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Abstract

The aim of this thesis is to search for physics beyond the Standard Model (SM) with min-
imal model dependence. Traditional searches for new physics at the Large Hadron Collider
(LHC) target specific signatures based on well-motivated models. In contrast, model-agnostic
approaches, typically depending on loose data selections or an accurate SM background de-
scription, lack high sensitivity for new physics signals. Recently, a new paradigm of model-
agnostic searches has emerged based on anomaly detection, which is aimed at automatically
identifying deviations from the background expectation in the data using machine learn-
ing. This work introduces CATHODE, a novel anomaly detection method, which combines
generative models with classifiers, achieving state-of-the-art performance on a simulated
benchmark dataset, particularly in addressing the more challenging setting of correlated ob-
servables. Further improvements to enhance the background estimation stability and the
robustness against uninformative input features are proposed. CATHODE is applied to
search for heavy resonances decaying to two large-radius jets with anomalous substructure
in 13TeV proton-proton collisions recorded by the CMS Experiment at the LHC. While no
significant excess over the SM background is observed, it enables setting upper cross-section
limits across a broad spectrum of signal models. In many cases, the sensitivity is shown
to improve substantially over conventional generic search strategies. By demonstrating the
potential of targeting many different signal models in a single analysis, this thesis lays the
groundwork for more such data-driven, model-agnostic searches in the future.

Zusammenfassung

Das Ziel dieser Arbeit ist die Suche nach Physik jenseits des Standardmodells (SM) mit
minimaler Modellabhängigkeit. Traditionelle Suchen nach neuer Physik am Large Hadron
Collider (LHC) sind auf spezifische Signaturen ausgerichtet, die auf gut motivierten Mo-
dellen basieren. Im Gegensatz dazu sind modellunabhängige Ansätze, die typischerweise
von einer losen Datenauswahl oder einer akkuraten SM-Untergrundbeschreibung abhängen,
nicht besonders sensitiv für Signale neuer Physik. In jüngster Zeit hat sich ein neues Para-
digma für modellagnostische Suchen herausgebildet, das auf der Erkennung von Anomalien
basiert und darauf abzielt, mithilfe von maschinellem Lernen automatisch Abweichungen von
der Untergrunderwartung in den Daten zu identifizieren. In dieser Arbeit wird CATHODE
vorgestellt, ein neuartiges Verfahren zur Erkennung von Anomalien, das generative Modelle
mit Klassifikationsverfahren kombiniert und auf einem simulierten Benchmark-Datensatz die
beste Leistung erzielt, insbesondere bei der Bewältigung der schwierigeren Situation korre-
lierter Observablen. Es werden auch Verbesserungen vorgeschlagen, um die Stabilität der
Untergrundabschätzung und die Robustheit gegenüber uninformativen Inputs zu erhöhen.
CATHODE wird für die Suche nach massiven Resonanzen eingesetzt, die in zwei Jets mit
großem Radius und anomaler Substruktur in 13TeV Proton-Proton-Kollisionen zerfallen,
die vom CMS-Experiment am LHC aufgezeichnet wurden. Es wird zwar kein signifikanter
Exzess gegenüber dem SM-Untergrund beobachtet, aber es ermöglicht die Festlegung von
Obergrenzen von Wirkungsquerschnitten für ein breites Spektrum an Signalmodellen. In
vielen Fällen zeigt sich, dass die Sensitivität im Vergleich zu herkömmlichen generischen
Suchstrategien erheblich verbessert wird. Durch die Demonstration des Potenzials, viele ver-
schiedene Signalmodelle in einer einzigen Analyse zu berücksichtigen, legt diese Arbeit den
Grundstein für weitere datengesteuerte, modellagnostische Suchen in der Zukunft.



Contents

Preface 12

1 Introduction 14

2 Particle Physics Theory and Methods 16

2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 The Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Renormalization and Running Coupling . . . . . . . . . . . . . . . . . . . 18

2.1.3 Shortcomings of the Standard Model . . . . . . . . . . . . . . . . . . . . . 19

2.2 Physics Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Composite Quarks and Leptons . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Composite Higgs Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Warped Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Measurements at Particle Colliders . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Decay Widths and Cross Sections . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Proton Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The CMS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Detector Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.4 Particle Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Jet Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Jet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.3 Pileup Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.4 Grooming Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.5 Jet Substructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.6 Heavy Flavor Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Statistical Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.2 CLs Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.3 Background Estimation With Bump Hunts . . . . . . . . . . . . . . . . . 39

3 Machine Learning Methods 42

3.1 Common Machine Learning Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Numeric Minimization Algorithms . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Overfitting Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Basic Model Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Boosted Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Concrete Unsupervised Learning Approaches . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Manuel Sommerhalder



3.4.2 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Normalizing Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Anomaly Detection Methods 56

4.1 Model-Agnostic Searches in High-Energy Physics . . . . . . . . . . . . . . . . . . 57

4.2 Unsupervised Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Weakly Supervised Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Weak Supervision and CWoLa . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Resonant Anomaly Detection and the Idealized Anomaly Detector . . . . 60

4.3.3 Approximating the Background Sample . . . . . . . . . . . . . . . . . . . 61

4.4 Semi-Supervised Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Existing Model-Agnostic Searches 66

5.1 “General Searches” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Inclusive Dijet Searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Machine Learning Anomaly Searches . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 ATLAS Dijet Resonance Search with Weak Supervision . . . . . . . . . . 67

5.3.2 ATLAS H + X Anomaly Search . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.3 ATLAS Unsupervised Two-Body Invariant Mass Search . . . . . . . . . . 69

6 Developing and Improving Anomaly Detection Methods 71

6.1 Benchmark Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 CATHODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Algorithm and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.2 Benchmark Method Implementation . . . . . . . . . . . . . . . . . . . . . 78

6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 LaCATHODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Algorithm and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 Toy Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.3 Benchmark Method Implementation . . . . . . . . . . . . . . . . . . . . . 94

6.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Noise Issue in Weak Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Neural Networks vs Boosted Decision Trees . . . . . . . . . . . . . . . . . 100

6.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 CMS Anomalous Dijet Search 110

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Data and MC Simulation Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.2 MC Background Simulation Samples . . . . . . . . . . . . . . . . . . . . . 113

7.2.3 MC Signal Simulation Samples . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.4 Quality Filters and Vertex Selection . . . . . . . . . . . . . . . . . . . . . 116

7.2.5 Event Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.6 Analysis Preselections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Developing and Applying Machine Learning Techniques for

Model-Agnostic Searches for New Physics at the LHC

9



7.2.7 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.8 Data-to-Simulation Comparison . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 CATHODE Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4.1 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4.2 Signal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4.3 Hypothesis Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.5 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5.1 Calibration and Scale Factors . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5.2 Background Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5.3 Signal Shape Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.5.4 Signal Normalization Uncertainties . . . . . . . . . . . . . . . . . . . . . . 136

7.5.5 List of Systematic Uncertainty Sources . . . . . . . . . . . . . . . . . . . . 136

7.6 Weakly Supervised Limit Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.6.1 Cross Section Scan Implementation . . . . . . . . . . . . . . . . . . . . . . 140

7.6.2 Behavior With Signal in Data . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.6.3 Incorporating Systematic Uncertainties . . . . . . . . . . . . . . . . . . . 142

7.7 Validation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.7.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.7.2 Data Control Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.7.3 Bias From Background Function Choice . . . . . . . . . . . . . . . . . . . 162

7.7.4 Bias From Full Statistical Procedure . . . . . . . . . . . . . . . . . . . . . 162

7.8 Excess Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.9 Other Anomaly Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.9.1 CWoLa Hunting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.9.2 Tag N’ Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.9.3 Variational Autoencoder With Quantile Regression . . . . . . . . . . . . . 172

7.9.4 Quasi Anomalous Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.9.5 Classical Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.9.6 Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.9.7 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.10.1 Significance Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.10.2 Exclusion Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8 Summary & Conclusions 189

Acknowledgements 191

References 192

A General Appendix 209

A.1 Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.2 Negative Log-Likelihood minimization . . . . . . . . . . . . . . . . . . . . . . . . 209

A.3 Properties of the cross-entropy Loss . . . . . . . . . . . . . . . . . . . . . . . . . 209

10 Manuel Sommerhalder



B CMS Anomalous Dijet Search Appendix 212
B.1 MC Background Simulation Samples . . . . . . . . . . . . . . . . . . . . . . . . . 212
B.2 Signal Samples for Control Region Studies . . . . . . . . . . . . . . . . . . . . . . 214
B.3 Signal Shape Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
B.4 Effect of Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . 217
B.5 Background Sculpting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Developing and Applying Machine Learning Techniques for

Model-Agnostic Searches for New Physics at the LHC

11



PREFACE

Preface

The work presented in this thesis is the result of my research during my employment at the
Institute of Experimental Physics at the University of Hamburg (UHH) from 2020 to 2024, in
collaboration with other researchers. During this period, I have been a member of the CMS
Collaboration at CERN. The results presented in this thesis are a more detailed account of the
following publications:

� Anna Hallin, Joshua Isaacson, Gregor Kasieczka, Claudius Krause, Benjamin Nachman,
Tobias Quadfasel, Matthias Schlaffer, David Shih, and Manuel Sommerhalder. “Classi-
fying anomalies through outer density estimation”. In: Phys. Rev. D 106, 055006 (Sept.
2022) [1].

� Anna Hallin, Gregor Kasieczka, Tobias Quadfasel, David Shih, and Manuel Sommerhalder.
“Resonant anomaly detection without background sculpting”. In: Phys. Rev. D 107,
114012 (June 2023) [2].

� Thorben Finke, Marie Hein, Gregor Kasieczka, Michael Krämer, Alexander Mück, Parada
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1 INTRODUCTION

1 Introduction

The field of high-energy physics is concerned with the study of the most fundamental con-
stituents of matter and their interactions. The established theoretical framework that describes
these elementary particles and forces is the Standard Model (SM), and its predictions have
been confirmed by numerous experiments. A major breakthrough in verifying the SM was the
discovery of one of its key components, the Higgs boson, by the ATLAS [10] and CMS [11]
Collaborations at the Large Hadron Collider (LHC) in 2012. However, the SM is known to
be incomplete as it does not account for several observed phenomena, such as gravity, dark
matter or neutrino masses. This incompleteness has motivated a plethora of theories beyond
the SM (BSM) that predict new particles and interactions, which are being searched for with
experiments.

The typical approach to searching for BSM physics with collider experiments at the LHC
is the dedicated search paradigm: a selection is applied to collision event data, such that the
sensitivity to a specific BSM signal model is maximized, i.e., the selection is optimized to reject
as many events from SM background processes as possible while retaining events that could
arise from the hypothesized BSM signal based on its predicted signature. This selection is often
designed using machine learning (ML) techniques. Statistical tests are then performed to decide
whether the data passing the selections are more compatible with the existence of the BSM
signal or with the background-only hypothesis. While this approach is very powerful for finding
a specific model of BSM physics, it is notable that despite the vast number of searches performed
by the LHC experiments, no BSM process has been discovered so far. On the one hand, this
lack of discovery could be due to the absence of measurable BSM effects at the targeted energy
scale. On the other hand, it could be that many new particles have already been produced at the
LHC, but they are overlooked because they do not match the targeted signature of any dedicated
search so far. The latter option cannot be excluded because the dedicated searches are mainly
sensitive to the specific signal model for which they were designed. Such a search would need
to be performed individually for every possible BSM theory and measurable signature therein,
which is unfeasible in terms of person power and computational resources. Moreover, a true
BSM signal might not be found if the correct theory has not yet been conceived.

To circumvent this issue, several searches with more relaxed model assumptions have been
performed. Both the ATLAS [12] and CMS [13] Collaborations have performed so-called general
searches where generic deviations between the data and a simulated SM background expectation
are tested for their significance. However, these searches come at the cost of being highly sensitive
to the accuracy of the background modeling, and the statistical significance of any deviation
is diluted by the large number of tests performed. Another approach is to make the relatively
loose assumption of a smooth background distribution in a kinematic variable where a signal
might appear as a resonant peak. This facilitates a data-driven background estimation rather
than relying on a simulated background model, and it targets a broad range of well-motivated
signal models. A prominent example of such a generic signature, which has been targeted by
ATLAS [14, 15] and CMS [16, 17], is the decay of a heavy particle into hadrons resulting in two
large-radius jets in the detector. However, the loose selections inevitably accept a large number
of SM background events, which dilutes the statistical significance of any present signal.

Another class of model-agnostic searches is based on anomaly detection techniques, a subfield
of ML concerned with identifying deviations from a concept of normality that is learned from
data. If such an algorithm is calibrated to view the SM background as “normal”, it could be
used to define selections that retain the anomalous BSM signal events in the data while rejecting
SM background. Combined with a data-driven background estimation, this effectively facilitates
a search that is independent of both the signal and the background models. To date, this type
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of anomaly detection paradigm has been applied within a few BSM searches at the LHC by the
ATLAS Collaboration [18–20].

In this thesis, I introduce a novel method for anomaly detection–based analyses that I devel-
oped with collaborators during my PhD studies. This method, named CATHODE, substantially
improves upon previous methods in terms of signal sensitivity. In particular, previous similar
methods relied on the absence of significant correlations between certain input features, and this
limitation reduces the generality of the methods. It will be shown that the signal sensitivity of
CATHODE is robust against such correlations.

Two more improvements to CATHODE and similar methods are discussed in this thesis.
First, I examine the feasibility of data-driven background estimation techniques after anomaly
detection–based selections are applied. It is shown how the earlier-mentioned type of input
feature correlations can still obscure the background estimation, even if the signal sensitivity
of an approach is robust against them. I discuss an improvement to CATHODE, named La-
CATHODE, that addresses this issue. Second, I investigate the impact of uninformative input
dimensions on the performance of anomaly detection methods and propose a modification to
CATHODE, relying on tree-based ML methods rather than neural networks, that substantially
increases the resilience of the method towards such uninformative features. As a consequence,
the method can use more information in the anomaly detection task and thus cover a broader
range of potential BSM signals.

Finally, the thesis describes in detail how I applied CATHODE to a real BSM anomaly
detection search. Specifically, I performed a search for heavy resonances produced in proton-
proton collisions with a center-of-mass energy of 13TeV and decaying into final states of two
large-radius jets with anomalous substructure in the CMS Experiment. The CATHODE method
was used in the context of a larger analysis where multiple state-of-the-art anomaly detection
methods were employed simultaneously on the same data and targeting the same final state.
This thesis focuses on the deployment of CATHODE but also discusses the final results of the
full analysis.

The document is structured as follows. Section 2 introduces the physics background and
methodology, and Sec. 3 provides the ML basics for establishing the foundation of the anomaly
detection methods discussed in this thesis. Section 4 gives an overview of various relevant ML
anomaly detection methods, and Sec. 5 discusses previous model-agnostic searches at the LHC.
The methodological studies that led to the development of the CATHODE method and its
improvements are presented in Sec. 6. The anomaly detection–based BSM search in the CMS
Experiment is discussed in Sec. 7. Finally, the thesis is concluded in Sec. 8.
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2 Particle Physics Theory and Methods

This thesis is concerned with the field of high-energy physics (HEP), also referred to as particle
physics, which studies the fundamental particles and forces of nature at the smallest scales. This
section will provide an overview of the theoretical foundation and the experimental methods that
are relevant for the studies presented in this thesis.

2.1 The Standard Model of Particle Physics

The established theory of particle physics is the Standard Model (SM), which describes the fun-
damental particles of matter and their interactions, and whose predictions have been confirmed
experimentally with unprecedented precision. It is formulated in the framework of quantum field
theory (QFT), which is a combination of classical field theory, special relativity and quantum
mechanics. As a full treatment of QFT and the SM is beyond the scope of this thesis, only the
most essential aspects in view of later sections will be covered. A more detailed introduction to
these topics can be found in Refs. [21–25], which were used as basis for this section. The most
up-to-date information on the SM can be found in the Particle Data Group (PDG) review [26].
It should be noted that this thesis will use the convention of natural units where the speed of
light c and the reduced Planck constant ℏ are set to unity, i.e., c = ℏ = 1.

2.1.1 The Lagrangian

The key object for formulating a QFT is the Lagrangian density L, which is a function of the
quantum fields and their derivatives. As is custom in particle physics, it will also simply be
referred to as Lagrangian in the following. The dynamic behavior of the fields is described by
the Euler-Lagrange equations, which are derived from the principle of least action:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0, (2.1)

where φ is a field described by the Lagrangian and ∂µ is the four-gradient in relativistic index
notation, in which the Greek indices run over the spacetime dimensions 0, 1, 2, 3 and double
indices imply summation over them. The individual terms in the Lagrangian can be associated
with dynamics of the fields, such as kinetic terms, potential terms, and interaction terms.

A symmetry of the Lagrangian is a transformation of the fields that leaves the Lagrangian
invariant. This is a key concept in multiple regards. The Noether theorem states that every
continuous symmetry corresponds to a conserved quantity (e.g., translation symmetry implies
conservation of momentum). Moreover, a symmetry under local gauge transformations (φ →
eiα(x)φ, where the operator α(x) is a function of spacetime coordinates) implies the existence
of gauge bosons, which are the mediators of the fundamental forces. Lastly, the contemporary
approach to stating a theory of particle physics is to state specific symmetries as a fundamental
principle, and then construct the Lagrangian with all terms that are compatible with these
symmetries.

The SM Lagrangian is based on local U(1)×SU(2)×SU(3) gauge group symmetries, where
U(1) is the group of unitary 1×1 matrices, SU(2) is the group of special unitary 2×2 matrices,
and SU(3) is the group of special unitary 3×3 matrices. The simple compressed notation, which
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finds its ways onto shirts and mugs of particle physicists is as follows:

LSM = −1

4
FµνF

µν (2.2)

+ iψ̄��Dψ + h.c.

+ ψ̄iyijψjϕ+ h.c.

+ |Dµϕ|2 − V (ϕ).

In the following paragraphs, the relevant terms will be explained in more detail. The abbreviation
h.c. refers to the Hermitian conjugate of the preceding term.

The second line in Eq. 2.2 describe the dynamics of matter, which consists of fermions.
These are spin-12 particles, and their fields are here represented in a shortened notation ψ, which
relates to an array of multiple fermion fields. The full list of known fermions is summarized
in Tab. 2.1. The notation ��D ≡ γµDµ is the summation of Dirac gamma matrices γµ with the
covariant derivative Dµ. The latter is defined as:

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

τ i

2
W i

µ − ig3
λa

2
Ga

µ, (2.3)

where g1, g2, g3 are the coupling strengths of the U(1), SU(2), and SU(3) gauge groups, respec-
tively. The Y is the weak hypercharge operator, τ i are the three weak isospin operators repre-
sented by Pauli matrices, and λa are the eight color charge operators represented by Gell-Mann
matrices. The fields Bµ,W

i
µ, andG

a
µ are the gauge bosons of the U(1), SU(2), and SU(3) groups,

respectively. The appearance of these spin-1 gauge fields is a direct consequence of the local
gauge symmetries of the SM, and they necessarily transform as V µ → − i

g (∂
µU)U−1+UV µU−1

under gauge transformations, where V µ is the respective gauge field, g is the coupling strength,
and U is the gauge transformation. The gauge field terms in the covariant derivative result in
interaction terms between the fermions and the respective gauge bosons, which are responsible
for the fundamental forces. The Ga

µ directly relate to the eight gluons that mediate the strong
interaction. Gluons couple to particles that carry color charge, which are both the quarks and
the gluons themselves. The fields Bµ and the three W i

µ mix as a linear combination governed by

the weak mixing angle θW to form the fields corresponding to the physical photon and the W±

and Z bosons. Photons mediate the electromagnetic interaction and couple to all particles with
electric charge, which is a combination of the weak hypercharge and the weak isospin. These
electrically charged particles are the quarks, the charged leptons (electron, muon, tau) and the
W± bosons. The weak interaction is mediated by the W± and Z bosons and couples only to
right-handed chiral states of the fermions. A summary of the properties of the physical (vector)
gauge bosons is provided in Tab. 2.2.

The first term in Eq. 2.2 describes the dynamics of the gauge bosons. The field strength
tensor Fµν is generally defined as:

Fµν = ∂µVν − ∂νVµ − ig
[
Vµ, Vν

]
, (2.4)

where the square brackets denote the commutator [A,B] = AB − BA. Equation 2.2 implies
such a field tensor for every gauge field.

Table 2.2 shows the measured masses for Z and W bosons. If a gauge field V µ was massive
with mass mV , the Lagrangian would necessarily involve a term of the form: 1

2m
2
V VµV

µ. How-
ever, this can be shown to break the gauge symmetry of the Lagrangian. The solution to this
apparent contradiction is the Higgs mechanism [27–29], which introduces a complex scalar field
ϕ, transforming as an SU(2) doublet, with a potential V (ϕ), as shown in the last term of Eq. 2.2.
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Table 2.1: Summary of the Standard Model fermions, including their masses in natural units
and their charges in units of the elementary charge e. Measured masses are taken from Ref. [26].

Leptons Quarks

1st Generation Electron (e) Electron Neutrino (νe) Up (u) Down (d)

Mass 0.511MeV ≈ 0 2.16MeV 4.70MeV
Electric Charge -1 0 2/3 -1/3

2nd Generation Muon (µ) Muon Neutrino (νµ) Charm (c) Strange (s)

Mass 106MeV ≈ 0 1.27GeV 93.5MeV
Electric Charge -1 0 2/3 -1/3

3rd Generation Tau (τ) Tau Neutrino (ντ) Top (t) Bottom (b)

Mass 1.78GeV ≈ 0 173GeV 4.18GeV
Electric Charge -1 0 2/3 -1/3

Table 2.2: Summary of the Standard Model vector bosons, including their masses in natural
units and their charges in units of the elementary charge e. Measured masses are taken from
Ref. [26].

Electromagnetic Weak Strong

Photon (γ ) Z Boson (Z) W Boson (W) Gluon (g)
Mass 0 91.2GeV 80.4GeV 0

Electric Charge 0 0 ±1 0

With an explicit form V (ϕ) = µ2ϕ†ϕ + λ(ϕ†ϕ)2, and µ2 < 0, the minimum of the potential is

not at |ϕ| = 0, but at a non-zero value |ϕ| =
√

−µ
2

λ ≡ v. Expanding this Higgs field ϕ around
the minimum, one finds a massive real scalar field and three massless Goldstone bosons, where
the latter can be absorbed in a gauge choice. This results in couplings of the gauge bosons to
the vacuum expectation value v in the form of mass terms 1

2

(vg
2

)2
VµV

µ, without the need of
adding explicit gauge boson mass terms to the Lagrangian. This process is known as sponta-
neous symmetry breaking : the symmetry of the Lagrangian is broken because the lowest-energy
state of the system does not exhibit the full symmetry. The excitation of the real scalar field is
the Higgs boson, which has been experimentally discovered at the LHC in 2012 [10, 11] with a
mass around 125GeV.

The third term in Eq. 2.2 describes the interaction of the fermions with the Higgs field.
Similar to the heavy gauge bosons, this results in mass terms for the fermions, which are pro-
portional to the vacuum expectation value v and the corresponding Yukawa coupling constants
yij . These yij (and consequently the fermion masses) are not predicted by the SM, but are free
parameters that must be measured. The masses of the fermions are summarized in Tab. 2.1.

2.1.2 Renormalization and Running Coupling

In order to compute predictions from the SM, one usually relies on perturbation theory where
the transition amplitude leading from an initial state to a final state is expanded in a series
of Feynman diagrams, whose vertices arise from interaction terms in the Lagrangian. This is
performed at a finite order in the coupling parameter α = g2/4π, where g is the coupling strength
of the physical interaction that appears in every vertex. This expansion is only valid at small
values of α. Starting from next-to-leading order (quadratic in α), the individual diagrams involve
integrals over the momenta of intermediate particles, which results in infinite values. This is
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known as the problem of ultraviolet divergences. The solution to this problem is the process of
renormalization, where the divergences are absorbed in the definition of the parameters of the
theory. A consequence, which is governed by the renormalization group equations, is that the
parameters of the theory depend on the energy scale at which they are measured. Prominently,
the coupling parameter α itself becomes “running”. For example in the case of the strong
interaction, the coupling has the form:

αs(q
2) =

αs(µ
2)

1 + αs(µ
2
)

12π (33− 2nf ) log
(
−q

2

µ
2

) , (2.5)

where q2 is the probed energy scale, µ2 is a reference scale at which αs has been measured,
and nf is the number of active quark “flavors”, i.e., the individual species of quarks. With
nf = 6, the running in Eq. 2.5 implies decreasing coupling strength at higher energies, which
is known as asymptotic freedom. This is a key feature of the strong interaction, also referred to
as Quantum Chromodynamics (QCD). At a scale below 1GeV, the coupling becomes so strong
that quarks and gluons are confined into color-neutral hadrons, which is known as confinement.
Perturbation theory is not applicable in this regime and other methods need to be chosen for
predictions.

2.1.3 Shortcomings of the Standard Model

The predictions of the Standard Model have been confirmed by many experiments with remark-
able precision. However, it exhibits several limitations that lead to the belief that it is not the
final theory of particle physics. The following paragraphs briefly discuss an incomplete list of
these issues.

A prominent shortcoming of the SM is the lack of a description of the gravitational force.
Compared to the strong and electroweak interactions, the measurable effects of gravity at the
length scales of HEP are much smaller, which makes probing the gravitational force at the
quantum level challenging. The effects of a quantum theory of gravity are expected to become
relevant at an energy scale of the order of 1019GeV, known as the Planck scale.

However, at the much larger length scale of astrophysical observations, gravity is a dominant
force. Observations of the rotational velocity of stars in spiral galaxies are inconsistent with the
visible matter distribution. This led to the hypothesis that a significant fraction (roughly one
quarter) of mass-energy in the universe is in the form of dark matter, which does not interact
electromagnetically. The nature of this dark matter is unknown, and while it could consist of
some form of particles, there are no dark matter candidates in the SM.

Table 2.1 describes the masses of the neutrinos as “almost zero”. While the SM Lagrangian
does not include mass terms for neutrinos, there is experimental evidence for neutrino oscilla-
tions, i.e., a time-dependent mixing of neutrino flavors, which can only occur if at least two of
the neutrino flavors have non-zero masses.

The SM treats the existence of three generations of both leptons and quarks as given, without
a deeper explanation of their number and the symmetry between quarks and leptons. While
their masses are attributed to the Yukawa coupling with the Higgs field, these coupling strengths
are free parameters of the theory, and it is not clear why their values differ by multiple orders
of magnitude.

Another open question concerning large variance in mass scales is the so-called hierarchy
problem. The Higgs boson mass, which is measured to be around 125GeV, is sensitive to
quantum corrections that are proportional to the Planck scale. A very precise fine-tuning of the
virtual corrections is required to keep the Higgs boson mass at the vastly lower value that is
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observed. In addition to this, the origin of the λ term in the Higgs potential and consequently
the vacuum expectation value of the Higgs field, is not understood from a deeper theoretical
perspective.

2.2 Physics Beyond the Standard Model

Finding a theory that extends the Standard Model to address the issues mentioned in Sec. 2.1.3
is an active field of research. Such theories are referred to as beyond the Standard Model (BSM)
theories. They often predict new particles, and verifying their existence in an experimental
setting is an important test of these theories. A few classes of such BSM theories will be briefly
discussed in the following paragraphs.

2.2.1 Supersymmetry

Supersymmetry (SUSY), which is discussed extensively in Ref. [30], is a theoretical framework
that introduces an additional symmetry between bosons and fermions, i.e., the SUSY Lagrangian
is symmetric under an operator that changes between integer and half-integer spin particles,
leaving the other quantum numbers unchanged. As a consequence, every SM particle has a
superpartner with a spin that differs by 1

2 , which effectively results in at least twice the number
of fundamental particles. Since no such superpartners of SM particles with equal masses have
been measured, the supersymmetry needs to be spontaneously broken, resulting in superpartners
with substantially higher masses.

The existence of these superpartners provides a solution to the hierarchy problem, because
the virtual corrections to the Higgs boson mass from SM particles are canceled by the opposite-
sign contributions of their superpartners. In addition, SUSY offers a natural dark matter can-
didate in the form of a stable lightest superpartner. It is also seen as a means of unifying the
forces because at high energies, the running couplings computed from SUSY theories tend to
become equal for the strong, weak, and electromagnetic interactions.

2.2.2 Composite Quarks and Leptons

Many theories predict that quarks and leptons are not fundamental particles, but are com-
posed of more elementary constituents, often called “preons”, that appear at smaller scales.
An overview of such theories is provided in Ref. [31]. Composite fermion models are aimed at
explaining why three generations of both quarks and leptons exist, and in particular from where
their highly hierarchical mass structure originates. Moreover, the fractional charges of quarks,
as seen in Tab. 2.1, could arise as a natural consequence of a composite structure.

In composite models, the SM fermions are low-energy bound states of their constituents,
thus one would expect to probe the preons at much higher energies. Furthermore, compositeness
implies an inner dynamic system, and thus the existence of excited quark and lepton states that
may decay into their SM counterparts.

2.2.3 Composite Higgs Bosons

Another class of theories revolves around the idea that the Higgs boson is a composite particle
arising from the spontaneous symmetry breaking related to a new strong force. Examples of
such models are discussed in Refs. [32, 33]. This would mitigate the hierarchy problem, as the
Higgs boson mass would depend on the binding energy of its constituents rather than the Planck
scale.
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These models typically predict the existence of new gauge bosons associated with the ex-
tended symmetry group, for example particles called W′ and Z′ bosons that are analogous to the
W and Z bosons of the SM. The new strong interaction also gives rise to a spectrum of bound
states, such as “vector-like” fermions. These are heavier fermions whose left- and right-handed
chiral components transform equally under the SM gauge group. The masses of the SM fermions
can be explained by their mixing with these vector-like fermions.

2.2.4 Warped Extra Dimensions

A different angle of addressing the hierarchy problem is to hypothesize the existence of an
additional spatial dimension that separates the Planck scale from the electroweak scale. The
most prominent model of this kind is the Randall-Sundrum model [34], which introduces a
compact extra dimension that is warped, i.e., the metric of the extra dimension is not flat but
space-time and energy scales change exponentially along its direction. The two scales define
separate lower-dimensional subspaces called “branes”. Some fields are confined to one of the
branes, while others can propagate through the “bulk” space in between. The hierarchy problem
is addressed via the exponential warp factor, which suppresses the Planck scale effects for the
Higgs field that is confined to the electroweak brane. The gravity field, on the other hand,
originates at the Planck brane and its effects on the electroweak brane is suppressed due to
propagation through the bulk.

Extensions to the Randall-Sundrum model, such as the one discussed in Ref. [35], predict the
existence of Kaluza-Klein (KK) excitations: excited states of the SM particles that arise from
quantized momenta in the extra dimension. In the 4D effective theory seen from the electroweak
brane, these states appear as massive particles with a mass spectrum that is determined by
the geometry of the extra dimension. Moreover, the distance between the branes is subject to
fluctuations, which can give rise to a scalar field called the “radion” that couples to SM particles.

2.3 Measurements at Particle Colliders

The predictions of both the SM and BSM theories are being tested at HEP experiments, which
are often performed at particle colliders. This section relates the theory introduced in Sec. 2.1 to
measurable quantities in collider experiments. A particular focus lies on proton-proton collision
experiments, which will be the setting for the studies in this thesis. As in Sec. 2.1, the content
of this section is based on the more detailed discussions in Refs. [21–25].

2.3.1 Decay Widths and Cross Sections

The transition probability between an initial state (i) and a final state (f) is described by the
Lorentz-invariant matrix elementMfi, which arises from the interaction terms in the Lagrangian
and is computed in practice using Feynman diagrams in perturbation theory at fixed order. The
differential transition rate per unit time, which corresponds to units of energy in natural units,
is described by:

dwfi = (2π)4V 1−niδ4
( nf∑

k=1

p
(f)
k −

ni∑
l=1

p
(i)
l

)∣∣Mfi

∣∣2 ni∏
l=1

d3p
(i)
l

2E
(i)
l

nf∏
k=1

d3p
(f)
k

(2π)32E
(f)
k

, (2.6)

where V is the interaction volume, ni/f are the number of initial/final state particles, E
(i)/(f)
k

are the energies of the particles in the initial and final states, respectively, and p
(i)/(f)
k are

their momenta. The delta function enforces the conservation of energy and momentum in the
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transition. The full transition rate is obtained by integrating over the allowed phase space.
Important special cases for experimental searches are the decay width and the cross section,
discussed in the following.

In the case where the initial state is a single particle A decaying into a specific final state, the
transition rate is referred to as the partial decay width: ΓA→f = wfA. The sum over all possible
final states is the total decay width: ΓA =

∑
f ΓA→f . The branching fraction of a specific final

state is defined as its partial decay width divided by the total decay width. In natural units,
the total decay width is related to the lifetime of the particle by τA = 1/ΓA, i.e., the mean time
interval before a particle decays. The lifetime is not a Lorentz-invariant quantity and is thus
always stated in the rest frame of the particle.

In the context of scattering, where the initial state consists of two particles A and B, the tran-
sition rate is conventionally normalized by the flux, which is the number of incoming particles per
area per time. The resulting quantity is referred to as the cross section, σA+B→f = wf(AB)/flux,
which is Lorentz invariant. Its relationship to the number of interactions N (also referred to as
events) in an experiment is described with the definition of luminosity L:

dN

dt
= Lσ, (2.7)

which characterizes the performance of the particle accelerator beam. The amount of recorded
data in an experiment is often stated in terms of the integrated luminosity, Lint =

∫
Ldt, which

is proportional to the number of events.

2.3.2 Resonances

In scattering interactions, it can occur that the two initial state particles form an unstable
intermediate particle R that decays into a final state: A + B → R → f . These intermediate
states are called resonances. The cross section for this process then follows a Breit-Wigner
distribution:

σA+B→f = c(A,B,R)
ΓR→ABΓR→f

(ER − E)2 + Γ2
R/4

, (2.8)

where the factor c(A,B,R) depends on the quantum numbers of the initial and intermediate
particles, ER is the energy of the intermediate particle, and E the energy of the system, i.e.,
the available energy in the initial state. Figure 2.1 illustrates the typical peak-like shape of
such a resonance decay. While the partial widths ΓR→AB and ΓR→f determine the height, the
resonance energy determines the location and the total resonance width ΓR relates to the width
of the peak. Varying the energy by ±ΓR around ER reduces the cross section by half, hence it
is also referred to as the “full width at half maximum”. Since in the center-of-mass frame the
energy ER is the mass of the resonance, measuring the location and width of such resonance
peaks is a common method to infer the mass and lifetime of the intermediate particle.

2.3.3 Proton Scattering

While the SM predictions can be tested with a variety of experiments, the following sections will
be concerned with the collisions of highly accelerated protons. The proton is a stable composite
particle of two up quarks and one down quark, which are bound by the strong force. It has
one positive charge in units of e and a mass of 938MeV [26]. When colliding two protons
at very high energy, the interaction can be approximately described by the interaction of two
constituents, one from each proton, called partons because of the mechanism of asymptotic
freedom (Sec. 2.1.2). The cross section σ̂i+j→f involving partons i and j can be computed with
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2ER − ΓR
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σA+B→R→f (E)

Figure 2.1: The typical Breit-Wigner resonance shape arising from the intermediate production
of an unstable particle R between initial state A+B and final state f .

perturbative calculations, and they carry only a fraction x of the respective proton momentum:
pparton = xpproton.

It is important to note that the partons comprise not only the three bound quarks, but the
inner dynamics of the proton involves virtual gluons and quark-antiquark pairs, which can all
participate in the interaction. The probability of probing parton i with momentum fraction x
is described by the parton distribution function (PDF), fi(x, µF ), which is a non-perturbative
quantity that is determined from fits to experimental data and evolves as a function of the
factorization scale µF according to the DGLAP evolution equations [36–38]. The value of µF is
a free parameter that corresponds to the choice of energy scale that separates non-perturbative
calculations (PDFs) from perturbative calculations (parton cross sections). The factorization
theorem of QCD then facilitates approximating the proton-proton cross section as a convolution
of the PDFs and the partonic cross sections, summed over all possible parton interactions:

σpp→f =
∑
i,j

∫ 1

0
dx1

∫ 1

0
dx2fi(x1, µF )fj(x2, µF )σ̂i+j→f (x1, x2, µF , µR). (2.9)

Here, the dependence of both fi and σ̂i+j→f on µF is made explicit. Moreover, the renormal-
ization scale µR is introduced, which enters the cross section computation as briefly mentioned
in Sec. 2.1.2. A complete computation to all orders would eliminate the dependence on µF and
µR.

2.4 The CMS Detector

2.4.1 The Large Hadron Collider

Located at the border between France and Switzerland, the Large Hadron Collider (LHC) is
the world’s largest particle accelerator with a circumference of 27.6 km. It is operated by the
European Organization for Nuclear Research (CERN) and is designed to accelerate and collide
either protons or heavy ions. The LHC features two beam pipes, which cross at four interaction
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points where the particle beams are made to collide within the detectors ATLAS, ALICE, CMS,
and LHCb, respectively. Superconducting magnets are used to guide the beams along the circular
path, with dipoles for bending and quadrupoles for focusing [39].

The particles are not accelerated individually, but instead in bunches of the order of 1011

particles. These bunches are separated by a fixed time interval, which is typically 25 ns. The
luminosity is given by:

L =
N1N2nbfrev

A
, (2.10)

with N1 and N2 being the number of particles per bunch in each beam, nb the number of bunches
in the ring, frev the frequency with which a bunch completes one loop of the ring, and A the
effective beam overlap cross section at the interaction point. The luminosity can be increased
by increasing the number of bunches or decreasing the area by focusing the beams with strong
quadrupole magnets [39].

So far, two data-taking periods have been completed at the LHC. The first run (Run 1) took
place from 2011 to 2013, with a center-of-mass energy that was increased from 7TeV in 2011
to 8TeV in 2012. The second run (Run 2) started in 2015 and continued until 2018, with a
center-of-mass energy of 13TeV. A third run (Run 3) is ongoing since 2022 with a center-of-mass
energy of 13.6TeV and is planned to end in 2025 [40]. A common convention is to refer to the
center-of-mass energy of the LHC as

√
s, which is the square root of the Mandelstam variable s

that describes the total squared energy in the collision.

2.4.2 Detector Design

The Compact Muon Solenoid (CMS) detector is a general-purpose detector located at one of
the interaction points of the LHC, designed to measure the properties of particles produced
in proton-proton collisions with high precision. Its design is illustrated in Fig. 2.2. While the
sketch and the following paragraphs provide a brief overview of the detector components, a
more detailed description can be found in Ref. [41]. It should be noted that the detector has
undergone several upgrades since its construction, and the following description reflects its state
in 2017. The CMS detector has a cylindrical architecture, comprising concentric layers around
the interaction point. Detector parts covering the lateral surface are referred to as the barrel
section, and those in the direction of the beam axis are called endcap.

Coordinate System

The geometry of the CMS detector is conventionally described with a Cartesian coordinate
system that has its origin at the nominal collision point. The x-axis points radially inward
toward the center of the LHC, the y-axis points vertically upward, and the z-axis points along
the beam direction. In spherical coordinates, the radius r corresponds to the distance from the
origin in the x-y plane, the azimuthal angle ϕ measures the angle from the x-axis in the x-y
plane, and the polar angle θ is measured from the z-axis. A preferred alternative to θ is the
pseudorapidity η, defined as η = − log tan(θ/2), because particle production is roughly constant
as a function of η, and differences in pseudorapidity ∆η are Lorentz invariant under boosts along
the beam axis in the case of massless particles. The vector components in the x-y plane are
referred to as transverse, such as the transverse momentum pT and the transverse energy ET.

Magnetic Field

The key component is the superconducting solenoid, which generates a magnetic field of 3.8T
along the beam axis. The primary purpose of the magnetic field is to bend the trajectories
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SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

PRESHOWER
Silicon strips ~16 m2 ~137,000 channels

SILICON TRACKERS

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic field

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

Pixel (100x150 μm2) ~1.9 m2 ~124M channels
Microstrips (80–180 μm) ~200 m2 ~9.6M channels

Figure 2.2: Schematic illustration of the CMS detector with descriptions reflecting its state in
2017. Figure taken from Ref. [42].

of charged particles, which facilitates the measurement of their momenta and electric charges.
The solenoid consists of niobium-titanium coils that are cooled down to 4.5K. It has an internal
diameter of 6m and a length of 12.5m. Outside the solenoid, a steel return yoke guides the
magnetic field back to the solenoid, confining it to the detector volume and resulting in a uniform
opposite-sign field in the outer barrel region for the muon system.

Tracking

The trajectories of charged particles are commonly referred to as tracks, and they are measured
by the innermost silicon tracking system. These silicon detectors are subdivided into small units
with either rectangular area, so-called pixels, or long strips. As charged particles pass through
these units, they ionize the silicon atoms and the resulting free charges are collected by readout
electronics. With the positional information of the pixels or strips, these signals are interpreted
as localized hits, which are then reconstructed into tracks with geometric algorithms. Tracks
are crucial to reconstruct vertices—the locations of particle decays into charged particles. The
CMS tracking system consists of two sub-detectors.

First, the innermost pixel detector [43] comprises multiple layers of pixels with an area of
150× 100 µm each. The barrel section consists of four layers starting at a radius of around 3 cm
and extending to a radius of 16 cm, and the endcap part has three disks on each side, ranging
from a distance of around 3 to 5 cm along the beam axis. The pixel detector thus provides a
fine-grained measurement of (r, ϕ, z) coordinates close to the interaction point, which is crucial
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for vertex reconstruction.

The second part of the tracking system is the strip detector. With ten barrel layers of
silicon strips, it extends the precise measurement of (r, ϕ) coordinates to radii from 20 cm to
116 cm. The endcap part consists of 12 disks with radial strips on each side, which facilitate a
ϕ measurement up to |z| of 282 cm. The typical length of the strips is around 10 cm, and the
distance between strip centers varies from 80 to 184 µm, depending on the layer.

Overall, the tracking system is designed to cover the pseudorapidity range |η| < 2.5 and to
measure charged particles with a transverse momentum of at least 1GeV. It is designed with a
low material budget to minimize energy loss and multiple scattering of particles.

Calorimetry

The next layers after the tracker are the calorimeters. A general review of calorimetry in HEP
can be found in Ref. [44]. These detectors consist of dense materials in which incident particles
are fully absorbed, and their energy is inferred from measuring either the emitted light or the
charge. Highly energetic electrons interact mostly by bremsstrahlung, which emits photons.
High-energy photons interact primarily via electron-positron pair production. These emitted
secondary particles again interact with the material, thus resulting in a shower of particles until
the energy falls below a threshold where energy loss is dominated by ionization and excitation
without producing secondary particles. The energy released by charged particles in the material
from the latter processes is proportional to the incident particle energy and is often measured
via their emission of light using photodetectors, such as photomultiplier tubes. In some active
materials, such as semiconductors, the energy can also be inferred from the charge. Hadrons
interact with the material mostly via the strong force, causing a more complex cascade of
secondary particles. As the absorption of hadrons requires a denser material than electrons and
photons, calorimeters are typically specialized for either electromagnetic (ECAL) or hadronic
(HCAL) particles. Calorimeters can be further classified into homogeneous calorimeters, in which
both the interaction and the measurement of the energy are performed in the same material,
and sampling calorimeters, which consist of alternating layers of a dense absorber and an active
medium for measuring the energy.

The CMS ECAL is a homogeneous calorimeter consisting of scintillating lead tungstate
crystals. The barrel region of the ECAL starts at a radius of 1.29m and covers the pseudorapidity
range of approximately |η| < 1.5. The crystals have a cross-sectional area of 22 × 22mm2 in
the front face and 26 × 26mm2 in the rear face, with a length of 230mm. The crystals are of
similar size in the endcap region, which covers the pseudorapidity range of 1.5 < |η| < 3.0 and
starts at a distance of 315 cm from the interaction point. The ECAL in the endcap region is
complemented by a preshower detector within a pseudorapidity range of 1.7 < |η| < 2.6. The
preshower detector is designed to help distinguish neutral pions from single photons and consists
of two layers of lead absorber and silicon strips.

The HCAL system in the CMS detector is a sampling calorimeter consisting of multiple
sub-detectors. The barrel region of the HCAL covers the pseudorapidity range of |η| < 1.3 and
starts at a radius of 1.77m. It consists of 14 layers of brass plates and a steel plate in the front
and back, respectively. These absorber layers have a typical thickness of around 50mm and are
interleaved with plastic scintillator tiles with a thickness of mostly 3.7mm as the active material.
The light emitted in the scintillator is collected by wavelength-shifting optical fibers and read
out by photodetectors. The scintillators are divided into sectors to each cover a segment of
(∆η,∆ϕ) = (0.087, 0.087). In this central region of |η| < 1.3, the material of the sampling
calorimeter is not sufficient to fully contain hadronic showers. Thus, it is complemented by the
outer calorimeter, consisting of 1–2 additional layers of scintillator tiles just outside the solenoid,
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treating the solenoid as an absorber. The endcap part of the HCAL covers the pseudorapidity
range of 1.3 < |η| < 3.0 and consists of 18 layers of brass plates with a thickness of 79mm
each, separated by 9mm-thick scintillator tiles. Similar to the barrel, the HCAL endcap region
has a component outside the solenoid: The forward calorimeter is located at 11.2m from the
interaction point at each side and has an inner radius of 12.5 cm from the beam line. It covers
the pseudorapidity range of 3.0 < |η| < 5.0 and is based on steel absorber layers with embedded
quartz fibers.

Muon System

With their relatively high mass compared to electrons, muons only lose small amounts of energy
when interacting electromagnetically with the detector material, and in contrast to hadrons,
they do not interact via the strong force. As a consequence, their relatively long lifetime allows
them to travel through the calorimeters and the solenoid. A dedicated muon system is thus
built into the iron return yoke outside the solenoid, in order to measure muon tracks with high
precision.

The barrel part of the muon system covers a pseudorapidity range of |∆η| < 1.2 and radii of
around 4.0 to 7.3m. It consists of four stations interspersed among the layers of the iron return
yoke, each consisting of multiple chambers along the z-axis. The chambers consist of several
layers of drift tubes, which are long tubes filled with gas that is ionized by passing muons. The
time it takes for the ionization electrons to drift to a central wire is measured to determine
the distance between the muon interaction and the wire. These drift tube cells are arranged in
layers with offsets of half a cell to avoid blind spots.

The endcap part of the muon system covers the pseudorapidity range of 0.9 < |∆η| < 2.4.
Its four stations range from 5.7 to 10.6m from the interaction point and consist of cathode
strip chambers. These gas-filled chambers comprise anode wire planes interleaved with cathode
panels. If a muon ionizes the gas, the electrons drift to the anode wires, and the position is
determined with information from the positive charge signal on the cathode strips. Compared to
drift tubes, the more costly cathode strip chambers have a finer segmentation, a faster response,
and are more resilient to radiation damage. This is needed in the endcap region due to the
non-uniform magnetic field and the higher particle flux.

Both the barrel and endcap muon stations are complemented by resistive plate chambers.
With a strong electric field between the resistive plates, the ionization electrons ionize surround-
ing gas atoms, and the resulting avalanche of electrons is collected by readout strips. While the
position measurement is less precise than the drift tubes or cathode strip chambers, the resistive
plate chambers have a significantly faster response and are thus primarily used for the trigger
system.

2.4.3 Trigger System

With a bunch separation of 25 ns, the rate of events at the LHC is 40MHz, which is significantly
more than can realistically be processed and stored. Moreover, only a small fraction of these
events are of interest for physics analyses. The decision of which events are recorded is handled
by the trigger system, which is described in more detail in Refs. [45, 46]. The CMS trigger
system comprises two tiers.

The Level-1 (L1) trigger is the first stage and is based on custom hardware processors. Its
target is to reduce the event rate to around 100 kHz with a latency of 4 µm. This is achieved
by using coarsely segmented information from the calorimeters and the muon system. These
so-called trigger primitives are processed separately and then combined into objects whose sig-
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natures are consistent with electrons, photons, muons, tau leptons or jets (see Sec. 2.5.1). A
global trigger step ultimately evaluates these objects against up to 512 pre-defined selection
criteria to decide whether to pass the event to the next stage. These criteria range from simple
single-object requirements, such as passing a minimum transverse energy threshold, to more
complex multi-object requirements, such as the computation of invariant masses.

The High-Level Trigger (HLT), whose state during Run 2 is described in Ref. [47], is the
second stage, which further reduces the event rate to around 1 kHz. It is based on a farm of
commercial processors that run a streamlined version of the offline reconstruction algorithms
with information from all sub-detectors, including the tracker. Over 600 different HLT paths
are employed, targeting a broad range of signatures that are deemed interesting for physics
analyses. An HLT path is a sequence of reconstruction and filtering modules that are arranged
to increase in computational cost. If a filter module rejects an event, the remainder of the path is
skipped, thus saving computational resources. Many HLT paths are designed to target generally
interesting signatures, such as the presence a pre-defined number of jets, muons, electrons or
photons above a pT threshold. Other paths target more specific signatures, such as the presence
of displaced jets.

2.4.4 Particle Reconstruction

Only a small set of SM particles is stable enough to travel from the interaction point to the
detector and leave measurable traces inside. These are electrons, muons, photons, and the
lighter hadrons such as pions and kaons. These particles leave characteristic signatures in the
detector components.

Electrons typically leave tracks in the inner tracking system and deposit energy in the ECAL.
Muons result in tracks both in the inner tracking system and in the outer muon system, while
depositing only small amounts of energy in the calorimeters through ionization. Photons are
uncharged and thus invisible in the inner tracker, but they result in ECAL showers. Charged
hadrons leave tracks in the inner tracker and deposit energy in the ECAL and HCAL. The
signature of neutral hadrons is to deposit energy in the ECAL and HCAL without a track in the
inner tracker. Neutrinos are not directly detectable because of their negligible interaction with
matter in the detector. Instead, their presence is inferred from the imbalance in the transverse
energy, since the colliding partons are expected to collide with approximately zero transverse
momentum. This missing transverse component is referred to as missing transverse energy Emiss

T .

The CMS Collaboration uses a particle-flow (PF) algorithm to reconstruct the individual
particles produced in the collisions. This algorithm aims at identifying and reconstructing all
stable particles in the event, using the information from all sub-detectors simultaneously. It is
described in full detail in Ref. [48], and it essentially follows the four-step procedure outlined in
the following.

The first step of PF is to reconstruct the PF elements, which are the basic building blocks of
the algorithm. In the inner tracking system, these are the tracks and their originating vertices.
Their reconstruction is based on a combinatorial track finder algorithm, based on a Kalman
filter [49], that uses the hits in the silicon detectors. In the calorimeters, the PF elements are
energy clusters, which are reconstructed with a dedicated clustering algorithm. In the muon
system, the PF elements are based on track segments, which are reconstructed from hits in the
muon stations.

As a second step, a linking algorithm is applied to combine the PF elements across the
various sub-detectors in pairs. Depending on the nature of the PF elements, specific linking
criteria are applied. For example, a track in the inner tracker is linked to a calorimeter cluster if
the extrapolated track position is within the cluster boundaries. Each link is assigned a distance
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metric, which is used to determine the quality of the link. The resulting chains of linked PF
elements are referred to as PF blocks.

Once the PF blocks are reconstructed, the third step is to identify and reconstruct the
particles from the PF blocks. This is based on criteria related to the particle signatures discussed
earlier.

The final step is to apply a postprocessing step to improve the quality of the reconstructed
particles. In particular, the presence of misreconstructed and/or misidentified muons can cause
an overestimation of the Emiss

T per event.

The output of the PF algorithm are the reconstructed particles, which are typically referred
to as PF candidates. These are used as input to the physics analyses directly or as input
to further reconstruction algorithms, such as jet clustering algorithms, which are discussed in
Sec. 2.5.2. The stored properties of the PF candidates include the four-momentum vector and
the type of particle. For hadrons the distinction is only made between charged and neutral
ones—no further distinction is made into the specific type of hadron.

2.5 Jet Physics

If a high-energy particle collision results in the creation of quarks and gluons, they will not be
detectable as free particles due to the nature of the strong force. Instead, they will be observable
only as collimated sprays of color-less hadrons. These are referred to as jets, and they will be
the main physics object of study throughout this thesis. The following subsections will briefly
introduce the theoretical background of jets and then introduce how they are reconstructed in
an experiment, such as CMS.

2.5.1 Jet Theory

The formation of jets is a direct consequence of the nature of QCD, where partons carrying
color charge cannot be observed as free particles but instead are confined into color-neutral
hadrons. For a more detailed discussion of the theoretical aspects of jets, the reader is thus
referred to QCD literature, such as Ref. [50]. The description of the jet formation process is
usually factorized into two parts based on the energy scale of the process: parton showering and
hadronization.

When a high-energy parton is produced in a collision, it can emit additional partons in a
process called parton showering. Specifically, a quark can radiate off a gluon, and gluons can
either split into a quark-antiquark pair or another pair of gluons. The probability for a parton to
split into two lower-energy partons is described by splitting functions, which can be derived from
perturbative QCD calculations because of the high momentum scale. This process continues as
a cascade of emissions until the energy of the partons drops into the non-perturbative regime.
The radiation angles of subsequent emissions are limited by the angular emission cone of the
previous one, a phenomenon known as angular ordering, which arises from the color coherence
of the system. This results in the typical collimated shape of jets.

The lower-energy partons resulting from the parton shower subsequently undergo hadroniza-
tion, during which they form color-neutral hadrons. As this process cannot be calculated via
perturbative QCD, phenomenological models are used to describe it in practice. A common such
model is the Lund String Model [51], which is implemented in the widely used pythia event
generator [52]. In this model, pairs of partons are connected by a one-dimensional string that
represents the QCD potential, which increases linearly as a function of the parton separation
due to the self-interaction of the color-carrying gluon mediator. As the partons separate, the
energy in the potential increases until it becomes energetically more favorable to break into a
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quark-antiquark pair with opposite color charge. This process continues iteratively until the
kinetic energy of the partons is low enough to bind them into hadrons.

2.5.2 Clustering Algorithms

The reconstruction of jets in an experiment is typically done with a jet clustering algorithm,
which groups particle-like entities in the event into (usually a variable number of) jets. The
underlying entities may be calorimeter clusters or reconstructed particles, such as PF candidates.
The latter is the default approach in the CMS Experiment.

There are different classes of jet clustering algorithms. An important one comprises the
sequential recombination algorithms. They rely on an angular difference metric ∆ij between
entities i and j, which is defined as:

∆2
ij = (yi − yj)2 + (ϕi − ϕj)2, (2.11)

where ϕ is the azimuthal angle and y is the rapidity defined as y = 1
2 log

(
E+pz
E−pz

)
. For massless

particles, this rapidity definition is identical to the pseudorapidity η. The generalized distance
metric dij between entities i and j and the distance of i with respect to the beam diB is then
defined as:

dij = min(k2pT i, k
2p
Tj)

∆2
ij

R2 , (2.12)

diB = k2pT i, (2.13)

with kT i being the transverse momentum of entity i, R being a parameter that defines the size
of the jet, and p being a parameter that defines the specific algorithm. The algorithm proceeds
by identifying the smallest distance in the list of entities. If it is a dij pair, the entities i and
j are combined into a new entity. If it is a diB pair, entity i is identified as a jet and removed
from the list. This process is repeated until no entities are left.

The general formulation of sequential recombination algorithms above was identified by
Ref. [53]. With a choice of p = 1, it recovers the kT algorithm [54], with p = 0 it corresponds
to the Cambridge-Aachen (CA) algorithm [55] and p = −1 is referred to as the anti-kT algo-
rithm [53]. This choice of specific algorithm effectively determines the order in which entities
are merged. Roughly speaking, the kT algorithm starts by merging low-momentum entities, the
CA algorithm only considers angular separation, and the anti-kT algorithm starts by adding
low-momentum entities to high-momentum ones. More specifically, the anti-kT algorithm builds
jets around the highest-momentum particles if no other high-momentum particle is within an
angular distance of 2R, and these jets will be approximately circular with radius R in the y-ϕ
plane. If two high-momentum particles are close with a distance of R < ∆ij < 2R, they will
form two circular jets with a straight line boundary in between. If they are closer than R, they
will first unify into a single complex jet and then accumulate low-momentum radiation around
them. This centrality around high-momentum particles with an outer boundary that is insensi-
tive to low-momentum radiation is the reason why the anti-kT algorithm is nowadays the most
commonly used jet clustering algorithm in HEP.

Any well-defined jet clustering algorithm is subject to theoretical constraints. In perturba-
tive QCD calculations, divergences appear from integrals over intermediate states, which are
cancelled by taking into account contributions of real emissions with momenta and angles be-
low the measurement resolution. If the outcome of a jet clustering algorithm changes due to
low-momentum emissions or collinear splitting, these cancellations could not occur, and no ob-
servables could be computed based on this jet definition. This property is referred to as infrared
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and collinear (IRC) safety, and all three clustering algorithms mentioned above can be shown
to be IRC safe.

Once a jet is defined by a group of entities, global properties are derived from the entities
within the jet. For example, the four-momentum of the jet is usually taken to be the vector sum
of all the constituent momenta.

