UNIVERSITÄTSKLINIKUM HAMBURG-EPPENDORF

Institut für Medizinische Mikrobiologie, Virologie und Hygiene

Direktor: Prof. Dr. med. Martin Aepfelbacher

Entwicklung und Anwendung einer künstlichen Gelenkflüssigkeit zur Untersuchung von Endoprotheseninfektionen ausgelöst durch *Staphylococcus epidermidis*

Dissertation

zur Erlangung des Grades eines Doktors der Medizin an der Medizinischen Fakultät der Universität Hamburg.

vorgelegt von:

Johanna Stamm aus Osnabrück

Hamburg 2024

Angenommen von der Medizinischen Fakultät der Universität Hamburg am: 29.01.2025

Veröffentlicht mit Genehmigung der Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der/die Vorsitzende:

Prof. Dr. Florian Barvencik

Prüfungsausschuss, 2. Gutachter/in:

Prof. Dr. Holger Rohde

Inhalt
1. Originalarbeit
Development of an artificial synovial fluid useful for studying Staphylococcus epidermidis joint infections.
Front. Cell. Infect. Microbiol. 12:9481512
2. Hintergrund15
2.1 Staphylococcus epidermidis und Endoprotheseninfektionen
3. Ergebnisse
3.1 Entwicklung einer künstlichen Gelenkflüssigkeit17
3.2 Der Einfluss von ASF auf das Wachstumsverhalten, die Biofilmbildung, Zellaggregation und Genexpression von <i>Staphylococcus epidermidis</i> 18
3.3 Untersuchung des Einflusses von ASF auf die Biofilmbildung und Entstehung von Zellaggregaten durch <i>S. epidermidis</i> Isolate aus Endoprotheseninfektionen22
4. Diskussion
4.1 ASF als Modell einer menschlichen Synovialflüssigkeit
4.2 Der Einfluss von ASF auf das Wachstumsverhalten, die Biofilmbildung, Formation von Zellaggregaten und Genexpressionsmuster25
5. Zusammenfassung Deutsch27
6. Zusammenfassung Englisch
7. Eigenanteilserklärung
8. Literaturverzeichnis
9. Abkürzungsverzeichnis
10. Danksagung
11. Eidesstattliche Erklärung40

Check for updates

OPEN ACCESS

EDITED BY Gowrishankar Muthukrishnan, University of Rochester, United States

REVIEWED BY

Timothy J Foster, Trinity College Dublin, Ireland Andrew B Herr, Cincinnati Children's Hospital Medical Center, United States

*CORRESPONDENCE Holger Rohde rohde@uke.de

[†]These authors have contributed equally to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Bacteria and Host, a section of the journal Frontiers in Cellular and Infection Microbiology

RECEIVED 19 May 2022 ACCEPTED 04 July 2022 PUBLISHED 29 July 2022

CITATION

Stamm J, Weißelberg S, Both A, Failla AV, Nordholt G, Büttner H, Linder S, Aepfelbacher M and Rohde H (2022) Development of an artificial synovial fluid useful for studying *Staphylococcus epidermidis* joint infections. *Front. Cell. Infect. Microbiol.* 12:948151. doi: 10.3389/fcimb.2022.948151

Development of an artificial synovial fluid useful for studying *Staphylococcus epidermidis* joint infections

Johanna Stamm¹[†], Samira Weißelberg ^{1†}, Anna Both¹, Antonio Virgilio Failla², Gerhard Nordholt³, Henning Büttner ¹, Stefan Linder ¹, Martin Aepfelbacher¹ and Holger Rohde ^{1,4*}

¹Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Hamburg, Germany, ³Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, ³Institute for Clinical Chemistry, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany, ⁴Deutsches Zentrum für Infektionsmedizin, Standort Hamburg-Lübeck-Borstel, Hamburg, Germany

Staphylococcus epidermidis is a major causative agent of prosthetic joint infections (PJI). The ability to form biofilms supports this highly selective pathogenic potential. In vitro studies essentially relying on phenotypic assays and genetic approaches have provided a detailed picture of the molecular events contributing to biofilm assembly. A major limitation in these studies is the use of synthetic growth media, which significantly differs from the environmental conditions *S. epidermidis* encounters during host invasion. Building on evidence showing that growth in serum substantially affects S. *epidermidis* gene expression profiles and phenotypes, the major aim of this study was to develop and characterize a growth medium mimicking synovial fluid, thereby facilitating research addressing specific aspects related to PJI. Using fresh human plasma, a protocol was established allowing for the largescale production of a medium that by biochemical analysis matches key characteristics of synovial fluid and therefore is referred to as artificial synovial fluid (ASF). By analysis of biofilm-positive, polysaccharide intercellular adhesion (PIA)-producing S. epidermidis 1457 and its isogenic, PIA- and biofilm-negative mutant 1457-M10, evidence is provided that the presence of ASF induces cluster formation in *S. epidermidis* 1457 and mutant 1457-M10. Consistent with the aggregative properties, both strains formed multilayered biofilms when analyzed by confocal laser scanning microscopy. In parallel to the phenotypic findings, expression analysis after growth in ASF found upregulation of genes encoding for intercellular adhesins (*icaA*, *aap*, and *embp*) as well as *atlE*, encoding for the major cell wall autolysin being responsible for eDNA release. In contrast, growth in ASF was associated with reduced expression of the master regulator *agr*. Collectively, these results indicate that ASF induces expression profiles that are able to support

intercellular adhesion in both PIA-positive and PIA-negative *S. epidermidis*. Given the observation that ASF overall induced biofilm formation in a collection of *S. epidermidis* isolates from PJI, the results strongly support the idea of using growth media mimicking host environments. ASF may play an important role in future studies related to the pathogenesis of *S. epidermidis* PJI.

KEYWORDS

joint infection, prosthetic joint infection (PJI), *Staphylococcus epidermidis* (*S. epidermidis*), biofilm formation, confocal laser scanning electron microscope

Introduction

Staphylococcus epidermidis is a leading pathogen isolated from prosthetic joint infections (PJI) (Becker et al., 2020), a serious challenge for the modern healthcare system (Schwarz et al., 2019). The marked increase in joint replacement procedures (Patel et al., 2015), in combination with a constant infection rate of 1%– 3% (Lourtet-Hascoet et al., 2016), has led to a steep increase in the number of PJI cases. Considering the significant morbidity and mortality associated with PJI (Izakovicova et al., 2019; Natsuhara et al., 2019), there is an urgent need for novel preventive and therapeutic approaches. Detailed insights into the molecular pathogenesis of *S. epidermidis* PJI are regarded as an essential brick in this strategy. In fact, tremendous progress on the road to a detailed molecular picture of *S. epidermidis* implant infections has been made, unraveling a plethora of mechanisms contributing to successful device colonization.

The ability to assemble multilayered biofilms is key to the opportunistic S. epidermidis virulence in PJI (Both et al., 2021). Biofilm formation is essentially promoted by the production of an extracellular matrix, which by embedding bacterial cells functions as a glue that fosters cell aggregation. The matrix consists of polysaccharides [i.e., polysaccharide intercellular adhesin (PIA)], proteins [e.g., accumulation-associated protein (Aap), extracellular matrix-binding protein (Embp), or small basic protein (Sbp)], and extracellular DNA (eDNA, released through the activity of autolysin AtlE). Intriguingly, epidemiological studies have produced partially conflicting results by identifying clinically significant S. epidermidis that were unable to form a biofilm in vitro (Rohde et al., 2007). The discrepancy can at least in part be explained by the use of convenient growth media (e.g., TSB), which support the formation of PIA- but not protein-dependent biofilms (Christner et al., 2012). The functional relevance of PIAindependent biofilm formation through the production of

Embp only became apparent by supplementing TSB with serum or tigecycline, leading to embp expression (Christner et al., 2010; Weiser et al., 2016). Clearly, growth in TSB only is a very poor approximation to the *in vivo* environment, and thus, relevant mechanisms related to S. epidermidis pathogenesis may have gone unidentified by their use. Particularly for PJI, studies provided evidence that in vitro experiments in convenient laboratory media do not reflect bacterial growth in vivo under conditions of a human joint cavity (Skovdal et al., 2021; Steixner et al., 2021). Bacteria entering a human joint cavity have to adapt to the unique environment provided by the synovial joint fluid (SF), which lubricates the joint cavity. SF is able to induce the formation of bacterial aggregates (Bidossi et al., 2020) or biofilms adhering to the implant device or tissue within the joint cavity (Barrett and Atkins, 2014; Gbejuade et al., 2015), and thus, SF obviously promotes the expression of pathogenesis-relevant phenotypes. Despite this fact, however, only a few studies have so far been conducted using unmodified human SF (Dastgheyb et al., 2015; Gilbertie et al., 2019). Typically, human SF is diluted before use (Knott et al., 2021; Staats et al., 2021; Steixner et al., 2021), or substituted by animal SF (Gupta et al., 2021; Perez and Patel, 2015; Ibberson et al., 2016; Pestrak et al., 2020; Staats et al., 2021). The obvious limitations of these approaches currently have to be accepted due to the limited availability of human SF (Gilbertie et al., 2019; Steixner et al., 2021). While substitute joint fluid to treat joint disease has already been introduced into modern medicine (Adams et al., 1995; Neustadt et al., 2005; Faust et al., 2018), only a few attempts to use a bona fide artificial SF in pathogenesis research have been made (Knott et al., 2021). Taking into account the importance of using media closely mimicking the *in vivo* environment for studying *S. epidermidis* infection biology, the major aim of this study was to develop and characterize an artificial synovial fluid (ASF). By resembling human joint fluid and being available in larger quantities, ASF may substantially contribute to a more precise identification and

characterization of *S. epidermidis* traits relevant to the pathogenesis of PJI.

Methods

Bacterial strains

S. epidermidis 1457 (Galac et al., 2017) is a PIA-producing, biofilm-positive isolate from a central venous catheter infection. 1457-M10 is a corresponding isogenic, biofilm-negative transposon mutant carrying Tn917 in *icaA*, interfering with the biosynthesis of PIA (Mack et al., 2000). In addition, 23 previously characterized *S. epidermidis* isolated from PJI were used (Both et al., 2021).

Growth analysis

Bacteria were grown overnight in TSB at 37°C and shaking (200 rpm). Cultures were diluted in fresh TSB or ASF at a ratio of 1:100, and 200 μ l were transferred into wells of a 96-well microtiter plate (Sarstedt, Nümbrecht, Germany). Plates were incubated for 24 h at 37°C in a microplate reader (Agilent, Santa Clara, CA, USA). Absorption at 600 nm was measured every hour as a surrogate for bacterial growth.

Quantification of biofilm formation

Biofilm formation was quantified using a 96-well microtiter plate assay essentially as described previously (Both et al., 2021).

Analysis of sessile bacterial cultures by confocal laser scanning microscopy

Bacteria grown on coverslips were mildly washed with PBS and then fixed with 4% paraformaldehyde (PFA) in PBS for 10 min. Unspecific binding sites were blocked using 3% bovine serum albumin (BSA, w/v) in PBS for 1 h. Next, samples were incubated with a 1:500 dilution of a-dsDNA primary antibody (Abcam, Cambridge, UK) for 1 h, washed three times with PBS, and incubated with a 1:250 dilution of an a-mouse IgG coupled to A488 (ThermoFisher, Waltham, MD, USA). For visualization of bacteria, 300nM DAPI (Invitrogen, Carlsbad, CA, USA) was added to the secondary staining solution and both antibodies were applied in PBS supplemented with 1.5% BSA. Coverslips were mounted with MOWIOL anti-fade reagent (Calbiochem, Darmstadt, Germany), and microscopic analysis was carried out using a Leica TCS SP8 confocal laserscanning instrument.

Analysis of bacterial cell cluster analysis

For analysis of bacterial cluster size and size distribution, bacteria were grown statically for 18 h at 37°C in TSB and ASF, respectively. Thirty minutes prior to staining, the bacterial sediment was carefully dispersed by vortexing, and 10 µl were transferred to staining buffer (3% BSA in PBS + DAPI 300 nM, Invitrogen) in a µ-Slide 8-Well (ibidi, Gräfelfing, Germany). Samples were analyzed with the confocal laser scanning microscope Leica TCS SP8 equipped with a ×63, NA1.4 oil immersion objective and LAS X SP8 software (Leica Microsystems, Wetzlar, Germany). At least 10 positions per condition were recorded as stacks with a distance of 500 nm and $2,048 \times 2,048$ pixels. Bacterial detection and segmentation were done using the Imaris software package (Oxford Instruments, Abingdon, UK). Subsequently, cluster analysis was done in MatLab (Version 9.2, The MathWorks Inc., Natick, MA, USA). In brief, the position of each bacterium was calculated by its volume, and the center of mass of the segmented volume was defined. Distances between centers of masses were measured and categorized into clusters with a threshold of ≥ 5 bacteria/cluster. The MatLab script used is available in MatLab Supplement S1.

Gene expression analysis

For gene expression analysis, bacteria were grown in triplicates in TSB overnight at 37°C under vigorous shaking. Cultures were then diluted in TSB or ASF and grown for 6 and 24 h at 37°C with shaking (180 rpm). Cells were then harvested by centrifugation, washed in PBS, and resuspended in RNAprotect (Qiagen, Hilden, Germany). After incubation at RT, bacterial cells were pelleted. The resulting pellet was mechanically lysed with zirconia beads 3×20 s on a tissue homogenizer (Precellys 12, Bertin, Montigny-le-Bretonneux, France), and RNA was extracted with the RNeasy Mini Kit (Qiagen, Hilden, Germany). Bacterial RNA was quantified with a Qubit fluorometer (ThermoFisher Scientific, Waltham, MD, USA) followed by digestion of residual DNA with a DNA-Free Kit (Invitrogen, Carlsbad, CA, USA). A total of 5-µl digested RNA was transcribed using iScript cDNA Synthesis Kit (BioRad, Hercules, CA, USA) according to the manufacturer's instructions. Quantification of gene expression was carried out using the Light Cycler 480 instrument and applying the TaqMan Fast Advanced Master Mix 2 imes(ThermoFisher Scientific, Bremen, Germany). Primers and probes to quantify the expression of gyrB, aap, ica, atlE, agr, and *embp* are given in Table 1.

