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Abstract

The integrability properties of N = 4 Super-Yang-Mills in the planar limit have been
studied extensively and are well understood. For certain classes of theories, obtained by
orbifolding N = 4 Super-Yang-Mills, it was shown that planar integrability is actually
inherited and persists at the orbifold point. However, to date, little is known for theories
that are deformed away from this fixed line in the marginal couplings.

The content of this thesis is the study of global symmetries of the Z2-orbifold of N = 4
Super-Yang-Mills theory and its marginal deformations, with the aim to investigate and
describe hidden symmetries appearing in this N = 2 superconformal field theory. The
process of orbifolding in order to obtain an N = 2 theory appears to break the SU(4)
R-symmetry down to SU(2) × SU(2) × U(1). We are able to show that the previously
broken generators can actually be recovered by moving beyond the Lie algebraic setting
and adopting the notion of a Lie algebroid.

This remains true even away from the orbifold point after performing a marginal
deformation, where we allow for independent variation of the SU(N) × SU(N) gauge
couplings.

By employing a Drinfeld-type twist of this SU(4) Lie algebroid, we can capture this
marginal deformation. The resulting twist can be read off from the F- and D- terms of the
theory, and thus directly from the Lagrangian.

Even though at the orbifold point the algebraic structure is associative, it becomes
non-associative after the marginal deformation.

We explicitly check that the planar Lagrangian of the theory is invariant under this
twisted version of the SU(4) algebroid, and we discuss implications of this hidden symmetry
for the spectrum of the N = 2 theory.
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Zusammenfassung

Die Integrabilitätseigenschaften der N = 4 Super-Yang-Mills-Theorie im planaren Limit
wurden intensiv untersucht und sind gut verstanden. Für bestimmte Klassen von Theorien,
die durch Orbifolding von N = 4 Super-Yang-Mills-Theorie gewonnen werden, konnte
gezeigt werden, dass Integrabilität im planaren Limit tatsächlich erhalten bleibt und am
Orbifoldpunkt fortbesteht. Allerdings ist bislang wenig über Theorien bekannt, die durch
Variation der marginalen Kopplungen von diesem Fixpunkt weg deformiert werden.

Der Inhalt dieser Arbeit ist die Untersuchung globaler Symmetrien der Z2-Orbifold
der N = 4 Super-Yang-Mills-Theorie und ihrer marginalen Deformationen, mit dem Ziel,
verborgene Symmetrien in dieser N = 2-superkonformen Feldtheorie zu identifizieren und
zu beschreiben. Der Orbifolding-Prozess, durch den eine N = 2-Theorie entsteht, scheint
die SU(4)-R-Symmetrie auf SU(2) × SU(2) ×U(1) zu brechen. Wir zeigen jedoch, dass
die gebrochenen Generatoren durch einen Perspektivenwechsel von einer Lie-Algebra hin
zu einem Lie-Algebroid wiederhergestellt werden können.

Dies bleibt auch bei marginalen Deformationen, die eine unabhängige Variation der
Kopplungen der SU(N) × SU(N)-Gauge-Gruppen erlauben, gültig. Die Information über
die marginale Deformation wird durch einen Drinfeld-artigen Twist dieses SU(4)-Lie-
Algebroids beschrieben. Dieser Twist lässt sich aus den F- und D-Termen und somit direkt
aus der Lagrangedichte ablesen. Während die algebraische Struktur am Orbifoldpunkt
noch assoziativ ist, ist dies nach der marginalen Deformation nicht mehr der Fall.

Wir zeigen explizit, dass die Lagrangedichte der Theorie im planaren Limit unter dieser
marginal deformierten Version des SU(4)-Algebroids invariant bleibt, und diskutieren die
Implikationen dieser verborgenen Symmetrie für das Spektrum der N = 2-Theorie.
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Für meine Familie.
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Introduction

General introduction

Symmetries are one of the most powerful methods to allow us to glimpse at the heart of
the machinery which governs our universe and its fundamental laws of nature. Especially
in the realm of particle physics and quantum field theories, symmetries play a dominant
role, allowing us to simplify otherwise difficult problems or gain unobtainable insights into
the defining properties of the theories under study.

One of the main aims of current particle physics is to describe the spectrum of hadronic
particles, their masses, excitations, and interactions in a complete and holistic framework.
However, still to this day there are discrepancies between theory and experiments compli-
cating the search for a full and universal description of nature, such as the emergence of
non-perturbative effects in low-energy interactions of quantum chromodynamics (QCD),
our to date best description available following an otherwise undeniable track record of
agreement between theoretical predictions and experimental results.

Even though a full description of the fundamental laws of nature seems up to now still
a dream, there exist worthwhile and fascinating testing grounds to move every closer to
this ultimate goal. One such avenue are conformal invariant quantum field theories (CFT),
which are of interest both theoretically and phenomenologically.

The prime examples for conformal field theories arise in its two-dimensional incarnation,
due to the existence of an infinite-dimensional algebra of local conformal transformations.
As a consequence of scale invariance, which is part of the group of conformal transformations,
the spectrum of a CFT contains only massless particles. Composite constituents are then
described by local operators, corresponding to compositions of fundamental fields, via the
operator-field correspondence. The defining properties of any CFT are captured by a set of
parameters consisting of scalar dimensions, characterising the behaviour of the fundamental
(primary) fields of the theory under conformal transformations. They can be subject to
quantum corrections, also known as anomalous dimensions, from interactions with other
fields. Furthermore, any CFT also contains a set of three-point structure constants, needed
to describe correlation functions between operators. Some two-dimensional CFTS are
integrable, meaning observables and defining parameters of the theory can be solved
exactly.
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However, the study of two-dimensional CFTs is not the focus of this work, but
incidentally the four-dimensional setting. More precisely, we are interested in gauge theories
in four-dimensions exhibiting supersymmetry on top of Poincaré and conformal symmetry.
In four-dimensions, we can have theories with N = 0,1,2,3 and N = 4 supersymmetries.
The more amount of supersymmetry present, the higher the chances that all this symmetry
significantly simplifies explicit calculations or even allows for the appearance of exact
statements, when trying to solve for the spectrum and other observables. Nevertheless, it
is instructive to reduce the amount of supersymmetry and study these theories, as they
will get us closer to the real world, since QCD is a gauge theory with any amount of
supersymmetry. The aim of this thesis is to investigate conformal theories starting from
maximum supersymmetry in four-dimensions (N = 4), reduced down to half.

There exists a unique maximally supersymmetric gauge theory in four dimensions,
N = 4 super Yang-Mills (SYM) [1], with gauge group SU(N), characterized by the rank N
and gauge coupling g. It is far from being a realistic candidate of a gauge theory appearing
in nature, due to its high degree of symmetry and all its fields transforming in the adjoint
representation of the chosen gauge group. Nevertheless, it exhibits many features contained
in QCD and other gauge theories in the Standard Model of particle physics, since N = 4
SYM is also a renormalizable gauge theory in four-dimensional Minkowski spacetime.

One important aspect for any gauge theory is the investigation of the energy-scale-
dependence of the gauge coupling g, also known as the running of the coupling [2]. This
behaviour is characterized by the beta function β = µ ∂g

∂µ , where µ is the energy scale. If
the beta function is zero, this means that the gauge coupling of the theory is invariant
under changes in the energy-scale, a prerequisite for a theory to be conformal invariant.
The calculation of the beta function is generally performed in a perturbative way, where
g is assumed to be small. The resulting terms can then be ordered by powers in g,
corresponding to different loop orders in the Feynman graphs.

A relevant example is the one-loop beta-function of N = 4 SYM

β = −µ
∂g

∂µ
= −

g3

16π2(
11
3 N −

1
6 ∑

i∈Scalars
Ci −

2
3 ∑

i∈Fermions
Ĉi) , (1.1)

which is zero, since all fields transform in the adjoint of SU(N), resulting in the Casimirs
for every field to be the same, Ci = Ĉi = N . Due to the existence of non-renormalisation
theorems, this result holds to all loop orders, effectively making the scale invariance a
proper symmetry also at the quantum level.

This scale invariance of N = 4 SYM is itself merely a consequence of the exact
conformal invariance under SO(2,4). Combining the conformal invariance with N = 4
supersymmetry gives rise to an even bigger symmetry group known as the superconformal
group PSU(2,2∣4).

Next to a pure gauge theoretical aspect, N = 4 SYM also plays a vital role in the
AdS/CFT correspondence. Via this gauge theory/gravity duality N = 4 SYM on Minkowski
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spacetime is connected to type IIB string theory living in ten-dimensional AdS5 × S5 [3].
Even though, a full mathematical proof of the AdS/CFT correspondence is still missing,
there is a huge amount of supporting evidence for its validity. One important aspect for
this work is the fact that the global symmetries of the string theory and gauge theory
match. More precisely, the isometries of the 5-sphere factor S5 in AdS5 × S5 include
the R-symmetries of N = 4 SYM SU(4)R ∼ SO(6)R, whereas the conformal symmetry
SO(2,4) of the gauge theory matches with the isometries of the AdS5 factor. Modifying
the “transverse” 5-sphere factor, for example by employing an orbifolding, results in a
plethora of fascinating models to study, ranging from theories with the same number of
supersymmetry as the parent N = 4 SYM theory all the way to down to theories with
N = 0. This includes also the model of study of this thesis, namely a N = 2 superconformal
field theory (SCFT).

The relation between a string theory and its gauge theory counterpart along the
AdS/CFT Correspondence can best be understood when employing the ’t Hooft limit [4].
This is also known as the large N limit, since the number of colour charges N is sent to
infinity while keeping the ’t Hooft coupling λ = g2N finite. By taking a 1/N -expansion of
the Feynman graphs of the theory in ’t Hooft’s double line notation, one can expand around
λ = 0 whilst keeping λ fixed the Feynman graphs naturally group together according to the
genus of their corresponding string world sheet surfaces. Planar graphs then correspond
to genus zero graphs, which can be drawn on the plane without having to cross lines and
higher genus graphs involve more elaborate and complex projections, resulting in them
being subleading in powers of 1/N .

The by far most powerful and fruitful setting for N = 4 SYM appears when taking the
planar limit, where only Feynman graph contributions to leading order in N are considered,
since all other contributions playing a negligible role in the large N limit. In the remainder
of this work, we will assume the planar limit as our setting.

Since N = 4 is a CFT, the planar limit allows us to express the scaling dimensions
of local operators as functions of the coupling constant, basically giving a set of integral
equations which can for example be solved via the Thermodynamic Bethe Ansatz or the
asymptotic Bethe equations for any value of λ, which further implies that given a set of
algebraic equations, the spectrum can be solved exactly.

Another way to say this, is that the spectrum of N = 4 SYM is integrable (see [5,6] for
reviews). Integrability can also be understood and described as a hidden symmetry of the
theory, allowing not only for efficient ways to determine the spectrum, but furthermore
the computation of otherwise hard to or even unattainable results in the realm of Wilson
loops, correlation functions, scattering amplitudes and a plethora of other observables.

Therefore, a natural first step in answering the questions of whether, how and why
a theory exhibits integrability is to investigate the complete symmetry properties of the
theory in question, including extended and, in the case of this work, hidden symmetries.

For the case of N = 4 the integrable structure was first described by [7]. Their work
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showed a connection between the calculation of anomalous dimensions, due to operator
mixing, at one-loop and the computation of the spectrum of the Heisenberg spin chain, a
known integrable model. Local operators are mapped to states on the spin chain described
by a one-dimensional periodic lattice and 1

2 -BPS states, protected by representation theory,
correspond to potential vacua for the spin chain states.

Specific introduction to this work

In this work, we undertake first concrete steps towards the search for hidden symmetries in
superconformal theories with N = 2 supersymmetry obtained by orbifolding and marginally
deforming N = 4 SYM.

Lie groups and their associated Lie algebras serve as the standard framework for
describing continuous symmetries. However, Lie groups only represent a specific case
within a much broader class of mathematical structures, known as quantum groups (see [8,9]
for introductions). Quantum groups play a central role in the study of two-dimensional
quantum integrable systems and conformal field theories (see [10] for an overview). The
notion of symmetry still persists, even after a relaxation of some group axioms. Specifically,
one can abandon the requirement that all group operations are composable. This leads to
the concept of the more general structure known as groupoids (see [11, 12] for reviews).

The landscape of N = 2 superconformal field theories in four dimensions is vast and not
yet fully charted. There exists a complete classification of Lagrangian N = 2 SCFTs by [13].
Incidentally, a significant subset of these theories can be constructed through orbifolding
N = 4 SYM [14, 15], the approach we will also be employing in this work. It follows
naturally, that one might ask whether planar integrability exhibited by N = 4 SYM is
inherited by this class of N = 2 SCFTs. At the orbifold point (a particular submanifold of
the conformal manifold, where all the marginal couplings are equal), which is parametrised
by the remaining gauge coupling, it was shown by [16] that this remarkable structure
persists even after orbifolding. However, little is known beyond this special fixed line of the
conformal manifold and progress towards understanding integrability has remained elusive
(see [17] for a discussion). Recent work [18] revisited these theories from the perspective of
dynamical symmetries, though the implications for integrability remain unclear.

A key first step in answering the question of the existence of planar integrability for such
theories is to investigate the symmetries governing the planar limit. The symmetry content
of N = 2 SCFTs is traditionally thought to solely consist of the N = 2 superconformal
symmetry SU(2, 2∣2), along with a global flavour symmetry. However, in [18], it was argued
that an enhanced symmetry may be at play — specifically, a deformation of the parent
superconformal group PSU(2,2∣4) appearing in N = 4 SYM. The relevant continuous
deformations are parametrised by the exactly marginal Yang-Mills couplings, which can
be understood as coordinates of the N = 2 conformal manifold.

The aim of this thesis is to take further steps towards uncovering these hidden symme-
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tries for marginally deformed orbifold theories. The main focus lies on the Z2 orbifold of
N = 4 SYM. In Chapter , we start by discussing the situation at the orbifold point, by
broadening the mathematical structure needed to describe the symmetry of the theory,
from Lie groups to Lie groupoids.

In many ways, understanding the orbifold point construction alone allows one already
to see the necessity for a Lie groupoid description. Using this new language, we can define
generators relating fields in different representations of the SU(N)×SU(N) gauge group of
the theory, which would naively be considered broken by the orbifolding process. Through
explicit computation, we demonstrate that the action of the theory is invariant under all
generators of SU(4), rather than only those left unbroken by the orbifolding process. It is
important to stress that this is only possible after the modification of the action of the
broken generators which goes beyond the standard Lie-algebraic framework, to that of Lie
groupoids.

We continue by studying the marginal deformations of the Z2 theory as we move away
from the orbifold point. Now, the two gauge couplings can vary independently, leading to
a family of deformations, parametrised by the ratio of the gauge couplings still preserving
the N = 2 superconformal symmetry.

In order to describe the marginally-deformed version of the SU(4) Lie groupoid present
at the orbifold point, we need to find a way to twist this algebraic structure. This approach
is analogously to the twists leading to marginal deformations of the N = 4 SYM theory,
as shown in [19–24]. The first step to achieve this is to turn to the F- and D-terms of
the theory (see Chapter ). As already suggested in [18,25], the F- and D-terms define a
quantum plane structure, thus providing a means to define the twist at the quantum plane
(or braid) limit. For our specific N = 2 theory, we can naturally extend these quantum
planes using the unbroken SU(2) R-symmetry to obtain SU(2) multiplets of quantum
planes for the full SU(4) sector. This allows us to rewrite the Lagrangian in a form making
the unbroken R-symmetry explicit.

In Chapter , we construct two-site twists, allowing us to take the trivial quantum
planes at the orbifold point to their marginally deformed counterparts. For a complete
description of these twists for the full Lagrangian, we need to extend them to three and
four sites. In Chapter we show that a simple coassociative extension of the two-site twist
correctly twists the superpotential of the orbifold point theory to that of the marginally
deformed case, allowing for the definition of a twisted action of the naively broken SU(3)
generators. The superpotential remains invariant also for the marginally deformed theory.

In Chapter we demonstrate that not only the superpotential, but the full bosonic
action can be derived from their orbifold point counterparts by a twisting procedure.1 It
is possible to untwist the Lagrangian of the marginally deformed Z2 theory, effectively

1This is important for the following reason. The two-site twists are defined via the F- and D-terms.
However, for the twisting procedure to be able to act on the superpotential at three-site twist and the
scalar potential at four-site twist, we need a way to extend from two-site, to three-site, and finally to
four-sites, which is crucial for a precise definition of the algebraic structure.
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undoing the marginal deformation, and recover the theory at the orbifold point, since we
are dealing with invertible twists. This allows for a definition of the action of the broken
SU(4) generators also on the marginally deformed quartic terms.

However, to guarantee a well-defined construction, associativity must be handled
carefully (see Section 7.1). In particular, the quartic terms of the Lagrangian exhibit two
inequivalent orderings (corresponding to a special form of non-associativity), which we
denote using different placements of parentheses, which we will also refer to as bracketings.
A map analogous to what is known as a coassociator in the context of quasi-Hopf algebras
allows us to map between these two types of bracketings and the derivation of the invariance
of the quartic terms under all SU(4) generators relies on the exlicit construction of this
coassociator.

We finish our investigation of the hidden symmetries of the Z2 orbifold theory by
examining aspects of the spectrum of the theory in Chapter . Specifically, we focus
our attention on the eigenstates of the one-loop Hamiltonian, and we explore additional
insights that can be gained through the quantum symmetries uncovered in this work.
The eigenstates of the Hamiltonian of N = 4 are classified by the linear irreducible
representations of SU(4). We aim to recover a deformed version of SU(4) representations
based on the presented algebroid language to achieve the same for our N = 2 theory. At
the orbifold point this can be done in full rigour, however, such a description becomes
more challenging when marginally deforming away. Nevertheless, for the special case of
BPS multiplets, as well as for all multiplets of length 2, we are able to define a suitable
action of the broken generators which takes us among the states of the multiplet. This
provides a connection between states in the physical spectrum of the theory, otherwise not
visible only by using the unbroken symmetries.

Before concluding the introduction, we wish to emphasize and acknowledge that our
work is inspired by and builds upon [26–29]. In these works, the Yangian symmetry
of planar N = 4 SYM and related theories is demonstrated at the level of the classical
equations of motion, as well as directly at the level of the Lagrangian. In order to define
a consistent action of the Yangian generators on the Lagrangian, the colour trace must
be cut open. This is also of central relevance to our work, since the action of the broken
generators changes the colour representation of an open state. Thus, to define a consistent
action of the generators compatible with the trace operation, we also need to resort to
cutting open closed states. More precisely, given a closed state, an open state is defined
through a cyclic opening-up procedure, presented in Appendix D. This then allows for a
consistent action of the broken generators.

This thesis is based on the article [30].
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The Z2 orbifold of N = 4 SYM

Following [31, 32], to define the theory, we start with N = 4 SYM with gauge group
SU(2N). In N = 1 superspace language, it consists of a vector multiplet V and three chiral
multiplets X,Y,Z, all in the adjoint representation of the gauge group. The R-symmetry
group of the theory is SU(4) ≃ SO(6), but only its subgroup SU(3) ×U(1) is manifest
in the superspace formulation. See Appendix A for our conventions for the action of
R-symmetry generators on the scalar fields.

We are interested in reducing the amount of supersymmetry from N = 4 to N = 2. One
way to achieve this is to perform a simultaneous orbifold projection in the R-symmetry
space

(V,X,Y,Z)→ (V,−X,−Y,Z) (2.2)

and in the colour space
φ→ τ−1φτ, (2.3)

where

τ =
⎛

⎝

IN×N 0
0 −IN×N

⎞

⎠
, (2.4)

and φ represents any of the above fields. The orbifolding breaks the gauge group down to
SU(N)1 × SU(N)2 and the non-zero components of the chiral fields are:

X =
⎛

⎝

0 X12

X21 0
⎞

⎠
, Y =

⎛

⎝

0 Y12

Y21 0
⎞

⎠
, Z =

⎛

⎝

Z1 0
0 Z2

⎞

⎠
, (2.5)

where we have indicated N ×N blocks of the original 2N × 2N matrices. The fields X12

and Y12 are in the bifundamental representation (N1,N2) of SU(N)1 ×SU(N)2, while X21

and Y21 are in the conjugate representation (N2,N1). The fields Z1 and Z2 are in the
adjoint representation of each individual gauge group, respectively. These features can be
conveniently summarised by a quiver diagram, as in Figure 2.1.

As the X,Y fields now belong to a different representation from the Z fields, the orbifold
also breaks the SU(4) R-symmetry group down to a subgroup, SU(2)L × SU(2)R ×U(1)r,
with the details of the breaking given in Appendix A. Starting in Section , we will explain
that the broken generators can be regained by suitably extending our algebraic framework.

The Lagrangian with generic coupling constants is expressed in the N = 1 superspace
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1 2

X12

X21

Y21
Y12

Z1 Z2

Figure 2.1: The quiver representing the Z2 SU(N) × SU(N) SCFT. The arrows indicate
the order in which fields must be composed, starting from the left, in order to obtain valid
gauge index contractions.

formulation as
L = LK + (∫ d2θ W + ∫ d2θ̄ W̄) . (2.6)

The Kähler part is

LK =
1
2

2
∑
i=1
(∫ d2θ triW

α
i Wiα + h.c.) +

2
∑
i=1
∫ d4θ tri (Z̄ie

giViZie
−giVi)

+ ∫ d4θ tr1 (X̄12e
g2V2X21e

−g1V1 + Y12e
−g2V2Ȳ21e

g1V1)

+ ∫ d4θ tr2 (X̄21e
g1V1X12e

−g2V2 + Y21e
−g1V1Ȳ12e

g2V2) ,

(2.7)

with the kinetic terms canonically normalised. The superpotential is given by

W = g1tr1((Y12X21 −X12Y21)Z1) + g2tr2((Y21X12 −X21Y12)Z2). (2.8)

Note that the traces are with respect to different gauge groups. To obtain the Lagrangian
at an orbifold point, we simply set g1 = g2. The full N = 2 superconformal invariance of
the orbifold theory is preserved when taking g1 ≠ g2.

To write the Lagrangian in components, one expands the superfields and integrates
over the Grassmann coordinates θ, θ̄, see e.g. the lectures [17] for more details.

In this work, we will not be interested in the fermionic components of the theory, nor
the gauge fields. We will just focus on the scalar fields. Their kinetic terms take the
standard forms (DµX12DµX̄21, etc.). In order to obtain the quartic terms that contribute
to the potential, we need to integrate out the auxiliary F and D fields, leading to the
F-term and D-term relations:

F Y
12 = g2X12Z2 − g1Z1X12 , F̄ Ȳ

12 = g2X̄12Z̄2 − g1Z̄1X̄12 ,

FX
12 = g2Y12Z2 − g1Z1Y12 , F̄ X̄

12 = g2Ȳ12Z̄2 − g1Z̄1Ȳ12 ,

FZ
1 = g1(X12Y21 − Y12X21) , F̄ Z̄

1 = g1(X̄12Ȳ21 − Ȳ12X̄21) ,

D1 = g1 (X̄12X21 + Ȳ12Y21 −X12X̄21 − Y12Ȳ21 −Z1Z̄1 + Z̄1Z1) ,

(2.9)
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together with their Z2-conjugates obtained by the simultaneous exchange of 1↔ 2 indices
(including g1↔ g2). These contribute to the quartic terms as

V(g1, g2) = tr1 (F
X
12 F̄

X̄
21 + F

Y
12F̄

Ȳ
21 + F

Z
1 F̄

Z̄
1 +

1
2D

2
1)

+ tr2 (F
X
21 F̄

X̄
12 + F

Y
21F̄

Ȳ
12 + F

Z
2 F̄

Z̄
2 +

1
2D

2
2) ,

(2.10)

which gives in the planar limit2

V(g1, g2) =g
2
1tr1 [

1
2
[Z̄1, Z1]

2
+M

(1)
1 (Z1Z̄1 + Z̄1Z1) + (M

(3)
1 )

2 −
1
2(M

(1)
1 )

2]

+ g2
2 tr2 [

1
2
[Z̄2, Z2]

2
+M

(1)
2 (Z2Z̄2 + Z̄2Z2) + (M

(3)
2 )

2 −
1
2(M

(1)
2 )

2]

− 2g1g2 tr1 [Z1X12Z̄2X̄21 +Z1Y12Z̄2Ȳ21 +Z1X̄12Z̄2X21 +Z1Ȳ12Z̄2Y21]

− 2g1g2 tr2 [Z2X21Z̄1X̄12 +Z2Y21Z̄1Ȳ12 +Z2X̄21Z̄1X12 +Z2Ȳ21Z̄1Y12] , (2.11)

where we have defined the SU(2)R R-symmetry singlet and triplet mesons with the colour
index of the second gauge group SU(N)2 contracted and the first SU(N)1 open as

M
(1)
1 ∶=X12X̄21 + Y12Ȳ21 + X̄12X21 + Ȳ12Y21 ,

(M
(3)
1 )

2 ∶= (Ȳ12X̄21 − X̄12Ȳ21)(X12Y21 − Y12X21) + (X12Y21 − Y12X21)(Ȳ12X̄21 − X̄12Ȳ21)

+ (X12X̄21 + Y12Ȳ21)(X12X̄21 + Y12Ȳ21) + (X̄12X21 + Ȳ12Y21)(X̄12X21 + Ȳ12Y21) ,

and their Z2 conjugates, M(1)
2 and M(3)

2 , respectively, with the colour index of the first
gauge group SU(N)1 contracted and the second SU(N)2 open.

These quartic terms form a singlet under the SU(2)L × SU(2)R ×U(1)r subgroup of
SU(4), defined by the unbroken generators Ra

b, with a, b ∈ {1,2} or a, b ∈ {3,4} (see
Appendix A for more details). In the following we will be interested in showing invariance
of the action, in a generalised sense that we will define, for all the SU(4) generators. In
the next section we will start with the orbifold point g1 = g2 and then proceed to the
marginally deformed case of g1 ≠ g2 in the following sections.

2The full action also contains double-trace terms [31], which we will omit as they are proportional to
1
N

and should therefore be subleading in the planar limit.
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Symmetries at the orbifold point

It has been known since the work of [16, 33] that planar integrability persists in the Zk

orbifolds of N = 4 SYM.3 Clearly, this implies that the Yangian-type symmetries of N = 4
SYM [26] must also be present in the orbifold theories. As the Yangian is an extension of
the global symmetry group of the theory, one might expect that there is a way to recover
the full SU(4) symmetry by some kind of “untwisting” procedure, similar to [27] for the
β-deformation of N = 4 SYM.

However, the situation in the orbifold case is not as straightforward. Recall that in
N = 4 SYM, all the fields are in the adjoint representation of the gauge group. So, for
example, the fields X and Z form an SU(2)XZ doublet. However, after the Z2 orbifolding
process, X12 and X21 are in bifundamental representations while Z1 and Z2 are in adjoint
representations. Therefore, the descendants of X and Z belong to different vector spaces
and do not form a doublet of the standard Lie algebra of SU(2)XZ . Thus, when we are
restricted at the Lie algebra level, the raising and lowering generators of the SU(2)XZ

group (in our notation σ+XZ =R
3
2 and σ−XZ =R

2
3, see Appendix A for our conventions) are

broken. In this work, we use the notation “broken” for su(4) generators which do not
reduce to su(2)L×su(2)R×u(1)r generators. Considering the other SU(2) sectors involving
Y Z, X̄Z, and Ȳ Z, the raising and lowering generators are also broken. In Appendix A
the reader can find how to embed these SU(2) sectors in the SU(4) R-symmetry group of
N = 4 SYM.

In the following, we will argue that we can consistently recover these broken generators
by going beyond the Lie algebraic setting and working instead in the framework of Lie
groupoids and their corresponding algebroids [11,12]. We refer to Appendix B for the main
definitions. The close connection between orbifolds (and quiver theories more generally)
and groupoids is well known (see [39] for an introduction), but our approach differs from
previous treatments in that we are interested in consistently defining the action of the
naively broken R-symmetry symmetry generators on products of fields, which are identified
with paths on the quiver, as we will now describe.

The path groupoid
Before introducing the Lie algebroid that will replace the R-symmetry Lie algebra,

3It is noteworthy that this is also the case for extensions to more general orbifolds [34]. See [35–38]
for reviews and further results related to integrability of orbifolds of N = 4 SYM.
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it is crucial to describe the vector space on which it acts. From a practical perspective
for physicists, this topic is extensively covered in several papers [31, 32], including the
review [17]. The construction relies on the planar limit, where spin chain states correspond
to single-trace operators in the gauge theory. For N = 4 SYM, spin chain states are
straightforwardly constructed as a direct product V⊗V⊗⋯⊗V of the unique singleton
representation V of theN = 4 superconformal algebra, defined on a single site and associated
with the adjoint representation of the colour group SU(N). The N = 2 superconformal
algebra, however, has multiple ultrashort representations, each associated with different
representations of the colour group as dictated by the quiver of the theory. In N = 2
quiver theories, the total space of spin chain states is not a simple product because the
colour index structure imposes constraints. In the planar limit, the allowed single trace
operators are those that follow the arrows in the quiver, as illustrated in Figure 2.1. For
instance, tr(X12Z2X21X12Z2X21) represents a valid single trace operator corresponding to
a spin chain state. However, a sequence of fields like X12Z2X12X12Z2X21 is not allowed,
as there is no way to contract the colour indices to obtain a single-trace operator and is
therefore excluded in the planar limit. Reference [18] presents a concise and accessible
approach for understanding the total space of spin chain states using the concept of a
dynamical spin chain. While this remains the most useful framework for physicists, it can
be further abstracted and simplified. The vector space containing the spin chain states is
elegantly described by the concept of a quiver path groupoid, which can be viewed as a
vector space where only a subset of possible element compositions is permitted. These
allowed compositions correspond to paths that follow the arrows in the quiver4, such as
V(12) ⊗V(22) ⊗V(21) ⊗V(11)⋯. In our case, the quiver of the SU(N) × SU(N) N = 2 SCFT
is depicted in Figure 2.1.

The R-symmetry Lie groupoid
Having described the vector space, we now turn to the groupoid structure that will

replace the R-symmetry group of N = 4 SYM. It is important to emphasise that the quiver
path groupoid, which characterises the vector space of spin chains, and the algebraic
structure we will introduce as the R-symmetry groupoid, are distinct entities. The R-
symmetry groupoid, which replaces the R-symmetry group, acts on the quiver path
groupoid.

Generators in a Lie algebra can be understood as infinitesimal deviations from the Lie
group identity element. Similarly, the generators of our R-symmetry algebroid span the
infinitesimal version of the R-symmetry groupoid. Hence, in the following we will use both
terms depending on the context.