2.5.3 Pileup Mitigation

As discussed in Sec. 2.4.1, the LHC does not accelerate and collide single particles, but rather
bunches of the order of 1011 protons. As a consequence, each collision event will involve addi-
tional low momentum transfer proton-proton interactions, referred to as pileup (PU) interac-
tions. For example, the CMS Experiment recorded a mean number of 38 interactions per bunch
crossing in 2017 [56]. In order to reconstruct the primary (high momentum transfer) interaction
of interest, the effect of pileup needs to be mitigated. In the context of jet reconstruction, this is
particularly important because the particles from pileup interactions will otherwise be clustered
into jets of the primary interaction and distort the kinematic properties of the jets such that
they are no longer representative of the primary interaction partons.

A common strategy, employed in the CMS Experiment [57], is to identify the primary inter-
action vertex and the PU vertices based on the reconstructed tracks. The vertex with the largest
value of the summed p2T of physics objects associated with it is selected as the leading vertex (or
primary vertex). The rest of the vertices are considered PU vertices. This information can be
used to filter out any PF candidates that are associated with PU vertices before the jet cluster-
ing algorithm is applied. This is done in the method called charged hadron subtraction (CHS).
However, only charged hadrons leave tracks in the detector. The CHS approach corrects the jet
four-momentum vector for neutral hadrons after the clustering steps based on the expected PU
density within the jet area [48]. Since only global jet properties are corrected, the substructure
(Sec. 2.5.5) and shape of the jet are left untreated for neutral hadron contributions.

The pileup per particle identification (PUPPI) algorithm [58] improves over CHS by assigning
a weight between zero and one to each particle based on the information of surrounding particles.
This weight describes the probability of the particle originating from the leading vertex. The
particle (PF candidate) four-momenta are then rescaled based on these weights to correct the
PU entirely at the particle level before jet clustering. Charged particles are assigned a weight of
1 if they are associated with the leading vertex and 0 if they are associated with a PU vertex.
Neutral particles are assigned a weight based on the weights of the surrounding charged particles,

with the proximity defined by the angular distance ∆R =

√
(∆η)2 + (∆ϕ)2 in the η-ϕ plane.

2.5.4 Grooming Algorithms

In the context of jet physics, the term jet grooming refers to a wide class of postprocessing
(after clustering) algorithms that are designed to systematically remove jet constituents that
are thought to obscure the process of interest. This typically includes particles from PU inter-
actions, initial-state radiation (ISR), and contributions of the interactions of the other partons
in the interacting proton. Each of these processes tend to result in additional wide-angle low-
momentum radiation. The reconstructed mass of the groomed jets is usually more compatible
with the mass of the original particle that initiated the jet. This is particularly important in
the context of boosted objects, where the decay products of a heavy particle are collimated
into a single jet, discussed in Sec. 2.5.5. The most commonly used grooming algorithms are
trimming [59], pruning [60], mass drop [61], and soft drop [62].
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The soft drop algorithm [62] has become a popular choice in the realm of boosted jet physics.
Its first step is to recluster the constituents of a jet (independently of the original choice of
clustering algorithm) with the CA algorithm. This results in a pair-wise clustering tree with an
angular-ordered structure. The algorithm then proceeds by undoing the last clustering step of
jet j, which results in two subjets j1 and j2, and then testing whether these subjets pass the
soft drop condition:

min(pT1, pT2)

pT1 + pT2
> zcut

(
∆12

R0

)β

, (2.14)

where pT1 and pT2 are the transverse momenta of the subjets, ∆12 is the angular distance
between the subjets in the y-ϕ plane, R0 is the jet radius, and zcut and β are parameters of the
algorithm. If the subjets pass the condition, the jet j is considered the final soft-drop jet. If
they do not pass, then the subjet with larger pT becomes the new jet j while the other subjet is
removed, as it corresponds to wide-angle and low-momentum radiation. This process is iterated
until the condition is either satisfied or the jet is reduced to a single particle. In either case, the
jet is considered the final soft-drop jet.

2.5.5 Jet Substructure

If a particle with high Lorentz boost decays, its products are collimated to an extent as they
might fall within a single, typically large-radius, jet. The so-called substructure of this jet,
consisting of overlapping smaller jets, is thus non-trivial and can be used to infer the nature of
the original particle.

Several observables have been developed to quantify this substructure, such as the N-
subjettiness [63], which measures the compatibility of a jet with a given number of subjets.
The most common definition of N -subjettiness is

τN =
1

d0

∑
k

pT,k min
{
∆R1,k,∆R2,k, · · · ,∆RN,k

}
, (2.15)

where the summation is performed over all particles in the jet, pT,k are their transverse momenta,
∆Ri,k is the distance in the η-ϕ plane between the particle and the i-th subjet axis, and d0 is a
normalization factor:

d0 =
∑
k

pT,kR0, (2.16)

with R0 being the characteristic jet radius of the original jet clustering algorithm. The definition
assumes that a set of N candidate subjets is present. These are commonly found by re-clustering
the jet with a jet clustering algorithm enforcing the desired number ofN subjets. A more optimal
choice would be to compute the minimum τN over every possible set of N candidate subjet axes,
but in practice this is computationally intensive.

Small values of τN imply that the particles within the jet align well with the N subjet axes,
i.e., the jet is likely to have N or fewer subjets. Large values, on the other hand, arise when a
large fraction of energy is distributed at larger angles from the candidate subjet axes and thus
the large-radius jet is more compatible with at least N+1 subjets. While a basis consisting of τN
with multiple values ofN can be used to identify the number of subjets with multivariate analysis
techniques, the more interpretable ratios τN/τN−1 are often used to quantify the substructure
of a jet, as low values in this ratio indicate that the jet is well described by exactly N subjets.
In the later sections, such N -subjettiness ratios will be denoted as τXY = τX/τY , and it should
be clear from context whether the subscript denotes a ratio with X and Y being single-digit
subjet numbers or a single XY -subjettiness value with XY being one two-digit subjet number.
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Reference [63] also introduces a more general definition of N -subjettiness:

τα,βN =
1

d0

∑
k

min
J

{
pT,k

(
pT,J

)α (
∆RJ,k

)β}
, (2.17)

where the normalization factor d0 becomes:

d0 = max
J

{(
pT,J

)α}
(R0)

β
∑
k

pT,k. (2.18)

Here, the index J runs over the N candidate subjets, and the parameters α and β can be used
to weight the transverse momentum and angular separation of the particles with respect to the
subjet axes, respectively. The original definition of Eq. 2.15 is recovered for α = 0 and β = 1
and is the definition used within this thesis unless stated otherwise.

2.5.6 Heavy Flavor Tagging

Several algorithms have been developed to distinguish jets initiated by heavy quarks, either b or
c, from so-called light-flavor jets, which are initiated by the u, d, and s quarks and the gluons.
These algorithms are referred to as heavy flavor tagging algorithms, or b tagging and c tagging
for the specific identification of the respective quark flavor jets. They facilitate the selection of
more specific hadronic final states, e.g., for the measurement of H → bb decays.

An overview of the heavy-flavor tagging algorithms used in Run 2 analyses of the CMS
Experiment can be found in Ref. [64], which all rely on the different properties of the heavy-
flavor hadrons compared to the light-flavor ones. These properties include the longer lifetimes
of b and c hadrons, resulting in decay lengths of several millimeters up to a centimeter in the
detector. This gives rise to the presence of displaced secondary vertices that are reconstructed
in the tracking system. Moreover, the decay products of heavy-flavor hadrons tend to have
larger transverse momenta relative to the jet axis compared to the other jet constituents, and
in around 20% (10%) of the b (c) hadron decay chains, an electron or muon is present. One
of these algorithms introduced in Ref. [64] is the DeepCSV tagger, which is a neural network
classifier (see Secs. 3.1.1 and 3.3.1) that uses input features based on tracks that are clustered
in the jet and secondary vertex properties, such as the distance to the primary vertex and the
reconstructed secondary vertex mass.

The type of heavy-flavor tagging discussed above is applicable to the case where the jets are
initiated by single partons. As mentioned in Sec. 2.5.5, jets may also arise from collimated decay
products of a highly boosted even heavier particle, such as a W, Z or H boson, or a top quark.
An overview of algorithms for this specific regime of boosted heavy flavor tagging is provided in
Ref. [65] for the CMS Experiment, and multiple of them make use of substructure observables
as discussed in Sec. 2.5.5.

2.6 Statistical Analysis Methods

This section will provide an introduction to the common statistical methods in HEP, used in the
context of this thesis. A more detailed discussion of these concepts can be found in Refs. [26,
66].

In searches for new physics at the LHC, results are most commonly reported in terms of
a frequentist interpretation. In this paradigm, one estimates the probability of observing the
data under a specific hypothesis, where probability is identified with the relative frequency
of a measurement in an ensemble of repeated equivalent experiments. This is in contrast to a
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Bayesian interpretation, where the probability is identified with a degree of belief in a hypothesis,
and the aim is to update the prior belief in a hypothesis based on the data.

The two main outputs of a frequentist statistical analysis in the context of new physics
searches are the significance of an excess, and exclusion limits on parameters of a new physics
model. They are both based on the p-value, which is the probability of observing an outcome that
is at least as extreme as the one in the data, under the assumption of a specific hypothesis. The
notion of what constitutes as “extreme” depends on further assumptions, such as an alternative
hypothesis.

The significance of an excess is a measure of how unlikely it is to observe the data under the
hypothesis of only known physics processes (referred to as background). It relates to the p-value
of the data under the background-only hypothesis. In a more narrow sense, the significance
in HEP usually refers to the Z-score, which is the number Z of Gaussian standard deviations
above the median outcome under the background-only hypothesis. It can be computed from the
p-value p as:

Z = Φ−1(1− p), (2.19)

where Φ−1 is the quantile function (the inverse of the cumulative distribution function) of the
standard Gaussian distribution. The convention in HEP is to regard a significance of Z ≥ 5
(p ≤ 2.87×10−7) as a “discovery” of new physics, and any such result would be widely reported
as a breakthrough in the scientific community. A significance of Z ≥ 3 is often more weakly
referred to as “evidence” for new physics. In addition to the observed significance in the data,
the expected significance can be calculated as a measure of the experimental sensitivity for a
given new physics (signal) model. It corresponds to the median (background-only) p-value one
would find if the data were following the signal+background hypothesis.

Even if no significant excess is found in an analysis, exclusion limits can be set on parameters
of a given new physics model. The most-targeted parameter is the signal strength, i.e., the
expected number of signal events, which translates to the cross section. The upper limit on
the signal strength corresponds to the value at which the p-value under the corresponding
signal+background hypothesis becomes lower than a certain threshold value α. Signal strengths
beyond this limit are considered excluded at a confidence level (CL) of 1−α. A common threshold
is α = 0.05, corresponding to a 95% CL. Even more often than in the case of significance, the
observed limit is conventionally complemented by the expected limit, quantifying the sensitivity
of the analysis to the new physics model. The expected limit is the parameter value for which
the median p-value under the signal+background hypothesis and with (artificial) data arising
exclusively from background is equal to α. In addition, one commonly reports the ±1σ and ±2σ
bands around the expected limit, i.e., the p-values corresponding to the 2.3, 16, 84 and 97.7
percentiles in addition to the median. This provides context for the fluctuations of the observed
limit, i.e., deviations of the observed limit from the expected limit by more than 2σ upwards or
downwards are hints for an excess or deficit, respectively.

Figure 2.3 shows a typical example of how the significance (bottom) and exclusion limits
(top) are reported in LHC searches, here for the discovery of the SM Higgs boson [10] by the
ATLAS Collaboration. Section 2.6.1 will discuss how the underlying p-values for significance
and limits are computed.

2.6.1 Hypothesis Testing

As discussed earlier, the statistical analysis revolves around excluding one hypothesis in favor
of another one. The two hypotheses are commonly labeled as the null hypothesis H0 and the
alternative hypothesis H1, respectively. In the context of computing the significance of excesses,
H0 is the background-only hypothesis and H1 the presence of signal. For computing exclusion
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Figure 2.3: Adjusted figure from Ref. [10], showing the exclusion limit (a) and significance (b) as
a function of the particle mass, resulting from the search for the SM Higgs boson by the ATLAS
Collaboration. The 95% CL limit is set on a signal strength parameter µ and the significance is
shown in terms of the local p-value under the background-only hypothesis p0. The red dashed
lines indicate the p-values corresponding to specific thresholds in terms of Z-score. The observed
limit is complemented with the background-only expectation, and the observed significance is
compared to the expected significance arising from the presence of the SM Higgs boson at the
given mass. The presence of an SM Higgs boson signal at a mass of 125GeV is visible both via
the low p-value and the observed limit exceeding the expected bands.

limits, H0 is the presence of signal with a certain parameter choice and H1 the background-only
hypothesis. The main quantity to measure the compatibility of the observed data x with either
H0 or H1 is the so-called test statistic. The Neyman-Pearson lemma [67] states that the ratio
of the likelihoods of the data under either hypothesis L(x|H) is a most powerful test statistic
for distinguishing between the two hypotheses:

λ(x) =
L(x|H1)

L(x|H0)
. (2.20)

The condition is that the hypotheses are simple, i.e., they must not depend on undetermined
parameters. The following paragraphs will discuss how to construct likelihoods and thus test
statistics for typical HEP searches, and how to subsequently derive p-values for significance and
limits.

Developing and Applying Machine Learning Techniques for

Model-Agnostic Searches for New Physics at the LHC

35



2 PARTICLE PHYSICS THEORY AND METHODS

A typical measurement in HEP consists of a histogram of an observable, n = (n1, n2, ..., nN ),
where the entries correspond to the number of collision events passing the analysis selections in
each of the N bins. The expectation value for the bin number i is

E(ni) = µsi + bi, (2.21)

where bi ∈ N is the number of expected background events in the bin, si ∈ N is the number
of signal events of some nominal total signal amount falling into bin i, and µ ∈ R is the signal
strength parameter. The parameter µ is the quantity of interest in the analysis, as it is related to
the cross section of the signal process. The bins of the histogram are assumed to be statistically
independent, and the likelihood function of the data given the signal strength µ is thus the
product of Poisson probabilities for each bin j:

Lpoisson(n, µ) =

N∏
j=1

(µsj + bj)
nj

nj !
e−(µsj+bj). (2.22)

The values si and bi typically depend on signal and background models, respectively, which
themselves depend on a set of additional parameters θ that are not entirely fixed. These are
referred to as nuisance parameters and are often constrained by auxiliary measurements m.
These m could be another histogram m = (m1,m2, ...,mM ) with M bins and expectation value
in bin i:

E(mi) = ui(θ), (2.23)

where ui are computable quantities depending on θ. In that case, one can introduce another
Poisson likelihood term for the auxiliary measurement:

π(m, θ) =

M∏
k=1

uk(θ)
mk

mk!
e−uk(θ). (2.24)

Another common choice for m are direct estimates of θ from other experiments or theoretical
calculations, resulting in a prior distribution for θ. This could, for example, be a Gaussian
constraint:

π(m, θ) =
L∏
l=1

1√
2πσl

e
− (θl−θ

0
l )

2

2σ
2
l , (2.25)

where m = (θ01, θ
0
2, ..., θ

0
L, σ1, σ2, ..., σL) are the measured values and uncertainties of the L nui-

sance parameters.
The full likelihood function of the data given the signal strength µ and the nuisance param-

eters θ is the product of the Poisson likelihoods for the data and the auxiliary measurements:

L(n,m, µ, θ) = Lpoisson(n, µ, θ)π(m, θ). (2.26)

The explicit likelihood function of Eq. 2.26 relates to L(x|H) in Eq. 2.20 with x = {n,m} and
H = {µ, θ}. One choice of H0 and H1 is to set H0 to µ = 0 and H1 to a specific µ > 0.
However, with the introduction of nuisance parameters θ, they are no longer simple hypotheses,
as required by the Neyman-Pearson lemma. The common frequentist strategy to circumvent
this issue is to define the profile likelihood ratio:

λp(µ) =
L(n,m, µ,

ˆ̂
θ(µ))

L(n,m, µ̂, θ̂)
, (2.27)
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where
ˆ̂
θ(µ) are the values of θ that maximize L(n,m, µ, θ) for a given µ, and µ̂ and θ̂ are the

values that unconditionally maximize L(n,m, µ, θ) over all µ and θ. The effect of including free
parameters θ is to broaden the profile likelihood ratio for a given value of µ, which represents
the loss of information due to systematic uncertainties.

With the profile likelihood ratio, one can define a test statistic:

tµ = −2 log λp(µ), (2.28)

which is monotonically related to the optimal Neyman-Pearson test statistic, but has compu-
tational advantages due to the logarithm. High values of tµ indicate increasing incompatibility
between the data and the hypothesized µ. A p-value under the µ hypothesis can be obtained
by integrating the probability density function of tµ on data following a given µ, f(tµ|µ), from
the observed value tµ,obs to infinity:

pµ =

∫ ∞

tµ,obs

f(tµ|µ)dtµ. (2.29)

Obtaining the distribution f(tµ|µ) is in general non-trivial and could be either approached
by running Monte Carlo (MC) simulation of data under the µ hypothesis, or by asymptotic
formulae, derived in Ref. [66], that approximate the distribution of tµ for large sample sizes.
The latter is often used in practice, as it is computationally more efficient.

A common assumption in many (but not all) new physics searches, is that a signal process
only adds more events, i.e., µ ≥ 0. An alternative test statistic, which has the highest agreement
for the obtained estimator µ̂ < 0 when µ = 0, is defined as:

t̃µ =


−2 log L(n,m,µ,

ˆ̂
θ(µ))

L(n,m,µ̂,θ̂)
µ̂ ≥ 0 ,

−2 log L(n,m,µ,
ˆ̂
θ(µ))

L(n,m,0,
ˆ̂
θ(0))

µ̂ < 0 .
(2.30)

An important special case, which is often used for discovery tests, is:

q0 = t̃0 =

{
−2 log λp(0) µ̂ ≥ 0 ,

0 µ̂ < 0 .
(2.31)

This results in a p-value under the background-only null hypothesis, p0, which is used to quantify
the significance of an excess in the data:

p0 =

∫ ∞

q0,obs

f(q0|0)dq0. (2.32)

In order to compute the expected significance of an experiment if the data were to actually
arise from a signal+background hypothesis with signal strength µ′, one would replace the q0,obs in

the integration range of Eq. 2.32 by the median of the distribution of q0 under the µ
′ hypothesis:

med
(
f(q0|µ′)

)
. The distribution f(q0|µ′) can again be numerically obtained via MC simulation,

or via asymptotic formulae. Reference [66] derives a simple analytic approximation involving the
so-called “Asimov dataset”, which is an artificial dataset constructed such that the estimated
parameter values reproduce the true values.

For setting upper limits on the signal strength parameter µ, one needs a test statistic that
results in lower compatibility between data and µ if the estimator µ̂ is smaller than µ. This is
achieved by the test statistic:

qµ =

{
−2 log λp(µ) µ̂ ≤ µ ,
0 µ̂ > µ .

(2.33)
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In this notation, q0 from Eq. 2.31 is not the same as qµ with µ = 0, but its own distinct
definition. The definition Eq. 2.33 can be further restricted to the case where µ ≥ 0, leading to
the alternative test statistic:

q̃µ =


−2 log L(n,m,µ,

ˆ̂
θ(µ))

L(n,m,0,
ˆ̂
θ(0))

µ̂ < 0 ,

−2 log L(n,m,µ,
ˆ̂
θ(µ))

L(n,m,µ̂,θ̂)
0 ≤ µ̂ ≤ µ ,

0 µ̂ > µ .

(2.34)

With either test statistic from Eq. 2.33 or 2.34 (both will be implied when using qµ in the
following), one can compute the p-value for a given µ hypothesis by integrating the respective
probability density function:

pµ =

∫ ∞

qµ,obs

f(qµ|µ)dqµ. (2.35)

In order to find a 1−α CL upper exclusion limit on µ, one may set Eq. 2.35 to α and, if possible,
solve analytically for µ, or scan numerically for the µ that satisfies the equality.

Similarly to the case of expected significance, one can compute the expected limit, i.e., the
upper exclusion limit achieved when the data are only arising from background, µ′ = 0, by
replacing the qµ,obs in the integration range of Eq. 2.35 by the median of the distribution of qµ
under the µ′ = 0 hypothesis: med

(
f(qµ|0)

)
. Analogously to the observed limit, the expected

limit is computed by setting this p-value to α and solving for µ. The same procedure applies for
the ±1σ and ±2σ bands around the expected limit, replacing the lower integration range by the
respective quantiles of f(qµ|0). In practice, this is again mostly solved by asymptotic formulae
involving an Asimov dataset. Figure 2.4 illustrates the quantities needed for setting exclusion
limits.

2.6.2 CLs Method

The 1 − α CL exclusion limits presented in Sec. 2.6.1 were based on computing the p-value
under the signal+background hypothesis, pµ, and finding the value of µ for which pµ is equal
to a threshold value α. This approach, which is sometimes referred to as CLs+b limit, has the
correct coverage under the frequentist interpretation, i.e., the probability of excluding a true
signal is α.

The shortcoming of the CLs+b exclusion limits is their behavior in the case of low exper-
imental sensitivity, i.e., when predictions of the signal+background hypothesis are almost in-
distinguishable from the background-only prediction. In that case, there remains a probability
of α to exclude the entire range of signal strengths down to zero. This is due to downward
fluctuations of the data with respect to the background expectation. However, it is commonly
regarded as unfavorable to report an exclusion limit in this case, as the data do not provide
enough information to make a statement about the presence of a signal.

The most common remedy of this in HEP experiments is the CLs test statistic [68, 69],
defined as:

CLs =
pµ

1− pb
, (2.36)

where pb is the background-only p-value from test statistic qµ:

pb =

∫ qµ,obs

0
f(qµ|0)dqµ. (2.37)
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qµmed
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f(qµ|0)
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pobsb

pobsµ

f(qµ|·)

pexpµ

Figure 2.4: Illustration of statistical quantities needed for setting exclusion limits. Two distri-
butions of the test statistic qµ (signal+background hypothesis) are shown: with the nominal

signal strength µ′ = µ in the data (purple curve) and with only background in the data µ′ = 0
(red curve). The blue area on the right of the observed value qµ,obs corresponds to the observed
signal+background p-value pµ, whereas the orange area is the observed pb, which is needed for
setting CLs limits. The corresponding quantities for the expected limits depend on the threshold
of the median of the background-only distribution of qµ, which are the expected pµ (hatched
area) and pb (orange area left of med

(
f(qµ|0)

)
).

The integral for pb is performed over the left end of f(qµ|0), as the test statistic qµ is defined
such that higher values indicate higher compatibility with the background-only hypothesis. By
setting CLs = α and solving for µ, one thus obtains the CLs exclusion limit. The quantities pµ
and pb are illustrated in Fig. 2.4.

The CLs limits are more conservative in the sense that the coverage probability is strictly
higher than the nominal confidence level 1−α because the denominator of Eq. 2.36 is smaller or
equal to one. In the case of low sensitivity, a decrease in pµ will be accompanied by a decrease
in 1 − pb, and the exclusion of low µ is suppressed. In the case of high sensitivity, the CLs

limit approaches the CLs+b limit. The conceptual disadvantage is the departure from a strictly
frequentist interpretation of the result.

The same asymptotic approximations to the test statistic distributions f(qµ|µ′) from Ref. [66]
can be used to compute the observed CLs limit, as well as the expected limits with their ±1σ
and ±2σ bands.

2.6.3 Background Estimation With Bump Hunts

The analysis procedure discussed in Sec. 2.6.1 relies on an expected background bi in each bin
of the histogram. This background estimation can be based on MC simulation following the
known description of the background processes, and the nuisance parameters would account for
systematic uncertainties in the background prediction. However, in many cases the modeling of
the known background processes and the corresponding systematic uncertainties is not reliable
enough. It might then be more feasible to resort to a data-driven background estimation, i.e.,
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to estimate it directly from data. The bump hunt approach is a widely used technique for this
purpose and has been adopted, e.g., in the discovery of the ρ meson [70] or the Higgs boson [10,
11]. While the term “bump hunt” is not fully standardized, it has often been used for this context
in the recent literature. This section thus also establishes the terminology for the remainder of
this thesis and in particular resolves potential confusion with the BumpHunter algorithm [71].
Other sources use the term to refer to the full statistical analysis procedure that involves the
type of background estimation discussed here, but also the subsequent hypothesis testing. This
thesis will use the term exclusively for the background estimation part.

The underlying assumption of a bump hunt background estimation is that the background
bi is only smoothly varying across the histogram bins i, and that any localized excess in only
few bins is indicative of a signal process. The latter is thus an implicit restriction in si as well.
This is well motivated in the case of resonance searches (Sec. 2.3.2) in invariant mass spectra,
where known SM processes typically do not exhibit sharp peaks in contrast to signal models
predicting the decay of massive new particles.

The background is then estimated by fitting a smooth parametric function to the data. This
can be performed directly within the profile likelihood of Eq. 2.27 by introducing the background
shape parameters among the nuisance parameters θ. The parameters can also be estimated in
a separate control region, such as a complementary sideband region to the signal region, i.e.,
where the narrow signal hypothesis is tested.

The choice of suitable parametric fit function depends on the preconceptions about the
background shape. Typical choices are polynomials, exponential functions, or power laws. The
function should be chosen such that it is flexible enough to describe the background well, but
not too flexible such that it would absorb signal-like features. Rather than deciding for a specific
function in advance, on can use a more data-driven approach to choose one function from a set
of increasingly flexible shapes by comparing the improvement in goodness of fit on a control
region with the increase in complexity.

Usually, the statistical procedure discussed in this section is applied after a series of well-
motivated selections on additional observables, aimed at reducing the background to a level
where the signal can be observed with higher significance. However, another concern arises
when the additional observables are correlated with the feature in which the statistical analysis
is performed. In that case, the selection might change the shape of the background in the feature
of interest, a process referred to as background sculpting. Depending on the resulting background
shape, this can violate the smoothness assumption of the bump hunt and, if undetected, lead
to interpreting bump-like structures in the background as signal and thus overestimating the
significance. Not all forms of background sculpting are inherently problematic for a bump hunt.
A scaling of linear dependence in the feature of interest, i.e., a pure change of slope, can be
absorbed by the data-driven background estimation. However, once this scaling has at least
quadratic dependence, i.e., a change of curvature, the background estimation will be biased. It
can either be mitigated by modeling the potential change of background shape as a systematic
uncertainty, or it can be prevented by decorrelating the selection on the additional observables
from the feature of interest.

The similar (and thus often confused) term BumpHunter [71], on the other hand, does not
relate to a specific type of background estimation. Instead, it is a statistical hypertest algorithm
to quantify global p-values for localized excesses. Essentially, the feature of interest is scanned
by constructing various possible windows from the histogram bins. In each window, the local
p-value under the background-only null hypothesis is computed, in line with the procedure from
Sec. 2.6.1, by treating the entire window as a histogram with a single bin. By repeating a
statistical test over a large phase space, the probability for finding a low p-value solely from
fluctuations becomes increasingly high, which is referred to as the look-elsewhere effect. In order
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to interpret the result as a global p-value, one selects the lowest p-value found in the scan as
the observed value of a new test statistic, and estimates the distribution of this test statistic
by repeating this procedure many times on pseudo-experiments, sampled from the background-
only hypothesis. The global p-value is then the fraction of pseudo-experiments that yield a lower
minimum p-value than the observed one. Reference [71] also discusses additional data-driven
quality criteria based on sideband regions.
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3 Machine Learning Methods

The field of machine learning (ML) is generally concerned with the development of algorithms
that can learn from and make predictions based on data. In this section, I introduce the most
relevant concepts and methods from the literature that are used in this thesis. A more detailed
discussion of these topics can be found in text books, such as Ref. [72].

An ML problem can be formulated as a one of function approximation where some (often
unknown and/or intractable) function f is to be approximated by some generic model f̂θ with
a number Dmodel of free parameters θ ∈ RDmodel . The specific learning task is encoded in a loss
function L, designed to quantify the difference between f̂θ and f (or at least some proxy for f)
on a set of D-dimensional input data D = {xi}Ni=1, where xi ∈ RD and N is the number of data
points. The aim is to find the set of parameters θ∗ that minimizes the loss function:

θ∗ ≡ argmin
θ
L(f̂θ, f,D), (3.1)

in order to obtain the best function approximation f̂θ∗ . This process of finding the optimal
parameters is called training or fitting, and is usually done with the help of numeric minimization
algorithms.

This section briefly introduces the core ML concepts used in this thesis, starting with an
overview of the relevant learning tasks in Sec. 3.1. The minimization algorithms for training ML
models are covered in Sec. 3.2. Section 3.3 then introduces the most prevalent types of models,
namely neural networks and boosted decision trees, which are the basis of many modern ML
methods, such as some of the more specific approaches for unsupervised learning discussed in
Sec. 3.4. Finally, Sec. 3.5 discusses common evaluation metrics, with a focus on HEP applica-
tions.

3.1 Common Machine Learning Tasks

Learning tasks are commonly classified into one of three subfields:

� Supervised learning: the algorithm is trained on a labeled dataset, i.e., for each data point
the correct output is known. The aim is to learn a mapping from input to output that
generalizes well to unseen data.

� Unsupervised learning: the algorithm is trained without labels. The learning task is to
learn the inherent structure of the data.

� Reinforcement learning: the algorithm learns to make decisions by interacting with an
environment. Based on its actions, it receives feedback in the form of rewards, which it
uses to improve its decision-making process.

This distinction is not entirely unambiguous as some learning tasks can be seen as a com-
bination of the above. For example, the subfield of semi-supervised learning is concerned with
supervised tasks that make use of unlabeled data to improve the learning process. Moreover,
many unsupervised learning tasks are approached by phrasing the problem as a supervised one,
thus making use of the well-studied supervised learning methodology.

This is also the case for the work presented in this thesis, where the inherently unsupervised
learning task of anomaly detection is partially approached by rephrasing it as supervised learning
method. Thus, the following subsections are covering relevant examples of both supervised and
unsupervised learning.
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3.1.1 Supervised Learning

The subfield of supervised machine learning is commonly segregated into two types of tasks:
regression and classification.

In regression, the output is a continuous variable, i.e., the aim is to learn a function f :

f : RDin → RDout , (3.2)

where Din and Dout are the dimensions of the input and output, respectively. A common choice
of loss function for regression is the mean squared error (MSE), defined as:

L(f̂θ, f,D) =
1

N

N∑
i=1

(
f̂θ(xi)− f(xi)

)2
, (3.3)

where f(xi) is the known target output of the model for input xi, often denoted as yi.

In a classification task, on the other hand, each data point is assigned to one of K ∈ N
classes. The aim is to learn a function f such that:

f : RDin → ∆K−1 (3.4)

where ∆K−1 is the (K − 1)-dimensional standard simplex, i.e., the set of all vectors t ∈ RK

with
∑K−1

k=0 tk = 1 and tk ≥ 0. The output of the model can then be interpreted as a vector of
probabilities, where the k-th element is the probability of the data point belonging to class k.
A common choice of loss function for classification is the cross-entropy loss, defined as:

L(f̂θ, f,D) = −
1

N

N∑
i=1

K∑
k=1

yi,k log f̂θ(xi)k, (3.5)

where yi,k is the k-th element of the so-called one-hot encoded target output yi, which is 1 if the
i-th data point belongs to class k, and 0 otherwise. An important special case of classification
is binary classification, where K = 2. In this case, the output is sufficiently described by the
probability of the data point belonging to class k = 1, and so the label is often encoded as
yi ∈ {0, 1}, also referred to as negative and positive labels, respectively. The cross-entropy loss
then simplifies to:

L(f̂θ, f,D) = −
1

N

N∑
i=1

(
yi log f̂θ(xi) + (1− yi) log(1− f̂θ(xi))

)
. (3.6)

A more detailed discussion of the cross-entropy loss and its properties can be found in Ap-
pendix A.3.

3.1.2 Unsupervised Learning

Common types of unsupervised machine learning tasks are representation learning, density es-
timation, and generation.

A representation learning task is concerned with mapping the input data to a space where
some relevant structure is preserved and/or more manifest. The target space is typically lower
in dimension than the input space.

Density estimation is the task of learning a tractable probability density function p̂θ(xi) that
approximates the true data distribution p(xi). As the latter is often unknown, a common proxy
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task is to find the choice of θ that maximizes the likelihood of the data under the model, which
can be achieved by minimizing the negative log-likelihood (NLL). This defines a loss function:

L(p̂θ,D) = − log

(
N∏
i=1

p̂θ(xi)

)
= −

N∑
i=1

log p̂θ(xi). (3.7)

The relationship between NLL and approximating the true density is elaborated on in Ap-
pendix A.2.

Finally, the field of generative ML is concerned with learning a stochastic model that can
generate new data points that resemble the training data. It typically constitutes tuning a
function f̂θ such that it maps noise drawn from a simple distribution (e.g., a standard normal
distribution) to the data distribution, often under the condition of additional variables:

f̂θ : R
Dnoise × RDcond → RDin , (3.8)

where Dnoise is the dimension of the noise space, and Dcond is the dimension of the condition
space.

3.2 Model Training

Once a parametric model f̂θ and a loss function L have been chosen, the main task is to find
optimal parameters such that the loss function is minimized, as shown in Eq. 3.1. Only in a few
cases can this be done analytically. In most cases, the parameters are learned by first randomly
initializing their values and then optimizing them via numeric minimization algorithms.

3.2.1 Numeric Minimization Algorithms

The basis for most modern numeric minimization algorithms is gradient descent, which iteratively
updates the parameters in the direction of the negative gradient of the loss function with respect
to the parameters:

θt+1 = θt − α∇θL, (3.9)

where t denotes discrete time steps during the learning process and α is the learning rate,
which is a hyperparameter1 that controls the size of the update step. The gradient ∇θL is
here implied to be computed over the entire dataset D. In practice, however, this is often
infeasible due to the size of the dataset. Instead, one typically divides D randomly into smaller
fixed-size subsets called mini batches (or simply “batches”) Di and performs the update steps
from Eq. 3.9 sequentially for each mini batch. This batch-wise approach is known as stochastic
gradient descent (SGD). Iterating through the entire dataset is called an epoch, and training is
usually performed for multiple epochs.

The choice of learning rate α in Eq. 3.9 is crucial for convergence, as a learning rate that is
too large can lead to divergence when the parameter updates become larger than the width of
local optima. On the other hand, a learning rate that is too small can slow down convergence
and result in globally suboptimal local minima. Thus, it is common to use adaptive learning
rates, which change during training based on the history of the parameter updates, in order to
yield large parameter updates far away from global optima and small ones in proximity to them.
One popular choice is the Adam optimizer [73], which modifies the parameter update step from

1
While the term “parameter” usually refers to those being updated during training, “hyperparameters” are

pre-defined constants that relate to explicit design choices.
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Eq. 3.9 to be an approximated rescaling of first moment m̂ (the mean) of the gradient by the
square root of the second moment v̂ (the variance):

θt+1 = θt − α
m̂t+1√
v̂t+1

. (3.10)

The subscript t denotes that the values of the first and second moment estimates are computed
as a moving averages at each step t, along with the parameter updates. Algorithm 1 shows
the full pseudocode. The bias correction terms shown there are introduced to account for the
initialization of first and second moments to zero, which can lead to biased estimates in the
early stages of training. Adam has the advantage of being invariant to rescaling of the gradient,
approximately bounding the parameter update magnitude by the hyperparameter α, working
with sparse gradients, and having automatic step size annealing.

Algorithm 1 Adam optimization algorithm. All operations on vectors are performed element
wise, including the square of gradients g2t = gt⊙gt. The hyperparameter ϵ is introduced to avoid
zero-division issues and is set to a small number, such as 10−8. Copied from Ref. [73].

Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)

v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)

vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ) (Update parameters)

end while
return θt (Resulting parameters)

3.2.2 Overfitting Mitigation

A model f̂θ with more free parameters has more capacity to fit the training data. This can lead
to overfitting, where the model learns the statistical noise in the training data. This reduces its
ability to generalize to unseen data.

A standard approach to reduce overfitting effects is to monitor the loss during training on
a separate validation dataset, which is not used for training. If the validation loss starts to
increase while the training loss continues to decrease, the model is likely overfitting. Thus, it is
common to stop training when the validation loss starts to increase, a technique known as early
stopping. As the validation loss is subject to statistical fluctuations, a grace period of multiple
epochs, the so-called patience, is usually introduced before stopping the training. By recording
the model state at each epoch, one can use the model with the lowest validation loss as final
model for the inference on unseen data. When comparing the performance of different machine
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learning models, it is important to use another separate test dataset that has neither been used
for training nor for validation. This ensures that the performance metrics are not biased by the
model selection process.

In a realistic application, one might want to simultaneously use all data points for both
training (for better model performance) and testing (or inference). In order to retain separate
training and test sets, one can use cross-validation techniques. A common choice is k-fold cross-
validation, illustrated in Fig. 3.1, where the data are randomly partitioned into a number k of
equally sized subsets. The machine learning model is trained on k−1 of these subsets and tested
on the remaining one. This process is repeated k times, each time using a different subset as
the test set. This can be generalized to a rotating validation set as well, by splitting the k − 1
training subsets further into l sub-subsets. The ML model is then trained on l− 1 of these and
the remaining one serves as validation set. This is permuted over all options. As this results in
l trained models per data point in the test set, one can average the predictions of these models
to obtain the final prediction. A convenient choice is l = k− 1, such that the data only need to
be partitioned once.

Partition 1 Partition 2 Partition 3 Partition 4

Training (and Validation) Set Test Set

Training 1

Training 2

Training 3

Training 4

Figure 3.1: Illustration of k-fold cross-validation with k = 4. After randomly partitioning the
data into k parts, the ML algorithm is trained k times, on each iteration with a different partition
as the test set (red). The validation set is an implicit subset of the training set (blue), but could
also be rotated by adding another layer of l-fold cross-validation inside each training set.

Another common approach to reduce overfitting is to add so-called regularization terms to
the loss function. These terms penalize large parameter values, which can lead to a smoother
model that generalizes better. A common choice is the Lp regularization, which adds the sum
of the p-norms of all Dmodel free parameters to the loss function:

Lreg(f̂θ, f,D) = L(f̂θ, f,D) + λ

Dmodel∑
i=1

|θi|p, (3.11)

where λ is a hyperparameter that controls the regularization strength and p is the order of the
norm. The most common choices are p = 1 (L1 regularization) and p = 2 (L2 regularization).
The former is known to induce sparsity in the model, i.e., many parameters are driven to zero,
which can be useful for feature selection. L2 regularization, on the other hand, is known to
induce smoothness in the model.
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3.3 Basic Model Architectures

While the previous sections have generally covered the basic principles of fitting any parametric
model to data, this section will focus on two specific classes of models for f̂θ: neural networks
and boosted decision trees.

3.3.1 Neural Networks

Neural networks [74–76] have been particularly successful in the past and are still being widely
used as building blocks in more sophisticated modern ML applications.

The base unit of a neural network is the neuron, which is a simple function consisting of a
weighted sum of the inputs, a bias term b ∈ R and some non-linear activation function ϕ : R→ R:

z = ϕ

Din∑
i=1

wixi + b

 , (3.12)

where wi ∈ R are the weights and xi are the inputs. This is illustrated in pictorial form on the
left-hand side of Fig. 3.2. By defining wi as elements of a weight vector w ∈ RDin (and again xi
as elements of an input vector x ∈ RDin), Eq. 3.12 can be written in a more compact vectorized
form:

z = ϕ (w · x+ b) . (3.13)

This alone could be used as a simple linear ansatz for f̂θ where the free parameters are
θ = {w, b}, mapping the input x ∈ RDin to the scalar output z ∈ R. In order to achieve higher
output dimensionality, one can stack them in layers of parallel neurons:

z = l
Dout,Din
θ (x) =

Dout∑
j=1

ϕ

Din∑
i=1

wijxi + bj

 = ϕ (Wx+ b) , (3.14)

where z ∈ RDout is now implied to be a vector of outputs, wij are elements of a weight matrix

W ∈ RDin×Dout , and bj are elements of a bias vector b ∈ RDout . On the right-hand side of
Eq. 3.14, ϕ is applied element wise to the vector of weighted sums of inputs, which is now a
matrix-vector product.

By stacking N such layers, each with their own parameter vector θi, one obtains a neural
network :

f̂θ = l
Dout,DN−1

θN
◦ lDN−1,DN−2

θN−1
◦ . . . ◦ lD2,D1

θ2
◦ lD1,Din

θ1
. (3.15)

Specifically, this architecture is referred to as a fully connected neural network, as every neuron
in a given layer takes all outputs from the previous layer as input. The input and output
dimensionality, Din and Dout, are determined by the task at hand, while the intermediate, so-
called hidden layer dimensions Di are hyperparameters that can be tuned. An example of such
a fully connected neural network is illustrated on the right-hand side of Fig. 3.2.

By stacking many hidden layers with many neurons, the resulting f̂θ can approximate any
continuous function to arbitrary precision, given enough neurons. This is known as the universal
approximation theorem [77]. The non-linear activation function ϕ is crucial for this property, as
it allows the network to learn non-linear relationships between the input and output. Common
choices for ϕ are the rectified linear unit (ReLU) function ϕ = max(0, x), and the sigmoid
function ϕ = 1/(1 + exp(−x)). The activation function in the output layer needs to match the
desired co-domain of the output, e.g., the identity function for regression tasks or the sigmoid
function for binary classification. In the case of multi-class classification with K classes, the
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x3

x2

x1

ϕ (
∑

i xiwi)
z

w3

w2

w1

input hidden layer 1 hidden layer 2 ouput

Figure 3.2: Left: Illustration of a single neuron with input dimensionDin = 3. Right: Illustration
of a simple fully connected neural network with two hidden layers. The input layer is simply
a representation of the input vector x and has dimension Din = 4, the hidden layers have
dimensions D1 = D2 = 5, and the output layer has dimension Dout = 1.

softmax function ϕ = exp(x)/
∑K

k=1 exp(xk) is often applied, which normalizes the output to a
probability distribution over the classes.

One key advantage of neural networks is that the gradient ∇θf̂θ of the output (and thus
ultimately the loss function) with respect to the parameters can be computed via the back-
propagation algorithm [78–80]. This algorithm is essentially an efficient application of the chain
rule of calculus, where at each layer the gradient of the loss with respect to the output of the
previous layer is computed, and then propagated backwards through the network to compute
the gradient with respect to the parameters. Both the forward pass as in Eq. 3.15 and the gra-
dient computation are based on matrix-vector operations, which can be efficiently parallelized
on modern hardware, in particular on graphics processing units (GPUs).

3.3.2 Boosted Decision Trees

Another class of models that has been widely used for regression and classification tasks are
boosted decision trees: the application of so-called boosting techniques to decision trees.

A decision tree is a simple model that recursively partitions the input space into regions,
assigning a constant value to each region. It can be illustrated as a flowchart, as in Fig. 3.3,
where each internal node represents a decision based on some feature, each branch represents
the outcome of that decision, and each final “leaf” node represents the final prediction. The
decision at each node corresponds to a threshold on a single feature. The tree is constructed
iteratively by selecting the feature and threshold that best splits the data into two subsets,
according to some criterion, e.g., the Gini impurity or information gain. It is grown until some
stopping criterion is triggered, for example a maximum depth.

A single complex decision tree might not generalize well to unseen data, as it could overfit
the training data. To mitigate this, one can instead train an ensemble of decision trees, where
each tree is trained on a subset of the data, which is randomly sampled with replacement for
each iteration. This is known as bagging (bootstrap aggregating) [81] and can be applied for
other models than trees as well. The ensemble prediction is obtained by aggregating over the
ensemble members, e.g., via taking the mean of all individual model predictions. In classification,
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x1 > 0.4

x2 > 0.7

0.2 0.7

x0 > 0.3

x1 > 0.1

0.1 0 0.6

Y

Y N

N

Y

Y N

N

Figure 3.3: Example of a simple decision tree with three input features x0, x1, and x2, four
internal nodes and five leaf nodes. The leaf nodes denote the prediction associated with the
data point, in this case discrete numbers between zero and one. The labels “Y” and “N”
denote for each internal node whether the corresponding condition is fulfilled or not fulfilled,
respectively.

a majority vote is a popular choice of aggregation. Another layer of model-by-model randomness
can be introduced by only considering a random subset of input features at each split. Decision
tree ensembles with sample and feature bagging are known as random forests [82].

Instead of training the ensemble members independently, one may also train them sequen-
tially, where each new tree is trained on the residuals of the ensemble prediction so far. This
is known as boosting. A popular choice of boosting algorithm is AdaBoost [83], which assigns
weights to the training samples based on the performance of the previous ensemble members,
i.e., the next iteration puts more emphasis on those samples where the last iteration performed
poorly. The final ensemble prediction is the weighted average of the individual model pre-
dictions. Another popular class of boosting algorithms is gradient boosting [84], which allows
minimizing an arbitrary differentiable loss function. The idea is to fit each new model to the
negative gradient of the loss function with respect to the ensemble prediction. The ensemble
prediction is then updated by adding the new model with a small learning rate. It is thus more
in line with the gradient descent training paradigm, discussed in Section 3.2.1.

There are multiple popular frameworks for gradient boosting–based algorithms, such as
XGBoost [85] and LightGBM [86]. They provide many additional features for improving the
performance and stability of the models. One such feature is to discretize the input features
into histograms, which can speed up the training process by significantly reducing the number
of unique feature values that need to be considered at each split.

3.4 Concrete Unsupervised Learning Approaches

In this thesis, unsupervised ML techniques will serve as an important tool for anomaly detection
and eventually the model-agnostic search strategy for new physics. The following subsections
introduce the most relevant methods that form the basis of the anomaly detection techniques
used in this thesis.
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3.4.1 Autoencoders

An important example of unsupervised machine learning models are autoencoders (AEs). These
are (variants of) neural networks consisting of two parts: an encoder and a decoder. The
encoder maps the input data to a typically lower-dimensional latent space representation, while
the decoder maps the latent space back to the input space. This can, for example, be realized
simply by using a fully connected neural network with fewer nodes in one of the hidden layers
than there are in the input and output layer. A common choice of loss function is the MSE
between the input and the output of the autoencoder:

L(f̂θ,D) =
1

N

N∑
i=1

(
f̂θ(xi)− xi

)2
. (3.16)

Once trained, the encoder part can be used to map new data points to the latent space repre-
sentation, which can be useful for tasks, such as dimensionality reduction.

If the probability distribution of the data within the latent space p(z) were known, one
could sample from it and transform the samples back to the input space via the decoder. This
would then be a generative model, with the ability to sample data points that resemble the
ones in the training data. However, such a tractable density model would need to be enforced
during training. The variational autoencoder [87] (VAE) is one way to achieve this. Rather
than learning a deterministic mapping from input to latent space, the encoder learns the latent
space distribution under the condition of the input values q(z|x). This posterior distribution is
commonly chosen to be a multi-variate Gaussian distribution with diagonal covariance matrix,
where the mean µ and variance σ2 are the outputs of a neural network:

q(z|x) = N (µ(x), σ2(x)I). (3.17)

Following the derivation in Ref. [87] based on maximizing the so-called evidence lower bound,
this results in an additional loss term LKL that encourages the posterior distribution to match
a tractable prior distribution p(z), e.g., a standard normal distribution, by introducing the
Kullback-Leibler divergence (see Appendix A.1) between the two distributions. If one further
weights the KL term by a hyperparameter β, introduced in Ref. [88], the VAE loss function
becomes:

L(f̂θ,D) = Lreco + βLKL = Lreco + β
N∑
i=1

DKL(q(z|xi)||p(z)), (3.18)

where Lreco is the reconstruction loss, as used for the AE. In fact, the same MSE loss as in
Eq. 3.16 can be inserted, implying that the input features can be described as a product of
Gaussian functions with unit variance.

3.4.2 Kernel Density Estimation

A very simple method for the task of density estimation is kernel density estimation (KDE) [89].
The idea is to approximate the data distribution p(x) by placing a kernel function K : RD → R
on each data point xi in the training set2 and summing them up:

p̂(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
, (3.19)

2
The procedure here does not involve a training in the sense of minimizing a loss function, but the “training

set” here rather refers to the data points that are used to estimate the density, which are potentially different
from the inference data point x.
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where h ∈ R is the so-called bandwidth of the kernel. A larger choice of h results in a smoother
density estimate. Various options for kernel functions are mentioned in the literature, such as a
simple normal distribution. This approach is not a machine learning method in the sense of op-
timizing parameters based on a loss function, as it depends only on pre-defined hyperparameters
(h and the choice of K), but it is fully data driven in nature.

A major disadvantage of the KDE is that its expressiveness is limited as it assumes the same
local smoothness around each data point, rather than capturing more complex structures in the
data. In particular, dependencies between multiple dimensions are generally not well described
by a static kernel. Moreover, the computational complexity of inferring the density at a new
data point scales linearly with the number of training data points, which all need to be stored
in memory.

In addition to its simplicity and lack of assumptions on the (global) functional form of the
data distribution, the KDE has the advantage that it can be used for sample generation as well.
This is in practice achieved by uniformly sampling a data point from the training set and then
sampling from the kernel function centered around this point.

3.4.3 Normalizing Flows

A more sophisticated class of generative models that can also be used for density estimation, are
normalizing flows [90, 91]. Their core idea is to learn an invertible mapping between a simple
and analytically tractable distribution to the more complex data distribution.

When transforming a random variable x via an invertible function h : RD → RD to a new
variable z = h(x), the probability density function of z transforms according to the change of
variables formula:

px(x) = pz(h(x))

∣∣∣∣det(∂h∂x
)∣∣∣∣ , (3.20)

where px and pz are the probability density functions of x and z, respectively. In this context,
∂h
∂x is the Jacobian matrix of h with respect to x. Finding such a function h that transforms
to arbitrarily complex data distributions while being invertible and yielding tractable Jacobian
determinants can be challenging, but is simplified by restricting the form of h to a composition
of T ∈ N simple, invertible functions, h = h1 ◦ . . . ◦ hT . Its inverse then corresponds to the
composition of the inverses in reverse order, h−1 = h−1

T ◦ . . . ◦ h−1
1 . The advantage of this

compositional form is that the Jacobian determinant of the composition is simply the product
of the Jacobian determinants of the individual functions:∣∣∣∣det(∂h∂x

)∣∣∣∣ = T∏
t=1

∣∣∣∣det( ∂ht
∂zt−1

)∣∣∣∣ , (3.21)

where zt ≡ h−1
t (zt−1), z0 ≡ z, and zT ≡ x. As usual in machine learning applications, these

functions ht are parametrized by a set of learnable parameters θt, in order to approximate the
(unknown) true data distribution p(x) with a model distribution px(x|θ). One can show (see
Appendix A.2) that this is equivalent to minimizing the NLL of the data under the model, which
is thus a suitable loss function for training a normalizing flow. Using the relations in Eq. 3.20
and Eq. 3.21 yields the explicit form:

L(hθ,D) =
N∑
i=1

(− log px(x|θ)) = −
N∑
i=1

(
log pz(hθ(x)) +

T∑
t=1

log

∣∣∣∣det( ∂hθt
∂zt−1

)∣∣∣∣
)
. (3.22)

In addition to modeling the data density using a composition of simpler functions hθt , one can
generate new data points by sampling from the simple distribution znew ∼ pz and transforming
them via the inverse xnew = h−1

θ (znew).
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The main challenge is to find building blocks for hθt (or equivalently h
−1
θt

) that are expressive,
invertible and have tractable Jacobian determinants. A popular choice is the coupling layer [92],
which splits the input into two (at least roughly) equal-sized parts x = {x1, x2}, where x1 is left
unchanged and x2 is modified by an affine transformation, i.e., scaled and shifted, depending on
x1:

hθt(x) =

[
x1

eαθt
(x1) ⊙ x2 + µθt(x1)

]
. (3.23)

The scaling and shift strengths αθt
and µθt are neural networks that take x1 as input. The

inverse of this transformation is simply:

h−1
θt

(z) =

[
z1

e−αθt
(z1) ⊙ (z2 − µθt(z1))

]
, (3.24)

and the Jacobian of the transformation is

∂hθt
∂x

=

[
I 0

∂h2,θt
∂x1

diag(eαθt
(x1))

]
. (3.25)

Because of the diagonal structure of the Jacobian, the determinant is simply the product of the
diagonal elements: ∣∣∣∣det(∂hθt∂x

)∣∣∣∣ = D∏
i=1

eαθt
(x1) = exp

(
D∑
i=1

αθt,i
(x1)

)
. (3.26)

As only half of the input is transformed, the coupling layer is usually alternated with a per-
mutation layer that changes the order of the input dimensions, such that all dimensions are
transformed at some point.

Another popular class of normalizing flows are autoregressive flows, which can be seen as a
more flexible generalization of the coupling layer flows, in particular the inverse autoregressive
flow (IAF) [93] and the masked autoregressive flow (MAF) [94]. The IAF models a step in the
generative direction3 x = gθt(z) = h−1

θt
(z) as an affine transformation, where the scaling and

shifting strengths are computed per for each dimension i based on input dimensions with lower
index j < i:

gθt(z) =


z1

z2e
αθt

(z1) + µθt(z1)

z3e
αθt

(z1,z2) + µθt(z1, z2)
...

zDe
αθt

(z1,...,zD−1) + µθt(z1, . . . , zD−1)

 . (3.27)

Similarly to the coupling layer, the inverse of this transformation is straightforward to compute,
and the Jacobian determinant reduces to the exponential sum of scaling strengths (Eq. 3.26),
because of its triangular structure.

Since the inputs of the neural networks αθt
and µθt are values z along the generative direction

x = gθt(z), the simple latent space samples can be transformed to data-like samples in one
forward pass. On the other hand, in order to compute the likelihood of a data point x one
needs to map the first dimension x1 to z1, then use the z1 to map the second dimension x2

3
By the inverse function theorem, the log Jacobian determinant of the inverse transformation is simply the

negative of the log Jacobian determinant of the forward transformation.
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to z2, and so on. In total, this requires D forward passes through the neural networks, which
can be computationally expensive for high-dimensional data. This is particularly important
as the likelihood computation is needed for training with the loss function in Eq. 3.22. The
MAF addresses this issue by the scaling and shifting strengths depending on the more data-like
direction x:

gθt(z) =


z1

z2e
αθt

(x1) + µθt(x1)

z3e
αθt

(x1,x2) + µθt(x1, x2)
...

zDe
αθt

(x1,...,xD−1) + µθt(x1, . . . , xD−1)

 . (3.28)

In this case, the likelihood computation is more efficient, as it is realized in a single forward
pass, but the generative direction requires D forward passes through the neural networks.

The scaling and shifting strengths αθt
and µθt of IAD and MAF can be realized with a single

neural network per transformation t with D input dimensions and 2D−2 outputs, corresponding
to the scaling and shifting strengths for each dimension except the first. The weight matrices
in each neural network layer are multiplied element wise with a binary mask (values of 0 and 1)
that enforces the autoregressive property by construction, i.e., the scaling and shifting strengths
for a given dimension only depend on the previous dimensions. This is inspired by the masked
autoencoder for density estimation [95].

The formalism of normalizing flows is easily extended to conditional density estimation and
generation, i.e., modeling p(x|y) where y ∈ RDcond is a set of Dcond additional context variables.
The original proposal [96] of the conditional likelihood obtained from a normalizing flow hθ is
to modify Eq. 3.20 as follows:

p(x|y, θ) = pz(hθ(x, y)|y)
∣∣∣∣det(∂hθ(x, y)∂x

)∣∣∣∣ , (3.29)

i.e., the context variables appear both as input to the transformation hθ and as condition in
the latent space prior pz. In practice, the former can be achieved by including them as input
to the neural networks that parametrize each of the transformations hθt . The latter is often
omitted, i.e., the latent space prior is chosen to be independent of the context variables, as the
conditioning can already be modeled by a sufficiently expressive hθ. In the generative direction,
these context variables need to be provided to g(znew|y) along with the latent space samples
znew ∼ pz.

Compared to the VAE, normalizing flows have the advantage of explicitly modeling the likeli-
hood. A disadvantage is that the latent space dimensionality is fixed to the data dimensionality,
whereas a VAE is able to learn a lower-dimensional latent space representation.

3.5 Evaluation Metrics

Before using a trained ML model for inference, it is crucial to have an estimate on the expected
performance. This is in particular important when comparing different models or hyperparam-
eters, in order to decide which one to use for the final application. This is commonly performed
on a separate test dataset, which has been used neither for training nor validation. The optimal
choice of metric depends on the nature of the task.

A straightforward choice of evaluation metric is the loss function used during training, com-
puted on the test set. This results in a single scalar number and thus allows for unambiguous
ordering of models by performance. The loss function also only depends on information that has
been available for the training set. However, the loss function often only encodes a proxy task
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for what is ultimately demanded from the model. Moreover, it would not be trivially possible
to compare between different choices of loss functions.

In the case of classification, the most popular choices of evaluation metrics are based on
counting how many data points have been correctly classified. This depends on knowing the
true labels for the test set data points, which might not always be available if the classification
task is trained with unsupervised learning techniques. In this case, a representative set of labels
can be available for the sake of testing, with the caveat that the labels might not be fully
generalizable to every case.

