eiG·r. (S13)

The Fourier components δρ(G) are given by

δρ(G) = − 2

Nk

∑
k,G′

∑
α′

(
cα

′

kG′

)†
cα

′

kG′+G, (S14)

where the sum over α′ runs over the unoccupied states in the valence band, so it depends on the doping level EF, the
factor 2 accounts for the spin degeneracy, and the minus sign refers to hole doping. Due to the D6 symmetry of the
lattice, δρ(G) are equally weighted in the same s shell of gsj vectors, so we can write δρs ≡ δρ(gsj) for any j. We also
checked that it is enough to consider the first and second shells s = 1, 2 to correctly address the effect of the Hartree
potential. Under these assumptions, we can write the Hartree potential as

VH(r) =
∑
s

V s0 δρs
∑
j

eig
s
j ·r, (S15)

where V s0 = 2πe2

εAM|Gs| . δρs are the amplitudes which define the Hartree potential and have to be determined self-

consistently. By Fourier transforming Eq. (S15), we can introduce the Hartree potential in Eq. (S3) and solve the
total Hamiltonian H + VH in the reciprocal space.

The self-consistent procedure is as follows:

• We consider various doping levels with respect to the top of the valence band nh (number of holes per spin).
Here nh = 0 corresponds to the undoped system, nh = 1 to the hole doping to the Dirac point, and nh = 2 to
completely empty flat Dirac bands. We consider n1

h between the undoped level and the Dirac point, n2
h at the

Dirac point, and n3
h between the Dirac point and the bottom of the flat Dirac bands. We obtain the plane-wave

coefficients cαkG from diagonalizing H + VH.

• Using Eq. (S14), we calculate the new charges δρnew
s .

• In each iteration step, the self-consistent convergence is checked by |δρold
s − δρnew

s | < 10−6. If the convergence
criterion is fulfilled, we finish the code and calculate the new and renormalized band structures.

• If the convergence criterion is not fulfilled, then we update δρs using a Kerker mixing procedure [S14], where

δρs = δρold
s + α

G2
s

G2
s+β

2

(
δρnew
s − δρold

s

)
. We set α = 0.1, β = 0.9, and Gs ≡ |Gs|. A simple straight mixing is

obtained if β is set to a very small value. We find that the charges are usually converged after less than 30
iterations depending on the chosen twist angle θ and the doping level nih.
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Figure S4. (Color online) Relative change in the bandwidth with respect to the undoped case W/W0 due to the Hartree
potential in twisted WS2. The change is larger for large hole dopings and non-monotonous in terms of the twist angle. The
largest relative change for θ = 3◦ at nh ≈ 1.75 is approximately 27 %.

We show in Fig. S3 the effect of the Hartree potential for WS2 at different twist angles θ and different Fermi
energies EiF corresponding to respective hole dopings nih. The Hartree potential mainly shifts the bands as a whole
and increases the bandwidth. Only for larger twist angles θ ≥ 5◦ and dopings n3

h, the flat Dirac bands start to be
reconstructed, with the higher energy bands below the flat Dirac bands even being partially filled. This is in contrast
to graphene-based systems, where the entangled multiorbital nature of the flat bands facilitate strong renormalization
of the bands.

The bandwidth renormalization can be easily visualized when plotting the relative change of the bandwidth with
respect to the undoped case W/W0, see Fig. S4, where the change is larger for larger dopings. The change is non-
monotonic when changing the twist angle. From these results, we conclude that θ ≤ 5◦ is the limit of applicability of
our calculations. In any case and for the purpose of our FLEX calculations, we can assume that the doping δ = 1−nh
used in the main text occurs between the valence band maximum and the Dirac point, where the bands are essentially
unaffected by the Hartree potential.

S4. ESTIMATION OF THE COULOMB INTERACTION STRENGTH

From the definition of the Wannier orbitals in Eq. (S9), we estimate the value of the screened Coulomb interaction
matrix elements WR,mn. The local and nearest-neighbor Coulomb interactions can be then calculated as the matrix
elements U ≡W0,AA and V ≡W0,AB . The resulting extended Hubbard model can be mapped onto a local Hubbard
model by making the assumption U? = U − V [S15]. We estimate the upper and lower bounds by projecting an
effective interaction Veff(r) onto the Wannier functions in two limiting dielectric environment cases: free-standing
twisted bilayers, for which the external screening is minimal, and a metallic gate in direct contact with the twisted
bilayers, for which the external screening is maximal [S16]. The screened Coulomb interaction matrix is given by

WR,mn =

∫∫
d2r d2r′ Veff(r− r′)ρRm(r)ρ0n(r′), (S16)

with ρRm(r) = |WRm(r)|2. Veff(r) is the Coulomb interaction screened by the TMDC bilayer in its undoped state
and the dielectric environment. We start from an Ohno potential [S17]

VOhno(r) =
e2√
r2 + ξ2

(S17)

that regularizes the bare Coulomb interaction e2/r at a short wavelength cut-off ξ = 1 Å, which is set by the spacial
extent of the W d-orbitals. The effect of screening is easily included in reciprocal space, so the effective interaction is
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Figure S5. (Color online) Estimated Coulomb interactions in different dielectric environments for WS2. (a) Local and nearest-
neighbor Coulomb interaction U and V in two dielectric environments, free-standing twisted bilayer (‘fs’, red line) and metallic
gate in direct contact with the twisted bilayer (‘m’, blue line). (b) Effective local Hubbard interactions U? = U − V and
bandwidth W (orange line). The blue-red shaded region describes the possible values that U? can take depending on the
dielectric environmental setup. The orange-shaded region indicates interaction values we use in the FLEX calculations (U?/t ∼
5 – 9).

Veff(r) then calculated from the inverse Fourier transformation of

Veff(q) =
VOhno(q)

ε(q)
=

2πe2

ε(q)q
e−qξ , (S18)

where ε(q) is the dielectric function that encodes the environmental screening effect. For our two limiting cases,
free-standing (‘fs’) and metal in direct contact (‘m’), we use the effective dielectric functions [S16, S18]:

εfs(q) = κ
1− κ̃e−qh

1 + κ̃e−qh
,

εm(q) = κ coth
qh

2
.

(S19)

Here, κ ≈ 10 is the internal screening of the twisted TMDC, h ≈ 13 Å is the bilayer height [S19, S20], and κ̃ =
(κ− 1)/(κ+ 1). In Fig. S5(a) we plot the on-site and nearest-neighbor interactions U and V at different twist angles
θ for the two limiting cases for WS2. Since the nearest-neighbor interaction with a metal gate contact Vm is on the
order of 1 meV, we did not include it in the plot. Fig. S5(b) shows the effective local Hubbard interaction U? and
the bandwidth W . A realistic value for U? in Γ-valley twisted TMDCs will fall inside the shaded regions between
the limiting cases U?fs and U?m which depends on the experimental setup and which can be tuned by changing the
dielectric environment [S16, S21–S25]. For our FLEX calculations, we use U?/t = 5 – 9 (where we assume an effective
Hubbard model with U ≡ U?) which is indicated by an orange-shaded region, since W ≈ 6t. These interaction values
correspond to experimentally accessible interaction strengths in a twist angle range of 3− 5◦.

S5. NUMERICAL DETAILS OF FLEX CALCULATIONS

We summarize the calculation steps performed in the FLEX approximation [S4, S5] and give details on the numerical
parameters used. In the FLEX approximation, one solves the Dyson equation

Ĝ(k)−1 = Ĝ0(k)−1 − Σ̂(k) , (S20)

with the dressed (bare) Green function G (G0), self-energy Σ, and the four-momentum k = (iωn,k). k is the crystal
momentum and ωn = (2n+ 1)πkBT are the Matsubara frequencies at a temperature T . In case of the single-orbital
honeycomb model, all quantities are given by 2× 2 matrices in terms of sublattice indices A and B [S26, S27] which

is denoted by a hat Gαβ ≡ (Ĝ)αβ . The non-interacting Green function is given by

Ĝ0(k) =
[
iωn1− (Ĥ0(k)− µ1)

]−1

, (S21)
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where H0 is the non-interacting Hamiltonian given in Eq. (S11), 1 denotes the 2 × 2 identity matrix, and µ is the
chemical potential of the doping level δ. The self-energy Σ mainly consists of contributions from spin and charge
fluctuations and is calculated from

Σαβ(k) =
T

Nk

∑
q

Gαβ(k − q)
{
U2

[
3

2
χ̂s(q) +

1

2
χ̂c(q)− χ̂0(q)

]
+ 1U

}
αβ

, (S22)

with the number of sites Nk, and the Hubbard interaction U as given in Eq. (2) of the main text. The charge and
spin susceptibility entering Eq. (S22) are defined by

χ̂c,s(q) = χ̂0(q)
[
1± Uχ̂0(q)

]−1
, (S23)

where the irreducible susceptibility is

χ0
αβ(q) = − T

Nk

∑
k

Gαβ(k + q)Gβα(k) . (S24)

Eqs. (S20) – (S24) are solved self-consistently. The calculations are initialized using only the bare Green function G0

with Σ = 0, i.e., starting from free electrons, and in each iteration step the chemical potential µ needs to be adjusted
to keep the doping δ fixed. We employ a linear mixing G = κGnew + (1 − κ)Gold with κ = 0.2. We then defined
self-consistency for a relative difference of 10−4 between the self-energy of two iteration steps. In all calculations, we
used a k-mesh resolution of 120×120. For the Matsubara frequencies we used the sparse-sampling approach [S28–S30]
of the intermediate representation (IR) basis [S31, S32] with an IR parameter Λ = 104 and a basis cutoff δIR = 10−8.
Since the numerical cost of FLEX calculations for T = O(0.001t) is quite expensive, this formalism is crucial. For
instance, older works studying honeycomb models [S33–S35] could not determine the transition temperature Tc.
Details on the implementation can be found in Ref. [S29] .

To study the superconducting phase transition driven by spin fluctuations, we consider the linearized gap equation

λ∆S
αβ(k) = − T

Nk

∑
q

∑
α′,β′

V Sαβ(q)Gαα′(k − q)Gββ′(q − k)∆S
α′β′(k − q) , (S25)

for the pairing potential or gap function ∆ on sublattice α and with spin orientation S. This equation represents
an eigenvalue problem for ∆ where the eigenvalue λ can be understood as the relative pairing strength of a certain
pairing channel. The dominant pairing symmetry of the gap function has the largest eigenvalue λ and the transition
temperature is found if λ reaches unity. Since we do not consider spin-orbit coupling, the linearized gap equation
(S25) is diagonal in the spin singlet- and triplet-pairing channel (S = 0, 1) with the respective interactions due to the
exchange of spin and charge fluctuations

V̂ S=0(q) =
3

2
U2χ̂s(q)− 1

2
U2χ̂c(q) + 1U , V̂ S=1(q) = −1

2
U2χ̂s(q)− 1

2
U2χ̂c(q) . (S26)

We solve Eqs. (S25) and (S26) by using the power iteration method with a relative error of 10−4 for convergence. As
an input serve the converged Green function of the normal state calculations and a trial gap function ∆0, which is
set up according to the irreducible representations of the D6 symmetry group [S36].

S6. MAGNETIC QUASIORDER AND SPIN FLUCTUATIONS IN THE HONEYCOMB HUBBARD
MODEL

In two dimensions, the Mermin-Wagner theorem [S37] prevents the formation of (genuine) long-range order at finite
temperature as obeyed by the FLEX approximation [S38]. However, tendencies towards magnetic quasi-order can be
read off from the Stoner enhancement factor Uχ0(q), which enters the denominator of the static spin susceptibility
χs(iν0 = 0,q) (c.f. Eq. (S23)). Thus, possible formation of spin density waves (SDWs) can be investigated in FLEX
by inspecting the instabilities of χs(iν0,q). When the Stoner enhancement approaches unity [Uχ0 ∼ O(0.99)], χs

diverges and the transition to a quasi-ordered magnetic state is assumed [S4, S39, S40]. At this point, the FLEX
calculations turn unstable and do not converge anymore. A discussion of the leading Stoner enhancement, indicating
regions of strong magnetic fluctuations, is given in the main text.

While the real-space profile of the magnetic fluctuations is discussed in the main text, Fig. 2(b), further insight into
the emerging SDWs can be gained by inspecting the momentum-space structure of χs(iν0,q). In Fig. S6, we show the
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Figure S6. (Color online) Momentum dependent static spin susceptibility calculated in FLEX for different temperatures T/t
and dopings δ (rows) at fixed interaction U/t = 4. The left column contains the non-interacting Fermi surfaces at the respective
doping levels and the dominant nesting vectors Q associated with the largest peak of χs(iν0,q). Middle and right column show
the momentum resolved real part of the spin susceptibility within (AA-component) and between (AB-component) sublattices,
respectively.

intra-sublattice (AA) and inter-sublattice (AB) components of χs(iν0,q) along high-symmetry paths of the Brillouin
zone for different δ and T at an intermediate interaction of U/t = 4. Additionally, we included the Fermi surfaces of
the non-interacting system associated with each doping level.

In the doping range between the Dirac point and VHS, the AA- and AB-components of χs carry predominantly
a different sign signaling antiferromagnetic fluctuations with respect to the A and B sublattices. Beyond the VHS,
ferromagnetic fluctuations with respect to the sublattice index emerge and the relative fluctuation strength decreases.
In each sublattice, the peak structure of χs changes significantly depending on the Fermi surface shape and becomes
more pronounced for lower temperatures. That is, because the spin fluctuations emerge from the nesting conditions
of the Fermi surface, i.e., possible intra-pocket electron scattering. To illustrate this, we also draw the nesting vector
Q belonging to the dominant peak of χs between Fermi surface sheets.

Near Dirac doping (δ = 0.05), the Fermi surface is formed by small, almost circular pockets around the K point
so that long-wavelength SDWs emerge, since χs peaks close to the Γ point. This situation corresponds to an almost
ferromagnetic ordering in each sublattice, but antiferromagnetic fluctuations between the sublattices. Increasing the
doping (δ = 0.15) deforms the Fermi surface to an equilateral shape whereby the spin fluctuations assume shorter
wavelengths, as the peak in χs shifts from the Γ point to the M point. At the VHS (δ = 0.25), the system undergoes
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Figure S7. (Color online) Real space profile of the static spin susceptibility calculated in FLEX for different dopings δ at
T/t = 0.003 and U/t = 6. The distance |r| of two lattice sites is given in units of the moiré length λM. Correlations between
spins on equal (different) sublattice sites are marked by solid lines with crosses (dotted lines with circles), corresponding to the
AA (AB) component of χs.

a Lifshitz transition and the Fermi surface turns hexagonal with perfect nesting conditions. This causes strong
fluctuations with a chiral spin profile on each sublattice [S41, S42]. Beyond the VHS (δ = 0.35, 0.45), the Fermi
surface contracts around the Γ point with decreasing relative fluctuation strength. Increasing the interaction U
enhances the fluctuation strength, but does not affect the general structure of χs.

Spin fluctuations can mediate an effective electron-electron interaction, as described by Eq. (S26). This interaction
has non-local attractive regions which can pair spatially correlated electrons as they avoid occupying the same site.
Thus, the real space profile χs(iν0, r) provides information on the pairing potential for electrons. In Fig. S7, we
show χs(iν0, r) for different dopings at T/t = 0.003 and U/t = 6. In accordance with the previous discussion of the
momentum space structure, antiferromagnetic correlations between different sublattice sites occur for doping levels in
the vicinity of the Dirac point (δ . 0.15) which turn ferromagnetic for larger dopings. By increasing the doping, the
AA and AB components of χs change sign on a shorter length scale, so that regions with antiferromagnetic correlations
shrink. This reduces the attractive regions (V S ∼ χs < 0) leading to a less optimal pairing situation since the pair
electrons need to move closer while the Coulomb repulsion pushes them apart.

In the main text, we discuss that an optimal pairing condition with maximal transition temperature Tmax
c arises.

This can be understood from the structure of χs(iν0, r) and DOS. Considering U/t = 6, Tmax
c is located around

δopt ∼ 0.06 – 0.07. The top row of Fig. S7 shows that the fourth- and fifth-nearest-neighbor component of χs
AB change

sign in this doping region. Up to this point, Tc increases with doping driven by the increase in the DOS at the Fermi
level (c.f. Fig. S1(c)). As the attractive region shrinks beyond δopt, pairing conditions deteriorate and Tc decreases.
The optimal situation appears where these two counteracting trends are balanced.

S7. LEADING SUPERCONDUCTING INSTABILITY

The possible pairing symmetries of the superconducting order can be classified according to the irreducible rep-
resentation of the point group symmetry of the system [S36]. The honeycomb lattice is of D6 symmetry which can
possibly host singlet extended s-wave, or degenerate d-wave (dxy, dx2−y2) as well as triplet degenerate p-wave (px, py),
fx(x2−3y2)-wave, or fy(3x2−y2)-wave pairing. The dominant pairing symmetry emerges with the largest eigenvalue λ
of the linearized gap equation (S25).

In Fig. S8(a), we compare λ of the d-wave and f ≡ fx(x2−3y2)-wave pairing symmetry for different dopings δ
between the Dirac point and VHS. These two parings emerge as the dominant pairing symmetries in the singlet
and triplet pairing channel, respectively. The momentum dependence of the corresponding intra-sublattice order
parameters at lowest Matsubara frequency ∆AA(iω1,k) is shown in Fig. S8(b). By comparing the superconducting
eigenvalues, it can be seen that singlet pairing is favored over triplet pairing. This is, in fact, consistent with the
observed antiferromagnetic fluctuations as they support singlet pairing. Clearly, the d-wave pairing is the dominant
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Figure S8. (Color online) Singlet vs. triplet superconductivity in the honeycomb Hubbard model. (a) Eigenvalues λ of
the linearized Eliashberg equation for the degenerate d-wave (solid lines) and the f ≡ fx(x2−3y2)-wave (dotted lines) pairing
symmetries. Shown is the temperature dependence of λ for different dopings δ at U/t = 6. Note that the temperature scale
is logarithmic. (b) Momentum-space structure of the order character for the d-wave and f -wave pairing symmetries. Shown
are the normalized diagonal elements of the gap function ∆AA at lowest Matsubara frequency for converged calculations at
T/t = 0.005, U/t = 6, and δ = 0.1. The nodes of the gap are indicated by white lines.

superconducting instability for which the critical temperature Tc is read off for λd → 1. The values of λf , on the
other hand, do not reach unity in the studied temperature region indicating that a possible transition would occur at
considerably lower temperatures.

For the dominant d-wave pairing, we find that the pairing mainly takes place between different sublattices since
we observe |∆AB| > |∆AA|. This is also in agreement with the antiferromagnetic alignment of the spins between the
sublattices. Because of this, the triplet pairing instability can be enhanced and even dominate over the singlet pairing
by introducing a staggered potential between the A and B sublattice sites [S33].

Below Tc, a linear combination of the degenerate d-wave states forms as the superconducting ground state. The
exact realization depends on the free energy with the possibility of a chiral or nematic states [S36]. For the simple
honeycomb lattice, the chiral d+id state is the preferred solution with the lowest free energy [S43–S45], as the number
of nodes in the quasiparticle spectrum is minimized in this case.

S8. INFLUENCE OF PARTICLE-HOLE ASYMMETRY ON SPIN-FLUCTUATION-MEDIATED
SUPERCONDUCTIVITY

In Section S1, we discussed the influence of longer-ranged hopping terms on the band structure and DOS of the
honeycomb lattice tight-binding model (c.f. Fig. S1(b) and (c)). Here, we assess the change of the spin-fluctuation-
mediated superconducting phase transition line due to the resulting particle-hole asymmetry. We use the same
parameters t2/t = −0.136 and t3/t = 0.105 as in Section S1. To describe the asymmetry, we need to compare each
side of the Dirac point. We calculate the critical temperature T sp

c for one Hubbard parameter U/t = 6.
A comparison of the doping dependence of Tc for the particle-hole symmetric and asymmetric model is shown in

Fig. S9. In accordance with the band structure and DOS asymmetry, an asymmetry in the doping dependence of
T sp

c emerges. On the left side of the Dirac point, superconductivity is slightly enhanced, while it is suppressed on the
other side. This might be contrary to expectations, since the enhancement/suppression of the DOS is opposite. The
reason for this is a change in the shape of the Fermi surface and hence nesting conditions caused by the additional
hopping terms. Near the Dirac point, the triangular parts of the Fermi surface become flatter and the spin fluctuation
strength increases due to better nesting. At the VHS, the hexagonal shape of the Fermi surface becomes rounder
causing weaker spin fluctuations. The extent to which this happens, is different for each side of the Dirac point
resulting in two different curves. For instance, on the left side the DOS of both cases is similar, but T sp

c of the
asymmetric model is slightly increased due to stronger spin fluctuations. The different nesting conditions also cause
the VHS to be less detrimental to the calculations, since the Stoner enhancement does not diverge as strongly.

Even though quantitative aspects of T sp
c (δ) change by the presence of long-range contributions to the single-particle
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Figure S9. (Color online) Comparison of the doping dependence of the spin-fluctuation-driven superconducting transition line
T sp

c for the particle-hole symmetric (t2, t3 = 0, blue line with diamonds) and asymmetric (t2/t = −0.136, t3/t = 0.105, red
line with circles) honeycomb lattice model. The density of states for each model is drawn by a shaded area to indicate the
position of the Van Hove singularities (VHS) in each case and how the phononic transition line T ph

c would differ qualitatively.
The Dirac point and its vicinity are indicated by a gray shaded area.

dispersion, the general qualitative behavior remains unchanged. A clear maximum of T sp
c exists on both sides of the

Dirac point, while superconductivity is suppressed by doping away from that region. Still ferromagnetic fluctuations
form beyond the VHS which lead to the absence of superconductivity.

S9. SUPERCONDUCTIVITY FROM NON-LOCAL ELECTRON-PHONON INTERACTION

In the main text, we have stated that conventional superconductivity driven by the electron–phonon interaction
persists over a larger doping range and peaks at different levels than unconventional superconductivity driven by spin
fluctuations. More precisely, using the approximations of a single Einstein phonon mode and a constant Holstein
electron–phonon coupling, we have shown that the critical temperature closely follows the electronic DOS. Here, we
will demonstrate that these observations remain valid for more general momentum-dependent phonon frequencies and
Peierls electron–phonon coupling.

We describe the electrons and phonons of the moiré superlattice using nearest-neighbor-only tight-binding and
mass–spring models on a honeycomb lattice. The tight-binding Hamiltonian is equivalent to the nearest-neighbor
part of Eq. (S11), except that we change the orientation of the two electronic sublattices A,B and the primitive moiré
lattice vectors LM

1,2 for the sake of notational simplicity, see Fig. S10 (a). Using reciprocal lattice units k1,2 = k ·LM
1,2,

the tight-binding Hamiltonian can then be defined as

HkAB = t(1 + eik1 + e−ik2), HkBA = H∗kAB, HkAA = HkBB = 0, (S27)

where t ≡ t1 and the asterisk denotes the complex conjugate. The corresponding electron dispersion relation (see
Fig. S2 (b)) reads

Ek± = ±t
√

3 + 2 cos(k1) + 2 cos(k2) + 2 cos(k1 + k2). (S28)

For the phonons, we use a mass–spring model with an isotropic nearest-neighbor force constant. Using reciprocal
lattice units q1,2 = q · LM

1,2, the dynamical matrix can be defined as

DqAB = −1 k

M
(1 + eiq1 + e−iq2), DqBA = D∗qAB, DqAA = DqBB = 1

3k

M
, (S29)
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Figure S10. (Color online) Non-local electron-phonon interactions. (a) Honeycomb lattice with primitive lattice vectors LM
1,2,

bond vectors τ0,1,2, and sublattices A,B. (b) Phonon dispersion ωq± in units of
√
k/M with force constant k and mass M .

(c) Critical temperature Tc in units of
√
k/M and density of states N in arbitrary units as a function of the doping level δ for

different strengths of the effective interaction Ueff in units of the hopping t.

where k and M are the effective force constant and a mass, respectively. The force constant and mass have to be
understood as effective quantities related to the moiré unit cell and not referring to the primitive unit cell or individual
atoms. 1 denotes the unit matrix in the space of Cartesian displacement directions.

We show in Fig. S10 (b) the corresponding phonon dispersion which consists of two branches, whose degeneracy is

the number of spatial dimensions, and reads ωq± =
√
kq±/M with

kq± = k[3±
√

3 + 2 cos(q1) + 2 cos(q2) + 2 cos(q1 + q2)]. (S30)

Finally, modeling the dependence of the hopping t on the bond length τ as t/t0 = (τ/τ0)−β [S46] and labeling the
sublattices of the ionic displacements as A′,B′, the deformation-potential matrix element can be defined as

dqA′kAB =
βt

τ
(τ̂0 + τ̂1eik1 + τ̂2e−ik2), dqA′kBA = d∗qA′k+qAB, dqB′kij = −d∗qA′kji, (S31)

where τ̂0,1,2 are the normalized nearest-neighbor bond directions (Fig. S10 (a)) and i, j ∈ A,B. dqxkij quantifies the
scattering of an electron from k, j to k + q, i due to a q, x displacement. Using the eigenvectors ψ and e of the
tight-binding Hamiltonian and the dynamical matrix, the deformation-potential matrix element can be transformed
to the band basis via

dqνkmn =
∑
xij

eqxνψ
∗
k+qimψkjndqxkij , (S32)

where ν denotes the phonon branch and m, n the electronic band. The index x combines A′,B′ and Cartesian
directions. With this, we have everything needed to calculate the effective electron–phonon coupling strength

λ(µ) = N(µ)

∑
qνkmn δ(εk+qm − µ)δ(εkn − µ)U eff

qνkmn∑
qkmn δ(εk+qm − µ)δ(εkn − µ)

, (S33)

where we have defined the effective attractive interaction U eff
qνkmn = |dqνkmn|2/kqν , and the logarithmic average of

the phonon energy

ωlog(µ) = exp

[∑
qνkmn δ(εk+qm − µ)δ(εkn − µ)U eff

qνkmn log(ωqν)∑
qνkmn δ(εk+qm − µ)δ(εkn − µ)U eff

qνkmn

]
(S34)

as a function of the chemical potential µ [S47]. Here, N(µ) is the DOS per spin direction and unit cell, see Fig. S2(c)
for the DOS as a function of the doping level δ. Both λ and ωlog are double Fermi-surface averages; the δ functions
ensure that both in- and outgoing states k, n and k + q,m are on the Fermi surface. Note that the shape of λ and
ωlog as a function of µ for our model is fixed and their magnitude depends solely on the prefactors Ueff/t = β2t/τ2k

and
√
k/M , respectively.
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We calculate the critical temperature Tc using McMillan’s formula [S47, S48] (Eq. (3) of the main text) for different
values of Ueff covering the entire range from weak to strong coupling, i.e., 0 < λ / 2, as a function of the doping δ.
For simplicity, we set the Coulomb pseudopotential µ∗ = 0, while finite µ∗ do not change the picture qualitatively.
We sample the Brillouin zone using 96× 96× 1 q and k points in combination with a Gaussian broadening of 0.05t.
In all cases, Tc approximately follows the DOS, see Fig. S10 (c). Depending on the value of Ueff, the maxima at the
VHS are more or less pronounced.

S10. ESTIMATION OF EFFECTIVE ELECTRON-PHONON INTERACTION PARAMETER Ueff

In the main text and in Section S9 we used McMillan’s formula to show that superconductivity arising from electron-
phonon coupling reveals generic and robust doping fingerprints by Tc following the DOS. The quantitative details of
the superconducting transition are then determined by the material properties. Here, we give an estimation on the
order of magnitude for the effective BCS-like interaction Ueff entering the pairing strength λ = UeffN(EF) for Γ-valley
twisted TMDCs.

