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Abstract

Since their inception a little more than fifteen years ago, optical frequency combs based

on Kerr-nonlinearity inside optical microresonators have enabled significant advance-

ments in diverse applications, ranging from precision measurements in laboratory set-

tings to the development of compact sources for telecommunications and laser rang-

ing. Relying on high finesse dielectric microresonators, these so-called microcombs

leverage the combination of a small mode area and resonant enhancement with strong

Kerr optical nonlinearity to achieve efficient nonlinear frequency conversion with min-

imal power requirements. A particularly attractive type of such comb is based on dis-

sipative Kerr solitons (DKS), where stationary solitonic attractors form inside the res-

onator, resulting in a stable, low-noise, high repetition rate optical frequency comb.

Typically exited from a continuous wave pump laser forming the central comb tooth,

such soliton microcombs rely on a careful double equilibrium between Kerr nonlinear-

ity and dispersion on one hand and gain and loss on the other. Combining a small

footprint with low power consumption and the ability to be produced at scale, in-

tegrated DKS sources have risen to the forefront of photonics research over the last

decade. However, key challenges are yet to be addressed, including the extension of

microcomb spectra to new wavelength ranges, improved comb actuation and control,

robust initiation and operation, and the stabilization of comb lines.

In this thesis, we start by exploring the use of sub-wavelength nanoscale structures

to address some of these challenges. A major prerequisite — and hence limitation —

for generating soliton microcombs is that they require anomalous dispersion, which

is only achievable within limited wavelength ranges due to material and waveguide

properties. To overcome this limitation, we develop on-chip standing-wave cavities

supporting DKSs. Based on carefully crafted uniaxial photonic crystal reflectors (PCR)

with ultra-high reflectivity, these Fabry-Perot microresonators attain Q-factors on par

with conventional ring-type microresonators. Critically, by controlling the phase of

the reflected light, the PCR provides a precise mechanism for managing the dispersion



required for DKS formation. By decoupling dispersion control from the underlying

waveguide geometry and material, this approach could extend DKS sources into new

wavelength ranges and material platforms, complementing methods developed for

ring-type devices. Beyond DKS, such standing-wave cavities introduce a novel topol-

ogy that opens avenues for the exploration of new physics, such as Nyquist solitons

and filter-driven pulse formation.

The versatility of DKS sources stems from their comb spectra, which consist of a set

of equidistant optical lines. The frequency of these lines is defined by the comb’s two

degrees of freedom — namely, the repetition rate and offset frequencies — which con-

nect the microwave and optical domains. In the second part of this thesis, we study

sideband injection locking, an all-optical technique for precisely controlling these pa-

rameters. This method involves injecting a secondary continuous-wave laser into the

resonator cavity, causing one of the comb lines to lock onto it. Relying on broadband

characterization, we analyze the locking dynamics and derive analytic scaling laws

for the comb’s locking range and repetition rate control. Our findings show excellent

agreement between theoretical predictions and experimental results and may inform

the design of sideband injection-locked parametrically generated frequency combs.

As an example, we demonstrate the optical frequency division of a >10 THz span, re-

sulting in a drastic reduction of the repetition-rate phase-noise, 30 dB bellow that of

a free-running system. This approach to microcomb control and actuation presents

opportunities for low-noise microwave generation, compact optical clocks with sim-

plified locking schemes, and, more generally, all-optically stabilized frequency combs

from Kerr-nonlinear resonators.

Pushing our exploration of comb control techniques further, we demonstrate full-phase

stabilization of a self-injection-locked soliton microcomb. Self-injection-locked (SIL)

microcombs harness optical feedback from a high-Q microresonator to the driving

laser to control the pump-to-cavity detuning, addressing one of the major challenges

in soliton microcombs generation. This method allows the use of chip-scale diode

lasers instead of complex table-top sources, significantly reducing operational com-

plexity, system footprint, and cost. However, unlike conventional driving schemes,

SIL-based systems do not allow independent control of the pump laser frequency and

power — parameters typically used to stabilize the comb’s degrees of freedom. In the

final chapter of this thesis, we show that full phase stabilization of SIL microcombs

is nevertheless possible by using an integrated electric microheater in addition to the

laser pump current. We achieve an effective locking bandwidth of more than 100 kHz,

enabling robust phase-locking of the repetition rate and offset frequencies to external
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references. Importantly, our millimeter-scale system does not employ electro-optic,

acousto-optic, or piezo-electric actuation. Instead, we rely solely on low-voltage (bel-

low 1.5 V) CMOS-compatible control signals, meeting a critical requirement of chip-

integrated technologies. Our results constitute the first demonstration of a chip-scale

microresonator source for phase-coherent frequency metrology.
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Zusammenfassung

Seit ihrer Einführung vor etwas mehr als fünfzehn Jahren haben optische Frequenz-

kämme, die auf Kerr-Nichtlinearität in optischen Mikroresonatoren basieren, bedeu-

tende Fortschritte in verschiedenen Anwendungsbereichen ermöglicht, die von Präzi-

sionsmessungen unter Laborbedingungen bis hin zur Entwicklung kompakter Quellen

für Telekommunikation und schneller Entfernungsmessung reichen. Diese sogenann-

ten Mikrokämme nutzen die große Finesse dielektrischer Mikroresonatoren und kom-

binieren einen kleinen Modenquerschnitt mit resonanter Verstärkung und starker op-

tischer Kerr-Nichtlinearität, um eine effiziente nichtlineare Frequenzumwandlung bei

minimalem Leistungsbedarf zu erreichen. Ein besonders attraktiver Typ solcher Käm-

me basiert auf dissipativen Kerr-Solitonen (DKS), bei denen sich stationäre Soliton-

Attraktoren innerhalb des Mikroresonators bilden, was zu einem stabilen und rausch-

armen optischen Frequenzkamm mit hoher Repetitionsrate führt. Meistens angetrie-

ben von einem monochromatischen Pumplaser, der den zentralen "Kammzahn"bildet,

basieren solche Soliton-Mikrokämme auf einem doppelten Gleichgewicht zwischen

Kerr-Nichtlinearität und Dispersion einerseits und nichtlinearer Verstärkung und Ver-

lust andererseits. Wegen ihrer geringen Größe, ihres niedrigen Energieverbrauchs und

der Möglichkeit zur Massenproduktion sind integrierte DKS-Quellen in den letzten

zehn Jahren in den Vordergrund der Forschung in der Photonik gerückt. Trotzdem

bestehen weiterhin zentrale Herausforderungen, darunter die Erweiterung der Mikro-

kammspektren auf neue Wellenlängenbereiche, sowie zuverlässige Erzeugung, Betrieb

und Stabilisierung der Kämme.

Diese Dissertation beschäftigt sich zunächst mit der Untersuchung von subwellenlän-

gen nanoskaligen Strukturen, um zentrale Herausforderungen der Mikrokammtech-

nologie zu überwinden: Eine wesentliche Voraussetzung — und somit Einschränkung

— für die Erzeugung von Soliton-Mikrokämmen ist, dass sie anomale Dispersion er-

fordern, die aufgrund der Material- und Wellenleiter-Eigenschaften nur innerhalb be-

grenzter Wellenlängenbereiche erreichbar ist. Um diese Einschränkung zu überwin-



den, entwickeln wir Chip-inetgrierte Fabry-Pérot-Mikrorresonatoren, die DKS ermög-

lichen. Basierend auf sorgfältig gestalteten uniaxialen photonischen Kristallreflektoren

(PCR) mit extrem hoher Reflektivität erreichen diese Fabry-Pérot-Mikrorresonatoren

Güten, die mit herkömmlichen ringförmigen Mikrorresonatoren vergleichbar sind. Durch

Kontrolle der Phase des reflektierten Lichts bieten PCR eine präzise Kontrolle der erfor-

derlichen Dispersion. Indem die Dispersion von Wellenleitergeometrie und -material

entkoppelt wird, zeigt unsere Arbeit einen neuen Ansatz komplementär zu Ring-Mikroresonatoren

auf, der es ermöglicht DKS-Quellen auf neue Wellenlängenbereiche und Materialien

auszudehnen. Solche Fabry-Pérot-Mikrorresonatoren können möglicherweise in der

Zukunft neuartige physikalische Phänomenen wie Nyquist-Solitonen und filtergetrie-

bene Pulsbildung ermöglicht.

Die Vielseitigkeit von DKS-Quellen liegt in ihren Kamm-Spektren, die aus einem Satz

äquidistanter optischer Linien bestehen. Die Frequenz dieser Linien wird durch zwei

Freiheitsgrade des Kamms — die Repetitionsrate und die Versatzfrequenz – definiert,

die Mikrowellen und optische Wellenlängen verknüpfen. Im zweiten Teil dieser Arbeit

untersuchen wir Seitenband-Injektionsstabilisierung, eine rein optische Technik zur

präzisen Steuerung dieser Parameter. Diese Methode beinhaltet das Einkoppeln eines

sekundären monochromatischen Pumplasers in die Resonatorkavität, wodurch eine

der Kammlinien auf dessen Wellenlänge stabilisiert wird. Mittels Breitbandcharakte-

risierung analysieren wir die Stabilisierungssdynamik und leiten analytische Skalie-

rungsgesetze für den Stabilisierungsbereich des Kamms und die Steuerung der Repe-

titionsrate ab. Unsere Ergebnisse zeigen eine ausgezeichnete Übereinstimmung zwi-

schen theoretischen Vorhersagen und experimentellen Ergebnissen und könnten das

Design von Seitenband-injektionsstabilisierten parametrisch generierten Frequenz-

kämmen verbessern. Als Beispiel zeigen wir die optische Frequenzteilung einer Spanne

von über 10 THz, was zu einer drastischen Reduktion des Repetitionsratenrauschens

um 30 dB im Vergleich zu einem nicht stabilisierten System führt. Dieser Ansatz zur

Kammsteuerung und -reglung bietet Möglichkeiten für rauscharme Mikrowellener-

zeugung, für kompakte optische Uhren mit vereinfachten Stabilisierungsverfahren und

generell für optisch stabilisierte Frequenzkämme in Resonatoren mit Kerr-Nichtlinearität.

In einer vertiefenden Untersuchung der Kammsteuerungstechniken, demonstrieren

wir die vollständige Phasenstabilisierung eines selbstinjektionsstabilisierten Soliton-

Mikrokamms. Selbstinjektionsstabilisierte (SIL) Mikrokämme nutzen die optische Rück-

kopplung eines Mikroresonators hoher Güte zum Pumplaser, um die Verstimmung

zwischen Laser und Resonator zu kontrollieren und damit eine der großen Herausfor-

derungen bei der Erzeugung von Soliton-Mikrokämmen zu bewältigen. Diese Metho-
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de ermöglicht den Einsatz von Diodenlasern mit Chipgröße anstelle komplexer großer

Quellen und reduziert sowohl die Komplexität der Bedienung als auch den Platzbedarf

und die Kosten der Mikrokammsysteme erheblich. Im Gegensatz zu herkömmlichen

Schemata bieten SIL-basierte Systeme jedoch keine unabhängige Steuerung der Fre-

quenz und Leistung des treibenden Lasers — Parameter, die typischerweise zur Stabi-

lisierung der Freiheitsgrade des Kamms verwendet werden. Im letzten Kapitel dieser

Arbeit zeigen wir, dass eine vollständige Phasenstabilisierung von SIL-Mikrokämmen

dennoch möglich ist, indem wir zusätzlich zum Laserpumpstrom eine integrierte elek-

trische Mikroheizung verwenden. Wir erreichen eine effektive Stabilisierungsbandbrei-

te von über 100 kHz, die eine robuste Phasenstabilisierung der Repetitionsrate und

Versatzfrequenz gegenüber externen Referenzen ermöglicht. Hervorzuheben ist, dass

unser Millimeter großes System keine elektro-optische, akusto-optische oder piezo-

elektrische Regelung verwendet. Stattdessen verwenden wir ausschließlich CMOS-kompatible

Steuersignale niedriger Spannung (unter 1.5 V), was eine entscheidende Anforderung

für chipintegrierte Technologien erfüllt. Unsere Ergebnisse stellen die erste Demon-

stration einer chip-integrierten Mikrorresonatorquelle für phasenkohärente Frequenz-

metrologie dar.
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Chapter 1

Microresonator-based Kerr frequency

combs

In recent years, microresonator-based optical frequency combs, arising from paramet-

ric frequency conversion within Kerr-nonlinear dielectric cavities, have emerged as

compact yet efficient high repetition rate sources complementing ultrafast lasers based

on active gain media. Commonly referred to as microcombs, these sources leverage the

tight optical confinement and strong field enhancement provided by high finesse mi-

croresonators to achieve efficient frequency conversion from a pump laser to a set of

evenly spaced comb lines. Exhibiting rich and complex behavior, these systems have

become a hotbed for the study of optical nonlinear phenomena. One such state is dis-

sipative soliton formation, where one or more self-sustained localized pulses circulate

inside the cavity, giving rise to a low-noise, fully coherent optical frequency comb.

Through their compatibility with chip-scale integration, small footprint, and low power

consumption, microresonator-based frequency combs promise to bring frequency comb

technology to applications where the size, weight, or cost of macro-scale conventional

sources is prohibitive — a prospect that might see microcombs parallel, for industrial

and consumer-oriented applications, the transformative impact of mode-locked lasers

on scientific research. While early research showcased the potential of microcombs in

relatively elaborate laboratory experiments for applications in astronomy, low-noise

microwave signal generation, or optical clocks, recent advancements have increasingly

focused on improving the efficiency, flexibility, and operational simplicity of these sys-

tems. Notably, the adoption of self-injection locking, utilizing optical feedback from

the resonator to control the emission wavelength of the driving laser, has enabled the

miniaturization of microcomb sources by replacing cumbersome tabletop pump lasers
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with chip-scale laser diodes.

Despite their promise, significant hurdles remain that hinder the widespread adoption

of microresonator-based combs. Limitations in wavelength range, inconsistent and

unreliable operation, and the complexity of actuation and stabilization schemes ren-

der these sources largely inaccessible to non-experts. This thesis addresses several of

these key challenges by exploring dispersion and coherent phase control methods in

microresonator frequency combs. This chapter provides the reader with the necessary

context, starting from a brief overview of laser frequency combs in Section 1.1 and di-

electric microresonator in Section 1.2. Subsequently, microresonator-based frequency

combs are introduced in Section 1.3 with a focus on the dissipative soliton regime in

Section 1.3.4. The chapter concludes by introducing self-injection locking and dis-

cussing its application to microcombs in Section 1.4.

1.1 Optical frequency combs

Optical frequency combs [1–5] (OFCs) generated from stable mode-locked lasers were

first established in the 1990s through the pioneering work of Theodor W. Hänsch and

John L. Hall in precision spectroscopy of the hydrogen atom [6–9] which was recog-

nized with the Nobel Prize in Physics in 2005 [1, 2]. These sources rely on ultra-short

optical pulses circulating inside the laser cavity. At every round trip, a copy of the pulse

is outcoupled, creating a regular train of pulses spaced by the cavity round-trip time Tr .

When the emitting laser is sufficiently stable, such that subsequent pulses are phase-

coherent, the periodic nature of the waveform results in a spectrum of evenly spaced

discrete optical frequencies separated by the laser’s repetition rate frep = T −1
r (coin-

ing the term frequency comb). The mismatch between the phase and group velocities

stemming from chromatic dispersion within the cavity induces a pulse-to-pulse phase

slippage of the optical carrier relative to the pulse envelope [2]. This leads to a global

shift of the comb spectrum by the slippage rate — an amount aptly called the carrier-

envelope offset frequency fceo [2]. Therefore, the comb line frequencies obey

νm = fceo +m frep, m ∈N+. (1.1)

In this trivial expression lies the remarkable capability of optical frequency combs: es-

tablishing a coherent link between radio and optical frequencies [3–5, 10–14]. This

ability to count individual optical cycles by dividing the optical spectrum with a "ruler"

of evenly spaced lines of known optical frequency has enabled unprecedented mea-

surement precision and ultimately enabled a range of new applications. From preci-

2
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sion metrology [15, 16], spectroscopy [17–24] and optical clockworks [25–27] to mi-

crowave frequency synthesis [28] and astronomical spectrograph calibration [29–32],

optical frequency combs have had a profound transdisciplinary impact.

While mode-locked lasers were established shortly after the first demonstration of the

laser itself during the 1960s [33], it took nearly three decades for them to emerge as

reliable sources of optical frequency combs. Early mode-locked lasers suffered from

excessive noise and were unable to produce a phase-coherent train of pulses, resulting

in the underlying comb structure being washed out [2]. Low-noise sources suitable

for frequency metrology only arrived with the advent of femtosecond lasers, which

allowed individual comb lines to be resolved. With a high peak power, the emitted

pulses also enabled octave-spanning spectra via self-phase modulation inside pho-

tonic crystal fibers. This capability allowed for self-referencing [5, 9–13]: by comparing

a frequency-doubled portion of the comb with the comb itself, it is possible to measure

the comb’s carrier-offset frequency directly. With the capability to measure the comb’s

two defining radio frequencies, frep and fceo, came the ability to fully-stabilized optical

frequency combs [34, 35]. Through electronic feedback loops actuating on the laser’s

operating parameters — such as the cavity length and pump current — both the rep-

etition rate and offset frequencies could be locked to external references, providing a

direct link from radio to optical frequencies.

1.2 Dielectric microresonators

An optical resonator is formed when light is spatially confined by reflective and/or re-

fractive elements inside an optical cavity. This confinement results in the creation of a

discrete set of longitudinal modes and allows for light to be stored and resonantly en-

hanced when the circulating field is matched to the cavity round-trip length. When, in

addition, light is confined perpendicularly to its propagation direction (e.g., inside an

optical fiber), the spatial distribution of the electromagnetic field is restricted to one

or more transverse modes (also called guided modes). One can distinguish between

standing wave configurations, where light oscillates between two or more reflective el-

ements (the interfering forward- and backward-propagating components resulting in

a standing wave), and traveling wave configurations, where light propagates unidirec-

tionally along a closed loop. In its simplest form, a standing wave resonator can be

made from two parallel reflective surfaces, in which case it is known as a Fabry–Perot

interferometer or etalon. While resonators can be found throughout optics, from etalons

for the stabilization of narrow linewidth lasers to the calibration of astronomical spec-

3
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trographs, one of their uses is to enhance light-matter interaction. Optical microres-

onators [36], which confine light to a very small mode volume, are particularly well

suited for this task.

In particular, dielectric microresonators, which confine light via total internal reflection

inside a higher-index dielectric core surrounded by a lower-index cladding material, al-

low for efficient probing of the dielectric’s nonlinear susceptibility. Broadly speaking,

they can be grouped into two distinct categories: whispering gallery mode (WGM) res-

onators, where light is guided on a circular trajectory along the outer perimeter of the

resonator at the interface with the surrounding medium, and waveguide resonators,

where light is confined within a waveguide which is closed onto itself. While WGMs

usually allow for a higher resonant enhancement and are somewhat simpler to fabri-

cate, waveguide resonators typically achieve stronger confinement and can be fabri-

cated through scalable wafer-based processes. Both WGM and waveguide resonators

can be fabricated using a range of different materials (although for WGM resonators,

the surrounding material is usually air), and microresonator frequency combs have

been demonstrated in such platforms as silica [37–39], calcium fluoride [40, 41], mag-

nesium fluoride [42–45], aluminum nitride [46, 47], diamond [48] and gallium phos-

phide [49]. Silicon nitride (Si3N4) [50–54], in particular, has emerged as a popular op-

tion. With a relatively high Kerr nonlinearity and low propagation losses, the platform

allows for efficient parametric frequency conversion while being compatible with com-

plementary metal-oxide semiconductor (CMOS) technology and, as a result, is now of-

fered by several foundry services. Within this work, Si3N4 microresonators were used.

1.2.1 Coupling

While coupling to and from free-space cavities typically relies on semi-reflective sur-

faces, microresonators utilize evanescent fields to couple light from a bus waveguide

directly into the guided mode of the resonator1 [36, 55]. By placing the bus waveg-

uide next to the cavity waveguide, such that their spatial modes overlap, optical power

is transferred in and out of the resonator at a coupling rate κex. Similarly, WGM res-

onators commonly employ prisms [56, 57] or tapered fibers [58] for this purpose. By

adjusting the distance between the bus and resonator waveguide, the extent of the

mode overlap can be tuned, and the coupling rate adjusted. As we will see in Sec-

tion 1.2.3, matching the coupling rate to the resonator’s intrinsic decay rate is key to

maximizing the resonant enhancement.

1As we show in Chapter 2, semi-reflective waveguide Bragg structures can also be used for standing-
wave microresonators.

4
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1.2.2 Properties of resonators

The resonant condition defines the resonant frequencies ωm of a resonator as the spe-

cific frequencies where the cavity round-trip length is an integer multiple of the wave-

length:
L

λm
= m, ∀m ∈N+. (1.2)

Where L is the resonator round-trip length and λm = 2πc/(neffωm) the wavelength of

the mth mode. The frequency interval between two successive resonances is called the

free spectral range (FSR):

FSR = ωm+1 −ωm

2π
. (1.3)

Resonators are characterized by their decay rate κ, which is the rate at which the stored

energy W decays in the absence of an external power source, corresponding to the

inverse lifetime τ of the cavity:

W (t ) =W (0)e−tκ =W (0)e−t/τ. (1.4)

We distinguish between the intrinsic decay rate κ0, resulting from internal loss mech-

anisms such as absorption and scattering within the cavity, and the previously intro-

duced extrinsic decay rate κex, resulting from the coupling of the resonator, such that

κ= κ0+κex. The coupling ratio is defined as the ratio of the extrinsic to total decay rate:

η= κex

κ
= κex

κ0 +κex
. (1.5)

The quality factor (Q-factor) is given by

Q = ω

κ
, (1.6)

and is, for any oscillator, a measure of the total stored energy to the energy lost per

radian of oscillation. The quality factor is related to finesse of the cavity

F= 2π
FSR

κ
= 2π

FSRQ

ω
, (1.7)

which is directly linked to the maximum resonant enhancement achievable in a res-

onator (see the following Section).