A widely used binary classification metric is the accuracy, which counts the number of
correctly classified test set examples, divided by the size of the test set. It is straightforward to
interpret, as 100% is the maximum and 50% corresponds to mere random guessing. However, the
conventional definition of accuracy implies a pre-defined decision threshold, i.e., when the output
of the model f̂θ(x) is above a certain value, the data point is classified as positive, otherwise as
negative. This decision threshold is conventionally set to 0.5, since the model output is often
interpreted as a probability. This might not be the optimal choice, as the relative importance
of true and false positives depends on the specific application.

The receiver operating characteristic (ROC) curve is a graphical representation of the trade-
off between true positive rate (TPR), the fraction of positive-label examples that were classified
as such, and false positive rate (FPR), the fraction of wrongly classified negative-label examples,
for all possible decision thresholds. A ROC curve is illustrated in Fig. 3.4, showing the TPR
as function of the FPR. The diagonal line, on which the two values are equal, corresponds
to random guessing. In HEP, the ROC curves are often drawn as the background rejection,
which is the reciprocal of FPR, as function of TPR. The reason for this lies in the high rate of
expected background compared to small new physics signal rates. It is also easier to compare
different models, as the numeric difference between models in the vertical axis increases from
the reciprocal of FPR, which only ranges from 0 to 1.

While the ROC curve provides a full overview of the model capability over all possible
decision thresholds, it does not yield a strict ordering between models. The ROC curve is thus
often summarized by measuring the area under the curve (AUC), in the TPR vs FPR plane.
This can easily be interpreted, as the maximum value of 1 corresponds to perfect classification,
while 0.5 corresponds to random guessing. However, the AUC implicitly assumes that the
relative importance of TPR and FPR is equal, which might not always be the case. Especially
in HEP, rejecting background is usually more important than retaining signal. Another ROC
curve–based metric is the FPR (or background rejection) at a fixed value of TPR, which assumes
an a-priori choice of working point.

In HEP, the focus of many ML classifiers is to enhance the fraction of collision events origi-
nating from new physics processes within an overwhelming amount of background events. In the
limit of large datasets, the statistical significance of a new physics process can be approximated
as:

Z =
NS√
NB

, (3.30)

with NS and NB being the number of signal and background events, respectively. This implies a
specific relative importance of TPR and FPR, which is reflected in the significance improvement
characteristic (SIC) [97], defined as:

SIC =
Zcut

Z0
=

NS,cut√
NB,cut

/
NS,0√
NB,0

=
NS,cut

NS,0

/√
NB,cut

NB,0
=

TPR√
FPR

, (3.31)

where the subscripts “0” and “cut” refer to the quantities before and after applying a selection on
the classifier output, respectively. Equation 3.31 shows the correspondence between improving
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Figure 3.4: The left panel illustrates three receiver operating characteristic (ROC) curves. The
red diagonal line corresponds to random guessing, and the purple and green curves arise from
non-trivial separation between the two classes. The curves arise from scanning decision thresh-
olds through the classifier output, as illustrated in the right panel. The upper output distribution
corresponds to the purple ROC curve and the lower one to a random classifier. Each show an
example decision threshold, which maps to a single point on each ROC curve.

the significance and the quantity in terms of TPR and FPR. A SIC curve can be constructed
by plotting the SIC values as a function of anything related to the decision threshold, such as
TPR or FPR. A value of SIC > 1 corresponds to a non-trivial improvement in sensitivity, which
is a stricter requirement than improving over random guessing.
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4 Anomaly Detection Methods

This section provides an introduction to the specific ML subfield of anomaly detection, with a
particular focus on the application in model-agnostic searches for BSM physics. The following
paragraphs give an overview of the core concepts, including a categorization of different types
of anomalies. Dedicated subsections later review specific methods in the literature along each
of these categories that have been developed for model-agnostic searches in HEP. The focus and
the level of detail is chosen in light of what will be relevant in the remainder of this thesis. For a
broader review of anomaly detection outside of HEP, the reader is referred to Ref. [98]. Previous
reviews of anomaly detection in HEP can be found, for example, in Refs. [99, 100].

An anomaly is by definition a deviation from the normal, i.e., the expected behavior of a
system. Anomaly detection is thus the task of identifying such deviations (usually directly) in
data using machine learning. It is useful to distinguish three types of anomalies, based on the
necessary degree of preconception: outliers, overdensities, and anomalies according to alternative
priors. They are illustrated in Fig. 4.1.

x

p(x)

x

p(x)

data

background

data

background alt.
signal

x0 x1 x0 x1 x0 x1

Outlier Overdensity Signal Prior

x

p(x)
large pdata

small pdata

pdata ∼ pbkg
pdata > pbkg psig’ > pbkg

psig’ < pbkg

Figure 4.1: Illustration of the three types of anomalies: outliers (left), overdensities (center),
and anomalies according to alternative signal priors (right). The points x0 are non-anomalous
in each case, while the points x1 are likely associated with a high anomaly score.

Outliers are by far the most commonly targeted type of anomaly. In the broad literature
(outside of HEP), the terms outlier and anomaly are often used interchangeably. They are
data points that are in some sense substantially different from the bulk of the data. From a
statistical point of view, they correspond to samples x that lie in low-density regions of the data
distribution p(x). Such outliers can be identified without any assumptions on the expectation,
and thus it is often referred to as fully unsupervised anomaly detection. The definition of a
low-density region is however not unique as it depends on the choice of coordinate system for
x, i.e., the same data point can be an outlier in one coordinate system but not in another [101,
102].

Overdensities, on the other hand, are regions of the data distribution that are more populated
than one would expect from some a-priori model of what is considered normal. This so-called
background model can also be obtained from the data themselves, however this construction
then relies on further assumptions, such as a localization of the anomaly in certain obervables.
The definition of an overdensity is often phrased in terms of a likelihood ratio of a resulting
signal (capturing the anomalous contribution) and background model:

Rsig,bkg(x) =
psig(x)

pbkg(x)
, (4.1)
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which is independent of the coordinate system because the Jacobian determinants of any trans-
formation would cancel out between numerator and denominator.

Finally, if one not only has some preconception of the background, but also some (limited)
prior knowledge about the type of anomaly that could be expected, one may define anomalies
according to how well data points match this alternative prior. It can also be phrased as a
likelihood ratio as in Eq. 4.1 but with the signal model being replaced by some alternative signal
hypothesis. Thus, it does not depend on the coordinate system either. As the outcome depends
on the choice of alternative signal priors, it is the least unsupervised paradigm of the three types
of anomalies.

With each definition above, one is able to construct an anomaly score, i.e., a continuous
number related to the probability of a data point being an anomaly. As in binary classifica-
tion tasks, one can then define a threshold on the anomaly score to flag data points as either
anomalous or non-anomalous.

4.1 Model-Agnostic Searches in High-Energy Physics

In the context of high-energy physics analyses, anomaly detection is usually linked to model-
agnostic searches for new physics.

The usual setting of a model-agnostic new physics search is that the bulk of the recorded data
is assumed to follow a known background, the Standard Model, and there might be relatively
few data points resulting from new physics processes. The aim is to identify these new physics
signal events if they exist, and ideally to do so with no assumptions on the nature of the signal.
This is being referred to as a signal model–agnostic search. Ideally, such a search would also not
rely on an exact description of the background, making it background model agnostic as well. In
practice, neither of these two “agnosticisms” can be fully achieved, and the goal is to minimize
the assumptions made.

Machine learning anomaly detection has become a promising toolkit for such model-agnostic
searches. Applying anomaly detection in this context implies that the potential new physics sig-
nal is an anomaly as defined earlier. This further assumes that there exist measured observables,
in which a signal would manifest itself as either an outlier or a localized excess (overdensity) in
the data distribution. Otherwise, it cannot be detected, even if it is present.

It is possible to construct model-agnostic searches for new physics without machine learn-
ing. Important examples of such analyses are discussed in Secs. 5.1 and 5.2. However, recent
developments in anomaly detection show a promising potential to improve the sensitivity of
such searches. The following sections will discuss some of these methods, grouped into the three
types of anomalies as categorized in the beginning of this section.

4.2 Unsupervised Anomaly Detection

As introduced earlier, outlier detection is the most unsupervised type of anomaly detection. In
the context of machine learning, this corresponds to learning the data distribution pdata(x) or a
proxy for it, and then selecting data points with low probability.

One of the most established unsupervised anomaly detection approaches is to train an au-
toencoder (Section 3.4.1) to compress the data into a lower-dimensional latent representation
and then reconstruct the input. The AE has limited capacity and will learn to effectively re-
construct the most common patterns in the data. Anomalies, which by definition only occur
infrequently in the training data, will be reconstructed worse. The reconstruction error, which
is also the typical choice of loss function for training AEs (e.g., Eq. 3.16), is thus a proxy for
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pdata(x) and can be used as the anomaly score. Early examples of demonstrating the potential
of AEs for anomaly detection in HEP include Refs. [103–105].

Rather than learning pdata(x), one can also learn a proxy for pbkg(x) directly by incorporating
additional assumptions. This is commonly done by either motivating control regions in the data
where new physics signals are expected to be more depleted than in the analysis region, or by
training the model on MC simulation of the background.

As discussed in Section 3.4.1, VAEs are a generalization of AEs that learn a probabilistic
model of the data distribution in the latent space. Reference [106] is an early example in
HEP where the reconstruction error of a VAE was tested as an anomaly score with promising
performance. A key advantage of the VAE is that the regularization term LKL in the loss
function encourages the latent space data distribution to approximate a known prior p(z). This
regularization term (or the full loss, consisting of both reconstruction and regularization terms
in Eq. 3.18) can thus also be used to define an anomaly score, as it is large for data points that
are unlikely under the prior. This has been shown to exceed the sensitivity to certain types of
anomalies over a pure reconstruction loss in Ref. [107]. The latent space prior p(z) can also be
used in other ways to define an anomaly score. In particular, the sensitivity to certain types of
anomalies can be enhanced by encoding additional assumptions into the prior, such as a bimodal
structure [108].

A key advantage of (V)AE-based anomaly detection is that it tends to scale well to a large
number of input features. In HEP, this is particularly useful for incorporating the full collision
event information, which is typically described by a high-dimensional “low-level” feature space
(e.g., the full space of PF candidates from Sec. 2.4.4). By constructing a limited number of “high-
level” features that are motivated by expert knowledge (e.g., N -subjettiness from Sec. 2.5.5),
one might lose sensitivity to new physics signals that are not well captured by these features.
However, this also means that the resulting anomaly score is prone to be correlated with certain
features of interest, such as invariant masses, that are used in the statistical analysis after
selecting the most anomalous data points. Selecting on this anomaly score thus results in a
change of the background shape in these features, which might be undesirable. Early studies
of VAEs with low-level input features, such as Ref. [107], addressed this issue by explicitly
decorrelating the anomaly score from such features that are aimed to be orthogonal.

Another known caveat of (V)AE-based anomaly detection is the so-called complexity bias.
The loss is not an exact proxy for the data likelihood, but tends to be higher for more complex
data. Abundant data points that are intrinsically more difficult to reconstruct are often more
likely to be flagged as anomalies than rare but simple ones. One approach to mitigate this is
to use a normalization scheme that decreases the probability of rare data points, regardless of
their complexity [109].

Another approach to learn the data (or background) distribution more directly would be
to use a normalizing flow. This is explored for HEP anomaly detection in Refs. [110, 111]. A
downside of this approach is that normalizing flows usually come with higher model complexity,
especially for modeling many dimensions, which would be necessary to incorporate more low-level
features, as is common in VAE-based anomaly detection in HEP. Furthermore, it is a known issue
in the broader ML literature outside HEP that normalizing flows tend to associate high density
to out-of-distribution data points [112]. One potential reason is the mismatch between typicality
and density in high-dimensional spaces, which is a problem for outlier detection in general [113].
Another explanation is attributed to the inductive bias that is necessary to generalize to data
points outside the training set [114], but these conclusions are drawn from works that focus on
image data, and it remains to be shown how well they translate to HEP data.
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4.3 Weakly Supervised Anomaly Detection

Compared to purely model-agnostic outlier searches, overdensity detection–based applications
rely on some additional assumptions. In the context of HEP, they are usually encoded by
rephrasing the learning problem as a weakly supervised classification task.

4.3.1 Weak Supervision and CWoLa

Weak supervision is the subfield of ML that is concerned with learning tasks that fall in-
between the fully supervised case, described in Sec. 3.1.1, and unsupervised learning, described
in Sec. 3.1.2. Reference [115] aims at providing a clear taxonomy of different branches of weak
supervision. In particular interest for this work is the problem setting of multi-instance learn-
ing (MIL) [116], where the individual training data (referred to as instances) are grouped into
so-called bags and the labels are only available per bag and not per instance. An important
special case of MIL is the noisy label setting, where the label of a bag is not correctly reflecting
the per-instance labels that should be inferred by the model. A broad mathematical formula-
tion and conditions for a solution to this problem are discussed in Ref. [117]. In the context
of HEP applications, this was formalized within the framework of Classification Without Labels
(CWoLa) [118].

CWoLa can be understood by noting that a binary parametric classifier model (e.g., a neural
network) trained to separate two classes, signal and background, approximates (a monotonic
rescaling of) the likelihood ratio, as shown in Eq. 4.1, between the two classes4. This is a
consequence of using a suitable loss function, such as the binary cross-entropy, and is discussed
in more detail in the Appendix A.3. For simple hypothesis tests, in which the densities psig(x)
and pbkg(x) are uniquely defined without depending on extra model parameters, the likelihood
ratio is a uniformly most powerful test statistic according to the Neyman-Pearson lemma [67].
This means that for every fixed false positive rate, the likelihood ratio test has the highest true
positive rate.

Assuming there are two mixed sets, M1 and M2, that are composed of both signal and back-
ground data points with signal fractions f1 and f2, respectively, then their respective probability
densities are given by

pM1
(x) = f1psig(x) + (1− f1)pbkg(x) (4.2)

pM2
(x) = f2psig(x) + (1− f2)pbkg(x). (4.3)

If one further assumes that f1 > f2, then the core theorem of CWoLa [118] is that an optimal
classifier trained to separate M1 and M2 will simultaneously approximate an optimal classifier
for distinguishing signal from background directly. This is because the mixed-set likelihood ratio
RM1,2(x) = pM1

(x)/pM2
(x), which is approximated by the mixed-set training, is a monotonically

increasing rescaling of the signal-background likelihood ratio Rsig,bkg(x) = psig(x)/pbkg(x):

RM1,2(x) =
pM1

(x)

pM2
(x)

=
f1psig(x) + (1− f1)pbkg(x)
f2psig(x) + (1− f2)pbkg(x)

=
f1Rsig,bkg(x) + (1− f1)
f2Rsig,bkg(x) + (1− f2)

. (4.4)

The theorem holds as long as f1 > f2, since then the derivative of the mixed-set likelihood ratio
with respect to the signal-background likelihood ratio is strictly positive:

∂RM1,2

∂Rsig,bkg

∣∣∣∣
x

=
f1 − f2

(f2Rsig,bkg(x) + (1− f2))2
> 0. (4.5)

4
It should be noted, however, that this asymptotically holds in the limit of infinite training data, an infinitely

flexible model and perfect training convergence. In practice, the classifier is an approximate estimate.
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In the reverse case, f1 < f2, the two likelihood ratios would be anti-correlated, and a reverse
signal-from-background classifier would be learned. If f1 = f2, i.e., the mixed sets follow the
same distribution, the theorem breaks down and no information about the signal-background
likelihood ratio can be inferred.

4.3.2 Resonant Anomaly Detection and the Idealized Anomaly Detector

The CWoLa paradigm inspired a class of methods for detecting overdensities in HEP data, often
referred to as resonant anomaly detection. The core setup consists of one so-called resonant
feature m, in which a small localized signal presence is hypothesized, and a set of auxiliary
features x, which might capture potential differences of such a new physics signal and the
background. The spectrum of m is divided into two parts: the signal region (SR), in which a
potential signal is hypothesized5, and the complementary sidebands (SB). This is illustrated in
Fig. 4.2. If one were to have a sample of perfect SR background data, thus following pbkg(x|m ∈
SR), one could train a classifier with input features x to distinguish this from the SR data,
following pdata(x|m ∈ SR) = fsigpsig(x|m ∈ SR) + (1 − fsig)pbkg(x|m ∈ SR) with the unknown
(potentially zero) signal fraction fsig. This would correspond to a classifier learning the data-
to-background likelihood ratio:

RSR
data,bkg(x) =

pdata(x|m ∈ SR)

pbkg(x|m ∈ SR)
, (4.6)

and the CWoLa theorem implies that this classifier would also be optimal for distinguishing
signal from background in the SR, since the pure background set corresponds simply to a mixed
set with signal fraction of 0.

m

a.u.

SB SR SB

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

x

pdata(x|m ∈ SR)

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

Figure 4.2: Setup of a typical resonant anomaly detection scenario with a resonant feature m
and auxiliary features x. The m spectrum is divided into signal region (SR) and sidebands (SB).
The presence of signal is exaggerated for illustration. Figure taken from Ref. [1].

5
As there is usually not an a-priori optimal choice of SR in a model-agnostic search, the procedure discussed

here will be repeated for multiple SR choices covering a fiducial region of m with steps motivated by the detector
resolution.
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This type of approximating a signal-sensitive classifier by training a classifier to distin-
guish between signal+background and a perfect background sample is referred to as an idealized
anomaly detector (IAD), introduced as such in Ref. [1]6. It is idealized in the sense that the
availability of a perfect background sample is unlikely in a real-world scenario. On the other
hand, the training of such an IAD classifier on limited training data and numeric optimization
is a departure from learning the exact likelihood ratio. It thus serves as an upper performance
boundary when comparing different methods for estimating this background sample. An im-
perfect background sample implies different pbkg in Eqs. 4.2 and 4.3, which breaks the CWoLa
theorem to some extent, such that the equality in Eq. 4.4 is only approximate.

4.3.3 Approximating the Background Sample

A conceptually straightforward strategy for obtaining the pure background sample would be to
use MC simulation. The disadvantage is that this introduces an additional degree of background
model dependence, further relying on the background being well modeled in the simulation.
Otherwise, the resulting classifier learns to associate systematically mismodeled phase space
regions with being more signal like. To address this issue, several methods have been proposed
that learn a faithful background sample in a data-driven manner from the SB.

The earliest approach for a data-driven background sample approximation via the SB is
referred to as CWoLa Hunting [120, 121]. Here, the background sample is simply constructed by
selecting data points from the SB region. The method is valid only in the case where there are no
substantial differences between the SR and SB background: pbkg(x|m ∈ SR) ≈ pbkg(x|m ∈ SB).
This is in general not the case and needs to be ensured by a suitable choice of auxiliary features,
such that there are no notable correlations between m and x. As this is often not possible to
ensure over the full spectrum of m, it is common to select background-like data points only from
an adjacent region in m to the SR, where the background is expected to be similar. This region
is sometimes referred to as short sidebands (SSB). While a narrower SSB choice reduces the
correlation between m and x, it also reduces the size of the background sample, thus increasing
the statistical uncertainty and consequently leading to a less optimal classifier training. In order
to account for the different number of data points in SR and SSB, the loss function of the
classifier is usually weighted, such that left and right SSB contribute equally to the loss, and
together contribute as much as the SR.

A hybrid approach between using MC simulation and CWoLa Hunting is the simulation-
assisted likelihood-free anomaly detection (SALAD) method [122]. An imperfect MC background
simulation sample is corrected within the SR by deriving a correction function from the SB data.
This is achieved by training a binary classifier, usually a neural network, with a cross-entropy
loss to distinguish between SB data and SB simulation, using the auxiliary features x as well as
the resonant feature m as input. The output of this classifier h(x,m) can be used to derive a
sample weight corresponding to an explicit likelihood ratio:

w(x,m) =
h(x,m)

1− h(x,m)
≈ pdata(x,m)

pMC(x,m)
=
pdata(x|m)

pMC(x|m)

pdata(m)

pMC(m)
(4.7)

where the very last factor is an overall constant, corresponding to the ratio of the total number
of data and MC simulation samples. The first equality is derived explicitly in the Appendix A.3.
The parameterization with m allows the model, trained on the SB only, to be interpolated into
the SR. This learning of a reweighting function via neural networks has been explored in a HEP
context under the term deep neural networks using classification for tuning and reweighting

6
It has been used for comparison earlier, under the name of optimal CWoLa in Ref. [119].
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(DCTR) [123]. These weights are then used to reweight the MC background simulation samples
in the binary cross-entropy loss when training the SR classifier f̂θ to distinguish data from the
background:

LSALAD(f̂θ, f,D) = −
∑

mi∈SR data

log f̂θ(xi)−
∑

mi∈SR MC

w(xi,mi) log(1− f̂θ(xi)). (4.8)

This classifier is not subject to the same limitations of CWoLa Hunting mentioned above. The
disadvantage is that it relies on some prior MC background simulation sample as starting point,
and it assumes that the discrepancy between data and simulation in the SR can be smoothly in-
terpolated from the SB. In addition, the implicit interpolation of the correction function (query-
ing values within a region of m that was not shown during training) relies on a smoothness
assumption in the inductive bias of the classifier architecture.

A similar path is taken by the simulation-augmented CWoLa (SA-CWoLa) method [119].
Instead of using the SB to correct the SR MC background simulation, it modifies the CWoLa
Hunting training to penalize the learning of differences between the SR and SB (other than a
potential signal presence). This is achieved by adding an opposite-sign regularization term to
the loss function that captures whether the classifier is learning differences between SR and SB
in the MC background simulation:

LSA-CWoLa(f̂θ, f,D) = −
∑

mi∈SR data

log f̂θ(xi)−
∑

mi∈SB data

log(1− f̂θ(xi))

+ λ

 ∑
mi∈SR MC

log f̂θ(xi) +
∑

mi∈SB MC

log(1− f̂θ(xi))

 . (4.9)

Here, λ is a positive hyperparameter that controls the strength of the regularization, where the
limit of λ→ 0 recovers the default CWoLa Hunting loss. The MC simulation is thus only used as
a decorrelation tool, rather than a direct background sample. On the other hand, the approach
still assumes that the MC simulation differs from the data similarly in SR and SB.

The first fully data-driven attempt at learning the background sample directly from the SB,
and generalizing to x and m being arbitrarily correlated, is anomaly detection with density esti-
mation (ANODE) [124]. Rather than learning the data-to-background likelihood ratio directly
via a binary classifier, it involves an explicit construction of the ratio using two normalizing
flows. One conditional normalizing flow is trained to approximate the conditional likelihood
of x given m in the SR data pdata(x|m). A second flow learns the background likelihood by
only training on SB data pbkg(x|m). Because of the conditioning on m, the latter model can be
implicitly interpolated by querying it with m values in the SR, similar to the SALAD correc-
tion function. For each data point, the likelihood ratio can then be constructed by taking the
explicit ratio of the likelihoods from the two flows. With this construction, the method is not
limited to the case where x and m are uncorrelated. The downside is that normalizing flows are
computationally much more expensive than training a simple binary classifier such as a neural
network. Moreover, the crucial task of correctly modeling the small overdensity on top of the
overwhelming background is inherently more difficult with a normalizing flow, based on smooth
mappings, than with a binary classifier that learns the likelihood ratio directly.

A notable extension of the CWoLa Hunting protocol is Tag N’ Train (TNT) [125]. This
method does not address the issue of needing x and m to be uncorrelated, but rather focuses on
increasing the signal fraction during training via well-motivated physics assumptions. Specifi-
cally, it assumes that the anomaly manifests in at least two objects, O1 and O2. In HEP this
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could, for example, correspond to a heavy BSM resonance decaying into two lighter BSM par-
ticles. This means that the features can be decomposed into those capturing properties of O1
(xO1) and O2 (xO2). The procedure then consists of training an unsupervised anomaly detector,
as described in Sec. 4.2, on xO1 only, then dividing the data points into a signal-enriched and
a background-enriched set based on the resulting anomaly score (e.g., using the highest and
lowest anomaly score values, respectively). A CWoLa classifier is then trained to distinguish
signal-enriched from background-enriched data based on xO2. The same procedure is repeated
with the roles of xO1 and xO2 reversed. The final two classifiers, one using xO1 and the other
using xO2, approximate the signal-to-background likelihood ratio if the two objects are uncorre-
lated and the unsupervised anomaly detector learns at least weak discrimination between signal
and background. They can then either be combined to form the final TNT classifier, or the
procedure is iterated to further increase the signal fraction. This is illustrated in Fig. 4.3. The
feature m and its distinction between SR and SB is not strictly needed in TNT, but can be used
to further enhance the a-priori signal fraction. The method is thus a hybrid between weakly
supervised and unsupervised anomaly detection, with the additional assumption that the signal
results in at least two uncorrelated objects.

Figure 4.3: Schematic illustration of the Tag N’ Train method. Figure taken from Ref. [125].

While ANODE benefits from the explicit construction of pbkg(x|m) in the SR, by interpolat-
ing a flow trained on the SB, its direct likelihood ratio construction is less performant than the
binary classifier training of CWoLa Hunting. The classifying anomalies through outer density
estimation (CATHODE) [1] algorithm combines the advantages of both approaches. After train-
ing (as in ANODE) a conditional normalizing flow to learn pbkg(x|m) from the SB, it involves
generating new samples from this flow with m drawn from a simple one-dimensional approx-
imation to the SR distribution pbkg(m). By the invertible nature of normalizing flows, these
samples are distributed according to pbkg(x,m), and can be used to train a binary classifier to
distinguish data from these samples. It thus learns the likelihood ratio in the same manner
as CWoLa Hunting, but with a background sample whose correlations between x and m are
directly modeled rather than ignored. An additional advantage is that once the flow is trained,
one can draw arbitrarily many background samples from it. This facilitates an improved classi-
fier training, as the background sample size is not limited by the size of the (S)SB. CATHODE
can thus approach the performance of the IAD in a fully data-driven manner, in the general
case of correlated x and m. It relies on the assumption that the background shape can be well
interpolated into the SR via the smooth inductive bias of the normalizing flow architecture.
Furthermore, it requires all features x to be well modeled by the flow, which is based on a se-
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quence of smooth transformations. This can be challenging for general HEP data, which might
consist not only of smooth distributions, but also of non-trivial structures, such as sharp peaks
or discrete observables. The CATHODE method will be discussed in more detail in Sec. 6.2, as
it has been developed in the context of this thesis.

Another approach to constructing the background sample is constructing unobserved regions
by transforming adjacent intervals (CURTAINs) [126]. Instead of learning the full pbkg from
the SB, it uses the invertible transformations directly, i.e., the normalizing flow without the
prior distribution, to transport data from the SB to the SR using the difference in m between
target and source value, ∆m, as conditional. This mapping is originally trained via an optimal
transport loss that quantifies how well two batches of SB data points are mapped into each
other. A later version combines two flows: one trained to learn the base distribution of the SB
and the other to learn the transformation between SB points [127]. With the latter approach,
it is possible to train with the conventional NLL loss. The conceptual advantage of CURTAINS
over CATHODE is that an a-priori simpler task is learned: the invertible map between SR
and SB x, which are expected to be somewhat similar. However, in order to learn it, either
a batch-wise optimal transport loss (Ref. [126]) or an additional base density flow (Ref. [127])
is needed during training. The former is known to be suboptimal compared to an exact NLL
loss. The latter approach is an additional layer of complexity (and approximation) compared
to CATHODE where only the base density flow is trained. The conditioning on ∆m also comes
with advantages and disadvantages. On the one hand, the transformation can be performed
using data pairs within a single SB (left or right SB exclusively) as well as between left and right
SB, so the evaluation does not rely on querying conditional values unseen during training. On
the other hand, this choice limits the expressiveness of the transport function, as it potentially
ignores more complex dependence of x on the actual value of m.

The feature transporting property of flows has also been explored in an approach similar to
SALAD. The method flow-enhanced transportation for anomaly detection (FETA) [128] uses a
flow to map an imperfect MC background prior to a more faithful distribution of the expected
background in data. It employs the same double-flow construction as Ref. [127] to learn the
transformation from MC background simulation to data in the SB conditioned on m. Once
trained, this flow is applied to map MC background simulation to the expected data background
in the SR, which is then used to train a binary classifier against the SR data. Compared to the
binary classifier reweighting in SALAD, the flow-based transfer function is expected to generalize
better for the case where data and simulation x distributions have non-overlapping support, i.e.,
a pure weighting scheme cannot learn to populate an empty region of x space in simulation
to non-zero data density in the same region. A disadvantage is the higher complexity of flow
models compared to classifiers based on simple neural networks. Otherwise, the method exhibits
similar advantages and limitations as SALAD.

While CWoLa Hunting only works in the case where x andm are approximately uncorrelated,
multiple of the aforementioned methods extend the background sample construction to the more
general case of finite correlations. However, once a binary classifier f̂θ is trained on this correlated
x to learn the likelihood ratio, it also learns the implicit m dependence: f̂θ(x(m)). Applying
a selection on this anomaly score thus results in an m-dependent selection, which alters the
background distribution inm. This can be detrimental during the background estimation needed
to quantify the deviation from the background-only hypothesis, as discussed in Sec. 2.6.3. The
CATHODE protocol can be modified slightly in order to prevent the classifier from learning the
m dependence. Rather than training it to distinguish SR data from a sample drawn from the
normalizing flow approximation to pbkg(x|m), the underlying invertible transformation of the
flow hθ(x,m) is first used to map the SR data to the latent space, and the background sample
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is drawn from the simple prior pz(z)
7. The classification task between the two samples in the

latent space is similar to the original task, but with the m dependence removed as background
has been trained to be mapped to a simple prior distribution without m dependence. This
method is referred to as latent CATHODE (LaCATHODE) [2] and, apart from mitigating
the background shaping in m, shares most of the advantages and limitations of the original
CATHODE method. While the mapping of SR background data to the prior distribution has
been trained from learning the task in the SB, the lack of control over where in the latent space
the potential signal is mapped to presents a potential limitation compared to CATHODE. It
implies that the overdensity location might change from one randomly initialized flow training to
another, introducing additional variance, and it might be mapped to regions of high background
density, where the classifier is less sensitive to anomalies. The problem of the m dependence
for background estimation and the solution of LaCATHODE will be discussed in more detail in
Sec. 6.3, as it has been developed in the context of this thesis.

4.4 Semi-Supervised Anomaly Detection

Section 4.2 discussed improving outlier detection methods by incorporating additional assump-
tions on the background, thus learning a proxy for pbkg(x) instead of pdata(x). The Quasi
Anomalous Knowledge (QUAK) [129] strategy extends this idea by incorporating prior assump-
tions on the new physics signal as well, i.e., learning a proxy for both pbkg(x) and psig(x). The
core reasoning is that even in a model-agnostic search, there exist assumptions motivated by
physics. For example, that the decay products of a massive particle will be contained within a
cone determined by the particle energy and Lorentz invariance. The difference with respect to
a classical supervised search is that the targeted psig(x) proxy is not specific to one single signal
hypothesis, but should rather guide towards a broad class of signal-like patterns.

Instead of training a single VAE to reconstruct examples from a background MC simulation,
QUAK involves training N independent VAEs8, one on the background MC simulation and the
remaining ones on N − 1 additionally provided signal MC simulation samples. The orthogonal
losses of each VAE then define an N -dimensional space, the QUAK space, where background-like
data are expected to cluster in the corner of low background loss and high signal loss. Points
with both high background and high signal loss, which would be classified as anomalous in the
typical one-dimensional VAE approach, are more likely to arise from detector glitches. The
region of interesting anomalies is located at high background loss and low signal losses. One can
thus select a subset of well-motivated anomalies by constructing an N -dimensional window in
this QUAK space region.

An advantage of the QUAK paradigm is that one expects higher sensitivity for signal pro-
cesses close to the provided priors. The downside is a higher dependence on the types of signal
MC simulation samples that are used during training. Naively one would include as many signal
hypotheses as possible, but the higher dimensionality poses a higher risk of diluting any real
signal in a larger space, making it more difficult to find.

7
This procedure assumes the design choice of a conditional normalizing flow with an unconditional latent space

prior pz(z).
8
While the explanation here follows the original implementation of QUAK, which was based on VAEs, it can

also be realized with other density approximating ML models, such as normalizing flows.
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5 Existing Model-Agnostic Searches

This section summarizes a few previous attempts at model-agnostic searches for BSM physics,
with a focus on experiments at the LHC. They are sorted into three paradigms. Section 5.1
discusses a class of analyses that make no assumption about the signal, but rely on an accurate
SM background description. It is followed by Sec 5.2, discussing a type of search that allows a
data-driven background estimation by restricting the targeted signals to the well-motivated case
of resonances. Lastly, Sec. 5.3 reviews previous analyses at the LHC that follow the approach
of using anomaly detection methods to enhance sensitivity for BSM signals in a data-driven
manner. The latter category corresponds to the same paradigm that was followed in the search
performed in the context of this thesis and described in detail in Sec. 7.

5.1 “General Searches”

An established class of searches for new physics with substantially less model dependence than
a dedicated search comprises so-called general searches. These searches aim to be unspecific
with respect to any new physics signal, while still assuming a known description of the SM
background. Such general searches have previously been conducted by the DØ [130–133] and
CDF [134, 135] Experiments at the Tevatron, and by the H1 Experiment [136, 137] at HERA.
More recently, they have also been employed at the LHC: the ATLAS general search [12] and
the model-unspecific search in CMS (abbreviated as MUSiC) [13].

Both the ATLAS and CMS general searches were based on the same principle: they sorted
events into classes based on the multiplicity of various reconstructed final state particles, and
an automated algorithm measured the deviations of the observed data from the expected SM
background, with the background being estimated using MC simulation. The search algorithms
used in these analyses scanned histograms in a few kinematic variables with promising sensitiv-
ity for new signal processes (e.g., invariant masses of final state particle combinations). Various
connected regions of interest (RoI) were constructed in these categories and features, and the
local p-value of the observed data under the SM-only hypothesis was measured in each RoI. In
line with the BumpHunter algorithm [71], which was briefly discussed in the end of Sec. 2.6.3,
the RoI with the smallest local p-value (the largest disagreement) was selected for every dis-
tribution and subsequently a global p-value was derived from running pseudo-experiments, in
order to reduce the look-elsewhere effect. A global p-value below a cut-off value, e.g., a value
of 5%, was interpreted as a significant disagreement between the measured data and the SM
expectation. However, such a disagreement cannot directly be interpreted as a discovery of new
physics, as it might have been caused by mismodeling the SM background. The primary use
of the general searches was therefore to trigger dedicated searches within the given RoI in case
such deviations had been found, ideally on a statistically independent dataset and with a more
sophisticated background estimation scheme.

There are some differences between the search strategies of the ATLAS and the CMS general
searches. ATLAS only analyzed the 3.2 fb−1 of 13TeV data collected in 2015, reserving the
remaining Run 2 dataset from 2016 to 2018 for statistically independent dedicated searches,
that might be triggered by the general search. The MUSiC analysis was performed on 35.9 fb−1

of 13TeV data collected in 2016. Moreover, the choice of event classes and kinematic features
differed between the two.

In both analyses, no significant deviation between observed data and the SM expectation
was found. Thus, no dedicated analyses were triggered to be conducted on their respective RoIs.
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5.2 Inclusive Dijet Searches

Another paradigm for model-agnostic analyses are inclusive dijet resonance searches, typically
applying only loose analysis selections other than targeting a final state of two high-momentum
jets. By restricting the search to heavy particles decaying into two particles with hadronic
decays, they are more specific in terms of the targeted type of new physics signal than the
general searches. Nevertheless, it is a topology that is motivated by many BSM scenarios, as
discussed in Sec. 2.3.2. On the other hand, they tend to make fewer assumptions on the exact
shape of the background than the general searches. Rather than estimating the background
directly via SM MC simulation, they may follow the looser assumption that the SM background
has a smoothly falling dijet invariant mass distribution in the high-mass region of interest, and
thus the background shape can be estimated directly from data via the bump hunt technique
described in Sec. 2.6.3.

Dijet resonance searches have been performed by several experiments in the past, such as
UA1 [138], UA2 [139], CDF [140], and DØ [141]. Their background shapes were primarily
based on MC simulation, whereas the CDF Collaboration eventually introduced a data-driven
background estimation [142] by fitting a smooth function to the dijet invariant mass distribution.
This method was also adopted, among others, by the ATLAS [14] and CMS [16] Collaborations
in their inclusive dijet resonances searches at

√
s = 7TeV, and later at

√
s = 13TeV [15, 17].

These searches target a relatively wide range of BSM models, and thus the significance scans
and 95% CL exclusion limits, in terms of the product of cross section, acceptance, and branch-
ing fraction, can be interpreted for more than a few dedicated signal processes. However, the
overwhelming number of QCD background events passing their loose selections makes it chal-
lenging to achieve a good signal-to-background ratio, and thus the sensitivity to new physics is
substantially lower than in more dedicated searches. In order to achieve higher sensitivity, the
ATLAS and CMS Run 2 searches have been extended to searches with additional requirements,
such as the presence of b-tagged jets [6, 143], thus sacrificing some model independence. An-
other extension, retaining more model independence, is achieved via machine learning anomaly
detection algorithms. These are discussed in Sec. 5.3.1 for ATLAS and Sec. 7 for CMS.

5.3 Machine Learning Anomaly Searches

To date, three full analyses [18–20] have been performed at the LHC using machine learning
anomaly detection methods of the type described in Sec. 4. They have all been performed by
the ATLAS Collaboration using their Run 2 dataset with a center-of-mass energy of 13TeV and
are briefly summarized in the following.

5.3.1 ATLAS Dijet Resonance Search with Weak Supervision

The first such search [18] employed the CWoLa Hunting method, as described in Sec. 4.3.3.
The target topology was any BSM particle A that decays into particles B and C, which can
potentially also be BSM, that then decay hadronically. The final state under consideration
consisted of two large-radius jets.

The invariant mass of the two leading jets was used as the resonant feature to distinguish
between signal region and sidebands as needed in the CWoLa Hunting protocol. Specifically, the
invariant mass spectrum was divided into varying-width bins, with widths motivated considering
the detector resolution. Then, for each bin the CWoLa Hunting procedure was applied using
the current bin as signal region and the neighboring bins as sidebands.

The neural network classifier used the two leading jet masses as input features to detect
differences between signal region and sideband events, and was trained multiple times in a k-
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fold cross-validation scheme in order to use the full dataset for both training and evaluation.
The most anomalous 1% and 10% of the data points according to these classifier models were
then selected and used to perform a bump hunt background estimation via a heuristic functional
form.

This scan over invariant mass bins yielded local p-values for excesses as a function of the
mass, both for the 1% and 10% selection efficiency. The largest local excess in the analysis was
observed with a significance of 3σ, and corresponded to a global 1.5σ excess after taking into
account the look-elsewhere effect.

In the absence of a significant excess, the search was used to set 95% CL exclusion limits on
a generic heavy-vector triplet [144] W′ signal with varying masses, mB and mC, of the two decay
products. As the signal efficiency of weakly supervised anomaly detection methods depends on
the presence of signal in the training data, the classifiers were trained with varying amounts of
signal MC simulation events injected into the data. The point where the exclusion limit matches
the injected signal cross section was interpreted as the 95% CL exclusion limit on the signal.
The reported limits outperform those of a generic inclusive dijet resonance search (Sec. 5.2).

5.3.2 ATLAS H + X Anomaly Search

The second LHC anomaly search [19] targeted a heavy resonance Y decaying into a Standard
Model Higgs boson and a new particle X, again considering only fully hadronic final states. The
search was performed in the regime where the Y mass is high and thus both H and X have a
high Lorentz boost, resulting in two high-momentum large-radius jets in the detector.

The two leading-pT jets were first classified into an H candidate, JH, and an X candidate,
JX. This was achieved through a neural network, trained to distinguish between jets arising
from an H → bb process and top or QCD jets. The resulting jet-level discriminant quantifying
the probability of originating from an H → bb decay was denoted as DHbb

. The jet with higher
DHbb

was classified as JH, and the other one as JX.

Three analysis regions were defined via selections on JX, as illustrated in Fig. 5.1. The
first region, the anomaly region, was defined via a jet-level anomaly score (SA) [145] based
on a variational recurrent neural network (VRNN) [146]. Each jet was modeled as an ordered
sequence of up to 20 constituent 4-vectors. The order of the constituents was deduced from
transverse momenta. A VAE was trained to reconstruct these sequences via a recurrent neural
network, conditioned on high-level jet features. The conditioning aimed at revealing correlations
between the constituents and the jet substructure. The VAE loss at each time step consisted of a
reconstruction loss and the KL divergence DKL between the encoded posterior distribution and
a Gaussian one. The average loss over all time steps per sequence was used for the parameter
update, while the averageDKL term per jet was used as the anomaly score: SA = 1−exp(−DKL).
The anomaly region was defined by selecting events where SA > 0.5 for JX.

Moreover, two additional analysis regions were defined to provide a benchmark for the
anomaly detection approach, optimized for an X → qq decay. The merged two-prong re-
gion covered the case where both quarks are within a single large-radius jet. It was selected
by requiring Dtrk

2 < 1.2, where this energy-correlator substructure variable [147] is lower for

two-prong jets. The complementary region Dtrk
2 > 1.2 was the resolved two-prong region. Since

the two subjets are not well contained within a single large-radius jet in this case, they were
reconstructed as two individual small-radius jets. These two analysis regions were constructed
to be orthogonal to each other, but could have an overlap with the anomaly region.

The analysis procedure was performed three times, once in each of the analysis regions. Each
analysis region was divided into six subregions, based on a selection on DHbb

(where the signal
region is above a cut capturing 60% of preselected events) and one on the H jet mass mH (where
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ATLAS DRAFT

A summary of signal region selections, in order as used in the analysis, is as follows:663

• Pre-selection: mj1 || mj2 > 50 GeV, pT j1 > 500 GeV, mJJ > 1.3 TeV664

• Ambiguity resolution: Higgs candidate = large-R jet with highest DHbb
Score between the two665

pT -leading jets.666

• X-tagging: selection on D2trk (exclusion regions, boosted + resolved (+ small jets |�Y |<2.5 AND667

pT balance<0.8)) OR selection on anomaly score (discovery regions)668

• H-tagging: based on DHbb
of Higgs candidate and its mass value, the regions in Figure 26 are669

defined.670

At the end 3 signal regions (merged, resolved, and anomaly score) and 15 control/validation regions (5671

non-SR regions for each SR) are defined, shown graphically in Figure 27.672

• LSB1 (low side band 1) and LSB0 (low side band 0) are the DHbb
-tagged and -untagged regions673

(passing or not the 60% WP) in the low side band (60 GeV < mH < 75 GeV)674

• SR (signal region) and CR0 (control region 0) are the DHbb
-tagged and -untagged regions (passing675

or not the 60% WP) in the Higgs mass window (75 GeV < mH < 145 GeV)676

• HSB1 (high side band 1) and HSB0 (high side band 0) are the DHbb
-tagged and -untagged regions677

(passing or not the 60% WP) in the high side band (145 GeV < mH < 200 GeV)678

An additional cut DHbb
> (-2) is applied to all regions, purely for skimming of unwanted events, since679

signal is expected to have DHbb
> chosen WP.680

The SR is used to perform the signal search, while the high sidebands and the low sidebands are used to681

develop and validate the background model respectively. The -2.0 < DHbb
< 2.46 selection for untagged682

regions allows to collect su�cient statistics to perform background estimation. As a result, the background

Figure 26: Scheme of analysis regions based on cuts on DHbb
and mH . Here, the HSBs are used as the control regions,

and the LSBs as the validation region.
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Figure 5.1: Illustration of the ATLAS H + X anomaly search signal regions. The H → bb jet
classifier score DHbb

is used to sort the leading jets J1 and J2 into an X and H jet candidate.
The X jet candidate is used to classify the event into one of the three analysis regions: anomaly,
two-prong (merged) and two-prong (resolved). The H jet candidate is used to divide the events
further into signal region (SR) and sideband regions, based on DHbb

and the H jet mass mH.
Figure taken from Ref. [19].

the signal region is defined by a window around the nominal Higgs boson mass), illustrated in
Fig. 5.1. A small neural network was trained to reweight the dijet mass distribution in the high-
mass sideband of the low DHbb

region to match the high DHbb
one. The reweighting function was

then validated in the low sideband region and finally used to construct a background template
in the signal region by reweighting the low DHbb

control region. This background template was
then used to perform a bump hunt in the dijet invariant mass, in overlapping bins in the X
mass. This thus resulted in three 2-dimensional local p-value scans in the mX-mY plane. The
smallest observed p-value corresponded to a global significance of 1.43σ.

As no significant excess was seen, 95% CL exclusion limits were set on the production cross
section of several benchmark signal models for mY between 1.5 and 6TeV and mX between 65
and 3000GeV. The limits from the anomaly region were generally competitive with the ones
from the two-prong regions, and in one case more stringent than the more dedicated benchmarks.

5.3.3 ATLAS Unsupervised Two-Body Invariant Mass Search

The third published anomaly search by the ATLAS Collaboration [20] generally targeted any
resonances in two-body final states of a jet and object Y. The jet could either be a light jet or
a b jet, and these two define separate categories. The Y could be either an electron, a muon, a
photon, a light jet, or a b jet. These combinations resulted in nine different categories, where
the highest-pT candidate of each object was selected. The same event could thus contribute
to multiple categories. The events required the presence of an isolated lepton during online
selection, as this allows probing invariant mass regions below 1TeV, which is more challenging
with jet-based trigger algorithms.

The primary analysis selection was done through a data-driven anomaly detection algorithm,
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in this case an autoencoder that was trained to reconstruct the input through an information
bottleneck, as described in Sec. 3.4.1. The input features were the entries of the rapidity mass
matrix (RMM) [148, 149], which contains scaled invariant mass and rapidity information of
all pairs of final state objects, as well as the missing transverse energy. For the creation of the
RMM, up to ten light jets, ten b jets, five electrons, five muons and five photons in the final state
were considered. Missing values were filled with zeros, and the nine invariant mass combinations
defining the analysis categories were removed in order to reduce bias. This autoencoder was
trained 50 times on a random 1% subset of the preselected data and the median model, in terms
of validation loss, was selected. The reconstruction loss served as the anomaly score. The cross
section passing a selection on this anomaly score was used to define three overlapping anomaly
regions: 10, 1, and 0.1 pb.

Bump hunts were performed independently in the respective invariant mass of each of the
nine categories, once for each of the anomaly regions. The strongest local excesses were found
to be 2.8 and 2.9σ respectively, which were not deemed globally significant.

As in the other analyses, the scan for excesses was followed by setting 95% CL exclusion
limits, in this case on the product of cross section, acceptance, efficiency and branching fraction
of generic Gaussian-shaped signals. Only the 10 pb anomaly region was used for this purpose,
as it was the most sensitive one.
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6 Developing and Improving Anomaly Detection Methods

While the previous sections introduced and reviewed concepts from the literature, this section
presents the results of my own research with collaborators on developing and improving anomaly
detection methods in the context of BSM searches. All the studies presented in this section will
use the LHCO R&D dataset, introduced in Sec. 6.1, for establishing performance benchmarks.
Section 6.2 presents the CATHODE method, which is followed by a modification that facilitates
a more stable background estimation, called LaCATHODE and covered in Sec. 6.3. Section 6.4
discusses the issue of signal sensitivity degradation in the presence of uninformative features in
weak supervision, and proposes a strategy for substantially improving the signal sensitivity in
such cases.

6.1 Benchmark Dataset

For many of the anomaly detection methods that are designed for HEP, performance bench-
marks are established using the LHC Olympics (LHCO) R&D dataset [150]. It was initially
released for developing and testing methods in the context of the LHCO 2020 anomaly detec-
tion challenge [151]. The motivation behind this dataset is that conventional, dedicated searches
are expected to have low sensitivity to the type of signal that is present in the dataset, because
both the primary resonance and its decay products are BSM particles.

It contains simulated proton-proton collision events at an LHC-like collider, consisting of
one million QCD dijet background events and 100,000 signal events of a heavy BSM particle W′

decaying into two lighter BSM particles X and Y, which then each decay into quark-antiquark
pairs9. The masses of these three BSM particles are mW’ = 3500GeV, mX = 500GeV and
mY = 100GeV, respectively. The events were generated with pythia 8.219 [52] and the detector
response was modeled with DELPHES 3.4.1 [152] using the default settings. The simulation
does not include pileup or multiparton interactions. The events were required to pass a trigger
based on the presence of at least one anti-kT [53] jet with R = 1.0 and pT > 1.2TeV. Up to 700
reconstructed particles are stored per event, where each particle is represented by its transverse
momentum pT, pseudorapidity η and azimuthal angle ϕ, and setting their mass to zero.

A high-level feature representation was also released, where the particles are clustered into
anti-kT jets with R = 1.0 using FastJet [153], and only features for the two highest-pT jets are
stored: the Cartesian 3-momenta, their masses, and the three subjettiness variables τ1, τ2 and
τ3 (as defined in Sec. 2.5.5).

Several studies, including the following sections of this thesis, sort the two leading-pT jets by
ascending mass, such that mj1 < mj2, and extract the dijet invariant mass mjj , the mass of the
lighter jet mj1, the mass difference between the two jets ∆mj = mj2−mj1, and the subjettiness
ratios τ21 = τ2/τ1 of the two jets. Another feature that will be used is the angular separation

between the two jets, ∆Rj =
√
(∆ηj)

2 + (∆ϕj)
2.

In the course of this work, an additional set of 612,858 QCD dijet background events were
generated [154] with the same settings as used for the original LHCO R&D dataset, but only
within the dijet invariant mass window of 3.3TeV< mjj < 3.7TeV. The motivation was to
reduce the statistical uncertainty in the performance evaluation of methods using this mass
region as the signal region, and to allow the training of benchmark methods with a higher
degree of idealization.

9
Some sources in the literature, including the original LHCO paper [151], refer to the signal particle as a Z

′

particle, which is conventionally a neutral heavy boson whereas W
′
is its charged counterpart. However, the

configuration file in the dataset repository [150] refers to the particle as a W
′
.
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One focus of investigation will be the behavior of anomaly detection methods when certain
input features are correlated. The Pearson correlation coefficients, measuring linear correlation
of the auxiliary features

(
mj1,∆mj , τ21,1, τ21,2

)
with mjj , are shown in Fig. 6.1. One can see

that within the full region the jet mass–based features are correlated with mjj by up to 11%.
However, within the relatively thin slice that will in the following be used as the primary choice
of “signal region”, the correlations are only around 1%, and they increase roughly by a factor
of two when additionally considering the adjacent 200GeV–wide SSBs on each side.

mj1 mj2 mj1 21, 1 21, 2

m
jj 0.014 0.014 -0.0078 -0.0073

Signal Region

mj1 mj2 mj1 21, 1 21, 2

m
jj 0.015 0.022 -0.011 -0.0053

Signal Region ± 200 GeV

mj1 mj2 mj1 21, 1 21, 2

m
jj 0.092 0.11 -0.05 -0.047

Full Region

Figure 6.1: Pearson correlation coefficients showing the linear correlations between mjj and
the auxiliary features mj1, ∆mj , τ21,1 and τ21,2. Three overlapping mjj regions are considered:
the signal region 3.3TeV< mjj < 3.7TeV (SR), the SR and adjacent short sidebands (SSB)
mjj ∈ [3.1, 3.9] TeV, and the full region.

6.2 CATHODE

This section is based on work presented in the publication in Ref. [1], which was developed with
the co-authors Anna Hallin, Joshua Isaacson, Gregor Kasieczka, Claudius Krause, Benjamin
Nachman, Tobias Quadfasel, Matthias Schlaffer, and David Shih. The figures and results thus
largely overlap with the publication. I made key contributions to the work by implementing the
CATHODE algorithm prototype consistently along with the benchmark methods, proposing major
algorithmic improvements, such as preprocessing schemes and the conditional feature sampling,
obtaining and analyzing the majority of the results, assisting in writing the article, and submitting
its preprint.

Section 4.3.2 discussed the concept of resonant anomaly detection, where the data-over-
background likelihood ratio of Eq. 4.6 is approximated by a machine learning classifier, trained
to distinguish observed data from a background-only simulation. This background template is
typically constructed with the use of real data. Section 4.3.3 provides an overview of such ap-
proaches, where most rely on the distinction into signal region (SR) and sideband (SB) regions.
The likelihood ratio is estimated within the SR, while the background template is constructed
from the SB. The algorithm classifying anomalies through outer density estimation (CATH-
ODE) [1] was the first to construct this background template in a purely data-driven manner
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using machine learning. This section describes the technical details of the method and evaluates
its performance.

6.2.1 Algorithm and Implementation

CATHODE requires the core setup, described in Sec. 4.3.2, with one resonant feature m and a
set of auxiliary features x. Similarly, the spectrum of m is split into the SR, where the presence
of a signal overdensity is tested, and the complementary SB regions. The purpose of x is to
capture potential deviations between said signal process and the background. The algorithm
consists of three main components:

1. Training an ML model to learn the conditional density of SB data: pdata(x|m ∈ SB).
Under the assumption that a signal, if it exists, is mostly contained within the SR, this
corresponds to a background model: pdata(x|m ∈ SB) ≈ pbkg(x|m ∈ SB).

2. Sampling synthetic background data from the interpolated model. This is achieved by
first sampling m values within the SR m ∼ pbkg,SR(m) and then sampling x using the SR
m as condition: x ∼ pbkg,SR(x,m) = pbkg(x|m)pbkg,SR(m). The m distribution can either
be fitted from the SB or approximated by a one-dimensional density estimator to the SR
data, assuming the signal contribution in m is negligible in the setup of anomaly detection:
pdata,SR(m) ≈ pbkg,SR(m).

3. Training an ML classifier to distinguish between observed SR data Ddata ∼ pdata,SR(x) and
the synthetic background Dbkg ∼ pbkg,SR(x).

The following paragraphs describe the implementation of the CATHODE proof of concept from
Ref. [1] to gain signal sensitivity in the LHCO R&D dataset, introduced in Sec. 6.1. The code
to reproduce the results is available in a public repository [155].

For this test case, the high-level feature prescription described in Sec. 6.1 is used, i.e., the
two highest-pT jets are ordered by their masses, such that mj1 < mj2. The auxiliary features
are chosen to be x =

(
mj1,∆mj , τ21,j1, τ21,j1

)
. The resonant feature is the invariant mass of

the resulting dijet system, which is split into the SR mjj ∈ [3.3, 3.7] TeV and the SB mjj /∈
[3.3, 3.7] TeV. This choice of features and SR/SB separation follow closely Ref. [124] and are
illustrated in Fig. 6.2. The mjj distribution shows that the choice of SR conveniently aligns
with the actual resonance peak, capturing ∼ 77% of the signal events. This is an idealization
for the proof of concept that focuses on the signal sensitivity in case of a well-chosen SR. In a
real analysis, where the signal is unknown, the SR is scanned over various positions of the mass
spectrum. In addition to providing signal sensitivity when the SR captures the signal peak,
the method should also not produce false positives in the absence of signal. The latter will be
briefly discussed later in this section and addressed more systematically in Sec. 6.3. Another
degree of idealization is that all four auxiliary features exhibit differences between the signal
and the background. The bulk of signal events peak narrowly at the Y mass of 100GeV in mj1,
whereas the QCD background shows no such peak. Similarly, for the signal the distribution
of ∆mj peaks at 400GeV, the mass difference between X and Y, with a small secondary peak
towards zero corresponding to events that are not well reconstructed with the two leading jets.
The subjettiness ratios τ21 are constructed such that the events with two well-separated subjets
have low values, which is more common in the signal than in the background, as both the X and
Y each decay into a quark-antiquark pair. In practice, it is unlikely that all auxiliary features
have such high discrimination power for a real signal. Departures of this idealization will be
discussed in Sec. 6.4.
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Figure 6.2: Illustration of the features used in the CATHODE proof of concept using the LHCO
R&D dataset. The resonant feature is the dijet invariant mass mjj , which is split into the signal
region (SR) and sideband (SB). The auxiliary features are the mass of the lighter jet mj1, the
mass difference between the two jets ∆mj , and the subjettiness ratios τ21 of the two jets. The
full region contains one million background and one thousand signal events.

In order to create a proxy for real detector data, the one million QCD dijet background
events from the LHCO R&D dataset are mixed with one thousand signal events. This choice,
which is also in line with Ref. [124], corresponds to a realistic setting where the signal presence
is too small to be observed directly with a typical bump hunt. The approximate significance
over the full mjj range is NS/

√
NB ≈ 1. If the range is restricted to the SR, it corresponds to

NS/
√
NB ≈ 2.2 and a direct signal-to-background ratio of NS/NB ≈ 6×10−3. The performance

with respect to smaller signal fractions is studied later in Sec. 6.2.3. In the SB region, 500,000
of the proxy data events are used for training and the remaining (378,876) events are reserved
for the validation set. In the SR, the proxy data are split into two equal parts for training and
validation sets, resulting in approximately 60,000 events in each. The performance evaluation
in Sec. 6.2.3 will be performed on a separate test set. In a real application, one would rather
implement a k-fold cross-validation procedure, as described in Sec. 3.2.2, in order to use all data
for both training and inference.