The simplest estimation for the pairing strength λ for twisted moiré systems is to extrapolate from calculations for
the untwisted material. In homobilayer TMDCs, λ can take values up to 8 [S49] depending on the doping with the DOS
varying between 0.4 eV−1 and 2 eV−1 [S50]. Hence, the effective interaction strength is Ueff = λ/N(EF) ≈ 4 – 12 eV per
unit cell. This value needs to be scaled to the moiré unit cell which contains approximately (λM/a0)2 = 1/ sin2 θ ≈ θ−2

single unit cells with lattice constant a0 (c.f. Table S1) for small θ, i.e., the effective interaction is twist-angle dependent
Ueff(θ) ≈ 4–12 θ2 eV. Using our observation t ∝ θ2 (c.f. Fig. 1(c) of the main text), we can express Ueff in units of
t. For instance, for twisted MoS2 bilayer we can write t ≈ 2 eV·θ2 = αθ2 with θ in radians. Thus, we estimate an
interaction strength of Ueff/t = 2 – 6.

We also discuss moiré phonon modes, where we obtain Ueff = d2/k from elastic properties of the bilayer TMDCs.
Instead of using the microsopic electron-phonon coupling g and the averaged (”typical”) phonon frequency 〈ω〉, we
express Ueff in terms of an effective moiré deformation potential d and an effective moiré force constant k. They are
related by

Ueff =
2g2

~〈ω〉
=

2

~〈ω〉
~d2

2M〈ω〉
=
d2

k
, (S35)

since g =
√

~
2M〈ω〉d [S51] and 〈ω〉 =

√
k/M with mass M . It shows that the attractive phonon-mediated interaction

can be interpreted as a classical quantity, as all ~ cancel out.
First, we consider a case which corresponds to a purely local mode with Holstein-type coupling, which results

from an interlayer breathing mode, see Fig. S11(a). In this case, a restoring force F = k∆h is induced when the
interlayer distance is changed by an amount ∆h. The response of the system is also encoded in the elastic constant
in out-of-plane direction

C33 =
σ

ε
=

F/A

∆h/h
=

Fh

A∆h
(S36)

with the tensile stress σ of the lifted area A and strain ε of the equilibrium layer distance h. Thus, the force constant
can be calculated from

k =
F

∆h
=
AC33

h
. (S37)

We assume that only a fraction p < 1 (the AB, BA regions) of the moiré unit cell needs to be lifted, so that

A = p
√

3
2 (λM)2 ≈ p

√
3

2 a
2
0θ
−2. The magnitude of the deformation potential is given in Eq. (S31) and for a single mode

it simplifies to

d =
βt⊥
h

(S38)

with the interlayer hopping t⊥. The attractive interaction in Eq. (S35) then takes the form

UHolst.
eff =

d2

k
=

(
βt⊥
h

)2

· h

AC33
≈ β2t2⊥√

3
2 pa

2
0θ
−2hC33

. (S39)
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(a) (d)

(c)(b)

Figure S11. (Color online) Moiré phonon modes. (a) Layer-breathing mode (“Holstein” coupling). (b, c) Optical in-plane
modes of a honeycomb lattice at Γ (“Peierls” coupling). (d) Effect of TMDC layer displacement. The left panel shows the
unshifted lattice, while in the right panel the red TMDC lattice was displaced to the right by u, so that the moiré superlattice
is shifted to the top by δr. Empty circles denote the unshifted atom positions.

Expressing UHolst.
eff in units of the moiré honeycomblattice hopping t ≈ αθ2 yields

UHolst.
eff ≈ 2√

3

β2t2⊥
αpa2

0hC33
t . (S40)

We can estimate UHolst.
eff to be in the range of 0.05 – 1.4 t by assuming β = 4 – 5 [S46], a0 = 3.18 Å[S50], C33 = 52 GPa

[S52, S53], t⊥ = 0.3 – 0.4 eV [S1], h = 3 – 6 Å, α = 2 eV, and p = 0.167 – 0.5. In our simplified approach, we
thus get interactions that can induce superconductivity (c.f. Fig. S3(b) of the main text) since the pairing strength
λ = Ueff/t ·N(EF)t reaches values up to λ ≈ 0.5 (c.f. Fig. S2(c)).

Now, we consider an interlayer shear mode with the two layers being moved in opposite directions and opposite
shearing profile in the AB and BA regions of the moiré. This effectively modulates the bond lengths in the moiré
honeycomb superlattice, i.e., we estimate the effective interaction arising from the Peierls coupling discussed in Section
S9. Two equivalent shear modes exist, see Fig. S11(b,c), for which the potential energy is given by the optical q = 0
eigenmode (c.f. Eq. (S30)) of the spring model in Section S9. The displacement δr0 of a Wannier center with respect
to the origin at an AB/BA site thus has the elastic energy

Eel =
1

2
kq=0,+ δr

2
0 = 3k δr2

0 . (S41)

On the other hand, we can estimate the equivalent displacement energy [S54]

E =
1

2

∫
AM

d2r
∑
α

λLu
2
αα +

∑
αβ

2µLu
2
αβ (S42)

associated with the displacement field u of a single layer. Here, uαβ = 1
2 (∂uα∂xβ

+
∂uβ
∂xα

+
∑
γ
∂uγ
∂xα

∂uγ
∂xβ

) is the strain tensor

and λL, µL are the Lamé constants which are linked to the Young’s modulus Y and Poisson ratio ν via

λL =
ν

1− 2ν

1

1 + ν
Y , µL =

1

2(1 + ν)
Y (S43)

with Y ≈ 150 N/m and ν ≈ 0.22 for TMDC homobilayers [S55, S56]. The shear displacement u of the TMDC layers
induces a perpendicular shift δr of the Wannier center with respect to the origin at an AB site as shown Fig. S11(d).
They are linked by

u± =
[
R±θ/2 − 12×2

]
δr ≈

(
0 ± θ2
∓ θ2 0

)
δr , (S44)
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for small twist angles where the upper and lower TMDC layer carry a different sign. For each mode the displacement
field δr(b,c) = δr(r)ex,y can be described by the leading Fourier components

δr(r) =
2δr0

3
√

3

(
sin(GM

1 r) + sin([GM
2 −GM

1 ]r)− sin(GM
2 r)

)
. (S45)

Since the shear modes (and displacement energies) are equivalent, we focus on the mode in Fig. S11(b) in the following.
For this mode, we have the stress tensor components

uxx = 0 ,

uxy = uyx =
1

2

∂uy
∂x

= ±θδr0

12
GM

(
cos(GM

1 r) + cos([GM
2 −GM

1 ]r)
)
,

uyy =
∂uy
∂y

= ±θδr0

6
√

3
GM

(
cos(GM

1 r) + cos([GM
2 −GM

1 ]r)− 2 cos(GM
2 r))

) (S46)

where the higher order terms of the offdiagonal components were neglected for small displacements and GM = |GM
1,2| =

2π/λM. Inserting Eq. (S46) into Eq. (S42) and integrating over the moiré unit cell area, the displacement energy for
one layer yields

E =
1

2

θ2δr2
0

36
(GM)2AM(λL + 3µL) . (S47)

We obtain the force constant by equating the displacement energy for both layers with twice (due to two layers) the
elastic energy in Eq. (S41) and using Eq. (S43) as

k =
2

3δr2
0

Eel =
1

108
(GM)2AM(λL + 3µL)θ2 =

√
3π2

108

3− 4ν

(1− 2ν)(1 + ν)
Y θ2 = k0θ

2 (S48)

with k0 ≈ 5.6 eV/Å2. The deformation potential is as in Eq. (S38) with t⊥ and h being replaced by t and λM/3
(Wannier orbital extent), respectively. The effective potential takes the form

UPeierls
eff ≈

(
βt 3

λM

)2
k0θ2

≈
9β2t2

(
θ
a0

)2

k0θ2
=

9β2

a2
0k0

t2 =
9αβ2

a2
0k0

θ2 · t . (S49)

Since UPeierls
eff /t ∝ t ∝ θ2 with the prefactor 9αβ2

a20k0
≈ 5 – 8, the effective interaction and hence pairing strength is very

small. From our estimation we conclude that superconductivity from moiré Peierls coupling will not be realized in
the real material system.
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Chapter

Absence of room-temperature
superconductivity 5

In theory there is no difference between theory and
practice. In practice there is.

— Benjamin Brewster

Much of the research effort on classifying, understanding, and optimizing supercon-
ductivity is targeted towards the quest of potentially discovering a superconducting
material operable under ambient conditions. Achieving this tantalizing goal could
have an unpredictable transformative impact on our technological society, akin to the
invention of transistors and their enabling of computer technology. The prospects of
an ideal ambient-condition superconductor1 are vast: They include the development
of more efficient power grids and energy storage systems, more powerful and
affordable electromagnets for scientific, medical, and transportation uses, as well as
ultrafast switches for classical computing or novel quantum computing architecture.

Research often focuses on achieving a transition temperature (𝑇c) to be at or above
room temperature. Yet, for practical applications, a generally large critical surface
(cf. Fig. 3.3) with appreciable critical current densities and critical magnetic fields is
paramount. An example of this conflict is given by cuprate HTSCs which exhibit
an enhanced 𝑇c on the order of 100 K. Hence, superconductivity can be sustained
in these materials using liquid nitrogen for cooling. Despite this, the effective
operating temperature for high-field applications is typically between 30 – 50 K for
ReBCO (rare earth barium copper oxide) superconductors or even below 20 K for
Bi2Sr2CaCu2O8+𝛿 (Bi2212) [4, 651]. Consequently, the initial advantage of a 𝑇c high
enough to be cooled by liquid nitrogen becomes impractical, as more expensive
cooling methods, such as liquid hydrogen or cryocoolers, are still necessary.

Nonetheless, the discovery of room-temperature superconductivity would present
a tremendous advancement in physics [652]. Hydride materials present a promising
avenue toward achieving this goal [98, 653], albeit under extremely high pressure
on the order of gigapascals (GPa). The circumstances surrounding the retraction of

1Such an idealized material would not only show excellent electromagnetic properties but should
possess good mechanical properties that allow for flexibility and versatility in applications.
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5 Absence of room-temperature superconductivity

possibly fraudulent publications on hydride materials claiming very high 𝑇c = 15 –
25 ◦C [654, 655] demonstrate the level of scrutiny any potential discovery in this area
will face from the scientific community [433, 656–659]. In the following, we discuss
another purported room-temperature superconductor that has undergone similar
scientific scrutiny.

5.1 Copper-doped lead apatite – Pb10−𝒙Cu𝒙(PO4)6

In the summer of 2023, Lee et al. [660–662] claimed to have found ambient-pressure,
room-temperature superconductivity in modified lead apatite, Pb10−𝑥Cu𝑥(PO4)6O
(0.9 < 𝑥 < 1.1), also known as LK-99. The authors argued for superconductivity
occurring above 100 ◦C, supported by an observed sharp resistivity drop and the
(half-)levitation of an LK-99 sample flake [661, 662]. Additionally, a prior study [660]
reported a peak in the specific heat capacity which was interpreted as a 𝜆-transition
characteristic of superconductors and superfluids [44]. The announcement of the
purported room-temperature superconductor generated significant public interest
and brought the compound Pb10−𝑥Cu𝑥(PO4)6O into the focus of solid-state research.
Subsequent to the claim, replication efforts were promptly initiated by various
research teams [663–670], facilitated by the affordable cost of materials and the
rather simple synthesis procedure [661, 663, 666, 669].

To date, superconductivity in Pb10−𝑥Cu𝑥(PO4)6O has not been replicated in almost
all reported experiments, for example, Refs. [617, 663, 664, 666–668, 670–677].
Although (half-)levitation was indeed observed in some instances [666, 667, 671,
678], the electromagnetic properties varied significantly among samples synthesized
by different research groups [661, 662, 664–667, 670, 671, 675, 677, 678]. One reason
for this variation is that LK-99 is a polycrystalline material of which the precise
composition is difficult to determine. The structural ambiguity allows for the
persistence of disorder effects, the influence of magnetic impurities, and coexistence
of different phases or superstructures [672, 679–684].

In later studies, it was determined that a structural phase transition of contaminat-
ing Cu2S, a byproduct of the synthesis, was responsible for the observed resistivity
drop at the alleged superconducting critical temperature above 100 ◦C [668, 674, 676,
685, 686]. Notably, the sharp reduction in resistivity does not reach zero indicating
that LK-99 has very low conductivity. The synthesis of pure single crystals supported
this finding, determining Pb10−𝑥Cu𝑥(PO4)6O to be a non-magnetic insulator that is
optically transparent [673]. Conversely, the (half-)levitation could be attributed to
ferromagnetism within the composite material [667, 669, 678, 687].

Alongside with experimental reproduction efforts, also theoretical characteriza-
tions were conducted. Electronic structure calculations employing DFT+U [672, 680,
682, 688–692] as well as DFT+DMFT [682, 693–695] identified Pb10−𝑥Cu𝑥(PO4)6O to
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5.1 Copper-doped lead apatite – Pb10−𝑥Cu𝑥(PO4)6

be a Mott or charge transfer insulator for all Cu concentrations 𝑥. The corresponding
gap opening is in agreement with the transparent single crystals [673]. In the
stoichiometric compound Pb9Cu1(PO4)6O, a Pb atom of the lead apatite structure
is replaced by Cu due to which two very flat bands (bandwidth 𝑊 ≈ 140 meV)
crossing the Fermi energy emerge from the Cu-𝑒𝑔 orbitals (see Fig. 1 of publication V).
Below these, slightly more dispersive O bands are located. Estimations and cRPA
calculations for the local Hubbard interaction𝑈 find that𝑈/𝑊 ∼ 𝒪(10) [V, 694, 695],
classifying Pb9Cu1(PO4)6O as a strongly correlated material that turns insulating
from dominating electronic interactions. Upon doping, Weyl points emerge close to
the Fermi surface [696, 697], relevant for topologically protected surface states [698].

Initially, it was unclear whether further doping could also potentially turn
the material superconducting [694]. This idea was inspired by the similarity
to cuprates which belong to the same class of charge transfer insulators with
relevant contributions from Cu and O to the low-energy electronic structure [10,
31, 34]. Based on this premise, we studied the possibility of electronically-induced
superconductivity from exchange of spin and orbital fluctuations upon doping in
publication V. Our analysis based on a minimal two-orbital model of the Cu-𝑒𝑔
orbitals has not shown any evidence of superconductivity down to 20 K. At the
time of preparing the work [V], our results gave an important indication for the
absence of room-temperature superconductivity in Pb10−𝑥Cu𝑥(PO4)6O since the
experimental picture was not as clear as it is nowadays.

Besides observing the lack of superconducting behavior in LK-99, our work yields
two broader insights. Asking for the reasons that prevent superconductivity to
emerge, allows for identifying potential pathways to achieve superconductivity
under different conditions. Pb9Cu1(PO4)6O is a triangular lattice system that can
be compared to other triangular lattice superconductors such as organic salts or
sodium cobaltate (see section 4.1.1). This comparison reveals two major drawbacks
preventing superconductivity. First, the flat bands are too small to host spin
fluctuations with a sufficient energy spread to mediate superconductivity [32, 34].
Second, the system’s three-dimensionality is unfavorable because only a small
fraction of the phase space participates in pairing [339], and the competition between
ferromagnetic and antiferromagnetic fluctuations is enhanced [699].

The second insight addresses the methods for investigating electronic supercon-
ductivity. In our study, we utilized two approaches: unrenormalized RPA and fully
self-consistent FLEX calculations. While we did not find electronic superconductivity
within the FLEX approximation, we could induce a superconducting response in
the RPA treatment by positioning the material close enough to a magnetic instability.
This comparison underscores the importance of caution in applying unrenormalized
weak-coupling approaches.
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No superconductivity in Pb9Cu1(PO4)6O found in
orbital and spin fluctuation exchange calculations

Niklas Witt, Liang Si, Jan M. Tomczak, Karsten Held, Tim O. Wehling

Key points summary

• Timely investigation of possible superconductivity under ambient condi-
tions in copper-doped lead apatite (Pb9Cu1(PO4)6O).

• Absence of spin- and orbital-fluctuation-driven superconducting pairing
at room temperature and lower temperatures down to 20 K, excluding the
possibility of superconductivity in the studied two-band model.

• Discussion of possible reasons for the absence of superconductivity, e.g.,
from comparison to other triangular lattice superconductors .

• Demonstrating importance of self-consistency as the superconducting
instability always present in RPA is removed in self-consistent FLEX.
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Abstract

Finding a material that turns superconducting under ambient conditions has been the
goal of over a century of research, and recently Pb10−x Cux (PO4)6O aka LK-99 has been
put forward as a possible contestant. In this work, we study the possibility of electron-
ically driven superconductivity in LK-99 also allowing for electron or hole doping. We
use an ab initio derived two-band model of the Cu eg orbitals for which we determine
interaction values from the constrained random phase approximation (cRPA). For this
two-band model we perform calculations in the fluctuation exchange (FLEX) approach
to assess the strength of orbital and spin fluctuations. We scan over a broad range of pa-
rameters and enforce no magnetic or orbital symmetry breaking. Even under optimized
conditions for superconductivity, spin and orbital fluctuations turn out to be too weak for
superconductivity anywhere near to room-temperature. We contrast this finding to non-
self-consistent RPA, where it is possible to induce spin singlet d-wave superconductivity
at Tc ≥ 300 K if the system is put close enough to a magnetic instability.
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1 Introduction

The recent papers by Lee et al. [1, 2] reporting that Pb10−xCux(PO4)6O with 0.9 < x < 1.1
(aka LK-99) is a room-temperature superconductor at ambient-pressure have been followed
by extraordinary experimental and theoretical efforts. It even caught the attention of major
news outlets and went viral on social media.

Experimental efforts to reproduce these measurements have led to mixed results. Some
experiments confirm a jump in the conductivity as in the original work [1–3], albeit at a dif-
ferent temperature [4] or at a similar temperature but with an insulating resistivity at lower
temperatures [5]. Also the levitation of Lee, Kim, et al. [2] or their diamagnetic response has
been reproduced by other groups [6–8].

In stark contrast, other experiments find an insulator [4, 9, 10] and a paramagnetic be-
havior [9, 10]. Most experiments show a gray-black color, but a recent one reported trans-
parency [11]. Matters become even more complicated, since –to the best of our knowledge–
hitherto no single phase sample has been synthesized, as evidenced by x-ray diffraction (XRD)
[2, 4, 10] — not to speak of a single crystal. How can one make sense of these seemingly
contradictory results?

Based on the observation that the Coulomb interaction U dominates over the kinetic en-
ergy or bandwidth W , with U/W of O(10), two of us [12] concluded that LK-99 must be a
Mott or charge transfer insulator irrespective of x . This has been confirmed in independent
calculations [13–15] using density functional theory (DFT) in combination with dynamical
mean-field theory (DMFT) [16–19]. Likewise, DFT+U calculations [13, 20–24] show a split-
ting into Hubbard bands. However, here a magnetic symmetry breaking (ordering) and a
crystal structure or distortion that lifts the degeneracy of the two Cu eg orbitals crossing the
Fermi energy is required. All of this confirms: Pure LK-99 is a Mott or charge transfer insulator.
Thus, simultaneous to experimental efforts, theoretical simulations explain the insulating and
paramagnetic behavior.

At the same time, the metallic (and potentially also the superconducting) behavior could
be explained if LK-99 is electron or hole-doped, e.g., Pb10−xCux(P1−ySyO4)6O1+z with y > 0
and z ̸= 0. At least metallic behavior and a gray-black or similar color [2, 4, 10] are then to
be expected. A noteworthy other explanation has been put forward by Zhu et al. [25] and
Jain [26]: the resistivity jump and λ-like feature in the specific heat could be simply caused
by Cu2S which is clearly present as a secondary phase in XRD measurements [2,4,10,25].

The most important question however remains open: Is electron or hole doped LK-99 su-
perconducting? Here, experiment is inconclusive and calculations have so-far been very lim-
ited: Enforcing superconductivity with a Bardeen, Cooper and Schrieffer (BCS) [27] Hamil-
tonian, Tavakol et al. [28] find f -wave pairing. Oh and Zhang [29] obtain a self-consistently
determined s-wave pairing in an effective t − J model at zero temperature.

In this paper, we aim at giving a more definite answer regarding superconductivity. Based
on an ab initio derived two-band model [13],1 which suffices for a Mott insulator, we employ

1A first tight-binding parametrization mimicking the DFT dispersion was derived in Ref. [30] purely from sym-
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Figure 1: Crystal structure and electronic bands of LK-99. (a) DFT-relaxed struc-
ture of Pb9Cu(PO4)6O; (b) View along z-direction for the 2×2×1 supercell of (a);
(c) DFT and Wannier band structures, the inset shows the k-path selected for band
plotting. The DFT and Wannier projection data are adopted from Ref. [13].

the fluctuation exchange (FLEX) [31–33] approach. Our results are very clear: we can exclude
superconductivity — at least superconductivity based on orbital and spin fluctuations in the
two-band model of LK-99.

2 Results

For the structure of LK-99 shown in Fig. 1(a,b), where the Cu atoms form a triangular sublat-
tice, DFT calculations [12,22,34,35] yield the low-energy ab initio band structure shown in Fig.
1(c). The two lowest-energy bands are well captured by the Wannier functions projected onto
the dyz and dxz orbitals in the energy window of [-0.1, 0.1] eV. These bands disperse over a
bandwidth of the order of∼120 meV. External pressure is expected to enlarge the hopping and
bandwidth by reducing the lattice constants and distance between Cu cations. Calculations of
the Coulomb interaction tensor in the constrained random phase approximation (cRPA) yield
local intra-orbital Hubbard repulsion UcRPA = 1.8 eV, an inter-orbital U ′cRPA = 1.14 eV, and a
Hund’s exchange JcRPA = 0.33 eV (c.f. section A.2). These interactions exceed the electronic
bandwidth by far and put LK-99 – with or without pressure – into the regime of strong electron
correlations — in line with recent DMFT [13–15] and DFT+U studies [13,20–24].

Here, our goal is to establish an upper boundary for spin- and orbital-fluctuation-driven
superconductivity (SC) in LK-99. To this end, we resort to a RPA and FLEX analysis. Fig. 2
compares the static momentum (q)-dependent non-interacting susceptibility χ0(q) (left col-
umn) to the spin susceptibility χs(q) as obtained from RPA and FLEX for an interaction with
an U/J ratio as in cRPA. First, we study the system for a scaled-down overall magnitude of
the interaction matrix elements with U = 0.115 eV. This regime is close to the RPA’s magnetic
instability, where we expect the strongest tendencies towards spin-fluctuation-driven super-
conductivity. We consider two different dopings: the nominal filling of n = 3 electrons per
unit cell (upper panel) and hole doping to n= 2.7. At both doping levels, the RPA spin suscep-
tibility exceeds the non-interacting susceptibility by factors of 4 to 20, respectively, signaling
a correspondingly strong Stoner enhancement. Indeed, this strong Stoner enhancement con-
firms that our scaled down interaction (U = 0.115 eV) is close to the RPA Stoner instability
and thus also in the vicinity of the region, where we potentially expect the strongest tendency
for spin- or orbital-fluctuation-driven superconductivity.

Indeed, we find magnetic instabilities over a wide range of fillings 2 < n < 3.3 in RPA
that set in already for interactions of the order of the bandwidth, U ≈ 0.12 eV≪ UcRPA. RPA
therefore puts LK-99 deeply into a magnetically ordered state.

metry considerations.
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Figure 2: Susceptibilities and spin fluctuations. Plots of the static non-interacting
susceptibility χ0 (left column), RPA (middle column) and FLEX spin susceptibility
χs (right column) components as function of momentum q obtained at temperature
T = 300 K for (a) the nominal filling of LK-99 (n = 3) and (b) in a hole-doped case
(n = 2.7). The RPA and FLEX calculations assumed the ratio U/J = 0.183 as in
cRPA, but the interaction magnitude tuned to U = 0.115 eV, which is in RPA near the
magnetic instability and thus in the vicinity of the point of maximal spin fluctuations.
Note the very different scales of the spin susceptibilities in RPA and FLEX.

However, care must be taken since renormalization effects and vertex corrections can de-
cisively impact phase diagrams and could hypothetically suppress magnetic order. The FLEX
method takes into account renormalization effects stemming from the scattering of electrons
with spin, orbital and charge fluctuations in terms of a diagrammatic ladder resummation.
The resultant FLEX spin susceptibilities (Fig. 2 right columns) are indeed much smaller than
their RPA counterparts and show much weaker Stoner enhancement. A further increase of the
Hubbard U leads to a reduced spin susceptibility in FLEX related to a reduction of the electronic
quasiparticle weight.

Scattering of electrons off spin and orbital fluctuations can mediate superconductivity
[36, 37]. Within RPA and FLEX, the resultant pairing interactions in the singlet and triplet
channel, cf. Eq. (A.10), are controlled by the spin and charge susceptibilities and grow as χs,c

increase. A transition into a superconducting state is indicated by the leading eigenvalue, λSC,
of the linearized Eliashberg equation, see Eq. (A.9) below, reaching unity. Fig. 3 shows λSC
as obtained from RPA for different doping levels and ratios J/U2 as a function of interaction
strength U at a temperature of T = 300 K. We see that essentially at any hole-doping level
in the range of 2.1 < n < 3 fine tuning of the interaction seemingly leads to a superconduct-
ing instability even at 300 K. The resultant dominant order parameter in RPA is visualized in
Fig. 3(f). This order parameter is in the spin singlet channel and involves significant inter-
orbital pairing as well as sign changes between different momentum or orbital components.
Electron doping (n= 3.3), on the contrary, is detrimental to the formation of SC pairing even
within RPA.

Analyzing the RPA results more closely, we find that the superconducting tendencies ex-
clusively occur when closely approaching a Stoner instability, where the effective interaction
strength [see Eq. (A.10) below] becomes unphysically large.

Indeed, renormalization effects strongly limit the maximal strength of the effective pairing
interaction: This effect manifests dramatically in the Eliashberg eigenvalues λSC achievable in
FLEX. Scanning a wide range of interaction strengths and dopings, we obtain the temperature

2The ratio J/U = 0.183 stems from our cRPA simulations; the interaction estimate by Si et al. [13] leads to
J/U = 0.22, whereas the cRPA calculations by Yue et al. [15] fall in-between with J/U = 0.207.
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Figure 3: Superconductivity and SC order parameters in RPA and FLEX. Eigen-
values of the leading SC instability in linearized Eliashberg equation as obtained in
(a,b) RPA and (c-e) FLEX for different dopings n. In RPA, λSC is shown as function
of interaction strength U at temperature T = 300 K for different ratios J/U = 0.183
(a) and 0.22 (b). Whenever a generalized Stoner instability is approached the SC
eigenvalue reaches up to order λSC ≈ 1 in RPA seemingly signaling an SC instability
of the system. The associated gap function ∆ is shown in panel (f), where the mo-
mentum dependence of each matrix element ∆lm is shown in the kz = 0 plane (note
that the off-diagonal components ∆01/10 are enlarged by a factor 10). FLEX calcula-
tions kept the ratio J/U = 0.183 fixed, and show λSC as a function of temperature T
for different interaction strengths U = 0.07 eV (c), U = 0.5 eV (d), and U = 1.8 eV
(e). At room temperature we have λSC≪ 10−1 ruling out any SC instabilities at this
temperature.

dependent λSC in FLEX shown in Fig. 3(c-e). Anywhere close to room temperature we have
λSC merely of the order of 10−2, which is far away from any superconducting instability. Even
if we go down in temperature to 20 K, λSC at best reaches values on the order of 10−1. If
Coulomb interaction mediated spin- or orbital-fluctuation-driven superconductivity sets in, it
could only do so at significantly reduced temperatures.

The stark contrast between non-self-consistent RPA, where it is possible to seemingly find
SC states with Tc ≥ 300 K, and FLEX where SC is absent anywhere close to room temperature
shows that the loss of electronic coherence due to scattering between electrons and spin fluc-
tuations, which is missing in RPA, is responsible for the absence of superconductivity in the
two-band model of LK-99.

3 Discussion and conclusion

Our FLEX simulations do not find any superconducting instability in an ab initio derived two-
band description of LK-99 — despite of a large range of dopings and interactions being con-
sidered. How unlikely does this render spin- or orbital-fluctuation-driven superconductivity in
LK-99?

It is clear that also FLEX is an approximate method with shortcomings in the regime of
strong correlations, including the failure to describe Hubbard bands correctly. Importantly,
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however, previous comparisons of FLEX against DMFT-based treatments of strongly correlated
superconductivity for the one-band Hubbard model [33] showed that achievable critical tem-
peratures Tc have the same magnitude in both approaches. Thus, within the two-band model
considered here, room temperature superconductivity appears out of reach.