The purpose of the R-symmetry groupoid is to enable a mapping between bifundamental
fields, such as X12 and X21, and the adjoint fields Z1 and Z2. At the level of individual
fields (single sites), the algebraic structure that replaces the broken su(2)XZ symmetry

4For a more formal definition of the path groupoid product m, we refer to Appendix B.

24



Z1 X12

Z2 X21

σ
(1)
+

σ
(1)
−

σ
(2)
+

σ
(2)
−

γ γ

σ
(1)
3 σ

(1)
3

σ
(2)
3σ

(2)
3

Figure 3.2: A graphical depiction of the Lie algebroid that replaces the su(2)XZ Lie
algebra, acting on single-site letters. The operator γ is the odd Z2 element that flips the
quiver diagram in Figure 2.1, exchanging the gauge groups 1↔ 2.

is illustrated in Figure 3.2. At the level of the algebroid, the naively broken raising and
lowering operators act as

σ
(1)
− (X12) = Z1 , σ

(1)
+ (Z1) =X12 , (3.12)

where the “=” symbol should be understood as a mapping between the two fields, which
have different index structures. Here we have adopted the convention that the action
of the broken generator flips the second index of the field while preserving the first one.
We also note that the planar limit is essential for the bifundamental and adjoint fields
to have the same matrix dimension. A way to make sense of expressions like (3.12) is
to consider that, through the orbifold action, the broken R-symmetry generators have
acquired a dependence on the gauge group (specifically, on the labels of the N ×N blocks
of the original SU(2N), as in (2.5)). This non-direct product form of the R-symmetry and
gauge group of the original N = 4 SYM theory is what leads to the groupoid structure
that we are describing.

The above structure, described for su(2)XZ ⊂ su(4), generalises straightforwardly to
all generators of SU(4), allowing us to capture the full SO(6) scalar sector. The algebraic
structure for the entire su(4) is depicted in Figure 3.3, where the vector spaces —adjoint
and bifundamental — are denoted as

V11 = {{Z1, Z̄1} ,{X12X21, Z1Z1,⋯} ,{X12X21Z1, Z1Z1Z1,⋯} ,⋯} , (3.13)

V12 = {{X12, X̄12, Y12, Ȳ12} ,{X12Z2, Z1X12⋯} ,{X12X21X12, Z1X12Z2,⋯} ,⋯},

with V22 and V21 being the Z2 conjugates (1 ↔ 2) of V11 and V12, respectively. It is
important to stress that the R-symmetry groupoid acts on the entire space of all possible
spin chain lengths, i.e. the entire quiver path groupoid. This is why in (3.13) a set of one-,
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two-, three- etc. site states appear. Next, the sets of unbroken and broken generators
acting between these spaces are:

R(11) = R(22) = {R
1

1,R
1

2,R
2

1,R
2

2,R
3

3,R
3

4,R
4

3,R
4

4} , (3.14)

R+(12) = R
+
(21) = {R

3
1,R

3
2,R

1
4,R

2
4} , (3.15)

R−(12) = R
−
(21) = {R

1
3,R

2
3,R

4
1,R

4
2} . (3.16)

The structure of the diagram in Figure 3.3 is precisely obtained from the grading that is
defined by the orbifold on these generators.

Note that the unbroken generators in the set of R(11) = R(22) commute with the
orbifolding procedure, while the broken generators in R±(12) = R

±
(21) do not. To see this,

we can define Z2 elements sL = (−1)iL and sR = (−1)iR , where iL (iR) are the leftmost
(rightmost) gauge group indices of an open state. In our conventions, the action of any
generator preserves the sL eigenvalue of any state. Unbroken generators also preserve the
sR eigenvalue, while the action of the broken generators flips the sR eigenvalue of any
state.

This R-symmetry algebroid should be understood as an extension of the R-symmetry
algebra, which ensures that only the correct subset of all possible compositions of elements
of the basis is allowed. The allowed compositions are those obtained by following the
arrows of Figure 3.3. Following these arrows it is easy to see that the generators still obey
the su(4) algebra

[Ra
b,R

c
d] = δ

c
bR

a
d − δ

a
dR

c
b . (3.17)

As we show in Appendix C, the algebroid generators obey the graded structure

[(unbroken), (unbroken)] = (unbroken),

[(broken), (unbroken)] = (broken),

[(broken), (broken)] = (unbroken) .

(3.18)

Finally, we note that the base of this algebroid is a discrete set rather than a continuous
space.

Having written down, in equation (3.12), the action of the R-symmetry algebroid on
single site elements of the quiver path groupoid, we next turn to the action on spin chain
states with more than one site. When a broken generator acts on a product of fields, we
need to generalise equation (3.12) accordingly such that all the indices to the right of
the site where the generator acts are changed. This is due to the fact that otherwise we
are immediately confronted with the problem that this action will not respect the proper
gauge index contraction. Consider for instance acting with the R2

3 = σ
−
XZ generator on a
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3.1. ALGEBROID COPRODUCT

V11 V12

V22 V21

R+(12)

R−(12)

R+(21)

R−(21)

γ γ

R(11) R(11)

R(22)R(22)

Figure 3.3: A graphical depiction of the algebraic structure that corresponds to the su(4)
Lie algebroid. The vector space on which the algebra acts consists of four distinct sets V11,
V22, V12, V21 according to the colour structure of their elements and is itself described by
a quiver path groupoid. The algebroid acting on this vector space is made out of unbroken
R(11) and R(22), broken R±(12) and R±(21) generators as well as γ ∈ Z2.

string of fields:

σ−XZ(⋯X12
ℓ

X21X12X21⋯)→ ⋯X12
ℓ

Z22X21X12⋯+ . . . . (3.19)

For concreteness, we have exhibited the action of σ− only on the field at the ℓ’th site,
but of course the full result will be a sum of the actions on all the fields. We notice
that all the gauge indices to the right of the action of the generator have flipped from
SU(N)1 ↔ SU(N)2. In the next section, we will define a suitable coproduct which
implements this Z2 action.

3.1 Algebroid coproduct

Recall that the action of Lie algebra generators on products of fields, living in multiple
copies of the algebra, is encoded in a coproduct ∆, an operation which tells us how a
generator is distributed on two sites. For the unbroken generators, we will of course still
have the usual Leibniz rule for the coproduct,

∆
○
(Ra

b) = 1⊗R
a
b +R

a
b ⊗ 1 , if Ra

b is unbroken , (3.20)

where the subscript ○ indicates that we are working at the orbifold point. We also have
the usual group-like coproduct for the identity,

∆
○
(1) = 1⊗ 1 . (3.21)
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For the broken generators, to enforce the above prescription of the change of indices to the
right of where the generators are acting, the coproduct needs to be modified. We define it
as

∆
○
(Ra

b) = 1⊗R
a

b +R
a

b ⊗ γ , if Ra
b is broken. (3.22)

Here γ is a Z2 element which exchanges all indices of gauge group 1 with those of gauge
group 2,

γ(X12) =X21, γ(X21) =X12, γ(Y12) = Y21, γ(Y21) = Y12, γ(Z1) = Z2, γ(Z2) = Z1, (3.23)

and similarly for the conjugate fields. We can combine these into a single coproduct as

∆
○
(Ra

b) ∶= 1⊗R
a

b +R
a

b ⊗Ωa
b, (3.24)

where

Ωa
b =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if Ra
b is unbroken

γ, if Ra
b is broken

. (3.25)

As a first step towards defining the action of generators on states of arbitrary length, we
would like to extend the coproduct to three-sites. As always, there are two ways to do this:

∆(3,L)
○
(Ra

b) ∶= (∆○
⊗ 1)∆

○
(Ra

b) = (∆○
⊗ 1) (1⊗Ra

b +R
a

b ⊗Ωa
b) (3.26)

∆(3.R)
○
(Ra

b) ∶= (1⊗∆
○
)∆

○
(Ra

b) = (1⊗∆
○
) (1⊗Ra

b +R
a

b ⊗Ωa
b) , (3.27)

We see that for ∆(3,L)
○
(Ra

b) and ∆(3,R)
○
(Ra

b) to agree, we need to have

∆
○
(Ωa

b) = Ωa
b ⊗Ωa

b , (3.28)

which for the broken generators translates to

∆
○
(γ) = γ ⊗ γ . (3.29)

The fact that this is indeed true can be easily understood via acting with γ ∈ Z2 on spin
chains of two sites. γ flips the colour indices of both fields. For example, γ(X12Z22) =

X21Z11. Given the above definitions, we have

∆(3)
○
(Ra

b) = (∆○
⊗ 1)∆

○
(Ra

b) = (1⊗∆
○
)∆

○
(Ra

b)

= 1⊗ 1⊗Ra
b + 1⊗R

a
b ⊗Ωa

b +R
a

b ⊗Ωa
b ⊗Ωa

b .

(3.30)

So the action of the generators on three sites is coassociative, and the order in which
multiplications are performed is unimportant. It is straightforward to extend the coproduct
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3.2. INVARIANCE OF THE LAGRANGIAN

to L sites and write down the action of a symmetry generator on a general L-site state,

∆(L)
○
(Ra

b) =
L

∑
ℓ=1
(1⊗⋯⊗ 1⊗

ℓ

Ra
b ⊗Ωa

b ⊗⋯⊗Ωa
b) . (3.31)

Having defined the action of the generators on L sites we can check with an explicit
calculation that they also obey the su(4) algebra (3.17), see Appendix C for more details.
This relation also obeys the graded structure for the generators in (3.18).

We can finally define the action of any generator of the algebroid on an arbitrary L-site
state as

Ra
b▷ ∣state⟩

○
=Ra

b▷ (ci1i2⋯iL
φi1φi2⋯φiL)

∶= ci1i2⋯iL
m(∆(L)

○
(Ra

b)▷ [φ
i1 ⊗ φi2 ⊗⋯⊗ φiL]) ,

(3.32)

where m denotes the multiplication in the module, namely the quiver path groupoid (see
Appendix B for the precise definition), and we have collectively denoted the fields by φi.
For the unbroken generators, this reduces to the usual product rule for operators, while
for broken generators (3.31) ensures that the direct products one obtains after the action
of the coproduct are compatible with m. In the following, when we refer to the action of
the coproduct of broken generators on states, the definition above will be understood and
will not be explicitly indicated.

3.2 Invariance of the Lagrangian

Let us now check that, with the coproduct as defined above, the orbifold point Lagrangian
(obtained from (2.6) by taking g1 = g2 = g) is invariant under the action of all the generators
of SU(4). We will look at different terms separately, starting with the Kähler part:

LK = tr1(X̄12e
gV2X21e

−gV1 + Ȳ12e
gV2Y21e

−gV1 + Z̄1e
gV1Z1e

−gV1)

+ tr2(X̄21e
gV1X12e

−gV2 + Ȳ21e
gV1Y12e

−gV2 + Z̄2e
gV2Z2e

−gV2) .

(3.33)

At the one-loop level5, the factors e±gVi do not contribute, making this effectively a two-site
expression.

As the invariance under the unbroken SU(2)L × SU(2)R ×U(1) generators is obvious
(see Appendix A), we focus on the broken generators. As reviewed in Appendix D, for the

5For the non-expert reader, an explanation of the “one-loop level” is in order. In N = 4 SYM which
is the paradigmatic example of an integrable gauge theory, the symmetry generators are understood in
the expansion J(λ) = J(0) + J(1)λ + J(2)λ2 + ⋯ with λ being the ’t Hooft coupling. J(λ) still obey the
Lie algebra commutation relations, and they commute with the Hamiltonian H(λ) = λH(1) + λ2H(2) +⋯.
The nearest-neighbour one-loop Hamiltonian H(1) commutes with the classical J(0). The higher loop
corrections acquire next to nearest, etc. corrections. See [40] for a discussion. In this paper we are working
at the level of one-loop for the Hamiltonian and classical for the generators.
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action of the broken generators to make sense, we need to first open up the trace of the
single trace operator LK in a cyclic way. For the sector with first index being in gauge
group 1, we obtain

∣LK,1⟩○ =X12X̄21 + X̄12X21 + Y12Ȳ21 + Ȳ12Y21 +Z1Z̄1 + Z̄1Z1 , (3.34)

and similarly in the sector with first index in gauge group 2, where we will find its Z2

conjugate. A simple computation shows that this open chain state is annihilated by the
two-site coproduct (3.24), for all the broken Ra

b.
Next we consider the superpotential (2.8), again specialised to the orbifold point.

Cutting the traces open cyclically, we obtain

1
g
∣W1⟩○ = (X12Y21 − Y12X21)Z1 +Z1 (X12Y21 − Y12X21) + (Y12Z2X21 −X12Z2Y21) , (3.35)

as well as the Z2 conjugate with (1↔ 2). These contributions are annihilated by the raising
and lowering operators of SU(3)XY Z , acting via the coproduct (3.30). For concreteness,
let us look at a sample calculation for the raising operator of the XZ sector R3

2. We find

R3
2▷

1
g
∣W1⟩○ = (X12Y21−Y12X21)X12+X12 (X21Y12−Y21X12) + (Y12X21X12−X12X21Y12)

= 0 . (3.36)

Similar computations for the other SU(3)XY Z generators R2
3, R4

2 and R2
4 also give

zero, so we have found that the superpotential is an SU(3)-groupoid invariant expression,
generalising its SU(3) group invariance in the N = 4 SYM theory. (Of course, the
superpotential is not SU(4) invariant, as it belongs to the 10 of SU(4).)

Having shown invariance of the Kähler and superpotential terms, we are effectively done,
as that proves the invariance of the Lagrangian in the superspace formalism. However,
since passing to the component formalism changes the number of sites (from three to four),
and the opening-up procedure as well as the coproduct (3.31) depend on the number of
sites, it is important to check the invariance of the quartic terms as well. Again, we will
need to cut open the traces in (2.11), specialised to g1 = g2 = g, before acting with the
coproduct.

A slightly tedious, but straightforward calculation confirms that this combination is
indeed invariant under the action of all generators of the coproduct at the orbifold point,
i.e.

Ra
b▷ ∣V(g, g)⟩ = 0 , for all a, b , (3.37)

where V(g, g) is the opened-up version of the scalar potential, which we write explicitly in
Appendix D. So we have confirmed that the gauge theory Lagrangian at the orbifold point
is invariant under the full SU(4) groupoid symmetry.
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3.2. INVARIANCE OF THE LAGRANGIAN

As discussed, the additional symmetries due to the revived generators would be expected
to lead to an additional understanding of the integrable structure underlying the twisted
Bethe ansatz of [16], as well as provide an alternative explanation of the planar equivalence
of the correlation functions of the N = 4 SYM theory and its orbifolds [41,42]. We also
note that the N = 2 supersymmetry was not really essential for our arguments, so one
would expect analogous definitions of the broken generators to apply to N = 1 orbifolds as
well.
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Quantum plane relations

In the previous chapter, we explained how to recover the broken SU(4) generators at the
orbifold point, by thinking in terms of a groupoid where not all elements can be multiplied
with each other. This was enforced by introducing the coproduct (3.24) which, for the
naively broken generators, also involves a flip of the gauge indices for all fields to the right
of the generator (in our convention). We will now move on to the more challenging case
where we marginally deform away from the orbifold point by allowing the gauge couplings
to take different values, g1 ≠ g2.

4.1 F- and D- term quantum planes

Our approach to uncovering the quantum algebra is through the quantum plane relations,
which we will read off from the F- and D-term relations. Specifically, we will require that
the generators of the algebra, both broken and unbroken, preserve the quantum planes
coming from the F- and D-terms. As these are quadratic in the fields, the generators
will have to act through a coproduct, and for the broken generators we will look for an
appropriate deformation of the coproduct (3.24). For the N = 1 Leigh-Strassler marginal
deformations of the N = 4 theory [43], the link between the F-term relations and quantum
planes was noticed in [44], and was further developed in [23–25, 27]. Our approach to
showing the SU(4) invariance of the marginally deformed orbifold action will be along
similar lines to [24, 27] in that, by defining appropriate twists, we will seek to untwist the
Lagrangian back to the orbifold point. However, there are some major differences in the
current N = 2 orbifold context:

• While the Leigh-Strassler deformations are purely superpotential deformations, and
therefore only modify the F-term relations, here the marginal deformations are
obtained by rescaling the gauge couplings and modify both the F- and D-terms.

• The twists need to be compatible with the more complicated groupoid structure,
where some products of fields are not allowed. In the language of [18], we will call
such twists dynamical. In particular, this makes it more challenging to define the
twists at three- and four-sites, as will be needed in order to untwist the superpotential
and quartic terms, respectively.
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As in [18], in writing the quantum planes it will be convenient to rescale the quartic
terms by a factor of g1g2 (corresponding to a factor of √g1g2 in the superpotential), and
to define

κ =
g2

g1
. (4.38)

So now Z2 acts by taking 1↔ 2 and κ↔ κ−1. The F-term and D-term relations (2.9) now
take the form

F Y
12 =X12Z2 −

1
κ
Z1X12 , F̄ Ȳ

12 = X̄12Z̄2 −
1
κ
Z̄1X̄12 ,

FX
12 = Y12Z2 −

1
κ
Z1Y12 , F̄ X̄

12 = Ȳ12Z̄2 −
1
κ
Z̄1Ȳ12 ,

FZ
1 =

1
√
κ
(X12Y21 − Y12X21) , F̄ Z̄

1 =
1
√
κ
(X̄12Ȳ21 − Ȳ12X̄21) ,

D1 =
1
√
κ
(X̄12X21 + Ȳ12Y21 −X12X̄21 − Y12Ȳ21 −Z1Z̄1 + Z̄1Z1)

(4.39)

for the first index in gauge group 1, and similarly for their Z2 conjugates.
In the following, we will look for twists which relate these quantum planes to those

at the orbifold point. Before that, however, we will need to consider the quantum planes
related to the ones above via the action of the unbroken symmetries.

4.2 Extension using the unbroken symmetries

The above F-term relations provide us with quantum planes in the holomorphic XZ, Y Z
and XY and antiholomorphic X̄Z̄, Ȳ Z̄ and X̄Ȳ SU(2) subsectors of the theory, among
which, as discussed, the first two are “broken” SU(2)’s while the third enjoys a standard
SU(2) symmetry. To fully understand the effect of the marginal deformation on the SU(4)
groupoid structure, we need to consider the quantum planes in mixed sectors as well, for
instance sectors such as X̄Z and ZZ̄. To achieve this, we start from the F- term quantum
planes and act with the unbroken SU(2)R-generators.6 In this way, the quantum planes
will naturally organise themselves in representations of SU(2)R. The FX and F Y relations
will give doublets, for instance:

F⃗ Y
12 =
⎛

⎝

F Y
12

∆(R2
1)F

Y
12

⎞

⎠
=
⎛

⎝

X12Z2 −
1
κZ1X12

Ȳ12Z2 −
1
κZ1Ȳ12

⎞

⎠
, (4.40)

F⃗ Ȳ
12 =
⎛

⎝

F̄ Ȳ
12

−∆(R1
2)F̄

Ȳ
12

⎞

⎠
=
⎛

⎝

X̄12Z̄2 −
1
κZ̄1X̄12

Y12Z̄2 −
1
κZ̄1Y12

⎞

⎠
, (4.41)

6Interestingly, the action of SU(2)L does not produce additional quantum plane relations, since W
and W are singlets under this unbroken subsector. This will be key to generalisations to more general
orbifold theories.
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4.2. EXTENSION USING THE UNBROKEN SYMMETRIES

and F⃗X
12 , F⃗ Ȳ

12 as above, with X’s and Y ’s exchanged. On the other hand, the FZ
i and F̄ Z̄

i

relations combine with the X,Y -dependent part of the D-term to form an SU(2)R triplet:

G1 ∶=

⎛
⎜
⎜
⎜
⎝

G+1
G0

1

G−1

⎞
⎟
⎟
⎟
⎠

=
1
√
κ

⎛
⎜
⎜
⎜
⎝

X12Y21 − Y12X21
1√
2 (X̄12X21 + Ȳ12Y21 −X12X̄21 − Y12Ȳ21)

X̄12Ȳ21 − Ȳ12X̄21

⎞
⎟
⎟
⎟
⎠

, (4.42)

as well as its Z2 conjugate. The remaining parts of the D-terms,

E1 ∶=
1
√

2κ
(Z1Z̄1 − Z̄1Z1) and E2 ∶=

√
κ

2 (Z2Z̄2 − Z̄2Z2) (4.43)

are SU(2)R singlets and define the quantum planes in the Zi, Z̄i sector.
In the next chapter, we will define twists which relate the above quantum plane

multiplets to those at the orbifold point. Before doing so, it is useful to see how the scalar
potential of the theory can be expressed in terms of the SU(2)R multiplets. We define the
following inner products of the doublet states:

F⃗ Y
12 ⋅ F⃗

Ȳ
21 =(X12Z21 −

1
κ
Z1X12)(X̄21Z̄1 − κZ̄2X̄21)

+ (Ȳ12Z2 −
1
κ
Z1Ȳ12)(Y21Z̄1 − κZ̄2Y21)

(4.44)

and similarly

F⃗X
12 ⋅ F⃗

X̄
21 =(Y12Z2 −

1
κ
Z1Y12)(Ȳ21Z̄1 − κZ̄2Ȳ21)

+ (X̄12Z2 −
1
κ
Z1X̄12)(X21Z̄1 − κZ̄2X21) ,

(4.45)

with analogous relations for the Z2-conjugate terms. It is easy to check that these inner
products are SU(2)R singlets. For the triplet, we define the SU(2)R-singlet combination
(G1)2 ∶= G+1 ⋅G

−
1 +G

−
1 ⋅G

+
1 +G

0
1 ⋅ Ḡ

0
1. Defining also ∣E1∣2 = E1 ⋅ Ē1, which is of course also a

singlet, we can write

(G1)
2 + ∣E1∣

2 =

=
1
κ
( (X12Y21 − Y12X21) (X̄12Ȳ21 − Ȳ12X̄21) + (X̄12Ȳ21 − Ȳ12X̄21) (X12Y21 − Y12X21)

+
1
2 [
(Z1Z̄1 − Z̄1Z1) (Z̄1Z1 −Z1Z̄1) − (X̄12X21 + Ȳ12Y21 −X12X̄21 − Y12Ȳ21)

2
] ) .

(4.46)

Combining the above expressions with their Z2 conjugates, we can finally rewrite the scalar
potential (2.11) in a way which makes the SU(2)R structure clearer:
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V(κ) = tr1 ((G1)
2 + ∣E1∣

2) + tr2 ((G2)
2 + ∣E2∣

2)

+
1
2tr1 (F⃗

X
12 ⋅ F⃗

X̄
21 + F⃗

X̄
12 ⋅ F⃗

X
21 + F⃗

Y
12 ⋅ F⃗

Ȳ
21 + F⃗

Ȳ
12 ⋅ F⃗

Y
21)

+
1
2tr2 (F⃗

X
21 ⋅ F⃗

X̄
12 + F⃗

X̄
21 ⋅ F⃗

X
12 + F⃗

Y
21 ⋅ F⃗

Ȳ
12 + F⃗

Ȳ
21 ⋅ F⃗

Y
12) .

(4.47)

In this expression, all terms in the scalar potential are SU(2)R singlets. Although this
form of V(κ) is equivalent to (2.11), it is better aligned to our N = 2 theory with its
unbroken SU(2)R symmetry. In Section 7.3, we will show that this form of the scalar
potential can be untwisted back to the orbifold-point expression, which will establish its
invariance under the broken SU(4) generators.
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Two-site Twists

In this chapter we will find two-site twists that allow us to deform the groupoid structure
we introduced in Chapter , which is applicable only to the orbifold point, such that we can
then discuss invariance of the Lagrangian of the marginally deformed theory. We wish to
emphasise that the twists F that we will write down here are well-educated guesses and
are by no means unique. At the moment we have a set of requirements the twists should
satisfy: Firstly, that they give the correct quantum plane relations, i.e. the F- and D-term
relations extended by their SU(2)R descendants. Secondly, we will require agreement
with the BPS spectrum of the theory (up to a global inversion of κ). Thirdly, the twists
we will write down also have the property that their inverses are their Z2 conjugates,
F−1(κ) = F(κ−1). Our approach is restricted by the fact that we are only able to construct
twists acting on two copies of the fundamental representation, i.e. in this work we do not
obtain a universal (representation-independent) form of the twists.

Our rewriting of the quartic terms in terms of the unbroken SU(2)R multiplets (4.47)
is a crucial step in finding the correct twists from the orbifold point to the marginally
deformed theory. We will need to choose the various twists in a way that preserves this
structure, as otherwise we would be breaking the SU(2)R symmetry. In the following we
will start with the holomorphic XZ sector, proceed to the holomorphic XY Z sector, and
finally consider twists in the full SU(4).

5.1 The XZ-sector twist

Let us start by considering the holomorphic XZ sector. A twist for this sector was
proposed in [18], which had some positive features, in particular that it was triangular,
and led to an R-matrix capturing the quantum plane relations. However, for our current
purposes we do not have a good reason to impose these restrictions. Furthermore, that
twist left terms of type XX and ZZ untwisted, a condition which we will now relax.

We will instead opt for a simpler type of XZ-sector twist, one that does not have any
direct dependence on the SU(2) structure but only refers to the Z2 structure, i.e. whether
the indices at each site belong to the first or to the second gauge group. It is

F = κ−
s
2 ⊗ κ−

s
2 , (5.48)
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where we have introduced the Z2 element s, whose definition on site ℓ is

s(ℓ) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if the first gauge index on site ℓ is 1
-1 if the first gauge index on site ℓ is 2

. (5.49)

Since the Z2 generator γ flips both gauge indices at a given site, s does not commute with
γ but rather we have

sγ = −γs . (5.50)

It is easy to check that this twist correctly leads to the F-term XZ quantum plane:

F ▷ (X12Z2 −Z1X12) =X12Z2 −
1
κ
Z1X12 , (5.51)

while also giving F ▷ (X12X21) =X12X21 and F ▷ (Z1Z1) = κ−1 Z1Z1.
Turning to the coproduct of the broken generators, writing σ+ = R3

2 and σ− = R2
3 we

have

∆κ(σ
±) = F12∆○

(σ±)F−1
12 = κ

− s
2 ⊗ κ−

s
2 (1⊗ σ± + σ± ⊗ γ)κ

s
2 ⊗ κ

s
2

= 1⊗ σ± + σ± ⊗ κ−
s
2γκ

s
2 = 1⊗ σ± + σ± ⊗ γκs

= 1⊗ σ± + σ± ⊗K,

(5.52)

where we defined K = γκs, and we used that the action of σ± does not change the first
index of the site on which it acts. So the twist has introduced a factor of κ compared
to the orbifold-point coproduct (3.22). Of course, since the unbroken σ3 generator has
a trivial undeformed coproduct (see Chapter ), the twist will have no effect, and it will
retain this coproduct in the marginally deformed theory:

∆κ(σ
3) = 1⊗ σ3 + σ3 ⊗ 1 . (5.53)

We also need to reproduce the coproduct for K, which for consistency needs to be

∆κ(K) =K ⊗K . (5.54)

We can verify that the twist acts as

∆κ(K) = F∆
○
(K)F−1 = (κ−

s
2 ⊗ κ−

s
2 ) (γ ⊗ γ) (κ

s
2 ⊗ κ

s
2 )

= (γκs ⊗ γκs) =K ⊗K (5.55)

as required. So we have a consistent coproduct acting on states in the XZ sector.
As can be seen from (4.39), the Y Z, X̄Z̄ and Ȳ Z̄ sectors are completely equivalent to

the XZ sector and have the same twist.
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5.2. THE XY -SECTOR TWIST

5.2 The XY -sector twist

The XY sector exhibits unbroken SU(2) symmetry, suggesting that the introduction of a
non-trivial twist is unnecessary. This viewpoint was adopted previously in [18]. However,
the approach we follow in this work is to obtain all the κ-dependent coefficients in the
quantum planes, as they appear in (4.39), via twists. Accordingly, we do not wish to
rescale away the overall 1/

√
κ factor in the XY quantum plane, but rather the twist should

lead to these factors directly without further rescaling. In addition, we will require that
twisting the symmetric state XY + Y X does not result in any overall κ-dependent factors,
which is motivated by the fact that the BPS states in this sector (at any length) do not
acquire any factors of κ. This can be achieved by the following twist:

FXY =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 1

2 (
1√
κ
+ 1) 1

2 (1 −
1√
κ
) 0

0 1
2 (1 −

1√
κ
) 1

2 (
1√
κ
+ 1) 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

in the basis

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X12X21

X12Y21

Y12X21

Y12Y21

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.56)

for the first gauge index in gauge group 1, and its Z2 conjugate version defined accordingly.
We note that the inverse of this twist is its Z2 conjugate, F−1(κ) = F(κ−1). We can confirm
that

FXY▷ (X12Y21 − Y12X21) =
1
√
κ
(X12Y21 − Y12X21) ,

FXY▷ (X12Y21 + Y12X21) =X12Y21 + Y12X21 ,

(5.57)

as required. Furthermore, the states X12X21 and Y12Y21 are invariant under the twist.
The X̄Ȳ sector is equivalent to the XY sector, so we will define the same twist in that

sector as well.

5.3 The D-term twists

As we have organised our quantum planes according to their SU(2)R quantum numbers,
the D-term has been split into a part belonging to the triplet (4.42) as well as a part which
is a SU(2)R singlet (4.43). For the triplet D-term quantum plane, any twist must be such
that the symmetrised state XX̄ + X̄X + Y Ȳ + Ȳ Y does not acquire any overall factors of
κ, since it corresponds to (the opened version of) the kinetic terms of the theory, which
are unaffected by the marginal deformation. At the same time, the twist should reproduce

39



the quantum planes in (4.42). A twist which meets these requirements is

FG0 =
1
4

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 + 1√
κ

1 − 1√
κ

1√
κ
− 1 1 − 1√

κ

1 − 1√
κ

3 + 1√
κ

1 − 1√
κ

1√
κ
− 1

1√
κ
− 1 1 − 1√

κ
3 + 1√

κ
1 − 1√

κ

1 − 1√
κ

1√
κ
− 1 1 − 1√

κ
3 + 1√

κ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

in the basis

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X̄12X21

X12X̄21

Ȳ12Y21

Y12Ȳ21

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.58)

as well as its Z2 conjugate. As before, this twist satisfies the relation F−1(κ) = F(κ−1)

For the SU(2)R singlet state (4.43), we again require that the symmetrised version
Z1Z̄1+Z̄1Z1 does not acquire any κ-dependent prefactor, as it corresponds to the opened-up
kinetic terms. So we choose a similar twist to the XY sector:

FE =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

κ−1 0 0 0
0 1

2 (
1√
κ
+ 1) 1

2 (1 −
1√
κ
) 0

0 1
2 (1 −

1√
κ
) 1

2 (
1√
κ
+ 1) 0

0 0 0 κ−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

in the basis

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z1Z1

Z1Z̄1

Z̄1Z1

Z̄1Z̄1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.59)

where the twists of Z1Z1 and Z̄1Z̄1 follow from the XZ twist (5.48). Again, we note that
F−1(κ) = F(κ−1).