5
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1.2.3 Resonance lineshape

By requiring the intracavity field Ecav to be continuous, such that the contribution from

pump field Ein perfectly offsets the phase and losses accumulated over one round trip,

we can state

Ecav =σe iφEcav + iθEin, (1.8)

where θ2 = κexTr is the fractional round-trip pump coupling, σ2 = (1−κ0Tr )(1−κexTr )

is the round-trip transmission andφ is the phase accumulated over one round trip. We

find that the cavity power enhancement follows

Pcav

Pin
= |Ecav|2

|Ein|2
= θ2/2σ

(1+σ2)/2σ−cos(φ)
, (1.9)

which is periodically maximized when the round-trip phaseφ is a multiple of 2π, corre-

sponding to the resonant condition first presented in Eq. 1.2. The on-resonance power

enhancement is proportional to the finesse F and follows

Pcav

Pin

∣∣∣∣
φ=0

= θ2

(1−σ)2
≈ 2η

F

π
, (1.10)

where we have assumed both κ0Tr ≪ 1 and κexTr ≪ 12. Note that the power enhance-

ment is maximized for a given intrinsic loss rate κ0 when η = 1/2. This occurs when

κex = κ0, in which case the resonator is said to be critically coupled. By extension, a

resonator where κex < κ0 is said to be under-coupled while κex > κ0 is said to be over-

coupled.

Lorentzian lineshape

In a high finesse resonator, the round-trip transmission is nearly unity, and the pump

coupling is weak (σ2 ≃ 1 and θ2 ≪ 1). Consequently, as can be seen from Eq. 1.9, the

power enhancement factor is approximately zero outside of the immediate vicinity of

the resonance (specifically, outside of 1−cos(φ) < θ2 ). The resonator’s spectrum can

hence be regarded as a series of distinct discrete resonances. If we consider only a

single resonance, we can introduce the first-order Taylor approximation cos(x) ≈ 1−
x2/2, which results in the well-known Lorentzian lineshape

Pcav

Pin
= θ2/σ

(1−σ)2/σ+φ2
, (1.11)

2This assumption of low round-trip loss is valid for high finesse resonators.
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with a full-width at a maximum (FWHM) of

2
1−σp
σ

≈ 2π

F
. (1.12)

To a first-order approximation, the round-trip phase can be expressed as φ ≈ ωTr ,

meaning the optical linewidth is κ. Therefore, key resonator parameters can be ex-

tracted by recording the optical lineshape of its resonances, such as the total decay

rate κ (from Lorentzian FHWM), the FSR (from the mode separation) and the finesse

F [59]. When considering additional interactions within the resonators and bus, more

complex lineshapes can arise. For example, coupling-induced hybridization between

counterpropagating modes in a traveling wave resonator or higher order transverse

modes can lead to so-called split-resonances [60], while asymmetric Fano resonances

can arise from reflective elements inside the bus waveguide [61] (such as the chip

facet).

1.2.4 Dispersion

Somewhat confusingly, the term dispersion is often used quite liberally to designate

slightly different facets of the same concept. In its broadest sense, dispersion desig-

nates the relation between the angular frequency ω and the propagation constant β:

β(ω) = ω

c
neff(ω) = 2π

λ0
neff(ω). (1.13)

Often, dispersion will be used to refer specifically to the nonlinearity of β(ω), i.e., the

frequency-dependence of the effective phase index neff(ω). In photonics, a Taylor ex-

pansion around a central frequency ω0 is commonly used:

β(ω) =β0 + (ω−ω0)
β1

1!
+ (ω−ω0)2β2

2!
+ . . . , (1.14)

where βn = ∂nβ(ω)

∂ωn

∣∣∣∣
ω=ω0

(1.15)

are the dispersion coefficient corresponding to first (n = 1), second (n = 2) and higher-

order dispersion (n ≥ 2). Specifically, β0 = ω0/vp is related to the phase velocity vp at

frequency ω0, β1 = v−1
g is the inverse group velocity and β2 is the group velocity disper-

sion (GVD). Depending on the sign of the β2, one distinguishes between normal GVD

(β2 > 0), where the group velocity decreases with optical frequency, and anomalous

GVD (β2 < 0) where the group velocity increases with optical frequency.

7
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Dispersion in microresonators

In microresonators, dispersion affects the resonant frequencies ωm via the resonant

condition

Lβ(ωm) = 2πm, ∀m ∈N+, (1.16)

where L is the resonator’s round-trip length and m is the longitudinal mode number.

Similar to Eq. 1.14, the resonant frequencies can be described by an expansion around

a central mode m0 with frequency ω0

ωµ =ω0 +µD1

1!
+µ2 D2

2!
+ . . . , (1.17)

where Dn = ∂nωµ

∂µn

∣∣∣∣
µ=0

. (1.18)

Here we have introduced the relative mode number µ= m−m0. The dispersion coeffi-

cients Dn and βn are related through series reversion

D1 = 2π

β1L
, (1.19)

D2 =−vg D2
1β2, (1.20)

D3 = 3
D2

2

D1
−D3

1vgβ3, (1.21)

. . .

Here, D2 > 0 corresponds to anomalous dispersion, and D2 < 0, to normal dispersion.

Integrated dispersion

A common way of describing the dispersion of a dielectric microresonator is through

the integrated dispersion [44], which is obtained by subtracting the constant and linear

terms from Eq. 1.17:

Dint(µ) =ω−ω0 −µD1 =
∑

n≥2
µn Dn

n!
. (1.22)

This representation describes the deviation of the resonance frequencies ωµ from an

equidistant (i.e., dispersionless) frequency gridω0−µD1, isolating the effects of higher-

order dispersion (n ≥ 2).

8
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1.2.5 Dispersion engineering

In nonlinear optical microresonators, and more generally for any nonlinear optical

process, the photon flux between respective frequency components depends on their

relative phase. Consequently, precisely managing the microresonator’s dispersion is

crucial for effectively controlling these nonlinear interactions. As we will discuss in

Section 1.3, second-order dispersion, in particular, plays a key role in microcombs,

impacting, for instance, the comb type, bandwidth, and formation dynamics.

Dispersion engineering aims to tailor the dispersion of dielectric microresonators, with

a particular emphasis on the sign and strength of D2. Key parameters include the core

and cladding materials and the resonator geometry [62]. While most materials ex-

hibit normal GVD in the visible and near-infrared spectral regions due to electronic

transitions in the ultraviolet range, the total microresonator dispersion can still be ad-

justed through geometric dispersion. As the wavelength λ increases, guided modes

transition from a regime of strong confinement, where most of the electromagnetic

field is contained within the waveguide core, to a regime of weak confinement, where

the mode expands into the surrounding cladding. During this transition, the modes’

effective index neff(λ) shifts from that of the core to that of the cladding. By tailor-

ing the waveguide cross-section, this transition can be adjusted such that anomalous

GVD ( ∂2neff/∂λ
2 < 0) is obtained on the blue side of the transition, even if both the

core and cladding materials exhibit normal dispersion [63]. In the case of dielectric

microresonators fabricated through planar processes, this typically involves carefully

controlling the width and height of a rectangular cross-section waveguide [64]. For

silica-clad silicon nitride microresonators, such as those used in this thesis, anoma-

lous group velocity dispersion is only accessible with a "thick" silicon nitride layer

(>700 nm) [65–67]. Whispering gallery mode resonators, often shaped through man-

ual polishing and/or laser ablation, can use constant radii or wedge-shaped profiles to

achieve desirable dispersion characteristics [68]. In ring-type resonators, the bending

of the waveguide also influences dispersion [69]. Although generally weak, this effect

becomes significant for smaller radii (< 25µm) [70].

Recently, more advanced dispersion engineering techniques have emerged, typically

relying on the hybridization of frequency-degenerate modes. The frequency shifts

associated with the coupling between cross-polarized modes [71], fundamental and

higher order spatial modes [72], counterpropagating modes [73, 74], or modes in dis-

tinct resonators [75–79] can enhance, flatten, or even reverse the sign of the disper-

sion over specific wavelength ranges. In addition, as we will see in Chapter 2, sub-

9



Chapter 1. Microresonator-based Kerr frequency combs

wavelength structures [80, 81] are particularly promising as they allow for broadband

dispersion engineering.

1.3 Microresonator frequency combs

1.3.1 Optical nonlinearity

A medium is said to be optically nonlinear when its polarization responds nonlinearly

to an incoming electromagnetic wave. Specifically, when a material’s electrical sus-

ceptibility is itself a function of the electric field strength, it leads to a nonlinear rela-

tionship between the incident electric field Ẽ(t ) and the dielectric polarization of the

medium P̃ (t ) which can be described by a power series [82]

P̃ (t ) = ϵ0χẼ(t ) = ϵ0
(
χ(1)Ẽ(t )+χ(2)Ẽ 2(t )+χ(3)Ẽ 3(t )+ . . .

)
, (1.23)

where ϵ0 denotes the vacuum permittivity and χ(n) the material’s nth order electric sus-

ceptibility 3. While higher-order (n ≥ 2) contributions to the polarization are insignifi-

cant for the vast majority of applications, this is not the case when strong optical fields

are present, such as in ultrafast lasers or high-Q microresonators. In such cases, the

nonlinear polarization

P̃ NL(t ) = ∑
n≥2

χ(n)Ẽ n(t ) (1.24)

can no longer be neglected and acts as a source term in the nonlinear wave equation

∇2Ẽ − n2
0

c2

∂2Ẽ

∂t 2
= 1

ϵ0c2

∂2P̃ NL

∂t 2
, (1.25)

which describes the propagation of light inside a nonlinear medium4. Such paramet-

ric gain can lead to the conversion of light between different frequencies and to the

excitation of electromagnetic waves with new frequencies.

Kerr nonlinearity

In centrosymmetric media, χ(2) vanishes [82], and the main contribution to the nonlin-

ear polarization stems from χ(3)-nonlinearity, also known as Kerr nonlinearity5. Let us

3In this expression, we have neglected the vector nature of both the electric and polarization fields.
4The nonlinear wave equation can be derived from the Maxwell equations accounting for the non-

linearity of the electric susceptibility.
5Kerr nonlinearity refers specifically to the real part of χ(3), which is responsible for the Kerr effect

— a change of refractive index in response to an applied electric field. Other effects such as nonlinear

10



1.3. Microresonator frequency combs

explore parametric frequency conversion in such a medium by considering an incident

electric field

Ẽ(t ) =
N∑

n=1
Ene− jωn t + c.c. (1.26)

comprised of N different pure tones with frequency ωn . In a Kerr-nonlinear medium,

the nonlinear polarization is proportional to Ẽ 3(t ) and therefore, the product between

the respective tones will contain terms at new frequencies

3ωn , (1.27)

ωn +ωm +ωl , (1.28)

and ωn +ωm −ωl , (1.29)

where n,m, l ∈ {1, . . . , N }. These processes are known as third harmonic generation,

triple-sum generation, and four wave mixing, respectively, and can lead to the excita-

tion of electromagnetic waves at new frequencies. If these newly formed components

build up to sufficient strength, they can themselves contribute to the mixing process

— a phenomenon known as cascaded four-wave mixing.

1.3.2 Modeling Kerr-nonlinear resonators

The dynamics of Kerr-nonlinear resonators are commonly described using two differ-

ent approaches: the Lugiato-Lefever equation (LLE) and its frequency domain counter-

part, the coupled-mode equations (CME). These models are mathematically equivalent

and can be transformed into each other using the Fourier transform [83, 84]. Both ap-

proaches are mean-field models that rely on the assumption that the system’s evolu-

tion is slow relative to the cavity round-trip time. As a result, localized phenomena,

such as point coupling or localized dispersion features, like those induced by grat-

ings in a Fabry-Perot cavity, are average over the microresonator round trip. To cap-

ture these effects, methods like the Ikeda map [85] are available; however, they require

simulating the field’s evolution for every round trip when solved numerically, which is

computationally expensive.

In the following Section, we introduce the LLE and CME in their dimensionless forms.

This allows the system to be fully defined by the normalized pump power and detun-

ing while parameters such as the resonator linewidth, dispersion, and nonlinearity are

absorption or stimulated Raman scattering stem from the complex part and frequency dependence of
χ(3), respectively.

11
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incorporated into the dimensionless quantities and coordinates [86, 87]:

τ= κ

2
t , θ =

√
κ

2D2
φ,

ζ0 =
2(ω0 −ωp )

κ
, f =

√
8ηg0

κ2
sin, (1.30)

ψ=
√

2go

κ
A, aµ =

√
2g0

κ
Aµ.

Here, τ and θ are the normalized time and spatial coordinates, respectively, while ζ0 is

the normalized pump-to-resonance detuning. The normalized pump amplitude f is

obtained by scaling the pump’s photon flux |sin|2 by the effective nonlinear coefficient

g0 = ℏω2
p cn2/(n2

0Veff). The slow-varying complex field envelope ψ(θ,τ) and the slow-

varying complex mode amplitudes aµ(τ) are similarly normalized.

Lugiato-Lefever equation

The Lugiato-Lefever equation [88–90] is a detuned, driven, and damped (dissipative)

version of the one-dimensional nonlinear Schrödinger equation [91, 92]:

∂ψ

∂τ
=−(1+ iζ0)ψ+ i

2

∂2ψ

∂θ2
+ i |ψ|2ψ+ f . (1.31)

It describes how the slow-varying complex field envelopeψ(θ,τ) evolves over time. The

first term denotes the combined effects of cavity loss and pump detuning, while the

second term accounts for the effects of group velocity dispersion through the second-

order derivative of the field with respect to θ. The LLE can easily be generalized to

higher-order dispersion by including higher-order derivatives. The third term describes

Kerr-induced self-phase modulation, while the homogeneous pump field f acts as a

source term. Spatially structured pump fields can also be used to describe pulse pump-

ing or other types of multi-frequency excitation [93, 94].

Coupled-mode equations

The coupled-mode equations describe the evolution of the individual mode ampli-

tudes as a system of coupled oscillators interacting through four-wave mixing [53, 95–

97]. A derivation of the CME, beginning from the nonlinear wave equation, can be

found in Appendix B. The dimensionless form of the CME is written as follows [44]:

∂aµ
∂τ

=−(1+ iζµ)aµ+ i
∑
µ′,µ′′

aµ′aµ′′a
∗
µ′+µ′′−µ+δµ f . (1.32)

12
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Here, aµ(τ) denotes the slow-varying complex amplitude of the mode with index µ.

The term (1+iζµ) accounts for the loss and detuning associated with this mode, where

ζµ = 2(ωµ−ωp −µD1)/κ is the normalized detuning combining the effect of pump de-

tuning and dispersion. It contains the integrated dispersion introduced in Eq. 1.22 and,

therefore, can describe an arbitrary dispersion profile. The summation describes the

nonlinear coupling between different modes via FWM by considering all possible fre-

quency combinations. The Kronecker delta function δµ ensures the pump only drives

the intended mode µ= 0.

Standing-wave resonators

While both Eq. 1.31 and Eq. 1.32 apply to traveling-wave cavities, they can be gener-

alized to Fabry-Perot type resonators by accounting for the cross-phase modulation

between counterpropagating waves [93, 98]. This term is homogeneous and only de-

pends on the average intracavity power, and thereby can interpreted as an additional

power-dependent detuning. Consequently, both traveling- and standing-wave res-

onators exhibit equivalent dynamics.

1.3.3 Modulation instability

Kerr-nonlinearity, specifically four-wave-mixing (FWM), governs the formation of op-

tical frequency combs inside high-Q microresonators. When a continuous wave (CW)

pump laser is tuned into a resonance of a Kerr-nonlinear resonator, the intracavity

power can build up to exceed the threshold at which parametric gain overcomes the

cavity round-trip loss. This initiates a process known as modulation instability [99]

(MI), as small perturbations in the homogeneous intracavity field will grow for some

spectral components, breaking spatial symmetry [100].

Specifically, through degenerate four-wave mixing — where the pump wave contributes

twice in the mixing process (ωn = ωm in Eq. 1.29) — small inhomogeneities in the

field are amplified, resulting in the formation of a first pair of sidebands symmetri-

cally spaced around the pump frequency [100]. At the threshold pump power, these

sidebands emerge within the resonator modes ±µth, where

µth =
√

κ

D2
, (1.33)

is given by the resonator decay rate κ and second order dispersion D2
6 [53]. As soon as

6This result can be derived from the coupled mode equations by considering a three mode system [53,
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they emerge, the primary sidebands act as seeds for further non-degenerate four-wave

mixing, creating new frequency components in a cascading sequence [95]. As this cas-

cade progresses, a broad set of evenly spaced frequency lines is formed, constituting

the so-called primary comb. Energy conservation dictates that these comb lines are

equidistant, matching the resonator’s free spectral range or an integer multiple thereof.

The presence of dispersion leads to a mismatch, or "walk-off," between the comb line

frequencies and microresonator resonance frequencies, reducing the efficiency of the

FWM process and limiting the overall extent of the comb. In practice, the presence of

anomalous dispersion is a prerequisite for the initiation of the primary sidebands, as

it compensates for the differential nonlinear resonance shift between the pump mode

and other modes [100]. Consequently, the generation of combs from Kerr-nonlinearity

(i.e., Kerr frequency combs) requires a resonator with anomalous dispersion, at least

locally, around the pump frequency.

Chaotic states

When dispersion is strong relative to the linewidth such that µth = 1 (as can occur in

high FSR microresonators), the primary sidebands form within the resonances neigh-

boring the pump mode, resulting in a natively mode-spaced comb [53, 102]. Conversely,

if µth ≥ 2, the primary comb will have a spacing of two or more FSRs [103, 104]. In

this case, further increasing the intracavity power — either by raising the power of the

pump laser or by tuning the pump laser closer to resonance — causes the primary

combs lines to initiate sub-combs (or secondary combs) as parametric gain exceeds

losses in the previously unpopulated modes [53, 105].

These sub-combs are, in general, not commensurate with the primary comb, thereby

introducing new frequency components to the system [37, 53, 106–108]. Consequently,

through cascaded four-wave mixing, multiple lines can build up within each resonator

mode, eventually populating each resonance with a continuum of optical frequen-

cies, corresponding to a chaotic and unstable waveform often referred to as the chaotic

modulation instability regime. These incoherent states yield a noisy radio-frequency

signal and are not desirable for most Kerr frequency comb applications, which rely on

pure and well-defined comb line frequencies.

87, 97, 101].
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1.3.4 Dissipative Kerr solitons

The Lugiato-Lefever equation (or, equivalently, the coupled mode equations) supports

a rich landscape of dynamic and stationary states that go far beyond the modula-

tion instability regime. Particularly relevant to this thesis are Dissipative Kerr Solitons

(DKS), a stationary state in the form of optical pulses that maintain their shape and

energy indefinitely as they circulate within the cavity. Also called cavity solitons or mi-

croresonator solitons, they are distinct from conservative solitons, such as those found

in optical fiber, which arise purely from a balance between nonlinearity and disper-

sion [90, 109, 110]. DKS, in addition, rely on the equilibrium between the cavity loss

and the energy provided by the pump laser. As such, DKS form stable low-noise attrac-

tor states with well-defined optical frequency comb spectra.

While multiple soliton pulses can coexist within a cavity, the single DKS state is partic-

ularly interesting due to its optical power spectrum characterized by a smooth hyper-

bolic secant envelope.

Theoretical description

While an exact analytical solution is only available for conservative solitons, DKS can

still be described approximately as the superposition of a continuous wave background

and a hyperbolic secant pulse [44]:

ψ≃ψ0 +Be iϕ0 sech(Bθ) (1.34)

In this expression, the term ψ0 denotes the homogeneous solution of the lower stable

branch of the bistability region [87, 92]:

ψ0 ≃ f

ζ2
0

− i
f

ζ0
, (1.35)

The second term in Eq. 1.34 corresponds to the conservative soliton solution. The pa-

rameters are determined by substituting the soliton ansatz into the LLE, which yields:

B ≃
√

2ζ0, (1.36)

cos(ϕ0) ≃ 8ζ0

π f
. (1.37)

The detuning interval ζ0 ∈ [ζmin
0 ,ζmax

0 ] over which a soliton can be sustained is known

as the soliton existence range. The lower limit ζmin
0 directly derives from the bistability
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criterion f 2 < 2
27ζ0(ζ0 +9) [87, 92], while the upper limit stems from Eq. 1.37, requiring

ζ0 < π f
8 [44]. Note that the soliton’s amplitude and temporal width depend not on the

pump power but the detuning. However, a stronger pump does extend the soliton

range, hence providing access to larger detunings.

Transformed back into physical units, the soliton temporal profile can be written as [44]

ψ(t ) =
√

2ζ0 sech(t/∆t ), (1.38)

where ∆t = 1

D1

√
D2

ζ0κ
, (1.39)

while its optical spectrum is similarly given by

ψ̃(ω) =
√

D2/2κsech
(
(ω−ωp )/∆ω

)
, (1.40)

where ∆ω= 2D1

π

√
ζ0κ

D2
. (1.41)

Thus, the soliton’s spectral width directly scales with the inverse square root of the

dispersion parameter D2 as the walk-off between the equidistant lines of the soliton’s

spectrum and the resonances of the microresonator is reduced.

More generally, we see that for a given microresonator and pump detuning, the soli-

ton’s spectral width scales with
p
κ/D2, and its temporal width, with the inverse thereof.

This is the same expression as Eq. 1.33 defining the spacing of the primary comb in the

MI regime and also approximately corresponds to the maximum number of soliton

pulses that can be concurrently sustained within the resonator [44, 111].

DKS generation

While a specific set of operating parameters may support DKS, they cannot sponta-

neously arise due to the system’s bistability7. To initiate them, they must first be seeded.

This can be achieved either through an externally injected pulse waveform (i.e., kick-

starting) — a technique commonly employed in optical fiber cavities [86, 112, 113] —

or through a precursor state that contains pulses with sufficient energy to converge

into the soliton attractor state [44, 54]. In the case of optical microresonators, the latter

approach is usually employed, as explained below.

When tuning a continuous wave pump laser from the blue-detuned side of the reso-

nance into the red-detuned soliton existence range, the system first passes through the

7The continuous wave background is, by itself, a stable solution.
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modulation instability regime. In this regime, an unstable and chaotic waveform forms

within the cavity as secondary sidebands emerge. This stochastic waveform contains

transient pulses that can seed DKS when the pump detuning enters the DKS existence

range. Transient pulses with sufficient energy converge into stationary soliton pulses,

while most decay into the continuous wave background, resulting in a sharp drop in

total intracavity power. The number of soliton pulses that ultimately form within the

cavity depends on the number of transient pulses with sufficient energy at the system’s

transition. Given the chaotic nature of the preceding MI regime, this process is non-

deterministic, often yielding a variable number of solitons — and sometimes none —

when repeated.

