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Z U S A M M E N FA S S U N G

Smart Cities zielen darauf ab, das städtische Leben durch verbesserte
Effizienz, Nachhaltigkeit und Sicherheit zu optimieren. Allerdings
haben die derzeitigen, vorwiegend technologiegetriebenen, Smart-
City-Modelle Schwierigkeiten, signifikante Verbesserungen der ange-
strebten Ziele, im Besonderen in Bezug auf Nachhaltigkeit, zu demon-
strieren. Gleichzeitig wächst die öffentliche Skepsis in Bezug auf
Datenschutz und Überwachung. Diese Arbeit schlägt einen Wechsel
vor, von einem technologiezentrierten hin zu einem bevölkerungszen-
trierten Ansatz für Smart Cities, der auf bestehenden, von der
Bevölkerung betriebenen Sensoren, basiert. Dieser Ansatz stärkt die
Mitbestimmungsrechte der Bevölkerung und fördert deren aktive Ein-
bindung in urbane Räume, indem er den Bedarf an neuen Sensoren
minimiert und ihnen ermöglicht, ihre Daten selbst zu verwalten.

Diese Dissertation befasst sich mit technischen und sozialen Her-
ausforderungen bei der Umsetzung eines solchen dezentralen Da-
tenraums. Zu den wichtigsten technischen Herausforderungen gehö-
ren die Sicherstellung der Interoperabilität zwischen heterogenen Da-
tenquellen, das Finden relevanter Sensoren für stadtweite Dienste
und die Bewertung der Datenqualität in einem dezentralen System.
Soziale Herausforderungen konzentrieren sich auf die Wahrung der
Datensouveränität, den Vertrauensaufbau durch Transparenz und die
Einbeziehung technisch weniger versierter Personen.

Zur Bewältigung dieser Herausforderungen, liefert diese Arbeit
drei wesentliche Beiträge. Erstens wird SkABNet, ein attributbasiertes
Overlay-Netzwerk, eingeführt, das effiziente semantische Suchen
ohne zentrale Instanz ermöglicht und den Suchaufwand um bis
zu 90% reduziert. Zweitens wird ein Framework für datensou-
veränitätswahrende verteilte Vorverarbeitung entwickelt, das erlaubt,
die Verarbeitung der eigenen Daten zu kontrollieren, bevor diese
mit entfernten Diensten geteilt werden. Eine im Rahmen dieser Ar-
beit durchgeführte Anwendungsstudie zeigt, dass dieser Ansatz die
Entscheidungsfindung für technisch weniger versierte Personen un-
terstützt und ihnen hilft, die Verwendung ihrer Daten besser zu
verstehen. Schließlich wird eine Methode zur Kategorisierung von
Datenströmen vorgeschlagen, die einerseits ermöglicht, gemeinsame
Merkmale individuell platzierter Sensoren zu identifizieren, um Di-
ensten bei der Bewertung der Datenqualität zu helfen. Anderer-
seits können Mikroklimaereignisse identifiziert werden, die durch ak-
tuelle Qualitätskontrollmechanismen entfernt werden. Diese Beiträge
fördern und konkretisieren die Vision einer nachhaltigeren, inklusiv-
eren und bevölkerungszentrierten Smart City.
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A B S T R A C T

Smart Cities aim to enhance urban living by improving efficiency,
sustainability, and citizen engagement. However, current Smart City
models, primarily driven by technology, have struggled to demon-
strate substantial improvements in efficiency and sustainability
while facing public skepticism regarding data privacy and surveil-
lance. This thesis proposes a shift from technology-driven towards
a citizen-centered approach for Smart Cities, leveraging existing
citizen-operated sensors to create a more sustainable and inclusive
urban environment. This approach enhances participatory rights and
fosters active engagement with urban spaces by minimizing the need
for new sensor installations and empowering citizens to manage
their data.

This dissertation addresses the technical and social challenges as-
sociated with implementing such a decentralized data space. Key
technical challenges include ensuring interoperability between het-
erogeneous data sources, discovering relevant sensor data, and as-
sessing data quality in a decentralized system. Social challenges fo-
cus on maintaining citizen data sovereignty, building trust through
transparency, and ensuring that non-technically trained citizens are
included.

To address these challenges, this work consists of three key contri-
butions. First, it introduces SkABNet, an attribute-based overlay net-
work enabling efficient semantic search of distributed data streams
without a central authority, reducing search overhead by up to 90%.
Second, a data sovereignty-respecting framework for distributed pre-
processing is developed, allowing citizens to control the processing
of their collected data before sharing it with remote services. A user
study demonstrates that this approach supports decision-making for
non-technical users, helping them understand the usage of their pro-
vided data. Finally, a data stream categorization method is proposed,
which, on the one hand, enables the identification of shared character-
istics from individually placed sensors to help services rate the data
quality. On the other hand, microclimate events can be identified to
tackle local anomalies that current quality control mechanisms might
remove. These contributions collectively advance the vision of a more
sustainable, inclusive, and citizen-centered Smart City.
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1
I N T R O D U C T I O N

Smart Cities are increasingly important in today’s urban develop-
ment [232]. They promise to make cities more efficient, sustainable,
and livable [115, 135]. Previous approaches often aimed at installing
various sensors that collect, e.g., environmental, noise, and traffic data
in public places. With these new insights into a city’s resources, re-
source consumption, and the local environment, city officials advance
technology-driven solutions. However, these Smart City concepts
have yet to convincingly demonstrate their efficiency improvements
and sustainability [260, 276, 277]. At the same time, public perception
and skepticism towards technological surveillance are growing [195].
This is partly due to concerns that citizens are being degraded to
passive data sources without control over their own data [84].

Due to these social aspects, a gradual shift from Smart City 1.0
(technology-driven) to Smart City 2.0 (citizen-centric) could be wit-
nessed over the last decade. This development reflects the growing
recognition that citizens should be actively involved in designing and
managing their urban environment [110].

Simultaneously, the number of citizen-operated sensors is increas-
ing due to various technological advancements in the smart home
sector [235]. Additionally, more and more citizens carry sensors on
their bodies or in their vehicles. These developments open up new
possibilities for a citizen-centric Smart City, making it more sustain-
able by using these preexisting sensors and inclusive for its citizens
by enabling them to participate actively.

For this reason, the following thesis proposes a citizen-centric ap-
proach that builds on citizens’ existing sensors. This concept aims to
create a more sustainable Smart City model. Resources are conserved
by reducing the need to install new sensors and actively involving cit-
izens from the beginning, strengthening citizens’ participatory rights.

The engagement of citizens with their data, environment, and, ul-
timately, their city should be increased in two ways: First, citizens
should be able to manage their own data and regain control over the
use of their provided data. Second, they can provide their own so-
called services, which are software applications that use the available
data sources to offer added value to themselves and others. A data
space, built upon citizens’ sensors, is intended to create a commu-
nity that exchanges information and insights about data collection,
processing, and their use in different domains. Citizens actively par-
ticipate in the co-creation of data collected citywide, allowing them
to discover existing data sources and explore new use cases for avail-
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2 introduction

able data that not only benefits them as an individual but possibly a
whole community.

Additionally, it is crucial to include non-technically trained citizens
in the process. This requires user-friendly interfaces and clear expla-
nations to lower participation barriers and ensure all citizens benefit
from digital technologies.

These factors form the basis for this dissertation’s research ques-
tions and objectives, detailed in the following sections.

1.1 problem statement

Implementing a citizen-centric approach for Smart Cities presents
a complex challenge encompassing technical and social dimensions.
The following section details the central problem areas that must be
overcome to successfully realize a distributed, citizen-operated data
space.

1.1.1 Technical Challenges

TC1 - Interoperability: Despite the availability of open standards, in-
teroperability between different systems and data formats remains a
significant challenge. Integrating existing heterogeneous data sources
is essential; these must be unified through various methodologies to
enable efficient data exchange and broader data utilization [232]. This
challenge requires the development of robust protocols and middle-
ware solutions to ensure the compatibility and cooperation of various
technologies.
TC2 - Discovery of Sensor Data: A central technical issue is the ef-
ficient discovery of relevant sensor data in a distributed data space.
Services must quickly and accurately identify relevant data sources
and request their data [212]. This requires the implementation of ad-
vanced search algorithms and an appropriate citywide data model to
describe the existing data sources and sensor data.
TC3 - Data Quality: In a distributed system where uniform deploy-
ment of data sources is not guaranteed, mechanisms must be devel-
oped to assess the quality of data sources without violating the data
sovereignty of the citizens [16]. Ensuring data quality is crucial to
guarantee the reliability and usefulness of collected data.

1.1.2 Social Challenges

SC1 - Ensuring Data Sovereignty and Privacy of Citizens: A cen-
tral social challenge is the retainment of citizen’s control over their
collected data and the protection of their privacy [110]. This requires
transparent data management practices and clear guidelines that re-
spect and promote citizens’ rights. Implementing such practices must



1.2 research questions 3

ensure that citizens are informed about their data usage and under-
stand the benefits of providing their data.
SC2 - Trust and Transparency: Building and maintaining trust in tech-
nological solutions are fundamental for acceptance and use by citi-
zens [64]. This can be achieved through transparent processes, open
communication, and active involvement of citizens in the develop-
ment and management of the data space. Creating a trustworthy envi-
ronment is essential to encourage citizens’ willingness to participate.
SC3 - Inclusion of Non-Technically Trained Citizens: Another eth-
ical issue is the inclusion of citizens who do not have a technical
background. It is crucial that all citizens, regardless of their techni-
cal knowledge, can participate in the use and management of the
distributed data space [110]. This requires the development of user-
friendly interfaces and clear, understandable instructions to lower
participation barriers and ensure that the benefits of digital technolo-
gies are accessible to everyone.

These technical and ethical issues must be addressed to ensure
the successful implementation of a citizen-centric approach in Smart
Cities. The following section details this dissertation’s specific re-
search questions and objectives.

1.2 research questions

The central research of this dissertation is guided by two overarching
research questions, focusing on the sustainability of modern Smart
Cities and the utilization of a distributed, citizen-operated data space
by services. Specific sub-questions further detail these overarching
questions to illuminate various aspects of the research project.

RQ1: How can modern Smart Cities actively integrate their citi-
zens to become more sustainable?
This question aims to investigate the integration of citizens to improve
the acceptance and sustainability of Smart Cities. The following spe-
cific sub-questions arise from this:

• RQ1.1: How can data from existing sensor hardware be ade-
quately and effectively integrated into a citywide data space?

• RQ1.2: What mechanisms are required to ensure the data
sovereignty of citizens and to create an understanding of the
use of their data?

• RQ1.3: How can non-technically trained citizens be effectively
involved in using and managing the citywide data space?

RQ2: How can services access a citywide data space and utilize
the available data while considering data sovereignty?
This question examines how services can efficiently and securely ac-
cess and utilize the data available in the distributed data space while
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maintaining the data sovereignty of citizens. The following specific
sub-questions arise from this:

• RQ2.1: How can services efficiently find relevant data sources
in the distributed data space and utilize their data?

• RQ2.2: What mechanisms are necessary to evaluate data quality
in a distributed system without violating the data sovereignty
of citizens?

1.3 contributions

After establishing the research questions, the following section briefly
summarizes the three contributions of this work. These contribu-
tions can be applied independently but are integrated into a compre-
hensive system through the corresponding overarching architecture
presented in this thesis. Each component was prototypically imple-
mented and evaluated either with real-world data or through simula-
tions.

contribution 1 : data stream discovery in distributed

data spaces This contribution enables services to search for and
request existing data streams in a distributed data space. For this
purpose, an attribute-based overlay network named SkABNet was
developed. SkABnet is a distributed overlay architecture based on
Skipnets introduced by Harvey et al. [106]. SkABNet enhances the
SkipNet identifiers by attribute-value pairs, hence the name attribute-
based SkipNet (SkABNet). SkABNet provides a new search algorithm
that uses these attribute-value pairs and performs semantic searches
within a network of nodes without a central instance. A service can
find individual and entire groups of data streams with specified se-
mantic properties through this semantic search. The search is intel-
ligently disseminated within the overlay network so that each node
receives the message once at most, and each desired node is found in
O(log(n)) message hops.

In the Smart City use case, the nodes represent the individual data
sources of participating citizens. Semantic properties include, for ex-
ample, the type of data collected, the sensor’s location description,
and characteristics such as the temporal resolution of the data stream.

To evaluate SkABNet, a simulation containing up to 80,000 sensors
was created. Within these networks, 14 different search queries with
increasing complexity were evaluated, proving that SkABNet can re-
duce the total search message overhead by up to 90% compared to
SkipNets search.
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contribution 2 : data sovereignty respecting dis-
tributed preprocessing To adhere to citizens’ privacy
concerns and data sovereignty, the second contribution consists of de-
veloping a framework that allows services to define a preprocessing
pipeline executed locally on the data sources. By providing various
privacy settings and a visual representation of data processing, citi-
zens are empowered to maintain their privacy and data sovereignty.
Services also benefit from decentralized preprocessing of raw data,
allowing them to distribute the load and ensure that all retrieved
data is available in a standardized format.

The evaluation of this approach focuses on usability and applicabil-
ity, particularly for non-technically trained citizens. By integrating all
citizens and promoting their knowledge and understanding of data
processing and analysis, the Smart City’s social sustainability can be
strengthened. Evaluation results show that a granular representation
of processing steps can enhance citizens’ understanding of the data
processing procedures.

While this contribution can be applied in various use cases utiliz-
ing a distributed service architecture, it builds on the comprehensive
architecture in this work, enabling citizens to engage actively with
the use of their data.

contribution 3 : categorization of data streams based

on their data quality When working with private sensors,
one of the main challenges is evaluating the data quality. While previ-
ous work has focused on improving data quality by removing faulty
measurements, this study presents an approach that categorizes data
sources based on data anomalies and the events causing them. Ser-
vices can subsequently use this categorization as an indicator of data
quality. Still, it also allows citizens to improve their sensors’ place-
ment, thereby proactively ensuring more accurate measurement data.
To achieve this, a data processing pipeline was implemented and eval-
uated. This pipeline compares data streams from various data sources
and groups them based on common anomalies and events. While
anomalies describe unexpected changes in the data stream, they are
usually triggered by external events. All data sources affected by the
same or similar events can be identified by categorizing the data
streams.

In the thesis, this method is provided by a developed service that
can assess the data quality of unsupervised data source placements
by participating citizens. However, this method can also be applied
in other use cases where similar data streams exist and external influ-
ences must be identified.
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Chapter
Research
Question

Contribution Publications

1: Introduction

2: Fundamentals

3: Requirement Analysis

4: Related Work

5: Architecture RQ1.1 & RQ1.2 [31, 32]

6: Discovery RQ1.1 & RQ2.1 C1 [137]

7: Preprocessing RQ1.2 & RQ1.3 C2 [140]

8: Quality
RQ1.1 & RQ1.2 &

RQ2.2
C3 [139]

9: Discussion and Conclusion

Table 1: Overview of the chapters assigned to the contributions and research
questions.

1.4 outline

The following section outlines the structure of the thesis. Additionally,
Table 1 gives a short overview of each chapter’s contribution, research
questions, and published papers.

Chapter 2 provides an overview of contextual fundamentals such
as Smart Cities and distributed data management.

Chapter 3 examines existing survey papers in the field of Smart
City platforms and related areas to derive general requirements
for an architecture focusing on a citizen-centric Smart City plat-
form.

Chapter 4 reviews existing Smart City platforms and solutions for
involving citizens in the Smart City context to identify open
research gaps.

Chapter 5 introduces the overarching architecture of a citizen-
centric Smart City data space. The previously identified re-
search gaps and requirements are addressed here.

Chapter 6 presents the distributed discovery overlay SkABNet. It
begins with the technical foundations and explains the individ-
ual components of the overlay. Finally, the discovery mecha-
nisms are evaluated and discussed based on a simulated data
space.

Chapter 7 attends to the distributed preprocessing of sensitive
data. A user study was conducted to evaluate the feasibility
and usability for non-technically trained citizens.
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Chapter 8 introduces mechanisms for classifying data sources
based on commonalities in their data streams. These classifi-
cation mechanisms are evaluated and discussed using a real-
world dataset.

Chapter 9 summarizes and discusses the research questions and
contributions. In a final outlook, the remaining research topics
are presented.

1.5 publications

Some ideas and figures have appeared previously in the following
publications:

[31] Heiko Bornholdt, David Jost, Philipp Kisters, Michel Rottleuth-
ner, Dirk Bade, Winfried Lamersdorf, Thomas C Schmidt, and
Mathias Fischer. “SANE: Smart networks for urban citizen par-
ticipation.” In: 26th International Conference on Telecommunica-
tions (ICT). 2019.

[32] Heiko Bornholdt, David Jost, Philipp Kisters, Michel Rottleuth-
ner, Sehrish Shafeeq, Winfried Lamersdorf, Thomas Schmidt,
and Mathias Fischer. “Smart Urban Data Space for Citizen Sci-
ence.” In: Electronic Communications of the EASST (2021).

[136] Philipp Kisters, Dirk Bade, and Julius Wulk. “Dynamic rout-
ing using precipitation data.” In: 4th International Conference on
Fog and Mobile Edge Computing, FMEC (2019).

[137] Philipp Kisters, Heiko Bornholdt, and Janick Edinger. “SkAB-
Net: A Data Structure for Efficient Discovery of Streaming
Data for IoT.” In: 32nd International Conference on Computer
Communications and Networks (ICCCN). 2023.

[138] Philipp Kisters, Vinh Ngu, and Janick Edinger. “Urban Heat
Island Detection Utilizing Citizen Science.” In: European Con-
ference on Service-Oriented and Cloud Computing. 2022.

[139] Philipp Kisters, Hanno Schreiber, and Janick Edinger. “Cat-
egorization of crowd-sensing streaming data for contextual
characteristic detection.” In: Journal of Smart Cities and Society
(2023).

[140] Philipp Kisters, Leonie v. d. Veen, and Janick Edinger.
“Privacy-Preserving Edge Processing in Decentralized Citizen-
Centric Sensor Networks.” In: International Symposium on
Intelligent and Distributed Computing. 2023.





2
F U N D A M E N TA L S

This chapter provides fundamental contextual information necessary
for understanding the citizen-centric approach in Smart Cities. First,
the development of the concept of Smart Cities is explained, including
their goals and current challenges. Then, different data management
architectures are discussed, including data warehouses, data lakes,
and data spaces, which are central components for managing large
amounts of data in modern urban environments. Finally, the basics
of sensor networks, which serve as essential data sources for Smart
Cities, are covered.

Discussing these fundamentals is crucial for understanding the
proposed concept of a decentralized, citizen-operated data space.
These architectures and technologies form the foundation for the pro-
posed approach and provide the necessary infrastructure and techni-
cal framework to actively involve citizens in data collection, manage-
ment, and utilization.

Dedicated fundamentals sections in the following chapters provide
deeper insights into the foundations required for each individual con-
tribution.

2.1 smart cities

With the rising population in urban regions, which surpassed the 55%
mark in 2018 according to the United Nations [255], cities face increas-
ing challenges. These range from heightened traffic congestion and
housing shortages to escalating environmental pollution, resource
scarcity, and growing vulnerability to climate change [146, 256]. To
address these challenges, modern cities employ various information
technologies, which, while not directly transforming them into Smart
Cities [110], form a crucial foundation for tackling these multifaceted
issues through informed decision-making.

The first section highlights the origins of the concept of a Smart City
and how it has evolved over the years. After that, different definitions
are presented and discussed. With the evolution of the term and its
definitions, there also has been a shift in approach. G. Trencher cate-
gorizes this development into Smart City 1.0, which primarily focuses
on the use of various technologies, and Smart City 2.0, which centers
on the citizens using smart technologies to solve social problems and
address individual needs [253].

9
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Figure 1: Development of the number of research papers published contain-
ing the given terminologies in their title or abstract.

2.1.1 Origin

The term Smart City first emerged in the 1990s [11]. Since then, many
synonyms and definitions have been developed. Here, synonyms re-
fer to alternative terms that precede a different adjective than smart,
including intelligent, wired, or digital. Each adjective slightly shifts the
focus, yet there is considerable overlap in the concepts understood un-
der the umbrella of a modern city [222]. The use of these synonyms
already indicates the complexity of the concepts of a modern city, as
technology alone is not the sole driving force behind a Smart City. Fig-Numbers are based

on the results from
searching Google

Scholar with a given
term.

ure 1 illustrates the change in the most used terms. The evolution of
Smart City terminology reflects broader trends in urban development
and technological integration. Initially, terms like Digital City focused
on the technological infrastructure, emphasizing the digitization of
urban services and processes. This period marked the early stages
of urban digital transformation, where the primary objective was to
establish the technological backbone for future smart applications.

As the concept matured, the term Intelligent City began to gain
prominence in research, indicating a shift towards leveraging this dig-
ital infrastructure to make more data-driven and intelligent decisions
in urban management. The focus expanded from merely having digi-
tal tools to applying these tools in a way that could enhance efficiency,
sustainability, and the quality of urban life.

The transition to the term Smart City signifies a further evolution. It
encompasses the technological and intelligent aspects and integrates
them into a holistic approach that includes economic, social, and envi-
ronmental dimensions. Smart Cities are now seen as ecosystems that
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use digital and communication technologies to improve municipal
services, reduce costs and resource consumption, and engage more
effectively with citizens.

In recent years, the emergence of terms like Sustainable City or Re-
silient City has been seen, which reflect a growing emphasis on envi-
ronmental sustainability and the capacity to withstand and quickly
recover from physical, social, and economic challenges. These terms
highlight the need for cities to be designed and managed in a sustain-
able way for future generations and resilient in the face of emerging
challenges. While the term

Sustainable City
was previously used
in the city planning
and sociological
context, only in the
recent decade was
this term also used
within the
technological
context of Smart
Cities.

The trend in Smart City terminology thus mirrors the evolving un-
derstanding of what it means to be a "smart" city in the 21st century.
It’s not just about the technology itself but how it is integrated and uti-
lized to improve the overall fabric of urban life, making cities more
livable, efficient, and sustainable for their inhabitants. The progres-
sion of these terms from Digital to Smart to Sustainable and Resilient
Cities underscores a growing recognition of the multifaceted nature
of urban challenges and the need for comprehensive, integrated so-
lutions that address the economic, social, and environmental dimen-
sions of urban life [58].

2.1.2 Definitions

As previously mentioned, there are various definitions of the Smart
City concept [182], which not only highlight individual areas but also
obscure different aspects behind the notion of smartness [110]. While
individual definitions focus on diverse areas within the Smart City,
most can be categorized into two main emphases. The first group of
definitions primarily concentrates on the use of information technolo-
gies [100, 105, 272]. These align with the concept of Smart City 1.0,
which views technology as the driving force behind Smart Cities.

The second group prioritizes the social aspect, positioning citizens
as active participants in the Smart City [29, 37, 59, 75, 99]. This per-
spective emphasizes the importance of social interactions, community
engagement, and citizen empowerment in the urban environment.

Other definitions segment Smart Cities into various components to
address both the technological and social spheres [73, 132, 176]. These
often adhere to the six characteristics of a Smart City identified by
R. Giffinger [90]: Smart Economy, Smart People, Smart Governance,
Smart Mobility, Smart Environment, and Smart Living. These charac-
teristics shift the focus from technology to a broader view, including
citizens and the real-world issues facing urban areas. This dual per-
spective reveals a dynamic and multifaceted understanding of Smart
Cities. On one side, there is an emphasis on the foundational role of
technology in enabling smart urban operations and services. On the
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other, there is a growing acknowledgment of the importance of social
factors and citizen involvement in shaping the Smart City’s evolution.

2.1.3 Smart City 2.0

The primary criticism of the initial approaches to Smart City initia-
tives revolves around their strong emphasis on technical means [163,
253]. Scholars in urban development and city planning have progres-
sively articulated a collective critique of the neoliberal vision of the
Smart City, questioning whether digitalization can truly foster sus-
tainability, especially in terms of environmental protection and so-
cial justice [84, 91, 110, 111, 228, 260]. Consequently, the concept of
Smart City 2.0 is viewed from the perspective of existing, established
cities facing new challenges. These cities must consider their exist-
ing social and spatial conditions rather than completely reimagining
them [228]. This transition signifies a broader recognition that while
technology is essential, a Smart City’s ultimate goal is to enhance its
residents’ quality of life. Therefore, the evolution from Smart City 1.0
to Smart City 2.0 reflects a paradigm shift from a technology-centric
to a citizen-centric approach, where technological solutions are de-
signed and implemented to meet the specific and diverse needs of
the urban population. This change emphasizes the importance of not
only incorporating advanced technologies but also fostering commu-
nity engagement and ensuring that technological advancements con-
tribute positively to the societal and environmental fabric of urban
areas. C. Martin [163] identifies five areas of tension in the develop-
ment of smart yet sustainable cities:

Economic growth is not sustainable. Economic growth is often
critiqued for its sustainability, particularly from the social justice
standpoint. The distribution of financial gains derived from eco-
nomic growth is typically left to market forces, which can exacer-
bate economic inequality rather than promote social equity [200]. This
perspective underscores the inherent tension between pursuing eco-
nomic expansion and achieving equitable outcomes.

In the context of urban development, especially within Smart City
initiatives, the emphasis on economic growth can lead to a prioriti-
zation of investments and developments that favor higher economic
returns over social benefits. This approach can result in a disparity in
the quality of infrastructure, services, and opportunities available to
different population segments.

Uneven distribution of benefits from digital innovations. The
uneven distribution of benefits from digital innovations highlights
a significant challenge in Smart Cities. The concept that economic
resources will trickle down to lower-income residents is, at best, a
manifestation of trickle-down economics, which often fails to deliver
substantial improvements to the less affluent segments of society. The
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advent of "smartness" in urban environments can create cities of two
speeds: one that favors highly skilled worker-consumers and another
that neglects the basic needs of a growing number of economically
vulnerable citizens [110].

To address this, Smart City strategies must be inclusive, ensuring
that the advantages of digital innovations are accessible to all city res-
idents, regardless of their economic status. This requires a deliberate
focus on equitable policy-making that aims to distribute the gains
from technological advancements more evenly across the urban pop-
ulation. By doing so, cities can avoid the pitfall of creating a two-tier
society and instead move towards a more inclusive and sustainable
urban future.

Digital innovations have the potential to disempower and
marginalize citizens. Public participation is often characterized as
digital connections between citizens and smart urban infrastruc-
ture [17, 39]. Critics argue that through this form of participation,
citizens become, either voluntarily or involuntarily, mere sensors
and data sources within the Smart City framework. Instead of being
empowered to engage in the Smart City actively, citizens are at risk
of being instrumentalized as another efficient component of the
digital infrastructure [84].

This critique highlights a fundamental concern about the nature of
citizen engagement in smart urban environments. The risk is that ev-
ery technology meant to enhance urban life could reduce individuals
to data providers, stripping them of agency and reducing their role
to passive elements within a technologically driven ecosystem. Such
a dynamic can lead to alienation and disenfranchisement among res-
idents, undermining urban communities’ social fabric and cohesion.

Digitalization alone contributes little to environmental protec-
tion. There is a consensus that integrating digital solutions into urban
infrastructure is crucial for the transition to a Smart City [67, 84, 110,
124, 248]. These digital solutions are intended to achieve higher oper-
ational efficiency, but the claim that they contribute to sustainability
and environmental protection is criticized as a form of greenwash-
ing [260, 277]. While increased efficiency is often justified with sus-
tainability concerns, the broader environmental impact, such as how
Smart Cities affect surrounding ecosystems that provide resources
and absorb waste, is frequently overlooked and unaddressed [126,
201].

Consumer cultures are deemed unsustainable. Critics argue that
these cultures, characterized by increasing material consumption, are
incompatible with environmental conservation, leading to escalating
environmental degradation [111, 162, 260]. This viewpoint suggests
that the very ethos of consumerism, which drives much of the Smart
City development, exacerbates resource depletion and environmental
damage.
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It becomes evident that the aforementioned tensions cannot be
resolved solely through technological innovations and solutions. In-
stead, social structures must be considered, and solutions from so-
cial research fields need to be integrated into Smart Cities. By doing
so, all city residents can benefit from digital transformation. Addi-
tionally, citizens should be encouraged to rethink their consumption
habits and consider their impact on the environment. While digital
solutions can assist in this regard, they cannot offset the increasing
consumption driven by ever-greater efficiency. This approach high-
lights the necessity for a balanced strategy combining technological
and social initiatives to foster sustainable urban development and a
more conscientious societal ethos towards consumption and environ-
mental stewardship.

2.2 data management

In the era of digital transformation and the Internet of Things (IoT),
characterized by an almost exponential increase in collected data and
the diversity of underlying data sources, the necessity of a usually
widely distributed data management system emerges as a central
component of a modern Smart City [141, 180, 226, 261]. The scope
and variety of data create a complex and dynamic data landscape,
necessitating an innovative infrastructure capable of efficiently cap-
turing, storing, analyzing, and distributing the data [107, 147]. This
infrastructure must not only handle the sheer volume of data but also
accommodate the varying nature of data types and sources, ensuring
robustness, scalability, and adaptability in the face of evolving urban
data requirements.

A distributed data management system is aimed to offer a solution
to the challenges arising from the collection of vast amounts of data
and the heterogeneity of data sources [72]. Its decentralized structure
enables efficient scalability to keep pace with the continuous increase
in data volume. This is crucial not only in various economic sectors
but also in a Smart City environment, where many sensors, devices,
and applications constantly generate data that must be processed in
real-time to ensure data-driven decisions and services [107].

The decentralized architecture of such a system also contributes to
increased resilience and fault tolerance. In a Smart City, which relies
on comprehensive data availability, redundancy, and data distribu-
tion are essential to ensure uninterrupted services, even in the event
of partial system failures or network disruptions [88].

Another significant aspect is the integration of privacy and security
principles into the distributed data management system. The modern
Smart City faces the challenge of managing not only a large amount
of data but also sensitive information. A distributed data manage-
ment system provides mechanisms for decentralized access rights
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management and the implementation of advanced encryption tech-
nologies to ensure data confidentiality and integrity [88].

In the convergence of Big Data and the Smart City concept, a dis-
tributed data management system thus acts as a key instrument to
manage the complexity and dynamism of the contemporary data
landscape. The ability to effectively organize, process, and protect
data is crucial for Smart Cities, contributing to creating a sustainable,
efficient, and technologically advanced urban environment [107, 141].

In implementing distributed data management systems, various ap-
proaches can be distinguished based on the nature and location of the
stored data, as well as the division of responsibility for data manage-
ment. Here, three fundamental principles are introduced: Data Ware-
houses serve as a central storage location that collects and unifies
data from various sources; Data Lakes use a central storage location
as well but focus on storing raw data, with the application of the data
not yet clearly defined; Data Spaces represent a semantic abstraction
layer over a set of decentralized managed data stores.

2.2.1 Data Warehouse

The term Data Warehouse is particularly known in the fields of logis-
tics and supply chain management [15]. With the digitization within
companies, there is now an increasing amount of data regarding var-
ious manufacturing processes, logistics between different locations,
and sales. Traditionally, this data was maintained in separate areas,
but Data Warehouses enable a unified view of relevant data [134].
In this system, data from various sources are consolidated and stan-
dardized. This aggregated dataset provides specialized data views
for different parts of the organization. This can serve to optimize lo-
gistics processes, marketing, and further development and efficiency
enhancement within production [15, 134].

Classical characteristics of a Data Warehouse include central data
storage, centralized data management, and the preprocessing and
standardization of data from various sources[86, 134]. It is also cru-
cial that all this data belongs to a single organization, ensuring full
access to the various data sources. Figure 2 illustrates the typical data
flow of a Data Warehouse. On the left side, various data sources are
shown, from which data is stored in the Data Warehouse using vari-
ous Extraction, Transformation, and Loading (ETL) processes. By link-
ing the different data sets, dedicated views for different areas within
the organization can then be created.

While traditional Data Warehouses were based on static struc-
tures and queried new data only periodically, various approaches
have emerged to utilize Data Warehouses for real-time data process-
ing [183, 219, 223]. The demands for real-time processing and the
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Figure 2: Data flow in an abstract Data Warehouse.

ever-changing data structures led to the development of Data Lakes,
which are discussed in the following section.

2.2.2 Data Lake

Besides Data Warehouses, there is also the abstraction layer of Data
Lakes, a concept initially introduced by James Dixon in 2010. It fo-
cuses on a central infrastructure for raw data, whose application and
analysis cases are not yet fully known [71]. Since its inception, the con-
cept has evolved and expanded, leading to various definitions. The
primary focus remains on storing raw data, but contrary to Dixon’s
initial idea, data often originate from many sources, not just one [89].
One of the most cited works, by Nargesian et al., describes a Data
Lake as a large collection of data that also possesses the following
four characteristics [184]:

1. Data is managed across various storage systems.

2. Data exists in diverse formats.

3. Data may be present without associated metadata or utilize
metadata in various formats.

4. Data may change over time.

These points highlight the differences from traditional Data Ware-
houses. The data structure is neither fixed nor standardized and can
change over time. Moreover, the system in which the data is stored
is not standardized but can consist of a variety of different data man-
agement systems, referred to in this context as repositories [97]. By
separating the storage of data from its processing, better scalability
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Figure 3: Abstract data lake architecture highlighting the shift to extract and
transform data individually for the tasks using collected data.

is achieved, and real-time data can continuously be fed into the sys-
tem [50, 97]. Data transformation and processing occur only when
the data are retrieved from the Data Lake for a specific use case.

Figure 3 illustrates a Data Lake’s abstract architecture and data
flow. On the left side, all the data sources are shown. These can have
various data formats. On the right side, data from the Data Lake are
processed and utilized, and traditional methods like ETL are applied
here. Machine Learning procedures on the raw data are also possible,
which do require separate preprocessing [97].

While Data Lakes enable handling large volumes of data with vary-
ing structures and real-time processing, they still require a central
location for storage or at least a central organization of distributed
storage repositories. This means that data sources relinquish control
and cannot track how their data is used. Data Lakes become impracti-
cal when data from various stakeholders are needed, and none want
to provide full access to their raw data. In such instances, the concept
of Data Spaces has been developed, which is explained subsequently.

2.2.3 Data Space

Data Spaces were first defined by Michael Franklin in 2005, introduc-
ing necessary principles[83, 98]. Since then, the term has been used
in both business and research, and even the EU has promoted a Euro-
pean data space in its 2020 data strategy[74]. A Data Space is defined
by the following four characteristics:

distributed data infrastructure : This means that data is not
stored centrally; instead, all participants manage their data lo-
cally.

no common database schema : Data integration should occur
at the semantic level, requiring a common data model that of-
fers interoperability.
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no single source of truth : No central entity knows the abso-
lute truth. Due to the distributed infrastructure, redundancy
can occur, and consistency does not need to be enforced.

data spaces can be nested : Data Spaces can also be linked to
each other and do not need to have a disjoint set of data sources.
Thus, different Data Spaces can build upon one another and still
share some of the same data sources.