TABLE 1	Primers a	and	probes	used	in	this	study	/.
---------	-----------	-----	--------	------	----	------	-------	----

Target gene	Primers/probes	Sequence (5'-3')
gyrB	gyrB_fwd	TGGTCTGCGTTCATTTCACCAAGAC
	gyrB_rev	CTTGCCGATGTTGATGGTGCACA
	gyrB_probe	FAM-GGCGGCTGAGCAATATAAACGTAGCCCGC-BHQ-1
aap	aap fwd	AACATTAGAGTAGCAAACAATCGTCAAAGTA
	aap rev	AGCCTTGACCAGCTTGTTTCTGTA
	aap probe	FAM-ACAACTGGTGCAGATGGTTGGGGC-BHQ-1
icaA	icaA fwd	TGCCTTATTTATTGACAGTCGCTACG
	icaA rev	CGTTGGATATTGCCTCTGTCTGG
	icaA probe	FAM-ATACTGGGTTATCAATGCCGCAGTTGTCA-BHQ-1
embp	embp fwd	CACCTGGTGCTGTGCGTAATATAC
	embp rev	GCAGTTCCGTTATTTGTTGGTCCG
	embp probe	FAM-ATGGTCGTTGGACTGTTGAAACTGGGTC-BHQ-1
atlE	atlE/R fwd	GATCACGCTGACCCTCACCAAT
	atlE/R rev	GCAACACCACGATTAGCAGACAC
	atlE/R probe	FAM-GCAAGTAGCACCTTGGGGGCACAACATC-BHQ-1
agr	agr fwd	TGTTGGCAAACTTTCAATAGCACCATG
	agr rev	TCGTGTCGCAGCACTTACAACAACGA
	agr probe	FAM-TCGTGTCGCAGCACTTACAACAACGA-BHQ-1

Human plasma and clinical chemistry analysis of blood products

Human plasma was obtained from healthy volunteers after giving informed consent. Pools from at least five individuals were used for ASF production. Clinical chemistry analysis of pooled plasma samples was performed according to standard protocols for routine analytics in patient care at the University Medical Center Hamburg-Eppendorf.

Results

Development of an artificial synovial fluid

Studies of human joint fluid have indicated for decades that synovial fluid appears to be a dialysate of human plasma. The qualitative composition of protein components, therefore, does not differ between plasma and SF (Decker et al., 1959; Hui et al., 2012; Waldrop et al., 2014), and thus it appeared reasonable to use human plasma as a basis for the intended artificial synovial fluid. Considering reference concentrations from the literature (Table 2), a dilution of plasma by half was expected to meet immunoglobulin concentrations, while the remaining protein components would marginally exceed or fall below the target joint fluid values. As synovial fluid electrolytes meet actual plasma concentrations, Jonosteril (Fresenius Kabi, Bad Homburg, Germany), an electrolyte medium developed to match actual human plasma electrolyte concentrations, was employed as the diluent. Intriguingly, using plasma 1:1 (vol/ vol) diluted in Jonosteril as a medium, no bacterial growth was detectable. In fact, measuring glucose levels found concentrations of 36 mg/dl, which is clearly below the expected joint fluid glucose concentrations of 60–90 mg/dl. Given that glucose is an important metabolite for staphylococcal growth (Dobinsky et al., 2003; Jager et al., 2005; Agarwal and Jain, 2013; Waldrop et al., 2014; Luo et al., 2020), Jonosteril-diluted plasma was therefore supplemented with glucose to a final concentration of 79 mg/dl.

Subsequent biochemical analysis of the glucosesupplemented, Jonosteril-diluted plasma found key component concentrations largely similar to reported concentrations from human synovial fluid (Table 2), which is therefore referred to as ASF. Figure 1 and Supplementary Table S1 provide a step-by-step protocol describing the production of ASF. Likewise, a protocol for convenient storage of larger ASF volumes is provided, being an important prerequisite to avoiding batch-to-batch variability in larger series of experiments (Supplementary Table S2).

The impact of ASF on growth characteristics, biofilm formation, cell aggregation, and gene expression profiles

Previously published work has demonstrated that serum or serum components have a significant impact on phenotypes and expression profiles in *S. epidermidis* from prosthetic joint

TABLE 2	Comparison	of ASF wi	h human	synovial	fluid	composition.
---------	------------	-----------	---------	----------	-------	--------------

	Human synovial fl uid ^{a,b}	ASFc
Electrolytes		
- Sodium	138.11 mmol/L	144 mmol/L
- Potassium	5.48 mmol/L	3.5 mmol/L
- Calcium	2.39 mmol/L	1.8 mmol/L
- Chloride	108.41 mmol/L	97.9 mmol/L
- Magnesium	1.47 mg/dl	0.94 mmol/L
Glucose	60-95 mg/dl	79 mg/dl
рН	7.31-7.64	7.52
Total protein	19 - 28 g/L	28 g/L
Albumin	12 mg/ml	16.1 mg/ml
Albumin	56%	60.2%
a1-Globulin	8%	3.9%
a2-Globulin	7%	8.8%
b-Globulin	11%	>16.3%
g-Globulin	18%	<10.8%
Complement factor C3	Not available	39.2 mg/dl
Complement factor C4	Not available	6.8 mg/dl
IgA	approx. 1/2 plasma concentration	1.11 g/L
IgG	approx.1/2 plasma concentration	3.62 g/L
IgM	approx. 1/2 plasma concentration	0.38 g/L
IgE	approx. 1/2 plasma concentration	21.5 UI
Uric acid	3.0-7.0 mg/dl	1.7 mg/dl
Lactate	9-16 mg/dl	4.94 mg/dl
Creatinine	1.06 mg/dl	0.19 mg/dl

*(Decker et al., 1959; Cummings and Nordby, 1966; Levick, 1981; Madea et al., 2001; Mundt, 2010; Hui et al., 2012; Srettabunjong et al., 2019).

^bSynovial fluid was largely sampled postmortem from individuals with no history of joint disease.

°ASF was analyzed after freezing, storage at -80°C, and defreezing.

infections (Both et al., 2021). Building on the hypothesis that growth in ASF will impact *S. epidermidis* physiology, key aspects of *S. epidermidis* pathogenicity were comparatively studied in ASF and the reference medium TSB. To this end, we made use of the well-characterized, prototypic polysaccharide intercellularadhesin (PIA)-producing, biofilm-forming *S. epidermidis* 1457 and isogenic, PIA- and biofilm-negative mutant 1457-M10. Growth analysis over 24 h found that in TSB and ASF, growth followed a sigmoidal function (Figure 2A). However, growth in TSB and ASF in both strains differed with respect to the slope of the curve and the maximum cell density. The resulting lower areas under the curves (AUCs) (AUC_1457_TSB: 15.58 [CI, 15.43-15.73]; AUC_1457_ASF: 2.87 [CI, 2.788-2.953];

AUC_M10_TSB: 14.14 [CI, 13.97-14.30]; AUC_M10_ASF: 3.097 [CI, 3.080-3.113]) indicate the overall reduced bacterial growth in ASF. Importantly, no growth differences were identified between S. *epidermidis* 1457 and mutant 1457-M10.

Biofilm formation was analyzed using a 96-well microtiter plate assay, providing integrated information on adherence and biofilm accumulation. In addition, confocal laser scanning microscopy (CLSM) was employed as a tool to obtain detailed insights into the architecture of sessile S. epidermidis populations. Using TSB as a growth medium, S. epidermidis 1457 forms robust, PIA-dependent biofilms, while PIA-negative mutant 1457-M10 is unable to assemble a multilayered cell architecture (Figure 2B). In line with these findings, CLSM analysis of adherent cell populations found biofilm structures being formed by S. epidermidis 1457 after 20 h, whereas 1457-M10 did not exhibit structured multicellular growth (Figure 2C). Growth in ASF dramatically changed biofilm phenotypes in both assay systems. Strikingly, using the microtitre plate assay, S. epidermidis 1457 produced significantly less biofilm in ASF compared to growth in TSB, while there was no detectable difference in 1457-M10 (Figure 2B). CLSM analysis of sessile growth showed that 1457 still forms a huge adherent cell architecture (Figure 2C). Compared to TSB, these were significantly higher after growth in ASF (mean height of 38.4 vs. 52.3 μ m; p = 0.002 (unpaired *t*- test); Figure 2D). Markedly, in strong contrast to growth in TSB, 1457-M10 also assembled surface adherent aggregates after 20 h of growth (Figure 2C). In fact, bioinformatics image analysis showed that the mean biofilm height in ASF (38.09 μ m) was significantly (p = 0.0032; unpaired *t*-test) higher compared to growth in TSB (mean height of 22.68 µm; Figure 2D). In line with this, the surface roughness of 1457-M10 cultures was significantly (p = 0.008, unpaired *t*-test) greater compared to growth in TSB, indicating induction of structured and aggregative growth (Figure 2D). No difference was identified in surface roughness that became evident in S. *epidermidis* 1457 (p = 0.13; unpaired *t*-test). Collectively, these data indicate that growth in ASF, while reducing biofilm growth in PIA-producing S. epidermidis 1457, induces cell surface adherent growth in PIA-negative mutant 1457-M10.

Biofilm formation essentially depends on intercellular adhesion, which phenotypically becomes apparent by the formation of cell aggregates. To test the idea that ASF induces PIAindependent cell aggregative properties and subsequent biofilm formation, experiments were set out to quantify cell cluster size in *S. epidermidis* 1457 and 1457-M10 after growth in TSB and ASF (Figure 3A). As expected, after 24 h of growth in TSB, PIAproducing *S. epidermidis* 1457 forms cell aggregates (mean bacteria/cluster (n) = 4.9), being slightly but significantly (p

= 0.0032) larger compared to PIA-negative 1457-M10 (mean bacteria/cluster (n) = 3.2). Growth in ASF, however, resulted in the formation of huge, macroscopically visible cell aggregates in 1457 and 1457-M10, and the mean number of cells per cluster was not statistically different between both strains (1457: mean bacteria/cluster: 16.9; 1457-M10 (mean bacteria/cluster: 16.6; p = 0.891; Figure 3A). Induction of cell aggregation became also evident when the percentage of cell clusters (aggregates ≥5 cells) organized by bacteria was analyzed. In TSB cultures of *S. epidermidis* 1457, significantly (p = 0.0106) more bacteria (mean cluster-organized cells, 33.99%) were organized cells, 14.61%) (Figure 3B). In ASF cultures, however, bacteria of both strains were predominantly organized in cluster-

organized cells 1457: 79.9%; 1457-M10: 73.9%; Figure 3B), and there was no apparent statistically significant difference (p = 0.788). Collectively, these data provide evidence that growth in ASF leads to PIA-independent cell cluster formation, which links growth in ASF with the acquired ability of 1457-M10 to establish a multilayered biofilm architecture as detected by CLSM.

Building on data demonstrating a significant impact of growth in the presence of serum on *S. epidermidis* transcriptomes (Both et al., 2021) and expression of *embp* (Christner et al., 2010), qPCR experiments were set out to characterize the expression of genes related to biofilm formation and regulation (Figure 4). Expression analysis of biofilm-related *icaA*, *embp*, *aap*, and *atlE* found significantly increased expression in ASF after 24 h of growth. While for *embp* and *atlE*, upregulation in ASF became evident also after 6 h of growth, no significant difference in expression levels was detected for *icaA*. As an exception, *aap* exhibited significantly lower expression levels in ASF after 6 h. Intriguingly, compared to TSB, a master regulator of staphylococcal virulence, *agr* was significantly downregulated after growth in ASF after 6 and 24 h of growth (Figure 4).

Impact of ASF on biofilm formation and cell cluster formation in *S. epidermidis* PJI isolates

The ability to form biofilms is subject to significant, isolatedependent variation (Rohde et al., 2007). In order to obtain more robust insights into the effects of ASF on biofilm formation, a contemporary collection of n = 23 *S. epidermidis* isolated from PJI (Both et al., 2021) were tested for biofilm-forming ability in ASF in comparison to TSB. Overall, quantitative biofilm formation was significantly different between both media tested and between isolates (p < 0.0001; two-way ANOVA) (Figure 5). In fact, significant differences (Mann–Whitney *U* test with Holms–Sidak's method for multiple comparisons) were identified in 17/23 isolates tested. In 12 of those 17 isolates (70.6%), growth in ASF increased, and in 5/17 (29.4%) exposure to ASF resulted in weaker biofilm formation Biofilm reduction predominantly occurred in *S. epidermidis* isolates forming strong biofilms in TSB (mean A570/TSB = 1.69; [range, 0.9– 2.34]), while increased biofilm formation (mean A570/TSB = 0.4 [range, 0.08–0.83]).

Discussion

Studies on *S. epidermidis* phenotypes related to infections associated with indwelling medical devices have almost exclusively been carried out using synthetic media, e.g., TSB (Mack et al., 2001). The use of commercially available media significantly supports the reproducibility of experimental results and, thus, is of major importance in an effort to provide an experimental reference supporting the comparability of data from independent research groups. In fact, work based on

FIGURE 2

Phenotypic analysis of *S. epidermidis* 1457 and 1457-M10 in TSB and ASF. (A) Growth analysis of *S. epidermidis* 1457 and 1457-M10 in TSB and ASF. Absorbance at 600 nm was measured as a surrogate for bacterial growth. Data points represent the mean of two duplicates from two biological replicates. Error bars: standard deviation. (B) Analysis of biofilm formation by *S. epidermidis* 1457 and 1457-M10 in TSB and ASF using a microtiter plate assay. After 24 h of growth, the medium was removed, and wells were washed with PBS. After drying, adherent cells were stained using Gentiana violet, and absorbance was read at 570 nm. *S. epidermidis* 1457 formed statistically less biofilm in ASF compared to TSB (uppaired *t*test; p <= 0.001). Bars represent the mean of two quadruplicates from two biological replicates. Error bars: standard deviation. (C) CLSM analysis of *S. epidermidis* 1457 and 1457-M10 after overnight sessile culture in TSB and ASF. Bacteria were grown for 24 h on glass coverslips, and adherent cells were fixed after mild washing. Bacteria were stained using DAPI (300 nM), and eDNA was detected using mouse anti-dsDNA IgG (1:500) and anti-mouse IgG coupled to Alexa488 (1:250). The upper panel shows the maximum sum projection of dsDNA; the middle panel shows the maximum sum projection of merged DAPI and Alex488 channels (scale bar, 9 µm); and the lower panel shows an XZ-view of merged channels (scale bar, 5 µm). (D) Quantitative image analysis of *S. epidermidis* 1457 and 1457-M10. Biofilm height (left panel) and surface roughness (right panel) were determined using BiofimQ (Hartmann et al., 2021) and Comstat (Heydorn et al., 2000) software packages, respectively. Bars represent the mean of three biological replicates with at least 10 analyzed pictures. ns, not significant, p > 0.05; ** $p \le 0.01$; *** $p \le 0.001$.