As the pump detuning further increases, reaching the red boundary of the DKS exis-

tence range, the solitons decay. In practice, due to noise and slight variations in local

conditions, the solitons do not all decay simultaneously. This results in a characteris-

tic "staircase" pattern in the intracavity power as the number of solitons incrementally

decreases. The initial sharp drop in power followed by soliton steps is a key signature

of soliton formation that can be monitored during experiments [44, 114].

In practice, these abrupt changes in intracavity power pose significant experimental

challenges. Most microresonator platforms exhibit a positive thermo-optic coefficient

(dn/dT > 0), meaning that a given cavity’s optical path increases with temperature.

This leads to a redshift of the resonator’s effective resonance frequencies, directly pro-

portional to the cavity temperature and, therefore, intracavity power. Upon soliton

formation, the sharp power drop leads to a rapid blueshift in the effective resonance

frequency8, thereby increasing the pump detuning, often exceeding the soliton exis-

tence range. Several techniques have been developed to address this issue, including

rapid tuning of the pump laser [54, 115–117] or microresonator [118–120], the use of

auxiliary lasers [98, 121], as well as slow [122] and fast [93, 94] pump modulation. De-

spite these strategies, managing the thermal and detuning dynamics remains a signif-

icant challenge. As we will see in the next Section, laser self-injection locking offers a

simple yet elegant solution by replacing the continuous-wave pump laser with a diode

laser susceptible to optical feedback from the microresonator, eliminating the need for

precise and rapid pump laser actuation.

8The thermal time constants for chip-integrated microresonators can be extremely short, of the order
of a few µs.
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1.4 Laser self-injection locking

Until now, we have considered microresonator nonlinear dynamics under the assump-

tion of an independent, externally actuated continuous wave pump laser. A com-

pelling alternative is offered by laser self-injection locking (SIL), a technique that lever-

ages frequency-selective optical feedback from the microresonator to stabilize the laser

emission frequency [123–126]. By coupling the driving laser to a high-Q microres-

onator without any form of optical isolation, Rayleigh scattering inside the microres-

onator caused by volumetric inhomogeneities and surface roughness reflects resonant

light back into the pump laser cavity [127]. This coherent feedback causes the laser’s

emission frequency to lock onto the resonance frequency of the microresonator. When

operating inside this SIL regime, filtering by the high-Q resonator suppresses fluctua-

tion in the laser emission frequency compared to free-running operation. This sup-

pression is proportional to the square of the microresonator’s quality factor9 and re-

sults in a substantial reduction in the laser’s linewidth, which can reach several orders

of magnitude — enabling, for example, sub-kHz linewidths from chip-scale semicon-

ductor diode lasers [128].

In the context of microresonator frequency combs, laser self-injection locking pos-

sesses several advantages over conventional pumping schemes [45, 119, 129–133]. First,

SIL permits replacing complex narrow-linewidth tabletop lasers with semiconductor

diode lasers, providing a truly chip-scale optical frequency comb source. Secondly, in

the SIL regime, the laser’s emission frequency is locked to the microresonator through

fast optical feedback, automatically tracking fluctuation in the microresonator reso-

nance frequency. This eliminates the need for a rapidly tunable laser and addresses

many of the challenges associated with thermal instabilities, further reducing opera-

tional complexity.

One of the challenges associated with using SIL for DKS generation is the limited over-

lap between the SIL range — the span of pump-to-resonance detunings over which

the laser remains self-injection locked to the microresonator — and the soliton exis-

tence range. Indeed, due to the random nature of defects and imperfections inside

the cavity, optical feedback is typically unpredictable and weak, thus constraining the

SIL range. We recently demonstrated that this limitation can be effectively addressed

through the use of synthetic reflection [134], achieved by inscribing a photonic crystal

structure into the microresonator waveguide [74, 80, 81, 135, 136]. This approach pro-

vides both strong (adjustable) and predictable levels of optical feedback, making it par-

9Thermorefractive noise inside the cavity can ultimately become a limiting factor.
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ticularly well-suited to DKS generation. The coupling between frequency-degenerate

counterpropagating modes at the pump frequency also results in hybridized modes

with significant frequency shifts. These shifts are akin to strong anomalous dispersion,

promoting the formation of single- over multi-DKS states without compromising the

soliton’s spectral width [74].

In Chapter 4, we demonstrate that such synthetic reflection SIL microcombs can be

fully phase-locked to external microwave frequency references, thus achieving chip-

scale, metrological-grade optical frequency combs [137].

1.5 Thesis organization

The remainder of this thesis is structured as follows:

Chapter 2 demonstrates, for the first time, dissipative Kerr soliton generation inside

an integrated Fabry-Perot microresonator. Crucially, dispersion management of the

cavity is dominated by the contribution of the photonic crystal reflectors forming the

mirrors of the linear cavity. This work showcases the power of sub-wavelength nano-

structuring for dispersion management in nonlinear integrated photonics and promises

exciting new opportunities for bringing Kerr frequency combs to previously unattain-

able wavelength ranges and material platforms.

Chapter 3 explores soliton sideband injection-locking, a technique by which an external

optical frequency is injected into the sidebands of a soliton comb, enabling full con-

trol of the comb’s repetition rate and offset frequencies. This scheme enables new ap-

proaches to low-noise microwave generation, compact optical clocks with simplified

locking schemes, and, more generally, stabilized low-noise frequency comb sources

from Kerr-nonlinear resonators.

Chapter 4 presents a chip-scale, electrically-driven, metrology-grade SIL microcomb

operating at CMOS-compatible voltages. Based on laser self-injection locking, the

source combines a semiconductor laser diode and a high-quality factor silicon nitride

microresonator equipped with an integrated microheater to achieve a small-footprint,

low-complexity, low-cost, and CMOS-compatible frequency comb, which can be fully-

phase stabilized.

This thesis is a cumulative work combining the results of three different peer-reviewed

publications. In the respective chapters, small changes have been made with respect

to the published material to enhance clarity and uniformity, including adjustments to

figures to better fit the format of this thesis.
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2.1. Introduction

Abstract

Dissipative Kerr solitons (DKSs) in integrated microresonators have enabled breakthroughs

in sensing, communication, and signal processing. So far, integrated DKS sources have

exclusively relied on ring-type resonators where the resonator’s dispersion is defined by

its waveguide. New means of dispersion engineering, beyond modifying the waveguide’s

cross-section, are critically needed for accessing new wavelength and operating regimes.

Here, we demonstrate for the first time DKS generation in an integrated Fabry-Perot mi-

croresonator. In this topology, the dispersion is not dominated by the waveguide but by

nano-structured photonic crystal mirrors. Leveraging wafer-level fabrication, high in-

trinsic Q-factors of 4 million are achieved in the absence of unintentional avoided-mode

crossings, which can otherwise prevent DKS formation. This establishes a new integrated

resonator topology for DKS generation and creates opportunities for new wavelength do-

mains and novel approaches such as dispersion managed solitons or Nyquist-solitons.

2.1 Introduction

Dissipative Kerr solitons (DKSs) [110, 112, 138, 139] in laser-driven dielectric microres-

onators provide access to metrology-grade femtosecond sources and broadband fre-

quency combs with repetition rates from tens of GHz to multiple THz. They are self-

enforcing solutions to the Lugiato-Lefever equation (LLE) and can emerge in high-

quality factor (Q) microresonators from the balance between anomalous group de-

lay dispersion (GDD), loss and Kerr-nonlinearity under (typically) continuous-wave

(CW) laser driving. Intriguing nonlinear dynamics including soliton crystals [140],

soliton molecules [141], synchronization between resonators [142], and discrete pho-

tonic time crystals [143] have been observed. Owing to their potential for compact

photonic integration [50, 139], DKS sources are a transformative technology, impact-

ing a wide range of cross-disciplinary applications, including data transmission [144]

and processing [145], ranging [146, 147], microwave photonics [148], dual-comb spec-

troscopy [149], and astronomical spectrograph calibration [150, 151]. To this day, in-

tegrated DKS sources have exclusively been pursued in traveling-wave ring-type res-

onators. Here criteria for DKS formation can be routinely met, including high Q-factor,

anomalous dispersion (negative GDD), as well as a resonance spectrum free of unin-

tentional avoided mode crossings (AMXs) [44]. Furthermore, the dispersion can be

tuned (to some extent) by adjusting the width and height of the resonator waveguide,

with significant impact on the DKS and their spectra. Future extension of DKS technol-

ogy, including extension to new wavelength regimes (e.g. visible wavelengths), spectral
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Figure 2.1 | Soliton generation in chip-integrated photonic crystal Fabry-Perot
cavities. a, Illustration of a dissipative Kerr soliton (DKS) under continuous-wave
pumping inside a chip-integrated photonic crystal Fabry-Perot (FP) microres-
onator with reflector-induced anomalous dispersion. b, Photograph of a CW-
driven FP microresonator. Scattered coincidental third-harmonic generation in-
dicates the position of the PCRs. c, Setup for exciting DKSs inside the FP mi-
croresonator. A transverse magnetic (TM) polarized continuous-wave (CW) pump
laser is tuned into resonance while the resonator is thermally stabilized by an aux-
iliary continuous-wave laser (AUX) in the transverse electric (TE) mode. EDFA:
erbium-doped fiber amplifier; CIRC: circulator; PBS: polarizing beam splitter; PD:
photodetector; OSC: oscilloscope; ESA: electrical spectrum analyzer; OSA: optical
spectrum analyzer.

engineering, as well as, exploration of new operating regimes (e.g. dispersion man-

aged [152–154], sinc-, Nyquist- and zero-dispersion solitons [155–157]) will critically

rely on the development of new approaches for dispersion engineering. Importantly,

these modifications should be broadband (across hundreds of resonator modes), with-

out jeopardizing the high Q-factor and without inducing unintentional AMXs.

Advanced techniques for narrowband dispersion modification in DKS-generating ring-

type microresonators have been demonstrated including shifting of few resonance fre-

quencies via mode-coupling between cross-polarized modes [71], fundamental and

higher-order transverse modes [72], counter-propagating modes in corrugated res-

onators [74], as well as mode-hybridization in concentric resonators [77] and between

modes in distinct resonators [75, 158]; these techniques have led to deterministic initi-

ation of DKSs, higher-power efficiency, and novel nonlinear phenomena. Recently, the

approach of coupling between counter-propagating modes in corrugated waveguide

resonators has been extended, with single-mode control, to tens of resonator modes

through inverse design [80] and Fourier-synthesis [81], representing a significant step
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in broadband dispersion engineering, that may enable DKS in the future.

Complementary to methods developed for ring-type devices, Fabry-Perot (FP) microres-

onators with dispersive mirrors represent an attractive approach to broadband disper-

sion engineering: nearly 30 years ago, the advent of suitably designed Bragg mirrors

for ultra-fast lasers represented a breakthrough in the field when faced with a similar

challenge [159, 160]. So far, Bragg mirrors have also been applied to short fiber-based

FP microresonators resulting in four-wave-mixing and stimulated Brillouin scatter-

ing [161], as well as the first demonstration of pulse-driven DKS [93]. Notably, recent

advances led to the first integrated FP resonator with photonic crystal mirrors for comb

generation [162] as well as FP microresonators with dispersion engineered reflecting

structures, based on inverse design [163]. Despite all these major advances, a DKS-

supporting platform whose broadband dispersion is not limited to effective waveguide

(or whispering-gallery mode) dispersion has not yet been demonstrated.

Here, we demonstrate for the first time DKS generation in an integrated FP microres-

onator. Fabricated using a wafer-scale process, the microresonator is composed of two

photonic crystal reflectors (PCRs) in a waveguide (Figure 2.1a). Significantly, across its

entire bandwidth the dispersion of the resonator is dominated by the GDD contribu-

tion from the PCRs (not the waveguide), demonstrating new opportunities for disper-

sion engineering in a system capable of supporting DKSs. Further, the FP microres-

onator’s intrinsic Q-factor, albeit not a record-high for an integrated device [164, 165],

is on par with ring resonators fabricated in the same commercial platform. Our results

establish integrated FP resonators as a powerful complement to ring resonators.

2.2 Resonator design and fabrication

The FP resonators are fabricated on-chip in a 800 nm thick silicon nitride layer and

embedded in a fused silica cladding. The two PCRs are implemented as submicron-

scale sinusoidal corrugations in a waveguide. Each corrugation period corresponds to

a unit cell of the PCR, which is characterized by its length, mean width, and corruga-

tion depth (Figure 2.2a 1 ). The periodic corrugation induces a photonic bandgap that

defines the PCR’s reflection bandwidth (Figure 2.2b); the length of the PCRs (∼100 units

cell per reflector) defines the reflectivity and thus the coupling strength to the waveg-

uide that extends beyond the resonator to the chip’s facets for light coupling. To de-

sign the PCRs, we employ finite element modeling to map the unit cell parameters to

the photonic bandgap’s opening and central frequency (Figure 2.2c), which permits

choosing the desired parameters. In the present case, we choose a constant unit cell
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Figure 2.2 | Design of photonic crystal Fabry-Perot cavities. a, Schematic of a
photonic crystal Fabry-Perot (FP) microresonator (not to scale), composed of pho-
tonic crystal reflectors (PCRs) 1 , adiabatic tapers 2 , linear tapers 3 and intra-
cavity waveguide 4 . b, Left panel: Illustration of a photonic band diagram for
transverse electric (TE) and transverse magnetic (TM) modes. The wavenumber is
given in units ofπ/a where a is the unit cell length. The bandgap, i.e. the reflection
bandwidth is highlighted in white. Right panels: TM mode profiles (electric field
strength) of upper and lower frequency modes of an example PCR unit cell with the
corresponding cell contour overlaid in black (data based on finite element model-
ing) c, Map of the TM bandgap opening and center frequency as function of cor-
rugation depth and mean width of the lattice cell for a fixed PCR period (i.e. cell
length) of 475 nm (data based on finite element modeling). The PCR can be de-
scribed by its trajectory through this design space (where the third dimension, the
cell length, is not shown). d, TM mode family. Upper panel: Measured resonance
linewidths as function of relative mode number µ (cf. main text). Lower panel:
Measured dispersion (cf. main text) of a photonic crystal FP resonator with an
mean free-spectral range FSR = D1/2π = 18.55GHz. For comparison, the disper-
sion of an equivalent ring resonator with same FSR and waveguide cross-section
identical to the FP’s intracavity waveguide is plotted in orange, corresponding to
the intracavity waveguide contribution to the FP resonator’s total dispersion. A fit
based on a coupled-mode description of the PCRs is shown in red (cf. Supplemen-
tary information). e, Histogram of the intrinsic resonance linewidths from d with
a median value of 47 MHz corresponding to an intrinsic Q-factor of 4.0 million.
f, Normal (anomalous) round-trip GDD corresponds to an increasing (decreasing)
effective resonator length with increasing frequency.
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for the main region of the PCR to create a bandgap centered around 1570 nm, the mid-

dle wavelength of our tunable CW laser. Note, that in principle each unit cell could

have a different set of defining parameters, creating a large design space and permit-

ting crafting of highly-customized resonators. An adiabatic taper (Figure 2.2a 2 ) con-

nects the PCRs on both sides to an uncorrugated waveguide and suppresses losses

due to the overlap mismatch between the fundamental guided mode of the uncor-

rugated waveguide and the PCR’s fundamental Bloch mode [166, 167]. Transitioning

from the PCR to the uncorrugated waveguide proceeds by gradually reducing the cor-

rugation depth while simultaneously adjusting the mean width such that the bandgap

center frequency is kept constant [168]. Finally, upon reaching zero-corrugation, the

waveguide linearly tapers up to a width of 1.6µm over length of 200µm to reduce

loss from sidewall-roughness scattering while still keeping a strong mode-confinement

(Figure 2.2a 3 ). A 3400µm long waveguide section forms the resonator cavity between

the 2 PCRs (Figure 2.2a 4 ), defining the resonator’s free-spectral range (FSR), in this

case ∼19 GHz which is within the K-frequency band and directly detectable by a pho-

todiode and a microwave spectrum analyzer.

2.3 Experiments

To characterize the fabricated resonators, we first measure the intrinsic linewidths in

a strongly undercoupled resonator (Figure 2.2d); undercoupling assesses the intrin-

sic cavity loss and permits direct comparison to (equally undercoupled) ring-type res-

onators fabricated through the same process. The PCR unit cell of this resonator is de-

signed to have a period of 475 nm, width of 600 nm and corrugation depth of 300 nm.

Owing to the narrow width of the unit cell, the PCR only supports the fundamental TE

and TM transverse modes, which is desirable for reproducible resonator characteris-

tics. The resonator’s spectrum extends over 300 longitudinal modes and an intrinsic

linewidth of 100 MHz or below is maintained over a bandwidth of 5 THz (40 nm), suffi-

cient to support ultrashort femtosecond pulses. The median intrinsic (undercoupled)

linewidth over the mirror bandwidth (here defined as the spectral interval where the

linewidth is consistently below 100 MHz) is 47 MHz (Figure 2.2e). This corresponds to

a median intrinsic Q-factor of 4.0·106, which is only limited by the ∼0.1 dBcm−1 propa-

gation loss inherent to the commercial platform used to fabricate the samples (cf. Sup-

plementary information), and thus on-par with ring-resonators fabricated through the

same commercial wafer-scale process.

Next, we measure the resonator’s dispersion as shown in Figure 2.2d in terms of the
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integrated dispersion Dint =ωµ−ω0 −µD1, which quantifies the deviation of the reso-

nance frequencies ωµ from a dispersion-free equidistant frequency grid as a function

of the relative mode-number µ. In this representation, anomalous (normal) disper-

sion appears as a convex (concave) curve. The strength of the local dispersion at a

specific frequency can be estimated by choosing D1/(2π) to be the local FSR and ex-

pand Dint ≈ 1
2µ

2D2 around this frequency. Anomalous (normal) dispersion is then in-

dicated by positive (negative) D2. Here, µ is chosen such that µ= 0 coincides with the

center of the reflector’s bandwidth and D1/(2π) is chosen to be approximately the av-

erage FSR over the reflector’s bandwidth. For comparison, Figure 2.2d also shows the

dispersion curve of an equivalent ring-type resonator (with the same FSR, the same

waveguide cross-section as the FP intracavity waveguide and negligible effect of cur-

vature on dispersion), corresponding to the intracavity waveguide contribution to the

FP resonator’s total dispersion; the marked difference between both dispersion curves

shows the dominating impact of the PCRs on the FP resonator’s dispersion. The exact

contribution of the PCRs to the dispersion can be calculated through their complex

reflection coefficient (cf. Supplementary information), which matches well the ob-

servations (also indicated in Figure 2.2d as "Fit"). With the current PCR design, the

resonator provides both normal and anomalous dispersion regimes, independently of

the anomalous background contribution from the intracavity waveguide. This may

be understood as a wavelength-dependent effective reflection depth in the PCRs (Fig-

ure 2.2f).

Moreover, the measured dispersion of the resonance frequencies in Figure 2.2d is free

of strong local deviations such as AMXs which can arise from coupling between fre-

quency degenerate counter-propagating modes or coupling between different trans-

verse mode families. Here, these two mechanisms are absent: in contrast to rings, the

FP resonator has no distinct counter-propagating mode, which leads to the striking

absence of unintentional mode-splitting often observed in rings (cf. Supplementary

information); higher order transverse mode are efficiently suppressed by the single-

mode nature of the PCRs. These features contribute to achieving a smooth anomalous

dispersion, which in conjunction with the high-Q provide favorable conditions for DKS

formation [44].

To generate DKSs, a more strongly coupled resonator with a 15 % shorter input PCR

(but with otherwise identical geometry) and a 56 MHz median total linewidth is used

for more efficient operation. The setup for this experiment is shown in Figure 2.1c: The

resonator is pumped using a tunable laser in the transverse-magnetic (TM) polariza-

tion in the anomalous dispersion regime (local D2/(2π) = 210kHz) at a wavelength
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Figure 2.3 | Dissipative Kerr soliton in a photonic crystal Fabry-Perot resonator.
a, Heat-map compiled from a 100 transmission traces, highlighting multiple pos-
sible intracavity power evolutions as a function of pump detuning. The step-like
features present at∼50 MHz detuning indicate quantized power levels, a canonical
signature of DKS formation. b, Optical spectra of modulation instability (i), single
(ii), 2- (iii) and 3- (iv) soliton states. A dispersive wave is present on the blue-side
of the spectra, due to the local presence of strong normal dispersion. The aux-
iliary laser’s line (cf. Supplementary information), is grayed out for clarity; the
nominal PCR bandwidth is highlighted in white. The spectrum obtained from nu-
merical simulations based on the measured cavity parameters (cf. Supplementary
information) is shown in red, offset by +10 dB, corresponding to a pulse of ∼300 fs.
c, Spectrogram showing the evolution of the mirowave beatnote signal (∼18.5GHz)
as a function of the pump detuning. Overlayed in white is the corresponding res-
onator transmission signal. The insets show the beatnote in the modulation insta-
bility and soliton regime respectively (resolution bandwidth: 100 kHz).
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of 1587 nm (188.9 THz). Repeatedly scanning the pump laser (150 mW on-chip) from

blue- to red-detuned across a resonance, we record the resonator transmission sig-

nals and superpose them in Figure 2.3a. After an initial modulation instability (MI)

state (i), characteristic step-features (ii-iv etc.) are visible, which are indicative of DKS

formation [138]; each step corresponding to an integer numbers of solitons in the res-

onator that can be generated during a laser scan. The corresponding MI spectrum,

the comb spectrum of a single soliton, as well as more structured comb spectra of

multiple-soliton states are shown in Figure 2.3b where the white background highlights

the nominal PCR bandwidth.