Data Spaces, through their distributed data infrastructure and the
autonomy of data management without the need for a common data-
base schema, offer significant advantages over Data Lakes and Data
Warehouses for the Smart City. A citywide data space enables link-
ing various data sources from industry, private individuals, research
institutions, and official bodies without all participants needing to
agree on a universal database schema. It is crucial that the existing
data are semantically described. This way, even without a common
data schema, semantically related data can be found and linked at
the semantic level. Another advantage is that the respective own-
ers retain sovereignty over their data and can continue to decide for
themselves with whom they share their data or for which external
services their data can be used. To facilitate this, participants com-
municate via a so-called Connector. This Connector should, in turn,
be technology-independent or available as a microservice to be inte-
grated into existing infrastructure. The Connector manages all data
space-relevant information and exists independently of the previous
infrastructure [116].

2.3 sensor networks

Data is one of the most crucial assets today [259]. When analyzed
and interpreted correctly, it offers various organizations operational
advantages [203] and fosters innovation [289], enabling them to proac-
tively identify and address new challenges. Only with enough data
can relevant information be extracted and used to support decision-
making processes. Increasingly, reliance is placed on distributed sen-
sor networks that monitor their environments and make this data
available as a continuous stream. The decreasing cost of sensor hard-
ware also plays a crucial role, enabling the deployment of extensive
distributed sensor networks in an expanding range of areas in the
daily live [8]. Sensor networks are wireless networks comprised of
numerous small, autonomous sensors capable of collecting data from
their surroundings and transmitting it wirelessly to a central data
processing unit. These networks often gather, process, and transmit
information in real-time, making them invaluable in various applica-
tions within the Smart City and in other sectors like agriculture, dis-
aster warning systems, and detection of abnormal behaviors. Their
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Figure 4: Abstract architecture and communication model for a centralized
sensor network. On the right, a distributed network of sensors con-
nects to the internet via gateway nodes and sends their data to the
end-user or application.

real-time data collection and processing capabilities provide the foun-
dation for responsive and adaptive systems that can significantly en-
hance efficiency, safety, and quality of life in various settings.

2.3.1 Common Properties

While sensor networks are versatile and often deployed for specific
purposes, they generally share the following four characteristics [8,
44, 61, 254]:

Wireless communication is a key feature of sensor networks, allow-
ing sensors to communicate with each other and with a base station
or gateway wirelessly. This enables flexible and cost-efficient deploy-
ment. Various wireless communication solutions can be employed in
this context. An abstract sensor network consists of sensors and rout-
ing nodes, as shown in Figure 4. Sensors collect data and send it to
the gateway via routing nodes, which forward it to the application or
end-user.

An alternative architecture is depicted in Figure 5, where individ-
ual sensor nodes form an ad-hoc network. This setup requires balanc-
ing the added complexity of dynamically routing sensor data to the
gateway or so-called sink node against the benefits of increased en-
ergy efficiency and flexibility [51, 149, 173, 278]. Additionally, ad-hoc
networks are applicable in areas without existing wireless infrastruc-
ture [169, 170, 186], offering the ability to establish connectivity in
remote or undeveloped regions, thus enhancing the reach and utility
of sensor networks.

Distributed sensors in a network are installed across a wide area,
allowing for data collection at varying densities depending on the
specific requirements. The deployment of sensors in large numbers
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Figure 5: Abstract architecture and communication model for an ad-hoc sen-
sor network. Within this architecture, sensors route their collected
data via other sensors to the closest sink node with an internet
connection. From here, it is made available to the end-user or ap-
plication.

enables the gathering of comprehensive information about the entire
area. This extensive distribution ensures that detailed and varied data
are obtained, providing insights into different aspects of the environ-
ment or monitored phenomena.

Autonomous sensors are often battery-powered and must there-
fore operation must be focused on energy efficiency. They are typi-
cally designed to function autonomously and require minimal main-
tenance. However, it is expected that individual sensors may fail or
transmit erroneous data, which must be considered particularly in
processing collected data.

Sensor networks deliver real-time data, making them particularly
useful for applications requiring rapid information or responding to
real-time changes. However, the continuous stream of data results in
a large volume of transient measurements, which individually may
contain little information. Collected data gains significance when con-
textualized and related to other measurements, as the aggregation
and analysis of these data points over time can reveal trends, pat-
terns, and anomalies that inform more comprehensive insights and
decision-making processes.

2.3.2 Application Areas

Sensor networks play a crucial role in various aspects of modern life,
with environmental monitoring being a domain where vast and exten-
sive sensor networks are deployed. In this field, widely distributed
sensors provide comprehensive, accurate, and timely data essential
for understanding and managing natural resources and ecological
processes. In the following, typical applications of sensor networks
in environmental monitoring are presented:

climate and weather monitoring : Extensively distributed
sensor networks collect data on temperature, humidity, wind
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speed and direction, precipitation, and other meteorological
parameters. This data is pivotal for weather forecasting and
analyzing the impacts of climate change [164].

air quality monitoring : Sensors measure the concentration of
pollutants such as CO2, NOx, SO2, and particulate matter in the
air. This data is crucial for assessing air quality and formulating
air pollution control strategies [161, 204].

water quality monitoring : Sensor networks in rivers, lakes,
and oceans measure parameters such as pH level, dissolved
oxygen, salinity, temperature, and the presence of contaminants.
This data is vital for monitoring water pollution and managing
water resources [4, 208].

soil monitoring : Sensors embedded in the soil collect moisture,
nutrient content, and temperature data. These insights are cru-
cial for agriculture, particularly precision farming, and for as-
sessing soil quality and health [158, 171].

exploration and protection of ecosystems : By moni-
toring various environmental parameters, sensor networks
contribute to understanding and protecting ecosystems.
They enable researchers to observe and analyze changes in
ecosystems [218, 243].

energy efficiency and sustainability : Sensor networks also
facilitate the monitoring and managing of energy consumption,
which is crucial for developing sustainable practices and reduc-
ing the ecological footprint. This is particularly used in individ-
ual smart buildings or entire sectors of a Smart City [177].

By providing real-time data, sensor networks in environmental
monitoring enable proactive and data-driven decision-making, which
is crucial for addressing environmental issues and promoting a sus-
tainable future. Sustainability and environmental monitoring are also
gaining significance in Smart Cities. Given their substantial impact on
the environment [27, 185], various measures are being implemented
to minimize these effects. Urban sensor networks [60, 152] assist in
validating the impacts of the measures taken or identifying areas of
the city where further actions are needed, thereby enhancing the abil-
ity to manage urban environments sustainably and responsibly.

2.3.3 Citizen-Operated Sensor Networks

In addition to officially installed sensor networks, distributed sensor
networks organized by the scientific community or motivated and
active citizen networks are increasingly emerging [122, 144]. Further- https://sensor.

community/more, private households are integrating more sensor technology [70],

https://sensor.community/
https://sensor.community/


22 fundamentals

serving as tools in Smart Homes or being installed out of interest.
Collected data in these cases is often only used locally, which adds
no value to the broader community. Official citywide sensor networks
must be established, maintained, and frequently defended by the city
against public concerns regarding privacy and data protection. Ad-
ditional challenges include data transmission, storage, and process-
ing [5]. Given the high costs associated with Smart Cities, many cities
are trying to integrate active citizens into the data collection process,
utilizing existing hardware and knowledge. This movement towards
citizen involvement is referred to as Crowd Sensing or, in the context
of Smart Cities, as Citizen Science [76].

2.4 summary

This chapter introduced the fundamental concepts and technologies,
outlining the origins of the term Smart City and its evolving defini-
tions. The focus is particularly on the shift from a technology-driven
to a citizen-centric Smart City, often referred to as Smart City 2.0.
Even with this shift towards a citizen-centric approach, a significant
challenge remains in managing the vast amounts of data collected
from various areas of a Smart City. The chapter presents three dif-
ferent conceptual data management mechanisms to address this is-
sue. In Smart Cities, widely deployed sensor networks typically serve
as data providers, enabling decision-makers to identify and address
challenges proactively.

The next chapter addresses Citizen Science platforms and their
goals, analyzing established requirements for a citywide data plat-
form and discussing them with a focus on a citizen-centric approach.
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R E Q U I R E M E N T A N A LY S I S

Following the establishment of key contextual foundations in the pre-
vious chapter, this chapter delves deeper into the motivation and
challenges behind the current state of citizen science. It analyzes ex-
isting surveys to understand the established requirements for Smart
City platforms. First, the two main citizen science platforms and their
goals are presented. Subsequently, an analysis of established require-
ments based on a literature review of existing Smart City platforms
and their enabling technologies is conducted. These requirements are
then discussed with the previously presented goals, focusing on a
citizen-centric Smart City platform. This analysis helps to identify re-
quirements and challenges that must be considered in implementing
a citizen-centric approach.

3.1 citizen science

Citizen Science describes the integration of citizens into scientific
studies and research, where tasks that require only minimal training
and no deep expertise are distributed among large groups. These vol-
unteers then undertake a significant portion of the often manual tasks
voluntarily. Through the sheer number of participants, both costs and
time expenditure can be reduced, and citizens become actively in-
volved in local and current research [76].

In February 2024,
global participants
reported
approximately 7920
bird species in more
than 210 countries
and sub-regions.

Beyond manually analyzing or evaluating data, the task of data
collection itself is increasingly being distributed to volunteers. This
approach allows for the gathering of a much larger data set. A clas-
sic example is the Annual Bird Count event, conducted annually by
various organizations worldwide. In this event, volunteers globally
assist in observing and counting birds to better estimate global bird
populations.

3.1.1 Existing Citizen Science Platforms

There are several platforms where scientists can initiate projects with
a Citizen Science component, inviting interested citizens to partici-
pate. Projects on these platforms focus on distributing manual tasks
from a small research team to a broad base of volunteer helpers. Par-
ticipating and contributing to these projects is not paid or monetary
motivated; rather, it seeks individuals who are personally passion-
ate about these topics and willing to help voluntarily. These volun-
teers contribute either to gain new experiences for themselves or to

23
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support research efforts actively. Following, the two largest publicly
sponsored platforms are presented in detail.

EU-Citizen.Science

EU-Citizen.Science (ECS) is the largest Citizen Science platform in Eu-
rope. This platform is a central hub for all interested in Citizen Sci-
ence within the EU region. It offers a wide array of Citizen Sciencehttps:

//eu-citizen.

science/
projects with which citizens can collaborate or participate. Addition-
ally, it provides best practices for initiating, planning, and conduct-
ing Citizen Science projects. The platform was supported by the Sci-
ence with and for Society (SwafS) program and has been continued and
funded by the European Citizen Science Association since August
2022. ECS has set itself the following goals:

1. Expanding the Reach of Citizen Science by strengthening the
community among participating citizens and project partners.

2. Enhancing Digital Competencies for FAIR (Findable, Accessible,
Interoperable, Reusable) and open science communities.

3. Further Development of the ECS Platform through co-design,
involving the platform’s users in the design and development
process.

4. Development of the ECS Academy. Offering free training to in-
crease capacity for conducting Citizen Science projects.

5. Promoting Inclusion and Diversity to bring Citizen Science to
the forefront.

6. Advocating for Citizen Science and working on the policy im-
pacts of this form of science.

7. Researching the Impacts of Citizen Science on research, society,
and the economy.

SciStarter

One of the largest platforms globally is SciStarter, an organization
based in the USA, developed in 2011 by Darlene Cavalier at the Uni-
versity of Pennsylvania. Since 2014, Arizona State University and SciS-https://

scistarter.org/ tarter have collaborated to create a series of ongoing research and de-
velopment initiatives. Initially, their efforts were primarily funded by
the National Science Foundation, but later, additional organizations
like the Institute for Museum and Library Services also supported
them. SciStarter now provides access to over 3,000 formal and infor-
mal research projects, events, and tools, continually striving to en-
gage more people in science. It serves as a directory for projects and
offers a coordinated way to track contributions and make the tools

https://eu-citizen.science/
https://eu-citizen.science/
https://eu-citizen.science/
https://scistarter.org/
https://scistarter.org/
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and instruments needed for participation in citizen science projects
accessible.

Over 100,000 global citizens are part of the SciStarter community.
These members can search ongoing projects by location, topic, age
level, etc., which have been registered by individual project leaders
or imported through partnerships with federal governments, NGOs,
and universities.

SciStarter’s official goals are:

1. Empower and Encourage: Enable people to learn about, parti-
cipate in, and contribute to real science through both informal
leisure activities and formal research efforts.

2. Foster Appreciation and Understanding: Promote greater ap-
preciation and understanding of science and technology.

3. Create a Collaborative Space: Establish a shared space where
scientists and project leaders can collaborate with people who
want to work on their research projects or learn more about
them.

4. Make Building and Exploring Accessible and Fun: Simplify
and enhance the process of crafting, building, and exploring for
people from all walks of life, helping them see the impact of
their curiosity, interests, and concerns.

3.1.2 Goals and Challenges

The goals and challenges of Citizen Science are reflected in the plat-
forms previously discussed, ECS and SciStarter. The common objec-
tives across these platforms can be summarized as follows:

Collection of Larger Data Sets: A foundational goal of Citizen Sci-
ence is the collection of larger and more representative data sets. The
platforms discussed facilitate this by enabling interested citizens to
explore ongoing projects and learn more about participation oppor-
tunities, thereby enhancing the breadth and depth of scientific data
collection. While most of the launched projects rely on manual data
collection, due to the increasing amount of privately owned sensors,
automated and continuous data collection comes more and more into
focus.

Promotion of Civic Engagement: Citizen Science aims to actively
involve citizens in scientific endeavors, making science more accessi-
ble. The platforms provide access to a wide range of projects, which
helps to facilitate participation and public engagement, fostering a
deeper connection between science and society.

Networking of Engaged Citizens: Through collaborative efforts
and community building, Citizen Science connects participating citi-
zens. Project creators—whether they are public organizations or pri-
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vate companies—also engage more closely with participants, foster-
ing a sense of community and shared purpose.

Inclusion and Diversity: Active participation from diverse indi-
viduals with varying interests and concerns promotes inclusion and
diversity within the scientific community. Citizen Science platforms
strive to make projects accessible to a broad and diverse participant
base, thus enriching the scientific process with a range of perspec-
tives.

Education and Training: Active participation in Citizen Science
projects facilitates ongoing education and skill development for cit-
izens. Platforms support this with dedicated courses for project lead-
ers as well, aiming to improve the quality and effectiveness of Citizen
Science projects. This educational aspect not only enhances partici-
pants’ knowledge and skills but also increases the overall impact and
credibility of Citizen Science initiatives.

While motivating citizens can quickly lead to larger datasets, scien-
tists face new challenges arising from the broad collection of data by
mostly untrained participants. The main challenges in Citizen Science
can be summarized as follows:

• Data Quality and Scientific Rigor: With the increasing amount
of unsupervised collected data, ensuring data quality and sci-
entific rigor is one of the greatest challenges in Citizen Science.
Platforms address this by offering educational resources and
providing guidelines for both project leaders and participants
to help maintain standards.

• Representativeness and Bias: Ensuring data representativeness
is crucial. Citizen Science projects often attract participation
from specific demographic groups, which can introduce bias
into the results. It’s important to implement strategies to en-
courage broader and more diverse participation to mitigate this
issue.

• Data Privacy and Protection: Protecting personal data and
maintaining the privacy of participants are critical, especially in
projects that collect personal or sensitive data or record data for
quality assurance purposes. Robust privacy policies and secure
data handling practices are essential to safeguard participant
information.

• Engagement and Motivation of Participants: Maintaining vol-
unteers’ engagement and motivation over time can be challeng-
ing. Projects need to be designed to be interesting and accessible
to encourage ongoing participation, especially for those that re-
quire active and continuous input from participants.

• Integration into Formal Science: Integrating Citizen Science ef-
fectively into established scientific processes and disseminating
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results within the broader scientific community is another chal-
lenge. This involves not only ensuring that data and findings
from Citizen Science projects are credible but also fostering
recognition and acceptance within the scientific community.

Addressing these challenges requires careful planning, commu-
nity engagement, and continuous improvement of practices and tools
used in Citizen Science. By doing so, the field can significantly con-
tribute to scientific research and public education while enhancing
the societal relevance of science.

3.1.3 Smart Cities and Citizen Science

With the shift from a technology-driven to a citizen-centric Smart City
concept, the inclusion of citizens not only as users but also in data
collection and knowledge generation processes is gaining increasing
interest [96, 111, 150, 233, 234, 245]. As mentioned before, the main
goal for a Smart City is to increase the quality of life for its citizens [37,
54, 105, 175]. Smart cities have frequently failed to meet their objec-
tives because citizens were not properly involved in the planning pro-
cess, and the impact on their daily lives was not adequately consid-
ered [58]. By empowering citizens to take active roles within a Smart
City, and therefore democratizing innovation should be part of the
Smart City concept to fulfill its goals [197, 225]. To achieve this goal,
Smart Cities must no longer view citizens merely as data sources. In-
stead, citizens should be regarded as equal participants who can take
initiative and actively contribute to the development and improve-
ment of the city.

3.2 smart city requirements

After examining Citizen Science’s goals and challenges, this section
analyzes existing requirements analyses for Smart Cities and inves-
tigate how these requirements change with active citizen participa-
tion. Several survey papers are examined to gain an overview of the
developed requirements for a Smart City platform and its enabling
technologies. The surveys were selected primarily based on their re-
cency; all of them have been published within the last ten years. An
exception is a survey by da Silva et al., published in 2013; nonetheless,
it was added due to its sensor-focused approach [232]. Furthermore,
the surveys do not focus solely on individual aspects of Smart Cities
but provide a more comprehensive view of the Smart City concept
as a whole. For an easier overview, these surveys are grouped by
the three major technologies driving the development of Smart Cities:
Big Data, IoT, and Cloud Computing [23, 104, 222, 279]. Within the in-
vestigated surveys, defined requirements are extracted and compared.
These requirements are then analyzed with a focus on Citizen Science,
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discussing how they might change through the active involvement of
engaged citizens.

Santana et al. [222], Javed et al.[118], Goumopoulos [94], and Mo-
hanty et al. [175] agree that with the increased data collection due to
the amount of IoT devices within a Smart City, Smart City platforms
need to manage large amounts of data. Here, the four main charac-
teristics are Volume, Variety, Velocity, and Veracity [45, 68]:

• Volume: The rapid proliferation of data generation and collec-
tion necessitates the development of robust tools capable of ad-
dressing this challenge. In the context of Smart Cities, the vol-
ume of data is substantial, originating from a large set of dis-
tributed sources. With the increased volume of data, the place-
ment of data sources and existing redundant data collection by
different providers amplify the need to manage, filter, and eval-
uate these data sources effectively.

• Variety: Within a Smart City, collected data comes from a di-
verse array of sources and exists in structured, semi-structured,
or unstructured formats, such as images and video recording,
environmental measurements, and raw text, respectively. This
complexity is particularly relevant in the context of Smart Cities,
where data is sourced from a large variety of sensors and per-
sonal devices owned by citizens.

• Velocity: Even with a large amount of collected data, process-
ing must be rapid and, in some instances, real-time to maintain
its utility. Operators must respond quickly to urban issues like
water leaks, accidents, and fires.

• Veracity: Data quality is crucial due to the large volume of
data collected. Even when utilizing a heterogeneous set of data
sources, faulty data or the use of unreliable sources can signifi-
cantly compromise data analysis. In a Smart City environment,
poor data sources can include incorrect readings from falsely
deployed or malfunctioning sensors or even collected data from
malicious users.

As a result of these challenges and the need to deploy and man-
age data sources that collect required data, Table 2 gives an overview
of the requirements for Smart City platforms and applications dis-
cussed by each investigated survey paper. It shows that for functional
requirements Data Management and Data Processing, are the most dis-
cussed and found in literature, given by the data driven nature of
Big Data, IoT, and Fog Computing various solutions for challenges
within this domain are proposed. The next most discussed require-
ments address data sources, particularly focusing on Sensor Manage-
ment and Data Discovery. These aspects are often referred also to as re-
source management within the IoT domain. As the discovery and the
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Data Management • • • • • • • • • • • • •
Application Runtime • •
Sensor Management • • • • • • • •

Data Processing • • • • • • • • • •
External Data Access • • • • • •
Service Management • • • • • • •

Software Engineering Tools • •
City Model Definition • • • • • •

Mobile Sensors Support • • • •
Citizen Integration • • • • • • • • •

Network Infrastructure • • • • • • • •
Government Integration • • •

Data Discovery • • • • • • • •
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Interoperability • • • • • • • • • • • • • •
Scalability • • • • • • •
Security • • • • • • • • • • • • • • • •
Privacy • • • • • • • • • • • • • • •

Context Aware • • • • •
Data Quality • • • • • • • • • •

Adaption • • • • • •
Extensibility • • • • • • • •

Configurability • • •
Sustainability • • • • •

Real Time-able • • • • • • • • •
Availability • • • • • • • •

Performance • • • • •
Usability • • • • •

Robustness • • •

Table 2: Comparison of survey regarding their investigated requirements.
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proliferation of distributed data sources increase, network infrastruc-
ture becomes a critical focus area. Additionally, it is evident that the
evolving definition of Smart Cities increasingly Incorporates Citizen en-
gagement as a key requirement. Interestingly, the involvement of city
officials (Incorporating Government) is less frequently mentioned as a
requirement. This is likely because their participation is generally as-
sumed, given that official bodies typically drive various projects and
the local Smart City concept.

In the domain of Smart City platforms, Service Management, the City
Model Definition, and External Data Access are frequently discussed re-
quirements. Services often refer to end-user applications that utilize
existing data within the Smart City. These services rely on a diverse
set of often heterogeneous data sources, necessitating a defined se-
mantic model to facilitate the interpretation and use of data from var-
ious sources. Additionally, some services are not directly deployed on
the Smart City platform, thus many systems depend on external data
access, allowing third parties to access the collected data within the
city. Finally, the least frequently mentioned requirements are Support
for Mobile Sensors, Application Runtime, and Software Engineering Tools.

Overall, more surveys have addressed and examined non-
functional requirements, with a significant focus on Security and
Privacy. While security is important in all areas within a Smart City,
privacy, in the context of Smart Cities, is particularly concerned with
the data collected from or about citizens. Behavioral and movement
data are considered especially sensitive because they can easily lead
to inferences about individuals and have a high potential for misuse
in surveillance or manipulation.

Interoperability and Data Quality closely relate to data processing
and utilization. Interoperability refers to using heterogeneous data
sources with diverse protocols and communication channels that
need to be interconnected. Given the vast number of distributed sen-
sors, it is crucial to assess the quality of the collected data to identify
outliers from misconfigured or faulty sensors.

Next, the requirements for the underlying system and infrastruc-
ture are considered. In many areas, city-wide or critical services ex-
pect Real-Time Data to respond promptly to new circumstances. It is
important to note that this requirement often stems from the cloud,
fog, and IoT domains and is less commonly addressed at the more
abstract level of Smart City platforms. Availability also plays a crucial
role, as these services must always receive required data, which is
particularly challenging in the IoT sector. Additionally, Scalability and
Extensibility are critical requirements for the ever-growing number of
sensors within Smart Cities. Given the vast number of data sources
and the volume of collected data, city-wide networks must scale effi-
ciently and be prepared to handle increasing data loads. While Perfor-



3.3 requirement evaluation in the context of smart cities 31

mance is less frequently mentioned as a standalone requirement, it is
often associated with scalability.

Long-term planning is challenging due to changing requirements,
new technologies, and evolving use cases. Therefore, a city-wide sys-
tem should be Extensible, Context-Aware, Sustainable, Usable, and Adap-
tive. The least mentioned requirements in the analysis were Configura-
bility, and Robustness. Here, configurability is often correlated with
extensibility and adaptability but focuses more specifically on the in-
dividual data sources and services. The robustness of the network is
often closely related to its security, scalability, and performance.

3.3 requirement evaluation in the context of smart

cities

The shift from a technology-driven to a citizen-centric Smart City ap-
proach often alters individual Smart City requirements interpretation.
With the active participation of largely untrained citizens in various
processes, existing solutions for established requirements must be
rethought and adapted to new circumstances. This does not mean
that previous requirements lose their validity; rather, an additional
perspective focusing on the needs of participating citizens is added.
This section evaluates and discusses the most important require-
ments, focusing on Citizen Science.

Given the abundance of sensors already present in a citizen’s life,
a participatory citywide sensor network should utilize these existing
devices rather than requiring new, homogeneous sensor hardware.
This approach increases the need for interoperability and data quality
but avoids additional acquisition costs, thereby lowering the barrier to
participation in such a network. It also focuses on sustainable solutions
and decreasing consumerism.

Another advantage is that by reusing existing hardware, the need
to monitor and repair a multitude of redundant sensors is eliminated,
reducing maintenance overhead and costs. To facilitate the integration
of existing sensors, the system should allow data to be fed in various
ways, highlighting the need for an extensible platform. It should sup-
port multiple existing protocols to ensure compatibility and provide
an accessible means to create custom data integration.

With the growing support of existing sensors, the network needs
to be scalable and adaptable regarding the changing landscape within
the citywide sensor network. While professional networks can expect
some degree of uptime for their managed sensors, in a private net-
work, sensors might join and leave the network continuously, result-
ing in data discovery and sensor management challenges.

To simplify sensor management, participants should be provided
with a clear interface to view information, monitor status, and adjust
settings for each sensor, as the sensors allow.
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In addition to managing sensors, data management is equally crucial.
When sensitive or private data is collected and utilized, it is essential
to provide citizens with an overview of their collected data and its
usage, thereby enhancing privacy and security transparently. Citizens
should be able to categorize the sensitivity of their collected data,
enabling them to actively decide which data to share and which to
keep private. This process should be supported with examples and
best practices to aid citizens in making informed decisions.

This classification ensures that citizens are aware of their data’s sen-
sitivity and understand which data can be accessed by external appli-
cations or services. By fostering such awareness, citizens can make
informed data privacy and security choices.

In addition to data management, it is crucial to motivate citizens to
utilize and process existing data from the network. Citizens should
be encouraged to not only act as data sources but also to actively par-
ticipate by defining services that visualize or analyze data from the
network, thereby creating value for themselves and the community.

Given the vast scope of a citywide sensor network, a single citizen
cannot have an overview of all existing data, increasing the need for
adaptable and context-aware data discovery tools. Enabling citizens to
create services themselves motivates them to engage with the exist-
ing data and foster a sense of community. This engagement makes
conveying the collected data’s benefits easier, enhancing community
involvement and collaboration.

To facilitate the development of services by citizens and communi-
ties, various tools should be available to simplify common challenges.
These tools could include development tools for creating custom ser-
vices, connecting existing sensors, or even initiating citizen science
projects requiring data from other participants. Since these tools can
vary based on different use cases, the community should be able to
contribute their own custom tools. This approach further strengthens
the community in the long term and promote the development of a
diverse and resilient community.

Once individual services have been created or collected, data is
shared with external services, providing an interface for managing
these services and data provision is crucial. Firstly, this interface
should enable service developers to manage connected data sources,
including discovering new data sources as needed or adding exter-
nal public data sources. Secondly, service maintainers should contin-
uously assess the data quality and, if necessary, manually remove
specific data sources to ensure better data quality. Thirdly, service
developers need the capability to improve their services and imple-
ment updates, which may require collecting new data or changing
the data processing methods of existing sources. These sources must
be informed about any such updates.
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For citizens who collect data, the service management interface
should provide an overview of the services using their provided data,
along with information about data processing and usage. Services
that request access to collected sensitive data should be listed with all
relevant details, enabling citizens to make informed decisions about
their participation. Lastly, data providers should be able to stop data
provision for individual services they no longer wish to support.

Using various heterogeneous sensors with different specifications
and characteristics necessitates defining a comprehensive citywide
data model that enables data sources and services to describe and
understand collected data. Such a data model allows data sources to
be represented on a semantic level, simplifying the interpretation of
data regardless of individual specifications and enabling the network
to identify suitable data sources based on semantic descriptions.

This data model must be widely adopted throughout the network
to empower citizens to describe their data. Additionally, provisions
should be made to expand the data model, continuously supporting
new data types and accommodating a growing data space.

3.4 summary

The transition from a technology-driven to a citizen-centric approach
for Smart Cities requires a reinterpretation of existing requirements
and the adaptation of existing solutions to the active participation
of unskilled citizens. Utilizing existing sensor hardware reduces the
costs and barriers to participation, promoting more sustainable so-
lutions and less consumption. The participation of many citizens as
equal actors increases the heterogeneity and size of the network, pos-
ing new challenges for interoperability and data quality. A scalable
and adaptable network that supports various protocols is necessary
to ensure sensors’ continuous integration and management. Trans-
parent data management practices and clear user interfaces for sen-
sor management are crucial to maintaining citizens’ data sovereignty
and privacy. Citizens should be able to categorize the sensitivity of
their data to make informed decisions about its use and strengthen
their data sovereignty. This promotes citizen engagement in develop-
ing their own services and actively contributing to data utilization.
Tools to support service development and data integration are also
important to facilitate participation and strengthen the community. A
comprehensive data model that semantically describes heterogeneous
sensor data enables unified data interpretation and eases data discov-
ery and utilization. Such models must be continuously expanded to
support new data types and accommodate the growing data space.
These requirements align with the goals of Citizen Science platforms,
such as ensuring data quality and scientific rigor. Broad participa-
tion increases the representativeness of the data, reducing biases and
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strengthening scientific validity. Protecting personal data and main-
taining participants’ privacy are essential to gaining and maintaining
citizens’ trust. Engaging and accessible projects can foster motivation
and long-term commitment from participants. Finally, integrating the
results of Citizen Science projects into formal science is crucial to en-
sure the credibility and recognition of the collected data and insights.

In the following chapter, existing Smart City platforms are exam-
ined, and their solutions for the presented requirements are analyzed.
In the analysis, the examined platforms are divided into four groups.
The largest group deals with general platforms not developed for a
specific use case. This is followed by three frequently studied topics:
Smart Infrastructure, Smart Traffic, and Smart Environment. Based on
these works, open research gaps are identified, and their relevance is
highlighted.
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R E L AT E D W O R K

In the previous chapter, the goals and challenges of Citizen Science
in relation to Smart Cities were examined in detail, and a compre-
hensive requirements analysis was conducted. It became evident that
modern cities must use modern technologies and promote active citi-
zen participation to achieve their goals of improved quality of life and
sustainability. With growing awareness of data security and privacy,
Smart Cities must develop new methods for citizens to autonomously
collect, manage, and provide their data for various citywide services.

The increasing proliferation of sensor hardware in everyday life
presents an opportunity to reduce acquisition and initialization costs
for new projects by reusing existing devices. This distributed respon-
sibility also helps to lower maintenance costs. However, this approach
introduces new challenges regarding sensor placement and the result-
ing data quality.

Following the requirements analysis, this chapter investigates re-
lated work and everyday use cases for Smart Cities. To achieve this,
papers are grouped into general architectures applicable to various
use cases and specific use-case groups. After a brief overview of the
related papers and their use case, they are compared based on their ar-
chitecture, data storage and processing methods, and the integration
of citizens in their proposed systems and solutions. The chapter con-
cludes with a discussion of how different use cases can benefit from
citizens’ active participation, both as additional data sources and by
allowing them to create custom services.

4.1 existing smart city platforms and their use cases

When researching existing Smart City platforms, there are two main
differences within the state of the art. First, citywide architecture
proposals claim to be use-case independent and work with differ-
ent kinds of data, applications, and services. Second, there are use
case-specific platforms. These target one of the challenging areas
within modern cities and present an architecture that is especially
well suited for that given use case but might not apply to other use
cases. Nonetheless, important lessons can be learned from these spe-
cific approaches that can help to create a citywide platform. Therefore,
these are also briefly described and included in the comparison and
discussion.

35
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4.1.1 General Smart City Platforms

In the domain of citywide sensor networks, various solution ap-
proaches have been implemented to differing extents. One of the
largest and most comprehensive Smart City projects is SmartSan-
tander, where over 15,000 sensors were deployed to create a citywide
sensor network accessible for various applications [47]. Due to its
scale and the diverse range of initiatives in Santander, this project
is presented in greater detail, highlighting its relevant works. This
is followed by examining several other platforms that focus on cre-
ating a reusable software platform rather than on a single city. The
underlying architecture of each platform is briefly explained, and the
integration of citizens is discussed.

4.1.1.1 Smart Santander

In the Smart City sensor networks realm, the SmartSantander
project [221] stands out as one of the most renowned and frequently
cited research initiatives. Launched in 2010 with funding from the
EU’s "Future Internet" program, SmartSantander has since taken
a leading role in developing and testing Smart City technologies.
As one of the first large-scale urban test environments for the IoT,
SmartSantander has significantly contributed to the research and
advancement of Smart City concepts. Implementing a dense network
of over 15,000 sensors throughout the Spanish city of Santander
collecting and analyzing real-time data on environmental conditions,
traffic flow, energy consumption, and other urban parameters. This
extensive data repository facilitated the optimization of urban
services and promoted citizen engagement. By making all this data
available, citizens are encouraged to give feedback on the project and
actively support innovation processes.

The architecture of the SmartSantander project is divided into three
layers: the IoT Node Tier, the IoT Gateway Tier, and the Server Tier. The
Node Tier consists of the actual hardware sensor nodes, which are
distributed throughout the city. These nodes are often autonomously
installed and thus have limited resources (energy, storage, comput-
ing power). Additionally, they are exposed to various environmental
factors. The Gateway Tier connects these individual sensor nodes to
the underlying project infrastructure. These gateways have a perma-
nent internet connection and are programmable in operation, as they
are intended to be used for investigating various solution approaches.
Finally, the computationally powerful Server Tier can run various ap-
plications and collect nearly unlimited data. No specific protocols are
mandated for communication between the layers, meaning different
sensors can be connected to the gateway in various ways.

Overall, the SmartSantander project has already considered many
previously established requirements. However, the most significant



4.1 existing smart city platforms 37

difference lies in active citizen participation and using existing sen-
sor infrastructure. The SmartSantander project focuses on technical
solutions and deploying new dedicated hardware, which the city and
participating partners own. This approach is strongly aligned with
the concept of Smart City 1.0. While the initial paper mentions citizen
participation and suggests that citizens could collect data using their
smartphones [221], it does not address the storage and processing
of this collected data. Subsequent papers refer to a central Big Data
repository where all sensor data is stored [47], implying a centralized
storage system for all collected data, including that from citizens.

In the paper by E. Theodoridis et al. [250], two studies are pre-
sented where citizens can participate in data collection using their
smartphones. In this use case, the data is also centrally stored. The re-
quirements also touch on security and privacy. The authors acknowl-
edge that "behavior tracking with smartphones raises personal and
public privacy/security concerns" [250, p. 3] but do not delve further
into solutions for these challenges. V. Gutiérrez et al. present another
application that relies on participatory sensing and depends on citi-
zen cooperation [96]. In this case, although citizens are encouraged
to participate, they are merely used as data sources. They can report
damages or accidents, but they have no influence over the storage of
their collected data.

Therefore, SmartSantander provides many interesting insights into
technical solutions but needs further improvements to be an inclusive
and socially sustainable city.

4.1.1.2 City Independent Platforms

The following section investigates city independent platforms and
discusses their view on citizen participation and, if applicable, Citizen
Science.