Various ML models would technically qualify for learning pdata(x|m ∈ SB). The requirements
are that the model can learn to generate samples of x conditioned on m following the same dis-
tribution as the training data, and that the conditioning interpolates well into an unseen region.
The latter requires a smooth inductive bias, which is in general the case for neural networks. As
the explicit density is not necessary, the conditional generative model could be realized with a
generative adversarial network (GAN) [156] or a conditional VAE (Sec. 3.4.1). Another option
would be a mixture density network (MDN) [157], which explicitly models the density but has
only limited expressive power. Normalizing flows (Sec. 3.4.3) are a particularly attractive choice
for this task, as both the prior distribution in the latent space and the conditional mapping,
parametrized by a neural network, are inherently smooth. Moreover, they are very expressive
and the associated NLL minimization is a well-defined training objective.

A known downside of normalizing flows is that sharp boundaries in the data distribution
can be difficult to model with smooth distortions from a Gaussian prior. An example for such a
sudden discontinuity in this dataset is the left edge of the ∆mj distribution in Fig. 6.2, where the
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background shape starts immediately with a peak at zero. This is mitigated by preprocessing
the features. First, all x features are scaled to lie within a range of [0, 1]. Then a logit function
log(x/(1− x)) is applied, which stretches the points near the boundaries to (−∞,+∞). Lastly,
the mean is subtracted, and the result is divided by the standard deviation, which centers the
data around zero and scales it to unit variance. For an exact description of the likelihood, this
would need to be accounted for in the Jacobian of the transformation. For use as a generative
model, the transformations are applied in reverse order during sampling. The feature processing
is omitted for m, as it is already naturally of O(1) as units of TeV were chosen for mjj .

In this study, a masked autoregressive flow (MAF) with affine transformations (as described
in Sec. 3.4.3) was used, in exact analogy to Ref. [124]. The code implementation and hyperpa-
rameters are the same as in Ref. [158]. The MAF was thus realized in PyTorch [159], with 15
MADE blocks, each consisting of a single hidden layer with 128 nodes. Between each MADE
block, a permutation of the feature order is performed. The prior latent space density is chosen
to be a four-dimensional Gaussian distribution with zero mean and unit variance, independent
of the conditional variable. The batch size during training with the Adam optimizer was set to
256 and the learning rate to 10−4. In order to improve the numerical stability of the training
process, the output of each MADE block hidden layer was scaled to a mean of zero and variance
of one with respect to the entire training set before each new epoch. This significantly reduced
the risk of training divergence, however it also involved mean and variance computations on the
entire training set, which is computationally expensive. The model was trained for 100 epochs,
after each recording the validation loss. The minimum of the monitored validation loss was
observed to be well before the final epoch, as can be seen in an example loss curve in Fig. 6.3.
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Figure 6.3: Training and validation losses per epoch (dotted lines) during one training of the
MAF model for CATHODE. The values are also averaged over 5 epochs (solid lines) to improve
visibility of overall trends. The training loss in the plot is defined by evaluating the NLL of the
training set after each epoch, and thus is not necessarily monotonically decreasing. Figure taken
from Ref. [1].

Once the pbkg(x|m), parametrized as a normalizing flow, is learned from the SB, it can
be used to generate SR background by sampling SR values of m and inserting these into the
sampling function of the MAF. Multiple approaches for obtaining pbkg,SR(m) were considered.
As a first prototype, m was sampled uniformly within the SR of 3.3 to 3.7TeV. Despite not being
an accurate description of the real background, it still resulted in a relatively faithful sample
of x, i.e., a classifier trained to distinguish Ddata from Dbkg purely based on values in x (but
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not m) still learned to discriminate signal from background. This is because the correlations
between x and m are relatively small over the SR in the LHCO R&D dataset. One alternative
that was considered is to fit a smooth heuristic function from the SB m values and then sample
from the function inside the SR. While this would reduce the risk of signal contamination in
pbkg,SR(m), its additional degrees of freedom decrease the stability of an automated method,
and it requires an a-priori choice of functional form rather than being entirely data driven.
A more straightforward approach is to instead fit a one-dimensional kernel density estimator
(Sec. 3.4.2) to the data m values in the SR. As anomaly detection is usually applied in the case
where a signal peak in m is too small to detect without additional selections (e.g., on x), it is
reasonable to assume that its contribution to pdata,SR(m) is negligible. Moreover, even if the
background template were to model a dominant peak in m from the signal, its values in x, which
are modeled by pbkg(x|m), may still differ from the signal. The KDE was implemented with the
Scikit-learn library [160] using a Gaussian kernel and a bandwidth of 0.01. Instead of fitting the
m distribution directly, it was first rescaled to the range of [0, 1] and then transformed with a logit
function, as described for the MAF preprocessing. Otherwise, the Gaussian kernel would visibly
smoothen out the sharp SR boundaries. The inverse transformation is applied after sampling
m values. An illustration of the KDE samples with and without the logit preprocessing, and in
comparison to naive uniform sampling, is shown in Fig. 6.4.
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Figure 6.4: Comparison of methods for sampling m values in the SR of the LHCO R&D dataset.
A simple uniform sampling is compared to a KDE with and without the logit preprocessing.
The boundaries are not well described by the KDE without logit preprocessing.

With the logit-preprocessed KDE sampling, a pre-defined number Nsamples of samples in m
is drawn from pbkg,SR(m). Unless otherwise stated, Nsamples = 400,000, which corresponds to
roughly 3.3 times as many synthetic background events as there are proxy data. This feature
of oversampling background is a strength of the CATHODE method over other approaches,
such as CWoLa Hunting, that are limited by the number of available data points to directly
build the background template samples. The effect of various degrees of oversampling, i.e.,
different choices of Nsamples, on the signal extraction performance is discussed later in Sec. 6.2.3.
Figure 6.3 shows that the validation loss of the MAF training oscillates visibly from epoch to
epoch. In order to increase the stability of the sampling, the MAF model is not only used at the
epoch with the lowest validation loss, but instead an ensemble of the ten model states with the
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lowest validation losses are used. Specifically, the Nsamples values in m are split into ten equal
parts. Each of these parts is then used as conditional to sample x ∼ pbkg(x|m) at each model
state, and these are merged into a single set and shuffled. Finally, they are split proportionally
into training and validation sets. Figure 6.5 compares the resulting background template with
the actual background in the proxy data, showing that the in-situ background simulation by the
MAF approximates the true background well.
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Figure 6.5: Comparison of the background template generated by the MAF with the actual SR
background in the LHCO R&D dataset. Figure taken from Ref. [1].

The binary classifier, tasked to distinguish between Ddata and Dbkg, was implemented via
PyTorch [159] as a fully connected neural network with three hidden layers of 64 nodes each and
ReLU activation. The output was realized as a single node with sigmoid activation. The Adam
optimizer was used to minimize the binary cross-entropy between proxy data and background
samples with a learning rate of 10−3 and a batch size of 128. Again, the training was performed
with 100 epochs, in order to generously surpass the validation loss minimum. Figure 6.6 shows
the training and validation losses during one training of the classifier, which already converges
after 15 epochs. In order to account for the different sizes of the Ddata and Dbkg, a class weight is
applied to the loss function, such that the two datasets contribute equally. This is applied both
to the training and the validation loss computation. The absence of such reweighting would
bias the classifier towards predicting more background-like labels more often. The features are
scaled to zero mean and unit variance as a preprocessing step to increase the numerical stability
of the training. A logit transformation, as used for the flow training, is not applied here as it
consistently decreased the performance. Only values of x are used as input, whereas m could
technically be included as well. A study on the effect of including m as an input feature is
discussed later in Sec. 6.2.3. Again, the learning task is subject to epoch-by-epoch noise, in
particular because the discrimination between almost identical samples is inherently noisy. To
increase the stability of the classifier prediction, an ensemble of the ten lowest-validation loss
epochs is used and implemented via a mean of the model predictions per data point.
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Figure 6.6: Binary cross-entropy loss, as well as the accuracy of validation and test set, respec-
tively, per epoch (dotted lines) during one CATHODE classifier training. The values are also
averaged over 5 epochs (solid lines) to improve visibility of overall trends. An accuracy of 50%
corresponds to finding no difference between the two datasets, which is the desired result given
the small signal contribution in the proxy data. Figure taken from Ref. [1].

6.2.2 Benchmark Method Implementation

The performance of CATHODE is evaluated in comparison to several benchmark methods, which
provides context for the results.

On the one hand, the performance of CATHODE is assessed in comparison to CWoLa Hunt-
ing and ANODE (see Sec. 4.3.3), since they are similar data-driven methods. CWoLa Hunting
uses an ML classifier for the likelihood ratio estimation, but has no generalizable background
template construction as it directly relies on SB data values of x. ANODE estimates the back-
ground likelihood explicitly from the SB region with a conditional density estimator but relies on
a second such model for constructing the likelihood ratio in the SR. Other methods that existed
before CATHODE either depend on a prior MC background simulation sample (SA-CWoLa,
SALAD) or make stronger assumptions on the type of signal (TNT).

On the other hand, the performance is also compared to two more idealized benchmarks. The
first one is an IAD, where the flow-sampled background template is replaced by a background
sample following the same distribution as the background in the SR proxy data. This yields
an upper performance boundary of what could be expected from CATHODE if the background
template was perfect. The second one is a fully supervised classifier, trained directly to distin-
guish signal from background events. This quantifies what signal sensitivity could be achieved
by a typical dedicated search, where the target signal (and the SM background) is known and
well modeled with MC simulation. The next paragraphs describe the implementation of these
benchmark methods, as shown in the figures of Section 6.2.3.

For CWoLa Hunting, the same binary classifier architecture and training scheme was used as
for CATHODE, including the ten-epoch ensembling of the anomaly score. The only difference
is the background template, which is drawn directly from the SB. Specifically, a short SB (SSB)
region was defined as the range of mjj ∈ [3.1, 3.3] ∪ [3.7, 3.9] TeV, following Ref. [124]. Across
these 200GeV–wide SSBs, only marginal correlations between m and x are present. The same
50/50 training/validation set split is applied to this SSB background sample as to the proxy
data. Since the left SSB includes more events than the right one because of the exponentially
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falling nature of the mjj distribution, a sample weight is applied such that the two SSBs con-
tribute equally to the loss function. This is multiplied with a class weight that ensures equal
contributions between SR data and the background template.

Similarly, the ANODE implementation is based on the same conditional normalizing flow
architecture and training scheme as in CATHODE. In addition to the flow trained in the SB,
another flow with the same architecture is trained in the SR. The anomaly score is then computed
as the ratio of the likelihoods of the SR and SB flows. Similarly to other methods, a ten-epoch
ensemble is used to increase the stability. For ANODE, this is obtained by averaging the
likelihood values of the ten epochs with the lowest validation loss per data point, in each of the
two trainings, before their ratio is computed.

The IAD classifier is fully analogous to the CATHODE case. The only difference is that
the background template is realized with 272,000 events from the additionally produced SR
background events that follow the same distribution as the original LHCO R&D background.
They are split evenly into training and validation set. A more optimal comparison would have
been to use 400,000 events, just as in the default CATHODE background sample. Since the
rest of the additional background events was already set aside for the test set, it would have
been necessary to produce more and this was not possible due to time constraints. In the later
studies, which are discussed in Sec. 6.3, this shortcoming was resolved by applying a different
dataset split but obtaining equivalent results.

The fully supervised classifier architecture, training and inference are equivalent to CATH-
ODE, but it uses signal and background labels directly. The same 272,000 additional background
events as for the IAD are used as background, while 55,000 SR signal events that are not used
for the data proxy injection constitute the signal sample. The use of only complementary events
to the proxy data, as well as the relatively large signal sample, are chosen to imitate a scenario
where an abundance of both signal and background MC simulation events are available. These
sets are split evenly into training and validation sets, and class weights are applied to the loss
function, such that the signal and background samples contribute equally.

The amount and type of data used for training and validation of each method are summarized
in Tab. 6.1.

Table 6.1: Numbers of events in units of 1000 ≡ 1k used for training, validation, and testing
for each method. In this context, validation refers to selecting model epochs. The test set is
the same for all methods. DE and CLS refer to density estimators and classifiers, respectively.
“Bkg” and “sig” refer to background and signal, respectively. The term “bkg samples” here
indicates that they originate from the synthetic background template.

Method Type Train Validation Testing

CATHODE
DE 500k SB data 380k SB data

340k SR bkg
20k SR sig

CLS
200k SR bkg samples 200k SR bkg samples

60k SR data 60k SR data

ANODE DE
500k SB data 380k SB data
60k SR data 60k SR data

CWoLa Hunting CLS
65k SSB data 65k SSB data
60k SR data 60k SR data

Idealized AD CLS
136k SR bkg 136k SR bkg
60k SR data 60k SR data

Fully Supervised CLS
136k SR bkg 136k SR bkg
27k SR sig 27k SR sig
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6.2.3 Results

The following paragraphs discuss the performance of CATHODE, in particular with respect
to the benchmark methods. The discussions include the signal sensitivity (the discrimination
power between signal and background), the robustness of this sensitivity with a smaller signal
presence and correlated input features, and exploring the background estimation potential.

The test set, used to compute all performance metrics, consists of 340,000 SR background
events and 20,000 SR signal events. This is a different relative signal fraction than in the
training data, however all signal sensitivity quantities are based on TPR and FPR, which are
independent of the signal fraction. The results are expected to vary among different trainings due
to the stochastic nature of ML trainings, in particular in this case where the number of signal
events to detect during the training is small. Therefore, the ML models (classifiers and/or
normalizing flows) were trained ten times, each with a different random weight initialization.
The performance is then reported in terms of the median of these ten trainings and the variance
is quantified by the central 68% of the results around the median, i.e., the range from the 16th

to the 84th percentile. The training, validation and test sets are kept fixed for all ten trainings,
except when hatched uncertainty bands are shown. In that case (Fig. 6.8) this is also varied,
i.e., the sizes and signal fractions remain the same but are randomly shuffled, in order to test
the variance with respect to different realizations of the same signal-to-background ratio.

ROC and SIC curves depend on computing the TPR and FPR at all possible decision
thresholds on the anomaly score. In the case of very high thresholds, only few individual
events will pass the selection and the performance metrics are thus more prone to statistical
fluctuations. In order to remove statistically unstable regions from ROC and SIC curves, a lower
limit is imposed on the FPR values, corresponding to a Poisson uncertainty in the remaining
background events of 40%. The median of the ten trainings is displayed if at least five trainings
satisfy this criterion. The same criterion is imposed whenever the maximum SIC value is quoted
for a method.

Signal Sensitivity

Figure 6.7 shows ROC and SIC curves of CATHODE in comparison to the benchmarks discussed
in Sec. 6.2.2. CATHODE outperforms the other anomaly detection methods significantly over
a wide range of signal efficiency values. The CATHODE SIC improves by roughly a factor two
with respect to ANODE and a factor of 1.3–2 with respect to CWoLa Hunting. CATHODE,
ANODE and CWoLa Hunting reach a maximum SIC of 14, 6.5 and 11, respectively.

The improvement over ANODE, which uses the same SB-trained model of pbkg(x|m), shows
that a simple fully connected neural network classifier is significantly more capable of approxi-
mating the likelihood ratio than training another normalizing flow to estimate the SR likelihood
first and then computing the ratio explicitly. This likely stems from the ANODE task of train-
ing a smooth normalizing flow to accurately model the small, generally sharply peaking, signal
contribution on top of the large background.

The CWoLa Hunting benchmark uses the same classifier architecture, but suffers from a less
accurate background template. This is likely due to the percent-level correlation between x and
m (shown in Fig. 6.1), which is small enough for CWoLa Hunting to perform well but does
not model the true background perfectly. Moreover, the training set size of CWoLa Hunting is
limited by the number of events in the SSB (here approximately 65,000), whereas CATHODE
could sample arbitrarily many background events (here chosen to be 200,000).

The comparison between CATHODE and the IAD shows that their ROC and SIC curves
are overlapping almost everywhere. The learned background template seems to model the true
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Figure 6.7: Comparison of background rejection (left) and significance improvement (right) of
different classification methods as a function of the signal efficiency. The solid lines represent
the median of ten trainings with different random weight initialization on the same training,
validation and test set. The uncertainty bands contain the central 68% of these runs around the
median. Figure taken from Ref. [1].

background very well, and thus CATHODE approximates the optimal sensitivity that can be
expected from resonant anomaly detection on this dataset.

Finally, the IAD and CATHODE are outperformed by the fully supervised classifier, which
shows that a dedicated search will still outperform resonant anomaly detection in this case of
limited training data. It reaches a maximum SIC value of 17.5, which is only 25% higher than
CATHODE.

Lower Signal Strengths

While Fig. 6.7 demonstrates excellent signal sensitivity of CATHODE in the LHCO R&D dataset
with a signal-to-background fraction of 0.6% in the SR of the training data, a full test of the
method should involve a performance estimate in the presence of smaller signal contributions.
An ideal anomaly detection approach would detect arbitrarily few signal events in the data.
Such a scan is performed in Fig. 6.8 for CATHODE and all benchmarks methods, i.e., the signal
fraction in the training and validation set is decreased in steps. Here the median and variance
cover the aforementioned reshuffling of train/validation/test splits. Otherwise, the SIC curves at
low signal injections would depend on which signal events are randomly chosen for the training
set.

The left plot of Fig. 6.8 shows the maximum SIC at decreasing signal amounts. CATHODE
follows the IAD over the whole range and therefore retains its near optimality as a weakly super-
vised anomaly detection method. Above a signal-to-background ratio of 0.25%, it outperforms
ANODE and CWoLa Hunting. The right plot shows the achieved maximum significance, i.e.,
the product of the significance without any anomaly score–based selection and the maximum
SIC of each method (the left-hand side of Fig. 6.8). It is visible that in the region below the
signal-to-background ratio of 0.25%, no anomaly detection method achieves a 3σ significance
with their maximum SIC, including the IAD. This means that CATHODE retains optimalilty
in the region where a non-trivial significance is achievable. The same plot also shows that at
a signal-to-background ratio of 0.3%, CATHODE still has the potential to improve an initial
significance of 1.02 to a discovery significance of 5σ.

The fully supervised classifier maximum SIC is independent of the signal fraction, as it
is trained on an independent simulation dataset. The maximum achieved significance thus
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Figure 6.8: Left: Maximum significance improvement of each classification method as a function
of the signal-to-background ratio. The solid lines represent the median of ten trainings with
both different random weight initialization and different training/validation/test splits. The
hatched bands represent the central 68% of these runs around the median, thus quantifying
the variance from retrainings as well as from different realizations of the (increasingly few)
injected signal events. Right: The achieved maximum significance, computed by multiplying
the initial significance without any anomaly score–based selection with the maximum significance
improvement of each method. The dotted lines correspond to significance values of 3 and 5σ.
The initial significance is displayed on the upper horizontal axis of both plots. Figure taken
from Ref. [1].

decreases linearly with the initial significance, and still manages to reach a 3σ significance down
to a signal-to-background ratio of 0.05%. This illustrates the inherent gap between resonant
anomaly detection and a dedicated search at limited classifier training capabilities.

Stability Under Correlations

The main shortcoming of CWoLa Hunting is its dependence on x and m being approximately
uncorrelated over SSB and SR. In the default feature choice of the LHCO R&D dataset, this is
the case as can be seen both by the small degree of linear correlations in Fig. 6.1 and by the
high performance of the CWoLa Hunting method in Fig. 6.7. In order to test a highly correlated
setting, Ref. [124] proposed to artificially increase correlation betweenmjj and auxiliary features
by adding 10% of the mjj to both the lower jet mass mj1 and the jet mass difference ∆mj in
every event:

mj1 → mj1 + 0.1×mjj

∆mj → ∆mj + 0.1×mjj

(6.1)

This shifts the lower SSB mass variables on average by 0.32TeV, the SR by 0.35TeV, and
the upper SSB by 0.38TeV. This dominates the mj1 and ∆mj distributions, and the CWoLa
Hunting classifier learns obvious differences between SSB and SR instead of gaining sensitivity
to the signal presence.

Figure 6.9 (left) demonstrates this sensitivity loss in terms of SIC curves, trained and eval-
uated on this shifted dataset. As can be seen, the discrimination power of CWoLa Hunting
reduces to a mere random classifier. The sensitivity of ANODE also decreases due to the mass
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Figure 6.9: Left: Significance improvement of different classification methods as a function of the
signal efficiency on the mass-shifted dataset. The solid lines and uncertainty bands are defined
analogously to Fig. 6.7. Right: The significance improvement on the mass-shifted dataset divided
by the default dataset values in Fig. 6.7. Figure taken from Ref. [1].

shift, which can be seen from Fig. 6.9 (right). It shows the reduction in SIC from the shift as
a function of the signal efficiency. This is likely caused by the smearing of the originally well-
peaking signal in mj1 and ∆mj by the more dominant mjj shift. Moreover, the task of training
and interpolating a conditional normalizing flow might be more difficult in this smeared setting.
Even the performance of the supervised classifier and the IAD deteriorate from this smearing
of the signal, both by the same amount. This can be expected because the smearing is caused
by an independent random variable that is not known to the classifier. The behavior when this
variable is known, is discussed in the next paragraph.

CATHODE is conceptually a mixture between ANODE and the IAD, as it involves the
learning of the conditional flow in addition to the classification task. This also seems reflected
in the decline of performance due to the shift in Fig. 6.9. It remains comparable to the IAD
at lower signal efficiency, but in the medium higher signal efficiency range, where the ANODE
performance decreases more substantially, CATHODE also becomes worse than the IAD. This
study demonstrates that the explicit construction of the m-dependent background template
renders CATHODE robust against correlations between x andm, in contrast to CWoLa Hunting.

Correlated vs Noisy Features

The above study of smearing features with mjj has the shortcoming that the smearing by an
independent random variable itself reduces the signal sensitivity of CATHODE and all bench-
marks. It is thus convolved with the behavior under correlations between x and m. A different
approach to investigate the robustness with respect to correlations is simply to include mjj as
an auxiliary feature for training the classifier, i.e., m becomes also part of x and thus this di-
mension of x is trivially maximally correlated with m. The result is shown in Fig. 6.10 for the
fully supervised classifier, the IAD and CATHODE, each once on the default dataset and once
with the mass shift applied.

The supervised classifier performs slightly better in Fig. 6.10 whenmjj is included among the
four default features, as it is able to use the extra information. With the mass smearing applied,
the inclusion of mjj as an input feature fully recovers the performance that was previously
lost on the smeared dataset. This shows that a neural network classifier with all information
available is able to learn to reverse the smearing transformation.

The IAD in Fig. 6.10, on the other hand, performs worse on the default dataset when mjj is
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Figure 6.10: Significance improvement of different classification methods as a function of the
signal efficiency: fully supervised (upper left), idealized anomaly detector (upper right), and
CATHODE (lower). All lines represent the median of ten trainings with different random
weight initialization on the same training, validation and test set, while the uncertainty bands
are omitted for clarity. Two datasets are compared: the LHCO R&D dataset in the default
and shifted setting. Each are trained with only the four default features (solid line), with mjj

as a fifth input feature (dashed line), and with random Gaussian noise as a fifth input feature
(dotted line). Figure taken from Ref. [1].

used for classification. This seems to contradict the expected behavior from the fully supervised
case, which was able to benefit from the small discrimination power of mjj within the SR. To
understand why this additional feature degrades the performance, the plot includes another
configuration where instead of mjj a random Gaussian noise feature is included for the training,
i.e., a feature where signal and background follow the same distribution. The resulting SIC
curve aligns with the one from the mjj-included training, which indicates that the reason for
the performance decline is not the physical property of the conditional feature m, but rather
that a weakly supervised classifier loses signal sensitivity if more input features are included
in the training without contributing substantial discrimination between signal and background.
While the signal is strongly peaking in mjj when considering the entire spectrum, the difference
between signal and background is relatively small within the thin SR window around the signal
peak. This issue of performance degradation due to uninformative features will be discussed more
thoroughly in Sec. 6.4. On the shifted dataset, the IAD also yields strictly worse performance
with a pure noise feature added. With the physical mjj input feature, which is not uncorrelated
noise now, the SIC is similar to without. In fact, it overlaps mostly with the SIC of the IAD
of the unsmeared case with mjj added. Thus, it seems that also the IAD learns to revert the
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smearing transformation when given the full necessary information, but is still impacted by the
higher total number of input features.

Finally, CATHODE exhibits qualitatively similar behavior in Fig. 6.10 as the IAD. Just
as the mass shifting study was convolved with the effect of signal smearing, this study cannot
be entirely disentangled from the effect of uninformative features in weak supervision. But
in combination, it confirms that CATHODE, just like an IAD, is robust against correlations
between x and m.

Background Template Size

One benefit of CATHODE over CWoLa Hunting is that arbitrarily many SR background tem-
plate samples can be generated once the normalizing flow has been trained on the SB. Figure 6.11
explores the signal sensitivity of CATHODE with different choices of background sample size
for the classifier training. Aside from the default choice of 200,000 background samples in the
training set, the choices of 60,000 and 800,000 events are also explored. The former is approx-
imately as many events as there are SR proxy data events. The left plot, which is deduced on
the default LHCO R&D dataset, shows that this small background sample with 60,000 events
results in a strictly lower, although still relatively high, SIC curve. Moreover, it still outper-
forms CWoLa Hunting, which has slightly more background training samples (65,000 events).
This demonstrates that the explicit modeling of the background template is a measurable factor
why CATHODE outperforms CWoLa Hunting on this dataset. The background sample size of
800,000 events does not achieve higher performance than with 200,000 events. Because of this
observed saturation, 200,000 has been chosen as the default on this dataset.
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Figure 6.11: Comparison of CATHODE classifiers trained with different numbers of sampled
background events in the training set, whereas the training proxy data are fixed at approximately
60,000 events. The solid lines and uncertainty bands are defined analogously to Fig. 6.7. The
left plot shows the performance on the default dataset. This includes the CWoLa Hunting
benchmark, which uses approximately 65,000 background events sampled from the SSB for
training. The right plot shows the performance on the mass-shifted dataset, without CWoLa
Hunting as it has no sensitivity due to the correlation between mjj and the auxiliary features.
Figure taken from Ref. [1].

For completeness, the right plot of Fig. 6.11 shows the performance in the mass-shifted
setting, which mostly confirms the conclusions from the default dataset. In addition, it shows
more clearly that a larger background sample also decreases the performance variance between
independent model trainings.

In summary, Fig. 6.11 demonstrates that the adjustable background template sample size
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of CATHODE contributes an additional handle to increase the signal sensitivity and reduces
its variance until a saturation point is reached. The improvement beyond the actual number of
events in the proxy data might be in contrast to an intuition that the number of statistically
independent data points is limited to what is available during training. A counterpoint to this
intuition is that the smooth inductive bias of neural networks allows them to generalize, given
that the underlying distribution is smooth, such that they can generate more data points than
available during training. This is discussed more generally in Ref. [161]. In fact, the smooth
inductive bias is already responsible for the capability of sampling events from the SR, which is
unseen during training.

Background Estimation

The results in this section have so far focused on the signal sensitivity based on ROC and
SIC curves. While these are useful metrics to measure the discrimination power between the
background and a target signal based on respective labels, they do not yet directly relate to
the ultimate sensitivity of the method on real observed data. For this, a statistical analysis, as
described in Sec. 2.6, must be applied to quantify a p-value of the background-only hypothesis
in favor of a signal+background hypothesis and without relying on unknown information, such
as signal labels. A large class of these methods relies on selecting the most anomalous events,
according to the anomaly score, as signal candidates and then estimating to what fraction they
comprise background events. The bump hunt, a data-driven method that is more thoroughly
discussed in Sec. 2.6.3, is a common example for such a background estimation technique. The
underlying assumption of the bump hunt is that the background distribution in m is smooth and
that any bump-like structure in the data is due to a signal. Thus, it is crucial that a selection
on the anomaly score does not artificially introduce bumps into the background distribution.

The smoothness after applying a CATHODE-based selection is tested in Fig. 6.12 (left) by
training on the same default LHCO R&D data configuration as previously, but without any
signal (and thus expecting no bump-like structure in m) present in the proxy data. The plot
shows the background shape before any selection and with the most anomalous 20% and 5% of
events selected. The classifier has been evaluated not only in the SR, but also in the adjacent
SB region. This is possible because the classifier only depends on inputs x, and not on m. The
plot demonstrates that the background shape is not distorted by the selection on the anomaly
score and thus a bump hunt is not expected to be biased towards yielding an excess without
the presence of a signal. A more thorough study on background sculpting and the limitations
of evaluating the classifier beyond the SR is provided in Sec. 6.3.

An alternative background estimation technique is to directly utilize the background template
learned from the SB. Reference [124] proposed this in the context of ANODE in their Figure 8.
After a selection on the anomaly score, one counts the fraction of background template events
passing the decision threshold and then identifies the same fraction as background in the SR
proxy data. The mjj range is chosen such that the initial background is both smoothly falling
and not subject to high statistical uncertainty.

The same study is shown in Fig. 6.12 (right) for the background-only trained CATHODE,
where for every possible decision threshold the number of passing background template events
is divided by the number of passing proxy data background events. Because the background
template sample size has been scaled to match the number of proxy data background events,
a value of one corresponds to an unbiased estimate of the true SR background. For the most
part, the obtained ratio is compatible with unity within the statistical uncertainty. ANODE, on
the other hand, has been demonstrated in Ref. [124] to suffer from a systematic shift towards
values below one, i.e., the ANODE likelihood ratio is biased towards finding background events
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Figure 6.12: Tests of the background estimation in CATHODE using a training without signal
events. The left plot shows the mjj distributions of proxy data background after selecting the
20% and 5% most anomalous events according to the classifier, respectively. The right plot
shows the ratio of sampled background events and proxy data background events passing the
same selection on the anomaly score, as a function of the respective number of background
events. The uncertainty band corresponds to the statistical uncertainty of the background
samples, propagated to the ratio. Figure taken from Ref. [1].

more signal like. The classifier-based likelihood ratio of CATHODE thus seems to reflect the true
likelihood ratio more accurately than the flow-based ratio of ANODE, and the direct background
estimation via the SB-trained background template is a promising avenue for more studies.

6.2.4 Conclusions

CATHODE is a weakly supervised anomaly detection method that arises as a hybrid between
ANODE and CWoLa Hunting. The classifier-based learning of the likelihood ratio, similar to
CWoLa Hunting, results in a more accurate estimate than the ratio of two separately trained
conditional density estimators. The SB-trained conditional density estimator, as is trained in
ANODE, achieves a more faithful background template than the direct SB sampling of CWoLa
Hunting.

CATHODE was shown to outperform the two predecessor methods in various aspects on
the LHCO R&D dataset. The signal sensitivity in terms of SIC curves is the highest, and it
approximates the maximally expected sensitivity of an idealized anomaly detector with a perfect
background template. This holds also at lower signal fractions. A key advantage over CWoLa
Hunting is that its signal sensitivity is robust against correlations between the auxiliary features
and the mass variable. Lifting this former limitation on the choice of auxiliary features is a
significant step towards the inclusion of more information and thus increases the sensitivity for
a broader range of potential signal processes in the data. The adjustable classifier training sample
size provides another advantage, as it measurably increases the signal sensitivity and decreases
the variance from random weight initialization. The proof-of-concept study of the background
estimation potential shows satisfactory compatibility with a bump hunt, and it opens the door
for the method-intrinsic background estimation via the SB-trained background template.

This work has sparked further questions. A more in-depth discussion of the background
estimation potential of CATHODE is provided in Sec. 6.3. In particular, it is shown that the
results of the background estimation test in Fig. 6.12 will change significantly when considering
correlated input features. The reasons behind the loss of signal sensitivity due to the presence
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of uninformative features is investigated more thoroughly in Sec. 6.4, also outlining potential
solutions. Moreover, this proof-of-concept study lacks the full statistical analysis procedure
to quote the true signal sensitivity in terms of a p-value. Section 7 will provide a complete
CATHODE-driven analysis on more realistic MC simulation as well as real detector data.

More issues are to be addressed in future work. For example, the conditional density esti-
mation based on normalizing flows implicitly relies on auxiliary feature distributions that can
be learned by smoothly deforming a simple prior distribution. If some auxiliary features exhibit
highly discrete distributions, this modeling might not be successful. Moreover, it needs to be
shown under which circumstances the inductive bias of the conditional density estimator can
guarantee an accurate interpolation from the SB into the SR that has been blinded during train-
ing. Related to this is also the question of how this interpolation works if a large fraction of the
signal is outside the SR. This could be the case if the signal manifests itself as a resonance peak
that is wider than the SR. Ideally it would not correctly interpolate the signal contribution in
x, but only the background.

6.3 LaCATHODE

The work in this section is based on the publication in Ref. [2], developed in cooperation with
Anna Hallin, Gregor Kasieczka, Tobias Quadfasel, and David Shih. Accordingly, the results
and figures presented here are the same as in the publication. My contribution to the work
consists of significant parts of the conceptual development of the algorithm, as well as the full
implementation of both the algorithm and the benchmark methods. I have also performed all
studies involving the LHCO R&D data, developed the metrics for testing background sculpting,
contributed to writing the article, and handled its submission to the preprint server and journal,
along with the review process.

As discussed in Sec. 6.2, CATHODE achieves near-optimal signal sensitivity in the test case
of the LHCO R&D dataset. This could also be seen in the case where the auxiliary features x and
the resonant featurem are highly correlated. Moreover, the background estimation study showed
that a selection on the CATHODE anomaly score does not result in artificial bump-like structures
in the passing background distribution. Such so-called background sculpting would potentially
lead to a false discovery of a signal when using background estimation techniques, such as
a bump hunt (Sec. 2.6.3), if it is not properly reflected in the uncertainty estimation, which
can be difficult to model. However, the studies in Sec. 6.2.3 did not combine the background
estimation study with the correlated feature scenario. It was only discovered later that strong
correlations between x and m actually introduce undesired background sculpting in resonant
anomaly detection methods, such as CATHODE. This is not related to the data-driven learning
of the background template—in fact it occurs even in the case of an idealized anomaly detector.

The reason for this background sculpting in the presence of correlated features is twofold.
First, if the features x are a (noisy) function of m, then applying a selection on these x(m),
and thus on any function f(x(m)), corresponds to a selection on m. Secondly, if the phase
space of x varies significantly from one region of m to another, the ML classifier trained in the
SR cannot be trivially extrapolated to the SB regions anymore, as was done in Fig. 6.12 (left).
Instead, it will rely on the inductive bias and random initialization of the classifier model when
evaluated on x values outside the training domain, and is subject to uncontrolled behavior from
this extrapolation.

This section studies the background sculpting due to correlations between x and m using
a toy experiment as well as the LHCO R&D dataset. Furthermore, we will propose a modi-
fication to CATHODE in which the classification task is performed in the latent space of the
conditional normalizing flow that has been trained on the SB data. This modification, called
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latent CATHODE (LaCATHODE), benefits from the decorrelating property of the conditional
invertible mapping of data from pbkg(x|m) to the simple prior pz(z) where the m dependence
has been removed. Applying a selection based on these latent space values (and thus a classifier
function with input z) thus does not translate to a selection on m. The prior distribution is the
same in SR and SB, thus a classifier trained in one region can be directly applied to the other
region.

6.3.1 Algorithm and Implementation

LaCATHODE can be seen as a modification to the CATHODE algorithm in the specific case
when a normalizing flow was used for learning the conditional background density pbkg(x|m). In
order to underline the differences to LaCATHODE, the CATHODE algorithm with a normalizing
flow is again quickly summarized as follows:

1. The conditional background density pbkg(x|m) is learned by training a normalizing flow
h on the SB data to map the auxiliary features x to the latent space z = h(x;m) fol-
lowing a simple prior pz(z) distribution, continuously for every corresponding value in m:
pbkg(x|m) = pz(h(x;m))

∣∣det (∂h∂x)∣∣. The common choice of pz(z) is a standard Gaussian

distribution N (0, 1)D with the data dimensionality D.

2. The background density ofm in the SR, pm,SR(m), is estimated, e.g., with a one-dimensional
KDE fitted to the observed SR m values.

3. A background-like set of x values is created by first independently sampling z andm values,
then passing them backwards through the normalizing flow: Dx

bkg,SR = {h−1(zi;mi)} where
zi ∼ pz and mi ∼ pm,SR.

4. A binary ML classifier is trained to distinguish the real data Dx
data,SR, as represented in

the feature space x, from the background sample Dx
bkg,SR.

The LaCATHODE algorithm, which is illustrated pictorially in Fig. 6.13, follows step 1 above,
but then continues as follows:

2. The signal region data Dx
data,SR are mapped to the latent space z using the conditional

normalizing flow from step 1: Dz
data,SR = {h(xi;mi)}.

3. The background-like set of z values is created by sampling from the simple prior distribu-
tion: Dz

bkg,SR = {zi ∼ pz}.

4. A binary ML classifier is trained to distinguish the latent data Dz
data,SR from the back-

ground sample Dz
bkg,SR.

Therefore, the basic principle is the same for both methods, but the LaCATHODE classification
task is performed in the latent space of the normalizing flow instead of the physical feature space.
The motivation behind this transformation is that the background in the latent space has been
trained to follow a simple prior distribution where the dependence on m has been removed.
This means that the conditional flow mapping effectively decorrelates z = h(x;m) from m
because it learns to map all background data in the SB to the same simple prior distribution,
regardless of the value of m. A selection on the classifier score based on latent input values z
should thus not translate to a change in background shape in m. This also eliminates the need
for an estimation of pm,SR(m) in Step 2 of CATHODE above, because the real m values are
available when mapping data to the latent space along the forward direction of h, and the latent
background template is sampled without any m dependence.
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Figure 6.13: Illustration of the LaCATHODE algorithm. The signal region data are mapped
to the latent space representation with the conditional normalizing flow f(x;m), where the
background is expected to be distributed according to the prior of the flow, usually a standard
Gaussian (I). A binary ML classifier is trained to distinguish the latent data from a pure standard
Gaussian sample (II). Once trained, the test data from both SR and SB are mapped to the
latent space where the background should in each result in a standard Gaussian distribution
(III). These values are passed through the classifier to obtain the anomaly score (IV). The shape
of the background in the conditional feature m will remain unchanged if a selection is applied
based on this anomaly score (V). Figure taken from Ref. [2].

The next paragraphs will specify the implementation details of the LaCATHODE proof-of-
concept study. The code to reproduce the results is available in a public repository [162]. While
Sec. 6.3.2 will illustrate the working principle of LaCATHODE with a simple toy experiment,
the main results of Sec. 6.3.4 will again rely on the LHCO R&D dataset.

The default dataset is defined via the same high-level feature representation as described
in Sec. 6.2.1, i.e., the four auxiliary features are x = (mj1,∆mj , τ21,1, τ21,2) and the resonant
feature is m = mjj . The SR/SB choices and signal-to-background ratio are analogous as well.
The main dataset-related difference to the studies in Sec. 6.2 is a simpler separation into train-
ing/validation/test datasets. Here, half of the full proxy data are selected for training. The
remaining half is split into a validation set (1/6) and test set (1/3). The resulting SR and SB
datasets thus follow the same split.

In order to test the robustness with respect to correlations, two additional datasets featuring
stronger correlations are defined. The first of these datasets comprises the same mjj-dependent
shift applied to the two jet mass features as in Eq. 6.1. As discussed in Sec. 6.2, this introduces a
dominant correlation with x but this random smearing also decreases the discrimination power
of the features. The second of these datasets is instead constructed by including the angular
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separation ∆Rj =
√
(∆ηj)

2 + (∆ϕj)
2 between the two leading jets as a fifth auxiliary feature.

This feature is known to be strongly correlated with mjj , as can be seen in Fig. 6.14. Adding a
correlated feature rather than smearing existing ones is similar to the study in Sec. 6.2.3 where
mjj has been included among the auxiliary features, but with a realistic correlation between
random distributions instead of a trivial equality in one dimension. This is also crucial when a
conditional normalizing flow is trained on the dataset, as including mjj itself would reintroduce
the exact same feature in the condition as in the modeled data: p(x,m|m). This manner of
testing the robustness with respect to correlations was first suggested in Ref. [126].
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Figure 6.14: Left: normalized marginal distributions of the angular separation ∆Rj between the
two leading jets in the LHCO R&D dataset, separated into left sideband, signal region, right
sideband and signal. Right: two-dimensional background distribution of ∆Rj and mjj . Both
plots show that there are significant correlations between ∆Rj and mjj in the dataset.

The normalizing flow implementation and training is fully analogous to Sec. 6.2.1. When
using the flow for mapping SR data to the latent space, the model state at the epoch with the
lowest validation loss is used. Hence, no ten-epoch ensembling scheme, as used for CATHODE
in Sec. 6.2.1, is applied. While such a multi-epoch ensemble could be realized with the mean of
the transformed values from each model state, this degree of freedom is not further explored in
this study.

Once the SR training data are mapped to the latent space, the background template is
generated by sampling values from the standard Gaussian prior, using the random number
generator implemented in the NumPy library [163]. The size of this background template is
chosen to be 267,000 events. By splitting them into training and validation sets with equal
proportions as the proxy data, this results in 200,000 for training and 67,000 for validation.
This matches the same oversampling factor of approximately 3.3 as in Sec. 6.2.1. Once the two
sets Dz

data,SR and Dz
bkg,SR are created, the subsequent binary classifier training is performed in

full analogy to Sec. 6.2.1.

6.3.2 Toy Experiment

In order to illustrate the relationship between x-m correlations and background sculpting in res-
onant anomaly detection methods, and how LaCATHODE mitigates this issue, a toy experiment
is constructed with simple known distributions.

The setup consists of a one-dimensional featurem, which is sampled from a uniform distribu-
tion with a range of [−10, 10]. The signal region is defined as the narrow subset m ∈ [−0.3, 0.3].
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The two auxiliary features x = (x1, x2) are governed by the conditional density pc(x|m) =
N (µ = cm, σ = 1)2, where c ∈ R is a parameter controlling the correlation strength between x
and m. For every considered choice of c, two independent but identically distributed samples of
x and m are drawn: one representing the (background-only) proxy data and one representing
the background template.

A binary ML classifier is trained to distinguish the SR events in the two samples based on
their values in x. Each sample consists of one million events, which are divided into training,
validation and test sets with fractions of 50%, 16.7% and 33.3%, respectively. The classifier is
implemented as a fully connected neural network with three hidden layers of 64 nodes, with
ReLU activation function, and a single output node with sigmoid activation function. It is
implemented with the Keras library [164] and the TensorFlow backend [165]. The training is
performed by minimizing the binary cross-entropy loss with the Adam optimizer [73], using a
batch size of 128 and a learning rate of 10−3. From the total of 50 training epochs, the five
with the lowest validation loss are ensembled in the inference step by computing their mean
prediction per event.

Once trained in the SR, the classifier is evaluated on the test set of the proxy data in the full
region of m (SR and SB). Based on the resulting anomaly score, the 1% most anomalous events
are selected. The magnitude of how much the resulting classifier sculpts the background shape
in m can be visually inspected. Deviation from a uniform distribution indicates the presence of
sculpting.

Figure 6.15 shows the toy experiment with the two choices of c ∈ {0.001, 0.1}. The left
column displays the two-dimensional distribution of x, where only the larger choice of c = 0.1
results in a visible departure from a standard Gaussian distribution. The elongated shape
towards the diagonal is due to the m-dependent shift in the x values and results in a domain
shift between the classifier training region (SR) and the evaluation region (SR and SB). The
right column shows the distribution of m for the selected most anomalous percentile of events,
based on three independent classifier trainings. The c = 0.001 case is compatible with a uniform
distribution of m for every classifier training, indicating no sculpting due to this small degree of
correlation. In contrast, the c = 0.1 case is subject to a significant change in shape for all three
classifiers. Moreover, there is a visible disagreement between the shapes resulting from the three
independent classifiers. This illustrates non-deterministic behavior once the neural networks are
extrapolated into phase space that is not accessed during training.

While the above test corresponds to a simplified CATHODE-like scenario (or more specifi-
cally an IAD), one can now also imagine a simplified LaCATHODE application. For this, one
would use a normalizing flow that maps the conditional background likelihood p(x|m; c) to a
simple prior distribution pz(z), where the m dependence has been removed. In this simple setup,
a perfect normalizing flow, mapping x to the latent space following a two-dimensional standard
Gaussian distribution, is analytically obtained as

z = x− cm. (6.2)

The resulting z distribution and the corresponding m distribution, originally sampled uniformly,
for the selected 1% most anomalous events are shown in Fig. 6.16. The z distribution coincides
in this toy experiment with x ∼ p(x|m; c) for c = 0. The right plot shows that a selection on
this uncorrelated z does not at all result in a change in background m shape, as expected.

This simple toy experiment shows that correlations between x and m cause a classifier,
trained on values in x, to learn an implicit function in m and thus a selection on this classifier
changes the shape of the passing m distribution. This effect is negligible at sufficiently small
correlations but becomes dominant with more significant correlations. Due to the extrapolation

92 Manuel Sommerhalder



6 DEVELOPING AND IMPROVING ANOMALY DETECTION METHODS

4 2 0 2 4
x1

4

2

0

2

4

x 2

Features with c = 0.001

10 5 0 5 10
m

0

100

200

ev
en

ts

m, selecting 1%, c = 0.001

run 1
run 2
run 3

4 2 0 2 4
x1

4

2

0

2

4

x 2

Features with c = 0.1

10 5 0 5 10
m

0

200

400

600

ev
en

ts

m, selecting 1%, c = 0.1

run 1
run 2
run 3

Figure 6.15: Two-dimensional toy experiment auxiliary feature x distribution (left column) and
the resulting distribution in the conditional feature m, originally sampled uniformly, when a
binary classifier is trained to distinguish equivalent samples in x and selecting the 1% data
points with the highest anomaly score (right column). This scenario is illustrated with an x-to-
m correlation parameter of c = 0.001 (top row) and c = 0.1 (bottom row). Three independent
classifiers were trained for each case. Figure taken from Ref. [2].
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Figure 6.16: Two-dimensional toy experiment latent space z distribution of a perfect normal-
izing flow (left) and the resulting distribution in the conditional feature m, originally sampled
uniformly, when a binary classifier is trained to distinguish equivalent samples in z and selecting
the 1% data points with the highest anomaly score (right). Three independent classifiers were
trained for each case. Figure taken from Ref. [2].
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from an SR-only training to a broader domain in m, the behavior of a neural network classifier
on correlated x depends increasingly on the specific initialization of the weights, thus leading to
more uncontrolled behavior between repeated trainings. Furthermore, it shows how decorrelating
x and m before classifier training mitigates the sculpting issue. It thus illustrates the motivation
behind modifying CATHODE to LaCATHODE, where the latent space of a normalizing flow is
used for the classification task.

6.3.3 Benchmark Method Implementation

Section 6.3.4 will compare the LaCATHODE algorithm to CATHODE, as they are directly
related. In addition, the results are compared to an IAD, which corresponds to CATHODE
with a perfect background template. Comparing to both thus helps to disentangle the behavior
due to mismodeling the background template from the more general challenges arising from
feature space classification.

The CATHODE implementation closely follows the one in Sec. 6.2.1 with only a few de-
partures. The data split and the sizes of the background templates used for the training and
validation sets are the ones described earlier in Sec. 6.3.1. In addition, the ten-epoch ensembling
of the normalizing flow is omitted, in order to compare more directly to the LaCATHODE case
where this is also not performed.

The IAD implementation is also analogous to Sec. 6.2.2 except for the data split. The proxy
data are the same as for (La)CATHODE, and the background template is created by selecting
200,000 events from the additional LHCO R&D background samples for the training set and
67,000 for the validation set. Thus, this idealized background template now has the exact same
size as the one used for (La)CATHODE.

Table 6.2 summarizes the amount and type of data used for training and validation of each
method.

Table 6.2: Numbers of events in units of 1000 ≡ 1k used for training, validation, and testing
for each method. In this context, validation refers to selecting model epochs. The test set is
the same for all methods. DE and CLS refer to density estimators and classifiers, respectively.
“Bkg” and “sig” refer to background and signal, respectively. The term “bkg samples” here
indicates that they originate from the synthetic background template.

Method Type Training Validation Testing

CATHODE
DE 439k SB data 147k SB data

For sculpting
studies:

333k bkg (SB+SR)

For SIC:
386k SR bkg
75k SR sig

CLS
61k SR data 20k SR data

200k SR bkg samples 67k SR bkg samples

LaCATHODE
DE 439k SB data 147k SB data

CLS
61k SR data 20k SR data

200k SR bkg samples 67k SR bkg samples

Idealized AD CLS
61k SR data 20k SR data
200k SR bkg 67k SR bkg

6.3.4 Results

The performance of LaCATHODE, CATHODE and an IAD will be discussed in the next para-
graphs in terms of both the signal sensitivity and robustness against background sculpting. In
order to study the signal sensitivity, the same SR signal-to-background ratio of approximately
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0.6% as in Sec. 6.2.3 is chosen in the proxy data. No signal events were present in the train-
ing data for studying the background sculpting because the main focus is to avoid reporting
false discoveries in the absence of true signal. The same metrics were also derived with the
signal-injected trainings, without leading to substantial differences.

Signal Sensitivity

The main performance metric for signal sensitivity is the SIC in the SR. To ensure relatively
small statistical uncertainty in the SIC measurement, the test set is enhanced with events from
the additional SR background events following the LHCO R&D dataset background simulation,
as well as all SR signal events that are not used for training and validation. This thus comprises
approximately 386,000 background events and 75,000 signal events. Again, the results are
presented in terms of the median and variance of ten independent retrainings of the full method
on the same dataset, as in Sec. 6.2.3.

Figure 6.17 shows the SIC as a function of the background efficiency for the three methods
on the default dataset (top left), the mass-shifted dataset (top right), and the dataset with the
additional angular separation feature ∆Rj (bottom). The background efficiency is chosen here
to quantify the position of the decision threshold of the anomaly score because, compared to the
signal efficiency, it relates more closely to the data selection efficiency that one can control in
a real analysis. Since the signal content in an anomaly search is likely small, the data selection
efficiency and the background efficiency are approximately equal, and the SIC curves in Fig. 6.17
allow an estimate of how tight a selection needs to be in a real analysis in order to reach a given
signal sensitivity.

The SIC curves for CATHODE and the IAD confirm the behavior discussed in Sec. 6.2.3,
where CATHODE saturates the IAD performance in the default case, and is more affected by
the mass smearing. The bottom plot of Fig. 6.17 also indicates that the inclusion of the highly
correlated ∆Rj feature leads to a greater mismodeling by the flow, and thus the CATHODE
performance is still high but lower than for the IAD.

LaCATHODE, on the other hand, shows similar but slightly lower SIC with higher variance
in the default case. In the mass-shifted case, LaCATHODE is similar to CATHODE with a
larger downward variance. On the dataset with ∆Rj , LaCATHODE is both lower in median
and with larger variance than CATHODE. One reason for this might be the less advantageous
feature representation in the latent space for discriminating signal from background in a weakly
supervised manner. Moreover, while the background is trained to be mapped to a standard
Gaussian prior, the signal is not well controlled in the flow and might be mapped to more or less
populated phase space regions. Hence, the larger variance. Besides the performance loss with
respect to CATHODE, the SIC is still relatively high, in particular compared to other anomaly
detection methods, such as CWoLa Hunting or ANODE.

Background Sculpting

While the study above shows that the signal sensitivity when using LaCATHODE persists to
be high, although slightly lower than for CATHODE, the main focus of the method is to retain
an unsculpted background distribution of m after a selection on the anomaly score is applied.
Similar to the toy experiment in Sec. 6.3.2, this can be tested by selecting the most anomalous
1% events according to each classifier and plotting their m distribution. The selection efficiency
of 1% is to some degree arbitrary, but has been chosen to be tight enough for non-trivial signal
sensitivity (according to the SIC curves in Fig. 6.17), but loose enough for the resulting m
distribution to not be dominated by statistical uncertainties. The result for a single training of
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Figure 6.17: Significance improvement characteristic (SIC) as a function of the background
efficiency for LaCATHODE in comparison to CATHODE and an idealized anomaly detector
applied to the default LHCO R&D high-level feature dataset (top left), the mass-shifted rep-
resentation (top right), and including the angular separation ∆Rj as an additional auxiliary
feature (bottom). The signal-to-background ratio in the signal region is approximately 0.6%.
The solid lines represent the median of ten trainings with different random weight initialization
on the same training, validation and test set. The uncertainty bands contain the central 68% of
these runs around the median. Figure taken from Ref. [2].

each of the three anomaly detectors on each of the three datasets is summarized in Fig. 6.18.

In the default case with only minor correlations, all three lines appear similar to the unse-
lected background. Some noticeable deviation is present for the IAD, which is slightly shifted
to the left between 1.6 and 2.8TeV. The difference becomes more striking in the two strongly
correlated datasets. There, both CATHODE and the IAD result in significantly different m dis-
tributions after selection, confirming the expectation from the toy experiment. The similarity
between CATHODE and the IAD in terms of the magnitude of sculpting also confirms that the
issue is not caused by the data-driven learning of the background template, but by the feature
space classification itself. LaCATHODE, on the other hand, shows a very similar m distribution
before and after selection in all three cases, confirming that the decorrelating mapping to the
flow latent space is successful in mitigating the background sculpting issue.

While the test in Fig. 6.18 is illustrative of the background sculpting of feature space classi-
fiers and the lack thereof in the latent space, they are based only on one training and a single
selection efficiency choice. We thus want to construct a more quantitative measure of the change
of background shape after a selection on the anomaly score. For this, a histogram of the test data
mjj distribution is computed with nbins = 300 bins and boundaries such that all bins are equally
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Figure 6.18: The normalized distribution of mjj after selecting the 1% most anomalous events
after a single training of LaCATHODE, CATHODE and an idealized anomaly detector applied to
the default LHCO R&D high-level feature dataset (top left), the mass-shifted representation (top
right), and including the angular separation ∆Rj as an additional auxiliary feature (bottom).
Only background events were used in the training and evaluation. The gray area represents the
full mjj shape of the background before any anomaly score selection. Figure taken from Ref. [2].

populated: N full
i = N tot/nbins, where N

full
i is the content of bin number i and N tot = 333,000 is

the total number of background events. The choice of nbins was made such that a 1% selection
efficiency would still yield at least ten events per bin. An area-normalized histogram with bin
content nfulli = aiN

full
i is then created, where ai is the respective normalization factor. After

training an anomaly detection method and applying a selection with efficiency εsel, a histogram
of the passing mjj values N sel

i is constructed with the same binning as derived for the inclusive

case, and separately area normalized nseli = biN
sel
i with respective normalization factor bi. This

then allows computing the χ2 distance metric between the two normalized histograms:

χ2 =

nbins∑
i=1

(nfulli − nseli )2

σ2i
=

nbins∑
i=1

(nfulli − nseli )2

a2i εselN
full
i

. (6.3)

It should be noted that this corresponds to the one-sided χ2 test, where the full distribution
scaled down by εsel is considered the true target distribution. The expected statistical uncer-

tainty per bin σi is thus the product of the Poisson error

√
εselN

full
i and the normalization

factor ai. The advantage of this metric over, e.g., a two-sided χ2 test or the Jensen-Shannon
divergence, is that its value approximates the number of degrees of freedom ndof = nbins − 1 in
the case of a perfect agreement between the two histograms. We thus divide the χ2 value by
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ndof to obtain the χ2/ndof value with an expected value of one. This metric is plotted for each
anomaly detection method as a function of decreasing εsel, ranging from 20% down to 1%, in
Fig. 6.19. As in the SIC curves, the solid lines and bands correspond to the median and central
68% of ten independent trainings, respectively. As a reference, the gray line and bands denote
the median and variance of 100 randomly drawn subsets at each choice of εsel, confirming that
the χ2/ndof metric converges towards unity with our choice of nbins.
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Figure 6.19: The χ2/ndof between the mjj distribution after applying a selection on the anomaly
score and the full mjj shape of the proxy data before any anomaly score selection, as a function
of the respective selection efficiency in the signal region. The result is shown for LaCATHODE,
CATHODE and an idealized anomaly detector applied to the default LHCO R&D high-level
feature dataset (top left), the mass-shifted representation (top right), and including the angular
separation ∆Rj as an additional auxiliary feature (bottom). Only background events were used
in the training and evaluation. The solid lines and bands are defined as in Fig. 6.17. The gray
band denotes the χ2/ndof of 100 randomly drawn subsets at the respective efficiency. Figure
taken from Ref. [2].

The resulting figure shows that the change in background shape is noticeable but remains
relatively limited for CATHODE and the IAD with the default feature choice. However, in
the two correlated datasets, their χ2/ndof values increase dramatically and are subject to large
variance. Again, the similarity between CATHODE and the IAD confirm that this behavior
is intrinsic to training a classifier on physical features with correlations to m. LaCATHODE,
on the other hand, remains strikingly close to unity in all cases with only small variance. It
thus confirms that the background shape remains largely unchanged after a selection on the
LaCATHODE anomaly score, for all considered choices of εsel and across multiple retrainings,
even with heavily correlated x and m.
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6.3.5 Conclusions

LaCATHODE is a modification to the CATHODE algorithm that involves using the already
trained normalizing flow for decorrelating the physical auxiliary features from the resonant fea-
ture m before training a binary ML classifier. With this modification, the classifier does not
learn an implicit function of m and thus does not change the background shape in m once a se-
lection based on the anomaly score is applied. It was explicitly shown that LaCATHODE results
in an unchanged background shape even in a highly correlated setting while retaining much of
the high signal sensitivity of CATHODE, without adding more complexity to the method. In
fact, it even eliminates the need for estimating the SR background distribution of m.