Still, two loopholes related to the two-band model by itself remain in principle open: First,
the model considered here, assumes a periodic crystal with minimal unit cell comprising one
idealized chemical composition Pb10−xCux(P1−ySyO4)6O1+z with x = 1, y = 0, z = 0 and
optimized O and Cu positions [12]. This implies a triangular lattice of the Cu sites. However,
several structures with different O and Cu positions are very close in energy [12,21] such that
a disordered arrangement as suggested also by the XRD experiments [2,4,10] can be expected.
While we cannot exclude disorder-enhanced superconductivity, it is not clear how a sufficient
stiffness of the SC order parameter and a sufficient pairing strength to boost Tc by more than
an order of magnitude should be achievable here. Further, electron and hole doping of LK-99,
corresponding to y ̸= 0 and/or z ̸= 0, is merely treated by changing the chemical potential in
a rigid band approach.

Second, FLEX does not describe Hubbard bands. For a doped Mott insulator, however, we
have quasiparticle renormalized Cu-d bands crossing the Fermi energy. This situation and po-
tentially arising superconducting instabilities can be described by FLEX. Qualitatively, we are
thus on the safe side, since we committed ourselves to analyzing a broad range of parameters
with largely different quasiparticle renormalizations. Still, a hole-doped charge transfer insu-
lator, where the oxygen p bands cross the Fermi energy and the lower copper d Hubbard band
lies just below, cf. Ref. [13], cannot be described. At least for hole-doped cuprate supercon-
ductors, which are charge transfer insulators, O p and Cu d orbitals form a strongly hybridized
single band — a situation [63,64] which, then again, is in reach of FLEX. For electron doping,
the Pb p orbitals are too high in energy (≥3 eV) [12] for a charge-transfer arrangement with
the upper Hubbard band.

Our results also invite a comparison to other triangular lattice materials where (uncon-
ventional) SC has been observed experimentally, for instance in organic salts [38–41], water
intercalated sodium cobalt oxide (NaxCoO2 · yH2O) [42, 43] or certain 5d transition-metal
compounds [44–47]. In particular, various FLEX studies found superconductivity in single-
and multi-orbital models on a triangular lattice [33,48–54] as well as related honeycomb and
Kagome systems [55–59]. However, some decisive differences to doped lead-apatite exist: A
major distinction is the very small hopping amplitude in the two-band model due to the large
distance between Cu ions. This allows for only a small energy spread of spin fluctuations on
which Tc is considered to depend on [36, 37, 60]. On another note, most of the triangular
lattice superconductors constitute (quasi-)two-dimensional systems which are suggested to be
more favorable than three-dimensional systems such as LK-99 for spin-fluctuation-mediated
superconductivity. This is because a larger fraction of the phase space volume contributes to
pairing via the interaction kernel [56,60–62].

Taken together, our study puts strong constraints on superconductivity in LK-99 and in
particular excludes spin- and orbital-fluctuation-driven room temperature superconductivity
in the two-band model of LK-99.

Note added — When completing this manuscript, a first single crystal of LK-99 has been
synthesized and shows a non-magnetic insulating and transparent behavior [65], consistent
with a Mott or charge transfer insulator [12–15].
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A Methods

A.1 Electronic structure

For a realistic simulation of putative superconducting properties in LK-99, we set up an effective
low-energy theory via a Hamiltonian H=H0+Hint. For the non-interacting part, H0, we use
the ab initio derived two-orbital Wannier model of Si et al. [13]. It is given by

H0 =
∑

i, j

∑

m,n

∑

σ

t im, jnc†
imσc jnσ , (A.1)

where c†
imσ(cimσ) are the creation (annihilation) operators; and i, j indicate unit cells, while

m, n are orbital indices, andσ is the spin index. The full two-orbital hopping parameters t im, jn
yield Fig. 1(c) and a truncated set of these is tabulated in Ref. [13].
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A.2 Constrained random phase approximation

We here compute the interacting part of the Hamiltonian from first principles. Specifically, we
consider

Hint =
1
4

∑

i

∑

α1α2α3α4

Γ 0
α1α4,α3α2

c†
iα1

c†
iα2

ciα3
ciα4

, (A.2)

where i is a lattice site and the indices αm = (σ, m) combine spin and orbital information. The
bare vertex Γ 0 is expressed as

Γ 0
α1α4,α3α2

=−
1
2

U s
m1m4,m3m2

σσ1σ4
·σσ2σ3

+
1
2

Uc
m1m4,m3m2

δσ1σ4
δσ2σ3

, (A.3)

with the interaction matrices

U s
l l ′,nn′ =



















U

U ′

J

J

, Uc
l l ′,nn′ =



















U (l = l ′ = n= n′)

− U ′ + 2J (l = n ̸= n′ = l ′)

2U ′ − J (l = l ′ ̸= n′ = n)

J (l = n′ ̸= n= l ′)

,

in the spin (s) and charge (c) channel. The static matrix elements U , U ′ and J of the screened
Coulomb interaction have then been computed with the constrained random phase approxi-
mation (cRPA) in the maximally localized Wannier basis [66], using 3×3×3 reducible k-points,
and including screening from orbitals up to l = 3 (2) for Pb,Cu (O,P). For the above two-orbital
model, we find an intra-orbital Hubbard repulsion U = 1.8 eV, an inter-orbital U ′ = 1.14 eV and
a Hund’s exchange J = 0.33 eV that are found to verify the symmetry relation U ′ = U−2J . The
reduction from the bare interactions V = 12.7 eV, V ′ = 11.6 eV and J0 = 0.56 eV, respectively,
is larger than in the recent Refs. [11,15], possibly owing to our inclusion of more high-energy
orbitals.

A.3 Fluctuation exchange approach

To study the possibility of electronically-driven superconductivity, we employ the multi-orbital
FLEX approximation [31,32]. FLEX is a conserving approximation that self-consistently incor-
porates spin and charge fluctuations by an infinite resummation of closed bubble and ladder
diagrams. Although FLEX cannot capture strong-coupling physics like the Mott-insulator tran-
sition, it works well in the presence of strong spin fluctuations.

We consider the multi-orbital formulation of FLEX without spin-orbit coupling [33,67,68]
where we consider a local interaction Hamiltonian. In the FLEX approximation, one solves the
Dyson equation

Ĝ(k)−1 = iωn1− (Ĥ0(k)−µ1)− Σ̂(k) , (A.4)

with the dressed Green function G, non-interacting Hamiltonian H0, self-energy Σ, chemical
potential µ and the four-momentum k = (iωn, k) containing crystal momentum k and Mat-
subara frequencies ωn = (2n+ 1)πkBT . The hat denotes a matrix in orbital space, where 1 is
the identity matrix. The interaction V that enters the self-energy Σ via

Σlm(k) =
T
Nk

∑

q,l ′,m′
Vl l ′,mm′(q)Gl ′m′(k− q) , (A.5)

consists of scattering off of spin and charge fluctuations given by

V̂ (q) =
3
2

Û s
�

χ̂s(q)−
1
2
χ̂0(q)
�

Û s +
1
2

Ûc
�

χ̂c(q)−
1
2
χ̂0(q)
�

Ûc , (A.6)
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neglecting the constant Hartree-Fock term. The charge and spin susceptibility entering
Eq. (A.5) are defined by

χ̂s,c(q) = χ̂0(q)
�

1∓ Û s,cχ̂0(q)
�−1

, (A.7)

with the irreducible susceptibility

χ0
l l ′,mm′(q) = −

T
Nk

∑

k

Glm(k+ q)Gm′ l ′(k) . (A.8)

These equations are solved self-consistently with adjusting µ at every iteration to keep the
electron filling fixed. We employ a linear mixing G = κGnew + (1 − κ)Gold with κ = 0.2
and defined self-consistency for a relative difference of 10−4 between the self-energy of two
iteration steps. In all calculations, we used a k-mesh resolution of 30 × 30 × 30. For the
imaginary-time and Matsubara frequency grids we applied the sparse-sampling approach [33,
69, 70] in combination with the intermediate representation (IR) basis [71–73], where we
used an IR parameter of Λ= 104 and a basis cutoff of δIR = 10−15.

To study the superconducting phase transition driven by spin fluctuations, we consider the
linearized gap equation

λSC∆
S
lm(k) =

T
Nk

∑

q,l ′,m′
V S

ll ′,m′m(q)F
S
l ′m′(k− q) , (A.9)

for the gap function ∆ with anomalous Green function F(k) = −G(k)∆(k)GT(−k) in the spin
singlet (S = 0) or spin triplet pairing channel (S = 1) with the respective interactions

V̂ S=0(q) =
3
2

Û sχ̂s(q)Û s −
1
2

Ûcχ̂c(q)Ûc ,

V̂ S=1(q) = −
1
2

Û sχ̂s(q)Û s −
1
2

Ûcχ̂c(q)Ûc .
(A.10)

Constant terms∼ Û s,c were neglected as they did not influence the dominant pairing symmetry.
The gap equation represents an eigenvalue problem for ∆ where the eigenvalue λSC can be
understood as the relative pairing strength of a certain pairing channel. The dominant pairing
symmetry of the gap function has the largest eigenvalue λSC and the transition temperature is
found if λSC reaches unity.
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Chapter

Towards high-performance
superconductivity 6

為せば成る、為さねば成らぬ、何事も。

成らぬは人の為さぬなりけり。1

— 上杉鷹山 (Uesugi Yōzan)

Discovering new and possibly high-temperature superconductors is often a matter
of serendipity, even when actively sought. These circumstances highlight the
inherent difficulty of achieving high-temperature superconductivity and present
a conundrum for both experimental and theoretical research. A major challenge
in achieving robust high-temperature superconductivity lies in balancing the two
intrinsic energy scales of a superconductor: the pairing amplitude (superconducting
gap) and the phase coherence (stiffness), cf. chapter 3. These energies often compete
and thereby limit the accessible critical temperatures [198, 453–455]. Understanding
such constraints on superconductivity is crucial for identifying pathways toward
optimizing superconducting materials [VI, 204].

A pivotal example of the limitations imposed by the trade-off between supercon-
ducting energy scales is observed when tuning the pairing interaction or coupling
strength𝑈 of a single-band superconductor. This process is well described by the
BCS–BEC crossover phenomenology, which we briefly outline here and discuss in
more detail in section 6.1.2 and publication VI. As the pairing interaction increases,
the nature of electron pairs shifts from weakly-bound, overlapping pairs in the
weak-coupling BCS (Bardeen–Cooper–Schrieffer) limit to tightly-bound pairs in the
strong-coupling BEC (Bose–Einstein Condensate) limit (cf. Fig. 1 in publication VI).
In this crossover, the pair binding energy depending on the QP gap Δ is enhanced by
increasing𝑈 . However, the phase stiffness 𝐷s is suppressed in the strong-coupling
limit, where tightly-bound pairs with large effective masses dominate, i.e., kinetic
energy is quenched. Consequently, phase fluctuations can readily compromise
the weak phase coherence, which constrains the achievable critical temperature 𝑇c

despite high pair binding energies at large interactions. The character of the strong
1Nasebanaru, nasaneba naranu, nanigoto mo. Naranu ha hito no nasanunarikeri — You can accomplish

anything by simply doing it. Nothing will get done unless you do it. If something was not accomplished,
that’s because no one did it.
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6 Towards high-performance superconductivity

coupling state crucially depends on the kinetic energy degrees of freedom of the
underyling fermionic model [575, 700], as discussed further below.

In publication VI, we demonstrate how this conventional constraint on critical
temperatures in the strong coupling limit can be overcome by leveraging multi-orbital
physics. Specifically, in a model of alkali-doped fullerides (A3C60), we identify a
strong-coupling superconducting state characterized by localized coherence length
but with robust stiffness, for which 𝑇c is substantially enhanced through increased
pairing interaction. This strengthened superconducting state is sustained by a
persistent mixed-valence metallic phase at higher temperatures, which emerges
from the competition of different local multi-orbital interaction scales. Consequently,
our results are unattainable within the confines of a single-band model, where
a singular local interaction (𝑈 < 0) influences both pairing and phase coherence
(through kinetic energy) in conflicting manners.

In our study, the detailed characterization of the superconducting phase diagram
hinges on quantifying the aforementioned superconducting energy scales. These are
equivalently specified by the intrinsic length scales, the coherence length 𝜉0 and the
London penetration depth 𝜆L, as introduced in chapter 3. While weak-coupling BCS
theory offers straightforward expressions for the length or energy scales (cf. Eqs. (3.14)
and (3.125)), their applicability to strongly correlated superconductors is uncertain.
To address this, we introduce a theoretical framework in publication VI based on
finite-momentum pairing within the Nambu-Gor’kov formalism, which facilitates
the calculation of 𝜉0 and 𝜆L from microscopic models and ab initio approaches,
particularly also in the presence of strong correlations.

To set the stage for the discussion in publication VI, we provide a more detailed
analysis of heuristic and rigorous bounds on 𝑇c arising from competing energy
scales in section 6.1. In particular, we introduce pairing and phase ordering
temperatures [453] and we discuss how several unconventional superconductors are
limited by the phase ordering temperature, as empirically captured in the Uemura
plot classification scheme [197, 701–703] (cf. Figure 6.1). In this context, we briefly
review the BCS–BEC crossover phenomenology and the analogy to magnetism
found in the half-filled Hubbard model. Following this, section 6.2 introduces the
material family of A3C60 and their superconducting phase diagram.

6.1 Constraints on superconductivity
Understanding the physics that dictate critical temperatures is a highly non-trivial
task, making it equally challenging to predict optimal superconducting materials.
To find routes for elevating 𝑇c, it is a valid strategy to first identify and analyze
constraints that limit these temperatures. A common approach involves focusing on
key aspects essential to the formation of the superconducting state and establishing
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6.1 Constraints on superconductivity

heuristic or rigorous bounds on achievable critical temperatures [45, 169, 196–
203, 588]. Although these bounds are commonly respected due to their solid
physical motivation, counter examples can be found – either through clever system
design [204] or unprecedented insights, such as the discovery of high-temperature
superconductivity in cuprates, which ‘violated’ the Cohen–Anderson limit and
challenged Matthias’ rules [28].

Here, we focus on constraints arising from the competition of the energy scales
that determine particle pairing (gap Δ) and condensation through the onset of phase
coherence (stiffness𝐷s). To illustrate this consideration, we follow an argument made
by Emery and Kivelson [453], who formulated it to describe the dome-shaped doping
dependence of the critical temperature in cuprate materials. The argument centers
around the question of when superconducting order breaks down due to thermal
fluctuations. The answer depends strongly on the robustness of phase coherence. We
can quantify this by the phase-ordering temperature 𝑘B𝑇𝜑 ≃ 𝐷s(𝑇 = 0) = ℏ2𝑛s/4𝑚∗

(cf. Eq. (3.44)). In three dimensions, an additional length scale 𝐿 needs to be added,
which in case of layered materials can be taken as the mean spacing between layers,
see the discussion in section 3.1.3. If 𝑇c ≪ 𝑇𝜑, as is the case for large densities 𝑛s,
particle pairing and the onset of macroscopic phase coherence appear at the same
temperature𝑇c ∼ 𝑇P, where𝑇P is the temperature above which pairs break up. In BCS
theory, this is simply 𝑘B𝑇P = Δ0/2 ≈ 𝑘B𝑇c(= Δ0/1.76) with the zero-temperature gap
Δ0. However, in the case of 𝑇c ≈ 𝑇𝜑, phase fluctuations have a significant influence
and 𝑇c is limited by 𝑇𝜑, as superconducting long-range order cannot be sustained
above 𝑇𝜑.

For most conventional metals, 𝑇𝜑 is much larger than 𝑇c and particle pairing
determines the onset of superconductivity. In many unconventional supercon-
ductors, the phase ordering energy scale is the dominant factor. The similarity
in size of 𝑇c and 𝑇𝜑 can be estimated from material parameters of unconventional
superconductors [453, 454]. More importantly, strong empirical evidence for this
relationship is provided by the Uemura relation, shown and discussed in Figure 6.1
below. Before addressing that point, we want to emphasize the importance of
the phase stiffness as a general limiting factor for superconductivity. This applies
in particular to (quasi-)two-dimensional systems, where the influence of phase
fluctuations is more pronounced and the BKT transition needs to be considered. As
discussed in section 3.1.5, the transition temperature 𝑇BKT is constrained by 𝐷s (𝑇BKT)
via the Nelson–Kosterlitz criterion (3.59). Building on this premise, Refs. [198–200]
derived rigorous upper bounds for 𝐷s(0) ≥ 𝐷s(𝑇BKT) based on optical sum rules
and even tighter constraints obtained from a renormalization group analysis of the
stiffness. One important result is the boundary 𝑇BKT ≤ 𝑇F/8 for free fermions with
a parabolic dispersion, where 𝑇F = 𝐸F/𝑘B is the Fermi temperature. Furthermore,
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6 Towards high-performance superconductivity

lower bounds for topologically non-trivial systems can be formulated based on
contributions from the quantum geometric tensor of the Bloch bands [536, 543, 544].

As discussed in Ref. [198], deriving general rigorous bounds for three-dimensional
systems is more challenging. Nonetheless, a scaling law can be established near a
quantum critical point as [198]

𝑇c ∼ [𝐷s(𝑇 = 0)] 𝑧
𝑧+𝑑−2 (6.1)

with dimension 𝑑 and the dynamical critical exponent 𝑧, relating correlation time
𝑡 and correlation length 𝜉 via 𝑡 ∼ 𝜉𝑧 . In two dimensions, we find the expected
linear scaling relationship between 𝑇c and 𝐷s, but for three dimensions, we have
𝑇c ∼ 𝐷s

𝑧/(𝑧+1) close to the quantum critical point. Since 𝑧 > 0, this implies that the
suppression of 𝑇c with respect to the stiffness is weakened due to sublinear scaling.
For example, the case 𝑧 = 1 corresponding to 𝑇c ∼ √

𝐷s fits well to experimental
observations in cuprate superconductors [198].

This strong dependence on dimensionality is intriguing in light of a recent
study by Sobirey et al. [704]. They observed a universal scaling of Δ0/𝐸F with
the dimensionless pair size 𝜉𝑘F, applicable to both two- and three-dimensional
superconductors. The authors concluded that correlation effects are more impor-
tant for the stability of the superconducting state than the dimensionality. This
observation is in qualitative agreement with measurements on monolayer and bulk
forms of Bi2Sr2CaCu2O8+𝛿, which displayed similar superconducting properties
across the structural phases [705]. Furthermore, a recent theoretical study of various
cuprate systems suggests that variations in the Hubbard interaction strength𝑈 are
primarily responsible for the material dependence of critical temperatures [110],
emphasizing the dominant role of electron correlations. It presents an interesting
question for future research to understand how the strong dependence of many
unconventional superconductors on the phase ordering scale 𝑇𝜑 – most pronounced
in (quasi-)two-dimensional systems – aligns with the observed insensitivity to
dimensionality.

6.1.1 Uemura relation
The superconducting stiffness 𝐷s can be directly obtained from measurements of
quantities like the London penetration depth 𝜆L (cf. Eq. (3.44)) or the imaginary part
of the low-frequency optical conductivity [204]. In a series of papers, Uemura and
coworkers used 𝜆L data obtained from µSR relaxation rates to establish an important
classification scheme for superconducting materials [197, 701–703, 706, 707]. While
the original study [701] compared critical temperatures 𝑇c to the stiffness 𝐷s ∝ 𝜆−2

L ,
subsequent works used the connection of penetration depth and stiffness to the
ratio of condensate density 𝑛s and effective mass 𝑚∗ (𝜆−2

L ∝ 𝐷s ∝ 𝑛s/𝑚∗) at low
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Figure 6.1 – Uemura plot. Comparison of critical temperature 𝑇c and Fermi temperature 𝑇F
for various superconductors in a logarithmic plot. The solid line corresponds to 𝑇c = 𝑇F,
the dashed line indicates the critical temperature of a non-interacting BEC in 3D with
𝑇BEC = 𝑇F/4.16 [266], and the dotted line represents the upper limit for the BKT transition
of free electrons in two dimensions with 𝑇c = 𝑇F/8 [198]. The gray shaded area indicates
where most unconventional superconductors are located (here drawn from 𝑇c = 0.04𝑇BEC
to 0.25𝑇BEC). The data points of the semiconducting materials LixZrNCl and LixHfNCl
indicate different doping concentrations 𝑥, and FeSe-e/h denote the estimated 𝑇F of the
small electron and hole Fermi pockets of FeSe, respectively. Data provided by [708] and
additional data taken from Refs. [197, 639].

temperatures 𝑇 → 0 to determine an effective Fermi temperature 𝑇F, representing
the (available kinetic) energy scale of superconducting charge carriers.

The comparison of 𝑇c and 𝑇F (or 𝑛s/𝜆−2
L ) is referred to as “Uemura plot”, which we

show in Figure 6.1 for various different superconducing materials and BECs in Fermi
gases.2 We additionally draw lines indicating the upper bound for paired electrons
with parabolic dispersion in two dimensions, 𝑇c = 𝑇F/8, as well as the condensation

2We stress that the more common representation depending on 𝑇F includes highly processed
experimental data and a series of assumptions to calculate 𝑇F. Typically, the relation of non-
interacting fermions is used, which in (quasi)-two-dimensional materials yields the direct relation
𝐸2D

F = ℏ2𝜋𝑛2D
s /𝑚∗ ∝ 𝜆−2

L . In three dimensions, however, 𝐸3D
F ∝ 𝑛3/2

s /𝑚∗ depends on a different
power of 𝑛s, necessitating the inclusion of an additional quantity to calculate 𝐸F. For instance, the
Sommerfeld constant, Pauli susceptibility, or coherence length have been used to determine data
shown in Figure 6.1 [702, 706, 707].
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6 Towards high-performance superconductivity

temperature 𝑇BEC = 𝑇F/4.6 of a three-dimensional, non-interacting BEC with density
𝑛B = 𝑛s/2 and mass𝑚B = 2𝑚∗, which describes the idealized scenario of all electrons
condensing into a dilute gas of tightly-bound pairs. Within the Uemura classification,
most unconventional superconductors fall into a limited region of 𝑇c/𝑇F ∼ 0.01 – 0.06
and display linear scaling 𝑇c ∝ 𝑇F across material families [197]. This evidences the
previously discussed comparable scales of𝑇c and the phase-ordering temperature, for
which we can roughly associate 𝑇𝜑 ∼ 𝑇F. In contrast, conventional superconductors
described by BCS theory have comparably high 𝑇F and low 𝑇c since only a small
fraction of electrons condenses into pairs. Notably, the variation of 𝑇c with carrier
density is weak for conventional superconductors, rather indicating the dependence
on the pairing energy with 𝑇P ∼ Δ0 ∼ 𝜔D in BCS theory.

From the Uemura plot, 𝑇BEC emerges as an empirical upper bound to 𝑇c. However,
most superconducting materials, including cuprate materials with the highest known
𝑇c at ambient conditions, are not even close to this boundary. Exceptions are twisted
graphene-based systems, monolayer iron-selenide, and doped two-dimensional
semiconductors, which all come close to the simple two-dimensional boundary of
𝑇F/8. We further address these observations in publication VI, for which Figure 6.1
can serve as a graphical reference. For an extended discussion of specific material
families, the relation of the Uemura plot to other experimental observables such as
the Nernst coefficient, and its connection to light-induced superconductivity, we
refer to Ref. [197].

The Uemura plot suggests that the critical temperature of many superconducting
materials appears to depend linearly on a single parameter 𝑇F ∝ 𝑛s. This obser-
vation has encouraged discussions about the potential of a BCS–BEC crossover
description for unconventional superconductivity. Recent experiments on doped
two-dimensional semiconductors have studied the BCS–BEC crossover, demonstrat-
ing how 𝑇F and, consequently, 𝑇c can be tuned across the Uemura plot through
doping. In these studies, 𝑇c approaches the two-dimensional constraint of 𝑇F/8 in the
dilute limit [708]. However, for many superconducting materials, the applicability of
a BCS–BEC crossover description remains uncertain [VI, 700, 709, 710]. Nonetheless,
the BCS–BEC crossover phenomenology offers a qualitative understanding of critical
temperature limitations as discussed in the next section. These constraints explain
the absence of a straight upward trend in the Uemura plot.

6.1.2 The BCS–BEC crossover
In section 3.1, our general symmetry considerations of the superconducting and
superfluid condensate demonstrated that their wave functions are similarly described
by coherent states. While we pointed out in section 3.2.1 that electronic Cooper
pairs are not proper bosons, we also demonstrated that the pairing operators 𝑏 ∼ 𝑐𝑐

[Eq. (3.83)] effectively acquire bosonic properties in the dilute and/or localized
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Figure 6.2 – Phase diagram of the Hubbard model at half-filling for a three-dimensional
cubic lattice. The temperature 𝑇 and interaction 𝑈 phase diagram in units of electronic
hopping 𝑡 is symmetric with respect to the non-interacting fermionic lattice model (𝑈 = 0)
due to particle-hole symmetry. For attractive interactions𝑈 < 0, a second-order transition
between normal fluid (NF) and 𝑠-wave superfluid (SF) phase emerges, which is characterized
by the BCS–BEC crossover with distinct scaling of the transition temperature 𝑇SF in the weak
and strong coupling regimes. While phase coherence is lost above 𝑇SF, incoherent pairing
fluctuations remain up to the pairing temperature 𝑇P, which determines the crossover to the
correlated Fermi liquid (CFL). For repulsive interactions𝑈 > 0, the superconducting phase
is mapped onto an antiferromagnetic (AFM) and Mott-insulating (MI) phase. The Néel
temperature 𝑇N describes the transition to magnetic order. Above 𝑇N, the Mott temperature
𝑇M separates the charge sector transition between paramagnetic (PM) and CFL phases.
Adapted from Ref. [266].

limit. Indeed, the ground state wave functions used in the mean-field descriptions
of the BCS condensate and the BEC can be continuously connected by tuning
the density or interaction strength, as demonstrated in the pioneering works of
Leggett [574], and Nozières and Schmitt-Rink [575]. This connection forms the
basis of the BCS–BEC crossover, allowing for a smooth transition between the BCS
regime of weakly-bound, overlapping pairs in momentum space and BEC regime of
strongly localized, molecule-like pairs in real space, with corresponding changes in
physical quantities such as transition temperatures.

A comprehensive overview on the BCS–BEC crossover is given in publication VI,
which we do not repeat here (see also reviews such as Refs. [266, 700] and further
references in VI). Instead, we aim to build on the previous discussion and illustrate
how the hierarchy between superconducting energy scales, Δ and𝐷s, evolves during
the BCS–BEC crossover. To this end, we consider the specific realization of the
BCS–BEC crossover in the attractive Hubbard model [Eq. (2.14) with𝑈 < 0], which
characterizes the crossover by a change from potential-energy to kinetic-energy-
driven pairing [455, 711, 712]. Figure 6.2 shows the phase diagram for the half-filled
Hubbard model, where the BCS–BEC crossover can be tuned by changing the ratio
|𝑈|/𝑡 for𝑈 < 0. Due to particle-hole symmetry, we can map the superconducting

213



6 Towards high-performance superconductivity

phase of the attractive Hubbard model onto antiferromagnetism in the repulsive
Hubbard model (𝑈 > 0) [711]. This makes the BCS–BEC crossover analogous to the
transition between weak-coupling, itinerant Slater magnetism and strong-coupling,
localized Heisenberg magnetism.