The Smart City platform by Chamoso et al. focuses on Smart Home
owners and aims to reuse existing Smart City applications and their
data [41]. To achieve this, a Smart Home platform was developed
to present locally collected data to the user in a web-based user in-
terface, enabling citizens to participate in external services. Citizens
can choose which services they want to participate in. Nonetheless,
citizens must give services full access to their collected data, which
might lead to private information being leaked within data patterns.
Additionally, other citizens cannot benefit from the data provided by
others, meaning this approach cannot be directly classified as crowd-
sensing but rather a distributed collection of services targeting indi-
vidual citizens.

SmartCityWare by N. Mohamad et al. aims to address various chal-
lenges in the development and operation of Smart City services by
enabling effective integration and utilization of the concept of Cloud
of Things and Fog Computing [174]. The system abstracts the func-
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tionalities and components of Smart City applications as services ac-
cessible through the service-oriented model. This facilitates the inte-
gration, flexible utilization, and combination of various required ser-
vices, improving efficiency and reducing costs. This work also focuses
on city-operated sensors; one example of its applicability is intelligent
traffic light control based on fleet data. While citizens are intended to
provide feedback through various interfaces, they are not actively in-
tegrated into the system. Overall, the system’s architecture is highly
centralized and city-focused, without considering active participation
from local businesses or other stakeholders.

The Smart City architecture developed within the SOFIA (Smart
Objects For Intelligent Applications) project employs an event-driven
approach to manage and collaborate with various sensor types for
monitoring public spaces [82]. The main components of the proposed
architecture are Knowledge Processorss (KPs) and Semantic Informa-
tion Brokers (SIBs). KPs generate and consume event notifications that
are stored in SIBs and distributed via a publish-subscribe paradigm.
This structure enables the aggregation and correlation of data from
diverse sensors, allowing for the detection of complex events and
achieving higher levels of abstraction. Given the focus on public
spaces, it is evident that public authorities are the primary drivers
of the system. Although personal data is also collected, it is treated
purely as simple events and data points to facilitate the control and
detection of more complex events. Thus, participating citizens are
considered solely data sources and triggers for further events, with
no provision for active participation through other sensors or self-
managed data.

Zhang’s approach to Smart Cities focuses on shifting the compu-
tation of sensor data closer to the data providers to manage better
the high volumes of collected and processed data [282]. The network
load is reduced by utilizing Fog Computing, thereby increasing scal-
ability. While this also enhances privacy protection, Zhang does not
make this a primary focus of his approach. Besides, his work centers
on centrally managed sensor nodes, thus not incorporating active cit-
izen participation.

Civitas is a citywide middleware project to connect various stake-
holders within a Smart City [262]. Participating nodes connect via a
Civitas plug to the middleware’s central nodes, managed by public or-
ganizations and city administration. These central nodes handle the
communication and discovery of other Civitas plugs. Further, they
provide and host available services. Through the Civitas plug, data
is managed by the participating citizens and remains on their local
machine. While the project emphasizes the reuse of existing hard-
ware rather than building a completely new hardware network, it is
not clear how the data collected by citizens is utilized and processed.
The Civitas platform supports only services operated by the city and
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industry partners, meaning that interested citizens cannot actively
contribute their own developed services. Due to centralized manage-
ment, public institutions have increased knowledge of the entire net-
work and, with growing numbers of participants, form a bottleneck
for discovering and managing connected Civitas plugs.

The VITAL platform [198], introduced by R. Petrolo et al., utilizes
existing sensors connected through provided Application Program-
ming Interfaces (APIs). This allows individual sensor operators to re-
tain control over which data they wish to make available via the APIs.
Services that want to use this data are hosted in the cloud and have ac-
cess to all available APIs in the network. The platform employs various
ontologies to categorize and define the provided data to semantically
describe provided data and, therefore, make the APIs easier to use.
While active citizens can also make their sensor data available via
public APIs, the technical barrier is relatively high. They must have
the knowledge and capability to create public APIs, and accurately
providing the semantic description of the data also requires substan-
tial expertise. Therefore, the focus is primarily on industry partners
and city officials. Furthermore, although data providers can decide
which data they want to share, it becomes publicly available, mean-
ing there is no distinction between sensitive data, which they only
share with specific services, and public data.

In his work, Khan et al. present a hybrid cloud infrastructure sim-
ilar to a data space, where the platform integration layer connects
with a large amount of data sources and repositories [129–131]. Var-
ious stakeholders, such as citizens, city officials, and companies, can
manage their own data sources. While the data is locally managed
on the stakeholder’s server, the service composition layer used to dis-
cover existing data sources and other services is a centralized part of
the architecture. Participants can create custom services using these
central entities on top of the provided service application layer, which
provides standardized discovery, processing, and visualization end-
points. Therefore, citizens are actively encouraged to participate and
create their own services, but as data providers, they can only de-
fine which data is publicly available. This means that they have less
control over sensitive data. Additionally, participating citizens can’t
decide whether to provide their data to specific services; this is all
abstracted within the platform’s discovery layer.

OpenIoT [237] is an open-source project to connect and make var-
ious cloud-based IoT solutions searchable through semantic descrip-
tions of sensors and data. The project focuses on the W3C Semantic
Sensor Network (SSN) ontology, which is used to unify different data
sources semantically. Additionally, OpenIoT provides a versatile mid-
dleware that dynamically filters linked data sources and selects them
based on their semantic descriptions. These semantic descriptions are
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centrally stored in the OpenIoT middleware and made available for
searches.

The platform’s openness ensures that it is specialized for Smart
Cities and can be used across cities. Any publicly available data
sources that can be described using the SSN ontology can be linked.
This allows citizens to actively participate in shaping the network
by providing both data sources and services that utilize the net-
work’s data. The current state of the OpenIoT platform is available
on GitHub, but it has not been maintained for the past two years.https://github.

com/OpenIotOrg/

openiot
Further, OpenIoT does not support services and citizens in terms of
data quality. Each service needs to implement its own quality control
and manually remove invalid data sources.

The CityPulse framework focuses on facilitating the development
of Smart City services through a distributed system, with particular
emphasis on semantic discovery and data analysis [207]. CityPulse
aims to enable citywide data integration by utilizing advanced data
analysis modules to transform uncertain and incomplete data into
reliable information. Additionally, it offers decision support through
intelligent data aggregation, event detection, and quality assessment.
CityPulse consists of two main components: data stream processing
modules interacting with various data sources and adaptive decision
support modules providing context-based recommendations. City-
Pulse applications are cloud-based components that enable continu-
ous monitoring and processing of data streams, allowing applications
to retrieve real-time information about the city’s status via APIs. How-
ever, the primary focus of CityPulse is on utilizing sensor data from
the city and local industry. While citizens can use various services
and provide feedback, they are not actively integrated in the data
collection and idea development processes.

FIWARE [57] is an open-source IoT platform that partially origi-
nated from the SmartSantander project. The FIWARE platform offers
components for various functions such as context data management,
security, and interfaces to IoT data sources. Through these interfaces,
FIWARE enables real-time access to sensor data, control of IoT de-
vices, and data analysis. FIWARE uses the Next Generation Service
Interface (NGSI) to standardize the various data sources within a
city [26]. Unlike other projects that use standardized ontologies, FI-
WARE defines and utilizes specific data models adopted by the Open
& Agile Smart Cities network. To encourage local industries to pub-https:

//oascities.org/ lish their existing data sources, an IoT Marketplace has been initiated.
This marketplace allows entities to publish their data sources for a
fee, making them available to other companies. FIWARE primarily
targets city officials and the local industry through this monetization
approach. While citizens benefit from the new services provided, they
cannot actively participate in the Smart City platform.

https://github.com/OpenIotOrg/openiot
https://github.com/OpenIotOrg/openiot
https://github.com/OpenIotOrg/openiot
https://oascities.org/
https://oascities.org/
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FogFlow [48] is an adaptation of the FIWARE platform that extends
it by providing a more streamlined development environment for ser-
vices that can execute processing not only in the cloud but also on
edge devices. The authors illustrate this with an example of an appli-
cation in public spaces. A missing child’s picture is uploaded to the
central camera system, and edge nodes near the cameras use image
analysis tools to find and track the child in real-time. This approach
reduces network traffic and distributes the processing load more effi-
ciently by distributing the computation across multiple nodes. While
enhancing FIWARE to distribute service processing, FogFlow focuses
on city officials and local industry, providing services to citizens but
not actively including them in the data collection, processing, or in-
terpretation.

Another middleware is presented by Apolinarski et al. called GAM-
BAS [18, 101]. Within this middleware, citizens are actively motivated
to collect data with their smartphones and provide it to different
services built with the GAMBAS Software Development Kit. While
GAMBAS also supports connecting other data repositories, the fo-
cus lies in a privacy-preserving use of citizen-collected data via their
smartphones. Citizens can decide which data they want to share and
whether sensitive data like location should be obfuscated to increase
privacy. Therefore, a local preprocessing can be enabled within the
GAMBAS smartphone app so that no raw data leaves the citizen’s
device. A central discovery mechanism provides information to inter-
ested services to discover data sources.

The DIMMER platform is a microservice-based architecture with a
very specific scope: “The goal [. . . ] is to build a service platform [. . . ]
and a number of applications aiming at involving different stakehold-
ers to increase the energy efficiency of a city at the district level” [145,
p. 4]. The main part of the dimmer platform is its middleware and
Smart City services. While the middleware services focus on data dis-
covery, data storage, and sensor connection, the Smart City services
provide microservices specific to the energy efficiency use case. Using
this specific use case, the authors showed that “the lack of complex
middleware technologies and use of simple communication protocols
and APIs instead significantly reduces the amount of coordination
work involved” [145, p. 6].

Using the learnings from the DIMMER Platform, InterSCity was
developed as an open-source platform that provides “a high-quality,
modular, highly scalable middleware infrastructure to support Smart
City solutions that can be reused across cities [. . . ]” [155, p. 2]. To
achieve this, Arthur de M. Del Esposte et al. propose a different
microservice-based architecture that connects to city resources and
stores their data in a centralized manner. Via a provided resource dis-
covery microservice, other services can access a context-aware search
API to find relevant data sources. While citizens profit from the ser-
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vices provided, they do not actively participate in the platform or
data collection processes.

By using a multi-agent system, J. Aguilar et al. propose their archi-
tecture Autonomic Reflective Middleware for Smart Cities (MiSCi) that fo-
cuses on “making context-aware smart decisions” [6, p. 1]. To achieve
this, each physical device, such as sensors, smart objects, and oth-
ers, is represented as agents characterized by metadata describing the
properties of its represented device. Additionally, all prior existing ap-
plications, as well as persons within the Smart City, are represented
by context-aware agents. These agents help the users to perform their
tasks by coordinating and cooperating with each other. While this sys-
tem divides complex tasks into multiple subtasks within their agents,
citizens are not part of the underlying infrastructure and can only use
provided services.

Semantic Social Network of Things Middleware (S2NetM) [202] fol-
lows the Social Internet of Things approach [159, 215] to create a
decentralized network based on different relationships between IoT

devices and their owners. Here, citizens are actively motivated to par-
ticipate not only as users but also as data providers and service devel-
opers. Connected sensors are semantically described using a system-
specific ontology based on Web Ontology Language (OWL). S2NetM
services can find trustworthy and reliable data sources via a central-
ized semantic search engine by utilizing a relationship model like in
other social networks. Citizens can decide which services they want
to share their collected data with. Nonetheless, collected data, rela-
tionships, and authorization are stored in a central S2NetM node,
resulting in a hybrid architecture. Creating a bottleneck for the ever-
increasing network size in citywide sensor networks.

4.1.2 Smart Infrastructure Platforms

Smart Infrastructure refers, on the one hand, to using advanced tech-
nologies to make urban infrastructures more efficient, sustainable,
and adaptable. Enabling technologies such as IoT, Big Data, and
Cloud Computing are employed to optimize various infrastructure
sectors, including energy consumption and distribution, waste man-
agement, and water supply. On the other hand, smart infrastructure
tries to motivate and integrate its citizens to rethink their usage and
behavioral patterns to implement sustainable resource usage. Follow-
ing sections focus on Smart Energy and Smart Waste, as these areas
already feature several approaches for active citizen participation.

Smart energy is one of the primary research fields in smart in-
frastructure. Due to the increasing energy demand and the grow-
ing number of private renewable energy sources, intelligent solutions
are needed to distribute generated energy. These solutions should be
context-aware to allocate energy to various consumers efficiently.
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There are various approaches to improving energy efficiency. One
set of proposals aims to enhance the energy efficiency of individual
buildings by analyzing the behavior patterns of residents [9, 178, 288].
This involves using various sensors within Smart Homes to reduce
heating and energy costs. Another set of proposals seeks to democ-
ratize energy trading, encouraging the development of sustainable
energy sources and decentralizing energy production and manage-
ment [7, 151, 179]. This aims to motivate participating citizens to en-
gage actively with their energy consumption. Additionally, localized
energy exchange can reduce transfer costs.

Alongside energy consumption, waste production increases with
population density and rising affluence [52]. The total amount of
waste produced is projected to increase by approximately 70% by
2050 compared to 2016, reaching a total of 3.4 billion tons [251, 281].
More cities are attempting to establish smart waste management sys-
tems to address this growing challenge and to reduce infrastructure
costs. As with energy solutions, there are individual solutions aimed
at helping citizens reduce waste and minimize waste production [30,
193, 231]. Additionally, there are solutions focused on the overall
waste collection and management within the city [1, 2, 168, 230].
While these focus on collection and route optimization depending on
the state of smart trash bins for trucks, they do not consider any pri-
vate information that can be gained from people’s trash production
and share all raw data with waste management.

Depending on the collected and analyzed data, smart infrastructure
also involves a significant amount of personal data. Personal energy
consumption is closely linked to user behavior in Smart Homes [7,
167], and the type and amount of waste produced can reveal infor-
mation about residents and their living conditions [36, 257]. When
such data is shared and processed citywide, it is essential to actively
involve citizens and inform them about their data usage to counteract
feelings of technological surveillance [167].

4.1.3 Smart Mobility Platforms

Smart Mobility systems are integral to Smart Cities as they signifi-
cantly improve urban mobility and promote sustainability [95]. Urban
traffic congestion, a primary source of pollution and time wastage,
negatively affects the environment and residents’ quality of life. Vari-
ous approaches have been explored to address these critical issues.

One of the most extensively studied challenges in the research field
of Smart Traffic is optimizing traffic light timings to improve traf-
fic flow. There are two different approaches to estimating traffic vol-
umes and optimizing traffic light signals accordingly. The first one
involves using Floating Car Data (FCD) [66, 127, 270, 284], which is
data collected from vehicles or their occupants, and the second ap-
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proach relies on fixed hardware installations on roads [117, 172, 189,
191]. When collecting FCD, privacy considerations are crucial, as the
entire movement profile of individuals can be recorded [210]. Simi-
larly, external hardware can also capture private information, such as
license plate numbers, through identifiable features [269]. Different
approaches implement various solutions to ensure a certain level of
user anonymity. Still, the collected data is mostly directly sent to a
central server, and only Zhang et al. propose an architecture where
citizens can manage their collected data and decide with which ser-
vice data should be shared [284].

While previous studies have primarily focused on motorized traffic,
other approaches concentrate on pedestrian and bicycle traffic. These
efforts emphasize not traffic flow optimization but rather the safety
of individuals. Typically, smartphone users are employed for this pur-
pose [12, 241, 242], although there are also studies that aim to estimate
pedestrian and bicycle traffic density through counting from individ-
uals or dedicated sensors [102, 280]. These numbers are then used to
train AI models to estimate the total numbers even when no actual
count data is available [280]. Similar to before, when smartphone data
is used, privacy requirements are similar to those of motorized traffic
data.

4.1.4 Smart Environment Platforms

One focus in the Smart Environment area lies in monitoring and en-
hancing environmental quality in urban areas [95]. A primary con-
cern is measuring air and water quality to detect harmful extremes
early and enable prompt intervention. Additionally, the increasing
temperatures caused by climate change, particularly the phenomenon
of urban heat islands, significantly impact the health of vulnerable
populations, such as the elderly and young children. These systems
often integrate urban monitoring technologies with active citizen par-
ticipation and community initiatives to collect and analyze compre-
hensive and accurate environmental data.

In their 2024 air quality status report, the European Environment
Agency concluded that 96% of Europe’s urban population was ex-
posed to fine particulate matter concentrations exceeding the levels
recommended by the World Health Organization [77]. To better un-
derstand air quality in various urban locations, several approaches
have been proposed [34, 69, 85, 161, 204, 290]. The availability of af-
fordable, compact, and energy-efficient sensors necessary for air qual-
ity measurements has led to increased efforts to use mobile sensors
next to fixed measurement stations. To increase data coverage, differ-
ent approaches try to engage citizens in data collection actively [34,
69, 85, 290]. While these projects focus on mobile data collection and
ensuring data quality, other approaches rely on fixed sensor installa-
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tions with a standardized setup and provable data quality and inves-
tigate the efficient distribution and storage of data [161, 204].

In the past few decades, water quality monitoring systems have
evolved from manual lab-based monitoring to manual in-situ moni-
toring and finally to modern Wireless Sensor Network (WSN)-based
solutions [4]. While the manual lab-based approach required water
samples to be collected and sent to a laboratory for analysis, modern
sensor technology allows for automated, real-time data collection [4].
Despite these advancements, the specific and cost-intensive nature of
sensor hardware, coupled with the challenges of deploying sensors
in public waters, has led to the adoption of centralized architectures
based on sensors deployed by city officials [46, 92, 121]. Some studies
involved citizens manually assessing water quality by handing sim-
ple water sample kits and forms to fill out [35, 123]. However, these
methods lacked the technical infrastructure for continuous monitor-
ing, resulting in only single timestamp measurements.

Urban Heat Islands (UHIs) pose a significant threat to vulnerable
groups in the city, particularly the elderly and young children. Knight
et al. placed affordable thermometers at various schools in Manch-
ester to measure temperature differences across the city and engage
students with the topic [142]. However, this involved a lot of manual
work, and no automated system was established. In contrast, Fekih
et al. used mobile sensors that individuals can wear, actively encour-
aging citizens to collect data to identify UHI [81]. Nevertheless, the
participants’ privacy is not adequately considered, even though move-
ment data can reveal clear behavioral patterns of the participants.

4.2 comparison of platforms

After describing existing platforms, architectures, and data collection
mechanisms, a comprehensive comparison is conducted. This com-
parison aims to identify any remaining gaps in current research. For
clarity, the table does not cover all the requirements established in
the previous chapter; instead, it focuses on different criteria, such
as architectural differences, data storage, data sources, and citizen
participation. Therefore, several requirements are grouped into these
criteria in the following table to highlight the differences among the
various platforms.

4.2.1 Comparison Criteria

In total, related work was compared using eight different criteria.
While the first three focus mainly on non-functional requirements, the
last five concentrate on groups of functional requirements. Before pre-
senting and discussing the table, the individual criteria are explained
in detail, and the associated requirements, if applicable, are listed.
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Architecture

The architecture of a system defines how the data flows and who is
in charge of service deployment, data discovery, authentication, and
authorization. Within a central (c) architecture, there is a single coordi-
nator. On the contrary, in a decentral (d) architecture, the platform is
orchestrated by a multitude of systems working together. Often, each
system has a specific role within the network, but redundant com-
ponents can also be deployed to increase availability and resilience.
Other architectures make use of a hybrid (h) approach. Here, some
components are still centralized (most often discovery or authentica-
tion), while other functionalities are deployed in a decentralized man-
ner. Since various functional and non-functional requirements can be
implemented using different architectures, there are no requirements
associated with this criterion directly, but a systems architecture in-
fluences nearly all of them.

Data Storage

One of the most crucial questions in a Smart City platform is where
collected data is stored. With the number of data sources, the col-
lected data also increases drastically. Some platforms integrate a cen-
tralized (c) storage, where all connected sensors push their data. This
leads to a data warehouse or data lake, depending on its data rep-
resentation. Another approach is a decentral (d) data storage whereDescription of the

data warehouse and
data lake concepts

can be found in the
fundamentals

section.

multiple repositories exist, and sensors decide on a defined strategy
for storing their data. Nonetheless, these data repositories are still
managed by the same authority. Lastly, data can be stored locally at
the sensor owner in the form of a distributed data space (ds). Data
owners can then give access to their data to interested services or
other network participants. This criterion encompasses the following
non-functional requirements: availability, privacy, control over data
usage, and scalability.

Data Sources

Existing platforms focus on different data sources. These data sources
can either be owned by city officials (co), industry (i), private citizens
(pc). Depending on the data sources different requirements can oc-
cur for the Smart City platform. When focusing on city official and
industry-owned data sources, a supervised sensor setup can ensure
data quality, and data exchange, access, and authentication are often
clearly defined by contracts. When including citizen-owned devices,
securing data quality becomes a major task, and securing private data,
creating a user-friendly interface, and engaging with communities are
additional requirements.
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Third-Party Services

While some Smart City platforms are designed for a specific use case,
others function as middleware that allows third parties to create their
own services utilizing the existing data from the platform. Introduced
platforms can be categorized into three distinct types: platforms that
do not permit the deployment of new services (n), platforms where
only the platform operators can deploy new services (p), and plat-
forms that allow the deployment of services developed by any third
party (y). When opening the Smart City platform for external services,
platform developers need to create service development and manage-
ment tools, as well as secure data access and transparency.

Service Processing

When services can be deployed on the Smart City platform, they can
either run centrally (c) on the platform or developer infrastructure or
decentral (d), which means that the computation of the service is di-
vided and only partially runs on the service providers hardware. One
common use case is local preprocessing to reduce network load and
increase privacy for the data providers. By dividing a service’s pro-
cessing into multiple devices, the following requirements need to be
focused on: Service Management, Control over Data Usage, Software
Development Tools, and a user interface that helps data providers un-
derstand which data is preprocessed and what is transferred to the
service itself.

Quality as a Service

When a Smart City platform provides Quality as a Service (QaaS),
it helps service developers determine the quality of specific data
sources and their provided data. QaaS can range from local outlier
detection and removal to analyzing the reliability depending on sur-
rounding sensors within the network. By providing quality informa-
tion, service developers can make informed decisions on which data
sources to use and which additional steps are needed to ensure ser-
vice quality. This significantly impacts the data quality requirement,
data processing, and service management.

Citizen Participation

Smart City platforms can support citizen participation in various
ways; the simplest form is to allow for feedback and citizens prof-
iting from the provided services of the platform (+). The next step is
to involve citizens in the data collection and motivate them to actively
participate within the platform and data generation (++). Finally, cit-
izens can also create their own services, manage their own data, and
contribute in different ways to the Smart City platform (+++). With
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increasing citizen participation, a lot more requirements need to be
considered. First, a user-friendly interface should be created so that
even non-technical proficient citizens can participate. Here, citizens
need to manage connected sensors, their collected data, and the ser-
vices they provide their data for. Second, privacy and control over
collected data usage are of focus for privacy-conscious citizens.

Data Sharing

While data sources can provide their data to specific services, shar-
ing it without a pre-specified purpose is another usage of collected
data. This can be useful when communities or research groups work
together and want to share all their data to help others with a similar
intent. This allows data providers to opt out as they wish but also
allows participants of these data-sharing communities to use the data
without requesting access for each use case or study. Therefore, this
mainly focuses on data management and data usage control require-
ments.

4.2.2 Comparison

The results of the comparison can be seen in Table 10 and Table 4. The
results have been split into two tables: the first contains all the general
platforms, and the second contains use case-specific platforms and ap-
proaches. Papers with the same comparison results are grouped into
a single row to make the tables less redundant and easier to read.
In total, 17 general purpose, 13 smart infrastructure, 13 smart traf-
fic, and 11 smart environment platforms and approaches have been
investigated.

While most general platforms rely on hybrid architectures with
distributed data storage, most use case-specific approaches employ
a central architecture and data storage. Exceptions are found in the
Smart Infrastructure domain, particularly in Smart Energy applica-
tions, where collected data is typically stored at the respective build-
ings or consumers. Interestingly, few platforms in this group support
adding new functionalities, meaning the collected data is usually only
used within the system for its initially defined purpose.

Despite this, many approaches involve citizens, although they are
mostly viewed solely as data sources and cannot actively participate.
Only Moreno et al. where "Occupants play a crucial role in the sys-
tem’s operation to achieve energy efficient building performance"
[178, p. 1]. Further, the only approach that allows for distributed ser-
vice execution is [7], which employs a blockchain for managing data
and smart contracts executed in a distributed manner across partici-
pating nodes.

In each group, some platforms consider not only individual inter-
est groups such as city officials, industry, or private citizens. However,
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city officials are the most frequently represented group overall. This
prevalence can be attributed to the funding of research projects and
the provision of city-wide infrastructure. Notably, twelve of the pre-
sented platforms do not rely on data from the city itself but instead
utilize data solely from private citizens or industry partners.

While all but two general platforms allow the deployment of third-
party services, only six of the specific use case platforms enable ser-
vices to be deployed and use collected data. Nonetheless, only six
platforms allow for a distributed service execution, dividing the com-
puting load between participating hardware. Further, only five plat-
forms provide any QaaS, even when large amounts of citizen collected
data is processed. This results in services using these platforms first
needing to be deployed on powerful hardware nodes that can pro-
cess various data sources and live data streams. Second, all quality
assurance and filtering must be done for each service individually,
resulting in a redundant load on individual services.

In total, only four investigated platforms support a high degree of
citizen participation by letting citizens collect and manage their own
data as well as giving them the tools to create their own services and
access data from others. Most data platforms see participating citi-
zens as data sources and do not give them control over their collected
data (twenty-one times). Three platforms allow participants to collect
and manage their own data but provide no possibilities to participate
in different ways with the Smart City.

Lastly, only four platforms allow participants to share their data
freely with others without a specified service or use case. This allows
participants to provide their data to open data communities, mak-
ing it easier for start-ups or research groups to test new ideas and
approaches with real data.

4.3 relevant research gaps

After analyzing the established tables, the following section interprets
the results and identifies the remaining research gaps.

One requirement discussed in the requirements analysis pertains to
the sustainability of Smart Cities and the goal of operating resource-
efficiently. The platforms examined, however, often relied on use case-
specific new hardware. Only the use of existing smartphones in in-
dividual studies did not require new acquisitions and was based on
already existing hardware. Sustainability can be improved by integrat-
ing the various use cases into a general platform that allows collected
data to be shared and utilized across different use cases.

For instance, data from the three groups can be combined to
identify new dependencies. Traffic patterns are likely influenced by
weather conditions: on dry, warm days, more people are willing
to use alternative modes of transportation (motorcycles, bicycles, e-
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[47] c c co y c p1 ++2 n

[41] d ds pc n c n ++ n

[174] h c co p d n + n

[82] c c co p c n + n

[282] c d co n c n - n

[262] h ds co y d n + p

[198] h d co, i, pc p c n ++ p

[129, 130] h d co, i, pc p c p4 +++ y

[237] h3 ds co, i, pc y c n +++ y

[207] h3 ds co, i y c p - n

[57] h ds co, i y c n - p

[48] h3 ds co, i y d n - p

[18] h d co, i y d5 n + p

[145] d d co y c n - n

[155] c c co y c n - n

[6] h d co y d n - n

[202] h6 d pc y c n +++ y

Table 3: Comparison of existing Smart City Platforms regarding the
prior introduced criteria.

c = central, d = decentral, h = hybrid, ds = data space, co = city
officials, pc = private citizens, i = industry, y = yes, n = no, p =
partially

1 Anomaly Detection
2 An example study used a smartphone app to collect citizen

data, which are not counted as citizen-owned sensors since
the collected data is directly uploaded to the app’s server.
Nonetheless, it increases citizen participation.

3 Central discovery
4 Service developers can run stochastic analysis on provided

data to help the analyze the quality.
5 Only Smartphones
6 Central lookup for relationships and access rights
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[178] h c co, i, pc y c n +++ y

[288] d7 d pc n c n + n

[9] h c co, pc n c n + n

[7] d d i, pc n d n + n

[179] d d i, pc n c n + n

[151] h d co, i n c n - n

[231] h c pc n c n + n

[30] d7 d pc n c n + n

[193] d d co, pc n c n + n

[1, 2, 168, 230] c c co, i n c n - n

Sm
ar

t
Tr

af
fic

[66, 127] c c i, pc n c n + n

[270] d d i, pc n c n + n

[284] d d pc y c n ++ y

[117, 172, 189, 191] c c co n c n - n

[12] c c co, pc n c n + n

[241, 242] h d co, pc n c n + n

[102] c c co, pc n c n + n

[280] c c co y c n - n

Sm
ar

t
En
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t

[34] c c co n c n - n

[69] c c pc n c n + n

[85] c c pc n c p8 + n

[290] h d pc p c n + n

[161] c c co y c n - n

[204] c c co n c p9 - n

[92, 121] c c co n c n - n

[46] c c co y c n + n

[35, 123]10 c c co, pc n c n ++ n

Table 4: Comparison of existing approaches focusing on different use cases
regarding the prior introduced criteria.

7 Data is only managed locally and not shared between smart homes.
8 Local outlier removal.
9 Central anomaly detection.
10 One-time citizen science projects. Therefore, they show only a snap-

shot at a specific time.
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scooters) instead of cars, while higher traffic volumes are expected
on rainy or extremely hot days. Conversely, local traffic conditions
and weather data, such as wind, humidity, and temperature, can be
used to classify areas in the city by their estimated air quality.

Additionally, the consumption of resources by citizens and the en-
tire city is linked to current weather conditions. On warm days, heat-
ing decreases, but water consumption increases [43]. Traffic condi-
tions can also impact citizen behavior and energy consumption. If
poor traffic conditions are expected to result in longer travel times,
citizens might leave for work earlier, heating their homes less on cold
days, or opt to stay home and increase private energy consumption.

These simplified examples illustrate that city-wide data exchange
is desirable and can lead to identifying previously unconsidered de-
pendencies in various areas. This work aims to build on the exist-
ing knowledge from general platforms to enable a city-wide citizen-
operated sensor network that integrates data from diverse scenarios
and sectors.

As outlined in the requirements, participating citizens should be
able to collect and manage their own data. Given the growing aware-
ness of privacy and the increasing sense of constant surveillance by
embedded systems [120, 160], returning control over data usage to
the citizens is essential.

In previous approaches where citizens could manage their col-
lected data and decide on its usage, centralized discovery, authentica-
tion, and authorization mechanisms were used. While this centraliza-
tion ensures a single source of truth and reliable information about all
available data sources and participants, it also means that the central
infrastructure and its administrators can gather extensive metadata
about searches, accesses, and individual behaviors. Moreover, a cen-
tralized discovery system quickly becomes a bottleneck, negatively
impacting the performance and scalability of the entire system. This
issue is further exacerbated by the expected highly fluctuating net-
work of resource-constrained sensor nodes.

Previous works have assumed stable networks with constant con-
nectivity between participants. However, continuous network join-
ings and disconnections are expected in a network composed of many
privately managed data sources. The network is thus in a constant
state of flux and must be able to handle this uncertainty. The require-
ment for adaptable and context-aware data discovery tools is unmet
in current works and needs further investigation.

Another disadvantage of using a central management instance is
the preservation of individual citizens’ data sovereignty. Proposed so-
lutions partially allow citizens to store their collected data themselves;
however, they must share their metadata with a central instance. This
metadata generally contains access rights and the individual citizen’s
available data. The extent to which this data is subsequently pro-
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cessed and analyzed falls outside the citizens’ decision-making au-
thority. From a sociological perspective on Smart Cities, the concern
is that citizens are viewed primarily as data sources while being less
integrated into the active domains of a Smart City [40, 110]. For these
reasons, this thesis conducts a deeper analysis and evaluation of these
issues.

In addition to the increasing demands on the underlying network
for connecting and discovering relevant data sources and privacy con-
cerns, the growing number of citizen-operated data sources necessi-
tates a focus on data quality. This aspect has been largely overlooked
in previous works and has not been provided as QaaS at the network
level. There are two primary methods for ensuring data quality: out-
lier detection, which identifies data points in a dataset that deviate
from expected norms and may indicate faulty data sources or incor-
rectly placed sensors, and anomaly detection, which typically exam-
ines entire data streams to detect unusual behavior. While outlier de-
tection focuses on individual erroneous data points, anomaly detec-
tion can identify patterns, such as recurring errors at specific intervals,
suggesting an external influence rather than a faulty sensor.

For example, temperature sensors placed on different sides of a
building may record higher temperatures when exposed to sunlight
earlier than others. Such sensors are not faulty, but their data might
need to be ignored or corrected during certain times. Only the work
by Cheng et al. includes an anomaly detection system, but it does not
support the integration of citizen-operated sensors [47].

External factors cause most expected anomalies, but they can also
result from the behavior of the sensor owners. For instance, grilling in
the garden might temporarily reduce air quality due to smoke, while
being on vacation would result in consistently low energy consump-
tion. Previous works have not addressed the private data contained
in the raw data. Collected data has been passed to services in its raw
form, and it remains to be explored how these private details can be
extracted and kept private without negatively impacting the services,
making sure to adhere to the data sovereignty of the participating
citizens.

4.4 summary

In this chapter, existing research works were summarized and ex-
amined in relation to their solutions for the requirements from the
previous chapter. From this overview, relevant research gaps were
subsequently investigated. The identified relevant research gaps can
be summarized as follows: First, there is a need for deeper investi-
gation into how discovery mechanisms can be implemented in a net-
work of equal participants, meeting scalability, efficiency, and context-
awareness requirements without a central entity that can collect meta-
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data through connections and become a bottleneck. Second, to ad-
dress citizens’ concerns regarding data privacy, services must account
for data sovereignty and respect their privacy. Further investigation
is required into how to ensure that no private information about data
providers is embedded in raw data shared with services, especially
those not fully trusted. Lastly, research is needed on how services
can ensure data quality when sensor placement cannot be monitored.

After identifying these research gaps, the following chapter
presents an overall architecture as a proposed solution for a citywide
citizen-centric platform. This platform aims to network the citizens’
existing sensor hardware and additionally provide participating
citizens with the opportunity to offer various Citizen Science ser-
vices. These services should then be able to access the available data
streams while maintaining the data sovereignty of other citizens.



5
D ATA S PA C E F O R C I T I Z E N S C I E N C E S E RV I C E S

Previously, related works in various Smart City domains built upon
data-driven networks were presented. These often involve citizens but
rarely beyond the role of data sources. As the requirements analyses
for citizen science (Section 3.1.3) highlights, it is crucial that citizens
are not marginalized into being mere data sources by technological
advances but are actively integrated into other aspects of the Smart
City concept [84]. Additionally, the importance of reusing the widely
distributed and existing sensor infrastructure to enhance sustainabil-
ity and reduce costs was highlighted.

Three relevant research topics have been identified based on
these two fundamentally different approaches. First, new distributed
context-aware discovery mechanisms are needed to connect and
make an ever-growing number of autonomous sensor nodes search-
able. Second, data processing should be investigated in greater depth
to determine how services and data sources can share the process-
ing tasks. This would give data sources more privacy and data
sovereignty while distributing the preprocessing and filtering load
between the data sources and the services. Third, methods to assess
the quality of self-managed data sources should be explored so that
services can define quality criteria for the data they use.