An unchanged background shape is not strictly necessary to perform a bump hunt, as linear
modifications to the shape without introducing bump-like (at least quadratic dependencies on
m) structures would also not result in false discoveries. Moreover, if one manages to model
the sculpting and/or the resulting systematic uncertainties, it could be accounted for during
the statistical procedure. However, this type of recalibration is particularly challenging if the
data-driven nature of the analysis should be preserved. The strictly unmodified background
shape of LaCATHODE automatically facilitates a more robust statistical analysis, in particular
given that its loss of signal sensitivity compared to CATHODE is relatively small.

The limitations of the method are comparable to the ones outlined for CATHODE, with
the addition that the latent feature representation empirically reduces the signal sensitivity,
measured in terms of SIC, and increases the variance.

Appendix B.5 provides another illustration of the mechanism behind background sculpting
under correlated auxiliary and resonant features. This study is performed on a larger and more
realistic dataset, confirming that background sculpting in m is an inherent consequence of se-
lecting based on a classifier with input x if x is correlated with m, and that explicit decorrelation
methods, such as LaCATHODE, are necessary if these correlations are substantial.

6.4 Noise Issue in Weak Supervision

This section is based on the associated publication in Ref. [3], which was prepared together
with the co-authors Thorben Finke, Marie Hein, Gregor Kasieczka, Michael Krämer, Alexander
Mück, Parada Prangchaikul, Tobias Quadfasel, and David Shih. The results and figures are only
slightly modified for the context of this thesis. I contributed to the work by performing initial
studies identifying the underlying issue of uninformative features in weak supervision, closely su-
pervising a student who conducted more in-depth noise studies, implementing the TMVA BDT
benchmark, discussing the results in the publication, as well as assisting in writing and proof-
reading of the article.

In the studies of Secs. 6.2 and 6.3, it was observed that a weakly supervised classifier tends
to lose sensitivity to a signal when more input features without any additional discrimination
power between the background and the respective signal are included. An example is shown
in Fig. 6.10, where both mjj and a pure Gaussian noise feature similarly decrease the signal
extraction performance of an IAD classifier. In contrast, a fully supervised classifier was able
to exploit the small additional information contained in mjj . This section studies the impact
of uninformative features in weak supervision in more detail, and proposes replacing the neural
network classifier with a boosted decision tree ensemble, which is shown to be substantially
more robust to noisy features. The code for reproducing the results is available in a public
repository [166].

The task of a weakly supervised anomaly detection classifier, as employed in CATHODE,
is essentially to classify between two almost identical distributions: both consist primarily of
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the same overwhelmingly large background, and they differ only by the small additional sig-
nal contribution in one sample. The discrimination power between the underlying signal and
background can only be learned if the classifier finds these small differences between the two
mixed samples. This is inherently more challenging than in a fully supervised setting, where
pure samples of signal and background are learned to be separated directly. The task becomes
particularly difficult if the signal contribution is relatively small compared to the statistical
fluctuation of the samples. Adding more dimensions in which signal and background differ
only based on statistical fluctuations, in the following referred to as “noise”, hides the signal
even more. Therefore, the more noisy dimensions are present, the more difficult it becomes for
the classifier to find a decision boundary through the phase space, such that it separates the
underlying signal from the background.

The aim of anomaly detection searches is to be sensitive to a wide range of potential new
physics signals. If, however, the classifier training is constrained to only few input features,
which need to be discriminative between the background and a signal, the model agnosticism
of the search is severely limited. One would want to include sufficiently many input features to
cover many potential signals, but then for any specific signal, most of the input features will
inevitably be uninformative. Thus, overcoming the limitation of only using a few hand-crafted
features, which has been the case in all weakly supervised anomaly detection methods so far, is
a crucial step towards a more model agnostic search.

The studies in this section aim to investigate the impact of including many uninformative
features in the training of a weakly supervised classifier. In order to factor out the challenge
of simulating a background in a data-driven manner, only an IAD setting is considered, leaving
the generalization to CATHODE to future work. The BDT and neural network classifiers are
exposed to various types of noisy feature sets, different numbers of signal and background events
during training, as well as different types of signal processes.

6.4.1 Neural Networks vs Boosted Decision Trees

For a long time, BDTs used to be the standard method for classifying new physics signal against
SM background in HEP. They can be seen as a natural progression from manually designing
selections based on few high-level features towards a more automated approach. Eventually,
deep neural networks were identified to outperform BDTs on these tasks, in particular as they
are able to exploit lower-level information rather than relying on hand-crafted features [167].
However, it is known in the field of machine learning that BDTs still outperform neural networks
on tabular data, in particular on small- to medium-sized datasets [168, 169]. In this context,
the term “tabular data” refers to a fixed number of features per sample where the values of
features can be both categorical and continuous, and there is no positional information between
the features, i.e., their order is irrelevant. Reference [168] defines medium-sized datasets as up
to an order of 10,000 samples. In their empirical study, the authors highlight three key findings
why tree-based models outperform deep neural networks in this case:

1. Smoothness bias: while models based on decision trees learn piece-wise constant func-
tions, neural networks are inherently smooth. Thus, the latter need more data to learn
irregular decision boundaries.

2. Uninformative features: tabular data features tend to be less correlated than structured
ones, such as images or sequences. Thus, many features are likely uninformative. BDTs
are seen to be less affected by uninformative features than neural networks.

3. Rotation invariance: neural network trainings are rotationally invariant, i.e., if each
feature vector is multiplied by a unitary matrix before training, the model will learn to
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associate the same output as for the original feature vector. This is a more complex
learning task, and the reason why neural networks are more sensitive to uninformative
features. BDTs, on the other hand, are not rotationally invariant as they consider each
feature individually in its original form.

The superiority of neural networks over BDTs in most HEP applications seems to be due
to the typically large dataset sizes, as well as the high-dimensional and structured nature of
collider data. The case of weakly supervised anomaly detection, however, is characterized by
a relatively small effective dataset size: the small signal contribution is the only difference
between the two (usually large) samples. Moreover, the common feature representation for
weakly supervised anomaly detection, such as the high-level representation of the LHCO R&D
dataset, is of tabular nature10. Therefore, BDTs are expected to be more robust than neural
networks in the case where many of these features are uninformative.

Another key advantage of BDTs over deep neural networks is that they are computationally
less expensive to train. This is in particular the case for implementations that use histogramming
techniques (as briefly mentioned in Sec. 3.3.2). This makes them more attractive for ensembling
many individual models. It is common that the average prediction of an ensemble of models
is more accurate than the prediction of any individual model. This can, for example, be seen
in the comparison of top taggers in Ref. [170]. As the variance of individual model predictions
tends to be large in the case of a small signal in weak supervision, ensembling techniques are
expected to significantly stabilize the classifier performance. In order to factor out the variance
of not only the intrinsic randomness of the model (random weights initialization for the neural
network and subsampling schemes for the BDTs), but also the underlying randomness of the
training data, the ensemble is built from models trained on different training/validation splits
of the data. This can be regarded as a randomized type of cross-validation.

6.4.2 Implementation Details

As in the previous methodological studies, the LHCO R&D dataset in the high-level feature pre-
sentation is used to benchmark different approaches, with all definitions analogous to Sec. 6.2.1,
unless stated otherwise. Only events within the SR are used, as the studies are limited to
training IAD and fully supervised classifiers. This results in a default composition of 120,000
background and 772 signal events in the SR proxy data, as well as a background template of
272,000 events. The dataset is split into 50% training and 50% validation data. In addition
to the default two-prong W′ → X(→ qq)Y(→ qq) signal process, a three-prong signal process
W′ → X(→ qqq)Y(→ qqq) with otherwise equal masses will also be considered later.

The main focus of the study is to investigate the behavior of IAD classifiers in the pres-
ence of many uninformative features. To this end, we modify the baseline feature set x =
{mJ1

, ∆mJ , τ
β=1,J1
21 , τ

β=1,J2
21 } in two ways11. First, we add pure noise dimensions by sampling

from a standard normal distribution, indifferently to the signal label of the event. This will be
denoted by nG where n is the number of noise dimensions. In a realistic scenario, there will
likely not just be fully uncorrelated noise features, but rather a small amount of information will
be spread over many physical features. To mimic this, we define three physical extended feature
sets, which are summarized in Tab. 6.3. Extended Set 1 adds additional subjettiness ratios

10
The restriction to hand-crafted high-level features is already made to mitigate the noise issue, thus the promise

of BDTs is primarily to use substantially more of them. It would be even more ideal, if this restriction could be
lifted entirely. In this case, the tabular nature of the data would not hold anymore and BDTs might no longer
be the best choice.

11
The β parameter in the general N -subjettiness definition of Eq. 2.17 is made explicit in this section, as

different choices will be explored. The parameter α remains at the default value of zero.
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τN,N−1 = τN/τN−1 for 3 ≤ N ≤ 5, thus including subjettiness ratios that are not expected to be
relevant for the signal in the proxy data. Extended Set 2 replaces the (more human-readable)
subjettiness ratios by individual (more correlated) subjettiness variables τN for N ≤ 5. At last,
Extended Set 3 also removes the subjettiness ratios from the baseline set, and instead includes
all direct subjettiness variables τβN for N ≤ 9 and β ∈ {0.5, 1, 2}, thus covering a large phase
space with plenty of uninformative and redundant attributes.

Table 6.3: Overview of the four physical feature representations of the LHCO R&D dataset used
in the studies of Sec. 6.4.3. The baseline feature set corresponds to the high-level feature choice
in the CATHODE studies. The Extended Sets 1–3 add various subjettiness variables either as
ratios τN,N−1 = τN/τN−1, individual τN or all τN with different β parameters.

Name Number of Features Features

Baseline 4 {mJ1
, ∆mJ , τ

β=1,J1
21 , τ

β=1,J2
21 }

Extended Set 1 10
{mJ1

, ∆mJ , τ
β=1,J1
N,N−1 , τ

β=1,J2
N,N−1}

for 2 ≤ N ≤ 5

Extended Set 2 12
{mJ1

, ∆mJ , τ
β=1,J1
N , τ

β=1,J2
N }

for N ≤ 5

Extended Set 3 56
{mJ1

, ∆mJ , τ
β,J1
N , τ

β,J2
N }

for N ≤ 9 and β ∈ {0.5, 1, 2}

The neural network architecture is the same as in Sec. 6.2.1, with the same hyperparameters
and training setup. The only difference is the choice of implementation via Keras [164] and
TensorFlow [165].

Multiple choices of BDT architectures were tested and compared (partially shown in Fig. 6.20),
out of which the histogram-based gradient boosting (HGB) classifier was found to be the most
performant. The HGB classifier was implemented with the HistGradientBoostingClassifier
from the Scikit-learn library [160]. The default parameters were used, i.e., a learning rate of 0.1,
a maximum of 31 leaf nodes per tree, and a maximum of 255 bins for the histogramming. Early
stopping was employed with a patience of 10 iterations, and the maximum number of iterations
was increased from the default 100 to 200 to ensure that the training stops at the minimum
validation loss and not at the maximum number of trees. Similar to the epoch selection pro-
cedure for the neural networks, the iteration with the lowest loss on the validation dataset is
selected for inference. Subsampling was used for individual trees, such that the predictions can
vary between different runs.

Other BDT architectures that were considered and compared are as follows, in line with the
concepts introduced in Sec. 3.3.2:

� Random forests (RFs): a decision tree ensemble with sample and feature bagging. Imple-
mented with the RandomForestClassifier from Scikit-learn [160].

� AdaBoost: an iterative decision tree ensemble where each tree samples training data based
on weights that depend on the performance of the previous trees. Implemented with the
AdaBoostClassifier from Scikit-learn [160].

� TMVA BDT: a frequently used BDT implementation in HEP based on the Toolkit for
Multivariate Analysis (TMVA) [171], which is part of the ROOT framework [172]. We
used version 6.28.4, with the BDT default settings, which are based on AdaBoost.

Except for the computationally expensive TMVA BDT, all BDT models were optimized with
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an automatic hyperparameter search on the baseline feature set, using the Optuna library [173].
Because of the near-optimality of the HGB default settings, we resorted to those for simplicity.

As mentioned before, ensembles of classifier models were built to increase the stability and
performance of the predictions. For this, the mean predictions of Nens independent models are
computed, where each model is trained with a different randomized training/validation split of
the data. Unless stated otherwise, Nens = 50 independent models were used for the ensemble,
which was seen to saturate the performance in most settings.

6.4.3 Results

All results in this section will be based on the SIC, either as curves as a function of the signal
efficiency, or condensed into a single number as the maximum SIC. This will be evaluated
on a separate test set, comprising 340,000 background and 20,000 signal events. In order to
ensure that the SIC at tight selections (and thus the maximum) is not dominated by statistical
fluctuations, it is only considered in the range where enough background events remain to ensure
a relative Poisson uncertainty below 20%. For the BDTs the results will be shown as before in
terms of a median and central 68% confidence interval of ten independent retrainings. For the
neural networks, a single run is shown because of their high computational cost, especially when
ensembling over 50 models. However, it was verified that the variance of the neural network
ensemble predictions is low, by examining 10 independent runs for the smaller ensemble size of
N = 10 on every plot.

BDT Architecture Comparison

In order to decide the BDT architecture for the following studies, a comparison of the HGB, RFs,
AdaBoost, and TMVA BDT was performed on the baseline and ten Gaussian noise dimension
feature sets. The results are shown in Fig. 6.20. The HGB classifier was found to be the most
performant, especially in the presence of noise. This is the reason why the following studies will
be performed with the HGB as the choice of BDT. A main factor might be the histogramming
technique, which not only accelerates the training, but also reduces the impact of statistical
fluctuations in the training data by first aggregating the data into bins. The other approaches
perform worse than the HGB and overall relatively similarly with respect to each other.

Baseline Feature Set

With the BDT architecture decided, the main focus is the comparison between the HGB and a
neural network. Figure 6.21 compares the SIC curves of BDT and NN ensembles on the baseline
feature set in a fully supervised and a weakly supervised setting. While the two classifier
approaches have strikingly similar performance in the fully supervised case, the BDTs strictly
outperform the neural networks in the weakly supervised setting. It thus seems that even
without the presence of uninformative features, the BDT has a more suitable inductive bias for
the tabular dataset and the small signal in the IAD setup.

Adding Pure Noise Features

The difference between BDT and NN ensembles becomes more significant when adding uncorre-
lated Gaussian noise dimensions to the baseline feature set. Figure 6.22 compares the respective
SIC curves with various numbers of noise dimensions up to 50. A single noise dimension reduces
the neural network IAD performance visibly, while a second one reduces the performance by
approximately half across most of the signal efficiency range. With five uninformative features,
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Figure 6.20: Significance improvement of (ensembles of) different boosted decision tree archi-
tectures as a function of the signal efficiency using the baseline LHCO R&D dataset (left) and
ten Gaussian noise dimension feature set (right). The lines and bands correspond to the median
and the 68% confidence interval of ten independent runs. Figure adapted from Ref. [3].
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Figure 6.21: Significance improvement of different classifiers as a function of the signal efficiency
using the four baseline LHCO R&D dataset features. The lines correspond to either an ensemble
of boosted decision trees (solid) or neural networks (dashed) in a fully supervised (blue) or a
weakly supervised setting (black). The BDT lines and bands corresponds to the median and
the 68% confidence interval of ten independent runs. Figure adapted from Ref. [3].

the SIC is already too low to translate the initial significance of 2.2σ into a discovery significance
of 5σ.

The BDT ensemble, on the other hand, retains high performance with many noise dimen-
sions. The performance drop from ten noise dimensions is only marginal. Adding 30 or 50
uninformative features does reduce the performance visibly, but it still remains in a non-trivial
range, and retains a maximum SIC around 12. This already demonstrates a substantial im-
provement in the robustness of the BDT ensemble to uninformative features compared to the
neural network ensemble.
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Figure 6.22: Significance improvement of neural network (left) and boosted decision tree (right)
classifier ensembles as a function of the signal efficiency when varying numbers of pure Gaussian
noise dimensions are added to the baseline LHCO R&D dataset features. The number n of
Gaussian noise dimensions is denoted as nG in the legend. The BDT lines and bands correspond
to the median and the 68% confidence interval of ten independent runs. Figure adapted from
Ref. [3].

Physical Extended Feature Sets

While the uncorrelated noise is relatively easily filtered out by the BDT, the more realistic test is
to add additional (generally correlated) physical features with only limited discrimination power
for the present signal. The comparison of both classifier architectures is shown for all extended
feature sets in Fig. 6.23. The NN ensemble performance decreases visibly for most of the signal
efficiency range on Extended Set 1, which includes higher subjettiness ratios. The true signal is
a two-prong process and the additional subjettiness ratios τ32, τ43, and τ54 are expected to be
only discriminative for three-prong, four-prong, and five-prong signals, respectively. The NN is
thus exposed to six mostly uninformative dimensions, which reduce the performance but not as
much as the fully uncorrelated noise features have done, comparing to the 5G line in Fig. 6.22.
The other feature sets, Extended Set 2 and Extended Set 3 improve the NN performance with
respect to the baseline, which means that the direct subjettiness features contain significantly
more discriminative information than the ratios.

The BDT ensemble, on the other hand, performs strictly better than the NN counterpart on
all extended feature sets. It thus also manages to exploit the additional information contained
in the large feature sets. The most striking difference lies in Extended Set 1, which for the BDT
results in a slightly better performance than the baseline feature set. The mostly uninformative
higher subjettiness ratios are thus not only non-detrimental, but even slightly beneficial for the
BDT.

Different Signal Strengths

The maximum SIC of the BDT in Fig. 6.23 reaches 15 in the baseline feature set and 35 with
Extended Set 3. Multiplied by the initial significance of 2.2σ, this corresponds to a maximum
achieved significance of 33σ and 77σ, respectively. Since both are well beyond the conventional
5σ discovery threshold, this difference is not of practical relevance. The more crucial metric in
practice is how the methods scale to rarer signals, i.e., what is the smallest signal strength for
which the methods achieve a SIC that would result in a discovery. To investigate this, Fig. 6.24
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Figure 6.23: Significance improvement of neural network (left) and boosted decision tree (right)
classifier ensembles as a function of the signal efficiency using the baseline LHCO R&D dataset
features and the three extended feature sets. The BDT lines and bands correspond to the median
and the 68% confidence interval of ten independent runs. Figure adapted from Ref. [3].

shows the maximum SIC as a function of the number of SR signal events in the proxy data,
while keeping the same number of background events. The BDT achieves a plateau around a
SIC of 15 at approximately 500 signal events in the baseline feature set, corresponding to a
signal-to-background ratio of 0.4%. The NN performs overall similarly, but it reaches a plateau
later. The Extended Set 3 BDT achieves a similar performance at around half the number of
signal events. This demonstrates that the sensitivity for rare BSM phenomena can be increased
by using more input features and a suitable model (BDTs rather than NNs) that is able to
incorporate them.

Baseline, NN

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

M
a
x
im

u
m

 S
ig

n
if
ic

a
n

ce
 I
m

p
ro

v
e
m

e
n
t

Number of Signal Events

Baseline, BDT

Extended set 3, BDT

Figure 6.24: Maximum significance improvement as a function of the number of SR signal events
during training in the LHCO R&D dataset for the baseline (black) and the Extended Set 3 (blue)
feature sets. The BDT lines and bands correspond to the median and the 68% confidence interval
of ten independent runs. The neural network results are shown for the baseline case a dashed
line. Figure adapted from Ref. [3].
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The study in Fig 6.24 can be generalized by calculating the maximum SIC for different
combinations of the number of background events and the initial significance. This is shown in
Fig. 6.25, for the BDT ensemble with baseline features and Extended Set 3, where the horizontal
axis denotes the number of background events and the vertical axis measures the signal presence
in terms of the initial significance, Nsig/

√
Nbkg, for the respective number of background events.

The classifiers in this case were all trained with the background template size set equal to the
respective proxy data background size. This is done for the practical reason that it increases
the number of available simulated background events and thus more choices of proxy data
background sizes can be scanned. It can be seen that for both feature sets the maximum SIC
values only depend weakly on Nbkg for fixed values of Nsig/

√
Nbkg. This means that with

increasing dataset sizes, one can achieve the same sensitivity with lower signal-to-background
ratios. Comparing the two feature sets, the Extended Set 3 BDT achieves a significantly higher
maximum SIC for the same Nsig/

√
Nbkg, which is consistent with the results in Fig. 6.23.
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Figure 6.25: Maximum significance improvement as a function of the approximate initial sig-
nificance Nsig/

√
Nbkg and the number of background events in the LHCO R&D dataset during

training for the baseline (left) and the Extended Set 3 (right) feature sets. Figure adapted from
Ref. [3].

Different Signal Process

In order to check how well the findings above generalize to other signal processes, we repeated
the feature set comparison study, shown in Fig. 6.23, for the three-prong signal, introduced in
Sec. 6.4.2, with the same number of events. The results are shown in Fig. 6.26. It can be seen
that the SIC curve for the NN using the baseline feature set is below one for a wide range
of signal efficiencies, indicating that the NN is not able to identify the three-prong signal. A
possible explanation is that the τ21 feature is not discriminative for the three-prong jets, and
thus half of the four input features serve as noise. Once the more discriminative subjettiness
ratio, τ32, is added in Extended Set 1, the NN performance becomes non-trivial, but remains
low. By adding direct subjettiness values, the performance becomes significantly better but
lower than in the case of the two-prong signal.

The BDT ensemble, on the other hand, is more performant than the neural network on
every feature set, thus showing that its inductive bias is better able to ignore uninformative
features, such as τ21. Moreover, the BDT already achieves non-trivial sensitivity with the
baseline features, to an extent that the performance is even higher than the NN with Extended
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Figure 6.26: Significance improvement of neural network (left) and boosted decision tree (right)
classifier ensembles as a function of the signal efficiency using the baseline LHCO R&D dataset
features and the three extended feature sets in the presence of a three-prong signal. The BDT
lines and bands correspond to the median and the 68% confidence interval of ten independent
runs. Figure adapted from Ref. [3].

Set 1. The observation that the BDT achieves a maximum SIC of 5, even with the limited
information of the mass features and the noise-like τ21, demonstrates that it is more model
agnostic and better able to exploit the information contained in the data.

Ensembling

Lastly, the effect of using ensembles of models instead of individual classifiers is investigated.
Figure 6.27 shows the ensemble classifier SIC curves as green lines for neural networks (left)
and BDTs (right) on the ten Gaussian noise dimension feature set. The gray lines show the
SIC curves that one would obtain by evaluating each of the ensemble members individually, and
the black line shows the median SIC curves of these individual ones. The improvement from
averaging predictions versus the median performance using individual predictions is striking,
both for the NN and the BDT. In the BDT case, the ensemble SIC curve is also significantly
better than each individual model at every point in signal efficiency. For the NN, some individual
SIC curves are slightly higher than the ensemble one in specific regions in signal efficiency, but
lower in others.

6.4.4 Conclusions

Deep neural networks and their more recent variants have replaced boosted decision trees in
many high-energy physics tasks because they are well suited for the high-dimensional nature
and typically large sizes of collision event data. However, BDTs are known to outperform deep
learning approaches on tabular small- to medium-sized datasets, in particular when many un-
informative input features are present. We demonstrated in our studies that weakly supervised
anomaly detection, with its small effective dataset size and the common choice of tabular input
features, remains a HEP use case where BDTs are the superior choice. This becomes especially
apparent in the presence of many uninformative features, which naturally arises when targeting
a broad range of signal models. Ensembles of BDTs were shown to be resilient to the presence
of many noisy features, both in the case of uncorrelated Gaussian noise and in the case of un-
necessary physical features. By adding more physical features and replacing the neural network
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Figure 6.27: Significance improvement of neural network (left) and boosted decision tree (right)
classifiers as a function of the signal efficiency on the ten Gaussian noise dimension LHCO
R&D dataset features. The gray lines denote single classifiers, whereas the green line denotes
the ensemble built from their mean prediction. The median significance improvement of the
individual classifiers is shown as black lines. Figure adapted from Ref. [3].

classifier of the idealized anomaly detector by an ensemble of BDTs, the threshold sensitivity
for rare signals can be significantly reduced. This is a promising result for the application of
weakly supervised anomaly detection in the search for new physics at the LHC.

This proof-of-concept study leaves several avenues for more research. Background sculpting
checks, as presented for neural network classifiers in Sec. 6.3, should be performed thoroughly
for BDT ensembles as well. Moreover, the tests in this section were limited to the case where
a perfect background template is available. Thus, it still needs to be explicitly shown that the
results translate to the use of an approximated background template, such as with CATHODE.
Whether BDTs retain their superiority in LaCATHODE, where the input features have been
rotated away from their physical representation, is another interesting question. While the lower
computational cost of histogram-based gradient boosting decision trees was striking and justified
training ensembles of 50 models, a more detailed study of the computational cost of the two
approaches would be beneficial, as the computational cost of training many classifiers for an
analysis, such as the one discussed in Sec. 7, can become a bottleneck and limit the scope of a
new physics search. Finally, it has been observed during the studies that the BDT iteration with
the lowest validation loss does not necessarily coincide with the highest SIC, which motivates
more research into a reliable model selection scheme for anomaly detection in general.

During the final stage of this study, we became aware of other work investigating the benefits
of BDTs in weakly supervised anomaly detection, and it was published later under Ref. [174].
Their findings confirm the results presented in this section.
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7 CMS Anomalous Dijet Search

This section presents an analysis performed by the CMS Collaboration that is in the final stages
of the internal review process at the time of writing. Preliminary results derived using simulated
data are publically available as a “CMS Note” in Ref. [4] and using real data as “Physics Analysis
Summary” in Ref. [5]. Accordingly, many figures in this section are taken from these documents,
or adapted from the collaboration-internal “Analysis Note” [175]. Some of the results differ
slightly from the ones shown in Ref. [5] because the treatment of systematic uncertainties was
improved during later stages of the review process, and the results might be subject to a few more
changes by the time of final publication.

I was one of the main contributors, along with Thea Åarrestad, Oz Amram, Aritra Bal,
Samuel Bright-Thonney, Nadya Chernyavskaya, Phil Harris, Gregor Kasieczka, Benedikt Maier,
Petar Maksimovic, Patrick McCormack, Louis Moureaux, Jennifer Ngadiuba, Sang Eon Park,
Maurizio Pierini, Tobias Quadfasel, David Shih, Tore von Schwartz, Kinga Wozniak, Chitrak-
shee Yede, and Irene Zoi.

The analysis comprises an application of five different anomaly detection methods within a
common statistical framework. This thesis focuses on the application of the CATHODE method,
which I implemented together with Gregor Kasieczka, Louis Moureaux, and Tobias Quadfasel.
The specifics of the other anomaly detection methods are not discussed in detail.

My contributions to the common analysis framework consist of improvements of the common
preselection implementation, studying their trigger efficiency, developments of the statistical
procedure, conceptual contributions to the weakly supervised limit setting procedure, major work
in defining the data control region for validation studies, investigating the intrinsic bias of the
overall statistical procedure, optimizing the selection of suitable signal models for limit setting,
investigating the impact of novel systematic uncertainties, and iterating with conveners during
the collaboration-internal review process. In the CATHODE application, my contributions in-
clude major R&D on the implementation of the method on realistic detector simulation and real
collision data, a fully automated limit setting procedure including systematic uncertainties, in-
depth studies of the background sculpting and fit function bias specific to CATHODE, building
the excess interpretation framework for CATHODE, and performing many of the significance
scans, limits, and expected significance estimation on simulation and real data.

7.1 Introduction

The analysis presented in this section probes the dijet final state in proton-proton collision
events, recorded by the CMS Experiment with a center-of-mass energy of

√
s = 13TeV, for the

existence of new physics via an anomalous jet substructure. The target topology is some heavy
new particle A, with a mass of the order of a few TeV and a narrow decay width, decaying into
two other generic particles, B and C, with hadronic final states, i.e., these particles could be
either single quarks or gluons, or massive resonances ultimately decaying to quarks and gluons.
In the latter case, the focus is on masses of A such that B and C are highly Lorentz boosted,
resulting in their decay products being merged into two large-radius jets.

This topology is motivated by a relatively broad array of theoretical signal models that
predict massive resonances, such as the ones introduced in Sec. 2.2. The substructure of large-
radius jets provides a handle to capture anomalous features in the decay of B and C, which can
be exploited in a fully data-driven manner by ML-based anomaly detection techniques to reduce
the overwhelmingly large SM background by multiple orders of magnitude.

This section specifically focuses on the application of the CATHODE algorithm, whose devel-
opment is detailed in Sec. 6.2, on CMS data recorded during the years 2016–2018. CATHODE
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is applied on top of well-motivated triggers and analysis preselections, and followed by a data-
driven background estimation procedure via a bump hunt. As CATHODE requires the explicit
choice of a signal region, the analysis strategy is to scan multiple choices of overlapping dijet
mass bins, repeating the full analysis in each bin. The subsequent statistical analysis yields
the significance of potential excesses in the data as a function of the resonance mass, as well as
CLs exclusion limits on a range of explicit signal models at their respective hypothetical mass.
The latter are complicated by the signal efficiency of CATHODE depending non-trivially on
the signal cross section in the data. The analysis strategy is validated in both MC simulation
and data sidebands, before the final results are presented. This CATHODE-based analysis is
part of an overarching anomaly detection search described in Refs. [4, 5], where multiple other
anomaly detection methods are applied to the same dataset using the same preselections. The
performance of all these methods is compared in terms of expected significance and exclusion
limits.

The outline of the section is as follows. Section 7.2 first describes the datasets used, both the
data recorded by the CMS Experiment and simulated ones, as well as the reconstruction and
preselection of events. Section 7.3 discusses the implementation of the CATHODE method in
this analysis. The subsequent statistical analysis, including background and signal modeling, is
detailed in Sec. 7.4. This is followed by Sec. 7.5, which discusses the systematic uncertainties that
are considered in the analysis. The subtleties arising in the computation of upper cross section
limits when applying weak supervision–based anomaly detection are discussed in Sec. 7.6. The
entire analysis is validated in MC simulation and a data control region in Sec. 7.7. Section 7.8
describes a procedure to interpret potential excesses if they arise in data. The implementation
of the other anomaly detection methods is briefly discussed in Sec. 7.9, along with additional
benchmarks for comparison. Finally, Sec. 7.10 presents the results of the analysis with real
collision data, followed by a conclusion in Sec. 7.11.

7.2 Data and MC Simulation Samples

This section covers the details of the used samples, both real data and MC simulation, how
events were reconstructed, and the selections that are applied before they are used as input to
the anomaly detection algorithms. The selections consist of generic data quality filters, high-level
triggers during data-taking, and analysis-specific preselections.

7.2.1 Data Samples

The data comprise the proton-proton collision events recorded in the CMS detector at a center-
of-mass energy of

√
s = 13TeV during the Run 2 data-taking period from 2016 to 2018. The

total integrated luminosity of the dataset is 138 fb−1. The quality of the data is ensured by
requiring certain criteria were fulfilled during the recording of the events, i.e., all sub-detectors
were considered properly working during data taking. All luminosity sections that fulfill these
criteria are listed in so-called “golden JSON” files, which are listed in Tab. 7.1 together with
the respective integrated luminosity of each data-taking year.

All events recorded by the CMS Experiment need to pass one or more HLT paths (see
Sec. 2.4.3) and are then sorted in associated primary datasets. The events used in this analysis
are stored in the so-called JetHT dataset, which contains events passing trigger requirements
focusing on highly energetic jets. The data were processed within the CMS Ultra Legacy (UL)
campaign in the CMS Software (CMSSW) releases CMSSW 8 X, CMSSW 9 X, CMSSW 10 X depending
on the year. The global tag, which is a label that uniquely identifies a set of detector configura-
tions needed for the correct analysis of the data [176], is 106X dataRun2 v32. The samples are
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Table 7.1: “Golden JSON” files used in the analysis, i.e., record of events fulfilling data quality
monitoring criteria, along with the corresponding integrated luminosities.

Year Golden JSON file name Integrated luminosity ( fb
−1

)

2016 Cert 271036-284044 13TeV Legacy2016 Collisions16 JSON.txt 36.4

2017 Cert 294927-306462 13TeV UL2017 Collisions17 GoldenJSON.txt 41.5

2018 Cert 314472-325175 13TeV Legacy2018 Collisions18 JSON.txt 59.8

Total 138

Table 7.2: CMS data sample identifiers and their corresponding integrated luminosities. None of
the events of the first sample passed the quality criteria set in the “golden JSON” files, Tab. 7.1.

Sample name Integrated luminosity ( fb−1)

/JetHT/Run2016B-21Feb2020 ver1 UL2016 HIPM-v1/MINIAOD 0
/JetHT/Run2016B-21Feb2020 ver2 UL2016 HIPM-v1/MINIAOD 5.83
/JetHT/Run2016C-21Feb2020 UL2016 HIPM-v1/MINIAOD 2.62
/JetHT/Run2016D-21Feb2020 UL2016 HIPM-v1/MINIAOD 4.29
/JetHT/Run2016E-21Feb2020 UL2016 HIPM-v1/MINIAOD 4.07
/JetHT/Run2016F-21Feb2020 UL2016 HIPM-v1/MINIAOD 2.71
/JetHT/Run2016F-21Feb2020 UL2016-v1/MINIAOD 0.42
/JetHT/Run2016G-21Feb2020 UL2016-v1/MINIAOD 7.65
/JetHT/Run2016H-21Feb2020 UL2016-v1/MINIAOD 8.74

/JetHT/Run2017B-UL2017 MiniAODv2-v1/MINIAOD 4.80
/JetHT/Run2017C-UL2017 MiniAODv2-v1/MINIAOD 9.57
/JetHT/Run2017D-UL2017 MiniAODv2-v1/MINIAOD 4.25
/JetHT/Run2017E-UL2017 MiniAODv2-v1/MINIAOD 9.31
/JetHT/Run2017F-UL2017 MiniAODv2-v1/MINIAOD 13.5

/JetHT/Run2018A-UL2018 MiniAODv2-v1/MINIAOD 14.0
/JetHT/Run2018B-UL2018 MiniAODv2-v1/MINIAOD 7.06
/JetHT/Run2018C-UL2018 MiniAODv2-v1/MINIAOD 6.90
/JetHT/Run2018D-UL2018 MiniAODv2-v1/MINIAOD 31.8

Total integrated luminosity 138

provided in the MiniAOD format, specifically MiniAODv1 for the 2016 data-taking period, and
MiniAODv2 for 2017 and 2018. The sample identifiers, as they are labeled in the CMS Data
Aggregation Service [177], are listed in Tab. 7.2.

The table lists the samples ordered by the so-called era, which is a subdivision motivated by
changes in detector conditions and/or calibration. The eras are denoted by letters B–H in 2016,
B–F in 2017, and A–D in 2018. Another distinction is made within the 2016 data-taking period.
Early in 2016, the silicon strip tracker was subject to a decrease in signal-to-noise ratio and a loss
of hits of tracks caused by saturation effects in the pre-amplifier of the readout chip. In order
to mitigate this, the feedback preamplifier bias voltage (VFP) was later adjusted [178]. The
data-taking periods before and after this adjustment are thus often referred to as 2016 preVFP
and 2016 postVFP, respectively. Table 7.2 labels preVFP samples, which are eras B, C, D, E,
and the majority of F, with the tag HIPM. This is a reference to the so-called HIP mitigation
used in the reconstruction of the affected events.

The centrally produced MiniAOD files were processed privately into the NanoAOD for-
mat corresponding to the official production campaign because NanoAOD files are significantly
smaller and easier to handle. However, this format by default discards information of individ-
ual jet constituents. It is thus extended to include particle flow candidates, using the JetMET
PFNano producer [179].
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7.2.2 MC Background Simulation Samples

While MC background simulation samples are not directly used in the analysis—the background
will be estimated using data-driven methods—they still play a crucial role for optimizing and
validating the analysis strategy.

The dominant background process consists of QCD multijet events, which are simulated
directly with pythia 8.240 [52]. The more minor SM background processes considered in this
analysis are W and Z bosons produced in association with jets (V+jets) and forced to decay
into quark pairs, top quark-antiquark (tt) pair production, and single top quark production.
Other SM processes were found to be negligible with the anticipated selections. The V+jets
samples were simulated at leading order (LO) in the matrix element calculations with Mad-
Graph5 amc@nlo v2.6.5 [180]. The tt and single top events were generated at next-to-leading
order (NLO) in the matrix element calculations with powheg v2 [181–183]. All processes
were produced with the NNPDF 3.1 parton distribution functions [184–186] and showered with
pythia 8.240 using the CP5 tune [187]. The interactions with the CMS detector were simu-
lated with geant 4 [188–190]. The pileup (PU) interactions were simulated by superimposing
additional inelastic proton-proton interaction events, simulated in pythia 8.240.

The MC background simulation samples were produced in the UL campaign and provided
in the MiniAODv2 format. They were generated individually for each of the four data-taking
periods (2016 preVFP, 2016 postVFP, 2017, 2018) and in separate phase space bins, which are
summarized in Tab. 7.3 for each process along with their respective cross section. The latter
values were obtained for the QCD multijet, V+jets, and tt samples from Ref. [191], which is the
collaboration-internal analysis note corresponding to the publication in Ref. [192]. The cross
sections for the single top events produced in the tW-channel were taken from Ref. [193], while
the cross sections for t-channel single top events were obtained from the CMS cross section
database [194]. The detailed list of samples is provided in Tabs. B.1 to B.4 in Appendix B.1.

As with the real data, the MC background simulation MiniAOD samples were privately
processed to the NanoAOD format with extended information on individual jet constituents.
This was done with the same CMSSW release CMSSW 10 6 20 and the following global tags per
data-taking period12:

� 2016, preVFP: 106X mcRun2 asymptotic preVFP v11

� 2016, postVFP: 106X mcRun2 asymptotic v17

� 2017: 106X mc2017 realistic v9

� 2018: 106X upgrade2018 realistic v16 L1v1.

The QCD multijet samples were produced in bins of jet transverse momentum, the V+jets
samples in HT bins, the tt samples in top quark-antiquark pair mass bins, and the single
top process was produced inclusively. The number of available events in each sample is not
proportional to the cross section of every process and kinematic bin. Conventional analyses that
use MC background simulation primarily for background estimation mitigate this by multiplying
each event with a weight determined by cross section and detector acceptance efficiency (in
addition to weights resulting from the specific MC generator). However, this does not exactly
model the situation of a purely data-driven, ML-based analysis where every event is considered
with the same weight and follows Poisson statistics. Moreover, very large or small weights can
cause artificial instabilities during training, which is not the case in real data. For this reason, we

12
The 2016 preVFP period is simulated separately in order to account for the different conditions in the silicon

strip tracker.
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Table 7.3: Summary table of considered MC background simulation processes, along with their
respective phase space binning and the respective cross section. The same composition is gener-
ated in each of the four data-taking periods (2016 preVFP, 2016 postVFP, 2017, 2018) individ-
ually. A more detailed list of samples is provided in Tabs. B.1 to B.4 in the appendix Sec. B.1.

Process Phase Space Region (GeV) σ (pb)

QCD 300 < pT < 470 7823
QCD 470 < pT < 600 648.2
QCD 600 < pT < 800 186.9
QCD 800 < pT < 1000 32.293
QCD 1000 < pT < 1400 9.4183
QCD 1400 < pT < 1800 0.84265
QCD 1800 < pT < 2400 0.114943
QCD 2400 < pT < 3200 0.00682981
QCD 3200 < pT 0.000165445

W+jets 400 < HT < 600 315.6
W+jets 600 < HT < 800 68.57
W+jets 800 < HT 34.9
Z+jets 400 < HT < 600 145.4
Z+jets 600 < HT < 800 34.0
Z+jets 800 < HT 18.67

tt 700 < mtt < 1000 76.605

tt 1000 < mtt 20.578

single t, t-channel full 115.3
single t, t-channel full 69.09
single t, tW production full 35.85
single t, tW production full 35.85

chose to eliminate the relative event weights by sampling a realistic number of events Nsampled

from each MC simulation sample:

Nsampled = Leff × εpresel × σ, (7.1)

where Leff is the effective target luminosity, εpresel is the fraction of events in the process and
bin passing the analysis preselections, and σ is the cross section of the process and bin. The
effective luminosity corresponds to the maximum number of unique events that can be obtained
from these samples while respecting the relative cross sections of the processes and bins. The
lowest transverse momentum bin of the QCD multijet samples was the limiting factor, with
an effective luminosity of 6.7 fb−1 in each data-taking period (2016 preVFP, 2016 postVFP,
2017, 2018), according to Eq. 7.1, resulting in a total integrated luminosity of 26.8 fb−1. This is
approximately five times less than the total integrated luminosity of the real data. The equal
contribution to the total sample from each of the four data-taking periods does not accurately
reflect the actual composition of the Run 2 data, but this was neglected in favor of obtaining a
larger sample size.

A comparison of the data and the MC background simulation contributions is shown in
Sec. 7.2.8 after the corresponding analysis preselections are introduced.
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7.2.3 MC Signal Simulation Samples

The MC signal simulation samples in this analysis are primarily used for setting explicit exclu-
sion limits on a few representative types of new physics signals, and to measure the expected
experimental sensitivity of the search for the types of signal in question. The focus lies on
the boosted topology, i.e., the decay products of the particles B and C are merged into single
large-radius jets.

Table 7.4 lists the considered signal models, along with the sample identifiers within the CMS
Collaboration, ordered by the pronginess of the decays of the two particles B and C, ranging up
to six. Each process was produced at resonance particle (A) masses of 2, 3 and 5TeV. While
the daughter particles (B and C) were initially simulated with all combinations of masses from
25, 80, 170, and 400GeV, only those that result in a boosted topology and on-shell decays
were considered. If the daughter particles are present in the SM, their masses are kept at their
respective SM values, unless stated otherwise. All signal samples were generated with a narrow
decay width, i.e. it was chosen so narrow that the observed width is entirely due to the detector
resolution.

Table 7.4: CMS sample identifiers of MC signal simulation samples used in this analysis for
estimating the experimental sensitivity and setting exclusion limits. The three signal processes
involving at least one two-prong decay were generated with 50,000 events and the remaining
two processes with 100,000 events in each data-taking period. All samples were simulated with
resonance masses of 2, 3, and 5TeV, and the daughter masses were scanned ensuring on-shell
decays. Unless otherwise specified, the daughter particles present in the Standard Model are
kept at their respective Standard Model masses. The asterisk (*) indicates a scan over masses
in GeV.

Process Prongs Sample name B and C masses (GeV)

Q∗ → qW′ 1+2
QstarToQW M * mW *
TuneCP2 13TeV-pythia8

mW = 25, 80, 170, 400

X → YY′ → 4q 2+2
XToYYprimeTo4Q MX* MY* MYprime*
narrow TuneCP5 13TeV-madgraph-pythia8

mY/Y’ = 25, 80, 170, 400

W′ → B′t → bZt 3+3
WpToBpT Wp* Bp* Top170 Zbt
TuneCP5 13TeV-madgraphMLM-pythia8

mB’ = 25, 80, 170, 400

WKK → RW → 3W 2+4
WkkToWRadionToWWW M* Mr*
TuneCP5 13TeV-madgraph-pythia8

mR = 170, 400

Y → HH → 4t 6+6
YtoHH Htott Y* H*
TuneCP5 13TeV-madgraph-pythia8

mH = 400

The first model listed in Tab. 7.4 postulates an excited quark resonance, Q∗, decaying into
a quark and a W′ boson [195, 196]. This model follows the class of BSM scenarios discussed in
Sec. 2.2.2. The W′ subsequently decays into two quarks with the same branching fraction as
the SM W boson, which results in a two-prong jet, in addition to the single-prong jet from the
quark that was produced in association.

The second model involves a generic heavy resonance, X, that decays into two new particles Y
and Y′, which subsequently decay into two light quarks each. This results in a double two-prong
jet topology. This signal resembles most closely the one used in the LHCO R&D benchmark
dataset of Sec. 6.1.

The third considered model consists of a W′ boson decaying into a vector-like quark, B′, and
a top quark [197]. It is inspired by the composite Higgs models introduced in Sec. 2.2.3. The B′

then decays into a Z boson and a bottom quark, resulting in a three-prong jet from both the B′

and t. A dedicated search for this model was performed in Ref. [198], but not in the parameter
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space considered in this analysis, where the B′ is fully contained within a single large-radius jet
because of the large mass difference with respect to the W′.

The fourth signal model contains a Kaluza-Klein excitation of the W boson, WKK, decaying
into a W boson and a radion, R [35, 199]. The radion decays into two W bosons, resulting in
a two-prong and a four-prong jet. This model has been targeted within dedicated searches by
the CMS Collaboration [200, 201], and arises from the theoretical framework of warped extra
dimensions discussed in Sec. 2.2.4.

In the last considered model, also based on warped extra dimensions, a heavy graviton-like
spin-2 particle, Y, decays into two lighter Higgs boson–like scalars, H, which each decay into a
top quark-antiquark pair [202]. This results in two six-prong jets.

The samples were produced within the official CMS MC production framework in the UL
campaign. The Q∗ → qW′ sample was fully produced in pythia 8.240, using the CP2 tune.
The other samples were generated using MadGraph5 amc@nlo v2.6.5 at LO in QCD, with the
NNPDF 3.1 parton distribution functions, and their parton showering was done with pythia
8.240 using the CP5 tune. The W′ → B′t → bZt sample additionally used the MLM matching
scheme. The samples were provided in the MiniAODv1 format for 2016 and MiniAODv2 for
2017 and 2018.

The signal samples were also processed privately into the NanoAOD format with extended
information on individual jet constituents. This was done with the same CMSSW release
CMSSW 10 6 20 and the following global tags per data-taking period:

� 2016 preVFP: 106X mcRun2 asymptotic preVFP v9

� 2016 postVFP: 106X mcRun2 asymptotic v15

� 2017: 106X mc2017 realistic v8

� 2018: 106X upgrade2018 realistic v15 L1v1.

7.2.4 Quality Filters and Vertex Selection

Several filters were applied in order to remove events that were affected by misreconstructed miss-
ing transverse energy due to instrumental effects. These can, for example, appear as anomalous
HCAL signals or spurious energy deposits in the ECAL. The filters used in this analysis are the
ones recommended by the MET Physics Object Group [203]:

� goodVertices

� globalSuperTightHalo2016Filter

� HBHENoiseFilter

� HBHENoiseIsoFilter

� EcalDeadCellTriggerPrimitiveFilter

� BadPFMuonFilter

� BadPFMuonDzFilter

� eeBadScFilter

� CSCTightHaloFilter (2016 only)

� ecalBadCalibFilter (not in 2016).
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Additional requirements were imposed on the proton-proton interaction vertex. At least one
such primary vertex had to be reconstructed within a 24 cm window along the beam axis, with
a transverse distance from the nominal proton-proton interaction region smaller than 2 cm. If
multiple vertices were reconstructed, the one with the highest sum of the squared transverse
momenta of the associated tracks was chosen.

A failure of several HCAL modules during the 2018 data-taking period caused a negative
impact on the jet energy measurements in the affected region. To avoid these instrumental
effects being misinterpreted as signal-like anomalies, events in which one of the two highest
transverse momentum jets was found to be in the affected region, −1.57 < ϕ < −0.87 and
−2.5 < η < −1.3, were vetoed. This resulted in a signal efficiency loss of approximately 1%.

7.2.5 Event Reconstruction

A particle-flow (PF) algorithm, as discussed in Sec. 2.4.4, was used to reconstruct individual par-
ticles. The resulting PF candidates were then clustered using the anti-kT algorithm (Sec. 2.5.2)
with a radius parameter of R = 0.8, referred to as in AK8 jets. The jet clustering was imple-
mented in the FastJet package [153]. The PUPPI algorithm (Sec. 2.5.3) was used to mitigate
the effects of pileup on the jets.

As an additional quality criterion on the AK8 jets, they are required to pass the tight jet
ID defined and recommended by the JetMET Physics Object Group for UL samples and an eta
range of |η| < 2.5 [204]:

� neutral hadron fraction < 0.9,

� neutral electromagnetic fraction < 0.9,

� number of constituents > 1,

� number of charged hadron constituents > 0,

� charged hadron fraction > 0.

Moreover, standard CMS jet energy corrections are applied to the AK8 jets to correct for
non-linearities in the jet transverse momentum and rapidity dependent energy response, as
described in Ref. [205]. The latest jet energy corrections were automatically applied in the
NanoAOD processing, and are described in Ref. [206].

The AK8 jet mass, which will be used as input to the ML algorithms, was calculated using
the soft drop algorithm, as described in Sec. 2.5.2. Subjettiness features (Sec. 2.5.5) were
reconstructed up to τ4.

Another reconstructed jet feature is the b-tagging score, i.e., the probability of the jet arising
from a B-hadron decay according to a classification algorithm. In this case, the DeepCSV [64]
algorithm (briefly introduced in Sec. 2.5.6) was employed, which classifies AK4 jets. The score
per AK8 jet in this analysis was obtained as the maximum score per reconstructed AK4 subjet
within the AK8 jet. In the case where either no subjet was found or some necessary inputs for
DeepCSV were missing in the subjet, the score was set to -1. The resulting score is labeled as
DeepB in the following.

7.2.6 Analysis Preselections

In addition to the generic quality requirements, further analysis preselections were applied in
order to focus on the relevant phase space corresponding to the target topology of a heavy
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resonance decaying into two highly Lorentz-boosted particles, and thus reduce the overwhelming
SM background.

Events are required to contain at least two AK8 jets with pT > 300GeV, |η| < 2.5, and
passing the tight jet ID requirement. The two jets with highest pT are selected as the candidate
dijet system. The analysis region further requires these two leading jets to have a pseudorapidity
difference of |∆η| < 1.3, which significantly reduces the number of QCD multijet events because
these are dominated by t-channel interactions and thus typically have large pseudorapidity
differences. The complementary region will be used for validation studies, as discussed in Sec. 7.7.
The invariant mass of the dijet system, mjj , is required to be larger than 1455GeV, which is
chosen to ensure full trigger efficiency, as discussed in Sec. 7.2.7. In the following, the two leading
jets will be sorted by descending mass, i.e., the leading jet (j1) is the one with the higher mass
than the subleading jet (j2).

7.2.7 Triggers

The high-level triggers used in the analysis are based on the presence of at least one high
transverse momentum jet or the scalar sum of the transverse momenta of all jets in the event,
HT. At least one of the listed trigger paths in Tab. 7.5 needs to have been activated during data
taking in order to be considered in the analysis. The trigger paths are separated into data-taking
periods as the triggers were updated between the years.

Table 7.5: High-level triggers of each data-taking period used to collect data for this analysis.
They are all based on either jet transverse momentum pT or the scalar sum of jet transverse
momenta in the event HT.

Period HT trigger jet pT trigger

2016 runs B-G HLT PFHT800 HLT PFJet450

2016 run H HLT PFHT900
HLT PFJet450

HLT AK8PFJet450

2017 runs B-F HLT PFHT1050 HLT AK8PFJet500

2018 runs A-D HLT PFHT1050 HLT AK8PFJet500

The background estimation, discussed in Sec. 7.4, will be based on fitting a monotonically
falling function through the mjj distribution. Thus, it is crucial that the trigger requirements do
not change the background shape. To ensure this, the phase space is restricted to a region where
the triggers are considered fully efficient. This means that the fraction of events passing the
triggers is at least 99%, when the analysis preselections are in place. This was studied in data
by using a disjoint dataset, the SingleMuon dataset, with the requirement of passing either of
the reference triggers HLT IsoMu27 or HLT Mu50. The resulting trigger efficiency on this dataset
is shown as a function of mjj in Fig. 7.1. The 99% efficiency is reached at 1181GeV in 2016 and
at 1455GeV in 2017 and 2018. The latter value is thus chosen as the threshold for the analysis
region.

The peak in trigger efficiency on the left-hand side of Fig. 7.1 is due to the tight pT > 300GeV
selection on the leading jets. For dijet invariant masses below approximately 600GeV, this
peak only arises when both leading jets point to a similar direction. Because of momentum
conservation, this is usually balanced by multiple additional jets in the opposite direction. The
resulting high value in HT activates the respective triggers, resulting in a high efficiency.

118 Manuel Sommerhalder



7 CMS ANOMALOUS DIJET SEARCH

600 800 1000 1200 1400 1600 1800 2000 2200 2400

(GeV)jjm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

| < 1.3η∆|

PF jet Tight ID

138 fb−1 (13 TeV)Private work (CMS data)

T
ri
g

g
e

r 
e

ffi
c
ie

n
c
y

Combined (138 fb-1)

2016 (36.3 fb-1)
2017 (41.5 fb-1)
2018 (59.8 fb-1)

> 300 GeV
T

 p

< 2.5ηJet
Jet

Figure 7.1: Trigger efficiency, i.e., the number of events passing the trigger divided by the total
number of events, as a function of the dijet invariant mass in each data-taking year as well as
their combination.

7.2.8 Data-to-Simulation Comparison

Figures 7.2 to 7.11 show the comparison of the observed collision data and the MC background
simulation samples, discussed in Sec. 7.2.2, after all filters, triggers and analysis preselections
are applied. Shown are two per-dijet features mjj and |∆η| (Fig. 7.2), and four per-jet kinematic
observables, m, pT, η, ϕ (Figs. 7.3 to 7.6). Figures 7.7 to 7.11 illustrate jet substructure features
τ1, τ2, τ3, τ4, and the b-tagging score DeepB. The per-bin ratio in the lower panel reveals that
there is visible disagreement between data and the MC background simulation. This is expected,
as the description of the SM QCD background is known to be limited. This motivates the use
of a data-driven background estimation method and is a key reason why the MC simulation is
only used for optimizing and validating the analysis strategy.

In addition to the SM background processes, Figs. 7.2 to 7.11 also display an example
BSM signal. Specifically, an X → YY′ → 4q signal sample with masses of mX = 3000GeV,
mY = 170GeV, and mY’ = 80GeV is shown, with a normalization corresponding to a cross
section of 30 fb.
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Figure 7.2: Reconstructed dijet invariant mass mjj (left) and absolute jet pseudorapidity dif-
ference |∆η| (right) distribution, with all analysis preselections applied, for collision data, MC
background simulation and an example 30 fb X → YY′ → 4q signal sample with masses of
mX = 3000GeV, mY = 170GeV, and mY’ = 80GeV.
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Figure 7.3: Analogously to Fig. 7.2, the soft drop mass distribution of the leading jet (left) and
subleading jet (right).
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Figure 7.4: Analogously to Fig. 7.2, the transverse momentum distribution of the leading
jet (left) and subleading jet (right).
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Figure 7.5: Analogously to Fig. 7.2, the pseudorapidity distribution of the leading jet (left) and
subleading jet (right).
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Figure 7.6: Analogously to Fig. 7.2, the azimuthal angle distribution of the leading jet (left) and
subleading jet (right).
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Figure 7.7: Analogously to Fig. 7.2, the 1-subjettiness, τ1, distribution of the leading jet (left)
and subleading jet (right).
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Figure 7.8: Analogously to Fig. 7.2, the 2-subjettiness, τ2, distribution of the leading jet (left)
and subleading jet (right).
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Figure 7.9: Analogously to Fig. 7.2, the 3-subjettiness, τ3, distribution of the leading jet (left)
and subleading jet (right).
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Figure 7.10: Analogously to Fig. 7.2, the 4-subjettiness, τ4, distribution of the leading jet (left)
and subleading jet (right).
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Figure 7.11: Analogously to Fig. 7.2, the b-tagging score, DeepB, distribution of the leading
jet (left) and subleading jet (right). Jets with invalid classifier input, e.g., missing AK4 subjets,
are displayed at a value of −0.1.
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7.3 CATHODE Implementation

The overall implementation of CATHODE for this analysis is based on the proof-of-concept
studies discussed in Sec. 6.2. Since the studies shown in Sec. 6.3 and 6.4 only finalized in a later
stage, the improvements suggested in these sections could not be incorporated into the final
analysis without causing a significant delay. Explicitly decorrelating the auxiliary features from
the resonant one as well as the use of boosted decision trees for classification are an interesting
avenue for future work.