5.4 SU(2)R descendant twists

In the above, we specified the action of the twists for all the quantum planes appearing in
(4.39). In order to be able to twist any two-site state, we still need to define twists on the
other quantum planes, which do not directly come from the F- and D-terms. For instance,
from the F Y

12 doublet (4.40) we can define the twist in the Ȳ Z sector, and similarly for
the Y Z̄, X̄Z and XZ̄ sectors. Since we expect the twists to commute with the action of
SU(2)R, the components of the same doublet will have the same twists, given by (5.48).

This leaves the SU(2)R-singlet monomials {XȲ , X̄Y, Y X̄, Ȳ X} which are not directly
related to any of the quantum planes. We will take the two-site twists to act in the
same way as for the {XY, X̄Ȳ } sectors, i.e. with off-diagonal actions that have overall
normalisation 1 for the symmetrised states (corresponding to descendants of XX), and

1√
κ

for the anti-symmetrised states.
The reader might wonder why we need to introduce these twists if our goal is to show

the invariance of the gauge theory Lagrangian, which is defined by the F- and D-terms, so
these additional quantum planes do not appear. As will become clear in the next chapter,
our approach to showing the invariance of the scalar potential will involve rebracketing
terms before acting with the inverse twists, such that for instance a closed D-term like
tr[(Ȳ Y )(X̄X)] can, after opening up, leave us with terms including (Y X̄)(XȲ ), and to
proceed we will need to have a definition of the two-site twists on the two factors in the
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5.4. SU(2)R DESCENDANT TWISTS

parentheses.
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Twisted SU(3) groupoid invariance of
the Superpotential

In the previous chapter, guided by the F-term and D-term relations, we defined two-site
twists for all the different quantum planes within SU(4). Acting with these twists on
the trivial quantum planes at the orbifold point gives us κ-deformed quantum planes,
and in particular takes us from the F- and D-terms at the orbifold point to those in the
marginally deformed theory.

The next step is to use these twists to show that the Lagrangian of the gauge theory,
in the planar limit, is invariant under the deformed su(4) algebroid defined by these twists.
Our approach will be to find an appropriate generalisation of the two-site twists to L sites,
in order to define twisted coproducts for the broken SU(4) generators:

∆(L)κ (R
a
b) = F

(L) ∆(L)
○
(Ra

b) (F
(L))−1 , ifRa

b is broken. (6.60)

Using these coproducts, we will define an action of these generators on the various terms
appearing in the marginally deformed Lagrangian. However, we have already established
the invariance of the orbifold-point Lagrangian under the untwisted coproduct (3.31). So
all that needs to be checked to show invariance is that the inverse twist in (6.60) correctly
untwists the terms in the deformed Lagrangian to the corresponding terms at the orbifold
point.

In the superspace formalism, the relevant terms in the Lagrangian are of length two
(the kinetic terms for the scalar superfields) and of length three (the superpotential), since
the vector multiplets are neutral under the SU(4) generators. In this chapter, we will
focus on the twisted superpotential, which is of course only expected to be invariant under
an SU(3) subgroup of the SU(4) groupoid.

The (opened-up) superpotential is a state composed of the holomorphic X,Y and Z

fields. Therefore, the relevant two-site twists from Chapter are

FXZ = FY Z = κ−s/2⊗κ−s/2 and FXY ▷ (X12Y21 −Y12X21) =
1
√
κ
(X12Y21 −Y12X21) , (6.61)

where we only write the action of the XY twist on the antisymmetric combination, which
is what appears in the superpotential. Given a two-site twist, the two standard ways to
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define its action on three sites are

F (3,L) = (F ⊗ 1)(∆⊗ 1)(F) or F (3,R) = (1⊗F)(1⊗∆)(F) , (6.62)

corresponding to the three-site coproducts ∆(3,L)(Ra
b) = (∆⊗ 1)∆(Ra

b) and ∆(3,R)(Ra
b) =

(1⊗∆)∆(Ra
b), respectively. The L and R subscripts stand for “left” and “right”, as their

structures are compatible with the action on the respective module products (v1v2)v2 =

m((v1 ⊗ v2)⊗ v3) and v1(v2v3) =m(v1 ⊗ (v2 ⊗ v3)).
Let us start with a coassociative (Hopf algebra) setting, where ∆(3,L) and ∆(3,R) agree.

If one wishes to twist these coproducts while preserving coassociativity one needs to
impose that F (3,L) = F (3,R), known as the cocycle condition [8]. Otherwise, one obtains
a quasi-Hopf algebra [45], see Appendix E for more details. A special quasi-Hopf case
arises when the twist depends on an additional, “dynamical” parameter, which is shifted
by Cartan elements evaluated on the different copies of the vector space that the twist is
acting on, and leads to a shifted cocycle condition [46–49]. The associativity structure is
captured by a dynamical Yang-Baxter equation, which in this context was investigated
in [18]. In that work, the dynamical parameter dependence of the R-matrices was chosen
such that the shifts implemented the Z2 transformation κ↔ κ−1.

It would certainly be very appealing if our twists satisfied a shifted cocycle condition.
However, as we do not yet have a universal (representation-independent) form of our
twists, we cannot rigorously act on them with the coproduct and evaluate the expressions
in (6.62) or their shifted versions. In order to make progress, following e.g. [50], we will
make the assumption that, at least in the holomorphic sector that we are considering, the
twists satisfy a quasitriangular-type condition,

(∆⊗ 1)(F) = F13F23 , and (1⊗∆)(F) = F13F12 , (6.63)

with appropriate shifts in line with the dynamical nature of the problem.7 We will then
write

F (3,L) = F12(λ)F13(λ
(2))F23(λ) and F (3,R) = F23(λ

(1))F13(λ)F12(λ
(3)) , (6.64)

where λ is the dynamical parameter and the notation λ(i) indicates the value of λ after
crossing line i. Here λ is thought of as taking two possible values, depending on the gauge
index of the first site, which flip if one crosses an X or Y field and stay the same when
the line being crossed is a Z field. The dependence of the twists on λ is assumed to
be such that if λ corresponds to the first gauge group being 1 then F(λ) = F(κ) while
if λ corresponds to the first gauge group being 2 then F(λ) = F(1/κ). Using a similar

7In the non-dynamical case of N = 1 integrable deformations of the N = 4 SYM theory, such an
approach was taken in [23].
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5.4. SU(2)R DESCENDANT TWISTS

graphical notation to [18], we can represent the dynamical twist as

F
i j
k l(λ) =

k l

i j

λ(a) (b) i
λ

λ(i) (6.65)

where (a) illustrates the convention that λ tracks the gauge group to the left of each twist
in the direction provided by the arrows, and (b) the shift in λ as one crosses an index line
labelled by i. Using this notation, we can represent the two three-site twists (6.64) as

F (3,L),T = λ

λ(2)

1 2 3

= F23(λ)F13(λ(2))F12(λ) (6.66)

and

F (3,R),T = λ

λ(1)

λ(3)

1 2 3

=F12(λ(1))F13(λ)F23(λ(3)) (6.67)

where we note the transposition relative to (6.64), as in this graphical notation the twists
are thought of as acting on monomials by matrix multiplication (see Appendix E). We
do not indicate transposition on the individual two-site twists, as they are symmetric.
We will also perform an additional transposition in the final state, such that F (3,L) takes
(V1 ⊗ V2) ⊗ V3 → (V1 ⊗ V2) ⊗ V3, and similarly for F (3,R), which we will not indicate in
this graphical notation.

We emphasise that we do not require equality of F (3,L) and F (3,R). So, despite the
resemblance to [46], we are in a quasi-Hopf setting, where to twist a three-site state with
a given bracketing we need to choose the three-site twist whose structure is compatible
with that bracketing. We can also define a coassociator which takes us between the two
bracketings (see Appendix E) but, as we will see, it will not be necessary.

To apply the dynamical definition of the three-site twist to the orbifold-point superpo-
tential, we need to open it up and look at one of the sectors, which we will take to be that
with first gauge group 1. When doing this, there are various choices of bracketing, which
are of course all equivalent at the orbifold point. However, we still need to indicate the
bracketing, as the different choices lead to different twistings and thus different marginally
deformed superpotentials. The situation is similar to passing from classical expressions
such as xp, px, 1

2(xp + px), which are all equal, to the quantum case, where different
orderings will give inequivalent expressions. Here, of course, the issue is not the ordering,
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but the choice of bracketing. A preferred bracketing is suggested by observing that the
XY twist is only diagonal if, when opening up, we preserve the placement of parentheses
around the (XY − Y X) factor. This also makes manifest the fact that the superpotential,
which is in the 10 of SU(4), is an SU(2)L singlet and belongs to an SU(2)R triplet. To
preserve this bracketing, writing the orbifold-point superpotential as

W = tr1 (Z1(X12Y21 − Y12X21)) + tr2 (Z2(X21Y12 − Y21X12)) , (6.68)

we write the corresponding opened states as

∣W1 ⟩○ = (Z1(X12Y21 − Y12X21)) + ((X12Y21 − Y12X21)Z1) + (Y12
...Z2

...X21 −X12
...Z2

...Y21)

(6.69)
and

∣W2 ⟩○ = (Z2(X21Y12 − Y21X12)) + ((X21Y12 − Y21X12)Z2) + (Y21
...Z1

...X12 −X21
...Z1

...Y12) .

(6.70)
As indicated by the notation, the first two terms will be twisted by F (3,R) and F (3,L),
respectively. Here we have introduced the new notation Y12

...Z2
...X21 which indicates that,

as far as the action of the twists is concerned, the first twist to act should be on the
products X21Y12, i.e. a F31 twist, so that the XY twist acts antisymmetrically on the last
terms in (6.69) and (6.70). We call the three-site twist, which wraps the state in this way
F (3,W ). To relate it to the standard three-site twists, we introduce a cyclic shift operator
on the spin chain, which we call U .8 It acts as

U ▷V1 ⊗V2 ⊗⋯⊗VL → V2 ⊗V3 ⊗⋯⊗V1 , (6.71)

and we will require that it preserves the associative structure:

Y12
...Z2

...X21 = U
−1▷Z2(X21Y12) = U ▷ (X21Y12)Z2 . (6.72)

We can now define the F (3,W ) twist on the wrapped bracketings as

F (3,W )▷ (Y12
...Z2

...X21) = F
(3,W )▷U−1▷ (Z2(X21Y12))

= U−1▷ (UF (3,W )U−1)▷Z2(X21Y12) = U
−1▷F (3,R)▷ (Z2(X21Y12)) .

(6.73)

Of course, we could also define, similarly,

F (3,W )▷ (Y12
...Z2

...X21) = U ▷F
(3,L)▷ ((X21Y12)Z2) , (6.74)

8For similar reasons, such an operator was also introduced in [28] in the context of showing Yangian
invariance of the N = 4 SYM action. However, here we enhance it to preserve bracketings as it shifts the
sites.
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5.4. SU(2)R DESCENDANT TWISTS

which turns out to be equal. Note that, with either definition, the twists on the wrapped
bracketing in the sector with first gauge group 1 act on states with first gauge group 2.

After these preliminaries, let us consider how each term in the marginally deformed
superpotential is related to the corresponding term at the orbifold point:

Z1 [X12 , Y21]

Y12

X21

Z2 = F(κ−1)ZX
ZXF(κ)

ZY
ZYF(κ)

XY
XY − (X ↔ Y )

= (κ ⋅ 1
κ ⋅

1√
κ
) ⋅Z1[X12, Y21]

= 1√
κ
⋅Z1[X12, Y21]

(6.75)

where the [X12, Y21] notation indicates that the twist acts on the antisymmetric combina-
tion, [X12, Y21] = (X12Y21 − Y12X21). The second term in (6.69) twists as

[X12 , Y21] Z1

Y12
X21

Z2 = F(κ)Y Z
Y ZF(κ

−1)XZ
XZF(κ)

XY
XY − (X ↔ Y )

= (1 ⋅ 1 ⋅ 1√
κ
) ⋅ [X12, Y21]Z1

= 1√
κ
⋅ [X12, Y21]Z2

(6.76)

As discussed, acting on the third term in (6.69) is the same as acting on (Z2(X21Y12 − Y21X12))

or ((X21Y12 − Y21X12)Z2) with the appropriate twists, and since those terms are easier to
represent graphically we will compute those instead. We find

Z2 [X21 , Y12]

Y21

X12

Z1 = F(κ)ZX
ZXF(κ

−1)ZY
ZYF(κ

−1)XY
XY − (X ↔ Y )

= ( 1
κ ⋅ κ ⋅

√
κ) ⋅Z2[X21, Y12]

=
√
κ ⋅Z2[X21, Y12]

(6.77)

and

[X21 , Y12] Z2

Y21
X12

Z1 = F(κ−1)Y Z
Y ZF(κ)

XZ
XZF(κ

−1)XY
XY − (X ↔ Y )

= (1 ⋅ 1 ⋅
√
κ) ⋅ [X21, Y12]Z2

=
√
κ ⋅ [X21, Y12]Z2

(6.78)

Indeed the two possibilities for shifting the third term are equal, as required by consistency.
Note that, as required, all the three-site twists start by twisting the (XY − Y X) term
to ensure a diagonal action. We see that the above procedure correctly produces the κ
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factors for each term in the marginally deformed open superpotential

1
√
κ
Z1(X12Y21 − Y12X21) +

1
√
κ
(X12Y21 − Y12X21)Z1 +

√
κ (Y12

...Z2
...X21 −X12

...Z2
...Y21)

= F (3,R)▷Z1(X12Y21−Y12X21) +F
(3,L)▷ (X12Y21−Y12X21)Z1

+F (3,W )▷ (Y12
...Z2

...X21−X12
...Z2

...Y21) .

(6.79)

Inverting the twists (which is trivial since all the actions on this state are diagonal) we
can therefore take the deformed superpotential back to the orbifold point, where we have
already established invariance. The above approach is similar to introducing a star product
which relates each term in the deformed superpotential to that in the undeformed one, as
was done in [24] for the Leigh-Strassler case. However, from the perspective of this work
we would like to express the κ-deformed superpotential as a single twist on the orbifold
one, i.e. to write

∣W ⟩κ = F
(3)▷ ∣W ⟩

○
. (6.80)

To achieve this, one would have to introduce coassociators, which convert all the bracketings
to a single, preferred bracketing. This is what is done in the next chapter for the four-site
scalar potential. However, for the superpotential we note instead that, at the computational
level, one can summarise all of the above twists in a simpler, dynamical three-site twist as

F (3) = κ−
s
2 ⊗ κ−

s
2 ⊗ κ−

s
2 , (6.81)

which is a natural extension of the two-site XZ twist (5.48), with the Z2 element s defined
as in (5.49). One should, however, remember that this twist is only valid for states where
the XY terms are antisymmetrised and the bracketings respect this antisymmetrisation.
With these implicit assumptions, we can drop the parentheses and write the deformed
open superpotential as

∣W1 ⟩κ =
1
√
κ
(Z1X12Y21 −Z1Y12X21 +X12Y21Z1 − Y12X21Z1) +

√
κ (Y12Z2X21 −X12Z2Y21) .

(6.82)
We can then define a coproduct for the action of the SU(3) generators on this state in the
standard way,

∆(3)κ (R
a
b) = F

(3)∆(3)
○
(Ra

b)(F
(3))−1

= 1⊗ 1⊗Ra
b + 1⊗R

a
b ⊗K

a
b +R

a
b ⊗K

a
b ⊗K

a
b ,

(6.83)
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5.4. SU(2)R DESCENDANT TWISTS

where for unbroken generators we simply have Ka
b = 1, while for the broken ones we find

Ka
b = γκ

s . (6.84)

It is of course not a coincidence that the coproduct for the superpotential is of the same
form as that for the individual SU(2) sectors, as those coproducts were derived from the
superpotential via the F-term relations. Acting on (6.82) with this coproduct, we find
that it is indeed annihilated by all the SU(3) generators. As an example, we act with the
XZ-sector raising operator to find

R3
2▷κ ∣W1 ⟩κ =

1
√
κ
(X12(X21Y12 − Y21X12) + (X12Y21 − Y12X21)X12)

+
√
κ

1
κ
(Y12X21X12 −X12X21Y12) = 0

(6.85)

where the precise definition of the twisted action ▷κ is given in (E.10). This is the
marginally deformed version of the orbifold-point action (3.36). Note that the additional
power of 1/κ in the last term came from K3

2(X21) and K3
2(Y21).

Through the above heuristic, but we believe natural, assumptions about the twist, we
have demonstrated that the opened superpotential of the marginally deformed theory is
indeed a singlet of the twisted SU(3) groupoid symmetry.
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Twisted SU(4) groupoid invariance of
the Lagrangian

In the previous chapter, we showed that the superpotential of the marginally deformed
theory is invariant under the deformed SU(3) subgroupoid of the deformed SU(4) groupoid
symmetry. At the same time, one of the main constraints on all the twists we defined in
Chapter is that they preserve the two-site kinetic terms, i.e. that the open combination

X12X̄21 + X̄12X21 + Y12Ȳ21 + Ȳ12Y21 +Z1Z̄1 + Z̄1Z1 , (7.86)

as well as its Z2 conjugate, stays unchanged under twisting. Thus, by construction, the
kinetic terms transform as an SU(4) groupoid singlet, and we have therefore shown the
invariance of the superspace Lagrangian under all the SU(4) generators which are explicitly
realised in the N = 1 superspace formalism.

In principle, checking invariance of the superspace Lagrangian is sufficient to argue for
the invariance of the theory in components as well. The cubic interaction terms containing
fermions are expected to work out in a similar way to the superpotential. However, as the
process of obtaining the component Lagrangian is non-linear since the auxiliary fields are
quadratic in the scalars, it is important to check also the invariance of the (opened-up)
scalar potential, which is quartic (length 4) in fields. Thus, we will need to extend our
two-site twists to four sites in order to define the corresponding coproducts. These twists
will be well-defined on closed states. However, our coproducts are such that after a
single action of a broken generator, one obtains a state which cannot be gauge contracted.
Therefore, we will need to cyclically open up the traces (as explained in Appendix D)
before acting with the broken generators.

7.1 Four-site twists and nonassociativity

Let us now consider the full quartic scalar terms in the Lagrangian, given in (4.47). As
discussed, our approach to showing invariance is simply to untwist the quartic terms to
the orbifold point, where we act with the groupoid coproduct ∆

○
, thus reducing to the

proof of invariance at the orbifold point which we established in Chapter . In other words,
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our four-site coproduct for general κ will be related to that at κ = 1 by

∆(4)κ (R
a
b) = F

(4)∆(4)
○
(Ra

b)(F
(4))−1 (7.87)

where ∆(4)
○

was defined in (3.31). So our goal in the following will be to consistently define
a twist for four sites, whose inverse untwists the scalar terms to those at the orbifold point.
However, this involves extending our two-site SU(4) twists to act on four sites, which is
mathematically not straightforward due to the groupoid/dynamical nature of our setting.
Physically, however, it is evident how the two-site twists should extend to four sites, at
least for the terms which appear in the scalar potential. Consider an F-term contribution
to the scalar potential at the orbifold point:

tr1[F
Y
12F̄

Ȳ
21] = tr1[(X12Z2 −Z1X12)(X̄21Z̄1 − Z̄2X̄21)]. (7.88)

In order for this expression to be transformed into its counterpart in the deformed theory,
it is sufficient to twist the two quantum planes independently. Thus, informally we would
expect the four-site twist to work as follows:

F (4)▷ tr1[(X12Z2 −Z1X12)(X̄21Z̄1 − Z̄2X̄21)]

= tr1 [(F
(2)▷ (X12Z2 −Z1X12)) (F

(2)▷ (X̄21Z̄1 − Z̄2X̄21))]

= tr1[(X12Z2 −
1
κ
Z1X12)(X̄21Z̄1 − κZ̄2X̄21)]

(7.89)

which is the correct F-term contribution in the deformed theory. Here the two-site twists
are as in (5.48). Similarly, for a D-term contribution such as

D2
1 = tr1[(X12X̄21 − X̄12X21 +X12X̄21 − X̄12X21 + [Z1, Z̄1])

2], (7.90)

we would apply the corresponding (triplet and singlet) two-site twists (5.58,5.59) to write

F (4)▷ tr1[(X12X̄21 − X̄12X21 +X12X̄21 − X̄12X21 + [Z1, Z̄1])
2]

= tr1 [(F
(2)▷ (X12X̄21 − X̄12X21 +X12X̄21 − X̄12X21 + [Z1, Z̄1]))

2
]

= tr1

⎡
⎢
⎢
⎢
⎢
⎣

(
1
√
κ
(X12X̄21 − X̄12X21 +X12X̄21 − X̄12X21 + [Z1, Z̄1]))

2⎤
⎥
⎥
⎥
⎥
⎦

,

(7.91)

which again correctly produces the D-term contribution to the scalar potential in the
deformed theory. Of course, twisting as above requires us to have organised the undeformed
scalar potential terms in the very specific way that they arise through the F- and D-term
relations. However, for a given monomial this can be ambiguous. For instance, without
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7.1. FOUR-SITE TWISTS AND NONASSOCIATIVITY

additional information we cannot determine whether the term

tr1[X12Z2Z̄2X̄21] = tr2[Z2Z̄2X̄21X12] (7.92)

is an F-term (tr1[(X12Z2)(Z̄2X̄21)]) or a D-term (tr2[(Z2Z̄2)(X̄21X12)]). For this specific
monomial, and for similar terms involving the Z fields, the factors of κ end up being
the same (1 ⋅ κ for the F-term bracketing and

√
κ ⋅
√
κ for the D-term one), but their

contributions to the scalar potential come with a relative factor of −1
2 . Other contributions

lead to different κ dependence. To sum up, the quartic terms contain the following
ambiguous monomials:

1. Terms of type X12X̄21X12X̄21 and Y12Ȳ21Y12Ȳ21 have a coefficient ( 1
κ + κ) coming from

the D-term contributions (D1)2 and (D2)2, respectively. This coefficient reduces to
the numerical factor 2 at the orbifold point.

2. Terms of type X12X̄21Ȳ12Y21 have a coefficient (− 1
κ + 2κ) coming from (D1)2 and

FZ
2 F̄

Z̄
2 , respectively. This coefficient reduces to an overall 1 at the orbifold point.

3. Terms of type Y12X21X̄12Ȳ21 have a coefficient ( 2
κ − κ) coming from FZ

1 F̄
Z̄
1 and (D2)2,

respectively. This coefficient also reduces to 1 at the orbifold point.

To resolve these ambiguities, we are led to the need to retain the placement of
parentheses, or bracketings, in the way that they arise in the F- and D-terms. The
inequivalence of terms with different bracketings tells us that the κ-deformed theory will
have a quasi-Hopf structure. This was already the case in our study of the superpotential
(Chapter ). However, there it was possible to find a simple three-site twist (6.80) that
correctly captured all the κ-dependent factors arising through a more meticulous treatment.
For the quartic terms, we do not have such an “effective” twist. If we wish to obtain the
correct κ-deformed Lagrangian by twisting we would have to start with the Lagrangian at
the orbifold point with a specific choice of parentheses indicating the F- and D- terms. At
the “classical” (orbifold point) level all bracketings are equivalent, but different bracketings
will give different answers at the “quantum” (κ-deformed theory) level. So, in effect,
it is supersymmetry which tells us how the Lagrangian at the orbifold point should be
bracketed in order for the twists to directly lead to the correct deformed Lagrangian.

As previously explained, our current approach does not allow us to act directly with
broken generators on closed states. Instead, our procedure requires us to cyclically open
up the trace and then act on the opened states. Clearly, the naive opening-up procedure
does not respect the parentheses above, which distinguish between F-terms and D-terms.
But from the above discussion, it should be clear that it is not possible to construct
an unambiguous four-site twist (which can then be inverted in order to demonstrate
invariance) unless the bracketings are taken into account and preserved throughout the
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opening-up procedure. To illustrate how we achieve this, let us cyclically open up the first
term of (7.89):

tr1 [(X12Z2)(X̄21Z̄1)]→
1
4
[(X12Z2)(X̄21Z̄1) +Z2

...X̄21Z̄1
...X12

+ (X̄21Z̄1)(X12Z2) + Z̄1
...X12Z2

...X̄21] .

(7.93)

As in Chapter , we adopted the notation A ...BC ...D which indicates that the BC and DA

terms were bracketed together in the original closed expression. This refined opening-up
procedure generates an equal number of monomials with each type of bracketing. To
distinguish open expressions in the marginally deformed theory from those at the orbifold
point, we will write ∣(AB)(CD)⟩κ and ∣(AB)(CD)⟩

○
, which we call the standard, or

unshifted, bracketing. Similarly, we will write ∣A ...BC ...D)⟩κ and ∣A ...BC ...D ⟩
○
, which we

call the shifted bracketing. They are both quartic expressions in the fields φi, with different
coefficients. Clearly, at the orbifold point we have

∣(AB)(CD)⟩
○
= c
(u)
ijkl ∣(φ

iφj)(φkφl)⟩
○

and ∣A ...BC ...D ⟩
○
= c
(s)
ijkl ∣φ

i ...φjφk ...φl ⟩
○

(7.94)

where c(u)ijkl and c(s)ijkl can be read off from (D.2) and (D.3), respectively, specialised to κ = 1.
We emphasise that although the two types of terms are equal in number, their coefficients
are different. Of course, at the orbifold point the bracketing of a given monomial is
unimportant, i.e. we have

∣φi ...φjφk ...φl ⟩
○
= ∣(φiφj)(φkφl)⟩

○
. (7.95)

However, the way in which these two types of bracketing become twisted differs. Extending
the discussion in Appendix E to four sites, given an orbifold-point expression, we have

F (4)▷ ∣(AB)(CD)⟩
○
= (F

(2)
12 ⊗F

(2)
34 )▷ ∣(AB)(CD)⟩○

= cijkl(F
T )ijmn(F

T )kl
rs ∣(φ

mφn)(φrφs)⟩κ

= c
(u)
mnrs(κ) ∣(φ

mφn)(φrφs)⟩κ

(7.96)

and

F
(4)
shifted▷ ∣A

...BC ...D ⟩
○
= (F

(2)
23 ⊗F

(2)
41 )▷ ∣A

...BC ...D ⟩
○

= cijkl(F
T )jk

nr(F
T )lism ∣φ

m ...φnφr ...φs ⟩κ

= c
(s)
mnrs(κ) ∣φ

m ...φnφr ...φs ⟩κ

(7.97)
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Both four-site twist actions F (4) and F (4)shifted are composed of a pair of two-site twists F (2)ab

as defined in (5.48), (5.56), (5.58), (5.59) and their descendants. We have defined the
coefficients

c
(u)
mnrs(κ) ∶= cijkl(F

T )ijmn(F
T )kl

rs = cijkl(F
(4),T )ijkl

mnrs ,

c
(s)
mnrs(κ) ∶= cijkl(F

T )jk
nr(F

T )lism = cijkl(F
(4),T
shifted)

ijkl
mnrs .

(7.98)

The definitions above apply to any orbifold-point coefficients cijkl. If we twist the state
defined by the specific c

(u)
ijkl in the orbifold-point unshifted terms according to (7.96),

the corresponding unshifted coefficients c(u)ijkl(κ) will be precisely those in the marginally-
deformed theory, and similarly for the shifted c

(s)
ijkl coefficients. Therefore, we can write

the scalar potential as

V(κ) = c
(u)
ijkl(κ) ∣(φ

iφj)(φkφl)⟩κ + c
(s)
ijkl(κ) ∣φ

i ...φjφk ...φl ⟩κ

= F (4)▷ (c
(u)
ijkl ∣(φ

iφj)(φkφl)⟩
○
) +F

(4)
shifted▷ (c

(s)
ijkl ∣φ

i ...φjφk ...φl ⟩
○
) .

(7.99)

Note that the two-site twists within F (4) and F (4)shifted do not overlap in their actions on the
individual fields of a monomial, and are invertible. So the inverse of the four-site twist is
the tensor product of the inverse of each two-site twist independently. We can accordingly
define inverse twists, which act on deformed states with prescribed bracketings and give
us orbifold-point expressions:

(F (4))
−1
▷ ∣(AB)(CD)⟩κ = ((F

(2)
12 )

−1
⊗ (F

(2)
34 )

−1
)▷ ∣(AB)(CD)⟩κ

= c
(u)
ijkl((F

T )−1)ijmn((F
T )−1)kl

rs ∣φ
mφnφrφs ⟩

○
= cmnrs ∣φ

mφnφrφs ⟩
○

(7.100)

and

(F
(4)
shifted)

−1
▷ ∣A ...BC ...D ⟩κ = ((F (2)23 )

−1
⊗ (F

(2)
41 )

−1
)▷ ∣A ...BC ...D ⟩κ

= c
(s)
ijkl((F

T )−1)jk
nr((F

T )−1)lism ∣φ
mφnφrφs ⟩

○
= cmnrs ∣φ

mφnφrφs ⟩
○

(7.101)

Of course, the actions (F (4))−1 on states of the form ∣A ...BC ...D ⟩κ and (F (4)shifted)
−1

on states
of the form ∣(AB)(CD)⟩κ are not defined at this point, due to the incompatible placement
of the parentheses. It is important to recall that in order to define the action of the broken
SU(4) generators, we express the κ-deformed quartic terms as an overall four-site twist
acting on the undeformed quartic terms. This is required in order to invert that twist

55



when acting with the coproduct (7.87).9 It is therefore necessary to express the shifted
terms in terms of the unshifted ones, or vice versa. For this purpose, we will define a
coassociator in the next section.

7.2 The coassociator

In the standard quasi-Hopf setting [45], the coassociator is an object living in three copies
of the algebra, which maps between the two expressions with a priori different choices of
bracketing:

A⊗ (B ⊗C) = Φ▷ (A′ ⊗B′)⊗C ′ (7.102)

where in general the right-hand side is a linear combination. As also discussed in Chapter
, if we twist away from an associative point (where Φ

○
= 1⊗ 1⊗ 1) with a Drinfeld twist

F , the three-site twists are F (3,L) = (F ⊗ 1)(∆⊗ 1)(F) and F (3,R) = (1⊗F)(1⊗∆)(F).
Then the coassociator at the deformed point can be defined as taking the left-bracketed
expression to the associative point by acting with the inverse of F (3,L), switching to the
right bracketing using the trivial Φ

○
, and then twisting back with F (3,R) to obtain the

opposite bracketing:

Φ = (1⊗F)(1⊗∆
○
)(F)Φ

○
(∆

○
⊗ 1)(F−1)(F−1 ⊗ 1) (7.103)

This can be extended to more sites. For instance, for four sites there are five inequivalent
choices of bracketings, and one can define four-site coassociators mapping any two of these
bracketings to each other by going through the associative point.