This chapter introduces the concept of a citizen-centric network
that allows citizens to manage their data sources and the collected
data. Further, they can connect services to that network to use the
existing data in a citizen science approach. These services need to
adhere to the privacy settings and maintain the data sovereignty of
the data sources to increase transparency and, therefore, the citizens’
trust in the network. These services offer added value for individual
target groups or the entire city by utilizing collected data.

To achieve these goals, a concept is discussed, and required mecha-
nisms are highlighted. The proposed system architecture implement-
ing the developed concept is then explained in two steps: First, the
main component of the network, the Connector, and its functionali-
ties are described. Next, the overall network architecture is outlined,
detailing the interaction between participating Connectors and pro-
vided Services.

5.1 conceptual citizen-centric network

To enable a citizen-centric sensor network as described in the require-
ments analysis (Section 3.3), the fundamental question is how citizens

55
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can be empowered to manage their collected data autonomously, re-
taining data sovereignty. Multiple distributed data management ar-
chitectures were presented in Section 2.2: Data Warehouses prescribe
a central entity with a fixed data structure, which, given the hetero-
geneity of the expected sensors and data, requires significant organi-
zational effort. Furthermore, the centralization results in the loss of
citizen data sovereignty, making this architecture unsuitable as a foun-
dation. While Data Lakes allow data to be stored in distributed reposi-
tories without a fixed data schema, access rights are not fine-grained
but binary, allowing either full or no access to the raw data. Addition-
ally, the lack of a standardized description means services for various
data sources would need to define different preprocessing steps to
link data from diverse sources. This is undesirable from a citizen’s
perspective; only a few would be willing to grant full access to all col-
lected data. From a service perspective, this architecture would entail
substantial effort to use data from various sources. Lastly, Data Spaces
offer a solution through decentralized management and fine-grained
access rights, enabling participating citizens to store their data locally
and individually decide whether a service can access their data. An-
other advantage is that participants can use different data represen-
tations. Services can use the data without needing individual refor-
matting through a standardized access interface and semantic data
descriptions.

To implement a data space, each participating citizen needs a soft-
ware platform to manage the locally collected data and enable access
to it for other participants through the data space. To achieve this, this
platform must function as a gateway, allowing the owner to transmit
data from existing sensors through the gateway to interested services.
This is reflected in the functional requirement of Sensor Management.
Due to the heterogeneity of existing hardware, sensors must be inte-
grated through a variety of standards and communication methods.
In addition to managing sensors, the gateway must also allow for
the management of collected data, as described in the Data Manage-
ment requirement. This includes functions for managing storage and
sharing in the data space. It is essential that citizens can not only con-
figure data access but also transparently view network visibility for
the owner. This strengthens privacy and prevents third parties from
obtaining more meta information about existing data sources.

As previously highlighted, participating citizens should also be
able to provide services that utilize the provided data to offer func-
tions or extract new knowledge. To provide local services, the Service
Management requirement must be fulfilled. Here, citizens need the
ability to create new services, connect new data sources, and manage
already running services. These services can be implemented in two
ways. First, they can be directly integrated into the data space soft-
ware and, thus, the gateway. To enable this, the system must meet
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the functional requirements of Application Runtime, Software Engineer-
ing Tools, and Data Processing. An advantage of directly integrating
services within the gateways is that service providers must adhere
to established rules and can only use the provided functions within
this runtime. However, a disadvantage arises for existing services that
wish to find new data sources through the data space. These services
would need to be re-implemented within the own application run-
time. Additionally, it must be ensured that the application runtime
is powerful enough to enable various services while being easy to
understand and learn. Second, the gateway can also offer interfaces
for externally connected services, allowing them to access data in the
data space through the gateway. This separates the logic between the
services and the gateway and enables services to be developed using
various tools and languages, giving citizens more freedom to choose
preferred tools and further connect existing services to the data space.
Contrary to the first approach, the gateway must now meet the re-
quirements for External Data Access, particularly addressing Privacy
and Security aspects to ensure that services can only access and use
the data they are authorized for.

With the local linking of sensors and the provision of services, the
gateway must also provide the ability to connect with other gate-
ways efficiently and securely, enabling data exchange between ser-
vices and relevant sensors functioning as data sources. Three require-
ments must be considered for this purpose.

First, there must be a Network Infrastructure that meets the non-
functional requirements of scalability, extensibility, availability, and ro-
bustness.

Second, services should be able to efficiently find existing data
sources using this network infrastructure to support the requirement
for citywide Data Discovery.

Finally, a common understanding must be established using a City
Model due to the heterogeneity of sensors, services, and the trans-
ferred data. This model should be defined in the context of the data
space but must be able to be extended and adapted.

5.2 locally managed data gateway - connector

Based on the previously discussed concept, the following section de-
scribes the architecture of a citizen-operated gateway called Connec-
tor that enables locally available sensors to connect with a citywide
citizen-centric data space. It also provides the ability to store and
manage data locally and create and manage services.

By connecting these decentralized Connectors, a city-wide data
space is created, allowing citizens to collect and manage their data in
a distributed manner and to decide at a fine granularity with which
services or other participants’ data should be shared. As defined in
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the Data Space architecture, each participant is connected to the data
space with their own Connector, which acts as a gateway to its inter-
nal data.

The interplay of the Connectors and the resulting overarching func-
tionality are then described in the form of so-called layers, each rep-
resenting different functions of the citywide data space.

5.2.1 Functionalities of the Connector

While this thesis
mainly focuses on

citizens, participants
can also include

institutions or
industries that wish
to contribute data to

the network or
benefit from the

available data.

Connectors represent the most crucial component of the proposed
network structure. Each participant connects to the existing network
through their Connector and can communicate with other Connectors
in the network via a common protocol.

Connectors are software executed on the participant’s hardware.
They must provide the following functionalities, as established by the
requirements analysis:

sensor management : Participants should be able to connect ex-
isting sensors to the Connector through various interfaces and
make their data streams available to the citywide data space.

data management : Participants should manage their own data,
including data persistence and an overview of how their data is
used by services.

service management : Participants should manage their pro-
vided services and connected data sources. Additionally, they
should have an overview of the services they provide data to or
those interested in their data.

access control : Connectors must enable participants to set ac-
cess rights for their provided data streams, allowing them to
share only the data they wish to share consciously.

While these functions represent the user interface of the Connector
that participants interact with, additional background functionalities
ensure the fulfillment of other functional requirements. These back-
ground functions include:

data discovery : When a service wants to use data streams from
the network, it must define the required data. The network must
be able to identify all relevant data sources that meet the defined
criteria and request their data.

data processing : When services use data, the sensor network
should preprocess the data as much as possible on the Con-
nector of the data source, as described in Section 4.3, to protect
the privacy of the data source and distribute the load.
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definition of a city model : To enable services to semantically
describe their required data and identify it within a network
of heterogeneous data sources, all participants in the network
must share a common semantic understanding. This should be
ensured through a universally applicable City Model.

Additionally, Data Quality was identified as another requirement in
Section 3.3 that should be offered as network services. Since assessing
data quality requires access to data from multiple sensors from differ-
ent participants, therefore, this service should be provided as opt-in
function. This approach ensures the data sovereignty of the partici-
pants, allowing them to decide to what extent they want their data to
be evaluated.

5.2.2 Component-Based Architecture

The Connector consists of several modular components, each per-
forming a dedicated function. To give users the possibility to con-
figure each component, each provides their own user interface. These
modular interfaces are then integrated into an overarching Connec-
tor interface that allows users to manage all relevant information and
gives them an overview of its collected data, provided, and participat-
ing services. Due to the modular architecture and independent user
interface, each component can be paused or deactivated as needed.
This may be relevant in cases where, for instance, local data persis-
tence is not required, or the Connector does not provide any services.

Figure 6 abstractly depicts the individual components. Each compo-
nent provides a single functionality and communicates via so-called
events. A central event engine facilitates communication between
components. This communication architecture decouples the compo-
nents, allowing individual components to be deactivated without af-
fecting the functionality of the other components.

A network node must provide various integration options for exist-
ing data sources to share collected data with the network. The data
interface component can either be actively called by existing data
sources (push method) or continuously query the data source to re-
quest current data for local processing (pull method).

When new data is received, it is distributed via the local event en-
gine to existing components interested in the data. This can include
persistence if data needs to be archived locally and notifying all ser-
vices that have subscribed to this data stream. These services can
be provided locally on the same Connector or remote Connectors
within the same data space. Access to the provided data streams can
be finely controlled for each service using access control. Once ac-
cess is granted, new data records are proactively forwarded via the
network interface.
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Figure 6: Component-based Architecture of a single Connector. Showing the
communication channels between each component and a central
event engine.

The following sections provide a detailed analysis of each individ-
ual component.

Data Interface

Since the citywide networks focus on increasing the sustainability
and reuse of existing sensor infrastructure, one of the major require-
ments is to integrate existing data sources and, therefore, make al-
ready available data more accessible. Thus, existing infrastructure
should be reused as much as possible, and new data should be pro-
vided through the proposed network structure alongside existing pro-
cesses.

In the following multiple possible communication methods to inte-
grate existing data sources are proposed:

1. If new data sinks can be defined at the data source itself, the
data interface provides endpoints through which new data can
be published to the network. This is the simplest solution but
requires configurable data sources that use the same protocol as
the data interface.

2. If data sources offer an interface to query the latest data, the
data interface can request the newest dataset at configurable
intervals. This method does not require any changes to the data
source itself but assumes a common protocol for data exchange.

3. If data is already processed or stored locally, data can be mir-
rored from the existing data flow or storage to the network node
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using integrators. An integrator is a dedicated software solution
that must be adapted and modified based on the existing in-
frastructure. Thus, similar to point 2, no changes to the data
source itself are necessary, but the complexity of the integrator
can vary depending on the existing infrastructure and software
used.

These different communication methods are not mutually exclu-
sive; they allow various data sources to publish their information
through the data interface in different ways. When a new dataset is
published, this information is forwarded to interested components
and services via the internal event engine. This ensures that new
datasets quickly and efficiently reach the appropriate recipients. This
type of data distribution enables seamless integration and interac-
tion between the different components and services, ensuring effec-
tive communication and collaboration within the system.

When a new data source is initialized, various information must
be provided to describe the data source semantically. As stated in
Section 3.3, the semantic description of data sources and their mea-
surements is a crucial component of an interoperable, extensible, and
reusable data space. Only through the semantic description of the
data source can the heterogeneous sensors available in the network
be interpreted and utilized by various services. Section 5.4 describes
the data model used and the descriptions of various data sources in-
depth.

Persistence

In a distributed network for streaming data, persistence is an op-
tional component that allows for storing collected data in a perma-
nent repository, enabling access to historical data upon request. This
component allows network nodes to archive and store their collected
data for future analysis and evaluation.

There are three configuration options the persistence component
needs to provide:

no persistence : Current data is processed in real-time but not
stored anywhere. This setting does not require additional stor-
age space but does not allow for requests for historical data.
This setting makes it lightweight and simple to set up.

internal persistence : Current data is continuously stored in an
internal data repository on the hardware node and made avail-
able for requests for historical data. Various settings can be con-
figured for data retention to adjust the available storage space.

external persistence : Existing infrastructure can be set as exter-
nal data repositories to avoid duplicate storage. This requires
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the existing infrastructure to provide interfaces that allow ac-
cess to the stored data and enable search queries for defined
data.

Integrating a persistence component into the citywide sensor net-
work allows for responding to requests that include historical data, in
addition to subscriptions to the current data of a data source. These
requests can either be performed automatically at predefined inter-
vals or as one-time manual queries. Such manual queries can be sig-
nificant for analytical purposes or for reviewing past events. For in-
stance, historical data can be analyzed to identify long-term trends or
uncover recurring patterns.

As mentioned earlier, the persistence component is optional and
can be deactivated. This function primarily targets users with lim-
ited resource-limited hardware and storage, where no persistence is
applicable. However, this node can then only provide live data.

Event-Engine

As the central communication component within a Connector, the
event engine interacts with other components by distributing local
events to the available components. Through an internal publish-
subscribe communication model, individual components can pub-
lish their own events and subscribe to the events of other compo-
nents. This communication method ensures that local components
are loosely coupled. Therefore, the overall system continues to func-
tion even if a single component fails, is shut down, or triggers an
internal error. Local events can be categorized as follows:

data events : A new dataset has been collected, which can either
originate from a locally managed data source or from an exter-
nal data source that provides data for a local service.

request events : These are requests sent to the local Connector
from other Connectors and services. They can be either sub-
scription requests or requests for historical data.

internal events : Internal events are those relevant to internal
communication between components. These are mostly used for
configuration but can also include abort or error events.

Figure 7 shows an exemplary communication sequence between
the Data Interface, Event Engine, and Persistence components. In the
first step, the Data Interface publishes a data event; however, no other
component is yet subscribed to this event. As a result, the event is not
forwarded and is ignored by the Event Engine.

In the next step, the user configures settings to store the data, and
the Persistence component sends a data subscription event for the
specified data sources to the Event Engine. When the Data Interface
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Data Interface Event Engine Persistence

1. Data Event

2. Data Subscription Event

3. Data Event

4. Data Event

Figure 7: Sequence diagram showing the communication events between
the Data Interface, Event Engine, and Persistence component.

publishes a new data event, the Event Engine forwards it to the Persis-
tence component, as the latter has expressed interest in these events.

Access Control

With the help of the access control component, the owners of a Con-
nector and its linked data sources can distribute fine-grained access
rights to services. The focus here is on the decision-making power
of the owners and the transparency of how their data is used. As
outlined in the requirements, a citywide sensor network focused on
citizen participation is expected to include not only tech-savvy partic-
ipants. Therefore, an intuitive and transparent access control mecha-
nism should assure every participant that their collected data is not
misused. Participants must also be confident that their data cannot
be used to infer details about their private lives or behavior.

Every newly linked data source is initially set to private to ensure
this. This means the data source is not published in the citywide sen-
sor network. Consequently, no other participant knows that this data
source exists and cannot request or use it. If the user wants to make
the data from the new data source available to other participants,
there are two options: protected, used for potentially sensitive infor-
mation, and public. Sensitive data may contain personal information Local preprocessing

ensures that not all
data is sent as raw
data. Rather, the
owner can
understand how the
data is used and can
make an informed
decision about
whether their data
may be utilized.

or allow inferences about the owners’ behavior. Although protected
data sources are published in the citywide sensor network, an exter-
nal service must obtain active consent from the owner to use the data.
For this purpose, the service declares how the data is preprocessed
on the owner’s Connector and what content is ultimately sent to the
service. Lastly, there are public data sources. These are data sources
where the owners are confident they do not contain sensitive informa-
tion. Thus, they can be used without a request for manual approval.
Subscribed services receive the data in its raw form. Local prepro-
cessing is also possible, but it requires manual owner approval, as it
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actively uses the owner’s resources and might create energy costs or
negatively influence the performance of other components and ser-
vices.

Network Interface

The network interface component is the communication channel be-
tween the connected Connectors within the citywide sensor network.
The Connectors form a decentralized network responsible for discov-
ering data sources and establishing connections between two Connec-
tors. The main function is to allow services to discover matching data
sources as input and safely transfer the data streams from the data
source to the service.

Figure 8 shows a sequence diagram with two Connectors who want
to exchange data. A service on ConnectorA (top) is interested in a
data stream provided by ConnectorB (bottom). To receive their col-
lected data events, it sends a Request Data event with the remote ad-
dress to its internal Event Engine. The Network Interface is subscribed
to all events with a remote address as a target. Therefore, the event
is forwarded to the local Network Interface, which serializes the event
and sends it over the network to the Network Interface from Connec-
torB. The message is deserialized and sent to the Event Engine. As
described in Figure 5.2.2, the Access Control component manages all
access rights and is, therefore, subscribed to all Request Events from
remote addresses. The access control now needs to check the access
rules for the requested data source. If it is public, it adds the remote
subscription directly to the event engine. When access rules are set
to protected, it waits for the user’s decision on whether a subscription
should be added. When the subscription is added successfully, the
access control component creates an Accept Request event sent to the
remote service. When the service receives the Accept Request, it sends
a Data Subscription event to the local event engine to forward future
data events.

Since few participants in a citywide citizen-operated sensor net-
work are expected to have a publicly accessible Internet Protocol (IP)
address, the network interface must establish secure communication
between participating Connectors and ensure the reachability of each
Connector for other network participants. Due to the absence of a cen-
tral authority, all participating Connectors are equal, and as described
Section 4.3, managing and discovering remote data sources is one of
the open research questions this thesis tackles. Chapter 6 therefore
focuses on the used network architecture and the utilized discovery
mechanisms within the citywide data space.
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Service Component Event Engine Network Interface ConnectorB

Request Data

Request Data
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Figure 8: Communication between two participating Connectors to sub-
scribe to a remote data stream. Where a service on Connec-
torA (top) is interested in a data stream provided by the Data In-
terface on ConnectorB (bottom).
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Service Interface

Finally, the service interface is introduced. This interface manages the
integration of services with the citywide data space. Services are ex-
ternal dedicated software components that can interact with the data
space via the service interface. These services can be public, providing
functions to end-users through an external user interface or deliver-
ing results in the form of an API for other services and programs.

Each service has to provide two endpoints through which the Con-
nector interacts with it. The Connector relays new data events to the
service via the first interface. The Connector uses the second interface
to transmit management events, which include the following:

accept request : When a new data source agrees to provide its
data to the service, indicating that future data events from this
source are to be expected.

disconnect event : This event informs the service that the net-
work interface cannot currently connect to that data source,
meaning no new events are expected for a certain period.

reconnect event : When this event occurs, a connection to the
data source has been reestablished, and data events are ex-
pected again. Depending on the reason for the disconnect, there
may be a backlog of older events that are now forwarded to the
service.

remove event : A data source has terminated the subscription and
informs the service that no further data events follow.

How the service handles these events and the extent to which it
implements fault tolerance is up to the service. The Connector acts
solely as a manager of data sources and a mediator for the provided
data.

When a service is initialized via the service interface, the developer
must provide three pieces of information: First, the service and its
function or goal must be described semantically. This description is
provided to data sources to help them decide whether to provide
their data to the service. The description includes both the processed
data and the goal of the service. This can be the resulting benefit forDiscovering relevant
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efficient discovery
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all relevant data
sources within a

citywide data space.

its users in the form of a user application or the provided API to be
used by other services and applications.

Second, the required data must be described. The developer uses
the citywide data model to define the data type needed. This includes,
on the one hand, the type of required data and, on the other hand,
restrictions on which data sources are relevant. For example, a service
might only be interested in data about a certain area within the city
or only if the same data source collects two different data types at
the same location. With this description, the citywide data space can
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discover suitable data sources, request them, and forward their data
to the service.

Finally, the developer must define whether and what kind of local
preprocessing the data sources should perform. This preprocessing
description is transmitted to the data sources along with the service
description, allowing data owners to decide whether to provide their
data for the described service in the specified preprocessed form. One
of the major research gaps discussed in Section 4.3 is how preprocess-
ing is realized. In Chapter 7, the proposed approach is described and
evaluated in detail.

5.3 system architecture for decentralized data spaces

After describing the individual Connector and its components, this
section provides an overview of the resulting data space architec-
ture and the interactions between participating Connectors. The data
space is represented as six interdependent layers highlighting the
Connectors’ different functionalities. These layers range from the sen-
sor layer, where raw data is collected, to the application layer, which
enables applications to process, display, or extract information from
the provided data. Figure 9 provides an overview of these layers and
depicts the connections and transfer of information between them.
The blue dots represent the participants’ Connectors, with vertically
aligned dots indicating the same Connector across different layers. Ar-
rows illustrate, as an example, how data is transferred from sensors
to services. The following sections describe each layer.

Sensor Layer

The sensor layer describes all data sources connected to the Connec-
tors of the citywide data space. These can be hardware sensors or so-
called virtual sensors. Virtual sensors represent any conceivable form
of digital data (e.g., a news feed on a topic or from a person, stock
market information, etc.). Each Connector can represent and manage
any number of sensors. It is important to note the one-to-many rela-
tionship between a Connector and its linked data sources. How the
data is transmitted from the data source to the Connector can vary
depending on individual data sources, as described in Section 5.2.2.

Various standards already provide solutions for transmitting data
from a data source to a data sink; therefore, this thesis does not ad-
dress this topic further. It is assumed that the connection is estab-
lished and continuous data is transmitted from the data sources to
the Connectors.



68 data space for citizen science services

Discovery Layer

Connector Layer

Application Layer

Service Layer

Data Exchange Layer

Data Layer

Figure 9: Abstract network architecture composed of six layers. Vertical blue
dots represent the same Connector on different layers. Lines rep-
resent connections, and arrows show the data transfer between
layers and Connectors.

Connector Layer

The Connector layer represents the independent Connectors, each of
which represents a locally isolated data silo. When considered indi-While caching and

distributed storage
can improve data

availability, owners
might lose control

over which services
can access their data.

vidually, a participant can already use a Connector to connect local
services and data sources. The Connector software serves as the core
for all layers above it. As previously mentioned, a Connector can run
on dedicated hardware or be embedded into existing infrastructure.
For a stable and efficient data space, the Connector should ideally be
continuously connected to the internet and accessible from it. Since
no caching or distributed data storage is planned, the sensor data is
only available to external services when an active internet connection
exists.

Discovery Layer

The Connectors connect on the so-called discovery layer to allow
provided services to find relevant data streams from other Connec-
tors. Here, the Connectors form an overlay network that enables ef-
ficient search based on semantic descriptions. This search allows ser-
vices to find groups of Connectors that provide relevant data streams
efficiently. The semantic description can include one or more sen-
sor types, the location of data collection, or the temporal resolution.
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While the discovery layer is responsible for finding data streams, it
only exchanges address information, not the actual data. The discov-
ery layer and its specific functions are presented and evaluated in
depth in Chapter 6.

Data Exchange Layer

After Connectors have exchanged their connection data on the dis-
covery layer, data exchange occurs on the data exchange layer via a
direct connection without using the overlay network. This way, other
network participants do not know which and how many data pack-
ets are exchanged between the two Connectors. For example, the
Subscription Request, already familiar from Figure 8, is sent and an-
swered in this direct connection. The transfer of data streams is also
carried out via a direct connection. This direct connection prevents
third parties from collecting meta-information about the individual
Connectors and their connections, which enhances both the security
and privacy of the individual participants.

Service Layer

As described in Section 5.2.2, each Connector can manage any num-
ber of services and forward data to them. Each service defines in
its service description which data is required and how data sources
should locally preprocess their data before making it available to
the service. During the initialization of the service, all relevant data
sources are automatically discovered through the discovery layer, and
the request, along with the service description, is transmitted via the
data exchange layer. The owner of these data sources can then decide
whether to make their data available to the service under the speci-
fied conditions. If they agree, all new incoming data from the point
of agreement is preprocessed and sent via the data exchange layer
to the responsible Connector, which then forwards this data through
the service interface to the deployed service. One of the key innova-
tions in this layer is the privacy-enhancing distributed preprocessing
of raw data from distributed data sources. How this is implemented
is elaborated in Chapter 7.

Interface Layer

The interface layer describes all user interfaces provided by the vari-
ous services outside the network. Various use cases are conceivable:
On the one hand, data can be visualized through different tools to
give viewers a better overview of the city or specific applications; ex-
ternal hardware may be able to use data from the network through
API accesses and make decisions based on the data; classic applica-
tions (such as routing services) can also be realized as services, allow-
ing users to utilize the network’s data through user interfaces (web
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or app applications) without having to understand the complex un-
derlying structure and origin of the data.

5.4 a citywide data model

This section examines using a citywide data model and the unified
semantic description of sensors, data, and services. At first, the con-
cept of ontologies, their functionality, and the advantages they can
bring to citywide data spaces are introduced. This is followed by a
brief analysis of existing ontologies, concluding with a selection of
ontologies used for the proposed citywide data space.

5.4.1 Advantages of Ontologies

Ontologies are formal representations of a knowledge domain
through a group of concepts and the relationships between these
concepts. They serve to structure and standardize knowledge in a
specific area systematically. An ontology typically includes:

concepts represent categories of objects in a particular knowledge
domain.

instances are specific objects or events defined within concepts.

properties describe characteristics or attributes of the concepts.

relations define the relationships between different concepts.

With the advent of the World Wide Web and the development of
the Semantic Web by Tim Berners-Lee in the early 2000s, ontologies
have played a central role in structuring and ensuring the interoper-
ability of information on the Web. Standards such as Resource De-
scription Framework (RDF) and OWL were developed to create and
utilize ontologies on the web. Due to the clearly defined structure
of an ontology and its components, they offer several advantages
in heterogeneous knowledge environments. They establish a com-
mon vocabulary for various stakeholders, facilitating communication
and understanding. Using standardized terms and structures, on-
tologies enable interoperability between different systems and data
sources. They ease data integration from various sources by provid-
ing a common structure and meaning. Additionally, ontologies can
be reused across different applications and domains, allowing for the
automated derivation of new knowledge through logical reasoning
based on defined relationships and rules. Furthermore, by adding
application-specific concepts, properties, and relations, existing on-
tologies can be adapted and extended to various special use cases.

Many of the requirements outlined in Section 3.3 are evident in
these advantages. Using a clearly defined ontology helps to make ex-
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isting heterogeneous sensors in the city usable and interpretable. In-
teroperability is promoted through a unified semantic understanding,
and by improving the extensibility, a citywide data space can adapt
to new circumstances and meet new requirements.

5.4.2 Existing Ontologies for the IoT and Data Spaces

For a citywide data space based on a decentralized structure of sen-
sors and services, various ontologies already exist that describe some
of the most important concepts, instances, properties, and relations.
The following ontologies are considered, which integrate and stan-
dardize a wide range of heterogeneous and extensive data:

ssn (semantic sensor network ontology): Developed by
the Word Wide Web Consortium (W3C), the Semantic Sensor
Network (SSN) Ontology describes sensors, sensor observa-
tions, and measurements, as well as the related properties
and units. This ontology provides a detailed framework for
representing the capabilities and outputs of sensors in a
standardized way [266].

sosa (sensor , observation, sample , and actuator): To
simplify SSN W3C create SOSA. It focuses on the core concepts
of sensors and observations, providing a lightweight frame-
work for representing these elements. The simplicity of SOSA
makes it suitable for a wide range of applications where the
full complexity of SSN is not needed [267].

iot-lite : IoT-Lite is a lightweight ontology designed for the IoT. It
models IoT resources, data streams, devices, and services, pro-
viding a streamlined framework for representing the compo-
nents and interactions within an IoT ecosystem. This ontology is
particularly useful for applications requiring efficient and scal-
able data management [265].

qudt (quantities , units , dimensions , and data types):
To model quantities, units, and data types, the QUDT ontology
was defined. QUDT makes it simple to describe measurements
and their units. By providing a standardized approach to
representing these elements, QUDT facilitates integrating and
comparing data from different sources [209].

time ontology : Developed by the W3C, the Time Ontology mod-
els temporal concepts such as time points, time intervals, and
events. This ontology provides a comprehensive framework for
representing and reasoning about time-related information in
various applications [268].
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vcard ontology : The vCard Ontology provides an RDF represen-
tation of the vCard format. It models addresses and contact in-
formation, offering a standard way to represent and share per-
sonal and organizational contact details in semantic web appli-
cations [264].

wgs84 geo positioning ontology : The WGS84 Geo Position-
ing Ontology defines fundamental classes and properties for de-
scribing geographical positions and locations. It is particularly
useful for specifying latitude and longitude coordinates [263].

foaf (friend of a friend): FOAF models social networks, peo-
ple, places, and organizations. It can be used to describe places
and associated information, providing a framework for repre-
senting social and geographical relationships. This ontology is
widely used in social networking and web applications to en-
hance interoperability and data sharing [78].

All of these ontologies are developed for a specific use case and
build upon each other to avoid duplicate definitions for the most
basic concepts and instances. A combination of these ontologies cov-
ers different aspects of the overarching architecture to create a city-
wide data space. Representing sensors, Connectors, services, and col-
lected data, the SOSA ontology is a broadly accepted standard and
is used; the additional concepts from the SSN are not needed but
can easily be added as the architecture might change in the future.
The QUDT ontology is used to describe collected data in detail and
makes it comparable between different heterogeneous sensors. The
vCard and WGS84 ontologies are used to describe the geological
placement and distribution of data. While vCard contains address-
based geolocation definitions such as city, borough, street, and num-
ber, WGS84 describes geographical coordination using latitude and
longitude. vCard even contains more concepts that can be used to
describe personal or organizational information, similar to the FOAF
ontology, but these are not yet used.

5.4.3 Exemplary representation of a Connector and Sensor

With the help of the previously introduced and selected ontologies,
the concepts, instances, and relations in a citywide sensor network
can now be described. This allows data sources and services to be au-
tomatically compared and related even in a heterogeneous network.
The following is an exemplary representation of a Connector that
provides two sensors (data sources) and a service for calculating the
hourly average temperature in its own district.

Initially, custom definitions with the prefix ‘cwds‘ (citywide Data
Space) are introduced. These application-specific definitions are not
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present in any of the used ontologies. Therefore, these definitions
must be recognized in the citywide data space and known to each par-
ticipating Connector. After defining these namespaces, the Connector
defines its sensors and observed properties. In this example, the Con-
nector provides two sensors: a temperature sensor that observes the
surrounding temperature in degrees Celsius and a humidity sensor
that observes the humidity in percentage. Following the sensors, the
Connector is described with all hosted sensors and services, as well as
the location that was set by the user when initializing this Connector.
With this information, other services can now search for all sensors
that observe Temperature within 10014 New York, and the data space
can identify this Connector as a possible data source.

Listing 1: Semantic description of a Connector with two sensors and a pro-
vided service

1 @prefix sosa: <http://www.w3.org/ns/sosa/> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

@prefix qudt: <http://qudt.org/schema/qudt/> .

@prefix unit: <http://qudt.org/vocab/unit/> .

6 @prefix cwds: <https://citywide-dataspace.org/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

# Definition of Sensors

cwds:tempSensor a sosa:Sensor ;

11 sosa:observes cwds:Temperature ;

sosa:hosts cwds:Connector .

cwds:humiditySensor a sosa:Sensor ;

sosa:observes cwds:Humidity ;

16 sosa:hosts cwds:Connector .

# Definition of observable properties with QUDT

cwds:Temperature a sosa:ObservableProperty, qudt:QuantityKind ;

qudt:unit unit:DegreeCelsius ;

21 rdfs:label "Temperature" .

cwds:Humidity a sosa:ObservableProperty, qudt:QuantityKind ;

qudt:unit unit:Percent ;

rdfs:label "Humidity" .

26

# Definition of the Platform

cwds:Connector a sosa:Platform ;

sosa:hosts cwds:tempSensor, cwds:humiditySensor, cdws:

avgTempService ;

vcard:hasAddress cwds:address ;

31 geo:location cwds:location .

# Definition of the Platform’s address

cwds:address a vcard:Address ;

vcard:street-address "90 Bedford St" ;
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36 vcard:locality "New York" ;

vcard:region "NY" ;

vcard:postal-code "10014" ;

vcard:country-name "USA" .

41 # Definition of the Platform’s geographic location with WGS84

cwds:location a geo:SpatialThing ;

geo:lat "40.732013"^^xsd:float ;

geo:long "-74.005688"^^xsd:float ;

geo:alt "15"^^xsd:float .

46

# Definition of the service for calculating the hourly average

temperature

cwds:avgTempService a sosa:Actuator ;

sosa:actsOnProperty cwds:Temperature ;

sosa:hostedBy cwds:Connector ;

51 cwds:computes "HourlyAverageTemperature" .

5.5 summary

This chapter discusses the overarching architecture of a citywide de-
centralized data space. The Connector and its functionalities are intro-
duced as the central component of the citizen-operated network. Each
participant connects their locally managed data sources and services
to the citywide data space through this Connector, enabling access to
their own data and, in return, gaining access to data from other par-
ticipants. The Connector acts as a gateway where the owner can set
fine-grained access controls and track which services use their data
for which purposes.

While this chapter provides an overview of the entire system’s func-
tionality, the following chapters examine and evaluate individual as-
pects in detail. The most significant research gap identified is the de-
centralized networking and associated discovery mechanisms, which
are presented in the subsequent chapter. In addition to discovery, the
distributed preprocessing of raw data to enhance privacy and dis-
tribute load was identified as an essential research gap, which is ana-
lyzed in depth in Chapter 7. Due to the self-managed sensors and the
lack of a controlling authority for standardized placement, data qual-
ity evaluation is an essential aspect of a citizen-operated data space.
As justified in Section 5.2, data quality should be implemented as a
separate service. This service is introduced and evaluated in Chap-
ter 8.



6
D I S C O V E RY O F D ATA S O U R C E S I N A C I T Y W I D E
D ATA S PA C E

After presenting the citywide data space architecture based on Con-
nectors deployed by individual participants in the previous chapter,
this chapter analyzes the first identified research gap in greater de-
tail. In Section 3.3, the discovery of groups of similar data sources
was established as an important requirement for citywide data spaces.
In Section 4.3, it was shown that previous approaches follow a cen-
tralized discovery approach. However, the instance managing this
centralized discovery can analyze metadata about the relationships
between other participants, potentially inferring data usage and ac-
cess rights. Additionally, a centralized discovery infrastructure can be-
come a bottleneck, especially in a constantly changing network with
joining and leaving Connectors, which continuously burdens that sin-
gle discovery service.

For these reasons, a decentralized discovery network is introduced,
enabling services within the data space to search for groups of suit-
able data sources. The service describes the type of collected data and
additional criteria, such as temporal resolution or spatial restriction.
Without a central instance managing all the knowledge, the network
the search request to all matching data sources, allowing them to re-
spond to the searching service as potential data sources.

The following sections first introduce the fundamentals of decen-
tralized overlay networks. This is followed by a differentiation from
related works that propose solutions for searching in decentralized
networks. After the differentiation, the network structure used is pre-
sented. Building on this network structure, the search algorithm and
additional extensions for optimization are introduced. The proposed
approach is evaluated and discussed at the end of the chapter. This
chapter’s provided ideas and figures have been previously published
in [137].

6.1 decentralized overlay networks

Research and development of decentralized overlay networks, which
play a fundamental role in designing distributed systems and net-
works, began in the early days of the internet and Peer-to-Peer (P2P)
technologies. These structures are crucial for the efficient organiza-
tion, storage, and discovery of data in networks without a central
coordination unit. Decentralized data structures can be categorized
based on their organizational form and underlying network design.

75
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Figure 10: Exemplary unstructured overlay network containing nine peers
and thirteen connections.

These categories include unstructured, hierarchical, and structured
networks, each with unique characteristics and use cases.