Initially all spectra exhibit a periodic modulation of their envelope caused by reflec-

tions between PCR and chip facet, which has been removed before plotting (cf. Supple-

mentary information); although of no concern here, the modulation could be avoided

by anti-reflection coating the chip’s facet, index-matching fluid or evanescent waveg-

uide coupling if necessary. From fitting the single DKS’s spectrum with a sech2 en-

velope (Figure 2.3b (ii)) we estimate the transform-limited soliton pulse duration to

be ∼300 fs. Close to the blue-edge of the resonator’s bandwidth, we observe a disper-

sive wave [54] as expected from the normal dispersion in this spectral region. Due to

a relaxed phase-matching condition outside the high-reflectivity bandwidth, all spec-

tra extend beyond the nominal PCR bandwidth, strongly modulated by the sidelobes

of the PCRs (cf. Supplementary information). To further confirm DKS generation, we

record the microwave pulse repetition rate beatnote as a function of detuning (Fig-

ure 2.3c). As expected, the beatnote transitions from a high-noise to a narrow-linewidth

signal, when entering into a DKS state (with each subsequent transition to a lower

number of solitons corresponding to a slight change of the repetition rate). Finally, we

also observe the formation of soliton crystals [140] (Figure 2.4a), a state commonly ob-

served in traveling-wave microresonators where a self-organized train of equidistant

soliton pulses circulates inside the resonator, (effectively increasing the pulse repeti-

tion rate and hence the comb line spacing by an integer factor). These observations

further establish the standing-wave FP resonator as a DKS platform and strengthen

the link to travelling-wave ring-type resonators.
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Figure 2.4 | Soliton crystals. Recorded spectra of 2, 3 and 6-soliton crystal states
obtained by pumping at slightly different frequencies. The PCR’s nominal band-
width is highlighted by a white background. A snap-shot crystalline distribution
of DKSs in a linear FP cavity is shown as an inset along with an equivalent ring
configuration.

Indeed, the nonlinear dynamics of standing wave-resonators is similar to the travelling-

wave case, with an additional phase-shift due to cross-phase modulation between counter-

propagating waves proportional to the average intracavity power [93, 169]; this effect

can be compensated by a slight change in the pump laser detuning. Different from a

conventional ring-type resonator, the dispersion in the present resonator includes lo-

calized and distributed contributions from the PCRs and the connecting waveguide,

respectively (cf. Supplementary information). Here, as the impact of both, a single

reflection off of a PCR or a single propagation through the waveguide, have negligible

effect on the DKS pulse, they can be lumped together. This implies that established

mean-field models for ring resonators can also be used for describing the present FP

resonators, with the inclusion of the aforementioned phase-shift.

Complementing the experimental study of DKS formation in the new resonator plat-

form we perform numeric simulations based on the frequency-domain formulation

of the LLE [84, 96], which readily permits inclusion of the spectrally-dependent mea-

sured dispersion and linewidths. The simulated spectrum and pulse shape of a single

soliton state are shown in Figure 2.4b. The simulation reproduces all spectral features

(compared to the general envelope in Figure 2.3b (ii-iv) and Figure 2.4a) including the

dispersive wave and the spectral extension beyond the nominal PCR bandwidth. The

simulated pulse shows only minor deviations from DKSs generated in resonators with

unlimited spectral support, corroborating that the reflectors’ bandwidth is sufficient to

support femtosecond DKS pulses.
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2.4 Discussion

In summary, we have shown for the first time DKS formation in a chip-integrated FP

resonator. The resonator’s dispersion is not defined by waveguide dispersion, but by its

PCR mirrors. Through careful design, we achieve a high intrinsic Q-factor of 4 million,

matching that of traveling wave-type resonators fabricated in the same wafer-scale

commercial foundry process. The absence of distinct frequency degenerate counter-

propagating modes in the FP geometry and the single mode nature of the PCRs avoids

unintentional AMXs that can inhibit DKS formation. Under CW-driving, we observe

single, multiple (hence colliding) DKS pulses, as well as soliton crystals. This estab-

lishes integrated FP resonators as a new topology for DKS generation that can add to

and complement existing ring-resonator based approaches. As each unit cell of the

PCRs can, in principle, be individually adjusted, this opens a large design space for fu-

ture tailoring of dispersion, spectrally dependent Q-factors and filters, bandwidth ex-

tension through chirped reflectors or broadband phase-matching, while allowing for

compact integration. Future efforts may benefit from insights obtained in the con-

text of mirrors for ultrafast laser [159, 160] and inverse design approaches [80, 163].

With relevance to quantum photonics, bio-chemical sensing and astronomical spec-

trograph calibration, the presented results provide a resonator platform that, through

customized PCRs, may lead to DKSs at visible wavelengths, and at other wavelengths

that are currently inaccessible due to unsuitable effective waveguide dispersion. Be-

sides DKS, the integrated FP platform could also prove useful for microresonator fre-

quency combs via cascaded four-wave mixing [37] and switching waves [170–172], as

well as integrated optical parametric oscillators [173] and optical harmonic genera-

tion [174]. Immediate further research opportunities leveraging the specific charac-

teristics of the new resonators include dispersion managed solitons [152–154], sinc-,

Nyquist- and zero-dispersion solitons [155–157], nonlinear ‘gain-through-loss’ [175],

slow-light [135], spectral engineering [80, 81] and filter-driven pulse formation [176,

177], which bodes well for integrated broadband and ultrafast light sources.

2.5 Supplementary information

2.5.1 Sample fabrication

The samples were fabricated commercially by LIGENTEC SA using UV optical lithog-

raphy. When fabricating devices with features close to the resolution limit of optical

lithography, deviations between designed and fabricated geometry can arise that, if
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unaccounted for, can significantly alter device performance. In the case of the PCRs

presented in this work, this results in a shift in the mean waveguide width and a re-

duction of the effective corrugation depth of the cells. The parameterized geometry of

the PCRs enables us to correct for this by establishing an interpolation table between

designed and fabricated geometries, which is used to preemptively adjust the mask

in order to achieve the targeted final geometry. Thus, through careful process cali-

bration, it is possible to fabricate the microresonators in a wafer-level process using

optical lithography without the need for e-beam lithography, which photonic crystal

devices often require.

2.5.2 Comparison between ring and Fabry-Perot resonators: Q-factor

and line splitting.

The maximum propagation loss specified by the foundry is 0.2 dBcm−1 at 1550 nm

for a single-mode waveguide (cross-section 1.0× 0.8 µm2), corresponding to a min-

imum intrinsic resonator Q-factor of 1.7 million. We establish our own baseline by

characterizing a set of ring resonators with a waveguide cross-section of 1.6×0.8 µm2,

identical to the intracavity waveguide of our FP microresonators, and measure a me-

dian intrinsic Q-factor of 3.6 million for the TM mode corresponding to a propaga-

tion loss of ∼0.1 dBcm−1. With a radius of 151.5µm (150 GHz free spectral range), the

effect of the ring’s waveguide’s curvature on propagation loss and dispersion is neg-

ligible. In the manuscript, we show that the FP microresonators’ intrinsic Q-factor

exceeds this, demonstrating the negligible additional losses induced by the photonic

crystal reflectors. We attribute the marginal higher Q-factor in the FP microresonators

to the absence of random back-scattering to distinct frequency degenerate counter-

propagating modes, a phenomenon which induces mode-splitting and broadens the

apparent lineshape if the splitting is unresolved.

Fabry-Perot 
resonator

−200
0

0 200

In
te

n
si

ty
 (

a.
u

.)

Frequency offset (MHz)

Ring 
resonator

100-100

In
te

n
si

ty
 (

a.
u

.)

−200 0 200
Frequency offset (MHz)

100-100

a b
1

0

1

Figure 2.5 | Superposed normalized line shapes of 150 GHz ring (a) and Fabry-
Perot microresonators (b).
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The difference between the ring and FP microresonator can be observed in Figure 2.5

where superpositions of the lineshapes recorded between 1520 nm and 1605 nm in ei-

ther geometry are shown. While both ring and FP microresonators have similar intrin-

sic linewidths, the ring resonator (Figure 2.5b) exhibits strong and random line spit-

ting (caused by random backscattering e.g. from surface roughness) whereas the FP

microresonator is virtually free of such effects due to the absence of frequency degen-

erate counter-propagating modes.

2.5.3 Resonator dispersion and coupling

The introduction of a sub-wavelength periodic perturbation via the PCR couples the

forward- and backward-propagating waves together through a coupling coefficient κ

which can be estimated from the half-bandgap opening δω/2 divided by the group

velocity of the unperturbed waveguide [178]:

|κ| ≈ δω

2

dβ

dω

∣∣∣∣
ω=ω0

(2.1)

where ω0 is the bandgap center frequency such that β(ω0) =π/Λ, Λ being the PCR

period. Within the bandgap the eigenvalues of the coupled system are real, and the

waves decay exponentially with rate γ = −
√
|κ|2 −δ2 where δ = β(ω)−π/Λ is the de-

tuning parameter. By introducing the appropriate boundary conditions, the reflection

and transmission coefficients can be obtained as a function of the PCR length l :

r = κ∗ · sinhγl

γ ·coshγl + jδ · sinhγl
(2.2)

t = γ

γ ·coshγl + jδ · sinhγl
(2.3)

tan∠r =−δ
γ
· tanhγl (2.4)

tan∠t =−δ
γ
· tanhγl (2.5)

The round-trip phase of the FP microresonator is then given by the sum of the PCRs’

reflection and the waveguide’s contributions:

φ= 2Lβ+2arctan

(
δ

γ
· tanhγl

)
(2.6)
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where L is the one-way length of the intracavity waveguide, and the input and output

PCRs are assumed to be identical.
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PCR (orange) and a combination thereof computed from eq. 2.2. c, Integrated dis-
persion computed from the complex PCR reflection coefficients shown in b. The
associated resonance linewidths are displayed as a grey zone, showing the region
of relaxed phase matching condition.

The resonator roundtrip GDD = ∂2φ/∂ω2 therefore also contains the sum of the contri-

butions from the PCRs (two reflections) and of the waveguide between the PCRs (back

and forth). It is related to the microresonator dispersion D2 via GDD = −2πD2/D3
1.

For DKS generation we drive the resonator at a wavelength where the waveguide single

pass contribution to the GDD is −445 fs2, and the contribution of the PCR from a single

reflection is −2170 fs2. For both values, τ2
0 ≫ |GDD| for a DKS duration of τ0 ≈ 100fs,

i.e. the effect of a single reflection or a single pass through the waveguide has negligible

impact on the pulse; therefore the effect of both contributions of the dispersion can be

lumped together.

The fit in Figure 2d of the main manuscript is obtained by fitting the resonance fre-

quencies against their mode number µ0 +µ = φ/(2π) using eq. 2.6 and expanding the

wavenumber as β(ω) =β0 +β1(ω−ω0)+ 1
2β2(ω−ω0)2. The input and output PCR con-

tributions are accounted for individually as they have different lengths (the input PCR

is shorter to optimize coupling). The PCR reflection magnitude and phase computed

from the fit parameters are shown in Figure 2.6a and Figure 2.6b respectively, while
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the integrated dispersion (computed by numerically inverting of eq. 2.6) is shown in

Figure 2.6c.

The coupling coefficient κe to the FP microcresonator can be obtained from the trans-

mission coefficient t :

κe ≈
|t |2
TR

= c |t |2
2Lng

(2.7)

where TR is the microresonator round-trip time. The coupling coefficient of an FP

microresonator is

η= κe

κ0 +κe +κ′e
< 1 (2.8)

where κ0 describes the propagation loss and κ′e the finite reflectivity of the second re-

flector; it can be adjusted to 0 < η < 1 and critical coupling (η = 1/2) can be reached.

For symmetric reflectors the coupling coefficient is

η= κe

κ0 +2κe
< 0.5 (2.9)

and critical coupling can only be achieved asymptotically in the limit of strong exter-

nal coupling (κe >> κ0). Note that eq. 2.9 also holds for evanescent coupling (e.g. via

a directional coupler), where the light in the microresonator encounters the coupler

characterized by κe twice per roundtrip; in this case the finite reflectivity of both re-

flectors is included in κ0.

2.5.4 Soliton generation and soliton spectra

In order to tune into the respective solitons states without the requirement for a rapid

tuning scheme (i.e. faster than the resonator thermal decay rate), we use the estab-

lished auxiliary laser method [121]. In this scheme a secondary auxiliary laser (1560 nm)

coupled to the blue-side of a resonance of the TE mode family (main manuscript, Fig-

ure 1c), of similar on-chip power (150 mW) and orthogonal to the TM-polarized pump

light, is used to thermally stabilize the resonator and conveniently mitigate thermal

shifts occurring when tuning the main pump laser by keeping the total intracavity

power nearly constant.

All soliton spectra show a modulated spectral envelope (Figure 2.7a) with a period and

amplitude of ∼207 GHz and ∼1.8 dB respectively. We attribute this to reflections be-

tween the chip facet and the PCR, forming a low-Q cavity in the connecting waveg-

uide. Indeed, the period and amplitude of the modulation correspond to a cavity of

length ∼380µm and a facet reflectivity of approximately 4.5% respectively, which is in
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Figure 2.7 | Fabry-Perot microresonator comb spectra. Optical spectra of mod-
ulation instability (i), single (ii), 2- (iii) and 3- (iv) soliton states before (a) and af-
ter (b) subtraction (in dB scale) of the spectral modulation from the low-Q cavity
shown in red in panel (ii).

excellent agreement with the true facet distance and the expected Fresnel reflection

at the chip-air interface. Figure 2.7 shows the modulation instability and DKS spectra

before and after numerical subtraction (in dB scale) of the modulation envelope. As

can be seen, subtracting this modulation yields the smooth spectra expected of DKS

states while, the remaining structuration of the spectra outside of the nominal PCR

bandwidth (highlighted in white) is inherent to the intracavity spectra and arises from

the discontinuous dispersion profile created by the PCR side-lobes (see. Figure 2.6c).

The correction described above is applied to all spectra in Figure 3b and 4 of the main

manuscript.

2.5.5 Numerical simulation

For the numerical simulation presented in the manuscript, the frequency-domain for-

mulation of the Lugiato–Lefever Equation (LLE) for standing wave resonators was used [93]:

∂aµ
∂τ

=−
κµ/κ0 + iζµ−2i

∑
µ
′
|aµ′ |

aµ+ i
∑
µ
′ ,µ′′

aµ′ aµ′′ a
∗
µ
′+µ′′−µ+δ0µ f (2.10)

where aµ denote the normalized field amplitudes, κµ the total linewidth of modeµ and

f the normalized pump power This equation only differs from the traveling wave case

by the additional phase shift −2i
∑
µ
′ |aµ′ |, which arises from the cross-phase modu-
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Chapter 2. Dissipative Kerr-solitons in integrated Fabry-Perot microresonators

lation between counter-propagating waves and which can be compensated for by the

normalized pump detuning ζµ. The use of this frequency-domain formulation of the

LLE enables straight-forward inclusion of arbitrary dispersion and linewidth profiles —

such as those exhibited by our FP microresonators and shown in Figure 2.6c — though

the mode-dependent loss κµ/κ0 and detuning ζµ = 2(ωµ−ωp −µD1)/κ0 terms respec-

tively.
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Figure 2.8 | Numerical Simulation. a, Simulated intracavity (blue), simulated out-
coupled (red) and experimentally measured (orange) spectra. b, Integrated disper-
sion expanded around the pumped mode, as used in eq. 2.10 for the simulation
results shown in a.

To obtain the outcoupled spectrum as measured experimentally, one must multiply

the intracavity spectrum by the output PCR transmission (|tout |2 = 1−|rout |2). The sim-

ulated intracavity and outcoupled spectra as well the experimentally recorded spec-

trum are compared in Figure 2.8a showing excellent match between simulation and

experiment. Figure 2.8b shows the integrated dispersion profile expanded around the

pumped mode as used in eq. 2.10.
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3.1. Introduction

Abstract

Frequency combs from continuous-wave-driven Kerr-nonlinear microresonators have

evolved into a key photonic technology with applications from optical communication

to precision spectroscopy. Essential to many of these applications is the control of the

comb’s defining parameters, i.e., carrier-envelope offset frequency and repetition rate. An

elegant and all-optical approach to controlling both degrees of freedom is the suitable

injection of a secondary continuous-wave laser into the resonator onto which one of

the comb lines locks. Here, we study experimentally such sideband injection locking

in microresonator soliton combs across a wide optical bandwidth and derive analytic

scaling laws for the locking range and repetition rate control. As an application example,

we demonstrate optical frequency division and repetition rate phase-noise reduction to

three orders of magnitude below the noise of a free-running system. The presented results

can guide the design of sideband injection-locked, parametrically generated frequency

combs with opportunities for low-noise microwave generation, compact optical clocks

with simplified locking schemes and more generally, all-optically stabilized frequency

combs from Kerr-nonlinear resonators.

3.1 Introduction

Continuous-wave (CW) coherently-driven Kerr-nonlinear resonators can create tem-

porally structured waveforms that circulate stably without changing their temporal or

spectral intensity profile. The out-coupled optical signal is periodic with the resonator

roundtrip time Trep and corresponds to an optical frequency comb [4, 37, 179–181],

i.e. a large set of laser frequencies spaced by the repetition rate frep = T −1
rep. One im-

portant class of such stable waveforms are CW-driven dissipative Kerr-solitons (DKSs),

which have been observed in fiber-loops [112], traveling- and standing-wave microres-

onators [44, 98] and free-space cavities [182]. In microresonators these soliton micro-

combs [110] provide access to low-noise frequency combs with ultra-high repetition

rates up to THz frequencies, enabling novel applications in diverse fields including op-

tical communication [144, 183], ranging [146, 147, 184], astronomy [150, 151], spec-

troscopy [149], microwave photonics [45, 148], and all-optical convolutional neural

networks [185].

In a CW-driven microresonator, the comb’s frequency components are defined by fµ =
fp +µ frep, where fp denotes the frequency of the central comb line and µ is the in-

dex of the comb line with respect to the central line (µ is also used to index the res-
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Chapter 3. Sideband injection locking in microresonator frequency combs

Figure 3.1 | Principles of sideband injection locking. a, In a free-running comb,
the central comb line is defined by the pump laser around which equidistant comb
lines, spaced by the free-running repetition rate f 0

rep, are formed. If a secondary
injection laser of frequency ω′ is brought close to one of the comb lines (within
injection locking range), then the comb locks to the injecting laser, modifying the
repetition rate as indicated. b Outside the locking range, frep = f 0

rep is unaffected
by the secondary laser. Inside the locking range, it follows a characteristic tuning
behavior with a linear dependence on the injecting laser frequency ω′.

onances supporting the respective comb lines). For many applications [4, 181], it is

essential to control both degrees of freedom in the generated frequency comb spec-

tra, i.e. the repetition rate frep and the central frequency fp (which together define

the comb’s carrier-envelope offset frequency). Conveniently, for Kerr-resonator based

combs, fp is defined by the pump laser frequency fp =ωp/(2π). However, the repetition

rate frep depends on the resonator and is subject to fundamental quantum mechanical

as well as environmental fluctuations.

A particularly attractive and all-optical approach to controlling frep is the injection

of a secondary CW laser of frequency ω′ into the resonator, demonstrated numeri-

cally [186] and experimentally [187]. Ifω′ is sufficiently close to one of the free-running

comb lines (sidebands) fµ ≈ω′/(2π), i.e., within locking range, the comb will lock onto

the secondary laser, so that fµ → ω′/(2π). The repetition rate is then frep = (ωp −
ω′)/(2πµ′), with µ′ denoting the index of the closest resonance to which the secondary

laser couples, cf. Figure 3.1a. This frequency division [188] of the frequency interval

defined by the two CW lasers (as well as their relative frequency noise) by the integer

µ′ can give rise to a low-noise repetition rate frep. In previous work, sideband injec-

tion locking has been leveraged across a large range of photonic systems, including
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3.2. Results

for parametric seeding [189, 190], dichromatic pumping [191], optical trapping [186,

192, 193], synchronization of solitonic and non-solitonic combs [142, 194], soliton

crystals [187], soliton time crystals [143], multi-color solitons [195] and optical clock-

works by injection into a DKS dispersive wave [81]. Related dynamics also govern

the self-synchronization of comb states [196, 197], the binding between solitons [198],

modified soliton dynamics in the presence of Raman-effect [199] and avoided mode-

crossings [200], as well as the respective interplay between co- [201] and counter-propagating

solitons [202–204] and multi-soliton state-switching [205]. Moreover, sideband injec-

tion locking is related to modulated and pulsed driving for broadband stabilized combs [93,

94, 150], as well as spectral purification and non-linear filtering of microwave signals [206,

207] via DKS. Despite the significance of sideband injection locking, a broadband char-

acterization and quantitative understanding of its dependence on the injecting laser

are lacking, making the design and implementation of such systems challenging.

In this work, we study the dynamics of sideband injection locking with DKS combs.

Our approach leverages high-resolution coherent spectroscopy of the microresonator

under DKS operation, enabling precise mapping of locking dynamics across a large

set of comb modes, including both the central region and wing of the comb. We de-

rive the sideband injection locking range’s dependence on experimentally accessible

parameters and find excellent agreement with the experimental observation and with

numeric simulation. Specifically, this includes the square dependence on the mode

number, the square-root dependence on injection laser and DKS spectral power, as

well as, the associated spectral shifts.

In addition, we demonstrate experimentally optical frequency division and repetition

rate phase-noise reduction in a DKS state to three orders of magnitude below the noise

of a free-running system.