In the BCS limit, 𝑇c increases exponentially with |𝑈| and is governed by the
pairing energy scale 𝑘B𝑇P ∝ |𝑈|.3 The transition to the superconducting state
is primarily stabilized by the gain in potential energy 𝐸pot = −|𝑈|∑𝑖 ⟨𝑛𝑖↑𝑛𝑖↓⟩
determined by the local density of double occupancies [455]. As the interaction
strength increases, the system transitions to the strong-coupling BEC regime, where
pairing becomes driven by kinetic energy rather than potential energy [455, 712].
In this regime, pair mobility (necessary for phase coherence) is reduced because
pair hopping in the lattice requires fermion pairs to break apart and perform virtual
fermionic hopping, cf. Fig. 1b in publication VI. This behavior is captured in an
effective model of hardcore bosons with bosonic hopping 𝑡B = 4𝑡2/|𝑈|.4 As electron
pairs become increasingly localized in the BEC regime, the effective pair mass
is enhanced (𝑚P ∝ 𝑡−1

B ∝ |𝑈|), which impedes pair hopping and reduces phase
coherence (𝐷s ∝ 𝑚−1

P ). Consequently, the transition temperature 𝑘B𝑇c ≃ 𝑡B ∝ 1/|𝑈|
is suppressed in the strong coupling limit and approaches zero for |𝑈| → ∞.

In conclusion, the dominant energy scale that limits 𝑇c switches by increasing
the interaction strength |𝑈|: from the pairing energy Δ ∝ |𝑈| in the BCS regime
to the phase coherence energy 𝐷s ∝ 1/𝑚P ∝ 1/|𝑈| in the BEC limit. As a result,
a characteristic 𝑇c dome emerges with a maximum in the intermediate coupling
regime. From this discussion, we can formulate two approaches to optimize critical
temperatures. One viable option is to tune the system to be at the optimal 𝑇c in the
intermediate regime of the crossover. Another option, in line with our previous
discussion, is to search for possibilities to achieve a sufficiently high stiffness in the
strong coupling regime by evading the suppressing constraints. The high degrees of
freedom in multi-orbital systems provide a good playground for exploring this idea.
For example, one can try to separate the processes of particle pairing and achieving
phase coherence into different electronic bands, where a sufficient hybridization of
the two bands can lead to enhanced superconductivity [454]. On the other hand,
the quantum geometric contributions to the stiffness can be sufficient to facilitate
superconductivity [450–452, 536, 543, 544]. In publication VI, we showcase an
alternative approach where a robust stiffness derives from an interaction-resilient
metallic parent state.

3The attractive Hubbard interaction Hamiltonian is identical to the BCS interaction by restricting
electron scattering to pairs of equal momenta and zero center-of-mass momentum.

4This is derived by integrating out the fermionic degrees of freedom in the strong coupling
regime. It is analogous to the effective antiferromagnetic exchange coupling 𝐽 = −4𝑡2/𝑈 obtained
from mapping the Hubbard model to the Heisenberg or 𝑡-𝐽 model at large repulsive interactions.
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Figure 6.3 – Structure and phase diagram of alkali-doped fullerides. (a) Crystal structure
of fcc A3C60 (A=K, Rb, Cs) drawn using VESTA [714]. (b) Schematic phase diagram of
equilibrium A3C60 as a function of temperature and volume per C60 molecule. It contains
𝑠-wave superconductivity (SC) up to a Mott insulating (MI) phase, which becomes an
antiferromagnetic insulator (AFI) at low temperature. A Jahn-Teller metallic phase emerges
between the SC and MI regions. Phase diagram adapted from Ref. [119].

6.2 Resilient superconductivity from multi-orbital
physics in A3C60

In publication VI, we study the material family of alkali-doped fullerides (A3C60,
A=K, Rb, Cs), which consist of C60 molecules arranged on a fcc or A15 lattice structure
and turn superconducting upon doping with alkali atoms. We here focus on the fcc
structure and summarize the key features of their phase diagram, see Figure 6.3.
General reviews on these materials and details on the superconducting mechanisms
can be found in Refs. [128, 129, 713]; see also references in publication VI.

Alkali-doped fullerides have the highest critical temperatures among organic
superconductors, reaching up to 38 K under pressure. The critical temperature
displays a dome-shaped dependence on the unit cell volume determined by the
size of the alkali atom dopant. The superconducting phase is an isotropic 𝑠-wave,
which emerges in proximity to a Mott-insulating phase. Those superconducting
and insulating states are connected by the Jahn-Teller metallic phase, which is
characterized by the coexistence of localized Jahn-Teller-active electrons and itinerant
electrons. In addition, antiferromagnetism is found at temperatures below 2 K in
the Mott-insulating phase.

A fully ab initio study was able to closely reproduce the phase diagram of
A3C60 [232]. Superconducting pairing in A3C60 is induced by an interplay of strong
electron-phonon coupling and purely electronic correlation effects. The coupling to
Jahn-Teller phonon modes induces an effectively negative Hund’s coupling 𝐽 < 0,
which then facilitates Cooper pairing [128]. Recently, the discovery of light-induced
superconductivity in A3C60 [182–188] shifted these materials back into the focus of
research.
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Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. In-
creasingly strong binding and localization of electrons into these pairs compromises the condensate’s phase
stiffness, thereby limiting critical temperatures – a phenomenon known as the BCS-BEC crossover in lattice
systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped
fullerides (A3C60) that goes beyond the limits of the lattice BCS-BEC crossover. We identify that the interplay
of strong correlations and multiorbital effects results in a localized superconducting state characterized by a
short coherence length but robust stiffness and a domeless rise in critical temperature with increasing pairing
interaction. To derive these insights, we introduce a new theoretical framework allowing us to calculate the
fundamental length scales of superconductors, namely the coherence length (𝜉0) and the London penetration
depth (𝜆L), even in presence of strong electron correlations.

INTRODUCTION

The collective and phase coherent condensation of electrons
into bound Cooper pairs leads to the emergence of supercon-
ductivity. This macroscopic coherence enables dissipationless
charge currents, perfect diamagnetism, fluxoid quantization
and technical applications1,2 ranging from electromagnets in
particle accelerators to quantum computing hardware. Often,
superconducting (SC) functionality is controlled by the critical
surface spanned by critical magnetic fields, currents, and tem-
peratures which a SC condensate can tolerate. Fundamentally,
these are determined by the characteristic length scales of a
superconductor – the London penetration depth, 𝜆L, and the
coherence length, 𝜉0.
𝜆L and 𝜉0 quantify different aspects of the SC condensate:

The penetration depth is the length associated with the mass
term that the vector potential gains through the Anderson-
Higgs mechanism3. In consequence, magnetic fields decay
exponentially over a distance 𝜆L inside a superconductor.
Through this, 𝜆L is connected to the energy cost of order
parameter (OP) phase variations and hence the SC stiffness
𝐷s. The coherence length, on the other hand, is the intrinsic
length scale of OP amplitude variations and is associated with
the amplitude Higgs mode. 𝜉0 sets the scale below which am-
plitude and phase modes significantly couple such that spatial
variations of the OP’s phase reduce its amplitude3,4.

In addition to influencing the macroscopic properties of
superconductors, 𝜆L and 𝜉0 play an important role to under-
stand strongly correlated superconductors, as is epitomized
in the Uemura plot5–8. For instance, the interplay of 𝜆L and
𝜉0 impacts critical temperatures9, it is relevant for the pseu-

∗ niklas.witt@physik.uni-hamburg.de

dogap formation10–13, it influences magneto-thermal transport
properties like the Nernst effect8,14,15, and it might underlie
the light-enhancement of superconductivity15–19. An impor-
tant concept in this context is the BCS-BEC crossover phe-
nomenology20–24. It continuously connects the two limiting
cases of weak-coupling Bardeen-Cooper-Schrieffer (BCS) su-
perconductivity with weakly-bound and largely overlapping
Cooper pairs to tightly-bound molecule-like pairs in the strong-
coupling Bose-Einstein condensate (BEC) as the interaction
strength or the density is varied (Fig. 1).

The BCS-BEC crossover has been studied in ultracold Fermi
gases23, low-density doped semiconductors25, and is under
debate for several unconventional superconductors6,8,24,26–30.
However, quasi-continuous systems, for instance Fermi gases,
and strongly correlated superconducting solids show a cru-
cially different behavior of how their SC properties, most im-
portantly the critical temperature𝑇c, change towards the strong
coupling BEC limit. While 𝑇c converges to a constant temper-
ature 𝑇BEC for Fermi gases in a continuum31 (Fig. 1a), 𝑇c can
become arbitrarily small in strongly correlated lattice systems
due to the quenching of kinetic energy (Fig. 1b). Since the
movement of electron pairs, i.e., bosonic hopping, necessi-
tates intermediate fermionic hopping, it becomes increasingly
unfavorable for strong attractions. Thus, as Cooper pairs be-
come localized on the scale of the lattice constant, the con-
densate’s stiffness and hence 𝑇c are compromised21,24. Fig. 1
contrasts this generic BCS-BEC crossover picture for Fermi
gases and correlated lattice systems in terms of the change of
𝑇c and the pair size 𝜉p as a function of pairing strength. Due
to the decrease of 𝑇c in the BCS and BEC limits, a prominent
dome-shape of 𝑇c can be expected in the crossover region for
solid materials. Because of this, recent experimental efforts
to increase 𝑇c concentrate on stabilizing SC materials in this
region24,25,27,30.

In this work, we demonstrate how multiorbital effects can
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Fig. 1 | BCS-BEC crossover in Fermi gases vs. lattice systems. Evolution of the critical temperature 𝑇c and Cooper pair size 𝜉p in the
BCS-BEC crossover (dark blue line) for (a) Fermi gases and (b) lattice systems. Both cases display a dome-shaped behavior of 𝑇c in the
intermediate crossover regime but behave qualitatively different in the strong coupling BEC phase: 𝑇c remains finite in the Fermi gas (a)31

but approaches zero in the lattice case (b). During the crossover, 𝜉p is reduced to the order of interparticle spacing 𝑟 (a & b) and lattice
constant 𝑎 (b). For the lattice system, we contrast the evolution towards the multiorbital strong coupling phase (light blue line) discussed in
this article. Here, the localization of pairs differently affects the Bosonic hopping 𝑡B, as drawn in the insets on the right. In the lattice BEC
limit, Bosonic hopping relies on a second-order process involving two fermionic hoppings, 𝑡F, and a virtual intermediate state with broken
pairs that is inhibited by the strong attraction 𝑔 < 0. Consequently, this process and also 𝑇c ∝ 𝑡B = 𝑡2F/|𝑔 | are quenched at large |𝑔 |21,24. In the
multiorbital strong coupling case, the local coexistence of paired and unpaired electrons fluctuating between different orbitals enables Bosonic
hopping 𝑡B as a first order process in 𝑡F without any intermediate broken pair states. A second temperature scale 𝑇∗ is drawn in both panels as
its splitting from 𝑇c (corresponding to the opening of a pseudogap) marks the beginning of the crossover regime24.

enhance superconductivity beyond the expectations of the lat-
tice BCS-BEC crossover phenomenology (as contrasted in
Fig. 1b) with a model inspired by alkali-doped fullerides
(A3C60 with A=K, Rb, Cs). The material family of A3C60 hosts
exotic 𝑠-wave superconductivity of critical temperatures up to
𝑇c = 38 K, being the highest temperatures among molecular
superconductors32–35, and they possibly reach photo-induced
SC at even higher temperatures15,17,18,36. In order to theoreti-
cally characterize the SC state, the knowledge of the intrinsic
SC length scales is essential. While BCS theory and Eliash-
berg theory provide a microscopic description of 𝜆L and 𝜉0 for
weakly correlated materials37–39, their validity is unclear for
superconductors with strong electron correlations. To the best
of our knowledge, 𝜉0 is generally not known from theory in
strongly correlated materials. Only approaches to determine
𝜆L exist where an approximate, microscopic assessment of the
SC stiffness from locally exact theories has been established,
albeit neglecting vertex corrections40–45.

For this reason, we introduce a novel theoretical framework
to microscopically access 𝜆L and 𝜉0 from the tolerance of SC
pairing to spatial OP variations. Central to our approach are
calculations in the superconducting state under a constraint of
finite-momentum pairing (FMP). Via Nambu-Gor’kov Green
functions we get direct access to the superconducting OP and
the depairing current 𝑗dp which in turn yield 𝜉0 and 𝜆L. The
FMP constraint is the SC analog to planar spin spirals applied
to magnetic systems46–48. As in magnetism, a generalized
Bloch theorem holds that allows us to consider FMP with-
out supercells; see Supplementary Note 2 for a proof. As a
result, our approach can be easily embedded in microscopic

theories and ab initio approaches to tackle material-realistic
calculations.

In this work, we implement FMP in Dynamical Mean-Field
theory (DMFT)49 to treat strongly correlated superconductiv-
ity. In DMFT, the interacting many-body problem is solved
by self-consistently mapping the lattice model onto a local im-
purity problem. By this, local correlations are treated exactly.
We apply the FMP-constrained DMFT to A3C60 where we find
𝜉0 and 𝜆L in line with experiment for model parameter ranges
derived from ab initio estimates, validating our approach. For
enhanced pairing interaction, we then reveal a multiorbital
strong coupling SC state with minimal 𝜉0 on the order of only
2 – 3 lattice constants, but with robust stiffness 𝐷s and high
𝑇c which increases with the pair interaction strength without a
dome shape. This strong coupling SC state is distinct to the
lattice BCS-BEC crossover phenomenology showing promis-
ing routes to optimize superconductors with higher critical
temperatures. We discuss this possibility in-depth after the
presentation of our results.

The remaining paper is organized as follows: First, we mo-
tivate how the FMP constraint is linked to 𝜆L and 𝜉0 from
phenomenological Ginzburg-Landau theory after which we
summarize the microscopic approach from Green function
methods. Technical details are available in the Supplemen-
tary Information as cross-referenced at relevant points. Sub-
sequently, we discuss our results for the multiorbital model of
A3C60. Readers primarily interested in the analysis of these
results might skip the first part on the physical motivation for
obtaining superconducting length scales from the FMP con-
straint.
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RESULTS

Extracting superconducting length scales from the constraint of
finite-momentum pairing

In most SC materials, Cooper pairs do not carry a finite
center-of-mass momentum q = 0. Yet, in presence of exter-
nal fields, coexisting magnetism, or even spontaneously SC
states with FMP, i.e., q ≠ 0, might arise50–54 as originally
conjectured in Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) the-
ory55–57. Here, we introduce a method to access the char-
acteristic SC length scales 𝜉0 and 𝜆L of strongly correlated
materials through the calculation of FMP states with a man-
ually constrained pair center-of-mass momentum q. For this,
we enforce the OP to be of the FMP form Ψq (r) = |Ψq |e𝑖qr
corresponding to FF-type pairing55, which is to be differenti-
ated from pair density waves with amplitude modulations56–58.
We contrast the OP for zero and finite momentum in real and
momentum space in the top panel of Fig. 2. For FMP, the OP’s
phase is a helix winding around the direction of q, while the
OP for zero momentum pairing is simply a constant.

Before turning to the implementation in microscopic ap-
proaches, we motivate how the FMP constraint relates to 𝜆L
and 𝜉0. The Ginzburg-Landau (GL) framework provides an
intuitive picture to this connection which we summarize here
and discuss in detail in Supplementary Note 1. The GL low-
order expansion of the free energy density 𝑓GL in terms of the
FMP-constrained OP reads

𝑓GL [Ψq] = 𝛼 |Ψq |2 +
𝑏

2
|Ψq |4 +

ℏ2

2𝑚∗ 𝑞
2 |Ψq |2 (1)

with 𝑞 = |q |. 𝛼, 𝑏, and 𝑚∗ are the material and temperature
dependent GL parameters. Here, the temperature-dependent
(GL) correlation length 𝜉 (𝑇) appears as the natural length
scale of the amplitude mode (∝ |𝛼 |) and the kinetic energy
term

𝜉 (𝑇) =

√︄
ℏ2

2𝑚∗ |𝛼 | = 𝜉0

(
1 − 𝑇

𝑇c

)− 1
2

(2)

with its zero-temperature value 𝜉0 being the coherence length4.
The stationary point of Eq. (1) shows that the q-dependent OP
amplitude

��Ψq

�� = |Ψ0 |
√︁

1 − 𝜉2𝑞2 (𝑇-dependence suppressed)
decreases with increasing momentum 𝑞. For large enough 𝑞,
SC order breaks down (i.e., Ψq → 0) as the kinetic energy
from phase modulations becomes comparable to the gain in
energy from pairing. The length scale associated with this
breakdown is 𝜉 (𝑇) and can, therefore, be inferred from the
𝑞-dependent OP suppression. We employ, here, the criterion
𝜉 (𝑇) = 1/(

√
2|Q|) with Q such that |ΨQ (𝑇)/Ψ0 (𝑇) | = 1/

√
2

for fixed 𝑇 (see Supplementary Note 5-A for more informa-
tion).

The finite center-of-mass momentum of the Cooper pairs
entails a charge supercurrent jq ∝ |Ψq |2q, c.f. Eq. (8) in Sup-
plementary Note 1. This current density is a non-monotonous
function of 𝑞 with a maximum called depairing current density
𝑗dp. It provides a theoretical upper bound to critical current

Fig. 2 | Influence of finite-momentum pairing (FMP) constraint
on the superconducting condensate. The top panel insets sketch
the position and momentum space representation of the order param-
eter (OP) Ψq (r) = |Ψq |e𝑖qr in the zero-momentum (left, 𝑞 = 0)
and finite-momentum pairing states (right, 𝑞 > 0). The main panels
show (a) the momentum dependence of the OP modulus and (b) the
supercurrent density 𝑗𝑞 = |jq | as function of Cooper pair momentum
𝑞 = |q | in reciprocal lattice units (r.l.u.). Gray lines indicate the points
of extracting 𝜉 and 𝑗dp (see text). The data shown are results for the
A3C60 model (c.f. Eq. (7)) with lattice constant 𝑎 and interaction
parameters 𝑈/𝑊 = 1.4, 𝐽/𝑊 = −0.04 evaluated at different temper-
atures 𝑇 (color coded; see color bar with white triangular markers).

densities, 𝑗c, measured in experiment. We note that careful
design of SC samples is necessary for 𝑗c reaching 𝑗dp as its
value crucially depends on sample geometry and defect densi-
ties38,59. 𝑗dp is related to the London penetration depth 𝜆L in
GL theory via

𝜆L (𝑇) =
√︄

Φ0

3
√

3𝜋𝜇0𝜉 (𝑇) 𝑗dp (𝑇)
= 𝜆L,0

(
1 −

(
𝑇

𝑇c

)4
)− 1

2

(3)

with the magnetic flux quantum Φ0 = ℎ/2𝑒. The temperature
dependence with the quartic power stated here is empirical37,38

and we find that it describes our calculations better than the
linearized GL expectation as discussed in Supplementary Note
5-B. Note that taking the 𝑞 → 0 limit in our approach is
related to linear-response-based methods to calculate 𝜆L or,
equivalently, the stiffness 𝐷s

45,60.
The GL analysis shows that the OP suppression and super-

current induced by the FMP constraint connect to 𝜉0 and 𝜆L. In
a microscopic description, we acquire the OP and supercurrent
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density from the Nambu-Gor’kov Green function

Gq (𝜏,k) = −⟨𝑇𝜏𝜓k,q (𝜏)𝜓
†
k,q

⟩

=

(
𝐺q (𝜏,k) 𝐹q (𝜏,k)
𝐹∗
q (𝜏,k) �̄�q (𝜏,−k)

)
(4)

where 𝜓
†
k,q

=

(
𝑐
†
k+ q

2 ↑
𝑐−k+ q

2 ↓

)
(orbital indices suppressed)

are Nambu spinors that carry an additional dependence on q
due to the FMP constraint. 𝐺 (𝐹) denotes the normal (anoma-
lous) Green function component for electrons (𝐺) and holes
(�̄�) in imaginary time 𝜏. For 𝑠-wave superconductivity as
in A3C60

61–64, we use the orbital-diagonal, local anomalous
Green function as the OP

|Ψq | ≡ [𝐹 loc
q (𝜏 = 0−)]𝛼𝛼 =

∑︁
k

⟨𝑐𝛼k+ q
2 ↑𝑐𝛼−k+

q
2 ↓⟩ , (5)

which is the same for all orbitals 𝛼. This allows us to work with
a single-component OP. The current density can be calculated
via (c.f. Eq. (26) in the Supplementary Information)

jq =
2𝑒
𝑁k

∑︁
k

Tr𝛼
[
v(k)𝐺q

(
𝜏 = 0− ,k − q

2

)]
(6)

where ℏv = ∇kℎ(k) is the group velocity obtained from the
one-electron Hamiltonian ℎ(k) and the trace runs over the or-
bital indices of v and 𝐺q . Underlined quantities indicate ma-
trices in orbital space, 𝑁k is the number of momentum points
and 𝑒 is the elementary charge. See Methods and Supplemen-
tary Note 4 for details on the DMFT-based implementation
and Supplementary Notes 3 for a derivation and discussion of
Eq. (6).

The bottom panels of Fig. 2 show an example of our DMFT
calculations which illustrates the q-dependence of the OP
amplitude and current density for different temperatures 𝑇 .
Throughout the paper, we choose q parallel to a reciprocal lat-
tice vector q = 𝑞b1. We find a monotonous suppression of the
OP with increasing 𝑞. The supercurrent initially grows linearly
with 𝑞, reaches its maximum 𝑗dp and then collapses upon fur-
ther increase of 𝑞. Thus, both |Ψ𝑞 | and 𝑗𝑞 behave qualitatively
as expected from the GL description. For decreasing tem-
perature, the point where the OP gets significantly suppressed
moves towards larger momenta 𝑞 (smaller length scales 𝜉 (𝑇)),
while 𝑗dp (𝑇) increases. We indicate the points where we ex-
tract 𝜉 (𝑇) and 𝑗dp (𝑇) with gray circles connected by dashed
lines.

Superconducting coherence in alkali-doped fullerides

We apply FMP superconductivity to study a degenerate
three-orbital model 𝐻 = 𝐻kin + 𝐻int, where 𝐻kin is the ki-
netic energy and the electron-electron interaction is described
by a local Kanamori-Hubbard interaction65

𝐻int = (𝑈 − 3𝐽) �̂� (�̂� − 1)
2

− 𝐽

(
2Ŝ2 + 1

2
L̂2 − 5

2
�̂�

)
(7)

with total number �̂� , spin Ŝ, and angular momentum operator
L̂. The independent interactions are the intraorbital Hub-
bard term 𝑈 and Hund exchange 𝐽, as we use the rotational
SU(2)×SO(3) symmetric parametrization. This model is often
discussed in the context of Hund’s metal physics relevant to,
e.g., transition-metal oxides like ruthenates with partially filled
𝑡2𝑔 shells65,66. In the special case of negative exchange energy
𝐽 < 0, it has been introduced to explain superconductivity in
A3C60 materials61–64. In fullerides, exotic 𝑠-wave supercon-
ductivity exists in proximity to a Mott-insulating (MI)33,34,67

and a Jahn-Teller metallic phase34,68–70. The influence of
strong correlation effects and inverted Hund’s coupling were
shown to be essential for the SC pairing61–64,71 utilizing orbital
fluctuations72 in a Suhl-Kondo mechanism68.

The inversion of 𝐽 seems unusual from the standpoint of
atomic physics, where it dictates the filling of atomic shells via
Hund’s rules. In A3C60, a negative 𝐽 is induced by the elec-
tronic system coupling to intramolecular Jahn-Teller phonon
modes64,71,73,74. As a result, Hund’s rules are inverted such
that states which minimize first spin S and then angular mo-
mentum L are energetically most favorable, see the second
term of Eq. (7) for 𝐽 < 0.

We connect the model to A3C60 by using an ab initio derived
model for the kinetic energy75

𝐻kin =
∑︁
𝑖 𝑗

∑︁
𝛼𝛾𝜎

𝑡𝛼𝛾 (R𝑖 𝑗 )𝑐†𝑖𝛼𝜎
𝑐 𝑗𝛾𝜎 (8)

where 𝑡𝛼𝛾 (R𝑖 𝑗 ) is the hopping amplitude between half-filled
𝑡1𝑢 orbitals (𝛼, 𝛾 = 1, 2, 3) of C60 molecules on sites connected
by lattice vector R𝑖 𝑗 . We take the bandwidth 𝑊 as the unit of
energy (𝑊 ≈ 0.3 – 0.5 eV for Cs to K based A3C60)64,75, see
Supplemental Note 4-D for further details. For the interaction,
we take the first principles’ estimates of fixed 𝐽/𝑊 = −0.04
and varying 𝑈/𝑊61–64,69 to emulate unit cell volumes as re-
sulting from the size of different alkali dopants. We solve this
Hamiltonian using DMFT, which explicitly takes into account
superconducting order. Through the momentum dependence
of |Ψq (𝑇) | and jq (𝑇), 𝜉 (𝑇) and 𝜆L (𝑇) can be extracted as
discussed in the previous subsection. We show the derived
temperature dependence of |Ψ𝑞=0 (𝑇) |, 𝜉 (𝑇), and 𝜆L (𝑇) for
different 𝑈/𝑊 in Fig. 3.

Close to the transition point, the OP vanishes and the critical
temperature 𝑇c can be extracted from |Ψ0 (𝑇) |2 ∝ 𝑇 − 𝑇c. We
find that 𝑇c increases with𝑈, contrary to the expectation that a
repulsive interaction should be detrimental to electron pairing.
This behavior is well understood in the picture of strongly
correlated superconductivity. As the correlations quench the
mobility of carriers, the effective pairing interaction ∼ 𝐽/𝑍𝑊
increases due to a reduction of the quasiparticle weight 𝑍61,63.
The trend of increasing 𝑇c is broken by a first-order SC to MI
phase transition for critical 𝑈 ∼ 2𝑊 which is indicated by a
dotted line. Upon approaching the MI phase, the magnitude
of |Ψ0 | behaves in a dome-like shape. The 𝑇c values of 0.8 –
1.4 × 10−2 𝑊 that we obtain from DMFT correspond to 49 –
85 K which is on the order of but quantitatively higher than
the experimentally observed values. The reason for this is
that we approximate the interaction to be instantaneous as well
as that we neglect disorder effects and non-local correlations
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Fig. 3 | Order parameter, correlation length, and penetration
depth in A3C60. The temperature dependence of (a) the zero-
momentum order parameter |Ψ0 |, (b) the correlation length 𝜉, and (c)
the London penetration depth 𝜆L are shown for different ratios 𝑈/𝑊 .
The data were obtained for fixed 𝐽/𝑊 = −0.04 as estimated from ab
initio data. Length scales are given in units of the lattice constant 𝑎.
Fits to extract critical temperatures 𝑇c and zero-temperature values
𝜉0 and 𝜆L,0 are shown by dashed lines. The region of uncertainty to
fit 𝑇c is indicated by shaded regions.

which reduce 𝑇c
63,64. The same effects could mitigate the

dominance of the MI phase which prevents us from observing
the experimental 𝑇c-dome34,64.

Turning to the correlation length, we observe that, away from
𝑇c, 𝜉 (𝑇) is strongly reduced to only a few lattice constants
(𝑎 ∼ 14.2 – 14.5 Å) by increasing 𝑈, i.e., pairing becomes
very localized. At the same time, 𝜆L (𝑇) is enlarged. Hence,
the condensate becomes much softer as there is a reduction
of the SC stiffness 𝐷s ∝ 𝜆−2

L upon increasing 𝑈. Fitting
Eqs. (2) and (3) to our data, we obtain zero-temperature values
of 𝜉0 = 3 – 10 nm and 𝜆L,0 = 80 – 120 nm. Comparing our
results with experimental values of 𝜉0 ∼ 2 – 4.5 nm and 𝜆L ∼
200 – 800 nm6,7,35,76,77, we see an almost quantitative match
for 𝜉0 and a qualitative match for 𝜆L. Both experiment and
theory consistently classify A3C60 as type II superconductors
(𝜆L ≫ 𝜉0)35,77.

We speculate that disorder and spontaneous orbital-
symmetry breaking70 in the vicinity of the Mott state could
lead to a further reduction of 𝜉0 as well as an increase of 𝜆L
beyond what is found here for the pure system. This could
bring our calculations with minimal 𝜉0 = 3 nm closer to the
experimental minimal coherence length of 2 nm revealed by
measurements of large upper critical fields reaching up to a

maximal 𝐻c2 = 90 T in Ref.76 using 𝐻c2 = Φ0/(2𝜋𝜉0) with
the flux quant Φ0.