6.1.1 Unstructured Networks

Unstructured networks, as illustrated in Figure 10, were among the
first P2P networks to be developed. One of the most well-known ex-
amples is Gnutella [213]. Unstructured P2P networks are character-
ized by a random organization of peers, with files and resources dis-
tributed without a fixed schema. The lack of structure simplifies the
organization of nodes and leads to easily scalable networks. However,
a significant drawback is the search mechanism. Due to the absence
of a structure determining where data is stored, searches in unstruc-
tured networks typically occur through flooding algorithms. These
algorithms distribute search queries based on various heuristics [133,
275] to as many nodes as possible in the network to find the de-
sired data quickly while attempting to minimize the number of peers
queried to keep the network load low. As the network size increases,
more participating peers must be queried, stored data must be dupli-
cated more frequently, or searches are less likely to find the desired
data. All these solutions can lead to inefficient searches in unstruc-
tured networks as the network grows [154]. Furthermore, it cannot
be guaranteed that all sought-after information within the network
has been found unless every peer in the network has been contacted.
Due to the inefficient search mechanism and the lack of guaranteed
search results, such unstructured networks are unsuitable for discov-
ery in Smart City data spaces.

6.1.2 Hierarchical and Hybrid Networks

Hierarchical, or hybrid networks, represent an attempt to solve the
scalability problems of unstructured networks by introducing a cer-
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Figure 11: An example of a hierarchical network, where there is an inner
circle with so-called superpeers (red) responsible for managing
the peers connected to them.

tain form of organization. An example of such a network is illus-
trated in Figure 11. In this structure, peers always connect to a higher-
ranking superpeer. Superpeers are responsible for indexing informa-
tion and forwarding requests. This structure improves search effi-
ciency since superpeers have more knowledge about data distribu-
tion, thus eliminating the need for flooding across all peers. However,
this structure introduces new challenges regarding the load and relia-
bility of superpeers. Superpeers possess additional information about
the peers connected to them, requiring more storage space for data
management, and the message traffic at these nodes is significantly
higher than at the peers. If a superpeer fails, replacing it is a signifi-
cant effort since a suitable successor must first be identified. This suc-
cessor must then gather all the necessary information from the other
superpeers and the connected peers to reach the same knowledge
level as the previous superpeer. A high fluctuation rate is expected in
a citizen-operated sensor network, which can negatively impact the
network’s efficiency due to the increasing overhead. Additionally, the
Connectors are mostly built on consumer hardware, which affects the
load capacity and may lead to more frequent failures under high load
conditions.

6.1.3 Structured Networks

Structured networks offer a solution to the disadvantages of ineffi-
cient searching in unstructured networks by providing a determin-
istic structure for the cost of increasing the administrative burden.
Additionally, all peers are identical in their roles within the network.
To achieve this, established structured P2P networks like Chord [239],
CAN [211], Pastry [217], and Tapestry [287] use a deterministic
method for data organization and localization, enabling efficient and
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(a) Ring-based structured overlay net-
work, where the search efficiency
and robustness are increased by us-
ing so-called finger tables, referring
to peers further away.

(b) Structured overlay following a two-
dimensional ordering, where each
peer is responsible for a specific
area in that two-dimensional space.

Figure 12: Two exemplary structured overlay networks, managing peers in
different representations of an underlying namespace.

complete searches. This is done by assigning data to peers through an
agreed-upon hash function used to hash peer and data identifiers al-
lowing to determine data responsibility, hence the name Distributed
Hash Table (DHT). One advantage of using a hash function is the even
distribution of data and, consequently, the load within the network.
However, a disadvantage of using a hash function for data organiza-
tion is decoupling data from its source. By hashing the data identi-
fiers, an independent peer within the network is determined as the
data storage location. This is a desirable feature in a network that is
responsible for distributed data storage and replication, as the dis-
tribution of data also distributes the load within the network. In a
data space where participants want to manage their collected data
(see Section 3.3), forced equal data distribution to other peers is not
desired. Participants prefer to manage their collected data themselves
without compromising search efficiency. This requirement led to the
development of structured P2P networks that are not only based on
a hash function but also a distributed skip list [206]. Two parallel
approaches emerged: SkipGraph [19] and SkipNet [106]. In addition
to the evenly distributed IDs of the hash function, these use a self-
chosen identifier. This identifier allows peers in the network to be
grouped and data to be localized. This has the advantage of local-
ity of data and peers. Locality in this context means that peers with
similar identifiers are close to each other in the network, and data
can be stored on designated peers without reducing search efficiency.
Furthermore, descriptive names for the peers can be chosen using
self-chosen identifiers, allowing for semantic searches.
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6.2 related work

The efficient discovery of Connectors defined by a semantic descrip-
tion becomes more important as the number of semantic properties
and the overall network size increase. Existing discovery approaches
in distributed systems can be classified into two categories: Finding
static data defined by unique identifiers and finding specific peers
participating in the overlay network. In the first category, DHT-based
approaches [211, 217, 239, 287] are used to improve load balancing
and achieve faster lookup times through data caching and replication.
Due to the volatility of generated data within the IoT context, these
methods can only be used to a limited extent since caches and replicas
have to be updated and replaced continuously. Similarly, searches in
IoT are rarely performed for a single data point due to its dependence
on other data and short lifetime. Instead, searches for categories of
data from different IoT devices are to be expected. This indicates that
full identifiers are most often unknown when starting a search. In-
stead, descriptive semantic properties are used to search for matching
Connectors.

6.2.1 DHT-based Networks

More recent research focuses on discovering peers within DHT-based
overlay networks based on one or multiple properties. S. Cirani et al.
propose an architecture based on a DHT utilizing gateway nodes with
a stable internet connection [55]. Sensors connect with a locally man-
aged gateway node, which participates in a network based on a dis-
tributed location service [56] and distributed geographic table [199].
Nodes can be efficiently discovered based on their physical location.
However, other properties (such as sensor type) cannot be used for
the discovery.

Also based on a DHT, F. Paganelli and D. Parlanti propose a dis-
covery service that can search for multi-attribute range queries [192].
To achieve this, the authors map multidimensional attributes into a
one-dimensional namespace using space-filling curves. The resulting
identifiers are then sorted using a Prefix Hash Tree (PHT). Finally, the
PHT node identifiers are hashed and distributed over a DHT. This re-
sults in an equally distributed load across the network while enabling
range queries performed over the PHT. In addition, multi-attribute
searches are possible, but they have the drawback of potential false
positives, which must be filtered out afterward. While this work al-
lows for multi-attribute searches, false positives and the repetitive
use of the underlying get() on the DHT leads to an unnecessarily
high load of messages. Furthermore, it is impossible to select multi-
ple specific attribute values that are not adjacent in the namespace
(e.g., humidity and temperature sensors).
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6.2.2 Skiplist-based approaches

In parallel approaches utilizing distributed skip lists [206] emerged.
Harvey et al. [106] and Aspnes and Shah [19] independently intro-
duced a distributed network architecture based on user-selected iden-
tifiers. These user-selected identifiers allow for more descriptive iden-
tifiers and group similar identifiers within the network. Further range
queries based on these identifiers are supported to find all nodes
within a network that share a common prefix in their identifiers.

Li et al. propose a locality-preserving context-aware service discov-
ery called ”LOCA” [148] based on distributed skip lists. The authors
focus on reducing required message hops for queries within an orga-
nizational domain. Therefore, they introduced a more efficient nam-
ing scheme for services. While this effectively preserves locality and
integrity within the specified organizational domains, an ontologi-
cal model is required to receive all relevant services. While SkipNets
supports range queries by default, Li et al. focus on ontology-driven
discovery to find relevant services based on different criteria. A draw-
back of this approach is that each service must be contacted to eval-
uate whether all required criteria are met since the ontology is not
embedded in the service’s identifier.

Ishi et al. [114] introduced bounded range queries, allowing faster
search results targeting a range of peers by splitting search mes-
sages into multiple subqueries. This approach has been further op-
timized by Banno and Shudo [22] to ”reduce the average path length
by roughly 30%”. While these extensions enhance the efficiency of
range queries, selections and ranges on multiple attributes are not
supported.

However, none of the previously presented approaches can facili-
tate selection queries on multiple attributes. In the current state of
the art, multiple overlays or search queries must be created to allow
for multi-range queries. Which, in the end, further increases the over-
all message overhead. Due to SkipNets’s locality-preserving property
and its possibility of defining range queries, this data structure was
selected as the foundation of the attribute-based approach.

6.3 overlay network for citywide data spaces

Organizing a large number of citizen-owned Connectors and their
connected IoT data providers requires a scalable network overlay that
allows services to discover available data providers and subscribe
to their data streams. The overall architecture of such a decentral-
ized system (Figure 13) is as follows: All data sources provided by
private citizens (in this chapter referred to as publishers, based on
the publish-subscribe architecture) generate continuous data streams.
Without a centralized discovery manager, the network needs to or-
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Figure 13: Discovery architecture of citizen-owned sensors based on a SkAB-
Net.

ganize these data sources via a decentralized data structure. Hence,
this thesis proposes Attributed-Based SkipNet (SkABNet). Each Con-
nector participates in this discovery network by publishing informa-
tion about provided data streams (1) and deploying dedicated dis-
covery nodes in the network to represent described data streams (2).
Therefore, not the resource-restricted IoT device (the sensor) itself
joins the discovery network, instead a representation of this IoT device
managed by the Network Interface Component of the citizen’s Connec-
tor. Services that act as data subscribers are particularly interested in
some of these data streams (e.g., all air pollution data in Manhattan)
and search for the discovery nodes representing relevant data streams
within this network. Services define a parameterized search query
(3) that results in a set of publishers providing the requested data
streams of interest (4). The exchange of the continuous data streams
is not part of the SkABNet overlay network but can look like the fol-
lowing: Subscribers can now issue a subscription on discovered data
sources (5), which forward data streams to the subscriber (6), who
uses them to provide various services.

To organize these nodes in a decentralized data structure, SkAB-
Net augments the architecture of SkipNet [106], a popular overlay
network based on a distributed skip list [206]. Each node has two
identifiers: a user-selected alphanumeric ID (content ID) and a ran-
domly generated unique binary numeric ID. The remainder of this
chapter refers to the SkipNet architecture as depicted in Figure 14.

Nodes are located on multiple double-linked rings, each level halv-
ing the set of nodes based on their numeric ID. Starting at level 0, a
single ring contains all participating nodes. The following level com-
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Figure 14: The SkipNet architecture arranges nodes onto rings, each halving
the ring of the underlying layer [106].

prises two rings, each with 50% of the nodes; level two already has
four rings with 25% of the nodes, respectively, and so forth. Each
node stores its adjacent nodes (neighbors) from each of these rings
in its neighbor tables. Due to the randomly generated numeric IDs,
neighbors on higher ring levels have a large distance on the level-
0 ring, allowing searches to skip over larger numbers of discovery
nodes to find a searched discovery node in O(log n) hops where n is
the total number of discovery nodes in the network.

The user-selected content IDs are then used to order discovery
nodes within each ring. This ordering scheme ensures that discov-
ery nodes with identical prefixes in their content ID are adjacent on
all shared rings. Messages targeting discovery nodes with identical
prefixes can be sent via discovery nodes containing this prefix only.
Additionally, all discovery nodes with identical prefixes are found
without leaving the prefix-based namespace.

To find discovery nodes within a SkipNet for a defined content ID,
a participating discovery node starts the search at its highest-level
ring to find another discovery node with a content ID located be-
tween its own and the target. If a closer discovery node is found,
the search is forwarded until either the searched discovery node has
been reached or if no closer node exists in the level-0 ring, meaning
no node with the searched content ID exists.

Manhattan.Broadway#657

↪→ .Temperature.Sensor001 (1)

Q :: Manhattan.Broadway. (2)

Multiple discovery nodes can be searched using range queries on a
common prefix within their content ID. Listing 1 shows an example
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content ID representing a data provider collecting temperature data
at Broadway in Manhattan. Content IDs in this form allow for range
queries matching all data providers in Manhattan located at Broad-
way, using the range queries shown in Listing 2. To find all matching
discovery nodes, the search is forwarded to the first matching dis-
covery node utilizing the content ID routing algorithm. The found
discovery node finally forwards the search on the lowest level ring
until all discovery nodes with the given prefix are found.

6.4 skabnet architecture

This chapter introduces SkABNet, a distributed data structure that
builds upon the idea of SkipNet, and introduces attribute-based
identifiers. This extension allows the expression of more complex
ontology-based search queries and executes these queries more effi-
ciently. This makes it more convenient for services to search for data
streams defined by multiple attributes (referring to ontology prop-
erties) and reduces the total number of messages needed to find all
matching data streams.

To achieve this, SkABNet extends the SkipNet architecture with
three distinct enhancements: First, it provides attribute-based identifiers,
allowing for more expressive identifiers by dividing them into a list of
attribute-value pairs. Further, it utilizes the introduced attribute-value
pairs to create more expressive search queries. By dividing identifiers
into a list of attribute-value pairs, each attribute can be interpreted
individually, thus allowing searches on single or combinations of
attribute-value pairs. Second, it introduces four attribute-based search
operators that enable ranges and selections on individual attributes.
Lastly, to optimize for common search patterns, data providers can
be represented by multiple attribute compositions reducing required
messages to find matching discovery nodes within the overlay net-
work.

6.4.1 Attribute-Based Identifiers

As mentioned before, SkABNet uses attribute-value pairs as identi-
fiers. Attributes are based on the ontology properties used by citizens
to describe their connected data sources, such as the sensor location,
sensor type, or measuring interval. When citizens make their data
streams available to the citywide data space, the Network Interface
Component creates these attribute-value pairs based on the available See the Connector

architecture in
Section 5.2.

semantic description of the sensors, making the data source identifi-
able for services in the network. The choice of attributes is similar for
each publisher and subscriber in the network and is defined by the
domain. The only requirement SkABNet has for attribute-based iden-
tifiers is that these need to be unique. Therefore, an attribute repre-
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senting a UUID should exist, ensuring that all participating discovery
nodes have a unique identifier.

Having independent attribute-value pairs makes it possible to put
these attributes in arbitrary order. In contrast to SkipNet, where the
identifier is ultimately defined at node creation, SkABNet allows the
definition of one or even multiple orders of attributes without requir-
ing further input from the citizens. This order can significantly impact
search efficiency, as discussed later in this chapter.

The idea of attribute-value pairs also benefits subscribers who
search the network for relevant data streams. They do not have to
define search queries that exactly match the identifiers as required in
SkipNet. Instead, they can define search values for some attributes
and omit those irrelevant to them. The latter is replaced by wildcards
when the search query is executed.

Listing 3 shows the structure of a SkABNet identifier. The delimiter
"/" separates attributes, values, and attribute-value pairs.

/Dist/Manhattan/St/Broadway/No/657/

↪→ Type/Temperature/UUID/Sensor001 (3)

6.4.2 Attribute-Based Search Queries

Services acting as subscribers use attribute-based search queries in
SkABNet to look up relevant data streams. Therefore, when service
developers initialize a service, they semantically describe required
data (see Figure 5.2.2). Similar to the creation of attribute-value pairs
for data sources, the Network Interface Component can use this semantic
description to create a search based on the properties of the required
data. When a data source’s attribute values match this search query,
it is considered relevant, and its information is sent to the searching
service.

Search queries can have different complexities. In the most basic
scenario, the Network Interface inserts exactly one value for each at-
tribute. This results in a straightforward search looking for, e.g., the
temperature sensor at a particular place, which can be identified by
the combination of a city, a district, a street name, and a house num-
ber. This query type is also standard in SkipNet whenever the fully
qualified identifier is used.

Continuing the example above, the subscriber may also want to re-
trieve data from the humidity sensor in this place. While this would
require two distinct searches in SkipNet, both using the entire identi-
fier, SkABNet accepts selections as an input. In the example, the sub-
scriber could insert both values, temperature and humidity, in the type
attribute. SkABNet interprets this selection and performs a search for
nodes matching either sensor type. Selections can include not only
two but any number of values.
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Operator Description Use-Cases Possible in SkipNet?

Single Value
Finds nodes where the exact value

(Manhattan) matches for the district attribute.
Example: /dist/Manhattan

This operator is the most basic and
is used to find only specific data
providers with the given value

.
Yes. This is the standard
search within SkipNet.

Selection
|

Finds nodes with values specified
in the selection. Nodes located

between these values are skipped.
Example: /St/1stAve|Broadway|ParkAve

Most commonly used for alpha
numeric values where several

values are of interest.

Partially. Multiple searches
have to be performed, one for each

element in the selection.

Range
∼

Specifies a range of values with
inclusive boundaries. Finds all values

that are alphanumerically ordered
between the upper and lower bound.

Example: /No/003 ∼ 065

Most commonly used for
numeric values. Numbers are needed
to be padded with leading zeros so

that they are correctly
ordered alphanumerically.

Restricted. Only possible if all
values within the range are known
or by implementing the extension

discussed in [22, 114].

Wildcard
∗

Matches nodes regardless of the
value for this attribute.

Example: /Type/*

Used when attribute is
irrelevant for the search.

Restricted. Only possible if the
wildcard attribute is at the

last position or all values for
these attributes are known.

Table 5: Search operators in SkABNet. The additional operators (selection, range, wildcard) can be used to define complex queries intuitively.
SkipNet, in contrast, requires manual effort to mimic these queries with multiple single-valued queries.
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Selections are helpful when more than a single value is relevant. How-
ever, selections may be tedious and error-prone with a larger num-
ber of values. A second drawback of selections is that each value
needs to be known in advance. What may be realistic for districts or
streets, such as floating point values such as longitude or latitude, can
typically not be provided as a list. For these reasons, SkABNet pro-
vides the range operator, which accepts a lower and an upper bound
and matches every value in between. Thus, subscribers can define
large search spaces with minimal additional input, even for floating
point numbers. In contrast, SkipNet does not process bounded-range
queries. Instead, a new search has to be started for every value within
the range. This not only means that the number of individual searches
can become quite large but also requires that all values must be dis-
crete and known in advance.

There are many scenarios where some attributes are of no interest
to the subscriber. When looking for, e.g., the entire set of temperature
sensors in London, there is no need to indicate which streets and
house numbers are relevant. Instead, all of them should be included
in the query. For that, SkABNet provides a wildcard operator, which
can be used as a placeholder for the whole value set of an attribute.
In SkipNet, wildcards are challenging to implement. If the last value
in the identifier is irrelevant, the identifier’s stub (without the final
value) can be used for a range query. Wildcards in any other part
of the identifier result in a single search for each attribute value and
would only work for discrete values known in advance (similar to
bounded-range queries).

These additional operators summarized in Table 5 allow for greater
flexibility when defining search queries. This advantage becomes
even more apparent when multiple operators are combined, as in
the following example. Listing 4 finds all publishers providing tem-
perature and humidity within dis1 in the ExampleStreet with house
numbers ranging between 15 and 25. By considering attribute-value
pairs individually, range and selection operators can be combined in
a single search.

Q :: /Dist/dis1/St/ExampleStreet/No/15 ∼ 25

↪→ /Type/Humidity|Temperature/UUID/∗ (4)

To achieve a similar result in a standard SkipNet, an individual search
has to be performed for each combination of house number and sen-
sor type, leading to a total of twenty individual searches. In addition,
results must be merged after all searches are completed.
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Q :: /Dist/dis1/St/ExampleStreet/No/15

↪→ /Type/Humidity/

Q :: /Dist/dis1/St/ExampleStreet/No/15

↪→ /Type/Temperature/

Q :: /Dist/dis1/St/ExampleStreet/No/16

↪→ /Type/Humidity/

Q :: /Dist/dis1/St/ExampleStreet/No/16

↪→ /Type/Temperature/

. . .

6.4.3 Efficient Publisher Discovery

Next, the efficient discovery of publishers in SkABNet is discussed.
The position of a discovery node representing a citizen-owned data
stream is determined by its identifier, which consists of alphanumeric
attribute-value pairs. In the lowest-level ring, all nodes are present
and sorted in ascending order (compare Figure 14). The standard
SkipNet can efficiently discover a single and a range of nodes, as
long as these share a common prefix as described in Section 6.3.

SkABNet allows more complex search queries with selections,
ranges, and wildcards on each attribute. As a result, matching discov-
ery nodes may be scattered across the lowest-level ring. To find them
efficiently anyway, SkABNet implements a new search algorithm that
dynamically splits a search into multiple sub-searches, each focus-
ing on different parts of the lowest-level ring with possible matching
nodes. These sub-searches are forwarded in parallel, ensuring that no
discovery node receives the query twice. This algorithm is discussed
in the following. Further, this section demonstrates how compositions
of SkABNet identifiers, i.e., the choice and order of attribute-value
pairs, impact search efficiency.

Search Algorithm

SkABNet’s attribute-based search is divided into two stages. Within
the first stage, the search message is forwarded to the first node that
matches the search query. This part is identical to the search algo-
rithm in SkipNet. The first matching node can directly be calculated
using the left values of selections and ranges. Once this node is found,
the second stage begins, and the search splits up into branches that
search the network in parallel. This is demonstrated with the exam-
ple query from above (see Listing 4). For easier readability, attribute
names are shortened, and single values are omitted. The search query
now looks like this:
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Figure 15: Nodes forwarding a search to neighbors on different ring levels
to find all matching nodes for the given search.

Q :: /a1/H|T/a2/15 ∼ 25

Attribute a1 represents the sensor type, which can either be a
Humidity sensor or a Temperature sensor. Attribute a2 represents
the house number, where values between 15 and 25 are relevant for
the search.

The first relevant node, therefore, has the following identifier:

/a1/H/a2/15

To find this node, the search algorithm starts on one of the discovery
nodes managed by the same Network Interface as the service and
then checks its neighbors on each ring. Following SkipNet’s search
algorithm, skipping irrelevant discovery nodes to find the first match-
ing one within O(log n) steps. If no node exists matching this iden-
tifier, the last node that forwarded the search starts the second stage.
Here, the search is split up.

Figure 15 illustrates the second stage of the search algorithm. Each
bar represents a node. The rows indicate the neighbor relationships
between the nodes. Node /a1/G/a2/35, for example, is neighbor to
node /a1/H/a2/16 on ring levels 0 and 1, to node /a1/H/a2/29 on
level 2, and to node /a1/O/a2/10 on level 3. Arrows indicate to which
neighboring nodes a search message is forwarded.

At some point, the search reached the node with the identifier
/a1/G/a2/35, which detects that no node with the minimal identi-
fier (/a1/H/a2/15) exists. Therefore, it starts the second stage and
splits up the search message to find all matching nodes in parallel.
/a1/G/a2/35 forwards a sub-search to /a1/H/a2/16 that matches
the search. The upper boundary is set to /a1/H/a2/29 since this
is the neighboring node on the next higher ring. Setting the up-
per boundary correctly is critical to assert that no nodes receive the
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same query twice. /a1/H/a2/29 receives no search message since
no relevant nodes can be located between itself and the next neigh-
bor /a1/O/a2/10. However, a search message is forwarded to node
/a1/O/a2/10 even if it does not match the search since it is the neigh-
bor on the highest ring level with possible matches behind it.

Node /a1/H/a2/16 receives the search message and forwards it to
its matching neighbor /a1/H/a2/20. The message is not forwarded
to /a1/H/a2/29 as this node is the upper boundary in the received
sub-search.

Parallel to that, node /a1/O/a2/10 receives the message and for-
wards the search to its neighboring nodes. The neighbor on the
lowest-level ring with the identifier /a1/T/a2/17 matches the search
and receives a sub-search with the upper boundary /a1/T/a2/20

since this is the neighbor on the next higher ring level. The search is
also forwarded to the node /a1/T/a2/20 since it matches the search.
/a1/V/a2/56 receives no message since it is located behind the last
possible matching node.

/a1/T/a2/17 receives the search from /a1/O/a2/10 and does not
forward it to /a1/T/a2/20 even though it matches the search since its
identifier was set as the upper boundary in the search received. This
ensures that /a1/T/a2/20 does not receive search messages multiple
times. /a1/T/a2/20 receives the search message from /a1/O/a2/10

and has no other neighboring node matching the search; therefore, all
matching publishers represented by these discovery nodes are found.

Algorithm 1 Forwarding searches to multiple neighbors while no
neighbor receives duplicate messages

1: procedure forwardSearch(Search, NeighborTable)
2: for i← 0,Search.MaxRing do
3: neighbor← NeighborTable[i]
4: if neighbor > Search.UpperBound then
5: return No more neighbors
6: end if
7: nextNeighbor← NeighborTable[i+1]
8: if Search.matches(neighbor) or
9: matchBetween(neighbor, nextNeighbor) then

10: cSearch← Search
11: cSearch.UpperBound← nextNeighbor

12: cSearch.MaxRing← i

13: sendSearch(cSearch, neighbor).
14: end if
15: end for
16: end procedure

Algorithm 1 shows how the search message is forwarded in the
second stage of the algorithm. The upper boundary is initialized with



90 discovery of data sources in a citywide data space

(a) Attribute a1 prefixing a2. (b) Attribute a2 prefixing a1.

Figure 16: Distribution of matching nodes (highlighted in black) within two
SkABNets with different ordering of attributes in their contentID
for a search targeting a range of A ∼ C for a1 and a value of 2 for
a2.

the last matching node which is determined by using the right values
of its selections and ranges. Each traversed node is checking for rele-
vant neighboring nodes until the upper boundary is reached (line 5).
The search is also forwarded to irrelevant nodes, as long as there are
possible relevant ones between a node itself and its neighbors on the
next higher ring (line 8).

Attribute Composition

Following this search algorithm, each relevant publisher can be found
in O(log n) network hops. The overall number of messages needed
to find all relevant publishers depends on their distribution within
SkABNet. As this location is defined by the attribute ordering in their
identifier, searches targeting different attributes perform differently.
For example, searches specifying attributes located at the beginning
of the identifier have to search smaller parts of the SkABNet than
searches with wildcards or ranges within attributes at the beginning.

Figure 16 shows the same SkABNet with different placement of
publishers due to the order of the attributes in the identifier. In Fig-
ure 16a, publishers with the same attribute a1 value are located next
to each other. This makes searches for a single value in attribute a1
and ranges or selections in a2 efficient. On the contrary, a range over
values for a1 leads to relevant publishers scattered across the SkAB-
Net as shown in Figure 16a. Using a different order of attributes, as
displayed in Figure 16b, results in the relevant nodes being neigh-
bors in the SkABNet. However, within this distribution of publishers,
searches that target a specific value for a1 and a range or selection of
values for a2, matching publishers would be scattered again. There-
fore, attribute compositions should be determined by the most common
search pattern to group matching publishers and make searches more
efficient.

To optimize for different search queries, a SkABNet starts multiple
representations of publishers via so-called virtual nodes. The concept
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of virtual nodes was already introduced in the standard SkipNet as
an optional enhancement [106]. Harvey et al. state that virtual nodes
have size-reduced numeric identifiers to reduce the size of neighbor
tables and, therefore, the required memory per node. However, this
would lead to larger low-level rings and decrease search efficiency.
Virtual nodes in SkABNet have their own content and a full-sized
numeric identifier, allowing for different orders of attributes. This
optimizes the network for multiple common search queries without
decreasing search efficiency on lower-level rings.

Utilizing different compositions of attributes leads to another chal-
lenge: the number of possible compositions increases factorially with
the number of attributes. Therefore, only a small set of attribute com-
positions should be started. Appropriate attribute compositions de-
pend highly on the context and should represent the most common
search queries. The number of compositions data providers can start
depends on the hardware used in the context since managing neigh-
bor tables within the SkABNet scales about linearly with the number
of compositions. Furthermore, an adequate balance between an effi-
cient discovery and the overall size of the SkABNet must be found.

In the previous example, attributes are: district, street, house number,
sensor type, and UUID. In addition, a latitude and longitude represen-
tation would also be helpful to receive regional data independently
from streets or districts. Using any combination of these seven at-
tributes would already result in 5040 (7!) virtual nodes per publisher.
This number can be considerably decreased by defining specific at-
tribute compositions depending on the IoT context. Often, there are
attribute pairs that are always searched in conjunction (e.g., search-
ing by street name and house numbers). Also, some attributes are
unlikely to occur together, such as a postal address and the represen-
tation of a location’s latitude and longitude.

For named attributes such as sensor type, street, and district, single
values, and selections are usually assumed, so they are set at the be-
ginning of the identifiers. To avoid searches with a wildcard at the be-
ginning of an identifier, since these result in scattered matching nodes
and are costly hop-wise, two more compositions are added that either
add the type at the end or omit the district. Attributes that most likely
represent numeric values, such as the house number, are added next
since ranges are costly hop-wise and are, therefore, preferably used
on already limited name groups. The UUID is already unique and
most likely unknown to subscribers. Therefore, in most cases, it is
replaced by a wildcard, so it is appended at the end to fulfill the re-
quirement of unique identifiers. For the case that specific publishers
are searched for, an additional composition is added only using the
UUID and the sensor type.
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/Type/District/Street/HouseNumber/UUID

/District/Street/HouseNumber/Type/UUID

/Type/Street/HouseNumber/UUID

/Type/Latitude/Longitude/UUID

/Type/Longitude/Latitude/UUID

/UUID/Type

Having both orderings for latitude and longitude makes regional
searches in the shape of rectangles either aligned with the latitude
or longitude more efficient. Searches covering a wider range of lati-
tude values, for example, identifiers with the longitude attribute be-
fore the latitude is chosen since matching nodes are located closer
together within the SkABNet due to the smaller range of longitude
values.

With these compositions defined, subscribers can search for pub-
lishers with specified attributes. SkABNet orders attributes searched
according to the most efficient attribute composition and, therefore,
only searches a fraction of the overall SkABNet.

6.5 evaluation

The previous section demonstrated that SkABNet provides more com-
plex searches than SkipNet. It has further motivated that SkABNet
searches are more efficient than comparable searches in SkipNet, lead-
ing to the same result. A quantitative analysis of the efficiency of both
data structures is performed within this evaluation. Therefore, a set
of 14 search queries, executed on networks of different sizes, is first
evaluated. Second, a numeric example that shows the effect of dif-
ferent attribute compositions, i.e., what happens when the order of
the attribute-value pairs in the SkABNet identifier is changed, is pro-
vided.

6.5.1 Evaluation Setup

To evaluate the SkABNet architecture, a simulation in Omnet++ [258]
was implemented to generate SkABNets of various sizes and run ar-
bitrary search queries. SkipNets’ search algorithm was implemented
to benchmark SkABNet’s attribute-based search. To quantify the effi-
ciency of performed searches, the total number of search-related mes-
sages transmitted between discovery nodes in the network (message
complexity) are compared.

For the simulations, the examples from before are used. Publishers
describe their sensors with the following semantic properties: District,
Street, HouseNumber, Type, and a UUID. Each publisher represents
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Search Name
Example Searches

Searching for ...
#SkipNet
Searches

S1 Single Value ... a specific publisher participating in the net-
work.

1

S2.1 Selection
at the end

... publishers in a given district and street provid-
ing temperature and humidity data.

2

S2.2 Selection
in the middle

... publishers in a given district located at 4 dif-
ferent streets providing temperature data.

4

S2.3 Selection
at the start

... publishers located on a street passing through
5 districts collecting temperature data.

5

S2.4 Multiple
Selections

... publishers located on 3 different street pass-
ing through 3 districts collecting temperature or
humidity data.

18

S3.1 Range
at the end

... publishers located at a street segment defined
by a range of house numbers collecting tempera-
ture data.

19

S3.2 Range
in the middle

... publishers located within an area defined by a
range of streets providing temperature data.

15

S3.3 Range
at the start

... publishers located on a range of districts pro-
viding temperature data.

7

S3.4 Multiple
Ranges

... publishers located on a street segment defined
by a range of house numbers passing through a
range of districts providing temperature data.

57

S4.1 Wildcard
at the end

... publishers of any data located at a specified
street within a district.

1

S4.2 Wildcard
in the middle

... publishers located on any street in a district
providing temperature data.

40

S4.3 Wildcard
at the start

... publishers located at a street traversing any
district providing temperature data.

10

S5.1 Selection
and range

... publishers providing temperature, humidity
and air quality data located on a street segment
defined by a range of house numbers.

48

S5.2 Selection,
range & wildcard

... publishers of any data located on a street
segment defined by a range of house numbers
traversing two districts.

34

Table 6: List of searches issued on simulated SkABNets. These searches can
be expressed with a single SkABNet search or several SkipNet
searches indicated by the last column.
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a sensor that publishes a data stream. Sensor types are randomly
chosen from a set of ten possible data types. Further, sensors are
randomly located in a fictive city with ten districts and 40 streets,
each containing 200 house numbers. On initialization, sensors are
assigned random values for these attributes, distributing them uni-
formly across the city.

6.5.2 Search Efficiency

To evaluate SkABNet’s search efficiency, 14 search queries containing
operators such as selections, ranges, and wildcards in different po-
sitions are created. A set of corresponding queries that are required
to get the same results in the SkipNet are created as a baseline. Ta-
ble 6 provides an overview of these queries. The column #SkipNet
searches indicates how many SkipNet queries are required to find the
same publishers. It is to be noted that the translation from SkAB-
Net searches into multiple SkipNet queries for ranges and wildcards
only works in this case since all possible values for the attributes
are known prior. Other attributes, such as the floating point values
latitude and longitude as representations for a location, could not be
represented by a basic SkipNet search due to the infinite number of
values these attributes can represent.

S1 uses single values for all attributes and, therefore, finds a sin-
gle publisher only. All other searches find exactly 50 publishers. This
makes it easier to compare the efficiency of searches across all three
network sizes (40 000, 60 000, 80 000 nodes). 100 networks are ran-
domly created for each network size, and the 14 SkABNet searches
and the equivalent 14 sets of SkipNet searches are performed. The
message complexity represents the total number of search-related
messages transmitted for the single SkABNet search (blue bar in the
following figures) and the set of SkipNet searches (red hatched bar).

Table 6 shows that the number of SkipNet searches required to
match a single SkABNet query varies significantly and depends on
how many matching nodes are scattered across a network. It also
stands out that for S1 and S4.1, only one SkipNet search is necessary.
Therefore, these searches behave exactly the same.

Figure 17 shows the effect of one or multiple selection operators in
a search query. A selection at the end of a query requires fewer mes-
sages than a selection in the middle or the beginning. The effects add
up for combinations of multiple selections, and even more messages
are exchanged. The individual plots in Figure 17 also illustrate that
SkABNet consistently uses fewer messages than SkipNet. The savings
range from about 14% for selections at the beginning of the query to
7% when the selection is at the end. SkABNet even requires about
38% less messages for multiple selections than SkipNet.
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(a) S2.1 Selection at the end (b) S2.2 Selection in the middle

(c) S2.3 Selection at the start (d) S2.4 Multiple Selections

Figure 17: Searches utilizing the selection operator at different positions
within a search query. Blue bar: single SkABNet search; Red bar:
Equivalent SkipNet searches

Similar results can be observed for the range operator in Figure 18.
Here, the effect is even greater. While SkipNet needs to perform many
searches, SkABNet benefits from parallelizing the search process. On
average, about 75% of all messages can be saved with a single range
operator in the search query. Using multiple ranges, this number in-
creases to roughly 90%.

Finally, Figure 19 shows the effect of wildcards (S4.2 and S4.3) as
well as combinations of multiple operators (S5.1 and S5.2). Again, Sk-
ABNet’s enhanced search algorithm results in significantly fewer mes-
sages than SkipNet, saving up to 52% using wildcards and 88% when
all search operators are combined. Despite these promising numbers,
the absolute values should not be emphasized too much here as they
depend highly on how the network is created, how the parameter
combination is chosen, and which searches are executed. However,
the results show that, in general, large savings can be expected when
using SkABNet.