3.2 Results

To first explore the sideband injection locking dynamics experimentally, we generate

a single DKS state in a silicon nitride ring-microresonator. In the fundamental TE

modes, the resonator is characterized by a quality factor of Q ≈ 2 million (linewidth

κ/(2π) ≈ 100MHz), a free-spectral range (FSR) of D1/(2π) = 300GHz and exhibits anoma-

lous group velocity dispersion D2/(2π) = 9.7MHz so that the resonance frequencies are

well-described by ωµ =ω0 +µD1 +µ2 D2
2 (1.6×0.8µm2 cross-section, 76µm radius). To

achieve deterministic single soliton initiation, the microresonator’s inner perimeter is

weakly corrugated [74, 134]. The resonator is critically coupled and driven by a CW
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Chapter 3. Sideband injection locking in microresonator frequency combs

Figure 3.2 | Soliton sideband injection locking. a, Single DKS comb spectrum, fol-
lowing a sech2 envelope, with a full-width-at-half-maximum (FWHM) of 5.2 THz,
corresponding to a ∼60 fs pulse. The secondary laser is introduced in the spectral
wing of the soliton and scanned across the µ′ th sideband. b, Repetition rate beat-
note observed while the secondary laser is scanned across the µ′ th sideband. The
locking bandwidth corresponds to the region of linear evolution of the repetition
rate beatnote. c, Spectra of two sideband injection-locked DKS states from either
end of the locking range, exhibiting a differential spectral shift of 860 GHz. Note
that a filter blocks the central pump component ωp.
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3.2. Results

pump laser (∼300 kHz linewidth) with on-chip power of 200 mW at 1557 nm (pump

frequency ωp/(2π) = 192.5THz) [44]. The generated DKS has a 3 dB bandwidth of ap-

proximately 5.2 THz (cf. Figure 3.2a) corresponding to a bandwidth limited pulsed of

∼60 fs duration. The soliton spectrum closely follows a sech2 envelope and is free of

dispersive waves or avoided mode crossings. The spectral center of the soliton does not

coincide with the pump laser but is slightly shifted towards longer wavelengths due to

the Raman self-frequency shift [208, 209].

A secondary CW laser (∼300 kHz linewidth), tunable both in power and frequency (and

not phase-locked in any way to the first CW laser), is then combined with the pump

laser upstream of the microresonator and scanned across the µ′ th sideband of the soli-

ton microcomb, as illustrated in Figure 3.2a. The spectrogram of the repetition rate

signal recorded during this process is shown in Figure 3.2b, for µ′ = −13, and exhibits

the canonical signature of locking oscillators [210] (see Section 3.4.2 of the Supplemen-

tary information, for details on the measurement of frep). Specifically, the soliton rep-

etition rate frep is observed to depend linearly on the auxiliary laser frequency ω′ over

a locking range δlock following frep = 1
2π

ωp−ω′
µ′ . Within δlock, the soliton comb latches

onto the auxiliary laser, such that the frequency of the comb line with index µ′ is equal

to the secondary laser frequency. The locking behavior is found to be symmetric with

respect to the scanning direction, and no hysteresis is observed. Figure 3.2c shows the

optical spectra of two sideband injection-locked DKS states, with the secondary laser

positioned close to the respective boundaries of the locking range. A marked shift of

the spectrum of 860 GHz is visible when going from one state to the other. As we dis-

cuss below and in Section 3.4.3 of the Supplementary information, the spectral shift in

the presence of non-zero group velocity dispersion modifies the soliton’s group veloc-

ity and provides a mechanism for the DKS to adapt to the repetition rate imposed by

the driving lasers.

Having identified characteristic features of sideband injection locking in our system,

we systematically study the injection locking range and its dependence on the mode

number µ′ to which the secondary laser is coupled. To this end, a frequency comb

calibrated scan [211] of the secondary laser’s frequency ω′ across many DKS lines is

performed. The power transmitted through the resonator coupling waveguide is si-

multaneously recorded. It contains the ω′-dependent transmission of the secondary

laser as well as the laser’s heterodyne mixing signal with the DKS comb, which permits

retrieving the locking range δlock.
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Chapter 3. Sideband injection locking in microresonator frequency combs

Figure 3.3 | DKS sideband injection locking dynamics. a, Transmission obtained
when the secondary laser frequency ω′ is scanned in the vicinity of comb line
µ′ =−3. The trace contains features indicating the position of the microresonator
resonance frequency ω−3/(2π) and of the soliton comb line frequency f−3 as well
as the sideband injection locking range (see main text for details). b, Similar to
a but for all µ′ that can be reached by the scanning laser frequency ω′. In this
representation, the resonance frequencies form a quadratic integrated dispersion
profile (due to anomalous dispersion) while the equidistant soliton microcomb
lines (highlighted in gray and expanded in panel b) form a straight line, enabling
retrieval of pump laser detuning and microcomb repetition rate (see main text for
details). c, Zoom into b, focusing on the vicinity of the comb lines. The spec-
tral dependence of the locking range can be observed (cf. panel a and see main
text for details). d, Locking range as a function of the relative mode number µ′.
The measured data closely follows the predicted scaling (cf. main text). The grey
area indicates the uncertainty we expect from 10% detuning fluctuations during
the recording procedure. e, Locking range in terms of the repetition rate fr ep for
µ′ =−13 as a function of secondary pump power (estimated on-chip power). Anal-
ogous to d, the uncertainty is approx. ±4 %.
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Figure 3.3a shows an example of the recorded transmission signal where the scanning

laser’s frequency ω′ is in the vicinity of the comb line with index µ′ = −3. When the

laser frequency ω′ is sufficiently close to the DKS comb line, the heterodyne oscilla-

tions (blue trace) can be sampled; when ω′ is within the locking range δlock, the het-

erodyne oscillations vanish, and a linear slope is visible, indicating the changing phase

between the comb line and the secondary laser across the injection locking range. In

addition to the heterodyne signal between the comb line and laser, a characteristic res-

onance feature, the so-called C -resonance [212, 213], representing (approximately) the

resonance frequency ωµ is observed.

The set of equivalent traces for all comb lines µ′ in the range of the secondary (scan-

ning) laser is presented in Figure 3.3b as a horizontal stack. For plotting these segments

on a joint vertical axis, ωp +µ′D1 has been subtracted from ω′. In this representation,

the parabolic curve (blue line in Figure 3.3b) connecting the C -resonances signifies the

anomalous dispersion of the resonator modes ωµ. In contrast, the equidistant comb

lines form a straight feature (grey highlight), of which a magnified view is presented in

Figure 3.3c. Due to the Raman self-frequency shift, the free-running repetition rate of

the DKS comb f 0
rep is smaller than the cavity’s FSR D1/(2π), resulting in the negative

tilt of the line. Here, to obtain a horizontal arrangement of the features, ωp +µ′2π f 0
rep

has been subtracted fromω′. The locking range δlock corresponds to the vertical extent

of the characteristic locking feature in Figure 3.3c. Its value is plotted as a function of

the mode number in Figure 3.3d, revealing a strong mode number dependence of the

locking range with local maxima (almost) symmetrically on either side of the central

mode. The asymmetry in the locking range with respect to µ′ = 0 (with a larger locking

range observed for negative values of µ′) coincides with the Raman self-frequency shift

of the soliton spectrum (higher spectral intensity for negativeµ). Next, we keepµ′ fixed

and measure the dependence of δlock on the power of the injecting laser P ′. As shown

in Figure 3.3e, we observe an almost perfect square-root scaling δlock ∝
p

P ′, revealing

the proportionality of the locking range to the strength of the injected field.

The observed scaling of the locking range may be understood in both the time and

frequency domain. In the time domain, the beating between the two driving lasers

creates a modulated background field inside the resonator, forming an optical lattice

trap for DKS pulses [186, 192]. Here, to derive the injection locking range δlock, we

extend the approach proposed by Taheri et al. [190], which is based on the momentum

p = ∑
µµ|aµ|2 = µ̄

∑
µ |aµ|2 of the waveform (in a co-moving frame), where aµ is the

complex field amplitude in the mode with index µ, normalized such that |aµ|2 scales

with the photon number and µ̄ the photonic center of mass in mode number/photon
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Chapter 3. Sideband injection locking in microresonator frequency combs

momentum space. As we show in the Supplementary information, Section 3.4.3, the

secondary driving laser modifies the waveform’s momentum, thereby its propagation

speed and repetition rate. For the locking range of the secondary laser, we find

δlock =
2

π
µ′2ηD2

√
P ′Pµ′∑
µPµ

ωp

ωµ′
, (3.1)

and for the repetition rate tuning range

δ frep = δlock/|µ′|, (3.2)

where η is the coupling ratio, and the Pµ refer to the spectral power levels of the comb

lines with index µ measured outside the resonator. The spectral shift of the spectrum

in units of mode number µ is 2πδ frep/D2. In the Supplementary information, Sec-

tion 3.4.1, we recast eq. 3.2 in terms of the injection ratio IR = P ′/Pµ′ to enable compari-

son with CW laser injection locking [214]. The results in Eqs. 3.2 and 3.1 may also be ob-

tained in a frequency domain picture (see Supplementary information, Section 3.4.3),

realizing that the waveform’s momentum is invariant under Kerr-nonlinear interaction

(neglecting the Raman effect) and hence entirely defined by the driving lasers and the

rate with which they inject photons of specific momentum into the cavity (balancing

the cavity loss). If only the main pump laser is present, then µ̄ = 0. However, in an

injection-locked state, depending on phase, the secondary pump laser can coherently

inject (extract) photons from the resonator, shifting µ̄ towards (away from) µ′. This is

equivalent to a spectral translation of the intracavity field, consistent with the experi-

mental evidence in Figure 3.2c.

To verify the validity of eq. 3.1 and 3.2, we perform numeric simulation based on the

Lugiato-Lefever Equation (see Section 3.4.4 of the Supplementary information). We

find excellent agreement between the analytic model and the simulated locking range.

We note that eq. 3.1 and 3.2 are derived in the limit of low injection power, which we

assume is the most relevant case. For large injection power, the spectrum may shift

substantially and consequently affect the values of Pµ. Interestingly, while this effect

leads to an asymmetric locking range, the extent of the locking range is only weakly af-

fected as long as the spectrum can locally be approximated by a linear function across

a spectral width comparable to the shift. Injection into a sharp spectral feature (dis-

persive wave) is studied by Moille et al. [81]

The values of Pµ do not generally follow a simple analytic expression and can be influ-

enced by the Raman effect and higher-order dispersion. While our derivation accounts
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3.2. Results

Figure 3.4 | Optical frequency division. a, Repetition rate phase noise of the
soliton microcomb in the free-running and locked states, with values of µ′ rang-
ing from 1 to 42. At higher offset frequencies (>100 kHz), the phase noise of the
electro-optic modulation used to down-mix the 300 GHz repetition rate signal
to detectable frequencies (see Supplementary information) limits the measure-
ment. b, Repetition rate beat note recorded in the free-running state. c, Repeti-
tion rate beatnote recorded in the locked state (µ′ = 42). The sidebands at approx.
±300 kHz are an artifact of the electro-optic modulation-based repetition rate de-
tection scheme.

for the values of Pµ (e.g., for the Raman effect aµ and Pµ are increased (reduced) for µ

below (above) µ= 0), it does not include a physical description for Raman- or higher-

order dispersion effects; these effects may further modify the locking range.

Taking into account the spectral envelope of the DKS pulse as well as the power of

the injecting laser (which is not perfectly constant over its scan bandwidth), we fit the

scaling δlock ∝ µ′2
√

P ′Pµ′ to the measured locking range in Figure 3.3d, where we as-

sume Pµ′ to follow an offset (Raman-shifted) sech2-function. The fit and the measured

data are in excellent agreement, supporting our analysis and suggesting that the Ra-

man shift does not significantly change the scaling behavior. Note that the effect of the

last factor in eq. 3.1 is marginal, and the asymmetry in the locking range is due to the

impact of the Raman effect on Pµ. It is worth emphasizing that our analysis did not

assume the intracavity waveform to be a DKS state and we expect that the analytic ap-
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Chapter 3. Sideband injection locking in microresonator frequency combs

proach can in principle also be applied to other stable waveforms, including those in

normal dispersion combs [194, 215]. Indeed, as we show numerically in Section 3.4.4

of the Supplementary information, sideband-injection locking is also possible for nor-

mal dispersion combs. Here, in contrast to a DKS, sideband laser injection is found

to have a strong impact on the spectral shape (not only spectral shift). Therefore, al-

though the underlying mechanism is the same as in DKS combs, eq. 3.1 and eq. 3.2 do

not generally apply (in the derivation, it is assumed that the spectrum does not change

substantially).

Finally, as an example application of sideband injection locking, we demonstrate opti-

cal frequency division, similar to previous work [81], and measure the noise reduction

in frep (Figure 3.4a). With a growing separation between the two driving lasers (increas-

ing µ′), the phase noise is lowered by a factor of µ′2, resulting in a phase noise reduc-

tion of more than 3 orders of magnitude (with respect to the free-running case) when

injecting the secondary laser into the mode with index µ′ = 42 (limited by the tuning

range of the secondary laser), and this without any form of stabilization of either the

pump or secondary laser. Figure 3.4b and c compare the repetition rate beatnote of the

free-running and injection-locked cases.

3.3 Conclusion

In conclusion, we have presented an experimental and analytic study of sideband in-

jection locking in DKS microcombs. The presented results reveal the dependence of

the locking range on the intracavity spectrum and on the injecting secondary laser,

with an excellent agreement between experiment and theory. While our experiments

focus on the important class of DKS states, we emphasize that the theoretical frame-

work from which we derive the presented scaling laws is not restricted to DKSs and may

potentially be transferred to other stable waveforms. Our results provide a solid basis

for the design of sideband injection-locked, parametrically generated Kerr-frequency

combs and may, in the future, enable new approaches to low-noise microwave gen-

eration, compact optical clocks with simplified locking schemes, and more generally,

stabilized low-noise frequency comb sources from Kerr-nonlinear resonators.
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3.4. Supplementary information

3.4 Supplementary information

3.4.1 Locking range equation in terms of the injection ratio

Eqs. 1 and 2 of the main text can be recast in terms of the injection ratio IR = P ′/Pµ′

and read:

δlock =
2

π
µ′2ηD2

Pµ′∑
µPµ

ωp

ωµ′

p
IR ∝

p
IR (3.3)

δ frep = 2

π
|µ′|ηD2

Pµ′∑
µPµ

ωp

ωµ′

p
IR ∝

p
IR (3.4)

3.4.2 Measuring the comb’s repetition rate

The soliton comb’s repetition rate, too high for direct detection, is measured by split-

ting off a fraction of the pump light and phase-modulating it with frequency fm =
17.68GHz, creating an electro-optic (EO) comb spanning∼600 GHz which is then com-

bined with the DKS light (Figure 3.5). A bandpass filter extracts the 17th line of the EO

comb and the first sideband of the DKS comb, resulting in a beatnote at a frequency

fs = frep −17 fm from which the soliton repetition rate frep can be recovered, similar to

[216].

CW

f
m

EDFA

Si3N4 
microresonator

OSA

EOM

frep detection

CTL
PD

OSC

BPF
PD

ESA

Figure 3.5 | Experimental setup. A single-DKS state is generated inside a silicon
nitride microring resonator using approximately 200 mW of pump power. A sec-
ondary continuously tunable laser is combined with the pump light before the
cavity in order to investigate the sideband injection locking dynamics. In order to
monitor the ∼300 GHz DKS repetition rate, we use a hybrid electro-optic detec-
tion scheme, similar to [216]. EDFA: erbium-doped fiber amplifier; CW: continu-
ous wave laser; CTL: continuously tunable laser; PD: photodetector; OSC: oscillo-
scope; ESA: electrical spectrum analyzer; OSA: optical spectrum analyzer; EOM:
electro-optic modulator; BPF: band-pass filter.
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3.4.3 Analytic description of sideband injection locking

Definitions

We start from the dimensionless form of the Lugiato-Lefever equation (LLE) [83, 88],

describing the dynamics in a frame moving with the (angular) velocity d1 (the angular

interval [0,2π] corresponds to one resonator round-trip):

∂Ψ

∂τ
=− (1+ iζ0)Ψ+ i |Ψ|2Ψ+ i

N≥2∑
n=2

(−i )n dn

n!

∂nΨ

∂θn
+ f , (3.5)

where θ is the azimuthal coordinate, τ = κt/2 denotes the normalized time (κ being

the cavity decay rate/total linewidth), Ψ(θ,τ) is the waveform, ζ0 = 2(ω0 −ωp)/κ the

normalized pump detuning, dn = 2Dn/κ the normalized dispersion coefficients and

f = s
√

8ηg /κ2 a pump field where |s|2 = Pp

ℏωp
is the pump photon flux. The microres-

onator’s coupling rate to the bus waveguide is κext and η = κext/κ is the microres-

onator’s coupling coefficient. Let aµ(τ) be the normalized complex mode amplitudes

such that:

Ψ(θ,τ) =∑
µ

aµ(τ)e iµθ, (3.6)

aµ(τ) = 1

2π

∫ 2π

0
Ψ(θ,τ)e−iµθdθ, (3.7)

where µ is the relative mode number and aµ is related to the circulating intracavity

power Pµ via |aµ|2 = 2g
κ

Pµ
ℏωµ

2π
D1

. Here g = ℏω2
0cn2/(n2

0Veff) is the nonlinear coupling co-

efficient, where c is the speed of light, n0 the refractive index, n2 the nonlinear index,

and Veff the mode volume.

The momentum p of the intra-cavity fieldΨ(θ,τ) is defined as:

p := 1

2

1

2π

∫ 2π

0

[
Ψ∗

(
i
∂Ψ

∂θ

)
+ c.c.

]
dθ (3.8)

=∑
µ

µ|aµ|2 (3.9)

= µ̄∑
µ

|aµ|2 = µ̄N (3.10)

where we used eq. 3.6, µ̄ denotes the photonic center of mass and N = ∑
µ |aµ|2 scales

with the number of photons in the cavity.
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Waveform velocity, spectral shift and repetition rate

We assume a waveform Ψ with a stable non-flat temporal intensity profile inside the

resonator, i.e. the shape of the intensity profile does not change. The Waveform Ψ

may not be static (in the frame moving with angular velocity d1), but move with an

additional angular velocity component θ̇, so that

|Ψ(θ,0)|2 = |Ψ(θ+ θ̇τ,τ)|2 . (3.11)

In a new coordinate frame (θ′ = θ−θ̇τ, τ′ = τ,Ψ′(θ′,τ′) =Ψ(θ,τ)) that is co-moving with

the intensity envelope, |Ψ′|2 will be static so that ∂|Ψ′|2/∂τ′ = 0. For the derivatives we

find
∂Ψ′

∂θ′
= ∂Ψ

∂θ

∂θ

∂θ′
+ ∂Ψ

∂τ

∂τ

∂θ′
= ∂Ψ

∂θ
(3.12)

and
∂Ψ′

∂τ′
= ∂Ψ

∂θ

∂θ

∂τ′
+ ∂Ψ

∂τ

∂τ

∂τ′
= θ̇ ∂Ψ

∂θ
+ ∂Ψ

∂τ
(3.13)

so that

0 = ∂
∣∣Ψ′∣∣2

∂τ′
= ∂Ψ′

∂τ′
Ψ′∗+Ψ′∂Ψ

′∗

∂τ′

= ∂Ψ

∂τ
Ψ∗+ θ̇ ∂Ψ

∂θ
Ψ∗+Ψ∂Ψ

∗

∂τ
+ θ̇Ψ∂Ψ

∗

∂θ

=
(
∂Ψ

∂τ
Ψ∗+Ψ∂Ψ

∗

∂τ

)
+ θ̇

(
∂Ψ

∂θ
Ψ∗+Ψ∂Ψ

∗

∂θ

)
=

(
∂Ψ

∂τ
Ψ∗+Ψ∂Ψ

∗

∂τ

)
+ θ̇ ∂ |Ψ|2

∂θ
.

(3.14)

By replacing the time derivatives with the right side of the LLE and only accounting for

second-order dispersion (dn = 0,∀n ≥ 3), one finds

∂Ψ

∂τ
Ψ∗+Ψ∂Ψ

∗

∂τ
=−2|Ψ|2 + fΨ∗+

f ∗Ψ+ i d2

2

(
Ψ
∂2Ψ∗

∂θ2
−Ψ∗∂

2Ψ

∂θ2

)
. (3.15)

Under the assumption that the pump and loss term cancel in eq. 3.15, eq. 3.14 becomes

0 = i d2

2

(
Ψ
∂2Ψ∗

∂θ2
−Ψ∗∂

2Ψ

∂θ2

)
+ θ̇ ∂ |Ψ|2

∂θ

= i d2

2

∂

∂θ

(
Ψ
∂Ψ∗

∂θ
−Ψ∗∂Ψ

∂θ

)
+ θ̇ ∂ |Ψ|2

∂θ
.

(3.16)
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Considering the indefinite integral
∫

dθ results in

i d2

2

(
Ψ
∂Ψ∗

∂θ
−Ψ∗∂Ψ

∂θ

)
+ const = θ̇ |Ψ|2 . (3.17)

In the following, we take const = 0, which in case of a non-zero value corresponds to

a suitable (re-)definition of the moving frame. Next, integrating according to 1
2π

∫ 2π
0 dθ

and using Parseval’s theorem
∑
µ |aµ|2 = 1

2π

∫ 2π
0 |Ψ|2dθ = N gives

θ̇ = d2
p

N
= d2µ̄ (3.18)

The change in the repetition rate δ frep = κ
2

θ̇
(2π) , hence

δ frep = D2

2π

p

N
= D2

2π
µ̄ , (3.19)

the change of the repetition rate is proportional to the shift of the photonic center of

gravity µ̄ away from µ= 0.

Sideband injection locking: Time domain description

In the case of a pump laser at frequencyωp and a secondary laser at frequencyω′ close

to ωµ′ , the pump field takes the form:

f → f (θ,τ) = fp + f ′e iµ′θe−i 2/κ(ω′−ωp−µ′D1)τ (3.20)

= fp + f ′e iµ′θe−i ζ̃τ (3.21)

where ζ̃= 2/κ(ω′−ωp−µ′D1) is a term describing the mismatch between the microres-

onator FSR and the grid defined by the pump and secondary lasers.

From ref. [186], eq. 26, it follows that the force on the waveformΨ due to the presence

of the secondary pump line is:

dp

dτ
=−2p +µ′

[
f ′e−i ζ̃τ 1

2π

∫ 2π

0
Ψ∗e iµ′θdθ+ .c.c

]
(3.22)

We recognize that the integral term is the Fourier transform of the intracavity field,

such that:

dp

dτ
=−2p +µ′

[
f ′e−i ζ̃τa∗

µ′ +c.c.
]

(3.23)

=−2p +2µ′| f ′||aµ′ |cos(ζ̃τ+∠aµ′ −∠ f ′) (3.24)
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We assume thatΨ is a stable waveform, moving at an angular velocity θ̇ within the LLE

reference frame, which itself moves with d1. In a suitable (θ′,τ′)-coordinate system,

the waveformΨ′(θ′,τ′) is static (does not move), as described in Section 3.4.3. For the

relation between the Fourier transforms of Ψ and Ψ′ we find that aµ = a′
µexp(−iµθ̇τ)

and therefore ∠aµ′ =∠a′
µ′ −µ′θ̇τ. After substitution of the angle we find

dp

dτ
=−2p +2µ′| f ′||aµ′ |cos(∠a′

µ′ −∠ f ′+ (ζ̃−µ′θ̇)τ) (3.25)

We search for a steady state solution in which the momentum is constant dp/dτ = 0.