FIGURE 3

Aggregative cell growth in TSB and ASF. (A) Violin plot showing the distribution of cell cluster sizes formed by *S. epidermidis* 1457 and mutant 1457-M10 in TSB and ASF after overnight growth. The size of bacterial cell clusters was determined by bioinformatics analysis of CLSM images. Per strain and growth conditions, at least 30 images from three independent experiments were analyzed. Statistical analysis was done by one-way ANOVA and Sidak's multiple comparison test (1457 vs. 1457-M10 in TSB: Cl of difference: 0.4799-2.926, p = 0.002 1457 vs. 1457-M10 in ASF: Cl of difference: -0.8991-1.590, p <= 0.001 1457-M10 TSB vs. 1457-M10 ASF: Cl of difference: -14.77 to -12.14, p <=0.001 1457 TSB vs. 1457 ASF: Cl of difference: -13.39 to -10.80, p <= 0.001). (B) Quantification of *S. epidermidis* cells organized in clusters containing five or more cells. Bioinformatics analysis identified the proportion of bacteria relative to the absolute number of bacterial cells associated with cells to form clusters of ≥ 5 cells. Each data point indicates the relative proportion (%) of cells meeting this criterion in one image. At least 30 images from three independent experiments were analyzed; the total number of cells ranged from n = 10,151 to n = 31,094. Results were analyzed using one-way ANOVA with Kruskal-Wallis test for multiple comparisons (adjusted *p*-values: 1457 TSB vs. 1457 ASF, p < 0.001 1457 TSB vs. 1457-M10 TSB vs. 1457-M10 ASF, p < 0.001 ASF, p < 0.003 1457 ASF, p < 0.001 ASF, p < 0.003 1457-M10 TSB vs. 1457-M10 ASF, p < 0.001 ASF, p < 0.001 ASF, p < 0.003 1457 ASF, p < 0.003 1457 ASF, p < 0.003 1457-M10 ASF, p = 0.008 1457-M10 ASF, p < 0.001 ASF vs. 1457-M10 ASF, p < 0.003 1457 ASF, p < 0.003 1457 ASF, p < 0.003 1457-M10 ASF, p = 0.008 1457-M10 ASF, p < 0.003 1457 ASF, p < 0.003 1457-M10 ASF, p < 0.003 1

those artificial media has provided phenotypic and genetic traits associated with invasive *S. epidermidis* lifestyles (Otto, 2018). Intriguingly, by testing genetically defined mutants in comparison with isogenic wild-type strains in animal models of device infections, evidence was provided that mechanisms identified under artificial growth conditions are indeed functionally relevant *in vivo* (Nguyen et al., 2020). However, owing to the obvious limitations of using synthetic media, studies on *S. epidermidis* pathogenicity were carried out using media that resemble the within-host situation, including the presence of host immune effector cells in whole blood assays (Fredheim et al., 2011; Al-Ishaq et al., 2015) or nutrient-poor microenvironments in the nose (Krismer et al., 2014). Support for the need to expand experimental systems and include more

FIGURE 4

Expression analysis of biofilm-related genes. Relative expression of biofilm-associated genes in *S. epidermidis* 1457 in TSB and ASF. Columns indicate mean DCt values obtained from three experiments using independent RNA preparations. The error bars indicate the standard deviation. Differences were analyzed using one-way ANOVA with Holm-Sidak's multiple comparisons test. *gyrB* served as a reference housekeeping gene. ns, not significant, p > 0.05; * $p \le 0.05$; * $p \le 0.01$; *** $p \le 0.001$.

life-like growth models comes from recent observations that the presence of host serum has a major impact on *S. epidermidis* expression profiles, including genes related to biofilm formation (Christner et al., 2010; Both et al., 2021). Moreover, it became evident that synovial joint fluid (SF) induces aggregative staphylococcal growth *in vivo* and *in vitro* (Perez and Patel, 2015; Bidossi et al., 2020; Staats et al., 2021), underscoring the need for alternative, more life-like culture systems. To reflect the *in vivo* situation for studying *S. epidermidis* PJI pathogenesis, we, therefore, established a simple protocol for the preparation of an ASF.

Biochemical analysis of ASF found good overall agreement with published data of SF composition from healthy individuals. There are, however, evident discrepancies. While sodium and chloride concentrations agree with reported values, higher magnesium and lower potassium and calcium concentration in ASF was noted. This can partially be explained considering that SF references derive from studies relying on postmortem sampled SF (Madea et al., 2001; Srettabunjong et al., 2019), and forensic studies showed that postmortem degradation processes also influence potassium levels with increasing concentrations relatively linear over time after death (Tumram et al., 2011). Thus, it appears reasonable to assume that the physiological SF potassium concentration is below the literature values and maybe even ranges within the serum concentration range of 3.5 up to 5.0 mmol/L (Tumram et al., 2011; Srettabunjong et al., 2019).

Apart from electrolyte concentrations, SF protein content might be of essential importance for the growth behavior of *S. epidermidis.* A study determining total protein concentrations in SF sampled postmortem and from healthy volunteers showed a range of mean total protein concentrations from 1.3 to 2.8 g/dl with a number adjusted mean of 1.49 g/dl. Higher total protein concentrations were, however, predominantly found in postmortem samples, prompting the conclusion that a total protein concentration of 1.3 g/dl should be considered the healthy reference (Weinberger and Simkin, 1989). Thus, ASF's total protein concentration of 2.8 g/dl is probably too high. It needs to be stressed, though, that evidence on reference SF values for healthy joints is scarce, probably due to the lack of respective SF samples, and in fact, more recent publications selectively focus on the analysis of SF in joint disease (Iadarola et al., 2016; Peffers et al., 2019). This might also explain why, for complement factors, only data on pathological SF are available (Ochi et al., 1980).

In addition to the total protein concentration, the composition of the SF proteome might differ from plasma proteins due to the presence of specific factors selectively produced within the joint. ASF will therefore show too low concentrations for proteins subject to tissue-specific expression patterns (Bennike et al., 2014), e.g., hyaluronic acid or lubricin (Anderson and Anderson, 2002; Hui et al., 2012; McNary et al., 2012), which are apparently absent in ASF. Thus, ASF must be considered an approximation for a joint fluid model, especially as long as more valid information on physiological SF composition is lacking. Given the evidence from S. aureus showing that hyaluronic acid contributes to the aggregate formation (Knott et al., 2021; Staats et al., 2021), the obvious insufficient conformity of ASF with native SF composition might have important experimental implications that must be considered when relating experimental results to the in vivo situation. Another obvious limitation of ASF is that it rather reflects healthy than pathological SF, e.g., found in noninfective joint diseases like osteoarthritis (OA) or rheumatoid arthritis (RA). In addition, invasive S. epidermidis disease itself will also induce changes in SF composition, potentially affecting bacterial

10.3389/fcimb.2022.948151

physiology. Despite those limitations, though, it appears unrealistic at present to accommodate for such diseaseassociated SF changes given actual knowledge gaps in relation to the specific composition of SF in defined joint conditions [e.g., during surgery, after joint implantation, in defined joint diseases (Yazar et al., 2005; Hu et al., 2006; Balakrishnan et al., 2014; Lee et al., 2020; Timur et al., 2021)].

In order to evaluate the usefulness of ASF to study S. epidermidis pathogenicity, the impact of ASF on phenotypic traits and gene expression patterns was analyzed using the wellcharacterized PIA-producing S. epidermidis reference strain 1457 and a corresponding, biofilm- and PIA-negative mutant 1457-M10. Here, evidence was obtained that ASF induced cell cluster formation and biofilm formation, resembling microscopic findings from independent studies investigating multicellular architectures in S. epidermidis from SF (Perez and Patel, 2015). Intriguingly, aggregative behavior was also identified in PIA-negative mutant 1457-M10, underscoring the importance of PIA-independent mechanisms becoming functionally active during invasive lifestyles (Rohde et al., 2005; Rohde et al., 2007; Skovdal et al., 2021). The induction of *embp* and *aap* expression, as well as increased eDNA release, pinpoint some of the potentially involved mechanisms (Rohde et al., 2007; Christner et al., 2010; Christner et al., 2012). A recent study showed that in the presence of serum factors, S. epidermidis cell aggregation may occur independently from Embp and PIA (Skovdal et al., 2021). Evidence of enhanced biofilm formation in genetically independent, clinical S. epidermidis isolates in the presence of ASF supports the hypothesis that host factors are relevant to inducing pathogenicity-associated S. epidermidis phenotypes in vitro. Intriguingly, similar to the observation of reduced biofilm formation in PIA producing S. epidermidis 1457, wild-type PJI S. epidermidis strains forming strong biofilms in TSB were impaired in accumulative growth in ASF. In contrast, ASF-induced biofilm formation was predominantly observed in S. epidermidis wild-type isolates, exhibiting weak biofilm formation in TSB. The regulator sarA has previously been shown to negatively control biofilm formation in PIA-negative S. epidermidis while supporting protein-dependent biofilm formation in PIA-negative S. epidermidis backgrounds (Christner et al., 2012). The involvement of sarA in PJI isolates under investigation here is unclear, nevertheless, it appears plausible to assume that S. epidermidis possess specific regulatory networks to predominantly promote biofilm formation in the presence of host factors. Thus, more life-like growth models in combination with recent insights into genetic backgrounds of invasive S. epidermidis populations as revealed by high-resolution S. epidermidis population genomics (Lee et al., 2018; Both et al., 2021; Du et al., 2021; Mansson et al., 2021), have a great potential to link genetic findings with functional phenotypic outputs (e.g., biofilm formation, aggregation).

Master regulator of staphylococcal virulence Agr (Le and Otto, 2015) was significantly downregulated during growth in

ASF. Given the evidence that in *S. epidermidis* differential expression of *agr* is a common trait in isolates from invasive disease (Vuong et al., 2004; Olson et al., 2014; Harris et al., 2017), this finding supports the idea that at least, ASF partially resembles the *in vivo* situation. Thus, ASF could serve as an important complementary tool to allow for genetic identification of novel factors contributing to multicellular behavior during the invasion and PJI pathogenesis, e.g., using transposon mutagenesis approaches, transcriptomics, or metabolomics (Mack et al., 2001; Both et al., 2021; Du et al., 2021). In the future, ASF might also be a basis for more advanced models of PJI, e.g., by adding specific macromolecular components (e.g., hyaluronic acid), host immune cells (e.g., macrophages), or by applying shear stress.

Taken together, ASF produced according to the presented protocol expands the toolbox to study *S. epidermidis* PJI pathogenesis, and it might also be used in studies analyzing independent microorganisms relevant to PJI. Thus, ASF has the potential to significantly improve our understanding of the pathogenesis of opportunistic, biofilm-forming *S. epidermidis*. It is reasonable to assume that this knowledge will eventually also translate into better preventive, diagnostic and therapeutic strategies to combat disabling PJI in the future.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and approved by Ethikkommission der Ärztekammer Hamburg. The patients/participants provided their written informed consent to participate in this study.

Author contributions

JS: performed experiments, analyzed data, wrote the manuscript. SW: performed experiments, analyzed data, wrote the manuscript. AB: Designed the study, analyzed data, edited the manuscript. AF: analyzed data, provided resources, edited the manuscript. GN: provided resources, edited the manuscript. HB: performed experiments, analyzed data, edited the manuscript. SL: designed experiments, analyzed data, edited the manuscript. MA: provided resources, edited the manuscript. HR: designed the study, analyzed data, wrote the manuscript.

Acknowledgments

This study was funded by the Damp Foundation (2013-2019, given to HR) and the German Center for Infection Research (DZIF; TI 07.003, given to JS). The authors are grateful for the expert technical assistance of Paul Haffke. We thank all the volunteers who provided plasma and supported the study.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/ fcimb.2022.948151/full#supplementary-material

References

Adams, M. E., Atkinson, M. H., Lussier, A. J., Schulz, J. I., Siminovitch, K. A., Wade, J. P., et al. (1995). The role of viscosupplementation with hylan G-f 20 (Synvisc) in the treatment of osteoarthritis of the knee: a Canadian multicenter trial comparing hylan G-f 20 alone, hylan G-f 20 with non-steroidal anti-inflammatory drugs (NSAIDs) and NSAIDs alone. *Osteoarthritis Cartilage*. 3 (4), 213–225. doi: 10.1016/S1063-4584(05)80013-5

Agarwal, A., and Jain, A. (2013). Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of staphylococci. *Indian J. Med. Res.* 138, 262–266.

Al-Ishaq, R., Armstrong, J., Gregory, M., O'Hara, M., Phiri, K., Harris, L. G., et al. (2015). Effects of polysaccharide intercellular adhesin (PIA) in an *ex vivo* model of whole blood killing and in prosthetic joint infection (PJI): A role for C5a. *Int. J. Med. Microbiol.* 305 (8), 948–956. doi: 10.1016/j.ijmm.2015.08.005

Anderson, N. L., and Anderson, N. G. (2002). The human plasma proteome: history, character, and diagnostic prospects. *Mol. Cell Proteomics.* 1 (11), 845-867. doi: 10.1074/mcp.R200007-MCP200

Balakrishnan, L., Bhattacharjee, M., Ahmad, S., Nirujogi, R. S., Renuse, S., Subbannayya, Y., et al. (2014). Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients. *Clin. Proteomics.* 11 (1), 1. doi: 10.1186/1559-0275-11-1

Barrett, L., and Atkins, B. (2014). The clinical presentation of prosthetic joint infection. J. Antimicrob. Chemother. 69 Suppl 1, i25-i27. doi: 10.1093/jac/dku250

Becker, K., Both, A., Weisselberg, S., Heilmann, C., and Rohde, H. (2020). Emergence of coagulase-negative staphylococci. *Expert Rev. Anti Infect. Ther.* 18 (4), 349–366. doi: 10.1080/14787210.2020.1730813

Bennike, T., Ayturk, U., Haslauer, C. M., Froehlich, J. W., Proffen, B. L., Barnaby, O., et al. (2014). A normative study of the synovial fluid proteome from healthy porcine knee joints. *J. Proteome Res.* 13 (10), 4377–4387. doi: 10.1021/pr500587x

Bidossi, A., Bottagisio, M., Savadori, P., and De Vecchi, E. (2020). Identification and characterization of planktonic biofilm-like aggregates in infected synovial fluids from joint infections. *Front. Microbiol.* 11, 1368. doi: 10.3389/ fmicb.2020.01368

Both, A., Huang, J., Qi, M., Lausmann, C., Weisselberg, S., Buttner, H., et al. (2021). Distinct clonal lineages and within-host diversification shape invasive *Staphylococcus epidermidis* populations. *PloS Pathog.* 17 (2), e1009304. doi: 10.1371/journal.ppat.1009304

Christner, M., Franke, G. C., Schommer, N. N., Wendt, U., Wegert, K., Pehle, P., et al. (2010). The giant extracellular matrix-binding protein of *Staphylococcus epidermidis* mediates biofilm accumulation and attachment to fibronectin. *Mol. Microbiol.* 75 (1), 187–207. doi: 10.1111/j.1365-2958.2009.06981.x

Christner, M., Heinze, C., Busch, M., Franke, G., Hentschke, M., Bayard, D. S., et al. (2012). sarA negatively regulates *Staphylococcus epidermidis* biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis-dependent release of eDNA. *Mol. Microbiol.* 86 (2), 394-410. doi: 10.1111/j.1365-2958.2012.08203.x

Cummings, N. A., and Nordby, G. L. (1966). Measurement of synovial fluid pH in normal and arthritic knees. *Arthritis Rheumatol.* 9 (1), 47-56. doi: 10.1002/art.1780090106

Dastgheyb, S., Parvizi, J., Shapiro, I. M., Hickok, N. J., and Otto, M. (2015). Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. *J. Infect. Dis.* 211 (4), 641–650. doi: 10.1093/infdis/jiu514

Decker, B., Mc, K. B., Mc, G. W., and Slocumb, C. H. (1959). Comparative distribution of proteins and glycoproteins of serum and synovial fluid. *Arthritis Rheumatol.* 2 (2), 162–177. doi: 10.1002/1529-0131(195904)2:2<162::AID-ART1780020208>3.0.CO;2-6