Overall, the results illustrate that the efficiency of SkABNet
searches depends mainly on two parameters. First, the number of
replaced values defines the amount of basic SkipNet searches needed
to achieve the same results. These differences can easily be seen by
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(a) S3.1 Range at the end (b) S3.2 Range in the middle

(c) S3.3 Range at the start (d) S3.4 Multiple Ranges

Figure 18: Searches utilizing the range operator at different positions within
a search query.Blue bar: single SkABNet search; Red bar: Equivalent
SkipNet searches

searches utilizing range and wildcard operators. Selection operators
often replace only a small number of known values. Therefore, these
searches can be expressed with a smaller set of SkipNet searches.
Second, Figure 17c, 18c, and 19b confirm that search operators at the
beginning of a search query reduce the advantage of SkABNet over
SkipNet. This can be explained by the distribution of matching nodes
within the network. Suppose a search ranges over multiple values
within the first attribute. In that case, matching nodes are scattered
over the network as shown in Figure 16a, leading to more messages
needed to reach matching nodes. Nonetheless, worst-case scenarios
lead to the same message complexity as in the standard SkipNet.

6.5.3 Attribute Composition

In Section 6.4.3, it was discussed how re-arranging attributes in the
identifiers impact search efficiency. The last part of this evaluation
provides a quantitative example to demonstrate this effect. Therefore,
three search queries have been created, each benefiting from a differ-
ent composition of attributes and matching 50 publishers. Then, three
different SkABNets are started, each containing 50 000 publishers.
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(a) S4.2 Wildcard in the middle (b) S4.3 Wildcard at the start

(c) S5.1 Combination of selection and range (d) S5.2 Combination of selection, range &
wildcard

Figure 19: Searches utilizing the wildcard operator at different positions and
searches composed of different search operators.Blue bar: single
SkABNet search; Red bar: Equivalent SkipNet searches

The first provided a single attribute composition that was only ben-
eficial for the first search. The second SkABNet added an additional
composition, doubling the network size but having beneficial com-
positions for the first and second searches. Lastly, a third SkABNet
defines an additional composition so that each search query has the
most beneficial attribute order. As before, experiments are repeated
100 times.

Figure 20 shows how many search-related messages are transmit-
ted for each individual search within the SkABNet containing one,
two, or three compositions (x-axis) to find the 50 relevant nodes.
When only a single composition is started, Search #1 performs well,
while the other two suffer from the relevant nodes being scattered
across the network (hatched boxes). Within the second SkABNet with
two attribute compositions, Search #2 performs well, too. Finally,
within the SkABNet, which provides three different compositions and
therefore contains 150 000 nodes, all three search queries perform
well, and the total number of search-related messages across all three
searches can be reduced by 50%.
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Figure 20: Message complexity for the three search queries within three Sk-
ABNet providing different attribute compositions.

Even though this scenario has been tailored to this particular use case,
it shows the relevance of selecting "good" attribute compositions. The
question of a good composition needs to be answered individually
for each context. Results also suggest that starting multiple composi-
tions can improve search efficiency significantly at linear cost for each
node.

6.6 summary

This chapter presented SkABNet as a distributed discovery network
based on SkipNets [106] and specifically introduced attribute-based
identifiers for a citywide data space to increase the efficiency of search
query executions. For that, SkABNet introduces four search operators
that allow for more complex attribute-based search queries and en-
able services to discover relevant data streams by better expressing
their required data. A related qualitative evaluation demonstrated
that utilizing these complex search queries can reduce the number
of messages needed to find all matching discovery nodes by up to
90% compared to SkipNet. To further increase efficiency across differ-
ent search queries, data sources are represented by multiple attribute
compositions. It was demonstrated that providing attribute compo-
sitions representing the most common search queries reduces the
overall search messages by roughly 50%. While this approach already
meets many established requirements, various extension possibilities
are still conceivable.
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The first extension possibility is adaptive attribute compositions,
enabling the network to independently determine the most impor-
tant ones over time and start them as needed. In the current imple-
mentation, the attribute compositions are fixed at the start of the net-
work and must, therefore, be known from the beginning. The net-
work could adapt to changing search queries by initiating new at-
tribute compositions adaptively. However, the following points must
be considered to achieve this. Firstly, the participants in the network
must exchange information about common searches so that a demo-
cratic decision can be made about when each node should start a new
attribute composition for a currently complex search. Second, there
must be a mechanism to count searches across the network, and be-
yond a certain threshold, the participants must agree to start the new
attribute composition. If not all participants do this, complete search
results are no longer guaranteed. Therefore, new attribute compo-
sitions must be announced throughout the network and started by
every participant.

The second extension is the additional function of data distribution
in a citywide data space. For public data that is not preprocessed lo-
cally, both the services have to manage all data sources, and the indi-
vidual data sources have to manage all services that are interested in
their data. A group-based publish-subscribe approach is conceivable
here, similar to the proposal by Teranishi et al. [249], where publish-
ers and subscribers form a common namespace (a contiguous section
in the Level 0 ring) and publish new data within this group through
name-based routing.

Now that services acting as subscribers can find relevant data
sources in a citywide data space, the following chapter examines
the possibilities for local preprocessing of sensor data. Here, services
define a set of preprocessing steps that each data provider runs lo-
cally. This shares the load of preprocessing between services and data
sources and increases the privacy of the data providers by avoiding
providing access to the collected raw data.
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D I S T R I B U T E D P R E P R O C E S S I N G I N A C I T Y W I D E
D ATA S PA C E

After discovering relevant data sources, services can request these
data streams by sending the owner’s Connector a data request.
Within this request, the semantic service description is added to give
the owner an understanding of why sharing collected data might ben-
efit the services and, therefore, all their users, maybe even the owner.
Due to the growing privacy awareness of today’s population, it is es-
sential that the local preprocessing of raw data aims to reduce the
reluctance to share personal data and to increase the privacy of each
participant, reducing their privacy concerns. Therefore, services re-
questing citizens’ data define a pipeline of preprocessing steps exe-
cuted locally at the citizens’ Connector. Only the preprocessed data
is sent to the service, increasing citizens’ privacy and decreasing net-
work load by only sending relevant information. Local preprocess-
ing of data on the Connectors of the data sources aims to meet the
following requirements from Section 3.3: reducing network traffic to
enhance the scalability and efficiency of the system and improving
privacy and data protection by locally preprocessing raw data.

A major challenge, as already described within the problem state-
ment in SC3 (Section 1.1), is to explain these preprocessing steps
comprehensibly, making them understandable not only for techni-
cally proficient citizens. This ensures that they can be understood
by average citizens, enabling them to make informed decisions about
sharing their data. Further, agreeing on a fixed set of modular prepro-
cessing steps ensures that only data specified within the steps is sent
to the service. A prototype has been implemented and used within a
user study to evaluate the proposed approach regarding comprehen-
sibility and usability. Some ideas and results from this chapter have
previously been published in [140].

7.1 fundamentals of distributed processing

Before the architecture of distributed preprocessing in a citywide
data space is introduced, this section establishes the basics of data
sovereignty, private data, and edge processing. Especially in the
digital age, private data has various definitions and numerous ap-
proaches to protect it. Additionally, the relevance of local raw data
processing continues to increase with the growing amount of col-
lected data. This is generally referred to as edge processing, as the
data is no longer processed centrally on resource-rich servers. Still,
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directly at the edge, that is, on the sensors or their next instance with
sufficient resources. This significantly reduces the data transmission
and can also shorten response times due to the shorter paths, which
is especially relevant in critical real-time applications.

7.1.1 Data Sovereignty

The term "Data Sovereignty" can be viewed from various perspec-
tives, and its meaning varies slightly across different contexts. In this
thesis, data sovereignty is considered from the perspective of individ-
uals’ private data. Here, data sovereignty describes the control over
one’s own collected data and its utilization across various services
and platforms. This concept of data sovereignty underpins the no-
tion that individuals should have the autonomy to manage, share,
and restrict access to their data, aligning with broader aspirations
for privacy, security, and personalized digital experiences in inter-
connected environments. At the core of data sovereignty in smart
environments is the principle that residents and users should have
unfettered access to their data. This encompasses the ability to view,
understand, and make informed decisions about the data collected
by smart devices and sensors in their homes and urban spaces. Such
control ensures that individuals are not merely passive subjects of
data collection but active participants in the data ecosystem. Further-
more, data sovereignty involves the capacity of individuals to autho-
rize how third-party services and applications use their data. This
means setting permissions for data access on a granular level and
deciding which data can be shared, with whom, and under what cir-
cumstances.

7.1.2 Privacy in Data Collections

The following examines the concept of privacy in the context of sen-
sor data and methods for protecting it in more detail. Privacy can be
classified into two main categories: syntactic and semantic. Syntac-
tic privacy ensures that it is impossible to associate individuals with
specific data points in a given dataset. In contrast, semantic privacy
asserts that the knowledge one has about an individual remains the
same, regardless of access to the dataset.

Collected data is typically stored in tabular form, defining a set of
attributes. These attributes can be categorized into four types:

• Identifiers: Attributes that uniquely identify an individual,
such as Social Security Number.

• Quasi-identifiers: Attributes that, when combined, uniquely
identify an individual. For example, 63% of the U.S. popula-
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tion can be uniquely identified by combining Postal Code, Sex,
and complete Date of Birth.

• Confidential attributes: Attributes that contain sensitive infor-
mation, such as an individual’s medical history or Disease.

• Non-confidential attributes: Attributes not considered sensitive
by respondents, such as Favorite Color.

Syntactic approaches to privacy protection are based on two key as-
sumptions:

1. The release of data tables can only compromise the privacy of
individuals who contributed to the data collection.

2. The attributes that can be used to link sensitive information to
individuals are limited to quasi-identifiers.

Under these assumptions, data can be protected against either iden-
tity disclosure or attribute disclosure. The concept of k-anonymity is
employed to protect participant identities. A table is k-anonymous if
each combination of quasi-identifier values appears either zero or at
least k times. This is achieved through generalization and suppres-
sion of quasi-identifying attributes. For instance, birth dates can be
generalized by omitting the day or the day and month. In cases where
a single entry in August exists among many September entries, it is
more information-preserving to suppress the August entry, allowing
the birth dates to be generalized by only removing the day.

While generalization and suppression are applied to quasi-
identifying attributes, sensitive and non-sensitive attributes remain
unaltered. The challenge lies in finding an optimal k-anonymous
table that minimizes generalization and suppression, an NP-hard
problem.

Despite achieving k-anonymity, the sensitive attributes of a respon-
dent might still be inferred through homogeneity or external knowl-
edge attacks. If a specific combination of quasi-identifier values only
occurs in table rows where the sensitive attributes are the same (ho-
mogeneity), the sensitive attribute’s value can be deduced. Addition-
ally, data recipients may apply external knowledge to narrow down
the number of possible table rows corresponding to a specific respon-
dent. To mitigate these risks, a table must also be l-diverse: each com-
bination of quasi-identifiers must correspond to at least l different
values for the sensitive attribute [156].

While syntactic techniques preserve data truthfulness, semantic ap-
proaches typically protect privacy by introducing noise into the data.
A privacy-preserving dataset that still represents the original informa-
tion is released in non-interactive scenarios. In interactive scenarios,
individual queries over a data collection are evaluated in a manner
that does not reveal sensitive information [65].
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Ensuring data collection and dissemination privacy involves com-
plex challenges requiring sophisticated methods. Both syntactic and
semantic approaches provide valuable frameworks for protecting in-
dividual privacy while enabling data utility.

Syntactic methods become particularly relevant by considering pri-
vacy in self-managed data spaces, where only the citizens themselves
grant access. Data providers must clearly understand which informa-
tion or attributes the interested service uses to comprehend the extent
to which the resulting dataset might include data that can be traced
back to individuals.

Semantic privacy becomes crucial when entities attempt to gather
different pieces of information about a person from multiple services,
potentially accumulating more data than the owner initially intended
to disclose.

In such scenarios, it is essential to ensure that data providers are
aware of the attributes being utilized and implement measures that
give citizens an overview of disclosed information to prevent per-
sonal data aggregation across different services without explicit con-
sent. Nonetheless, a proposed approach must balance data utility and
individual privacy, reinforcing the need for robust privacy-preserving
mechanisms in a citywide self-managed data space.

7.1.3 Edge Computing

Edge computing, initially introduced through Akamai’s Content De-
livery Networkss (CDNs) in the late 1990s, represents a significant
evolution in data processing and distribution. CDNs pioneered the
concept by prefetching and caching web content on nodes located
near end users, offering substantial bandwidth savings, particularly
for video content. Modern edge computing extends this concept by
enabling edge nodes to cache content and execute arbitrary code, pro-
viding several advantages over traditional cloud computing.

The proximity of edge nodes to data sources significantly reduces
data transmission times, resulting in low end-to-end latency, high
bandwidth, and minimal jitter. These characteristics are crucial for
services requiring real-time responses, such as autonomous driving,
intelligent manufacturing, and video surveillance. By processing data
closer to the source, edge computing also diminishes the volume of
data that must travel through the network and be stored in the cloud.
High-data-rate sensors, like video cameras, generate extensive data
that, if entirely transmitted to the cloud, would demand consider-
able bandwidth and storage capacity. Instead, performing analytics
on edge nodes and transmitting only the results with associated meta-
data markedly reduces data flow.

Edge computing also enhances data privacy and security. Process-
ing data on edge nodes within the sensor owner’s trust domain al-
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lows for finer-grain control and enforcement of privacy policies. Re-
ducing distance and time data travels minimizes the opportunities for
attacks, and in the event of a security breach, only a limited portion
of data is compromised. Also, edge nodes can serve as temporary
fallbacks for cloud services, maintaining service availability during
network failures, cloud outages, or denial-of-service attacks [38, 224].

Overall, edge computing represents a paradigm shift in processing
and managing data. It substantially improves latency, bandwidth effi-
ciency, privacy, and security, making it well-suited for citywide data
spaces.

7.2 related work

Sharing sensor data in raw form in various contexts is a subjective
privacy concern for each citizen. Some want to maximize data usage,
while others are more concerned about private information encoded
within collected data streams. For example, one user shares temper-
ature data measured regularly on the balcony with a requesting ser-
vice. The service owner might notice a slight temperature rise every
evening and interpret this occurrence as the balcony door being open
at those times. In another example, the user wears a fitness tracker
and shares the collected data with a requesting service. The service
provider then knows when the user is going on runs and, therefore,
is not at home. In both cases, the information is sensitive for a user
to share. Also, it might not be necessary information for the service
to have. Maybe the first service aims to average the temperature in
a given neighborhood over a given period, and the second one il-
lustrates heart rate changes while working out. Hence, it would be
appropriate to process the user’s data before sending it to the service.
In cloud computing, processing data near the edge of a network in-
stead of in the cloud is called edge computing [229]. A survey on edge
computing by Khan et al. finds that the primary goals in the current
research on edge computing are to lower costs, latency, and energy
consumption [128]. They analyzed 48 different papers and compared
them by their objectives. While they found 14 sources for minimizing
latency, 15 for optimizing cost, and 8 for minimizing energy consump-
tion, only three papers are concerned about maximizing privacy and
two about strengthening security. Therefore, it is no surprise that one
of the open challenges of edge computing they state is ”user’s trust
on edge computing system”.

The papers categorized as maximizing privacy and strengthening
security are placed in cloud storage, help to minimize latency by pre-
serving the privacy of the meta-data needed for this purpose, are con-
ceptualized in a concrete context, or try to hide personal data from
other parties altogether.
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The scheme proposed in [271] splits the user’s encrypted data into
three different-size parts and separately saves them on the cloud
server, the edge server, and the user’s local machine. That way, even
if an attacker gets all the data from one server, the attacker cannot
recover the user’s original data. Therefore, data is save from out-
side and from attackers inside the cloud or edge server. Contrary to
high computational and storage capabilities in the cloud, single-edge
nodes typically lack both. However, nodes cooperate to optimize their
utilization in resource allocation schemes to overcome this problem.
A gateway manages this cooperation and sends different data types
to the suitable host(s): the cloud or one or multiple edge nodes. When
deciding where to forward the data, the gateway must consider differ-
ent factors, which must be defined and attached. Zhang and Li [285]
focus on preserving the privacy of this meta-data not only from out-
side eavesdroppers but also from potentially corrupted gateways.

The cybersecurity framework proposed by Sohal et al. aims to pre-
vent attacks by unauthenticated and unauthorized edge devices [236].
It works in three phases: First, an intrusion detection system catego-
rizes a device as legitimate or malicious. Second, a two-stage Markov
model eliminates false alarms by reevaluating devices recognized as
malicious before. Third, devices that fail the first two phases are
shifted to a virtual honeypot cloud, a decoy of the real system. The
logs of an attacker’s activities in an attack database repository are
used to prevent unknown attacks in the future. In “Fog Computing:
Mitigating Insider Data Theft Attacks in the Cloud” security is en-
sured by user profiling and decoy data [240]. The algorithm monitors
when, how, and how much a user accesses the data and sends decoy
data to a probable intruder if it detects unusual behavior.

Other approaches focus on the Internet of Things use-cases, where
users share collected sensor data with a set of services [13, 14, 238].
Users then set access rights to the data they collect for these services,
sharing only the data they are willing to. Approaches mainly differ
in their applied access control schemes. While these let users and cit-
izens decide which service is allowed to use (parts of) their data, citi-
zens still have to trust the central authority managing the permission
database. Besides, services must account for different data representa-
tions since users can specify the data the service can see. This applies
in some scenarios and makes it easy to use for a wide range of cit-
izens and services, but services may receive a large amount of raw
data that is irrelevant to them. In other cases, services may only re-
ceive a specific subset where relevant information is missing, making
the whole dataset unusable. The proposed approach in this thesis is
more service-oriented and lets services define preprocessing steps for
the required data. This results in already predefined datasets where
no additional quality control (in the form of completeness) is required
since either services get exactly the data they need or no data at all.
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7.3 distributed preprocessing architecture

The distributed preprocessing architecture is built upon the proposed
architecture of SkABNet as a distributed discovery network. In the
SkABNet architecture (Figure 13), an abstract subscribe and publish
sensor data are mentioned after a successful search. While SkABNet
only ensures the efficient search for relevant data sources and the
exchange of addresses, this contribution focuses on how citizens can
make their data streams available to interested services.

For this purpose, the interested service sends two pieces of informa-
tion with its subscribe request: First, a description of itself (provided
by the service operator during initialization), including the purpose
of the service, its interfaces, and what data it needs for which pur-
poses. Second, the service sends a sequence of preprocessing steps
executed locally on the Connector managing the data sources. This
local preprocessing offers three advantages. First, only relevant in-
formation is sent to the service, and potential private information is
removed locally. Second, network traffic is reduced, as not all raw
data needs to be sent, especially if it does not contain relevant infor-
mation. Lastly, the service receives all data in a homogeneous format
(the result of the preprocessing steps), simplifying processing.

One of the main goals of this thesis is to use existing data sources
while respecting the owners’ data sovereignty. Therefore, it is crucial
to enable citizens to make an informed decision about whether they
want to share their data and how it is used. This means that when
citizens consent to provide their data, they must understand each pre-
processing step and the resulting data transferred to the service. How-
ever, within a citizen-focused sensor network, it is assumed that the
average citizen knows little about computer science and, thus, about
any form of data processing (see Research Question 1.3). This means
that the definition of preprocessing steps and the resulting data for-
mat must be understandable for all citizens. Furthermore, it must be
ensured that malicious services cannot disguise their collected data.
It must be impossible to deceive the data owners by displaying an
explanation that does not represent the executed preprocessing step.

Additionally, service use cases are expected to be diverse, and a
citizen-centric network needs to support a wide range of services in
accordance with prior requirements. Therefore, preprocessing steps
should be defined modularly so that each service can combine them
to define the required data.

To fulfill these requirements, a selection of preprocessing steps are
needed, each performing exactly one small task. These steps can be
divided into three different categories:

• Filters take a list of data objects based on specified conditions
and remove data objects from the list.
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• Modifiers take individual data objects and remove or add prop-
erties.

• Transformers that alter the structure or order of objects.

By chaining multiple steps a step sequence is created reflecting the
entire process of preprocessing requested data. Each step transforms
the data and passes it further to the next step. The steps can be con-
catenated in any desired order and in any desired quantity, giving
service developers maximum flexibility.

Since individual steps are kept simple and specific in scope, it is
possible to create an automatically generated explanation for each
step within a preprocessing pipeline. These individual annotations
per step can then be combined with a flowchart depicting the chronol-
ogy of the process to help citizens understand what is happening in
each step individually and in the overall process.

To request preprocessed data, the sequence of steps is appended to
a data request message and sent to all data providers of the required
data type. The receiving citizens now go through the explanations for
the steps and decide whether to accept or decline the request. If they
decide to provide their data, the data is preprocessed according to
the sequence of steps they have accepted.

7.4 privacy preserving preprocessing

As described, developers define required data as a series of prepro-
cessing steps. The JSON format is the most suitable representation for
each step and the transferred preprocessing steps. It is independent
of any programming language, is easy to understand and write for
humans, and is supported by virtually all modern programming lan-
guages. A JSON schema containing all the allowed properties for ev-https://www.json.

org/json-en.html ery step type has been defined to help service developers. All partici-
pating citizens within the network must know the steps provided. De-
scriptions and functionalities are, therefore, shared beforehand and
are part of the Connector software.

Structure of Preprocessing Steps

To keep the steps simple, the structure of each step is very similar.
Each step contains at least its type and some input as part of the
properties-array. For the developed prototype, a collection of eleven
different preprocessing steps have been defined, which can be catego-
rized as follows: “filtering”, “modifiying”, and “transforming”.

Filter

Steps that filter data objects remove entire objects from a list if they
do not meet a certain condition.

https://www.json.org/json-en.html
https://www.json.org/json-en.html
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where This step removes data points that do not fit a queried con-
dition. Additionally to the properties array, it contains a predicate

property, which defines the condition that data objects need to fulfill
to be chosen to stay in the list of results. The condition can be one
of the following: EQUAL, NOT_EQUAL, LESS_THAN, LESS_THAN_OR_EQUAL,
GREATER_THAN, GREATER_THAN_OR_EQUAL, CONTAINS,
NOT_CONTAINS, STARTS_WITH, or ENDS_WITH. In the properties-array,
the two values evaluated against each other under the condition are
stated. At least one has to be a field of the data object, whereas the
other can be a number, a string, or an array.

limit Most of the time, the intermediate result contains multiple
items. For use cases in which only a specific number of items is
needed, the list can be limited.

Modifier

Modifiers are steps that either remove or add properties from the
data objects. To remove properties, the modifier selects properties to
keep and discards all other properties. Modifiers that add properties
to data objects do a simple aggregation or calculation and store the
result in a new data field.

select With a selection step, the developer can choose which parts
of the data object they want to forward as input to the next step and
which are irrelevant to the current use case and can be removed for
the subsequent processing. They do so by providing the names of the
fields that should stay included in the properties-array of the step
definition.

Many representations of sensor reading values may not be simple
flat data objects but contain nested objects and arrays. To select fields
deeper inside this nested structure, the developer prefixes the fields
they want to select with the names of the objects and arrays they are
in. Particular for this step is the flatten flag. If set to true, the step
not only selects the specified fields but also alters the structure of the
data objects by moving each property up one layer.

sum adds up all values of a given object property of the objects in
an array.

multiply is used to multiply values in two object properties to-
gether.

day_of_week converts a field containing a date into a number
between 1 and 7, each representing a day of the week.
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size counts the elements in an array and stores the result in a new
field. The first element in the properties-array defines the new field’s
name, whereas the second element specifies which array’s elements
should be counted.

array_elem_at selects and stores an element of an array in a
new data field. A subsequent SELECT step can reduce an array of
objects to a specific single data object.

Transformer

Transforming steps alter the structure of data objects or the order of
objects in a list.

group groups every input element that has the same value in the
field defined by the first element in the properties-array into one
array.

sort uses the first element in the provided properties-array is
the field name over which the input should be sorted. The second
element states whether the sorting order should be ascending or de-
scending.

unwind deconstructs an array contained in a data object. A dupli-
cate of the whole data object is created for each element of the array.
Instead of the array, the duplicates each contain only one element of
the previous array. So, if the data object contains an array of length
20, 20 copies of the object are created, each containing one element of
the array instead of the entire array.

Citizen Interface

As described in Section 7.3, every citizen must understand the
pipeline of preprocessing steps that a service requires to decide
whether data should be shared. A flowchart is generated using the
steps the service requires to achieve this. Figure 21 shows an example
where a service compares prices for a specified item (Rosenbroetchen)
in different shops. Users can zoom in and out within the flow chart
and select individual nodes to read more information about the step
type on the right side. Each of the flow chart nodes contains essential
keywords for the represented step. As soon as a user clicks on a node
in the chart, the corresponding step explanation is displayed on the
right side. The explanations are generated by filling the standard ex-
planation phrases with the dynamic content from the step definitions.https:

//yaml.org/ For step types with input and output displayed, a YAML format is
created using the receipt type’s JSON schema definition.

https://yaml.org/
https://yaml.org/
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Figure 21: Flowchart of an example preprocessing procedure. On the left, a
chart with all individual steps is displayed. Details are shown on
the right by selecting a single step, describing how the data has
been changed.

7.4.1 Service Interface

Service developers must create a JSON containing all the steps
providers must execute before sending their data to the created ser-
vice. This can happen in the integrated development environment of
the developers’ choice, but it needs to be provided to the Service In-
terface when the service is initiated. This JSON is then sent to all
discovered data providers with a subscription request.

7.5 prototype and evaluation

A prototype with the eleven steps mentioned before is implemented
to evaluate the proposed approach. With these steps, preprocessing
steps for five different services, each analyzing receipt data collected
from grocery stores, are defined. Each data point within the exam-
plary citizen sensor network is therefore a single receipt, containing
the list of items, each with a price per item, number of bought items,
and a category such as vegetables, frozen food, and household goods. Fur-
ther, the store’s location and the purchase date and time are available
for each receipt. To analyze the usability at first, the extent to which
participants with different knowledge levels of programming under-
stand the meaning of a given series of steps was assessed. Second,
the user study examined whether participants with at least some pro-
gramming knowledge can define a series of steps for a given task.
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7.5.1 Example Services

Following five example services that use the eleven preprocessing
steps are introduced. These services show that a wide range of ser-
vices can already be created with a relatively small number of pre-
processing steps.

Price Trend of Articles

One of the most interesting analyses for customers is how the price
for a given article changed over time. While this information is easily
scrapable for online shops, getting a price overview for grocery items
can be challenging. By collecting data over time and from different
sources, a service could provide a historical graph showing the price
movement for different items, and customers could decide whether
to buy them at the current price.

This service needs a list of all purchased items, including the price
per item and the timestamp of the purchase. Therefore, all items need
to be formed into a single list; this can be done with the UNWIND
step. Finally, the required information is selected and transferred as
a list to the service.

Top 10 Most Bought Articles

Another service contains the list of the ten most frequently purchased
items. This list can be accessed with the following preprocessing steps.
Following the UNWIND step to create a single list with all bought
items, a SELECT step selects the item name and the number of pur-
chased items. A LIMIT step selects the ten most frequently occurring
article names by sorting from most to least occurrences. In the result,
the article names paired with the number of their occurrences on re-
ceipts are given.

Expenses per Category

A service that calculates the expenses per category could help identify
where the most money is spent. In the preprocessing, the price per
unit and the category of the articles are selected from the receipts,
which are represented by a list of items after using a UNWIND step.
A MULTIPLY step multiplies in pairs the price per unit with the unit
count to get out the actual expenses. Within a group where all articles
of the same category can be found, the just calculated expenses are
SUMMED up and finally returned together with the corresponding
category.
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Purchases per Weekday

By grouping purchases per weekday, the days with the most traffic
within grocery stores can be defined. With more data, an additional
grouping could be done, leading to information about the number
of customers per weekday and shop. With a DAY_OF_WEEK step,
the date of each receipt is converted into a number representing a
weekday. A group is formed each weekday, and the number of items
per group is counted. The days of the week and the corresponding
counts are returned.

Last Price of a single item per Location

To find the location that sells a specific item for the lowest price, a
service requires all items, including the price per item and the pur-
chase location. After an UNWIND to receive a list of all bought items,
a SELECT is used to find only the item searched for. After that, the
results are ordered in descending order so that the most recent pur-
chase is at the front. Then receipts with the same address are put into
a group, and the first item of each group is stored at latestReceipt.
Finally, the result is flattened by several SELECT steps so that for each
address, one object contains the address, the price per unit, and the
date.

7.5.2 Usability Study

For the usability study, 13 participants were asked to complete a sur-
vey and perform multiple tasks. At the beginning of the survey, par-
ticipants were asked basic questions about themselves. Eight of the
participants were male, and five were female. Nine participants were
between the ages of 20 and 29, three were between 30 and 39, and
one was between 60 and 69. One of the participants rated their En-
glish skills on a scale of 1 (not at all) to 5 (very well) as a 2, three as a
4, and nine as a 5. Only one of the participants rated their computer
skills on a scale of 1 (very poor) to 5 (very well) as a 2, one as a 3, six as
a 4, and five as a 5. Four of the participants rate their experience in
computer science, especially software development, on a scale from
1 (not at all) to 5 (very well) as a 1, one as a 3, four as a 4, and four as
a 5. One participant uses a computer for less than 1 hour a day, two
for 3 to 5 hours a day, eight for 5 to 8 hours a day, and two for more
than 8 hours a day. Seven of the participants stated they use their
computer at least once a week for gaming, twelve for writing, twelve
for writing and reading e-mails, all for surfing the internet, ten for
watching videos, and eight for programming. Two added studying to
the list, work, online shopping, and design were added by one person.



114 distributed preprocessing in a citywide data space

Tasks

After answering the basic questions, participants were divided into
two groups based on their knowledge of the JSON format. This was
based on the question “Do you know the JSON format, and are you
able to write a JSON-object?” inside the survey. If they answered “no”,
they were given five different sequences of steps to explain. If the an-
swer was “yes”, they were given three step sequences to explain and
two tasks to implement a step sequence. Each of the tasks addressed
one type of preprocessing of receipt data.

Tasks in which participants were asked to explain the step se-
quences used the five examples from above and were structured as
follows: First, they were shown a visualization of a step sequence
as shown in Fig. 21. They were motivated to inspect each step and
read the details presented. In the survey, they were then asked to de-
scribe in their own words what happens in each step and what they
think could be learned from the resulting data should this sequence
of steps be executed. They were then asked to rate how well they
thought they understood the sequence of steps on a scale from 1 (not
at all) to 5 (very well). In the next question, they were given four possi-
ble goal descriptions, from which they had to choose one as the goal
of the sequence steps they had seen before.

As mentioned before, participants with JSON knowledge had three
tasks to explain the behavior and had to write the missing two se-
quences (price trend and expenses per weekday) themselves. These
participants were provided with two different tools to complete this
task. First, in the IDE of their choice (the recommendation was Visual
Studio Code), they could use the JSON schema created for the set
of step types to have code completion, error markers, and populated
comments available. Second, a web application was created where
users could paste a step sequence definition into a text field. As long
as the definition was in a valid format, the flow chart and associated
explanations were generated. In the survey, they should insert their
two final results.

7.5.3 Evaluation

Each survey participant was shown five different evaluation tasks,
each relating to a different preprocessing sequence. Participants with-
out JSON knowledge were shown five preprocessing sequences and
needed to explain which data is send to the service. Participants with
JSON knowledge had to explain three preprocessing sequences and
develop the remaining two themselves.
First, participants had to select a goal for the preprocessing pipeline
shown. The participants selected the correct goal in 29 of 36 cases or
81% of the time. Of the seven incorrect selections, two were from par-
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(a) Correctness of responses to open-form
text questions asking participants to
explain a given preprocessing defini-
tion. The responses are split by whether
JSON is known or unknown to the par-
ticipant.

(b) Correctness of the preprocessing
definitions written by the partic-
ipants that know JSON for the
services: Expenses per Category and
Price Trend of an Article

Figure 22: Results of the explanation for the given preprocessing definition
and the development tasks.

ticipants who knew JSON, and five were from participants who did
not. All five participants who did not know JSON selected the cor-
rect goal for the first task Price Trend. Only 8 of the total 13 responses
were correct in the last most complicated task. In the other two tasks,
Top 10 and Expenses per Category, only one of the people who did not
know JSON could not correctly identify the goal.

In addition to selecting the correct goal out of four different options,
participants had to explain each preprocessing step and its goal in
their own words. Figure 22a visualizes the explanation correctness
for both the steps and the preprocessing goal, graded into incorrect,
rather incorrect, rather correct, and correct.

Overall, the sequence steps explanation was correct in 29, rather
correct in 9, rather incorrect in 6, and incorrect in 5 out of 49, or
equivalently in 59%, 18%, 12%, or 10% of cases. Among the partici-
pants who knew JSON, 21 of 24 or 88% of the explanations were either
correct or rather correct. Among the participants who did not know
JSON, this number is at 17 of 25 or 68%. None of the participants who
knew JSON gave a preprocessing steps explanation that was graded
as incorrect. For all tasks, both groups gave an explanation that, on
average, was either rather correct or correct.

The preprocessing goal explanations were correct in 26, rather cor-
rect in 8, rather incorrect in 2, and incorrect in 13 out of 49, or 53%,
16%, 4%, or 27% of cases respectively. The participants who did not
know JSON gave rather or fully correct goal explanations about as
often as those who knew JSON, with 15 of 25 or 60% and 16 of 24 or
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67% respectively. Similar to the step explanations, two of the goal ex-
planations given by the group that did not know JSON were incorrect
as the participant only entered “as before” as the answer.

Figure 22b shows the results of the two preprocessing sequence
development tasks shown to the participants who knew JSON, also
graded on a four-point scale from incorrect to correct. One of the par-
ticipants who knew JSON did not submit any preprocessing sequence
definitions as they filled out the survey on their smartphone and thus
could not open a code editor or view the step type reference. This
participant was excluded from the results, leaving only seven instead
of the eight participants who knew JSON.

7.5.4 Discussion

The single-choice questions relating to the sequence’s goal show that
the participants understood the goal of the sequence correctly in most
cases. Overall, the explanations could convey the sequence goal both
to citizens with and without a computer science background. The re-
sults of the free-form explanation tasks (see Figure 22a) showed that
all citizens, whether they knew JSON or not, were able to correctly
explain the sequence steps in many cases or at least rather correctly
in most cases. This shows that most users can understand the indi-
vidual steps of a sequence. When describing the overall goal of a
preprocessing step sequence, the correctness mostly follows that of
the step explanations. On average, the goal description is less correct
than the step description. This indicates that it was harder for the par-
ticipants to understand the more complex dependencies along a step
sequence. With a slight misunderstanding in one of the steps along
the sequence, the independent explanations of the steps would still
be mostly correct. However, regarding the goal, a misunderstanding
along the sequence leads more easily to an incorrect understanding
of the overall goal. Therefore, each step must have a simple and easily
understandable description.