Circumvention of the lattice BCS-BEC crossover upon boosting
inverted Hund’s coupling

The inverted Hund’s coupling is crucial for superconductiv-
ity in A3C60. This premise motivates us to explore in Fig. 4
the nature of the SC state in the interaction (𝑈, 𝐽) phase space
for 𝐽 < 0 beyond ab initio estimates.

As long as |𝐽 | < 𝑈/2, we find that strengthening the negative
Hund’s coupling enhances the SC critical temperature with an
increase up to 𝑇c ≈ 5 × 10−2 𝑊 , i.e., by a factor of seven com-
pared to the ab initio motivated case of 𝐽/𝑊 = −0.04. There
is, however, a change in the role that 𝑈 plays in the formation
of superconductivity. While 𝑈 was supportive for small mag-
nitudes |𝐽 | ≲ 0.05𝑊 , it increasingly becomes unfavorable for
|𝐽 | > 0.05𝑊 where 𝑇c is reduced with increasing 𝑈. The
effect is largest close to the MI phase where superconductivity
is strongly suppressed. We indicate this proximity region by a
dashed line (c.f. Supplementary Note 5-C).

The impact of 𝑈 on the SC state can be understood from
the 𝑈-dependence of the London penetration depth: 𝜆L grows
monotonously with 𝑈 and reaches its maximum close to the
MI phase. Hence, the condensate is softest in the region where
Mott physics is important and it becomes stiffer at smaller 𝑈.
We find that this fits to the behavior of the effective band-
width 𝑊eff = 𝑍𝑊 ∝ 𝐷s where the quasiparticle weight 𝑍

is suppressed upon approaching the Mott phase. The behav-
ior of 𝑍 shown in Fig. 4a confirms the qualitative connection
𝜆L ∝ 𝐷

−1/2
s ∝ 1/

√
𝑍 for |𝐽 | > 0.05𝑊 . The 𝐽-dependence of

𝜆L is much weaker than the 𝑈-dependence, as can be seen in
Fig. 4a and the corresponding line-cuts in Fig. 5.

𝜉0, in contrast, depends strongly on 𝐽. By just slightly
increasing |𝐽 | above the ab initio estimate of |𝐽 |, the SC state
becomes strongly localized with a short coherence length on
the order of 2 – 3 𝑎. Remarkably, the small value of 𝜉0 is
independent of 𝑈 and thus the proximity to the MI phase.
The localization of the condensate with 𝜉0 on the order of the
lattice constant is reminiscent of a crossover to the BEC-type
SC state. However, the dome-shaped behavior, characteristic
of the lattice BCS-BEC crossover27,29, with decreasing 𝑇c in
the strong coupling limit is notably absent here. Instead, 𝑇c
still grows inside the plateau of minimal 𝜉0 when increasing
the effective pairing strength proportional to |𝐽 | for fixed𝑈/𝑊
(c.f. Fig. 5a). Only by diagonally traversing the (𝑈, 𝐽) phase
space, it is possible to suppress 𝑇c inside the short 𝜉0 plateau
with a dome structure as shown, e.g., in Ref.69.

The reason for this circumvention of the lattice BCS-BEC
phenomenology can be understood from an analysis of the
local density matrix weights 𝜌 |ϕ𝑛 ⟩ , where |ϕ𝑛⟩ refers to the
eigenstates of the local Hamiltonian of our DMFT auxiliary
impurity problem. We show 𝜌 |ϕ𝑛 ⟩ of four different points in
the interaction phase space in Fig. 4b. In the region of short
𝜉0, the local density matrix is dominated by only eight states
(red and blue bars) given by the “inverted Hund’s rule” ground
states |ϕ0⟩ of the charge sectors with 𝑁 = 2, 3, 4 particles that
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Fig. 4 | Superconducting state of the A3C60 model in the (𝑈, 𝐽)-interaction space. (a) Critical temperature 𝑇c, zero temperature penetration
depth 𝜆L,0, inverse square root of quasiparticle weight 𝑍 , coherence length 𝜉0, and the statistical weight 𝜌𝑁|ϕ0 ⟩ of the local lowest energy states
|ϕ0⟩ of the 𝑁 = 2, 3, 4 particle sectors obeying inverted Hund’s rules as a function of 𝑈 and 𝐽. Gray dots show original data points used for
interpolation and the dashed line indicates a region where the proximity to the Mott state leads to a suppression of the superconducting state.
There is no data point at the charge degeneracy line 𝑈 = 2|𝐽 | in the lower left corner as marked by black ‘canceling’ lines. (b) Distribution
of statistical weights 𝜌𝑁|ϕ0 ⟩ at four different interaction values 𝑈 and 𝐽. (See Supplementary Note 7 for a listing of the eigenstates |ϕ0⟩ and
their respective local eigenenergies 𝐸𝑁

𝑛 ). Red (blue) bars denote the density matrix weight of ground states in the 𝑁 = 3 (𝑁 = 2, 4) particle
sector, the sum of which is plotted in the last panel of a. (c) Exemplary depiction of representative lowest inverted Hund’s rule eigenstates. A
delocalized doublon (electron pair) fluctuates between different orbitals due to correlated pair hopping 𝐽.

are sketched in Fig. 4c. This can be seen in the last panel of
Fig. 4a as the total weight of these eight states approaches one
when entering the plateau of short 𝜉0.

By increasing |𝐽 |, the system is driven into a strong cou-
pling phase where local singlets are formed as Cooper pair
precursors73 while electronic hopping is not inhibited. On
the contrary, hopping between the 𝑁 = 2, 3, 4 ground states
is even facilitated via large negative 𝐽. It does so by af-
fecting two different energy scales: Enhancing 𝐽 < 0 reduces
the atomic gapΔat = 𝐸𝑁=4

0 + 𝐸𝑁=2
0 − 2𝐸𝑁=3

0 = 𝑈 − 2|𝐽 |65 rel-
evant to charge excitations and thereby supports hopping. A
higher negative Hund’s exchange simultaneously increases the
energy Δ𝐸 = 2|𝐽 | necessary to break up the orbital singlets
within a fixed charge sector. As a result, unpaired electrons in
the 𝑁 = 3 state become more itinerant while the local Cooper
pair binding strength increases. Since the hopping is not re-
duced, the SC stiffness is not compromised by larger |𝐽 |. This
two-faced role or Janus effect of negative Hund’s exchange,

that localizes Cooper pairs but delocalizes electrons, can be
understood as a competition of a Mott and a charge dispro-
portionated insulator giving way for a mixed-valence metallic
state in between78.

Correspondingly, as the superconducting state at −𝐽/𝑊 >

0.05 relies on direct transitions between the local inverted
Hund’s ground states from filling 𝑁 = 3 to 𝑁 = 2 and 𝑁 = 4,
the local Hubbard repulsion 𝑈 has to fulfill two requirements
for superconductivity with appreciable critical temperatures.
First, significant occupation of the 𝑁 = 2 and 4 states at
half-filling requires that 𝑈 is not too large. Otherwise, the
system turns Mott insulating (around𝑈/𝑊 ≳ 1.6 for enhanced
|𝐽 |) and the SC phase stiffness is reduced upon increasing 𝑈

towards the Mott limit. At the same time, a significant amount
of statistical weight of the 𝑁 = 3 states demands that 𝑈 must
not be too small either. We find that Δat > 0 and thus𝑈 > 2|𝐽 |
is necessary for robust SC pairing. At Δat < 0 there is a
predominance of 𝑁 = 2 and 4 states, which couple kinetically
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Fig. 5 | Crossover of superconducting properties between different
interaction regimes in the A3C60 model. Critical temperature 𝑇c,
coherence length 𝜉0, and stiffness 𝐷s ∝ 𝜆−2

L,0 when approaching
the multiorbital strong coupling state as function of |𝐽 |/𝑊 at fixed
𝑈/𝑊 = 0.8 (a) and when approaching the Mott insulating state as
function of 𝑈/𝑊 at fixed 𝐽/𝑊 = −0.04 (b). To indicate a general
trend, each quantity is normalized to its maximal value within the line
cut. The phenomenology of the SC regimes resembles the BCS to
lattice BEC crossover in the latter case (b), which is distinct from the
multiorbital strong coupling case (a) (c.f. summary listed in Table 1).
Note that the 𝑇c at 𝑈/𝑊 = 2 in (b) corresponds to the transition
from a Mott insulating state instead of a metallic phase, as visually
differentiated by a dashed connecting line.

only in second-order processes and which are susceptible to
charge disproportionation78. Our analysis shows that a sweet
spot for a robust SC state with high phase stiffness and large
𝑇c exists for |𝐽 | approaching 𝑈/2.

DISCUSSION

We summarize the overall change from a weak-coupling
BCS state to the multiorbital strong coupling SC state charac-
terized by 𝑇c, 𝜉0 and 𝐷s ∝ 𝜆−2

L upon enhancing |𝐽 | in Fig. 5a
and contrast it with the lattice BCS-BEC phenomenology in
Table 1. Behavior as in the lattice BCS-BEC crossover can be
found upon approaching the MI state (Fig. 5b), where strong
local repulsion 𝑈 decreases 𝜉0 and superconductivity com-
promises stiffness. As discussed above, we cannot observe a
proper 𝑇c dome that is seen in the experimental phase diagram
due to the MI state dominating over the SC state in our calcu-
lations for fixed 𝐽/𝑊 = −0.0434,63,64. However, an additional
analysis of the SC gap Δ and coupling strength in Supple-

mentary Note 6 indicates that our calculations are indeed in
the vicinity of the crossover region. Diagonally traversing the
(𝑈,𝐽) interaction plane by increasing𝑈 for 𝐽 = −𝛾𝑈 (𝛾 ≤ 0.5)
leads to a similar conclusion, although a 𝑇c dome can emerge
more easily69 as charge excitations controlled by Δat are sup-
pressed at a slower pace.

Thus, two distinct localized SC states exist in the multior-
bital model A3C60 – one facilitated by local Hubbard repul-
sion 𝑈 and the other by enhanced inverted Hund’s coupling
|𝐽 |. One might speculate under which conditions THz driving
or more generally photoexcitation15,17,18,36 could enhance |𝐽 |
and steer A3C60 into this high-𝑇c and short-𝜉0 strong coupling
region, e.g., via quasiparticle trapping or displacesive meta-
stability79. Further experimental characterization via observ-
ables susceptible to changes in 𝜉0 and 𝜆L, like critical fields,
currents (see Supplementary Note 1-B) or thermoelectric and
thermal transport coefficients8,14, can lash down the possibility
of this scenario. Twisted bilayer graphene might be another
platform to host the mechanism proposed in this work as an
inverted Hund’s pairing similar to that in A3C60 is currently
under discussion80–82.

On general grounds, the bypassing of the usual lattice
BCS-BEC scenario via multiorbital physics is promising for
optimization of superconducting materials to achieve higher
critical currents or temperatures. Generally, limits of ac-
cessible 𝑇c are unknown with so far only a rigorous bound-
ary existing for two-dimensional (2D) systems83,84. An em-
pirical upper bound to 𝑇c emerges from the Uemura clas-
sification5–8 which compares 𝑇c to the Fermi temperature
𝑇F = 𝐸F/𝑘B ∝ 𝐷s: the temperature 𝑇3D

BEC = 𝑇F/4.6 of a
three-dimensional (3D) non-interacting BEC. Most supercon-
ducting materials, including cuprate materials with the high-
est known 𝑇c at ambient conditions, however, are not even
close to this boundary; typically, 𝑇c/𝑇BEC = 0.1 – 0.2 for un-
conventional superconductors. Notable exceptions are mono-
layer FeSe85 (𝑇c/𝑇BEC = 0.43), twisted graphitic systems26,80

(𝑇c/𝑇BEC ∼ 0.37 – 0.57), and 2D semiconductors at low car-
rier densities25 (𝑇c/𝑇BEC ∼ 0.36 – 0.56) which all reach close
to the 2D boundary 𝑇2D

c,lim/𝑇
3D
BEC ≈ 0.57583. Only ultracold

Fermi gases can be tuned very close to the optimal 𝑇BEC
23,24.

The empirical limitations of 𝑇c in most unconventional su-
perconductors with rather high densities make sense from the
standpoint and constraints of the lattice BCS-BEC crossover.
In this picture, high densities seem favorable for reaching high
𝑇c as electrons can reach high intrinsic energy scales. Yet, lat-
tice effects and their negative impact on the kinetic energy of
superconducting carriers become also more pronounced, pre-
venting 𝑇c to reach 𝑇BEC. Possible routes to evade these con-
straints include quantum geometric and hybridization related
band structure effects86–94 as well as the multiorbital Hund’s
interaction effects triggering substantial localized stiffness un-
covered here.

We emphasize that the framework to calculate the coherence
length 𝜉0 and the London penetration depth 𝜆L introduced in
this work can be implemented in any Green function or den-
sity functional based approach to superconductivity without
significant increase of the numerical complexity. Thus, our
work opens the gate for “in silico” superconducting materi-
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Table 1 | Characteristics of the BCS, crossover to lattice BEC, and multiorbital strong coupling limits. Behavior of the critical temperature
𝑇c, coherence length 𝜉0, superconducting stiffness 𝐷s, and the ratio of superconducting gap Δ to the Fermi energy 𝐸F (coupling strength) in
the BCS, crossover to lattice BEC24 and “multiorbital strong coupling” limit. We indicate in the last row where we can find the respective
behavior in the interaction plane of the A3C60 model. We do not observe the deep BEC limit for large 𝑈/𝑊 and small 𝐽/𝑊 , but signatures
indicating the onset of the BCS-BEC crossover (c.f. Figs. 4a and 5 as well as Supplementary Note 6).

BCS limit Crossover to lattice BEC limit Multiorbital strong coupling

Tc
Increase with pairing interaction,

𝑇c ∝ Δ(𝑇 = 0)
Decrease with pairing interaction,

𝑇c ∝ 𝐷s

Increase with pairing interaction,
𝑇c ∝ Δ, 𝐷s

ξ0 Long (𝜉0 ≫ 𝑎) Short (𝜉0 ≳ 𝑎)
increasing in (deep) BEC limit

Short (𝜉0 ∼ 𝑎)
constant with pairing interaction

Ds ∝ λ−2
L Constant with pairing interaction Decreasing with pairing interaction

Increasing/constant with
pairing interaction

𝚫/EF Small value (Δ/𝐸F ≪ 1) Large value (Δ/𝐸F ≳ 1) Intermediate value (Δ/𝐸F ∼ O(0.1))

Corresponding
(U , J ) region

∼ small 𝑈/𝑊
∼ small |𝐽 |/𝑊 Onset at ∼ large 𝑈/𝑊 ∼ small to intermediate 𝑈/𝑊

∼ large |𝐽 |/𝑊 , |𝐽 |/𝑈 < 1/2

als’ optimization targeting not only 𝑇c but also 𝜉0 and 𝜆L.
On a more fundamental level, availability of 𝜉0 and 𝜆L rather
than 𝑇c alone can provide more constraints on possible pairing
mechanisms through more rigorous theory-experiment com-
parisons, particularly in the domain of superconductors with
strong electronic correlations.

METHODS

Dynamical mean-field theory under the constraint of
finite-momentum pairing

We study the multiorbital interacting model 𝐻kin + 𝐻int of
A3C60 using Dynamical Mean-Field theory (DMFT) in Nambu
space under the constraint of finite-momentum pairing (FMP).
In DMFT, the lattice model is mapped onto a single Anderson
impurity problem with a self-consistent electronic bath that can
be solved numerically exactly. The self-energy becomes purely
local Σ𝑖 𝑗 (𝑖𝜔𝑛) = 𝛿𝑖 𝑗Σ(𝑖𝜔𝑛) capturing all local correlation
effects. To this end, we have to solve the following set of
self-consistent equations

𝐺 loc (𝑖𝜔𝑛) =
1
𝑁k

∑︁
k

𝐺k (𝑖𝜔𝑛)

=
1
𝑁k

∑︁
k

[
(𝑖𝜔𝑛 + 𝜇)1 − ℎ(k) − Σ(𝑖𝜔𝑛)

]−1

𝐺−1
W (𝑖𝜔𝑛) = 𝐺−1

loc (𝑖𝜔𝑛) + Σ(𝑖𝜔𝑛)
Σ(𝑖𝜔𝑛) = 𝐺−1

W (𝑖𝜔𝑛) − 𝐺−1
imp (𝜔𝑛)

(9)

in DMFT49. Here, the local Green function 𝐺 loc is obtained
from the lattice Green function 𝐺k (first line) in order to con-
struct the impurity problem by calculating the Weiss field 𝐺W
(second line). Solving the impurity problem yields the im-
purity Green function 𝐺 imp from which the self-energy Σ is
derived (third line). Underlined quantities denote matrices
with respect to orbital indices (𝛼), 1 is the unit matrix in or-
bital space, 𝜔𝑛 = (2𝑛 + 1)𝜋𝑇 denote Matsubara frequencies,
ℎ𝛼𝛾 (k) =

∑
𝑗 𝑡𝛼𝛾 (R 𝑗 )e𝑖kR 𝑗 is the Fourier transform of the

hopping matrix in Eq. (8), 𝜇 indicates the chemical potential,
and 𝑁k is the number of k-points in the momentum mesh.
Convergence of the self-consistency problem is reached when
the equality 𝐺 loc (𝑖𝜔𝑛) = 𝐺 imp (𝑖𝜔𝑛) holds.

We can study superconductivity directly in the symmetry-
broken phase by extending the formalism to Nambu-Gor’kov
space. The Nambu-Gor’kov function under the constraint of
FMP (c.f. Eq. (4)) on Matsubara frequencies

[G
q
(𝑖𝜔𝑛,k)]−1 =

(
(𝑖𝜔𝑛 + 𝜇)1 − ℎ(k + q

2 ) − ΣN (𝑖𝜔𝑛) −ΣAN (𝑖𝜔𝑛)
−ΣAN (𝑖𝜔𝑛) (𝑖𝜔𝑛 − 𝜇)1 + ℎ(−k + q

2 ) + [ΣN]∗ (𝑖𝜔𝑛)

)
(10)
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then takes the place of the lattice Green function 𝐺k (𝑖𝜔𝑛) ↦→
G

q
(𝑖𝜔𝑛,k) in the self-consistency cycle in Eq. (9). In addition

to the normal component ΣN ≡ Σ, the self-energy gains an
anomalous matrix element ΣAN for which the gauge is chosen
such that it is real-valued.

We use a 35 × 35 × 35 k-mesh and 43200 Matsubara fre-
quencies to set up the lattice Green function in the DMFT
loop. In order to solve the local impurity problem, we use
a continuous-time quantum Monte Carlo (CT-QMC) solver95

based on the strong coupling expansion in the hybridization
function (CT-HYB)96. Details on the implementation can
be found in Refs.63,64. Depending on calculation parameters
(𝑇 ,𝑈, 𝐽) and proximity to the superconducting transition, we
perform between 2.4 × 106 up to 19.2 × 106 Monte Carlo
sweeps and use a Legendre expansion with 50 up to 80 basis
functions. Some calculations very close to the onset of the su-
perconducting phase transition (depending on 𝑇 or q) needed
more than 200 DMFT iterations until convergence. We aver-
age 10 or more converged DMFT iterations and calculate the
mean value and standard deviation in order to estimate the un-
certainty of the order parameter originating from the statistical
noise of the QMC simulation.

Further details on code implementation are given in Supple-
mentary Note 4. It entails a comparison of finite-momentum
pairing to the zero-momentum case49 in the Nambu-Gor’kov
formalism, an explanation on the readjustment of the chemical
potential 𝜇 to fix the electron filling, and a simplification of
the Matsubara sum for calculating jq in Eq. (6).
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Supplementary Note 1: Phenomenological Ginzburg-Landau
theory with finite-momentum pairing
The Ginzburg-Landau (GL) framework is a phenomenological (macroscopic) approach to the
superconducting phase transition. Here, we illustrate with GL theory how introducing a FMP
constraint gives access to the London penetration depth 𝜆L, coherence length 𝜉0, and also the
depairing current 𝑗dp. The GL description with FMP has been discussed in other contexts
like the superconducting diode effect [53] and Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) theory
[57]. Note that, as mentioned in the main text, we use the term ‘FMP’ to refer exclusively to the
order parameter with a helical phase variation and constant amplitude, whereas it is sometimes
also used in the context of pair density waves [56, 58] which imprint an amplitude modulation
on the superconducting gap.

1-A Order parameter and supercurrent density

We start from the GL expansion of the free energy of the symmetry-broken state in terms of the
complex superconducting order parameter (OP) Ψ(𝒓) = |Ψ(𝒓) |e𝑖𝜑(𝒓) close to the phase transition
point 𝑇c which reads

F [Ψ] = FN +
∫

d3𝑟

[
𝛼(𝑇) |Ψ(𝒓) |2 + 𝑏

2
|Ψ(𝒓) |4 + ℏ2

2𝑚∗ |∇Ψ(𝒓) |2
]

(1)

where FN is the free energy of the normal state and 𝛼(𝑇) = 𝛼0(𝑇 − 𝑇c) (𝛼0 > 0), 𝑏 > 0, and
𝑚∗ are the material dependent GL parameters. The GL functional encodes the two types of
collective modes that emerge in the symmetry-broken state: fluctuations of the amplitude (Higgs
mode) and the phase (Nambu-Goldstone mode) of the OP. The constraint of FMP means that we
require the Cooper pairs to carry a finite fixed momentum 𝒒, which translates to the requirement
for the OP to be of the form Ψ𝒒 (𝒓) = |Ψ𝒒 |e𝑖𝒒𝒓 . Then, the GL free energy density becomes

𝑓GL [Ψ𝒒] = (F [Ψ𝒒] − FN)/𝑉 = 𝛼 |Ψ𝒒 |2 + 𝑏

2
|Ψ𝒒 |4 + ℏ2𝑞2

2𝑚∗ |Ψ𝒒 |2 (2)

The gradient term in this expression has an associated length scale which is the temperature-
dependent correlation length 𝜉 (𝑇) given by

𝜉 (𝑇) =
√︄

ℏ2

2𝑚∗ |𝛼 | = 𝜉0

(
1 − 𝑇

𝑇c

)− 1
2

(3)

with the coherence length 𝜉0 = ℏ/√𝛼0𝑚∗𝑇c at 𝑇 = 0 [4]. The system’s stationary point is
calculated from

𝛿 𝑓GL
𝛿Ψ∗

𝒒
= 2Ψ𝒒

[
𝛼(1 − 𝜉2𝑞2) + 𝑏 |Ψ𝒒 |2

] !
= 0 (4)
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Supplementary Figure 1 | Ginzburg-Landau solution for finite-momentum pairing.
Ginzburg-Landau expectation of the momentum (𝑞)-dependent (a) order parameter modulus
|Ψ𝑞 | and (b) the concomitant supercurrent density 𝑗𝑞 of a system under the constraint of finite-
momentum pairing superconductivity in units of the correlation length 𝜉. We marked the
characteristic length scale on which the order parameter is reduced and the point of the depair-
ing current density 𝑗dp.

which results in the 𝒒-dependence of the OP given by

|Ψ𝒒 (𝑇) |2 = |Ψ0(𝑇) |2(1 − 𝜉 (𝑇)2𝑞2) (5)

with the homogeneous OP |Ψ0(𝑇) |2 = −𝛼(𝑇)/𝑏 ∝ 𝑇 − 𝑇c. We plot this relation in Fig. 1a. It
shows that the OP amplitude is reduced compared to the zero-momentum pairing case for any
finite 𝑞 = |𝒒 | > 0. This suppression is induced by the nonlinear coupling of the Higgs mode to
the phase mode [3]. For some critical momentum value 𝑞c, superconducting order breaks down
completely (Ψ𝑞c = 0) because the kinetic energy from phase modulations exceeds the gain in
energy from pairing. In GL theory, this value is given exactly by 𝑞c = 𝜉 (𝑇)−1 (c.f. Eq. (5)). The
temperature dependence of the OP and extracted 𝜉 (𝑇) gives access to the coherence length 𝜉0

via Eq. (3) (c.f. Note 5-A).
The 𝒒-dependence of the OP also connects to 𝑗dp. To see this, we derive the current density

in the superconducting state. For this purpose, we (briefly) introduce a vector potential 𝑨 via
minimal coupling to the free energy [4, 53]

𝑓GL [Ψ𝒒] = 𝛼 |Ψ𝒒 |2 + 𝑏

2
|Ψ𝒒 |4 + 1

2𝑚∗ | (𝑖ℏ∇ + 𝑒∗𝑨)Ψ𝒒 (𝒓) |2

= 𝛼 |Ψ𝒒 |2 + 𝑏

2
|Ψ𝒒 |4 + 1

2𝑚∗ | (ℏ2𝑞2 − 4ℏ𝑒𝒒 · 𝑨 + 4𝑒2𝐴2) |Ψ𝒒 |2
(6)

where we choose the Coulomb-gauge ∇ · 𝑨 = 0 and use 𝑒∗ = 2𝑒. We can explicitly set 𝑒∗ and,
in this regard, treat the charge differently to the mass 𝑚∗ because 𝑒∗ and (𝑒∗)2 couple the same
way to the OP, i.e., the charge of the Cooper pair is not renormalized. We obtain the steady-state
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current density from the first derivative with respect to the vector potential

𝒋 = −𝛿 𝑓GL
𝛿𝑨

����
𝑨=0

=
2ℏ𝑒
𝑚∗ |Ψ𝒒 |2

(
𝒒 − 2𝜋

Φ0
𝑨

)����
𝑨=0

=
2ℏ𝑒
𝑚∗ |Ψ𝒒 |2𝒒 (7)

with the magnetic flux quantum Φ0 = ℎ/(2𝑒) = 𝜋ℏ/𝑒. By inserting the OP from Eq. (5), we
obtain a 𝒒-dependent expression for the current density (𝑇-dependence suppressed)

𝒋𝒒 =
2ℏ𝑒
𝑚∗ |Ψ0 |2(1 − 𝜉2𝑞2)𝑞 �̂� (8)

that directly shows how the Cooper pairs carry the supercurrent with their finite center-of-mass
momentum along the direction �̂� = 𝒒/𝑞. The current density, 𝑗𝑞 = | 𝒋𝑞 |, is a non-monotonous
function of 𝑞 that exhibits a maximum called depairing current, 𝑗dp (c.f. Fig. 1b). 𝑗dp can be
explicitly calculated from 𝜕 𝑗𝑞/𝜕𝑞 = 0 which yields 𝑞max = 1/(√3𝜉) and

𝑗dp ≡ 𝑗𝑞max =
4

3
√

3
ℏ𝑒 |Ψ0 |2
𝑚∗𝜉

(9)

Since the supercurrent 𝒋 is directly related to the vector potential 𝑨, it is possible to derive the
London equation within GL theory. We obtain the second London equation by taking the curl
of Eq. (7) with 𝒒 = 0 such that

1
𝜇0𝜆

2
L
𝑩 = −∇ × 𝒋 =

4𝜋ℏ𝑒 |Ψ0 |2
𝑚∗Φ0

∇ × 𝑨 =
4𝑒2 |Ψ0 |2

𝑚∗ 𝑩 (10)

Here, the London penetration depth 𝜆L is introduced which, in turn, can be reformulated to
depend on the correlation length and depairing current:

𝜆L(𝑇) =
√︄

𝑚∗

4𝜇0𝑒2 |Ψ0(𝑇) |2
Eq. (9)
=

√︄
Φ0

3
√

3𝜋𝜇0𝜉 (𝑇) 𝑗dp(𝑇)
= 𝜆L,0

(
1 −

(
𝑇

𝑇c

)4
)− 1

2

(11)

The temperature dependence with the quartic power stated here is empirical (derived from the
Gorter-Casimir model) and often used to fit experimental data [37, 38]. In Note 5-B, we show
that this temperature dependence models our DMFT data better than a linear power law as
assumed in GL theory.