As, in a steady comb state
∂a′

µ

∂τ = 0 (and f ′ does not depend on time), time indepen-

dence is achieved when θ̇ = ζ̃/µ′, i.e. the waveform must be moving at the velocity

fixed by the pump and auxiliary laser detuning. Therefore, the momentum is purely a

function of the relative phase between the secondary laser and the waveform’s respec-

tive spectral component µ′:

p =µ′| f ′||aµ′ |cos(∠a′
µ′ −∠ f ′) (3.26)

hence
p ∈ [−µ′| f ′||aµ′ |;µ′| f ′||aµ′ |]

or

µ̄ ∈
[
−µ′ | f ′||aµ′ |

N
;µ′ | f ′||aµ′ |

N

] (3.27)

With eq. 3.19, this means that the repetition rate range in the injection-locked state is

δ frep = 2|µ′|D2

2π

| f ′||aµ′ |
N

≈ 4|µ′|D2

p
κext

κ

√
P ′Pµ′∑
µPµ

ω0

ωµ′

= 4|µ′|ηD2

√
P ′Pµ′∑
µPµ

ω0

ωµ′

(3.28)

and the locking range is given by

δlock = |µ′| frep = 4µ′2ηD2

√
P ′Pµ′∑
µPµ

ω0

ωµ′
(3.29)

where the power levels P ′ and Pµ are the power levels measured outside the resonator.
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Chapter 3. Sideband injection locking in microresonator frequency combs

The approximation in the second line of eq. 3.29 assumes that the mean frequency

of the photons in the cavity is approximately ω0. Note that Pµ′ and P0 can readily be

measured via a drop port; however, in a through-port configuration such as the one

used in our experiment, it may be buried in residual pump light. For a smooth optical

spectrum, their values may also be estimated based on neighboring comb lines for a

smooth optical spectrum.

Sideband injection locking: Frequency domain description

In the sideband injection-locked state, the nonlinear dynamics in the resonator may

be described by the following set of coupled mode equations:

∂a′
µ

∂τ
=−

(
1+ i

2

κ
(ωµ−ωp −µωR)

)
a′
µ

+ i
∑
α,β

a′
αa′

βa′∗
α+β−µ

+δ0µ fp +δµ′µ f ′

(3.30)

Here, the a′
µ represent the modes with the frequencies ωp +µωR = 2π frep, where ωR

is the actual repetition rate of the comb that may be different from D1. Note that the

a′
µ correspond to the a′

µ of Section 3.4.3. In a steady comb state
∂a′

µ

∂τ
= 0, so that a

fixed phase relation between modes a′
µ and the external driving fields f and f ′ exists.

We now consider only the field of the waveform, which we again denote with a′
µ for

simplicity (Note that in a DKS, the separation of the DKS field at mode µ= 0 from that

of the background is formally possible owing to their approximate phase shift of π/2).

The rate at which photons are added to the waveform by the driving lasers is

∂N0

∂τ

∣∣∣∣
fp

= a′∗
0 ∂t a′

0 + c.c. = a′∗
0 fp + c.c.

= 2|a′
0|| fp|cos(∠a′

0 −∠ fp)

(3.31)

for the main driving laser, and

∂Nµ′

∂τ

∣∣∣∣
f ′
= a′∗

µ′∂t a′
µ′ + c.c. = a′∗

µ′ f ′+ c.c.

= 2|a′
µ′ || f ′|cos(∠a′

µ′ −∠ f ′)
(3.32)

for the secondary driving laser. Photons are added or subtracted from the respective

mode depending on the relative differential phase angles ∠a′
0 −∠ fp and ∠a′

µ′ −∠ f ′.
While ∠a′

0−∠ fp ≈ 0 for the main driving laser, ∠a′
µ′−∠ f ′ (for the secondary laser) can
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take all values from 0 to π during sideband injection locking. In the steady state, the

cavity losses are balanced by the lasers so that

N =∑
µ

Nµ = ∂N0

∂τ

∣∣∣∣
fp

+ ∂Nµ′

∂τ

∣∣∣∣
f ′

(3.33)

The photonic center of gravity of the photons injected into the cavity is

µ̄=
0 · ∂N0

∂τ

∣∣∣
fp
+µ′ · ∂Nµ′

∂τ

∣∣∣
f ′

∂N0
∂τ

∣∣∣
fp
+ ∂Nµ′

∂τ

∣∣∣
f ′

=µ′ |aµ′ | | f ′|cos(∠a′
0 −∠ f ′)∑

µNµ
(3.34)

For clarity, we note that µ̄ does not change when photons are transferred through

Kerr-nonlinear parametric processes from one mode to another mode. This is a con-

sequence of (angular) momentum and photon number conservation (implying total

mode number conservation) in Kerr-nonlinear parametric processes. Hence the pho-

tonic center of gravity of the injected photons (by main and secondary pump) is the

same as the photonic center of gravity for the entire spectrum of the waveform. For the

injection-locked state we find

µ̄ ∈
[
−µ′ |aµ′ | | f ′|∑

µNµ
;µ′ |aµ′ | | f ′|∑

µNµ

]
(3.35)

so that with eq. 3.19 we obtain the same result as in the time domain description for

δ frep and δlock (eq. 3.28 and eq. 3.29).

3.4.4 Numeric simulation of the sideband injection locking range

To complement our experimental and theoretical results, we run numerical simula-

tions based on the coupled mode equation framework [96, 191] (a frequency-domain

implementation of the LLE). In order to observe the sideband injection locking dy-

namic, a single DKS is first initialized inside the cavity and numerically propagated.

In the absence of a secondary laser, the soliton moves at the group velocity of the

pump wavelength and appears fixed within the co-moving frame (Figure 3.6a). The

secondary laser f ′ is then injected as per eq. 3.20, where ζ̃ controls the detuning of the

secondary laser with respect to the free-running comb line aµ. For 0 < |ζ̃| < δlock/κ (i.e.,

within the locking range), we observe that soliton moves at a constant velocity with re-

spect to the co-moving frame (Figure 3.6b). Beyond the locking range, the soliton is

no longer phase-locked to the pump, which can readily be identified by tracking the
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Chapter 3. Sideband injection locking in microresonator frequency combs

Figure 3.6 | Sideband injection locking simulation. Evolution of the intracavity
intensity profile in the free running (a, c) and locked states (b, d) for both DKS (a,
b) and normal-dispersion combs (c, d). Inset: corresponding intracavity spectra.

relative phase between aµ′ and f ′. We use this signature to identify the locking range

from our simulations and compare it to our theoretical prediction from eq. 3.29; as can

be seen in Figure 3.7, simulation and theory agree with striking fidelity.

We also study sideband injection locking dynamics inside normal-dispersion combs

(Figure 3.6c and d). Here as well, we observe the locking of the platicon to the underly-

ing modulation, although with a significant effect on its spectrum Pµ (see inset). This

platicon’s spectrum lower robustness against external perturbation is not captured by

our model which assumes a shifted but otherwise unchanged spectrum. Therefore,

eq. 3.29 does not generally apply, even though we expect our model to predict the

locking range within a tolerance corresponding to the relative amplitude change of the

corresponding comb line aµ′ .

3.4.5 Effect of thermal resonance shifts

Across the sideband-injection locking range, the power in the comb state changes by

small amounts due to the secondary laser, which may add or subtract energy from

the resonator (see Section 3.4.3). In consequence, the temperature of the resonator

changes by small amounts, impacting via the thermo-refractive effect (and to a lesser

extent by thermal expansion) the effective cavity length and hence frep. This effect oc-

curs on top of the sideband injection locking dynamics. In a typical microresonator,

the full thermal shift of the driven resonance that can be observed prior to soliton for-

mation is within 1 to 10 GHz. In a DKS state, the coupled power is usually 1 to 10%,
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3.4. Supplementary information

Figure 3.7 | Locking range simulations. a, Intracavity spectrum of the single DKS
state used for the simulation of the sideband injection locking range. b, Simulated
and theoretical (cf. eq. 3.29) locking range of the sideband-injection locking dy-
namic.

implying a maximal thermal shift of 1 GHz. Assuming the secondary laser will change

the power in the resonator by not more than 5% (theoretical maximum for the high-

est pump power used in our manuscript), we expect a maximal thermal resonance

shift of 50 MHz. Now, dividing by the absolute mode number of > 500, we expect

δ frep < 100kHz, which is two orders of magnitude below the effect resulting from side-

band injection locking.
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4.1. Introduction

Abstract

Microresonator frequency combs (microcombs) hold great potential for precision metrol-

ogy within a compact form factor, impacting a wide range of applications such as point-

of-care diagnostics, environmental monitoring, time-keeping, navigation and astron-

omy. Through the principle of self-injection locking, electrically-driven chip-based mi-

crocombs with minimal complexity are now feasible. However, phase-stabilisation of

such self-injection-locked microcombs — a prerequisite for metrological frequency combs

— has not yet been attained. Here, we address this critical need by demonstrating full

phase-stabilisation of a self-injection-locked microcomb. The microresonator is imple-

mented in a silicon nitride photonic chip, and by controlling a pump laser diode and a

microheater with low voltage signals (less than 1.5 V), we achieve independent control

of the comb’s offset and repetition rate frequencies. Both actuators reach a bandwidth

of over 100 kHz, enabling phase-locking of the microcomb to external frequency refer-

ences. These results establish photonic chip-based, self-injection-locked microcombs as

low-complexity yet versatile sources for coherent precision metrology in emerging appli-

cations.

4.1 Introduction

Optical frequency combs provide large sets of laser lines that are equidistant in optical

frequency and mutually phase-coherent [4, 181]. Owing to this property, they have en-

abled some of the most precise measurements in physics and are pivotal to a vast range

of emerging applications, from molecular sensing to geonavigation. Frequency combs

based on high-Q nonlinear optical microresonators (microcombs) [37, 44] that can be

fabricated in complementary metal–oxide–semiconductor (CMOS) compatible, low-

cost, scalable, wafer-scale processes [50, 54], promise to bring frequency comb tech-

nology into widespread application beyond the confines of optics laboratories [110,

139, 180].

In microcombs, nonlinear processes partially convert a continuous-wave (CW) driv-

ing laser with frequency νp into a series of comb lines that are mutually spaced in fre-

quency by the comb’s repetition rate frep, so that νµ = νp+µ frep, describes the frequen-

cies νµ in the comb (µ= 0,±1, .. is a mode index relative to the pump; see Figure 4.1c).

For many comb-based precision measurements, it is crucial to independently control

the comb’s defining parameters, here νp and frep, on a level that permits full phase con-

trol, i.e. phase-locking, of νp and frep to external frequency references. This is equiv-
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Figure 4.1 | Phase-stabilised self-injection-locked microcomb. a, Synthetic-
reflection self-injection-locked microcomb. The combined actuation of the laser
diode current Ip and the current Ih of a microheater controlling the microring
temperature enables full phase-stabilisation of the microcomb via low voltage sig-
nals. b, Micrograph of the SIL microcomb source comprised of a DFB laser diode
(left) butt-coupled to a photonic-chip hosting Si3N4 microresonators (right). A
metallic microheater embedded in the SiO2 cladding is routed above the micror-
ing. c, The optical spectrum of a continuous-wave driven microcomb is comprised
of equidistant lines νµ spaced by the comb’s repetition rate frep and centred on
the pump frequency νp. Full phase-stabilisation of the microcomb entails locking
both degrees of freedom to an external reference. d, In the time domain, this cor-
responds to a pulse train with a stabilised period τrep = 1/ frep and optical carrier
period τp = 1/νp.

alent to controlling carrier wave and envelope of the temporal optical waveform as

indicated in Figure 4.1d. For instance, this is important for molecular spectroscopy,

environmental monitoring, medical diagnostics, geonavigation, exoplanet search, and

other emerging applications that rely on phase-coherent links between electromag-

netic waves.

A major advancement in microcombs came through the principle of self-injection lock-

ing (SIL) [123, 124, 217], which enabled electrically-driven comb sources with drasti-

cally reduced operational complexity and chip-level integration [45, 119, 129–132, 134,

218]. Instead of a low-noise tabletop pump laser, SIL utilises a chip-scale semicon-

ductor pump laser and a narrow linewidth injection feedback from a high-Q microres-

onator. The SIL mechanism leads to a low-noise pump laser and elegantly ensures that

the laser is intrinsically tuned to the microresonator for comb generation. Although

highly attractive, the simplicity and compactness of SIL-based combs entail a critical

drawback with regard to controlling νp and frep. In contrast to previous non-SIL sys-

tems in which the frequency and the power of a tabletop pump laser have been used as

independent actuators to simultaneously phase-stabilise νp and frep [219–221], in SIL
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systems, these parameters are not independent (both depend on the laser pump cur-

rent). Previous work has already accomplished stabilisation of one degree of freedom

( frep) [76], however, phase-stabilisation of both degrees of freedom is an outstanding

challenge. This lack of full phase-stabilisation in SIL microcombs represents a serious

shortcoming for metrological applications.

Here, we present a chip-scale, electrically-driven, metrology-grade SIL microcomb op-

erating at CMOS-compatible voltages. This source combines a semiconductor laser

diode and a high-quality factor silicon nitride microresonator equipped with an inte-

grated microheater [118, 171] in a compact millimetre-square footprint (see Figure 4.1a

and b). The diode current and the integrated microheater provide two independent,

low-voltage (<1.5 V) actuators reaching a remarkable>100 kHz effective actuation band-

width. With these actuators, and in conjunction with synthetic reflection SIL [134],

which supports a large range of laser detunings and lowers the actuation bandwidth

requirement through laser linewidth narrowing, we demonstrate full phase stabilisa-

tion of the microcomb by phase-locking νp and frep to external frequency references,

creating a small-footprint, low-complexity, low-cost and CMOS-compatible frequency

comb for demanding metrological applications.

4.2 Setup

Our microcomb is based on CW laser-driven dissipative Kerr-solitons (DKS) [44, 110,

112] in a chip-integrated silicon nitride photonic crystal ring resonator (PhCR) [74, 80,

81, 134]. In this scheme, a semiconductor distributed feedback (DFB) laser diode is

butt-coupled to the photonic chip hosting the PhCR (coupling losses of ∼3.5 dB), de-

livering approximately 25 mW of on-chip optical pump power at 1557 nm; a cleaved

ultra-high numerical aperture optical fibre (UHNA-7) is utilised for output coupling

(coupling losses of ∼1.7 dB). Both the laser chip and microresonator chip are tempera-

ture stabilised with a precision of ±5 mK via standard electric heaters/coolers. The mi-

croresonator itself is characterised by a free-spectral range (FSR) of 300 GHz, anoma-

lous group velocity dispersion, and a high quality factor Q ≈ 1.5×106 (see Methods).

An integrated metallic microheater [118, 171] is embedded in the silica cladding above

the resonator waveguide for fast thermal actuation of the microresonator. Comple-

mentary to piezo-electric or electro-optic actuators [222–225], which in an integrated

setting can also reach high actuation bandwidth, microheaters are an attractive low-

complexity alternative as they provide a robust, long-lifetime and low-voltage solution,

that is readily compatible with silicon-based photonic chip technology.
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Figure 4.2 | Experimental setup. a, The microcomb source, a laser diode self-
injection-locked to a photonic crystal ring resonator (PhCR) operating in the dis-
sipative Kerr-soliton regime, is stabilised via two phase-lock loops feedback con-
trolling the diode current Ip and heater current Ih respectively. OFC: reference
optical frequency comb; ESA: electronic spectrum analyser; EOM: electro-optic
modulator; BP: band-pass filter; PD: photodetector; LD: laser diode; PhCR: pho-
tonic crystal ring resonator; PID: proportional-integral-derivative controller. b,
Frequency diagram, depicting the self-injection-locked microcomb (blue), the ref-
erence 1 GHz oscillator (red) and the electro-optic (EO) modulation comb (grey).
The frequencies fb, foff, and fol, corresponding to the repetition rate, offset, and
out-of-loop beat notes, respectively, are extracted by the optical band-pass filters
BP1-3 (green) as shown in the insets. c, Optical spectrum of a self-injection-locked
microcomb. The spectrum is well fitted by a sech2 envelope with a FWHM of
1.44 THz.

By leveraging a recently demonstrated synthetic reflection technique [134], where the

nano-patterned corrugation of the PhCR generates a tailored optical feedback, robust

self-injection locking of the driving laser diode is achieved. This also has the desirable

effect of forcing exclusive and deterministic single-soliton operation [74, 134]. Syn-

thetic reflection also substantially extends the range of pump frequency-to-resonance

detunings that are permissible during comb operation, providing extended actuation

range and robust operation under phase-locking conditions. Moreover, the laser linewidth

narrowing obtained via SIL relaxes the need for high bandwidth actuation.

In SIL DKS operation, the DFB laser’s emission frequency νp (the central comb line of

the microcomb) can be tuned by adjusting the current around the set point at a rate

of 27 MHzmA−1, which also affects the DKS repetition rate by 160 kHzmA−1 via the

detuning-dependent Raman-induced soliton self-frequency shift (see Supplementary

information). A second degree of freedom is provided by the microheater, which we

operate at a current bias of 3 mA (105 mV). Via the microheater, the microcomb’s repe-

tition rate frep can be tuned with a sensitivity of ∼400 kHzmA−1. As the laser diode and

the microresonator are coupled through SIL, the microheater also induces a shift in
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the microcomb’s centre frequency νp (pump line) with a sensitivity of ∼160 MHzmA−1.

The actuator sensitivities are summarised in Table 4.1 and a theoretical derivation is

provided in the Supplementary information. As the corresponding control matrix is di-

agonalisable with non-zero diagonal elements, the two actuators enable independent

control of both degrees of freedom of the SIL microcomb (νp and frep). As we show

in the Supplementary information, Section 4.6.3, the actuators are linear over a large

actuation range (exceeding what is needed for phase-locking by orders of magnitude)

and hence enable robust operation even under changing environmental conditions.

Depending on the application scenario, a frequency comb may be stabilised to dif-

ferent references, such as two lasers for frequency division and clock operation [226,

227], or a repetition rate and self-referencing signal [220, 228–232] to provide a phase-

coherent radio-frequency-to-optical link. Figure 4.2a shows the experimental setup for

proof-of-concept stabilisation and characterisation of the microcomb. Specifically, we

validate the capability of our system to achieve full-phase stabilisation by comparing

our microcomb against a conventional optical frequency comb (OFC). The 1 GHz rep-

etition rate of the conventional OFC is phase-locked to a 10 MHz signal from a GPS

disciplined Rb-clock [233]. As Figure 4.2b illustrates, an error signal for stabilisation

of νp is generated by recording the offset beatnote foff between the microcomb line νp

and the closest line of the reference OFC [219, 228] (note that this offset is not to be con-

fused with the carrier-envelope offset frequency). To obtain a repetition rate error sig-

nal, we utilise electro-optic phase-modulation (modulation frequency fm ≈ 17.5GHz)

of the central comb line and detect the beating fb = frep −17× fm ≈ 200MHz between

17th modulation sideband and the first sideband of the microcomb [216]. Both beat

notes are then frequency-divided down to approximately 10 MHz, and the error sig-

nals are extracted through phase detection with respect to the 10 MHz Rb-clock signal

(all microwave sources and recording devices are also referenced to the 10 MHz signal

from the Rb-clock). The phase-locked loops (PLLs) are implemented using two con-

Sensitivity foff frep

Ip 27 MHz/mA 160 kHz/mA
Ih 160 MHz/mA 400 kHz/mA

Table 4.1 | Actuator sensitivities. Sensitivity of the SIL microcomb’s offset fre-
quency foff and repetition rate frep to the DFB current Ip and micro-heater current
Ih. The values were measured around the experiment set point of ∼180 mA and
3 mA, respectively. A theoretical derivation of the actuator tuning coefficients is
presented in Section 4.6.1 and 4.6.2 of the Supplementary information.
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ventional off-the-shelf proportional-integral-derivative (PID) controllers, acting onto

the laser diode’s driving current Ip and the microheater current Ih for the offset foff

and repetition rate frep stabilisation, respectively. As follows from Table 4.1, alternative

configurations of the PLLs are possible, e.g. swapping the actuators or simultaneously

using both actuators for both degrees of freedom to diagonalise the control matrix,

which would, however, involve specifically designed PID controllers (e.g., via a field-

programmable gate array, FPGA).

Finally, an independent out-of-loop validation of the microcomb’s phase-stability is

performed by recording the beat note fol = 2 × frep + foff − 601 × 1GHz between the

second sideband of the microcomb and the 601th sideband of the reference OFC. Im-

pacted by both phase locks, the out-of-loop measurement is a key metric in evaluating

the overall system performance.

4.3 Experiments

The successive initiation of both PLLs is shown in Figure 4.3a where the spectrogram

of the out-of-loop beat note is presented. While activating the offset lock already sub-

stantially enhances the stability of the out-of-loop beat note (at ∼1.25 s in Figure 4.3a),

the remaining fluctuations are only suppressed with the additional activation of the

repetition rate lock (at ∼2.8 s in Figure 4.3a). Thus, the two high-bandwidth actuators

and the extended detuning range, reliably obtained through synthetic reflection, en-

able phase stabilisation of the microcomb.

When the microcomb is phase stabilised, the phase excursion in the signals frep, and

foff are restricted to a limited interval by the PLLs. This restriction also implies that the

phase excursion in the signal fol are bounded, as long as the reference OFC is phase-

stabilised and differential variations of the in-loop and out-of-loop detection paths are

negligible.