Further results indicate that the participants without JSON knowl-
edge were especially unsure of the price trend of a single item in the
first task. Participants scored better on the following tasks, which in-
dicates that they gained a better understanding after seeing one or
two examples. It also indicates that explanations should be improved
further for the first contact.

The results of developing a preprocessing sequence for a given ser-
vice show that most developers understood the tasks well and could
create a correct preprocessing sequence. These results could be opti-
mized with additional resources to learn preprocessing steps by giv-
ing a better introduction. In general, the results indicate that potential
service providers would be able to define their preprocessing steps
within the limits of the currently implemented preprocessing steps.
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7.6 summary

This chapter analyzed whether citizens benefit from distributed pre-
processing for their locally collected data. Therefore, a set of modular
preprocessing steps are defined that services could use to create a
more complicated preprocessing pipeline that receives only the re-
quired data. Results show that, with an intuitive user interface and a
comprehensive explanation for each step, even citizens with no com-
puter science background understood most of the preprocessing steps
requested by a service. Moreover, developers with no prior introduc-
tion can quickly start to define their own preprocessing pipeline using
the provided steps to retrieve only relevant data for their services.

One of the main goals in the future is to improve the user interface
by highlighting changes and combining multiple smaller steps into
recipes with a more meaningful explanation, making it even easier to
understand data preprocessing and usage. Further, with additional
changes and simplifications within the user interface, a more exten-
sive user study is planned to support current findings. Additionally,
to make the system more adaptive, how the community can add new
preprocessing steps at runtime needs to be investigated. Currently,
every participating Connector must know all preprocessing steps be-
forehand. Similar to the new attribute compositions within the discov-
ery overlay, new preprocessing steps and recipes could be published
and agreed upon within the network. By utilizing a distributed con-
sensus algorithm, the system would provide more flexibility and en-
able even more services.

After introducing a framework for describing a preprocessing
pipeline in this chapter, participating services can now obtain rele-
vant data from the citywide data space. However, an essential ques-
tion for service providers is to what extent they can trust the data
from self-installed sensors. The following chapter examines how the
placement of data sources can be classified based on their collected
data. This classification allows services to decide whether to use these
data sources.
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After services find relevant data sources through the distributed dis-
covery overlay and request the data streams with a pipeline of prepro-
cessing steps, the service continuously receives new data. A challenge,
also reflected in Research Question 2.2, is assessing the data quality.
The increasing size of a citywide data space raises the risk of mis-
configured or faulty sensors impacting data accuracy. This, in turn,
influences the conclusions that can be drawn from collected data.
With decreasing data quality, erroneous conclusions could be drawn,
impacting decisions based on these. To mitigate this, sensor deploy-
ment is often standardized to ensure data quality. However, this level
of control and expertise is only feasible in networks overseen by a
single operator with sufficient resources for monitoring and mainte-
nance. In a citizen-centric data space, this kind of maintenance is not
possible. Not only are citywide data spaces usually too large to main-
tain manually, but requiring experts to set up sensors would increase
the hurdle for new participants to join and could thereby limit the
number of sensors contributing to the data space.

Since it is unfeasible to check the deployment configuration of each
individual sensor in a citywide data space, a software solution is re-
quired to process measurements and separate high-quality measure-
ments from low-quality ones. As soon as an incorrectly deployed sen-
sor is detected, the measurements of this sensor need to be ignored
when processing the dataset. By comparing measurements from all
participating sensors, the same software could extract characteris-
tic deviations within collected data within groups of sensors that
share a common context. Such deviations can be expected or unex-
pected, depending on what is being monitored, possibly requiring
observers to take corrective action to avoid a further skewing of mea-
surements [153]. Integrating this kind of software as a service into
citywide data spaces provides an opportunity to extract additional
knowledge from the network, such as exploiting spatial-temporal de-
pendencies between nodes to enrich measurements with insights not
available to a single sensory node [49]. These kinds of dependencies
are implicitly encoded in the data. They can be identified as anoma-
lies if they only affect a single sensor node or a common deploy-
ment context that affects measurements of sensor nodes that might
be physically separated from each other but monitor the same phe-
nomena [80, 187].

The remainder of this chapter is structured as follows: Section 8.1
gives a short overview of the fundamentals, defining anomalies,
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events, and preprocessing steps that need to be taken to analyze col-
lected data. The fundamentals are followed by an overview of related
work in Section 8.2, with existing machine learning approaches. Re-
quired components for the developed software pipeline are described
in Section 8.3. Finally, in Section 8.4, evaluates the proposed software,
and Section 8.5 concludes this chapter by discussing the results.

8.1 fundamentals

The following section discusses the fundamentals of various anoma-
lies that can occur within time series data generated by sensors. Each
time series contains measurements of a single type (temperature, hu-
midity, e.g.) taken at a specific place at a specific time. Anomalies
can range from a single measurement deviating to a whole group of
successive measurements that differ strongly from surrounding mea-
surements collected by other sensors. Subsequently, different types of
correlation between anomalies are defined, which can lead to inter-
connected anomalies defined as characteristics of a group of sensors.
Since an isolated anomaly can be classified as an outlier and filtered
out, anomalies that occur within measurements of multiple sensors or
are repetitive over a given time are most likely caused by a common
context that triggered these anomalies, indicating a characteristic of
the common context of affected sensors.

8.1.1 Anomaly types

To understand how anomaly detection across multiple sensor nodes
can benefit the data quality and characteristic detection within a city-
wide data space, a definition for an anomaly is provided by Grubbs
(1969), quoted by Shahid et al. [227, p.195]:

Definition 1 An outlying observation, or outlier (anomaly), appears to
deviate markedly from other members of the sample in which it occurs.

How an outlier or anomaly presents itself in a stream of measure-
ments varies depending on its cause. The simplest type of anomaly
within a stream of measurements is a Point Anomaly [42, 103]. Point
anomaly is an individual data point deviating from the “normal” dis-
tribution of values within the data stream as displayed in Figure 23a.
Since these anomalies are not correlated to other data points within
the stream, they are often considered noise and should be removed
before the data is processed further. As soon as a correlation exists,
this anomaly is defined as a Collective Anomaly. A collective anomaly
can be identified when a collection of related data instances is anoma-
lous concerning the entire data set. In this case, an individual instance
of data measured during the anomaly is not anomalous, but their oc-
currence together as a collection is [42], as seen in Figure 23b.
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Finally, the context in which some data points occur determines
whether they are anomalous or not. For this reason, these kinds of
anomalies are called Contextual Anomalies. When analyzing contex-
tual anomalies, two attributes need to be taken into consideration,
namely [42, 103]:

1. Contextual attributes, which are used to determine the context
for a data instance,

2. Behavioral attributes define a data instance’s non-contextual char-
acteristics.

To illustrate how a context anomaly presents itself in a data distribu-
tion, consider Figure 23. The contextual attribute would be the time
scale, and the behavioral attribute would be the cosinusoidal fluctu-
ations, defining the “normal” temperature behavior during certain
times of the year. Using the behavioral attribute values within a spe-
cific context identifies a contextual anomaly at t2. Even though the
temperature is the same at t1 and t2, given the context that t1 is mea-
sured in winter and t2 in summer, the measurement at t2 would be
considered an anomaly [42].

8.1.2 Correlation of data

While the reason behind an anomaly on a single sensor node is hard
to detect, when anomalies across multiple sensor nodes are combined,
they can be grouped and are easier to analyze. Therefore, a context
characteristic can be defined as:

Definition 2 A context characteristic is a sequence of data anomalies
that occurs across multiple data sources over extended periods, which allows
identifying historical patterns [80, 227].

Since sensor nodes are distributed within a city-wide sensor net-
work, sensors affected by the same context have similar anomalies,
and therefore, a spatial correlation is present between their measure-
ments [49, 108, 187].

Definition 3 A spatial correlation exists between nodes in a sensor net-
work when they are deployed spatially dense to each other, resulting in mul-
tiple nodes sampling a similar data distribution [187].

Similarly, context characteristics affecting multiple spatially indepen-
dent sensor nodes simultaneously or in predictable matter encode a
temporal correlation in their collected measurements [187]. Further-
more, measurements collected at one instant on a single sensor node
are related to previous measurements on the same node. Therefore, a
temporal correlation can be observed between readings produced by
a single or a group of sensor nodes [108].
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(a) A Point Anomaly
presenting itself in a
distribution with a
value five times higher
than the next highest
value [103]. No other
value shows a similar
value, and no pattern
can be detected.

(b) In the above graph,
an individual value
within the red marked
section would not be
an anomaly, but the
presence of a collec-
tion of these values is
considered an Collec-
tive Anomaly [42].

(c) A time series con-
taining a Contextual
Anomaly that has the
same value as other
measurements but
is isolated and not
matching the expected
value [42].

Figure 23: Three different types of anomalies increasing in complexity.

Definition 4 A temporal correlation arises when a predictable relation-
ship exists between sequential measurements on a single or a group of sensor
nodes [187].

Understanding the relationship these correlations have with each
other and the information contributed by their existence is imperative.
It ultimately forms the basis of the approach for detecting contextual
characteristics investigated in this chapter.

8.1.3 Time Series Invariances

Before the similarity between two time series can be measured, it is
important to understand which kinds of invariances can occur and
their effect on the different similarity metrics.

Amplitude Invariance

If two sensors monitor the same phenomenon, it cannot be assumed
that the same values are being measured. Internal differences in sen-
sor configuration or the intensity with which a context affects sensors
may result in curves with similar shapes that offset each other. This
kind of invariance is termed Amplitude Invariance [25] and can be iden-
tified in Figure 24a.

Warping Invariance

Given the continuous nature of context characteristics, such as ex-
posure to the sun at a given time of day, it is unlikely that sensors
affected by these are influenced simultaneously. Often, there is a shift
in the time between sensors being affected. These kinds of shifts in
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(a) Amplitude Invariance between two
time series affected by the same
context C and Q [25].

(b) Warping Invariance presenting it-
self when comparing two time se-
ries affected by the same context at
slightly different times [25].

Figure 24: Two different invariances showing time series data affected by
the context.

the curves are referred to as Warping Invariance [25] and present them-
selves as seen in Figure 24b.

Complexity Invariances

In addition to considering the shifting of time series, as done in the
previous invariances, the complexity of a time series can also influ-
ence the effectiveness of a distance metric [25]. Comparing the num-
ber of peaks and values in a time series and calculating the similarity
can help one intuitively understand its complexity invariances. It has
been shown that when complexity invariance is not considered, the
distance between a pair of complex time series is often greater than
the distance between a pair of simple time series [25] and that com-
plex time series are usually found to be more similar to a simple time
series than another complex time series [25]. While the effect of com-
plexity invariance can be somewhat mitigated by using an approach
that corrects for warping invariance [25], it is advantageous to not
only rely on these methods.

Multiple Invariance

It is also possible that two time series might differ because of a com-
bination of the invariances mentioned above. This is most often the
case since each Connector in a citywide data space has its own sen-
sors connected, thereby introducing potential amplitude invariance.
While the sensors might be sampling the same distribution, they are
not deployed in the exact same physical location, thereby introducing
potential warping invariance. The complexity of time series can also
differ easily, even when nodes have the same hardware and run the
same software. Communication problems can result in missing values
that must be considered when computing the similarity. Therefore,
the metric that describes the similarity between time series needs to
address these invariances.
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8.2 related work

When attempting to detect anomalies in time series, most approaches
can be categorized as belonging to one of two groups: either an
anomaly is identified as discrepancies from a model of expected
values, or time series are analyzed for containing patterns learned
from models of a known anomaly [87]. The first category can iden-
tify anomalies that might represent unknown contextual characteris-
tics. If measurements deviate far enough from the expectation, these
measurements are considered a series of anomalies. If a series of
anomalies is detected within a group of sensors, they are classified
as a new unlabeled characteristic. The second group of approaches
is more suited to accurately detecting already known characteristics,
but it needs existing models representing the series of anomalies that
represent this characteristic. Multiple models are required to detect
multiple characteristics, increasing the detection process’s complex-
ity.

8.2.1 Predictive Models

Predictive models for anomaly detection belong to the first category
introduced above and rely on using previous observations to antic-
ipate future values a sensor node produces [42]. Any new, unseen
data is compared to the predicted value from the model to determine
to which class it belongs. The input is accepted as normal if the mea-
sured value is similar to the predicted value. However, if the actual
value differs too much from the predicted value, it would be classi-
fied as an anomaly [42, 103]. If multiple subsequent anomalies are
observed, they can then be classified as a characteristic.

8.2.2 Autoencoders

A common method used for generating a time series model is using
autoencoders [93, 205]. Autoencoders are specialized neural network
topologies that are trained in an attempt to copy their input to their
output [93]. Due to this unique characteristic, autoencoders are often
called semi-supervised learning methods since they partially rely on
techniques more commonly found in supervised learning. Consist-
ing of an input layer, 1 to n hidden layers, and an output layer, an
autoencoder can be divided into an encoder function h = f(x) and a
reconstructing decoder function r = g(h).

8.2.3 Support Vector Machines

Another model-based approach for anomaly detection in time series
has been developed using Support Vector Machines (SVMs), specifi-
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cally in the form of one-class SVMs [283]. This approach utilizes the
excellent generalization provided by SVM-based models and extends
it using a specialized kernel. Using this kernel improves the perfor-
mance of identifying anomalous time series [42]. Given that SVM is a
supervised method, labeled data is required to train these models.

8.2.4 Deep Temporal Clustering

Deep Temporal Clustering was developed to extract informative fea-
tures on various time scales, which makes it ideal for handling longer
data sequences [157]. This is achieved using a specialized temporal
autoencoder, which can achieve greater dimensionality reduction by
collapsing input sequences in all dimensions except temporal [157].
Once the dimensions have been reduced, the internally encoded se-
quence is fed into the clustering layer.

The novel temporal clustering layer, built specifically to handle un-
labeled spatial-temporal data [157], was agnostic of the similarity met-
ric used for the actual clustering. This makes the framework flexible,
allowing it to apply to data gathered from various domains by us-
ing a similarity metric that is best suited for the data. Furthermore,
this allows simplified prototyping with different metrics to determine
which forms the most meaningful clusters.

8.2.5 Swift Event

SwiftEvent [87] is an anomaly detection algorithm that detects al-
ready known characteristics. Relying on labeled data, SwiftEvent
learns the characteristics of a specific, user-defined anomaly using
supervised learning methods. Once the detection of these anomalies
has been learned, the model can be applied to real-time data to de-
tect the occurrence of learned anomalies. Training of the models is
achieved by projecting marked anomalies into a representation befit-
ting the features. Similar anomalies have similar projected represen-
tations, forming clusters. A model is trained for each of the formed
clusters, which can then be used to detect the presence of the charac-
teristic.

8.3 constructing a pipeline

In this section, a service is created utilizing previously presented tech-
niques. This service is deployed in the citywide data space and en-
ables other services to classify participating sensors based on their
collected data. The proposed service contains a pipeline of steps that
identify and classify anomalies in data streams, and clusters data
sources based on the corresponding characterizations triggering these
anomalies. For this purpose, each step that the pipeline must fulfill to
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cluster sensors based on their contextual characteristics is described.
Time series data from a large set of sensors measuring a specified type
of data is needed as an input for this pipeline. Therefore, a large set
of participating citizens need to contribute their data streams to the
service. Nonetheless, participation is voluntary to adhere to the citi-
zens’ data sovereignty. To increase participation, citizens could ben-
efit from the service themselves by identifying misconfigurations or
falsely placed sensors, helping citizens to get a deeper understanding
of their collected data. The developed pipeline outputs a categoriza-
tion of the sensors and their data into different categories that are not
labeled. Rather, the differences between the clusters are highlighted
so that in an additional manual step, it can be determined which con-
text affects sensors in these clusters.

8.3.1 Similarity Metrices

When performing any clustering on data, choosing an appropriate
similarity measure is important to ensure the formation of logical
clusters. Choosing a similarity metric for time series data is not as
simple as it is for geometric distances. As discussed in Section 8.1.3,
different invariances influence the distance between two time series
affected by the same real-world phenomena. Different approaches ex-
ist to measure the similarity between two time series data streams
considering different invariances. Most common distance metrics are
lock-step measures such as the Euclidean Distance [79], while others
use elastic measures such as Dynamic Time Warping [28].

Euclidean Distance

The most common distance metric used for clustering is the Eu-
clidean Distance [113]. Due to its simple implementation, it is often
the first metric to be considered when forming clusters.

The Euclidean Distance requires two time series Q and C of the
same length n,

Q =q1,q2, . . . ,qn

C =c1, c2, . . . , cn

and can be calculated as follows:

ED(Q,C) ≡

√√√√ n∑
i=1

(qi − ci)2

Euclidean Distance, therefore, compares all measurements at the
same index; this makes it vulnerable to all invariances. Potential sen-
sor configuration and placement differences lead to invariant curves
when considering time series data from different deployed sensor
nodes.
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Figure 25: A comparison of using Euclidean distance (left) and DTW (right)
to measure similarity between time series[286].

Dynamic Time Warping

One solution to consider invariances is Dynamic Time Warping (DTW).
DTW is a method used on time-dependent data to find an optimal
alignment between two time-dependent sequences [25, 181, 247]. Of-
ten used in speech recognition, this method has successfully matched
similar speech patterns spoken at different tempos [181].

When considering Figure 25, a comparison between using a lock-
step distance such as the Euclidean Distance to determine the similar-
ity between time series data (left) and using DTW (right) can be seen.
In causal relationships, there is often a lag in a phenomenon’s presen-
tation to individual observers. As an illustrative example, consider
multiple sensors deployed densely together but in cardinal directions
of a building monitoring temperature. While sensors deployed east of
the building would measure higher temperatures in the morning and
lower temperatures in the evening. The opposite happens with sen-
sors deployed west. Meanwhile, sensors deployed south have temper-
atures that are nearly consistently higher. Despite this, all the affected
nodes would observe the same characteristic and should, therefore,
be clustered together. If the Euclidean Distance is used when com-
paring time series, data points measured simultaneously would be
compared. Therefore, it is necessary to use a metric impervious to
this effect when comparing time series. DTW is an attempt to consider
the warping invariance of the data when calculating the similarity.

Formally DTW can be defined as an optimization problem. Given
two time series X = (x0, . . . , xn−1) and Y = (y0, . . . ,ym−1):

DTW(X, Y) = min
π

√ ∑
(i,j)∈π

∥∥Xi − Yj
∥∥2
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where π = [π0, . . . ,πK] is a temporal alignment of time series such
that the Euclidean Distance between aligned time series is mini-
mal [247].

While the alignment of peaks and valleys also indirectly improves
dissimilarities introduced by complexity invariance, this method does
not account for the varying number of peaks and valleys that might
be present in the series and is, therefore, potentially unable to find
the best alignment.

One of the main disadvantages of DTW is the quadratic time and
space requirements of the algorithm [220]. This limits its use to cases
with a relatively small amount of time series data since using this
algorithm would otherwise be infeasible. An optimized implementa-
tion of DTW, called FastDTW [220], was developed with a linear time
and space requirement, thereby significantly increasing the cases in
which this metric can be used.

8.3.2 Clusters in a Dataset

After examining methods to determine the similarity of time series
data, the service needs to cluster time series data sources based on
the similarity in their collected data. Since the number of distinguish-
able characteristics is unknown, the number of clusters must first be
found. Therefore, a method of empirically determining the number
of clusters that could be present in the data needs to be defined. The
following introduces two heuristic methods that are commonly used
when no additional knowledge is available concerning the number of
clusters in a dataset.

The Elbow Method

One of the most commonly used methods is the Elbow Method. This
method works by iteratively increasing the number of clusters to be
formed and examining the effect the formation of additional clusters
has on the inertia.

Definition 5 Inertia is the sum of squared distances of samples to their
nearest cluster center, also known as an intra-cluster variance.

N∑
i=1

(xi −Ck)
2

where N is the number of samples within the dataset, and C is the center of
a cluster.

Initially, an increase in the number of clusters significantly affects the
intra-cluster variance. If this is not the case, it would indicate that the
data could not be divided into multiple clusters and would signal the
end of the analyses. However, as the number of clusters increases, a
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Figure 26: An example of an elbow graph with the optimal value for k

marked in red

point is reached after which the effect on the inertia is drastically re-
duced, visually resulting in an elbow when plotted. This effect results
from the clustering algorithm’s inability to decide to which cluster
a sample should belong, and it is, therefore, an indication that too
many clusters have been formed. Since the inertia does not reduce
further after a certain number of clusters, increasing the number of
clusters offers no advantage. This number of clusters is the optimum
number, after which the inertia decreases linearly when more clus-
ters are added. To demonstrate what such an elbow curve might look
like, consider the curve formed when clustering an example dataset,
as seen in Figure 26.

From Figure 26, it is clear to notice that after three clusters have
been formed, additional clusters have less influence on the variance.
This is an indication, therefore, that the model is overfitted for the
data, and meaningful clusters are no longer being formed; instead,
the data is split more randomly.

Silhouette Score

Another heuristic commonly used for determining the correctness of
formed clusters is to calculate the so-called Silhouette Score [216]. This
score measures the inter- and intra-cluster variation to determine the
effectiveness of formed clusters. Similar to the Elbow Method men-
tioned previously, determining the Silhouette Score relies on itera-
tively increasing the number of clusters into which the data should
be divided. After each iteration, the Silhouette Score is calculated for
each sample assigned to a cluster.

After data has been assigned to their respective clusters, two mea-
sures need to be calculated before the Silhouette Score can be deter-
mined. For a sample i assigned to cluster A, determine

a(i) = average dissimilarity of i to all other samples in A
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as well as

d(i,C) = average dissimilarity between i and all other clusters

which is not A

Once d(i,C) has been determined, which results in a list of dissimi-
larities to other clusters, the distance to the nearest other cluster is of
interest. This value denotes the cluster to which i would belong if not
assigned to A. This can be calculated as

b(i) = min
C ̸=A

d(i,C)

Upon further consideration of the equations above, it becomes clear
that at least two clusters need to be formed to calculate the Silhouette
score; otherwise, it would not be possible to determine the distance
to the nearest other cluster. As a result, the score is undefined when
only forming a single cluster. After determining these measures, the
Silhouette Score can be calculated as:

s(i) =
b(i) − a(i)

max {a(i),b(i)}

The resulting score s(i) lays in the range

−1 ⩽ s(i) ⩽ 1

A great advantage of the Silhouette score is its simple interpretation.
A calculated score of 1 indicates a well-formed cluster. For a partic-
ular sample i where s(i) = 1, the closest possible alternative cluster
is maximally dissimilar, thereby indicating a large inter-cluster vari-
ance, as well as i being maximally similar to other samples contained
in the same clusters, or the cluster having a low intra-cluster variance.
However, if i is calculated with a score of 0, it is a 50/50 decision to
which cluster i should belong. Therefore, it is equally similar to the
other data in its assigned cluster and to the data contained in the clos-
est other cluster. The worst-case scenario would be a score of −1. In
this case, i would be more similar to the nearest neighboring cluster
data than its current cluster. This indicates that i has been assigned
to the incorrect cluster. When evaluating the results produced by cal-
culating the Silhouette Score, the number of clusters with the highest
score would, therefore, result in the best clusters.

8.3.3 Clustering of time series data

To identify contextual characteristics, the service first needs to iden-
tify sensors deployed in a similar context. To do so, sensors are clus-
tered based on the similarity of their collected data. Each cluster con-
tains all sensors placed in a similar context; therefore, their collected
data show similar characteristics. The following introduces different
algorithms to find the most expressive clusters.
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K-means clustering

The K-means clustering algorithm is possibly the most well-known
method in the partitional clustering category.

Definition 6 In Partitional Clustering, clusters are characterized by a cen-
tral vector, and data points close to these vectors are assigned to the respective
clusters.

This method attempts to minimize the intra-cluster variance while
maximizing the inter-cluster variance [3, 274]. This leads to maxi-
mally dense clusters (i.e., the points in a cluster are maximally simi-
lar) while clusters are maximally separated by some distance metric.
Formally, this optimization can be expressed as:

Definition 7 Given a set of d-dimensional observations (x1, x2, . . . , xn),
partition n observations into k sets S = {S1,S2, . . . ,Sk} such that

k∑
i=1

∑
x,y∈Si

∥x− y∥2

returns the minimal sum of variances within the clusters.

This method works by randomly partitioning objects into nonempty
subsets, constantly adding new objects, and adjusting the centroids.
These steps are repeated until a local minimum is met by optimizing
the sum of the squared distance between each object and the cen-
troid [274]. Even though K-means is an unsupervised method, there
are still hyperparameters that need to be determined for each appli-
cation, such as a predetermined k for the number of clusters that
are to be populated [274]. Therefore, this clustering needs to be re-
peated, and the correct number of clusters needs to be determined
using methods from Section 8.3.2.

Traditionally, the Euclidean distance is used to determine to which
cluster a data point belongs. However, this metric is unsuitable as a
distance metric for time series data since the time dimension is ig-
nored. Shifted time series have a large Euclidean distance and, there-
fore, do not belong to the same cluster. Furthermore, it has been
demonstrated that applying traditional clustering methods, such as
K-means, directly to spatial-temporal data usually results in severe
overfitting and poor performance [157].

Density Peaks

Density Peaks (DP) is the most popular in its class of density-based clus-
tering algorithms for time series data [119]. These methods allow for
constructing non-spherical clusters, which is impossible in partitional
clustering methods, such as K-means [214].
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Definition 8 Density-based Clustering considers the density of data points
when forming clusters instead of distances. Therefore, cluster centers are
defined to be the densest region in a data space [214].

Cluster centers are determined by calculating the local density ρi of
each point i as:

ρi =
∑
j

χ(dij − dc) where χ(d) =

1, d ⩾ 0

0, d < 0

dc denotes the predefined neighbourhood distance and dij is the dis-
tance between i and j, based on some similarity measure [214].

After identifying the cluster centers as the points with the highest
local density, neighboring points are assigned to clusters based on the
neighborhood distance dij.

δi =

min(dij) if ∃jρj > ρi

min(dik) k ∈ all node otherwise

Other than K-Means, DP does not rely on the number of clusters as
an input parameter. Since the given parameters define what would
be considered a meaningful cluster, this method can independently
determine the number of clusters to form from the given parameters.
This is advantageous in cases where the number of clusters in the
data is unknown, but the idea of what should be considered a mean-
ingful cluster is known. Therefore, finding the correct parameters for
DP also relies on domain knowledge and empirical evidence. Since
appropriate domain knowledge in a citywide data space might de-
pend on individual sensor data types, this method is not applicable
in the current state but is discussed in the conclusion.

Deep Temporal Clustering

As described in Section 8.2 Deep Temporal Clustering is an architecture
that combines well-known neural network methods with a novel tem-
poral clustering layer, thereby forming a single end-to-end learning
framework [157]. This unsupervised learning method uses an autoen-
coder topology in combination with Long-Short Term Memory (LSTM)
and convolutional layers to reduce the dimensionality of the input
data and cluster the reduced data [157].

8.3.4 Model Generation using Artificial Neural Networks

With the created clusters, sensors deployed in a similar context are
now grouped. The service utilizes Artificial Neural Networks (ANN)
to highlight characteristics that define these clusters by generating an
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abstraction model for each cluster. This model is then compared to a
generated model based on all sensors, showing the main differences
and, therefore, the meaningful characteristics of this cluster.

Artificial Neural Network

ANNs are inspired by human brains, consisting of neurons commu-
nicating with each other over a network of electrochemical activity.
These networks attempt to emulate the understanding of how the
brain works by copying its structure and communication methods to
form networks that can be trained to solve complex problems. Similar
to the neuron being the most basic unit in the brain, a mathematical
model of a neuron (called a perceptron) is the most basic unit in an
ANN.

Definition 9 A Neural Network is a computational model consisting of a
network of simple mathematical functions called “neurons” [93]. The prop-
erties of such a network are determined by its topology and the properties of
the neurons it consists of [166].

In feed-forward neural networks, information flows in one direction.
Suppose the neurons in such a network consist of simple perceptrons,
which cannot build up a memory of previous inputs. In that case, it
can be expected that they do not perform well on time series data,
where temporal dependencies are present and crucial to consider. To
address this problem, various adaptations of the network are possi-
ble.

Long-Short Term Memory

When working with time series, it is important to consider the past
when generating a more general model of a set of given time series
data. LSTM cells are an example of artificial cells that specialize in
processing longer input sequences. Instead of a simple feed-forward
activation function, as is present in the perceptron, LSTM cells have an
internal recurrence that produces paths where the gradient can flow
for long durations, thereby mitigating the vanishing and exploding
gradient problems present in Recurrent Neural Networks [93, 109].
The so-called “LSTM cell” enables networks to learn long-term depen-
dencies more easily by incorporating gates controlling the weights
fed into the network [93, 109].

Autoencoders

Autoencoders are semi-supervised neural networks that can learn the
patterns of multiple time series and can be used to identify devia-
tions [93, 205]. Autoencoders of particular interest for this investi-
gation are the so-called undercomplete autoencoders [93]. This kind
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of network has the unique characteristic that the hidden layer has
a lower dimensionality than the input and output layers, forming
a bottleneck. During the training process, input data is compressed
into ever-shrinking hidden layers, thereby reconstructing an internal
representation from which the output is reconstructed by expanding
the internal representation to the input dimensionality. The model
is thereby forced to prioritize input data and, in so doing, isolate the
important properties [93]. This network topology results in anomalies
not being present in the internal representation, as they do not con-
form to the general observed distribution. The success of the training
is then measured by calculating the loss between the reconstructed
output and the initial input. During this phase, anomalies can be
identified since they would not be present in the reconstructed inter-
nal representation.

Due to the prioritization of input features, a certain loss is expected
in the reconstructed model. The training process can be described as
minimizing this loss:

L(x,g(f(x)))

where L is a loss function penalising g(f(x)) for being dissimilar from
x [93]. Should the produced model match the input data exactly, the
model is overfitted for the input.

Definition 10 Overfitting is “the production of an analysis that corre-
sponds too closely or exactly to a particular data set, and may therefore fail
to fit additional data or predict future observations reliably” [188].

An overfitted model has been over-specialized to describe the training
data set and does not generalize well to new data that was not part
of the training set.

8.4 evaluation

While multiple methods have been identified as useful for exploiting
encoded spatial-temporal dependencies in time series data to extract
contextual characteristics from deployed sensors, this section inves-
tigates their effectiveness by analyzing real-world data. Sensor data
generated by approximately 600 weather stations spread across Ger-
many was used to evaluate different methods and compare their effec-
tiveness. These weather stations are deployed standardized, resulting
in fewer contextual characteristics encoded in the sensors. One of the
remaining characteristics is the corresponding climate zones in which
the sensors are deployed. This classification is also provided by Ger-
man Weather Service (Deutscher Wetterdienst), the German weather
and climate authority, which is then used to control the correct classi-
fication.
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8.4.1 Dataset

A time series dataset containing such dependencies is required to
evaluate spatial and temporal dependencies’ exploitation effectively.
The physical separation between nodes encodes the spatial depen-
dencies, while the concurrent observation of the same phenomenon
introduces the temporal dependencies.

Data gathered by approximately 600 weather stations spread across
Germany, the locations of which can be seen in Figure 27b, was accu-
mulated to construct a large enough dataset to better determine the
effectiveness of various stages of the proposed approach. The result-
ing 600 time series contained in the dataset consists of the average
temperature measured at the location over a week. The wide geo-
graphic spread of the sensors covers many different environments,
which leads to varying measurements in the dataset. This poses the
ideal circumstances for analyzing the usefulness of the approach. Go-
ing through the data of each station would be time-consuming and
tedious. However, automating this task could result in discovering
interesting characteristics that could easily be missed otherwise.

Figure 27a visualizes the measurements from all weather stations
over a week. It would be a laborious task to extract possible con-
textual characteristics that could be present from this overwhelm-
ing graph, not to mention the possibility of mistakes due to the hu-
man factor. This is the main motivation for investigating modern ap-
proaches to extracting this information in an automated fashion.

8.4.2 Outlier Removal

In 1, anomalies are defined as being sparse in the data and not con-
forming to the usual pattern of the data in which they are found.
Anomalies affecting only a single sensor are unnecessary informa-
tion and usually result from sensor or network errors. These kinds
of anomalies should be removed before constructing a generic model
since they could negatively influence the accuracy of clustering and
trained models based on the data. However, it would be a mistake
to attempt to remove all anomalies. 2 describes contextual charac-
teristics as consisting of a series of anomalies. It would, therefore,
be unfortunate if contextual characteristics were removed during the
process of outlier removal. In the following section, the removal of
point anomalies, which are introduced in Section 8.1.1, are analyzed
using Principal Component Analysis (PCA) [93]. In the following, the
effectiveness of this method is analyzed when applied to the dataset.

While more than 40 principal components contribute to the vari-
ance in the dataset, each component’s contribution became signifi-
cantly smaller. From the results summary shown in Table 7, it can
be seen that the initial dimensionality of the input dataset (144, 588)
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Number of components Explained variance (%)

2 80

4 90

20 99

39 99.9

Table 7: The percentage of variance which is described by an increasing
number of components.

(a) A visualization of temperature measurements over a
week at all weather stations belonging to the dataset.

(b) The locations of approx-
imately 600 weather sta-
tions spread across Ger-
many

Figure 27: Data set of approximately 600 weather stations deployed in Ger-
many. Average Temperature within a week.

can be reduced to a mere two components while still being able to
describe 80% of the variance present in the data, thereby resulting
in a (144, 2) dimensional dataset of principal components. However,
losing 20% of the variance is unacceptable since this would most prob-
ably include almost all the anomalies in the data.

Since a third party produces the dataset, it is unknown whether the
data has been processed. For this reason, outlier removal is applied
rather conservatively, opting to remove only 0.1% of the variance.
When working with raw sensor data, the degree of outlier removal
is expected to be much greater. The dataset resulting from the above
process is used for the remainder of the investigation.

8.4.3 Comparing different clustering methods

Knowing the correct clusters to which each sample should belong
is essential for accurately validating the performance of clustering
methods. However, since the data is unlabelled and the exact config-
uration or context in which each station is deployed is unknown, a
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(a) A visualization of the average tem-
peratures raster across Germany in
October 2021.

(b) Location of all weather stations col-
ored in their appropriate climate
zone.

Figure 28: Reference data from the German Weather Service shows that
weather stations should be divided into three climate zones.

proxy ground truth is required to perform the evaluation. In this case,
one such substitute is the use of the different climate zones across Ger-
many to identify potential clusters that are expected to form. Various
factors, including elevation and proximity to large bodies of water, in-
fluence each region’s climate. It can, therefore, be expected that mea-
surements taken from regions with similar climates should be clus-
tered together since nodes from the same region are sampling similar
distributions. Thus, the distances between the time series should be
small. A raster grid helps map average temperature measurements
across the country over a month to define the expected clusters.