Dobinsky, S., Kiel, K., Rohde, H., Bartscht, K., Knobloch, J. K., Horstkotte, M. A., et al. (2003). Glucose-related dissociation between *icaADBC* transcription and biofilm expression by *Staphylococcus epidermidis*: evidence for an additional factor required for polysacharide intercellular adhesin synthesis. J. Bacteriol. 185 (9), 2879–2886. doi: 10.1128/JB.185.9.2879-2886.2003

Du, X., Larsen, J., Li, M., Walter, A., Slavetinsky, C., Both, A., et al. (2021). Staphylococcus epidermidis clones express Staphylococcus aureus-type wall teichoic acid to shift from a commensal to pathogen lifestyle. *Nat. Microbiol.* 6 (6), 757–768. doi: 10.1038/s41564-021-00913-z

Faust, H. J., Sommerfeld, S. D., Rathod, S., Rittenbach, A., Ray Banerjee, S., Tsui, B. M. W., et al. (2018). A hyaluronic acid binding peptide-polymer system for tre ating osteoarthritis. *Biomater.* 183, 93 - 101. doi: 10.1016/j.biomaterials.2018.08.045

Fredheim, E. G., Granslo, H. N., Flaegstad, T., Figenschau, Y., Rohde, H., Sadovskaya, I., et al. (2011). *Staphylococcus epidermidis* polysaccharide intercellular adhesin activates complement. *FEMS Immunol. Med. Microbiol.* 63 (2), 269–280. doi: 10.1111/j.1574-695X.2011.00854.x

Galac, M. R., Stam, J., Maybank, R., Hinkle, M., Mack, D., Rohde, H., et al. (2017). Complete genome sequence of Staphylococcus epidermidis 1457 *Genome Announc.* 5 (22), e00450-17. doi: 10.1128/genomeA.00450-17

Gbejuade, H. O., Lovering, A. M., and Webb, J. C. (2015). The role of microbial biofilms in prosthetic joint infections. *Acta Orthop.* 86 (2), 147–158. doi: 10.3109/17453674.2014.966290

Gilbertie, J. M., Schnabel, L. V., Hickok, N. J., Jacob, M. E., Conlon, B. P., Shapiro, I. M., et al. (2019). Equine or porcine synovial fluid as a novel *ex vivo* model for the study of bacterial free-floating biofilms that form in human joint infections. *PloS One* 14 (8), e0221012. doi: 10.1371/journal.pone.0221012

Gupta, T. T., Gupta, N. K., Burback, P., and Stoodley, P. (2021). Free-floating aggregate and single-Cell-Initiated biofilms of staphylococcus aureus. *Antibiotics* (*Basel*). 10 (8), 889. doi: 10.3390/antibiotics10080889

Harris, L. G., Dudley, E., Rohde, H., Frommelt, L., Siemssen, N., Wilkinson, T. S., et al. (2017). Limitations in the use of PSMgamma, agr, RNAIII, and biofilm formation as biomarkers to define invasive *Staphylococcus epidermidis* from chronic biomedical device-associated infections. *Int. J. Med. Microbiol.* 307 (7), 382–387. doi: 10.1016/j.ijmm.2017.08.003 Hartmann, R., Jeckel, H., Jelli, E., Singh, P. K., Vaidya, S., Bayer, M., et al. (2021). Quantitative image analysis of microbial communities with BiofilmQ. *Nat. Microbiol.* 6 (2), 151–156. doi: 10.1038/s41564-020-00817-4

Heydom, A., Nielsen, A. T., Hentzer, M., Stemberg, C., Givskov, M., Ersboll, B. K., et al. (2000). Quantification of biofilm structures by the novel computer program COMSTAT. *Microbiol. (Reading)* 146 (Pt 10), 2395–2407. doi: 10.1099/00221287-146-10-2395

Hui, A. Y., McCarty, W. J., Masuda, K., Firestein, G. S., and Sah, R. L. (2012). A systems biology approach to synovial joint lubrication in health, injury, and disease. *Wiley Interdiscip Rev. Syst. Biol. Med.* 4 (1), 15-37. doi: 10.1002/wsbm.157

Hu, S., Loo, J. A., and Wong, D. T. (2006). Human body fluid proteome analysis. *Proteomics*. 6 (23), 6326-6353. doi: 10.1002/pmic.200600284

Iadarola, P., Fumagalli, M., Bardoni, A. M., Salvini, R., and Viglio, S. (2016). Recent applications of CE- and HPLC-MS in the analysis of human fluids. *Electrophoresis*. 37 (1), 212–230. doi: 10.1002/elps.201500272

Ibberson, C. B., Parlet, C. P., Kwiecinski, J., Crosby, H. A., Meyerholz, D. K., and Horswill, A. R. (2016). Hyaluronan modulation impacts *Staphylococcus aureus* biofilm infection. *Infect. Immun.* 84 (6), 1917–1929. doi: 10.1128/ IAI.01418-15

Izakovicova, P., Borens, O., and Trampuz, A. (2019). Periprosthetic joint infection: current concepts and outlook. *EFORT Open Rev.* 4 (7), 482-494. doi: 10.1302/2058-5241.4.180092

Jager, S., Mack, D., Rohde, H., Horstkotte, M. A., and Knobloch, J. K. (2005). Disintegration of *Staphylococcus epidermidis* biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor sigmaB. *Appl. Environ. Microbiol.* 71 (9), 5577–5581. doi: 10.1128/AEM.71.9.5577-5581.2005

Knott, S., Curry, D., Zhao, N., Metgud, P., Dastgheyb, S. S., Purtill, C., et al. (2021). *Staphylococcus aureus* floating biofilm formation and phenotype in synovial fluid depends on albumin, fibrinogen, and hyaluronic acid. *Front. Microbiol.* 12, 655873. doi: 10.3389/fmicb.2021.655873

Krismer, B., Liebeke, M., Janek, D., Nega, M., Rautenberg, M., Hornig, G., et al. (2014). Nutrient limitation governs *Staphylococcus aureus* metabolism and niche adaptation in the human nose. *PloS Pathog.* 10 (1), e1003862. doi: 10.1371/journal.ppat.1003862

Lee, J. H., Jung, J. H., Kim, J., Baek, W. K., Rhee, J., Kim, T. H., et al. (2020). Proteomic analysis of human synovial fluid reveals potential diagnostic biomarkers for ankylosing spondylitis. *Clin. Proteomics.* 17, 20. doi: 10.1186/s12014-020-09281-y

Lee, J. Y. H., Monk, I. R., Goncalves da Silva, A., Seemann, T., Chua, K. Y. L., Kearns, A., et al. (2018). Global spread of three multidrug-resistant lineages of staphylococcus epidermidis. *Nat. Microbiol.* 3 (10), 1175–1185. doi: 10.1038/s41564-018-0230-7

Le, K. Y., and Otto, M. (2015). Quorum-sensing regulation in staphylococci-an overview. *Front. Microbiol.* 6, 1174. doi: 10.3389/fmicb.2015.01174

Levick, J. R. (1981). Permeability of rheumatoid and normal human synovium to specific plasma proteins. *Arthritis Rheumatol.* 24 (12), 1550–1560. doi: 10.1002/art.1780241215

Lourtet-Hascoet, J., Bicart-See, A., Felice, M. P., Giordano, G., and Bonnet, E. (2016). *Staphylococcus lugdunensis*, a serious pathogen in periprosthetic joint infections: comparison to *Staphylococcus aureus* and staphylococcus epidermidis. *Int. J. Infect. Dis.* 51, 56–61. doi: 10.1016/j.ijid.2016.08.007

Luo, Z., Yue, S., Chen, T., She, P., Wu, Y., and Wu, Y. (2020). Reduced growth of *Staphylococcus aureus* under high glucose conditions is associated with decreased pentaglycine expression. *Front. Microbiol.* 11, 537290. doi: 10.3389/fmicb.2020.537290

Mack, D., Bartscht, K., Fischer, C., Rohde, H., de Grahl, C., Dobinsky, S., et al. (2001). Genetic and biochemical analysis of *Staphylococcus epidermidis* biofilm accumulation. *Methods Enzymol.* 336, 215–239. doi: 10.1016/S0076-6879(01) 36592-8

Mack, D., Rohde, H., Dobinsky, S., Riedewald, J., Nedelmann, M., Knobloch, J. K., et al. (2000). Identification of three essential regulatory gene loci governing expression of *Staphylococcus epidermidis* polysaccharide intercellular adhesin and biofilm formation. *Infect. Immun.* 68 (7), 3799–3807. doi: 10.1128/IAI.68.7.3799-3807.2000

Madea, B., Kreuser, C., and Banaschak, S. (2001). Postmortem biochemical examination of synovial fluid-a preliminary study. *Forensic Sci. Int.* 118 (1), 29-35. doi: 10.1016/S0379-0738(00)00372-8

Mansson, E., Bech Johannesen, T., Nilsdotter-Augustinsson, A., Soderquist, B., and Stegger, M. (2021). Comparative genomics of staphylococcus epidermidis from prosthetic-joint infections and nares highlights genetic traits associated with antimicrobial resistance, not virulence. *Microb. Genom.* 7 (2), 000504. doi: 10.1099/mgen.0.000504

McNary, S. M., Athanasiou, K. A., and Reddi, A. H. (2012). Engineering lubrication in articular cartilage. *Tissue Eng. Part B Rev.* 18 (2), 88-100. doi: 10.1089/ten.teb.2011.0394 Mundt, L. A. (2010). Graff's textbook of urinanalysis and body fluids. 2. Edition ed (Philadelphia, USA: Jones & Bartlett Learning).

Natsuhara, K. M., Shelton, T. J., Meehan, J. P., and Lum, Z. C. (2019). Mortality during total hip periprosthetic joint infection. *J. Arthroplasty.* 34 (7S), S337–SS42. doi: 10.1016/j.arth.2018.12.024

Neustadt, D., Caldwell, J., Bell, M., Wade, J., and Gimbel, J. (2005). Clinical effects of intraarticular injection of high molecular weight hyaluronan (Orthovise) in osteoarthritis of the knee: a randomized, controlled, multicenter trial. *J. Rheumatol.* 32 (10), 1928–1936.

Nguyen, H. T. T., Nguyen, T. H., and Otto, M. (2020). The staphylococcal exopolysaccharide PIA - biosynthesis and role in biofilm formation, colonization, and infection. *Comput. Struct. Biotechnol. J.* 18, 3324–3334. doi: 10.1016/j.csbj.2020.10.027

Ochi, T., Yonemasu, K., and Ono, K. (1980). Immunochemical quantitation of complement components of clq and C3 in sera and synovial fluids of patients with bone and joint diseases. *Ann. Rheum Dis.* 39 (3), 235-240. doi: 10.1136/ard.39.3.235

Olson, M. E., Todd, D. A., Schaeffer, C. R., Paharik, A. E., Van Dyke, M. J., Buttner, H., et al. (2014). The *Staphylococcus epidermidis agr* quorum-sensing system: signal identification, cross-talk, and importance in colonization. *J. Bacteriol.* 196 (19), 3482-3493. doi: 10.1128/JB.01882-14

Otto, M. (2018). Staphylococcal biofilms. *Microbiol. Spectr.* 6 (4), 10.1128/ microbiolspec.GPP3-0023-2018. doi: 10.1128/microbiolspec.GPP3-0023-2018

Patel, A., Pavlou, G., Mujica-Mota, R. E., and Toms, A. D. (2015). The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the united states. a study using the national joint registry dataset. *Bone Joint J.* 97-B (8), 1076–1081. doi: 10.1302/0301-620X.97B8.35170

Peffers, M. J., Smagul, A., and Anderson, J. R. (2019). Proteomic analysis of synovial fluid: current and potential uses to improve clinical outcomes. *Expert Rev. Proteomics.* 16 (4), 287–302. doi: 10.1080/14789450.2019.1578214

Perez, K., and Patel, R. (2015). Biofilm-like aggregation of *Staphylococcus epidermidis* in synovial fluid. *J. Infect. Dis.* 212 (2), 335–336. doi: 10.1093/infdis/jiv096

Pestrak, M. J., Gupta, T. T., Dusane, D. H., Guzior, D. V., Staats, A., Harro, J., et al. (2020). Investigation of synovial fluid induced *Staphylococcus aureus* aggregate development and its impact on surface attachment and biofilm formation. *PloS One* 15 (4), e0231791. doi: 10.1371/journal.pone.0231791

Rohde, H., Burandt, E. C., Siemssen, N., Frommelt, L., Burdelski, C., Wurster, S., et al. (2007). Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of staphylococcus epidermidis and staphylococcus aureus isolated from prosthetic hip and knee joint infections. *Biomater.* 28 (9), 1711–1720. doi: 10.1016/j.biomaterials.2006.11.046

Rohde, H., Burdelski, C., Bartscht, K., Hussain, M., Buck, F., Horstkotte, M. A., et al. (2005). Induction of *Staphylococcus epidermidis* biofilm formation *via* proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. *Mol. Microbiol.* 55 (6), 1883–1895. doi: 10.1111/j.1365-2958.2005.04515.x

Schwarz, E. M., Parvizi, J., Gehrke, T., Aiyer, A., Battenberg, A., Brown, S. A., et al. (2019). 2018 International consensus meeting on musculoskeletal infection: Research priorities from the general assembly questions. J. Orthop Res. 37 (5), 997– 1006. doi: 10.1002/jor.24293

Skovdal, S. M., Hansen, L. K., Ivarsen, D. M., Zeng, G., Buttner, H., Rohde, H., et al. (2021). Host factors abolish the need for polysaccharides and extracellular matrix-binding protein in staphylococcus epidermidis biofilm formation. *J. Med. Microbiol.* 70 (3), 00128. doi: 10.1099/jmm.0.001287

Srettabunjong, S., Thongphap, W., and Chittamma, A. (2019). Comparative and correlation studies of biochemical substances in vitreous humor and synovial fluid. *J. Forensic Sci.* 64 (3), 778–785. doi: 10.1111/1556-4029.13966

Staats, A., Burback, P. W., Eltobgy, M., Parker, D. M., Amer, A. O., Wozniak, D. J., et al. (2021). Synovial fluid-induced aggregation occurs across *Staphylococcus aureus* clinical isolates and is mechanistically independent of attached biofilm formation. *Microbiol. Spectr.* 9 (2), e0026721. doi: 10.1128/Spectrum.00267-21

Steixner, S. J. M., Spiegel, C., Dammerer, D., Wurm, A., Nogler, M., and Coraca-Huber, D. C. (2021). Influence of nutrient media compared to human synovial fluid on the antibiotic susceptibility and biofilm gene expression of coagulase-negative staphylococci in vitro. *Antibiotics (Basel)*. 10 (7), 790. doi: 10.3390/ antibiotics10070790

Timur, U. T., Jahr, H., Anderson, J., Green, D. C., Emans, P. J., Smagul, A., et al. (2021). Identification of tissue-dependent proteins in knee OA synovial fluid. *Osteoarthritis Cartilage.* 29 (1), 124–133. doi: 10.1016/j.joca.2020.09.005

Tumram, N. K., Bardale, R. V., and Dongre, A. P. (2011). Postmortem analysis of synovial fluid and vitreous humour for determination of death interval: A comparative study. *Forensic Sci. Int.* 204 (1-3), 186–190. doi: 10.1016/ j.forsciint.2010.06.007