In the following, we will follow a similar procedure to define a coassociator which takes
us between the two types of four-site twists that appear in (7.96) and (7.97). As our
four-site twists are built from the products of two-site twists, and at this stage we do not
have a way of defining them by going through three sites, we will empirically define a
four-site coassociator as the transformation taking us from shifted to unshifted monomials:

Φ = F (4)Φ
○
(F
(4)
shifted)

−1 , (7.104)

where Φ
○

is the coassociator at the orbifold point, which is assumed to be trivial:

∣A ...BC ...D ⟩
○
= Φ

○
▷ ∣(AB)(CD)⟩

○
(7.105)

∣(AB)(CD)⟩
○
= Φ−1

○
▷ ∣A ...BC ...D ⟩

○
, (7.106)

and where to avoid confusion we note that here ∣A ...BC ...D ⟩
○

and ∣(AB)(CD)⟩
○

are not
as in (7.94) but denote polynomials with the same coefficients cijkl. Consequently, on a

9It is easy to check that the unshifted and shifted quartic terms are not independently SU(4) invariant
at the orbifold point.
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shifted-twisted expression we have

Φ▷ ∣A ...BC ...D ⟩κ = (F (2)12 ⊗F
(2)
34 )Φ

○
((F

(2)
23 )

−1
⊗ (F

(2)
41 )

−1
)▷ (F

(2)
23 ⊗F

(2)
41 ) ∣A

...BC ...D ⟩
○

= (F
(2)
12 ⊗F

(2)
34 )Φ

○
∣A ...BC ...D ⟩

○

= (F
(2)
12 ⊗F

(2)
34 ) ∣(AB)(CD)⟩○ = ∣(AB)(CD)⟩κ,

(7.107)

where both the left- and right-hand sides are in principle linear combinations of monomials.
More concisely, we can write

Φ▷ ∣A ...BC ...D ⟩κ = (F (4) ⋅ (F (4)shifted)
−1)▷F

(4)
shifted▷ ∣A

...BC ...D ⟩
○

= (F (4))▷ ∣(AB)(CD)⟩
○
= ∣(AB)(CD)⟩κ,

(7.108)

where we used the equality of the bracketings at the orbifold point. We think of this
expression as a map from the shifted bracketing to the standard one. In terms of the
monomials, we can express this as a rotation by the transpose of Φ:

∣φm ...φnφr ...φs ⟩κ = (ΦT )mnrs
m′n′r′s′ ∣(φ

m′φn′)(φr′φs′)⟩κ . (7.109)

This relation allows us to connect shifted and unshifted terms within the twisted Lagrangian:
Terms that are twists of the same orbifold-point expression

cijkl ∣φ
i ...φjφk ...φl ⟩

○
= cijkl ∣(φ

iφj)(φkφl)⟩
○
, (7.110)

can be related as

cijkl(F
(4),T
shifted)

ijkl
mnrs ∣φ

m ...φnφr ...φs ⟩κ = cijkl(F
(4),T
shifted)

ijkl
mnrs(ΦT )mnrs

m′n′r′s′ ∣(φ
m′φn′)(φr′φs′)⟩κ

= cijkl(F
(4),T
shifted)

ijkl
mnrs((F

(4),T
shifted)

−1)mnrs
i′j′k′l′(F

(4),T )i
′j′k′l′

m′n′r′s′ ∣(φ
m′φn′)(φr′φs′)⟩κ

= cijkl(F
(4),T )ijkl

mnrs ∣(φ
mφn)(φrφs)⟩κ.

(7.111)

By acting on all possible shifted monomials, we can obtain linear combinations of unshifted
ones, which in turn allow us to ascertain the tensor coefficient of ΦT . We are of course only
interested in SU(2)L × SU(2)R ×U(1)r-neutral states, which have equal numbers of fields
and their conjugate fields and are the ones appearing in the scalar potential. Since there
are 74 neutral four-site states of type (AB)(CD), and the same number of A ...BC ...D-type
states,10 the coassociator can be expressed as a 74 × 74 matrix. In practice, however, the

10The actual scalar potential expressions in (D.2) and (D.3) contain 60 terms each, i.e. do not depend on
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matrix can be split into smaller blocks (specifically, states with no Z’s, two Z’s, and four
Z’s), which are presented in Appendix F.

7.3 Invariance of the scalar potential

Let us recall that our goal is to untwist the opened-up scalar terms in the deformed
Lagrangian back to the orbifold point. As we saw, these terms are of two types, which we
called ∣(AB)(CD)⟩κ and ∣A ...BC ...D ⟩κ, which each can be untwisted by either (F (4))−1 or
(F
(4)
shifted)

−1. However, for our purposes we need the action to be untwisted by an overall
inverse twist, which we will choose to be (F (4))−1. For this action to make sense, we will use
the coassociator to rebracket all the terms of ∣A ...BC ...D ⟩κ type to those of ∣(AB)(CD)⟩κ
type.

As an example of how the procedure works, let us consider the monomial ∣Z1
...Z1Z̄1

...Z̄1 ⟩κ

which is part of the opened-up scalar potential. Clearly this term comes purely from a
(D1)2 contribution, as no F-terms give Z1Z1 or its conjugate. We find

Φ▷ ∣Z1
...Z1Z̄1

...Z̄1 ⟩κ = (F
(2)
12 ⊗F

(2)
34 )Φ

○
((F

(2)
23 )

−1
⊗ (F

(2)
41 )

−1
)▷ ∣Z1

...Z1Z̄1
...Z̄1 ⟩κ

= (F
(2)
12 ⊗F

(2)
34 )Φ

○
▷

1
4 [
(
√
κ + 1)2 ∣Z1

...Z1Z̄1
...Z̄1 ⟩○ − (κ − 1) ∣Z1

...Z̄1Z1
...Z̄1 ⟩○

−(κ − 1) ∣Z̄1
...Z1Z̄1

...Z1 ⟩○ + (
√
κ − 1)2 ∣Z̄1

...Z̄1Z1
...Z1 ⟩○]

= (F
(2)
12 ⊗F

(2)
34 )▷ [

1
4 (
(
√
κ + 1)2 ∣(Z1Z1)(Z̄1Z̄1)⟩○ − (κ − 1) ∣(Z1Z̄1)(Z1Z̄1 ⟩○

−(κ − 1) ∣(Z̄1Z1)(Z̄1Z1)⟩○ + (
√
κ − 1)2 ∣(Z̄1Z̄1)(Z1Z1)⟩○)]

=
1

4κ2 [(
√
κ − 1)2 ∣(Z̄1Z̄1)(Z1Z1)⟩κ + (

√
κ + 1)2 ∣(Z1Z1)(Z̄1Z̄1)⟩κ]

−
(κ − 1)

8κ
[(κ + 1) ∣(Z1Z̄1)(Z1Z̄1)⟩κ + (κ − 1) ∣(Z1Z̄1)(Z̄1Z1)⟩κ

+(κ − 1) ∣(Z̄1Z1)(Z1Z̄1)⟩κ + (κ + 1) ∣(Z̄1Z1)(Z̄1Z1)⟩κ] . (7.112)

We see that, as expected, a single monomial in the shifted bracketing maps to a linear
combination of monomials in the unshifted bracketing. Comparing with (7.109), we can

all possible neutral monomials. However, the remaining 14 terms of each type do appear after rebracketing
each expression, so they need to be included in our basis for the coassociator.
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read off the corresponding tensor components of the coassociator:

(ΦT
)

ZZZ̄Z̄
ZZZ̄Z̄

=
(
√

κ + 1)2

4κ2 , (ΦT
)

ZZZ̄Z̄
Z̄Z̄ZZ

=
(
√

κ − 1)2

4κ2 , (ΦT
)

ZZZ̄Z̄
ZZ̄ZZ̄

= (ΦT
)

ZZZ̄Z̄
Z̄ZZ̄Z

=
1 − κ2

8κ
,

(ΦT
)

ZZZ̄Z̄
ZZ̄Z̄Z

= (ΦT
)

ZZZ̄Z̄
Z̄ZZZ̄

= −
(κ − 1)2

8κ
.

(7.113)

It is more insightful to act on the actual linear combination of shifted monomials in
this sector, which appears in the quartic terms (D.3). Repeating the steps above, one
computes:

Φ▷ [∣Z1
...Z1Z̄1

...Z̄1 ⟩κ − ∣Z1
...Z̄1Z1

...Z̄1 ⟩κ − ∣Z̄1
...Z1Z̄1

...Z1 ⟩κ + ∣Z̄1
...Z̄1Z1

...Z1 ⟩κ]

=
1
2 [

2
κ
( ∣(Z1Z1)(Z̄1Z̄1)⟩κ + ∣(Z̄1Z̄1)(Z1Z1)⟩κ) − (κ + 1)( ∣(Z1Z̄1)(Z1Z̄1)⟩κ

+ ∣(Z̄1Z1)(Z̄1Z1)⟩κ) − (κ − 1)( ∣(Z1Z̄1)(Z̄1Z1)⟩κ + ∣(Z̄1Z1)(Z1Z̄1)⟩κ)] . (7.114)

where the notation Φ ▷ on a shifted state denotes the expansion of that state in the
unshifted basis by applying (7.109). In this sector there is of course also a contribution of
unshifted type, coming from (D1)2 terms which are opened up as ∣(AB)(CD)⟩κ. Adding
those terms as well, we find

1
2κ
[− ∣(Z1Z̄1)(Z1Z̄1)⟩κ + ∣(Z1Z̄1)(Z̄1Z1)⟩κ + ∣(Z̄1Z1)(Z1Z̄1)⟩κ − ∣(Z̄1Z1)(Z̄1Z1)⟩κ]

+Φ▷ 1
2κ
[∣Z1

...Z1Z̄1
...Z̄1 ⟩κ − ∣Z1

...Z̄1Z1
...Z̄1 ⟩κ − ∣Z̄1

...Z1Z̄1
...Z1 ⟩κ + ∣Z̄1

...Z̄1Z1
...Z1 ⟩κ]

=
1

4κ [
2
κ
( ∣(Z1Z1)(Z̄1Z̄1)⟩κ + ∣(Z̄1Z̄1)(Z1Z1)⟩κ) − (κ + 3)( ∣(Z1Z̄1)(Z1Z̄1)⟩κ

+ ∣(Z̄1Z1)(Z̄1Z1)⟩κ) − (κ − 3)( ∣(Z1Z̄1)(Z̄1Z1)⟩κ + ∣(Z̄1Z1)(Z1Z̄1)⟩κ)] . (7.115)

This is the κ-dependent contribution to the scalar potential, now with only one type of
bracketing. Note that this expression is quite different to what one obtains by simply
forgetting about the bracketing. We have finally found an expression which we can untwist
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using a single inverse twist. We find

(F (4))
−1
▷

1
4κ [

2
κ
( ∣(Z1Z1)(Z̄1Z̄1)⟩κ + ∣(Z̄1Z̄1)(Z1Z1)⟩κ)

− (κ + 3)( ∣(Z1Z̄1)(Z1Z̄1)⟩κ + ∣(Z̄1Z1)(Z̄1Z1)⟩κ)

− (κ − 3)( ∣(Z1Z̄1)(Z̄1Z1)⟩κ + ∣(Z̄1Z1)(Z1Z̄1)⟩κ)]

=
1
2
[−2 ∣(Z1Z̄1)(Z1Z̄1)⟩○ − 2 ∣(Z̄1Z1)(Z̄1Z1)⟩○ + ∣(Z1Z1)(Z̄1Z̄1)⟩○

+ ∣(Z̄1Z̄1)(Z1Z1)⟩○ + ∣(Z1Z̄1)(Z̄1Z1)⟩○ + ∣(Z̄1Z1)(Z1Z̄1)⟩○] ,

(7.116)

which precisely matches the result expected at the orbifold point, but now with only one
type of bracketing.

A similar, but much more tedious, computation for all the remaining terms in (D.3),
using the coassociator defined in Appendix F, brings the scalar potential to a linear
combination of only ∣(AB)(CD)⟩κ-type terms. As above, we find that acting with
(F (4))−1 correctly untwists them to the orbifold point scalar potential. It follows that, for
all SU(4) generators Ra

b, both broken and unbroken, the coproduct (7.87) annihilates the
scalar potential of the deformed theory. We have therefore shown invariance under our
deformed SU(4) symmetry, as encoded in (7.87) and (3.31).

Of course, in the above, we made a choice to express the shifted quartic terms as linear
combinations of the unshifted ones. Equivalently, we could have chosen to convert all the
unshifted terms to shifted ones, which would have resulted in an expression related to
the orbifold point by an action of (F (4)shifted)

−1. We also note that if we had misidentified
any of the terms in (D.2) or (D.3), i.e. changed the bracketing from shifted to unshifted
without using the coassociator, the construction would not have worked, and we would
not have ended up with an overall twist acting on the correct orbifold-point expression.
So the construction relies strongly on respecting the quantum plane structure in (4.47).

We emphasise that the above computation was expected to work, by the very definition
of the coassociator. The reason for explicitly computing the coassociator matrix is
mainly to clarify how the construction works in practice. Also, one expects that the
understanding of other observables in the full SU(4) sector of the deformed theory, beyond
the scalar potential, will require similar manipulations. Although for the purpose of
showing invariance we did not have to actually compute the twisted coproduct, it will be
required in general in order to construct other representations, and for that we expect that
it would be unavoidable to work with explicit coassociators.
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Implications for the spectrum

In the previous chapters we established the invariance of the marginally deformed N = 2
Lagrangian under the deformed SU(4) symmetry, i.e., we showed that the Lagrangian is a
deformed SU(4) singlet. In this chapter we move on to other representations and explore
what, if any, relevance the deformed SU(4) has for the spectrum of the theory. We will
work at the one-loop level, although for the BPS cases that we consider we expect the
extension to higher loops to be straightforward. We recall that in the planar context, the
question of finding the spectrum of a conformal field theory can be translated to that of
diagonalising an associated spin-chain Hamiltonian, see [5] for a review.

The one-loop Hamiltonian for spin-chain states made up of the scalar fields of the Zk

orbifold theory was derived in [32]. For completeness, we reproduce it, in some relevant
sectors, in Appendix G. It has interesting limits when specialised to closed subsectors.
In particular, in the SU(2) subsector corresponding to the X,Y fields it becomes an
alternating Hamiltonian, while in the “broken” SU(2) subsector corresponding to the X,Z
or Y,Z fields it is a “dilute” Temperley-Lieb-type Hamiltonian. The 1- and 2-magnon
problems in these holomorphic sectors were explored in [18] using a coordinate Bethe
ansatz approach.

In this chapter, our focus will instead be on what the hidden symmetries tell us about
the spectrum of this Hamiltonian. Instead of arbitrary-length chains as in [18], we will
work with short chains, and we will be interested in going beyond the holomorphic sector
to understand states composed of all the scalar fields of the theory. As discussed, working
with broken generators requires us to open up the gauge theory traces, and acting once
with the broken generators on these states leads to non-closeable states. Due to gauge
invariance, it is the closeable states that are related to the physical spectrum of the theory.
However, acting twice with broken generators on a closeable state will always give a
state which is closeable. So to see how closeable states are connected using the broken
generators, our approach will be to open them up with the same cyclic prescription as
for the Lagrangian (which is of course a special case of a closed state), act twice with a
broken generator, and then close the states again.

Working with open states introduces ambiguities in the Hamiltonian, as one can add
boundary-type terms which vanish when closing the states. We will make use of this
ambiguity to modify the “naive” open Hamiltonian in order to obtain some desirable
features, such as preserving the number of BPS states when deforming away from the
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orbifold point.
We clearly don’t expect the additional symmetry to tell us all that much about the

energy eigenvalues of the theory, since that is not even the case for the N = 4 SYM
with its unbroken SU(4) symmetry group. It is only after understanding the integrable
structure of N = 4 SYM, e.g., by extending to a Yangian symmetry and thus introducing
a dependence on the spectral parameter, that one starts to obtain results about the
spectrum, for instance through the algebraic or coordinate Bethe ansatz. What the SU(4)
symmetry does do is organise the states into multiplets, which can each be obtained by
acting with lowering operators on a highest-weight state. In the following, we will take a
few experimental steps towards establishing whether the naively broken SU(4) generators
can be used to transform among states belonging to the multiplets of the κ-deformed
Hamiltonian.

To see the differences between the N = 4 SYM case and our current setting, it is
perhaps useful to take an algebraic Bethe ansatz perspective, even though of course
we don’t currently have a spectral-parameter-dependent R-matrix. Recall that in this
approach, the computation of the conserved charges hinges on the commutation of the
transfer matrices for different values of the spectral parameter, [t(u), t(u′)] = 0. Expanding
the first transfer matrix around u = 0 one obtains the Hamiltonian, and expanding the
second one around the “quantum plane limit” u′ →∞ one obtains the Lie algebra of SU(4)
through the RTT relations, with the R-matrix of course being the identity in this case.
This is an elaborate way of stating that the Hamiltonian commutes with SU(4), so all the
states in an SU(4) multiplet will have the same energy. In our N = 2 setting, apart from
the BPS states, we see splittings of the energy eigenvalues as we take κ ≠ 1, both for the
open and closed Hamiltonian. Hence, the story will clearly be more complicated than that
in the N = 4 SYM case. However, at least for short multiplets, and similarly to what is
referred to as “dynamical symmetries” in [51], our deformed SU(4) generators do seem
to correctly take us between the states in the multiplet (with the correct κ-dependent
coefficients), so it is likely that the deformed SU(4) still plays a relevant role. In this
chapter, we present some of our empirical findings and leave a fuller analysis for future
investigations.

We will start by considering states in holomorphic sectors, and then proceed to the
non-holomorphic ones.

8.1 Holomorphic BPS multiplets

The protected spectrum of the marginally deformed Z2 orbifold N = 2 SYM theory was
studied in detail in [32]. For holomorphic states, it was shown in that work that the
parameter κ enters the BPS states in a simple way related to the number of Z1 and Z2

fields. Effectively, up to an overall normalisation, the power of κ entering a given monomial
which is part of a BPS state is simply κ 1

2 (n(Z1)−n(Z2)) times the coefficient of that monomial
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8.1. HOLOMORPHIC BPS MULTIPLETS

at the orbifold point (recall that κ = g2/g1). So the BPS states, at any length, will be
symmetrised monomials as usual, but now with these additional κ-dependent factors. We
call this κ-symmetrisation.

A simple way to understand these factors of κ is to recall that states in the chiral ring
are orthogonal to states that include ∂W/∂Φi [52, 53]. Compared with the orbifold-point
theory, the marginally deformed relations (2.9) are obtained by rescaling Z1 and Z2 by g1

and g2, respectively. Therefore, to preserve orthogonality, the Z fields in the marginally
deformed BPS states should scale by the inverse factors. For instance, for two sites in the
XZ sector we have

∣F Y
12 ⟩ = g2X12Z2 − g1Z1X12 ⇒ ∣BPS⟩ = 1

g2
X12Z2 +

1
g1
Z1X12 (8.117)

Generalising to all states which are symmetric at the orbifold point, we find that BPS
states in the marginally deformed theory should scale as

g
−n(Z1)
1 g

−n(Z2)
2 = (g1g2)

− 1
2 (n(Z1)+n(Z2)) × κ

1
2 (n(Z1)−n(Z2)) (8.118)

The first factor is an overall normalisation which will be the same in each sector with a
fixed number of Z fields (and can be dropped), while the second is the κ-symmetrisation
factor.

As an example of how this works, consider a L = 4 BPS state in the sector with
two Z and two X fields. The κ-symmetrisation prescription tells us that up to overall
normalisation, the state for the first index being in gauge group 1 is

κ X12X21Z1Z1+κ0 X12Z2X21Z1+
1
κ

X12Z2Z2X21+κ Z1X12X21Z1+κ0 Z1X12Z2X21+κ Z1Z1X12X21

(8.119)
which of course can be verified by acting with the XZ sector Hamiltonian and finding

that it is indeed an eigenstate with eigenvalue 0.
Another way to express the above is to count, for each monomial, the number of fields

with first index in gauge group 1 or 2, which we can call n(1) and n(2). Since any two
subsequent X fields (regardless of how many Z fields happen to be between them) will
not contribute to the difference n(1) − n(2), it is easy to see that the above formula is
equivalent to

κ
n(1)−n(2)

2 (8.120)

To check it for the above state, we see that the first gauge indices for each monomial
are (1,2,1,1), (1,2,2,1), (1,2,2,2), (1,1,2,1), (1,1,2,2) and (1,1,1,2), so our formula
reproduces the same κ factors as above.

Now consider our two-site dynamical twist (5.48), which was chosen to reproduce the
XZ quantum plane. One notices that it also correctly reproduces the XZ sector two-site
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BPS state if we take κ→ 1/κ. If we trivially extend it to more sites and write

F
(L)
BPS = κ

s/2 ⊗ κs/2 ⊗⋯⊗ κs/2 , (8.121)

it is straightforward to check that it reproduces the κ-symmetrisation formula (8.120). We
emphasise that this simple twist applies only to holomorphic BPS states, and the L-site
extension for other representations would not be expected to take a diagonal form.

At this stage, we don’t have a proof of (8.121) by starting from a two-site twist, as
that would likely require knowledge of a more universal form of the twist. However, if we
assume that ∆(κs) = 1⊗ 1, i.e. that the coproduct simply washes out the Z2 generator s,
then clearly writing

F
(3)
BPS = (FBPS ⊗ 1)(∆○

⊗ 1)(FBPS) = (1⊗FBPS)(1⊗∆
○
)(FBPS) (8.122)

results in (8.121).
Given (8.121), we can now define an L-site coproduct for the XZ-sector BPS states as

a twist of the orbifold-point coproduct (3.31) by

∆(L)BPS,κ(R
a

b) = F
(L)
BPS∆(L)

○
(Ra

b) (F
(L)
BPS)

−1

=
L

∑
ℓ=1
(κ

s
2 ⊗ ⋅ ⋅ ⋅ ⊗ κ

s
2 )(1⊗⋯⊗ 1⊗

ℓ

Ra
b ⊗ γ ⊗⋯⊗ γ)(κ

− s
2 ⊗ ⋅ ⋅ ⋅ ⊗ κ−

s
2 )

=
L

∑
ℓ=1
(κ

s
2−

s
2 ⊗⋯⊗ κ

s
2−

s
2 ⊗ κ

s
2

ℓ

Ra
bκ
− s

2 ⊗ κ
s
2γκ−

s
2 ⊗⋯⊗ κ

s
2γκ−

s
2)

=
L

∑
ℓ=1
(1⊗⋯⊗ 1⊗

ℓ

Ra
b ⊗ γκ

−s ⊗⋯⊗ γκ−s)

=
L

∑
ℓ=1
(1⊗⋯⊗ 1⊗

ℓ

Ra
b ⊗KBPS ⊗⋯⊗KBPS) . (8.123)

where Ra
b is either R3

2 = σ
+
XZ or R2

3 = σ
−
XZ and we have used that sγ = −γs, see (5.50).

We have defined
KBPS = γ κ

−s . (8.124)

where we note that the power of s is opposite to that for the quantum-plane coproduct
(5.52).

XZ sector at three sites
As an example of how the coproduct works, let us consider the four E = 0 eigenstates

of the open Hamiltonian in the XZ sector at L = 3 sites, with the first index in the first
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gauge group:

∣s1⟩ =X12X21X12 ,

∣s2⟩ =X12X21Z1 +
1
κ
X12Z2X21 +Z1X12X21 ,

∣s3⟩ =
1
κ2X12Z2Z2 +

1
κ
Z1X12Z2 +Z1Z1X12 ,

∣s4⟩ = Z1Z1Z1 , (8.125)

Acting with the three-site coproduct of the XZ-sector raising and lowering operators R3
2

and R2
3,

∆(3)BPS,κ(R
a
b) = 1⊗ 1⊗R

a
b + 1⊗R

a
b ⊗KBPS +R

a
b ⊗KBPS ⊗KBPS , (8.126)

we can confirm that they form an SU(2) multiplet.

XZ sector at four sites
A further example of a BPS multiplet, this time for L = 4, is illustrated in Fig. 8.4. We

emphasise that the states in these multiplets are related by the action of broken raising and
lowering operators. So from the usual perspective where only the SU(2)L×SU(2)R×U(1)r
symmetry group is present, the fact that they are in the same multiplet would appear
accidental, while from our perspective the XZ-sector su(2) generators are still present
(albeit in a twisted groupoid sense) and can still be used to relate the states.

X12X21X12X21

X12Z2X21X12 +X12X21X12Z2 + κ (X12X21Z1X12 +Z1X12X21X12)

1
κX12Z2Z2X21 +Z1X12Z2X21 +X12Z2X21Z1 + κZ1Z1X12X21 + κX12X21Z1Z1 + κZ1X12X21Z1

1
κX12Z2Z2Z2 +Z1X12Z2Z2 + κZ1Z1X12Z2 + κ2Z1Z1Z1X12

κ2Z1Z1Z1Z1

∆(4)(R2
3)

∆(4)(R2
3)

∆(4)(R2
3)

∆(4)(R2
3)

∆(4)(R3
2)

∆(4)(R3
2)

∆(4)(R3
2)

∆(4)(R3
2)

Figure 8.4: The four-site BPS multiplet in the XZ sector. The action of the broken
generators defined through the coproduct (8.123) correctly relates all the states in the
multiplet.

For the closeable states in the multiplet, we can reverse the opening-up procedure by
adding their Z2 conjugates and cyclically identifying the states. For the L = 4 multiplet in
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Fig. 8.4, this leads to the closed states11

tr1(X12X21X12X21) , tr1(Z1Z1Z1Z1) , tr2(Z2Z2Z2Z2) and

tr1 (κ X12X21Z1Z1 +X12Z2X21Z1 + κ
−1 X12Z2Z2X21) .

(8.127)

These are all E = 0 eigenstates of the closed Hamiltonian. So, as claimed, defining the
action of the broken generators through the opening-up procedure and acting an even
number of times on a closed state, correctly reproduces the states belonging to the physical
spectrum of the theory.

XYZ sector at three sites
The same twist (8.121) also acts correctly on BPS states in the full SU(3) sector,

for any length, as can be argued by requiring orthogonality to states including all the
holomorphic quantum planes in (2.9). Twisting the coproduct of the Y Z-sector generators
R4

2 and R2
4 leads to the same form of the coproduct as (8.123). Since the orbifold-point

coproduct of the unbroken XY -sector operators R4
3 and R3

4 does not contain γ’s, the
twist has no effect. So we can summarise the L-site coproduct for the holomorphic XY Z
sector as

∆(L)BPS,κ(R
a

b) =
L

∑
ℓ=1
(1⊗⋯⊗ 1⊗

ℓ

Ra
b ⊗ (KBPS)

a
b ⊗⋯⊗ (KBPS)

a
b) , (8.128)

where we define

(KBPS)
a
b =

⎧⎪⎪
⎨
⎪⎪⎩

γκ−s , if Ra
b is broken

1 , if Ra
b is unbroken

. (8.129)

This coproduct consistently relates any open BPS states in the holomorphic SU(3) sector.
As an example, we can check that

σ−XY σ
−
XZ(κ

1
2 ∣X12X21X12 ⟩) = σ

+
XY σ

+
Y Z(κ

1
2 ∣Y12Y21Y12 ⟩) = σ

+
XZσ

−
Y Z(κ ∣Z1Z1Z1 ⟩)

= κ
1
2 (X12Y21Z1 + Y12X21Z1 +Z1X12Y21 +Z1Y12X21) + κ

− 1
2 (X12Z2Y21 + Y12Z2X21) ,

(8.130)

where we used the same convention for the generators as in Appendix A. Here, the
normalisations of our initial states are those provided by the twist (8.121). Note that one
can obtain the final closeable state either by acting on non-closeable states with one broken
and one unbroken generator, or on the closeable state ∣Z1Z1Z1 ⟩ with two broken generators.
One can confirm that the final state is an E = 0 eigenstate of the open Hamiltonian, and

11To illustrate the closing procedure, here we only considered adding the open states with their Z2
conjugates to obtain Z2-even closed states, which belong to the untwisted sector of the theory. We could
of course have combined them in a Z2-odd way, resulting in states in the twisted sector.
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closing by adding the Z2 conjugate and identifying cyclically related states one obtains

tr1 (κ
1
2 (X12Y21Z1 + Y12X21Z1) + κ

− 1
2 (Y12Z2X21 +X12Z2Y21)) , (8.131)

which is indeed an E = 0 eigenstate of the closed Hamiltonian.

8.2 Full SU(4) multiplets at two sites

When attempting to extend the above analysis of BPS states in the holomorphic sector to
encompass states in more general representations, as well as the full SU(4), our inability
to define the twists in a more universal form is currently a limitation of our approach.
However, since we do have a full set of twists at two sites, in this section we will use them
to define twisted multiplets in the full SU(4), and compare with the one-loop spectrum of
the Hamiltonian.

8.2.1 The 20′ two-site multiplet

We first consider the full BPS multiplet at two sites, which corresponds to the representation
20′ in the decomposition (A.4). Here we encounter a slight subtlety, introduced by our
need to open up the states and act with the open Hamiltonian. Let us restrict to the
subsector of two-site states which are SU(2)L ×SU(2)R ×U(1)r singlets, which we order as

{Z̄1Z1, Z1Z̄1,M1, Z̄2Z2, Z2Z̄2,M2} , (8.132)

with

M1 =
1
2
(X12X̄21 + X̄12X21 + Y12Ȳ21 + Ȳ12Y21) , (8.133)

and M2 its Z2 conjugate. In this basis, the deformed Hamiltonian given in (G.4) takes
the form

Hsinglet =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
2κ − 1

2κ
1
κ 0 0 0

− 1
2κ

3
2κ

1
κ 0 0 0

1
κ

1
κ 2κ 0 0 0

0 0 0 3κ
2 −κ

2 κ

0 0 0 −κ
2

3κ
2 κ

0 0 0 κ κ 2
κ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8.134)
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After diagonalising, we find that the state corresponding to the SU(2)L × SU(2)R ×U(1)r
singlet with E = 0 at the orbifold point, acquires a negative eigenvalue for 0 < κ < 1:12

E(∣(1,1)0 ⟩) =
1

2κ + κ −
√

4κ2 − 4 + 9κ−2

2 . (8.135)

This is clearly an artifact of working with the open Hamiltonian, since the corresponding
eigenstate of the closed Hamiltonian does have E = 0, in accordance with expectations
that the number of BPS states should not change as we deform away from the orbifold
point (see [31] for a detailed discussion), and in any case we would definitely not expect
any states to have negative anomalous dimensions.