To get an insight into the nature of the phase excursions, we record the frequency

evolution of the out-of-loop beat note fol with a gate time τ = 1s and without dead

time between the non-overlapping samples (the frequency is extracted from the sig-

nal’s quadratures, see Methods). The measured frequencies (shifted to zero-mean) are

displayed in Figure 4.3b and the corresponding histogram is presented in Figure 4.3c

(standard deviation of 4.25 Hz). The scatter of the frequency values (and hence the

phase deviations) is well approximated by a Gaussian distribution, indicating random

noise processes as their origin, as expected for a phase-locked state. Similar data can
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be obtained for frep and foff but are not shown here.

Robust and tight phase-locking also manifests itself in the overlapping Allan deviations

(OADs) of frep, foff and fol, which we show in Figure 4.3d (see Methods). For sufficiently

long averaging gate time τ, the OAD is expected to scale proportional to τ−1 as phase

excursions are bounded by the PLLs. Indeed, the observed scalings of the OADs —

τ−0.997, τ−0.996 and τ−0.922 for frep, foff and fol respectively — follow the expectation

for a phase lock. Importantly, the scalings of the OADs are clearly distinct from the

τ−0.5 scaling characteristic of an unbounded random walk of the phase, which would

result from random cycle slips in an imperfect phase lock. As such, the OADs of frep

and foff demonstrate the successful implementation of the phase locks, and the OAD

of fol provides an independent out-of-loop validation. For comparison, we also show

the OAD of the free-running frep signal, which, due to uncontrolled frequency drifts,

results in an increasing OAD.

Complementing the Allan deviation measurement, we show in Figure 4.3e the phase

noise of the out-of-loop beatnote fol to illustrate the impact of the phase lock. Con-

sistent with Figure 4.3a, activating the foff lock leads to a first reduction of the phase

noise, and activation of both locks lowers the phase noise even more; the phase noise

is limited at low frequencies by the phase noise of the reference OFC [233]. The cross-

ing point of the free-running and fully-locked phase noise traces reveals a remarkably

high locking bandwidth of larger than 100 kHz that is implemented via the diode cur-

rent and the simple microheater.

To provide more insights into the locking actuators, we record the closed-loop fre-

quency responses of the repetition rate and offset PLLs as shown in Figure 4.4a and

b (with the respective other degree of freedom unlocked). Bandwidths of over 100 kHz

and 300 kHz, respectively, are achieved for the microheater-based repetition rate ac-

tuator and the laser diode-based offset actuator. Both actuators allow for broadband

noise suppression, as can be observed from the phase noise of the repetition rate frep

and offset foff signals (Figure 4.4c and d) and their corresponding beat notes (Fig-

ure 4.4e and f). We compute the residual phase modulation (PM) on frep and foff in

the fully-locked state (obtained by integrating the phase noise down to 1 Hz), yielding

a root mean square (RMS) residual PM of 0.13 rad and 0.86 rad respectively. Consider-

ing the 20x prescaler in the PLLs, the residual PM values are at or below the milliradian

level, confirming the tight phase lock. Despite the cross-talk between both actuators,

no substantial degradation of the locking performance is observed when both degrees

of freedom are locked simultaneously.
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4.4 Conclusion

In conclusion, we demonstrate full phase-stabilisation of a self-injection-locked mi-

croresonator frequency comb, and validate its performance through comparison with

a conventional mode-locked laser-based frequency comb. Based on a photonic-chip

integrated microresonator, our system operates solely on CMOS-compatible driving

and control voltages. The control actuators — comprising a laser diode and micro-

heater — achieve a feedback bandwidth exceeding 100 kHz. In conjunction with syn-

thetic reflection, our approach enables robust phase-locking of the microcomb to ex-

ternal frequency references in an unprecedentedly compact form factor.

Our microcomb source (Figure 4.1b) is implemented within a sub-1 mm2 footprint and

does not require the use of tabletop lasers, amplifiers, or high-voltage actuators. Future

work could potentially leverage on-chip pulse amplification [234] and integrated f-2f

interferometry [235–237] to achieve chip-scale self-referencing [220, 228–232], thereby

implementing a phase-stable radio-frequency to optical link. Stabilising our system
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Chapter 4. Phase-stabilised self-injection-locked microcomb

to two atomic clock transitions would result in a compact optical clock, and the capa-

bility to achieve phase coherence between multiple sources can be instrumental for

synchronisation of large scale facilities or communication networks.

As such, our demonstration establishes a novel, small-footprint, low-complexity, low-

cost, and CMOS-compatible frequency comb source for demanding metrological ap-

plications, including those in portable, mobile, and integrated settings. The presented

results may also inform the design of other chip-integrated light sources, such as rapidly

tunable lasers or optical parametric oscillators.

4.5 Methods

4.5.1 Sample fabrication.

The samples were fabricated commercially by LIGENTEC SA using ultraviolet stepper

optical lithography. The microresonator ring radius of 75µm corresponds to an FSR

of 300 GHz, while a waveguide width of 1600 nm and a waveguide height of 800 nm

provide anomalous group-velocity dispersion (difference between neighbouring FSRs

at the pump frequency, D2/2π ≈ 9MHz). A coupling gap of 500 nm between the ring

and bus waveguide ensures the resonator is critically coupled. Synthetic feedback to

the driving DFB diode laser is provided by a nano-patterned corrugation, the ampli-

tude and period of which were chosen to achieve a forward-backwards coupling rate

γ/2π≈ 145MHz at the pump wavelength of ∼1557 nm [134]. All modes, including the

pump mode, exhibit a high quality factor of Q ≈ 1.5×106.

4.5.2 Frequency stability measurements.

To measure the long-term stability of the microwave signals, we record the beat note’s

in-phase and quadrature (I/Q) components using the built-in I/Q-analyser of an elec-

tronic spectrum analyser (Rohde & Schwarz FSW26). The phase is then extracted from

the I/Q data, from which the overlapping Allan deviation is computed using the Allan-

Tools python module implementing the NIST standards [238]. Frequency counts are

obtained by evaluating the finite differences of the extracted phase over the gate time.

Spectrograms, spectra, and phase noises are calculated similarly from IQ data.
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4.5.3 Frequency response measurement.

To record the closed-loop frequency response of each of the actuators (Figure 4.4a and b),

a modulation tone is added to the error signal at the input of the PID controller while

locked, effectively modulating the set-point. The amplitude and phase of the error sig-

nal are then recorded as a function of the modulation frequency using a vector network

analyser.

4.6 Supplementary information

4.6.1 Tuning of the offset frequency foff

Diode laser current

The tuning rate of the diode laser frequency used in our work is approximately 1 GHzmA−1.

As illustrated in Figure 4.5, self-injection locking (SIL) reduces this tuning rate by a fac-

tor σ = ∂ξ/∂ζ due to the feedback from the microresonator. In our case, we estimate

σ ≈ 40 when operating in the SIL dissipative Kerr soliton (DKS) regime [132] (the ex-

act value of σ depends on the detuning between diode laser and microresonator), and

therefore
∂ foff

∂Ip
≈ 25MHzmA−1 . (4.1)

This estimate is in excellent agreement with the measured value of 27 MHzmA−1 (c.f.

Table 1 in manuscript). Furthermore, we note that SIL reduces the diode laser’s linewidth

by a factor σ2, often known as the SIL stabilisation coefficient. This more than 1000-

fold reduction in linewidth significantly reduced the bandwidth requirement for the

actuators and is critical in enabling phase-locking via heater control.

Heater current

Similarly, varying the microheater current modifies the temperature of the microres-

onator and hence affects the diode laser’s emission frequency through the SIL mech-

anism. In our system, we measure the heater tuning coefficient to be approximately

1 GHzmW−1 in our chips (thermally-induced frequency shift per unit of dissipated

electrical power), which corresponds to

∂ foff

∂Ih
≈ 210MHzmA−1 (4.2)
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at our operation point (current bias of 3 mA). This is in good agreement with the mea-

sured value of 160 MHzmA−1 (c.f. Table 1 in manuscript).

4.6.2 Tuning of the repetition rate frep

To quantify the repetition rate tuning, we need to include the Raman-induced soliton

self-frequency shift (SFS) in our considerations. The SFS is given by [208, 209]:

Ω≈−64π2

15

D2
1

2πD2
δ fRτR , (4.3)

where D1 and D2, describe the microresonator’s mode frequencies ωµ = ω0 +D1µ+
D2/2µ2 (µ is the relative mode index), δ = (ω0 −ωp)/(2π) the pump to resonance de-

tuning, and fR and τR the Raman fraction and shock terms respectively, taken to be

20 % and 20 fs in silicon nitride [208]. The SRS translates directly to a change in the

repetition rate via the cavity dispersion:

∆ frep = Ω

2π

D2

D1
≈ D1δ fRτR . (4.4)
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Hence, the repetition rate is sensitive to the detuning δ via the Raman-induced SFS.

Diode laser current

As discussed in Section 4.6.1, the detuning δ can be tuned through the diode laser cur-

rent at a rate of 25 MHzmA−1. Using eq. 4.4, we find

∂ frep

∂Ip
≈ 190kHzmA−1, (4.5)

which is in good agreement with the measured value of 160 kHzmA−1 (c.f. Table 1 in

manuscript).

Heater current

The detuning δ can also be adjusted via the heaters, although the tuning rate is reduced

through the SIL mechanism by σ to approximately 5 MHzmA−1. Again using eq. 4.4,

we find
∂ frep

∂Ih
≈ 38kHzmA−1. (4.6)

On the other hand, thermal actuation directly affects the ring’s FSR (via the thermore-

fractive effect and to a lesser extent, through thermal expansion) at a rate

1

2π

∂D1

∂Ih
≈ 325kHzmA−1. (4.7)

These two different contributions add up to about ∂ frep/∂Ih =360 kHzmA−1, which is

again in good agreement with the measured value of 400 kHzmA−1 (c.f. Table 1 in the

main manuscript).

4.6.3 Actuator linearity

The dependence of the microcomb repetition rate frep and offset frequency foff where

recorded as a function of the diode laser current Ip and heater current Ih (see Fig-

ure 4.6). All tuning curves are monotonic and, to good approximation, linear, which

ensures stable locking conditions.

4.6.4 Microheater frequency response

We measure the open-loop microheater frequency response by using a slow side-of-

fringe lock to stabilise a continuous wave laser on a resonance of the microresonator.
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A sinusoidal tone is then applied to the microheater, which modulates the resonance

frequency and, thereby, the transmission of the continuous wave laser. We can extract

the microheater’s frequency response by recording the amplitude and phase relation

between the input and output signal (see Figure 4.7).

As can be seen, the 3 dB of the microheater is approximately 5 kHz. Despite this, a

phase delay of π is reached at ∼100 kHz. This allows us, in a closed-loop configura-

tion, to effectively extend the heaters’s bandwidth to more than 100 kHz. As the heater

bandwidth dictates the overall system bandwidth, this step is critical in achieving both

offset and repetition rate locks.

4.6.5 Comparison of fully phase-locked microcombs

A comparison of fully phase-locked microcombs to date (i.e. νp and frep are both

phase-coherently stabilised to an external frequency reference) is provided in Table 4.2,

where we list resonator platform, form factor, the employed actuators as well as impor-

tant characteristics such as pump laser power, electrical power consumption, volume

(excluding driving electronics) and approximate unit cost.
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Table 4.2 | Comparison of fully phase-locked microresonator frequency combs.
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Chapter 5

Summary and Outlook

Microresonator-based optical frequency combs have emerged as a promising comple-

ment to conventional optical frequency combs based on ultrafast lasers. With their

small footprint, low power consumption, and high repetition rates, microcombs hold

potential for a wide range of applications ranging from precision metrology and spec-

troscopy to telecommunications and optical clockwork. In this thesis, we have ex-

plored several approaches to addressing some of the critical challenges that still hin-

der the widespread adoption of microcombs by focusing on issues such as dispersion

management, noise reduction, precise control, and phase-coherent metrological per-

formance:

In Chapter 2, we presented the first demonstration of dissipative Kerr solitons inside an

integrated Fabry-Pérot microresonator. Consisting of a pair of uniaxial photonic crys-

tal reflectors (PCRs) embedded within a waveguide, the resonator’s total dispersion is

the sum of the mirrors and the waveguide contributions. Complementing methods

developed for ring-type devices, Fabry-Pérot microresonators with dispersive mirrors

provide a versatile approach to broadband dispersion engineering that may lead to

DKSs at visible wavelengths and allow the use of new materials that are currently in-

accessible due to unsuitable effective waveguide dispersion. This potential was high-

lighted in follow-up work by Nardi et al. [239], where chirped photonic crystal reflectors

were used to achieve overall anomalous dispersion in an integrated Fabry-Pérot mi-

croresonator made from gallium phosphide — a promising material with a Kerr non-

linearity 200 times greater than that of the silicon nitride. The high refractive index

of GaP enables a strong index modulation within the PCRs, resulting in a broadband

cavity that supports ultra-short soliton pulses.



Chapter 5. Summary and Outlook

Since our publication, interest in Fabry-Pérot microresonators has continued to rise,

as evidenced by numerous works on standing-wave Kerr cavities. These include inves-

tigations of dark solitons [240, 241] and pulsed-pumping [242] in the normal disper-

sion regime, modulation instability [243], symmetry breaking [244], the experimental

demonstrations of broadband solitons in fiber cavities [245] and extensions to new ma-

terial platforms [246, 247]. A recent review on microcombs in fiber Fabry-Pérot cavities

[248] further underscores this growing interest. Furthermore, Fabry-Pérot microres-

onators have proven to be particularly well-suited to inverse design approaches [163,

249, 250], which utilize machine learning and large-scale electromagnetic simulations

to optimize the topology of integrated photonic devices. When applied to photonic

crystal reflectors, this approach yields intricate yet compact structures that cannot be

designed through conventional means. Beyond standing-wave cavities, photonic crys-

tal structures are increasingly employed for narrow and broadband dispersion engi-

neering in nonlinear integrated photonics [80, 81, 251] and are now routinely included

in the design of microresonators for soliton generation [122, 134, 137].

In Chapter 3, we presented a study of sideband injection locking in microresonator

frequency combs, an all-optical approach to controlling a Kerr comb’s offset and repe-

tition rate frequencies relying on the injection of a second laser which forms part of the

comb. Using this technique, an optical frequency division scheme was demonstrated,

resulting in >30 dB noise suppression with respect to a free-running comb and high-

lighting its potential for applications such as low-noise microwave generation, com-

pact optical clocks, and more generally, metrological-grade microcombs.

Despite sideband injection locking indirectly underpinning many aspects of Kerr fre-

quency combs — including parametric seeding, dichromatic pumping, optical trap-

ping, and soliton synchronization — it has been the subject of surprisingly little re-

search to date [186, 190, 197, 205]. However, this is poised to change thanks to the in-

creased visibility following the influential study by Moille et al. [232], published shortly

after our work, which utilized this technique in the context of optical clockworks. Re-

cent studies have already shown the use of sideband injection locking in low-noise Kerr

combs [252], optical frequency division [253–255], Kerr comb-based voltage-controlled

oscillators [256], and sub-comb mode locking [257].

In Chapter 4, following our investigation of a comb actuation method, we comple-

ment this by demonstrating chip-scale phase stabilization of a self-injection-locked

microcomb. SIL relies on optical feedback from the microresonator to precisely con-

trol the emission frequency of the driving pump diode, thus eliminating the need for

narrow-linewidth, rapidly tunable tabletop lasers. The significant reduction in ma-
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terial and operational complexity of SIL-based microcombs holds great promise for

bringing microresonator-based frequency combs from one-of-a-kind laboratory ex-

periments to widespread applications. By demonstrating that SIL-based combs can be

fully phase-stabilized to external frequency references, we further establish that such

sources are compatible with metrological applications.

Looking ahead, the integration with additional chip-based technologies, such as on-

chip amplification [234] and integrated f-2f interferometry [235–237], could enable

chip-scale self-referencing [220, 228–232]. Integrating a direct radio-frequency to op-

tical link within such a small form factor might enable compact optical clocks and find

application in communication, synchronization of large-scale facilities, or photonics

analog-to-digital converters.
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Appendix A

Frequency comb assisted diode laser

spectroscopy

Diode lasers, relying on broadband semiconductor gain media, can be made into narrow-

linewidth, tunable sources when paired with external cavity feedback mechanisms,

such as those provided by diffraction gratings or etalons. Such external cavity diode

lasers (ECDLs) — through the use of motor- and/or piezo-control and clever mechan-

ical design — can achieve continuous, mode-hop-free tuning over broad bandwidth

(>100 nm). They are sources of choice for spectroscopy with applications ranging from

environmental monitoring [258] and medical diagnostics [259] to industrial process

control [260] and fundamental research [261].

Frequency comb assisted diode laser spectroscopy (FCADLS) [211] relies on an auxil-

iary optical frequency comb to calibrate a frequency scan of a continuously tunable

laser (CTL). It is a powerful technique that can provide broadband, high-resolution,

and highly accurate spectroscopic data when a high acquisition rate is not required. In

the current work, FCADLS has been extensively employed to characterize microres-

onators, facilitating measurements of dispersion, loss, and coupling that were cru-

cial for the development of silicon nitride photonic integrated circuits. Additionally,

FCADLS was used to calibrate the frequency of the injected laser and obtain broadband

data in the microcomb side-band injection-locking experiments. A custom FCADLS

setup was developed with a focus on spectral accuracy, robustness, and reliability,

which enabled streamlined data acquisition and processing. The subsequent chapter

explains the working principles of FCADLS and provides a comprehensive technical

description of the experimental setup and methodologies.
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CTL Scan Sample # (time)

MZI Phase

Optical Frequency

MZI Drift & Dispersion Correction CTL Scan Jitter Correction

Comb 
Frep

Figure A.1 | Working principle of MZI-assisted FCADLS. Calibration of the CTL
frequency ω(t ) is achieved by first mapping the scan time t onto the MZI phase ϕ,
correcting fluctuation in the laser scan rate (see Section A.1). Evenly-spaced comb
markers provided by the reference optical frequency comb enable conversion to
optical frequency by providing a regular grid of known frequencies.

A.1 Working principles

In frequency comb assisted diode laser spectroscopy, the instantaneous frequencyω(t )

of the scanning laser is reconstructed post-measurement by utilizing a calibration sig-

nal derived from a reference optical frequency comb (OFC). The calibration signal con-

tains markers corresponding to the crossing events tn between the scanning laser and

the individual lines of the reference OFC. These markers establish an equidistant grid

of known frequencies ω(tn) = ωo +n ·ωrep = ωn , where ωo/(2π) and ωrep/(2π) are the

offset and repetition rate frequencies of the reference OFC1. Assuming the scanning

rate is approximately constant between two successive comb lines, that is, ω(t ) is lin-

ear over the interval t ∈ [tn , tn+1], the full frequency axis can be reconstructed via in-

terpolation. In practice, this requirement is rarely met, and an additional calibration

signal is required to bridge the gap between markers.

Expanding upon the original scheme proposed by Del’Haye et al. [211], our implemen-

tation incorporates two additional calibration channels. Firstly, a hydrogen cyanide

(HCN) gas cell delivers absolute frequency calibration through a set of well-known

spectral absorption features situated between 1525 nm and 1565 nm [262–264]. Sec-

ondly, an unbalanced all-fiber Mach–Zehnder interferometer (MZI) is employed to

generate a frequency-dependent modulation signal, which enables precise interpola-

tion between comb markers. The MZI transmission is proportional to sinϕ(ω), where

the MZI phase ϕ(ω) = ∆L ·β(ω) depends on the length difference between the MZI

1In practice, the absolute line number n is rarely known, and therefore, an additional mean of abso-
lute frequency calibration is required.
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Figure A.2 | FCADLS calibration marker. The heterodyne beat frequency between
the CTL and the nearest comb lines (blue) ramps back and forth between 0 Hz an
frep/2. By introducing an RF band-pass filter, a pair of markers can be generated
around each comb line when the beat note frequency is within the filter band-
width.

arms∆L and the dispersion of the fiber β(ω). Importantly, β(ω) is a smooth function of

ω and, unlike the laser frequency ω(t ), ϕ(ω) can be assumed to vary linearly between

comb markers (in the interval ω ∈ [ωn ,ωn+1]).

This is illustrated in Figure A.1. In practice, the scan time t is first mapped onto the

MZI phase ϕ by extracting the phase from the MZI signal2. The MZI phase is then

mapped onto frequency using the evenly spaced markers provided by the optical fre-

quency comb. In the final step (not shown in Figure A.1), absolute frequency calibra-

tion is achieved using the HCN gas cell, effectively shifting the reconstructed frequency

axis to the correct position.

A.1.1 Generation of comb markers

The calibration markers are generated by combining a portion of the light from CTL

with that from the reference OFC. As illustrated in Figure A.2, this combination results

in a series of heterodyne beat notes between the line of the CTL and the respective

lines of the OFC. In practice, only the beat note between the CTL and the nearest comb

line is considered (solid blue line in Figure A.2). By introducing a low-pass RF filter

(or relying on the finite bandwidth of the photodiode used for detection), markers can

be produced each time the CTL intersects a comb line, as a heterodyne signal is only

present when the frequency difference between the CTL and the comb line is within

the filter bandwidth. Alternatively, as shown in Figure A.2, a band-pass filter can be

2This is done by zeroing out negative frequency components of the MZI signal (i.e., taking ϕ(t )+
i H(ϕ(t )) where H(·) is the Hilbert transform), turning the real-valued signal into a complex rotating
phasor, the phase of which can be extracted.
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Figure A.3 | Frequency-assisted diode laser spectroscopy setup. CW: continuous
wave; HNLF: Highly nonlinear fiber; BPF: bandpass filer; MZI: Mach–Zehnder in-
terferometer.

used, resulting in two markers evenly spaced on either side of each comb line. This

scheme is preferred as the heterodyne frequency does not pass through zero, simpli-

fying signal processing. Optionally, an RF power detector can be added after the filter

to extract the signal’s envelope, reducing the required sampling rate as the heterodyne

frequency does not need to be Nyquist-sampled.