To summarize, we obtain the correlation length 𝜉 (𝑇) and depairing current 𝑗dp(𝑇) from
analyzing the OP Ψ𝒒 (𝒓) = |Ψ𝒒 |e𝑖𝒒𝒓 subject to the FMP constraint. In a second step, we can
derive the London penetration depth 𝜆L(𝑇) from these two quantities. This connection also
holds in microscopic theories, where we calculate the OP and current density from the Nambu-
Gor’kov Green function (see main text and Note 5). Lastly, we want to note that the analysis of
length scales 𝜉 (𝑇) and 𝜆L(𝑇) as done in this work is equivalent to discussing energy scales of
Higgs and Nambu-Goldstone modes [.
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1-B Relation to experimental observables

𝜉, 𝜆L, and 𝑗dp link to several experimental observables [38] where we suppress the𝑇-dependence
for brevity. 𝑗dp constitutes an upper theoretical bound to the critical current density, 𝑗c, that
limits the maximal current which the superconducting state of a material can endure and which is
the observable measured in experiment. The value of 𝑗c crucially depends on sample geometry
and defect densities as a current only flows near the surface shell of thickness ∼ 𝜆L.

𝜉 and 𝜆L are used to distinguish type I (𝜉/𝜆L >
√

2) and type II (𝜉/𝜆L <
√

2) superconductors
and they relate to the critical magnetic fields: The first critical magnetic field

𝐻c1 =
Φ0

4𝜋𝜇0𝜆
2
L

ln
𝜆L
𝜉

(12)

that separates the Meissner and Abrikosov vortex lattice phases, the second critical magnetic
field

𝐻c2 =
Φ0

2𝜋𝜇0𝜉2 (13)

that determines the magnetic field strength boundary at which the superconductor becomes a
normal metal, and the thermodynamic critical field

𝐻c,th =
Φ0

2
√

2𝜋𝜇0𝜉𝜆
=

√︄
𝛼2

𝑏𝜇0
=

√︄
2
𝜇0

( 𝑓N − 𝑓SC) |min,𝑞=0 (14)

Supplementary Note 2: Generalized Bloch theorem in Nambu
space
Crystal momentum 𝒌 is in general not a good quantum number for systems with spatial inho-
mogeneity. This applies to the situation of an arbitrary spatially varying superconducting gap
Δ(𝒓) = |Δ(𝒓) |e𝑖𝜑(𝒓) . In the special case of FMP with an OP of Fulde-Ferrel-type [55], i.e.,
with helical phase 𝜑(𝒓) = 𝒒 · 𝒓 and constant amplitude |Δ(𝒓) | = |Δ|, however, a generalized
lattice translation symmetry exists in Nambu space that implies a generalized Bloch theorem:
We define a generalized translation operator T𝑛 that acts on the Nambu spinor 𝜓† =

(
𝜓†
↑ , 𝜓↓

)
of field operators 𝜓 (†) (𝒓):

T𝑛𝜓(𝒓) = T𝑛
(
𝜓↑(𝒓)
𝜓†
↓ (𝒓)

)
=

(
e𝑖𝜙𝑛/2 𝜓↑(𝒓 + 𝑹𝑛)

e−𝑖𝜙𝑛/2 𝜓†
↓ (𝒓 + 𝑹𝑛)

)
= e𝑖𝜙𝑛𝜎𝑧/2 𝜓(𝒓 + 𝑹𝑛) (15)

Here, the spinor is not only shifted by a Bravais lattice vector 𝑹𝑛 but it is also rotated by the
angle 𝜙𝑛 = 𝒒 · 𝑹𝑛 about the 𝑧-axis on the Bloch sphere with 𝜎𝑧 being a Pauli matrix.
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In the following, we show that the translation defined by Eq. (15) leaves the Hamiltonian
𝐻 = 𝐻0 + 𝐻SC of a superconducting system consisting of lattice (𝐻0) and pairing (𝐻SC) term
invariant, i.e., that it obeys a generalized Bloch theorem. In Nambu space, the Hamiltonian takes
in 𝑑 dimensions the form

𝐻0 + 𝐻SC =

∫
d𝑑𝑟

[∑︁
𝜎

{
ℎ(𝒓)𝜓†

𝜎 (𝒓)𝜓𝜎 (𝒓)
} + Δ∗

𝒒 (𝒓)𝜓†
↑ (𝒓)𝜓

†
↓ (𝒓) + Δ𝒒 (𝒓)𝜓↓(𝒓)𝜓↑(𝒓)

]
=

∫
d𝑑𝑟

[
𝜓†(𝒓)

(
ℎ(𝒓) Δ∗

𝒒 (𝒓)
Δ𝒒 (𝒓) −ℎ(𝒓)

)
𝜓(𝒓)

]
=

∫
d𝑑𝑟

[
𝜓†(𝒓)

(
ℎ(𝒓)𝜎𝑧 + Re

{
Δ𝒒 (𝒓)

}
𝜎𝑥 + Im

{
Δ𝒒 (𝒓)

}
𝜎𝑦

)
𝜓(𝒓)

]
(16)

with the single-particle Hamiltonian ℎ(𝒓) = − ℏ2

2𝑚∇2 + 𝑉 (𝒓) containing the lattice periodic
potential𝑉 (𝒓) = 𝑉 (𝒓 +𝑹𝑛) and with the FMP pairing potential or gap function Δ𝒒 (𝒓) = |Δ|e𝑖𝒒·𝒓 .
Since Δ ∝ Ψ, the superconducting gap carries over the phase dependence of the order parameter
under the FMP constraint. From the last line of Eq. (16), it is immediately clear that 𝐻0 is
invariant under translation T𝑛 in Nambu space, as T𝑛 trivially commutes with ℎ(𝒓)𝜎𝑧. The
invariance of 𝐻SC follows from the phase shift of the pairing field Δ𝒒 (𝒓 + 𝑹𝑛) = Δ𝒒 (𝒓)e𝑖𝜙𝑛
associated with

𝐻SC =

∫
d𝑑𝑟

[
𝜓†(𝒓)

(
0 Δ∗

𝒒 (𝒓)
Δ𝒒 (𝒓) 0

)
𝜓(𝒓)

]
=

∫
d𝑑𝑟

[
𝜓†(𝒓 + 𝑹𝑛)

(
0 Δ∗

𝒒 (𝒓 + 𝑹𝑛)
Δ𝒒 (𝒓 + 𝑹𝑛) 0

)
𝜓(𝒓 + 𝑹𝑛)

]
=

∫
d𝑑𝑟

[
𝜓†(𝒓 + 𝑹𝑛)

(
0 Δ∗

𝒒 (𝒓)e−𝑖𝜙𝑛
Δ𝒒 (𝒓)e𝑖𝜙𝑛 0

)
𝜓(𝒓 + 𝑹𝑛)

]
=

∫
d𝑑𝑟

[
𝜓†(𝒓 + 𝑹𝑛) e−𝑖𝜙𝑛𝜎𝑧/2

(
0 Δ∗

𝒒 (𝒓)
Δ𝒒 (𝒓) 0

)
e𝑖𝜙𝑛𝜎𝑧/2𝜓(𝒓 + 𝑹𝑛)

]
=

∫
d𝑑𝑟

[
𝜓†(𝒓)T †

𝑛

(
0 Δ∗

𝒒 (𝒓)
Δ𝒒 (𝒓) 0

)
T𝑛𝜓(𝒓)

]
Thus, the generalized translation in Eq. (15) is a symmetry of the system and (generalized) crystal
momentum 𝒌 constitutes a good quantum number in the case of FMP superconductivity. Note,
though, that this is not true for pair density waves or generally speaking more complex FFLO-
type pairings which also modulate the amplitude of the OP. In this case, methods employing
supercells to accommodate for the extent of the OP modulation are necessary as was done, e.g.,
in Refs. [97, 98].
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Supplementary Note 3: Derivation of the supercurrent density
In this section, we will derive how to calculate the charge supercurrent associated with the
finite center-of-mass momentum of Cooper pairs under the FMP constraint. We start with the
definition of the current operator 𝚥. Generally, a current 𝒋 in a system is induced by the change
of the local polarization 𝑷. The polarization operator is given by

�̂� = 𝑒
∑︁
𝑖

𝑹𝑖𝑐
†
𝑖 𝑐𝑖 = 𝑒

∑︁
𝑖

𝑹𝑖𝑛𝑖 (17)

for electrons of charge 𝑒 sitting at a lattice site 𝑖 (we suppress orbital and spin indices for now).
The current is given by the time derivative (von-Neumann equation) of the polarization operator

𝚥 = ¤̂𝑷 =
𝑖

ℏ
[�̂�, 𝐻] (18)

We want to study the Hamiltonian with a superconducting pairing field Δ𝑖 𝑗 , where we here recast
Eq. (16)

𝐻 =
∑︁
𝑖 𝑗

𝑡𝑖 𝑗𝑐
†
𝑖 𝑐 𝑗︸      ︷︷      ︸

𝐻N≡𝐻0

+
∑︁
𝑖 𝑗

Δ𝑖 𝑗𝑐𝑖𝑐 𝑗 + Δ∗
𝑖 𝑗𝑐

†
𝑗𝑐

†
𝑖︸                     ︷︷                     ︸

𝐻AN≡𝐻SC

(19)

for discrete lattice sites 𝑖 instead of the continuous positions 𝒓. To evaluate expression (18), we
have to solve three kinds of commutators

[𝑛𝑚, 𝑐†𝑖 𝑐 𝑗 ] = 𝑐†𝑖 [𝑛𝑚, 𝑐 𝑗 ] + [𝑛𝑚, 𝑐†𝑖 ]𝑐 𝑗 = (𝛿𝑚𝑖 − 𝛿𝑚 𝑗 )𝑐†𝑖 𝑐 𝑗
[𝑛𝑚, 𝑐𝑖𝑐 𝑗 ] = 𝑐𝑖 [𝑛𝑚, 𝑐 𝑗 ] + [𝑛𝑚, 𝑐𝑖]𝑐 𝑗 = −(𝛿𝑚𝑖 + 𝛿𝑚 𝑗 )𝑐𝑖𝑐 𝑗
[𝑛𝑚, 𝑐†𝑖 𝑐†𝑗 ] = 𝑐†𝑖 [𝑛𝑚, 𝑐†𝑗 ] + [𝑛𝑚, 𝑐†𝑖 ]𝑐†𝑗 = (𝛿𝑚𝑖 + 𝛿𝑚 𝑗 )𝑐†𝑖 𝑐†𝑗

where we used [𝐴, 𝐵𝐶] = 𝐵[𝐴,𝐶] + [𝐴, 𝐵]𝐶 and [𝑛𝑚, 𝑐†𝑖 ] = 𝛿𝑖𝑚𝑐
†
𝑖 ([𝑛𝑚, 𝑐𝑖] = −𝛿𝑖𝑚𝑐𝑖). We

inspect the normal and anomalous component separately ( 𝚥 = 𝚥N + 𝚥AN):

𝚥N =
𝑖

ℏ
[�̂�, 𝐻N] = 𝑖

𝑒

ℏ

∑︁
𝑖 𝑗𝑚

𝑹𝑚𝑡𝑖 𝑗 [𝑛𝑚, 𝑐†𝑖 𝑐 𝑗 ] = 𝑖
𝑒

ℏ

∑︁
𝑖 𝑗𝑚

𝑹𝑚𝑡𝑖 𝑗 (𝛿𝑚𝑖 − 𝛿𝑚 𝑗 )𝑐†𝑖 𝑐 𝑗

= 𝑖
𝑒

ℏ

∑︁
𝑖 𝑗

(𝑹𝑖 − 𝑹 𝑗 )𝑡𝑖 𝑗𝑐†𝑖 𝑐 𝑗 (20)

𝚥AN =
𝑖

ℏ
[�̂�, 𝐻AN] = 𝑖

𝑒

ℏ

∑︁
𝑖 𝑗𝑚

𝑹𝑚 (Δ𝑖 𝑗 [𝑛𝑚, 𝑐𝑖𝑐 𝑗 ] + Δ∗
𝑖 𝑗 [𝑛𝑚, 𝑐†𝑗𝑐†𝑖 ])

= −𝑖 𝑒
ℏ

∑︁
𝑖 𝑗𝑚

𝑹𝑚 (𝛿𝑚𝑖 + 𝛿𝑚 𝑗 ) (Δ𝑖 𝑗𝑐𝑖𝑐 𝑗 − Δ∗
𝑖 𝑗𝑐

†
𝑗𝑐

†
𝑖 )

= −𝑖 𝑒
ℏ

∑︁
𝑖 𝑗

(𝑹𝑖 + 𝑹 𝑗 ) (Δ𝑖 𝑗𝑐𝑖𝑐 𝑗 − Δ∗
𝑖 𝑗𝑐

†
𝑗𝑐

†
𝑖 ) (21)

6 of 24



For calculating the current density 𝒋 = ⟨ 𝚥⟩ we can make simplifications using the fact that we
have local 𝑠-wave pairing in our system, i.e., Δ𝑖 𝑗 ≡ 𝛿𝑖 𝑗Δe𝑖𝒒𝑹𝑖 . Since ⟨𝑐𝑖𝑐 𝑗 ⟩ = −⟨𝑐 𝑗𝑐𝑖⟩ and
Δ𝑖 𝑗 = Δ 𝑗𝑖, the expectation value of the anomalous part ⟨ 𝚥AN⟩ vanishes then.

Since the anomalous part does not contribute, we only have to evaluate the normal component
(20) of the current. For this purpose, we we will assume that the states at site 𝑖 represent Wannier
orbitals 𝑖 → (𝑹𝑖, 𝛼𝑖, 𝜎𝑖) (orbital 𝛼, spin 𝜎) which are centered on the unit cell center as is the
case in the A3C60 model (c.f. Note 4-D). Then, we can insert the Fourier transform of the creation
and annihilation operators

𝑐𝑖 =
1
𝑁𝒌

∑︁
𝒌

⟨𝑖 |𝒌⟩𝑐𝒌 =
∑︁
𝒌

e−𝑖𝒌𝑹𝑖𝛿𝛼𝑖 ,𝛼𝒌𝛿𝜎𝑖 ,𝜎𝒌 𝑐𝒌 , 𝑐†𝑖 =
1
𝑁𝒌

∑︁
𝒌

e𝑖𝒌𝑹𝑖𝛿𝛼𝑖 ,𝛼𝒌𝛿𝜎𝑖 ,𝜎𝒌 𝑐
†
𝒌

(22)

to yield

𝚥 = 𝚥N =𝑖
𝑒

ℏ

1
𝑁2
𝒌

∑︁
𝑖 𝑗 𝒌𝒌′

𝛿𝜎𝑖 ,𝜎𝛿𝜎𝑗 ,𝜎′𝛿𝛼𝑖 ,𝛼𝛿𝛼 𝑗 ,𝛼′𝛿𝜎𝑖𝜎𝑗 [𝑹𝑖 − 𝑹 𝑗 ]𝑡𝛼𝑖𝛼 𝑗 (𝑹𝑖 − 𝑹 𝑗 )e𝑖(𝒌𝑹𝑖−𝒌′𝑹 𝑗 )𝑐†
𝒌𝛼𝜎

𝑐𝒌′𝛼′𝜎′

𝑹𝑖 ↦→𝑹𝑖+𝑹 𝑗
= 𝑖

𝑒

ℏ𝑁𝒌

∑︁
𝑹𝑖𝒌𝒌

′
𝛼𝛼′𝜎

𝑹𝑖𝑡𝛼𝛼′ (𝑹𝑖)e𝑖𝒌𝑹𝑖
1
𝑁𝒌

∑︁
𝑹 𝑗

e𝑖(𝒌−𝒌
′)𝑹 𝑗

︸               ︷︷               ︸
𝛿𝒌𝒌′

𝑐†
𝒌𝛼𝜎

𝑐𝒌′𝛼′𝜎

=
𝑒

ℏ𝑁𝒌

∑︁
𝒌𝛼𝛼′𝜎

𝑖
∑︁
𝑹𝑖

𝑹𝑖𝑡𝛼𝛼′ (𝑹𝑖)e𝑖𝒌𝑹𝑖

︸                    ︷︷                    ︸
=(∇𝒌ℎ(𝒌))𝛼𝛼′

𝑐†
𝒌𝛼𝜎

𝑐𝒌𝛼′𝜎 =
𝑒

𝑁𝒌

∑︁
𝒌𝛼𝛼′𝜎

𝒗𝛼𝛼′ (𝒌)𝑐†
𝒌𝛼𝜎

𝑐𝒌𝛼′𝜎 (23)

with the velocity 𝒗(𝒌) = 1
ℏ
∇𝒌ℎ(𝒌). Thus, the current density is given by

𝒋𝒒 = ⟨ 𝚥⟩𝒒 = 𝑒

𝑁𝒌

∑︁
𝒌𝛼𝛾𝜎

𝒗𝛼𝛾 (𝒌)⟨𝑐†𝒌𝛼𝜎𝑐𝒌𝛾𝜎⟩𝒒 =
2𝑒
𝑁𝒌

∑︁
𝒌𝛼𝛾

𝒗𝛼𝛾 (𝒌)⟨𝑐†𝒌𝛼↑𝑐𝒌𝛾↑⟩𝒒 (24)

where we introduced the index 𝒒 to the expectation value ⟨. . .⟩𝒒 to stress that the reduced density
matrix ⟨𝑐†

𝒌𝛼↑𝑐𝒌𝛾↑⟩𝒒 is evaluated for the FMP constraint imposed on the gap and order parameter,
i.e., Δe𝑖𝒒𝑹𝒏 . We connect to Green function theories by writing

⟨𝑐†
𝒌𝛼↑𝑐𝒌𝛾↑⟩𝒒 = ⟨𝑐†

𝒌− 𝒒
2+

𝒒
2 𝛼↑

𝑐
𝒌− 𝒒

2+
𝒒
2 𝛾↑

⟩𝒒 =
[
𝐺𝒒

(
𝜏 = 0−, 𝒌 − 𝒒

2

)]
𝛾𝛼

=

[
G↑↑

𝒒

(
𝜏 = 0−, 𝒌 − 𝒒

2

)]
𝛾𝛼

(25)

We want to stress that the velocity 𝒗(𝑲) and the reduced density matrix ⟨𝑐†𝑲𝜎𝑐𝑲𝜎⟩ have to carry
the same momentum label 𝑲 to fulfill Eq. (24) (here 𝑲 = 𝒌). The expression in terms of a
Green function then depends decisively on the notation used for FMP in the Nambu-Gor’kov
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formalism. To match the definition given in Eq. (34) (and Eq. (4) of the main text) necessitates
a shift of the 𝒌 argument.

Thus, we obtain an expression for the current density derived from the Nambu-Gor’kov
Green function as stated in Eq. (6) of the main text:

𝒋𝒒 =
2𝑒
𝑁𝒌

∑︁
𝒌𝛼𝛾

𝒗𝛼𝛾 (𝒌)
[
𝐺𝒒

(
𝜏 = 0−, 𝒌 − 𝒒

2

)]
𝛾𝛼

=
2𝑒
𝑁𝒌

∑︁
𝒌

Tr𝛼
[
𝒗(𝒌)𝐺𝒒

(
𝜏 = 0−, 𝒌 − 𝒒

2

)]
(26)

In practical calculations, however, we use Eq. (40) as this shows better convergence with respect
to the Matsubara summation associated with obtaining 𝐺 (𝜏 = 0−). For details, see Note 4-C.
We note that our approach reduces to linear-response-based approaches to calculate the stiffness
𝐷s ∝ 𝜆−2

L in the limit of 𝑞 → 0. In this limit, one finds 𝒋 = −𝐷s𝑨 by introducing a small
𝑨 via Peierls-substitution [45] which is gauge-equivalent to the FMP constraint with small 𝒒.
We, however, explicitly account for finite 𝑞 in our calculations inside the superconducting phase
and determine the depairing current 𝑗dp for the evaluation of 𝜆L (see Note 5-B). We stress that
one also needs the full 𝑞-dependence encoded in the order parameter to evaluate the correlation
length 𝜉 (𝑇).

We want to note that a similar expression to Eq. (26) is given above Eq. (38.13) in the book by
Abrikosov, Gor’kov, and Dzyaloshinski [99] as well as in Eq. (14.245) in the book by Coleman
[4]. In both cases, however, it is discussed in the context of an external magnetic field 𝑨 similar
to the implementation in Ref. [45].

Supplementary Note 4: Numerical implementation of DMFT
with FMP constraint

4-A Nambu-Gor’kov formalism with finite-momentum pairing

We want to comment on the Dynamical Mean-Field theory (DMFT) calculations in Nambu space
under the constraint of finite-momentum pairing (FMP). First, we summarize the description
of superconductivity within DMFT using the Nambu-Gor’kov formalism entering explicitly the
superconducting state for zero-momentum pairing [49]. Afterwards, we detail how the FMP
constraint can be incorporated into the superconducting Nambu Gor’kov DMFT formalism.

To extend the normal state DMFT formalism to Nambu-Gor’kov space [49], we perform
a particle-hole transformation of the spin-down sector 𝑐†

𝒌𝛼↓ ↦→ 𝑐−𝒌𝛼↓ and introduce Nambu
spinors

𝜓†
𝒌,𝛼

=

(
𝑐†
𝒌𝛼↑ 𝑐−𝒌𝛼↓

)
, 𝜓𝒌,𝛼 =

(
𝑐
𝒌𝛼↑

𝑐†−𝒌𝛼↓

)
(27)
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The corresponding single-particle Green function (Nambu-Gor’kov Green function) becomes a
2 × 2 matrix in Nambu space

G𝛼𝛾 (𝜏, 𝒌) = −⟨𝑇𝜏𝜓𝒌,𝛼 (𝜏)𝜓†
𝒌,𝛾

⟩ =
(
−⟨𝑇𝜏𝑐𝒌𝛼↑(𝜏)𝑐

†
𝒌𝛾↑⟩ −⟨𝑇𝜏𝑐𝒌𝛼↑(𝜏)𝑐−𝒌𝛾↓⟩

−⟨𝑇𝜏𝑐†−𝒌𝛼↓(𝜏)𝑐
†
𝒌𝛾↑⟩ −⟨𝑇𝜏𝑐†−𝒌𝛼↓(𝜏)𝑐−𝒌𝛾↓⟩

)
=

(
𝐺𝛼𝛾 (𝜏, 𝒌) 𝐹𝛼𝛾 (𝜏, 𝒌)
𝐹†
𝛼𝛾 (𝜏, 𝒌) �̄�𝛼𝛾 (𝜏,−𝒌)

)
=

(
𝐺𝛼𝛾 (𝜏, 𝒌) 𝐹𝛼𝛾 (𝜏, 𝒌)
𝐹†
𝛼𝛾 (𝜏, 𝒌) −𝐺𝛼𝛾 (−𝜏,−𝒌)

)
≡

(
G↑↑
𝛼𝛾 G↑↓

𝛼𝛾

G↓↑
𝛼𝛾 G↓↓

𝛼𝛾

)
(28)

where we used �̄� (𝜏,−𝒌) = −𝐺 (−𝜏,−𝒌) for the hole propagator and 𝐹 denotes the anomalous
(Gor’kov) Green function. The Nambu-Gor’kov Green function is determined from a Dyson
equation where the non-interacting Green function

[G0(𝑖𝜔𝑛, 𝒌)]−1 =

((𝑖𝜔𝑛 + 𝜇)1 − ℎ(𝒌) 0
0 (𝑖𝜔𝑛 − 𝜇)1 + ℎ(−𝒌)

)
≡ 𝑖𝜔𝑛1 · 𝜎0 − [ℎ(𝒌) − 𝜇1] · 𝜎𝑧

(29)
and self-energy

S(𝑖𝜔𝑛) =
(
ΣN(𝑖𝜔𝑛) ΣAN(𝑖𝜔𝑛)
ΣAN(𝑖𝜔𝑛) −[ΣN]∗(𝑖𝜔𝑛)

)
≡ ℜΣN(𝑖𝜔𝑛) · 𝜎𝑧 + 𝑖ℑΣN(𝑖𝜔𝑛) · 𝜎0 + ΣAN(𝑖𝜔𝑛) · 𝜎𝑥

(30)
also become matrices in Nambu space which can be expressed by Pauli matrices 𝜎𝑖 (𝑖 =

0, 𝑥, 𝑦, 𝑧) for inversion symmetry ℎ(𝒌) = ℎ(−𝒌). The self-energy S is obtained from solving the
appropriate impurity problem defined by the Weiss field GW in Nambu space and the particle-
hole-transformed interaction Hamiltonion. In addition to the normal component ΣN ≡ Σ, the
self-energy gains an anomalous matrix element ΣAN for which the gauge is chosen such that it
is real-valued, i.e., only 𝜎𝑥 is involved in constructing S. Thus, the lattice Green function in
Nambu-Gor’kov space is given by

[G(𝑖𝜔𝑛, 𝒌)]−1 = [G0(𝑖𝜔𝑛, 𝒌)]−1 − S(𝑖𝜔𝑛)

=

((𝑖𝜔𝑛 + 𝜇)1 − ℎ(𝒌) − ΣN(𝑖𝜔𝑛) −ΣAN(𝑖𝜔𝑛)
−ΣAN(𝑖𝜔𝑛) (𝑖𝜔𝑛 − 𝜇)1 + ℎ(−𝒌) + [ΣN]∗(𝑖𝜔𝑛)

)
(31)

The self-consistency circle of DMFT (Eq. (9) in the Methods section) generally becomes a
matrix formulation in Nambu space where the lattice Green function is replaced by the Nambu-
Gor’kov Green function 𝐺 𝒌 (𝑖𝜔𝑛) ↦→ G(𝑖𝜔𝑛, 𝒌). We can restate the DMFT self-consistency
problem in the superconducting state using calligraphic letters

Gloc(𝑖𝜔𝑛) = 1
𝑁𝒌

∑︁
𝒌

G(𝑖𝜔𝑛, 𝒌)

G−1
W (𝑖𝜔𝑛) = G−1

loc(𝑖𝜔𝑛) + S(𝑖𝜔𝑛)
S(𝑖𝜔𝑛) = G−1

W (𝑖𝜔𝑛) − G−1
imp(𝜔𝑛)

(32)
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We now want to incorporate the FMP constraint into the Nambu-Gor’kov formalism. To
treat the phase e𝑖𝒒𝒓 of the OP and gap in the framework of DMFT, several possibilities exist.
For the simplest implementation, we introduce a phase gauge shift that cancels the momentum
dependence of the order parameter Ψ𝒒 (𝑹𝑖) = |Ψ|e𝑖𝒒𝑹𝑖 = ⟨𝑐𝑖↑𝑐𝑖↓⟩ at site 𝑹𝑖. By applying
the transformation 𝑐𝑖𝛼𝜎 ↦→ 𝑐𝑖𝛼𝜎e𝑖𝒒𝑹𝑖/2 (𝑐†𝑖,𝜎 ↦→ 𝑐†𝑖,𝜎e−𝑖𝒒𝑹𝑖/2), the hopping amplitudes 𝑡 (𝑹𝑖 𝑗 ) are
modified to yield 𝑡 (𝑹𝑖 𝑗 ) = 𝑡 (𝑹𝑖 𝑗 )e𝑖𝒒𝑹𝑖 𝑗/2 such that the dispersion 𝜀𝒌 obtained from diagonalizing
ℎ(𝒌) is effectively replaced by 𝜀𝒌±𝒒/2, i.e., the dispersion for up and down spins gets shifted by
±𝒒/2, respectively. This shows that the introduction of FMP breaks time-reversal symmetry.
The advantage of completely transferring the 𝒒-dependence to the hopping matrix is that we
keep the gauge freedom to choose the anomalous self-energy to be a real-valued function.