Fortunately, it is possible to cure this problem of negative eigenvalue, by adding to
the Hamiltonian (8.134) a term which (i) vanishes at the orbifold point and (ii) does not
modify the closed chain action of the Hamiltonian. We find

δH = 2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 κ−1 − κ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 κ − κ−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (8.136)

and adding this term to the deformed Hamiltonian in (8.134) gives an improved open
Hamiltonian in the singlet sector

Ĥsinglet = Hsinglet + δH =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
2κ − 1

2κ
1
κ 0 0 0

− 1
2κ

3
2κ

1
κ 0 0 0

1
κ

1
κ

2
κ 0 0 0

0 0 0 3κ
2 −κ

2 κ

0 0 0 −κ
2

3κ
2 κ

0 0 0 κ κ 2κ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8.137)

We emphasise that this modification in no way affects the physical closed-chain spectrum
of the theory. Apart from the ∣(1,1)0 ⟩ state in the 20′, it also affects the full SO(6) singlet
1, which we will look at in Section (8.2.3). Having regained our BPS state in the singlet
sector, we can combine it with the remaining E = 0 states of the open deformed SU(4)

12We have of course broken the Z2 symmetry by considering states with first index in gauge group 1,
for the case with first gauge group 2 the corresponding eigenvalue will be negative for κ > 1.
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Hamiltonian, to form the κ-deformed version of the 20′:

∣(1,1)2 ⟩ = Z̄iZ̄i

∣(1,1)−2 ⟩ = ZiZi

∣(1,1)0 ⟩ =XiX̄i+1 + X̄iXi−1 + YiȲi−1 + ȲiYi+1 − 2 (ZiZ̄i + Z̄iZi)

∣(2,2)1 ⟩ =XiZ̄i+1 + κ
(−1)i+1

Z̄iXi

∣(2,2)−1 ⟩ =XiZi+1 + κ
(−1)i+1

ZiXi

∣(3,3)0 ⟩ =XiXi+1 .

(8.138)

Here the states are labelled by their (SU(2)L,SU(2)R)U(1)r quantum numbers. For readers
familiar with the labelling in [54], the conversion can be found in table 8.1.

primary of
(1,1)2 ∣0,0,+2⟩ E2(0,0)
(1,1)−2 ∣0,0,−2⟩ Ē−2(0,0)
(1,1)0 ∣0,0,0⟩ Ĉ0(0,0)

(2,2)1 ∣ ± 1
2 ,±

1
2 ,+1⟩ D

(± 1
2 )

1
2 (0,0)

(2,2)−1 ∣ ± 1
2 ,±

1
2 ,−1⟩ D̄

(± 1
2 )

− 1
2 (0,0)

(3,3)0 ∣ ± 1,±1,0⟩, ∣0,0,0⟩ B1

Table 8.1: Conversion table between the notation used in [54] and the representations of
the unbroken R-symmetry group (SU(2)L,SU(2)R)U(1)r for each multiplet in the 20′.

We can now ask whether this deformed 20′ multiplet is compatible with the deformed
SU(4) symmetry. Using the two-site twists of Chapter , but with κ→ 1/κ as was done to
obtain F (2)BPS in the XZ sector, we can define two-site twists F (2)BPS for the general SU(4)
sector, and define a twisted coproduct in the usual way

∆(2)BPS,κ(R
a
b) = F

(2)
BPS ∆

○
(Ra

b) (F
(2)
BPS)

−1 . (8.139)

If Ra
b are unbroken generators, this coproduct reduces to the usual Lie algebraic coproduct.

A simple computation confirms that this coproduct also works for the broken generators,
that is, it correctly relates states in the 20′ which would be related by these generators in
the unbroken SU(4) case. This is illustrated in Fig. 8.5.

8.2.2 The 15 two-site multiplet

Now let us look at the 15, the antisymmetric multiplet appearing in the SO(6) decompo-
sition at two sites. Among other states, this multiplet contains the various unbroken and
broken SU(2) singlet states, which formed the basis for our quantum planes (see Section
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∣0,−1, 0 ⟩
2 × ∣0, 0, 0 ⟩
∣0,+1, 0 ⟩

∣−1,−1, 0 ⟩
∣−1, 0, 0 ⟩
∣−1,+1, 0 ⟩

∣+1,−1, 0 ⟩
∣+1, 0, 0 ⟩
∣+1,+1, 0 ⟩

∣0, 0,+2 ⟩

∣0, 0,−2 ⟩

∣− 1
2 ,− 1

2 ,+1 ⟩
∣− 1

2 ,+ 1
2 ,+1 ⟩

∣+ 1
2 ,− 1

2 ,+1 ⟩
∣+ 1

2 ,+ 1
2 ,+1 ⟩

∣− 1
2 ,− 1

2 ,−1 ⟩
∣− 1

2 ,+ 1
2 ,−1 ⟩

∣+ 1
2 ,− 1

2 ,−1 ⟩
∣+ 1

2 ,+ 1
2 ,−1 ⟩

SU(2)L

11/20−1/2−1

U(1)r

−2

−1

0

1

2

Figure 8.5: Depiction of the open 20′ multiplet, with the action of the broken R-symmetry
generators as dotted blue arrows and the unbroken SU(2)L as solid green arrows. The
states present at each node of this diagram are connected via the action of the unbroken
SU(2)R.

4.2). So in a sense our twists were chosen such that one obtains this multiplet by acting
on the corresponding multiplet at the orbifold point, and inversely, by construction the
inverses of the twists will take the deformed 15 to the orbifold point. We can confirm this
by finding the corresponding κ-deformed eigenstates of the two-site SO(6) Hamiltonian

∣(1,1)0 ⟩ = κ
(−1)i

2 (Z̄iZi −ZiZ̄i)

∣(1,3)0 ⟩ = κ
(−1)i

2 (XiYi+1 − YiXi−1)

∣(3,1)0 ⟩ = κ
(−1)i

2 (XiȲi+1 − ȲiXi+1)

∣(2,2)1 ⟩ =XiZ̄i+1 − κ
(−1)iZ̄iXi

∣(2,2)−1 ⟩ =XiZi+1 − κ
(−1)iZiXi ,

(8.140)

where we only list the highest-weight state in each representation. Table 8.2 indicates the
conversion from the (SU(2)L,SU(2)R)U(1)r quantum numbers used here to the notation
of [54].

These states do not all have the same energy, however one can check that indeed the
two-site coproduct obtained from the twists in Chapter (of course without taking κ→ 1/κ),
correctly relates all the states in the multiplet. The action of the SU(4) generators is
depicted in Fig. 8.6.

70



8.2. FULL SU(4) MULTIPLETS AT TWO SITES

primary of
(1,1)0 ∣0,0,0⟩ E0(0,0)
(1,3)0 ∣0,±1,0⟩, ∣0,0,0⟩ B1
(3,1)0 ∣ ± 1,0,0⟩, ∣0,0,0⟩ B̂1

(2,2)1 ∣ ± 1
2 ,±

1
2 ,+1⟩ D

(± 1
2 )

1
2 (0,0)

(2,2)−1 ∣ ± 1
2 ,±

1
2 ,−1⟩ D̄

(± 1
2 )

− 1
2 (0,0)

Table 8.2: Conversion table to the notation in [54] for representations of the unbroken
R-symmetry group (SU(2)L,SU(2)R)U(1)r for each multiplet in the 15.

∣0,−1, 0 ⟩
3 × ∣0, 0, 0 ⟩
∣0,+1, 0 ⟩

∣−1, 0, 0 ⟩ ∣+1, 0, 0 ⟩

∣− 1
2 ,− 1

2 ,+1 ⟩
∣− 1

2 ,+ 1
2 ,+1 ⟩

∣+ 1
2 ,− 1

2 ,+1 ⟩
∣+ 1

2 ,+ 1
2 ,+1 ⟩

∣− 1
2 ,− 1

2 ,−1 ⟩
∣− 1

2 ,+ 1
2 ,−1 ⟩

∣+ 1
2 ,− 1

2 ,−1 ⟩
∣+ 1

2 ,+ 1
2 ,−1 ⟩

SU(2)L

11/20−1/2−1

U(1)r

−1

0

1

Figure 8.6: The open 15 multiplet, with the action of the broken R-symmetry generators
shown as dotted blue arrows and the unbroken SU(2)L as solid green arrows. The states
present at each node of this diagram are connected via the action of the unbroken SU(2)R.

8.2.3 The singlet two-site multiplet

The last multiplet we need to consider at two sites for the full SO(6) sector is the singlet 1,
which in our conventions has E = 3 at the orbifold point. For the naive open Hamiltonian
(8.134), this state mixes with the BPS state that is the superconformal primary of the
∣(1,1)0 ⟩ multiplet, and is κ-dependent. The modification of the open Hamiltonian in the
singlet sector, which gave us (8.137), resolves this mixing and gives the state

∣1⟩ =X12X̄21 + X̄12X21 + Y12Ȳ21 + Ȳ12Y21 +Z1Z̄1 + Z̄1Z1 , (8.141)

with eigenvalue 3/κ, as well as its Z2 conjugate with eigenvalue 3κ. Although the eigenvalues
do become κ-dependent, the state itself is the same as at the orbifold point.

Untwisting this state using the two-site twists has no effect, and correspondingly the
two-site coproduct will annihilate this state for all the generators Ra

b. Of course, this is
by construction, as (ignoring the eV factors which do not carry SU(4) weight) this term
is the opened kinetic term in the Lagrangian and our twists were defined such that they
leave this term invariant.
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Conclusions and outlook

In this thesis, we provide a new perspective on the symmetries of four-dimensional quiver
SCFT’s with N = 2 supersymmetry. Even though this will not directly answer the
main question of whether, and in which form, integrable structures appearing at the
orbifold point are preserved after a marginal deformation, a better and more complete
understanding of the symmetries is the first step.

At the orbifold point, we recovered the due to the orbifold construction naively broken
R-symmetry generators by extending our notion of symmetry from a group to a groupoid.
By using the F- and D-terms of the theory together with the unbroken symmetries, we
were able to define twist operations, allowing us to marginally deform away from the
orbifold point. Since these twists are invertible, it is possible to relate the actions of the
naively broken SU(4) generators in the marginally deformed theories to their formulation
at the orbifold point. Their action in the marginal deformed case is no longer coassociative,
which considerably complicates their study. Nevertheless, we were able to show invariance
of the planar Lagrangian of the theory under this twisted version of the SU(4) algebroid,
as well as perform several checks for the new generators by relating states in the physical
spectrum of the one-loop Hamiltonian.

This new construction is not free of ambiguities and educated guesses, and further work
is needed to fully justify all the steps taken and outlined here. Alternative formulations
for twists might exist, which could satisfy a shifted cocycle condition making the non-
associativity of dynamical type rather than of general quasi-Hopf. Such formulations
would for example greatly facilitate the extension of the coproducts presented in this thesis
from two to more sites. This could eventually lead to a more rigorous proof of the four-site
twists presented in (7.96) and (7.97). Nevertheless, we hope to have convinced the reader
that the quiver SCFT’s do have additional useful symmetries which are not visible from a
strictly Lie group perspective.

At the orbifold point, our revived SU(4) symmetry could prove to be an important
stepping stone in obtaining a more complete understanding of the integrability properties
of this theory. It should be noted, that even though a twisted version for the Bethe ansatz
of Zk orbifolds was proposed in [16], at the level of the Lagrangian so far it has not been
explicitly derived, for example via a Yangian-type symmetry. We are convinced that the
framework presented here will prove useful in formulating such a structure, along the lines
of previous work such as [26,28].
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The focus of this thesis is the Z2 orbifold theory of N = 4 SYM, but it is straightforward
to extend our construction to the Zk case (and eventually to more general ADE N = 2
orbifolds as well as N = 1 orbifolds). For first concrete steps towards a formulation of the
Zk case, we refer to Appendix H. The results presented there are at this stage empirical.
Further study into the groupoid setting is needed to properly motivate them from a
mathematical standpoint. The extended version of the orbifold-point coproduct for the Zk

case requires that one replaces the Z2 operator γ, satisfying γ2 = 1, by an operator which
now satisfies γk = 1. Furthermore, next to the action on the gauge indices i as γ ∶ i→ i+1,
now also steps of order two need to be facilitated, since for k > 2 the SU(2)L symmetry is
broken and an exchange of fields in this sector results in a gauge shift of two, which is
essentially invisible for k = 2.

The coproduct of the raising operators (3.15) will contain γ, while for the lowering
operators (3.16) it will contain an inverse operator γ−1. Except for the appearance of more
deformation parameters κi = gi+1/gi, the twists connecting the orbifold point formulation
of the theory to the marginally deformed case are expected to be share many similarities
as the cases discussed here. The detailed analysis of more general orbifolds is part of
future work.

Additional further work in progress is to extend the presented treatment involving only
the bosonic sector to include fermions (see Section B.4 for some preliminary notes) and
derivatives for the complete Hilbert space following [55].

One important observation made in Section 8.1 is that holomorphic BPS states in the
chiral ring are orthogonal to states involving F-terms (∂W/∂Φi) [52,53]. This orthogonality
is preserved after twisting away from the orbifold point, if the Z, Z̄ fields in BPS states
scale with the inverse gauge factors compared to states similar to the F-terms. Specifically
for two sites, this translates to a relation between the twists of the singlet and triplet
representations by κ↔ 1/κ. At higher numbers of sites, this relation should generalise
straightforwardly, thus constraining the explicit form of the twist involved. Furthermore,
it is expected that a similar connection is present for any marginal deformation of N = 1, 2
superconformal orbifolds.

We focused our concentration on short spin chains in position space, following the most
common setting, where the algebraic structures can be presented naturally.

We obtained the twists for two different limiting values of the rapidity, corresponding to
the fully symmetrised and antisymmetrised representations, where the twists for the BPS
states are related to those in the quantum plane limit by the relation κ→ 1/κ. Combining
the current algebraic understanding presented in this thesis, with a rapidity-dependent
formulation for the twist, should lead to a unique determination of the twist. The one-
and two-magnon eigenvalue problem around the infinite length ϕ-vacuum (constructed
out of Z fields in the language of this thesis and obeying the BPS condition ∆ = r) was
already studied in [32]. In addition, in [18] one- and two-magnon solutions around the
Q-vacuum (obeying the BPS condition ∆ = 2R and constructed from the bifundamental
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fields) were obtained. These solutions have the special feature of pointing to an elliptic
structure for the rapidity.

In more recent work, such as [56], the three-magnon eigenvector around the ϕ-vacuum
was computed, and the case of the four-magnon eigenvector will appear soon [57]. These
solutions have the novel feature of being long-range, with their coefficients obeying an
infinite tower of Yang-Baxter equations. Combining all this data with the algebraic
approach presented here should allow for fixing the twist as a function of the rapidity
completely.

Finally, a generalisation of our findings for the one-loop Hamiltonian to all loops
can reasonably be expected. The exact S-matrix of [58] should be derivable from the
algebroid symmetry. From the perspective of the dual worldsheet description of our gauge
theory model in the strong-coupling regime, the symmetries are only broken due to the
boundary conditions of the string. In the orbifold theories we are considering, the marginal
deformation should solely arise from twisting the boundary conditions of the string.

From this it would seem possible to reconcile the presented algebroid approach, mean-
ingful at weak coupling from the spin chain point of view, with the twisted boundary
conditions at strong coupling for the string on the gravity side by introducing a non-trivial
connection, spreading the effect of the boundary conditions along the spin chain via a
Drinfeld-type twist [59]. If we want to interpolate between the weak coupling and strong
coupling, we furthermore need to compute the redefined gauge coupling (string tension
Teff = f(g2)) obtained via localisation, coined as the exact effective coupling in [60, 61]
(see also [62, 63] for more details). On the gravity side, the B-field is responsible for
the above redefinition. Recent work [64] allows for computing subleading corrections in
the strong-coupling expansion in agreement with localisation [65] for a solution of IIB
supergravity, where the orbifold singularity is resolved.

It is clear that with this work we have only scratched the surface of the mathematical
structures underlying the symmetries of the N = 2 superconformal quiver theories. A
rigourus understanding of the interplay between the path groupoid and the R-symmetry
algebroid as part of the larger structure of a 2-category (see Section B.2) should impose
constraints on the allowed twists and corresponding coassociators, and perhaps even
completely fix them. This investigation, together with its implications for integrability, is
the subject of further work.
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Appendix A

The SU(4) R-symmetry group

In this appendix, we provide a concise overview of the relevant concepts pertaining to the
SU(4) R-symmetry and its breaking to SU(2)L × SU(2)R ×U(1)r.

Let us consider how the SU(4) R-symmetry of the N = 4 theory acts on the fields.
It is convenient to combine the six real scalar fields into three complex scalar fields X,
Y , and Z, and then organise them into an antisymmetric combination φab, with indices
a, b = {1, . . . ,4} in the fundamental representation. In our convention,

φab = −φba =
1
2ϵ

abcdφ̄cd =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Z X Y

−Z 0 Ȳ −X̄

−X −Ȳ 0 Z̄

−Y X̄ −Z̄ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A.1)

The action of the generators Ra
b of SU(4) on the fields is

Ra
bφ

cd = δc
bφ

ad + δd
bφ

ca −
1
2δ

a
bφ

cd, (A.2)

which can be written out more explicitly for ease of reference as

RZ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2Z 0 0 0
0 1

2Z 0 0
−Ȳ X −1

2Z 0
X̄ Y 0 −1

2Z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

RZ̄ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
2Z̄ 0 Y −X

0 −1
2Z̄ −X̄ −Ȳ

0 0 1
2Z̄ 0

0 0 0 1
2Z̄

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

RX =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2X 0 0 0
Ȳ −1

2X Z 0
0 0 1

2X 0
−Z̄ 0 Y −1

2X

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

RX̄ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
2X̄ −Y 0 −Z

0 1
2X̄ 0 0

0 −Z̄ −1
2X̄ −Ȳ

0 0 0 1
2X̄

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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RY =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2Y 0 0 0
−X̄ −1

2Y 0 Z

Z̄ 0 −1
2Y X

0 0 0 1
2Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

RȲ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
2 Ȳ X −Z 0
0 1

2 Ȳ 0 0
0 0 1

2 Ȳ 0
0 −Z̄ −X̄ −1

2 Ȳ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (A.3)

where the notation is that R3
1Z = −Ȳ , R4

1Z = X̄ etc.
As shown in (A.1), the scalar fields belong to the two-index antisymmetric representation

6 of SU(4), or equivalently the fundamental (vector) representation of SO(6) ≃ SU(4).
The tensor products of two and three fields decompose as

6 × 6 = 20′ + 15 + 1 (A.4)

6 × 6 × 6 = 2(64) + 50 + 10 + 10 + 3(6) , (A.5)

where the 20′ and 50 are 1/2 BPS representations, and the singlet is the Konishi operator.
The representation 10 contains the superpotential, while 10 contains the conjugate
superpotential.

The SU(2)L × SU(2)R ×U(1)r unbroken subgroup of SU(4)R acts as

SU(2)L ∶ σ+L = R
3
4, σ

−
L = R

4
3, σ

3
L =

1
2
(R3

3 −R
4
4)

SU(2)R ∶ σ+R = R
1
2, σ

−
R = R

2
1, σ

3
R =

1
2
(R1

1 −R
2
2)

U(1)r ∶ σr = − (R
1
1 +R

2
2) =R

3
3 +R

4
4 .

(A.6)

The resulting quantum numbers for the complex scalars are listed in Table A.1.

φcd SU(2)L SU(2)R U(1)r
Z 0 0 −1
Z̄ 0 0 1
X 1

2
1
2 0

X̄ −1
2 −1

2 0
Y −1

2
1
2 0

Ȳ 1
2 −1

2 0

Table A.1: The SU(2)L × SU(2)R ×U(1)r quantum numbers of the complex scalar fields.

We note that the SU(2)L group is accidental for the Z2 case, as it is not present for Zk

orbifolds with k > 2.
The remaining generators can be classified as raising and lowering operators of broken
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SU(2)’s,

SU(2)XZ ∶ σ+XZ = R
3
2, σ

−
XZ = R

2
3, σ

3
XZ = (R

3
3 −R

2
2) = σ

3
R + σ

3
L + σr,

SU(2)Y Z ∶ σ+Y Z = R
2
4, σ

−
Y Z = R

4
2, σ

3
Y Z = (R

2
2 −R

4
4) = −σ

3
R + σ

3
L − σr,

SU(2)X̄Z ∶ σ+
X̄Z
= R1

4, σ
−
X̄Z
= R4

1, σ
3
X̄Z
= (R1

1 −R
4
4) = σ

3
R + σ

3
L − σr,

SU(2)Ȳ Z ∶ σ+
Ȳ Z
= R3

1, σ
−
Ȳ Z
= R1

3, σ
3
Ȳ Z
= (R3

3 −R
1
1) = −σ

3
R + σ

3
L + σr ,

(A.7)

and similarly for their conjugate sectors involving Z̄. The σ± in this list are the broken
generators which in N = 4 SYM used to relate the X,Y fields (and their conjugates), which
are now bifundamental, to the (Z, Z̄) fields, which are now adjoint in their respective
SU(N) groups. So they are the generators that we wish to resurrect as generators of a
groupoid version of SU(4).

The choice of raising/lowering operators in each SU(2) sector is motivated by whether
the second colour index is raised or lowered under the action of the operator. This is
immaterial in the current Z2 case, but we choose our convention such that it is compatible
with more general Zk orbifolds, where the X, Ȳ fields are paths from node i to i + 1 while
the Y, X̄ fields from i to i − 1, with i + k identified with i [18]. For instance,

σ+XZZi =Xi,i+1 and σ−Y ZZi = Yi,i−1 , (A.8)

which agrees with the identifications in (A.7).
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Appendix B

The path and R-symmetry groupoids

A group is a non-empty set G ≠ ∅ equipped with an operation ⋅ ∶ G×G→ G that composes
every ordered pair of elements (g1, g2) to form a unique element g3 = g1 ⋅ g2, such that the
composition is associative, has an identity element, and has an inverse element for each
element in G. A group is a category which has only one object and every arrow has a
two-sided inverse under composition.

A groupoid G can be seen as a group, except that the composition is allowed to be a
partial function, ○ ∶ G × G ⇀ G. In other words, it is not required that all pairs of elements
in G can be composed. In categorical language, a groupoid is a small category in which
each morphism is an isomorphism. More explicitly, a groupoid G consists of a set G0

of objects, a set G1 of arrows, and five structure maps S,T ∶ G1 ⇉ G0, ○ ∶ G1 × G1 ⇀ G1,
I ∶ G0 → G1, −1 ∶ G1 → G1, obeying the following properties:

• For each arrow g ∈ G1, its source and target objects are respectively S(g) and T (g),
and we write S (g) g

Ð→ T (g).

• A pair of arrows (g2, g1) ∈ G1 × G1 is composable when T (g1) = S (g2), and the set of
composable arrows is denoted by G2 ⊆ G1×G1. The map ○ ∶ G2 → G1 is the composition,
such that S (g2 ○ g1) = S (g1), T (g2 ○ g1) = T (g2). The composition is associative,
(g3 ○ g2) ○ g1 = g3 ○ (g2 ○ g1).

• The unit map I sends every object x ∈ G0 to the identity arrow idx ∈ G1 at x, such
that for every g ∈ G1, idT (g) ○ g = g ○ idS(g) = g.

• The inverse map −1 sends every arrow g ∈ G1 to its inverse g−1, such that g−1○g = idS(g)
and g ○ g−1 = idT (g).

If G0 contains only a single object, then this definition reduces to that of a group. On
the other hand, given a groupoid G and one object x ∈ G0, the subcollection of arrows
{g ∈ G1∣x

g
Ð→ x} forms an automorphism group AutG (x) of x in G. In physics, the symmetry

group is the set of all symmetry transformations which isomorphically relates one object
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to itself, endowed with the group operation of composition. A groupoid is a collection of
symmetry transformations acting between possibly more than one object.

Let us now apply the above formal definitions to the two different types of groupoid that
we introduced with physics language in Chapter . The path groupoid, which comprehen-
sively describes the total vector space of all spin-chain states, and the R-symmetry groupoid,
which describes the mathematical structure which replaces the SU(4) R-symmetry Lie
group.

B.1 Path groupoid

We begin by defining the path groupoid that is obtained from the quiver in Fig.2.1. It
consists firstly of a set of objects G0 = { 1 , 2 }, which correspond to the two colour groups,
or equivalently the two nodes of the quiver. Furthermore, it consists of the set of arrows
G1 = {{Z1,X12,⋯},{Z1Z1,⋯},⋯}, as in (3.13). The set G1 contains all possible paths,
which in the spin-chain picture corresponds to all allowed spin-chain with all possible
lengths. Paths made by following the directed arrows correspond to monomials of single
site fields with properly contracted gauge indices.

The composition ○ is a map from G2 ⊆ G1 × G1 to G1, defined such that the target (T )
of the first map is the source (S) of the second one. Let us now check that {G0,G1}, along
with the composition ○, satisfies the above defining properties of a groupoid. To establish
conventions, for the individual fields, which correspond to the shortest possible arrows in
G1, we write

S(X12) = 1 = T (X21) , (B.1)

S(X21) = 2 = T (X12) , (B.2)

S(Z1) = 1 = T (Z1) , (B.3)

S(Z2) = 2 = T (Z2) , (B.4)

and similarly for all other single-site fields. Note that here we use the physicist convention
of reading maps from left to right. Longer arrows, or paths, can be defined by longer spin-
chain states as described in (3.13), with for example S(X12Z2) = 1 and T (X12Z2) = 2 .
Moreover, for the unit map (I) we have

I ∶ i → Zi , (B.5)

and the inverse map (−1) acting on the single fields gives

−1 ∶ X12 →X21 , Y12 → Y21 , Z1 → Z1 , (B.6)
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and their Z2 conjugate relations. From the single-field inverse, we can follow the arrows to
write the inverses of multi-field states, e.g. −1 ∶X12Z2 → Z2X21.

Clearly, following the arrows, all requirements concerning composition and associativity
are satisfied in the above sense.

B.2 The R-symmetry groupoid

Let us now define the R-symmetry groupoid, which acts on the above path groupoid and
is a generalisation of the SU(4) Lie group. It is easier for the reader to consider each
length L separately. Furthermore, we will restrict our analysis to the SU(2)XZ sector, and
the extension to the other broken SU(2) sectors is a relatively straightforward process.

We start with L = 1, where the groupoid is defined by the set of objects

G
(L=1)
0 = {X12,X21, Z1, Z2} , (B.7)

and a set of arrows which are composed as exponential maps of the generators

G
(L=1)
1 = {1(1), σ

(1)
+ , σ

(1)
− , σ

(1)
3 ,1(2), σ

(2)
+ , σ

(2)
− , σ

(2)
3 , γ} , (B.8)

where the identity matrix is required if we are working with the universal enveloping
algebra. In writing (B.8) we are already referring to the algebroid language. Going from
the Lie algebroid to the Lie groupoid works in the same way as going from a Lie algebra
to its corresponding Lie group. For the source and target map of the algebroid we get

S(σ
(i)
+ ) = Zi = T (σ

(i)
− ) , (B.9)

S(σ
(i)
− ) =Xi,i+1 = T (σ

(i)
+ ) , (B.10)

S(γ) = G
(1)
0 = T (γ) , (B.11)

where the index i labels the colour groups and identified mod(2) i.e. i ≅ i + 2. It is worth
noting that the source/target of γ is {Z1,X12} or {Z2,X21}, but not both at the same
time, whereas the source/target of {σ(i)3 , I} is automatically the full G(1)0 . The unit map
I for {Zi,Xi} is captured by the identity of the universal enveloping algebra, while the
inverse map of σ(i)+ is σ(i)− and vice versa. The maps {γ, σ(i)3 ,1(i)} are their own inverses.
The R-symmetry algebroid respects the su(2) algebra as its composition rule, together
with the relation

γ ○ σ(i) = σ(i+1) ○ γ , (B.12)

since γ will change the gauge indices (i.e. exchange the objects for their Z2 conjugates).
Moreover, composition of generators in different gauge sectors is not allowed, as that would
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correspond to invalid paths.
At L = 2, we have G(L=2)0 = {ZiZi,XiZi+1 ±ZiXi,XiXi+1}. The arrows in G(2)1 are now

generators, whose action has been properly extended to two sites using the coproduct
(3.24).

For the source and target maps we have

S(∆
○
(σ
(i)
+ )) = {ZiZi,XiZi+1 ±ZiXi} , (B.13)

S(∆
○
(σ
(i)
− )) = {XiZi+1 ±ZiXi,XiXi+1} , (B.14)

T (∆
○
(σ
(i)
+ )) = {XiZi+1 +ZiXi,XiXi+1} , (B.15)

T (∆
○
(σ
(i)
− )) = {ZiZi,XiZi+1 +ZiXi} , (B.16)

where the antisymmetric combination XiZi+1 −ZiXi is a singlet under the action of the
arrows. Note that the target can also include the zero element, which we do not explicitly
write in (B.14) and (B.15), but is depicted in Fig. B.1. The unit and inverse maps are
the same as for L = 1, extended to L = 2 sites. Furthermore, the composition rule is also
captured by the su(2) algebra relations. Showing this is the purpose of Appendix C.

Z1Z10 X12Z2 +Z1X12 X12X21 0

0 X12Z2 −Z1X12 0

∆
○
(σ
(1)
+ ) ∆

○
(σ
(1)
+ ) ∆

○
(σ
(1)
+ )∆

○
(σ
(1)
− )

∆
○
(σ
(1)
− )∆

○
(σ
(1)
− )

∆
○
(σ
(1)
− ) ∆

○
(σ
(1)
+ )

Figure B.1: The algebroid structure at two sites.

We wish to remark that the morphisms of the path groupoid 1-category are the
objects of the R-symmetry groupoid, viewed as a category. The vertical and horizontal
compositions seem to have the structure of a 2-category. Confirming this is the subject of
current investigation.

B.3 Compatibility of the path groupoid and R-symmetry
algebroid

Let us now check that the module (path groupoid) product m is compatible with the
R-symmetry algebroid coproduct ∆(Ra

b). We define m as

m ∶ Vij ⊗Vkl →

⎧⎪⎪
⎨
⎪⎪⎩

Vil if j = k
0 if j ≠ k

(B.17)
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or, more explicitly,

m([φ1
ij ⊗ φ

2
kl]) =

⎧⎪⎪
⎨
⎪⎪⎩

φijφjl if j = k
0 if j ≠ k

. (B.18)

Acting on a product of fields (which by definition have compatible gauge indices) with a
broken generator Ra

b, we have the definition

Ra
b▷ φ

1
ijφ

2
jk =m(∆(Ra

b)▷ [φ
1
ij ⊗ φ

2
jk]) =m((1⊗R

a
b +R

a
b ⊗ γ)▷ [φ

1
ij ⊗ φ

2
jk])

=m([φ1
ij ⊗ (R

a
b▷ φ

2)jg(k)] + [(R
a
b▷ φ

1)ig(j) ⊗ γ ▷ φ
2
jk])

=m([φ1
ij ⊗ (R

a
b▷ φ

2)jg(k)] + [(R
a
b▷ φ

1)ig(j) ⊗ φ
2
g(j)g(k)])

= φ1
ij(R

a
b▷ φ

2)jg(k) + (R
a
b▷ φ

1)ig(j)φ
2
g(j)g(k) .