Vuong, C., Kocianova, S., Yao, Y., Carmody, A. B., and Otto, M. (2004). Increased colonization of indwelling medical devices by quorum-sensing mutants of staphylococcus epidermidis *in vivo. J. Infect. Dis.* 190 (8), 1498–1505. doi: 10.1086/424487

Waldrop, R., McLaren, A., Calara, F., and McLemore, R. (2014). Biofilm growth has a threshold response to glucose *in vitro*. *Clin. Orthop Relat. Res.* 472 (11), 3305-3310. doi: 10.1007/s11999-014-3538-5

Weinberger, A., and Simkin, P. A. (1989). Plasma proteins in synovial fluids of normal human joints. *Semin. Arthritis Rheumatol.* 19 (1), 66–76. doi: 10.1016/0049-0172(89)90087-5

Weiser, J., Henke, H. A., Hector, N., Both, A., Christner, M., Buttner, H., et al. (2016). Sub-Inhibitory tigecycline concentrations induce extracellular matrix binding protein embp dependent staphylococcus epidermidis biofilm formation and immune evasion. *Int. J. Med. Microbiol.* 306 (6), 471–478. doi: 10.1016/jijmm.2016.05.015

Yazar, M., Sarban, S., Kocyigit, A., and Isikan, U. E. (2005). Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. *Biol. Trace Elem Res.* 106 (2), 123-132. doi: 10.1385/BTER:106:2:123

COPYRIGHT

© 2022 Stamm, Weißelberg, Both, Failla, Nordholt, Büttner, Linder, Aepfelbacher and Rohde. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

13

2. Hintergrund

2.1 Staphylococcus epidermidis und Endoprotheseninfektionen

Als Koagulase negatives Bakterium gehört *Staphylococcus epidermidis* zu den häufigsten Erregern von Endoprotheseninfektionen (Becker et al. 2020). Mit einer Infektionsrate von 1-3% im Rahmen endoprothetischer Arthroplastien (Lourtet-Hascoët et al. 2016), führt die derzeit wachsende Anzahl von Implantationen künstlicher Gelenke (Schwarz et al. 2019) zu einer steigenden Anzahl von Endoprotheseninfektionen. Die Notwendigkeit eines erneuten Gelenkersatzes im Rahmen einer Endoprotheseninfektion und die damit verbundene hohe Mortalität und Morbidität (Izakovicova et al. 2019; Natsuhara et al. 2019) unterstreichen dabei die Bedeutung der wissenschaftlichen Aufarbeitung der Pathophysiologie und der Erforschung daraus resultierender therapeutischer und präventiver Methoden im Kampf gegen Endoprotheseninfektionen.

Die Fähigkeit zur Biofilmbildung stellt dabei den bedeutendsten Pathogenitätsmechanismus von *S. epidermidis* dar (Both et al. 2021). Dabei führt die Produktion einer extrazellulären Matrix zu einer interzellulären Vernetzung und Aggregatbildung der Bakterien, wodurch ein vielschichtiges, dreidimensionales Konstrukt entsteht, das als Biofilm beschrieben wird. Die extrazelluläre Matrix kann aus Polysacchariden, wie dem polysaccharide intercellular adhesin (PIA), das vom *ica-ADBC* Genlocus codiert wird, und auch aus Proteinen, wie dem accumulation-associated protein (Aap), dem extracellular matrix binding protein (Embp) oder auch dem small basic protein (Sbp) bestehen. Außerdem kann durch das Autolysin E (AtlE) extrazelluläre DNA (eDNA) freigesetzt werden, die zur interzellulären Adhäsion beiträgt. (Decker et al. 2015; Montanaro et al. 2011; Christner et al. 2010; Rohde et al. 2005; Otto 2008)

Da jedoch die Verwendung konventioneller Wachstumsmedien einen relevanten Einfluss auf das Wachstumsverhalten von *S. epidermidis* hat und beispielsweise klinisch relevante *S. epidermidis* Stämme identifiziert werden konnten, die *in vitro* keine Biofilmbildung aufweisen (Rohde et al. 2007), deutet sich an, dass die Übertragbarkeit von bisherigen *in vitro* durchgeführten Experimenten auf das reale Infektionsgeschehen *in vivo* deutliche Limitationen aufweisen könnte. So konnte beispielsweise gezeigt werden, dass konventionelle Wachstumsmedien wie Tryptic Soy Broth (TSB) vor allem die Bildung PIAabhängiger Biofilme begünstigen, nicht jedoch die Bildung proteinabhängiger Biofilme (Christner et al. 2012), die hingegen im klinischen Kontext ebenfalls eine wichtige Rolle spielen könnten (Rohde et al. 2007). Durch die Substitution von TSB mit Serum oder Tigecyclin jedoch konnte die Produktion von *embp* induziert werden (Christner et al. 2016) Weiser et al. 2016) und damit die Relevanz PIA-unabhängiger Biofilme in Anwesenheit von host factors gezeigt werden. Auch konnte nachgewiesen werden, dass die Anwesenheit von Serum einen signifikanten Einfluss auf das Transkriptom von *S. epidermidis* hat (Both et al. 2021) und auch die Expression von *embp* beeinflusst (Christner et al. 2010; Weiser et al. 2016). Die Wahl des Mediums zur Anzucht bakterieller Kulturen zur Erforschung von Endoprotheseninfektionen spielt also eine bedeutende Rolle, diejenigen Pathomechanismen zu identifizieren, die tatsächlich *in vivo* eine Rolle spielen.

Da Mikroorganismen im Rahmen einer Endoprotheseninfektion insbesondere mit der Synovialflüssigkeit des Gelenks in Kontakt kommen, bietet sich die Nutzung von Gelenkflüssigkeit als Wachstumsmedium für die Forschung an. Jedoch ist diese nur sehr begrenzt verfügbar (Gilbertie et al. 2019; Steixner et al. 2021), weshalb in der Forschung vor allem auf tierische Gelenkflüssigkeit zurückgegriffen wird (Gupta et al. 2021; Perez und Patel 2015; Ibberson et al. 2016; Pestrak et al. 2020; Staats et al. 2021) oder Synovialflüssigkeit verdünnt verwendet wird (Knott et al. 2021; Staats et al. 2021; Steixner et al. 2021). Dabei hat die Ausführung von Experimenten in Gelenkflüssigkeit jedoch einen deutlichen Einfluss auf die bakterielle Aggregation (Bidossi et al. 2020) und Bildung adhärenter Biofilme (Barrett und Atkins 2014; Gbejuade et al. 2015) gezeigt.

Ziel dieser Studie war es daher, eine künstliche Gelenkflüssigkeit zu etablieren, die die infektionsrelevanten Wachstumsbedingungen *in vivo* realitätsgetreu simulieren kann und zugleich in größeren Mengen verfügbar ist, um diejenigen Eigenschaften von *S. epidermidis* zu erforschen, die für die Pathogenese von Endoprotheseninfektionen relevant sind.

3. Ergebnisse

3.1 Entwicklung einer künstlichen Gelenkflüssigkeit

Die Grundlage der Entwicklung der künstlichen Gelenkflüssigkeit, im Folgenden artificial synovial fluid (ASF) genannt, beruht auf der Annahme, dass die menschliche Gelenkflüssigkeit ein Dialysat des menschlichen Blutplasmas ist und somit die qualitative Zusammensetzung der Synovialflüssigkeit prinzipiell der des Plasmas gleicht (Decker et al. 1959; Hui et al. 2012; Waldrop et al. 2014). In Anbetracht der genauen Konzentrationen der einzelnen Bestandteile der Synovialflüssigkeit (siehe Tabelle 1), wurde eine 50%ige Plasma-Pools Verdünnung eines hergestellt. Damit konnte eine Immunglobulinkonzentration entsprechend des Literaturwertes von 50% des Plasmawertes erreicht werden. Die übrigen Proteinkonzentrationen sollten damit zu etwa gleichen Anteilen über oder unterhalb der Zielkonzentrationen liegen. Die Verdünnung erfolgte mit der isotonen Elektrolytlösung Jonosteril ® (Fresenius Kabi, Bad Homburg, Deutschland), deren Elektrolytkonzentrationen denen des Plasmas entsprechen. Zusätzlich erfolgte eine Glucosesubstitution entsprechen des Referenzbereichs (siehe Tabelle 1). (Abbildung 1)

	Human synovial fluid ^{a,b}	ASF ^c
Electrolytes		
- Sodium	138.11 mmol/L	144 mmol/L
- Potassium	5.48 mmol/L	3.5 mmol/L
- Calcium	2.39 mmol/L	1.8 mmol/L
- Chloride	108.41 mmol/L	97.9 mmol/L
- Magnesium	1.47 mg/dl	0.94 mmol/L
Glucose	60–95 mg/dl	79 mg/dl
pH	7.31-7.64	7.52
Total protein	19–28 g/L	28 g/L
Albumin	12 mg/ml	16.1 mg/ml
Albumin	56%	60.2%
α_1 -Globulin	8%	3.9%
α ₂ -Globulin	7%	8.8%
β-Globulin	11%	>16.3%
γ-Globulin	18%	<10.8%
Complement factor C3	Not available	39.2 mg/dl
Complement factor C4	Not available	6.8 mg/dl
IgA	approx. ½ plasma concentration	1.11 g/L
IgG	approx.½ plasma concentration	3.62 g/L
IgM	approx. ½ plasma concentration	0.38 g/L
IgE	approx. ½ plasma concentration	21.5 UI
Uric acid	3.0-7.0 mg/dl	1.7 mg/dl
Lactate	9–16 mg/dl	4.94 mg/dl
Creatinine	1.06 mg/dl	0.19 mg/dl

Tabelle 1: Vergleich von ASF mit der Zusammensetzung menschlicher Gelenkflüssigkeit

^a(Decker et al. 1959; Cummings und Nordby 1966; Levick 1981; Madea et al. 2001; Mundt et al. 2011; Hui et al. 2012; Srettabunjong et al. 2019). ^bSynovialflüssigkeit wurde hauptsächlich post mortem aus Gelenken ohne Gelenkerkrankung entnommen. ^cASF wurde nach dem Einfrieren, Lagerung bei -80°C und Auftauen analysiert. Quelle: Stamm et al. 2022

Aus der biochemischen Analyse (Tabelle1) geht eine zufriedenstellende Übereinstimmung der Zusammensetzung der ASF mit der menschlichen Synovialflüssigkeit hervor, um als Modell für Endoprotheseninfektionen Anwendung zu finden. Diese kann in flüssigem Stickstoff eingefroren werden und anschließend bei -80°C gelagert werden.

Abbildung 1: Herstellung von ASF. Quelle: Stamm et al. 2022

3.2 Der Einfluss von ASF auf das Wachstumsverhalten, die Biofilmbildung, Zellaggregation und Genexpression von *Staphylococcus epidermidis*

In der weiteren Untersuchung des Einflusses von ASF auf das Wachstumsverhalten von *S. epidermidis* wurden vergleichend einerseits *S. epidermidis* 1457, ein polysaccharide intercellular adhesin (PIA)-produzierender Stamm, der in TSB einen Biofilm bildet, sowie seine PIA-negative Mutante 1457-M10, die in TSB keinen Biofilm bildet, untersucht. In der Wachstumsanalyse zeigte sich ein insgesamt reduziertes bakterielles Wachstum beider Stämme in ASF gegenüber der Anzucht in TSB. (Abbildung 2A)

Zur genaueren Untersuchung des Wachstumsverhaltens unter statischen Bedingungen erfolgten die Analyse in Form von Biofilmtests in 96-well Mikrotiterplatten sowie die mikroskopische Untersuchung mittels konfokaler Laserscanning Mikroskopie (CLSM) zur weiteren phänotypischen Untersuchung.

Während *S. epidermidis* 1457 in TSB einen robusten adhärenten Biofilm im Biofilmtest bildet, konnte dies bei statischer Anzucht der PIA-negativen Mutante 1457-M10 nicht

beobachtet werden (Abbildung 2B). Diese Beobachtung stimmt auch mit den mikroskopischen Aufnahmen überein (Abbildung 2C).

Im Vergleich dazu zeigt sich jedoch bei der Anzucht in ASF ein deutlicher Unterschied zum Wachstum in TSB. *S. epidermidis* 1457 zeigt im Biofilmtest eine signifikant ($p \le 0,001$; ungepaarter t-Test) geringere Biofilmproduktion, während für *S. epidermidis* 1457-M10 kein Unterschied zu sehen ist. (Abbildung 2B) In mikroskopischen Aufnahmen zeigt sich hingegen, dass *S. epidermidis* 1457-M10 sehr wohl oberflächenadhärente Aggregate bildet und die Wachstumshöhe des Stammes in ASF signifikant (p = 0,0032; ungepaarter t-Test)

Abbildung 2: Phänotypische Analyse von *S. epidermidis* 1457 und 1457-M10 in TSB und ASF. **(A)** Wachstumsanalyse von *S. epidermidis* 1457 und 1457-M10 in TSB und ASF. **(B)** Analyse der Biofilmbildung im Mikrotiter Assay. **(C)** Konfokale Laserscanning Mikroskopie Aufnahmen nach 24h statischem Wachstum. **(D)** Quantitative Analyse der Biofilmhöhe (linkes Diagramm) und Oberflächenunebenheit (rechtes Diagramm). Quelle: Stamm et al. 2022

höher ausgeprägt ist (38,09 μ m) als in TSB (22,68 μ m; Abbildung 2D). Auch die Anzucht von *S. epidermidis* 1457 in ASF zeigt unter mikroskopischer Betrachtung einen signifikant (p = 0,002; ungepaarter t-Test) höheren Biofilm in ASF (52,3 μ m) als in TSB (38,4 μ m).

Zudem konnte auch eine Veränderung der Oberflächenbeschaffenheit der statischen Kultur von *S. epidermidis* 1457-M10, mit einer signifikant (p = 0,008; ungepaarter t-Test) höheren Oberflächenunebenheit bei Anzucht in ASF gegenüber dem Wachstum in TSB (Abbildung 2D), beobachtet werden. Für *S. epidermidis* 1457 konnte diesbezüglich jedoch kein signifikanter Unterschied verzeichnet werden.

In der Zusammenschau dieser Daten deutet sich an, dass das Bakterienwachstum in ASF einerseits die Biofilmbildung des PIA-produzierenden Stammes *S. epidermidis* 1457 reduziert, andererseits jedoch das oberflächenadhärente Wachstum der PIA-negativen Mutante *S. epidermidis* 1457-M10 induziert.

Da die Fähigkeit zur Biofilmbildung die Ausbildung interzellulär verbundener Bakterienzellaggregate voraussetzt, erfolgte daraufhin eine Analyse der Größe der gebildeten Zellaggregate sowie die Auswertung des Anteils an Zellen, die in Zellaggregaten formiert wachsen.