To this end, we recast Eqs. (27) to (31) including the FMP momentum 𝒒. Through the
gauge transform, the Fourier transformed creation and annihilation operators pick up the ±𝒒/2
momentum shift such that the Nambu spinors obtain an additional parametric dependence

𝜓†
𝒌,𝒒,𝛼

=

(
𝑐†
𝒌+ 𝒒

2 𝛼↑
𝑐−𝒌+ 𝒒

2 𝛼↓
)
, 𝜓

𝒌+ 𝒒
2 ,𝛼

=

(
𝑐
𝒌+ 𝒒

2 𝛼↑
𝑐†−𝒌+ 𝒒

2 𝛼↓

)
(33)

The Nambu-Gor’kov Green function consequently is parametrized by 𝒒 as well[
G

𝒒
(𝜏, 𝒌)

]
𝛼𝛾

= −⟨𝑇𝜏𝜓𝒌,𝒒,𝛼 (𝜏)𝜓†
𝒌,𝒒,𝛾

⟩ = ©«
−⟨𝑇𝜏𝑐𝒌+ 𝒒

2 𝛼↑
(𝜏)𝑐†

𝒌+ 𝒒
2 𝛾↑

⟩ −⟨𝑇𝜏𝑐𝒌+ 𝒒
2 𝛼↑

(𝜏)𝑐−𝒌+ 𝒒
2 𝛾↓

⟩
−⟨𝑇𝜏𝑐†−𝒌+ 𝒒

2 𝛼↓
(𝜏)𝑐†

𝒌+ 𝒒
2 𝛾↑

⟩ −⟨𝑇𝜏𝑐†−𝒌+ 𝒒
2 𝛼↓

(𝜏)𝑐−𝒌+ 𝒒
2 𝛾↓

⟩
ª®¬

=
©«
[
𝐺𝒒 (𝜏, 𝒌)

]
𝛼𝛾

[
𝐹𝒒 (𝜏, 𝒌)

]
𝛼𝛾[

𝐹†
𝒒 (𝜏, 𝒌)

]
𝛼𝛾

[
�̄�𝒒 (𝜏,−𝒌)

]
𝛼𝛾

ª®®¬ ≡
©«
[
G↑↑

𝒒
(𝜏, 𝒌)

]
𝛼𝛾

[
G↑↓

𝒒
(𝜏, 𝒌)

]
𝛼𝛾[

G↓↑
𝒒
(𝜏, 𝒌)

]
𝛼𝛾

[
G↓↓

𝒒
(𝜏, 𝒌)

]
𝛼𝛾

ª®®¬ (34)

Generally, it holds that G↑↑
𝒒
(𝜏, 𝒌) ≠ −G↓↓

𝒒
(−𝜏,−𝒌) for arbitrary, finite 𝒒 due to the time-reversal

symmetry breaking. Note that it is possible to define the Fourier transform of 𝑐(†)𝑖 differently
such that the pairing is non-symmetric with respect to 𝒒. Another often employed notation
describes Cooper pairs with electrons of momenta 𝒌 (in G↑↑) and −𝒌 + 𝒒 (in G↓↓) (as depicted in
Fig. 2 of the main text). We here choose the symmetric notation by putting − 𝒒

2 to both diagonal
components.

On Matsubara frequencies, the Nambu-Gor’kov Green function is set up via (c.f. Eq. (10) in
the main text)

[G
𝒒
(𝑖𝜔𝑛, 𝒌)]−1 =

((𝑖𝜔𝑛 + 𝜇)1 − ℎ(𝒌 + 𝒒
2 ) − ΣN(𝑖𝜔𝑛) −ΣAN(𝑖𝜔𝑛)

−ΣAN(𝑖𝜔𝑛) (𝑖𝜔𝑛 − 𝜇)1 + ℎ(−𝒌 + 𝒒
2 ) + [ΣN]∗(𝑖𝜔𝑛)

)
(35)
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We note that the approach outlined here does not require the computationally more demanding
use of supercells as, e.g., implemented in Refs. [97, 98] and discussed in the review by Kinnunen
et al. [57] to study FFLO-type superconductivity.

To induce symmetry-breaking in our calculations, we add a small pairing field 𝜂 = 0.1 meV
on the off-diagonal of the Nambu-Gor’kov Green function throughout the calculation. We keep
it for the whole superconducting DMFT loop because it helps stabilizing the calculations. We
checked that the presence of the small, but finite 𝜂 does not change the results. In this work, we
always choose 𝒒 = 𝑞𝒃1 along the direction of a reciprocal lattice vector 𝒃1 (c.f. Note 4-D). The
calculations with finite 𝑞 are performed in practice as in the case of 𝑞 = 0, but with 𝑞 becoming
an additional input parameter. Calculations can be sped up by first converging the DMFT loop
for 𝑞 = 0 and then using the result as a starting point for finite 𝑞 > 0 values.

4-B Determination of chemical potential

In our calculations, we adjust the chemical potential 𝜇 in each DMFT iteration in order to keep
the filling of the system fixed to ⟨𝑛⟩𝒒 = 𝑁orb = 3, i.e., the 𝑡1𝑢 bands of A3C60 are half-filled. The
code implementation was done in Ref. [63] (see also Ref. [64]) for DMFT in the Nambu-Gor’kov
formalism with 𝑞 = 0, but it can also be used for finite momenta. To determine the chemical
potential, we solve the following equation

⟨𝑛⟩𝒒 = 1
𝑁𝒌

∑︁
𝒌𝛼𝜎

⟨𝑐†
𝒌+ 𝒒

2 𝛼𝜎
𝑐
𝒌+ 𝒒

2 𝛼𝜎
⟩ = 1

𝑁𝒌

∑︁
𝒌𝛼

⟨𝑐†
𝒌+ 𝒒

2 𝛼↑
𝑐
𝒌+ 𝒒

2 𝛼↑
⟩ + ⟨𝑐†−𝒌+ 𝒒

2 𝛼↓
𝑐−𝒌+ 𝒒

2 𝛼↓
⟩

=
1
𝑁𝒌

∑︁
𝒌𝛼

⟨1 − 𝑐
𝒌+ 𝒒

2 𝛼↑
𝑐†
𝒌+ 𝒒

2 𝛼↑
⟩ + ⟨𝑐†−𝒌+ 𝒒

2 𝛼↓
𝑐−𝒌+ 𝒒

2 𝛼↓
⟩

= 𝑁orb + 1
𝑁𝒌

∑︁
𝒌𝛼

[𝐺𝒒 (𝜏 = 0+, 𝒌) − �̄�𝒒 (𝜏 = 0+,−𝒌)]𝛼𝛼

= 𝑁orb + 1
𝑁𝒌

∑︁
𝒌𝜔𝑛

Tr𝛼 [G↑↑
𝒒 − G↓↓

𝒒 ] (𝑖𝜔𝑛, 𝒌)e𝑖𝜔𝑛0+ (36)

In the second step, we relabeled momentum 𝒌 ↦→ 𝒌 + 𝒒 for the spin down sector. Taking the
difference G↑↑

𝒒 − G↓↓
𝒒 helps with the convergence of the Matsubara sum to evaluate the Green

functions at 𝜏 = 0+ since the frequency tail becomes O(1/(𝑖𝜔𝑛)2).

4-C Handling the Matsubara summation in the calculation of the current
density

The expression for the current density, Eq. (26), contains a Matsubara sum of the spin-up
Nambu-Gor’kov Green function component G↑↑ = 𝐺 to compute the reduced density matrix
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⟨𝑐†
𝒌𝛼↑𝑐𝒌𝛾↑⟩𝒒 (c.f. Eq. (25)). The Green function typically has slow convergence of Matsubara

frequencies due to the 1/(𝑖𝜔𝑛)-tail at large frequencies. We can achieve better convergence by
including the inverse of the diagonal part of the Nambu Gor’kov Green function, i.e., the inverse
of the non-interacting Green function plus the normal self-energy. Generally, we can expand
the full Nambu Gor’kov Green function from Eq. (35) in the isospin space in terms of Pauli
matrices

G−1 = 𝑔
0
𝜎0 + 𝑔

𝑧
𝜎𝑧 + 𝑔

𝑥
𝜎𝑥 (37)

We now define

G−1
N = 𝑔

0
𝜎0 + 𝑔

𝑧
𝜎𝑧 and G−1

Δ
= 𝑔

𝑥
𝜎𝑥 (38)

Since GN describes a time-reversal symmetric system, the following term∑︁
𝒌

Tr𝛼
[
𝒗(𝒌)G↑↑

N

(
𝜏 = 0−, 𝒌 − 𝒒

2

)]
= 0 (39)

has to vanish. Eq. (39) essentially states that the charge supercurrent is induced by the su-
perconducting condensate which only contributes to the full Nambu Green function G via the
anomalous self-energy contained in G−1

Δ
since 𝑔

𝑥
≡ ΣAN. Thus, we can subtract Eq. (39) from

the current to obtain

𝒋 =
2𝑒
𝑁𝒌

∑︁
𝒌

Tr𝛼
[
𝒗(𝒌)

{
G − GN

}↑↑ (
𝜏 = 0−, 𝒌 − 𝒒

2

)]
=

2𝑒
𝑁𝒌

∑︁
𝒌

Tr𝛼
[
𝒗(𝒌)𝛿G↑↑

(
𝜏 = 0−, 𝒌 − 𝒒

2

)]
(40)

which has a better convergence with respect to Matsubara frequencies, since 𝛿G↑↑ ∝ 1/(𝑖𝜔𝑛)3

at large frequencies. To see the convergence behavior, we do a Taylor expansion where we focus
on the isospin dependence only:

𝛿G = G − GN = (G−1
N + 𝐺−1

Δ )−1 − GN = GN(𝜎0 + G−1
Δ GN)−1 − GN

= GN(𝜎0 + G−1
Δ GN + G−1

Δ GNG−1
Δ GN + . . .) − GN

= GNG−1
Δ GN + GNG−1

Δ GNG−1
Δ GN + . . .

The first term of the last line does not have any diagonal components since GN = 1/G−1
N ∝

. . . 𝜎0 + . . . 𝜎𝑧 and G−1
Δ

∝ 𝜎𝑥 such that their product

GNG−1
Δ GN ∝ . . . 𝜎0𝜎𝑥 + . . . 𝜎𝑥𝜎𝑧 ∝ . . . 𝜎𝑥 + . . . 𝜎𝑦 (41)

has only off-diagonal components. Hence, the lowest order term contributing to the ↑↑ com-
ponent of 𝛿G is O(G3

NG2
Δ
) which has a 1/(𝑖𝜔𝑛)3-tail from G3

N. The Taylor expansion shows

12 of 24



that GN is the zero-order term that causes the overall 1/(𝑖𝜔𝑛)-tail of G which we mitigate with
Eq. (40). An approximate expression for the current utilizing the Taylor expansion up to lowest
order can be found in Eq. (38.13) in the book by Abrikosov, Gor’kov, and Dzyaloshinski [99].

We compute the momentum and Matsubara summation occurring in the expression of the
supercurrent density 𝒋𝒒 (c.f. Eq. (26) in Note 4) using a 353 𝒌-mesh and 200 Matsubara
frequencies.

4-D Lattice model details and current direction

We here give further details on the lattice model of A3C60 materials derived in Ref. [75]. In this
model, the C60 molecules reside on a fcc lattice for which we construct Bravais lattice vectors
and momenta as

𝑹𝑖 =

3∑︁
𝑖=1

𝑛 𝑗 𝒂 𝑗 , 𝒌 =

3∑︁
𝑖= 𝑗

𝑘 𝑗 𝒃 𝑗 (42)

with 𝑖 ≡ (𝑛1, 𝑛2, 𝑛3). We choose the lattice and corresponding reciprocal lattice vectors to be

𝒂1 =
𝑎

2
(�̂� + �̂�) , 𝒂2 =

𝑎

2
( �̂� + 𝒛) , 𝒂3 =

𝑎

2
(�̂� + 𝒛) (43)

𝒃1 =
2𝜋
𝑎
(�̂� + �̂� − 𝒛) , 𝒃2 =

2𝜋
𝑎
(−�̂� + �̂� + 𝒛) , 𝒃3 =

2𝜋
𝑎
(�̂� − �̂� + 𝒛) (44)

with lattice constant 𝑎 ∼ 14.2 – 14.5 Å. �̂�, �̂�, and 𝒛 are the Cartesian unit vectors. We restate the
lattice model from Eq. (8) in the main text

𝐻kin =
∑︁
𝑖 𝑗

∑︁
𝛼𝛾𝜎

𝑡𝛼𝛾 (𝑹𝑖 𝑗 )𝑐†𝑖𝛼𝜎𝑐 𝑗𝛾𝜎 =
∑︁
𝒌

∑︁
𝛼𝛾𝜎

ℎ𝛼𝛾 (𝒌)𝑐†𝒌𝛼𝜎𝑐𝒌𝛾𝜎 (45)

where we inserted the Fourier transformation (22) of creation and annihilation operators with
ℎ𝛼𝛾 (𝒌) =

∑
𝑗 𝑡𝛼𝛾 (𝑹 𝑗 )e𝑖𝒌𝑹 𝑗 . We here specify the hopping terms 𝑡𝛼𝛾 (𝑹𝑖 𝑗 ) connecting electrons

of spin 𝜎 on sites 𝑖, 𝑗 and molecular (Wannier) orbitals 𝛼, 𝛾 via 𝑹𝑖 𝑗 = 𝑹𝑖 − 𝑹 𝑗 . The Wannier
orbitals labeled 𝛼 = 1, 2, 3 describe degenerate 𝑝𝑥-, 𝑝𝑦-, and 𝑝𝑧-like orbitals. For the 12
nearest-neighbor (NN) distances, the hopping matrices are given by

©«
𝑡1 𝑡2 0
𝑡2 𝑡3 0
0 0 𝑡4

ª®¬ for 𝑹 = (0.5, 0.5, 0.0), ©«
𝑡1 −𝑡2 0
−𝑡2 𝑡3 0
0 0 𝑡4

ª®¬ for 𝑹 = (0.5, −0.5, 0.0),

©«
𝑡4 0 0
0 𝑡1 𝑡2
0 𝑡2 𝑡3

ª®¬ for 𝑹 = (0, 0, 0.5, 0.5), ©«
𝑡4 0 0
0 𝑡1 −𝑡2
0 −𝑡2 𝑡3

ª®¬ for 𝑹 = (0.0, 0.5,− 0.5),

©«
𝑡3 0 𝑡2
0 𝑡4 0
𝑡2 0 𝑡1

ª®¬ for 𝑹 = (0.5, 0.0, 0.5), ©«
𝑡3 0 −𝑡2
0 𝑡4 0
−𝑡2 0 𝑡1

ª®¬ for 𝑹 = (−0.5, 0.0, 0.5)
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Supplementary Figure 2 | Electronic structure of fullerides. Band structure 𝜀𝒌 and density
of states (DOS) of the degenerate half-filled 𝑡1𝑢 bands using hopping parameters for K3C60.

where the connecting lattice vectors in Cartesian coordinates 𝑹𝑖 𝑗 ≡ 𝑹 = (𝑅𝑥 , 𝑅𝑦, 𝑅𝑧) are in units
of the lattice constant 𝑎. Hopping matrices for transfer processes to the 6 next-nearest-neighbor
(NNN) sites of a C60 molecule are

©«
𝑡5 0 0
0 𝑡6 0
0 0 𝑡7

ª®¬ for 𝑹 = (1, 0, 0), ©«
𝑡7 0 0
0 𝑡5 0
0 0 𝑡6

ª®¬ for 𝑹 = (0, 1, 0), ©«
𝑡6 0 0
0 𝑡7 0
0 0 𝑡5

ª®¬ for 𝑹 = (0, 0, 1)

The remaining NN and NNN hopping matrices can be generated from inversion symmetry
𝑡𝛼𝛾 (𝑹) = 𝑡𝛼𝛾 (−𝑹). In this work, we employ the Wannier construction for K3C60 for which
the numerical values are (in meV): 𝑡1 = −4, 𝑡2 = −33.9, 𝑡3 = 42.1, 𝑡4 = −18.7, 𝑡5 = −9.3,
𝑡6 = −1.4, 𝑡7 = −0.2. The onsite energy 𝑡𝛼𝛼 (𝑹𝑖 𝑗 = 0) is set to zero. We show the corresponding
band structure (bandwidth 𝑊 ≈ 0.5 eV) and density of states for the non-interacting model
in Fig. 2. The main difference between different A3C60 compounds is the bandwidth 𝑊 and
effective electronic interaction strength 𝑈 [64, 75]. One can approximate the volume effect
induced by different alkali dopands by changing the ratio 𝑈/𝑊 . The interaction Hamiltonian
𝐻int is discussed in more detail in Note 7.

We also comment on the direction of the current. In all calculations, we put the FMP
momentum 𝒒 parallel to one of the reciprocal lattice vectors: 𝒒 = 𝑞𝒃1 =

2𝜋𝑞
𝑎 (�̂� + �̂� − 𝒛) such

that in Cartesian coordinates 𝑞𝑥 = 𝑞𝑦 = −𝑞𝑧. By this, we can employ an analytical expression
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for the velocity

ℏ𝒗(𝒌) = ∇𝒌ℎ(𝒌) = ∇𝒌

∑︁
𝑹

𝑡 (𝑹)e𝑖𝒌𝑹 = 𝑖
∑︁
𝑹

𝑹 𝑡 (𝑹)e𝑖𝒌𝑹 (46)

instead of numerically evaluating the gradient of ℎ(𝒌) in Eq. (40). The direction of the velocity
and, hence, the supercurrent can be used as an internal consistency check of the code. The
condition of 𝒋 ∥ 𝒒 demands that

𝒋 = 𝑗1𝒂1 + 𝑗2𝒂2 + 𝑗3𝒂3
!
= 𝑗 (𝒙 + 𝒚 − 𝒛)

(47)
= 𝑎( 𝑗1 + 𝑗3)�̂� + 𝑎( 𝑗1 + 𝑗2) �̂� + 𝑎( 𝑗2 + 𝑗3)𝒛 (48)

⇔ 𝑗3 = 𝑗2 = −1
3
𝑗1 (49)

To have the correct sign of the direction, we need 𝑗1 > 0 (i.e., 𝑗2, 𝑗3 < 0). Since the fcc lattice
has a very high symmetry, we can approximately treat the system to be isotropic. Because of
this, we discuss in Fig. 2 of the main text and in Note 5-B only the absolute value of the current
given by | 𝒋 | = 2

√
3𝑎𝑥 with 𝑥 = | 𝑗2 | = | 𝑗3 | = 𝑗1/3.

Supplementary Note 5: Details on the calculation of |Ψ𝑞 |, 𝜉0,
𝑗dp, and 𝜆L from DMFT
In this section, we illustrate how the order parameter |Ψ𝑞 | and concomitantly the coherence
length 𝜉0 (c.f. 5-A) as well as the depairing current 𝑗dp and London penetration depth 𝜆L

(c.f. 5-B) are obtained from the 𝒒- and 𝑇-dependence of the Nambu-Gor’kov Green function
in practice. Furthermore, we elaborate on how the critical temperature extracted from the
temperature dependence of 𝜉 (𝑇) and 𝜆L(𝑇) can be used to scrutinize the proximity region of the
Mott insulating phase and how it impacts the superconducting region (c.f. Note 5-C and Fig. 4A
of the main text).

5-A Order parameter and coherence length

Generally, the superconducting order parameter carries an orbital dependence. The supercon-
ducting pairing in A3C60, however, is orbital diagonal. Because of this, we perform an orbital
average over the self-energy components ΣN and ΣAN in each iteration step of the DMFT loop
such that they are diagonal matrices in orbital space with degenerate entries (Σ(A)N

𝛼𝛾 = 𝛿𝛼𝛾 Σ
(A)N).

As a result, we explicitly prevent spontaneous orbital symmetry breaking in the self-energy [69]
and the anomalous Green function 𝐹 also becomes a degenerate, diagonal matrix in orbital space.
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Supplementary Figure 3 | Order parameter |Ψ𝑞 | and coherence length 𝜉0 from the local
anomalous Green function 𝐹 loc. (a) Normal (particle 𝐺𝑞 = G↑↑

𝑞 , hole �̄�𝑞 = G↓↓
𝑞 ) and anoma-

lous (𝐹𝑞 = G↑↓
𝑞 ) components of the local Nambu-Gor’kov Green function Gloc

𝑞 =
∑

𝒌 G𝑞 (𝒌) for
different values of 𝒒 at fixed𝑇/𝑊 = 6.7×10−3. The OP is taken at 𝜏 = 0 which we indicate by an
arrow. (b) Momentum dependence of the OP normalized to the 𝑞 = 0 value for various𝑇 values.
The condition |Ψ𝑄 (𝑇)/Ψ0(𝑇) | = 1/

√
2 to determine the correlation length via 𝜉 (𝑇) = 1/(

√
2𝑄)

for fixed 𝑇 is drawn with dashed lines. Different temperatures 𝑇 are indicated in the color bar
by white triangular markers and the shaded areas for each 𝑇 show the range spanned by the
uncertainty 𝛿 |Ψ𝑞 | which we use for spline fitting to determine an error for 𝜉 (𝑇). (c) Temperature
dependence of 𝜉 (𝑇) as obtained from panel b with the same coloring for each temperature. The
fit of Eq. (3) (Eq. (2) in the main text) to extract 𝜉0 is plotted with a solid black line. Shown data
are results of the DMFT calculations for 𝑈/𝑊 = 1.4 and 𝐽/𝑊 = −0.04, equal to the content of
Figs. 2 and 3 of the main text.

This allows us to work with a single-component OP for which we take the local anomalous Green
function (c.f. Eq. (5) of the main text)

|Ψ𝒒 | ≡ [𝐹 loc
𝒒 (𝜏 = 0−)]𝛼𝛼 =

∑︁
𝒌

⟨𝑐𝛼𝒌+ 𝒒
2↑𝑐𝛼−𝒌+

𝒒
2↓⟩ (50)

Another option to define the OP is the superconducting gap Δ, c.f. Note 6. Since, here, 𝐹 and Δ

are orbital diagonal, they can be equivalently used for defining the OP as they have the same 𝒒-
and 𝑇-dependence. Taking Δ as the OP would change the relative scaling of the GL free energy
because of Δ ≈ Ueff𝐹 with an effective pairing potential Ueff which is not of importance for
determining 𝜉 (𝑇) from the OP.

In Fig. 3a, we show the normal (𝐺, �̄�) and anomalous (𝐹) Green functions on imaginary
time for different values of 𝑞 = |𝒒 | where we also indicate the point of taking |Ψ𝑞 | at 𝜏 = 0+. The
amplitude of 𝐹 is reduced by increasing 𝑞, whereas 𝐺 and �̄� change only slightly. Interestingly,
the anomalous Green function is a non-monotonous function of 𝜏.

In the main text, we discuss the momentum-dependence of the OP obtained in DMFT
calculations under the constraint of FMP. Here, we want to further elaborate on how 𝜉 (𝑇) is
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obtained from Ψ𝒒 (𝑇). In GL theory, we found that 𝜉 (𝑇) = 𝑞−1
c for lim

𝑞→𝑞c
Ψ𝑞 (𝑇) = 0. Since the

point where Ψ𝑞 goes to zero is difficult to evaluate numerically, we use in our DMFT calculations
the criterion |Ψ𝑸 (𝑇)/Ψ0(𝑇) | = 1/

√
2 deriving from Eq. (5) such that 𝜉 (𝑇) = 1/(

√
2|𝑸 |) for

fixed 𝑇 . In Fig. 3b, we illustrate how this criterion is applied to the DMFT results. Since our
microscopic calculations include higher order terms of the free energy, the exact momentum
dependence of Ψ𝑞 differs from the GL expectation (Eq. (5)). Note that we take 𝜉 (𝑇) to be
isotropic due to the high symmetry of the fcc lattice. In principle, it is possible to apply FMP
with 𝒒 in different directions in order to consider anisotropic behavior of 𝜉 (𝑇).

Fig. 3 in the main text and Fig. 3 here in the Supplementary Information show error bars for
𝜉 (𝑇) which result from propagating the statistical QMC error of the OP to 𝜉 (𝑇). The uncertainty
in 𝜉 (𝑇) has been estimated as follows: For every dataset |Ψ𝑞 (𝑇) | we perform a series of spline fits
where we randomly vary for each 𝑞 the values to be fit in the range of [|Ψ𝑞 | −𝛿 |Ψ𝑞 |, |Ψ𝑞 | +𝛿 |Ψ𝑞 |]
spanned by the uncertainty 𝛿 |Ψ𝑞 | of the OP. We indicate this range by color-shaded areas in
Fig. 3b. Based on each spline interpolation, we obtain a value for 𝑄. The error in 𝑄 is then
estimated as the standard deviation of 𝑄 values in the so-obtained ensemble.

The temperature dependence of extracted 𝜉 (𝑇) and their uncertainty is plotted in panel C
of Fig. 3. As expected from GL theory, the correlation length diverges towards the critical
temperature 𝑇c and decays to a finite value 𝜉0 for 𝑇 → 0. By fitting Eq. (3) to the data, we
can extract the coherence length 𝜉0 and also obtain a value for the critical temperature 𝑇c. We
discuss the utility of extracting 𝑇c this way in Note 5-C.

5-B Current density and penetration depth

We derived in Note 3 an expression for the current density 𝒋𝒒 (Eq. (26)) where we in practice
employ the modified Eq. (40) to ensure better convergence of the Matsubara summations. We
show results of 𝑗𝑞 = | 𝒋𝑞 | depending on the interaction value 𝑈/𝑊 for the ab initio estimated
Hund’s coupling value 𝐽/𝑊 = −0.04 and fixed 𝑇/𝑊 = 6.7 × 10−2 in Fig. 4a. 𝑗𝑞 exhibits
a maximum, the depairing current 𝑗dp, that we obtain by using a spline interpolation of the
calculated data. By increasing 𝑈/𝑊 , 𝑗dp exhibits a dome shape which is similar to the OP but
different to 𝑇c. We note that the momenta 𝑞max where 𝑗dp = 𝑗𝑞max correlate with the momenta 𝑄

used to calculate 𝜉 (𝑇) from the OP suppression as can be seen in panel B. A line of slope
√︃

2
3

fits the data well suggesting 𝑞max =

√︃
2
3𝑄 as expected from the GL description. Only for large

𝑈, i.e., large values of 𝑄 and 𝑞max, deviations can be seen which arise from the fact that our
DMFT calculations include higher order terms which are not accounted for in the GL expansion
in Eq. (4).

From combining the depairing current and the coherence length, we obtain the London
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Supplementary Figure 4 | Evaluation of supercurrent density 𝑗𝑞 = | 𝒋𝑞 | and London pen-
etration depth 𝜆L. (a) Momentum-dependence of the current density for different interaction
ratios 𝑈/𝑊 with 𝐽/𝑊 = −0.04 similar to Fig. 3 of the main text and fixed 𝑇/𝑊 = 6.7 × 10−2.
The depairing current density 𝑗dp (maximal 𝑗𝑞) and corresponding momentum 𝑞max are marked
by dotted lines which are extracted from a spline interpolation drawn with a solid line connecting
data points. The dome-shape behavior of 𝑗dp as a function of 𝑈/𝑊 is marked by a black solid
line. (b) Correlation between the momentum 𝑄 used to calculate 𝜉 (𝑇) from the suppression of
the OP (c.f. Note 5-A) and the momentum 𝑞max of maximal current density 𝑗dp. Data points of
the same color correspond to different temperatures for the same 𝑈/𝑊 where the coloring is the
same as in panel a. A linear function with slope

√︃
2
3 indicated by a dashed black line fits the data

well. (c) Temperature dependence of the London penetration depth 𝜆L for different 𝑈/𝑊 and
𝐽/𝑊 =−0.04. We plot the fit according to Eq. (11) (Eq. (3) in the main text) with the quartic
temperature dependence with a solid line and the fit with a linear temperature dependence with
a dashed line (𝑡 = 𝑇/𝑇c).

penetration depth 𝜆L(𝑇). In GL theory, the 𝑇-dependence of 𝜆L is linearized to depend on
𝑡 = 𝑇/𝑇c. However, our calculations are better described by using the empirical quartic power
law 𝑡4 as stated in Eq. (11) (Eq. (3) of the main text). We show exemplary results of 𝜆L(𝑇) for
different 𝑈/𝑊 and 𝐽/𝑊 = −0.04 in Fig. 4c. At small 𝑈, the 𝑡 and 𝑡4 dependence both match
the data points quite well but the 𝑡-fit yields smaller values for the zero-temperature limit 𝜆L,0.
Close to the Mott state for large𝑈, the agreement becomes worse and only the 𝑡4 dependence fits
the data well. We observed the same behavior also in the strong coupling region for increased
values of |𝐽 |.