(B.19)

Here g is the Z2 group element which flips each index, i.e. g(1) = 2, g(2) = 1, and we
used that broken generators flip the second index of the field they act on. The algebroid
coproduct guarantees that valid paths on the quiver map to valid paths. This construction
can be straightforwardly extended to encompass more sites. Here, we simply illustrate the
construction using a three-site example. The action R2

3▷(X12X21Z1) = Z1X12Z2+X12Z2Z2

can be depicted as the following operation on the quiver, where, as in Fig. 2.1, the blue
node denotes gauge group 1 and the red node gauge group 2:

R2
3▷

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 3
2

1 + 2,3
1

(B.20)

Here the numbers indicate the order in which the arrows of the path quiver are composed.
We see that, after the action of the broken generator, the source has remained node 1, but
the target has changed from 1 to 2.

B.4 Some notes on fermionic degrees of freedom

Even though the focus of this work is clearly on the investigation of the bosonic degrees of
freedom, first considerations into the fermionic parts of the theory follow straightforwardly.
They are noted down here as to provide a more holistic picture.

From N = 4 SYM, we have that the R-symmetry acting on fermionic fields is given as

Ra
bΨc

α = δ
c
bΨa

α −
1
4δ

a
b Ψc

α , (B.21)

Ra
bΨ̄c

α = −δ
c
bΨ̄a

α −
1
4δ

a
b Ψ̄c

α . (B.22)
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After the Z2 orbifold the following component fields survive

Ψ1
α =
⎛

⎝

λ1
α;1 0
0 λ1

α;2

⎞

⎠
, (B.23)

Ψ2
α =
⎛

⎝

λ2
α;1 0
0 λ2

α;2

⎞

⎠
, (B.24)

Ψ3
α =
⎛

⎝

0 ψ3
α;12

ψ3
α;21 0

⎞

⎠
, (B.25)

Ψ4
α =
⎛

⎝

0 ψ4
α;12

ψ4
α;21 0

⎞

⎠
. (B.26)

This means that we also need a non-trivial coproduct for when Ra
b acts on Ψc

α, where

a ≠ b = c ∈ {3,4} or a ≠ b = c ∈ {1,2} , (B.27)

because this will result in the R-symmetry exchanging component fields with different
colour structures, i.e.

R1
3(ψ

3
α;12) = λ

1
α;1 . (B.28)

Therefore, all component fields to the right of the action of a broken generator will no
longer be properly colour contracted, similar to the bosonic case. This requires the same
structure for the coproduct as in (3.24).

The remaining combinations either are annihilated by the R-symmetry or they map com-
ponent fields with the same colour structure into each other and are therefore symmetries
of the theory.1

1The following is a proposal for the broken supersymmetry generators. In a first step for the orbifold
point and later potentially extending it to general κ along the same lines as ideas presented in the rest
of this work. Similarly to [27], one could define actions for the broken supersymmetry generators, by
taking the commutator of unbroken supersymmetry generators with the cured R-symmetry generators.
Even for “single-site” actions of the generators, special care needs to be taken, when we have to deal with
length-changing actions due to supersymmetry. However, for a following (R-)symmetry generator, we
then need to consider its appropriate extended action using the algebroid coproduct. Furthermore, the
gauge indices of the length-changing contribution have to be compatible with proper gauge contraction of
the remaining fields, which can be guaranteed by a suitable extension of the Z2 element γ.
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Appendix C

Algebroid commutation relations

In this appendix, we show that the commutators of generic SU(4) R-symmetry generators
obey the su(4) commutation relations for any number of sites L, both at the orbifold point
and in the marginally deformed theory. The computation for the theory at the orbifold
point will be presented in detail, after which the differences that emerge when extending
the analysis to the marginally deformed case will be discussed.

C.1 Orbifold point

For concreteness, we will demonstrate that the coproduct ∆(L)
○
(Ra

b) defined in (3.31) obeys
the su(4) commutation relations for the case L = 3. This example is sufficient to illustrate
all the relevant steps, and the extension to generic L then follows straightforwardly. Recall
that (3.31) includes the operator Ωa

b which is equal to 1 for unbroken and γ for broken
generators. Clearly, at a given site,

[Ωa
b,Ωc

d] = 0 . (C.1)

Let us now consider the commutator of two SU(4) R-symmetry generators for L = 3.
Explicit calculation gives

[∆(3)
○
(Ra

b) ,∆(3)○ (Rc
d)] =

= 1⊗ 1⊗ [Ra
b,R

c
d] + 1⊗ [R

a
b,R

c
d]⊗Ωa

bΩc
d + [R

a
b,R

c
d]⊗Ωa

bΩc
d ⊗Ωa

bΩc
d

+ 1⊗Ra
b ⊗ [Ωa

b,R
c

d] +R
a

b ⊗ [Ωa
b,R

c
d]⊗Ωa

bΩc
d +R

a
b ⊗Ωa

b ⊗ [Ωa
b,R

c
d]

+ 1⊗Rc
d ⊗ [R

a
b,Ωc

d] +R
c

d ⊗ [R
a

b,Ωc
d]⊗Ωa

bΩc
d +R

c
d ⊗Ωc

d ⊗ [R
a

b,Ωc
d] , (C.2)

leaving us with the task of determining the two commutators [Ra
b,Ωc

d] and [Ra
b,R

c
d].

If Rc
d is an unbroken generator, Ωc

d = 1, and the commutator [Ra
b,Ωc

d] = 0. On the
other hand, if Rc

d is a broken generator, we have Ωc
d = γ. When the commutator acts on
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a generic scalar field φi
cd,

[Ra
b, γ]φi

cd = (Ra
bγ − γR

a
b)φi

cd =Ra
bφ

cd
i+1 − γ (δ

c
bφi

ad + δd
bφi

ca −
1
2δ

a
b Φi

cd
) , (C.3)

where we applied (A.2) for Ra
b ∈ {R(i i),R(i i+1)}, as required by Fig. 3.3 since we are

acting on φi
cd. The remaining Ra

b will act on φcd
i+1 and therefore, it has to be part of

{R(i+1 i+1),R(i+1 i)}. We therefore find

[Ra
b, γ]φi

cd = (δc
bφ

ad
i+1 + δ

d
bφ

ca
i+1 −

1
2δ

a
bφ

cd
i+1) − (δ

c
bφ

ad
i+1 + δ

d
bφ

ca
i+1 −

1
2δ

a
bφ

cd
i+1) = 0 . (C.4)

This means that the only non-trivial contribution to the commutator of two SU(4)
R-symmetry generators is

[∆(3)
○
(Ra

b) ,∆(3)○ (Rc
d)] = 1⊗ 1⊗ [R

a
b,R

c
d] + 1⊗ [R

a
b,R

c
d]⊗Ωa

bΩc
d

+ [Ra
b,R

c
d]⊗Ωa

bΩc
d ⊗Ωa

bΩc
d . (C.5)

Applying the single-site su(4) commutation relation

[Ra
b,R

c
d] = δ

c
bR

a
d − δ

a
dR

c
b , (C.6)

we find an interesting behaviour for the interplay of broken and unbroken generators

[(unbroken), (unbroken)] = (unbroken) ,

[(broken), (unbroken)] = (broken) ,

[(broken), (broken)] = (unbroken) ,

(C.7)

which can be checked by plugging in explicit generators into (C.6). 1 Furthermore, we
have that

Ωa
bΩc

d =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if Ra
b and Rc

d are both broken or both unbroken

γ, if Ra
b is broken and Rc

d is unbroken, and vice versa
. (C.8)

Taking all the preceding elements together, we find that for L = 3 the R-symmetry
generators respect the su(4) commutation relation,

[∆(3)
○
(Ra

b) ,∆(3)○ (Rc
d)] = δ

c
b∆(3)○ (Ra

d) − δ
a
d∆(3)

○
(Rc

b) . (C.9)

As previously stated, the above L = 3 computation is merely indicative and can be
1Of course, to be precise one needs to be cautious not to combine generators of type {R(i i), R(i i+1)}

with {R(i+1 i+1), R(i+1 i)} in the commutator when acting on fields, as this would be an invalid “path" in
the algebroid structure depicted in Fig. 3.3.
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straightforwardly extended to any L.

C.2 Marginally deformed case

The twists used in Chapter to define twisted coproducts are of two types: In some sectors
we use matrix-type twists, such as (5.56) for the XY sector, while in other sectors we use
dynamical twists, such as (5.48) for the XZ sector. In both cases the twisted coproduct is
defined as

∆(L)κ (Ra
b) = F

(L)∆(L)
○
(Ra

b) (F
(L))−1 , (C.10)

and the previous argument also holds if we twist using the full (block-diagonal) twist,
since then the commutator of two generators is reduced to the orbifold-point case:

[∆(L)κ (Ra
b) ,∆

(L)
κ (Rc

d)] = F
(L) [∆(L)

○
(Ra

b) ,∆(L)○
(Rc

d)] (F
(L))−1 . (C.11)

Similarly, the dynamical coproducts can be verified directly, as they differ from those at
the orbifold point merely by the replacement

Ωa
b →Ka

b =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if Ra
b is unbroken

γκ−s, if Ra
b is broken

. (C.12)

Meanwhile, at a given site we still have that

[Ka
b,K

c
d] = 0 , (C.13)

and the argument presented in the preceding section remains valid. Furthermore, since
γ2 = 1 and sγ = −γs, we have that

Ka
bK

c
d =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if both generators are broken or both unbroken

γκ−s, if one generator is broken and the other is unbroken
. (C.14)

Therefore, the statement (C.7) still holds in the marginally deformed case.
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Appendix D

Opening up procedure

As explained in Chapter , the broken R-symmetry generators do not respect the gauge
theory trace, since they flip all the gauge indices to the right of the site where they act.
So we cannot act on closed states with broken generators. To bypass this issue, we first
work with open states, where a single action of the broken generators is well-defined. Our
prescription for acting on a closed state will be to cut open the trace and average over all
possible cutting points, in a cyclic manner:

tri (φ1φ2 . . . φL)↦
1
L
∑

τ∈ZL

φτ(1)φτ(2) . . . φτ(L) , (D.1)

where each term in the summand is a cyclic permutation of the fields in the trace and
can be viewed as an open state. Given that the first and last gauge indices of each
monomial are no longer required to be equal, it is possible to define the action of the
broken generators consistently.

The necessity for opening up and cyclic symmetrisation of traces has also arisen in
other cases where quantum groups have been applied to gauge theory, in particular in
the study of marginally deformed gauge theories, see e.g. [23–25,27,66], as well as in the
demonstration of the Yangian symmetry of the planar N = 4 SYM at the level of the
Lagrangian [28]. It arises because relaxing the co-commutativity property of the coproduct
is not immediately compatible with the cyclicity of the trace.1 This is still true in our
case, but is made more acute by the need to work with non-closeable states.

Since physical states in our theory are traces in the colour indices, the opening-up
prescription means that we will be working with unphysical states. However, acting twice
with the broken generators on a closeable state results in a closeable state. Therefore, we
will consider the single action of a broken generator to be merely an intermediate step.
After acting twice, we can close the state again by inverting the aforementioned procedure,
thus allowing for a comparison of physical states with physical states.

As explained in Section 7.1, when opening up the scalar potential (2.11), apart from

1At the level of string theory, we expect it to originate in the symmetrised trace prescription [67] for
the DBI action describing a stack of D-branes which reduces to Yang-Mills theory in the low energy limit.
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the cyclic order we also need to preserve the bracketing indicating the origin of each
monomial as an F- or D-term. Therefore, the open quartic terms with first gauge group 1
are a sum of unshifted and shifted contributions, V1 = V

(u)
1 +V

(s)
1 and similarly for their Z2

conjugates. For reference, we record these terms below. The unshifted contribution is

V
(u)
1 =

κ

4
(X12Z2Z̄2X̄21 +X12Z̄2Z2X̄21 + X̄12Z2Z̄2X21 + X̄12Z̄2Z2X21

+ Y12Z2Z̄2Ȳ21 + Y12Z̄2Z2Ȳ21 + Ȳ12Z2Z̄2Y21 + Ȳ12Z̄2Z2Y21)

−
1
4
(X12Z̄2X̄21Z1 +Z1X12Z̄2X̄21 +X12Z2X̄21Z̄1 + Z̄1X12Z2X̄21 + X̄12Z̄2X21Z1

+Z1X̄12Z̄2X21 + X̄12Z2X21Z̄1 + Z̄1X̄12Z2X21 + Y12Z̄2Ȳ21Z1 +Z1Y12Z̄2Ȳ21

+ Y12Z2Ȳ21Z̄1 + Z̄1Y12Z2Ȳ21 + Ȳ12Z̄2Y21Z1 +Z1Ȳ12Z̄2Y21 + Ȳ12Z2Y21Z̄1 + Z̄1Ȳ12Z2Y21)

−
1

4κ
(X12X̄21X̄12X21 + X̄12X21X12X̄21 + 2X12Y21X̄12Ȳ21 + 2X̄12Ȳ21X12Y21 −X12X̄21Y12Ȳ21

− Y12Ȳ21X12X̄21 +X12X̄21Ȳ12Y21 − 2X12Y21Ȳ12X̄21 − 2Ȳ12X̄21X12Y21 + Ȳ12Y21X12X̄21

−Z1X12X̄21Z̄1 − Z̄1X12X̄21Z1 −X12X̄21X12X̄21 + X̄12X21Y12Ȳ21 − 2X̄12Ȳ21Y12X21

− 2Y12X21X̄12Ȳ21 + Y12Ȳ21X̄12X21 − X̄12X21Ȳ12Y21 − Ȳ12Y21X̄12X21 −Z1X̄12X21Z̄1

− Z̄1X̄12X21Z1 − X̄12X21X̄12X21 + 2Y12X21Ȳ12X̄21 + 2Ȳ12X̄21Y12X21 + Y12Ȳ21Ȳ12Y21

+ Ȳ12Y21Y12Ȳ21 −Z1Y12Ȳ21Z̄1 − Z̄1Y12Ȳ21Z1 − Y12Ȳ21Y12Ȳ21 −Z1Ȳ12Y21Z̄1

− Z̄1Ȳ12Y21Z1 − Ȳ12Y21Ȳ12Y21 −Z1Z̄1Z1Z̄1 +Z1Z̄1Z̄1Z1 + Z̄1Z1Z1Z̄1 − Z̄1Z1Z̄1Z1) ,

(D.2)

where for clarity we do not explicitly show the parentheses, which are all of the form
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(φiφj)(φkφl). As for the shifted terms, they are

V
(s)
1 =

κ

4
( −X12

...X21X̄12
...X̄21 − X̄12

...X̄21X12
...X21 − 2X12

... Ȳ21X̄12
...Y21 − 2X̄12

...Y21X12
... Ȳ21

+X12
... Ȳ21Y12

...X̄21 + Y12
...X̄21X12

... Ȳ21 + 2X12
...X̄21Ȳ12

...Y21 −X12
...Y21Ȳ12

...X̄21

− Ȳ12
...X̄21X12

...Y21 + 2Ȳ12
...Y21X12

...X̄21 +X12
...X̄21X12

...X̄21 + 2X̄12
...X21Y12

... Ȳ21

− X̄12
... Ȳ21Y12

...X21 − Y12
...X21X̄12

... Ȳ21 + 2Y12
... Ȳ21X̄12

...X21 + X̄12
...Y21Ȳ12

...X21

+ Ȳ12
...X21X̄12

...Y21 + X̄12
...X21X̄12

...X21 − 2Y12
...X̄21Ȳ12

...X21 − 2Ȳ12
...X21Y12

...X̄21

− Y12
...Y21Ȳ12

... Ȳ21 − Ȳ12
... Ȳ21Y12

...Y21 + Y12
... Ȳ21Y12

... Ȳ21 + Ȳ12
...Y21Ȳ12

...Y21)

−
1
4
(X12

...Z̄2X̄21
...Z1 +Z1

...X12Z̄2
...X̄21 +X12

...Z2X̄21
...Z̄1 + Z̄1

...X12Z2
...X̄21

+ X̄12
...Z̄2X21

...Z1 +Z1
...X̄12Z̄2

...X21 + X̄12
...Z2X21

...Z̄1 + Z̄1
...X̄12Z2

...X21

+ Y12
...Z̄2Ȳ21

...Z1 +Z1
...Y12Z̄2

... Ȳ21 + Y12
...Z2Ȳ21

...Z̄1 + Z̄1
...Y12Z2

... Ȳ21

+ Ȳ12
...Z̄2Y21

...Z1 +Z1
... Ȳ12Z̄2

...Y21 + Ȳ12
...Z2Y21

...Z̄1 + Z̄1
... Ȳ12Z2

...Y21)

+
1

4κ
(X12

...X̄21Z1
...Z̄1 +X12

...X̄21Z̄1
...Z1 +Z1

...Z̄1X12
...X̄21 + Z̄1

...Z1X12
...X̄21

+ X̄12
...X21Z1

...Z̄1 + X̄12
...X21Z̄1

...Z1 +Z1
...Z̄1X̄12

...X21 + Z̄1
...Z1X̄12

...X21

+ Y12
... Ȳ21Z1

...Z̄1 + Y12
... Ȳ21Z̄1

...Z1 +Z1
...Z̄1Y12

... Ȳ21 + Z̄1
...Z1Y12

... Ȳ21

+ Ȳ12
...Y21Z1

...Z̄1 + Ȳ12
...Y21Z̄1

...Z1 +Z1
...Z̄1Ȳ12

...Y21 + Z̄1
...Z1Ȳ12

...Y21

−Z1
...Z1Z̄1

...Z̄1 +Z1
...Z̄1Z1

...Z̄1 + Z̄1
...Z1Z̄1

...Z1 − Z̄1
...Z̄1Z1

...Z1) .

(D.3)

We note that V(u)1 and V(s)1 contain the same number of terms, but the coefficients
of the same terms (if we were to ignore the parentheses) are in general different. For
example, the terms (X12X̄21)(Ȳ12Y21) and X12

...X̄21Ȳ12
...Y21 have coefficients −1/(4κ) and

κ/2, respectively.
Our goal in Section 7.3 was to re-express, using the coassociator defined there, all the

terms in (D.3) as linear combinations of unshifted terms, which can then be added to (D.2)
in order to be untwisted with a single (F (4))−1. In (7.114) this was shown explicitly for
the last four terms in (D.3), which were added to the last four terms of (D.2) in (7.115).
Repeating this procedure for the rest of (D.3) leads to an expression which is an overall
F (4) twist of the orbifold-point scalar potential, and is thus annihilated by the coproduct
(7.87).
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Appendix E

Quantum planes and twists

This appendix presents some background underlying our definitions of quantum planes
via twists and the twisted action of the algebra generators on these quantum planes. For
introductions to these topics, we refer to [8, 9].

Recall that an algebra A is defined as a vector space together with an associative
product ⋅ ∶ A⊗A→ A, a coalgebra is defined by a coassociative coproduct ∆ ∶ A→ A⊗A,
while a bialgebra contains both operations in a compatible way, i.e. ∆(X ⋅Y ) = ∆(X)⋅∆(Y ).
If the product is the Lie bracket, we then require

[∆(X),∆(Y )] =∆([X,Y ]) , for X,Y ∈ A . (E.1)

The definition of a bialgebra also includes the unit and counit maps, inherited from the
algebra and coalgebra definitions respectively, which also need to be compatible. A Hopf
algebra is a bialgebra with an additional operation, the antipode, which is similar to an
inverse.

Lie algebras (or rather their universal enveloping algebras) are Hopf algebras where
the product is the matrix commutator and the coproducts are simply

∆(1) = 1⊗ 1 and ∆(X) =X ⊗ 1 + 1⊗X (E.2)

which clearly satisfies (E.1). This coproduct is cocommutative, i.e. defining an operation τ
which exchanges the two copies of the algebra, we have τ(∆(X)) =∆(X). More general,
Hopf algebras possess noncommutative coproducts. A notable special case is when the two
coproducts are related by a similarity transformation with a matrix R ∶ A⊗A→ A⊗A,
i.e. τ(∆(X)) = R∆(X)R−1. This is known as a quasitriangular structure, and such
quasitriangular Hopf algebras are typically called quantum groups.

Given a Hopf algebra, one can obtain a new Hopf algebra via the process of twisting. A
Drinfeld twist is an invertible map F ∶ A⊗A→ A⊗A under which the coproduct becomes

∆F (X) = F∆(X)F−1 . (E.3)
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This can be seen to preserve the quasitriangular structure. The unit, counit and antipode
are also twisted accordingly, but we will not need to consider them here. If the twist
satisfies a cocycle condition, (F⊗1)(∆⊗1)(F) = (1⊗F)(1⊗∆)(F), the resulting algebra
is coassociative, i.e. one has mapped a Hopf algebra to a new Hopf algebra. However, one
can also consider more general twists that do not satisfy the cocycle condition. These
lead to quasi-Hopf algebras [45], which are not coassociative. See [68] for a discussion
of the applicability of quasi-Hopf symmetry as an internal symmetry in physics, [69] for
its relevance to the classification of orbifolds of 2d RCFT, and [24] for previous work on
quasi-Hopf symmetry in 4d superconformal theories.

A special case of a quasi-Hopf algebra arises when the twist satisfies a shifted cocycle
condition, where F depends on an additional, dynamical parameter. Twists with this
property lead to the dynamical Yang-Baxter equation [46] which was argued in [18] to be
relevant for the spectral problem of the N = 2 orbifold theories.

In this work, we argue that the R-symmetry at the orbifold point is related to that in
the marginally deformed theories by twists that we can read off from the F- and D-term
relations. To understand how to work with twisted coproducts, we start by reviewing how
algebra generators act on their module (representation space), which we call V. Calling
m ∶ V⊗V→ V the product operation on V, and for v1, v2 ∈ V, the action of a generator on
a product state is defined as

X ▷ (v1v2) =X ▷m(v1 ⊗ v2) =m(∆(X)▷ [v1 ⊗ v2]) . (E.4)

When twisting the coproduct as in (E.3), to obtain a covariant action on the module one
often introduces a twisted module product mF−1(v1⊗ v2) ∶=m(F−1▷ (v1⊗ v2)), since then

X ▷mF−1(v1 ⊗ v2) =X ▷m (F
−1▷ [v1 ⊗ v2]) =m (∆(X)▷F−1▷ [v1 ⊗ v2])

=mF−1 (∆F(X)▷ [v1 ⊗ v2]) .

(E.5)

This twisted module product is often called a star product, and this is the approach
followed e.g. in [23,24] to understand states in the marginally deformed N = 4 SYM theory.
In this work, we will not define star products but work instead with a dual quantum plane
formalism [70], where the coordinates themselves are noncommutative. As in [18,25], the
coordinates of the quantum planes are identified with the scalar fields of our theory. So
our twists will be defined to act on states of the undeformed (orbifold point) theory and
produce states of the marginally deformed theory, schematically:

∣state⟩F = F ▷ ∣state⟩
○
. (E.6)

Here we are abusing notation, as twists can only act on V⊗V, while a state lives in a single
copy of V. Writing an orbifold-point quadratic state as ∣state⟩

○
= cijφiφj = cijm(φi ⊗ φj),
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then what we actually mean by (E.6) is

∣state⟩F = cijm(F ▷ [φ
i ⊗ φj]) = cijm((F

T )
ij
kl(φ

k ⊗ φl)) = (FT )
ij
klcijφ

kφl , (E.7)

where the last expressions use the explicit tensor components of the twist. The transposition
arises because ▷ means matrix multiplication of F = (F ij

kl) with the vectors

φ1 ⊗ φ1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, φ1 ⊗ φ2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, φ2 ⊗ φ1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, φ2 ⊗ φ2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (E.8)

(where for simplicity we take V to be 2-dimensional) which gives (F▷φi⊗φj) = Fkl
ijφ

k⊗φl =

(FT )
ij
klφ

k ⊗ φl. We note that after the twist the fields φiφj are no longer commutative
(even if we disregard the fact that they are N ×N matrices) but satisfy quantum plane
relations.1

Now we need to consider the action of the twisted algebra generators on these twisted
states. Let us start by expanding the standard Lie-algebraic action (E.4) of a generator X
on a product state,

X ▷ ∣state⟩
○
=X ▷ cijφ

iφj = cijm(∆○
(X)▷ [φi ⊗ φj]) = cijm(Xφ

i ⊗ φj + φi ⊗Xφj)

= cij(((X
T )ikφ

k)φj + φi((XT )
j
kφ

k)) = c̃klφ
kφl ,

(E.9)

where c̃kl = cij((XT )ikδ
j
l + δ

k
i (X

T )
j
l denote the coefficients of the new state produced by

the action of X. Here the transpositions arise for a similar reason as above, i.e. that to

express for instance σ−
⎛

⎝

1
0
⎞

⎠
=
⎛

⎝

0
1
⎞

⎠
in the basis φ1 =

⎛

⎝

1
0
⎞

⎠
, φ2 =

⎛

⎝

0
1
⎞

⎠
one needs to

write σ−φ1 = (σT
− )

1
kφ

k. Note that in the above, the module product m is the path groupoid
product (B.17), which is nonzero only for products of fields allowed by the gauge structure,
and correspondingly the coproduct should contain additional γ operators, as shown in
(B.19). However, to avoid overburdening the notation, we are not explicitly indicating the
groupoid structure.

1The string-theory picture is that of the coordinates of the transverse space to the stack(s) of D-branes
defining the gauge theory becoming non-commutative (in the sense of the open-string metric [71]) as one
deforms away from the orbifold point, and the scalar fields inherit this non-commutativity.
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We can now define the twisted action of X on the corresponding twisted state as

X ▷
F
∣state⟩F = cijm(∆F(X)▷F ▷ [φi ⊗ φj]) = cijm(F ▷∆0(X)▷ [φ

i ⊗ φj])

= cijm(F ▷ [(X
T )imφ

m ⊗ φj + φi ⊗ (XT )jmφ
m])

= (FT )
mj
kl cij((X

T )imφ
k)φl + (FT )imkl cijφ

k((XT )jmφ
l))

= (FT )mn
kl c̃mnφ

kφl = F ▷X ▷ ∣state⟩
○
.

(E.10)

What this formula tells us is that the action of first twisting the state and then acting
with the twisted action of X is equivalent to first acting with the undeformed X on the
untwisted state and then twisting. This is the dual statement to that in (E.5), and shows
that, under twisting, all the multiplets of the undeformed theory map to multiplets of the
deformed theory.

To help clarify the above formulas, let us consider the example of the XZ sector, where
the two-site twist (5.48) in matrix form is

F =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 κ−1 0
0 0 0 κ−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

in the basis

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X12X21

X12Z2

Z1X12

Z1Z1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (E.11)

Acting on the highest weight state X12X21 = c11φ1φ1 (with c11 = 1) with the lowering
operator σ−, (E.10) evaluates to

σ−▷F (X12X21) = c11(F
T )21

2l((σ
T
− )

1
2φ

2)φl + c11(F
T )12

k2φ
k((σT

− )
1
2φ

2) , (E.12)

which correctly produces the state κ−1Z1X12 +X12Z2 that we would have obtained by
acting on X12X21 with the undeformed coproduct of σ− and then twisting.

The transposition of F when working with indices is not very consequential for us, as
all our twists are symmetric, F ij

kl = F
kl
ij . However, it becomes important when extending to

more sites, as in Chapter where e.g. the matrix (F ⊗1)(∆⊗1)(F) appears in transposed
form when acting on states.

Having explained how our generators act on states by use of the twisted coproduct,
when acting with broken generators in the main text we will not use the more precise
notation above, but just show the twisted coproducts acting on states.
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Appendix F

The coassociator for the scalar
potential

As discussed in Section 7.2, in order to rewrite the shifted states in the scalar potential
to unshifted ones, we need to use the coassociator Φ = F (4)(F (4)shifted)

−1. In this Appendix
we will write down the coassociator explicitly in matrix form, by acting on all the shifted
monomials, which gives linear combinations of unshifted monomials. An example of
such a computation was illustrated in (7.112). The matrices we write down contain the
components of ΦT , which are relevant for unshifting each shifted monomial, as in (7.109).

Let us note that since all our twists satisfy F(κ)−1 = F(κ−1), we have that

Φ−1(κ) = F
(4)
shifted(κ)(F

(4)(κ))−1 = (F
(4)
shifted(κ

−1))−1F (4)(κ−1) = ΦT (κ−1) (F.1)

i.e. combining a Z2 transformation with transposition gives the inverse of Φ. This property
can be shown to hold for all the matrices below.