Nach 24 Stunden statischen Wachstums in TSB konnte für *S. epidermidis* 1457 die Bildung signifikant (p = 0,0032) größerer Zellaggregate (durchschnittliche Zellzahl pro Aggregat (n) = 4,9) im Vergleich mit der Mutante 1457-M10 (durchschnittliche Zellzahl pro Aggregat (n) = 3,2) beobachtet werden. Hingegen hat sich bei der Anzucht in ASF gezeigt, dass sowohl die statische Anzucht von *S. epidermidis* 1457 (durchschnittliche Zellzahl pro Aggregat (n) = 16,9) als auch von *S. epidermidis* 1457-M10 (durchschnittliche Zellzahl pro Aggregat (n) = 16,6) zur Ausbildung makroskopisch sichtbarer Zellaggregate führt, deren

Abbildung 3: Analyse der Aggregatbildung von *S. epidermidis* 1457 und 1457-M10 in TSB und ASF. **(A)** Darstellung der Größe von Zellaggregaten im Violinen-Plot. **(B)** Quantifizierung der in Zellaggregaten organisierten Zellen im Verhältnis zur Gesamtzellzahl. Quelle: Stamm et al. 2022

durchschnittliche Zellzahl sich unter den beiden Stämmen nicht signifikant voneinander unterscheidet (p = 0,891) (Abbildung 3A).

Die Untersuchung des Anteils von Zellen, die in einem Zellcluster (Aggregate \geq 5 Zellen) organisiert waren, zeigte bei Wachstum in TSB, dass in *S. epidermidis* 1457 Kulturen signifikant (p = 0,0106) mehr Bakterien in Zellclustern organisiert waren (durchschnittlicher Anteil in Clustern organisierter Zellen = 33,99%) als in den Kulturen der Mutante 1457-M10 (durchschnittlicher Anteil in Clustern organisierter Zellen = 14,61%) (Abbildung 3B).

Bei Anzucht in ASF hingegen zeigten beide Stämme einen viel höheren Anteil von in Zellaggregaten organisierten Zellen als in den jeweiligen Kulturen nach Anzucht in TSB. Zwischen den beiden Stämmen *S. epidermidis* 1457 (durchschnittlicher Anteil in Clustern organisierter Zellen = 79,9%) und *S. epidermidis* 1457-M10 (durchschnittlicher Anteil in Clustern organisierter Zellen = 73,9%) hingegen gab es keine signifikanten Unterschiede bei der Anzucht in ASF (p = 0,788). (Abbildung 3B)

Zusammenfassend lässt sich aus diesen Daten schließen, dass das Wachstum in ASF zu einer PIA-unabhängigen Induktion der Zellaggregation führt.

Im Folgenden wurde zur weiteren Analyse des Einflusses des Wachstumsmediums ASF im Vergleich zu TSB auf die Biofilmbildung anhand von qPCRs das Expressionsmuster für die Biofilmbildung und -regulation relevanter Gene analysiert (Abbildung 4). Untersucht wurde dabei die Expression der Gene *icaA*, *embp*, *aap*, *atlE* und *agr* nach jeweils 6 Stunden und 24 Stunden Wachstum von *S. epidermidis* 1457.

Abbildung 4: Analyse der Expression für die Biofilmbildung relevanter Gene in *S. epidermidis* 1457 und 1457-M10 in TSB und ASF. Quelle: Stamm et al. 2022

Interessanterweise zeigte sich dabei nach 24 Stunden Wachstum in ASF eine signifkant stärkere Expression der Gene *icaA*, *embp*, *aap* und *atlE* gegenüber dem Wachstum in TSB. Für *embp* und *atlE* konnte dabei bereits nach 6 Stunden Wachstum eine erhöhte Expression in ASF detektiert werden, während für *icaA* noch kein Unterschied beobachtet

werden konnte. *Aap* hingegen zeigte nach 6 Stunden Wachstum in ASF zunächst eine geringe Expression gegenüber der Anzucht in TSB. Dahingegen konnte für *agr*, das als Master-Regulator der Staphylokokkenvirulenz fungiert, eine geringere Expression in ASF sowohl nach 6, als auch nach 24 Stunden gemessen werden.

3.3 Untersuchung des Einflusses von ASF auf die Biofilmbildung und Entstehung von Zellaggregaten durch *S. epidermidis* Isolate aus Endoprotheseninfektionen

Da bisherige Untersuchungen verschiedener *S. epidermidis* Isolate eine deutliche Variabilität hinsichtlich der Fähigkeit zur Biofilmbildung gezeigt haben (Rohde 2007), folgte die Untersuchung einer Sammlung von n = 23 *S. epidermidis* Isolaten, die aus Endoprotheseninfektionen gewonnen wurden (Both et al. 2021), hinsichtlich der Fähigkeit zur Biofilmbildung in ASF und vergleichend in TSB.

Insgesamt zeigten sich sowohl zwischen den beiden Medien, als auch zwischen den einzelnen Isolaten, signifikante Unterschiede in der quantitativen Biofilmbildung. So konnten für 17 der 23 Isolate signifikante Unterschiede identifiziert werden, wovon 12 der 17 Isolate ein signifikant stärkeres Wachstum in ASF zeigten und die restlichen 5 Isolate eine signifikant geringere Biofilmbildung aufwiesen (Abbildung 5). Eine geringere Biofilmbildung in ASF konnte vor allem in denjenigen Isolaten detektiert werden, die wiederum in TSB eine besonders starke Biofilmbildung aufwiesen.

Abbildung 5: Phänotypische Analyse von *S. epidermidis* Isolaten aus Endoprotheseninfektionen in TSB und ASF. Analyse der Biofilmbildung im Mikrotiter Assay mit Vermerk über das Vorkommen der Gene *ica* und *aap*. Quelle: Stamm et al. 2022

4. Diskussion

4.1 ASF als Modell einer menschlichen Synovialflüssigkeit

Bisherige Experimente, zur Forschung an *S. epidermidis* und dessen Phänotypen in Zusammenhang mit Endoprotheseninfektionen, wurden fast ausschließlich in gängigen Labormedien wie TSB durchgeführt (Mack et al. 2001). Dies hat die Reproduzierbarkeit von Forschungsergebnissen ermöglicht und so konnten eine Reihe phänotypischer und genetischer Eigenschaften identifiziert werden, die mit dem invasiven Wachstumsverhalten von *S. epidermidis* assoziiert sind (Otto 2018). Auch konnte durch die Testung genetisch definierter Mutanten im Vergleich zu isogenen Wildtypen im Tiermodell gezeigt werden, dass Mechanismen, die unter künstlichen Wachstumsbedingungen *in vitro* identifiziert wurden, auch *in vivo* relevant sind (Nguyen et al. 2020).

Dennoch kommt der Durchführung von Experimenten in Modellen, die die *in vivo* Wachstumsbedingungen simulieren, eine wachsende Bedeutung zu. So konnte beobachtet werden, dass die Anwesenheit von Serum einen starken Einfluss auf die Expressionsmuster von *S. epidermidis* und die Regulation der Biofilmbildung hat (Christner et al. 2010; Both et al. 2021). Auch die Anwesenheit von Synovialflüssigkeit hat durch Induktion der Aggregatbildung einen relevanten Einfluss auf das Wachstumsverhalten von Staphylokokken (Perez und Patel 2015; Bidossi et al. 2020; Staats et al. 2021). Diese Erkenntnisse unterstreichen die Bedeutung realitätsgetreuer Wachstumsmodelle zur Erforschung von Endoprotheseninfektionen.

Zu diesem Zweck wurde ein einfaches Protokoll zur Herstellung einer künstlichen Gelenkflüssigkeit namens ASF (artificial synovial fluid) entwickelt.

In der biochemischen Analyse der ASF zeigte sich insgesamt eine gute Übereinstimmung der Zusammensetzung im Vergleich mit Literaturwerten menschlicher Gelenkflüssigkeit, wobei jedoch einige Abweichungen zu verzeichnen sind. Die Konzentrationen von Magnesiumionen liegt über dem Literaturwert für menschliche Gelenkflüssigkeit, während die Werte für Kalium und Calcium unterhalb des Zielwertes liegen. Zu beachten ist dabei, dass die Literaturwerte aus Studien stammen, die überwiegend post mortem akquirierte Gelenkflüssigkeit untersucht haben (Madea et al. 2001; Srettabunjong et al. 2019). In forensischen Studien konnte jedoch festgestellt werden, dass es im Rahmen des Zellzerfalls post mortem zu einer Veränderung der Konzentrationen der Bestandteile der Gelenkflüssigkeit kommt. So steigt beispielsweise die Kaliumkonzentrationen ab dem Zeitpunkt des Todes linear an (Tumram et al. 2011), weshalb vermutet werden kann, dass die physiologische Kaliumkonzentration zu Lebzeiten unter dem berichteten Literaturwert liegen dürfte und möglicherweise auch innerhalb des Referenzbereichs für Serum, zwischen 3,5 und 5,0 mmol/L, liegen könnte (Srettabunjong et al. 2019; Tumram et al. 2011; Hahn 2018).

Neben den Elektrolytkonzentrationen zeigen sich auch Abweichungen für die Proteinkonzentrationen. Mit einer Gesamtproteinkonzentration von 2,8g/dL besitzt ASF vermutlich eine etwas zu hohe Proteinkonzentration, wenn man bedenkt, dass in Studien aus post mortem gesammelten Proben, sowie Proben von Gelenkflüssigkeiten klinisch gesunder Probanden, zwischen 1,3 und 2,8 g/dL variierende Messwerte ermittelt werden konnten mit einem auf die Probenanzahl genormten Durchschnittswert von 1,49 g/dL (Weinberger und Simkin 1989). Dabei konnten vor allem in den post mortem gesammelten Proben höhere Proteinkonzentrationen gemessen werden (Weinberger und Simkin 1989), was vermuten lässt, dass sich der tatsächliche Wert einer physiologischen Gelenkflüssigkeit eher im unteren Bereich des Referenzrahmens befindet.

Da abgesehen von der Untersuchung post mortem gesammelter Gelenkflüssigkeit vor allem pathologisch veränderte Synovialflüssigkeit untersucht wurde, gibt es zu einigen Bestandteilen lediglich Daten aus pathologisch veränderten Gelenken. So stammen auch die Konzentrationsangaben der Komplementfaktoren aus der Untersuchung pathologisch veränderter Gelenkflüssigkeit (Ochi et al. 1980).

Abgesehen davon ist auch zu bedenken, dass in der Gelenkflüssigkeit gewebsspezifische Proteine vorkommen, die sich im Serum nicht finden lassen. So sind Hyaluronsäure und Lubricin beispielsweise nicht Bestandteil der ASF (Anderson und Anderson 2002; Hui et al. 2012; McNary et al. 2012).

In der Zusammenschau kann ASF also lediglich näherungsweise als Modell der menschlichen Gelenkflüssigkeit angesehen werden.

Da ASF jedoch einer gesunden menschlichen Gelenkflüssigkeit nachempfunden wurde, der Einbau künstlicher Gelenke jedoch insbesondere in Zusammenhang mit vorerkrankten Gelenken steht, stellt ASF nicht unbedingt die Zusammensetzung der Synovialflüssigkeit eines Gelenks dar, das mit einer Endoprothese versorgt werden würde. Da die Veränderungen eines Gelenks in Folge von Erkrankungen wie Osteoarthritis oder Rheumatoider Arthritis, aber auch in Folge operativer Eingriffe und durch das Einbringen künstlicher Materialien vielfältig sind und die Datenlage in Bezug auf die genauen Auswirkungen auf die Zusammensetzung der Gelenkflüssigkeit sehr begrenzt ist (Yazar et al. 2005; Hu et al. 2006; Balakrishnan et al. 2014; Lee et al. 2020; Timur et al. 2021), erfolgte die Entwicklung eines Modells beruhend auf der physiologischen Gelenkflüssigkeit.

4.2 Der Einfluss von ASF auf das Wachstumsverhalten, die Biofilmbildung, Formation von Zellaggregaten und Genexpressionsmuster

Zur genaueren Begutachtung der Verwendung von ASF gegenüber TSB, als konventionelles Labormedium, in Bezug auf die Erforschung der Pathogenität von *S. epidermidis*, wurden die phänotypischen Eigenschaften bei Anzucht in TSB im Vergleich zu ASF anhand von Biofilmtests untersucht. Insbesondere konnte hierbei beobachtet werden, dass der PIA-positive Stamm *S. epidermidis* 1457 in ASF eine signifikant geringere Biofilmbildung aufweist. Dass für 1457-M10 sowohl in TSB als auch ASF im Biofilmtest kein Biofilm nachgewiesen werden kann, während dies in der mikroskopischen Analyse sehr wohl der Fall war, könnte mit der Verwendung unterschiedlicher Adhärenzoberflächen und möglicherweise unterschiedlich starken Scherkräften beim Waschvorgang von 96-well Mikrotiterplatten im Vergleich zu cover-slips erklärt werden.

So konnte unter mikroskopischer Analyse einer statischen Anzucht von 1457-M10 in ASF sehr deutlich die Formation großer Zellaggregate beobachtet werden.

Die Anzucht sowohl der PIA-positiven, als auch der PIA-negativen Mutante in ASF wirkte sich gegenüber der Anzucht in TSB mit einer Zunahme der bakteriellen Wachstumshöhe aus. Bei 1457 kann man auch von einer Zunahme der Höhe des gebildeten Biofilms sprechen. Auch führte die Anzucht in ASF sowohl zu einer Zunahme der absoluten Anzahl der Bakterien pro Zellaggregat, als auch zu einer Zunahme des Anteils der Zellen, die in einem Zellaggregat formiert waren. Insgesamt lässt sich daraus schließen, dass die Anzucht in ASF, unabhängig von der Fähigkeit der jeweiligen Stämme zur Produktion von PIA (einem der wichtigsten interzellulären Adhesine in protein-unabhängigen Biofilmen), eine Induktion der Bildung von Zellaggregaten zur Folge hat. Während sich beim PIA-positiven Stamm bei Anzucht in ASF gegenüber TSB lediglich Parameter des Biofilms verändern, so zeigt der PIA-negative Stamm 1457-M10 in ASF erstmals überhaupt die Bildung großer Zellaggregate, die im Gesamtkontext als Biofilm interpretiert werden können.

Diese Ergebnisse decken sich auch mit den Erkenntnissen, dass die Anwesenheit von tierischer Synovialflüssigkeit für *S. epidermidis* Stämme die Bildung von Zellaggregaten fördert. Insbesondere gilt dies für diejenigen Stämme, die im konventionellen Labormedium TSB nur eine geringe Biofilmbildung aufweisen (Perez und Patel 2015), wie zuvor auch für *Staphylococcus aureus* in menschlicher Synovialflüssigkeit beobachtet werden konnte (Dastgheyb et al. 2015).

Die Untersuchung in ASF unterstreicht dabei insbesondere die Bedeutung PIAunabhängiger Mechanismen im Rahmen der Biofilmbildung und Pathogenität von *S*. *epidermidis*, die eine relevante Rolle für die invasiven und pathogenen Eigenschaften von *S. epidermidis* zu haben scheinen (Rohde et al. 2005; Rohde et al. 2007; Skovdal et al. 2021). Die Annahme, dass host factors eine bedeutende Rolle bei der Induktion des pathogenen Phänotyps von *S. epidermidis* innehaben, wird ebenfalls durch die Beobachtungen dieser Studie unterstützt. Besonders auch die in ASF verstärkte Biofilmbildung von *S. epidermidis* Isolaten aus Endoprotheseninfektionen, die in TSB eine sehr geringe Biofilmbildung aufweisen, deutet darauf hin, dass in ASF vorkommende host factors ein regulatorisches Netzwerk beeinflussen könnten, das mit dem pathogenen Phänotyp von *S. epidermidis* verbunden ist.