As the signature of a dijet system with anomalous substructure in this analysis is equivalent
to the proof-of-concept studies discussed in Sec. 6.2, the initial choice of input features was made
analogously, i.e., the dijet invariant mass mjj serves as a conditional feature m of the algorithm,
and the auxiliary input was originally chosen as x =

(
mj1,∆mj , τ21,j1, τ21,j1

)
, with the only

difference that the jets are labeled by descending mass: mj1 ≥ mj2. However, the choice of
τ21 was found to be suboptimal for a generic search targeting a wide range of signal processes
resulting in various numbers of subjets because τ21 is only sensitive to the presence of two
subjets. In order to gain discrimination power for signal processes with more subjets, one would
need to consider higher ratios, such as τ32 and τ43. Including these to the feature vector x, on
the other hand, would involve the presence of more uninformative feature for a given signal with
a specific number of subjets, reducing the sensitivity as discussed in Sec. 6.4. An alternative for
increasing sensitivity towards higher pronginess is to replace τ21 by τ41. This ratio is expected
to yield lower values for jets with two to four prongs. This choice was indeed found to result in
higher sensitivity towards a broad range of different signal processes in early simulation-based
studies, compared to using τ21 or including multiple ratios. The final auxiliary feature vector
for the CATHODE implementation in this analysis is thus x =

(
mj1,∆mj , τ41,j1, τ41,j2

)
. The

distributions of these features in the MC background simulation with an example signal region
and sidebands are shown in Fig. 7.12.

Many hypothesized new physics models predict particles decaying to final states with b
quarks, thus resulting in b jets in the detector. One example is the W′ → B′t → bZt
model considered in the limit setting of this analysis. In order to gain sensitivity towards
such b jet signal processes, the b-tagging score DeepB serves as a crucial handle. For other
signal processes, without b jets, the DeepB score is expected to be fully uninformative and
result in suboptimal sensitivity. In order to gain this b-tagging sensitivity, while retaining
high sensitivity for non-b final states, an alternative feature set was introduced for perform-
ing an additional CATHODE implementation alongside the one based on x discussed above:
xb =

(
mj1,∆mj , τ41,j1, τ41,j2,DeepBj1,DeepBj2

)
. CATHODE with this feature set is referred

to as CATHODE-b in the following, and all results are obtained with both strategies.

The DeepB distributions, shown in Fig. 7.11, consist of two parts: a continuous spectrum
ranging from zero to one, and a large peak of events with values at exactly −1 (moved to a
value of −0.1 for better visibility). This type of discontinuity is challenging to model with
a normalizing flow, which is based on diffeomorphic transformations to a latent distribution,
and thus the generated samples from a realistic normalizing flow will likely smoothen out the
peak. This type of difference between data and background template would be detected by the
classifier and ultimately yield false positives and negatives. In order to mitigate this, events in
the single-value peak are associated with a new value, which is randomly drawn from a Gaussian
distribution with mean value at the beginning of the continuous spectrum. The exact location
is determined by measuring the difference between the first and the second unique value in the
continuum d12, and subtracting this from the first one. The standard deviation of the Gaussian
distribution is set to d12. This results in a very thin peak, but the subsequent logit preprocessing
before training the normalizing flow will further smoothen it out.
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Figure 7.12: MC background simulation distribution of CATHODE auxiliary input features.
The red line corresponds to an example signal region of 2230 to 2725GeV and the blue line is
the complementary sideband region.

The conditional normalizing flow model was chosen to be similar to the one used in the
proof-of-concept studies in Sec. 6.2: the architecture consists of 15 MADE blocks with a single
layer of 128 nodes and ReLu activation function, and each is followed by a feature permutation
layer. They map the input features to a standard Gaussian latent space distribution with the
same dimensionality. In contrast to the studies in previous sections, the flow was implemented
with the Pyro library [207, 208], as it provides a numerically more stable training procedure.
Another subtlety is that the transformation parameters in the MADE blocks depend on the
latent space direction, which was simpler to implement in the Pyro framework. Thus, the flow
is strictly speaking an inverse autoregressive flow. As in Sec. 6.2, the auxiliary input features
are preprocessed with a logit transformation, followed by centering the distribution at zero with
standard deviation of one. The model is trained with the Adam optimizer using a learning rate
of 10−4, and a batch size of 256. Three additional measures are applied to reduce overfitting and
increase training stability: L2 regularization (as introduced in Eq. 3.11) with λ = 10−6, batch
normalization [209] between MADE blocks with momentum of 0.1, and clipping the scaling
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transformation parameters in each MADE block (αθt in Eq. 3.27) to lie within a range of
[−3, 3]. Each training is performed for 100 epochs, which has been seen to be sufficient to cover
the validation loss minimum.

A SR background template is created by sampling four times as many events as are present
in the SR data, and distributed proportionally into training and validation sets for the classifier.
In order to increase the stability with respect to per-epoch fluctuations, these background events
are sampled in equal parts from the model states at the five epochs with the lowest validation
loss. As conditional input to the SR background sampling, mjj values are sampled from a
KDE model that has been fitted to the training data. The KDE model is implemented with
the scikit-learn library [160], using a Gaussian kernel and a bandwidth determined as n−0.4,
where n is the number of events in the training data. The KDE model is trained on the logit-
transformed mjj values, and the sampled values are transformed back to the original space.

The classifier architecture is fully analogous to Sec. 6.2, i.e., a fully connected neural network
with three hidden layers with 64 nodes each, and ReLu activation function, whereas the output
layer has a single node with sigmoid activation. It is implemented with the PyTorch library [159].
The model is trained with the Adam optimizer, a learning rate of 10−3, a batch size of 128, and
reweighting of the data and the background template to have equal total contributions in the
training and validation sets. The training is performed for 100 epochs, and the model states at
the ten epochs with the lowest validation loss are ensembled via the mean prediction per event
for inference. It was found that, in contrast to MC simulation studies, the classifier training
did not always fully converge on the collision data in the low end of the mjj region because
of the large number of events due to the exponential shape of the distribution. The training
duration was nevertheless limited to 100 epochs to avoid overfitting on small mismodelings of
the background template, which become more evident with large sample numbers. This can be
better understood from the discussion in Appendix B.5.

A double k-fold cross-validation scheme is employed, as discussed in Sec. 3.2.2, in order to
obtain separate training, validation, and test (inference) sets while using every data point for
each of these tasks. The data are randomly partitioned into k = 5 subsets, and the training,
validation, and test sets are rotated through these subsets, as illustrated in Fig. 7.13. For each
of the k choices of test partition, the remaining l = 4 partitions are separated into a validation
set (one partition) and a training set (three partitions), and this is performed for all l choices of

validation partition. This results in k × l = 20 different data splits Dk,l = {Dk,l
train, D

k,l
val, D

k,l
test},

each corresponding to one individually trained normalizing flow and classifier model pair. Each
Dk,l is split into SR and SB contributions. The conditional normalizing flow for one Dk,l is
trained on the SB, and its epoch-ensembled background template is sampled in the SR to form
training and validation sets for the classifier model, together with the respective Dk,l

train and Dk,l
val.

The l (epoch-ensembled) classifiers per test partition are ensembled via their mean prediction
on each test set event. For each test partition, the threshold on the classifier prediction for
selecting the most anomalous 1% of events in the SR is determined, and all events from SR and
SB passing this threshold are merged into a single output dataset for statistical analysis.

In general, SIC curves in MC signal simulation studies suggest that the more restrictive
the selection on the anomaly score, the higher is the resulting significance improvement. The
motivation for choosing a selection efficiency of 1% is that it results in a sufficient number of
events to perform a statistical analysis at every considered mjj region. Finding a more optimal
selection efficiency while retaining a model-agnostic approach is left for future work.
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Figure 7.13: Illustration of the k-l-fold cross-validation procedure and epoch ensembling strategy.
Figure courtesy of Louis Moureaux.

7.4 Statistical Analysis

The search for dijet resonances with CATHODE is performed over a range of mjj from 1,650 to
5,500GeV in steps of 100GeV. This step size is well below the observable decay width, which
is dominated by the detector resolution in the case of narrow-width signal processes, as shown
later in Sec. 7.4.2. Since the CATHODE protocol relies on an a-priori choice of SR and SB,
the mjj range is divided into bins, where each bin constitutes the SR for one double k-folded
CATHODE training, as discussed in Sec. 7.3, with the complementary mjj space as SB. Two
overlapping sets of bins are chosen as shown in Tab. 7.6. Odd bin numbers are adjacent to each
other, covering the full mjj range, while even bin numbers are chosen to overlap with odd ones,
each covering half of the mjj range of each of their odd neighbors. This second set of bins aims
to capture potential signals that peak on the boundary between two odd bins and might thus
be missed. The increasing bin widths have been designed to yield approximately even spacing
in logmjj , and such that all SRs, as well as the corresponding upper and lower SBs, contain

enough events (O(103)) to allow a robust ML training and statistical analysis. The region from
the mjj analysis threshold of 1, 455GeV to the first lower bin boundary, as well as the region
beyond the last upper bin boundary of 5, 500GeV, are only used as SB, in order to avoid training
CATHODE with one-sided SBs. Table 7.6 indicates which signal mass hypothesis in the later
statistical analysis corresponds to which SR bin. The underlying CATHODE trainings, and the
resulting most anomalous event selection, are the same between multiple signal masses in the
same SR bin. In order to avoid statistical analyses of signal hypotheses that are too close to
the bin boundaries, the signal masses are tested within a more restricted range of 1800GeV to
5000GeV.
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Table 7.6: Binning choice for scanning CATHODE and the subsequent statistical analysis over
the full dijet invariant mass range.

Bin number Range (GeV) Signal masses (GeV) Number of data events

1 1650–2017 1800, 1900 4,500,000
2 1824–2230 2000, 2100 2,100,000
3 2017–2465 2200, 2300 1,400,000
4 2230–2725 2400, 2500 630,000
5 2465–3013 2600, 2700, 2800 400,000
6 2725–3331 2900, 3000, 3100 170,000
7 3013–3682 3200, 3300, 3400, 3500 100,000
8 3331–4071 3600, 3700, 3800 42,000
9 3682–4500 3900, 4100, 4200, 4300 22,000
10 4071–4975 4400, 4500, 4600, 4700 8500
11 4500–5500 4800, 4900, 5000 3900

7.4.1 Background Estimation

The background estimation is performed via a bump hunt, i.e., the procedure is based on fitting
the selected mjj distribution with a parametric function, as described in Sec. 2.6.3. As the
optimal choice of functional form is not known a priori, the fit is performed using multiple
choices with increasing flexibility, and a criterion is constructed to decide which one to use as
background model in the hypothesis tests. Since the selected background shape might change
between CATHODE trainings at various SR positions, the data-driven background estimation
procedure is performed separately for each choice of SR.

The overwhelming majority of background events are expected to arise from QCD multijet
interactions, whose distribution is known to have a smooth and monotonically decreasing be-
havior with respect to the dijet invariant mass. These properties are assumed in the choice of
family of fit functions, which are as follows:

3 parameters:

(
dN

dmjj

)
3

(x) = p0
(1− x)p1
xp2

(7.2)

4 parameters:

(
dN

dmjj

)
4

(x) = p0
(1− x)p1
xp2+p3 log(x)

(7.3)

5 parameters:

(
dN

dmjj

)
5

(x) = p0
(1− x)p1

xp2+p3 log(x)+p4 log
2
(x)
. (7.4)

The variable x ≡ mjj/
√
s is a rescaling of the dijet invariant mass into units of the center-of-

mass energy,
√
s = 13TeV. The parameter p0 describes the normalization of the probability

density function, while p1, p2, p3, and p4 describe its shape. All pi are treated as freely float-
ing parameters during the fit. The choice of this specific functional form is an extension of
the fit function used in the dijet resonance search of Ref. [142]. It is motivated by the mass
dependence of lowest order QCD cross section calculations. The full selected mjj distribution
is fitted with each parameter number choice, i.e., the signal region is not explicitly excluded
from the background shape fit. This tends to result in a more stable background prediction,
but might bias the selection of the background shape towards false negatives, which is the more
conservative direction. The fit is performed via a binned maximum likelihood optimization us-
ing the RooFit [210] software package with the MINUIT2 [211] minimization library, setting the
optimizer to MIGRAD and estimating errors with MINOS.
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For each choice of parameterization, the goodness of fit is quantified by the χ2 metric:

χ2 =
∑
bins i

(Ni −Nfit
i )2

σ2i
, (7.5)

where Ni is the number of observed events in the bin number i, Nfit
i is the number of events

predicted by the fit, and σi is the uncertainty in the observed number of events. More parameters
in the fit function will generally result in lower χ2 (better goodness of fit). The Fisher F-test [212]
is used as a criterion to decide whether the improvement in goodness of fit is significant enough
to warrant the inclusion of additional parameters. The F-test statistic comparing two function
choices, a and b, is defined as:

Fab =

(
χ2
a − χ2

b

ndof,a − ndof,b

)
/

(
χ2
b

ndof,b

)
, (7.6)

where the number of degrees of freedom ndof is computed as the number of bins minus the
number of function parameters. Starting from the 3-parameter function choice, Eq. 7.2, the F-
test statistic is computed with respect to the function with one more parameter. Under the null
hypothesis that the simpler function is sufficient, Fab follows an F-distribution. If the resulting
observed p-value is found lower than a chosen confidence level of 10%, the gain in goodness of
fit is considered significant and the more complex function is chosen. The procedure is repeated
until the null hypothesis is accepted, i.e., the simpler function is chosen. In some instances,
the inclusion of more parameters can lead to correlations that result in unreasonably large fit
uncertainties. In order to avoid these, fit functions are excluded if their relative error at the
tested resonance mass is larger than 50%.

Two different choices of mjj binning are used for the procedure discussed above. The back-
ground fit itself is performed with a fine binning that has a constant width of 4GeV, which
approximates the limit of an unbinned likelihood fit without the computational burden of mod-
eling every data point individually. The range is chosen to start at 1,460GeV and ranging
either until the maximum observed mjj in the data, or 1.2 times the hypothesized signal mass,

whichever is larger. The F-test relies on the χ2 value, which is only well described with a suffi-
cient number of entries in each bin. To this end, the second binning choice, also referred to as
the dijet binning, was introduced. The dijet bin boundaries are as follows:

dijet binning = [1460, 1530, 1607, 1687, 1770, 1856, 1945, 2037, 2132, 2231, 2332, 2438,

2546, 2659, 2775, 2895, 3019, 3147, 3279, 3416, 3558, 3704, 3854, 4010,

4171, 4337, 4509, 4700, 4900, 5100, 5300, 5500, 5800, 6100, 6400, 6800]GeV.
(7.7)

They have been chosen in previous dijet searches, such as Ref. [213], to roughly accommodate the
detector resolution, and they increase in width to account for the exponentially small number of
events at largermjj . Bins with fewer than five events are iteratively merged with the next higher
bin, starting from the least populated one. This choice of binning is also used for visualization
in the figures of this thesis.

Different choices of background fit functions might lead to different results in the statistical
analysis. This potential bias by sampling toy experiments from one fit function choice and fitting
with another is tested in Sec. 7.7.3.
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7.4.2 Signal Modeling

In order to perform binned likelihood–based hypothesis tests, as described in Sec. 2.6.1, the signal
shape needs to be modeled across multiple bins13. Just as for the background, this is handled
in this analysis by fitting a parametric function. The significance computation as a function
of the resonance mass is aimed to be as model agnostic as possible. Thus, the corresponding
signal hypothesis is obtained by selecting a representative shape, motivated primarily by generic
detector resolution features. For the limit setting, the test is model specific in nature and thus
the signal shape is chosen to be obtained directly from the MC simulation of each tested signal.

In either case, the signal shape is modeled as a Double Crystal Ball (DCB) function [214],
which is a combination of a Gaussian core and two power law tails on each side. It is defined as:

fDCB(x) = N


A1(B1 − x−µ

σ )n1 x−µ
σ ≤ α1

exp( (x−µ)
2

σ
2 ) α1 <

x−µ
σ < α2

A2(B2 − x−µ
σ )n2 x−µ

σ ≥ α2,

(7.8)

where the parameters Ai and Bi are defined as

Ai =

(
ni
|αi|

)ni

exp

(
−α

2
i

2

)
, (7.9)

Bi =
ni
|α| − |α|. (7.10)

The parameters µ and σ describe the mean and width of the Gaussian core, respectively. The
power laws are controlled by the location of the transition points, α1 and α2, and the power
law slopes, n1 and n2. These shape parameters will be held fixed in the later profile likelihood
fit. The normalization parameter N , on the other hand, will remain a freely floating parameter,
related to the signal cross section. In Eq. 7.8, x corresponds to the independent variable, which
is mjj in this case. The Gaussian core is motivated by the finite detector resolution, and the
power law tails capture the effects of the parton distribution functions. Similar to the background
function, the DCB parameter values are obtained by fitting the signal MC simulation mjj values
via a binned maximum likelihood optimization in bins of 4GeV and using the RooFit software
package with the MINUIT2 optimizer and MIGRAD.

The generic signal template for the significance scan is obtained by fitting the X → YY′ → 4q
signal, with intermediate particle masses of mY = 170GeV and mY’ = 80GeV. This signal is
chosen because the decay products are seen to be fully contained within the AK8 jets, resulting in
a generic shape that is representative of the detector resolution. In other MC signal simulation
samples, where the decay products are partially not captured by the AK8 jets, the shape is
distorted towards longer tails. The X → YY′ → 4q MC simulation samples have been produced
at masses of 2, 3, and 5TeV, and the corresponding fits are shown in Fig. 7.14. Since the signal
MC simulation sample has been produced with a negligible decay width, the resulting shapes
confirm that the significance scan step size of 100GeV is smaller than the detector resolution
and would thus capture any physical peak.

The intermediate resonance masses are tested by interpolating the parameters of the three
fitted DCB shapes. The interpolation is performed with a third-degree spline for µ and σ,
and linear interpolation for the power law parameters A1, B1, A2, and B2. This interpolation

13
A multi-bin signal shape model could be avoided by performing a “counting analysis”, i.e., computing the

likelihood function from Eq. 2.22 in a single bin. However, this would greatly reduce the statistical power with
respect to the “shape analysis” that exploits well-motivated information on bin-to-bin correlations.
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Figure 7.14: Signal shape template obtained from fitting the X → YY′ → 4q signal MC
simulation samples with intermediate resonance masses of mY = 170GeV and mY’ = 80GeV
at resonance masses of 2TeV (top left), 3TeV (top right), and 5TeV (bottom), using a Double
Crystal Ball function.
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scheme is similar to the procedure used in Ref. [215]. The interpolation function is also slightly
extrapolated to the lower signal masses of 1.8 and 1.9TeV. The resulting signal shapes for all
tested resonance masses are shown in Fig. 7.15. The validity of the interpolation scheme was
confirmed by performing it without the 3TeV mass point and comparing the interpolated shape
to the explicit 3TeV signal shape, which was subject to only minor differences.
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Figure 7.15: Interpolated Double Crystal Ball signal shapes for all considered resonance mass
hypotheses in the significance scan.

Since the signal shape templates for the limit setting are obtained directly from the MC sim-
ulation of the respective signal hypothesis, no interpolation is necessary in this case. The signal
shape template fits are shown for a representative set of signal processes in the Appendix B.3.

The statistical analysis is performed after selecting the most anomalous events via CATH-
ODE. It needs to be shown that the signal shape, obtained as described above on the signal
MC simulation samples without CATHODE-based selections, is a valid proxy for the shape
after selections. Figure 7.16 demonstrates this check on the X → YY′ → 4q (mY = 170GeV,
mY’ = 80GeV) signal for resonance masses of 2, 3, and 5TeV. The signal is injected into the
MC background simulation with cross sections of 61.75 fb, 14.52 fb, and 1.95 fb, respectively,
and the full double k-folded CATHODE procedure is trained on these pseudo data. The figure
shows the resulting signal shape after selecting the most anomalous events at various selection
efficiencies and then performing the parametric fit. Only minor differences are observed, which
confirms the validity of modeling the signal shape via the pre-CATHODE distributions. This
greatly simplifies the analysis procedure, e.g., by ensuring a sufficient number of signal events
in every shape fit. Moreover, a non-trivial shape distortion via the CATHODE selection would
likely have resulted in a more complicated mass dependence, which is more difficult to model in
the interpolation scheme.
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Figure 7.16: The Double Crystal Ball signal shape obtained from fitting the data before and after
applying a CATHODE-based anomaly selection, with different choices of selection efficiency. The
results are obtained by injecting 61.75 fb of the X → YY′ → 4q (mY = 170GeV, mY’ = 80GeV)
signal at 2TeV (top left), 14.52 fb of the otherwise same signal at 3TeV (top right), and 1.95 fb
at 5TeV (bottom) into the MC background simulation.

7.4.3 Hypothesis Tests

The hypothesis tests for computing the significance of excesses and setting exclusion limits
follow the frequentist paradigm, using profile likelihood ratios, as described in Sec. 2.6.1. The
test statistic for quoting significances is the one defined in Eq. 2.31, while exclusion limits are
based on Eq. 2.34. The test statistic distributions are obtained via the asymptotic formulae from
Ref. [66], involving Asimov datasets. The treatment of nuisance parameters in the statistical
model is discussed in Sec. 7.5.

The profile likelihood fits are implemented with the Combine tool [216] using the options
-M Significance --usePLC for significance computation and -M AsymptoticLimits for upper
limits. The same range and binning are used as for selecting the background functional form in
Sec. 7.4.1.

The resulting exclusion limits are determined via the CLs method, as discussed in Sec. 2.6.2,
with a confidence level of 95%. The output of the Combine tool is a set of upper limits, observed
and expected with bands, on the signal strength parameter µ (Eq. 2.36). By multiplying these
values with the input signal shape normalization, they can be interpreted as upper limits on the
number of signal events. The input signal normalization is a hyperparameter, which has been
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chosen to result in numerically stable fits, as well as resulting in no significant numerical changes
to the output when varied up and down by an order of magnitude. The conversion of the limit
on the number of events to a limit on the model cross section will be discussed in Sec. 7.6, as
the weak supervision paradigm requires additional considerations.

7.5 Systematic Uncertainties

Systematic uncertainties are treated as nuisance parameters in the profile likelihood fits of the
hypothesis tests in Sec. 7.4.3, meaning that they are floating parameters with additional con-
straints. Equations 2.25 and 2.26 showed how a nuisance parameter following a Gaussian dis-
tribution can be included in the likelihood function.

7.5.1 Calibration and Scale Factors

Many calibration procedures for correcting differences between MC simulation and real data
involve event weights. When counting events, e.g., when computing a histogram of an observable,
these weights are multiplied with each event count of the MC simulation. These weights primarily
arise from scale factors (SFs), which are the ratio between the efficiency of some selection in
data and simulation:

SF =
εdata
εMC

, (7.11)

where the efficiency ε is the fraction of events passing the selection in question. A common
example is the tagging efficiency of b-tagging algorithms. The SFs are usually measured as a
function of kinematic variables, such as pT and η. An often-used example for translating the
measured b-tagging SFs to an event weight is by computing the probabilities of a given config-
uration of jets in data (Pdata) and simulation (PMC), then using the ratio of these probabilities
as the MC event weight wMC [217]:

PMC =
∏

i: selected jets

εMC,i

∏
j: unselected jets

(
1− εMC,j

)
, (7.12)

Pdata =
∏

i: selected jets

SFiεMC,i

∏
j: unselected jets

(
1− SFjεMC,j

)
, (7.13)

wMC =
Pdata

PMC
. (7.14)

Every SF measurement is subject to statistical and systematic uncertainties, which are commonly
propagated to the event weights by varying the SFs within their uncertainties and recomputing
the event weights.

Another type of calibration is the direct change in the observable itself, e.g., by applying jet
energy corrections. Uncertainties on these calibrations are typically propagated by varying the
source of uncertainty within its bounds and observing the resulting change in the observable.

Both types of calibrations are applied to the signal MC simulation samples, and the resulting
uncertainties are propagated to the signal shape and normalization in the likelihood function,
as described in the following sections. The full list of considered systematic uncertainty sources
is provided in Sec. 7.5.5.

7.5.2 Background Treatment

The background estimation is fully data driven, and thus there are no model-specific uncer-
tainties to consider. The parameters of the background fit function (Sec. 7.4.1), both shape
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and normalization, are treated as nuisance parameters with uniform priors, which effectively
translates to omitting a constraint term π(m, θ) in Eq. 2.26, considering that the parameter
boundaries are chosen to be wide enough to not affect the fit result.

7.5.3 Signal Shape Uncertainties

Since the signal shape (Sec. 7.4.2) is modeled according to the detector response to the presence
of a narrow-width resonance, it is subject to uncertainties affecting said response. In particular,
the jet energy scale (JES) and jet energy resolution (JER) are determined in the jet energy
calibration procedure, including their systematic uncertainties [218, 219]. While the JES affects
the peak position of the resonance shape, the JER impacts the width of the detector response.

These effects are propagated by varying the jet energy calibration within expected bounds
and observing the resulting effect in the fitted DCB signal shape in mjj . Performing this

procedure with the representative X → YY′ → 4q signal at 2, 3, and 5TeV, the observed
variance in the DCB parameters µ and σ are δµ = 1% and δσ = 3.5%, respectively. For other
signals, the resulting δµ and δσ are found to be comparable, and thus the same values are used
for both the significance scan and the limit setting. They are treated as shifts to the nominal
parameter values in the DCB shape, Eq. 7.8: µ→ µ+ θµ and σ → σ + θσ, where θµ and θσ are
Gaussian-distributed nuisance parameters with mean of zero and standard deviations of δµ and
δσ, respectively. This is handled via Gaussian constraint terms as in Eq. 2.25.

7.5.4 Signal Normalization Uncertainties

Since the exclusion limits are set based on the signal strength in the profile likelihood fit, it is cru-
cial to consider systematic uncertainties in the signal normalization. Multiple uncertainty sources
are considered and combined into a single signal normalization uncertainty δsig and treated by
multiplying the signal strength by δνsig, where the exponent ν is a Gaussian-distributed nuisance
parameter with mean of zero and standard deviation of one. This constraint is implemented
again via a Gaussian constraint term in the likelihood function. This treatment of rate uncer-
tainties via a log-normal distribution is a common practice in HEP analyses, as it ensures that
the signal strength remains positive definite.

The propagation of systematic uncertainty sources towards the combined signal normaliza-
tion uncertainty for limit setting involves retraining and/or reevaluating CATHODE classifiers
with signal simulation samples whose distributions are varied within uncertainties. This will be
discussed in Sec. 7.6. The respective uncertainty sources are listed in the following.

7.5.5 List of Systematic Uncertainty Sources

� Jet substructure modeling: The AK8 jet substructure variables used for training
CATHODE are not perfectly modeled in the MC simulation. The standard method of
calibrating the substructure of large-radius signal jets would be to compare them to SM jets
with the same number of prongs. However, we are setting limits on signal models with more
prongs than are available in the SM (with a sufficient number of events), i.e., more than the
three subjets from boosted top decays. Therefore, a novel method [220]14 was developed
to compute a per-prong substructure correction weight via the Lund jet plane [222] ratio
between data and simulation. In essence, the Lund plane captures the showering history

14
The Lund plane ratio reweighting method was first publically described in Ref. [220]. It has been updated

in the meanwhile, in particular concerning the treatment of uncertainties, and is currently under review within
the CMS Collaboration. The current handling of uncertainties reflects the state described in the internal analysis
note [221].
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of a jet. In this case, it is derived for reclustered subjets within the AK8 jet that should
be representative of single quarks (one prong). The resulting weights are then applied to
generic multi-prong resonances. These weights and their uncertainty can thus be translated
to a scale factor for any substructure-based selection. The uncertainty in the Lund plane
ratio reweighting method is decomposed into several individual contributions:

– The combination of systematic uncertainties during the measurement of the Lund
jet plane ratio.

– The Lund plane ratio is derived in a flavor-agnostic manner via the two subjets
within boosted W jets, but the showering pattern of b quarks is known to be different
from lighter quarks. An additional correction is derived via a b-to-qlight Lund jet
plane ratio, which is then used as uncertainty estimate for signal b subjets based on
generator-level information. It is propagated to the substructure weights by scaling
the uncertainties up (multiplication with b-to-qlight ratio) and down (multiplication
with qlight-to-b ratio).

– The statistical uncertainty in the Lund plane ratio measurement, implemented by
sampling 100 new values per Lund jet plane bin from a Gaussian distribution cen-
tered at the nominal value and with the Poisson uncertainty as width.

– The Lund plane ratio is computed as a function of the subjet pT, and it is extrap-
olated to values outside the measured range. Similar to the statistical uncertainty,
100 new values are sampled per Lund jet plane bin from a Gaussian smearing of the
nominal value with the functional fit uncertainty as width.

– While the number of prongs is a signal process–dependent input to the reclustering
scheme of the AK8 jet, there is some ambiguity associated with this choice if the
quarks cannot be correctly captured with reclustered subjets. This is relevant if
quarks fall close to the boundary of the AK8 jet as parts of their radiation will leak
in or out of the jet cone, or if two generator-level quarks are associated to the same
subjet. In these cases, a variation of the number of prongs up and/or down by one is
considered for the weights derivation and these are used as up and down variations
in the signal weights, respectively.

– If the reclustering algorithm fails to match a close subjet to a generator-level quark,
this quark cannot be calibrated with the Lund plane ratio weights. In this case, a
conservative uncertainty is applied by varying the event weight up and down by a
factor of 5, which is the maximum correction factor.

– The Lund plane ratio method is based on the assumption that the showering pattern
of SM quarks is independent of their source. However, this assumption can be
violated by multiple factors, such as color reconnection effects. To account for this,
the Lund plane ratio is measured for each signal model and compared to the MC
simulation of boosted W jets, for which the correction was derived. The ratio of
these two measurements is used as an up and down variation of the signal weights.

� ML training variance: The neural network classifier predictions are subject to variance
from one training to another. Two sources of variance are considered. First, there is the
intrinsic variance from retraining the same model on the same data with different random
initializations of the network weights. Second, the limit setting procedure, outlined in
Sec. 7.6, involves retraining the classifier model on small injections of signal MC simulation
events into the data. Because the signal presence in the training data is very small, the
resulting classifier predictions will depend on which specific signal events are randomly
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included in the training set. In order to account for both effects simultaneously, we
perform five retrainings of the neural network model with different signal event samples
and random initializations of the network weights. When computing the signal efficiency
of the anomaly selection, the mean is used as the nominal value and the standard deviation
as the uncertainty.

� Jet energy/mass scale and resolution: Uncertainties on the jet energy scale and
resolution from the jet energy calibration scheme are treated by varying the 4-momentum
vectors of both leading AK8 jets within uncertainties and recording the observed change
in analysis observables. This results in a different shape and normalization of the signal
model. Similarly, we apply a jet mass scale uncertainty of 5% and jet mass resolution
uncertainty of 8%, following the recommendations of the JetMET Physics Object Group
for W jet tagging [223].

� Pileup reweighting: The simulation is corrected for the number of pileup interactions
via event weights, based on the predicted cross section of inelastic collisions. This cross
section is varied up and down by its uncertainty of 4.6% to compute the event weights for
the systematic uncertainty.

� Parton distribution functions: The MC event generators use a specific set of parton
distribution functions to model parton-parton interactions. These are based on fits to
experimental data. Changes of the PDFs within fit uncertainties are provided via 100
event weights. We compute the standard deviation of these weights for each event, and
vary the nominal weight up and down by this standard deviation in order to obtain a
reduced set of event weights capturing the PDF uncertainty.

� Renormalization and factorization scale: The theoretical computation of the signal
cross section is performed at a fixed order in perturbation theory, which introduces a
dependence on the renormalization and factorization scales (µR and µF in Eq. 2.9). The
uncertainty in the signal cross section is estimated by the conventional method of varying
these scales up and down by a factor of two, and obtaining event weights accordingly.
The varying is performed for each variable separately, as well as in unison to capture
correlations between the scales. The unphysical case of anti-correlations is not considered.

� Parton shower modeling: Similar to the fixed-order cross section computation, also
the parton shower modeling of MC event generators depends on the renormalization scale
through the strong coupling constant αs [52]. An uncertainty is obtained via weights that
arise from varying the renormalization scale up and down by a factor of two. The impact
factorizes into initial state radiation and final state radiation effects. Only the former
is considered in this analysis, as the latter is redundant with the Lund jet plane ratio
reweighting.

� Top quark transverse momentum reweighting: The top quark pT spectrum in the
simulation is known to be mismodeled. Correction weights, as well as up- and down-
scaled weights, are derived from the difference between unfolded data and parton-level
information in the MC event generator. The procedure is outlined in Ref. [224].

� L1 trigger prefiring: In 2016 and 2017, the L1 trigger system was subject to a slowly
increasing shift of reconstructed cluster time in the ECAL, in particular at high pT and
η. This resulted in some clusters being assigned to the wrong LHC bunch crossing and
thus the trigger firing on the wrong event [225]. The resulting loss of trigger efficiency is
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not present in the simulation, so an event weight is computed from the probability of each
AK4 jet or photon to cause this prefiring, according to the recommended procedure by
the L1 Detector Performance Group [226]. An uncertainty is estimated via weights from
varying the probabilities up and down by the uncertainty of 20%.

� B-tagging corrections: CATHODE-b relies on the DeepCSV b-tagging algorithm for
increasing the sensitivity for signals involving b quarks. The difference between data and
MC simulation efficiencies is corrected by scale factors, which are used to derive event
weights that correct the full shape of the distribution in MC simulation, according to the
treatment recommended by the BTV Physics Object Group for shape recalibration [227].
The scale factors are subject to statistical and systematic uncertainties. We add these
in quadrature to obtain a single total uncertainty that is propagated to a set of up- and
down-scaled weights. These weights are normalized such that only the shape changes
before training CATHODE-b, but not the normalization.

� Luminosity: The total integrated luminosity of the Run 2 data-taking period is known
with a precision of 1.6% [228–230]. This can be directly applied as a normalization uncer-
tainty in the signal yield. However, compared to the other uncertainties in the combina-
tion, it is found to be negligible for every considered signal model.

7.6 Weakly Supervised Limit Setting

The statistical treatment, described in Sec. 7.4.3, results in an upper limit on the number of
events Nexc arising from the signal process in question. The number of signal events usually
translates to a signal cross section through a rescaling with the integrated luminosity Lint and
the signal efficiency. The latter factorizes into two parts. The first one is the signal acceptance
εpre, which is the fraction of signal events that pass all the analysis preselections. The second
part is the tagging efficiency εtag, which corresponds to the fraction of pre-selected signal events
that pass further signal-enhancing selections, in this case a selection based on the CATHODE
classifier output:

σexc =
Nexc

Lint · εpre · εtag
. (7.15)

In the case where the signal-enhancing selections are based on a weakly supervised classifier,
εtag becomes implicitly dependent on the actual signal cross section. If no signal is present in
the data, a well-constructed background template sample would be identical to the SR data
in the classifier training, and the classifier would only learn random noise. The resulting εtag
would then approximate the selection efficiency of 1%. On the other hand, with an increasing
number of signal events in the training data, the difference between SR data and background
template becomes larger, and the classifier can learn to distinguish signal from background more
effectively, leading to a higher signal efficiency. This behavior was demonstrated, for example,
in Fig. 6.8.

In the more likely case that a specific signal process is not present in the data and thus εtag
is small, the σexc obtained from Eq. 7.15 would become relatively large. However, if this amount
of signal were present in the data, the classifier would have learned to become more sensitive to
it, resulting in a larger εtag and smaller σexc. On the other hand, if signal events were abundant
in the data, the classifier would achieve high εtag and thus low σexc, to an extent that one might
set an upper cross section limit lower than what is actually present in the data. Both of these
two options are not valid limits, as they are either overly conservative or too tight, respectively.

In order to obtain a well-defined limit, we inject signal MC simulation events into the data
and retrain the classifier. By scanning over different values of an injected signal cross section
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σinj, one can estimate the function σexc(σinj), through Eq. 7.15 and find the value of σinj such
that σexc = σinj. This value then serves as the desired limit on the signal cross section. This
procedure is illustrated in Fig. 7.17 and is analogous to what was adopted in Ref. [18]. The
detailed technical implementation of this procedure is described in the Sec. 7.6.1. It relies on
the key assumption that the presence of actual signal in the data, on top of the injected MC
simulation events, would not bias the classifier as much as to result in εtag so large that the
excluded cross section becomes smaller than the present one. This assumption is tested more
quantitatively in Sec. 7.6.2.
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Figure 7.17: Illustrative example of a scan over various cross sections of injected MC simulation
signal events, resulting in different excluded cross sections. Each injection (blue dots) can be
seen as a sample of the hidden underlying function (gray line), with small noise due to the ML
training. The aim is to find the value on the diagonal, where the excluded cross section equals
the injected cross section. The quoted limit (red dashed line) is the maximum of the σinj and
σexc at the injection point closest to the diagonal.

The inclusion of systematic uncertainties into the limit setting procedure factorizes into
three subsequent steps. First, the cross section scan procedure outlined above, and detailed in
Sec. 7.6.1, is performed without signal normalization uncertainties in the hypothesis test that
yields Nexc. This results in an optimal injection point σoptinj such that σexc(σ

opt
inj ) ≈ σoptinj . As

a second step, the uncertainty in the signal efficiency at σoptinj is evaluated with a procedure
discussed in Sec. 7.6.3, which translates to a systematic uncertainty in the signal normalization,
δsig. Finally, a new hypothesis test is performed with δsig included as a nuisance parameter.

7.6.1 Cross Section Scan Implementation

When scanning over different σinj values, Eq. 7.15 is used to compute the corresponding σexc,
where the retrained CATHODE classifiers will result in a dedicated εtag(σinj) in the denominator.
TheNexc in the numerator is chosen to remain at the value obtained without any injection, rather
than re-obtaining it from another bump hunt on top of the retrained classifiers. The reason
for choosing the data-only Nexc is that the alternative would have multiple disadvantages. The
classifiers and thus the event selection would differ from the model-independent p-value scan and
instead correspond more to a suboptimal supervised search. Moreover, the event selection itself
would depend on the confidence level, and the natural statistical fluctuations of the observed
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limit within the expected bands would translate to oscillations of σexc(σinj) and thus obstruct
finding an unambiguous σexc(σinj) = σinj point.

Another simplification of the scan procedure is the choice of only retraining the classifier
models of CATHODE at each value of σinj, and not the normalizing flows. This is justified
by the narrow width of the considered signals, resulting in only relatively small event fractions
outside the SR and a negligible impact of these few signal events in the flow training on the
SB data. As training a single normalizing flow model involves multiple GPU hours, this choice
significantly reduces the computational cost of the scan, which would likely not have been feasible
otherwise.

The treatment discussed in Sec. 7.5.1 results in a weight associated with each event. Rather
than performing a weighted training, which is not realistically mimicking the training on real
detector data, the weights are used as the sampling probability when drawing a random subset of
events with size σinj from the full MC signal simulation dataset. The remaining available signal
events are used for computing the efficiency εtag(σinj), which minimizes the effect of statistical
fluctuations from a limited sample size compared to a σinj-sized evaluation set. Weights are
taken into account by computing εtag as the sum of weights of the events passing the selection
threshold divided by the full sum of weights.

Despite the double k-folded CATHODE classifier training, the signal efficiency at the different
σinj values can still fluctuate significantly due to the small number of signal events in the training
data. This is mitigated by performing the full training procedure five times, each with a different
random neural network weight initialization, and sampling a new subset of signal events from
the full MC simulation for each training.

In order to find the value of σinj such that σexc = σinj most efficiently, a binary search
algorithm is employed, which assumes a monotonically decreasing σexc(σinj) function. An initial

value of σt=0
inj returns a value of σt=0

exc . The maximum of the two serves as upper boundary of
a search window, xupper, and the minimum as the lower boundary, xlower. At each time step t,

the logarithmic center, σtinj = exp(0.5(log(xlower) + log(xupper))), is used to compute the next

value of σtinj. The lower value of
{
σtinj, σ

t
exc

}
is then used to update xlower, if it is larger than

the previous value, and the higher value updates xupper, if applicable. At each step, all cross
section values are rounded to two digits precision (in units of fb), and the search is terminated
when the fractional difference between the two values is below 10%. The final limit (without
considering signal normalization uncertainties) is the maximum of the {σtinj, σtexc} pair with the
smallest difference.

The scanning procedure outlined above is performed four times: for the observed limit, for
the expected limit, and the expected ±1σ bands. Each limit definition results in a distinct Nexc

value, which results in a different σexc = σinj point. Since the trained classifier models at each
σinj are independent of the limit definition, they are reused between subsequent binary searches
on a given signal model.

7.6.2 Behavior With Signal in Data

The limit setting procedure based on injecting signal events assumes that the potential presence
of an actual signal in the data does not impact the classifier training enough to yield a lower
limit than what is actually present. We tested this assumption explicitly in the MC background
simulation dataset for two signal processes, X → YY′ → 4q with mX = 3TeV and mY = mY’ =
170GeV, and W′ → B′t → bZt with mW’ = 3TeV and mB’ = 400GeV. Figure 7.18 shows the
observed and expected limits as a function of a signal cross section that has been injected into
the dataset before performing the cross section scan.
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Figure 7.18: Observed and expected limits when the tested signal is present in the data with
various cross sections. The two plots show results obtained with CATHODE on the MC back-
ground simulation dataset for 3TeV resonances: X → YY′ → 4q with mY = mY’ = 170GeV
(left) and W′ → B′t → bZt with mB’ = 400GeV (right).

The expected limits in Fig. 7.18 decrease slightly as a function of the signal cross section
in data. This is due to the classifiers becoming more discriminating with more signal events in
the training data, resulting in an increase of εtag, while the expected event limit for Nexc is not
reacting to larger signal presence. Such constant Nexc is the desired behavior as the expected
limit corresponds to a hypothetical background-only result.

The observed limit, on the other hand, is subject to fluctuations of the order of magnitude
of the expected limit bands, because every point corresponds to a new CATHODE classifier
training and thus a different Nexc. Within fluctuations, the observed limit does not significantly
enter the region below the diagonal where it is lower than the present amount of signal. Two
regions can be identified: at low injected cross sections, the observed limit decreases as a function
of the cross section because the classifiers become more discriminant and thus εtag increases. At
a point relatively close to the diagonal, the increase in Nexc becomes more dominant as it reacts
to the presence of signal during the bump hunt. In the latter region, one can see the observed
limit significantly exceeding the upper band of the expected limit due to the noticeable presence
of the signal in the data.

7.6.3 Incorporating Systematic Uncertainties

If the shape of the input feature distributions changes within the expected variance due to
systematic uncertainty sources, the performance of a weakly supervised classifier trained on
these features will also change. In particular, if the transformed signal distribution becomes
more similar to the background, the task of identifying overdensities becomes more difficult
and the classifier efficiency, εtag, decreases. Therefore, an uncertainty in the signal efficiency
translates to one in the signal normalization, as described in Sec. 7.5.4. The following paragraphs
describe how the efficiency uncertainty is systematically evaluated individually for each source
of uncertainty and then combined into a total uncertainty in the signal normalization.

Once the optimal injection point σoptinj with σexc(σ
opt
inj ) ≈ σ

opt
inj is identified without considering
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signal normalization uncertainties, the uncertainty in εtag(σ
opt
inj ) is evaluated by considering its

variance under systematic shifts of the signal input feature distributions at σoptinj .

Ideally, we would retrain the CATHODE classifier models for every considered uncertainty
source shifted up and down, each resulting in a varied signal efficiency. However, the compu-
tational burden of this becomes large considering O(20) sources of systematic uncertainty, each
varied up and down, and trained with five random samplings of the signal. This is avoided by
limiting the procedure to uncertainty sources that induce statistically significant deviations on
the input features. To test this, histograms of the nominal signal event distribution are created
from the full MC simulation sample, using ten equal-width bins that contain the central 98%
of the events, i.e., removing the upper and lower 1% tails to reduce sensitivity to outliers. For
each uncertainty source, the feature distribution for the signal in question is then obtained by
varying the uncertainty up and down, and the per-bin deviation is measured. This difference is
then scaled down to a signal injection of σoptinj in order to compare it to the statistical (Poisson)
uncertainty at the expected signal injection in this bin. If the deviation is larger than 20%
of this statistical uncertainty in any bin of any feature, the systematic uncertainty source is
considered significant for the signal in question and the classifier will be fully retrained. The
20% threshold is to some extent arbitrary, but has been used as a conventional choice for a
conservative estimate of the significance of a deviation.

In the following, this procedure is illustrated for the case of the observed upper limit of a
W′ → B′t → bZt signal with mW’ = 3TeV and mB’ = 400GeV in the MC simulation dataset.
The optimal injection point was found to be σoptinj = 48.4 fb, corresponding to an excluded cross

section of σexc(σ
opt
inj ) = 47.7 fb. The criterion for uncertainty sources resulting in significant

enough shape changes to warrant retraining is shown for two examples: the parton distribution
function uncertainty in Fig. 7.19 and the final state radiation parton shower uncertainty in
Fig. 7.20. The latter is a predecessor of the Lund plane–based set of jet substructure modeling
uncertainties, used in an earlier iteration of the analysis. The shape change from the PDF
uncertainties is only minor in this case and does not qualify for retraining, while the parton
shower uncertainty does, as the shape change is larger than 20% of the statistical uncertainty
in at least one bin for at least one feature (in this case all features).

For those uncertainties that are considered significant, the full double k-folded classifier
setup is retrained with the uncertainty shifted up and down. In each direction, the retraining is
performed five times and then averaged, just as for the nominal training, in order to factor out
random training variance. For weight-based corrections, the up- and down-shifted weights are
each used as per-event probabilities for sampling the σoptinj events from the full MC simulation
sample, as well as for computing the weighted signal efficiency. For corrections resulting in
shifted feature values, the same five signal realizations from the nominal training are reused,
just with the feature values shifted accordingly. The five values of εtag per varied direction are
then averaged to obtain an up- and down-shifted signal efficiency per uncertainty source. The
mean of the absolute fractional difference between the shifted and nominal efficiencies in either
direction is used as the signal efficiency uncertainty value of each source.

An estimate of the variance of εtag is also obtained for all uncertainty sources, regardless of
whether they qualify for retraining via the criterion above, by simply evaluating the nominally
trained classifier models with shifted systematic uncertainties, i.e., only the efficiency computa-
tion itself is affected from the change in either event weights or feature values. This is done for
each of the five signal realizations, and they are averaged for each direction of shifting the un-
certainty. Again, the mean of the absolute fractional difference between the shifted and nominal
efficiencies is used as uncertainty estimate. If an uncertainty source qualifies for retraining, the
maximum of the retrained and reevaluated efficiency is used as the final uncertainty value for
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Figure 7.19: Example of the test in the MC background simulation dataset to decide which
sources of systematic uncertainties are significant enough to retrain the classifier models. The
feature distribution for the W′ → B′t → bZt signal with mW’ = 3TeV and mB’ = 400GeV
is shown for the nominal case (black), as well as the distribution resulting from the parton
distribution function uncertainty shifted up (blue) and down (red). The bottom panel shows
the bin-wise ratio, where the gray band denotes 20% of the statistical uncertainty at an injection
of σoptinj = 48.4 fb. The shape change from the PDF uncertainties is only minor in this case and
does not qualify for retraining.

this source.

A special case is the treatment of random variance in classifier training from both random
initialization and the signal event realization through randomly sampling only σoptinj events. This
uncertainty is measured as the maximum deviation away from the nominal efficiency, which is
the mean of the same five efficiency values.

Another subtlety to consider is the change of εpre due to a shift in JES and JER. The
preselections, discussed in Sec 7.2.6 are based on the reconstructed pT of the jets, and a shift in
the jet energy scale or resolution generally results in a different fraction of events passing the
selections. The εpre values for each up- and down-shifted JES and JER are computed during
the sample preprocessing and multiplied to the respective varied εtag values before measuring
the fractional difference to the nominal efficiency.

The resulting effects on the signal efficiency for the W′ → B′t → bZt signal example are
summarized in Fig. 7.21. The most dominant uncertainty is the final state radiation parton
shower modeling uncertainty shown in Fig. 7.20. The uncertainty from retraining classifiers is
larger than evaluating modified shapes with the nominal classifiers, so the retrained efficiency
is used as the final uncertainty value for this source. The next most impactful uncertainty
originates from retraining the classifiers with random resamplings of the signal events, which
is by definition only derived via retraining classifiers. The first five uncertainty sources have
qualified for retraining, while the remaining ones were evaluated with the nominal classifiers, all
with visibly negligible impact on the signal efficiency.

For every signal model, all the efficiency uncertainties are combined by adding them in
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Figure 7.20: The same example as in Fig. 7.19, but for the final state radiation parton shower
uncertainties. In this case, the shape change from shifting this uncertainty up and down exceeds
the 20% statistical uncertainty threshold and thus a classifier retraining is deemed necessary for
this uncertainty source.

quadrature, which serves as the total signal normalization uncertainty. Another profile likelihood
fit is performed with this normalization uncertainty included as a log-normally constrained
nuisance parameter, yielding a new exclusion limit on the number of events N syst

exc . With the
same nominal εtag as used for the initial σoptinj determination, the new σsystexc is computed via

Eq. 7.15. The maximum of σoptinj and σsystexc serves as the final limit on the signal cross section.

In the W′ → B′t → bZt example above, the combination of uncertainties shown in Fig. 7.21
results in a total signal normalization uncertainty of 19%. The exclusion limit after including
this uncertainty as a nuisance parameter in the profile likelihood fit is σsystexc = 50.4 fb. As this
is larger than the optimal injection point, this value serves as the final (observed) upper limit
on the signal cross section. In rare cases, the excluded limit is lower than the optimal injection
point, both before and after systematic uncertainties are included. In these cases, the optimal
injection point remains the choice of limit, as it is the more conservative estimate of the true
limit.

As mentioned in Sec. 7.6.1, not one but four upper limits are computed via a scan over
the excluded vs injected cross section: observed, expected and the expected ±1σ bands. These
limits generally differ, and relate to four different values of σinj. Since the uncertainty, just as
the signal efficiency itself is dependent on σinj, the procedure above would ideally be repeated
for each of the four limits. However, the computational cost of this is prohibitive, and we instead
use the approximation that the efficiency uncertainty derived for the observed limit can also be
applied to the expected limit and its bands. The observed limit is chosen as it corresponds the
most to a physics result, derived on the real manifestation of the collider data.
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Figure 7.21: Summary of the effects of all systematic uncertainties in the signal efficiency for
the MC background simulation dataset example of a W′ → B′t → bZt signal with mW’ = 3TeV
and mB’ = 400GeV. The uncertainties are ordered by their impact on the signal efficiency.
If a classifier retraining was performed, the resulting fractional efficiency change is denoted in
hatched bars, while the unhatched bars correspond to an evaluation of the shifted distribution
with the nominally trained classifier models. If both retraining and reevaluation were performed,
the maximum of the two is taken as the uncertainty value for the respective source.

7.7 Validation Studies

Before performing the outlined analysis strategy on real collision data, it is crucial to validate
the procedure in a controlled environment. To this end, validation studies were performed in
two stages. First, a background-only MC simulation dataset is used to ensure that the analysis
chain does not sculpt the background in a way that would lead to false excesses. Moreover, by
injecting various amounts of simulated signal events into the MC background simulation dataset,
the sensitivity of the analysis procedure towards the presence of a signal is tested. Second, the
analysis chain is validated in a real data control region where no signal presence is expected.
This is done to ensure that the analysis chain does not induce false excesses when exposed to
unforeseen features intrinsic to real data. These validation studies are complemented by a set of
bias studies, which are used to quantify the robustness of the analysis strategy against potential
systematic effects.

7.7.1 Monte Carlo Simulation

The MC background simulation dataset, described in Sec. 7.2.2, is composed of a realistic
mixture of SM processes, namely QCD multijet events, W and Z bosons produced in association
with jets, top quark-antiquark pair production, and single top quark production. Each of the four
data-taking periods (2016 preVFP, 2016 postVFP, 2017, 2018) contributes equally, each with
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a size equivalent to an integrated luminosity of 6.7 fb−1, resulting in a total dataset equivalent
to 26.8 fb−1. This dataset is used to validate the analysis chain in a controlled background-
only environment, where no significant excess is expected in a well-calibrated analysis. By
additionally injecting MC signal simulation events into this dataset, one can study the sensitivity
of the analysis procedure towards the presence of the respective signal.

The primary focus of the MC simulation validation studies is to verify that no significant
excess is found in the absence of any signal. Such an excess might arise due to the type of
background sculpting discussed in Sec. 2.6.3 and the Appendix B.5. This was tested by per-
forming the full analysis procedure on the MC background simulation sample, i.e., training
CATHODE(-b), selecting the most anomalous percentile of events for every choice of SR, fit the
background models via a smoothly falling functional form, and then compute p-values under
the background-only hypothesis as a function of the dijet invariant mass.

The distributions of events that were selected as most anomalous in every SR bin are shown
in Fig. 7.22 for CATHODE and in Fig. 7.23 for CATHODE-b. A direct comparison with the
shapes before selection, as studied in Figs. 6.18, would be misleading as the lack of a change in
background shape is a sufficient but not strictly necessary requirement for the absence of excesses.
Rather, the figures demonstrate that the smoothly falling background shape is preserved, and
the chosen background fit functions describe the passing mjj distributions well within statistical
fluctuations. The latter can be seen from the pull plots in the lower panels under every histogram,
quantifying the difference between the data and the fits in units of the statistical uncertainty.
Moreover, it is the quadratic sum of these pulls that determines the χ2 value, which is shown
divided by the number of degrees of freedom ndof in each panel and used as fit quality metric in
the F-test. The resulting χ2/ndof values do not deviate excessively from unity.

The p-values obtained from the subsequent tests of the background-only hypothesis are
shown in Fig. 7.24 as a function of mjj for both CATHODE and CATHODE-b. As expected,
most values in both cases correspond to a significance lower than 1σ. The p-value of 0.5 serves
as a hard upper boundary because the test statistic from Eq. 2.31 has a lower bound of zero in
the case of signal underfluctuations, i.e., if the unconditionally fitted signal strength is negative.
As can be seen, for a few of the tested mass points the p-values exceed 1σ, which is expected
due to statistical fluctuations. No excesses beyond 2σ were observed in the background-only
MC simulation study.

While this study establishes the lack of significant sculpting in the absence of signal, it is
also crucial that the presence of signal would result in an excess. This was tested by injecting
increasing amounts of signal into the MC simulation sample and repeating the full analysis
procedure for every such dataset. Specifically, the test was performed with the X → YY′ →
4q signal with mX = 3000GeV, mY = 170GeV, and mY’ = 80GeV, and different amounts
corresponding to cross sections from 5 and 30 fb in steps of 5 fb were injected. In order to
save computational resources, the classifier was retrained exclusively within the SR bin centered
around the nominal signal mass, i.e., between 2.725 and 3.331TeV. Moreover, the normalizing
flows were not retrained with injected signal. Instead, the background-only trained models were
used for generating a background template. These two simplifications follow the assumption
that the signal contamination outside the central SR is negligible.

Figure 7.25 shows the resulting background fits to the selected mjj distributions, after per-
forming CATHODE in the central SR around the nominal signal mass. Starting from 15 fb,
a signal bump becomes increasingly visible, with more significant deviations between the data
and the smooth background fit. The resulting significance is assessed more quantitatively as a
function of mjj in Fig. 7.26. There, the excess at 3TeV indeed starts exceeding 5σ at 15 fb. For
reference, each panel shows the significance from an “inclusive search” at the respective signal
cross section as a green dashed line, which corresponds to the statistical analysis performed
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Figure 7.22: MC background simulation mjj spectra after selecting the most anomalous 1%
of events using CATHODE for every choice of signal region, and the background fit function
chosen by the F-test.
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Figure 7.23: MC background simulation mjj spectra after selecting the most anomalous 1% of
events using CATHODE-b for every choice of signal region, and the background fit function
chosen by the F-test.
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Figure 7.24: MC background simulation p-values as a function of mjj after selecting the most
anomalous 1% of events using CATHODE (left) and CATHODE-b (right).

without any anomaly score–based selections and will be introduced in Sec. 7.9.5. Even at the
maximum signal injection of 30 fb, this CATHODE-free analysis strategy fails to obtain a sig-
nificance beyond 2.5σ, which demonstrates the non-trivial signal extraction performance of our
CATHODE-based analysis strategy.

A similar behavior is observed for CATHODE-b. Figure 7.27 shows the respective selected
mjj distributions and the fit functions, where a visible bump is appearing between 15 and
20 fb. Analogously, Fig. 7.28 shows the significance scan results, yielding a > 3σ evidence at an
injection of 15 fb and a > 5σ discovery with a cross section of 20 fb. CATHODE-b thus seems
similarly able to extract an X → YY′ → 4q signal if it is present, however with somewhat
reduced sensitivity compared to CATHODE due to the lack of discrimination power in the
additional input features for this specific signal model.
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Figure 7.25: MC simulation dataset mjj spectra and smooth background fits after selecting the
most anomalous 1% of events using CATHODE when injecting an increasing amount of the
X → YY′ → 4q signal with mX = 3000GeV, mY = 170GeV, and mY’ = 80GeV. The injected
cross sections are 5 fb (top left), 10 fb (top right), 15 fb (center left), 20 fb (center right), 25 fb
(bottom left), and 30 fb (bottom right).
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Figure 7.26: MC simulation dataset significance as a function of the injected signal cross section
after selecting the most anomalous 1% of events using CATHODE. The injected signal is X →
YY′ → 4q with mX = 3000GeV, mY = 170GeV, and mY’ = 80GeV. The injected cross sections
are 5 fb (top left), 10 fb (top right), 15 fb (center left), 20 fb (center right), 25 fb (bottom left),
and 30 fb (bottom right). The green line indicates the significance obtained from an inclusive fit,
i.e., performing the same statistical procedure but without CATHODE-based event selection.
The significance values outside the central SR of 2.725 to 3.331TeV are adopted from the
background-only trainings and fits.
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Figure 7.27: MC simulation dataset mjj spectra and smooth background fits after selecting the
most anomalous 1% of events using CATHODE-b when injecting an increasing amount of the
X → YY′ → 4q signal with mX = 3000GeV, mY = 170GeV, and mY’ = 80GeV. The injected
cross sections are 5 fb (top left), 10 fb (top right), 15 fb (center left), 20 fb (center right), 25 fb
(bottom left), and 30 fb (bottom right).