Since our twists also preserve the number of fields of each type, the coassociator
factorises into blocks with fixed numbers of Z and Z̄ fields, so we will present the
components in each block separately. We will also focus on states with first index in gauge
group 1, those with first index in gauge group 2 follow by Z2 conjugation. Finally, in this
appendix we do not indicate the κ subscript on the states, as no orbifold-point states
appear.
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F.1 The ZZZ̄Z̄-sector

For the pure ZZZ̄Z̄-sector, the coassociator allowing us to express states of the form
∣A ...BC ...D⟩ in terms of linear combinations of ∣(AB)(CD)⟩ states,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣Z1
...Z1Z̄1

...Z̄1⟩

∣Z1
...Z̄1Z1

...Z̄1⟩

∣Z1
...Z̄1Z̄1

...Z1⟩

∣Z̄1
...Z1Z1

...Z̄1⟩

∣Z̄1
...Z1Z̄1

...Z1⟩

∣Z̄1
...Z̄1Z1

...Z1⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [ΦT
ZZZ̄Z̄

]6×6

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣(Z1Z1)(Z̄1Z̄1)⟩

∣(Z1Z̄1)(Z1Z̄1)⟩

∣(Z1Z̄1)(Z̄1Z1)⟩

∣(Z̄1Z1)(Z1Z̄1)⟩

∣(Z̄1Z1)(Z̄1Z1)⟩

∣(Z̄1Z̄1)(Z1Z1)⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (F.2)

takes the explicit matrix form

ΦT
ZZZ̄Z̄

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
√

κ+1)2

4κ2 −κ2−1
8κ −

(κ−1)2
8κ −

(κ−1)2
8κ −κ2−1

8κ

(
√

κ−1)2

4κ2

−κ−1
4κ2

κ2+6κ+1
8κ

κ2−1
8κ

κ2−1
8κ

(κ−1)2
8κ −κ−1

4κ2

0 1
4(κ − 1)κ 1

4 (
√
κ + 1)2 κ 1

4 (
√
κ − 1)2 κ 1

4(κ − 1)κ 0
0 1

4(κ − 1)κ 1
4 (
√
κ − 1)2 κ 1

4 (
√
κ + 1)2 κ 1

4(κ − 1)κ 0
−κ−1

4κ2
(κ−1)2

8κ
κ2−1

8κ
κ2−1

8κ
κ2+6κ+1

8κ −κ−1
4κ2

(
√

κ−1)2

4κ2 −κ2−1
8κ −

(κ−1)2
8κ −

(κ−1)2
8κ −κ2−1

8κ

(
√

κ+1)2

4κ2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(F.3)
It has a determinant of 1 and, as mentioned, its inverse corresponds to its Z2-conjugate
transposed. We note that not all the six shifted monomials appear in the scalar potential,
but we need to consider all of them in order for ΦT to be a square matrix. It is useful to
show the action of ΦZZZ̄Z̄ on the actual linear combination appearing in (D.3). It is

(1,−1,0,0,−1,1)
ΦZZZ̄Z̄
ÐÐÐÐ→ (

1
κ
,
1
2(−κ − 1), 1 − κ

2 ,
1 − κ

2 ,
1
2(−κ − 1), 1

κ
) , (F.4)

which is the same as (7.114). The coassociator in this sector admits an even simpler form if
we perform a basis transformation. Choosing the following basis for shifted and unshifted
states:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣Z1
...Z1Z̄1

...Z̄1⟩ − ∣Z̄1
...Z̄1Z1

...Z1⟩

∣Z1
...Z1Z̄1

...Z̄1⟩ + ∣Z̄1
...Z̄1Z1

...Z1⟩

∣Z1
...Z̄1Z1

...Z̄1⟩ − ∣Z̄1
...Z1Z̄1

...Z1⟩

∣Z1
...Z̄1Z1

...Z̄1⟩ + ∣Z̄1
...Z1Z̄1

...Z1⟩

∣Z1
...Z̄1Z̄1

...Z1⟩ − ∣Z̄1
...Z1Z1

...Z̄1⟩

∣Z1
...Z̄1Z̄1

...Z1⟩ + ∣Z̄1
...Z1Z1

...Z̄1⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣(Z1Z1)(Z̄1Z̄1)⟩ − ∣(Z̄1Z̄1)(Z1Z1)⟩

∣(Z1Z1)(Z̄1Z̄1)⟩ + ∣(Z̄1Z̄1)(Z1Z1)⟩

∣(Z1Z̄1)(Z1Z̄1)⟩ − ∣(Z̄1Z1)(Z̄1Z1)⟩

∣(Z1Z̄1)(Z1Z̄1)⟩ + ∣(Z̄1Z1)(Z̄1Z1)⟩

∣(Z1Z̄1)(Z̄1Z1)⟩ − ∣(Z̄1Z1)(Z1Z̄1)⟩

∣(Z1Z̄1)(Z̄1Z1)⟩ + ∣(Z̄1Z1)(Z1Z̄1)⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (F.5)
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we find that ΦZZZ̄Z̄ takes the simplified form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
κ3/2 0 0 0 0 0
0 κ+1

2κ2 0 −κ2−1
4κ 0 −

(κ−1)2
4κ

0 0 1 0 0 0
0 −κ−1

2κ2 0 (κ+1)2
4κ 0 κ2−1

4κ

0 0 0 0 κ3/2 0
0 0 0 1

2(κ − 1)κ 0 1
2κ(κ + 1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (F.6)

F.2 The XZX̄Z̄-sector

For the XZX̄Z̄-sector the coassociator factorises into three blocks of dimensions 8×8, 16×16
and 8× 8 with determinants {κ5, 1, κ5}, respectively. For the first 8× 8 block, choosing the
bases

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣X12
...X̄21Z1

...Z̄1⟩

∣X12
...X̄21Z̄1

...Z1⟩

∣X̄12
...X21Z1

...Z̄1⟩

∣X̄12
...X21Z̄1

...Z1⟩

∣Y12
...Ȳ21Z1

...Z̄1⟩

∣Y12
...Ȳ21Z̄1

...Z1⟩

∣Ȳ12
...Y21Z̄1

...Z1⟩

∣Ȳ12
...Y21Z1

...Z̄1⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣(X12X̄21)(Z1Z̄1)⟩

∣(X12X̄21)(Z̄1Z1)⟩

∣(X̄12X21)(Z1Z̄1)⟩

∣(X̄12X21)(Z̄1Z1)⟩

∣(Y12Ȳ21)(Z1Z̄1)⟩

∣(Y12Ȳ21)(Z̄1Z1)⟩

∣(Ȳ12Y21)(Z̄1Z1)⟩

∣(Ȳ12Y21)(Z1Z̄1)⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (F.7)

we calculate ΦT
XX̄ZZ̄

to be

1
8

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3κ + 4
√
κ + 1 3κ − 2

√
κ − 1 κ − 1 (

√
κ − 1)2 1 − κ − (

√
κ − 1)2 (

√
κ − 1)2 κ − 1

3κ − 2
√
κ − 1 3κ + 4

√
κ + 1 (

√
κ − 1)2 κ − 1 − (

√
κ − 1)2 1 − κ κ − 1 (

√
κ − 1)2

κ − 1 (
√
κ − 1)2 3κ + 4

√
κ + 1 3κ − 2

√
κ − 1 κ − 1 (

√
κ − 1)2 − (

√
κ − 1)2 1 − κ

(
√
κ − 1)2 κ − 1 3κ − 2

√
κ − 1 3κ + 4

√
κ + 1 (

√
κ − 1)2 κ − 1 1 − κ − (

√
κ − 1)2

1 − κ − (
√
κ − 1)2 κ − 1 (

√
κ − 1)2 3κ + 4

√
κ + 1 3κ − 2

√
κ − 1 (

√
κ − 1)2 κ − 1

− (
√
κ − 1)2 1 − κ (

√
κ − 1)2 κ − 1 3κ − 2

√
κ − 1 3κ + 4

√
κ + 1 κ − 1 (

√
κ − 1)2

(
√
κ − 1)2 κ − 1 − (

√
κ − 1)2 1 − κ (

√
κ − 1)2 κ − 1 3κ + 4

√
κ + 1 3κ − 2

√
κ − 1

κ − 1 (
√
κ − 1)2 1 − κ − (

√
κ − 1)2 κ − 1 (

√
κ − 1)2 3κ − 2

√
κ − 1 3κ + 4

√
κ + 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (F.8)

As above, it is more insightful to consider the action of ΦXX̄ZZ̄ on the actual shifted
linear combination appearing in (D.3). We find

1
κ
(1,1,1,1,1,1,1,1)

ΦXX̄ZZ̄
ÐÐÐÐ→ (1,1,1,1,1,1,1,1) , (F.9)

i.e. the coassociator simply strips away an overall κ-dependence.
As for the ZZZ̄Z̄-sector, also for ΦXX̄ZZ̄ we can perform a change of basis for shifted

103
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states:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−∣X12
...X̄21Z1

...Z̄1⟩ + ∣X12
...X̄21Z̄1

...Z1⟩ + ∣X̄12
...X21Z1

...Z̄1⟩ − ∣X̄12
...X21Z̄1

...Z1⟩ − ∣Y12
...Ȳ21Z1

...Z̄1⟩ + ∣Y12
...Ȳ21Z̄1

...Z1⟩ + ∣Ȳ12
...Y21Z1

...Z̄1⟩ − ∣Ȳ12
...Y21Z̄1

...Z1⟩

∣X12
...X̄21Z1

...Z̄1⟩ − 2∣X12
...X̄21Z̄1

...Z1⟩ + ∣X̄12
...X21Z1

...Z̄1⟩ − ∣Y12
...Ȳ21Z1

...Z̄1⟩ + ∣Ȳ12
...Y21Z1

...Z̄1⟩

−∣X12
...X̄21Z̄1

...Z1⟩ + ∣X̄12
...X21Z1

...Z̄1⟩ − ∣Y12
...Ȳ21Z1

...Z̄1⟩ + ∣Ȳ12
...Y21Z̄1

...Z1⟩

∣X12
...X̄21Z1

...Z̄1⟩ − ∣X12
...X̄21Z̄1

...Z1⟩ − ∣Y12
...Ȳ21Z1

...Z̄1⟩ + ∣Y12
...Ȳ21Z̄1

...Z1⟩

−∣X12
...X̄21Z1

...Z̄1⟩ + ∣X12
...X̄21Z̄1

...Z1⟩ − ∣X̄12
...X21Z1

...Z̄1⟩ + ∣X̄12
...X21Z̄1

...Z1⟩

∣X12
...X̄21Z1

...Z̄1⟩ + ∣X12
...X̄21Z̄1

...Z1⟩ + ∣Ȳ12
...Y21Z1

...Z̄1⟩ + ∣Ȳ12
...Y21Z̄1

...Z1⟩

−∣X12
...X̄21Z1

...Z̄1⟩ − ∣X12
...X̄21Z̄1

...Z1⟩ + ∣Y12
...Ȳ21Z1

...Z̄1⟩ + ∣Y12
...Ȳ21Z̄1

...Z1⟩

∣X12
...X̄21Z1

...Z̄1⟩ + ∣X12
...X̄21Z̄1

...Z1⟩ + ∣X̄12
...X21Z1

...Z̄1⟩ + ∣X̄12
...X21Z̄1

...Z1⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (F.10)

and similarly for the unshifted ones:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−∣(X12X̄21)(Z1Z̄1)⟩ + ∣(X12X̄21)(Z̄1Z1)⟩ + ∣(X̄12X21)(Z1Z̄1)⟩ − ∣(X̄12X21)(Z̄1Z1)⟩ − ∣(Y12Ȳ21)(Z1Z̄1)⟩ + ∣(Y12Ȳ21)(Z̄1Z1)⟩ + ∣(Ȳ12Y21)(Z1Z̄1)⟩ − ∣(Ȳ12Y21)(Z̄1Z1)⟩

∣(X12X̄21)(Z1Z̄1)⟩ − 2∣(X12X̄21)(Z̄1Z1)⟩ + ∣(X̄12X21)(Z1Z̄1)⟩ − ∣(Y12Ȳ21)(Z1Z̄1)⟩ + ∣(Ȳ12Y21)(Z1Z̄1)⟩

−∣(X12X̄21)(Z̄1Z1)⟩ + ∣(X̄12X21)(Z1Z̄1)⟩ − ∣(Y12Ȳ21)(Z1Z̄1)⟩ + ∣(Ȳ12Y21)(Z̄1Z1)⟩

∣(X12X̄21)(Z1Z̄1)⟩ − ∣(X12X̄21)(Z̄1Z1)⟩ − ∣(Y12Ȳ21)(Z1Z̄1)⟩ + ∣(Y12Ȳ21)(Z̄1Z1)⟩

−∣(X12X̄21)(Z1Z̄1)⟩ + ∣(X12X̄21)(Z̄1Z1)⟩ − ∣(X̄12X21)(Z1Z̄1)⟩ + ∣(X̄12X21)(Z̄1Z1)⟩

∣(X12X̄21)(Z1Z̄1)⟩ + ∣(X12X̄21)(Z̄1Z1)⟩ + ∣(Ȳ12Y21)(Z1Z̄1)⟩ + ∣(Ȳ12Y21)(Z̄1Z1)⟩

−∣(X12X̄21)(Z1Z̄1)⟩ − ∣(X12X̄21)(Z̄1Z1)⟩ + ∣(Y12Ȳ21)(Z1Z̄1)⟩ + ∣(Y12Ȳ21)(Z̄1Z1)⟩

∣(X12X̄21)(Z1Z̄1)⟩ + ∣(X12X̄21)(Z̄1Z1)⟩ + ∣(X̄12X21)(Z1Z̄1)⟩ + ∣(X̄12X21)(Z̄1Z1)⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(F.11)

In this basis, ΦXX̄ZZ̄ is now diagonal:1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0
√
κ 0 0 0 0 0 0

0 0
√
κ 0 0 0 0 0

0 0 0
√
κ 0 0 0 0

0 0 0 0
√
κ 0 0 0

0 0 0 0 0 κ 0 0
0 0 0 0 0 0 κ 0
0 0 0 0 0 0 0 κ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (F.12)

Adding the actions on the last three basis elements (which give the actual combination
appearing in (D.3)) explains the simple form of (F.9).

1The top component of the shifted bracketing basis is a collection of terms like F × F̄ , whereas the
corresponding term of the unshifted basis can be thought of as G0

1 ⋅E1. This indicates mixing of the F-
and D-term contributions due to the coassociator when changing the bracketing.
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For the 16 × 16 sector, the coassociator is simply the identity matrix:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣X12
...Z2X̄21

...Z̄1⟩

∣X12
...Z̄2X̄21

...Z1⟩

∣X̄12
...Z2X21

...Z̄1⟩

∣X̄12
...Z̄2X21

...Z1⟩

∣Y12
...Z2Ȳ21

...Z̄1⟩

∣Y12
...Z̄2Ȳ21

...Z1⟩

∣Ȳ12
...Z2Y21

...Z̄1⟩

∣Ȳ12
...Z̄2Y21

...Z1⟩

∣Z1
...X12Z̄2

...X̄21⟩

∣Z1
...X̄12Z̄2

...X21⟩

∣Z1
...Y12Z̄2

...Ȳ21⟩

∣Z1
...Ȳ12Z̄2

...Y21⟩

∣Z̄1
...X12Z2

...X̄21⟩

∣Z̄1
...X̄21Z2

...X21⟩

∣Z̄1
...Y12Z2

...Ȳ21⟩

∣Z̄1
...Ȳ12Z2

...Y21⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 116×16

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣(X12Z2)(X̄21Z̄1)⟩

∣(X12Z̄2)(X̄21Z1)⟩

∣(X̄12Z2)(X21Z̄1)⟩

∣(X̄12Z̄2)(X21Z1)⟩

∣(Y12Z2)(Ȳ21Z̄1)⟩

∣(Y12Z̄2)(Ȳ21Z1)⟩

∣(Ȳ12Z2)(Y21Z̄1)⟩

∣(Ȳ12Z̄2)(Y21Z1)⟩

∣(Z1X12)(Z̄2X̄21)⟩

∣(Z1X̄12)(Z̄2X21)⟩

∣(Z1Y12)(Z̄2Ȳ21)⟩

∣(Z1Ȳ12)(Z̄2Y21)⟩

∣(Z̄1X12)(Z2X̄21)⟩

∣(Z̄1X̄21)(Z2X21)⟩

∣(Z̄1Y12)(Z2Ȳ21)⟩

∣(Z̄1Ȳ12)(Z2Y21)⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(F.13)

So in this sector we can freely change bracketings also way from the orbifold point. These
terms appear with equal coefficients in (D.3) and of course we have

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
ΦXZX̄Z̄
ÐÐÐÐ→ (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) . (F.14)

The final 8 × 8 block appearing in the coassociator for the XZX̄Z̄-sector acts between

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣Z1
...Z̄1X12

...X̄21⟩

∣Z1
...Z̄1X̄12

...X21⟩

∣Z1
...Z̄1Y12

...Ȳ21⟩

∣Z1
...Z̄1Ȳ12

...Y21⟩

∣Z̄1
...Z1X12

...X̄21⟩

∣Z̄1
...Z1X̄12

...X21⟩

∣Z̄1
...Z1Y12

...Ȳ21⟩

∣Z̄1
...Z1Ȳ12

...Y21⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣(Z1Z̄1)(X12X̄21)⟩

∣(Z1Z̄1)(X̄12X21)⟩

∣(Z1Z̄1)(Y12Ȳ21)⟩

∣(Z1Z̄1)(Ȳ12Y21)⟩

∣(Z̄1Z1)(X12X̄21)⟩

∣(Z̄1Z1)(X̄12X21)⟩

∣(Z̄1Z1)(Y12Ȳ21)⟩

∣(Z̄1Z1)(Ȳ12Y21)⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (F.15)
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with ΦT
ZZ̄XX̄

being

1
8

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3κ + 4
√
κ + 1 κ − 1 1 − κ κ − 1 3κ − 2

√
κ − 1 (

√
κ − 1)2 − (

√
κ − 1)2 (

√
κ − 1)2

κ − 1 3κ + 4
√
κ + 1 κ − 1 1 − κ (

√
κ − 1)2 3κ − 2

√
κ − 1 (

√
κ − 1)2 − (

√
κ − 1)2

1 − κ κ − 1 3κ + 4
√
κ + 1 κ − 1 − (

√
κ − 1)2 (

√
κ − 1)2 3κ − 2

√
κ − 1 (

√
κ − 1)2

κ − 1 1 − κ κ − 1 3κ + 4
√
κ + 1 (

√
κ − 1)2 − (

√
κ − 1)2 (

√
κ − 1)2 3κ − 2

√
κ − 1

3κ − 2
√
κ − 1 (

√
κ − 1)2 − (

√
κ − 1)2 (

√
κ − 1)2 3κ + 4

√
κ + 1 κ − 1 1 − κ κ − 1

(
√
κ − 1)2 3κ − 2

√
κ − 1 (

√
κ − 1)2 − (

√
κ − 1)2 κ − 1 3κ + 4

√
κ + 1 κ − 1 1 − κ

− (
√
κ − 1)2 (

√
κ − 1)2 3κ − 2

√
κ − 1 (

√
κ − 1)2 1 − κ κ − 1 3κ + 4

√
κ + 1 κ − 1

(
√
κ − 1)2 − (

√
κ − 1)2 (

√
κ − 1)2 3κ − 2

√
κ − 1 κ − 1 1 − κ κ − 1 3κ + 4

√
κ + 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (F.16)

Despite the complexity of this matrix, we again find that the actual contribution appearing
in the scalar potential (D.3) is mapped as

1
κ
(1,1,1,1,1,1,1,1)

ΦZZ̄XX̄
ÐÐÐÐ→ (1,1,1,1,1,1,1,1) , (F.17)

i.e. the coassociator again just strips away a relative κ-dependence. Also ΦZZ̄XX̄ becomes
diagonal, and equal to (F.12), when changing to the basis

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣Z1
...Z̄1X12

...X̄21⟩ − ∣Z̄1
...Z1X12

...X̄21⟩ − ∣Z1
...Z̄1X̄12

...X21⟩ + ∣Z̄1
...Z1X̄12

...X21⟩ + ∣Z1
...Z̄1Y12

...Ȳ21⟩ − ∣Z̄1
...Z1Y12

...Ȳ21⟩ − ∣Z1
...Z̄1Ȳ12

...Y21⟩ + ∣Z̄1
...Z1Ȳ12

...Y21⟩

−1
2 ∣Z1

...Z̄1X12
...X̄21⟩ +

1
2 ∣Z1

...Z̄1X̄12
...X21⟩ −

1
2 ∣Z1

...Z̄1Y12
...Ȳ21⟩ −

1
2 ∣Z1

...Z̄1Ȳ12
...Y21⟩ + ∣Z̄1

...Z1Ȳ12
...Y21⟩

1
2 ∣Z1

...Z̄1X12
...X̄21⟩ −

1
2 ∣Z1

...Z̄1X̄12
...X21⟩ −

1
2 ∣Z1

...Z̄1Y12
...Ȳ21⟩ + ∣Z̄1

...Z1Y12
...Ȳ21⟩ −

1
2 ∣Z1

...Z̄1Ȳ12
...Y21⟩

−1
2 ∣Z1

...Z̄1X12
...X̄21⟩ −

1
2 ∣Z1

...Z̄1X̄12
...X21⟩ + ∣Z̄1

...Z1X̄12
...X21⟩ −

1
2 ∣Z1

...Z̄1Y12
...Ȳ21⟩ +

1
2 ∣Z1

...Z̄1Ȳ12
...Y21⟩

−1
2 ∣Z1

...Z̄1X12
...X̄21⟩ + ∣Z̄1

...Z1X12
...X̄21⟩ −

1
2 ∣Z1

...Z̄1X̄12
...X21⟩ +

1
2 ∣Z1

...Z̄1Y12
...Ȳ21⟩ −

1
2 ∣Z1

...Z̄1Ȳ12
...Y21⟩

∣Z1
...Z̄1X12

...X̄21⟩ + ∣Z̄1
...Z1X12

...X̄21⟩ + ∣Z1
...Z̄1Ȳ12

...Y21⟩ + ∣Z̄1
...Z1Ȳ12

...Y21⟩

−∣Z1
...Z̄1X12

...X̄21⟩ − ∣Z̄1
...Z1X12

...X̄21⟩ + ∣Z1
...Z̄1Y12

...Ȳ21⟩ + ∣Z̄1
...Z1Y12

...Ȳ21⟩

∣Z1
...Z̄1X12

...X̄21⟩ + ∣Z̄1
...Z1X12

...X̄21⟩ + ∣Z1
...Z̄1X̄12

...X21⟩ + ∣Z̄1
...Z1X̄12

...X21⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(F.18)

and

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣(Z1Z̄1)(X12X̄21)⟩ − ∣(Z̄1Z1)(X12X̄21)⟩ − ∣(Z1Z̄1)(X̄12X21)⟩ + ∣(Z̄1Z1)(X̄12X21)⟩ + ∣(Z1Z̄1)(Y12Ȳ21)⟩ − ∣(Z̄1Z1)(Y12Ȳ21)⟩ − ∣(Z1Z̄1)(Ȳ12Y21)⟩ + ∣(Z̄1Z1)(Ȳ12Y21)⟩

−1
2 ∣(Z1Z̄1)(X12X̄21)⟩ +

1
2 ∣(Z1Z̄1)(X̄12X21)⟩ −

1
2 ∣(Z1Z̄1)(Y12Ȳ21)⟩ −

1
2 ∣(Z1Z̄1)(Ȳ12Y21)⟩ + ∣(Z̄1Z1)(Ȳ12Y21)⟩

1
2 ∣(Z1Z̄1)(X12X̄21)⟩ −

1
2 ∣(Z1Z̄1)(X̄12X21)⟩ −

1
2 ∣(Z1Z̄1)(Y12Ȳ21)⟩ + ∣(Z̄1Z1)(Y12Ȳ21)⟩ −

1
2 ∣(Z1Z̄1)(Ȳ12Y21)⟩

−1
2 ∣(Z1Z̄1)(X12X̄21)⟩ −

1
2 ∣(Z1Z̄1)(X̄12X21)⟩ + ∣(Z̄1Z1)(X̄12X21)⟩ −

1
2 ∣(Z1Z̄1)(Y12Ȳ21)⟩ +

1
2 ∣(Z1Z̄1)(Ȳ12Y21)⟩

−1
2 ∣(Z1Z̄1)(X12X̄21)⟩ + ∣(Z̄1Z1)(X12X̄21)⟩ −

1
2 ∣(Z1Z̄1)(X̄12X21)⟩ +

1
2 ∣(Z1Z̄1)(Y12Ȳ21)⟩ −

1
2 ∣(Z1Z̄1)(Ȳ12Y21)⟩

∣(Z1Z̄1)(X12X̄21)⟩ + ∣(Z̄1Z1)(X12X̄21)⟩ + ∣(Z1Z̄1)(Ȳ12Y21)⟩ + ∣(Z̄1Z1)(Ȳ12Y21)⟩

−∣(Z1Z̄1)(X12X̄21)⟩ − ∣(Z̄1Z1)(X12X̄21)⟩ + ∣(Z1Z̄1)(Y12Ȳ21)⟩ + ∣(Z̄1Z1)(Y12Ȳ21)⟩

∣(Z1Z̄1)(X12X̄21)⟩ + ∣(Z̄1Z1)(X12X̄21)⟩ + ∣(Z1Z̄1)(X̄12X21)⟩ + ∣(Z̄1Z1)(X̄12X21)⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (F.19)

for the shifted and unshifted states, respectively.
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F.3. THE XY X̄Ȳ -SECTOR

F.3 The XY X̄Ȳ -sector
This is a 36-dimensional sector, where the coassociator maps between the following basis
elements

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣X12
...X21X̄12

...X̄21⟩

∣X12
...X̄21X12

...X̄21⟩

∣X12
...X̄21X̄12

...X21⟩

∣X12
...X̄21Y12

... Ȳ21⟩

∣X12
...X̄21Ȳ12

...Y21⟩

∣X12
...Y21X̄12

... Ȳ21⟩

∣X12
...Y21Ȳ12

...X̄21⟩

∣X12
... Ȳ21X̄12

...Y21⟩

∣X12
... Ȳ21Y12

...X̄21⟩

∣X̄12
...X21X12

...X̄21⟩

∣X̄12
...X21X̄12

...X21⟩

∣X̄12
...X21Y12

... Ȳ21⟩

∣X̄12
...X21Ȳ12

...Y21⟩

∣X̄12
...X̄21X12

...X21⟩

∣X̄12
...Y21X12

... Ȳ21⟩

∣X̄12
...Y21Ȳ12

...X21⟩

∣X̄12
... Ȳ21X12

...Y21⟩

∣X̄12
... Ȳ21Y12

...X21⟩

∣Y12
...X21X̄12

... Ȳ21⟩

∣Y12
...X21Ȳ12

...X̄21⟩

∣Y12
...X̄21X12

... Ȳ21⟩

∣Y12
...X̄21Ȳ12

...X21⟩

∣Y12
...Y21Ȳ12

... Ȳ21⟩

∣Y12
... Ȳ21X12

...X̄21⟩

∣Y12
... Ȳ21X̄12

...X21⟩

∣Y12
... Ȳ21Y12

... Ȳ21⟩

∣Y12
... Ȳ21Ȳ12

...Y21⟩

∣Ȳ12
...X21X̄12

...Y21⟩

∣Ȳ12
...X21Y12

...X̄21⟩

∣Ȳ12
...X̄21X12

...Y21⟩

∣Ȳ12
...X̄21Y12

...X21⟩

∣Ȳ12
...Y21X12

...X̄21⟩

∣Ȳ12
...Y21X̄12

...X21⟩

∣Ȳ12
...Y21Y12

... Ȳ21⟩

∣Ȳ12
...Y21Ȳ12

...Y21⟩

∣Ȳ12
... Ȳ21Y12

...Y21⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ΦXY X̄Ȳ
ÐÐÐÐ→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣(X12X21)(X̄12X̄21)⟩

∣(X12X̄21)(X12X̄21)⟩

∣(X12X̄21)(X̄12X21)⟩

∣(X12X̄21)(Y12Ȳ21)⟩

∣(X12X̄21)(Ȳ12Y21)⟩

∣(X12Y21)(X̄12Ȳ21)⟩

∣(X12Y21)(Ȳ12X̄21)⟩

∣(X12Ȳ21)(X̄12Y21)⟩

∣(X12Ȳ21)(Y12X̄21)⟩

∣(X̄12X21)(X12X̄21)⟩

∣(X̄12X21)(X̄12X21)⟩

∣(X̄12X21)(Y12Ȳ21)⟩

∣(X̄12X21)(Ȳ12Y21)⟩

∣(X̄12X̄21)(X12X21)⟩

∣(X̄12Y21)(X12Ȳ21)⟩

∣(X̄12Y21)(Ȳ12X21)⟩

∣(X̄12Ȳ21)(X12Y21)⟩

∣(X̄12Ȳ21)(Y12X21)⟩

∣(Y12X21)(X̄12Ȳ21)⟩

∣(Y12X21)(Ȳ12X̄21)⟩

∣(Y12X̄21)(X12Ȳ21)⟩

∣(Y12X̄21)(Ȳ12X21)⟩

∣(Y12Y21)(Ȳ12Ȳ21)⟩

∣(Y12Ȳ21)(X12X̄21)⟩

∣(Y12Ȳ21)(X̄12X21)⟩

∣(Y12Ȳ21)(Y12Ȳ21)⟩

∣(Y12Ȳ21)(Ȳ12Y21)⟩

∣(Ȳ12X21)(X̄12Y21)⟩

∣(Ȳ12X21)(Y12X̄21)⟩

∣(Ȳ12X̄21)(X12Y21)⟩

∣(Ȳ12X̄21)(Y12X21)⟩

∣(Ȳ12Y21)(X12X̄21)⟩

∣(Ȳ12Y21)(X̄12X21)⟩

∣(Ȳ12Y21)(Y12Ȳ21)⟩

∣(Ȳ12Y21)(Ȳ12Y21)⟩

∣(Ȳ12Ȳ21)(Y12Y21)⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (F.20)

As we have not been able to find a simple block-diagonal form for the 36×36-dimensional
matrix ΦT

XY X̄Ȳ
, we will revert to using tensor language to express its elements. Denoting

(just in this section) {Xi = 1, X̄i = 1̄, Yi = 2, Ȳi = 2̄}, we can write (7.109) as

∣φi ...φjφk ...φl⟩ = (ΦT )ijkl
mnrs∣(φ

mφn)(φrφs)⟩ = Φmnrs
ijkl ∣(φ

mφn)(φrφs)⟩ , (F.21)

and will present the components of Φmnrs
ijkl below. We note that the coassociator maps to
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itself under:

• Complex conjugation of the elements, such that Φ̂cc̄dd̄
aābb̄
= Φ̂c̄cd̄d

āab̄b
.

• Exchanging 1↔ 2 and 1̄↔ 2̄ at the same time, e.g. Φ̂11̄22̄
22̄11̄ = Φ̂22̄11̄

11̄22̄ .