The raster grid is made available in the ESRI ASCII Grid format at a
resolution of 1km× 1km by the German Weather Service [273]. This
format allows for converting from real-world latitudinal and longitu-
dinal coordinates to pixels in the raster grid, thereby finding the aver-
age temperatures for each weather station in the dataset. The average
temperatures are then divided into belonging to one of five classes,
which can be seen in Figure 28a. Figure 28b shows the locations of all
weather stations spread across the country, colored according to the
climate region they belong to once the mapping was done between
the raster grid and the regions shown in Figure 28a. Upon closer in-
spection, it is noticed that not all five regions are represented in Fig-
ure 28b since there is no station in each region. Because the weather
stations are spread across only a subset of the climate regions, three
clusters are assumed to be present in the data. When clustering the
temperature time series, it can be expected that measurements taken
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(a) The Elbow Curve shows that three
to four clusters are the optimal
amount of clusters.

(b) The Silhouette Score highlights that
two clusters have the optimal sepa-
ration, with three clusters close to
it.

Figure 29: Comparing both methods, three clusters are selected as the opti-
mal number.

in a region are clustered as belonging to that region. Therefore, the
clustering process is expected to produce three clusters, each contain-
ing a time series produced by sampling the temperature in a specific
climate region. The following compares the performance of the clus-
tering methods discussed in Section 8.3. By performing the clustering
based on the various similarity measures mentioned in the same sec-
tion, the ability of each method to form the expected clusters shown
in Figure 28b are compared. The evaluation is split into two tables to
better compare the proposed similarity measures. In Table 8, the Eu-
clidean Distance is used as a similarity measure, while DTW is used in
Table 9. The three clustering methods are evaluated using each sim-
ilarity measure. The clustering process is applied multiple times to
each method, selecting the best-performing iteration for comparison.

Precision Recall Rand Index F1-Score MCC

K-Means 0.76 0.65 0.73 0.71 0.47

DPC 0.71 0.78 0.73 0.74 0.46

DTC 0.73 0.83 0.76 0.78 0.54

Table 8: The performance of different clustering methods with Euclidean
Distance as the similarity measurements.

Precision Recall Rand Index F1-Score MCC

K-Means 0.75 0.77 0.76 0.76 0.52

DPC 0.73 0.77 0.75 0.75 0.49

DTC 0.80 0.62 0.74 0.70 0.48

Table 9: The performance of different clustering methods with DTW as the
similarity measure.



8.4 evaluation 139

In general, when comparing Table 8 and Table 9, it is clear that the
clustering methods performed fairly equally. During the sole con-
sideration of Table 8, where the Euclidean Distance is utilized as a
distance metric, Deep Temporal Clustering (DTC) outperformed the
other contenders on clustering the dataset in almost all metrics and
is, therefore, the only candidate that comes into consideration. How-
ever, when including Table 9 to the consideration, where DTW is used
as a metric, a reduction in the performance of DTC can be noticed. In
comparison, the performance of Density Peak Clustering (DPC) and
K-Means has improved and is comparable to the results achieved by
DTC using the Euclidean Distance as the distance metric. Table 10

summarises the comparison between the remaining candidates:

Precision Recall Rand Index F1-Score MCC

K-Means (DTW) 0.75 0.77 0.76 0.76 0.52

DPC (DTW) 0.73 0.77 0.75 0.75 0.49

DTC (eucl) 0.73 0.83 0.76 0.78 0.54

Table 10: A side-by-side comparison of the performance of the best cluster-
ing candidates, irrespective of distance metric.

As can be seen in Table 10, although the achieved results are very
similar, DPC performed slightly worse and is therefore eliminated as a
candidate, leaving DTC and K-Means as the remaining options. While
evaluating these remaining candidates, it was noticed that DPC had
much higher computational requirements than K-Means while pro-
ducing similar results. Since the dataset in this investigation consists
of univariate time series, the unnecessarily complex processing done
by DTC becomes a burden to itself. In future iterations of this process,
where multivariate time series might be investigated, DTC should be
reevaluated as a possible clustering candidate. Furthermore, from the
research done in Section 8.3, DTW is currently the state of the art when
it comes to time series comparison and would, therefore, potentially
apply to more kinds of time series than using the Euclidean Distance.
For these reasons, K-Means was selected as the clustering method for
the remainder of the investigation.

8.4.4 Cluster Analysis

The previous section used the three predefined climate zones to rep-
resent the “correct” number of clusters present in the data. This was
a best-guess assumption, which enabled the analysis of the perfor-
mance of various clustering algorithms. It is, however, not necessarily
the correct number of clusters. In the following, the heuristics dis-
cussed in Section 8.3.2 are applied to find the correct number of clus-
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Figure 30: The training process for a generic model of all data in the dataset.

ters. Figure 29a displays the Elbow Curve created by clustering with
K-Means with a number from one to nine clusters.

To identify the correct number of clusters using this method, as de-
scribed in Section 8.3.2, three clusters are identified as the number of
clusters present according to this method. From Figure 29a, it can be
seen that forming more than three clusters results in a linear reduc-
tion in the variance for each additional cluster being added. This is
an indication of overfitting taking place.

The Silhouette Score is calculated as a comparison based on the
same dataset to support the Elbow Curve’s finding. Having under-
stood what is expressed by the Silhouette Score in Figure 8.3.2, the
score can be calculated for an increasing number of clusters in the
data, similarly to how the Elbow curve was obtained. Since it would
be impractical to show the scores of all samples in all clusters to make
a decision, instead, the mean Silhouette score over all samples is cal-
culated, as can be seen in Figure 29b.

Figure 29b shows a decreasing mean Silhouette Score as more clus-
ters are added. The highest score is achieved when two clusters are
formed. Even though the Silhouette Score suggests two clusters for
optimal separation between clusters, the score for three clusters is
not much lower. In addition to the Elbow method finding three to be
the most suitable number of clusters, as well as this being the num-
ber of clusters naively found in Section 8.4.3, forming three clusters
would allow for more interesting analyses to be done. For these rea-
sons, three clusters are used for the remainder of this evaluation.
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8.4.5 Autoencoder

Based on the various architecture components described in 8.3.4, an
autoencoder based on LSTM cells can be constructed, which can learn
a generic model based on the input time series. A generic model al-
lows for summarising multiple time series into one, simplifying the
comparison between time series belonging to a cluster. Since the clus-
ter from which the autoencoder is formed consists of multiple time
series, any sequence of anomalies (or contextual characteristics) that
occur in multiple time series is encoded into the generic model. This
functions as a filter, removing contextual characteristics unique to a
single time series and including contextual characteristics present in
multiples. A description of the various layers can be seen below:

Model: "autoencoder"
_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

input_2 (InputLayer) [(None, 3, 163)] 0

input_layer (LSTM) (None, 3, 144) 177408

hidden1 (LSTM) (None, 3, 32) 22656

hidden2 (LSTM) (None, 1) 136

bridge (RepeatVector) (None, 3, 1) 0

hidden3 (LSTM) (None, 3, 1) 12

hidden4 (LSTM) (None, 3, 32) 4352

hidden5 (LSTM) (None, 3, 144) 101952

time_distributed_1 (TimeDis (None, 3, 163) 23635

tributed)

=================================================================

Clear similarities are apparent when the above-listed layers are com-
pared to the generic architecture presented by [157]. The input is
compressed into more complex embedded representations as it flows
through the network. Once the training has been completed, a lower-
dimensional model has been trained, which can be used as a generic
model for all the input data into the autoencoder. The dataset was
used to construct a generic model of all weather stations across Ger-
many to illustrate the generalization produced by applying an au-
toencoder.

In Figure 30, the performance of the autoencoder training can be
seen. The first graph shows the measurements of all weather stations
for a week. This is the input to the autoencoder and what is ulti-
mately compressed. The second graph is the generic model that was
constructed using the autoencoder. The keen reader would have seen
that the temperature measurements have been scaled. The main fo-
cus of the investigation is to determine discrepancies between the
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patterns of cluster models. To determine this, the actual values are ir-
relevant and have, therefore, been normalized. Additionally, normal-
izing the values in the time series mitigates the effects of amplitude
invariance.

Visually determining the autoencoder’s performance is not simple,
so two further graphs are added to aid the evaluation. The following
graph shows the loss performance during each iteration of the train-
ing process. This indicates whether the training was successful and
how much loss is present in the generated mode. It also helps deter-
mine the number of iterations necessary to train a well-performing
model. It is essential to stop the training process before overfitting
occurs. When considering the graph, a point can be identified where
the rate at which the loss decreases becomes almost linear. This in-
dicates the model is starting to overfit the data, and training should
be stopped. Additionally, a second graph visualizes the loss distribu-
tion over the input. This distribution helps decide the threshold after
which a sample would be considered an anomaly. Since anomalies
are sparse and absent in multiple time series, they are not present in
the cluster’s generic model. Therefore, they can be identified as the
samples with a large loss compared to the generic model. As an ex-
ample, a red line was added to the loss distribution graph to indicate
a possible threshold. In this example, all samples with an error larger
than 0.8 are identified as anomalies.

8.4.6 Identifying Contextual Characteristics

Having identified the best methods to cluster and create generic mod-
els of the time series, these methods can be applied to forming three
generic models, one for each cluster formed using K-Means with
DTW as the similarity metric. Using the generated models, the fo-
cus can be shifted to identifying contextual characteristics. Since each
cluster model was generated based on multiple time series belong-
ing to the cluster, the models have encoded contextual characteristics
present in multiple time series. The identification of contextual charac-
teristics has thus become trivial due to the time scale being correlated
across all clusters. Discrepancies can be identified by comparing the
models of each cluster with each other.

Similar to previous steps, when identifying the contextual charac-
teristics, it is necessary to determine an “error threshold” after which
a sequence should be considered a contextual characteristic. Depend-
ing on the use case, this likely differs and must be determined em-
pirically. No contextual characteristics are identified if a very large
threshold is chosen. Conversely, if a threshold is chosen that is too
low, every time step is considered an anomaly or belongs to a con-
textual characteristic. In the case of the used dataset, a threshold of
0.4 is determined and used. Therefore, any difference between the
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(a) Highlighted contextual
characteristics within
the generic model of the
first cluster.

(b) Highlighted contextual
characteristics within
the generic model of the
second cluster.

(c) Highlighted contextual
characteristics within
the generic model of the
third cluster.

Figure 31: Contextual characteristics discovered in each of the clusters.

generic models larger than 0.4 is considered abnormal and belongs
to a contextual characteristic. The contextual characteristics identified
between the clusters in the dataset are visualized with markers in
Figure 31. When calculating the difference between the models, it is
unknown which of the models being compared is the source of the
contextual characteristic. The automatic detection of this might be an-
alyzed in a future iteration. Therefore, the contextual characteristic
is marked in both models. As an additional advantage, marking cor-
responding contextual characteristics simplifies the comparison be-
tween the models since the graph of a single model contains infor-
mation from others. This approach, however, doesn’t scale well and
could become problematic if the data contains many clusters.

Several anomalies (or contextual characteristics) could be identi-
fied, as shown in Figure 31. All contextual characteristics are recog-
nized due to a discrepancy larger than 0.4 between the cluster graphs.
When only considering the discrepancies between Figure 31a and Fig-
ure 31b, it can be deduced that during four periods in the week, the
difference between Figure 31a and Figure 31b was large enough to be
considered anomalous. A clear anomalous event can be seen when
comparing Figure 31c to the other two clusters. The third tempera-
ture drop is much larger than in the other two clusters. During one
period, the temperatures of nodes in cluster two behaved very differ-
ently than those in the other clusters.

8.5 summary

This chapter analyzed various methods applicable to different steps
of detecting contextual characteristics based on spatial-temporal de-
pendencies in time series. As a result, a pipeline consisting of the
steps identified during this investigation can be constructed, as de-
picted in Figure 32. Once a time series dataset has been collected
containing data with spatial-temporal dependencies, such as data col-
lected by a wireless sensor network, Principal Component Analysis
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Figure 32: A flow diagram showing the necessary steps identified to de-
tect contextual characteristics based on spatial-temporal depen-
dencies.

(PCA) is applied to the data to remove point anomalies (1). This pre-
processing step improves the performance of the clustering step that
follows. K-means clustering based on Dynamic Time Warping as a
similarity measure was shown to form the best clusters and should,
therefore, be applied once the anomalies have been removed (2). The
third step exploits the spatial dependencies in the data due to the
assumption that sensors deployed in similar contexts are clustered to-
gether since they are sampling from a similar distribution. Once the
clusters have been formed, they can be generalized using an autoen-
coder in step four. Since contextual characteristics would have simul-
taneously affected multiple sensor nodes in that region, the charac-
teristics are encoded into the generalization for that region’s cluster.
Generalized models are based on samples taken during the same pe-
riod; therefore, discovering cluster characteristics involves comparing
the correlating measurements encoded in the models and returning
the identified characteristics.

The evaluation showed that the proposed pipeline can detect an
expressive number of clusters within a significant amount of time
series data. By analyzing these clusters, the pipeline can identify mul-
tiple characteristics within each cluster that separate it from others.
While the evaluation used temperature data, the pipeline can be eas-
ily applied to different contextual data since no additional context
information specific to temporal data was used.

Within the proposed citywide data space, the pipeline is provided
as a service that helps data and service providers gain additional in-
formation about the characteristics encoded due to the sensor place-
ment or its surroundings. Participating citizens provide their col-
lected data streams to get feedback on their placement (e.g., whether
it is exposed to the sun at certain times or shows similar characteris-
tics to others in the surroundings). The service then allows others
to request additional characteristic information about a given sen-
sor. When the sensor participates, the requester receives information
about characteristics found within the provided data stream. This can
help the requesting service decide if a sensor is a viable data source
for its functionality.

While the pipeline currently only identifies and highlights charac-
teristics that separate the existing clusters, it provides no informa-
tion on what caused these characteristics. In the future, a feedback
loop for the service participants is planned. This loop lets them add
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information about the sensors’ placement and surroundings, which
can then be generalized for the cluster. This information can then be
used to learn which characteristics are caused by which event, giving
services and participants highlighted characteristics, generalized (ex-
pected) value curves, and the corresponding information about the
causing event.

Another open question is how many characteristics can be identi-
fied within a Smart City context with a much denser sensor distribu-
tion. The current evaluation used data streams collected over a week.
Data streams collected daily could be investigated to find more fine-
granular characteristics. These can then be grouped by the surround-
ing weather conditions (e.g., sunny, rainy, or freezing) since different
behaviors depend on weather conditions. Therefore, different charac-
teristics might be visible within the collected data.

Finally, as mentioned in Section 8.4.3, different methods must be
reevaluated when multivariant data is used to identify characteristics.

The following chapter summarizes the presented contributions. It
then discusses the results and answers the research questions. The
thesis is closed with a discussion of future work and a conclusion.





9
D I S C U S S I O N A N D C O N C L U S I O N

After presenting, analyzing, and evaluating the individual contribu-
tions in the previous three chapters, this chapter begins with a sum-
mary of these contributions embedded in the overarching architec-
ture. It continues addressing and discussing the research questions
from the introduction chapter. The thesis concludes with an outlook
on future research possibilities.

9.1 contribution summary

This thesis introduced a comprehensive architecture for a decentral-
ized citizen-centric data space. It is based on distributed, citizen-
managed Connectors, which act as gateways for the citizens’ locally
deployed sensors and services. By connecting these Connectors, de-
ployed services can access not only the local reachable sensors but
citywide collected data. The following paragraphs summarize the
three main contributions.

The first identified research gap focuses on discovering existing
data sources within a decentralized data space. To overcome this
challenge, this thesis proposes SkABNet (see Chapter 6) as a fully
decentral discovery overlay. It allows services to utilize existing data
streams by describing relevant criteria. Through a semantic search,
SkABNet returns all matching data sources, allowing services to re-
quest their data. To evaluate the proposed approach, a simulation of a
decentralized network consisting of 40.000, 60.000, and 80.000 nodes
was conducted. Results show that the semantic searches require up to
90% less message overhead compared to SkipNet searches. To further
improve the efficiency of common search queries, a single sensor is
represented multiple times within the network with different seman-
tic descriptors. By simulating a network consisting of 50.000 sensors
represented by one to three semantic descriptions (increasing the net-
work size 150.000 nodes) it was shown that the message overhead
could be further decreased by 50%.

Second, this thesis addresses the privacy concerns of citizens who
act as data providers. Sensor owners are provided with the possibil-
ity to set individual access rights for each of their connected sensors.
Private sensors are not shared with the data space and are only avail-
able locally. Collected data from sensors with a public setting can be
used without limitations. Nonetheless, the owner can see which ser-
vices use the provided data. As proposed in this thesis, sensor owners
can now set their access setting to protected. Owners must manually
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approve each subscription request if a remote service wants to use
the provided data. For this, the service provides a description of its
function and goal. Further, the service sends a preprocessing pipeline
consisting of network-wide predefined steps, which is executed lo-
cally on the Connector of the data provider (see Chapter 7). A user
study was conducted to evaluate the expressiveness of the preprocess-
ing pipeline and its steps. Within this study, participants were given
five example services of increasing complexity. To assess if partici-
pants understand the preprocessing and the purpose of the service
only based on the preprocessing pipeline, the service description was
not provided. Results illustrate that 77% could correctly or rather cor-
rectly describe the data processing undertaken on their data based on
the provided step sequence.

Lastly, standardized data measurement cannot be expected since
the citizens set up their sensors. An analysis method was introduced
to allow service operators to still assess the data quality of available
data sources in the network (see Chapter 8), which analyzes the data
sources and detects sensor-specific characteristics visible as anoma-
lies within the data streams. The evaluation conducted in this thesis
focused on anomaly detection and cluster mechanisms to group data
sources affected by the same characteristics. A real-world data set pro-
vided by the German Weather Service was used to compare and select
existing algorithms and create a pipeline suited for environmental
data.

Following the summary of contributions, the subsequent section
discusses the evaluation results and their interpretation in relation to
the questions presented at the beginning.

9.2 discussion

After summarizing the contributions presented in this thesis, the fol-
lowing section addresses and discusses the research questions posed
in the introduction, using the contributions and the resulting findings.
Additionally, the scientific and practical applicability of the achieved
results and their limitations are highlighted.

The first research question is: How can modern Smart Cities ac-
tively integrate their citizens to become more sustainable? Sustain-
ability within a Smart City can be viewed from an environmental and
social standpoint [110]. While environmental sustainability describes
the ecological aspect of the Smart City by optimizing resource con-
sumption and reducing waste, social sustainability focuses on social
cohesion and the inclusion of its citizens [40].

Regarding environmental sustainability, this thesis focused on us-
ing and integrating existing hardware. The goal is to reduce the eco-
logical footprint and save money economically through the long-term
reuse of existing hardware. By providing Connectors as hardware-
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independent software, participating citizens can use existing hard-
ware to connect their sensors and provide them as data sources in a
citywide data space.

While setting up the Connector software in a simple and user-
friendly manner remains a continuous challenge that needs constant
improvement, participating citizens can engage deeply with their
data, its use, and processing through the Connector and the created
data space. This data space creates a citywide community that contin-
uously learns and participates in the city’s urban growth. Therefore,
the proposed approach improves social sustainability. Also, by giving
citizens the tools to connect and understand their collected data and
create services themselves, a citywide Citizen Science community is
built, allowing citizens to take active roles within their surroundings.

To explore the various aspects of the research question, three sub-
questions were posed, focusing on integrating existing sensor hard-
ware, ensuring data sovereignty, and including non-technical citizens.

For services and other users to utilize various sensors, it is essen-
tial to address TC1 - Interoperability. This is also reflected in RQ 1.1. RQ 1.1: How can

data from existing
sensor hardware
be effectively
integrated into a
citywide data
space?

To overcome the heterogeneity of existing data sources provided by
citizens, a data model was introduced in Chapter 5 that builds on es-
tablished ontologies. Collected data can then (if desired by the own-
ers) be stored locally for visualization and interpretation or provided
as a data stream for the data space. With the help of the provided se-
mantic description of the data sources and their data, the introduced
discovery overlay SkABNet enables the integration of existing data
sources into a decentralized managed data space. While this thesis fo-
cused on integrating the collected data from the sensor hardware and
making data easily accessible for services, it did not address the con-
nection of individual sensors to the Connector. However, many open
standards, interfaces, and communities already delve deeper into this
topic, e.g., openHAB [292], HomeAssistant [112], and ioBroker [291].

RQ1.2 also addresses citizens’ trust in order to enhance active
participation and the resulting social sustainability. In particular, it RQ1.2: What

mechanisms are
required to ensure
the data
sovereignty of
citizens and to
create an
understanding of
the use of their
data?

focuses on data sovereignty as described in SC1 - Ensuring Data
Sovereignty and Privacy of Citizens, which refers to citizens having con-
trol over their data and information shared with other participants,
as well as being able to decide how services may use provided data.

First, the proposed Connector enables connection to a citywide
data space without automatically and unintentionally sharing col-
lected data or existing metadata with others. For each connected sen-
sor, citizens can decide if information about collected data should be
shared with the data space. Due to its fully decentralized architecture
SkABNet, no other participant can obtain information about the home
network or local sensors unless explicitly authorized by the owner.
Only by voluntarily providing information through the data space
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can other citizens and services obtain information, strengthening the
citizen’s data sovereignty concerning data sharing.

Second, services must individually request data streams and dis-
close their data usage when sensors are configured to collect pro-
tected data. Therefore, a distributed preprocessing framework was
developed to show data owners how services use their provided data
transparently. The user study results show that for simple services
92% of the participants could identify and describe the correct pro-
cessing goal. For more complex services this number drops to 61%
showing that further improvements need to be made to help citizens
identify relevant information. In contrast to identifying the services’
goal, preprocessing step description was performed at least rather cor-
rectly by 84% of participants for the most complex service. This indi-
cates an already understandable visualization of each preprocessing
step. Hence, future improvements should focus on a more precise
visualization of the preprocessing pipeline results, which helps the
citizens understand data usage by more complex services.

Focusing on technical-trained citizens, the evaluation proved they
can create custom services by using the existing modular preprocess-
ing steps. This allows them to search for relevant data sources within
the data space and generate new knowledge through Citizen Science.

In addition, results from the user study can be further divided into
non-technical and technical citizens. The results show that technically
skilled citizens still better identify and explain service goals and in-
dividual processing steps than non-technical citizens. When focusing
on non-technical citizens, 80% could correctly describe the prepro-
cessing goal for the simplest service, dropping down to 40% for the
most complex. Hence, non-technical citizens need to be accounted for
by a socially sustainable Smart City as addressed in SC3 - Inclusion
of Non-Technically Trained Citizens and RQ1.3. Since only a minimalRQ1.3: How can

non-technically
trained citizens be

effectively
involved in using

and managing the
citywide data

space?

introduction was given at the beginning of the study, adding help
functions and feedback loops to the user interface when investigating
the preprocessing pipeline can assist non-technical citizens.

Further, when working with the Connector, the design focuses on
semantic rather than technical descriptions of the sensors to actively
integrate technically inexperienced citizens into the data space. While
this thesis focused on the usability for data usage, the Connector
and its user interfaces must also be user-friendly and require mini-
mal technical experience. Therefore, the usability of the Connector’s
user interface and data integration should also be investigated in
the future. By leveraging existing communities and building a lo-
cal citywide community, reusable integration modules for the most
common interfaces can be created and provided to participants for
easier integration. This aspect directly ties into social sustainability.
Only through the active participation and promotion of citizens and
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communities can they be empowered, learn new essential skills, and
build trust in the system discussed in SC2 - Trust and Transparency.

In summary, utilizing a gateway such as the Connector introduced
in this thesis integrates citizens and makes existing sensor hardware
accessible to a citywide data space. Using this Connector, citizens can
manage their sensors and services that use the data they provide, in-
creasing the city’s economic and social sustainability. Moreover, other
citizens can access the data provided in this data space and use them
as data sources for their services. Through granular privacy settings
and transparent usage descriptions by the services, citizens retain
data sovereignty. With a straightforward and user-friendly interface,
they can understand and evaluate the use of their data even without
technical knowledge.

While the first research question focuses on the perspective of data
sources, the second research question examines the data space from
the perspective of data consumers, i.e., services: How can services
access a citywide data space and utilize the available data while
considering data sovereignty? Here, the Connector again functions
as a gateway between the external software, the service, and the data
space. Through the service interface (described in Figure 5.2.2), citi-
zens can connect self-managed services. Citizens provide a semantic
description of the required data, which is then searched for by the
discovery overlay SkABNet in the citywide data space.

The first sub-question RQ 2.1 focuses on data discovery as depicted RQ2.1: How can
services efficiently
find relevant data
sources in the
distributed data
space and utilize
their data?

in TC2 - Discovery of Sensor Data and data utilization from a service
standpoint, which is discussed in the following. As described in Sec-
tion 6.4.1, data sources are published in SkABNet with selected at-
tributes from their semantic description as individual nodes. These
nodes connect and communicate in the form of a structured peer-
to-peer network, enabling semantic searches started by a service to
discover all relevant data sources and request their data efficiently.
The evaluation conducted using a simulated city with 50,000 sensors
illustrates that, depending on the complexity of the search query, the
required messages could be reduced by up to 90% compared to SkiP-
Net. Even in the worst case, when matching nodes are distributed
evenly within the overlay network, no more than O(log(n)) messages
per searched node are needed, where n is the number of represented
sensors in the network.

Given the evaluation, SkABNet proves to be scalable and extensi-
ble. It also improves interoperability due to its semantic descriptions
of sensors. Additionally, its decentral architecture increases the pri-
vacy of individual citizens since no central entity can gain insights
into a citizen’s network with its connected sensors and given access
rights to remote services. This thesis intentionally did not address
Security within the overlay layer. Fundamentally, there is no access
from outside the local network to the local Connector. Settings can-
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not be issued over the distributed network; these are only possible
through the local user interface. However, security should be exam-
ined more deeply from an overarching network perspective. It is
known that the discovery overlay network can be manipulated by
malicious actors, who can deliberately stop messages and searches.
While the proposed Network interface uses the transport overlay dra-
syl [33], which ensures end-to-end encryption of messages between
Connectors, preventing eavesdropping or alteration, intentional non-
forwarding can degrade search performance and skew results. Future
research should investigate methods to identify and exclude these
harmful participants from the network.

After services have discovered relevant data sources, they must re-
quest protected data from other citizens. Within this request, services
provide a preprocessing pipeline consisting of modular preprocessing
steps that are known within the network. Due to predefined prepro-
cessing steps, Connectors can ensure that the data is preprocessed
as described and that no services gain additional information due to
malicious preprocessing pipelines, preserving data sovereignty and
privacy of the data sources. While these predefined steps ensure that
collected data is unified and easier to process for the service, this
approach comes with two drawbacks.

First, these preprocessing steps need to be modular and reusable to
enable all sorts of services. Currently, no mechanism is included that
allows for the proposal of new preprocessing steps to be added to
an established data space. Second, while the local execution prevents
malicious actions from services, it does not protect services from ma-
licious data sources. This thesis did not investigate the possibility of
a malicious data source deliberately manipulating or ignoring local
preprocessing steps to send false results to the service. Since a ser-
vice expects data in a specific format due to the defined preprocess-
ing pipeline, manipulating the data could alter the service’s results
and crash the service (depending on its implementation) due to in-
compatible data formats. Although appropriate logs and debugging
analysis can identify and exclude malicious data sources in the future,
this represents a significant additional effort for the service provider.
Therefore, future research should investigate methods to ensure the
correct execution of the distributed preprocessing pipeline and guar-
antee at least syntactically correct data.RQ2.2: What

mechanisms are
necessary to

evaluate data
quality in a

decentralized
system without

violating the data
sovereignty of

citizens?

Another critical challenge for services is to determine the data qual-
ity of its data sources, since using citizen-operated sensors, service
providers can not rely on standardized placed sensors [16, 21, 122].
This challenge is targeted in the final research question RQ2.2 While
existing work often focuses on outlier removal in the examined data,
this thesis considers data quality based on influencing factors. Using
the method presented in Chapter 8, collected data streams are com-
pared, and contained anomalies are uncovered. If an anomaly occurs
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not only in a single sensor but in a group of sensors, it no longer
represents a local anomaly. Instead, it describes a characteristic of
the influenced sensors. Evidently, this anomaly is caused by an exter-
nal phenomenon measured by several sensors, meaning these share
a common characteristic in their placement and data measurement.

As no central instance in the presented data space can access all
sensors and their data, the method is implemented as a separate ser-
vice that must adhere to the same rules as all other services. This data
quality service requires the complete data streams, i.e., the raw data
of the sensors. Meaning that the decentralized preprocessing pipeline
needs unfiltered data from the examined sensor. To maintain the data For example, a

weather station
might only be
shaded at certain
times, leading to
significant
temperature
differences during
those periods.

sovereignty of the citizens, data source owners can decide whether
the service can analyze their data sources. To motivate data owners
to share their data, quality services also need to benefit them, e.g.,
by making them aware of possible incorrect placement of the sensors.
Nevertheless, participation in the quality service is voluntary and re-
mains at the discretion of the data owners. For other services, the
quality service provides the opportunity to view the characteristics
of the data source and decide if it is suitable for their provided ser-
vice. With the help of this service, TC3 - Data Quality is addressed.

As described in Section 8.5, the developed data quality service con-
sists of a sequence of steps that extract and highlight the characteris-
tics. Data quality cannot be directly assessed since there is no ground
truth through standardized sensors. Instead, a set of data streams is
compared, and their differences are analyzed. This means multiple
data streams must be interpreted to generate a result. Differences be-
tween the individual data streams are then highlighted as character-
istics. If a characteristic is recognized in several data streams, it is no
longer assumed to be an outlier but an external influence causing this
characteristic. This work did not address the semantic description of
the individual characteristics, but it can be achieved through a feed-
back loop with the data quality service users. As highlighted, the data
quality service focuses on maintaining data sovereignty, achieved
through voluntary participation motivated by the service’s benefits.

In summary, the network interface from the Connector, based on
the SkABNet network, allows services to discover available data
sources. Since each citizen defines which data sources are discover-
able, SkABNet adheres to the citizen’s data sovereignty. Further, by
defining a transparent preprocessing pipeline run on the citizen’s
Connector, raw data from private or protected sensors can never be
accessed. While data quality is still one of the most significant chal-
lenges for privately owned sensors, in a decentral data space, no cen-
tral entity can guarantee or measure the data quality for individual
sensors. Here, data quality services should also benefit citizens col-
lecting data so that they are motivated to share their data and let a
remote service analyze collected data.
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9.3 future work

After discussing the research questions, this section presents future
research topics addressing identified limitations. Improvements are
grouped into two main categories: first, open topics that contribute to
a finished product usable by citizens, and second, technical improve-
ments that enhance the system’s extensibility and enable continuous
adaptation to new circumstances.

One important open question is how the proposed data space can
be actively integrated into citizen’s daily lives. While a user study
was already conducted in Chapter 7 to examine the extent to which
citizens without technical knowledge can understand preprocessing
steps and thus assess their data usage, other areas must also be an-
alyzed with the help of a more in-depth user study. The connection
between the Connector and local sensors was assumed to be given in
this thesis, but this must be simplified for participating citizens. Only
in this way can enough citizens be motivated to contribute their data
to a citywide data space. It must be investigated how existing sensors
can be easily integrated through existing standards.

Another premise of this work was the voluntary and willing par-
ticipation of the citizens. According to Matschke et al., various en-
vironmental (e.g., platform usability, time and effort requirements,
quantity of existing content), personal (internal motivation, tool com-
petence), interpersonal, and socio-cultural factors are the primary mo-
tivations for information exchange [165]. However, this motivation
usually remains only in an open, egalitarian social network. Once
participating services and thus individual participants earn money
from the data provided by others, the willingness to share voluntar-
ily shifts, as the value of one’s own data is now assessed [24, 53].
Therefore, an in-depth examination of the willingness to share data,
especially regarding the value of one’s own data in an urban and cit-
izen science context, would be particularly interesting. It would also
be worth investigating how this willingness shifts once local industry
professionalizes and monetizes such a network.

Regarding the distributed preprocessing framework proposed in
Chapter 7, the future work contains improving the user interface
by highlighting changes and combining smaller steps into recipes
with meaningful explanations, enhancing understanding of data pre-
processing. An extensive user study may lead to further user inter-
face changes and simplifications. To make the system more adaptive,
adding new preprocessing steps at runtime must be investigated, re-
quiring all Connectors to know these steps. Using a distributed con-
sensus algorithm, new preprocessing steps and recipes could be pub-
lished and agreed upon within the network, providing more flexibil-
ity and enabling additional services.
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Lastly, an overarching improvement in the citizen-operated data
space is the integration of user feedback loops. Through a wide range
of feedback loops, the system can continuously adapt to new require-
ments and provide citizens with a better experience handling their
data and services. The introduced service for categorizing data qual-
ity could, for example, use the provided raw data and the resulting
characteristics to inform owners about specific details of sensor place-
ment. This knowledge can then provide feedback to other sensors
with similar characteristics, thereby optimizing sensor placement over
time and improving the overall data quality.

Regarding technical improvements, the focus is on making the data
space more adaptable to changing usage behavior and increasing
quality by decreasing human errors when providing data.

In the future, research should investigate the mechanisms by which
the decentralized data space can adapt to new circumstances. This
includes, on the one hand, changes in the most common searches
within the discovery network, requiring different identifier composi-
tions to respond to these queries efficiently. On the other hand, new
preprocessing steps are anticipated to be needed, which must then be
known to all Connectors. Due to the absence of a central authority,
changes cannot be enforced across all Connectors. Instead, the con-
sortium of Connectors must agree on new compositions and prepro-
cessing steps, which are then applied to all participating Connectors.
Existing consensus algorithms can be studied and their applicability
evaluated for this purpose.

Overall, technical tools should be employed to verify citizen inputs
in the Connector and assess their validity based on local knowledge.
This can help to avoid a wide range of human errors or misconfigu-
rations, ultimately improving data quality.

9.4 conclusion

In conclusion, this thesis contributes to the vision of a sustainable
and citizen-centered Smart City by addressing both the technical
and social challenges of implementing a decentralized data space. By
shifting from a technology-driven to a citizen-centered approach, this
work enhances participatory rights and promotes active engagement
with urban spaces.

The proposed SkABNet overlay network significantly improves the
efficiency of discovering relevant sensor data in a decentralized en-
vironment, demonstrating up to 90% reduction in message overhead.
This solution not only optimizes data retrieval but also promotes the
reuse of existing citizen-operated sensors, minimizing the need for
additional sensor deployment.

Further, the data sovereignty framework introduced in this work al-
lows citizens to retain control over the preprocessing and distribution
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of their sensor data, ensuring that even non-technical users can make
informed decisions about how their data is utilized. The accompany-
ing user study validated the effectiveness of this approach, with the
majority of participants demonstrating an understanding of the data
processing steps involved.

Lastly, developing a data categorization method facilitates the as-
sessment of data quality in an environment where sensor placement
and configuration may vary. By detecting anomalies and clustering
data streams with shared characteristics, this method enables service
providers to evaluate available data sources’ reliability better while
helping citizens improve sensor placement for more accurate data
collection.

Together, these contributions represent a significant step toward
creating a more inclusive and transparent Smart City framework
where citizens actively participate in collecting and managing urban
data. Future research may build upon these findings by exploring fur-
ther technical improvements and refining the social aspects of citizen
participation, ensuring that Smart Cities are not only technologically
advanced but also deeply aligned with the needs and rights of their
inhabitants.
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