Developing and Applying Machine Learning Techniques for

Model-Agnostic Searches for New Physics at the LHC

153



7 CMS ANOMALOUS DIJET SEARCH

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

Si
gn

ifi
ca

nc
e 

(σ
)

Private work (CMS simulation)

Inclusive fit

X → YY → 4q, 5fb

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

Si
gn

ifi
ca

nc
e 

(σ
)

Private work (CMS simulation)

Inclusive fit

X → YY → 4q, 10fb

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

Si
gn

ifi
ca

nc
e 

(σ
)

Private work (CMS simulation)

Inclusive fit

X → YY → 4q, 15fb

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

Si
gn

ifi
ca

nc
e 

(σ
)

Private work (CMS simulation)

Inclusive fit

X → YY → 4q, 20fb

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

Si
gn

ifi
ca

nc
e 

(σ
)

Private work (CMS simulation)

Inclusive fit

X → YY → 4q, 25fb

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

12

14

Si
gn

ifi
ca

nc
e 

(σ
)

Private work (CMS simulation)

Inclusive fit

X → YY → 4q, 30fb

Figure 7.28: MC simulation dataset significance as a function of the injected signal cross section
after selecting the most anomalous 1% of events using CATHODE-b. The injected signal is
X → YY′ → 4q with mX = 3000GeV, mY = 170GeV, and mY’ = 80GeV. The injected
cross sections are 5 fb (top left), 10 fb (top right), 15 fb (center left), 20 fb (center right), 25 fb
(bottom left), and 30 fb (bottom right). The green line indicates the significance obtained from
an inclusive fit, i.e., performing the same statistical procedure but without CATHODE-based
event selection. The significance values outside the central SR of 2.725 to 3.331TeV are adopted
from the background-only trainings and fits.
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7.7.2 Data Control Region

The next crucial step of the validation studies is to ensure that there are no unforeseen features
intrinsic to real detector data that induce false excesses unseen in simulation. The standard
approach for validation studies within real data is to define a control region (CR) in phase space
that is both disjoint from the analysis region, and in which the presence of any considered signal
is suppressed. The latter constraint is relevant in the case of an observed excess in the CR, as
it could otherwise not unambiguously be attributed to methodological issues.

Since the present analysis is designed to be sensitive to a large variety of signal models,
the signal suppression potential of different CR definitions was studied. The considered signal
processes are summarized in the first column of Tab. 7.7 and listed with the full MC simulation
sample names in Tab. B.5 in Appendix B.2. This set comprises models featuring a graviton
(G) decaying to a pair of either W or Z bosons, a W′ boson decaying to W and Z, a Z′ boson
decaying to a W pair, an excited b quark (b∗) decaying to a top quark and a W, and a WKK

decaying to a W and a radion (R). The last signal has a varying radion mass, quantified by the
ratio of the radion mass to the WKK mass, R0 = mR/mWKK

. The weakness of using explicit
signal processes is that there could hypothetically be infinitely many other signal models that
peak exactly in any CR definition. However, this choice of signals corresponds to a relatively
well-motivated set of processes and is representative of the type of signals that is expected to
be probed by the analysis.

The metric for signal suppression is chosen based on the approximate theoretical significance
Nsig/

√
Nbkg, where Nsig and Nbkg are the number of signal and background events in a region,

respectively. The target is to find a CR which suppresses this significance by roughly a factor of
ten compared to the analysis region. While Nbkg is approximated by the number of data events
in a chosen phase space region, Nsig is chosen to correspond to the 95% CL quark-antiquark
final state cross section limit that was found in the inclusive CMS dijet search [17], assuming a
signal acceptance of 50% to convert the cross section into a number of events. In order to reduce
the effect of statistical fluctuation, the full MC simulation samples were used to determine the
efficiency of a phase space selection and scaled down to the respective target Nsig. The full
summary of the significance fraction with respect to the analysis region is shown in Tab. 7.7 for
all signal models and different CR definitions discussed in the following.

The criterion of complementarity to the analysis region is met trivially by inverting the
|∆η| < 1.3 selection defining the analysis region. Figure 7.29 shows the passing fraction of data
events (left) and example signal MC simulation events (right) as a function of a varying lower
|∆η| boundary. The signal suppression of a mere |∆η| > 1.3 selection is visibly insufficient,
since the fraction of WKK and b∗ events in this CR is approximately the same as in the analysis
region |∆η| < 1.3. We thus restrict the CR lower |∆η| boundary to 2.0 instead.

From Fig. 7.30 (left), it can be seen that the |∆η| > 2.0 selection results in a significant
change in mjj distribution with respect to the analysis region. This can be understood from the
invariant mass of a dijet system in the highly relativistic limit. i.e., with negligible jet masses
compared to their total energies:

m2
jj = 2pT,1pT,2 (cosh∆η − cos∆ϕ) , (7.16)

where pT,1 and pT,2 are the transverse momenta of the two jets. Higher values of |∆η| correlate
with high mjj . For a more realistic proxy of the mjj distribution in the analysis region, we
additionally restrict the CR by an upper |∆η| boundary of 2.5. The resulting mjj distribution
is shown in Fig. 7.30 (right), which follows closely the distribution in the analysis region apart
from an initial increase in the number of events at low mjj .

Developing and Applying Machine Learning Techniques for

Model-Agnostic Searches for New Physics at the LHC

155



7 CMS ANOMALOUS DIJET SEARCH

Table 7.7: Summary of the significance fraction of different CR definitions with respect to the
analysis region, shown for all considered signal models. The columns each correspond to a CR
definition, and the rows denote the ratio of the significance with respect to the significance of
an inclusive dijet resonance search, except the first and second rows, which show the number
of data events and the fraction with respect to a pure 2.0 < |∆η| < 2.5 sideband, respectively.
Blue values indicate a suppression by a factor of ten or more, while orange values do not meet
this criterion. Bold orange values indicate missing the target suppression by a factor of two or
more. The CR definitions are defined in the text.

Sample ∆η only ∆η&jet veto ∆η&jet veto&pT asymmetry ∆η&jet veto&pT asymmetry|A
Data events in control region 14 251 002 13 311 775 4 830 300 7 599 923

Data efficiency ∆η only 100% 93% 34% 53%

G →WW, M = 2.0TeV 0.03 0.03 0.01 0.02

G →WW, M = 2.5TeV 0.04 0.03 0.02 0.01

G →WW, M = 3.0TeV 0.03 0.03 0.01 0.01

G →WW, M = 3.5TeV 0.04 0.03 0.01 0.01

G →WW, M = 4.0TeV 0.03 0.03 0.01 0.01

G → ZZ, M = 2.0TeV 0.02 0.02 0.02 0.02

G → ZZ, M = 2.5TeV 0.03 0.03 0.01 0.01

G → ZZ, M = 3.0TeV 0.03 0.03 0.01 0.01

G → ZZ, M = 3.5TeV 0.04 0.04 0.01 0.01

G → ZZ, M = 4.0TeV 0.04 0.03 0.01 0.01

G → ZZ, M = 4.5TeV 0.04 0.03 0.01 0.01

G → ZZ, M = 5.0TeV 0.04 0.03 0.01 0.01

G → ZZ, M = 5.5TeV 0.04 0.03 0.01 0.01

G → ZZ, M = 6.0TeV 0.04 0.03 0.01 0.01

W′ →WZ M = 2.0TeV 0.09 0.09 0.03 0.03

W′ →WZ M = 2.5TeV 0.09 0.09 0.03 0.03

W′ →WZ M = 3.0TeV 0.09 0.09 0.03 0.03

W′ →WZ M = 3.5TeV 0.10 0.09 0.02 0.03

W′ →WZ M = 4.0TeV 0.09 0.09 0.03 0.03

W′ →WZ M = 4.5TeV 0.09 0.09 0.02 0.02

Z′ →WW M = 2.0TeV 0.08 0.08 0.02 0.02

Z′ →WW M = 2.5TeV 0.09 0.09 0.03 0.03

Z′ →WW M = 3.0TeV 0.09 0.09 0.02 0.02

Z′ →WW M = 3.5TeV 0.09 0.09 0.02 0.02

Z′ →WW M = 4.0TeV 0.09 0.09 0.02 0.02

Z′ →WW M = 4.5TeV 0.08 0.08 0.02 0.02

b∗ → tW M = 2.0TeV 0.22 0.21 0.12 0.10

b∗ → tW M = 2.6TeV 0.20 0.18 0.09 0.08

b∗ → tW M = 3.0TeV 0.21 0.19 0.09 0.08

b∗ → tW M = 3.6TeV 0.22 0.18 0.08 0.07

b∗ → tW M = 4.0TeV 0.23 0.19 0.07 0.07

WKK → RW → 3W M = 2.0TeV, R0 = 0.1 0.28 0.28 0.10 0.09

WKK → RW → 3W M = 2.0TeV, R0 = 0.2 0.22 0.20 0.14 0.14

WKK → RW → 3W M = 2.0TeV, R0 = 0.3 0.21 0.17 0.12 0.16

WKK → RW → 3W M = 2.5TeV, R0 = 0.08 0.33 0.32 0.09 0.08

WKK → RW → 3W M = 2.5TeV, R0 = 0.1 0.32 0.32 0.10 0.09

WKK → RW → 3W M = 2.5TeV, R0 = 0.2 0.30 0.23 0.15 0.18

WKK → RW → 3W M = 2.5TeV, R0 = 0.3 0.25 0.16 0.12 0.15

WKK → RW → 3W M = 3.0TeV, R0 = 0.06 0.34 0.34 0.09 0.08

WKK → RW → 3W M = 3.0TeV, R0 = 0.08 0.33 0.32 0.07 0.06

WKK → RW → 3W M = 3.0TeV, R0 = 0.1 0.33 0.32 0.09 0.09

WKK → RW → 3W M = 3.5TeV, R0 = 0.06 0.34 0.33 0.08 0.07

WKK → RW → 3W M = 3.5TeV, R0 = 0.08 0.33 0.32 0.07 0.06

WKK → RW → 3W M = 3.5TeV, R0 = 0.1 0.34 0.33 0.08 0.07

WKK → RW → 3W M = 3.5TeV, R0 = 0.2 0.33 0.19 0.09 0.15

WKK → RW → 3W M = 4.0TeV, R0 = 0.08 0.36 0.35 0.09 0.08

WKK → RW → 3W M = 4.0TeV, R0 = 0.1 0.35 0.34 0.09 0.09

WKK → RW → 3W M = 4.5TeV, R0 = 0.06 0.35 0.33 0.06 0.05

WKK → RW → 3W M = 4.5TeV, R0 = 0.08 0.33 0.33 0.06 0.06

WKK → RW → 3W M = 4.5TeV, R0 = 0.1 0.33 0.32 0.09 0.08
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Figure 7.29: Number of data events (left) and different signal MC simulation events (right)
passing a varying lower |∆η| boundary. The other selections are the same as in the analysis
region.
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Figure 7.30: Distribution of the dijet invariant mass in the full data (black), the analysis region
(blue), and a |∆η| CR definition (red). The left plot shows a one-sided |∆η| > 2.0 selection,
while the right plot shows a 2.0 < |∆η| < 2.5 selection.

Table 7.7 shows that this 2.0 < |∆η| < 2.5 selection already suppresses a significant fraction
of events for all G, W′ and Z′ signal samples. In the b∗ and WKK samples, however, the sup-
pression is not yet sufficient by our criterion. These signals are characterized by an intermediate
heavy particle (top quark or radion) whose decay products are resolved into two separate jets.
We reduce their presence by vetoing on a third jet with a transverse momentum above 300GeV.
This type of third-jet veto is 90% efficient on the data, but further reduces the presence of the
b∗ (except the lightest) and WKK (except the R0 ≤ 0.1) signals, as shown in the second column
of Tab. 7.7.

For the WKK signals with low radion mass, the decay products are sufficiently boosted to be
merged into a balanced dijet system. We can thus further suppress these signals by requiring a
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minimum jet pT asymmetry:
|pT,1 − pT,2|
pT,1 + pT,2

> 0.1. (7.17)

The distribution of the jet pT asymmetry can be seen in Fig. 7.31 (left), and the effect of
this selection in the third column of Tab. 7.7. While this selection does result in the desired
significance suppression of approximately a factor of 10, it has a low data efficiency of 34%. It
should be noted that it is possible to define an additional variable A based on how well the
relativistic approximation of Eq. 7.16 holds (setting cos∆ϕ = −1):

A ≡ 2pT,1pT,2

m2
jj

(cosh∆η + 1) . (7.18)

This quantity is approximately unity if the approximation were fully accurate. Observing the
distribution of A in Fig. 7.31 (right), we can see that the WKK signal samples are also suppressed
by requiring A /∈ [0.95, 1]. We therefore require data events to pass either the jet pT asymmetry
or the A selection, which results in a 53% efficiency on top of the |∆η| window.
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Figure 7.31: Jet pT asymmetry (left) and dijet A distributions, as defined in Eq. 7.17 and 7.18,
respectively. Shown are the real collision data (blue) and the WKK signal sample with
mWKK

= 2500GeV and R0 = 0.08 (orange).

The final definition of the CR can be summarized as:

AND


2.0 < |∆η| < 2.5

No third jet with pT > 300GeV

OR

{ |pT1−pT2|
pT1+pT2

> 0.1

A = pT,1pT,2(2 cosh∆η + 2)/m2
jj /∈ [0.95, 1].

(7.19)

There are a few WKK mass combinations in Tab. 7.7 where the significance suppression is not
exactly a factor of ten, but the CR definition is close to achieving this target while accepting a
reasonable number of data events.

Analogous to the MC simulation studies in Sec. 7.7.1, the full CATHODE(-b) analysis strat-
egy was performed in the data control region of Eq. 7.19. The CR selections result in an
increasing mjj count at the lower end of the considered region, which only changes into the de-
sired negative slope after approximately 2TeV. For this reason, the likelihood fits are restricted
to a region above 2TeV and the p-value scan only starts from 2.3TeV. The selected mjj spectra
from CATHODE are shown in Fig. 7.32, and the corresponding CATHODE-b plots are collected
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in Fig. 7.33. As in the MC simulation case, the mjj shapes remain smoothly falling with a good
description via the background fit functions without the sudden appearance of artificial bumps.
This is confirmed in the p-value scan results in Fig. 7.34, where no excess beyond 2σ is observed.

In the data CR, no signal sensitivity studies are performed, as the CR is defined to suppress
any signal presence.
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Figure 7.32: Data control region mjj spectra after selecting the most anomalous 1% of events
using CATHODE, as well as the best background fit, for every choice of signal region.
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Figure 7.33: Data control region mjj spectra after selecting the most anomalous 1% of events
using CATHODE-b, as well as the best background fit, for every choice of signal region.
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Figure 7.34: Data control region p-values as a function ofmjj after selecting the most anomalous
1% of events using CATHODE (left) and CATHODE-b (right).
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7.7.3 Bias From Background Function Choice

A key assumption in the bump hunt is that the chosen fit function represents an unbiased
estimate of the background. Specifically, the choice of fit function family (Eqs. 7.2 to 7.4)
should ideally not have a significant effect on the result of the statistical analysis, but rather
be sufficiently generic. We test this explicitly by sampling an mjj toy dataset from another
conventional fit function choice and then perform the profile likelihood fit ratio procedure with
ours. This is repeated with different signal strengths in the toy sample and the difference between
the true and the measured signal strength is quantified as a function of mjj .

In order to quantify this fit function bias at some nominal value in mjj , we first fit the 5-
parameter function of an alternative function family choice to the most anomalous 1% of events
in the MC background simulation dataset according to CATHODE trained with the most central
SR around the nominal mjj :

falt(x) ≡
(
dN

dmjj

)
5, alt

(x) =
p0
xp1

exp
(
−p2x− p3x2 − p4x3

)
. (7.20)

Here, again x = mjj/
√
s is the dijet invariant mass in units of the center-of-mass energy. We

then combine the background fit function falt(x) with the addition of a DCB signal shape at the
nominal mjj , which has a normalization corresponding to either zero (no signal contribution),
a 2σ excess (where the injection strength is estimated from the 95% CL upper limit in the MC
simulation dataset), or a 5σ excess (estimated via 2.5 times the 2σ injection). For each choice
of signal strength, we generate 100 toy datasets from the combined alternative function and fit
them with the 5-parameter background function choice used in this analysis (Eq. 7.4):

fnom(x) ≡
(
dN

dmjj

)
5

(x) = p0
(1− x)p1

xp2+p3 log(x)+p4 log
2
(x)
, (7.21)

plus the DCB signal shape with freely floating normalization.

The difference between the true and the measured signal strength, divided by the signal
strength uncertainty, corresponds to the bias from fitting with one background function, fnom,
while the data follow the alternative choice, falt. These 100 individual bias values per signal
strength are collected in a histogram, as shown in Fig. 7.35 (left), and fitted with a Gaussian
function. The mean value from the fit is interpreted as the mean bias at the respective signal
strength and nominal mjj hypothesis. This entire procedure is repeated at every step in mjj

that is targeted in the significance scan. The result is shown in Fig. 7.35 (right), where the
three colors correspond to the three different signal strengths. The uncertainty at every point is
estimated by the fitted Gaussian standard deviation, divided by the square root of the number
of toy datasets.

The result in Fig. 7.35 (right) shows a maximum bias of approximately 1.5σ in the absence
of signal, i.e., one might at worst observe on average a 1.5σ excess in the data when fitting
with the wrong function. This is deemed acceptable as excesses of this order of magnitude are
not considered significant. Once a measurable signal strength is present, the maximum bias
decreases further to only 0.6σ.

7.7.4 Bias From Full Statistical Procedure

While the study in Sec. 7.7.3 examined the bias introduced by fitting the background with
a different functional form than the data actually follow, there might be other bias-inducing
components of the full statistical procedure. This includes the choice of parametric background
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Figure 7.35: Left: histogram of the difference between measured and true signal strength in units
of the signal strength uncertainty for 100 toy experiments where the background is sampled from
one function and fitted with another. A Gaussian fit is applied to extract the mean and standard
deviation. This example corresponds to the 2σ injection at a nominal mjj of 3000GeV. Right:
mean bias and uncertainty extracted from the procedure shown in the left plot as a function of
the nominalmjj . The three colors correspond to different injections of signal into the toy dataset:
without signal (black), one corresponding to a 2σ significance (green), and one corresponding
to 5σ (blue).

fit function family, the selection of background fit parameterization via the F-test as well as the
signal shape and the profile likelihood fits to determine the p-values under the background-only
hypothesis.

Rather than employing CATHODE, we test the full bias by sampling a random 1% sub-
set of the MC background simulation dataset and performing the full statistical procedure for
computing background-only p-values. Since no signal is present in the dataset and the selection
is randomized rather than based on an anomaly score, which might be subject to background
sculpting, the resulting p-value should be uniformly distributed in the case of a well-calibrated
statistical procedure. To estimate the p-value distribution, we repeat this sampling 1000 times
with replacement for every dijet mass value tested during the p-value scan.

The resulting distribution of p-values, for all masses combined, is shown in Fig. 7.36, where
the histogram has been normalized by the width of each bin. The left plot shows the full range
of unique p-values, while the right plot zooms in on the region below 0.1, with a binning choice
reflecting the denoted significance ranges in units of σ. It should be noted that all 1000 samples
per mass value are combined into a single histogram, which assumes p-values at various masses
to be approximately uncorrelated. Moreover, because of the choice of test statistic that only
interprets upwards fluctuations of the data as an excess, the maximum p-value that can be
obtained is 0.5. This is why all p-values of exactly 0.5 are collected in a single bin whose width
extends up to 1. This bin is only partially displayed, but its content reflects the normalization
with respect to the full width.

Figure 7.36 (left) shows two narrow peaks: one at the low end of the distribution, and one
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Figure 7.36: Area-normalized distribution of p-values obtained from the full statistical procedure
on 1000 randomly sampled 1% subsets of the MC background simulation dataset, combining
results for all considered nominal dijet masses. The left plot shows the full range of unique p-
values. The chosen definition of test statistic results in a maximum numeric value of 0.5. These
values are thus collected in a single bin whose full width is not displayed. The right plot shows
a zoomed-in view of the p-values below 0.1 with a binning that corresponds to a significance in
steps of 0.5σ.

at p-values just below 0.5. The latter corresponds to too many p-values with continuous values
before the maximum of 0.5, likely due to numeric precision issues. It is deemed harmless, since
it is not dominant compared to the full area of the neighboring highest bin, and the exact value
of p-values around 0.5 are not relevant for the analysis. The peak towards low p-values is more
striking, as it indicates an excess of p-values that would be interpreted as a hint for new physics.
This is resolved more finely in Fig. 7.36 (right), which shows that a substantial fraction of the
p-values correspond to a significance beyond 3σ.

One way of recalibrating the p-value distribution in Fig. 7.36 is to map it a posteriori to
the desired uniform distribution. This can be achieved by a quantile transformation, which is a
function that maps any distribution to a uniform one. This is shown in Fig. 7.37 (left) with a
quantile transformation implemented with the Scikit-learn library [160]. There are two benefits
of computing the quantile transformation in this context. First, one might consider applying
this type of recalibration scheme as part of an analysis strategy if deemed necessary. Second, the
resulting function captures the full bias introduced by the statistical procedure and can be used
to better understand its impact. In order to achieve the latter, the transformation is visualized
in terms of the significance in units of σ (i.e., the Z-score) in Fig. 7.37 (right). The plot reveals
a departure from the identity map, which is increasing with higher significance. At a measured
significance of 4σ, the transformation indicates that actually a ∼ 3σ excess is present, i.e., the
statistical procedure overestimates the significance by approximately up to one unit of σ. Higher
significance values could not be probed due to their low occurrence with only O(1000) trials.

The test above assumes a constant bias across the full dijet mass spectrum. The same
methodology can be applied individually at each mass, i.e., deducing a quantile transformation
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Figure 7.37: Left: quantile transformation defined to map to p-values of the random 1% samples
of Fig. 7.36 (blue) to a uniform distribution (orange). Right: the transformation function
visualized in terms of the significance in units of σ.

on distributions of p-values at each mass point. These transformations are visualized in Fig. 7.38.
The transformed significance values are shown as a function of the dijet invariant mass, for
measured significances of 1–4σ. Linear fits are shown for visual reference. The result shows that
the bias is largest at low dijet masses and (as seen before) at high measured significance. At 1σ
measured significance, the bias is very low and overall it decreases with increasing mass.

In order to understand at which point the statistical procedure introduces the O(1σ) biases,
we repeat the procedure above, replacing the 1% random sampling with toy experiments drawn
from the best fitting background function to the full MC background simulation dataset. As
these mjj values follow exactly one of the parametric functions in the fit function family of
the F-test, it should factor out any issues arising from a suboptimal description of the data by
the choice of fit function family. The resulting p-value distribution is shown in Fig. 7.39. The
distribution is visibly more uniform than the one obtained from the random sampling of the MC
background simulation dataset. The zoomed-in view in the right plot shows that the peak at
high significance is still present, but substantially less pronounced compared to Fig. 7.36.

The bias can again be visualized in terms of the transformed and measured significance values
after applying a quantile transformation. The resulting transformation is shown in Fig. 7.40 (left)
when considering a mass-independent bias. Only a minor departure from the identity map is
observed, above a measured Z-score of 3σ. The mass-dependent picture is shown in Fig. 7.40
(right), which confirms that the bias remains small across the full dijet mass spectrum. Only
few values could be measured at a 4σ significance because at most masses this significance is not
reached due to the (expectedly) low occurrence of these p-values, and thus the transformation
is not well-defined in this case.

One thus observes that the bias of up to 1.5σ seen in Fig. 7.38 at high significances and
low dijet mass does not persist when the dataset is replaced by toy experiments drawn from
the best fitting background function. This indicates that the bias is primarily arising from data
not being perfectly captured by the chosen family of fit functions. In fact, this relates to the
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Figure 7.38: Illustration of the quantile transformations that individually recalibrate the p-value
distributions at each dijet mass point. For significances of 1−4σ, the resulting Z-scores are shown
for each mass point. For each measured significance, a linear fit is shown as a dashed line.
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Figure 7.39: Area-normalized p-value distribution as in Fig. 7.36, but here the p-values are ob-
tained from the full statistical procedure on toy datasets drawn from the best fitting background
function to the full dataset.
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Figure 7.40: Visualization of the quantile transformation recalibration as in Figs. 7.37 (right)
and 7.38, but for the p-value distributions obtained from toy datasets drawn from the best fitting
background function to the full dataset.

same source of bias that was discussed in Sec. 7.7.3. There, the bias in the absence of signal
was found to be mass dependent and reaching a maximum of approximately 1.5σ, as well. The
bias in presence of signal has not been tested in the current study, but it is expected that it
decreases with increasing signal strength, as seen in Sec. 7.7.3.

Following the discussion of Sec. 7.7.3, the bias shown here was deemed acceptable, as it is
not expected to lead to a significant excess in the data. The suggested recalibration procedure
based on a quantile transformation is thus not applied in the analysis. However, it could be a
consideration for future analyses, especially if the statistical procedure is found to be biased at
a level that could lead to a misinterpretation of the data.

7.8 Excess Interpretation

In case a significant excess is found in a model-agnostic search, it is important to characterize
the distinct features of the events contributing to the excess. On the one hand, this serves as
a sanity check to ensure that the excess is of a physical nature and not due to methodological
issues, such as a systematic mismodeling of the background template. On the other hand, if
the excess seems to be physical, one can try to interpret what type of signal is present. This
understanding can be used to design dedicated studies, potentially with other datasets and
experiments, eventually leading to the discovery of specific new physics phenomena.

In order to determine what phase space regions are found to be most signal like according
to the CATHODE classifier, we developed two types of tests: observing the most anomalous
patterns and evaluating the training feature importance. In this section, we assess their ex-
pressiveness by injecting two signal models into the MC simulation dataset with cross sections
roughly corresponding to 5σ excesses in the CATHODE-based analysis.

The first test involves comparing the distributions of the most anomalous events in inter-
pretable observables to those found without any anomaly selection. The most straightforward
choice of features are the auxiliary features that are directly used as input to the classifier. How-
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ever, by tracking the necessary event information, this test can be extended to any per-event
feature. In particular, we choose to test the distributions of the 100 events with the highest
anomaly score according to CATHODE. The features are chosen to be the four CATHODE
classifier inputs (mj1, ∆m, τ41,j1, and τ41,j2) as well as the b-tagging score and the subjettiness
ratios τ21, τ32, and τ43, each with respect to the leading and the subleading jet. This allows us to
qualitatively estimate the masses of intermediate particles, the presence of decays into b quarks,
and the pronginess of the jets. It should be noted that the CATHODE classifier is expected to
associate high output scores to background events as well if they are similar to an identifiable
signal. This test thus shows generally what phase space patterns are most signal like, but does
not provide a precise signal extraction method, as the background may be highly sculpted in
these features.

The second test is inspired by popular interpretability methods in the ML literature. We
evaluate the importance of the individual classifier input features by measuring the average
change in the output score when the value of that feature is randomly permuted between events.
In particular, we select the 100 events with the highest anomaly score, replace the values of one
input feature with the values from 100 randomly selected (non-anomalous) events, and measure
the average change in the anomaly score. This is repeated for each of the four input features
individually. The aim is to rank the importance of each feature by their impact on the anomaly
score. This may guide the decision on which features capture anomalous patterns and need to
be considered in a dedicated study.

Events from the X → YY′ → 4q signal sample with masses of mX = 3000GeV and
mY = mY’ = 170GeV, are injected into the MC background simulation dataset with a cross sec-
tion of 18.1 fb, which results in a 4.3σ excess with the analysis procedure based on CATHODE.
The resulting feature distribution test is shown in the first three rows of Fig. 7.41. The mj1

distribution of the most anomalous events peaks at an intermediate particle mass of 170GeV,
whereas the ∆m distribution peaks at zero, which accurately reflects the equality of the two
daughter particle masses. The τ41 distributions of the two leading jets indicate a higher prongi-
ness than one. This is resolved more finely into subsequent subjettiness ratios, where the τ21
values of both jets are visibly lower for the most anomalous events, while the τ32 and τ43 values
approximately overlap with the inclusive distribution. This indicates a two-prong structure in
both jets. The b-tagging scores are not significantly different between the two distributions,
indicating a lack of b-quark content in the signal. While this test provides a correct qualita-
tive description of the known signal properties, the permutation score, shown in the bottom of
Fig. 7.41, is less informative, as it is limited to the four training features and does not account
for the correlations between them. It primarily confirms that the mass of the heavier jet is a
key feature to distinguish the signal from the background.

A W′ → B′t → bZt signal with mW’ = 3000GeV and mB’ = 400GeV is injected with a
cross section of 120 fb, resulting in a 4.8σ excess using CATHODE. The interpretation study
results are shown in Fig. 7.42. There, most anomalous events shift the mj1 distribution to peak

at the B′ mass of 400GeV, and their ∆m distribution peaks at mB’ − mt ≈ 230GeV. This
correctly reflects the expected daughter particle masses. The non-trivial pronginess of the jets is
again indicated in the τ41 distributions, and resolved more cleanly in the subsequent subjettiness
ratios. Here, a shift between full and anomalous samples is visible in τ32 of both jets, in addition
to τ21, indicating a three-prong structure in each leading jet. We also observe an increase in
the average b-tagging score, as both jets are expected to contain b quarks. The permutation
score, shown in the bottom of Fig. 7.42, again confirms that the mass of the leading jet is the
most important feature to distinguish the signal from the background, but does not provide
additional insights into the other features.
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Figure 7.41: Interpretation study of the CATHODE classifier with the presence of an X →
YY′ → 4q signal with mX = 3000GeV and mY = mY’ = 170GeV, resulting in a 4.3σ excess.
The first row shows the distributions of the most anomalous events (blue) compared to all events
(red) in the features used for training. The second and third rows show additional substructure
features of the leading and subleading jet, respectively. The bottom plot shows the training
feature importance evaluation based on the permutation score.
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Figure 7.42: Interpretation study of the CATHODE classifier with the presence of a W′ →
B′t → bZt signal with mW’ = 3000GeV and mB’ = 400GeV, resulting in a 4.8σ excess. The
first row shows the distributions of the most anomalous events (blue) compared to all events
(red) in the features used for training. The second and third rows show additional substructure
features of the leading and subleading jet, respectively. The bottom plot shows the training
feature importance evaluation based on the permutation score.
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7.9 Other Anomaly Detection Methods

While this thesis focuses on the CATHODE(-b) application within a CMS dijet search, it should
be noted that four more methods were applied alongside within a common analysis strategy and
publication [5]. These methods, which are briefly described in Sec. 4, are CWoLa Hunting, Tag
N’ Train, Variational Autoencoder With Quantile Regression, and Quasi Anomalous Knowledge.
The following sections will discuss how these methods are applied to this analysis, and how they
compare in MC simulation studies. Their results on real collision data will be shown in Sec. 7.10,
in addition to the CATHODE(-b) results.

While these methods significantly differ in how the ML models are trained and applied to
select the most anomalous events, they share the underlying data and MC simulation samples
as well as reconstruction and selections, outlined in Sec. 7.2, before they are applied. Moreover,
once the most anomalous events are selected, the statistical analysis described in Sec. 7.4 is
performed analogously for all methods. Since CWoLa Hunting and TNT also follow the weakly
supervised paradigm, their limit setting strategy follows the description in Sec. 7.6.

7.9.1 CWoLa Hunting

The application of the CWoLa Hunting method—Sec. 4.3.3 introduced the method conceptually
and Sec. 5.3.1 described its application to a previous search for new physics—shares many
similarities with the CATHODE search. The SR binning choice is equivalent to the one outlined
in Tab. 7.6. However, the SB region for each choice of SR is restricted to only the most adjacent
bins, in order to reduce the impact of correlations with the dijet mass. This necessity arises as
the (weighted) SB regions are used directly as the background template, instead of interpolating
a learned background description.

Another major difference with respect to the CATHODE-based dijet search is that the
CWoLa Hunting classifier is implemented per jet instead of per event. This choice further
reduces the correlations between input features and mjj . Two separate classifier models are
trained, one on the heavier jet per event and another on the lighter jet. The input features
are chosen to be x =

(
m, τ21, τ32, τ43, npf,LSF,DeepB

)
where m is the soft drop mass of the

corresponding jet, npf is the number of jet constituents according to the particle-flow algorithm,
and LSF is the lepton subjet fraction [231] (with a subjet number input of n = 3 as used in
Ref. [231]), which is a measure of enhanced contributions from leptons in the jet. These classifiers
are implemented as fully connected neural networks.

A two-stage reweighting procedure is applied in order to produce an effective background
template with the same distributions as the SR background. First, the left and right SB regions
are reweighted to contribute equally to the total background and together match the effective
number of events as the SR. In a second step, the SB jets are reweighted to match the pT
distribution of the SR jets. The sample weights resulting from multiplying the two contributions
are used exclusively during classifier training.

An equivalent k-l-folding as in the CATHODE search is applied, with the addition that
three models are trained per l-fold, each with a different network weights initialization. The
model with the best performance is selected for further analysis. The performance metric for
this model selection is based on the fraction of SR data events that are selected at a given
selection efficiency in the background template. The two per-jet classifiers are combined into a
single event-based score by first computing the percentile of each jet classifier output value with
respect to the total distribution, and then taking the maximum of these two percentile scores.

The selection efficiency of 1% is chosen for SRs with bin centers below 3.1TeV, 3% be-
tween 3.1 and 4.5TeV, and 5% above 4.5TeV. This choice is made to partially account for the
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exponentially decreasing number of events with increasing dijet mass. For this method, the
selection efficiency is defined on the weighted average of the SB regions, rather than the SR.
The corresponding anomaly score threshold is then applied to the SR and SB regions alike.

7.9.2 Tag N’ Train

The TNT method, introduced in Sec. 4.3.3, is adapted to the dijet search in close analogy to
CWoLa Hunting, as it essentially adds another measure to increase the signal faction in the SR
data sample, while further purifying the background sample. This is based on the assumption
that both jets from a signal event are anomalous, while background jets are uncorrelated from
each other.

In order to reduce correlations with the dijet mass, the two leading jets in each event are not
sorted by mass but randomly assigned to be “Jet 1” or “Jet 2” of the event. An autoencoder
is used as an unsupervised preselection on “Jet 1” to decide whether “Jet 2” is signal like or
background like, and vice versa, and these assignments are then used to build purer samples
for the CWoLa classification task. While the original TNT proposal [125] trains two separate
classifiers, one for “Jet 1” and one for “Jet 2”, where each sample is purified by the autoencoder
selection on the other jet per event, this search uses a simplified procedure based on a single
classifier training per SR. The two sets of background-like and signal-like samples, one from each
leading jet, are mixed into a single training set, and the classifier is trained on this combined jet
sample.

The input to the autoencoder is a pT-weighted two-dimensional histogram of jet constituents
in the η-ϕ plane, which can be interpreted as a jet image. The autoencoder is implemented as a
convolutional neural network where the encoder yields a 6-dimensional latent space bottleneck,
followed by a decoder mirroring the encoder architecture. The loss function is the MSE between
the input and the reconstructed image. It is trained on jets from the SB region (defined as the
neighboring SR bins), where both leading jets per event are used as training samples.

The signal-enriched and background-enriched samples of the CWoLa classifier training are
then constructed as follows. The signal-enriched sample comprises the “Jet 1” of every SR event
where the autoencoder loss of “Jet 2” is in the upper 20% of the distribution, and vice-versa
every SR “Jet 2” with the respective “Jet 1” in the upper 20% of autoencoder loss values. The
background-enriched sample consists of SB jets (as used in CWoLa Hunting), and it is enhanced
by adding the bottom 40% of the SR data jets. The classifier is trained to distinguish these
modified samples of jets with otherwise the same procedure as in CWoLa Hunting, including
the input features and the reweighting scheme.

7.9.3 Variational Autoencoder With Quantile Regression

This VAE-based analysis strategy follows conceptually the outlier detection paradigm described
in Sec. 4.2. A VAE is trained to reconstruct jets from the CR data, defined in Eq. 7.19, which
is dominated by QCD jets. A high loss in the reconstruction of the SR jets is interpreted as
more anomalous, as these jets are less likely to be QCD jets. Contrary to the weakly supervised
approaches, the VAE does not rely on further splitting the analysis region into SR and SB
regions, thus a single training is sufficient to cover the entire mjj spectrum.

As there are inherent kinematic differences between the CR and the analysis region, a sam-
pling procedure is first applied to match the CR jets to the expected background distribution.
The MC background simulation sample serves as a prior for the kinematic jet distributions.
In every event, the two leading jets are each replaced by the CR jet that is most similar in
terms of pT, η and ϕ. Each of the two jets is then represented by the Cartesian 3-momentum
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vectors of the 100 highest-pT jet constituents according to the particle-flow algorithm, ordered
by a reclustering of the jet via the Cambridge-Aachen algorithm. The resulting 100× 3 matrix,
with zero-padded values in case of fewer jet constituents than 100, serves as input to a 1D con-
volutional neural network encoder with 12 output nodes that model the mean and variance of
the 6-dimensional Gaussian latent space, followed by a decoder network. The loss function is
the sum of the Chamfer distance [232] between the input and the reconstructed jet constituent
matrix, and the Kullback-Leibler divergence between the latent space distribution and the unit
Gaussian prior. The same loss serves as per-jet anomaly score on analysis region events. A
per-event score is computed as the minimum of the scores of the two leading jets.

Substantial correlations are expected between the anomaly score and the dijet invariant
mass, thus the method relies on explicit measures to avoid background sculpting. In this case,
the highly correlated anomaly score is decorrelated after training via a quantile regression (QR)
procedure. Three quantile working points are chosen: 90%, 95%, and 99%, corresponding
to the 10%, 5%, and 1% selection efficiency in the SR, respectively. For each of the three
quantiles, a threshold function is learned depending on the dijet mass values, such that the same
selection efficiency persists across the entire analysis region mjj spectrum along this threshold.
Consequently, the shape of the mjj distribution remains the same before and after this selection
on the VAE score. The QR models are implemented as fully connected neural networks, and a k-
fold cross-validation procedure with k = 4 ensures that the QR training samples are orthogonal
to inference events, and the decision threshold function is smoothened across mjj with a third-
order polynomial.

The significance scan procedure is performed on the most anomalous 10% of the events.
For the limit setting, these are separated more finely into three distinct categories: the most
anomalous 1%, the events from the 95th to the 99th percentile, and the events from the 90th

to the 95th percentile. A single profile likelihood fit is performed in these three categories
simultaneously, using the relative signal yields that are known from simulation of the particular
signal model that is tested.

7.9.4 Quasi Anomalous Knowledge

The QUAK method was introduced in Sec. 4.4 and can be regarded as a bridge between su-
pervised and unsupervised anomaly detection methods. It is the only method in the CMS dijet
anomaly search where MC simulation samples are directly used to train the ML model.

Prior signal and background knowledge is incorporated by normalizing flows that learn the
density of simulated samples. This is a departure from the original QUAK implementation,
which was based on VAEs. One flow model is trained on the MC background simulation sample,
where the mjj distribution is flattened through a resampling scheme in order to avoid sculpting.
For the signal, six normalizing flows are trained, each with a mixture of multiple available MC
signal simulation samples with the same intermediate particle masses: (80, 80), (80, 170), (80,
400), (170, 170), (170, 400), and (400, 400)GeV, where the parentheses denote the masses of
the two daughter particles resulting from the heavy resonance decay. The input features are
properties of the two leading jets, which are ordered by decreasing mass and each described by

ρ = m
pT

, τ21, τ32, τ43, τs =
√
τ21
τ1

, the DeepB score, and the number of jet constituents npf.

The losses of the flows correspond to the negative log likelihood on each of the respective
datasets. After training, they are decorrelated from mjj with a principal component analysis
projection, followed by a Box-Cox transformation [233] and standardization that transforms the
loss distributions into an approximate standard normal distribution. In order to reduce the
QUAK space to two dimensions, the losses of the six signal flows are combined into a single
value via the signed L5 norm: Lsgn

5 (x) = sgn(ℓ̄)|ℓ̄|1/5 where ℓ̄ =
∑6

i=1 sgn(ℓi)|ℓi|
5 and ℓi are the
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loss values of the six signal flows.

QUAK differs from the other methods insofar that it returns a two-dimensional anomaly
score, rather than a scalar one. In order to select events from this plane, a data-driven contour
building algorithm is employed, using background templates constructed from the MC back-
ground simulation in mjj sidebands. For each tested signal mass hypothesis mH, the SR is
defined as mjj ∈ [mH − 400GeV,mH + 200GeV], and the SB is defined as the two 500GeV-
wide intervals above and below the SR. First, the 50% least background-like events are selected,
and a 2D QUAK space histogram is constructed in the SB. The same binning is applied to SR
events. Starting from the least populated SB bin, more bins are iteratively included in the con-
tour region until at least 1500 events or 500× (mH/TeV− 3)3 events have been selected within
the corresponding SR histogram. The SR events falling into the contour region are selected for
the common downstream analysis via a bump hunt.

While the procedure above mitigates the higher dimensionality of the QUAK anomaly score,
it is still useful for comparison with other methods to reduce it to a scalar value. In particular,
Sec. 7.9.6 quantifies the correlation between the anomaly scores of each method, which would
be difficult with one method having a two-dimensional score. For this purpose, the QUAK score
is compressed into a one-dimensional score for each event by locating it in the 2D histograms
discussed above and scoring it by the inverse of the MC background simulation sideband event
occupancy in the corresponding bin, as well as its alignment with the signal-like axis.

7.9.5 Classical Benchmarks

In addition to CATHODE(-b) and the four other anomaly detection methods, we consider four
benchmarks that serve as proxy for classical search strategies with different degrees of model
assumptions.

Firstly, the inclusive search refers to performing the full analysis chain without any signal-
enhancing anomaly detection method, i.e., computing p-values and upper limits directly from
the preselected events. This is both the simplest and the most model-agnostic approach, and
serves as a lower bound on what performance can be seen as non-trivial.

Another interesting point of comparison is a small set of loose selections that are expected to
enhance signal events involving jets with more complex substructure than the QCD background.
For this purpose, two selections are applied: a 2-prong selection with τ21 < 0.4 and a soft drop
mass above 50GeV, and a 3-prong selection with τ32 < 0.65 and the same criterion on the soft
drop mass. These two benchmarks can be seen as a semi-agnostic approach, making assumptions
about the number of subjets but otherwise retaining a degree of generality.

Lastly, themodel-specific QUAK approach relies on the same working principle as QUAK but
using the true signal MC simulation sample for training only a single signal flow for the QUAK
space. This mimics a fully supervised search with the advantage that the existing framework for
QUAK could be reused, in particular the background sculpting mitigation, which in the case of
an independent supervised search strategy would need to be developed from scratch.

7.9.6 Complementarity

A key question that arises from deploying multiple anomaly detection methods in parallel is
whether they will provide complementary information. If that is not the case, and the methods
all find the same events to be anomalous based on the same patterns, it would be sufficient to
use a single method and thus heavily reduce the computational cost.

One way to test the complementarity of methods is to study the correlations between their
respective anomaly scores. For this purpose, we compute the anomaly score resulting from
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training each method on some MC simulation sample, and then compare their values per event
in pairs. Figure 7.43 shows an example where 2D scatter plots are created from the anomaly
scores of CATHODE in comparison to TNT, VAE-QR, and QUAK. The training was performed
on the MC simulation dataset containing 20 fb of X → YY′ → 4q signal events with masses
of mX = 3TeV and mY = mY’ = 170GeV, and the plot is restricted to signal events. Before
plotting, each anomaly score distribution is shaped to follow a unit Gaussian distribution, which
accounts for the varying scales of anomaly scores between methods. The correlation is further
quantified in terms of the Pearson correlation coefficient, which measures the linear correlation
between variables, and the distance correlation (DisCo) score [234], which is a more general
measure of dependence between variables. In all three cases shown, there is some correlation
between methods, in particular between CATHODE and QUAK, but not to a degree that would
suggest that the methods are redundant.

Figure 7.43: Scatter plots of the normalized anomaly score of CATHODE on X → YY′ → 4q
signal events, compared to the anomaly scores from TNT (left), VAE-QR (center), and QUAK
(right). The correlation is further quantified by the Pearson (linear) correlation coefficients and
the distance correlation (DisCo) score. Figure taken from Ref. [4].

The linear correlation coefficients of all pairs of methods are summarized in Fig. 7.44 for
the same X → YY′ → 4q signal described above (left), an injection of 60 fb of W′ → B′t →
bZt signal events with masses of mW’ = 3TeV and mB’ = 400GeV (center), and the QCD
background sample (right). The largest correlations in all three cases are observed between
CWoLa Hunting and TNT, which is expected because the final classifier is trained on the same
input features. CATHODE correlates most with QUAK on the signal events. In the background,
minor correlations are only observed with respect to the VAE-QR method. CATHODE-b was
not included in this study. The relationship between CATHODE and CATHODE-b is more
straightforward, as the latter only adds two additional features to the former.

7.9.7 Performance Comparison

Since the MC simulation dataset facilitates full control over the exact signal and background
contents, it can serve as benchmark dataset to compare the analysis strategies based on the
various anomaly detection methods. The main metric for signal extraction performance during
the proof-of-concept studies in Sec. 6 was the SIC curve. However, there exist multiple short-
comings when comparing conceptually very different methods with SIC curves. For instance,
the weakly supervised approaches depend on how much signal is present in the dataset during
training, whereas VAE-QR and QUAK are expected to perform similarly regardless of the signal
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Figure 7.44: Linear correlation matrices of the normalized anomaly scores of VAE-QR, CWoLa
Hunting, TNT, CATHODE and QUAK, on the X → YY′ → 4q signal events (left), the W′ →
B′t → bZt signal events (center), and the QCD background events (right). Figure taken from
Ref. [4].

content. It also does not account for the later steps in the analysis chain, such as the contour
construction in the QUAK space, or how well the signal bump can be extracted with the bump
hunt. For this reason, this section does not focus on SIC curves as a performance metric.

A more complete performance indicator is the expected significance as a function of how much
of a particular signal is present in the MC simulation sample. This involves the full analysis
chain, including common preselections, the chosen selection efficiency, the background estimation
and statistical analysis. This metric is compared in Fig. 7.45 for the same X → YY′ → 4q signal
(left) and the W′ → B′t → bZt process (right) as tested in Sec. 7.9.6.
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Figure 7.45: Expected p-values under the background-only hypothesis as a function of the
signal cross section in the MC simulation, obtained from all anomaly detection methods in
this analysis, as well as four benchmark methods that are either more supervised or more
conventionally unsupervised. The left plot shows the results for the X → YY′ → 4q signal with
masses of mX = 3TeV and mY = mY’ = 170GeV, while the right plot shows the results for the
W′ → B′t → bZt signal with masses of mW’ = 3TeV and mB’ = 400GeV. Figure taken from
Ref. [4].

The performance comparison for the X → YY′ → 4q signal in Fig. 7.45 (left) shows injections
up to an amount that results in inclusive p-values corresponding to less than 3σ. As expected
from this signal with both jets containing two subjets, the 2-prong selection increases the sensi-
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tivity by up to 1σ, whereas the 3-prong selection further reduces it by a similar amount. A more
striking effect is seen for most anomaly detection methods, notably CATHODE(-b), QUAK and
TNT. At the lowest tested injection of 5 fb, QUAK has the highest sensitivity with almost 3σ.
CATHODE, which depends more substantially on the amount of signal in the dataset surpasses
it already at an injection of 8 fb with more than 4σ and exceeds 6σ with 12 fb. In this middle
signal strength range, TNT and CATHODE-b also suddenly increase in sensitivity, crossing the
5σ threshold around 12 fb. The lower performance of CATHODE-b with respect to CATHODE
is expected, given the absence of b decays in the signal. On the other hand, the VAE-QR
and CWoLa Hunting methods struggle at outperforming the inclusive search for this signal and
injection strengths. The model-specific QUAK benchmark remains significantly more sensitive
compared to the model-agnostic anomaly detection methods, already reaching the 5σ threshold
at the lowest injection of 5 fb. This is expected and confirms that while model-agnostic searches
are powerful for their generality, they will always be outperformed by methods that are tailored
to the specific signal model.

The W′ → B′t → bZt signal, on the other hand, provides an example of a signal with
three subjets within both leading jets, with expected decays into b quarks. Figure 7.45 (right)
shows an injection range where the inclusive paradigm reaches less than 2σ at the highest point,
which can be significantly improved by the 3-prong selection that enables a 5σ discovery at
the largest injection. The sensitivity of CATHODE is similar to the VAE-QR and roughly
in the middle ground between inclusive and a more informed 3-prong selection. The latter is
similarly sensitive on this signal as QUAK, CWoLa Hunting and CATHODE-b. The 3σ and 5σ
thresholds are achieved roughly 15 fb earlier with CATHODE-b than with the simple 3-prong
selection. The superiority of CATHODE-b over CATHODE can be understood by the non-trivial
discrimination power in this signal that stems from the b-tagging information. This information
is also used by TNT, which visibly performs best among all model-agnostic methods on this
signal and achieves a 5σ discovery at 67 fb. Again, the model-specific benchmark shows that
substantial improvements can still be obtained within the context of a dedicated search.

7.10 Results

Following the methodology described in the previous sections and after the extensive validation
studies in Sec. 7.7, CATHODE(-b) was applied to the Run 2 collision data of the CMS Experi-
ment. The results are presented separately for the significance scan (Sec. 7.10.1) and exclusion
limits (Sec. 7.10.2) with specific focus on CATHODE and CATHODE-b, and then compared to
the other anomaly detection methods.

7.10.1 Significance Scan

Figure 7.46 shows the dijet mass spectra of the most anomalous 1% of events in every SR when
training and evaluating CATHODE on the collision data. The background fit function chosen
by the F-test is also displayed in each case along with the corresponding χ2/ndof value, which
quantifies the data-to-fit agreement. The background fit functions describe the selected mjj

distribution well in most SRs. The lowest agreement is seen in the SR from 2.465 to 3.013TeV,
where the χ2/ndof value is 1.75, translating to a fit probability of 1%. The pull plots of this fit
reveal the largest upward fluctuation within the SR itself, between 2.6 and 2.8TeV. The largest
downward fluctuation is located at approximately 3.5TeV.

The selected mjj distributions of CATHODE-b and the corresponding background fit func-
tions are shown in Fig. 7.47. In this case, the agreement between data and fit is generally good,
with a fit probability of at least 8% in all SRs.
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Figure 7.46: Datamjj spectra after selecting the most anomalous 1% of events using CATHODE,
for every choice of signal region, and the background fit function chosen by the F-test.
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Figure 7.47: Datamjj spectra after selecting the most anomalous 1% of events using CATHODE-
b, for every choice of signal region, and the background fit function chosen by the F-test.
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The resulting p-values under the background-only hypothesis are shown in Fig. 7.48 for
CATHODE (left) and CATHODE-b (right). Neither of the two methods resulted in a local
excess with a significance beyond 3σ. Both plots have in common that the region above 3.2TeV
yields relatively large p-values, resulting in a significance well below 1σ. In the lower mass
region, the p-values partially become lower, resulting in a significance of up to 2.7σ. In the
case of CATHODE, only three points are above 2σ, and the values overall change continuously
without sudden jumps, except at 2.5TeV. CATHODE-b results in eight points above 2σ, with
more pronounced short-range fluctuations.
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Figure 7.48: Data p-values as a function of mjj , after selecting the most anomalous 1% of events
using CATHODE (left) and CATHODE-b (right).

Similarly, none of the other anomaly detection methods in this CMS dijet resonance search
reported any local excesses of more than 3σ. Thus, no hints of new physics were found with this
analysis.

Treating the full data as background, one can repeat the same study as previously shown in
Fig. 7.45, where the expected significance of various signals is tested as a function of an injected
cross section. The result is shown in Fig. 7.49 for all anomaly detection methods, as well as the
classical benchmarks defined in Sec. 7.9.5. For each of the example signals, the cross section
corresponding to a 3σ and 5σ excess is shown. The signals are sorted by the pronginess of the
two jets: the X → YY′ → 4q decay with daughter masses of mY = mY’ = 170GeV leads to
two subjets in each large-radius jet, the W′ → B′t → bZt decay with mB’ = 400GeV results in
three subjets in each jet, the WKK → RW → 3W signal with mR = 400GeV is associated with
jets containing two and four subjets, and the Y → HH → 4t decay with mH = 400GeV leads
to six subjets per jet.

On the X → YY′ → 4q signal, which is the first column in Fig. 7.49, CATHODE is the
most sensitive method in terms of achieving a 5σ excess and the second-most sensitive approach
for finding a 3σ excess, there only outperformed by QUAK, which is the least model-agnostic
approach and uses the signal process in question for training. CATHODE-b has lower sensitivity
than CATHODE and performs similar to either QUAK or TNT in terms of 5σ- and 3σ-relating
cross sections, respectively. This sensitivity loss is in line with the lack of b-quark decays in the
signal. Both CATHODE and CATHODE-b improve upon the simple 2-prong selection, and all
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Figure 7.49: Signal cross sections (top panel) at which the expected significance of each method
would result in a 3σ and 5σ excess, for four signal models with a resonance mass of 3TeV: a
X → YY′ → 4q decay with masses of mY = mY’ = 170GeV, a W′ → B′t → bZt decay with
mB’ = 400GeV, a WKK → RW → 3W decay with mR = 400GeV, and a Y → HH → 4t decay
with mH = 400GeV. They are sorted by the pronginess of the two jets, denoted in parentheses.
The 95% CL upper limit from an inclusive search is displayed for reference as a dashed line. The
ratio plot (bottom panel) shows the improvement with respect to the inclusive search strategy.

anomaly detection methods are more sensitive than the inclusive search. The dashed line marks
the 95% CL upper limit from the inclusive search as a reference, which would correspond to a
5σ excess in both CATHODE and CATHODE-b.

In the case of the W′ → B′t → bZt signal, CATHODE-b becomes more sensitive than
CATHODE, which is expected from the b decays. The visibly most sensitive method is TNT,
followed by CWoLa Hunting, QUAK, and then CATHODE-b and VAE on an equal footing.
While CATHODE does not improve over the simple 3-prong selection, all anomaly detectors
yield greater sensitivity than an inclusive search. The cross section upper limit from the inclusive
search is expected to have appeared as a 5σ excess with TNT and at least a 3σ excess with
CWoLa Hunting, QUAK, the VAE and CATHODE-b.

The third signal in Fig. 7.49, a WKK → RW → 3W decay, is most sensitively detected by
CWoLa Hunting, followed by CATHODE and TNT, which have similar sensitivity. All anomaly
detection methods except the VAE improve notably upon an inclusive search. Due to the lack
of b-quark coupling, CATHODE-b is less sensitive than the other weakly supervised methods.
The cross section upper limit from the inclusive search would have resulted in a more than a 3σ
excess with CATHODE and TNT, and a 5σ excess with CWoLa Hunting.

For the Y → HH → 4t signal, TNT is the most sensitive method, followed closely by QUAK
and with some distance CWoLa Hunting. CATHODE-b is in the middle ground, benefiting from
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the b-quark decay sensitivity over CATHODE. All the anomaly detection methods have higher
sensitivity than the inclusive search, and the inclusive cross section upper limit is expected to
have resulted in an excess of almost 5σ with CATHODE-b, and more than 3σ with CATHODE.

7.10.2 Exclusion Limits

The 95% CL upper limits on the cross section using CATHODE are summarized for all consid-
ered signal models with a resonance mass of 3TeV and varying daughter masses in Fig. 7.50.
The results with a resonance mass of 5TeV are shown in Fig. 7.51. The same is shown with
CATHODE-b in Fig. 7.52 and 7.53, respectively. While the MC signal simulation samples nec-
essary to set limits on resonances with a mass of 2TeV would have been available, this mass
was ultimately not included in the analysis due to the extremely high computational cost of
training so many CATHODE classifiers at different signal cross sections and varied systematic
uncertainties. Moreover, the expected sensitivity in this range of mjj was deemed low because
of the high background rate.