In the list below, we will only write out elements up to these relations.
After taking out an overall factor of 1

16κ , the tensor elements are

1
4
(21κ + 24

√

κ +
1
κ
+ 18) = Φ̂11̄11̄

11̄11̄ (F.22)

(
√

κ − 1)4

κ
= Φ̂1̄2̄12

121̄2̄ = Φ̂1̄212̄
12̄1̄2 (F.23)

(
√

κ + 1)4

κ
= Φ̂121̄2̄

121̄2̄ = Φ̂12̄1̄2
12̄1̄2 (F.24)

(3
√

κ + 1)2 = Φ̂1̄111̄
1̄111̄ = Φ̂111̄1̄

111̄1̄ (F.25)

5κ

2
+ 5
√

κ +
1

2κ
+

1
√

κ
+ 7 = Φ̂1̄12̄2

1̄12̄2 = Φ̂1̄122̄
1̄122̄ = Φ̂12̄21̄

12̄21̄ = Φ̂122̄1̄
122̄1̄ (F.26)

(
√

κ − 1)2 (5κ + 4
√

κ + 1)
2κ

= Φ̂22̄11̄
1̄12̄2 = Φ̂2̄211̄

1̄122̄ = Φ̂2̄11̄2
12̄21̄ = Φ̂211̄2̄

122̄1̄ (F.27)

1
4
(−3κ + 8

√

κ +
1
κ
− 6) = Φ̂1̄122̄

122̄1̄ = Φ̂22̄1̄1
122̄1̄ = Φ̂1̄12̄2

12̄21̄ = Φ̂2̄21̄1
12̄21̄ = Φ̂22̄2̄2

111̄1̄ = Φ̂2̄222̄
111̄1̄ (F.28)

−

3κ

2
+

√

κ +
1

2κ
+

1
√

κ
− 1 = −Φ̂1̄111̄

1̄12̄2 = −Φ̂22̄2̄2
1̄12̄2 = Φ̂1̄111̄

1̄122̄ = Φ̂2̄222̄
1̄122̄ = −Φ̂12̄21̄

111̄1̄ = Φ̂122̄1̄
111̄1̄ = Φ̂211̄2̄

111̄1̄ = −Φ̂2̄11̄2
111̄1̄ (F.29)

(
√

κ − 1) (
√

κ + 1)3

κ
= Φ̂1̄2̄12

1̄12̄2 = Φ̂212̄1̄
1̄12̄2 = Φ̂1̄212̄

1̄122̄ = Φ̂2̄121̄
1̄122̄ = Φ̂122̄1̄

121̄2̄ = Φ̂211̄2̄
121̄2̄ = Φ̂12̄21̄

12̄1̄2 = Φ̂2̄11̄2
12̄1̄2 (F.30)

(
√

κ − 1)2 (3κ + 4
√

κ + 1)
2κ

= Φ̂11̄1̄1
121̄2̄ = Φ̂2̄222̄

121̄2̄ = −Φ̂11̄1̄1
12̄1̄2 = −Φ̂22̄2̄2

12̄1̄2 = −Φ̂121̄2̄
111̄1̄ = −Φ̂212̄1̄

111̄1̄ = Φ̂12̄1̄2
111̄1̄ = Φ̂2̄121̄

111̄1̄ (F.31)

5κ

2
+

√

κ −
1

2κ
−

1
√

κ
− 2 = Φ̂11̄22̄

121̄2̄ = Φ̂2̄21̄1
121̄2̄ = Φ̂121̄2̄

122̄1̄ = Φ̂212̄1̄
122̄1̄ = Φ̂11̄2̄2

12̄1̄2 = Φ̂22̄1̄1
12̄1̄2 = Φ̂12̄1̄2

12̄21̄ = Φ̂2̄121̄
12̄21̄ (F.32)

1
4
(5κ − 8

√

κ +
1
κ
+ 2) = Φ̂2̄22̄2

22̄22̄ = Φ̂11̄11̄
22̄22̄ = Φ̂1̄11̄1

22̄22̄ = Φ̂2̄211̄
122̄1̄ = Φ̂11̄2̄2

1221̄ = Φ̂22̄11̄
12̄21̄ = Φ̂11̄22̄

12̄21̄ = Φ̂11̄1̄1
111̄1̄ = Φ̂1̄111̄

111̄1̄ (F.33)

κ +
1
κ
− 2 = Φ̂122̄1̄

1̄12̄2 = Φ̂1̄2̄21
1̄12̄2 = Φ̂211̄2̄

1̄12̄2 = Φ̂2̄1̄12
1̄12̄2 = Φ̂12̄21̄

1̄122̄ = Φ̂1̄22̄1
1̄122̄ = Φ̂21̄12̄

1̄122̄

= Φ̂2̄11̄2
1̄122̄ = Φ̂212̄1̄

121̄2̄ = Φ̂2̄1̄21
121̄2̄ = Φ̂21̄2̄1

12̄1̄2 = Φ̂2̄121̄
12̄1̄2 (F.34)

1
4
(−7κ +

1
κ
+ 6) = −Φ̂22̄2̄2

22̄22̄ = −Φ̂2̄222̄
22̄22̄ = −Φ̂1̄122̄

22̄22̄ = −Φ̂22̄1̄1
22̄22̄ = Φ̂11̄22̄

22̄22̄ = Φ̂22̄11̄
22̄22̄ = −Φ̂2̄22̄2

122̄1̄ = −Φ̂11̄11̄
122̄1̄ = Φ̂22̄22̄

12̄21̄

= Φ̂11̄11̄
12̄21̄ = −Φ̂11̄11̄

111̄1̄ = −Φ̂1̄11̄1
111̄1̄ (F.35)

−3κ + 2
√

κ + 1 = −Φ̂11̄22̄
11̄1̄1 = −Φ̂2̄21̄1

11̄1̄1 = Φ̂11̄2̄2
11̄1̄1 = Φ̂22̄1̄1

11̄1̄1 = −Φ̂11̄11̄
11̄1̄1 = −Φ̂1̄11̄1

11̄1̄1 = Φ̂11̄2̄2
22̄2̄2 = Φ̂22̄1̄1

22̄2̄2 = −Φ̂222̄2̄
22̄22̄

= −Φ̂2̄2̄22
22̄22̄ = Φ̂111̄1̄

122̄1̄ = Φ̂222̄2̄
122̄1̄ = −Φ̂1,11̄1̄

12̄21̄ = −Φ̂2̄2̄22
12̄21̄ (F.36)

(
√

κ − 1)2 (κ + 1)
2κ

= −Φ̂11̄1̄1
1̄12̄2 = −Φ̂2̄2,22̄

1̄12̄2 = −Φ̂1̄22̄1
111̄1̄ = −Φ̂21̄12̄

111̄1̄ = Φ̂11̄22̄
22̄11̄ = Φ̂2̄21̄1

22̄11̄ = Φ̂11̄1̄1
1̄122̄ = Φ̂22̄2̄2

1̄122̄ = Φ̂11̄2̄2
1̄122̄ = Φ̂22̄1̄1

1̄122̄

= Φ̂1̄2̄21
122̄1̄ = Φ̂2̄1̄12

122̄1̄ = Φ̂1̄22̄1
12̄21̄ = Φ̂21̄12̄

12̄21̄ = Φ̂1̄2̄21
111̄1̄ = Φ̂2̄1̄12

111̄1̄ (F.37)

1
2
(−κ − 4

√

κ +
1
κ
+ 4) = Φ̂2̄22̄2

1̄12̄2 = Φ̂1̄11̄1
1̄12̄2 = Φ̂12̄21̄

22̄22̄ = Φ̂21̄12̄
22̄22̄ = −Φ̂1̄122̄

1̄12̄2 = −Φ̂11̄2̄2
1̄12̄2 = −Φ̂1̄12̄2

1̄122̄ = −Φ̂22̄22̄
1̄122̄ = −Φ̂11̄22̄

1̄122̄ = −Φ̂1̄11̄1
1̄122̄

= −Φ̂1̄2̄21
22̄22̄ = −Φ̂211̄2̄

22̄22̄ = −Φ̂12̄21̄
122̄1̄ = −Φ̂1̄22̄1

122̄1̄ = −Φ̂122̄1̄
12̄21̄ = −Φ̂1̄2̄21

12̄21̄ (F.38)

1
2
(−κ + 4

√

κ +
1
κ
− 4) = Φ̂22̄22̄

1̄12̄2 = Φ̂11̄11̄
1̄12̄2 = Φ̂1̄22̄1

22̄22̄ = Φ̂2̄11̄2
22̄22̄ = −Φ̂2̄211̄

1̄12̄2 = −Φ̂22̄1̄1
1̄12̄2 = −Φ̂22̄11̄

1̄122̄ = −Φ̂2̄22̄2
1̄122̄ = −Φ̂2̄21̄1

1̄122̄ = −Φ̂11̄11̄
1̄122̄
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= −Φ̂122̄1̄
22̄22̄ = −Φ̂2̄1̄12

22̄22̄ = −Φ̂21̄12̄
122̄1̄ = −Φ̂2̄11̄2

122̄1̄ = −Φ̂211̄2̄
12̄21̄ = −Φ̂2̄1̄12

12̄21̄ (F.39)

(

√

κ − 1)2 = −Φ̂1̄12̄2
11̄1̄1 = −Φ̂22̄11̄

11̄1̄1 = −Φ̂22̄22̄
11̄1̄1 = −Φ̂2̄22̄2

11̄1̄1 = −Φ̂111̄1̄
22̄22̄ = −Φ̂1̄1̄11

22̄22̄ = −Φ̂1̄1̄11
12̄21̄ = −Φ̂222̄2̄

12̄21̄ = Φ̂1̄111̄
11̄1̄1

= Φ̂22̄2̄2
11̄1̄1 = Φ̂2̄222̄

11̄1̄1 = Φ̂1̄122̄
11̄1̄1 = Φ̂2̄211̄

11̄1̄1 = Φ̂1̄1̄11
122̄1̄ = Φ̂2̄2̄22

122̄1̄ = Φ̂1̄1̄11
111̄1̄ = Φ̂222̄2̄

111̄1̄ = Φ̂2̄2̄22
111̄1̄ (F.40)

(
√

κ − 1)3 (
√

κ + 1)
κ

= −

1
2

Φ̂1̄111̄
121̄2̄ = −

1
2

Φ̂22̄2̄2
121̄2̄ = −

1
2

Φ̂1̄212̄
111̄1̄ = −

1
2

Φ̂21̄2̄1
111̄1̄ = Φ̂121̄2̄

1̄12̄2 = Φ̂2̄1̄21
1̄12̄2 = Φ̂12̄1̄2

1̄122̄ = Φ̂21̄2̄1
1̄122̄ = Φ̂1̄2̄21

121̄2̄

= Φ̂2̄1̄12
121̄2̄ = Φ̂1̄22̄1

12̄1̄2 = Φ̂21̄12̄
12̄1̄2 =

1
2

Φ̂1̄12̄2
121̄2̄ =

1
2

Φ̂22̄11̄
121̄2̄ =

1
2

Φ̂1̄2̄12
122̄1̄ =

1
2

Φ̂2̄1̄21
122̄1̄ =

1
2

Φ̂1̄111̄
12̄1̄2 =

1
2

Φ̂2̄222̄
12̄1̄2

=

1
2

Φ̂1̄122̄
12̄1̄2 =

1
2

Φ̂2̄211̄
12̄1̄2 =

1
2

Φ̂1̄212̄
12̄21̄ =

1
2

Φ̂21̄2̄1
12̄21̄ =

1
2

Φ̂1̄2̄12
111̄1̄ =

1
2

Φ̂2̄1̄21
111̄1̄ (F.41)

(κ − 1)2

2κ
= −Φ̂12̄1̄2

22̄22̄ = −Φ̂1̄212̄
22̄22̄ = −Φ̂21̄2̄1

22̄22̄ = −Φ̂2̄121̄
22̄22̄ = −Φ̂22̄22̄

121̄2̄ = −Φ̂2̄22̄2
121̄2̄ = −Φ̂11̄11̄

121̄2̄ = −Φ̂1̄11̄1
121̄2̄ = Φ̂121̄2̄

22̄22̄

= Φ̂1̄2̄12
22̄22̄ = Φ̂212̄1̄

22̄22̄ = Φ̂2̄1̄21
22̄22̄ = Φ̂1̄122̄

121̄2̄ = Φ̂2̄211̄
121̄2̄ = Φ̂11̄2̄2

121̄2̄ = Φ̂22̄1̄1
121̄2̄ = Φ̂12̄1̄2

122̄1̄ = Φ̂1̄212̄
122̄1̄ = Φ̂21̄2̄1

122̄1̄ = Φ̂2̄121̄
122̄1̄

= Φ̂1̄12̄2
12̄1̄2 = Φ̂22̄11̄

12̄1̄2 = Φ̂22̄22̄
12̄1̄2 = Φ̂2̄22̄2

12̄1̄2 = Φ̂11̄22̄
12̄1̄2 = Φ̂2̄21̄1

12̄1̄2 = Φ̂11̄11̄
12̄1̄2 = Φ̂1̄11̄1

12̄1̄2 = Φ̂121̄2̄
12̄21̄ = Φ̂1̄2̄12

12̄21̄ = Φ̂212̄1̄
12̄21̄

= Φ̂2̄1̄21
12̄21̄ =

1
2

Φ̂1̄12̄2
22̄22̄ =

1
2

Φ̂2̄21̄1
22̄22̄ =

1
2

Φ̂11̄1̄1
122̄1̄ =

1
2

Φ̂1̄111̄
122̄1̄ =

1
2

Φ̂22̄2̄2
122̄1̄ =

1
2

Φ̂2̄222̄
122̄1̄ =

1
2

Φ̂2̄22̄2
12̄21̄ =

1
2

Φ̂1̄11̄1
12̄21̄

=

1
2

Φ̂1̄122̄
111̄1̄ =

1
2

Φ̂2̄211̄
111̄1̄ =

1
2

Φ̂11̄2̄2
111̄1̄ =

1
2

Φ̂22̄1̄1
111̄1̄ = −

1
2

Φ̂11̄1̄1
22̄22̄ = −

1
2

Φ̂1̄111̄
22̄22̄ = −

1
2

Φ̂2̄211̄
22̄22̄ = −

1
2

Φ̂11̄2̄2
22̄22̄

= −

1
2

Φ̂1̄12̄2
122̄1̄ = −

1
2

Φ̂22̄11̄
122̄1̄ = −

1
2

Φ̂22̄22̄
122̄1̄ = −

1
2

Φ̂11̄22̄
122̄1̄ = −

1
2

Φ̂2̄21̄1
122̄1̄ = −

1
2

Φ̂1̄11̄1
122̄1̄ = −

1
2

Φ̂11̄1̄1
21̄12̄ = −

1
2

Φ̂1̄111̄
21̄12̄

= −

1
2

Φ̂22̄2̄2
21̄12̄ = −

1
2

Φ̂2̄222̄
21̄12̄ = −

1
2

Φ̂1̄122̄
21̄12̄ = −

1
2

Φ̂2̄211̄
21̄12̄ = −

1
2

Φ̂11̄2̄2
21̄12̄ = −

1
2

Φ̂22̄1̄1
21̄12̄ = −

1
2

Φ̂1̄12̄2
111̄1̄ = −

1
2

Φ̂22̄11̄
111̄1̄

= −

1
2

Φ̂22̄22̄
111̄1̄ = −

1
2

Φ̂2̄22̄2
111̄1̄ = −

1
2

Φ̂11̄22̄
111̄1̄ = −

1
2

Φ̂2̄21̄1
111̄1̄ (F.42)

As a matrix, ΦXY X̄Ȳ has a determinant of κ−24. Considering the actual contribution to
the scalar potential in this sector in (D.3), the map to unshifted states is:

κ

4
(1,−1, 0, 0,−2, 0, 1, 2,−1, 0,−1,−2, 0, 1, 2,−1, 0, 1, 1, 0,−1, 2, 1, 0,−2,−1, 0,−1, 2, 1, 0,−2, 0, 0,−1, 1)

ΦXY X̄Ȳ
ÐÐÐÐ→

(
1
4

,
1 − 5κ

16κ
,
κ − 1
16κ

,−
κ − 1
16κ

,−
7κ + 1
16κ

,
κ − 1
8κ

,
κ + 1
8κ

,
κ + 3
8κ

,
κ − 3
8κ

,
κ − 1
16κ

,
1 − 5κ

16κ
,−

7κ + 1
16κ

,−
κ − 1
16κ

,
1
4

,

κ + 3
8κ

,
κ − 3
8κ

,
κ − 1
8κ

,
κ + 1
8κ

,
κ + 1
8κ

,
κ − 1
8κ

,
κ − 3
8κ

,
κ + 3
8κ

,
1
4

,−
κ − 1
16κ

,−
7κ + 1
16κ

,
1 − 5κ

16κ
,
κ − 1
16κ

,
κ − 3
8κ

,

κ + 3
8κ

,
κ + 1
8κ

,
κ − 1
8κ

,−
7κ + 1
16κ

,−
κ − 1
16κ

,
κ − 1
16κ

,
1 − 5κ

16κ
,
1
4
)

Of course, this becomes the identity action when κ = 1. We again see that some monomials
do not appear in the actual quartic terms, but it is important to know how the coassociator
acts on them, as they would be expected to appear in other representations beyond the
singlet.

109



APPENDIX F. THE COASSOCIATOR FOR THE SCALAR POTENTIAL

110



Appendix G

The One-Loop Hamiltonian

The one-loop Hamiltonian for spin chains made up of the scalar fields of the N = 2 Z2

orbifold theory was derived in [32], to which we refer for the full details. It is a nearest-
neighbour Hamiltonian, which at the orbifold point κ = 1 essentially reduces to two (equal)
copies of the N = 4 SYM SO(6) Hamiltonian [7]. Here we just record the Hamiltonian
in two subsectors, the holomorphic sector made up of the X,Y,Z fields and the SO(6)
neutral sector.

In the holomorphic SU(3)XY Z sector, in the basis

{Z1Z1,X12Z2, Z1X12, Y12Z2, Z1Y12,X12X21,X12Y21, Y12X21, Y12Y21} (G.1)

the Hamiltonian is

HXY Z
1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0
0 κ −1 0 0 0 0 0 0
0 −1 1

κ 0 0 0 0 0 0
0 0 0 κ −1 0 0 0 0
0 0 0 −1 1

κ 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

κ − 1
κ 0

0 0 0 0 0 0 − 1
κ

1
κ 0

0 0 0 0 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (G.2)

and its κ → 1/κ conjugate when acting on the Z2-conjugate basis. This Hamiltonian is
relevant for the discussion of holomorphic BPS states in Section 8.1.

In the SO(6) neutral sector, in the basis

{X12X̄21, X̄12X21, Y12Ȳ21, Ȳ12Y21, Z1Z̄1, Z̄1Z1} (G.3)
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the Hamiltonian takes the form

Hneutral
1 =

1
2κ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2κ2 + 1 −1 1 2κ2 − 1 1 1
−1 2κ2 + 1 2κ2 − 1 1 1 1
1 2κ2 − 1 2κ2 + 1 −1 1 1

2κ2 − 1 1 −1 2κ2 + 1 1 1
1 1 1 1 3 −1
1 1 1 1 −1 3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (G.4)

However, as discussed in Section 8.2.1, diagonalising this Hamiltonian leads to a negative
eigenvalue, which is an artifact of working with open (non-physical) states. This can be
fixed by adding a modification which vanishes at κ = 1 and does not affect the spectrum
of the closed Hamiltonian. In the monomial basis, the modified Hamiltonian is

Ĥneutral
1 =

1
2κ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 (κ
2 +

1
κ
)κ −κ2 1 1 1 1

−κ2 2 (κ
2 +

1
κ
)κ 1 1 1 1

1 1 2 (κ
2 +

1
κ
)κ −κ2 1 1

1 1 −κ2 2 (κ
2 +

1
κ
)κ 1 1

1 1 1 1 2 (κ
2 +

1
κ
)κ −κ2

1 1 1 1 −κ2 2 (κ
2 +

1
κ
)κ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(G.5)
and κ→ 1/κ when acting on the Z2-conjugate basis. This modified Hamiltonian is what
was used in the analysis of the two-site 20′,15 and singlet representations.
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Appendix H

Some notes towards Zk orbifolds

The aim of this appendix is to provide some explicit notes on the description presented in
this work so far, extended to the marginally deformed Zk orbifold theory.

For this, we generalise the procedure laid out in Chapter .
Given a discrete group Γ = Zk ∈ SU(2)R ⊂ SU(4)R in R-symmetry space, it acts on the

three complex scalars by

Γ ∶ (X,Y,Z)→ (e 2πi
k X,e−

2πi
k Y,Z) . (H.1)

Furthermore, Γ also acts in colour space of the gauge group SU(kN) on every complex
scalar, e.g.:

Γ ∶ X → τ †Xτ , (H.2)

similarly for all complex scalars, where τ is the diagonal matrix

τ = diag(IN×N , e
2πi

k IN×N ,⋯ , e
2πi(k−1)

k IN×N) . (H.3)

In total, the action of the discrete group Γ on the complex scalars becomes

Γ ∶ (X,Y,Z)→ (e 2πi
k τ †Xτ, e−

2πi
k τ †Y τ, τ †Zτ) . (H.4)

For simplicity, when Γ = Zk, the orbifolding procedure results in the following scalar
component fields

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X12

⋱

Xk−1k

Xk1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Y =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y1k

Y21

⋱

Yk k−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z1

Z2

⋱

Zk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(H.5)
where Xi, Yi and Zi denote the surviving N ×N component fields in the overall kN × kN
colour matrices of SU(kN) after imposing the identification (H.4).
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Here, Xi and Yi are scalars in the hypermultiplets and transform in the bifundamental
representations (Ni,Ni+1) and (Ni,Ni−1), respectively. Zi is in the vector multiplet and
transforms in the adjoint representation of each SU(N)i, which in the planar limit coincides
with (Ni,Ni).

A depiction of the field content can be found in Figure H.1.

1

2

3

4

5

...

i

k

Y21

X12

Y32X23

X34 Y43

X45

Y54

Y1k

Xk1

Z1

Z3

Z5

Zi

Z2

Z4

Zk

k nodes

Figure H.1: The circular quiver associated with the Zk orbifold. Arrows correspond to
N = 1 chiral multiplets and nodes to N = 1 vector multiplets.

After orbifolding and marginal deformation, the superpotential becomes

W =
k

∑
n=1

gntrn( (YnXn−1 −XnYn+1)Zn). (H.6)

The discussion at the orbifold point should go through for any Zk-orbifold of N = 4
SYM as long as one takes care of the proper gauge contraction. For broken generators
γ now needs to be “upgraded” to perform steps of {±1,±2} depending on whether one
exchanges the fields {Zi, Z̄i}↔ {Xi i+1, Yi i−1, X̄i i−1, Ȳi i+1} or {Xi i+1, Ȳi i+1}↔ {Yi i−1, X̄i i−1}1,
respectively, since the gauge indices of the fields to the right of the action of the broken
generator will be one or two units apart.

A small caveat: The following results were obtained empirically, prior to a fully
developed understanding of the mathematical structures at play, as shown in Chapter .
Therefore, the content of the next sections should be understood as preliminary results
and potential stepping stones to a rigorous discussion of the Zk-orbifold of N = 4 SYM.

1For better clarity, both gauge indices for the bifundamental fields were explicitly written to emphasize
the difference in “gauge steps”.
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H.1 The XZ-sector for Zk

From eq. (H.6) we can extract k F-terms

FYi
= gi+1XiZi+1 − giZiXi , (H.7)

which lead to quantum plane relations of the form2

ZiXi =
gi+1

gi

XiZi+1 . (H.8)

Therefore, for the XZ-sector3 one can propose the following action4

σ−XZ(Xi) = Zi (H.9)

σ+XZ(Zi) =Xi (H.10)

∆σ±XZ = 1⊗ σ
±
XZ + σ

±
XZ ⊗K

±
XZ (H.11)

K±XZ(ϕi) =
gi±1

gi

ϕi±1 , (H.12)

where ϕi = {Xi, Yi, Zi}.
An easy example is to act with ∆σ±XZ on the quantum plane relation gi+1XiZi+1−giZiXi

and check that it is annihilated in both cases.
Furthermore, we can write down the 2-site Hamiltonians for each sector i = {1, . . . , k}

by using the basis

(B2)i = (XiXi+1,XiZi+1, ZiXi, ZiZi) , (H.13)

and from the F-terms in (H.7) the Hamiltonians become

(H2)i =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 g2

i+1 −gi+1gi 0
0 −gigi+1 g2

i 0
0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (H.14)

One can also generalise the discussion found in Section 3.1 of [18]. From the general
marginally deformed superpotential one can also extract the following relations

(E213)
i = gi = (E321)

i = −(E312)
i = −(E123)

i (H.15)

2We can also define κi ∶=
gi+1
gi

for i = {1, . . . , k − 1}, where for k = 2, we only have one ratio κ ∶= κ1 =
g2
g1

.
3Due to the gauge index structure the XZ̄, Ȳ Z, Ȳ Z̄-sectors should behave similarly.
4For BPS states, one would take the opposite gauge coupling dependencies, essentially inverting the

ratios κi ∶=
gi+1
gi
→ 1

κi
for i = {1, . . . , k − 1}.

115



APPENDIX H. SOME NOTES TOWARDS Zk ORBIFOLDS

(E231)
i = −gi−1 (H.16)

(E132)
i = gi+1 , (H.17)

with which we can determine the R-matrix for every gauge sector, using

(Ri)ijkl = P (R̂
i)

ij
kl = P (δ

i
kδ

j
l − c

i(Eklm)
i(Ei)ijm)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 2gigi+1

g2
i +g2

i+1
1 − 2g2

i

g2
i +g2

i+1
0

0 1 − 2g2
i+1

g2
i +g2

i+1

2gigi+1
g2

i +g2
i+1

0
0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (H.18)

where ci = 2
g2

i +g2
i+1

, such that the R-matrix in each gauge group sector is triangular. The
full R-matrix is block-diagonal with i ∈ {1, . . . , k} blocks.

The R-matrices for the different gauge group sectors reproduces the quantum plane
and Rtt-relations

(Ri)ikab t
a
j t

b
l = t

k
b t

i
a (R

i)ab
jl , (H.19)

which for each sector (i) = {1, . . . , k} explicitly become

t12t
2
1 = t

2
1t

1
2 t11t

2
2 − t

2
2t

1
1 = ((

gi+1

gi

)
−1
− (

gi+1

gi

)) t12t
2
1 , (H.20)

t11t
1
2 = (

gi+1

gi

)
−1
t12t

1
1 t11t

2
1 = (

gi+1

gi

)
−1
t21t

1
1

, t12t
2
2 = (

gi+1

gi

)
−1
t22t

1
2 t21t

2
2 = (

gi+1

gi

)
−1
t22t

2
1 . (H.21)

The corresponding twist as in [18] at 2-sites for the gauge group i is

Fi =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 gi+gi+1√

2
√

g2
i +g2

i+1

gi−gi+1√
2
√

g2
i +g2

i+1
0

0 −gi+gi+1√
2
√

g2
i +g2

i+1

gi+gi+1√
2
√

g2
i +g2

i+1
0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (H.22)

H.2 The YZ-sector for Zk

The YZ-sector for Zk is almost identical to the XZ-sector, up to an identification X ↔ Y

and changing gauge indices i + 1→ i − 1 in the required places.5

5Due to the gauge index structure, the Y Z̄, X̄Z, X̄Z̄-sectors should behave similarly.
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The F-terms for this sector are

FXi
= giZiYi − gi−1YiZi−1 . (H.23)

The proposed coproduct then has the following 2-site actions

σ−Y Z(Zi) = Yi (H.24)

σ+Y Z(Yi) = Zi (H.25)

∆σ±Y Z = 1⊗ σ
±
Y Z + σ

±
Y Z ⊗K

±
Y Z (H.26)

K±Y Z(ϕi) =
gi±1

gi

ϕi±1 , (H.27)

where ϕi = {Xi, Yi, Zi}.

H.3 The XY-sector for Zk

One can write down the F-term relations in this sector from the marginally deformed
superpotential in eq. (H.6) and see that they are

FZi
= gi (XiYi+1 − YiXi−1) . (H.28)

The Hamiltonian in this sector for each gauge group can be similarly constructed as in
the XZ-sector, and it is of the following form

HXY =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 g2

i −g2
i 0

0 −g2
i g2

i 0
0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (H.29)

written in the basis
{XiXi+1, XiYi+1, YiXi−1, YiYi−1} . (H.30)

The eigenstates of the above Hamiltonian are

{XiXi+1, XiYi+1 + YiXi−1, XiYi+1 − YiXi−1, YiYi−1} , (H.31)

with their respective eigenvalues being {0,0,2,0}.
For general k > 2, the SU(2)L governing the XY-sector is broken, and the action of

the R-symmetry generators in this sector will not be trivial any more. Therefore, as for
the other sectors, a non-trivial coproduct structure is needed in order to guarantee proper

117



APPENDIX H. SOME NOTES TOWARDS Zk ORBIFOLDS

gauge contraction, e.g.

σ−XY (⋯ Xi−1XiXi+1Xi+2 ⋯)→ (⋯ Xi−1YiXi−1Xi ⋯) . (H.32)

The following is a proposal for the coproduct in the XY-sector6

σ−XY (Xi) = Yi (H.33)

σ+XY (Yi) =Xi (H.34)

∆σ±XY = 1⊗ σ
±
XY + σ

±
XY ⊗K

±
XY (H.35)

K±XY (ϕi) = (
gi±2

gi

)
∣r∣
ϕi±2 , (H.36)

where ϕi = {Xi, Yi, Zi}. Therefore, only if a Zi, Z̄i field is involved will we have a non-
trivial ratio of couplings. In the pure XY-sector, there will be no change in the coupling,
compatible with the F-terms in (H.28). The reasoning for having now a step of two units
for the gauge group indices stems from the fact that the generators on a chain act as
shown in (H.32).

Furthermore, the action in (H.36) also reduces to the trivial action for k = 2, and for
k = 3 this formula simplifies to an “inverse step”, since i ± 2 ↦ i ∓ 1, which is needed to
ensure compatibility of the gauge contractions in the different holomorphic sectors.

An example is the following calculation

∆σ−XY (gi+2Xi+1Zi+2 − gi+1Zi+1Xi+1) = (H.37)

= (1⊗ σ−XY + σ
−
XY ⊗K

−
XY ) (gi+2Xi+1Zi+2 − gi+1Zi+1Xi+1) (H.38)

= gi+2Yi+1K
−
XY (Zi+2) − gi+1Zi+1Yi+1 (H.39)

= gi+2 (
g(i+2)−2

gi+2
)Yi+1Zi − gi+1Zi+1Yi+1 (H.40)

= giYi+1Zi − gi+1Zi+1Yi+1 , (H.41)

where we have the correct gauge coupling to each Zi field, therefore, giving the correct
quantum plane relation.

Similarly, we can go back

∆σ−XY (giYi+1Zi − gi+1Zi+1Yi+1) = (H.42)

= (1⊗ σ+XY + σ
+
XY ⊗K

+
XY ) (giYi+1Zi − gi+1Zi+1Yi+1) (H.43)

6For BPS states, we again take the opposite gauge coupling dependencies, essentially inverting the
ratios κi.
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= gi (
gi+2

gi

)Xi+1Zi+2 − gi+1Zi+1Xi+1 (H.44)

= gi+2Xi+1Zi+2 − gi+1Zi+1Xi+1 . (H.45)

Additional calculations suggest that the coproducts defined in the individual (XZ,YZ,XY)-
sectors give compatible actions, hinting towards a description of the full holomorphic
SU(3)XY Z , as well as potentially extended to higher numbers of sites.

Preliminary results also indicate that if one “inverts” the coupling dependencies7, also
compatible results for “BPS-states” can be obtained.

7For example, in the XZ-sector this would correspond to taking K±XZ(ϕi) =
gi

gi±1
ϕi±1, which gives

∆σ−XZ(XiXi+1) =XiZi+1 +
gi+1
gi

ZiXi, which is fully compatible with the result obtained for Z2.
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