Dabei konnte festgestellt werden, dass auf genregulatorischer Ebene die Expression von Genen signifikant in Anwesenheit von ASF nach 24 Stunden erhöht ist, die für interzelluläre Adhesine codieren. *Agr*, der Master-Regulator der Staphylokokkenvirulenz, zeigte sich dahingegen während des Wachstums in ASF signifikant geringer exprimiert. Diese Erkenntnis ist zu vereinbaren mit bisherigen Beobachtungen, dass in invasiven *S. epidermidis* Isolaten für gewöhnlich eine unterschiedliche Expression von *agr* verzeichnet werden kann (Vuong et al. 2004; Olson et al. 2014; Harris et al. 2017).

Zusammenfassend kann ASF als zusätzliches Modell gesehen werden, infektionsrelevante Wachstumsbedingungen einer Endoprotheseninfektion zu simulieren und sowohl die Pathogenese von Infektionen ausgelöst durch *S. epidermidis*, als auch durch weitere biofilmbildende Mikroorganismen, zu entschlüsseln, um die Entwicklung neuer therapeutischer und präventiver Maßnahmen im Kampf gegen Endoprotheseninfektionen voranzutreiben.

5. Zusammenfassung Deutsch

In der modernen Medizin sind Endoprotheseninfektionen ein wachsendes Problem. Als einer der wichtigsten Haupterreger ist *Staphylococcus epidermidis* im Fokus wissenschaftlicher Bestrebungen, die durch diesen Mikroorganismus hervorgerufenen Infektionen und die damit einhergehenden Pathomechanismen zu entschlüsseln, die dabei eine Rolle spielen.

Während *S. epidermidis* ein physiologischer Bestandteil der menschlichen Haut- und Schleimhautflora ist, tritt dieses Bakterium ebenfalls im Rahmen nosokomialer, opportunistischer Infektionen als Pathogen auf. Als wichtigster Pathogenitätsfaktor konnte dabei die Fähigkeit zur Biofilmbildung identifiziert werden, die insbesondere im Rahmen von Infektionen künstlicher, in den menschlichen Körper implantierter, Materialien eine Rolle spielen. Da diese Infektionen besonders schwierig zu eradizieren sein können und auch häufig den Wechsel implantierter Materialien umfassen, besteht ein besonderer Fokus moderner Forschung darin, die Pathomechanismen derartiger Infektionen und der damit verbundenen Biofilmbildung zu entschlüsseln, um neue therapeutische und auch präventive Maßnahmen im Kampf gegen Endoprotheseninfektionen zu entwickeln.

Bisherige Forschungsergebnisse, die unter Nutzung konventioneller Labormedien entstanden sind, deuten eine begrenzte Übertragbarkeit auf das tatsächliche Infektionsgeschehen in vivo an. So konnte bereits in verschiedenen Studien gezeigt werden, dass die Bakterienphysiologie und die Biofilmbildung relevant durch die Wahl des Wachstumsmediums beeinflusst werden können. Besonders konnte in Anwesenheit von Plasmabestandteilen oder auch tierischer Gelenkflüssigkeit im Vergleich mit Labormedien wie TSB beobachtet werden, dass die Fähigkeit zur Aggregatbildung und Biofilmbildung relevant beeinflusst wird. Daher präsentiert dieses Paper ein neues Modell einer künstlichen Gelenkflüssigkeit, das die Wachstumsbedingungen im Rahmen periprothetischer Infektionen in vivo simulieren soll und dabei gleichzeitig in größeren Mengen herstellbar und aus praktischen Gründen lagerbar sein sollte. Unter Berücksichtigung bisheriger Beschreibungen der menschlichen Gelenkflüssigkeit als Dialysat des Plasmas, wurde ein Medium auf Basis von Plasma hergestellt, das mit Jonosteril ® verdünnt und an den Glucosewert der Gelenkflüssigkeit angepasst wurde. Das so hergestellte Medium wird im Folgenden als artificial synovial fluid (ASF) bezeichnet und kann nach dem Einfrieren bei -80°C gelagert werden.

Zur Untersuchung der Auswirkung von ASF auf das bakterielle Wachstum und die Biofilmbildung wurden vergleichend in ASF und TSB (Tryptic Soy Broth) die Stämme *Staphylococcus epidermidis* 1457, ein gut charakterisierter, PIA-positiver Stamm, der in TSB einen Biofilm bildet, sowie *S. epidermidis* 1457-M10, die isogene, PIA-negative Mutante, anhand von Wachstumskurven, 96-well Mikrotiter Biofilmassays und konfokaler Mikroskopie untersucht.

Während *S. epidermidis* 1457-M10 in TSB keinen Biofilm bildet, konnte interessanterweise in ASF eine ausgeprägte, auch makroskopisch sichtbare, Aggregatbildung beobachtet werden, wobei die Zellzahl der Aggregate vergleichbar mit der von *S. epidermidis* 1457 nach Anzucht in ASF war. Auch zeigte sich in der Untersuchung von n = 23 klinisch relevanten *S. epidermidis* Isolaten aus periprothetischen Infektionen, deutlich eine vermehrte Biofilmbildung in ASF für diejenigen Isolate, die in TSB kaum Biofilmbildung aufweisen. Umgekehrt zeigte sich für Isolate mit ausgeprägter Biofilmbildung in TSB kaum Biofilmbildung in ASF. Zudem zeigte sich in der Analyse der Expressionsmuster von 1457 und 1457-M10 in ASF eine gegenüber TSB verstärkte Expression biofilmrelevanter Gene, die für interzelluläre Adhesine codieren. Auch die Transkription von *atlE*, das vor allem für die Freisetzung extrazellulärer DNA verantwortlich ist, wurde bei Anzucht in ASF induziert.

In der Zusammenschau zeichnet sich vor allem ab, dass die Anwesenheit von ASF eine PIA-unabhängige interzelluläre Adhäsion induziert, die zur Aggregation und Biofilmbildung führt. Dies konnte insbesondere anhand von *S. epidermidis* Stämmen gezeigt werden, die im konventionellen Medium TSB eine nur geringe Biofilmbildung aufweisen. Damit zeigt sich, dass die Anwesenheit von ASF sowohl auf der Ebene des Phänotyps, als auch auf genregulatorischer Ebene, einen relevanten Einfluss hat, der die Bedeutung neuer realitätsgetreuer Wachstumsmedien in der Untersuchung der Pathomechanismen von *S. epidermidis*, aber auch anderer Mikroorganismen, für die Entwicklung neuer therapeutischer und präventiver Strategien im Kampf gegen Endoprotheseninfektionen und andere Biofilm-assoziierte Infektionen unterstreicht.

6. Zusammenfassung Englisch

Prosthetic joint infections (PJI) have become an increasing problem for modern medicine. Being one of the major pathogens in PJI, *Staphylococcus epidermidis* has been subject to medical research, examining related infections and the causative pathomechanisms.

Apart from the commensal lifestyle on human skin, the main causative of the pathological lifestyle of *S. epidermidis* has been identified as the ability to form biofilms, adhering especially to abiotic surfaces like implanted medical devices. Provoking late onset infections, eradicating a *S. epidermidis* infection can be a challenging task, often requiring the exchange of medical implants. Gaining detailed information about relevant infection mechanisms in order to develop new therapeutic and preventive measures has therefore become a major scientific goal.

Previous studies, carried out in conventional laboratory media, show certain limitations concerning the transferability to *in vivo* infection sites. In contrast to using conventional laboratory media, recent studies have shown that for example animal joint fluid can affect the bacterial ability to form aggregates and when exposed to host factors, bacterial biofilm formation is relevantly altered. Following the implications of these experiments, the aim of this study was to develop a new laboratory growth model, resembling *in vivo* nutritious and general growth conditions, while also being able to be obtained in larger amounts and stored for more practicability. Considering literature descriptions of synovial fluid as a dialysate of plasma, we developed a plasma based fluid, diluted with Jonosteril®, that was adjusted to the synovial fluid glucose concentrations and can be frozen and stored at -80°C.

Using this model resembling human joint fluid, called artificial synovial fluid (ASF), the effect on bacterial growth has been studied in comparison to TSB (tryptic soy broth), a conventional laboratory medium, using 96-well microtiter biofilm tests, growth analysis and confocal microscopy examining *S. epidermidis* 1457, a well-characterized polysaccharide intercellular adhesin (PIA)-positive strain, known to be capable of biofilm formation in TSB and the isogenic, PIA-negative mutant *S. epidermidis* 1457-M10.

Intriguingly, while not being able to form a biofilm in TSB, *S. epidermidis* 1457-M10 appeared to form large, macroscopically visible, bacterial aggregates in ASF, showing the same size in bacterial count as *S. epidermidis* 1457 aggregates when grown in ASF. Also the examination of n = 23 *S. epidermidis* strains, isolated from prosthetic joint infections, showed induced biofilm formation for those strains, that only show poor biofilm formation in TSB. Meanwhile strains that show strong biofilm formation in TSB show rather poor biofilm formation in ASF. Examining genetic expression profiles, concerning biofilm relevant genes in *S. epidermidis* 1457-M10, genes coding for proteins relevant for intercellular

adhesion showed significantly higher expression profiles when cultivated in ASF compared to TSB. Also transcription of *atlE*, responsible for DNA release, was induced in cultures grown in ASF.

Overall, ASF seems to induce PIA-independent bacterial aggregation and biofilm formation, especially relevant in *S. epidermidis* strains, that show poor biofilm formation in conventional laboratory media TSB. Therefore, ASF seems to induce changes relevant for gene expression and phenotypic appearance, underlining the importance of new realistic growth media in order to understand *S. epidermidis* and also other microorganisms pathomechanisms for future therapeutic and preventive strategies combating prosthetic joint infections and other biofilm-associated infections.

7. Eigenanteilserklärung

Die Promovendin war im Rahmen der vorgelegten Publikation insbesondere für die literarische Aufarbeitung der Zusammensetzung der menschlichen Gelenkflüssigkeit, sowie mit der Erarbeitung des Protokolls zur Herstellung der künstlichen Gelenkflüssigkeit betraut.

Die Promovendin war mit den Wachstumsanalysen von *S. epidermidis* 1457 und 1457-M10 in TSB und ASF betraut. Die weiteren Untersuchungen in Form der Biofilmtests, qPCR-Analysen und mikroskopischen Untersuchungen der vorgelegten Publikation wurden von S. Weißelberg durchgeführt und ausgewertet.

Außerdem hat die Promovendin anteilig des Schreiben des Manuskripts (mit S. Weißelberg und H. Rohde) übernommen.

8. Literaturverzeichnis

Anderson, N. Leigh; Anderson, Norman G. (2002): The human plasma proteome: history, character, and diagnostic prospects. In: *Molecular & cellular proteomics : MCP* 1 (11), S. 845–867. DOI: 10.1074/mcp.R200007-MCP200.

Balakrishnan, Lavanya; Bhattacharjee, Mitali; Ahmad, Sartaj; Nirujogi, Raja Sekhar; Renuse, Santosh; Subbannayya, Yashwanth et al. (2014): Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients. In: *Clinical proteomics* 11 (1), S. 1. DOI: 10.1186/1559-0275-11-1.

Barrett, Lucinda; Atkins, Bridget (2014): The clinical presentation of prosthetic joint infection. In: *The Journal of antimicrobial chemotherapy* 69 Suppl 1, i25-7. DOI: 10.1093/jac/dku250.

Becker, Karsten; Both, Anna; Weißelberg, Samira; Heilmann, Christine; Rohde, Holger (2020): Emergence of coagulase-negative staphylococci. In: *Expert review of anti-infective therapy* 18 (4), S. 349–366. DOI: 10.1080/14787210.2020.1730813.

Bidossi, Alessandro; Bottagisio, Marta; Savadori, Paolo; Vecchi, Elena de (2020): Identification and Characterization of Planktonic Biofilm-Like Aggregates in Infected Synovial Fluids From Joint Infections. In: *Frontiers in microbiology* 11, S. 1368. DOI: 10.3389/fmicb.2020.01368.

Both, Anna; Huang, Jiabin; Qi, Minyue; Lausmann, Christian; Weißelberg, Samira; Büttner, Henning et al. (2021): Distinct clonal lineages and within-host diversification shape invasive Staphylococcus epidermidis populations. In: *PLoS pathogens* 17 (2), e1009304. DOI: 10.1371/journal.ppat.1009304.

Christner, Martin; Franke, Gefion C.; Schommer, Nina N.; Wendt, Ulrike; Wegert, Kim; Pehle, Philip et al. (2010): The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. In: *Molecular microbiology* 75 (1), S. 187–207. DOI: 10.1111/j.1365-2958.2009.06981.x.

Christner, Martin; Heinze, Constanze; Busch, Michael; Franke, Gefion; Hentschke, Moritz; Bayard Dühring, Sara et al. (2012): sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis-dependent release of eDNA. In: *Molecular microbiology* 86 (2), S. 394–410. DOI: 10.1111/j.1365-2958.2012.08203.x.

Cummings, N. A.; Nordby, G. L. (1966): Measurement of synovial fluid pH in normal and arthritic knees. In: *Arthritis and rheumatism* 9 (1), S. 47–56. DOI: 10.1002/art.1780090106.

Dastgheyb, Sana; Parvizi, Javad; Shapiro, Irving M.; Hickok, Noreen J.; Otto, Michael (2015): Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. In: *The Journal of infectious diseases* 211 (4), S. 641–650. DOI: 10.1093/infdis/jiu514.

Decker, Barry; McKenzie, Bernard F.; McGuckin, Warren F.; Slocumb, Charles H. (1959): Comparative distribution of proteins and glycoproteins of serum and synovial fluid. In: *Arthritis and rheumatism* 2 (2), S. 162–177. DOI: 10.1002/1529-0131(195904)2:2<162::AID-ART1780020208>3.0.CO;2-6.

Decker, Rahel; Burdelski, Christoph; Zobiak, Melanie; Büttner, Henning; Franke, Gefion; Christner, Martin et al. (2015): An 18 kDa scaffold protein is critical for Staphylococcus epidermidis biofilm formation. In: *PLoS pathogens* 11 (3), e1004735. DOI: 10.1371/journal.ppat.1004735.

Gbejuade, Herbert O.; Lovering, Andrew M.; Webb, Jason C. (2015): The role of microbial biofilms in prosthetic joint infections. In: *Acta orthopaedica* 86 (2), S. 147–158. DOI: 10.3109/17453674.2014.966290.

Gilbertie, Jessica M.; Schnabel, Lauren V.; Hickok, Noreen J.; Jacob, Megan E.; Conlon, Brian P.; Shapiro, Irving M. et al. (2019): Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections. In: *PloS one* 14 (8), e0221012. DOI: 10.1371/journal.pone.0221012.