5-C Proximity region to the Mott transition

From our analysis of the𝑇-dependence of the zero-momentum OP |Ψ0 |, correlation length 𝜉 (𝑇),
and London penetration depth 𝜆L, we are able to obtain different values of the superconducting
transition temperature 𝑇c. In this section, we discuss how they compare and use the notation
of 𝑇 𝜉,𝜆

c to differentiate the critical temperatures obtained by fitting 𝜉 (𝑇) and 𝜆L(𝑇) from the 𝑇c
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Supplementary Figure 5 | Influence of proximity to the Mott insulating region on the
superconducting state. (a) Relative difference of critical temperature 𝑇

(𝜉,𝜆)
c computed from

fitting 𝜉 (𝑇) and 𝜆L(𝑇) versus 𝑇c as obtained from the OP |Ψ0 | for the data at 𝐽/𝑊 = −0.04 and
different 𝑈/𝑊 as plotted in Fig. 3 of the main text. (b) 𝑇c and relative difference to 𝑇

(𝜉,𝜆)
c as

a function of interactions 𝑈 and 𝐽. Orange (gray) dots indicate data points where the critical
temperature describes a transition from superconducting to Mott insulating (metallic) phase.
Dashed lines are a guide to the eye separating the regions where the proximity to the Mott phase
suppresses superconductivity characterized by 𝑇

(𝜉,𝜆)
c < 𝑇c. The 𝑇c plot is the same as in Fig. 4A

of the main text.

derived via |Ψ0 |2 ∼ 𝑇 − 𝑇c.
A first understanding can be gained by analyzing Fig. 3 of the main text. We summarize the

respective critical temperatures in Fig. 5a. Generally, the critical temperature values obtained
in all three methods agree well. Only in the special case of the first-order transition from the
superconducting to the Mott-insulating phase for𝑈/𝑊 = 2, we obtain higher values for𝑇 𝜉,𝜆

c . We
conjecture that these temperatures describe a second-order transition to a metallic state hidden
by the Mott insulating phase. We can utilize this fact to gauge the influence of the Mott state to
reveal a suppression of superconductivity.

In Fig. 5b, we show the critical temperature 𝑇c and the relative difference to 𝑇
𝜉,𝜆
c in the

(𝑈, 𝐽)-plane analogous to Fig. 4A of the main text. Dots indicate original data points where
orange dots (not shown in Fig. 4A) denote a critical temperature for a first-order transition from
superconductor to Mott insulator. At these points, both 𝑇

𝜉
c and 𝑇𝜆

c are clearly larger than the
critical temperature obtained from |Ψ0 |2 which is inline with the observation at 𝐽/𝑊 = −0.04.
However, the suppression of 𝑇c extends to the nearby region of the direct superconductor-Mott
transition. The dashed lines, of which we also draw the gray line in Fig. 4A of the main text,
are a guide to the eye to separate the region where proximity to Mott insulating states leads to a
suppression of the critical temperature – even for a transition to the metallic state.
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Supplementary Note 6: Analysis of superconducting gap and
coupling strength
In this section, we analyze the superconducting gap Δ to further characterize the different
superconducting regimes found in the A3C60 model. The gap is given by [100]

Δ(𝑖𝜔𝑛) = ReΣAN(𝑖𝜔𝑛)
1 − ImΣN (𝑖𝜔𝑛)

𝜔𝑛

≡ 𝑍ΣAN (51)

with the quasiparticle weight 𝑍−1 = 1 − ImΣN(𝑖𝜔0)/𝜔0 and anomalous self-energy ΣAN as we
evaluate the gap on the lowest Matsubara frequency Δ ≡ Δ(𝑖𝜔0). We note that in the (deep)
BEC limit, the quasiparticle gap is not given by Δ due to the appearance of bound bosonic states.
Instead, one needs to analyze

√︁
Δ2 + 𝜇2 with the chemical potential 𝜇.

In order to characterize the superconducting state, we analyze two different criteria: The first
is the BCS ratio of the gap to the critical temperature 𝑇c which in weak-coupling BCS theory
has the universal value 2Δ0/𝑇c = 3.53 for the zero-temperature gap Δ0 = Δ(𝑇 = 0). In our
calculations, we cannot reach zero temperature because of which we consider the gap for the
lowest temperature 𝑇min available for each interaction parameter set (𝑈, 𝐽). This is important
for interpreting results for small Hund’s coupling 𝐽/𝑊 ≲ −0.1 where we could not calculate far
below 𝑇c, i.e, the gap is far from saturating towards the zero-temperature value. Hence, Δ(𝑇min)
only yields a lower bound.

We show the BCS ratio in Fig. 6a as a function of inverted Hund’s coupling strength 𝐽 < 0
for different 𝑈/𝑊 . For small magnitudes |𝐽 |/𝑊 ≲ 0.05, our results show good agreement
with the BCS value. This is in disagreement with experimental measurements [34, 76] which
observe the Cs and Rb compounds to have a ratio 2Δ/𝑇c much larger than the BCS value. We
speculate that the discrepancy to our data arises for two reasons: First, we cannot get close to the
zero-temperature value of the gap in our calculations, i.e., 𝑇min is rather close to 𝑇c and the ratio
is likely to be underestimated by this lower bound. Second, the overestimation of 𝑇c in DMFT
can additionally lead to an underestimation of the BCS ratio. Taking into account dynamical
interactions give results that are in better agreement with experiment [63, 64]. Nonetheless,
the qualitative trend of increasing 2Δ/𝑇c for larger 𝑈/𝑊 fits to experimental observation. A
pronounced deviation from the BCS value can be found for large inverted Hund’s coupling
|𝐽 |/𝑊 > 0.05. Although 𝑇c and Δ both increase in the “multiorbital strong coupling” region for
enhanced 𝐽 < 0, superconductivity here is distinct to weak-coupling BCS theory. Note that we
do not show 𝑇c of a transition to the Mott insulating state.

The second criterion that we analyze is the ratio of the gap to the Fermi energy 𝐸F. This
ratio Δ/𝐸F can be interpreted as a dimensionless coupling strength [25] which is small in the
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Supplementary Figure 6 | Characterization of superconducting regions in the model of
A3C60. (a) Ratio of the superconducting gap Δ at the lowest available temperature 𝑇min and
critical temperature 𝑇c as a function of inverted Hund’s coupling 𝐽 < 0. The BCS ratio
Δ0/𝑇c = 3.53 is drawn with a dashed line. (b) Coupling strength characterized by the ratio
of Δ against the Fermi energy 𝐸F. (c) Scaling of the coherence length 𝜉0 with the ratio of
quasiparticle weight 𝑍 and 𝑇c. Note that the color scale used to mark Hund’s coupling 𝐽 < 0
is logarithmic. A linear fit is drawn as a guide to the eye where the zoom-in shows deviations
for large 𝐽 < 0. We note that 𝑇c shown in panels a and c are only for the superconductor-metal
transition, not for a first-order transition to the Mott phase.

weak-coupling region but grows to the order of 0.1 – 1 in the crossover and strong-coupling
regime [24]. We note, however, that the theoretical determination of 𝐸F is not trivial. To gauge
the order of magnitude, we here resort to the non-interacting, renormalized definition

𝐸F = 𝑘B𝑇F =
ℏ2𝑘2

F
2𝑚∗ =

ℏ2

2𝑚∗ (3𝜋2𝑛) 2
3 =

(3𝜋2) 2
3ℏ2

2𝑚𝑒
· 𝑍𝑛 2

3 (52)

where we inserted the quasiparticle weight 𝑍 = 𝑚∗/𝑚𝑒. The density is 𝑛 = 3/(𝑎/4)3 for the
half-filled 𝑡1u bands. We show the results in Fig. 6b. For small |𝐽 |, the coupling strength is weak
asΔ/𝐸F < 0.1. Towards the Mott regime, the couplings strengths grows to ∼ 0.1, i.e., increasing
𝑈/𝑊 brings the system towards the BCS-BEC crossover regime. However, increasing |𝐽 | has
a much stronger effect of driving the system into a strong coupling phase with Δ/𝐸F > 0.1.
Interestingly, larger 𝑈 here quenches the coupling strength.

Lastly, we want to characterize the superconducting regimes via the coherence length 𝜉0. In
BCS theory and Eliashberg theory, the scaling 𝜉0 ∼ 𝑣∗F/𝑇c ∝ 𝑍/𝑇c in terms of a renormalized
Fermi velocity 𝑣∗F = 𝑍𝑣F can be established [37–39]. We investigate this relation in Fig. 6c.
The scaling 𝜉0 ∼ 𝑍/𝑇c as in BCS and Eliashberg theory holds for most interaction values up
to 𝐽/𝑊 ∼ −0.1, even towards the Mott insulating region. It, however, deviates in the localized
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multiorbital strong coupling region for large |𝐽 |/𝑊 > 0.1, where 𝜉0 is not further reduced and
𝑍 stays almost constant but 𝑇c still increases. Thus, the multiorbital strong coupling phase is to
be differentiated from a (strongly) renormalized Eliashberg system as which one might be able
to describe the system in the vicinity of the Mott insulating phase.

Supplementary Note 7: Atomic limit of three-orbital model
with inverted Hund’s coupling
In the main text, we found that Cooper pairs become very localized with a short coherence
length 𝜉0 ∼ O(2 − 3 𝑎) by increasing the inverted Hund’s coupling 𝐽 < 0. It suggests that local
physics become increasingly important for the formation of superconducting pairing. Indeed,
this was confirmed through the analysis of local density matrix weights in the main text. Here,
we want to complement the discussion of the main text with discussing the atomic limit of the
interacting impurity problem.

To this end, we want to solve the Kanamori-Hubbard interaction Hamiltonian as given
in Eq. (7) of the main text without hopping processes. The form of the interaction given
in the main text is convenient to read-off the (inverted) Hund’s rules. We, here, restate the
Kanamori-Hubbard Hamiltonian in its generalized formulation that indicates the different elec-
tronic interaction processes more clearly:

𝐻int =
∑︁
𝛼

𝑈 𝑛𝛼↑𝑛𝛼↓ +
∑︁

𝛼<𝛾,𝜎𝜎′
(𝑈′ − 𝛿𝜎𝜎′𝐽) 𝑛𝛼𝜎𝑛𝛾𝜎′

−
∑︁
𝛼≠𝛾

𝐽X 𝑐†
𝛼↑𝑐𝛼↓𝑐

†
𝛾↓𝑐𝛾↑ +

∑︁
𝛼≠𝛾

𝐽P 𝑐
†
𝛼↑𝑐

†
𝛼↓𝑐𝛾↓𝑐𝛾↑ (53)

It consists of intraorbital interaction 𝑈, interorbital interaction 𝑈′, Hund’s coupling 𝐽, spin-
exchange 𝐽X, and correlated pair hopping 𝐽P. Yet, not all coupling constants are independent.
We assume SU(2)×SO(3) symmetry implying 𝐽X = 𝐽 and 𝐽P = 𝑈 −𝑈′ − 𝐽 [65]. In the physical
system and our calculations, we have in addition 𝐽P = 𝐽 resulting in 𝑈′ = 𝑈 − 2𝐽. In the
following discussion, we will emphasize the contribution of 𝐽P since the low-energy excitations
for inverted Hund’s coupling 𝐽 < 0 are only governed by 𝐽P. It is instructive to rewrite Eq. (53)
in the same way as Eq. (7) of the main text (c.f. Eq. 5 in Ref. [65]) to see the role of 𝐽P:

𝐻int =
1
4
(2𝑈 − 3𝐽 − 3𝐽P)�̂� (�̂� − 1) − (𝐽 + 𝐽P) �̂�2 − 1

2
𝐽P �̂�

2 + 1
4
(3𝐽 + 7𝐽P)�̂� (54)

The pair hopping term, most notably, dictates the energy gain from high orbital angular momen-
tum 𝐿2 and partially that of the total spin 𝑆2 of a given eigenstate for this Hamiltonian. We detail
the spectrum in Tab. 1 for the case of negative 𝐽, 𝐽P < 0 and half-filled orbitals where we add a
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Supplementary Figure 7 | Spectrum of the three-orbital Hubbard-Kanamori model. The
energies 𝐸𝑁

𝑛 and states |ϕ𝑁
𝑛 ⟩ ≡ |𝑁, 𝑆, 𝐿⟩ of the three-orbital atom with Hubbard-Kanamori

interaction (Eq. (54) at half-filling correspond to the notation used in Tab. 1. The relative
positions of energies are drawn for the case of 𝑈 > 2|𝐽P |, such that the ground state lies in the
𝑁 = 3 sector given by 𝐸𝑁=3

0 and |𝑁 = 3, 𝑆 = 1
2 , 𝐿 = 1⟩.

chemical potential 𝜇 to ensure particle-hole symmetry. The chemical potential at half-filling is
given by 𝜇 = 1

2𝑈 + 𝑁−1
2 (2𝑈′ − 𝐽) = 5

2𝑈 − 3𝐽 − 2𝐽P with 𝑁 = 3 and 𝑈′ = 𝑈 − 𝐽 − 𝐽P, as can be
inferred from particle-hole transforming Eq. (54). The dimension of the complete Fock space is
dimHFock = 26 = 64. Fig. 4B in the main text shows the statistical occupation of these 64 states
during the QMC calculation in DMFT.

In case of half-filling, the atomic gap of the system is Δat = 𝐸𝑁=4
0 −𝐸𝑁=3

0 − (𝐸𝑁=3
0 −𝐸𝑁=2

0 ) =
𝑈 + 2𝐽P = 𝑈 − 2|𝐽P |. For Δat > 0, i.e., 𝑈 > 2|𝐽P |, the lowest energy state lies in the 𝑁 = 3
particle sector and is given by 𝐸𝑁=3

0 . We sketch the energy spectrum for this case in Fig. 7. The
lowest energy excitations from the ground state 𝐸𝑁=3

0 are charge excitation to the 𝑁 = 2 and
𝑁 = 4 particle sectors with Δ𝐸ch = 1

2𝑈 + 𝐽P = 1
2𝑈 − |𝐽P | ≡ 1

2Δat as well as spin reconfiguration
with Δ𝐸sp = −2𝐽P = 2|𝐽P | within the 𝑁 = 3 charge sector which breaks up orbital singlets and
increases the orbital angular momentum from 𝐿 = 1 to 𝐿 = 2. Thus, the low-energy physics is
governed by correlated pair hopping 𝐽P and onsite repulsion 𝑈. The results presented in Fig. 4
of the main text can be understood from this local limit by addition of the kinetic hopping.
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Supplementary Table 1 | Spectrum of the local Kanamori-Hubbard Hamiltonian for a
three-orbital system at half-filling. The eigenenergies 𝐸𝑁

𝑛 are sorted in descending order in
each charge sector of particle number 𝑁 for 𝐽 < 0 where the contribution of the correlated pair
hopping 𝐽P (𝐽P ≡ 𝐽 in our calculations) is explicitly stated. Each state is characterized by total
spin 𝑆, orbital angular momentum 𝐿, and respective degeneracy (2𝑆 + 1) (2𝐿 + 1) with 𝑋 = ⟨�̂�⟩
(𝑋 = 𝑁, 𝑆, 𝐿). The corresponding eigenstates |ϕ𝑁

𝑛 ⟩ are given for 𝑁 ≤ 3 since the 𝑁 ≥ 4 states
can be constructed from particle-hole symmetry. The eigenstates in blue color are those depicted
in Fig. 4C of the main text.

Energy 𝐸𝑁
𝑛 𝑁 𝑆 𝐿

Degeneracy
(2𝑆+1)(2𝐿+1) Eigenstates |ϕ𝑁

𝑛 ⟩ (𝑁 ≤ 3)

𝐸0 [6]
0 = 0 0 [6] 0 0 1 |0, 0, 0⟩

𝐸1 [5]
0 = −5

2
𝑈 + 3𝐽 + 2𝐽P 1 [5] 1/2 1 6

| ↑, 0, 0⟩, |0, ↑, 0⟩, |0, 0, ↑⟩,
| ↓, 0, 0⟩, |0, ↓, 0⟩, |0, 0, ↓⟩

𝐸2 [4]
2 = −4𝑈 + 4𝐽 + 3𝐽P 2 [4] 1 1 9

| ↑, ↑, 0⟩, |0, ↑, ↑⟩, | ↑, 0, ↑⟩, | ↓, 0, ↓⟩, |0, ↓, ↓⟩, | ↓, 0, ↓⟩,
1√
2
( | ↑, 0, ↓⟩ − | ↓, 0, ↑⟩), 1√

2
( |0, ↑, ↓⟩ − |0, ↓, ↑⟩), 1√

2
( | ↑, ↓, 0⟩ − | ↓, ↑, 0⟩)

𝐸2 [4]
1 = −4𝑈 + 6𝐽 + 3𝐽P 2 [4] 0 2 5

1√
2
( | ↑, 0, ↓⟩ + | ↓, 0, ↑⟩), 1√

2
( |0, ↑, ↓⟩ + |0, ↓, ↑⟩), 1√

2
( | ↑, ↓, 0⟩ + | ↓, ↑, 0⟩)

1√
2
( | ↑↓, 0, 0⟩ − |0, ↑↓, 0⟩), 1√

2
( | ↑↓, 0, 0⟩ − |0, 0, ↑↓⟩)

𝐸2 [4]
0 = −4𝑈 + 6𝐽 + 6𝐽P 2 [4] 0 0 1 1√

3
( | ↑↓, 0, 0⟩ + |0, ↑↓, 0⟩ + |0, 0, ↑↓⟩)

𝐸3
2 = −9

2
𝑈 + 3𝐽 + 3𝐽P 3 3/2 0 4

| ↑, ↑, ↑⟩, 1√
3
( | ↑, ↓, ↓⟩ + | ↓, ↑, ↓⟩ + | ↓, ↓, ↑⟩),

| ↓, ↓, ↓⟩, 1√
3
( | ↓, ↑, ↑⟩ + | ↑, ↓, ↑⟩ + | ↑, ↑, ↓⟩)

𝐸3
1 = −9

2
𝑈 + 6𝐽 + 3𝐽P 3 1/2 2 10

1√
2
( | ↑, ↓, ↓⟩ − | ↓, ↑, ↓⟩), 1√

2
( | ↑, ↓, ↓⟩ − | ↓, ↓, ↑⟩),

1√
2
( | ↑, ↑↓, 0⟩ − | ↑, 0, ↑↓⟩), 1√

2
( | ↑↓, ↑, 0⟩ − |0, ↑, ↑↓⟩), 1√

2
( | ↑↓, 0, ↑⟩ − |0, ↑↓, ↑⟩),

1√
2
( | ↓, ↑↓, 0⟩ − | ↓, 0, ↑↓⟩), 1√

2
( | ↑↓, ↓, 0⟩ − |0, ↓, ↑↓⟩), 1√

2
( | ↑↓, 0, ↓⟩ − |0, ↑↓, ↓⟩),

1√
2
( | ↓, ↑, ↑⟩ − | ↑, ↓, ↑⟩), 1√

2
( | ↓, ↑, ↑⟩ − | ↑, ↑, ↓⟩)

𝐸3
0 = −9

2
𝑈 + 6𝐽 + 5𝐽P 3 1/2 1 6

1√
2
( | ↑, ↑↓, 0⟩ + | ↑, 0, ↑↓⟩), 1√

2
( | ↑↓, ↑, 0⟩ + |0, ↑, ↑↓⟩), 1√

2
( | ↑↓, 0, ↑⟩ + |0, ↑↓, ↑⟩),

1√
2
( | ↓, ↑↓, 0⟩ + | ↓, 0, ↑↓⟩), 1√

2
( | ↑↓, ↓, 0⟩ + |0, ↓, ↑↓⟩), 1√

2
( | ↑↓, 0, ↓⟩ + |0, ↑↓, ↓⟩)
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Chapter

Concluding remarks 7
It is important to draw wisdom from many different places.
If you take it from only one place, it becomes rigid and stale.

— Iroh

In this thesis, we have conducted material-realistic studies on the interplay between
electron correlations and unconventional superconductivity in different materials.
To this end, we developed and applied new computational tools that enhance both
efficiency and capability of many-body methods. Those developments empowered
the numerical investigation of previously inaccessible parameter regions and material
properties. In the following, we summarize the achievements of this thesis in relation
to the overarching questions in superconductivity research discussed in section 1.3.
Furthermore, we give an outlook on possible future research directions.

Improving the efficiency of computational many-body methods

We have enhanced the numerical efficiency of many-body methods by utilizing
low-rank representations of Matsubara Green’s functions in conjunction with sparse
modeling techniques. Specifically, we employed the IR basis for optimal data
compression, which derives from the singular value decomposition of the spectral
representation kernel. This integrated approach effectively addresses computational
bottlenecks associated with the linear scaling of Matsubara frequencies with inverse
temperature, enabling material-realistic calculations at low-temperatures.

To facilitate this improvement, we have developed the standalone code library
sparse-ir, which we introduced in publication I. This library provides the IR
basis functions and evaluation utilities, allowing for efficient implementation of
many-body methods. Its simple architecture enables seamless integration into both
existing codebases and new applications. Alongside the library, we have created
extensive tutorials that illustrate the code’s capabilities, while also serving as a
reference for implementations of common many-body approaches.

The improvements provided by the IR basis were utilized in several applications
studying spin-fluctuation-driven superconductivity. In our benchmark study of
water-intercalated sodium cobalt oxide in publication II, the FLEX+IR implementa-
tion showcased the enhanced numerical efficiency: We could perform calculations
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7 Concluding remarks

at very low temperatures down to the order of 10−4 in units of the bandwidth.
Through this low-temperature analysis, we identified the predominance of the
triplet 𝑓𝑦(𝑥2−3𝑦2)-wave pairing symmetry by examining the superconducting eigen-
value of the linearized gap equation. However, contrary to previous expectations
based on higher-temperature calculations, we did not observe a transition to the
superconducting phase at the scale of experimental 𝑇c = 4.5 K, with the supercon-
ducting eigenvalue reaching up to only 0.7 at 2 K. To conclusively determine the
potential for spin-fluctuation-mediated triplet superconductivity, the influence of
doping in the actual experimental compound Na𝑥(H3O)𝑧CoO2 · y H2O needs to be
explored in future studies.

The ability to perform calculations at previously inaccessible temperatures enabled
us to compute critical temperatures for spin-fluctuation-driven superconductivity
in the nearest-neighbor tight-binding model of a honeycomb lattice pertinent to
Γ-valley twisted TMDCs. This progress allowed us to draw a comprehensive
doping-dependent phase diagram in publication IV, which we contrasted to that of
conventional superconductivity mediated by moiré phonons. An extension of our
study to K-valley twisted WSe2 could help in elucidating the recent experimental
reports on possibly unconventional superconductivity in that material [79, 80, 165].

Furthermore, in publication III, we highlighted the critical role of inter-layer
correlations in the formation of superconductivity in bilayer nickelates. Through
CDMFT calculations, we observed a Lifshitz transition characterized by the disap-
pearance of the 𝛾 pocket from the Fermi surface. The concomitant suppression of
ferromagnetic fluctuations enhances superconductivity, as shown by comparisons
to DMFT calculations that lack inter-layer correlations. Transforming the (C)DMFT
data into the IR basis facilitated the calculation of the superconducting phase. No-
tably, the sparse-ir library enabled a straightforward interoperability of Green’s
functions data and allowed for precise error control of the noise from the QMC
simulations in (C)DMFT. Given the young stage of research on La3Ni2O7, many
open questions regarding its normal state and superconducting properties exist
as detailed in section 4.2.1. Another intriguing question is why, in particular, the
bilayer variant of the Ruddlesden-Poppers nickelates exhibits such a high critical
temperature compared to other layer numbers.

Optimized conditions for superconductivity

In chapter 6, we examined the limitations of superconductivity arising from the
competition between energy scales of particle pairing and phase stiffness. To raise
critical temperatures, it is generally necessary to increase the energy scale for particle
pairing. For conventional phonon-mediated superconductivity, BCS and Migdal–
Eliashberg theory suggest that this can be achieved by optimizing the phonon energy
scale 𝜔D, the interaction strength 𝑈 , or the density of states. We reaffirmed this
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principle in publication IV, where we found that the doping dependence of the
critical temperature in moiré phonon-mediated pairing is primarily determined by
the electronic density of states.

In contrast, the optimal conditions for spin-fluctuation-mediated pairing are more
complex, as shown in publications II, III, IV, and V. This complexity arises from
factors such as the spatial and orbital structure of spin fluctuations, the presence
of competing and possibly pair breaking spin fluctuations, as well as the available
electronic density of states. In particular, the absence of superconductivity in
copper-substituted lead apatite showed that the bandwidth needs to be sufficiently
large to facilitate strong enough spin fluctuations. Comparing this material to other
studied systems underscores the preference for (quasi-)two-dimensional systems in
facilitating strong superconductivity driven by spin fluctuations.

Nonetheless, the formation of a resilient superconducting condensate also requires
sufficiently large phase stiffness. Our discussion of the Uemura relation and the
BCS–BEC crossover in section 6.1 indicates that a viable route to enhance super-
conductivity is to focus on achieving a high stiffness. For alkali-doped fullerides,
we demonstrated enhanced strong-coupling superconductivity that is effectively
enabled by an interaction-resilient metallic phase of mixed valence at higher tem-
peratures. This mixed-valence state, created from the interplay of multi-orbital
interaction scales, supports a high phase stiffness and allows critical temperatures
to be elevated by increasing the pairing interaction. Remarkably, the mechanism
revealed in this work leads to a simultaneous increase or preservation of both pairing
and phase coherence energy scales for electrons of the same (degenerate) electronic
bands. This approach contrasts with the strategy of enhancing superconductivity
through hybridization effects, such as coupling a flat band to a dispersive band. In
this scenario, the flat band hosts strong pairing and large energy gaps, while the
mobile electrons from the dispersive band establish phase stiffness [454]. Identifying
systems with a similar mechanism to that found in A3C60 is an interesting future
research direction.

Extended characterization of superconducting materials

We have introduced a generic method to calculate key superconducting parameters:
the correlation length 𝜉, the London penetration depth 𝜆L, and the depairing current
(density) 𝑗dp. Our approach is based on the Nambu–Gor’kov Green’s function
formalism incorporating finite-momentum pairing (FMP). By applying this method
to A3C60, we demonstrated good agreement with experimental values for the length
scales 𝜉 and 𝜆L, thereby validating our approach.

Access to the superconducting length scales and the depairing current extends the
theoretical and computational characterization of superconductors, which is com-
monly focused only on critical temperatures and gap functions. In particular, critical
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7 Concluding remarks

magnetic fields 𝐻c and critical currents 𝑗c can be obtained from 𝜉 and 𝜆L, which
is crucial for applications of superconducting materials. Therefore, our method
significantly broadens the scope of computational modeling of superconducting
matter, opening up many opportunities for future research. One important aspect is
that access to 𝜉 and 𝜆L allows for a more rigorous comparison between experimental
results and theoretical modeling, potentially helping to unveil the unresolved pairing
mechanisms, e.g., in heavy fermion compounds, MATBG, or Sr2RuO4.

In publication VI, we applied the FMP framework to describe strongly correlated
𝑠-wave superconductivity in a model of A3C60 using DMFT. However, our approach
can be generalized to other pairing symmetries and it can be integrated into any
Green’s function-based method in order to characterize superconductivity across
a variety of materials. Importantly, this method bridges a significant gap in the
analysis of strongly correlated superconductors, offering unprecedented access to
both superconducting length scales For instance, extending our approach to the
𝑑-wave superconductivity in cuprates could provide insights on the relation of the
superconducting dome and the BCS–BEC crossover phenomenology, a topic under
long-standing debate [197, 703, 709, 710]. Recently, Chen at al. [710] emphasized that
experimental access to 𝜉 can aid in scrutinizing the role of the BCS–BEC crossover
in cuprate physics. We suggest that a complimentary analysis through microscopic
calculations is also valuable for illuminating this scenario.

The recent progress in computational methods has advanced the accuracy of
non-empirical calculations of critical temperatures [96, 119, 155, 432, 715]. In this
context, implementing the FMP constraint for non-empirical calculations of 𝜉, 𝜆L,
and 𝑗dp (hence also 𝐻c and 𝑗c), could provide a comprehensive characterization of
the superconducting critical surface. This opens pathways for in-situ computational
optimization of superconducting material, which can potentially be enhanced by
machine learning techniques.
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