A dedicated search has already been performed for a WKK resonance in Ref. [201], and the
corresponding observed limits have been added to the figures. The search in Ref. [215] is sensitive
to the X → YY′ → 4q signal, but only with daughter masses of mY = mY’ = 80GeV. As ex-
pected, the dedicated search limits are more stringent than the ones obtained with CATHODE(-
b), if they exist. The advantage of the model-agnostic search paradigm is that the same analysis
can be used to search for a broad range of signal models, in this case all other shown signal
models.
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Figure 7.50: Summary of the CATHODE observed and expected upper 95% CL limits on
the cross section of signals with a resonance mass of 3TeV with varying daughter masses,
in comparison with the limits that are obtained in the same analysis without any anomaly
detection method applied (inclusive). The right panel shows the ratio between the CATHODE
and inclusive limit, thus quantifying the improvement in sensitivity. The dedicated search limit
reference for the WKK → RW → 3W signal is taken from Ref. [201], and for X → YY′ → 4q
from Ref. [215].
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The 3TeV CATHODE limits, shown in Fig. 7.50, improve significantly over a pure inclusive
search in most limits, especially in the X → YY′ → 4q decays when both daughter masses are
at least 80GeV. If the daughter masses are lower, the final decay products are more boosted
and the discrimination power in the substructure variables is smaller due to the higher similarity
to QCD jets. On the Q∗ → qW′ signal, the CATHODE limits are consistently worse than an
inclusive search for similar reasons. Since one of the two jets has only one prong, it cannot be
discriminated by the substructure variables, and CATHODE does not sufficiently learn to find
it. For the W′ → B′t → bZt signal, CATHODE only finds equivalent sensitivity to the inclusive
search at the highest B′ mass, and otherwise worsens the limits.

The improvement of CATHODE with respect to the inclusive search paradigm becomes less
pronounced for 5TeV limits, as seen in Fig. 7.51. Only for the X → YY′ → 4q decays with the
largest daughter masses and the Y → HH → 4t signal the application of CATHODE results
in lower limits. In this upper end of the mjj spectrum, the number of events available for the
CATHODE classifier training is relatively small, and thus a larger signal presence with respect
to the background is necessary to achieve a good separation.

The results for CATHODE-b are similar to CATHODE. On the 3TeV resonance mass signals,
Fig. 7.52, there is an increase in sensitivity for the signals where a b quark is present in the decay
chain, namely the W′ → B′t → bZt and Y → HH → 4t signals. The resulting limits for the
W′ → B′t → bZt signal thus become comparable or partially better than the inclusive search.
In the remaining signals, the lack of b activity results in a more noise-dominated training and
consequently worse limits than CATHODE with only four features.

The 5TeV limits for CATHODE-b, shown in Fig. 7.53, are not as sensitive as the inclusive
search in almost all cases. Compared to CATHODE, they become either worse (for signals
without b decays) or are roughly the same (for signals with b decays). The small number
of events available for training the classifier in the high-mass region is likely not enough to
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Figure 7.51: Summary of the CATHODE observed and expected upper 95% CL limits on the
cross section of signals with a resonance mass of 5TeV with varying daughter masses, analogous
to Fig. 7.50.
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Figure 7.52: Summary of the CATHODE-b observed and expected upper 95% CL limits on the
cross section of signals with a resonance mass of 3TeV with varying daughter masses, analogous
to Fig. 7.50.
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Figure 7.53: Summary of the CATHODE-b observed and expected upper 95% CL limits on the
cross section of signals with a resonance mass of 5TeV with varying daughter masses, analogous
to Fig. 7.50.
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counteract the larger number of features in CATHODE-b.
A direct comparison between the exclusion limits achieved with different anomaly detection

methods and additional benchmarks is shown in Fig. 7.54 for the 3TeV (left) and 5TeV (right)
resonance masses. Four representative signal examples are selected, corresponding to the same
choice as in Fig. 7.49. As expected, for the 3TeV resonance mass, the limits found by the
different methods follow a similar ordering as the expected significances, which can be seen by
comparing Fig. 7.49 and 7.54 (left). The 5TeV comparison reveals that the lack of a substantial
sensitivity improvement in most signal processes with respect to the inclusive search, which was
observed in CATHODE(-b), is a common feature among all methods.
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Figure 7.54: Upper 95% CL limits of all anomaly detection and benchmark methods on the cross
section of four signal models (top panels) with a resonance mass of 3TeV (left) and 5TeV (right):
a X → YY′ → 4q decay with masses of mY = mY’ = 170GeV, a W′ → B′t → bZt decay with
mB’ = 400GeV, a WKK → RW → 3W decay with mR = 400GeV, and a Y → HH → 4t decay
with mH = 400GeV. They are sorted by the pronginess of the two jets, denoted in parentheses.
The ratio plots (bottom panels) show the improvement with respect to the inclusive search
strategy.

A more quantitative overview of the upper 95% CL cross section limits is provided in Tab. 7.8
for 3TeV resonances and in Tab. 7.9 for 5TeV resonances. They show the numeric values ob-
tained from the most sensitive anomaly detection method per signal. The last column computes
the improvement with respect to the inclusive search strategy.

In line with the findings in Sec. 7.9.6, the tables show that the different anomaly detection
methods are sensitive to different anomalous patterns. No one method performs best on all
signals, but instead each method excels in different signal models. CATHODE works particularly
well on the double two-prong X → YY′ → 4q signal and TNT on the W′ → B′t → bZt signal.
CWoLa Hunting, QUAK and the VAE improve on individual mass combinations. CATHODE-b
is not the most sensitive method for any of the signals, because in the cases where a b quark
is present, TNT is more sensitive. Moreover, the results show that the sensitivity improvement
from employing these data-driven anomaly detection methods is present in the cases where
anomalous substructure patterns could be exploited. For the Q∗ → qW′ signal, the lack of
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higher pronginess in both jets results in a worse limit than the inclusive search. The improvement
depends to a large degree on a sufficient number of events, which is not given anymore at 5TeV.

The inclusion of systematic uncertainties is one of the most substantial differences between
the results of this analysis and previous proof-of-principle studies. Appendix B.4 shows a com-
parison of the upper 95% CL cross section limits before and after the inclusion of systematic
uncertainties in the signal strength. The resulting 20–50% increase in the limits need to be
taken into consideration when making estimations based on proof-of-concept studies without
systematic uncertainties.

Table 7.8: Observed and expected upper 95% CL limits on the cross section of signals with a
resonance mass of 3TeV with varying daughter particle masses. Only the values of the most
sensitive anomaly detection method (denoted in the third column) per signal are shown.

Model A → BC
(mA = 3TeV)

Daughter
Masses
(GeV)

Method Exp. (Obs.)
Limit
(fb)

Improvement
w.r.t.

Inclusive

Q∗ → qW′ 25 CWoLa Hunting 61.1 (30.1) 0.3
80 CATHODE 46.2 (76.3) 0.4
170 CATHODE 48.7 (86.3) 0.4
400 CWoLa Hunting 45.8 (24.3) 0.5

X → YY′ → 4q 25/25 CATHODE 7.4 (9.7) 0.9
25/80 CATHODE 5.9 (8.2) 1.2
25/170 CATHODE 8.3 (9.7) 0.8
25/400 VAE-QR 13.6 (12.5) 0.6
80/80 CATHODE 3.2 (4.3) 2.1
80/170 CATHODE 4.5 (6.0) 1.5
80/400 CATHODE 4.6 (6.0) 1.6
170/170 QUAK 2.7 (2.5) 2.6
170/400 CATHODE 4.3 (5.8) 1.7
400/400 VAE-QR 2.1 (1.9) 4.2

W′ → B′t → bZt 25 TNT 22.6 (13.9) 1.7
80 TNT 18.2 (11.3) 1.9
170 TNT 12.2 (7.3) 2.1
400 TNT 12.5 (7.0) 2.2

WKK → RW → 3W 170 TNT 22.1 (15.2) 1.6
400 QUAK 19.7 (13.7) 1.8

Y → HH → 4t 400 VAE-QR 3.7 (3.2) 7.1
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Table 7.9: Observed and expected upper 95% CL limits on the cross section of signals with a
resonance mass of 5TeV with varying daughter particle masses. Only the values of the most
sensitive anomaly detection method (denoted in the third column) per signal are shown.

Model A → BC
(mA = 5TeV)

Daughter
Masses
(GeV)

Method Exp. (Obs.)
Limit
(fb)

Improvement
w.r.t.

Inclusive

Q∗ → qW′ 25 QUAK 3.5 (3.1) 0.7
80 QUAK 3.2 (2.8) 0.8
170 QUAK 3.3 (3.6) 0.8
400 CATHODE 3.7 (3.6) 0.7

X → YY′ → 4q 25/25 QUAK 1.7 (1.6) 0.5
25/80 QUAK 1.3 (1.3) 0.7
25/170 QUAK 1.1 (1.1) 0.8
25/400 VAE-QR 1.0 (3.4) 0.9
80/80 TNT 1.1 (1.2) 0.8
80/170 QUAK 0.9 (1.0) 0.9
80/400 VAE-QR 0.9 (3.0) 0.9
170/170 CATHODE 0.6 (0.5) 1.6
170/400 CATHODE 0.7 (0.6) 1.3
400/400 CATHODE 0.4 (0.3) 2.4

W′ → B′t → bZt 25 TNT 3.6 (5.2) 1.6
80 TNT 3.5 (5.0) 1.6
170 TNT 2.5 (3.4) 1.9
400 TNT 2.6 (3.2) 1.7

WKK → RW → 3W 170 TNT 4.4 (5.9) 1.2
400 TNT 3.4 (4.1) 1.4

Y → HH → 4t 400 TNT 1.4 (1.9) 2.7
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7.11 Conclusion

This analysis presents a novel application of CATHODE, in parallel to four other state-of-the-art
machine learning anomaly detection methods, to search for physics beyond the Standard Model
in the CMS Experiment with only minimal model assumptions. It is performed in the context
of a search for heavy narrow resonances produced in proton-proton collisions and decaying to
two large-radius jets with anomalous substructure, using data collected by the CMS detector
from 2016 to 2018, with a center-of-mass energy of 13TeV

CATHODE is a weakly supervised anomaly detection technique, developed in the context
of this thesis, where a background template is sampled from a generative machine learning
model that has been trained on a sideband region, and then a classifier model is trained to find
difference between the actual data and the interpolated background template, thus detecting
overdensities with respect to the expected background distribution. It is applied to this analysis
in two configurations: one with four input features that generally capture the substructure of
the two highest-pT jets, and another with two additional features that encode the presence of
b-tagged jets in the event.

In order to ensure that the method is well calibrated, i.e., it only results in significant excesses
when a new physics signal is present, the method has been validated in both simulation and
a data control regions. Ultimately, no significant excess was observed in the collision data of
interest, neither by CATHODE nor by any of the other methods.

The sensitivity of the various anomaly detection approaches is quantified and compared via
the expected significance and 95% CL upper limits on the cross section. The limit setting
procedure for CATHODE and other weakly supervised methods is more involved than in most
searches, as it requires accounting for the signal strength dependence of the classifier efficiency.
For many types of signal models, CATHODE is found to be substantially more sensitive than
traditional model-agnostic searches, which rely either on simple generic selections or none at all.
The exclusion limits presented in this analysis are in many cases the most stringent of their kind,
in particular because many of these signals have not been targeted before. This simultaneous
coverage of a broad range of signal models is a unique strength of the model-agnostic search
paradigm. Existing dedicated searches are seen to be more sensitive than the model-agnostic
approach, which demonstrates the complementarity of the two types of searches.

Not only is this the first application of CATHODE within a high-energy physics experiment,
it is also the first time that so many state-of-the-art anomaly detection methods could be com-
pared in a real analysis setting. This provides a more comprehensive view of the strengths and
weaknesses of each method than the usual proof-of-concept studies, as it involved a fully realistic
event content, background estimation, and statistical analysis taking into account systematic
uncertainties. Nevertheless, a direct comparison between the methods is complicated by the
plethora of design choices that need to be made, such as the input features, model hyperpa-
rameters, and selection efficiency. More studies are being performed to further understand the
specifics of each method and to compare them on a more equal footing, e.g., by using the same
set of input features across methods.

As this is the first application of anomaly detection for model-agnostic searches for new
physics within the CMS experiment, it opens the door to many more analyses of this type in the
future. On the one hand, these methods can be applied to other types of final states. On the
other hand, new data are being collected in the current Run 3 of the LHC. The larger dataset
with higher energy and updated trigger and reconstruction algorithms will provide a promising
discovery potential for data-driven methods, such as CATHODE.
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8 Summary & Conclusions

There are many open questions in high-energy physics (HEP) that cannot be answered with the
Standard Model (SM) alone. Many searches have been performed at the Large Hadron Collider
(LHC) that target specific signals of physics beyond the SM (BSM), however no such processes
have been observed so far. This motivates the development of new search strategies that are
more model agnostic and can target a wider range of signals. A promising approach is the use of
anomaly detection—a subfield of machine learning (ML) that aims to identify unusual patterns
in data.

This thesis has presented the full development of a new anomaly detection method, CATH-
ODE, for BSM searches. CATHODE is a novel approach for weakly supervised anomaly detec-
tion. The core of the method is a conditional generative model that is trained on data from a
sideband region. The conditioning facilitates the interpolation into the signal region where a
background template is sampled from the model. A classifier is then trained to distinguish be-
tween the real data and the sampled background, thus gaining sensitivity to signal-induced data
overdensities. I demonstrated that the method has state-of-the-art performance on the LHCO
R&D dataset, also in the more challenging case of correlated input features. The original study
only marginally investigated the compatibility with a bump hunt–based background estimation.
It also provided hints that the sensitivity for a specific signal deteriorates due to the inclusion
of uninformative input features.

A later and more thorough investigation of the background shape after applying CATHODE-
based selections revealed that the presence of significant correlations between the classifier input
features and the resonant observable can lead to a highly obscured background shape in the
latter, which might severely impair an estimation of the background. In fact, this issue is
intrinsic to weakly supervised anomaly detection methods. To mitigate it, a modification to
CATHODE was proposed, called LaCATHODE: the conditional generative model is chosen to be
a normalizing flow with an unconditional prior latent space. Then, the invertible transformation
of the flow is used to map input features to the decorrelated latent space before a classifier is
trained on these transformed features. While much of the signal sensitivity of CATHODE is
retained, the background shape after selecting on the LaCATHODE classifier output remains
unchanged, thus providing a more reliable basis for background estimation based on a bump
hunt.

The impact of uninformative input features on the performance of weakly supervised learning
tasks was investigated more systematically, both in terms of uncorrelated artificial noise and the
inclusion of realistic physical features where information is non-trivially spread out. It was
found that the resilience with respect to many features with no or limited information content
can be substantially improved by using a classifier based on an ensemble of boosted decision trees
rather than the neural network used in the CATHODE prototype. This improvement can be
understood as a consequence of the generally more noise-resistant nature of tree-based methods,
in particular for tabular data structures. The inclusion of more input features means that a
broader range of signal-like signatures can be captured. Thus, this improvement is expected to
lead to more model-agnostic results as they are less dependent on the specific choice of input
features.

The ultimate test for CATHODE was to perform an actual search for BSM physics at an
LHC experiment, including all the necessary steps that come with it, e.g., a well-calibrated
background estimation, the statistical interpretation of the results, a strategy of interpreting a
potential excess, and setting upper limits on cross sections that take into account systematic
uncertainties. The search for heavy resonances decaying into dijet final states arising from
proton-proton collisions at a center-of-mass energy of 13TeV in the CMS Experiment was an
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ideal showcase for this purpose. On the one hand, its final state topology coincides with the
LHCO R&D dataset used for prototyping CATHODE, so it can be seen as a direct reality check.
On the other hand, the simultaneous application of multiple other state-of-the-art anomaly
detection methods in the same analysis enabled a cross-comparison of methods that has never
before been done within a single anomaly detection search in HEP. While none of the methods
found a significant excess over the SM background expectation, they could be used to set upper
limits on the cross sections of multiple explicit signals covering a wide range of different jet
substructure signatures. It was observed that the methods varied in sensitivity depending on
the signal process, with some methods performing better on certain signals and worse on others.
In many cases, the use of data-driven ML techniques visibly improved the sensitivity compared
to a more traditional generic search strategy, which was performed in addition to serve as
a benchmark. The resulting exclusion limits are the most stringent to date for almost all
considered signal models, mainly because hardly any of them had been targeted by a dedicated
search before. This underlines the main advantage of the anomaly detection approach: it is
capable of targeting a wide range of signal processes in a single analysis.

Because of time constraints, several of the methodological improvements developed in the
course of this thesis could not be applied to the experimental analysis, such as LaCATHODE
or the use of tree-based classifiers. Moreover, multiple further studies on CATHODE and other
anomaly detection methods have been sparked by the ones shown in this thesis. For example,
Ref. [7] compared the most state-of-the-art weakly supervised anomaly detection methods on an
equal footing and discussed ways of combining them. Reference [235] confirmed the promising
discovery potential of CATHODE on a different simulation dataset and discussed its feasibility
with input features where anomalies are located in the tails of the distribution. A different
route to incorporating more input features than tree-based classifiers is presented in Ref. [236],
where the authors propose to perform weakly supervised anomaly detection directly on lower-
level detector information. They achieved this by using more sophisticated architectures for
both generation and classification, which showed non-trivial performance in a more abundant
signal presence. An evolution of this low-level approach, which yielded promising sensitivity at
a realistic order of signal cross sections, was presented in Ref. [237] using a foundation model
that had been pre-trained on related tasks.

The anomaly detection–based search for new physics presented in this thesis is the first of its
kind in the CMS Experiment and the most complex in terms of the number of methods used at
the LHC. The lessons learned from this analysis and the steady progress on the methodological
side will open the door to many more anomaly detection searches in the future. To date, a
plethora of final state topologies and datasets are yet to be explored by this model-agnostic
search paradigm. From this point of view, it seems that we are gradually entering a new era
of more data-driven (and simultaneously heavily innovation-driven) searches for new physics.
New particles might be hiding in already-recorded data, possibly in unexpected corners of phase
space.
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nifer Ngadiuba, Irene Zoi, Samuel Kai Bright-Thonney, David Shih, and Aritra Bal.
“Machine learning techniques for model-independent searches in dijet final states”. CMS
Note CMS-NOTE-2023-013. 2023.

[5] CMS Collaboration. “Model-agnostic search for dijet resonances with anomalous jet sub-
structure in proton-proton collisions at

√
s = 13 TeV”. CMS Physics Analysis Summary

CMS-PAS-EXO-22-026. 2024.

[6] CMS Collaboration. “Search for narrow resonances in the b-tagged dijet mass spectrum
in proton-proton collisions at

√
s = 13 TeV”. In: Phys. Rev. D 108 (2023), p. 012009.

doi: 10.1103/PhysRevD.108.012009.

[7] Tobias Golling, Gregor Kasieczka, Claudius Krause, Radha Mastandrea, Benjamin Nach-
man, John Andrew Raine, Debajyoti Sengupta, David Shih, and Manuel Sommerhalder.
“The interplay of machine learning-based resonant anomaly detection methods”. In: Eur.
Phys. J. C 84 (Mar. 2024), p. 241. doi: 10.1140/epjc/s10052-024-12607-x.

[8] Tore von Schwartz. “Semi-supervised learning as a new tool for particle physics analysis”.
Bachelor Thesis. University of Hamburg, 2021.

[9] Parada Prangchaikul. “Mitigating uninformative features in weak supervision”. Master
Thesis. University of Hamburg, 2023.

[10] ATLAS Collaboration. “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC”. In: Phys. Lett. B 716 (Sept.
2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020.

[11] CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC”. In: Phys. Lett. B 716 (Sept. 2012), pp. 30–61. doi: 10.1016/
j.physletb.2012.08.021.

[12] ATLAS Collaboration. “A strategy for a general search for new phenomena using data-
derived signal regions and its application within the ATLAS experiment”. In: Eur. Phys.
J. C 79 (Feb. 2019), p. 120. doi: 10.1140/epjc/s10052-019-6540-y.

[13] CMS Collaboration. “MUSiC: a model-unspecific search for new physics in proton–proton
collisions at

√
s = 13TeV”. In: Eur. Phys. J. C 81 (July 2021), p. 629. doi: 10.1140/

epjc/s10052-021-09236-z.

192 Manuel Sommerhalder

https://doi.org/10.1103/physrevd.106.055006
https://doi.org/10.1103/physrevd.107.114012
https://doi.org/10.1103/PhysRevD.109.034033
https://cds.cern.ch/record/2881089
https://cds.cern.ch/record/2892677
https://doi.org/10.1103/PhysRevD.108.012009
https://doi.org/10.1140/epjc/s10052-024-12607-x
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1140/epjc/s10052-019-6540-y
https://doi.org/10.1140/epjc/s10052-021-09236-z
https://doi.org/10.1140/epjc/s10052-021-09236-z


REFERENCES

[14] ATLAS Collaboration. “Search for New Particles in Two-Jet Final States in 7 TeV
Proton-Proton Collisions with the ATLAS Detector at the LHC”. In: Phys. Rev. Lett.
105 (2010), p. 161801. doi: 10.1103/PhysRevLett.105.161801.

[15] ATLAS Collaboration. “Search for new phenomena in dijet mass and angular distribu-
tions from pp collisions at

√
s = 13 TeV with the ATLAS detector”. In: Phys. Lett. B

754 (2016), pp. 302–322. doi: 10.1016/j.physletb.2016.01.032.

[16] CMS Collaboration. “Search for Dijet Resonances in 7 TeV pp Collisions at CMS”. In:
Phys. Rev. Lett. 105 (2010), p. 211801. doi: 10.1103/PhysRevLett.105.211801.

[17] CMS Collaboration. “Search for high mass dijet resonances with a new background pre-
diction method in proton-proton collisions at

√
s = 13TeV”. In: J. High Energ. Phys.

2020 (May 2020), p. 033. doi: 10.1007/jhep05(2020)033.

[18] ATLAS Collaboration. “Dijet Resonance Search with Weak Supervision Using
√
s =

13 TeV pp Collisions in the ATLAS Detector”. In: Phys. Rev. Lett. 125 (Sept. 2020),
p. 131801. doi: 10.1103/physrevlett.125.131801.

[19] ATLAS Collaboration. “Anomaly detection search for new resonances decaying into a
Higgs boson and a generic new particle X in hadronic final states using

√
s = 13 TeV pp

collisions with the ATLAS detector”. In: Phys. Rev. D 108 (Sept. 2023), p. 052009. doi:
10.1103/physrevd.108.052009.

[20] ATLAS Collaboration. “Search for New Phenomena in Two-Body Invariant Mass Distri-
butions Using Unsupervised Machine Learning for Anomaly Detection at

√
s = 13 with

the ATLAS Detector”. In: Phys. Rev. Lett. 132 (Feb. 2024), p. 081801. doi: 10.1103/
physrevlett.132.081801.

[21] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field theory.
Reading, USA: Addison-Wesley, 1995. doi: 10.1201/9780429503559.

[22] Chris Ferrie. Quantum Physics for Babies. Sourcebooks Explore, 2017.

[23] Matthew D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge Uni-
versity Press, 2013.

[24] Gordon Kane. Modern Elementary Particle Physics: Explaining and Extending the Stan-
dard Model. 2nd ed. Cambridge University Press, 2017.

[25] Mark Thomson. Modern Particle Physics. Cambridge University Press, 2013.

[26] Particle Data Group. “Review of Particle Physics”. In: Phys. Rev. D 110 (Aug. 2024),
p. 030001. doi: 10.1103/PhysRevD.110.030001.

[27] François Englert and Robert Brout. “Broken Symmetry and the Mass of Gauge Vector
Mesons”. In: Phys. Rev. Lett. 13 (Aug. 1964), pp. 321–323. doi: 10.1103/PhysRevLett.
13.321.

[28] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”. In: Phys. Rev.
Lett. 13 (Oct. 1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508.

[29] Gerald S. Guralnik, Carl R. Hagen, and Tom W. B. Kibble. “Global Conservation Laws
and Massless Particles”. In: Phys. Rev. Lett. 13 (Nov. 1964), pp. 585–587. doi: 10.1103/
PhysRevLett.13.585.

[30] Pierre Fayet and Sergio Ferrara. “Supersymmetry”. In: Phys. Rep. 32 (1977), pp. 249–
334. doi: 10.1016/0370-1573(77)90066-7.

Developing and Applying Machine Learning Techniques for

Model-Agnostic Searches for New Physics at the LHC

193

https://doi.org/10.1103/PhysRevLett.105.161801
https://doi.org/10.1016/j.physletb.2016.01.032
https://doi.org/10.1103/PhysRevLett.105.211801
https://doi.org/10.1007/jhep05(2020)033
https://doi.org/10.1103/physrevlett.125.131801
https://doi.org/10.1103/physrevd.108.052009
https://doi.org/10.1103/physrevlett.132.081801
https://doi.org/10.1103/physrevlett.132.081801
https://doi.org/10.1201/9780429503559
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1016/0370-1573(77)90066-7


REFERENCES

[31] Wilfried Buchmüller. “Composite Quarks and Leptons”. In: Nucleon-Nucleon and
Nucleon-Antinucleon Interactions. Ed. by H. Mitter and W. Plessas. Vienna: Springer
Vienna, 1985, pp. 517–595. doi: 10.1007/978-3-7091-8830-9_8.

[32] Kaustubh Agashe, Roberto Contino, and Alex Pomarol. “The minimal composite Higgs
model”. In: Nucl. Phys. B 719 (July 2005), pp. 165–187. doi: 10.1016/j.nuclphysb.
2005.04.035.

[33] Stefania De Curtis, Michele Redi, and Andrea Tesi. “The 4D composite Higgs”. In: J.
High Energ. Phys. 2012 (Apr. 2012), p. 042. doi: 10.1007/jhep04(2012)042.

[34] Lisa Randall and Raman Sundrum. “Large Mass Hierarchy from a Small Extra Dimen-
sion”. In: Phys. Rev. Lett. 83 (Oct. 1999), pp. 3370–3373. doi: 10.1103/physrevlett.
83.3370.

[35] Kaustubh Agashe, Peizhi Du, Sungwoo Hong, and Raman Sundrum. “Flavor universal
resonances and warped gravity”. In: J. High Energ. Phys. 2017 (Jan. 2017), p. 016. doi:
10.1007/jhep01(2017)016.

[36] Vladimir N. Gribov and Lev N. Lipatov. “Deep inelastic e p scattering in perturbation
theory”. In: Sov. J. Nucl. Phys. 15 (1972), pp. 438–450.

[37] Yuri L. Dokshitzer. “Calculation of the Structure Functions for Deep Inelastic Scattering
and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics.” In: Sov.
Phys. JETP 46 (1977), pp. 641–653.

[38] Guido Altarelli and Giorgio Parisi. “Asymptotic Freedom in Parton Language”. In: Nucl.
Phys. B 126 (1977), pp. 298–318. doi: 10.1016/0550-3213(77)90384-4.
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A GENERAL APPENDIX

A General Appendix

A.1 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence between two continuous probability density functions
p(x) and q(x) with the same support x ∈ χ is defined as:

DKL(p(x)||q(x)) =
∫
χ
p(x) log

p(x)

q(x)
dx = Ep

[
log

p(x)

q(x)

]
. (A.1)

It is always non-negative and equals zero if and only if p(x) = q(x) almost everywhere.

A.2 Negative Log-Likelihood minimization

The aim is to approximate the unknown true likelihood p(x) via a parametric model qθ(x) with
parameters θ. From the properties of the Kullback-Leibler divergence, this is achieved by finding
an optimal parameter set θ∗ that minimizes the KL divergence between the true likelihood and
the model:

θ∗ = argmin
θ

DKL(p(x)||qθ(x)). (A.2)

The KL divergence can be rewritten as:

DKL(p(x)||qθ(x)) = Ep log p(x)− Ep log qθ(x). (A.3)

The first term in Eq. A.3 is a constant and does not depend on θ. The second term can be
estimated via the empirical average over a dataset D = {x1, x2, . . . , xN} following the true
distribution p(x):

−Êp log qθ(x) = −
1

N

N∑
i=1

log qθ(xi), (A.4)

which is (up to a constant factor) the negative log-likelihood (NLL) of the dataset D under the
model qθ(x):

NLL = − log

(
N∏
i=1

qθ(xi)

)
= −

N∑
i=1

log qθ(xi) (A.5)

A.3 Properties of the cross-entropy Loss

The general definition of the cross-entropy between two probability density functions p(x) and
q(x) with the same support x ∈ χ is:

H(p, q) =
∫
χ
p(x) log

1

q(x)
dx = −Ep [log q(x)] , (A.6)

where in the discrete case the integral is replaced by a sum. It can also be written in terms of
the KL divergence (Sec. A.1) as:

H(p, q) = DKL(p(x)||q(x)) +H(p), (A.7)

where H(p) = H(p, p) is the entropy of p. The cross-entropy measures the average number
of bits needed to encode the true distribution p(x) using a different distribution q(x), and it is
minimized when q(x) = p(x) almost everywhere, in which case it equals the entropy of p(x). The
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expectation value in the cross-entropy definition of Eq. A.6 can be estimated with the empirical
average over a dataset D = {x1, x2, . . . , xN} following the distribution p(x):

−Êp log qθ(x) = −
1

N

N∑
i=1

log qθ(xi), (A.8)

The cross-entropy is a common choice of loss function to measure the discrepancy between
the true distribution p(x) and the parametric model qθ(x). In a classification task, one may
represent the true distribution as a so-called one-hot encoded vector y ∈ {0, 1}K , where K is the
number of classes, i.e., only one element of y is one and the others are zero. Correspondingly,
the parametric model outputs a probability distribution over the classes, qθ(x) ∈ [0, 1]K , such
that the element qθ(x)k represents the probability of the sample x belonging to class k. Using
the estimation in Eq. A.8, the cross-entropy loss for a dataset D becomes:

L(qθ, p,D) = −
1

N

N∑
i=1

K∑
k=1

yi,k log qθ(xi)k. (A.9)

The correspondence between minimizing the cross-entropy loss and the minimization of the
negative log-likelihood can be illustrated by rearranging the NLL minimization:

θ∗ = argmin
θ

− ∑
x∼p(x)

log qθ(x)

 = argmin
θ

−N 1

N

∑
x∼p(x)

log qθ(x)


= argmin

θ
N
(
−Êp log qθ(x)

)
= argmin

θ
Ĥ(p, qθ). (A.10)

In the case of binary classification (K = 2), the label simplifies to a scalar number y ∈ {0, 1}
and the probabilities qθ(x|y = 1) and qθ(x|y = 0) are related by qθ(x|y = 0) = 1− qθ(x|y = 1).
The discrete binary cross-entropy thus becomes

Hk=2(p, qθ) = −
∑
x∈χ

[p(x|y = 1) log qθ(x|y = 1) + p(xi|y = 0) log(1− qθ(x|y = 1))] , (A.11)

where the sum is evaluated on the entire support χ of the random variable x. In terms of a
loss function, estimated on dataset D and identifying qθ(x) ≡ qθ(x|y = 1) for simplicity, this
becomes:

L(qθ, p,D) = −
1

N

N∑
i=1

[yi log qθ(xi) + (1− yi) log(1− qθ(xi))] . (A.12)

An important property of this loss function is that it approximates the likelihood ratio
estimator in the limit of a perfect classifier. Starting from Eq. A.11 (with the same shorthand
notation of qθ), one can find a minimum by taking the functional derivative with respect to qθ(x)
and setting it to zero:

δHk=2(p, qθ)

δqθ(x)
= −

∑
x∈χ

[
p(x|y = 1)

1

qθ(x)
− p(xi|y = 0)

1

1− qθ(x)

]
!
= 0. (A.13)

This can be solved by
p(x|y = 1)

p(x|y = 0)
=

qθ(x)

1− qθ(x)
, (A.14)
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or equivalently, solving for qθ(x):

qθ(x) =
p(x|y = 1)

p(x|y = 1) + p(x|y = 0)
. (A.15)

Consequently, the function qθ(x) approximates a monotonic rescaling of the likelihood ratio
p(x|y = 1)/p(x|y = 0) in the limit of an ideally converged training. In practice, this approx-
imation is limited by the expressiveness of the model, the number of training data, and the
convergence of the numeric optimization algorithm towards a global optimum. The same argu-
ment applies to some other loss functions, such as the MSE loss.
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B CMS Anomalous Dijet Search Appendix

B.1 MC Background Simulation Samples

The following tables list all the MC background simulation samples used in the CMS dijet
search, Sec. 7. They are separated into Tab. B.1 for 2016 preVFP datasets, Tab. B.2 for the
2016 postVFP datasets, Tab. B.3 for the 2017 datasets, and Tab. B.4 for the 2018 datasets.

Table B.1: CMS sample identifiers of 2016 preVFP MC background simulation datasets, used for
optimizing and validating the analysis strategy, and their corresponding cross sections σ. The
QCD multijet samples are binned in jet transverse momentum, the V+jets samples in HT, and
the tt samples in top-antitop pair mass. For brevity, the following replacement is used: [CAM-
PAIGN]≡RunIISummer20UL16MiniAODAPVv2-106X mcRun2 asymptotic preVFP v11

.

Sample name Events
/QCD Pt 300to470 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 54,096,000
/QCD Pt 470to600 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 50,782,000
/QCD Pt 600to800 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 61,972,000
/QCD Pt 800to1000 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 35,527,000
/QCD Pt 1000to1400 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 19,077,000
/QCD Pt 1400to1800 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 11,000,000
/QCD Pt 1800to2400 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 5,262,000
/QCD Pt 2400to3200 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 2,999,000
/QCD Pt 3200toInf TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 1,000,000
/WJetsToQQ HT-400to600 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 5,144,427
/WJetsToQQ HT-600to800 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 7,668,058
/WJetsToQQ HT-800toInf TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 7,740,501
/ZJetsToQQ HT-400to600 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 3,454,056
/ZJetsToQQ HT-600to800 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 1,623,377
/ZJetsToQQ HT-800toInf TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 3,726,992
/TT Mtt-700to1000 TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v1/MINIAODSIM 18,020,206
/TT Mtt-1000toInf TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v1/MINIAODSIM 23,219,884
/ST t-channel top 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8/[CAMPAIGN]-v3/MINIAODSIM 55,961,000
/ST t-channel antitop 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8/[CAMPAIGN]-v3/MINIAODSIM 31,024,000
/ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v1/MINIAODSIM 2,300,000
/ST tW antitop 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v1/MINIAODSIM 2,300,000

Table B.2: CMS sample identifiers of 2016 postVFP MC background simulation datasets, anal-
ogous to Tab. B.1 with the replacement [CAMPAIGN]≡RunIISummer20UL16MiniAODv2-
106X mcRun2 asymptotic v17

Sample name Events
/QCD Pt 300to470 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 55,264,000
/QCD Pt 470to600 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 52,408,000
/QCD Pt 600to800 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 65,088,000
/QCD Pt 800to1000 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 37,782,000
/QCD Pt 1000To1400 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 19,892,000
/QCD Pt 1400to1800 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 10,722,000
/QCD Pt 1800to2400 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 5,236,000
/QCD Pt 2400to3200 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 2,848,000
/QCD Pt 3200toInf TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 996,000
/WJetsToQQ HT-400to600 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 4,455,853
/WJetsToQQ HT-600to800 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 6,793,578
/WJetsToQQ HT-800toInf TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 6,769,101
/ZJetsToQQ HT-400to600 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 6,942,718
/ZJetsToQQ HT-600to800 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 5,500,386
/ZJetsToQQ HT-800toInf TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 3,740,901
/TT Mtt-700to1000 TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v1/MINIAODSIM 33,586,554
/TT Mtt-1000toInf TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v1/MINIAODSIM 24,177,380
/ST t-channel top 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8/[CAMPAIGN]-v3/MINIAODSIM 63,073,000
/ST t-channel antitop 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8/[CAMPAIGN]-v3/MINIAODSIM 30,609,000
/ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v2/MINIAODSIM 2,491,000
/ST tW antitop 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v2/MINIAODSIM 2,554,000
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Table B.3: CMS sample identifiers of 2017 MC background simulation datasets, analo-
gous to Tab. B.1 with the replacement [CAMPAIGN]≡RunIISummer20UL17MiniAODv2-
106X mc2017 realistic v9

Sample name Events
/QCD Pt 300to470 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 55,690,000
/QCD Pt 470to600 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 50,885,000
/QCD Pt 600to800 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 67,379,000
/QCD Pt 800to1000 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 36,890,000
/QCD Pt 1000to1400 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 19,781,000
/QCD Pt 1400to1800 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 10,994,000
/QCD Pt 1800to2400 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 5,488,000
/QCD Pt 2400to3200 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 2,997,000
/QCD Pt 3200toInf TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 1,000,000
/WJetsToQQ HT-400to600 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 9,927,793
/WJetsToQQ HT-600to800 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 14,667,933
/WJetsToQQ HT-800toInf TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 14,722,417
/ZJetsToQQ HT-400to600 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 14,884,962
/ZJetsToQQ HT-600to800 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 11,702,567
/ZJetsToQQ HT-800toInf TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 9,384,525
/TT Mtt-700to1000 TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v2/MINIAODSIM 35,862,238
/TT Mtt-1000toInf TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v2/MINIAODSIM 22,724,532
/ST t-channel top 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8/[CAMPAIGN]-v1/MINIAODSIM 127790000
/ST t-channel antitop 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8/[CAMPAIGN]-v1/MINIAODSIM 69509000
/ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v2/MINIAODSIM 5,649,000
/ST tW antitop 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v2/MINIAODSIM 5,674,000

Table B.4: CMS sample identifiers of 2018 MC background simulation datasets, analo-
gous to Tab. B.1 with the replacement [CAMPAIGN]≡RunIISummer20UL18MiniAODv2-
106X upgrade2018 realistic v16 L1v1

Sample name Events
/QCD Pt 300to470 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 57,910,000
/QCD Pt 470to600 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 52,448,000
/QCD Pt 600to800 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 67,508,000
/QCD Pt 800to1000 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 37,160,000
/QCD Pt 1000to1400 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 19,730,000
/QCD Pt 1400to1800 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 10,982,000
/QCD Pt 1800to2400 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 5,491,000
/QCD Pt 2400to3200 TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 2,997,000
/QCD Pt 3200toInf TuneCP5 13TeV pythia8/[CAMPAIGN]-v1/MINIAODSIM 1,000,000
/WJetsToQQ HT-400to600 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 9,335,298
/WJetsToQQ HT-600to800 TuneCP5 13TeV-madgraphMLM-pythia8/[CAMPAIGN]-v2/MINIAODSIM 13,633,226
/WJetsToQQ HT-800toInf/[CAMPAIGN]-v2/MINIAODSIM 13,581,343
/ZJetsToQQ HT-400to600/[CAMPAIGN]-v2/MINIAODSIM 13,930,474
/ZJetsToQQ HT-600to800/[CAMPAIGN]-v2/MINIAODSIM 12,029,507
/ZJetsToQQ HT-800toInf/[CAMPAIGN]-v2/MINIAODSIM 9,681,521
/TT Mtt-700to1000 TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v2/MINIAODSIM 30,720,345
/TT Mtt-1000toInf TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v1/MINIAODSIM 23,758,200
/ST t-channel top 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8/[CAMPAIGN]-v1/MINIAODSIM 178,756,000
/ST t-channel antitop 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8/[CAMPAIGN]-v1/MINIAODSIM 95,833,000
/ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v2/MINIAODSIM 5,649,000
/ST tW antitop 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8/[CAMPAIGN]-v2/MINIAODSIM 5,674,000
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B.2 Signal Samples for Control Region Studies

Table B.5 lists all the signal MC simulation samples that were used for testing various data
validation CR definitions in Sec. 7.7.2. They are grouped into the same signal processes with
varying masses.

Table B.5: Signal MC simulation samples used for testing various data validation CR definitions,
grouped into the same signal processes with varying masses.

Sample name

/BulkGravToWW narrow M-2000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM
/BulkGravToWW narrow M-2500 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM
/BulkGravToWW narrow M-3000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM
/BulkGravToWW narrow M-3500 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM
/BulkGravToWW narrow M-4000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM
/BulkGravToWW narrow M-4500 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM
/BulkGravToWW narrow M-5000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM
/BulkGravToWW narrow M-5500 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM
/BulkGravToWW narrow M-6000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM

/BulkGravToZZToZhadZhad narrow M-2000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BulkGravToZZToZhadZhad narrow M-2500 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BulkGravToZZToZhadZhad narrow M-3000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BulkGravToZZToZhadZhad narrow M-3500 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BulkGravToZZToZhadZhad narrow M-4000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BulkGravToZZToZhadZhad narrow M-4500 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BulkGravToZZToZhadZhad narrow M-5000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BulkGravToZZToZhadZhad narrow M-5500 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BulkGravToZZToZhadZhad narrow M-6000 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 new pmx 94X mc2017 realistic v14-v2/MINIAODSIM

/WprimeToWZToWhadZhad narrow M-2000 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/WprimeToWZToWhadZhad narrow M-2500 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/WprimeToWZToWhadZhad narrow M-3000 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/WprimeToWZToWhadZhad narrow M-3500 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/WprimeToWZToWhadZhad narrow M-4000 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/WprimeToWZToWhadZhad narrow M-4500 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM

/ZprimeToWW narrow M-2000 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/ZprimeToWW narrow M-2500 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/ZprimeToWW narrow M-3000 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/ZprimeToWW narrow M-3500 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/ZprimeToWW narrow M-4000 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/ZprimeToWW narrow M-4500 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM

/BstarToTW M-2000 LH TuneCP5 13TeV-madgraph-pythia8/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BstarToTW M-2600 LH TuneCP5 13TeV-madgraph-pythia8/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BstarToTW M-3000 LH TuneCP5 13TeV-madgraph-pythia8/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BstarToTW M-3600 LH TuneCP5 13TeV-madgraph-pythia8/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM
/BstarToTW M-4000 LH TuneCP5 13TeV-madgraph-pythia8/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v1/MINIAODSIM

/WkkToWRadionToWWW M2000-R0-1 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M2000-R0-2 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M2000-R0-3 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M2500-R0-08 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M2500-R0-1 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M2500-R0-2 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M2500-R0-3 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M3000-R0-06 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M3000-R0-08 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M3000-R0-1 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M3500-R0-06 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M3500-R0-08 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M3500-R0-1 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M3500-R0-2 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M4000-R0-08 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M4000-R0-1 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M4500-R0-06 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M4500-R0-08 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM
/WkkToWRadionToWWW M4500-R0-1 TuneCP5 13TeV-madgraph/RunIIFall17MiniAODv2-PU2017 12Apr2018 94X mc2017 realistic v14-v2/MINIAODSIM

B.3 Signal Shape Templates

This section collects the explicit signal template fits for the signal processes shown in Figs. 7.49
and 7.54, namely a X → YY′ → 4q decay with masses of mY = mY’ = 170GeV (Fig. B.1), a
W′ → B′t → bZt decay with mB’ = 400GeV (Fig. B.2), a WKK → RW → 3W decay with
mR = 400GeV (Fig. B.3), and a Y → HH → 4t decay with mH = 400GeV (Fig. B.4). These
signal templates are used for obtaining the upper cross section limits on the respective signals,
and are accordingly shown with resonance masses of 3 and 5TeV, used for limit setting.
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Figure B.1: Signal shape template obtained from fitting the X → YY′ → 4q signal MC sim-
ulation samples with intermediate resonance masses of mY = 170GeV and mY’ = 170GeV at
resonance masses of 3TeV (left) and 5TeV (right), using a Double Crystal Ball function.
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Figure B.2: Signal shape template obtained from fitting the W′ → B′t → bZt signal MC
simulation samples with a daughter mass of mB’ = 400GeV at resonance masses of 3TeV (left)
and 5TeV (right), using a Double Crystal Ball function.
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Figure B.3: Signal shape template obtained from fitting the WKK → RW → 3W signal MC
simulation samples with a daughter mass of mR = 400GeV at resonance masses of 3TeV (left)
and 5TeV (right), using a Double Crystal Ball function.
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Figure B.4: Signal shape template obtained from fitting the Y → HH → 4t signal MC simulation
samples with a daughter mass of mH = 400GeV at resonance masses of 3TeV (left) and 5TeV
(right), using a Double Crystal Ball function.
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B.4 Effect of Systematic Uncertainties

While the proof-of-concept studies in Sec. 6 do not consider systematic uncertainties, they are
an essential part of any realistic analysis. In the context of the CMS dijet search, Sec. 7, the
effect of systematic uncertainties on CATHODE were evaluated for the first time, as described
in Sec. 7.5. A particular focus was the impact on the exclusion limits, as there a particular
signal model was targeted and thus all uncertainties in the modeling of the process are relevant,
as discussed in Sec. 7.6.3.

In order to capture the effect of these modeling uncertainties, the 95% CL upper limits from
Sec. 7.10.2 are shown with and without accounting for the uncertainty in the signal normalization
when applying CATHODE in Fig. B.5 and Fig. B.6 for signals with resonance masses of 3TeV
and 5TeV, respectively. The same comparison is shown with the CATHODE-b analysis strategy
in Fig. B.7 and Fig. B.8.

As expected, the inclusion of systematic uncertainties leads to a degradation of the exclusion
limits, as the signal strength is allowed to vary within the uncertainties. Across all different
signals, it seems the average effect of the uncertainties is roughly a 20% decrease in sensitivity,
for both CATHODE and CATHODE-b. In the most severely affected signals, the sensitivity loss
reaches up to 50%, i.e., an upper limit that is twice as high as without systematic uncertainties.
In a few cases, the inclusion of uncertainties appears to have no effect. A reason for this is the
procedure of always quoting the maximum between the injected and excluded cross section. The
uncertainty only affects the latter, thus if the former is sufficiently larger, it can hide the effect
on the fitted signal strength.

It should be noted that the uncertainties discussed here only apply to the limit setting
procedure, because a specific signal model has been used for training the classifier. The discov-
ery potential, which is achieved through the significance calculation after a purely data-driven
CATHODE training, is not affected by these uncertainties. In fact, this is in contrast to a
supervised search, where the significance would usually be computed after selecting the signal
candidates using a signal-trained classifier, which is subject to modeling uncertainties.
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Figure B.5: Comparison of the CATHODE observed and expected upper 95% CL cross section
limits before and after the inclusion of systematic uncertainties in the signal strength, for signals
with a resonance mass of 3TeV.
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Figure B.6: Comparison of the CATHODE observed and expected upper 95% CL cross section
limits before and after the inclusion of systematic uncertainties in the signal strength, for signals
with a resonance mass of 5TeV.
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Figure B.7: Comparison of the CATHODE-b observed and expected upper 95% CL cross section
limits before and after the inclusion of systematic uncertainties in the signal strength, for signals
with a resonance mass of 3TeV.
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Figure B.8: Comparison of the CATHODE-b observed and expected upper 95% CL cross section
limits before and after the inclusion of systematic uncertainties in the signal strength, for signals
with a resonance mass of 5TeV.
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B.5 Background Sculpting

Section 6.3 discusses the issue of background sculpting for CATHODE when the auxiliary fea-
tures are correlated with the resonant feature on the LHCO R&D dataset. A particular focus
there lies on the extrapolation of classifier models trained on the signal region phase space to
the sidebands, which differs with increasing correlations. Here, we extend this discussion to the
significantly larger MC background simulation dataset from the CMS anomalous dijet search,
with a focus on disentangling sculpting sources within the signal region.

A key advantage of the CMS MC background simulation dataset, introduced in Sec. 7.2,
is the substantially larger number of events available for the classifier training, which thus
approximates more closely the likelihood ratio estimator, as discussed in the Appendix A.3.
This enables a more detailed study of the effects that arise from training on an imperfect
CATHODE background template. We choose the lowest signal region from 1.65 to 2.017TeV
for this study, as it is the most populated bin and thus has the largest number of classifier
training events and simultaneously the smallest training sample for the conditional normalizing
flow that learns the background template. Moreover, we train the classifier with a learning rate
of 10−4 instead of 10−3 and using early stopping with a patience of 10 epochs to ensure that the
classifier reaches full convergence (instead of ending the training at 100 epochs). Otherwise, the
CATHODE implementation follows the description in Sec. 7.3, including the double k-folding
scheme. Since the dataset contains no signal, an ideal CATHODE background template would
be indistinguishable from the “data” (i.e., the proxy data from a background-only simulation),
and thus the classifier should not be able to consistently agree on anomalous phase space regions.

Figure B.9 shows the resulting background template samples (orange) in comparison with
the “data” (light blue) in the resonant feature, m = mjj , and the four auxiliary features,
x =

(
mj1,∆mj , τ41,j1, τ41,j1

)
. As the histograms overlap for a large part of the phase space,

their difference is best seen in the lower panel, which shows the per-bin ratio of the two normal-
ized histograms for the auxiliary features in orange. (Since the agreement is expected to be good
in m because of the samples following a direct KDE fit, the first lower panel shows instead the
ratio between the “data” before and after the anomaly selection in dark blue.) In particular, the
two mass-based features are subject to mismodeled peak-like structures15. The most anomalous
percentile of “data” events according to the CATHODE classifier is shown in the upper panel
in dark blue. In all auxiliary features, the resulting distribution differs visibly from the “data”
before selection. In the mass-based features, the anomalous events seem to follow an oscillatory
pattern with peaks that are well aligned with the mismodeled peaks from the background tem-
plate. This is an indication that the classifier correctly identifies these differences between the
two training samples and the likelihood ratio estimator is accordingly larger where the “data”
phase space is more populated than the background template. Moreover, the selection seems
to result in a slight change of mjj distribution, from a smoothly exponentially falling shape to
more long-ranged oscillations than one would expect from pure statistical fluctuations. This
can also be seen in the lower panel where the ratio before and after the selection shows a trend
where higher values of mjj are more likely to be selected as anomalous. This type of sculpting is
a direct consequence of correlations between x and m, as the visible change of shape in x trans-
lates to a change in the m distribution. In this case, the correlations are only minor and thus
the resulting sculpting in m is likely small enough for this analysis. However, a more correlated
choice of x might be substantially affected by the observed patterns in the auxiliary features.

To confirm the hypothesis that the most anomalous percentile is related to the mismod-

15
Because of their positions similar to SM particle masses, an early suspicion has been that the peaks might

arise due to the small contributions of more complex background processes, such as top quarks. However, a
CATHODE training on a pure QCD MC simulation resulted in peaks at the same positions.
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Figure B.9: Comparison of background template samples (orange), “data” (light blue) and the
most anomalous 1% of events (dark blue) in all features after CATHODE was trained to full
classifier convergence with a low learning rate on the MC background simulation dataset, using
a signal region of 1.65 to 2.017TeV. The bottom panel shows the ratio between the normalized
distributions of the simulated “data” events before and after the anomaly selection for mjj and
between the “data” and the CATHODE background template for the other features.
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eled regions of the background template, Fig. B.10 (top set of plots) resolves the modeling
imperfections in terms of two-dimensional correlations. The pulls, defined as the per-bin dif-
ference between the two normalized histograms divided by their total statistical uncertainty,
are shown as a heatmap such that red regions correspond to statistically significant data over-
densities over the background template and blue regions relate to a significant overestimation
of the background. Evidently, the background template is not perfect and could be improved
by a better generative model. In comparison, the classifier predictions are shown in the same
two-dimensional feature space in the lower set of plots. In this heatmap representation, more
anomalous predictions are denoted in red and more anti-anomalous regions are blue. Comparing
the two sets of plots, the same regions that are overdense in the data also result in a higher clas-
sifier prediction. This confirms that the classifier correctly learns the likelihood ratio estimator
between the two training samples, which are subject to differences localized in phase space.

For a different angle in understanding the impact of the visible discrepancy between the
background template and the actual “data” distribution, one can train an idealized anomaly
detector, as in Sec. 6.3. Here, we split the MC background simulation dataset into two equal
parts, reserving one as the new proxy data and the other half as the background template. The
resulting distribution of most anomalous events according to this classifier is shown in Fig. B.11.
While the background template now trivially aligns with the “data” in all features, there is still
a visible change of pattern in the auxiliary features. Independently of any discrepancies between
the training samples, the classifier learns some function of the auxiliary features and basing a
selection on this function results in a change of input distribution. This change still translates
to a slight slope in mjj , as seen in the lower left-most panel.

To further investigate the impact of the background template mismodeling, which is the
primary difference between CATHODE and the IAD, one can further assess what the classifier
ensemble in each of the five k-folds selects as most anomalous. To this end, Fig. B.12 and
Fig. B.13 show the most anomalous 1% of events according to CATHODE and the IAD, re-
spectively, for each of the k-folds. The lower panels again show the ratio between histograms
before and after selection for mjj and between the “data” and the background template for the
other features, but now split into separate k-folds. For CATHODE, the distributions of the
most anomalous events are very similar among the five k-folds, each roughly aligning with the
data-to-sample ratios shown in the lower panels, in case of the mass-based features. In the IAD
case, on the other hand, one observes a substantially larger variance between the distributions
of the most anomalous events in the different k-folds, seemingly because the learning process
between the two identical sets is more random. This shows why the change of x shape and thus
the potential effect onm is more severe when the background template is imperfect: the sculpted
k-folds do not average out to something less sculpted, but instead the sculpting is amplified.

The inherent randomness of what an ensemble of classifiers learns when tasked to distinguish
two identical sets, can be further studied by repeating the training. In order to perform this test
on the same number of training samples as CATHODE, we construct a modified IAD imple-
mentation by mixing the “data” events and the background template of CATHODE, randomly
shuffling, and splitting again into the same proportions as in the original training. This mixture
of “data” and background template events is identical in both of the two sets. Figure B.14 shows
the most anomalous 1% of events according to this IAD in four separate runs, each with a newly
shuffled separation into proxy data and background template. Not only are they different from
the unselected proxy data distribution (black), they also vary between the different trainings.
However, their average (gray) does not resemble the unselected distribution either. Controlling
the effect of the inherent randomness of a weakly supervised training on the selected feature
distribution thus remains a non-trivial problem.

As an additional test, we perform the same study but with a constant partition of the IAD
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Figure B.10: The top set of plots shows the pulls between the MC background simulation
data and the CATHODE background template, i.e., the per-bin difference between the two
normalized histograms divided by their total statistical uncertainty. The plots along the diagonal
are the one-dimensional marginal distributions of pulls in each individual feature, and the off-
diagonal plots show the two-dimensional correlations. The bottom set of plots shows the classifier
predictions as a function of the features, again in one dimension along the diagonal and in two
dimensions off-diagonal. The central value of 0.5 is subtracted from the classifier predictions to
show the deviations from the expected background.
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Figure B.11: Analogous to Fig. B.9, but for an idealized anomaly detector where the background
template is constructed from half of the MC background simulation dataset and the other half
is used as “data”.
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Figure B.12: Similar to Fig. B.9, but showing the most anomalous 1% of events according to
CATHODE separately for the five k-folds, and in comparison to the full MC background simula-
tion dataset (black). The bottom panel displays the ratio between the normalized distributions
of the simulated “data” events before and after the anomaly selection inmjj , and between “data“
and the CATHODE background template before selection in the other features, separately for
each k-fold.
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Figure B.13: Analogous to Fig. B.12, but for an idealized anomaly detector where the background
template is constructed from half of the MC background simulation dataset and the other half
is used as “data”.
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Figure B.14: Most anomalous 1% of events according to a sample-enhanced idealized anomaly
detector, trained on a shuffled partition of the MC background simulation dataset and the
CATHODE background template. Shown are four trainings, each with a new reshuffling of
the dataset before separating into “data” and background template, as well as the full MC
background simulation dataset (black).
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dataset, i.e., with each classifier run only differing by the random initialization of the network
weights but not by the training data. The resulting distributions of the most anomalous events
are shown in Fig. B.15. In this case, they are strikingly similar among the four training runs. This
is a strong indication that the classifier ensembles are overfitting on the statistical fluctuations
of the training data, which is the primary source of the randomness.
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Figure B.15: Analogous to Fig. B.14, but each training is performed on the same shuffled
partition of the MC background simulation dataset, thus only differing by a different random
initialization of classifier network weights.

As a final test, we investigate the effect of not training the classifier at all. An untrained
classifier ensemble is expected to be fully defined by the random initialization of the network
weights and is thus neither affected by a mismodeled background template nor by the statistical
fluctuations of the training data. The resulting distributions of the most anomalous events
between four independently initialized classifier ensembles are shown in Fig. B.16. Still, the
resulting feature distributions are different from the unselected “data” events, even more so
than previously seen with CATHODE or the IAD. The classifier models remain a deterministic
function of the auxiliary feature input, and thus a selection based on this function will always
result in a change of the input distribution. The absence of training cannot avoid this, and
instead we observe a visible sculpting effect in mjj .

In the studies above, we have demonstrated that the background shape in the auxiliary
features is subject to change whenever a selection is made on the classifier output as it is a
deterministic function of its inputs. Any correlations with the resonant feature will translate to
some degree of background sculpting in that distribution as well. This change of shape can be
more or less pronounced, depending on which patterns the classifier finds to be discriminative
between the data events and the background sample. The ensemble average is affected more
systematically if a consistent mismodeling of certain phase space regions in the background
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Figure B.16: Analogous to Fig. B.14, but the classifier has not been trained, and thus the runs
are each fully defined by the random initialization of the network weights.

template is present. Even in the absence of such a systematic discrepancy, the classifier might
overfit on the statistical fluctuations. While the background sculpting might not be dominant in
the case of relatively small correlations, as seen in the case of the CMS anomalous dijet search,
it might substantially challenge the background estimation strategy in the presence of more
severe correlations. As demonstrated in Sec. 6.3, a safe mitigation strategy is to decorrelate
the auxiliary and resonant features completely. An example for this type of approach is the
LaCATHODE method, proposed in the context of this thesis.
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