A.2 Setup

Figure A.3 details the FCADLS setup used in the present work. Depending on the wave-

length range of interest, a reference OFC with a repetition rate frep of either 1 GHz

or 100 MHz is used. The 1 GHz OFC is generally preferred due to its higher power

per line, resulting in a better signal-to-noise ratio of the calibration markers. How-

ever, when spectral extension through cascaded four-wave mixing is necessary to cover

the desired wavelength range3, the 100 MHz OFC is favored due to its higher pulse

peak power. Both combs can be self-referenced and fully stabilized for optimal perfor-

mance [233]. The Mach–Zehnder interferometer is implemented in standard SMF28

optical fiber, using two 50/50 directional couplers and a length unbalanced ∆L = 5m,

resulting in a free-spectral range of approximately 40 MHz. This allows for precise

tracking of the MZI modulation signal and phase extraction with <1 MHz equivalent

resolution. A 27−33MHz bandpass filter and logarithmic RF power detector are used

to generate the calibration markers from the heterodyne signal. The logarithmic power

detector supports an input RF power from −60 dBm to 5 dBm, greatly extending the al-

lowable dynamic range between the individual combs lines and effectively extending

3This is typically achieved using a length of polarization maintaining normal dispersion highly-
nonlinear optical fiber.
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Qty Component Description

1 HCN-13-H(5.5)-25-FCAPC H13C14N fiber-coupled gas cell
2 Koheron PD100-DC 100 MHz low noise photodetector
1 Koheron PD100B-AC 100 MHz balanced photodetector
1 Koheron PD100B-DC 100 MHz balanced photodetector
1 ZX47-60LN-S+ Logarithmic RF power detector
1 SBP-30+ RF Bandpass filter
1 PMPLC-C+L-204-B-001-10-0.8-1 2x4 PM PLC splitters
2 50/50 SM Coupler Direction coupler
1 50/50 PM Coupler Direction coupler
1 5m SFM28 Single mode fiber

Table A.1 | Bill of material.

the scan range for a given reference comb spectrum.

A complete list of components, excluding laser sources and data acquisition devices,

can be found in Table A.1.

A.3 Signal processing

Figure A.4 presents a typical set of traces acquired during an FCADLS scan. Panels a, b,

and c show the full traces, compromising nearly 107 samples spanning from 1520 nm to

1605 nm (or approximately 10 THz of bandwidth), while panels d, e, and f show a mag-

nified view of the signals spanning approximately 3.5 GHz. Panel e shows the magni-

fied MZI calibration signal, with the modulation clearly resolved (∼40 MHz FSR), while

Panel f shows a magnified view of the comb (blue) and HCN gas cell (red) calibration

signals. In the latter, the markers generated from the reference OFC appear in pairs,

centered on each comb line, repeating every frep = 1GHz, and separated by twice the

RF band-pass filter frequency 2×30MHz.

The calibration procedure is as follows:

1. The analytical representation of the MZI calibration signal is computed (nega-

tive frequency components are disregarded, resulting in a complex signal), from

which the instantaneous phase ϕ(t ) is extracted.

2. The derivative of the phase signal dϕ(t )/d t is evaluated to get an estimation of

the instantaneous laser scanning rate dω(t )/d t ≈ c/(n∆L) ·dϕ(t )/d t . This esti-

mation is then used to identify the (central) portion of the scan where the laser

speed remains approximately constant. All the traces are then re-cut, disregard-
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Figure A.4 | FCADLS signals. Example of FCADLS traces covering the range from
1520 nm to 1605 nm (∼10 THz spectral span). a, Device under test (DUT). In this
case, the TE transmission signal of a 25 GHz FSR microresonator. b, Calibra-
tion signal recorded from the Mach–Zehnder interferometer with FSR ∼40 MHz.
c, HCN gas cell (red) calibration signal, containing the R- and P-branch absorption
features, and comb calibration signal (blue) containing the comb line markers. d,
e, and f show the magnified view (approx. ×3000) of the previous panels, spanning
approximately 3.5 GHz of optical frequency.
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Figure A.5 | EDCL scan rate. Approximate laser scan rate (in arbitrary units) ob-
tained by taking the time derivative of the instantaneous phase of the MZI signal.
The acceleration and deceleration of the CTL are visible at the start and the end of
the trace, respectively. Before settling on a steady scan rate, the laser transitions
briefly through a noisy regime, likely due to stick-slip and/or resonant dynamics
of the motor-actuated external feedback mechanism. As clean data is required for
calibration, data outside of the 50 % to 150 % range of the median scan rate is dis-
regarded (boundaries are shown as black horizontal lines and disregarded data is
highlighted in grey).

ing poor-quality data outside this range, where the scanning laser is either ac-

celerating, decelerating, or behaving erratically. This process is detailed in Fig-

ure A.5.

3. The maxima in the comb calibration signal (see Figure A.4f, blue trace) are iden-

tified, corresponding to the crossing events tn between the reference OFC and

scanning laser. As shown in Figure A.6, the power detector output is constant

within the bandwidth of the band-pass filter. In order to obtain well-defined

maxima, the signal is first convolved with a flat-top windowing function before

peak detection. Every second marker is then disregarded, keeping only the set of

left-side (or right-side) markers with respect to the comb lines. This step estab-

lishes a set of points (ϕn ,ωn), where ωn = ωo +n ·ωrep is an equidistant grid of

known optical frequencies.

4. Using this grid, an interpolation function is established to map the instantaneous

MZI phase ϕ to optical frequencies ω. This is possible because, unlike the laser

frequency ω(t ), the MZI phase signal ϕ(ω) =∆L ·β(ω) can be considered to vary

linearly between any two calibration markers.

5. Finally, the transmission signal from the HCN gas cell is used to achieve abso-

lute frequency calibration. The R- and P-branch lines, located between 1525 nm
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Figure A.6 | Refrence OFC marker extraction. The signal from the RF power de-
tector (blue) is flat within the 27− 33MHz passband of the RF filter. In order to
improve the accuracy of the peak detection algorithm, the signal is first convolved
with a windowing function (green). The output signal (orange) has clearly defined
maxima from which the calibration markers (red) can be located.

and 1565 nm (see Figure A.4c, red trace) are fitted and collectively used to off-

set the reconstructed frequency axis to the correct position [262–264]. The line-

dependent pressure-shift coefficients have to be accounted for when computing

the line frequencies4.

A.4 Validation and performance

Several independent methods can be used to validate the calibration and estimate the

resulting spectral accuracy.

A.4.1 MZI dispersion

First, the instantaneous phase of the MZI signal can be used to measure the dispersion

of the optical fiber composing the interferometer arms. To do so, the phase signal is

Taylor-expanded around a central frequency ω0 as

ϕ(ω) =∆L

(
β0 +β1(ω−ω0)+ β2

2!
(ω−ω0)2 + . . .

)
, (A.1)

where βn = ∂nβ(ω)

∂ωn

∣∣∣∣
ω=ω0

(A.2)

are the dispersion coefficients, and ∆L is the length difference between the two arms

of the MZI. Subtracting the constant and linear terms from eq. A.1 reveals the effects of

higher-order dispersion (βn ,∀n ≥ 2) as shown in Figure A.7. Specifically, β2 = ∂2β/∂ω2

4The HCN gas cell pressure is obtained by minimizing the residuals between the measured and com-
puted line frequencies.

90



A.4. Validation and performance

In
te

gr
at

d
 D

is
p

er
si

o
n

 (
ra

d
)

 Δ
L⋅

(β
(ω

) 
- 
β

0
 -

 ω
β

1
) 

15301540155015601570158015901600
Wavelength (nm)

−80

−60

−40

−20

0

Assuming MZI ΔL = 5.0 (m), D = 19.32 (ps/nm/km)

Data

3d Order Fit

−4000 −2000 0 2000
Frequency offset (GHz)

0.0

0.5

-0.5

R
es

id
u

al
s 

(r
ad

)

Figure A.7 | Mach–Zehnder interferometer dispersion. Top: Instantaneous phase
of the MZI signal with the constant and linear components subtracted (see main
text): ϕ(ω)−∆L

(
β0 +β1(ω−ω0)

)
. Deviation from a straight line is due to the pres-

ence of the presence of high order dispersion (≥ 2). A 3rd-order fit reveals that
the dispersion parameter is 19.32 psnm−1 km−1, in excellent agreement with the
specification for SMF28 optical fiber. Bottom: Residuals from the 3rd-order fit. Pe-
riodic oscillations can be observed, introduced by the 50/50 directional couplers
splitting/combing the arms of the MZI. Note that these oscillations are resolved
by the reference OFC (spectral oscillation period ≫ωrep/(2π)) and, therefore, cor-
rected by the calibration procedure.

is the group velocity dispersion (GVD), which is directly related to the dispersion pa-

rameter D =− ω2
0

2πcβ2 often used to characterize optical fibers. Typically, a value of D =
19.3(1)psnm−1 km−1 is measured, in excellent agreement with the D ≈ 19psnm−1 km−1

specification of SMF28 fiber.

In practice, this check is performed after step 3 of the calibration procedure to verify

that both the instantaneous phase and the calibration markers are correctly extracted.

If a comb line were missed, a vertical discontinuity would be observed in the dispersion

relation at the frequency of the missing marker, with a step∆Lβ1ωrep corresponding to

a frequency error of ωrep after calibration.

A.4.2 Hydrogen cyanide

While the HCN calibration signal is used to set the absolute frequency offset, the resid-

uals between the measured and published line frequencies can be used to estimate the

spectral accuracy of the reconstructed frequency axis. Figure A.8 shows an example of

these residuals for the R- and P-branch lines as a function of frequency. The RMS devi-
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Figure A.8 | HCN spectroscopy. Frequency offset between the measured and pub-
lished line frequencies. The ±2σ error bars include the combination of the fit un-
certainty and the uncertainty of the published line data used for this work. The
residual RMS value is 1.6 MHz.

ation is approximate 1.6 MHz and is limited by the fit uncertainty and the uncertainty

of the published data, as shown by the error bars.

From this, we conclude that our FCADLS setup achieves MHz-level spectral accuracy

despite the relative broad linewidth of the HCN absorption features (FWHM >1 GHz).

This is largely sufficient for the applications within this work, such as microresonator

dispersion measurement, sideband injection locking characterization, and comb re-

construction spectroscopy. Utilizing a calibration source with narrower spectral lines

could further improve spectral accuracy.

It is also important to note that the relative spectral accuracy is expected to be signifi-

cantly better and is primarily limited by the spectrally dependent signal-to-noise ratio

of the Mach-Zehnder interferometer and comb calibration signals.
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Appendix B

Derivation of coupled mode equations

The coupled mode equations approach to modeling Kerr resonator dynamics is a frequency-

domain method that describes the temporal evolution of the complex amplitudes of

the cavity’s (longitudinal) eigenmodes [44, 96]. While strictly equivalent to the wider

known Lugiato–Lefever equation [83, 88], describing the temporal evolution of the com-

plex intracavity field, CME enable straightforward integration of mode-dependent pa-

rameters within numerical simulations, such as dispersion and linewidth data obtained

through frequency-assisted diode laser spectroscopy. In this appendix, the coupled

mode equations used as the basis for the numerical simulation of Kerr frequency combs

in the body of this thesis are derived from the nonlinear wave equation.

B.1 Definitions

Let the nonlinear wave equation be [82, 265]

∇2Ẽ− n2
0

c2

∂2Ẽ

∂t 2
= 1

ϵ0c2

∂2P̃NL

∂t 2
, (B.1)

where P̃NL is the nonlinear polarization of a χ(3) material

P̃NL = ϵ0χ
(3)Ẽ3. (B.2)

The electric field inside a high-Q resonator can be expressed as a linear combination

of the cavity’s eigenmodes

Ẽ(t ,rrr) =∑
µ

EµFµ(rrr)e− jωµt +c.c., (B.3)



Appendix B. Derivation of coupled mode equations

where Eµ are the slow-varying mode amplitudes1, Fµ(rrr) the cavity eigenmodes and c.c.

the complex conjugate. The cavity eigenmodes are orthogonal and normalized such

that 〈
Fµ,Fη

〉= ∫
V

Fµ(rrr) ·F∗
η(rrr)dV =

1, if µ= η
0, if µ ̸= η

. (B.4)

We make the assumption that the waveguide is uniform in cross-section such that the

cavity eigenmodes can be expressed as the product of a plane wave and a transverse

field profile F̄µ(x, y)

Fµ(rrr) = F̄µ(x, y)e jβµz , (B.5)

where βµ =µ2π

L
. (B.6)

Here βµ is the propagation constant of the µth mode and L is the round-trip length of

the cavity. Note that due to the choice of normalization for Fµ(rrr)

〈
F̄µ, F̄µ

〉=Ï
S

F̄µ(x, y) · F̄∗
µ(x, y)d xd y = 1

L
, (B.7)

where the integral is carried over the waveguide’s transverse plane S. Finally, we define

the effective mode area Aeff as

Aeff :=
(Î ∣∣F̄µ(x, y)

∣∣2 d xd y
)2

Î ∣∣F̄µ(x, y)
∣∣4 d xd y

= 1

L2
Î ∣∣F̄µ(x, y)

∣∣4 d xd y
, (B.8)

and the effective mode volume as Veff := L Aeff. Note that Aeff and Veff are independent

of our choice of normalization for Fµ(rrr).

B.2 Derivation

B.2.1 Removal of spatial dependencies

We start by substituting eq. B.3 into the wave eq. B.1. To simplify the redaction, we will

process the left-hand side (LHS) and right-hand side (RHS) separately.

1We drop the time dependence of the slow-varying amplitudes to simplify notation.
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B.2. Derivation

For the LHS of eq. B.1, we find, for Laplacian of the electric field

∇2Ẽ =∑
µ

Eµe− jωµt∇2Fµ(rrr)+c.c., (B.9)

and for the second term

−n2
0

c2

∂2Ẽ

∂t 2
=−n2

0

c2

∑
µ

Fµ(rrr)
∂2

∂t 2

(
Eµe− jωµt

)
+c.c.

=−n2
0

c2

∑
µ

Fµ(rrr)
(
Ëµ−2 jωµĖµ−ω2

µEµ
)

e− jωµt +c.c.

(B.10)

Combining both terms, the LHS can be rewritten as

∇2Ẽ− n2
0

c2

∂2Ẽ

∂t 2
=

∑
µ

Eµe− jωµt

(
∇2 +

n2
0ω

2
µ

c2

)
Fµ(rrr)− n2

0

c2

∑
µ

Fµ(rrr)
(
Ëµ−2 jωµĖµ

)
e− jωµt +c.c., (B.11)

where the first term vanishes as the cavity eigenmodes Fµ(rrr) are by definition solutions

to the Helmholtz equation (∇2 + n2
0ω

2
µ/c2)Fµ(rrr) = 0. Additionally we make the slow

varying envelope assumption |Ëµ|≪ |2ωµĖµ|, such that we are left with

∇2Ẽ− n2
0

c2

∂2Ẽ

∂t 2
≈ 2 j

n2
0

c2

∑
µ

Fµ(rrr)ωµĖµe− jωµt +c.c. (B.12)

For the RHS of eq. B.1 we find

1

ϵ0c2

∂2P̃NL

∂t 2
= χ(3)

c2

∂2Ẽ3

∂t 2

= χ(3)

c2

∂2

∂t 2

(∑
µ

EµFµ(rrr)e− jωµt +c.c.

)3

≈ 3
χ(3)

c2

∑
µ,µ′,µ′′

∂2

∂t 2

(
EµEµ′E

∗
µ′′Fµ(rrr)Fµ′(rrr)F∗

µ′′(rrr)e− j (ωµ+ωµ′−ωµ′′ )t +c.c.
)

(B.13)

where we have omitted the terms corresponding to triple-sum and third-harmonic

generation. We once again use the slow varying envelope assumption |Ëµ|≪ |2ωµĖµ|≪
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|ω2
µ| and derive

1

ϵ0c2

∂2P̃NL

∂t 2
= 3

χ(3)

c2

∑
µ,µ′,µ′′

−(ωµ+ωµ′ −ωµ′′)2EµEµ′E
∗
µ′′

·Fµ(rrr)Fµ′(rrr)F∗
µ′′(rrr)e− j (ωµ+ωµ′−ωµ′′ )t +c.c. (B.13)

We then assume we are working around a central frequency ω0 such that (ωµ+ωµ′ −
ωµ′′)

2 ≈ω2
0

1

ϵ0c2

∂2P̃NL

∂t 2
=−3ω2

0χ
(3)

c2

∑
µ,µ′,µ′′

EµEµ′E
∗
µ′′Fµ(rrr)Fµ′(rrr)F∗

µ′′(rrr)e− j (ωµ+ωµ′−ωµ′′ )t +c.c. (B.13)

B.3 Projection

We now project the equation on a given mode η by multiplying by F∗
η(rrr) and integrating

over volume.

For the LHS we have∫
V

F∗
η(rrr) ·

(
∇2Ẽ− n2

0

c2

∂2Ẽ

∂t 2

)
dV = 2 j

n2
0

c2

∑
µ

∫
V

F∗
η(rrr) ·

(
Fµ(rrr)ωµĖµe− jωµt + c.c.

)
dV (B.14)

= 2 j
n2

0

c2

∑
µ

ωµĖµe− jωµt 〈
Fµ,Fη

〉+ .c.c (B.15)

= 2 j
n2

0

c2
ωηĖηe− jωηt , (B.16)

where we have used eq. B.4. Note that the c.c. components disappears as 〈F∗
µ,Fη〉 =

0,∀µ.

For the RHS we have

∫
V

F∗
η(rrr) ·

(
1

ϵ0c2

∂2P̃N L

∂t 2

)
dV =−3ω2

0χ
(3)

c2

∑
µ,µ′,µ′′

EµEµ′E
∗
µ′′e

− j (ωµ+ωµ′−ωµ′′ )t

·
∫

V
Fµ(rrr)Fµ′(rrr)F∗

µ′′(rrr)F∗
η(rrr)dV (B.17)

We then use eq. B.5 and make the assumption that all eigenmodes share a common
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transverse field profile F̄µ(x, y) = F̄(x, y)∫
V

Fµ(rrr)Fµ′(rrr)F∗
µ′′(rrr)F∗

η(rrr)dV =
∫

V
|F̄(x, y)|4e j 2π

L (µ+µ′−µ′′−η)zdV (B.18)

=
V −1

eff , if µ+µ′−µ′′−η= 0

0, otherwise
, (B.19)

where we have used eq. B.8. Note that again, the c.c. components disappear as no

combination can yield µ′′−µ−µ′−η= 0.

We now combine both sides of the equation to get

Ėη = j
3ω0χ

(3)

2n2Veff

∑
µ,µ′,µ′′

EµEµ′E
∗
µ′′e

− j (ωµ+ωµ′−ωµ′′−ωη)t , (B.20)

summing over ∀µ,µ′,µ′′ respecting µ+µ′−µ′′ = η.

B.4 Normalization

Let the time-averaged Poynting vector for mode µ be

〈
P̃PPµ

〉= 〈
ẼEEµ×H̃HHµ

〉= 1

2
EEEµ×HHHµ (B.21)

where ẼEEµ =ℜEEEµ ·e− jωt and H̃HHµ =ℜHHHµ ·e− jωt . In the scalar case, we make the approxi-

mation that |HHHµ| = nϵ0c · |EEEµ| and that P̃PPµ is co-axial with the waveguide and has mag-

nitude

∣∣〈P̃PPµ
〉∣∣= nϵ0c

2

∣∣EEEµ∣∣2 (B.22)

Therefore, the circulating power for modeµ is obtained by integrating the time-averaged

Poynting vector over the waveguide cross-section

Pµ = nϵ0c

2

Ï ∣∣EEEµ∣∣2 d xd y

= 2nϵ0c
Ï ∣∣EµFµ(rrr)

∣∣2 d xd y

= 2nϵ0c|Eµ|2
Ï ∣∣F̄(x, y)

∣∣2 d xd y

= 2nϵ0c

L
|Eµ|2

(B.23)
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where we have used eq. B.3 and B.7. We then introduce the normalized mode ampli-

tude Aµ such that |Aµ|2 is the number of quanta in the cavity in mode µ, by dividing by

the photon energy ℏωµ and multiplying by the cavity round-trip time nL
c

|Aµ|2 = Pµ
nL

cℏωµ
= 2ϵ0n2

ℏωµ
|Eµ|2 (B.24)

yielding

Eµ = Aµ

√
ℏωµ

2ϵ0n2
(B.25)

that we then substitute in eq. B.20

Ȧη = j
3ω0χ

(3)

2n2Veff

ℏωη
2ϵ0n2

∑
µ,µ′,µ′′

AµAµ′ A
∗
µ′′e

− j (ωµ+ωµ′−ωµ′′−ωη)t (B.26)

We introduce this as well as the nonlinear index n2 = 3
4n2

0ϵ0c
χ(3) into eq. B.26 and get

Ȧη = j
ℏω2

0cn2

n2Veff

∑
µ,µ′,µ′′

AµAµ′ A
∗
µ′′e

− j (ωµ+ωµ′−ωµ′′−ωη)t (B.27)

= j g
∑

µ,µ′,µ′′
AµAµ′ A

∗
µ′′e

− j (ωµ+ωµ′−ωµ′′−ωη)t (B.28)

where g is the nonlinear coupling coefficient

g = ℏω2
0cn2

n2Veff
(B.29)

B.5 Decay and pump

Including the cavity decay rate κ, we get

Ȧη =−κ
2

Aη+ j g
∑

µ,µ′,µ′′
AµAµ′ A

∗
µ′′e

− j (ωµ+ωµ′−ωµ′′−ωη)t . (B.30)

We then consider a pump s (such that |s|2 is the pump’s photon flux) with frequencyωp

and |ωp −ω0| much smaller than the cavity FSR such that it only contributes to mode

η= 0

Ȧη =−κ
2

Aηδη
p
κe se− j (ωp−ω0)t + j g

∑
µ,µ′,µ′′

AµAµ′ A
∗
µ′′e

− j (ωµ+ωµ′−ωµ′′−ωη)t (B.31)
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B.5. Decay and pump

where δη is the Kronecker delta such that δη = 0 except for δ0 = 1.

Introducing the following normalization:

τ= κ

2
t , ζµ =

2(ωµ−ωp −µD1)

κ
, f =

√
8ηg0

κ2
sin, aµ =

√
2g0

κ
Aµe−i (ωµ−ωp−µD1)t

(B.32)

enables the system to be rewritten in its dimensionless form:

∂aµ
∂τ

=−(1+ iζµ)aµ+ i
∑
µ′,µ′′

aµ′aµ′′a
∗
µ′+µ′′−µ+δµ f . (B.33)
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