Gupta, Tripti Thapa; Gupta, Niraj K.; Burback, Peter; Stoodley, Paul (2021): Free-Floating Aggregate and Single-Cell-Initiated Biofilms of Staphylococcus aureus. In: *Antibiotics (Basel, Switzerland)* 10 (8). DOI: 10.3390/antibiotics10080889.

Hahn, Johannes-Martin (Hg.) (2018): Checkliste Innere Medizin. 8. überarbeitete Auflage. Stuttgart: Thieme, Checklisten Medizin, S. 452-454, ISBN: 9783132411579.

Harris, Llinos G.; Dudley, Ed; Rohde, Holger; Frommelt, Lars; Siemssen, Nicolaus; Wilkinson, Thomas S.; Mack, Dietrich (2017): Limitations in the use of PSMγ, agr, RNAIII, and biofilm formation as biomarkers to define invasive Staphylococcus epidermidis from chronic biomedical device-associated infections. In: *International journal of medical microbiology : IJMM* 307 (7), S. 382–387. DOI: 10.1016/j.ijmm.2017.08.003.

Hu, Shen; Loo, Joseph A.; Wong, David T. (2006): Human body fluid proteome analysis. In: *Proteomics* 6 (23), S. 6326–6353. DOI: 10.1002/pmic.200600284.

Hui, Alexander Y.; McCarty, William J.; Masuda, Koichi; Firestein, Gary S.; Sah, Robert L. (2012): A systems biology approach to synovial joint lubrication in health, injury, and

disease. In: *Wiley interdisciplinary reviews. Systems biology and medicine* 4 (1), S. 15–37. DOI: 10.1002/wsbm.157.

Ibberson, Carolyn B.; Parlet, Corey P.; Kwiecinski, Jakub; Crosby, Heidi A.; Meyerholz, David K.; Horswill, Alexander R. (2016): Hyaluronan Modulation Impacts Staphylococcus aureus Biofilm Infection. In: *Infection and immunity* 84 (6), S. 1917–1929. DOI: 10.1128/ IAI.01418-15.

Izakovicova, Petra; Borens, Olivier; Trampuz, Andrej (2019): Periprosthetic joint infection: current concepts and outlook. In: *EFORT open reviews* 4 (7), S. 482–494. DOI: 10.1302/2058-5241.4.180092.

Knott, Samantha; Curry, Dylan; Zhao, Neil; Metgud, Pallavi; Dastgheyb, Sana S.; Purtill, Caroline et al. (2021): Staphylococcus aureus Floating Biofilm Formation and Phenotype in Synovial Fluid Depends on Albumin, Fibrinogen, and Hyaluronic Acid. In: *Frontiers in microbiology* 12, S. 655873. DOI: 10.3389/fmicb.2021.655873.

Lee, Ji-Hyun; Jung, Jae Hun; Kim, Jeesoo; Baek, Won-Ki; Rhee, Jinseol; Kim, Tae-Hwan et al. (2020): Proteomic analysis of human synovial fluid reveals potential diagnostic biomarkers for ankylosing spondylitis. In: *Clinical proteomics* 17, S. 20. DOI: 10.1186/s12014-020-09281-y.

Levick, J. R. (1981): Permeability of rheumatoid and normal human synovium to specific plasma proteins. In: *Arthritis and rheumatism* 24 (12), S. 1550–1560. DOI: 10.1002/art.1780241215.

Lourtet-Hascoët, J.; Bicart-See, A.; Félicé, M. P.; Giordano, G.; Bonnet, E. (2016): Staphylococcus lugdunensis, a serious pathogen in periprosthetic joint infections: comparison to Staphylococcus aureus and Staphylococcus epidermidis. In: *International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases* 51, S. 56–61. DOI: 10.1016/j.ijid.2016.08.007.

Mack, D.; Bartscht, K.; Fischer, C.; Rohde, H.; Grahl, C. de; Dobinsky, S. et al. (2001): Genetic and biochemical analysis of Staphylococcus epidermidis biofilm accumulation. In: *Methods in enzymology* 336, S. 215–239. DOI: 10.1016/S0076-6879(01)36592-8.

Madea, B.; Kreuser, C.; Banaschak, S. (2001): Postmortem biochemical examination of synovial fluid--a preliminary study. In: *Forensic science international* 118 (1), S. 29–35. DOI: 10.1016/S0379-0738(00)00372-8.

McNary, Sean M.; Athanasiou, Kyriacos A.; Reddi, A. Hari (2012): Engineering lubrication in articular cartilage. In: *Tissue engineering. Part B, Reviews* 18 (2), S. 88–100. DOI: 10.1089/ten.teb.2011.0394.

Montanaro, Lucio; Poggi, Alessandro; Visai, Livia; Ravaioli, Stefano; Campoccia, Davide; Speziale, Pietro; Arciola, Carla Renata (2011): Extracellular DNA in biofilms. In: *The International journal of artificial organs* 34 (9), S. 824–831. DOI: 10.5301/ijao.5000051.

Mundt, Lillian A.; Shanahan, Kristy; Graff, Laurine (Hg.) (2011): Graff's textbook of routine urinalysis and body fluids. 2nd ed. Philadelphia [etc.]: Wolters Kluwer/ Lippincott Williams & Wilkins, S. 254-260, ISBN: 9781582558752.

Natsuhara, Kyle M.; Shelton, Trevor J.; Meehan, John P.; Lum, Zachary C. (2019): Mortality During Total Hip Periprosthetic Joint Infection. In: *The Journal of arthroplasty* 34 (7S), S. 337-342. DOI: 10.1016/j.arth.2018.12.024.

Nguyen, Hoai T. T.; Nguyen, Thuan H.; Otto, Michael (2020): The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. In: *Computational and structural biotechnology journal* 18, S. 3324–3334. DOI: 10.1016/j.csbj.2020.10.027.

Ochi, T.; Yonemasu, K.; Ono, K. (1980): Immunochemical quantitation of complement components of Clq and C3 in sera and synovial fluids of patients with bone and joint diseases. In: *Annals of the rheumatic diseases* 39 (3), S. 235–240. DOI: 10.1136/ard.39.3.235.

Olson, Michael E.; Todd, Daniel A.; Schaeffer, Carolyn R.; Paharik, Alexandra E.; van Dyke, Michael J.; Büttner, Henning et al. (2014): Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization. In: *Journal of bacteriology* 196 (19), S. 3482–3493. DOI: 10.1128/JB.01882-14.

Otto, M. (2008): Staphylococcal biofilms. In: *Current topics in microbiology and immunology* 322, S. 207–228. DOI: 10.1007/978-3-540-75418-3_10.

Otto, Michael (2018): Staphylococcal Biofilms. In: *Microbiology spectrum* 6 (4). DOI: 10.1128/microbiolspec.GPP3-0023-2018.

Perez, Kimberly; Patel, Robin (2015): Biofilm-like aggregation of Staphylococcus epidermidis in synovial fluid. In: *The Journal of infectious diseases* 212 (2), S. 335–336. DOI: 10.1093/infdis/jiv096.

Pestrak, Matthew J.; Gupta, Tripti Thapa; Dusane, Devendra H.; Guzior, Doug V.; Staats, Amelia; Harro, Jan et al. (2020): Investigation of synovial fluid induced Staphylococcus

aureus aggregate development and its impact on surface attachment and biofilm formation. In: *PloS one* 15 (4), e0231791. DOI: 10.1371/journal.pone.0231791.

Rohde, Holger; Burandt, Eike C.; Siemssen, Nicolaus; Frommelt, Lars; Burdelski, Christoph; Wurster, Sabine et al. (2007): Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. In: *Biomaterials* 28 (9), S. 1711–1720. DOI: 10.1016/j.biomaterials.2006.11.046.

Rohde, Holger; Burdelski, Christoph; Bartscht, Katrin; Hussain, Muzaffar; Buck, Friedrich; Horstkotte, Matthias A. et al. (2005): Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. In: *Molecular microbiology* 55 (6), S. 1883–1895. DOI: 10.1111/j.1365-2958.2005.04515.x.

Schwarz, Edward M.; Parvizi, Javad; Gehrke, Thorsten; Aiyer, Amiethab; Battenberg, Andrew; Brown, Scot A. et al. (2019): 2018 International Consensus Meeting on Musculoskeletal Infection: Research Priorities from the General Assembly Questions. In: *Journal of orthopaedic research : official publication of the Orthopaedic Research Society* 37 (5), S. 997–1006. DOI: 10.1002/jor.24293.

Skovdal, Sandra M.; Hansen, Liva Kjær; Ivarsen, Diana Malskær; Zeng, Guanghong; Büttner, Henning; Rohde, Holger et al. (2021): Host factors abolish the need for polysaccharides and extracellular matrix-binding protein in Staphylococcus epidermidis biofilm formation. In: *Journal of medical microbiology* 70 (3). DOI: 10.1099/jmm.0.001287.

Srettabunjong, Supawon; Thongphap, Wantawanop; Chittamma, Anchalee (2019): Comparative and Correlation Studies of Biochemical Substances in Vitreous Humor and Synovial Fluid. In: *Journal of forensic sciences* 64 (3), S. 778–785. DOI: 10.1111/1556-4029.13966.

Staats, Amelia; Burback, Peter W.; Eltobgy, Mostafa; Parker, Dana M.; Amer, Amal O.; Wozniak, Daniel J. et al. (2021): Synovial Fluid-Induced Aggregation Occurs across Staphylococcus aureus Clinical Isolates and is Mechanistically Independent of Attached Biofilm Formation. In: *Microbiology spectrum* 9 (2), e0026721. DOI: 10.1128/Spectrum.00267-21.

Stamm, Johanna; Weißelberg, Samira; Both, Anna; Failla, Antonio Virgilio; Nordholt, Gerhard; Büttner, Henning et al. (2022): Development of an artificial synovial fluid useful for studying Staphylococcus epidermidis joint infections. In: *Frontiers in cellular and infection microbiology* 12, S. 948151. DOI: 10.3389/fcimb.2022.948151.

Steixner, Stephan Josef Maria; Spiegel, Christopher; Dammerer, Dietmar; Wurm, Alexander; Nogler, Michael; Coraça-Huber, Débora Cristina (2021): Influence of Nutrient Media Compared to Human Synovial Fluid on the Antibiotic Susceptibility and Biofilm Gene Expression of Coagulase-Negative Staphylococci In Vitro. In: *Antibiotics (Basel, Switzerland)* 10 (7). DOI: 10.3390/antibiotics10070790.

Timur, U. T.; Jahr, H.; Anderson, J.; Green, D. C.; Emans, P. J.; Smagul, A. et al. (2021): Identification of tissue-dependent proteins in knee OA synovial fluid. In: *Osteoarthritis and cartilage* 29 (1), S. 124–133. DOI: 10.1016/j.joca.2020.09.005.

Tumram, Nilesh Keshav; Bardale, Rajesh Vaijnathrao; Dongre, Anand Paikuji (2011): Postmortem analysis of synovial fluid and vitreous humour for determination of death interval: A comparative study. In: *Forensic science international* 204 (1-3), S. 186–190. DOI: 10.1016/j.forsciint.2010.06.007.

Vuong, Cuong; Kocianova, Stanislava; Yao, Yufeng; Carmody, Aaron B.; Otto, Michael (2004): Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. In: *The Journal of infectious diseases* 190 (8), S. 1498–1505. DOI: 10.1086/424487.

Waldrop, Robert; McLaren, Alex; Calara, Francis; McLemore, Ryan (2014): Biofilm growth has a threshold response to glucose in vitro. In: *Clinical orthopaedics and related research* 472 (11), S. 3305–3310. DOI: 10.1007/s11999-014-3538-5.

Weinberger, A.; Simkin, P. A. (1989): Plasma proteins in synovial fluids of normal human joints. In: *Seminars in arthritis and rheumatism* 19 (1), S. 66–76. DOI: 10.1016/0049-0172(89)90087-5.

Weiser, Julian; Henke, Hanae A.; Hector, Nina; Both, Anna; Christner, Martin; Büttner, Henning et al. (2016): Sub-inhibitory tigecycline concentrations induce extracellular matrix binding protein Embp dependent Staphylococcus epidermidis biofilm formation and immune evasion. In: *International journal of medical microbiology : IJMM* 306 (6), S. 471–478. DOI: 10.1016/j.ijmm.2016.05.015.

Yazar, M.; Sarban, S.; Kocyigit, A.; Isikan, U. E. (2005): Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. In: *Biological trace element research* 106 (2), S. 123–132. DOI: 10.1385/BTER:106:2:123.

9. Abkürzungsverzeichnis

Аар	accumulation-associated protein
ASF	artificial synovial fluid
AtlE	autolysin E
CLSM	konfokale Laserscanning Mikroskopie
eDNA	extrazelluläre DNA
Embp	extracellular matrix binding protein
PIA	polysaccharide intercellular adhesin
S. epidermidis	Staphylococcus epidermidis
Sbp	small basic protein
TSB	Tryptic Soy Broth

10. Danksagung

Mein Dank gilt dem Institutsdirektor, Herrn Prof. Dr. med. Martin Aepfelbacher, für die Bereitstellung der Ressourcen seines Instituts für die Ausführung dieser experimentellen Arbeit.

Insbesondere gilt mein Dank auch Herrn Prof. Dr. med. Holger Rohde, der diese für mich einmalige und wegweisende Erfahrung möglich gemacht hat. Ich möchte mich für die außerordentliche Unterstützung bei der Umsetzung dieser Dissertation in aller Form bedanken.

Mein Dank gilt auch meiner Co-Autorin, Frau Samira Weißelberg, die mich immer unterstützt hat und mir während meiner Arbeit im Labor durchweg mit Rat und Tat kompetent zur Seite stand, auf jede Frage eine Antwort hatte und für jedes Problem eine Lösung kannte.

Danke auch an Frau Dr. med. Anna Both, die meine Dissertation mit betreut hat, sowie an Herrn Dr. med. Henning Büttner, die mich bei meiner Dissertation durchweg fachlich und moralisch unterstützt haben und damit auch den Weg für meinen weiteren persönlichen, beruflichen Werdegang geprägt haben.

Ich möchte auch Herrn Paul Haffke danken, der meine Arbeit im Labor nicht nur in der praktischen Umsetzung unterstützt hat, sondern auch immer für eine ausgezeichnete Arbeitsatmosphäre gesorgt hat.

Danke auch an Herrn Andreas Prester für den interessanten fachlichen Austausch - auch über die Welt der Staphylokokken und Biofilme hinaus.

Außerdem möchte ich der UKE Microscopy Imaging Facility und insbesondere Herrn Dr. rer. nat. Antonio Virgilio Failla für die kompetente Beratung und Unterstützung zur Umsetzung der mikroskopischen Untersuchungen und deren Auswertung danken.

Ich bedanke mich auch sehr herzlich bei allen Personen, die für die Umsetzung dieses Projekts Plasma gespendet haben.

Auch bedanke ich mich beim Deutschen Zentrum für Infektionsforschung für die finanzielle Unterstützung dieser Arbeit in Form des mir verliehenen MD-Stipendiums.

Und zu guter Letzt gilt mein außerordentlicher Dank auch meinen Eltern, die mich immer unterstützt haben, sowie Anna-Lena und Michael, die ihr immer für mich da seid.

11. Eidesstattliche Erklärung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.

Unterschrift: