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Abstract

A fundamental aspect of cryo-electron microscopy (cryo-EM) is deriving atomic
models from the 3D reconstructions. A number of advances have been made in
detector technology and image processing that has enabled some dramatic improve-
ments in resolution. Still, low resolutions continue to plague the field. Cryo-EM
reconstructions, which rely on many images of molecules with different orientations,
are limited by the noise and conformational heterogeneity often inherent to the
molecules of interest. Classification of these structures into distinct classes, enables
insights into the conformational space that they inhabit, and can indeed improve
the quality of individual reconstructions. However, even within classes, atomic
motions are an unavoidable fact of nature. The inherent noise in low-dose electron
imaging, along with the number of particles in the sample, limits to what degree
classes can accurately be assigned. It is thus an accepted matter, that many
reconstructions will by their very nature, contain features from many molecules
which are only approximately identical. This manifests itself in heterogeneous
resolutions, where fluctuations can be attributed to changes in the local similarity
of the averaged molecules.

To build atomic models from these low resolution reconstructions, a common
approach known as flexible fitting, employs atomic structures which have been
solved using high-resolution techniques. In this thesis, I explore a flexible fitting
and refinement method which attempts to improve the interpretability of atomic
models by estimating the local resolution of the atoms in the underlying data. Using
a Gaussian Mixture Model, a single atomic model is used to describe the experi-
mental map, with atoms modelled as isotropic three-dimensional Gaussians with
widths determined from the reconstruction. This allows better interpretation of the
atomic structure, as coordinate uncertainty is accounted for. Of course, isomorphic
Gaussians are limited in their accuracy at representing atomic motions of bonded
atoms. Instead, a second representation is derived by modifying the atomic models
in the context of a molecular dynamics simulation with perturbations derived from
the local resolution information. This representation, composed of an ensemble of
atomic structures was shown to produce an improved fit with the data.

Unfortunately, the initial model which is fitted to the experimental data, often
requires significant rearrangement of its coordinates in order to fit the cryo-EM
map before local resolutions can be estimated. This is because high resolution
starting models are typically derived from X-ray experiments, where crystallisation
can result in structural change. Frequently, cryo-EM experiments are elucidating
structures which have never been seen before. In such cases, structural predictions
are used instead. These can be highly accurate, often down to the level of domains,
but may require some rearrangement to better fit the data. Flexible fitting ap-
proaches are able to fit such models but require the use of restraints to prevent
distortions. In the past, the RIBFIND approach has been successfully used to this



end, but has been limited to protein structures. RIBFIND2, which is presented
in this thesis is able to decompose RNA structures into rigid bodies which can be
restrained during flexible fitting procedures.

Combining the GMM method with these RIBFIND2 restraints enabled a diverse
set of structural predictions from the recent CASP15 challenge to be flexibly fit into
cryo-EM maps, resulting in models with similar quality to the target structures.



Zusammenfassung

Ein grundlegender Aspekt der Kryo-Elektronenmikroskopie (cryo-EM) besteht dar-
in, atomare Modelle aus den 3D-Rekonstruktionen abzuleiten. In der Detektor-
Technologie und Bildverarbeitung wurden zahlreiche Fortschritte erzielt, die signifi-
kante Verbesserungen in der Auflösung ermöglicht haben. Dennoch bleibt eine gerin-
ge Auflösung ein ständiges Problem in diesem Bereich. Cryo-EM-Rekonstruktionen,
die auf einer großen Anzahl Bildern von Molekülen in unterschiedlichen Ausrich-
tungen basieren, sind begrenzt durch das Rauschen und die konformationelle Hete-
rogenität, die die Molekülen von Interesse oft aufweisen. Die Klassifizierung dieser
Strukturen ermöglicht Einblicke in den konformationellen Raum, den sie einnehmen
und kann tatsächlich die Qualität der einzelnen Rekonstruktionen verbessern. Doch
selbst innerhalb der einzelnen Klassen sind atomare Bewegungen unvermeidbar.
Das inhärente Rauschen bei Niedrigdosis-Elektronenmikroskopie sowie die Anzahl
der Partikel in der Probe begrenzen das Ausmaß, in dem Klassen präzise zugeordnet
werden können. Es ist daher allgemein akzeptiert, dass viele Rekonstruktionen
Merkmale vieler Moleküle enthalten, die nur annähernd identisch sind. Dies zeigt
sich in heterogenen Auflösungen, bei denen Schwankungen auf Änderungen in der
lokalen Ähnlichkeit der gemittelten Moleküle zurückzuführen sind.

Um aus diesen Rekonstruktionen mit niedriger Auflösung atomare Modelle
zu erstellen, wird ein gängiger Ansatz namens Flexible Fitting verwendet, der
atomare Strukturen nutzt, die mit hochauflösenden Techniken ermittelt wurden.
In dieser Arbeit untersuche ich eine Methode zur flexiblen fitting und Verfeine-
rung, die versucht, die Interpretierbarkeit atomarer Modelle zu verbessern, indem
die lokale Auflösung der Atome in den zugrunde liegenden Daten geschätzt wird.
Mithilfe eines gaußschen Mischverteilungsmodells wird ein einzelnes atomares Mo-
dell verwendet, um die Rekonstruktion zu beschreiben. Dabei werden Atome als
isotrope dreidimensionale Gauss-Verteilungen modelliert, deren Verteilungen aus
der Rekonstruktion bestimmt werden. Dies ermöglicht eine bessere Interpretation
der atomaren Struktur, da die Ungenauigkeit der Koordinaten berücksichtigt wird.
Natürlich sind isomorphe Gauss-Verteilungen in ihrer Genauigkeit zur Beschrei-
bung atomarer Bewegungen von gebundenen Atome begrenzt. Stattdessen wird
eine zweite Repräsentation abgeleitet, indem die atomaren Modelle im Kontext
einer molekulardynamischen Simulation mit den Abweichungen modifiziert werden,
die aus den lokalen Auflösungsinformationen abgeleitet sind. Diese Darstellung,
bestehend aus einem Ensemble atomarer Strukturen, ermöglicht eine bessere An-
passung an die Daten.

Jedoch erfordert das Ausgangsmodell, das an die experimentellen Daten ange-
passt wird, oft eine erhebliche Neuanordnung seiner Koordinaten, um den cryo-EM-
Daten zu entsprechen, bevor lokale Auflösungen geschätzt werden können. Dies liegt
daran, dass hochauflösende Ausgangsmodelle typischerweise aus kristallographi-
schen Experimenten abgeleitet sind, bei denen die Kristallisation zu strukturellen
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Veränderungen führen kann. Häufig zeigen cryo-EM-Experimente Strukturen, die
zuvor noch nie beobachtet wurden. In solchen Fällen werden stattdessen Struk-
turvorhersagen verwendet. Diese können sehr ungenau sein und erfordern oft eine
gewisse Anpassung, um besser zu den experimentellen Daten zu passen. Flexible
Fitting-Ansätze können solche Modelle anpassen, erfordern jedoch den Einsatz von
Restriktionen, um künstliche Verzerrungen zu vermeiden. In der Vergangenheit
wurde der RIBFIND-Ansatz erfolgreich zu diesem Zweck verwendet, war jedoch
auf Proteinstrukturen beschränkt. RIBFIND2, das in dieser Arbeit vorgestellt wird,
kann lange RNA-Strukturen in einzelne rigide Domänen zerlegen, die während
flexibler Anpassungsprozesse genutzt werden können.

Die Kombination der GMM-Methode mit diesen RIBFIND2-Restriktionen er-
möglichte es, eine Vielzahl von Strukturvorhersagen des CASP15-Wettbewerbes,
flexibel in cryo-EM-Karten einzupassen, wodurch Modelle von ähnlicher Qualität
wie die experimentell-ermittelte Struktur erzielt wurden.
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Building atomic models from medium-resolution data remains a fundamental
challenge of cryo-EM. At this range of resolution, existing structural models or
computational predictions are used as starting points for a process called flexible
fitting. One of the problems of these approaches is that while they may fit the
atomic coordinates, they do not measure the local resolution, which may be an
indicator of local flexibility. The second problem is that these approaches typically
fail to converge on well-fitting models when the starting model is conformationally
distant. Throughout this PhD, I have worked on methods for flexible fitting which
avoid these limitations. The main result has been the development of a Gaussian
Mixture Model based force field which uses expectation-maximisation to both
improve the fit of the atomic coordinates and simulataneously determine the local
resolution of each atom. This has resulted in a series of papers focused on fitting

1



1. Introduction 2

and refining computational models into cryo-EM data. Each paper is dedicated
to specific aspects of the fitting and refining problem, but they assume some prior
knowledge of these topics already. In this chapter, I describe the background theory
of cryo-EM single-particle analysis which is missing from these papers, the various
ways in which we model aspects of the microscope and the molecules they image, as
well the many shortcuts, assumptions, and well-known problems which are found
in the field. To conclude, I highlight the role of cryo-EM in RNA structural biology
where it is becoming increasingly applicable to the study of small (sub 200kDa)
RNA molecules which had previously been off limits.

1.1 Cryogenic-electron microscopy
Cryogenic-electron microscopy (cryo-EM) has emerged as a dominant technique
for studying a broad range of bio-molecules that have been inaccessible to methods
such as X-ray crystallography and nuclear magnetic resonance imaging (NMR).
Important molecules such as membrane proteins, which play a vital role in cellular
organisms (and enveloped viruses), have been structurally determined using cryo-
EM. Recent technological advances have pushed the resolution towards that of
X-ray crystallography for certain molecules, opening the doors to image ligands
and design drugs based on structural details. The, so called “resolution revolution”
(Kühlbrandt 2014), has broken many theoretical barriers such as the 200kDa limit,
allowing smaller molecules to be studied, including small RNA molecules.

Cryo-EM may refer to several transmission electron microscopy (TEM) based
imaging approaches applied in the context of imaging cryogenically frozen samples.
The first of the two main approaches is single-particle analysis (SPA), which is
currently the best approach for achieving high-resolution images of molecules. The
second approach is cryo-electron tomography (cryo-ET), where samples are rotated
over a limited set of angles to produce a tilt-series that can be reconstructed, as
per medical tomography. The latter approach does not currently afford the same
levels of resolution, but can be used to study molecules within cells. The focus
of the publications in this thesis are on methods for fitting atomic models to data
obtained using the SPA method. For the rest of this thesis, the abbreviation cryo-
EM will refer to this method, unless otherwise specified. What follows, is a brief
overview focussing on critical aspects of SPA and the surrounding theory. For a
broader introduction (Glaeser, Nogales, et al. 2021) is an excellent starting point.

1.1.1 Transmission electron microscopy
In the early 20th century it was realized that the wavelength of light was a limiting
factor of the resolution obtainable using traditional light microscopy. Electron
microscopes were developed in the 1930s, which instead took advantage of the
significantly shorter wavelengths of high-energy electrons. The technique exists in
three main modalities: transmission electron microscopy (TEM), scanning electron
microscopy (SEM) and scanning transmission electron microscopy (STEM).

In TEM, the approach used in cryo-EM, electrons are fired at a thin sample
from an electron gun (fig. 1.1A), a coherent source of electrons between 100 and
300keV depending on the microscope. The wavelength of an electron travelling
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with a velocity 𝑣 and mass 𝑚𝑒 (accounting for relativistic effects due to velocity),
is given by de Broglies formula (eq. 1.1), where ℏ is the Planck constant.

𝜆 = ℏ𝑚𝑒𝑣 (1.1)

Thus, at 300keV the wavelength of an electron is approximately 20 picometers,
1/50th of an angstrom. In theory, this offers the ability to easily image at atomic
resolutions, but as will be described, a number of factors make attaining atomic
resolutions challenging.

Upon reaching the thin sample, incident electrons may pass straight through
the sample (termed “direct” or “unscattered”). They may be elastically scattered
due to interactions with positively charged nuclei of the atoms in the samples.
The electrons may also impart some of their energy to the sample before being
scattered (inelastic scattering). These events are depicted in the blow-up in fig.
1.1B. Inelastically scattered electrons damage the sample, as the energy imparted
causes bonds to break, electrons to be ejected, heating and charging of the sample
and a host of other errors which leads to a net loss of information.

Figure 1.1: A simplified schematic representation of a transmission electron microscope
showing key components. Electrons leave the electron gun (A) and pass through the
condenser lens which focuses the beam on the sample (B). The electron interactions
with the sample can be classified as direct, elastic and inelastic. Direct electrons pass
directly through without interacting with the sample. Elastically scattered electrons are
scattered but impart no energy to the sample. Inelastic electrons impart energy to the
sample causing damage. The fourier transform of the coulombic potential is focused on
the back focal plane of the microscope (C). The image formed on the detector (D) is a
projection of the samples coulombic potential.
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Because the density of biological molecules is not significantly different from the
surrounding amorphous ice, and the majority of electrons pass directly through the
sample, amplitude based imaging is not possible. Phase based imaging, which relies
on interference between the direct and the elastically scattered electrons is used
instead. Due to biological molecules being “weak phase objects”, phase contrast
imaging requires biomolecules to be significantly out of focus. By defocusing the
sample, the low-frequency components are enhanced whilst high-frequencies are
attenuated. Some of the corruptions due to the defocus can be corrected for during
the image processing (section 1.1.4).

Inelastically scattered electrons, not only cause damage to the sample, but
will also interfere with the construction of phase images as they no longer have the
same wavelength. They are thus filtered out using an energy filter. In order to limit
damage to the sample a low dose of electrons is used (measured in electrons per
unit area). In the past, film and CCD based detectors had a high background noise
which meant the overall signal-to-noise ratio (SNR) was severely impacted by these
low doses. The “resolution revolution” is largely attributed to the direct detector
device (DDD) (Kühlbrandt 2014) which have much lower background noise levels
making low electron doses less of a hindrance.

1.1.2 Electron scattering & Coulomb maps
Both X-rays and electrons are scattered by atoms in the sample. In the case of
X-rays, scattering is determined be the electron density about the nuclei of atoms
in the object of interest. The scattering of X-rays due to the electron cloud of an
atom is approximated by the atomic form factor 𝑓𝑥(𝑠). Electrons on the other hand,
are scattered by both the positively charged nucleus and the surrounding electron
cloud. The images produced by electron scattering are thus a representation of
the coulombic potential of the sample. The Mott-Bethe equation, 𝑓𝑒(𝑠) gives the
electron scattering form factors of an atom due to its nuclear charge 𝑍 (its atomic
number) and the shielding (hence subtraction) by the electron cloud, interms of
the X-ray atomic form factor 𝑓𝑥(𝑠):

𝑓𝑒(𝑠) = 18𝜋2𝑎0 𝑍 − 𝑓𝑥(𝑠)𝑠2 (1.2)

where 𝑠 is given by the wavelength 𝜆 of the incident electron and the scat-
tering angle 𝜃:

𝑠 = 𝑠𝑖𝑛(𝜃)𝜆 (1.3)

The X-ray atomic form factors 𝑓𝑥(𝑠), are derived from X-ray diffraction ex-
periments or computational approaches (e.g. Hartree-Fock method). They are
usually approximated using a well established sum of Gaussians approach (Doyle
et al. 1968) which has seen numerous updates in tabulated values and additional
Gaussian terms (Peng et al. 1996; Peng 1998; Peng 1999; Yonekura et al. 2018)
This model, known as Independent Atom Model (IAM), is based on the assumption
that the atoms are not bonded.1

1More accurate methods which attempt to take into account multipole electron distributions
exist such as TAAM (Kulik et al. 2022) although they are yet to be widely employed.
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The X-ray scattering factors 𝑓𝑥(𝑠), are thus defined where 𝑎𝑘 and 𝑏𝑘 are param-
eters for the kth Gaussian. An additional constant 𝑐 may sometimes be included.

𝑓𝑥(𝑠) = 𝐾∑𝑘=0 𝑎𝑘𝑒−𝑏𝑘2 + 𝑐𝑘 (1.4)

There is an important difference in the atomic form factors for X-ray and
electron scattering which are illustrated in figure 1.2. The X-ray scattering factors
for neutral and charged atoms do not differ significantly. Electron scattering factors
on the other hand, deviate significantly at low scattering angles when the atom has
a partial charge. In the case of positive charges, the low scattering angle amplitudes
are increased, while negative charges attenuate the low scattering amplitudes.

Figure 1.2: Scattering curves adapted from Yonekura et al. 2018 highlight the differences
between X-ray scattering (top row) and the amplitude of electron scattering (bottom row)
for oxygen and iron atoms of different charges. At low-resolutions the effects of partial
charge causes strong deviations from the neutral atomic scattering amplitudes.

The scattered electrons form a diffraction pattern at the back focal plane of an
electron microscope (fig. 1.1C). The image formed on the detector is a projection
through the sample and thus contains contributions from many layers of atoms,
flattened into a 2D image. The inverse Fourier transform, F−1 of the Mott-Bethe
equation gives the 3D coulomb potential 𝜌 of the molecule. The 2D images are
thus projections of this.

𝜌 = F(𝑓𝑒(𝑠)) (1.5)
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1.1.3 Single Particle Analysis
Cryo-EM single particle analysis (SPA) allows molecules to be imaged in near
native conditions and at the same time overcomes many of the apparent limitations
TEM imposes when it comes to working with biological molecules. Plunge freezing
methods allow biological molecules to be frozen in a amorphous ice (Adrian et al.
1984). This is important for two reasons: the sample must be placed in the vacuum
chamber of the electron microscope, which would normally cause any water in the
sample to vaporise. Secondly, the molecules need to be fixed to prevent their
movement. In theory, the molecules of interest do not have time to settle in lower
energy conformations, thus capturing them in near-native states (fig. 1.3). Indeed,
vitrification of ribosomes from different starting temperatures has shown this to
be true in practice (Fischer et al. 2010). Importantly, water also does not have
time to relax and form crystalline ice which would cause strong patterns in the
images. Instead, amorphous ice is formed, which fixes the molecules in place, and
contributes weakly to the images.

The limitations of a low signal-to-noise ratio imposed by requiring low electron
doses - which would otherwise make the endeavor of high-resolution biomolecular
imaging futile - are overcome by the fact that the vitrified samples may contain
millions of molecules in similar conformations (“single” particles). Despite their low
signal-to-noise ratio and information loss due to radiation damage, the images can
be aligned and averaged, boosting the overall signal (Rosenthal and Henderson
2003). Assuming radiation damage is uniformly distributed, these effects are
also averaged out.

Finally, the thin frozen samples potentially contain molecules with a variety of
orientations. This final point, allows SPA techniques to produce 3D reconstructions
as per classic tomography (section 1.1.5). Samples containing molecules with a well-
distributed set of orientations are not always obtainable as many molecules have
strong preferences to air-water interfaces. This “preferred orientation” problem is
a major challenge. Thin ice, which is desirable for having a lower background, can
come at the cost of increasing the preferred orientation. Some of the preferred
orientation issues can also be counteracted by tilting the sample, but this has the
downside of increasing ice thickness at non-zero tilt angles (Tan et al. 2017).

1.1.4 Image processing
Besides having an improved signal-to-noise ratio compared to the older CCD and
photographic film-based detectors, DDDs can record movies rather than one long
exposure. Each movie is a set of images (or “frames”). Different detectors have
different frame rates, which determines the exposure time of each frame.

This has led to some important innovations when it comes to post-processing.
Images with a certain dose of electrons can be generated by averaging the appro-
priate number of “movie frames”. Initial frames can be dropped due to charge
build-up and bulge (Brilot et al. 2012). Similarly, dose weighting (also called
exposure filtering) can be applied across the images such that later exposures
contribute fewer high-resolution details (Grant et al. 2015) which are gradually
more corrupted due to radiation. Most importantly, stage and beam motion,
which are perhaps unpreventable, are a significant cause of image blurring (Glaeser,
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Figure 1.3: Vitrification aims to capture the molecules in their native populations. In
(A) a sample containing a molecule which exists in three distinct conformations, each
exhibiting some heterogeneity. In (B) slow freezing of the sample may lead to low
energy conformations being more populated. Underpopulated conformations may not
have sufficient particles to be identified. Flash freezing on the other hand, only causes
small deviations in the ensemble (C) allowing the native populations to be captured
in cryo-EM. Molecules which exist in a continuum of likely conformations are not so
amenable to cryo-EM imaging (D).

McMullan, et al. 2011). With exposures broken down into frames, these motions
can be accounted for, and the frames can be aligned and averaged to compensate for
this (Li et al. 2013). Alignment may even be applied in sub-micrograph regions (or
“patches”), as motions may occur at different rates throughout the frozen specimen
(Brilot et al. 2012). One of many popular motion correction tools is MotionCor2
(Zheng et al. 2017).

The defocus required to get adequate contrast for particle picking and alignment,
along with spherical aberrations due to the lenses cause the images to be corrupted.
These corruptions are described by the contrast transfer function (CTF). By esti-
mating the parameters of the CTF, some of these corruptions can be corrected.
CTF estimations can be applied on a micrograph level, as per CTFFIND4 (Rohou
et al. 2015). Theoretically, the defocus of each particle is unique, as particles
are distributed throughout the ice and thus at different distances from the focal
plane. Current best practices, are to perform per particle CTF correction (Relion,
CryoSPARC, Xmipp). Given that particle motion may also occur along the Z
plane, calculating on a per particle and movie frame basis as performed by gCTF
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(K. Zhang 2016) may also be justified. It has been found that there is low agreement
between the above listed CTF correction methods (Fernandez-Gimenez et al. 2023).

After the movies have been aligned (or “motion corrected”) and the CTF has
been corrected, the next stage is locating (or “picking”) individual molecules of
interest (the particles) in the cryo-EM micrographs. This is complicated by the fact
that the images are very noisy, the particles are heterogeneous and their structure is
not necessarily known. Particle extraction refers to cropping out “picked” particles
of interest to build a collection of particles called a “stack”. Given that ice thickness
varies and may be sub-optimal, particle picking can be performed on regions of
optimal ice thickness using tools such as IceBreaker (Olek et al. 2022). The stack
is then processed in a procedure called 2D classification, to identify particles of
similar conformation and orientation (Scheres 2012). These particles can be further
averaged (termed “2D class averages”).

Under the assumption that the noise in the images is Gaussian and white,
averaging images of the same class yields an image with improved SNR. Theo-
retically, more images generally lead to better SNR (Rosenthal and Henderson
2003). However, this assumption assumes that the particles are homogenous and
classification is without error. In practice, this is difficult due to the noise of the
images being so high, which can lead to imperfect classification. Small amounts
of conformational heterogeneity due to atomic motions are also unavoidable, and
lead to class averages with lower resolution. The problem is compounded by
the fact that not all orientations will have significant numbers of images due to
preferred orientation. Not only that, but the quality of the ice, alignment errors
and radiation damage will all contribute to the quality of the final 2D class averages
(Beton et al. 2022).

To summarise, motion and CTF correction help to improve the resolution by
counteracting particle drift and the corruption of signal due to defocus. 2D class
averages aim to improve the signal-to-noise ratio but the averages will be blurred
by any underlying local heterogeneity.

1.1.5 Reconstruction
In common tomography approaches such as those used in biomedical imaging, or
even in cryo-ET, images of the target are acquired at different angles (a “tilt series”
in cryo-ET). Given the angle of each image is known, it is possible to obtain a
reconstruction by “back projecting” the images onto a 3D volume. In the case of
cryo-ET, one can obtain 3D reconstructions of cells, or thin slices of cells, which
can give insights into the spatial arrangement of subcellular features. For the
reconstruction in SPA, the previously obtained stack of picked particles contains
multiple projections of the molecule, but each with unknown orientation. In order
to proceed with reconstruction, the relative orientations of the particles need to
be established, and in the case where there may be multiple classes, they need
to be identified and separated.

The most commonly applied method is known as “filtered back projection”
(FBP) (the 2D images themselves are often called “projections”). Given the ori-
entations of particles are not known, the reconstruction process may require a
number of computational steps to be performed before sufficiently high resolution
reconstructions are obtained. Usually, this would start with the production of one
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or more low resolution “de novo” reconstructions, where particle angles are guessed
using tools such as Frealign (Grigorieff 2016), Relion (Scheres 2012) or CryoSPARC
(Punjani et al. 2017). It is a common choice to produce more reconstructions than
the number of expected conformations (or classes). These additional reconstruc-
tions end up being “junk” classes, which “bad” particles get assigned to. Here “bad”
particles refers to particles which may not be the molecule of interest or a particle
which does not to contribute to any 3D class in a reasonable way. Inspection of
these reconstructions may give insights into the quality of the particles, whether
there are multiple conformations, or the degree of bad particles in the stack. These
reconstructions can then be used to better estimate the angles of the particles, and
produce further refined reconstructions.

While there are many tools which are able to perform reconstruction and
refinement of CTF parameters, it is not uncommon to find protocols which combine
mixtures of these tools (DiIorio et al. 2022). Indeed, the field is full of software
tools which seemingly overlap in their goals, but use different algorithms and
methodologies. Hence, we end up with tools with slightly different characteristics,
each amenable to different situations.

1.1.6 Interpretation & validation
The Fourier Shell Correlation (FSC) (Harauz et al. 1986) is computed from two
independent 3D reconstructions of the cryo-EM data. The principle behind the
FSC is that that correlation between spatial frequency shells gives an indication
about the robustness of signal at these frequencies. The FSC is typically presented
as an FSC curve, a plot of correlation vs spatial frequency. However, a number
of attempts have been made to distill the FSC down to a single number which
estimates the global resolution of the map. The “gold standard” approach is to
identify the frequency at which the correlation drops to 0.143. This approach
is both ubiquitous and is currently also reported by the Electron Microscopy
Databank (EMDB) (Z. Wang et al. 2022). The choice of 0.143 as a cutoff is
based on an attempt to make the resolution estimate comparable with those from
X-ray crystallography (Rosenthal and Henderson 2003). Another common choice
is 0.5 (Böttcher et al. 1997). Others have advocated against fixed cutoffs, offering
alternatives based on standard deviations (Heel et al. 2005). Regardless of the
choice of cutoff, these method assume that the two datasets used to compute the
half-maps are indeed independent. This is not always the case if a tight mask is
involved in reconstruction, which could lead to resolution being overestimated.

It has been noted (Rosenthal and Rubinstein 2015), that resolution estimates
using the “gold standard” approach, may only hold for some parts of the map
- it is not a homogenous quantity. Local resolution estimates attempt to assess
resolution on a per-voxel basis. Rather than rely on half-maps, ResMap (Kucukelbir
et al. 2014) instead finds the highest frequency sinusoidal wave that fits a given
voxel, whilst accounting for false discovery rate. Blocres (Cardone et al. 2013) and
Phenix (Adams et al. 2010) on the other hand, rely on half-maps to perform a
local windowed version of the FSC method.

The 3D reconstruction is the culmination of the various image processing steps
described so far. Understanding the differences in resolution across regions of the
reconstruction can offer insight into the nature of the imaged molecules. Higher
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resolutions are typical for regions which are rigid, compared to mobile elements
such as loops. When images of flexible molecules are aligned, it tends to be that
the largest rigid parts of the molecules end up being better aligned, whilst smaller
domains may end up being less well aligned. This leads to core regions with high
resolution, while domains which may move in relation to it end up with lower
resolution. Thus, variation in local resolution can be an indication of flexibility.
Other interpretations are also possible: poor rotational alignment of particles is
likely to produce lower resolution at the periphery where small angular differences
lead to large errors in cartesian coordinates.

In extreme cases, flexible domains will have very low resolution, or may not
be visible at all. Such molecules likely undergo continuous movements (fig. 1.3D),
in which case focused reconstruction approaches might be required to resolve the
domains individually, however this is beyond the scope of this brief introduction.

Intrinsically disordered regions have too many distinct conformations to ever
be sufficiently resolvable. However, identifying their existence – regions with low
resolution or complete lack of density – in a molecule may be of interest in its
own right (Uversky 2016).

1.2 Flexible fitting and refinement
The ultimate goal of cryo-EM experiments is to answer questions about the spatial
arrangement of molecules. Resolution dictates how detailed these answers can be.
At resolutions worse than 10Å, cryo-EM maps are only able to indicate the positions
of domains or individual units in a complex. At such low resolutions, models can
be rigidly fitted (sometimes referred to as docking) to the density. Even at these
resolutions, which are today considered low (fi.g 1.4b), useful biological questions
can be answered about the spatial arrangement of proteins in complexes (Ranson
et al. 2001). At resolutions better than 4Å it is sometimes possible to do without
any starting model and build a model directly from the density, using tools such
as ModelAngelo (Jamali et al. 2024). Such resolutions are becoming increasingly
common, but are not necessarily the norm.

Today, many cryo-EM reconstructions fall between 4Å and 10Å resolution (fig
1.4a). Such resolutions enable domains and secondary structure elements (SSEs) to
be distinguished (fig 1.4b). Discrepancies between the positioning of these elements
in the atomic model with respect to experimental data may justify altering their
relative orientation. A class of computational approaches known as “flexible fitting”
or “refinement” can perform such structural optimizations automatically.

These terms, flexible fitting and refinement, do not have well defined meanings.
However, it is fair to say that refinement typically refers to small optimizations in
atomic coordinates and atomic displacement parameters (ADPs, B-factors). These
generally do not have a wide radius of convergence, which is to say, models must be
relatively close to their ideal conformation for refinement to produce satisfactory
results. They also have their origins in X-ray crystallography, where the phases
must also be refined simultaneously. Generally, a reasonable estimation of the
phases is required, which again means having a model close to the ideal coordinates.

Flexible fitting, on the other hand, typically refers to the case where large
conformational changes are required to optimize the fit of the initial model to the
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Figure 1.4: (a) Resolution has been rapidly improving with the majority of recently
deposited maps in the EMDB falling in the 3-4Å range. (b) The visible features at
different resolutions determine the type of modelling approach. Adapted from Beton
et al. 2022.

data. Often, flexible fitting tools will employ a final refinement stage to further
optimize the local geometry (Kidmose et al. 2018; Kim, Moriarty, et al. 2019)
or such protocols are performed in an ad-hoc manner (Kryshtafovych, Malho-
tra, et al. 2019).

TEMPy-ReFF, (TEMPy REsponsibility-based Flexible-Fitting), is the basis of
one of the publications in this thesis (Beton*, Mulvaney* et al 2024). The method
is in keeping with the flexible fitting tradition. Namely, a combination of scoring
functions, molecular dynamics, biassing potentials and restraints. The rest of this
section is dedicated to exploring these fundamental details and the diverse array
of approaches in the flexible fitting field.

1.2.1 Structure Prediction
Before discussing the intricacies of flexible fitting in detail, it is important to
acknowledge that while there have been advances in flexible fitting approaches,
including those introduced in this thesis in (section 3.1) (Beton*, Mulvaney*, 2024),
the biggest leap in recent years is how initial models for flexible fitting are obtained.

Arguably the best sources of high resolution, reliable structural models are still
X-ray and NMR experiments. However, cryo-EM is able to study structures which
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have never been crystallized or are too large for NMR. Computational structural
predictions have been a stalwart of cryo-EM modelling. Traditionally, these have
involved homology modelling (Schwede et al. 2003), and modelling with restraints
(Sali et al. 1995; Fiser et al. 2003). An important advance was the use of 2D contact
maps as a stepping stone to 3D structure. Residue coevolution based methods,
(Hopf et al. 2012; Jones et al. 2012; Morcos et al. 2014), attempt to statistically
determine pairs of residues which coevolve. The idea being that residues which are
involved in important contacts in the protein structure will mutate together in such
a way that they maintain their interactions. Meanwhile, other residues will mutate
independently. These methods are only possible because of the large databanks of
sequence information, which can be constructed into the deep multiple sequence
alignments (MSAs) required for determining pairs of mutating residues. More
recently, this has culminated in the AlphaFold2 (Jumper et al. 2021) deep learning
approach, whose “evoformer” network relies heavily on coevolution information
from an input MSA. This approach, which stood out in the 14th critical assessment
of structure prediction (CASP14) challenge (Kryshtafovych, Schwede, et al. 2021),
has become the basis for an expanding repertoire of structure prediction methods.
The training of such neural networks requires not just an expansive set of sequences
for building MSAs, but also experimentally solved structures to train the network
against. The ideas behind coevolution extend beyond intra-protein residue contact
prediction. Indeed, coevolution information can be used to determine protein
assemblies by effectively concatenating the MSAs of the proteins of interest. With
this approach, CASP15 saw a similar advance (Ozden et al. 2023) in multimeric
structure prediction (fig. 1.5).

Figure 1.5: The improvement of protein-protein interfaces as determined by the interface
contact similarity (ICS) score. CASP15 saw a large improvement in ICS scores, with
more than 50% of the predictions having ICS scores above 0.75. When compared across
difficulty levels of targets, the “Hard” category where no solved structures exist in public
databases, saw a huge jump in accuracy. Figure adapted from (Ozden et al. 2023).

1.2.2 Assessing quality of fit
In order to improve the fit of an atomic model to the data, a way of measuring
the goodness-of-fit is required. Given we have established how a molecule scatters
electrons and thus derived the coulombic potential (eq. 1.5), we can simulate
the coulombic potential for a given atomic model and compare it against the
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experimental data. While the multi-gaussian model of an atom is often used in
X-ray refinement such approaches are considered to be superfluous at resolutions
typically seen in cryo-EM. Indeed, many of the methods that this thesis builds upon,
assume a simple one Gaussian model to describe the intensity profile (Orzechowski
et al. 2008; Topf et al. 2008; DiMaio, Song, et al. 2015; Igaev et al. 2019; Pintilie
et al. 2021). Thus, the approximate simulated coulombic potential at a given
location 𝑟 is given by the function 𝜌𝑠𝑖𝑚(𝑟) which is defined as the sum of the
coulombic contributions of all 𝑁 atoms in a molecule. Here 𝑍𝑛 and 𝑟𝑛 are the atomic
number and atomic coordinates of the 𝑛th atom. The parameter 𝜎 is dictated by
the resolution and must be estimated.2

𝜌𝑠𝑖𝑚(𝑟) = 𝑁∑𝑛 𝑍𝑛 exp{(𝑟𝑛 − 𝑟)2𝜎3
}

(1.6)

From this simulated coulombic map, it is possible to measure how well the
atomic model reflects experimental data. One such measure of fit, important
to this thesis, is the cross correlation (CC) between the simulated map and the
experimental one. The cross correlation is computed across the corresponding
voxels 𝑣 of the two simulated and experimental maps.

𝐶𝐶(𝜌𝑠𝑖𝑚, 𝜌𝑒𝑥𝑝) = ∑𝑉𝑣 (𝜌𝑠𝑖𝑚(𝑣) − 𝜌𝑠𝑖𝑚)(𝜌𝑒𝑥𝑝(𝑣) − 𝜌𝑒𝑥𝑝)√∑𝑉𝑣 (𝜌𝑠𝑖𝑚(𝑣) − 𝜌𝑠𝑖𝑚)2(𝜌𝑒𝑥𝑝(𝑣) − 𝜌𝑒𝑥𝑝)2 (1.7)

Like, in the case of global resolution determined by FSC (see 1.1.6), the CC
score returns a single value which is indicative of overall fit to the experimental
data, but does not indicate where problematic regions may be arising. A number
of alternatives exist, such as SMOC (Cragnolini, Sahota, et al. 2021; Joseph et al.
2016) and the residue CC of Phenix (Adams et al. 2010) which provide local
correlation based scores.

1.2.3 Molecular Dynamics
Classical molecular dynamics (MD) can be used to simulate how certain aspects
of the molecular system evolve over time. The equations of motion are applied to
all atoms in the system and integrated over a period of time. Under the “classical”
MD scheme, the bonds are maintained throughout the course of the simulation
and chemical reactions do not take place.

The forces “experienced” by atoms are defined by potentials or “force fields”.
These force fields are sets of parameters that have been empirically determined or
parameterised with the help of quantum mechanical computations. Commonly used
force fields include AMBER (Case et al. 2024) and CHARMM (Brooks et al. 2009).
In order to accurately describe the behaviour of atoms in biological molecules,
the parameters of atoms (even of the same element) will be different based on
the chemical environment they are in. This has important implications: molecules
must be unambiguously defined in the input for common MD programs like NAMD
(Phillips et al. 2020), GROMACS (Bekker et al. 1993) and OpenMM (Eastman

2Some common approaches are to multiply the global resolution as determined by the FSC by
a scaling factor such as 0.187 (Wriggers et al. 1999) or 0.225 (Pettersen et al. 2004).
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et al. 2017), to correctly parameterise the forces for each atom in the system. If
the chemical environment of one of the atoms is ambiguous because the residue it
is part of is missing atoms or incorrectly named, the simulation can not proceed,
as it will be unable to “decide” what parameters those atoms should be given.

Molecular dynamics is well established in the field of structure determination.
First, it was applied in the determination of NMR structures (Brünger, Clore,
et al. 1986), then in the refinement of X-ray crystal structures (Brünger, Kuriyan,
et al. 1987) where it was noted for being able to escape some of the local minima
inherent in the least squares approaches popular at the time.

Flexible fitting: Steered molecular dynamics

In flexible fitting methods, rather than use MD to study the evolution of a molecular
system over a period of time, the force field acts to maintain physiological features
of the biological molecule while a “biassing” potential (section 1.2.4) adjusts the
structure to improve overall fit. This biassing term has no physiological basis and
the trajectories of a molecule under its influence does not necessarily reflect its
natural modes of motions. The overall energy term 𝐸 for such an MD system is
given by the sum of the kinetic energy 𝐸𝑘, the energy terms of the force field 𝐸𝑓 𝑓
and the additional energy term due to the biassing potential 𝐸𝑏𝑖𝑎𝑠:𝐸 = 𝐸𝑘 + 𝐸𝑓 𝑓 + 𝐸𝑏𝑖𝑎𝑠 (1.8)

Enumerating all the potential energy terms from a force field such as CHARMM
or AMBER would not be illuminating. Instead, two key potential energy forms
are described. The harmonic potential 𝐸𝑏𝑜𝑛𝑑, which behaves like a spring, forms the
basis for modelling the behaviour of bonds. Here, 𝑟0 is the ideal bond length, 𝑟 is
the current bond length and 𝑘 is the strength of the potential.

𝐸𝑏𝑜𝑛𝑑 = 𝑘(𝑟 − 𝑟0)2 (1.9)

The harmonic potential can be used to describe other aspects of an atomic
model, such as bond angles and torsion angles. It is also commonly used as an
external non-physiological restraint in protein modelling, for example to maintain
proximity of certain atoms or maintain secondary structure.

The van der Waals (vdW) force is commonly modelled using the Lennard-
Jones “12-6” potential, where 𝑟 is the interatomic distance of the atoms, 𝜎 is their
combined vdW radii and 𝜖 is the well depth. The weak attractive term models
electrostatic attraction due to polarisation, and the hard repulsive term is due to
Pauli exclusion principle. The low clash scores observed in MD based refinements
have been attributed to this repulsive term (Y. Wang et al. 2018).

𝐸𝐿𝐽 = 4𝜖 [(𝜎𝑟 )12 − (𝜎𝑟 )6] (1.10)

Integration

In order to determine the motions of the atoms in the system, the change in velocity
and position of each atom must be computed. For simple two body systems, there
are analytical solutions, but for more interesting systems the “many body” problem
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is encountered. Here, the solution to equations of motions are computed over
small timesteps. The smaller the timestep, the more accurate the integration,
at the expense of computing time. Various algorithms have been established for
performing integration, with different cost/accuracy tradeoffs. The Velocity Verlet
(Swope et al. 1984) method is a popular choice and is described as follows: Given a
particle with a position 𝑥, a velocity 𝑣, experiencing an acceleration 𝑎 (determined
trivially by the relationship established by Newton, 𝐹 = 𝑚𝑎), the approximate
new position 𝑥 and velocity 𝑣 of the particle after a small fraction of time, 𝛿𝑇 ,
is given by the expression:

𝑥′ = 𝑥 + 𝑣𝛿𝑇 + 12𝑎𝛿𝑇 2 (1.11)𝑣′ = 𝑣 + 12(𝑎 + 𝑎′)𝛿𝑇 (1.12)

Because the acceleration is position dependent, the updated velocity 𝑣′ is ap-
proximated by using the average acceleration experienced by the particle at its
initial location 𝑎, and its new location 𝑎′. Due to the errors associated with these
approximations, the total energy of the system is not well conserved. This can be
accounted for by adjusting the velocities of the particles at given intervals so that
the total energy is approximately constant.

Given, that small timesteps are required for accurate integration, where each
timestep involves computing forces on many atoms, it is easy to see why MD-based
methods are computationally expensive. Fortunately, flexible fitting approaches
typically run over short time periods and likely force conformational changes over
timescales which are not physiologically reasonable. Still, attempts have been
made to improve the performance of flexible fitting approaches such as by coarse-
grained dynamics (Grubisic et al. 2010), where residues are reduced to C𝛼 centered
particles with torsion angles that enforce sensible stereo-chemistry. Common re-
duced representation force fields include the “Go” model (Go 1983) and Martini
(Souza et al. 2021).

Ensembles

The MD system described thus far, where the total energy of the system is main-
tained, is known as the “NVE” ensemble. This nomenclature refers to the fact that
the number of particles (or atoms) 𝑁 , the volume 𝑉 and the total energy 𝐸 are
constant. In practice, it is usually a constant temperature 𝑇 rather than energy
which is desired in biological simulations, the so called “NVT” ensemble. Because
temperature is a statistical quantity related to the average kinetic energy 𝐸𝑘 of the
particles in the ensemble it must be constantly adjusted.

𝐸𝑘 = 32𝑁𝑘𝐵𝑇 (1.13)

Imagine for a moment, a simulation of a protein in an NVE system with an initial
temperature of 300K. As the protein relaxes into a low energy conformation, it
transforms its potential energy into kinetic energy, heating up the system. In the
case of flexible fitting, the external biassing potential can also impart a large out
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amount of kinetic energy to the system, which needs to be dissipated. A number
of thermostats exist, whose purpose is to adjust the average kinetic energy of the
system such that a given temperature is maintained, for example the Andersen
thermostat (Andersen 1980). Another popular approach is Langevin dynamics
(Pastor 1994), here the velocities of particles are constantly dampened by friction or
accelerated by collisions with an imaginary solvent. Finally, an important technique
used to improve the chances of finding a global energy minimum is to gradually cool
the simulation down by controlling the thermostat, a technique called simulated
annealing, explored in section 1.2.5.

Implementation

Fortunately, most of the complexities associated with building efficient MD simu-
lations are taken care of by packages such as GROMACS, NAMD and OpenMM,
the latter being the method used in the software developed in this thesis (see
section 3.1). These software packages allow scientists to focus their efforts on
defining mathematical expressions for forces, whilst efficient integration is handled
by dedicated routines. Recently, graphics processing units, (GPUs), which as the
name suggests were once devoted to computer graphics tasks, have become an im-
portant part of accelerating scientific computational workloads which are made up
of highly parallelizable tasks. The above mentioned MD packages all support GPU
acceleration, enabling simulations which previously would have required dedicated
scientific computing resources to be run on “commodity” hardware.

1.2.4 Biassing potentials
Flexible fitting methods are based on adding a potential to the standard force
fields of a molecular dynamics simulation. This potential is designed to improve
the fit of the atomic model to the experimental map. Unlike the potentials of the
force fields such as AMBER and CHARMM, this potential has no physiological
basis. The biassing potentials can be divided into three different main categories
as described below and summarised in Table 1.1.

Density driven

Under this scheme, a potential is derived from the experimental map which pushes
atoms in to regions of high density. Concretely, atoms experience a force pro-
portional to the negative gradient of the experimental map. This approach was
popularised by MDFF (Trabuco et al. 2008), and has spawned a number of other
methods which extend this with various enhancements (Singharoy et al. 2016;
Vuillemot et al. 2022; Dahmani et al. 2024; Croll 2018). The approach is straight
forward to implement, it can be accurate at high-resolutions as density peaks are
centered around atoms. However, at lower resolutions, it is less accurate as the
density in of coulombic potential map, will no longer be centered on atoms.

Correlation driven

Correlation driven approaches such as (Orzechowski et al. 2008), Flex-EM (Topf
et al. 2008), and CDMD (Igaev et al. 2019), try to fit the model in a way that
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Figure 1.6: The problem of local minima is pervasive and can be a problem at multiple
scale, from the fitting of domains down to adjusting rotamers. The potential energy
surface of landscape is the sum of all the different potentials that make up a system. In
this figure from Brünger, Adams, et al. 1997, we see how the conformation of a rotamer
can become trapped by the fitting potential. The difference between the potential energy
curves of the biasing potentials can impact how well a system is able to escape local
minima and converge on the more optimal solution. In the figure, a least-squares and
maximum-likelihood potential are compared.

increases correlation. The potential energy function is given by 𝐸𝑐𝑐, where 𝑘 is a
scaling factor which determines the strength of the potential and 𝐶𝐶 is the cross-
correlation as defined in (eq. 1.7).

𝐸𝑐𝑐 = 𝑘(1 − 𝐶𝐶(𝜌𝑠𝑖𝑚, 𝜌𝑒𝑥𝑝)) (1.14)

Given that computing CC requires computing a simulated map (eq. 1.6), the
force field must be regularly updated as the model changes, making it computa-
tionally expensive. The force field has the advantage of being theoretically more
accurate than the density based approach described previously (see 1.2.4) as is
illustrated in fig. 1.7.

Gaussian mixture model based

One limitation of the previously described cross-correlation biassing potential is
that in order to compute the CC, an estimation of global resolution is required. It
is also well established that a global resolution does not describe the heterogeneity
of cryo-EM reconstructions. In the paper in section 3.1, we implement a new
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Figure 1.7: A comparison of the forces experienced by atoms in density and correlation
based force fields. In each of the panels, the circles represent atoms and the arrows
represent the direction of the forcefield. In (a) and (b) two atoms are present with a
Gaussian width of 𝜎 = 4 and positions (−2, 0) and (2, 0) respectivey. In the density based
force field (a), the force experienced by the shaded atom is towards the center of the two
atoms. In the correlation based force field (b) the atom experience no net force in its
original position. The same phenonemon is seen in the three atom case in (c) and (d).
Adapted from Orzechowski et al. 2008.

biassing potential which does not rely on a fixed resolution 𝜎 as per (eq. 1.6).
Instead, we use a value 𝐵 for each atom.

𝜌𝑠𝑖𝑚(𝑟) = 𝑁∑𝑛 𝑍𝑛 exp{(𝑟𝑛 − 𝑟)2𝐵3𝑛
}

(1.15)

The parameters 𝐵𝑛 and the atomic positions 𝑟𝑛 are optimized using the
expectation-maximisation algorithm as described in the paper.

Further more, we show that using 𝐵 we can derive an ensemble of models
which describe the experimental density. While 𝐵 can describe heterogeneity its
interpretation is not trivial and is the subject of the discussion.

Determining biassing strength

Unfortunately, every cryo-EM reconstruction is unique, with their own background
noise, resolution profiles and artifacts. It is thus difficult to define a scaling factor
for the biassing force which can be applied for all model fitting scenarios which
produces both good fit to the experimental data whilst avoiding overfitting and
distorting the model. One approach proposed in (DiMaio, J. Zhang, et al. 2013) was
to build models into two independent reconstructions using Rosetta, with increasing
contributions from the fit to map terms. This is very much in keeping with the𝑅𝑓 𝑟𝑒𝑒 approach established in crystallography (Brünger 1992).

The optimal biassing strength is at the point just before overfitting occurs,
which is when the two FSC or real-space correlation curves begin to diverge.
The optimal biassing strength would be at the point just before these correlation
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Potential Res. required? Comp. cost Accuracy Fits

Density No Cheap Low Coordinates
Correlation Yes Expensive High Coordinates
GMM No Expensive High Coordinates + Bfactor

Table 1.1: Three main classes of biassing potentials have been developed for flexible
fitting, including the GMM based potential introduced in this thesis. Here the benefits
and tradeoffs of each are listed.

measurements diverge. This approach has also been applied to correlation based
flexible fitting software such as (Igaev et al. 2019) to determine the fitting strength.

1.2.5 Convergance & restraints
The biassing potentials described perform well in the case where small confor-
mational changes are required, but are subject to a local optima and structural
distortions when the initial structures require significant conformational changes.
To overcome such issues additional methods are commonly employed which restrain
aspects of the geometry, smooth the potential energy landscape of the biassing
potential, or sample alternative starting conformations. These approaches are
described below along with their appearances in fitting software.

Geometry and rigid body restraints

It is noted by authors of the popular MDFF flexible fitting software that stereo-
chemical violations can occur (Schreiner et al. 2011). They recommend harmonic
restraint to preserve chiral center at each peptide bond whilst applying fitting
potential. Similarly, it is common practice to apply restraints to secondary struc-
tures elements (SSEs) during fitting (Trabuco et al. 2008; Topf et al. 2008). It is
generally assumed, that SSEs and their local environment are structurally stable
(or well predicted in the case of computational models) and should be preserved
during fitting.3

Besides preserving geometry, such restraints can also improve convergence. Dur-
ing flexible fitting, atoms in the model being fit will feel forces due to local density.
Depending on how far the atoms are from their target density, these local density
pockets can trap regions of the model. This can lead to distortions as neighbouring
atoms are pulled in opposing directions.

A common solution to avoid these distortions is to treat parts of the structure
as rigid until they have moved closer to the correct density, before allowing the
fit of their internal structures to be optimized. One way of imposing rigidity, is
to apply additional harmonic distance restraints between residues which constitute
SSEs or larger areas of interest. RIBFIND (A. P. Pandurangan and Topf 2012) is
a tool for finding rigid bodies in proteins, starting at the level of SSEs. These
are progressively combined into ever larger rigid bodies based on the strength

3There are always exceptions. One extreme case, is the pore forming toxins in the MACPF
family. These undergo large conformational changes where the 𝛼-helices extend to form comple-
mentary 𝛽-strands of the large 𝛽-barrel which makes up the pore.
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of their interactions with one another. Appropriately chosen rigid bodies were
shown to improve geometry and convergence of models fit using Flex-EM software
(Pandurangan et al. 2012b) However, in its original implementation, Flex-EM has
only been applied to protein structure refinement as RIBFIND is not able to cluster
RNA secondary structure. In (Malhotra*, Mulvaney*, et al.) which is introduced
in (section 3.2), a new implementation of RIBFIND is described which supports
RNA and DNA structures.

An alternative to fully rigid body restraints are adaptive distance restraints
(ADRs). These have been implemented in a variety of refinement softwares such
as BUSTER (Smart et al. 2012), and REFMAC (Nicholls et al. 2012). Under
these schemes, restraints behave roughly harmonically, while the atoms are close
to the idealised distance. At larger deviations they stop behaving harmonically
(the potentials “top out”), allowing greater freedom of movement. In addition to
“topping out” at large distances, the adaptive restraints implemented in ISOLDE
(Croll 2018) “bottom out”, in other words apply no force when the atom is sitting
in the well close to the target position. The width of the “bottom” is a tunable
parameter. The theoretical advantage of bottom out potentials, is that restraints
derived from low-resolution information likely have an error associated with them
(which is hopefully the size of the well bottom), they thus allow the high-fidelity
molecular force field to better govern the atoms coordinates when they are close
to the target geometry (Croll and Read 2021).

Smoothing the density

A well known trick in the flexible fitting community to improve convergence when
large conformational changes are required, is to blur the map. This makes the
potential energy landscape less rugged, with fewer minima to become trapped in.
After performing flexible fitting with the blurred map, the original map is used
to further optimize higher-resolution features. This kind of ad-hoc protocol is
described in (Kidmose et al. 2018) and by others (Kim and Sanbonmatsu 2017;
Casañal et al. 2020).

It is conceivable, that multiple levels of blurring might be needed depending
on the starting model and the cryo-EM reconstruction. In Igaev et al. 2019
and Singharoy et al. 2016, blurring and progressive sharpening are performed
automatically as part of the refinement protocol. I refer to this approach as
“progressive sharpening”.

Normal mode analysis

Normal mode analysis (NMA) provides a mathematical framework for determining
the low-frequency modes of motion in molecules (Hinsen 1998; Tama et al. 2004).
Sampling from conformations from these motions has been used to find models
which better fit the density (Hinsen et al. 2010). This approach has been applied
in conjunction with molecular dynamics, where NMA is used to find a more optimal
starting model, before standard biassed MD approaches refine the model further
(Dahmani et al. 2024; Vuillemot et al. 2022).
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Simulated Annealing

One of the advantages of molecular dynamics over gradient-based methods such
as conjugate gradient decent that was noted early in crystallographic refinement
methods (Brünger, Kuriyan, et al. 1987) was MDs ability to overcome some local
minima. This can be further enhanced using simulated annealing. Here, the sys-
tems ability to climb over energy barriers is improved by increasing the temperature
and thus the available energy of molecules in the system. By gradually cooling the
system, the model is unlikely to revisit high energy states.4

This method has been applied to cryo-EM flexible fitting (Topf et al. 2008;
Igaev et al. 2019) and is employed in the Phenix real-space-refinement tool
(Adams et al. 2010).

Other sampling methods

Even with simulated annealing, some barriers are simply too unlikely to be crossed.
Rotamers can become trapped in energy minima which are difficult to escape as
illustrated in figure 1.6. While blurring the experimental map can smooth the
contributions of the map potential, the various potentials from the force fields
such as AMBER contribute to the rugged terrain. Atomic models may have sub-
optimal torsion angles, but finding the optimum angles may require overcoming a
steep energy barrier. An approach used in the ISOLDE software (Croll 2018) is
to allow user intervention to correct for such cases. Phenix (Adams et al. 2010)
uses heuristics like the grid search proposed by (Oldfield 2001) to sample common
torsion angles which make up protein backbones. RNA backbones have seven
torsion angles compared to the two which describe proteins (described later in RNA
structure) making the nucleic acid geometry particularly challenging. QRNAS
(Stasiewicz et al. 2019) applies additional restraints along with the AMBER force
field in an attempt to regularise RNA backbones to better fit with known backbone
conformers. Rosetta (Simons et al. 1999), uses Monte Carlo sampling an alternative
to MD, and may be able to sample more conformational candidates using fragment
searches. ERRASER (Chou et al. 2013) is a Rosetta based tool for the refinement
of RNA structures. This tool is used in the refinement pipeline described in the
paper (Mulvaney et al. 2023) (see section 3.3) of this thesis. Here, RNA predictions
from CASP15 needed additional backbone corrections as their starting geometry
was suboptimal. This approach is similar to an approach used for fitting proteins
which combined flexible fitting with Rosetta (Lindert et al. 2015).

1.3 RNA
Our understanding of the role of RNA in biology has transcended early views of
the molecule as a mere messenger encoding protein sequences (Crick 1970). RNAs
are capable of performing complex regulatory and enzymatic roles in cells. Even
messenger RNA (mRNA) molecules are able to regulate their own transcription
through structures formed in their untranslated regions (UTRs). Examples in-
clude the iron responsive element (IRE) (Addess et al. 1997) and the cobalamin

4Ironically, annealing is essentially, the process that is avoided by plunge freezing. Here,
microscopists aim to prevent the molecules from finding their global energy minima.
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Name Fitting force Restraints/Sampling

MDFF (Trabuco et al. 2008) Density SSE restraints
ReMDFF (Singharoy et al. 2016) Density Progressive sharpening
NMMD (Vuillemot et al. 2022) Density Normal mode sampling
MDFF-NM (Dahmani et al. 2024) Density Normal mode sampling
CDMD (Igaev et al. 2019) Correlation Progressive sharpening
Flex-EM (Topf et al. 2008) Correlation Rigid body restraints
ISOLDE (Croll 2018) Density User guided
TEMPy-ReFF (Beton* et al. 2024) Density + GMM Hier. rigid body restraints

Table 1.2: This table attempts to summarise the numerous flexible fitting and refinement
tools which have been developed. Each chooses slightly different approaches to fitting in
order to avoid local minima and aid convergence.

riboswitches whose conformational states have recently been elucidated with cryo-
EM (Ding et al. 2023). Many viruses must hijack the hosts translational facilities
in order to replicate. Often this involves the evolution of specific features in the
5’ UTR of the viral RNA. Those of coronaviruses, including SARS-CoV-2, have
been studied using both NMR (Vögele et al. 2023) and cryo-EM (Kretsch et al.
2024). Other viral adaptations include structures for protecting polyA tails from
deadenylation (Mitton-Fry et al. 2010). Viral RNA, and RNA in general, is thus
not just of interest because of the genetic material it encodes, but also as a complex
structured entity capable of carrying out a range of functions.

One of the most studied RNA containing complexes by cryo-EM are ribosomes
which perform an essential role as protein production machines. Owing to their
large size, these have been particularly amenable to the EM based techniques
including in-situ cryo-ET (Erdmann et al. 2021). The unique structure of bacterial
ribosomes compared to eukaryotic ones, has made it the target of an ever-growing
number of antimicrobial agents, many of which no longer work due to resistance.
Anti-microbial resisitance (AMR) was estimated to have caused 1.27 million deaths
in 2019 (C. J. L. Murray et al. 2022). Understanding the ribosome at a structural
level is thus essential to combat the ever evolving AMR pandemic.

Small RNA molecules occur throughout nature and include molecules such
as ribozymes, the Group I, II and III introns. Despite their size, they have the
ability to perform functions such as splicing and catalysis - pointing towards the
possible RNA origins of life. Like ribosomes, introns are also of interest from
a global health perspective. While bacterial ribosomes are sufficiently different
from those in eukaryotes to develop targeted drugs, fungal ribosomes are similar.
Introns are present in many fungi and may be a potential target for future drugs
(T. Liu et al. 2024).

However, until recently, these smaller RNA molecules have been off limits due
to the poor SNR of earlier detectors. Previously, molecules smaller than 200kDa
did not offer sufficient contrast to allow the alignment and determination of orien-
tation with sufficient accuracy to produce reconstructions (Henderson et al. 2011).
Besides better direct electron detectors, some additional methodologies have been
introduced for stabilising these molecules. ROCKS for example introduces carefully
engineered hairpin loops into the RNA structure to encourage multimerisation
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through the creation of kissing loops (D. Liu et al. 2022). Scaffolding approaches
where by the RNA target is embedded in a larger structural design have also been
applied (Sampedro Vallina et al. 2023).

These advances, and the growing interest in RNA, have culminated in an
explosion of nucleic acid structures being solved using cryo-EM (fig. 1.8).

1.3.1 RNA structure

RNA is composed of four units, the purines adenine (A) and guanine (G), and the
pyrimidines cytosine (C) and uracil (U). Despite this simplicity, RNA is capable of
forming diverse secondary and tertiary structures. This is defined predominantly
by helical motifs formed by canonical base pairing between C-G, U-A nucleotides.
Canonical base pairing involves the formation of bonds between the Watson-Crick
edges of the respective bases. Some alternative (non-canonical) base pairing such
as wobble pairing between G-U also exist. Besides the canonical Watson-Crick
edges, the Hoogsteen and sugar edges are also possibilities for base pairing. Various
attempts have been made to systematize these interactions including the nomencla-
ture introduced in (Leontis and Westhof 2001) which offers excellent insight into
the complexities of RNA base pair interactions.

The helical forms which dominate RNA structures occur in three major types, A,
B and Z, with A being the most common. Protein tertiary structure is determined
by the network of interactions formed between amino acid side chains. In RNA,
tertiary structures are predominately determined by long distance inter-helical
interactions formed between exposed nucleotides in hairpin loops. A plethora of
tertiary structures arise from these such as kissing-loops, pseudoknots, kinks (which
involve non-canonical G-A interactions) to name a few. Due to the negatively
charged phosphate groups, coordinated metal ions, enable the backbone to come
into proximity. The coordination of metal ions is also important for catalytic and
sensing functions in many RNA. A number of reviews exist which focus on aspects
of secondary, tertiary, quaternary and backbone structure (Leontis, Lescoute, et al.
2006; Butcher et al. 2011).

Protein backbones structure is described by the 𝜓 and 𝜙 torsion angles formed
by the amino acid (Ramachandran et al. 1963). Statistics about the frequencies at
which these torsion angles occur for different amino acids is important for detecting
geometry outliers which may be indicative of modelling errors. These statistics also
inform the development of force fields and refinement methods. RNA backbones
are complex to characterise due to the large number of rotatable bonds. One
approach is by defining “suites”, composed of the seven torsion angles between
adjacent sugars (L. J. W. Murray et al. 2003). Within this seven-dimensional
torsion space, 46 different clusters have been enumerated (Richardson et al. 2008).
Refinement tools such as ERRASER (Chou et al. 2013) and QRNAS (Stasiewicz
et al. 2019) attempt to regularise the backbone geometry to fit these suites.

Base-pairing is energetically favourable, making RNA and DNA helices highly
stable, but also leading to kinetic traps: misfolded intermediates may themselves
be stable and slow down the correct folding process. Excitingly, cryo-EM has been
used to observe the folding intermediates of a group I intron (Bonilla et al. 2022)
and in a designed RNA system (Sampedro Vallina et al. 2023).
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1.3.2 Rationally designed functional nucleic acids
Cryo-EM experiments are creating insight into the world of RNA and nucleic acid
structures. At the same time, designed nucleic acids are finding exciting roles in the
experimentalists toolbox. One such example, are origami nanostructures composed
of rationally designed DNA molecules. These have been used as signposts for
labelling otherwise difficult to discern molecules in cryo-ET data (Silvester et al.
2021). They have also been used as scaffolds for small proteins which would
otherwise be difficult to resolve (Martin et al. 2016). The discovery of green
fluorescent protein (GFP) by Shimomura et al. 1962 was revolutionary, enabling
live cell imaging of fluorescently tagged proteins (Chudakov et al. 2010). Only in
recent years have equivalent tags become available for studying RNA molecules.
Aptamers such as “Spinach” (Paige et al. 2011), “Broccoli” (Filonov et al. 2014)
and “Pepper” (Huang et al. 2021), enable RNA to be studied throughout its cellular
lifecycle with light microscopes. In virology, understanding the movements of viral
RNA through out the cell is of particular interest, with broccoli aptamers already
being used to study human immunodeficiency virus (HIV) (Burch et al. 2017) and
alphavirus RNA (Nilaratanakul et al. 2017; Nilaratanakul et al. 2020). Recently,
it was shown that pairs of RNA aptamers can be employed for FRET experiments,
their structures solved using cryo-EM combined with RNA scaffolding techniques
(Sampedro Vallina et al. 2023).

It is clear, that nucleic acids are interesting as structured molecules which carry
out important functions. Cryo-EM is offering insights into these structures and
their slow folding intermediates. Our increasing understanding of these molecules
and their dynamics is leading to the rational design of functional nucleic acid
polymers that can serve as fluorophores, probes and scaffolds which will enable
new avenues of inquiry into both RNA and protein structure.
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Figure 1.8: The growth of cryo-EM has been rapid with more than two-thirds of deposited
models solved using cryo-EM in 2024.



2
Aim

Given the important role cryo-EM is playing in solving the structure of biomolecules
and the ever improving methods for structure prediction, it is clear that better tools
are needed for fitting these structure predictions to experimental data.

The aim of this work was to develop programs for fitting protein and RNA
predictions to experimental cryo-EM data at a range of resolutions with the ability
to handle diverse starting models. Thus, such tools must be able to perform
significant conformational changes to find an optimal fit. Given, the heterogeneity
of experimental maps described earier, such software models should be able to
account for the dynamics or model uncertainty.

These three objectives were realized and are described in the publications in
the following sections.

• 3.1 TEMPy-ReFF (Beton*, Mulvaney* et al.) a program for flexible fitting
and refinement of atomic models at high to intermediate resolutions which
uses Gaussian Mixture Model (GMM) derived force field for flexible fitting
and simulataneous local resolution estimation. Furthermore, these local
estimations can produce perturbed models to better describe the underlying
data as an ensemble.

• 3.2 RIBFIND2 (Malhotra*, Mulvaney* et al.) a program for hierarchical
decomposition of protein and RNA structures into rigid-bodies enables large
conformational changes.

• 3.3 An application of the previous mentioned software to the refinement of
predictions from CASP15 (Mulvaney et al.) demonstrated the efficacy of the
method when faced with diverse sets of predictions.
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3
Publications

3.1 Publication in Nature Communications
Flexible fitting approaches based on either density guided or correlation driven
approaches are well established in the field, and are continuously being optimized
and adapted (table 1.2). However, they suffer from a number of shortcomings.
Density guided approaches by design steer atoms towards high density and not
towards where they are most correlated. This is nicely illustrated by (Orzechowski
et al. 2008) and adapted in figure 1.7. Whilst the cross-correlation maximisation
approach does push atoms towards correlation it requires an estimation of global
resolution in order to proceed. In the following paper (Beton*, Mulvaney*, et al.
2024) which I share first authorship with Dr. Joseph Beton, a Gaussian Mixture
Model (GMM) based approach to flexibly fitting models, which we call TEMPy-
ReFF, is introduced. One of the main advantages of the approach is that the
local resolution of each atom is estimated during the refinement procedure. My
own contributions to the project include developing the GMM biasing potential,
implementing the bulk of the software including the various force fields, manag-
ing the the MD simulations and establishing interfaces for monitoring simulation
progress and performing analysis. The majority of the software was written in
Python and relies on the OpenMM (Eastman et al. 2017) library for implementing
the molecular dynamics components.

The other major aspect of the paper was benchmarking our method against
the Phenix (Adams et al. 2010) refinement program. This was made possible by
of the CERES (Liebschner et al. 2021) project which offers a repository of models
refined by Phenix. Efforts such as CERES are valuable to the method development
community and therefore we have deposited our refined models in a Zenodo archive.
Such large benchmarks like CERES (and now ours) are rare amongst flexible fitting
tools, with most publications providing just a handful of case studies.
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Cryo-EM structure and B-factor refinement
with ensemble representation

JosephG. Beton1,3, ThomasMulvaney 1,3, TristanCragnolini1,2 &Maya Topf 1

Cryo-EM experiments produce images of macromolecular assemblies that are
combined to produce three-dimensional density maps. Typically, atomic
models of the constituent molecules are fitted into these maps, followed by a
density-guided refinement. We introduce TEMPy-ReFF, a method for atomic
structure refinement in cryo-EM density maps. Ourmethod represents atomic
positions as components of a Gaussianmixturemodel, utilising their variances
as B-factors, which are used to derive an ensemble description. Extensively
tested on a substantial dataset of 229 cryo-EM maps from EMDB ranging in
resolution from 2.1-4.9 Å with corresponding PDB and CERES atomic models,
our results demonstrate that TEMPy-ReFF ensembles provide a superior
representation of cryo-EMmaps. On a single-model basis, it performs similarly
to the CERES re-refinement protocol, although there are cases where it pro-
vides a better fit to themap. Furthermore, our method enables the creation of
composite maps free of boundary artefacts. TEMPy-ReFF is useful for better
interpretation of flexible structures, such as those involving RNA, DNA or
ligands.

Cryo-electron microscopy (cryo-EM) can resolve the structure of bio-
molecules at an ever-improving resolution. Larger complexes can now
be visualised as 3-dimensional density maps at near-atomic resolu-
tions, and in various conformations. The interpretation of those maps
often hinges on fitting atomicmodels of the differentmacromolecules
present in the complex1–3. This procedure is often difficult and requires
the user to provide accurate models, and a well-estimated resolution
(which can vary at different parts of the map). Pre-existing experi-
mental or predicted atomic models may be in a different conforma-
tion, and converging to a well-fitted one may require significant
sampling.

Several methods are commonly used for this procedure. To
improve themapfit, themapcanbe treated as a scalarfield, forwhicha
gradient can be used as a force4,5. Optimisation of the position against
the correlation coefficient (CCC) has also been proposed6, or by
Bayesian expectation-maximisation (EM) against the density observed
in the map7,8. The sampling itself is usually based on either molecular
dynamics (MD)4,9, minimisation10, normal mode analysis and/or

gradient following techniques11,12, or Fourier-space-based methods2.
Manual inspection and modification of the structure, or targeted
sampling for specific parts of the structure, are also common, espe-
cially at high resolutions13–15.

Molecular dynamics-based refinement methods have the advan-
tage of wider sampling but may result in locally distorted structures.
This can usually be fixed by either clustering the resulting data9 or by
minimising the structures at the end of the run6. The use of a force field
(such as CHARMM16 or AMBER17) have the added benefit of ensuring
that clashes are generally absent from the structure since they include
parameterised van der Waals repulsion terms.

Virtually all methods rely on blurring the model (globally or
locally)18 to compare against the experimental map, which poses an
additional challenge formaps offlexible systems that will often exhibit
significant resolution heterogeneity betweenflexible and rigid regions.
This heterogeneity in the map can also result from adding up density
maps from different reconstructions (e.g., result of multibody or
focused refinement) into a so-called composite map19,20. However, a
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systematic way to combine multiple maps into a composite map has
not been proposed yet.

Flexibility is intrinsic to biomolecular systems, which presents a
challenge for methods that tend to rely on a single structure repre-
sentation. Methods using a population of models21–26 can provide an
improved understanding of the fit betweenmap andmodels27. Mixture
modelling is a powerful framework to represent arbitrary density
probabilities comprising several parts: by iteratively estimating the
model parameters, and then re-computing the expecteddistribution, a
(locally) optimal model can be generated8. We use this approach to
estimate both the local spread of density around atomic positions and
the background noise level.

Here, we propose TEMPy-ReFF (REsponsibility-based Flexible-
Fitting)—anMD-based refinement guided by an EM scheme that uses a
Gaussian Mixture Model (GMM) to provide self-consistent estimates
for the atomic positions and local B-factors (Fig. 1). We show that the
method can accurately treat maps with highly heterogeneous resolu-
tion. To assess the quality of the refined models, we have developed a
measure that estimates the quality-of-fit of every residue to the local
density and allows us to compare the fit of different parts of themodel
in regions of varying resolution. We demonstrate on a large dataset
(from the CERES database http://cci.lbl.gov/ceres and additional cases
from the Protein Data Bank28 (PDB) and Electron Microscopy Data
Bank29 (EMDB)), that our approach produces single fits of similar
quality compared to state-of-the-art methods, such as Phenix30

although it can sometimes provide improved ones. Importantly, we
show that our B-factor refinement approach not only allows for the
generation of an ensemble of atomic models to better represent the
density information but also enables the generation of more reliable
composite maps.

Results
Mixture modelling applied to refinement
Wehavedeveloped amethodbasedonaGMM(usingoneGaussianper
atom and a uniform background term) to represent the estimated
contribution of various parts of a model to the experimentally
observed intensity. The Gaussians are fitted to the model in a self-
consistent way, such that their summed contributions represent a
(locally) optimal fit to the density. The intensity attributed to a Gaus-
sian, or a sumofGaussians, canbeused to estimate their importance in
representing a specific part of the map density. For example, by
summing the Gaussians for atoms from a given protein chain, it is
possible to determinewhichpart of themap isbest representedby this
chain, or other chains, or are part of the general background noise in
this map. Those weighted contributions (termed responsibilities in
GMM literature) allow us to perform a variety of tasks that are com-
monly performed on cryo-EM maps (described in Fig. 1): fitting an
atomicmodel to themap, segmenting themap into several parts, each
representing a distinct entity (for example, a distinct subunit in a
protein complex), or combining focused maps into a single overall
composite map, with optimal weights of the focused maps.

Although GMM approaches have been successfully employed
before, this was usually a coarse-grained representation of the overall
model and map7,8,31. By describing each atom as a Gaussian point
spread function, a link betweenmap andmodel is directly established:
the intensity of each voxel is a direct sum of the contribution of each
atom, as a function of its position and B-factor. It is important to note
that we define each atom’s “B-factor” as the sigma of its respective
Gaussian in the GMM. Additionally, the formalism used here does not
require the use of Gaussian distributions, and alternative descriptions
for the individual atomic contributions could be considered.

The responsibility calculation has several benefits: for regions of
the map that are close to multiple parts of the structures, the mixture
model allows for uncertainty in the assignment of the density. This
soft-mixing improves the convergence of the refinement, by making it
easier for structural elements to slide towards regions of density that
are a better fit, even if they are currently fit to a high-density region of
the map. The calculation is also self-consistent, as is empirically
demonstrated below: changes in the initial position and B-factor
assignment for the structure result in identical or similar fit for a wide
range of initial values.

Ensemble generation based on B-factors
Our GMM representation models the local ambiguity within cryo-EM
maps by tuning the B-factor of each atom. We reasoned that we could
leverage this information to generate an ensemble of models that
more accurately represents the variety of conformations that are
compatible with the map. Models were randomly generated by per-
turbing the positions of atoms, based on their B-factors, followed by
local L-BFGS32 minimisation (with OpenMM33) to locate close-by
structures that were compatible with the data34. Ensemble maps
were computed by averaging the simulated maps obtained for all
sampled structures in the ensemble (Fig. 2).

We first assessed the accuracy of B-factor assignment in TEMPy-
ReFF. While the B-factor optimisation is intended to be used together
with position refinement, it is useful to test it independently by opti-
mising the B-factors while keeping the atomic positions fixed. We
found that for all cases we tested, the map-model CCC improved sig-
nificantly when taking into account the refined B-factors for map
simulation (SupplementaryTable 1). The averageB-factor convergence
is shown in Supplementary Fig. 1., along with the corresponding
change in the CCC using the examples of Faba bean necrotic stunt
virus (FBNSV) (EMD-10097, 3.2 Å resolution, PDB ID: 6S44) and the
SARS-Cov-2 RNA-dependent RNA polymerase (EMD-30127, 2.9 Å
resolution, PDB ID: 6M71). The distribution of the B-factors is similar to
that of B-factors obtained from the depositedmodels (Supplementary

a TEMPy-REFF
Responsibility estimation

B-factor refinement Model refinement

b
Ensemble 
Generation

c
Composite map

Local scoring

Fig. 1 | Flow chart summarising the steps in the TEMPy-ReFF algorithm. a The
EM (Expectation-Maximisation) algorithm. Responsibility is an estimation of the
part of the data that is represented by a given component in the mixture. New
parameters (the mean and variance of each component corresponding to the
position and B-factor value) for each component (e.g., for each atom) are then re-
estimated using this responsibility and the experimental data. b After refinement,
an ensemble can be generated based on the local variance; local scoring provides a
view of the quality of fit of all regions of the map, irrespective of the local resolu-
tion. c By considering the sum responsibility of all the atoms in a chain, we obtain a
natural expression of the part of a map represented by a given chain. This can be
used for composition.
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Fig. 1b). Furthermore, the B-factor assignment is robust: we found that
two refinements starting at initial values that differed by a factor of 5
converged to a similar solution (Supplementary Fig 2). Finally,whenwe
updated the atomic positions, we observed changes in the B-factors,
this is a feature of the change in coordinates (as the two are not
independent) (Supplementary Fig. 3).

Next, we investigated the use of our calculated B-factors in
ensemble generation (Fig. 2). The best-fitted model for rotavirus VP6
(EMD-6272) at 2.6Å appears as only one solution among many in the
generated ensemble (Fig. 2a). On the other hand, the ensemble aver-
age map exhibits a much higher quality-of-fit to the experimental map
than any single model (Fig. 2a, b, Supplementary Fig. 4). Intriguingly,
the ensemble map resembles more closely the experimental map
(Fig. 2a). We determine the optimal number of models in an ensemble
by calculating the CCC with the ensemble map generated from an
increasing number of models (Supplementary Fig. 5). A visual com-
parison between the single TEMPy-ReFF refined model and the
ensemble is shown in Fig. 2cwhere insets of residuefit show the source
of improvements: the density for an arginine (R71 from chain A) could
be explained by positioning the side chain in two alternate con-
formations. The structures in the ensemble populate both possible
conformations (Fig. 2c, left inset). In contrast, the ensemble of models
ismuchmore tightly clustered inwell-resolvedportionsof themap, for
example, residues R117 and Y114 from chain A (Fig. 2c, right inset). We
also found, using the capsid protein from the Faba bean necrotic stunt
virus (PDB ID: 6S44, EMDB ID: 10097, map resolution 3.3Å), that the
per-residue SMOCf35 score (averaged between all ensemble members)
showed a strong anti-correlationwith the RMSF between the ensemble
measures (Pearson’s coefficient −0.81, Fig. 2d).

Benchmarking structure refinement
Weassessed the quality of TEMPy-ReFFmodel refinement using a large
dataset of 229 models taken from the PDB (see Methods) with corre-
sponding maps at resolutions between 1.8 and 5 Å. We compared the
CCC, MolProbity36, and CaBLAM37 scores before and after refinement.
We benchmarked our method against the deposited PDB models as
well as CERES38 (see Methods), which is an automated Phenix30 model
re-refinement programme for cryo-EM maps at resolution ≤5 Å.

We observed, overall, similar performance between TEMPy-ReFF
andCERESbased onmap-model similarity (CCC) and geometricmodel
quality scores (MolProbity, CaBLAM, clash score) (Fig. 3, Supplemen-
tary Table 2). The average CCC scores for refined models from maps
with a resolution range of 3–4Å from TEMPy-ReFF (median: 0.633,
mean ± std: 0.627±0.101) and CERES (median: 0.636, mean ± std:
0.637±0.087) were very similar (Fig. 3a). We only observed improved
average CCC scores from TEMPy-ReFF refinements for models refined
in maps at 4–5 Å resolution (mean CCC ± std from TEMPy-ReFF:
0.672±0.148, CERES: 0.651±0.147). However, we observed improved
(lower) average MolProbity scores in many TEMPy-ReFF refined
models. Specifically, the MolProbity scores for TEMPy-ReFF refined
models from the highest resolution maps (<3 Å), outperformed both
CERES and models obtained from the PDB. Additionally, we noted a
smaller improvement in MolProbity scores for models in the 3–4Å
resolution range. This was largely due to the almost total absence of
clashes in TEMPy-ReFF refined models (Supplementary Table 2).
However, we noted more CaBLAM outliers in TEMPy-ReFF refined
models. Further,we observed ahigher correlationbetweenMolProbity
score and map resolution (i.e., increasing MolProbity score as map
resolution worsens) for TEMPy-ReFF refined models compared to

a

c
R71

R117

Y114 d

Single
refinement

Experimental
map

Ensemble
map

b

Fig. 2 | Ensemble representation of cryo-EM models. a Depiction of structure
ensemble (orange), alongwith themap (transparent grey); a plot of theCCCof each
individual model in the ensemble is shown (blue horizontal lines from y axis), as
well as the ensemble map (red). b depiction of a single-model map (green),
experimental map, and our computed ensemble map at contour level 0.02.
c Differences in the ensemble for different residues, for the ensemble of the
Methionine Transporter (PDB ID: 7MC0, EMDB ID: 23752): for residue R71 (left) the

ensemble is more widespread, and the side-chain density is more spread out into
two peaks, each populated by parts of the ensemble. For high-resolution portions
of the map shown on the right side, for example, R117 and Y114, the ensemble is
highly constrained, and the side-chain density is well-defined.d SMOCf plot (shown
in orange) and RMSFe (shown in blue) for each structure in the ensemble for the
Faba bean necrotic stunt virus (PDB ID: 6S44, EMDB ID: 10097, map resolution
3.3Å); the RMSF and SMOCf score are clearly anticorrelated.
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those obtained from the PDB and CERES (Supplementary Fig. 6). This
might be due to geometric restraints that are commonly applied in
other refinement software, including in CERES38, but not in TEMPy-
ReFF, where the geometry of the model is derived from the energy
function and the MD force field.

We examined the local fit quality using SMOCf for one example
from our benchmark: the ABS methionine transporter, solved at 3.3 Å
(PDB ID: 7MC0, EMDB ID: 23572). This example showed that local
model fit for the TEMPy-ReFF refined model was similar overall, rela-
tive to those from the PDB and CERES (Fig. 3c). Some parts of the
TEMPy-ReFF models showed better fit, and others poorer. This was
perhaps unsurprising, given the overall similar performance across our
benchmark at this resolution range (Fig. 2a). In areas where we did
observe better local fit for TEMPy-ReFF refined models, this was
apparently due to subtle changes in the positioning of the backbone
and the orientation of side chains (Fig. 3c).

We next investigated the degree of structural rearrangement that
was possible during TEMPy-ReFF refinement. We identified structures
deposited in the EMDB/PDB of which two separate conformations
were identified. First, we analysed two structures of the Atm1 ABC
transporter, in an open and closed conformation (EMDB IDs: 13613,
13614 at 3.3 and 3.2 Å resolution, respectively and corresponding PDB
IDs: 7PSL, 7PSM, respectively)39. We observed that large structural
rearrangements (e.g., rotation ofwhole domains)wouldbe required to
refine the structure of closed conformation into the cryo-EM map of
the open conformation (i.e., to refine the 7PSM into EMD-13613).
Despite an increase in CCC from 0.15 to 0.31, refinement with TEMPy-
ReFF was not able to reproduce the structure of the open conforma-
tion, presumably because the model became stuck in local minima
(Supplementary Fig. 7a). In a previous study, we developed a method
that combineddensity-guided-refinement (which is similar toMDFF40),
with the hierarchical application of rigid-body restraints calculated

a b

c

I98

V101

F115

V109

P100

Chain A

Chain B

Fig. 3 | Refinement of the CERES benchmark. a Benchmark comparison using
CCC, between the initial (PDB-deposited) models (blue), the CERES re-refined
models (green), and TEMPy-ReFF refinement-based model (orange), separated by
resolution bands of 1 Å. We evaluated n = 229 individual models. The central line in
each boxplot defines the median value, the bounds of each box define the upper
and lower quartiles and the whiskers define 1.5 times the interquartile range (IQR).
Outliers (points outside this 1.5*IQR range) aremarked with rhombus symbols. The
individual score for each model is marked with a black point. b Benchmark com-
parisonof the same 229models usingMolProbity score, the colouring and layout of

the boxplot is the same as in a. c Comparison between the refinement of the ABC
methionine transporter (PDB ID: 7MC0, EMDB ID: 23572, resolution 3.3 Å) with
TEMPy-ReFF and the correspondingmodels fromPDB andCERES. For all subpanels
the colouring matches that used in a. The left panel shows the overlaid models
within the cryo-EM map, which is rendered as a transparent surface. The central
panels show the SMOCf scores for residues from chains A (upper panel) and B
(lower panel). The left-hand panels show zoomed-in views of sections of chain A
(upper panel) and B (lower panel) as highlighted in the respective SMOCf plots with
black outlined boxes.
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using RIBFIND2 (version 2.0). This method was able to correct large
structural changes in RNA complexes41–43. We applied this method to
the refinements of Atm1 andwere able to successfully refine themodel
from the closed conformation into the open cryo-EM map (Supple-
mentary Fig. 7a). The CCC was 0.34 after rigid-body refinement. We
noticed some errors remained in the model, such as slightly incorrect
placing of ɑ-helices and amino acid side chains. To fix these issues, we
ran an extra round of refinement using TEMPy-ReFF, which further
improved the model to a final CCC of 0.54. We observed a similar
outcome for refinement of the open conformation CGT ABC
transporter44 (EMDB ID: 14843, PDB ID: 7zo8) into the cryo-EMmap for
the closed conformation (EMDB ID: 14844, PDB ID 7zo9): refinement
was only successful when combined with the application of hier-
archical RIBFIND2 restraints (Supplementary Fig. 7b). Thus, we con-
clude that TEMPy-ReFF refinement, without additional rigid-body
restraints, is best suited for refinement that requires local changes in
themodel, for example, arrangement of secondary structure elements
and positioning of side-chains.

B-factor weighted composite maps
We hypothesised that our GMM approach for model representation
could be applied to generating composite maps, where one combines
multiple, potentially overlapping, reconstructions of the same

complex into a single map. This can be viewed as an inverse of the
mixturemodelling problem, where the intensity contributions of each
component map must be correctly mixed together to produce an
accurate composite map. We achieved this using our GMM repre-
sentation to calculate responsibilities for every voxel in each compo-
nent map (Eq. 9), such that portions of component maps that
corresponded to atoms with lower B-factors were assigned the highest
responsibilities. These responsibilities acted as weights for combining
the component maps (Eq. 10). Our approach has several advantages:
because the responsibility decays smoothly, there are no seams within
composite maps and areas where the assignment would be uncertain
are treated as such, and the density will not be arbitrarily assigned to a
specific model or submap.

We evaluated our approach on a compositemap of the Singapore
grouper iridovirus capsid (EMD-34815) (Fig. 4). This map is composed
of 5 componentmaps, with each overlapping significantly with at least
2 other component maps (Fig. 4a), using Chimera45,46. Circular arte-
facts were visible in the depositedmap, which occurred at the edges of
the individual component maps, including at areas of the map con-
taining a fitted model (Fig. 4b, Supplementary Fig. 8a). After generat-
ing a composite map using our responsibility-weighted approach, we
found no visually distinguishable artefacts at equivalent locations in
our compositemap (Fig. 4c). This was reflected in a general increase in
correlation between Fourier components of the TEMPy-ReFF compo-
site map and the deposited model, compared to between the depos-
ited map and model (Supplementary Fig. 8a). Additionally, the CCC
between the model and TEMPy-ReFF composite map improved to
0.79, compared to 0.71 for the deposited map.

We extended our evaluation to composite maps which did not
include visually obvious reconstruction artefacts by reproducing the
composite map of RNA polymerase II (EMD-12969), composed from 3
separate maps (EMD-12966, EMD-12967, EMD-12968)47. Here, we again
see a general increase in correlation between Fourier components in
the TEMPy-ReFF composite map and the model, as well as an increase
in the model CCC score to 0.61, from 0.51 for the deposited map
(Supplementary Fig. 8b).

Case study 1: yeast RNA polymerase III elongation complex
We explored the effectiveness of the TEMPy-ReFF approach in more
detail by refining the model of yeast RNA polymerase III elongation
complex (PDB ID: 5FJ8). The corresponding cryo-EM map (EMD-3178)
was resolved at a global resolution of 3.9Å48. A brief observation of the
deposited model suggests that it is well-fitted to the cryo-EMmap: we
computed the CCC, using ChimeraX, as 0.58. The validation statistics
presented in the PDB are reasonable; clash score of 14, Ramachandran
outliers 1.1% and side-chain outliers 2.1%, with an overall MolProbity
score of 2.8.

The TEMPy-ReFF refinedmodel had an improved correlation with
the map, with a single-model final CCC of 0.62, whilst the ensemble
map had a CCC of 0.70. The MolProbity score remained essentially
unchanged at 2.7. A representation of themodel, as well as the quality-
of-fit for multiple chains, is shown in Fig. 5.

We next applied the TEMPy LoQFit score (see Methods) to locally
assess the improvement of our TEMPy-ReFF refined model, versus the
deposited model. Here, we only use the single-refined model from
TEMPy-ReFF to ensure fair comparisons. We visualise the LoQFit score
at each residue in both models using 2D plots (Fig. 5). The average
LoQFit score for the deposited model was 5.1 Å, and model agreement
was particularly high in chains A and B at the central regions of the
model and map, where the average LoQFit score was 4.6 and 4.5Å,
respectively. However, even in these regions we observe peaks in the
LoQFit score, consistent with poorer model fit, such as those seen
around residues 192–210 and 745–759 in chain A (Fig. 5d), as reflected
in the higher B-factors in this region (Fig. 5c). In addition to this, we
identify extended regions of poorer model fit, generally occurring

Composition

a

b

c

Fig. 4 | Using TEMPy-ReFF for map composition. a Composition of 5 component
maps (EMD-34227, 34229, 34230, 34235, 34236) shown in their overlapping posi-
tion on the left, combined to create the composite map shown on the right.
b Composite map of the Singapore grouper iridovirus capsid (EMD-34815), shown
as a blue surface rendering. In order to simplify visual comparison, we masked the
original map such that only density around the fitted model (PDB ID: 8HIF) is
shown. The deposited composite map retains some artefacts at the borders
between the, approximately circular, component maps, where the map density is
less intense. This is highlighted in the insets, which also show the fitted model,
coloured green. c Composite map, shown as an orange surface rendering, pro-
duced using the responsibilities computed by TEMPy-ReFF as weights for each
component map. The insets show the map density with the model, again shown in
green, at the same location as shown per b. Clearly, the artefacts are no longer
present.
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within chains that lay at the edge of the complex in solvent-exposed
regions with poorer resolution, including chains M and N (Fig. 5d). In
these chains the average LoQFit score was 6.6 and 5.4 Å, respectively,
reflecting the lower map resolution (and correlating with high B-fac-
tors), as well as poorer model fit in the deposited model. Refinement
with TEMPy-ReFF resolved many of these poorer fitting regions: the
average LoQFit score for the refined model improved to 4.6Å, and we
observed significantly better model fit at lower resolution regions of
themap. The average LoQFit score for chainO improved to 5.7 Å in the
refined model (from 6.8Å, Fig. 5d), and in chains M and N the average
LoQFit score improved to 5.1 and 4.5 Å after refinement. We investi-
gated the significance of these changes in the LoQFit score. Firstly, we
observed a close correlation between the LoQFit score and the local
resolution at the equivalent position within a cryo-EM map (Supple-
mentary Fig. 9). Secondly, we benchmarked LoQFit against other
common local scoring functions, Q-score and SMOC, as well as our
B-factor refinement. For Q-score and B-factors, we used the residue
average (Q-scoreavg), for comparison. To do this benchmarking, we
measured the LoQFit, Q-scoreavg, SMOCf and B-factors for 50 models
refined by TEMPy-ReFF, and investigated the correlation between
LoQFit and the other scoring functions via Pearson’s correlation. This
revealed a significant, inverse, correlation between LoQFit and
Q-scoreavg (−0.62 Pearson’s correlation across all examples), and a
significant correlation between LoQFit and the residue average
B-factor (0.64 Pearson’s correlation across all examples). We observed

a much less significant correlation with the SMOCf score (0.32), which
varied much more significantly across the examples we tested, com-
pared to the correlation between LoQFit and Q-scoreavg and average
B-factor (Supplementary Fig. 10). This was unsurprising, given the
previously reported lack of correlation between the Q-score and
SMOCf49.

Case study II: nucleosome-CHD4 complex structure
The nucleosome is a large nucleoprotein present in the nucleus, which
is the primary effector in the compaction of DNA. High-quality
reconstructions have been obtained, but its dynamic nature and
strained DNA strands wound around the histone proteins make it a
challenging system to obtain a good structural model. We apply
TEMPy-ReFF to refine the model associated with map EMD-1005850

(PDB ID: 6RYR) (Fig. 6a–d). The deposited cryo-EMmap clearly suffers
from very variable resolution (range: 3–10 Å, see Supplementary
Fig. 9), which affected the quality-of-fit of the deposited model
(Fig. 6a). Following refinement, the local details of the map are well
respected, especially showing improvement in the DNA structure, as
reflected by the SMOCf score (chain I and J, Fig. 6c). Nucleic acids are
often present in biomolecular complexes resolved by Cryo-EM, and
refining their geometries with respect to the map is an important part
of model refinement. In the deposited model, local deformations pull
the bases slightly away from the density, and from the expected geo-
metries to allow hydrogen bond formation. Our automated refinement

Fig. 5 | Case study of RNA polymerase III elongation complex. a The deposited
3.9 Å cryo-EM map of the RNA polymerase III elongation complex (EMD-3178).
b The TEMPy-ReFF refined model of the RNA polymerase III complex deposited
structure (PDB ID: 5FJ8) shown within the cryo-EM density. c the TEMPy-ReFF
refinedmodel (right) coloured according to the refinedB-factors. d LoQFit scoring
of individual chains from the RNA polymerase III complex, with the scores for the

starting model (obtained from the PDB) shown in blue, and for the TEMPy-ReFF
refined mode shown in orange. The position of these chains within the original
cryo-EM map are highlighted in red. Insets show several regions before and after
refinement coloured asper the LoQFit plots, with the ensembleofmodels shown in
transparent orange.
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pulls them back, forming hydrogen bonds in the process (Fig. 6d).
After refinement, the LoQFit and the local resolution follow similar
trends (Supplementary Fig. 9), indicating the model is well fit to the
map. This case study also further demonstrates how the ensemblemap
calculated with TEMPy-ReFF has greater similarity with the experi-
mental map than a single model (either the deposited model or a
single-refined model).

Case study III: SARS-CoV2 RNA polymerase and AlphaFold2
To refine amodel into anexperimental cryo-EMmap, an initialmodel is
needed. Although building a reliable model directly from the map is
sometimes possible, in most cases, this cannot be done reliably as the
resolution is not sufficient to allow a reliable assignment of every
atomic position. In such cases, a starting model can be obtained using
deep-learning-based ab initio tools, such as AlphaFold251 or
RosettaFold52. These programmes are frequently able to create very
high-quality protein models53. The predicted lDDT score51 (plDDT) is
also an excellent tool to decide which part of themodel can be reliably
kept, and which may not be correctly predicted, due to flexibility or
lack of known homologous sequences and structures.

To assess the capability of our method to refine such a model, we
used AlphaFold2-Multimer54 to create a model of the SARS-Cov-2
polymerase.We used the polymerase sequence (UNIPROT ID: P0DTD1,
residues 4393–5324), with non-structural proteins 7 (UNIPROT ID:
P0DTD1, residues 3860–3942) and 8 (UNIPROT ID: P0DTD1, residues
3943–4140). We only used templates present in the PDB at least a year
earlier than the deposition date of the deposited model (PDB ID:
6M71)55. The predicted model was refined into the SARS-Cov-2 poly-
merase cryo-EM map at 2.9 Å resolution (EMD-30127) (Fig. 7). The

resulting model (Fig. 7d) is highly similar to the deposited model
(Fig. 7c) at most residue positions, which was modelled using
Chimera46, Coot14, and Phenix30. However, more intriguingly, using a
SMOCf plot, we show that some residues that were not present in the
deposited structure55 can actually be placed into the map, with fitting
scores much greater than chance (Fig. 7c, d).

Discussion
We have presented TEMPy-ReFF, an MD-based atomic structure
refinement method, which is driven by the local features of a cryo-EM
mapusing amixturemodelwith anerror term, to account for the noise
in the map. Our approach naturally incorporates both position and
B-factor estimations in the same framework. This information is
essential to represent the local variability around atomic positions. We
conducted comprehensive testing on a substantial dataset comprising
229 cryo-EM maps sourced from EMDB, spanning resolutions from
2.1–4.9 Å and their respective PDB and CERES atomic models. On a
single-model level, TEMPy-ReFF achieves performance similar to the
CERES re-refinement protocol, and in some instances, outperforms it
by providing a more accurate fit to the map.

Currently one of the greatest challenges in model building into
cryo-EMmaps is evaluating the quality-of-fit in a system not described
by a single resolution value, but rather varying local resolution. We
address this challenge using B-factor estimation.We find, as previously
shown21–23,25,26, that an ensemble of equally well-fitted models repre-
sents this local variability better than a single model. However, we go
one step further, by showing that an ensemble map calculated from
these models, provides a better representation of the experimental
map, in comparison to a traditional simulated map (which is typically

a b

c d

Fig. 6 | Case studies of Nucleosome-CHD4 complex. a A nucleosome structure in
complex with chromatin remodelling enzyme CHD4 (EMD-10058, PDB ID: 6RYR) is
shown (worm representation), with the width proportional to the TEMPy-ReFF
refined B-factor, and colour based on local resolution (computed with ResMap).
b Deposited model (left, blue) and the ensemble of models and ensemble map
calculated with TEMPy-ReFF (right, orange), shown inside the cryo-EM map

(transparent grey). c SMOCf plot for each chain. The deposited model is shown in
blue, and the TEMPy-ReFF model is shown in orange. d Zoom-in on some of the
DNAbase pairs (chain I/J, base pair 54) fitted in themap (mesh representation). The
deposited model is shown in blue, TEMPy-ReFF model in orange and hydrogen
bonds are indicated in cyan.
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generated from a single Gaussian function per atom) (Fig. 2a). This is
showcased in Fig. 2c, where a potential double occupancy site for an
arginine necessarily requires more than one model to be correctly
represented. The improvement is also evident in regions of lower local
resolution (Supplementary Fig. 4), which may indicate an inherent
local flexibility of the structure, although this cannot be easily
deconvolved from the blurring due to optical factors56, or image pro-
cessing approaches.

Ensemble methods have been common practice in the NMR
community and have been suggested as a way of dealing with the
uncertainty in the data22,23,34. This has also been demonstrated pre-
viously for X-ray crystallographic data57, and we similarly observe a
plateau as more models are added to the ensemble (Supplementary
Fig. 5). Furthermore, when analysing the differences on a local level

(for example at the residue level) using a distancemeasure (such as the
RMSF), we observe that the local-fit-quality (using SMOCf) correlates
well with those differences (Fig. 2d).

Overall, our automated refinement procedure is computationally
efficient: computation time scales approximately linearly with map
andmodel size (Supplementary Fig. 11). The resultant models are well-
fitted to the cryo-EM map, based on the CCC. Without the ensemble
representation of the fittedmodels, the local and global model-map fit
score is comparable with those from Phenix (as represented by our
comparison with CERES results). We also observed that TEMPy-ReFF
refined models have typically as good, or better, MolProbity scores,
compared to those from CERES and the PDB, across our benchmark
(Fig. 4b). However, the correlation between resolution andMolProbity
scorewas stronger forTEMPy-ReFF refinedmodels, compared to those

Residue Number

a b

pLDDT

dc

Fig. 7 | Case studies of SARS-CoV-2 RNA polymerase (AlphaFold2 model
refinement). a AlphaFold2 predicted structure, with the colouring indicating the
plDDT confidence measure (blue means higher confidence, red means lower con-
fidence), fitted in the deposited map (EMD-30127, grey) b SMOCf plot of the
AlphaFold2 (shown in blue) and TEMPy-ReFF refinedmodel (shown in orange). The
regions highlighted ingrey andpink (correspond to inset regions in Fig. 7d) contain
residues that are not present in the deposited model but are present in the

AlphaFold2 model and are well-fitted to the map. c Deposited model for the SARS-
CoV-2 RNA polymerase (PDB ID: 6M71, blue) fitted in the deposited map (trans-
parent grey). Unassigned regions are visible, at the top and bottom right of the
map.dTEMPy-ReFFmodel (orange) obtainedby refining theAlphaFold2prediction
in the deposited map (transparent grey). Newly modelled regions that fit in the
density (as in Fig. 6h) are shown with coloured squares.

Article https://doi.org/10.1038/s41467-023-44593-1

Nature Communications | ���������(2024)�15:444� 8



from CERES (Supplementary Fig. 6). This difference is likely due to a
different application of explicit structural restraints in CERES, com-
pared to TEMPy-ReFF. Our refinement procedure does not include any
specific restraints, for example, to reduce Ramachandran or rotamer
outliers. Rather, models refined by TEMPy-ReFF are implicitly
restrained by the balances of forces applied to the atoms by the force
field. This should produce models with appropriate geometry,
assuming the fitting force from the GMM is appropriately balanced
within the MD force field. Indeed, the generally good MolProbity
scores obtained in our benchmark (Fig. 4b) show this to be an
appropriate approach. In particular,wenoted that TEMPy-ReFF refined
models virtually never contained significant clashes (Supplementary
Table 2). However, many refinement programmes, including those
used for CERES models, do apply geometric restraints (e.g., to elim-
inate phi/psi outliers). Based on our results, it seems that, broadly,
these restraints favour reduced CaBLAM outliers, which are typically
better for PDB/CERES models, at the expense of clash scores, which
were consistently worse in PDB/CERES models compared to those
fromTEMPy-ReFF (Supplementary Table 2).We also show that TEMPy-
ReFF refinements of nucleic acids can simultaneously improve the fit
to the cryo-EM data and the chain geometry (Fig. 6a–d).

Since 2018, deposition of composite maps has been increasing
significantly due to a growing number of macromolecular assemblies
for which focused maps for different assembly subunits are obtained
(often due to conformational flexibility). Some methods have been
proposed to compose such maps20, however, there is currently no
systematic way to evaluate this. Here, we provide a self-consistent way
to perform this procedure. Our approach has the advantage that the
responsibility decays smoothly, i.e., there are no seams between seg-
mented maps, or within composite maps: areas where the assignment
would be uncertain are treated as such. However, the method also has
some drawbacks, the clearest of which is that errors in modelling will
result in errors in composition, and that the maps must be aligned
manually, or using another software, prior to composite map genera-
tion with TEMPy-ReFF.

Finally, we show that our refinement protocol can take advantage
of recent developments in the field of structure prediction51,52. Starting
refinements from AlphaFold251,52 models is not only possible, it gives
results on par with manual refinement (despite using an automated
procedure) and highlights that better and more complete models can
be obtained by using our automated refinement approach, including
more residues that are sustained by the map information (Fig. 6e–h).
However, we note thatmodels that contained large errors required the
application of rigid-body restraints for effective refinement (Supple-
mentary Fig. 7). For these refinements, the TEMPy-ReFF GMM-based
(unrestrained) refinement still played an important role in correcting
minor errors that existed after rough refinement with rigid bodies. It is
difficult to define an exact transition point at which rigid-body
refinement, instead of unrestrained, is required for a given model,
and this currently requires user intervention. However, we envisage a
flexible and automated combination of these approaches could pave
the way for more reliable, and reproducible model building, where
alterations in refinement protocols can be objectively and con-
tinuously assessed53,58.

Further work will be needed to understand the impact of
ensemble model representation, and how to use such an approach
in assessing model-map fit quality, especially for inherently flexible
protein assemblies observed by cryo-EM. In this work, we explore
how ensembles can be derived from local resolution information
using our GMM interpretation of the experimental data. Although
we are able to derive ensembles that improve the overall correlation
with cryo-EM map, the model is admittedly simplistic. Assumptions
that the Gaussians are isotropic and that resolution fluctuations are
a result of conformational heterogeneity are approximations.

Indeed, future work needs to be able to disentangle resolution
heterogeneity due to reconstruction and imaging artefacts from
that caused by atomic displacements and structural variation. It is
foreseeable that this will require an end-to-end approach where
more information from reconstruction and the underlying 2D
micrographs are used to address these challenges. Despite these
limitations, we see this work as an important step, particularly in the
field of drug discovery, where, the docking of candidate com-
pounds is dependent on the local environment, and local errors or
variability can significantly alter the results. Providing multiple
models of cryo-EM maps from near-atomic to medium-resolution
will allow more reliable predictions of ligand poses, thereby open-
ing a window to many potential drug targets in medium-resolution
cryo-EM maps.

Methods
Refinement algorithm
Given an atomicmodel, which can be described as a set of atoms each
possessing a coordinate x, a B-factor B and an atomic numbers Z, the
aim is to optimise these positions and B-factors to best model the
experimental data. The refinement algorithm is inspired by the EM
approach for GMMs59. Here, atoms are represented as Gaussians with
the centre of mass and B-factor represented by the mean of the
Gaussian and sigma, respectively. Per the standard EM algorithm, we
first compute the expected (simulated) map given the estimated
atomic properties. A maximisation step is then performed to optimise
the atomic properties. Traditionally, the maximised properties would
be fed back to the expectation step and the EM process would be
repeated until convergence. In order to incorporate stereochemical
and physical information, we deviate from the standard EM algorithm:
Rather than feed the maximised atomic properties back into the next
expectation step we compute a force that biases atoms towards the
optimised coordinates in an MD simulation. The algorithm is sum-
marised below:

• Perform maximisation step
– Generate the expected (simulated) map given a set of initial

atomic positions, B-factors, and background error.
• Perform expectation step

– For each atom determine a new desired position and
B-factor.

– Update the background noise term.
• Update the biasing force to encourage atoms towards the new

positions.
• Repeat until convergence criteria are satisfied.

Expectation
The intensity ‘P’ due to a given atom ‘i’ at a coordinate v can be mod-
elled as a Gaussianwhere xi

!, Bi and Zi are the atoms positions, B-factor
and atomic number, respectively:

P ~v,~xi,Bi,Zi
! "

=Zie
j~v!~xi j

2

!Bi
2 ð1Þ

For brevity, we abbreviate the above equation for a given atom:

Pi ~v
! "

= P ~v,~xi,Bi,Zi
! "

ð2Þ

Now, the expected intensity of a given voxel in a cryo-EMmapMs

(refered to as the simulated map) is given by the contributions of allN
atoms with an additional error term E which will be introduced later:

Ms ~v
! "

=
XN

i

Pi ~v
! "

+ E ð3Þ
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Maximisation
The maximisation step attempts to determine updated parameters
that improve the simulated map in the next ‘expectation’ round. To
perform the maximisation step for each atom a responsibility-
weighted experimental map Wi ~v

! "
is calculated for each atom. The

responsibility for a given atom (γi) is given by:

γi ~v
! "

=
Pi ~v
! "

Ms ~v
! " ð4Þ

Next, the experimental mapMe is weighted by this responsibility:

Wið~vÞ=Með~vÞγið~vÞ ð5Þ

The new position xi′ of the i’th atom is given by the weighted real-
space average of the voxels, where v! is the real-space position of the
voxel.

x0i =
1

tot mass

X

v2V

Wi ~v
! "

R ~v
! "

ð6Þ

The new B-factor B0
i is given by the weighted variance.

B0
i =

1
tot mass

X

v2V

Wið~vÞj~v!~xij
2 ð7Þ

Due to experimental noise, atomic B-factors are often
restrained10,60. Here, we apply a simple weighting scheme, where the
average B-factor of all atoms in a residue is used to weight
the atoms.

The new estimate of the background noise E′ is also calculated as
the mean of the experimental map weighted by the responsibility of
the error, where |V| is the total number of voxels. Here, only voxels
within 4σof the atoms are included in the calculation. This ensures that
the noise term isn’t biased by density values that are not near the
refined atoms.

Werr ~v
! "

=Me ~v
! " E

Ms ~v
! " ð8Þ

E 0 =
1
jV j

X

v2V

Werrð~vÞ ð9Þ

Defining the fitting potential
After determining improved parameters for the atoms, the force field
used to steer them is updated. We consider two methods to improve
the fit quality: MD, where the system’s coordinates are integrated over
time, taking into account the forces atoms exert on each other; and
energyminimisation,where the coordinates of the systemare changed
to minimise the energy function.

To combine our description of themapwith the energy terms that
are usually present in force fields, we compute a fictitious force
representing the direction of the change in position induced by the
Gaussian fitting (for MD). The energy term (Egmm) is defined as:

Egmm = kgmm 1! e
!

j~xi!~x
0
i
j2

2B3
i

0

@

1

A ð10Þ

where kgmm is a user-defined constant (we used 105 for all
refinements in this manuscript), ~xi is an atom’s current position,
~x0i is the updated position suggested by the GMM and Bi is the
atomic B-factor.

Creating composite maps
Given an aligned set of experimental maps with fitted models, we use
the mixture modelling formulation we provide to generate a compo-
site map. The responsibilities attributed to each chain of a model can
be used to weight their intensities when they are combined into the
composite map. Adding the signal from all these maps together typi-
cally leads to artefacts at the seams (Fig. 4, Supplementary Fig. 8). To
deal with this, the experimental maps are reweighted by the respon-
sibility of the components (rather than the atoms) asper Eq. 4 and then
summed together (Supplementary Fig. 12).

The input for the algorithm is a consensus model and multiple
pre-aligned composite maps. Given C components each with a corre-
sponding atomic model and an experimental map Me,c, we create a
simulated map Mc for the component. Here, we use the equation for
simulating a map (Eq. 3), but only consider the contributions of the
atoms of component C:

Mc ~v
! "

=Σv2V ~v
! "

+E ð11Þ

Similarly, the responsibility for a component is determined by
normalising it against the simulatedmap of all components. We retain
only the high-resolution regions of these component maps by setting
the atomic number to 0when computing the simulatedmap for atoms
in a given model, provided that the corresponding atom in another
component map has a lower B-factor. The responsibility map for a
given component, γc, is computed as follows:

γc =
Mc ~v

! "
PC

c Mc ~v
! " ð12Þ

Now, the final composite map,MC , is defined as the sum of all the
responsibility-weighted experimental maps.

MC ~v
! "

=
XC

c
γc ~v
! "

Me,c ~v
! "

ð13Þ

Conformation-based force calculation and MD
OpenMM is used for the conformation-based force calculation and
MD33. We tested CHARMM36 and AMBER14 in OpenMM (Supple-
mentary Table 3), and they show slight differences in the preferred
backbone dihedrals (Supplementary Fig. 13). Although other force
fields were available, we used AMBER14 for our runs. We used a GB-
Neck2 implicit solvent model61 and Langevin integrator with a 0.1
femtosecond timestep to calculate atomic trajectories.

Running the refinements
Before any positional refinement of a givenmodel, the B-factors for all
atoms were refined for 25 iterations. B-factors were capped to a max-
imum value of 1.5 for membrane proteins and 2.5 for all other models.
At each refinement iteration, the simulation was run for 2000-time
steps. The CCC was calculated for the updated model, using a global
B-factor (set to be equivalent to the global resolution of the cryo-EM
map) for map simulation (Eq. 3), and if the CCC did not improve for 5
iterations the refinement was stopped. If this convergence criterium
was not met after 300 iterations, the refinement was stopped.

Local quality of fit (LoQFit)
We implemented a local-fit quality score as part of the TEMPy2 python
package. The score – LoQFit – uses an approach similar to a local FSC
score for cryo-EM maps62 in order to assess the fit quality of a protein
model. This local FSC score is calculated for regions defined by a soft-
edged spherical mask, centred at the Cα atom for each residue in the
fittedmodel and applied to bothMS andME . The diameter of thismask
is five times the global resolution of the experimental map. We use an
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FSC threshold of 0.5 to determine the LoQFit score for each residue.
To improve the smoothness of the final LoQFit plot, we include an
option to estimate the exact frequency at 0.5 correlation between the
two maps, using linear interpolation.

We also use SMOCf to estimate the local quality of fit35. Briefly,
SMOCf uses a local window around each residue, and then computes
theManders overlapcoefficient between the simulatedobservedmaps
in this region.

Ensemble algorithm
To compute an ensemble of atomic models that fit the cryo-EM map,
we create an ensemble of locally perturbed conformations. This is
achieved by sampling the coordinates of each atom from a multi-
variate Gaussian. The mean value of this Gaussian is set to initial
position of each atom, and the covariance matrix is constructed from
the shifted B-factors (which are the original B-factors adjusted such
that the minimum B-factor is fixed at 0.25). We then locally minimise
each model in the ensemble, to keep acceptable stereochemistry.

Following this, we apply an ensemble fitting force and a density-
guided force. The ensemble energy term Eens is defined per atom as:

Eens =
kensffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π3 *Bi

3
q * 1! e

!
j~xi!~x

0
i
j2

Bi
3

 !

ð14Þ

where Eens is a constant (1000 is used for all examples shown in this
manuscript), Bi is the atomic B-factor, x! ’

i are the coordinates of the
atom after resampling, and x!i are the coordinates prior to sampling.
The energy for the density-guided force is defined as the negative
(interpolated) cryo-EM density value at the position of each atom,
scaled by a constant kdens, which typically needs to be optimised for
each map (values used range between 5 and 200). With these forces
applied, we run a short simulation (2000 steps of 0.1 femtoseconds)
and minimise using L-BGFS in openMM33.

We then generate blurred maps for each conformation in the
ensemble, and compute a voxel-based average. To determine the
number of models in an ensemble we increase the number of models
until there is no increase in CCC. This average blurred map represents
the final ensemble average map we use throughout the text.

RMSF
To compute the RMSF value for our generated ensemble, we first
compute the mean structure, and then compute the RMSF using the
normal formula. For an ensemble of structures, the residue fluctuation
profiles for an ensemble withN models are calculated according to the
formula:

RMSF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

j

xi jð Þ ! xi
$ %& '2

vuut ð15Þ

wherexi jð Þ denotes theposition (coordinates) of the i-thCα atom in the
structure of the j-th ensemble model and xi

$ %
denotes the averaged

position of the i-th Cα atom in all models in the ensemble.

Local resolution calculations
We used the ResMap method to compute local resolution estimates63.
ResMap uses local windows of varying size, and statistical tests to
determine the most likely resolution for each voxel in the map.

Generation of benchmark and assessment
Our benchmark is based on the CERES database38. We took the cor-
responding deposited maps and structures from EMDB64 and PDB65,
and the re-refined structures from CERES. Because of the CERES
database setup, our benchmark containsmaps resolved from2.1–4.9 Å

resolution. We did not include any CERES models that contained
stretches of 3 or more consecutive residues with no modelled side
chain atoms.

In almost all cases, we assess the goodness-of-fit of models using
the CCC with ChimeraX 1.3, using the commandmeasure correlation66.
The exception to this is the results presented in Fig. 3a, and in Fig. S4, in
which the CCC was calculated using TEMPy67. Simulated maps were
generated using TEMPy with a uniform B-factor set to be equivalent to
the global resolution value for the cryo-EM map, which was obtained
from the EMDB. MolProbity and clash scores were calculated using
phenix.molprobity68, and CaBLAM using phenix.cablam37.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. We obtained atomic models for refinement
from the PDB and CERES, and the corresponding cryo-EM maps from
the EMDB. All TEMPy-ReFF refined models described in this paper,
alongside the corresponding models from the PDB and CERES, where
appropriate, are deposited at the following Zenodo repository:
[https://doi.org/10.5281/zenodo.8395613]. The AlphaFold2-Multimer
predicted model shown in Fig. 7 is also deposited in the same Zenodo
repository. The numerical data underlying the plots shown in Figs. 2a,
3a–c, 5d, 6c, 7b are provided as a Source Data file.

Code availability
TEMPy-ReFF is available at https://www.topf-group.com/tempy-reff.
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3.2 Publication in Nucleic Acid Research
In the previous paper we refined models which had been deposited in the PDB
and were thus already reasonably well fit to the experimental cryo-EM maps. Such
refinement involves only small changes in atomic positions. In practical model
building scenarios, well fitting models are not the norm. Instead, models derived
from other experiments or computational approaches such as AlphaFold are used
as starting points. Often starting from such models poses a challenge as the flexible
fitting method on its own is prone to becoming trapped in local minima or distorting
the geometry (section 1.2.5).

Rigid bodies generated by the RIBFIND method (Pandurangan et al. 2012a)
have been applied to the Flex-EM tool (Pandurangan et al. 2012b) to aid conver-
gence and preserve desirable geometry. However, the approach has some limitations.
RIBFIND only handles structures of proteins and the underlying implementation
is extremely naive, making finding rigid bodies in the large complexes being solved
today a timely endevour. In the RIBFIND2 paper which follows, I share first
authorship with Dr. Sony Malhotra. In this new implementation, I used an Itera-
tive Strongly Connected Components style algorithm allowing timely execution of
method. I developed a ChimeraX plugin and a web server to improve accessibility.
Finally, I implemented an automated hierarchical refinement routine in TEMPy-
ReFF which takes advantage of the rigid bodies defined by RIBFIND2 to improve
the radius of convergence. In theory, Flex-EM users will now also be able to better
fit divergent RNA conformations into cryo-EM maps.
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ABSTRACT 
Molecular structures are often fitted into cryo-EM 
maps by flexible fitting. When this requires large 
conformational changes, identifying rigid bodies can 
help optimize the model-map fit. Tools for identifying 
rigid bodies in protein structures e xist, ho we ver an 
equiv alent f or nuc leic acid structures is lac king. With 
the increase in cryo-EM maps containing RNA and 
progress in RNA structure prediction, there is a need 
for such tools. We pre viousl y de veloped RIBFIND, a 
pr ogram f or c lustering pr otein secondary structures 
into rigid bodies. In RIBFIND2, this approach is ex- 
tended to nucleic acid structures. RIBFIND2 can iden- 
tify biologically relevant rigid bodies in important 
groups of complex RNA structures, capturing a wide 
range of d ynamics, including lar ge rigid-bod y move- 
ments. The usefulness of RIBFIND2-assigned rigid 
bodies in cryo-EM model refinement was demon- 
strated on three examples, with two conformations 
each: Gr oup II Intr on complexed IEP, Internal Ribo- 
some Entry Site and the Processome, using cryo- 
EM maps at 2.7–5 Å resolution. A hierarchical refine- 
ment appr oach, perf ormed on pr ogressively smaller 
sets of RIBFIND2 rigid bodies, was clearly shown 
to have an advantage over classical all-atom refine- 
ment. RIBFIND2 is available via a web server with 
structure visualization and as a standalone tool. 

GRAPHICAL ABSTRACT 

INTRODUCTION 
Cryo-electr on micr oscopy (cryo-EM) is the method of 
choice for elucidating structures of large macromolecular 
assemblies at high (better than ∼4 Å ) to medium resolu- 
tions ( ∼4–10 Å ). Already ∼20% of cryo-EM structures in 
the Electr on Micr oscopy Data Bank (EMDB) ( 1 ) contain 
RNA components. A large portion of the genome encodes 
for non-coding RN A (ncRN A) ( 2 ) and the Nucleic Acid 
Knowledge Base (NAKB) ( 3 ), the successor to the Nucleic 
Acid Database (NDB) ( 4 , 5 ), currently holds 16473 struc- 
tures (as of August 2023). In the last year, 56% of new en- 
tries were deri v ed from cryo-EM e xperiments. In total, 22% 
of all structures in the NAKB are from cryo-EM techniques 
at various resolutions, some of which prohibit clear deter- 
mination of the atomic positions. These could be combined 
with RNA structure prediction and refinement algorithms, 
w hich are continuousl y improving ( 6 , 7 ). These changes in 
the field could lead to more insights into biological pro- 
cesses and experiments, such as CAS9-CRISPR gRNA gen- 
eration and ribonucleoprotein assemblies. 

* To whom correspondence should be addressed. Tel: +49 40 8998 87660; Email: maya.topf@cssb-hamburg.de 
† The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. 
C ⃝ The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 
This is an Open Access article distributed under the terms of the Creati v e Commons Attribution-NonCommercial License 
(http: // creati v ecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work 
is properly cited. For commercial re-use, please contact journals .permissions@oup .com 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad721/7260973 by guest on 20 Septem

ber 2023



2 Nucleic Acids Research, 2023 
To deri v e an atomic model of an assembl y, usuall y, atomic 

structures of assembly components are fitted into the cryo- 
EM map and then further refined within the map. Espe- 
cially, but not e xclusi v ely, at medium resolutions, the latter 
process (also called ‘fle xib le fitting’) can be assisted and sped 
up by using rigid bodies (RBs) linked by fle xib le linkers in 
the fitted components. It can also improve the accuracy of 
the final refined model ( 8 ). At present, methods to identify 
RBs are mostly designed for protein structures ( 8 ). 

The RIBFIND algorithm ( 9 ) was originally designed to 
detect RBs in protein structures via the clustering of sec- 
ondary structural elements (SSEs), primarily to aid the fit- 
ting of structures into cryo-EM maps. RIBFIND was made 
available both as a w e b server and a standalone program 
( 6 ). Here, we hav e de v eloped a ne w algorithm, RIBFIND2, 
which identifies RBs in ncRNA structures by clustering 
SSEs assigned using the RNAView program ( 10 ). We have 
also optimized the original RIBFIND algorithm param- 
eters for clustering protein structures. The algorithm was 
tested on structures containing proteins and RNA in differ- 
ent conformations. 

We have implemented RIBFIND2 in a w e b server (Fig- 
ure 1 ) with no login requirements –– https://ribfind.topf- 
group.com/ , which also supports a molecular JavaScript 
vie wer –– NGL vie wer ( 11 ) –– as it is more interacti v e, faster 
and scalable than our previous Java-based viewer (JMol, 
http://jmol.sourceforge.net/ ). We also provide the software 
as a standalone package which can be downloaded from a 
link provided in the w e b server. 
MATERIALS AND METHODS 
Secondary structure determination for RNA 
The secondary structure of RNA molecules was determined 
with the RNAView ( 10 ) pro gram, w hich is also used by 
the NDB to assign secondary structures to nucleic acids. 
RNAView calculates base-pairing interactions in a molecule 
based on distance and angle restraints. From those base 
pairs, it divides the molecule into double-stranded heli- 
cal segments and single-stranded loop segments. Although 
the secondary structure classification of RNA is signifi- 
cantly more complex than these two categories, for the pur- 
poses of clustering this binary division contains enough 
information. Because single-stranded segments are an im- 
portant part of RNA tertiary structure and are involved 
in intr amolecular inter actions, they wer e tr eated as sec- 
ondary structure elements (SSEs) in their own right, rather 
than merely as connecting elements (as loops generally are 
in proteins). The RNAView secondary structure predic- 
tions (which are in XML format) were used for further 
calculations. 
Clustering protein and RNA structures 
The clustering algorithm is partially based on the original 
RIBFIND algorithm (neighborhood-based clustering) de- 
veloped for defining RBs in proteins ( 8 , 9 ). The algorithm 
groups SSEs together into RBs based on the ‘strength’ of 
their interaction. For proteins, ‘cutoff distance’ (previously 
called ‘contact distance’) is defined as the distance between 
the average atomic position of side-chain atoms, except for 

gl ycine w here the C ! is used. For RNA it is the average 
atomic position of nucleotide atoms excluding the phos- 
phate groups. The strength of the interaction between an 
SSE (A) and a partner SSE (B) is defined in terms of the 
fraction of ‘allowed’ residues (see below) in A which are 
within the cutoff distance of the allowed residue in B. For 
proteins and RNA, the default cutoff distance is 6.5 Å ( 12 ) 
and 7.5 Å ( 13 , 14 ), respecti v ely. These cutoff values can be 
changed to user-defined values. For RNA, this default was 
selected based on the analysis of base-base interactions in 
ellipsoidal shells ( 13 ). 

The interaction strength is defined in terms of the fraction 
of residues within the cutoff distance of one another, where 
| X| denotes the number of elements in the set X: 

f ra c ( A, B ) = | cutof f ( a l l owed ( A ) , al l owed ( B ) ) | 
| a l l owed ( A ) | (1) 

Because f rac( A, B ) does not necessarily equal 
f rac( B, A ) , the interaction for the pair is instead de- 
fined as the maximum of the two: 

inte rac tion ( A, B ) = max ( f rac ( A, B ) , f rac ( B, A ) ) (2) 
The ‘allowed’ residues of an SSE enable finer control of 

interaction calculations. These are computed for each type 
of SSE. For "-sheets, only strands longer than three residues 
are allowed in interaction calculations ( 9 ). For unpaired 
RNA strands, a similar rule is applied. For !-helix to !- 
helix interactions, the ratio of the helix lengths in residues 
must be > 0.4 ( 9 ). 

Gi v en the interaction function, a graph is constructed 
where nodes are SSEs and edges are the computed inter- 
actions. By choosing an interaction threshold (originally 
termed ‘cluster cutoff’) and removing edges from the graph 
that fall below this, the set of RBs (strongly connected com- 
ponents) changes. The algorithm, thus, produces unique 
sets of RBs and their respecti v e interaction thresholds by 
iterati v ely removing edges in order of strength. 

A ‘unique’ cluster number (UCN) for a gi v en interaction 
threshold is defined as: 

U C N = | S S Es ∈ RBs | 
| S S Es | + | RBs | (3) 

where | S S E ∈ Rigi d Bod i es | denotes the number of SSEs 
which are within RBs in the cluster of interest. We have pre- 
viously demonstrated in detail the usefulness of the high- 
est UCN in the refinement of three protein cases ( 9 ), where 
fle xib le fitting using clustered RBs resulted in a model that 
better fit the experimental map. The highest UCN has pre- 
viously been chosen for refinement as it tends to have most 
of SSEs clustered into a large number of RBs. Howe v er, the 
highest UCN cluster may not always be the best for this pur- 
pose. We ther efor e compar e it against a more costly ‘hierar- 
chical’ approach in this paper. 
Benchmark dataset for protein-nucleic acid comple x es 
The NDB ( 5 ) was searched for RNA structures with ter- 
tiary interactions to test the algorithm. A series of group 
IIC intron structures in different states of catalysis was first 
used to test the algorithm (PDB IDs: 3eog, 3eoh, 3bwp, 
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Figur e 1. Sna pshot of the RIBFIND2 server. ( A ) The input parameters r equir ed to submit the job to RIBFIND2 w e b server. ( B ) The results page with 
colored rigid bodies for both protein and RNA components in an input PDB ID (1mji). The user can turn on / off the protein, RNA or the cryo-EM map. 
The slider lets the user control the interaction threshold for both protein and RNA components. 
Table 1. Dataset used to assess the performance of RIBFIND2 rigid bodies during TEMPy-REFF refinement 
Type Model Map Res. † ( ̊A ) Description 
Processome 7MQ9 23937 3.9 Cryo-EM structure of the human SSU processome, state 

pre-A1* 
7MQA 23938 2.7 Cryo-EM structure of the human SSU processome, state 

post-A1 
Group II Intron complexed with 
intr on-encoded pr otein (IEP) 7D0F 30532 5.0 Cryo-EM structure of a precatalytic group II intron RNP 

7D0G 30533 5.0 Cryo-EM structure of a precatalytic group II intron 
IRES 7SYR 25538 3.6 Structure of the wt IRES eIF2-containing 48S initiation 

complex, closed conformation. Structure 12(wt) 
7SYQ 25537 3.8 Structure of the wt IRES and 40S ribosome ternary 

complex, open conformation. Structure 11(wt) 
† Res. refers to the resolution of the cryo-EM map. 
4ds6, 5j01, 5j02). Additionally, structures of the 80S ribo- 
some in different states of Internal Ribosome Entry Site 
(IRES) translocation were then used, in which the small and 
large subunits were run separately and with protein chains 
removed (PDB IDs: 5juo, 5jus, 5jut, 5juu). The clustering of 
structur es wer e viewed and analyzed using UCSF Chimera 
( 15 ). 
Application to cryo-EM refinement 
We selected three cases of RNA structures, in two confor- 
mations each, to test the usefulness of RIBFIND2 in refin- 
ing those structures in cryo-EM maps. These were: Group II 
Intron complexes with intron-encoded protein (IEP), Inter- 
nal Ribosome Entry Site (IRES) and the Processome, with 
cryo-EM maps between 2.7 and 5 Å resolution. 

We refined each atomic model into the cryo-EM map cor- 
responding to the other conformation (Table 1 ). For the 
Gr oup II intr on models, both the RNA and protein chains 
(chains A and C respecti v ely) wer e r efined. Due to the large 

size of the processome and IRES models, we refined only 
two of the major RNA chains from these models, which 
corresponded to chains ‘L1’ and ‘L2’ and chains ‘2’ and 
‘z’, respecti v ely. We compared two approaches of a ppl ying 
these restraints, the first based on the decomposition of RBs 
(‘hierarchical’) and the second based on choosing a single 
cluster with the highest UCN. In the hierarchical approach, 
RIBFIND2 clusters are selected in order of increasing inter- 
action threshold, which leads to progressi v ely smaller clus- 
ters and thus more and more flexibility. As a control, we 
performed an unrestrained refinement. 

The refinement protocol included three steps (Supple- 
mentary Figure S1): (i) the model was first aligned to the 
target to produce a rough fit then locally optimized using 
the ‘fitmap’ tool in ChimeraX to produce the initial starting 
model; (ii) TEMPy-REFF ( 16 ) density-guided fitting was 
used in conjunction with progressi v ely smaller RIBFIND2 
RBs (hierarchical), the highest UCN set of RBs (UCN), 
or all-atom (unrestrained) and (iii) TEMPy-REFF all-atom 
Gaussian-mixture model refinement. 
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Figure 2. Clustering for group IIC intron (PDB ID: 3bwp) using RIBFIND2, labeled with interaction threshold and the UCN (below in parentheses). The 
inter action thr eshold for the highest UCN is highlighted in red. 

Each set of RBs were refined using TEMPy-REFF un- 
til convergence, i.e. the variance in CCC score of the last 
fiv e runs was < 10 −9 . The TEMPy-REFF density-guided 
force field was set to a strength of 20 in all experiments. 
The TEMPy-REFF GMM strength for the refinement step 
was 10 3 . 
RESULTS 
Clustering RNA in group II introns 
The algorithm was first tested on Group IIC introns. The 
SSE clustering using a 1% threshold to no clusters (at 
threshold ≥17%) is shown in snapshots for an intron struc- 
ture in Figure 2 (PDB ID: 3bwp). The intron starts as one 
cluster (comprising all secondary structures) initially and 
then breaks off into smaller clusters, with the number of 
clusters peaking at the highest UCN. The algorithm was 
also run on se v eral other group IIC intron structures in vari- 
ous states of catalysis; The interaction threshold and highest 
UCN for each of these states is shown in Figure 2 . Struc- 
tures with PDB IDs: 3bwp, 3eog, 3eoh and 4ds6 are trun- 
cated (lacking domain 6) and consequently linear introns, as 
the branch point adenosine resides in domain 6 ( 17 ) while 
structures 5j01 and 5j02 are branched chimeric introns and 
are deri v ed from Oceanobacillus iheyensis . A similar cluster- 
ing pattern is observed across the different catalytic states 
with three key clusters emerging highlighted in purple, yel- 
low and green (and for those intron structures without bro- 
ken chains additionally a cluster in blue). Exceptions to this 
are the chimeras (5j01 and 5j02), which were created by re- 
placing part of the O. iheyensis sequence with intron AV.I.2 
( 17 ). In those cases, the yellow cluster does not break off 
and instead appears as part of larger purple clusters (Fig- 
ure 3 ). 4ds6 also shows a red cluster at the top, which for all 
other states is non-clustered. This may reflect state-specific 
reduced flexibility in the pre-catalytic structure as well as for 
the chimeras. 
Clustering RNA in the 80S eukaryotic ribosome 
To test the algorithm on higher complexity RNA structures, 
a set of structures of the 80S ribosome bound to the Taura 
syndrome virus IRES were used ( 18 ). IRESs are RNA struc- 
tures that carry out cap-independent translation of viral 

mRNA via interacting with the 40S subunit ( 18 ). The en- 
semble of structures illustr ates tr anslocation and rearr ange- 
ments of the IRES, coupled with 40S intra and inter-subunit 
rearrangements and therefore represents a good example of 
biolo gicall y relevant rigid body RNA movements. 

The small subunit has been well characterized in terms 
of its dynamics and domains in many ribosome structures. 
The canonical small subunit is composed of head, beak, 
body and platform domains (Figure 4 ), based on transitions 
between dif ferent sta tes during transloca tion ( 19 , 20 ). Snap- 
shots of the trajectory of clustering from 1% threshold to 
no clusters (at interaction threshold ≥61%) for a single 40S 
conformation (PDB ID: 5juo) are shown in Figure 4 . As ob- 
served with intron structures, larger clusters ar e pr esent at 
lower thresholds, which e v entually separate into smaller do- 
mains, but still include most of the SSEs, which then grad- 
ually localize to subsections or peripheries excluding most 
SSEs as the interaction threshold is increased. At thresholds 
of 15–25% there is a good separation of head, beak, plat- 
form, body and IRES domains. Moreover, the IRES ini- 
tially starts as one cluster that breaks into two clusters ap- 
proximately corresponding to its two known domains (the 
5 ′ region and PKI region) ( 18 ). 

We further assessed the algorithm to generate function- 
ally meaningful clusters using other conformations in addi- 
tion to 5juo (PDB IDs: 5jut, 5juu, 5jup, 5jus). RIBFIND2 
assignment with the highest UCN resulted in a similar clus- 
tering pattern into the classical domains, as well as of the 
IRES (which also adopts a different conformation in eac 16 h 
structure) (Supplementary Figure S2). As well as the canon- 
ical 40S domains, a set of 3–4 clusters (coloured orange, 
red, yellow and cyan in Figure 4 ) are consistently found in 
the lower half of the 40S subunit. The clustering of these 
RBs changes the least for the different states. Comparing 
the proportion of SSEs in clusters vs. the interaction thresh- 
old shows a drop around the threshold that corresponds 
to the highest UCN in all conformations (Supplementary 
Figure S3). 

During the transition between the different conforma- 
tions the head domain rotates by ∼40 ◦ ( 19 , 20 ), a phe- 
nomenon also reported for bacterial and mammalian sys- 
tems ( 21–23 ) Thus, the similar clustering pattern observed 
along the trajectory of dif ferent sta tes suggests the clusters 
identified by the algorithm r epr esent biolo gicall y relevant 
RBs. 
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Figure 3. Clustering for gr oup IIC intr ons in dif ferent ca talytic sta tes and conforma tions. For each structure, the clustering based on the highest UCN is 
indicated next to PDB ID. 

Figure 4. Clustering for small ribosomal subunit (PDB ID: 5juo). Canonical domains are marked in the first panel and clustering patterns are shown in 
ascending order labelled with corresponding inter action threshold. The inter action threshold of the clustering with the highest UCN is highlighted in red. 
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Table 2. Assessment of refined models using differ ent r efinement ap- 
proaches. Best CCC and RMSD are highlighted in bold 
Model Target Method CCC RMSD ( ̊A ) 
7mq9 7mqa Target 0 .64 0 .0 

Initial 0 .49 15 .1 
Hierarchical 0 .62 7 .3 
UCN (25.53) 0 .6 8 .5 
Unrestrained 0 .57 12 .6 

7mqa 7mq9 Target 0 .64 0 .0 
Initial 0 .47 14 .9 
Hierarchical 0 .56 7 .6 
UCN (33.62) 0 .53 11 .24 
Unrestrained 0 .54 12 .3 

7d0f 7d0g Target 0 .85 0 .0 
Initial 0 .69 6 .2 
Hierarchical 0 .81 3 .2 
UCN (14.66) 0 .81 3 .2 
Unrestrained 0 .81 3 .1 

7d0g 7d0f Target 0 .85 0 .0 
Initial 0 .69 5 .9 
Hierarchical 0 .82 3 .1 
UCN (15.84) 0 .82 3 .1 
Unrestrained 0 .81 2 .9 

7syr 7syq Target 0 .75 0 .0 
Initial 0 .70 6 .9 
Hierarchical 0 .78 2 .8 
UCN (47.77) 0 .78 2 .7 
Unrestrained 0 .78 2 .9 

7syq 7syr Target 0 .73 0 .0 
Initial 0 .68 6 .9 
Hierarchical 0 .78 2 .2 
UCN (43.77) 0 .77 2 .4 
Unrestrained 0 .76 3 .3 

Clustering in the large subunit 
Compared to the small subunit the large subunit is less 
dynamic during translocation and more compact with the 
RN A not classicall y seen as separated into distinct do- 
mains ( 24 , 25 ). The clustering of a single large subunit (PDB 
ID: 5juo) from 1% threshold to no clusters (at interaction 
threshold ≥61%) is shown in snapshots in Supplementary 
Figure S3. The central core of the 60S subunit largely stays 
as a large cluster (orange, Supplementary Figure S2) with 
peripher al SSEs gr adually breaking off into different clus- 
ters. Overall, the core of 60S is conserved between the dif- 
ferent states, particularly at the lower end of the interaction 
threshold range shown. The surfaces break into small clus- 
ters for all states r epr esenting flexibility compared to the 
core globular domain. 
Using clusters of RIBFIND2 for cryo-EM structure refine- 
ment 
The examples from Table 1 were used to perform refinement 
in two ways: hierarchical and UCN-based (see Materials 
and Methods). The hierarchical approach combines the ad- 
vantages of using both the highest UCN and unrestrained 
approaches: large cluster sizes, used at the start of refine- 
ment, enable large conformational changes during fitting 
and hence pre v ents the model from getting stuck in small 
pockets of density, whilst small cluster sizes facilitate the 

small adjustments r equir ed for accurate r efinement once the 
model is placed in an a pproximatel y correct position. 

In total, we performed refinements of six structures for 
the three cases (Materials and Methods and Table 1 ). We as- 
sessed the performance using a density-based metric, cross 
correlation (CCC), and a density-independent metric, root 
mean square deviation (RMSD). The latter was calculated 
over C4’ RNA atoms ( 26 , 27 ) of the refined model from 
the target structure (Table 2 ). CCC scores for hierarchi- 
cal r efinements wer e gener ally higher or compar able to the 
UCN and unrestrained approaches. For the processome, 
we excluded residue ranges 1256–1516 and 1839–1860 from 
RMSD calculations. The former is in a low resolution part 
of the map, the latter is a small modelled fragment, which is 
disconnected from the rest of the model. 

The combination of CCC and RMSD scores was best 
for the hierarchical approach, suggesting better fit was ob- 
tained whilst minimizing overfitting (lower RMSD values, 
Table 2 ). The geometry of the refined models were assessed 
using RN AValidate w hich is part of the PHENIX soft- 
ware ( 28 ) (Supplementary Table S1). There were no obvi- 
ous differences between the restrained and unrestrained re- 
finements. Howe v er, all refinements had a decrease in suite 
outliers and an increase in bond-angle outliers. 

A comparison of the CCC score trajectories during 
refinement for the hierarchical, UCN and unrestrained 
approaches is presented in Figure 5 A. A close-up of the 
IRES differences from the target model demonstrates the 
advantages of using RIBFIND2-defined RBs over the un- 
r estrained r efinement wher e no RBs ar e used (Figur e 5 B). 
Gener ally, both the hier archical and UCN approaches en- 
abled the flexible-fitting to converge on a conformation 
closer to the target structure (Figure 5 , Tables 2 and S1). 
The local fit-to-map of the IRES model 7syq in map 
EMD-25538 was assessed using SMOC scores (Supple- 
mentary Figure S4A) which are part of the TEMPy ( 29 ). 
Compared to the hierarchical-based fitting (blue), UCN- 
based (orange) and unrestrained (green) refinements pro- 
duced models with lower SMOC scores in the beak do- 
main which is marked by a box. A close-up of the re- 
fined models in this region shows that the hierarchical 
model was closer to the target model (red) (Supplementary 
Figure S4B). 
RIBFIND2 web server 
To make the program user-friendly, RIBFIND2 has been 
implemented as a w e b server ( https://ribfind.topf-group. 
com/ ). By default, the server accepts a single PDB file. How- 
e v er, the advanced form allows the previously described dis- 
tance thresholds and interaction parameters to be adjusted 
from their defaults. 

For proteins, the following parameters are user- 
definable: 

1. The protein residue cutoff distance (default 6.5 Å ). 
2. The minimum ratio of lengths between helices for them 

to interact (default 0.4). 
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Figure 5. Refinement results for the processome model PDB ID: 7mq9 in cryo-EM map EMD-23938. ( A ) The CCC scores after each step for the hierarchical 
(blue), UCN (orange) and unrestrained (gr een) r efinement procedur es. Both r estrained approaches yielded models with higher CCC scor es. ( B ) Visualization 
of nucleotides 150–350 in the final model within the cryo-EM map (transpar ent gr ey). For the unr estrained model (gr een) and UCN model (orange) it is 
clear that some helices were unable to move to the correct density. 

3. The minimum beta-strand length determines if a strand 
can be involved in interactions (default 4). 

4. The cluster size, which determines the minimum number 
of clustered SSEs which can be called a RB. 
For nucleic acids, the following parameters are user de- 

finable: 
1. The nucleic acid cutoff distance (default 7.5 Å ). 
2. The minimum strand length of an RNA loop which can 

interact (default 4). 
3. The minimum cluster size which is considered a RB 

(default 2). 
The PDB file is read and validated internally before it is 

submitted for execution. After successful completion, the 
clusters are displayed on the w e b page with the results of 
the job. Failure to run the job caused by DSSP or RNAView 
processing their input ar e r eported to the user so they may 
correct these issues. 

Using the slider control on the result page, the user can 
view different sets of RB clusters generated for each inter- 
action threshold and save the corresponding RB file in a text 
format (which can be used, e.g. by TEMPy-REFF or Flex- 
EM ( 30 )). The run-time for some examples is listed in Sup- 
plementary Table S2. 

NGL and visualization. It is useful to provide an efficient 
visualization of biomolecular structures, and their separa- 
tion in structural elements or a group of structural elements. 
To this end, we have implemented a NGLview JavaScript 
molecular viewer, where each RB in the user uploaded PDB 
file is colored uniquely ( 8 ). All SSEs and loops that do not 

form part of any cluster are colored white. The clustering 
with the greatest UCN identified by the program is dis- 
played by default. Directly embedded in the results page, it 
allows for quick and responsi v e visualization of very large 
structures (e.g. viral capsids). The viewer allows intuitive 
interaction using the mouse to quickly and easily change 
the display and consistent coloring of the structural blocks 
identified by RIBFIND2. 
DISCUSSION 
Rigid-bod y identifica tion in biomolecular structures is a 
highly useful step to analyse structural models and to re- 
fine them against experimental data. Yet, few methods exist 
to do so in an automated fashion for nucleic acids. We have 
shown here that RIBFIND2 can be used to provide RBs 
that correspond to biolo gicall y relevant units in important 
RN A and protein / RN A structures, using gr oup II intr ons 
and ribosome subunits as e xamples. We hav e also demon- 
stra ted tha t combining RBs identified by RIBFIND2 with 
a cryo-EM refinement method enhances the final quality of 
the model. This is particularly relevant f or cry o-EM RNA 
structur es, which ar e on aver age char acterized by lower res- 
olution compared to protein structures. Further, the opti- 
mal number of RBs is also dependent on the resolution 
of the map. We have previously shown using a simulated 
benchmark that the improvement in CCC drops as the res- 
olution drops and at resolutions worse than 10 Å, it is hard 
to obtain an accurate refined model. At lower resolution, 
multiple structures tend to have similar fitting scores and 
hence it is more difficult to refine them. Previously, clus- 
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tering protein secondary structure elements into larger RBs 
was shown to improve the flexible fitting process ( 9 ). 

Here we have demonstrated that RBs can also be used 
for the fle xib le fitting of RNA structures. To achie v e this, we 
used a hierarchical approach (fitting each of the RIBFIND2 
sets of RBs in order of 0–100%) which produced models 
which were closer to the target structure (lower RMSD) 
and were a better fit-to-map (higher CCC) compared to the 
model resulting from a standard unrestrained (all-atom) re- 
finement or a refinement based on the highest UCN. Fu- 
ture work could include integrating the current method with 
deep-learning-based structure prediction methods due to 
its successful combination with cryo-EM model refinement. 
This could be done in an interacti v e manner, for example 
with molecular visualization and molecular dynamics tools, 
and could also aid in providing better model assessment and 
functional interpretation. 
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The Critical Assessment of Structure Predictions (CASP) happens on a biennial
basis since 1994. Here the state of the art in structure prediction methods are
assessed. Participating groups (Predictors) must predict the structure of proteins
or protein assemblies of various complexity using the provided amino acid sequence
alone. In CASP15, a large improvement was observed in complex prediction (Ozden
et al. 2023) consistent with the introduction of AlphaFold-Multimer (Evans et al.
2022). The increasing relevance of cryo-EM in the structural biology field was
reflected in the large number of targets which were solved using this method. As
previously described, structural predictions are central to many low resolution cryo-
EM modelling approaches such as flexible fitting. This makes CASP an ideal
test-bed for understanding the quality of the current state-of-the art for flexible
fitting purposes.

In CASP13 (Kryshtafovych, Malhotra, et al. 2019) and CASP14 (Cragnolini,
Kryshtafovych, et al. 2021), individual chains or domains of predictions were flex-
ibly fitted into cryo-EM maps. Given the advances in complex prediction, in
CASP15 entire monomers and complexes were refined into the cryo-EM data pro-
vided by experimentalists.

I lead this collaborative effort, which involved Rachael Kretsch from the Das
group at Stanford and Luc Elliott from the Rigden group at University of Liv-
erpool. My main contributions were the development of the cryo-EM refinement
and validation pipeline, as well as the assessment of the flexible fitting results.
The RNA prediction category, which was a new category in CASP15 (Das 2023),
offered a number of challenges. Many of these RNAs were small, flexible, and
solved to between 3.5 and 7.6Å using cryo-EM. Here we refined only the best RNA
predictions for each target, according to the expert assessment of Rachael Kretsch.
Due to the low resolutions of the provided cryo-EM maps for RNA structures,
and poor initial backbone geometry of predictions, good RNA geometry was not
achievable using the TEMPy-ReFF tool alone. To this end, I implemented an RNA
specific pipeline to handle these lower quality predictions, where ERRASER2 (Chou
et al. 2013) was employed along side TEMPy-ReFF to produce high quality fitted
models which were in some cases better than the target structures.
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Abstract

CASP assessments primarily rely on comparing predicted coordinates with experi-

mental reference structures. However, experimental structures by their nature are

only models themselves—their construction involves a certain degree of subjectivity

in interpreting density maps and translating them to atomic coordinates. Here, we

directly utilized density maps to evaluate the predictions by employing a method for

ranking the quality of protein chain predictions based on their fit into the experimen-

tal density. The fit-based ranking was found to correlate well with the CASP assess-

ment scores. Overall, the evaluation against the density map indicated that the

models are of high accuracy, and occasionally even better than the reference struc-

ture in some regions of the model. Local assessment of predicted side chains in a

1.52 Å resolution map showed that side-chains are sometimes poorly positioned.

Additionally, the top 118 predictions associated with 9 protein target reference

structures were selected for automated refinement, in addition to the top 40 predic-

tions for 11 RNA targets. For both proteins and RNA, the refinement of CASP15 pre-

dictions resulted in structures that are close to the reference target structure. This

refinement was successful despite large conformational changes often being

required, showing that predictions from CASP-assessed methods could serve as a

good starting point for building atomic models in cryo-EM maps for both proteins

and RNA. Loop modeling continued to pose a challenge for predictors, and together

with the lack of consensus amongst models in these regions suggests that modeling,

in combination with model-fit to the density, holds the potential for identifying more

flexible regions within the structure.
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1 | INTRODUCTION

Assessment of models in CASP is traditionally based on comparing

predicted coordinates with the coordinates of reference structures

provided by experimentalists. For evaluation purposes, the experi-

mental structures are considered the “gold standard”. However,

experimental structures by their nature are only models themselves—

their construction involves a certain degree of subjectivity in inter-

preting density maps and translating them to atomic coordinates. In

several previous CASPs, in parallel to the coordinate-to-coordinate

evaluation, we carried out an evaluation of models versus the experi-

mental data for a subset of cryo-EM-derived structures.1,2 In this arti-

cle, we continue this trend and check the fit of CASP15 models to

cryo-EM density maps. We also study how the density-guided refine-

ment of the best models improves their fit to map, and how the

refined models fare with regards to the experimental structures. For

the first time, besides the protein targets, we analyze RNA structures.

The number of structures newly solved by 3D-EM roughly doubles

every 2 years and totals 14 500 as of March 2023, constituting more

than 8% of protein structures in the whole PDB (http://www.rcsb.org/)3

(compared to around 4% only 2 years ago). Reflecting this growth, CASP

also registered an uptick in the percentage of cryo-EM targets. In

CASP14, 7 out of 54 evaluated targets (13%) were determined by cryo-

EM, while in CASP15 the corresponding numbers were 27 out of

93 (29%), including 8 of the 12 (67%) RNA-containing structures.

While AlphaFold2 did not participate in the assembly category in

the previous CASP experiment, it was noted that its predictions could

have alleviated many interface modeling errors.4 Since then,

AlphaFold-Multimer,5 RosettaFold6 and AF2Complex7 are a few

examples of a growing number of deep-learning approaches to com-

plex prediction. In CASP15, predictions of oligomeric targets were suf-

ficiently good to directly refine whole proteins and complexes rather

than smaller evaluation units. To test the applicability of the predic-

tions in real-world cryo-EM structure determination tasks, we

employed a method for ranking models. Additionally, given the

improvement in the average cryo-EM map resolution, we decided to

not only refine the best-predicted models into the corresponding

maps but also assess higher resolution aspects of predicted models,

such as their side-chain orientations.

For the RNA targets, predictions were ranked using their cryo-

EM maps in another study of this special issue.8 Therefore, here we

used the maps to refine the best-ranked RNA predictions. However,

whilst cryo-EM for studying proteins can often achieve near-atomic

resolution, for RNA-only structures this method generally has not yet

been able to achieve the same levels of resolution. Additionally, struc-

ture prediction for RNA is far less mature than for proteins, making

RNA refinement into cryo-EM maps even more challenging.

2 | MATERIALS AND METHODS

In CASP15, with the increased accuracy of modeling, we evaluated

more targets, including multidomain and oligomeric ones (Figure 1,

Table 1). In this paper, we had two aims: (1) to assess how well each

protein chain of the predictions fitted the density if it was docked

individually in the map (i.e., in complexes, without the context of the

fully predicted complex); and (2) to check whether the predicted

models could be improved in the context of the experimental data.

For the first aim, we ranked individual protein chains based on rigid

cryo-EM docking (Section 2.1). For the second aim, we took the top-

ranked model for each protein target and also used all the predictions

for protein and RNA targets that passed minimum accuracy filters (see

Section 2.2.1 for proteins and Section 2.2.2 for RNA). These were

superposed on their corresponding reference structures and the fit of

each model was then optimized with ChimeraX9 (Supp. Methods 1).

This would show us that even when the prediction is not accurate

enough, it can still serve as a good starting point for model building.

For example, six targets shown in Figure 2 (T1154, H1158, T1158,

T1170o, R1126, and R1156v3) were generally well modeled down to

the secondary structure level; however the overall conformations only

partly fitted the density. Below we describe the methodologies we

used for the two approaches.

2.1 | Ranking of individual protein chains based on
rigid cryo-EM docking

Instead of rigidly fitting the entire complex in the map, one can iden-

tify the optimal initial position for each of the protein components in

the model using an exhaustive search or another heuristic. Predictions

were re-ranked based on this global fitting approach using Cross-

Correlation (CC).

The docking of models in this study was carried out using two

automatic docking programs, Molrep10,11 and PowerFit.12 Both pro-

grams use a six-dimensional search to maximize an overlap-correlation

score between a given model and the map file. Molrep incorporates a

Spherically Averaged Phased Translation Function (SAPTF), followed

by a Rotation Function (RF) and Phased Translation Function (PTF),

which achieves a suggested first fit and then improves the overlap

score with a six-dimensional optimization search.10,11 On the other

hand, PowerFit incorporates an exhaustive six-dimensional search,

including rotation at a pre-set angle sampling density and translation

across the map file. Input parameters for the docking included the

input map file, model and resolution.12 The top model was determined

by the CC score calculated using ChimeraX.9

A group ranking was generated as follows using the complete

chain submissions submitted by groups instead of the CASP-defined

Evaluation Units (EUs).13 Predictors may submit five models for each

target. To reduce the computational time required for the docking

process, only the first submitted model for each target per group was

considered. For each target, a score was assigned per group reflecting

its position in the CC ranking for that target. The top model was given

a score of 123 since this was the total number of groups. An auto-

matic rank of 0 was given where a group did not submit a prediction

for a given target. For an overall group ranking, a cumulative score for

each group was tallied across all targets for which that group
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submitted a prediction. For comparison, similar rankings were done

for each group and target using the composite SCASP15 score defined

by Simpkin, et al.14

For single chain targets, the prediction from the top group was

chosen as the starting candidate. For oligomeric targets (H1114,

H1129, H1158, T1121o, T1170o, H1185), a cumulative score of the

F IGURE 1 Overview of the cryo-EM targets used for refinement and analysis in CASP15: Reference structures for 10 protein targets (A) and
6 RNA targets (B) solved by cryo-EM in CASP15.
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individual chains was tallied. The model from the highest scoring

group across all chains for a target was selected for refinement. For

these models, no attempt was made to recombine individual fitted

chains: instead the originally submitted multi-chain assembly was re-

docked so that this full assembly was the starting model for the

refinement process.

2.2 | Model refinement

2.2.1 | Selection of models for refinement from
proteins and protein complex-targets

Our rigid-body docking protocol is designed to test how well individ-

ual chains reflect the experimental density. However, we know from

previous CASP competitions, that predictions, despite often modeling

domains and SSEs to a high degree of accuracy, often fare less well

when it comes to overall conformation. In previous papers of this

series 1,2 we have performed flexible fitting and refinement on cryo-

EM targets showing that, with the aid of the experimental data,

models oftentimes can be as good as the reference structure. It is

important to note that flexible fitting methods require the starting

models to be quite accurate at the SSE and domain levels, as these

features are not derived from the fitting process. Flexible fitting rou-

tines such as the one used in this paper may not converge if the

models are far from the global solutions. To select models which have

both accurate SSEs and are not too far from the global optimum, we

pick the highest ranking models based on the CASP assessment scores

and the cryo-EM-based model assessment protocol (see Section 2.1).

To qualify, predictions had to score above 0.7 on the lDDT

(oligo-lDDT for oligomers) scale. Additionally, predictions for mono-

meric targets required a GDT_TS score greater than 0.7. In the case of

oligomeric targets, predictions with QS, TM, and F1 scores4,15,16 all

greater than 0.7, 0.8, and 0.6 respectively were eligible for refinement.

2.2.2 | Selection of models for refinement from
RNA targets

All RNA-containing cryo-EM targets were considered for refinement.

If there were multiple experimental maps, predicted models were

selected separately for each map. The predictors were not asked to

predict these conformations separately and hence, in some cases,

the same predicted model was refined against multiple maps. Due to

the low prediction accuracy all models submitted by each team were

considered.8 The best models were selected as the top ranked struc-

tures across all submitted models based on the previously described

map-to-model Z-score, ZEM.
8 Due to the fit qualities an automatic

threshold would result in few models per target, so manual visual

inspection was additionally used to select models that, even without

TABLE 1 Overview of targets with refined predictions.

Target type Target
Num. of predictions
refined Resolution (Å)

Num. residues/
nucleotides

Protein H1129 9 2.6 1387

H1157 11 3.3 1524

T1158 13 3.3 1340

T1154 17 3.0 1424

H1137 40 3.1 3939

T1170o 11 3.0–3.3 1908

H1185 13 3.4 1334

T1121o 2 3.7 739

T1169 2 3.3 3364

RNA R1126 6 5.6 363

R1128 7 5.3 238

R1136v1 5 4.4 374

R1136v2 5 3.5 374

R1138v1 3 4.9 720

R1138v2 3 5.2 720

R11149 3 4.7 124

R1156v1 1 5.8 135

R1156v2 1 6.6 135

R1156v3 4 7.6 135

R1156v4 2 7.6 135

Note: Targets with predictions which met the minimum score criteria were refined. Note that for T1169 only two models were refined (see Section 3.2.1).
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good fits, were the most promising for refinement. Based on these

rankings and visual inspection of fit of the top 10 models by an expert,

a final set of models for each target was selected.

2.2.3 | Model fitting and refinement

The refinement protocol was an incremental improvement on what

was used in prior CASP challenges.1,2 In this CASP we additionally

incorporated an updated version of RIBFIND (RIBFIND2),17 which can

help to improve the refinement process by clustering secondary struc-

ture elements (in both proteins and nucleic acid structures). Combined

with ERRASER2, a yet to be published successor to Erraser18 for cor-

recting geometry in RNA structures, this allowed the refinement of

both protein and RNA predictions, even when significant conforma-

tional changes were required. A more in-depth description of the

pipeline is available in the Supplemental Methods along with a graphi-

cal overview (Figure S1).

F IGURE 2 Docked predictions vs. the reference model for 6 CASP15 targets. The reference models are displayed in blue within the
corresponding cryo-EM maps. The ensembles of docked predictions are shown in rainbow colors.
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2.2.4 | Model assessment measures for proteins

The protein predictions for cryo-EM protein targets and the subsequent

refined models were evaluated for their goodness-of-fit to the experi-

mental cryo-EM density map (model-to-map goodness-of-fit) using the

following metrics: The local (per-residue) goodness-of-fit was evaluated

with the TEMPy2 Segmented Manders' Overlap Coefficient (SMOC)

score19 and global goodness-of-fit using the ChimeraX cross-correlation

measurement. The SMOC score represents the Manders' overlap coeffi-

cient for overlapping residue fragments: it is computed on local spherical

regions around the seven residues in the current window. Overlapping

windows are used, producing one numerical value per residue. SMOC

scores can be calculated for the whole structure by averaging the per-

residue scores. In order to compare the quality of fit to the density of

side-chain vs. backbone, we have implemented two new “localized”
SMOC scores in TEMPy: SMOCs and SMOCb. These scores assess the

voxels around the side-chain atoms (SMOCs) and around the backbone

atoms (SMOCb), respectively. To compute the SMOCs and SMOCb

scores, each residue from the predictions was locally aligned to the tar-

get using the C-alpha atoms of the residue and its immediate neighbors.

Because side-chains are a high-resolution feature, we did not use sliding

windows in this case, that is, SMOCs and SMOCb scores were com-

puted on the aligned residues. The geometry of the targets, the predic-

tions, and the refined models were all assessed using MolProbity.20

2.2.5 | Model assessment measures for RNA

For CASP15, we have implemented a new SMOC score in TEMPy—

SMOCn—to assess the fit of nucleic acid chains. SMOCn is calculated

similarly to the original SMOC score, which was designed to assess the

protein chain in the density, by sliding windows around nucleotides

instead of amino acids.19 Due to resolution limitation, the “localized”
SMOCb and SMOCs scores were not used for RNA. As the RNA exper-

imental maps were generally of a lower resolution than their protein

counterparts, assessing geometry was important to ensure models were

not overfit to the maps. RNA Validate, which is part of the Phenix21

software package, was used to assess the geometry of the RNA targets,

predictions and refinements. We focussed our geometry analysis on

the “average suiteness” scores produced by RNA Validate. “Suites” are
defined by the pucker of two consecutive backbone sugars and the five

torsion angles between them. Empirical studies have shown that these

suites inhabit a number of characterized states in 7-dimensional space.

“Average suiteness” is a measure of how well the suites in an RNA

model match the discrete conformers found in the empirical data.22

3 | RESULTS

3.1 | Ranking of protein models using docking into
cryo-EM maps

Our comparison of docking results from PowerFit12 and Molrep10

showed that PowerFit usually produced better fitting models

(Supp. Methods 2). We therefore carried out the ranking using

PowerFit.

There was a significant, strong positive correlation between the

cumulative SCASP15 rankings and the cryo-EM-based docking rankings

(Figure 2). The top five groups from the docking rankings, in order,

were: Yang, BAKER, GuijunLab-Assembly, FoldEver and PEZYFold-

ings. Each of these groups submitted predictions for all targets. The

Yang group ranked consistently high on all targets and had the most

(three) top ranking models (Table 2). Each of the top groups incorpo-

rated AlphaFold 2 style networks into their methods, with the excep-

tion of BAKER who used RosettaFold. For making performance

comparisons, control representations of AlphaFold 2 are annotated

(Figure 3) with group names NBIS-af2-multimer, NBIS-af2-standard,

Colabfold, and Colabfold_human. Colabfold and Colabfold_human

submitted predictions for every target but their results, while confirm-

ing the value of these readily available predictions for cryo-EM map

fitting, were not amongst the very best. The best ranked prediction

for each target was selected for refinement if it was not already

selected based on the CASP criteria (see Section 3.2.1). These models

are listed in Table 3. Target H1137 was excluded since, unlike other

targets, there was no single group that had consistently suitable

docked models across all interfaces.

3.2 | Protein targets—Refinement of top
predictions

3.2.1 | Selection of protein targets for refinement
using CASP criteria

We refined the 118 predictions for multi-domain proteins and protein

complexes (Table 1) that either passed our filter based on CASP score

(Section 2.2.2) or ranked first based on the fit of individual chains

(Section 2.1). For 6 targets (Table S1), the top-ranked model based on

docking of chains was not included in the list of models which passed

the CASP filter. However, a comparison between the poses of the

top-ranked docked models and the ones determined by superposition

and optimization in ChimeraX shows high similarity (Figure S3). Except

for these 6 top-ranked best models, we used the superposed ones as

a starting point for refinement.

The only listed target which did not have models that passed the

CASP-based selection criteria was T1169 (Table 1). Predictions of

individual domains in T1169 were good but the full protein models

were not accurate enough to pass the threshold due to partially inac-

curate domain organization. This protein was the largest single chain

model in CASP history with 5 domains and over 3000 residues. Here

we chose the model with the highest GDT_TS score (GDT_TS = 57.7,

lDDT = 0.63) which was from Yang-server (group 229). Finally, we

did not refine predictions for target H1114 for which the correspond-

ing cryo-EM map is at 1.52 Å resolution. Given the high resolution of

the map and the high quality of the predictions for this target (the

best model had a TM-score = 0.97, oligo-lDDT = 0.86, QS-

score = 0.79, F1-score = 84.13), we decided to use it for a fine-tuned

side-chain analysis instead.
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3.2.2 | Overall model analysis

Average SMOC scores of predictions prior to refinement were poor

with a large degree of variation amongst the predictions for each tar-

get (Figure 4A). After refinement, average SMOC scores were closer

to those of the respective targets, typically with significantly

reduced variance. For example, the top models refined from the pre-

dictions of target T1154 had a SMOC curve very similar to that of

the target SMOC curve (Figure 4B,C). Interestingly, all top predic-

tions for this target based on the CASP criteria could be refined in

the N-terminal part of the structure, despite its initial wrong orienta-

tion. This is likely to be attributed to the hierarchical refinement pro-

tocol, where the N-terminal is first pulled into the density as one

rigid body. On the other hand, in the regions of residues 810–814

(Figure 5B), there is a sharp drop in the SMOC plot due to the

“loopy” characteristics of the region (see below). In fact, most tar-

gets had some loops which did not reach the high SMOC scores

seen in the rest of the structure after refinement, suggesting these

regions were poorly modeled thus bringing down the average SMOC

scores. We explore specific cases where loops were poorly modeled

in Section 3.2.2.Overall MolProbity scores, which are a log-weighted

combination of the clash score, percentage of unfavoured Rama-

chandran dihedrals, and unfavorable side-chain rotamers, generally

improved after refinement with scores less than 2.0 being common

(typically, MolProbity scores below 3.0 are considered good). How-

ever, for a number of targets, the MolProbity scores were worse. In

these cases (H1129, H1185, T1154), the provided maps had been

processed using DeepEMhancer.23

The six models that did not pass the initial CASP scoring criteria

but ranked high based on PowerFit docking (Section 3.2.1, Table S1)

were improved after refinement, generally exceeding the cutoffs for

“accurate” models (Section 2.2.1). However, some scores for T1154

and T1121o were worse after refinement due to distortions. In the

case of T1154, an incorrect interaction at the N-terminus caused a

poor set of rigid-bodies to be generated during refinement. In the case

of T1121o, a domain was misoriented and could not be optimized.

3.2.3 | Analysis of loop predictions

Given that overall the predictions were very accurate for proteins and

that the top predictions required very little refinement in order to fit

TABLE 2 Group ranking based on docking.

Target Top group by docking rankings Top group by SCASP15 ranking Groups selected for refinement

T1114s1 Gonglab-THU SHT FoldEver-Hybrid

T1114s2 Panlab trComplex

T1114s3 Yang B11L

T1121 GuijunLab-RocketX GuijunLab-Threader GuijunLab-RocketX

T1129 Venclovas N/A Venclovas

T1137s1 BhageerathH-Pro PEZYFoldings Venclovasa

T1137s2 SHORTLE Yang

T1137s3 RostlabUeFOFold UM-TBM

T1137s4 ACOMPMOD N/A

T1137s5 DELCLAB UM-TBM

T1137s6 RostlabUeFOFold UM-TBM

T1137s7 Shennong DMP

T1137s8 McGuffin McGuffin

T1137s9 Yang PEZYFoldings

T1154 Venclovas Elofsson Venclovas

T1157s1 Yang-Multimer N/A Yang-Multimer

T1157s2 Yang N/A

T1158 MULTICOM Asclepius MULTICOM

T1169 Shennong Shennong Shennong

T1170 FTBiot0119 MUFold_H FTBiot0119

T1185s1 BhageerathH-Pro BAKER Yang-Multimer

T1185s2 Yang-Multimer OpenFold-SingleSeq

T1185s4 BAKER Manifold-E

Note: The top-scoring CC model for each target. Also indicated are the top-scoring groups for the same targets, in the general CASP assessment using the
CASP15 score.14 Some chain models did not receive a CASP15 score because certain elements used in the CASP15 score formula were not calculated
since the chain in question was split into multiple AUs. These were given an N/A classification.
aThese targets were selected in a different way—see Section 2.1.
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well into their corresponding target cryo-EM maps, we decided to

focus next on examining how well the loops in the top predictions

were refined. Below are specific targets where the accuracy of loops

was examined in detail.

H1157—Complex of CtEDEM and CtPDI1P at 3.3 Å resolution

This target consists of two proteins, each with multiple domains.

These were modeled in a challenging experimental map with varying

resolutions. These varying resolutions are clearly reflected by B-factor

estimates produced by TEMPy-ReFF (Figure S2). Initial inspection of

the target revealed minor modeling issues: some aromatic side-chains

were not well-fitted to the density and a number of loops were in

regions of the map that had resolution too low to be modeled with

confidence. Interestingly, many of the predictions managed to pro-

duce side-chains which better fit the density than the reference. More

intriguingly, the best predictions modeled a loop in chain A between

residues 210–230 much better than in the target. These were further

improved upon refinement (Figure 5A). Despite the excellent perfor-

mance in modeling this large loop, predictors struggled to model some

other loops.

T1154—S-layer protein A (SlaA) at 3.0 Å resolution

Many bacteria and archaea have a protein-based barrier which encap-

sulates the cell known as an S-layer. A CASP target of the outer

S-layer component of the archaea Sulfolobus acidocaldarius24 was well

predicted at the domain level, with the model fit to the experimental

data improving after the refinement. Despite the overall high-

resolution, a short loop between residues 810–814 had very poor

density. Predictions were unable to produce loops close enough to

the correct geometry to be refined into the map (Figure 5B). Although

automated refinement starting from these models was not possible,

the general lack of consensus amongst the predictions likely reflected

some degree of disorder which was mirrored by the poor resolution

seen in this region of the map.

H1129—The bacteriophage pb5 protein in complex with FhuA at

3.1 Å DeepEMhancer map

Much like the swift adoption of deep-learning methods in the struc-

ture prediction community, deep-learning has been transforming

image processing and reconstruction methods in the cryo-EM scene.

Here, a dimeric complex of the bacteriophage pb5 protein and its

F IGURE 3 Group ranking for cryo-EM targets. Cumulative per-group docking ranking scores plotted against SCASP15 rankings across docking
targets where SCASP15 scores were available (oligomeric reference structures were split into individual chains—see also Table 2). The gray line
indicates the line of best fit with a strong positive correlation between the two rankings (r = .827, p < .0001). The top five performing docking
ranking groups are labeled, as are the “control” AlphaFold 2 submissions. These groups are shown as triangles, others as blue circles.

1942 MULVANEY ET AL.

 10970134, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26644 by C

ochrane G
erm

any, W
iley O

nline Library on [25/01/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



binding partner (the bacterial outer-membrane protein FhuA) is

derived from a map which had been sharpened using the deep-

learning tool DeepEMhancer.23,25 Despite the overall high resolution

of this map, residues 190 and 191 of a short loop were not modeled

in the target structure with density dropping out in this region. Similar

to the short loop in T1154, none of the predictions gave a “refine-
able” or even visually plausible fit in this region (Figure 5C). However,

the model provided by Wallner (group 037) was, by visual inspection,

close and could potentially be locally fitted and refined using interac-

tive tools such as Coot26 or ISOLDE.27 Despite often making visual

interpretation easier, an unfortunate side effect of DeepEMhancer is

that lower-resolution regions of the map tend to be removed. It

is possible that the unprocessed map (which we did not have) may

have offered better information about this likely disordered region. A

number of poorly resolved loops had a higher atomic B-factor, as

determined by TEMPy-ReFF (Supp. Methods 1), compared to the rest

of the model. Interestingly, we observed a similar pattern in the root

mean square fluctuation (RMSF) of the best predictions (Figure S2).

We thus hypothesize that these poorly resolved portions of the map

were caused by increased local mobility, which was also captured by

the predictions which deviated from one another in these lower reso-

lution regions.

3.2.4 | Analysis of side-chain predictions

To examine how well CASP predictors can predict side chains, we

analyzed predictions for target H1114, which was determined based

on a high-resolution map (1.52 Å). The target is a hydrogenase iso-

lated from Mycobacterium smegmatis that forms a large oligomeric

complex of the HucS, HucL, and HucM proteins.28 The SMOC scores

for backbone and sidechain atoms of unrefined predictions compared

against those of the target for each residue are shown in Figure 6.

Sidechain SMOC scores (SMOCs) were clearly not predicted as well

as the backbone scores (SMOCb), suggesting poor atom placement

(Figure 6A). An example is model 1 from Yang (group 439). In this

case, although the backbone was relatively well fitted (average

SMOCb = 0.72), some side chains were incorrectly positioned, such

as those of GLU15 and HIS166 (Figure 6B).

3.2.5 | Refinement of T1169—The mosquito
salivary gland surface protein 1 at 3.3 Å resolution

Target T1169 is the mosquito salivary gland surface protein 1, a

monomeric protein composed of more than 3000 residues involved in

pathogen transmission from mosquitos. None of the predictions

passed our CASP criteria for multidomain protein refinement (GDT-

TS>0.7 and LDDT >0.7). This is potentially due to the existence of a

domain in T1169 with a previously unidentified fold, and others with

low sequence homology to known structures.29 Therefore, we

decided to compare between the top-fit prediction based on chain

ranking which was from Shennong (group 466), against the prediction

with the highest GDT-TS score (57.7) which was from Yang-server

(group 229) (Figure 7A). The Shennong model was ranked third based

on GDT-TS with a score of 54.1. Note that based on global fit-

to-density using ChimeraX cross-correlation (CC) scores, the Yang-

server model also had a better correlation with the experimental map

(CC = 0.55 for Shennong and CC = 0.61 for Yang-server). The refined

models of each of these predictions are shown in the 3.3 Å cryo-EM

map (Figure S4A). SMOC scores of the predicted models show that

each prediction has regions that are more accurate than the other.

From the corresponding SMOC plot (Figure S4B), the CASP-criteria

selected prediction produced a better refined model with a SMOC

profile closer to that of the target. The poorer refinement of the Shen-

nong group prediction (Table S1) is likely due to the incorrect place-

ment of the N-terminal β-propeller towards the center of the

molecule (residues 1–340), which could not be fixed during refine-

ment (Figure S4B).

3.3 | RNA targets: Refinement of top predictions

3.3.1 | Selection criterion of RNA targets for
refinement

Six of the eight RNA-containing targets were selected for refinement.

The two RNA-protein complexes (RT1189, RT1190) were not

selected as targets due to poor prediction accuracy (RMSD>15.9 Å,

GDT_TS<27). A separate analysis of these predictions was performed

instead.8 Furthermore, no predictions passed the CASP-scored

TABLE 3 RNA predictions which were selected for refinement.

Target Group
Prediction model
numbers

R1126 232 1–5

287 2

R1128 232 1–5

287 1,3

R1136v1, R1136v2 232 1,3,5

287 4

325 1

R1138v1, R1138v2 232 3,4,5

R1149 054 1

125 3

416 3

R1156v1 128 5

R1156v2 128 5

R1156v3 128 1,5

232 3

287 1

R1156v4 232 3

439 2
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F IGURE 4 Overview of protein refinement results. In (A), the distribution of average SMOC scores for the qualified CASP predictions before
and after refinement. Score for the experimental model is shown as a vertical line. Target T1169 and T1121o were not included as only two
models for each were refined. In (B), the residue level SMOC plot is shown for T1154 and its predictions. The dark orange and blue lines are the
mean refined and docked SMOC scores with the minimum and maximum values in light orange and blue. The N-terminal domain, which fitted
poorly in all of the predictions (as indicated by the highlighted region), needed significant movement during refinement and is shown in (C) for
model 1 from PEZYFoldings (group 278). Plots and 3D structures are in orange for refined models, in gray for reference structures and in blue for
predictions.
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selection for proteins (GDT_TS>0.7, lDDT>0.7) so we used an alterna-

tive selection process for RNA models. For each target, the ZEM rank-

ing was used to obtain a top 10 models which were then visually

inspected to obtain a set of models we thought most likely to be

refined by criteria such as limited geometric problems, and minimal

chain distortions needed to move into map8 (Table 3). Targets R1126,

R1128, and R1149 had a single experimental structure and thus their

top models by ZEM were selected and after manual fitting; 6, 7, and

3 models were refined, respectively. For the three remaining RNA-

only cryo-EM targets, multiple experimental maps were used for refin-

ing the predicted structures.

For R1136, the two experimental maps, representing the ligand

bound and unbound conformations, were topologically very similar,

so the same models (5 total) were selected to refine into both maps.

R1136 included 15 submitted models with the same RNA structure -

they differed in their ligand prediction—so only 325_1 was used for

refinement. For R1138, all top predictors were closer to the

“mature” state, with no predictions close to the “young” state

according to global topological and fit-to-map metrics. The top

models (3 total) for the “mature” state were thus refined to both

maps. For R1156 each map was considered separately resulting in

8 total refinements.

3.3.2 | Overall RNA model analysis

The RNA predictions had average SMOC scores above 0.8 after

refinement for all but the young conformation of R1138 discussed

F IGURE 5 Protein loop case-studies. In all the visualizations, the target model is gray and the predictions are blue and orange before and
after refinement, respectively. The dark orange line in the plot is the mean SMOC score, with the shaded region representing the minimum and
maximum value for the set of predictions. (A) The reference model (for H1157) had a large poorly modeled loop in chain A as indicated by the low
SMOC scores in 210–230 region. The best-refined predictions were a much better fit. In orange, a refined prediction from McGuffin (group 180).
(B) This short loop, in T1154 was not modeled well enough by any predictions to be refined into the density. The low-intensity density may also
be an indicator that this region is disordered. (C) Residues 190–191 of chain B were not modeled in the reference model for H1129 indicated by
the dotted line. None of the predictions were able to produce a refinable loop that fitted the DeepEMhancer-sharpened map in this region.
However, the model submitted by Wallner (group 037) which is depicted, was visually the best fitting before and after refinement.
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below, despite predicted models starting far from the reference struc-

ture (all GDT_TS<0.7) (Figure 7A). In fact, for R1128, R1138v2,

R1149, and R1156v3 targets, refined predictions surpassed the

SMOC values of models fitted into the same RNA cryo-EM maps as

reference models (Figure 7A). Further, while prediction started with a

spread of SMOC scores, the variance in SMOC score was reduced

upon refinement. These results indicate that the refinement proce-

dure was successful in fitting the models into the maps, moving all

predictions to a similar solution, even in cases where large changes

were needed. Compared to protein models where the fit of loops and

side-chains could be assessed due to the higher resolution of the

experimental maps, here the focus was on the overall fit of high level

features.

R1138 a 6-helix bundle at 4.9 Å resolution

A particularly interesting example for cryo-EM refinement of RNA

models was the predictions and refinement for R1138, a designed

6-helix bundle of RNA with a clasp (6HBC).30 This target had

reference structures and experimental maps for two alternative con-

formations, a short-lived “young” conformation, and a stable

“mature” conformation. The refinements for the mature conforma-

tion gave a better fit to the experimental density than the target ref-

erence structure (Figure 7B) with the majority of residues having

higher SMOC scores than those in the target reference structure.

These predictions required significant conformational change as seen

in Figure 7C and Video S2. The overall geometry, as assessed by the

“average suiteness” score (see Methods), was also better in the

F IGURE 6 Side-chain analysis of H1114. SMOC scores for backbone and sidechain atoms of H1114 predictions compared against those of
the target reference structure for each residue (A). Backbone SMOCb scores (left) and sidechain SMOCs scores (right) of the reference structure
vs the predictions. In (B) incorrectly positioned side-chains of GLU15 and HIS166 from model 1 prediction by Yang (group 439) (blue) compared
to the reference (gray). These residues were consistently poorly placed by predictors.
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refined models than the reference structure (Figure 7A). However,

CASP predictions for the “young” conformation failed to refine to

the same extent (Figure 7A, Video S3). This poorer result might be

attributed to the greater degree of rearrangement of the helices and

the breaking and reforming of hydrogen bonds in the kissing loop

clasp required to convert from models resembling the mature

F IGURE 7 Overview of RNA refinement results (A) The average SMOC scores for the target, predictions, and refined predictions are shown
alongside the RNA Validate “average suiteness.” (B) The residue level SMOC plots of R1138 in the mature conformation map and the predicted
and refined models. The dark blue and orange lines are the average SMOC score for the predictions and refinements respectively, with the lightly
shaded area representing the minimum and maximum values. (C) An R1138 prediction by Alchemy_RNA2 (group 232) in the “mature”
conformation map. Depicted are the prediction (blue) and refined prediction (orange) with respect to the reference model (gray).
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conformation to the early conformation. The breaking and forming of

such hydrogen bonds can in principle occur, but is unlikely, in our

refinement protocol.

R1126 a designed “Traptamer” at 5.6 Å resolution

The refined predictions of the designed RNA target R1126, a designed

RNA origami scaffold for a Broccoli and Pepper aptamer pair,31 had

lower average SMOC scores than the reference target structure.

However, this result may be due to the reference structure being

overfitted to the cryo-EM map at the expense of realistic RNA geom-

etry, as reflected by the low suiteness scores of the target structure

compared to the refined models (Figure 8A). Selected predictions for

this target had a large degree of conformational diversity with models

varying between 9 and 13 Å RMSD from the target. Despite our

refinement protocol improving the overall fit-to-map and improving

the geometry of some of these predictions, a number of predictions

from Alchemy_RNA2 (group 232) exhibited an incorrect crossover

between strands (Figure 8A). Fixing such issues would require break-

ing and rebuilding chains which is not allowed in our refinement

protocol.

Both Alchemy_RNA2 (group 232) and Chen (group 287) provided

a number of predictions which offered excellent refined models. All of

these predictions required significant conformational changes to fit

the experimental map. Often these movements involved breaking pre-

dicted interactions. One striking example is in the second prediction

from Chen (Figure 8B, Video S1). In the prediction, a stem-loop was

curled around and interacting with an upstream helix. In order to fit

the density, the stem-loop interaction was broken allowing it to move

into density.

R1156v3—BtCoV-HKU5 SL5 at 7.6 Å

Maps and reference structures for four alternative conformations of

the SL5 domain from 50UTR from the Bat coronavirus BtCoV-HKU5

were provided for assessment in this CASP. This domain is known to

have a conserved secondary structure in many coronaviruses,32,33

which is thought to be important in the packaging of viral particles

during infection.34 Maps for this target varied in resolution from 5.6

to 7.6 Å. The four refined predictions for the third conformation

(R1156v3) exhibited average SMOC values slightly higher than the

reference structure. Although the suiteness scores for the refined pre-

dictions were lower than for the reference structure, in all but one

case they were better than the unrefined predictions. In contrast to

the Traptamer example above, where refinement involved the break-

ing of an interaction of a apical loop, the refinement of the second

prediction from Alchemy_RNA2 involved the formation of an interac-

tion between a apical loop and an internal loop in another part of the

model (Figure 8C).

4 | DISCUSSION

In CASP15, 29% of the total targets, including 67% of the RNA-

containing targets, were determined using cryo-EM. The accuracy of

predictions for protein targets assessed in this paper and the overall

quality of experimental maps allowed many predictions to be further

refined to near-native conformations. Compared to most CASP

assessments, where a single reference model has been used as the

ground truth, cryo-EM assessment finds itself in a privileged position.

To aid the assessment, cryo-EM maps are typically available in con-

junction with target reference models—which are after all just best

attempts at model building using the experimental map, human knowl-

edge, and current state of the art technology. This is particularly

important, as cryo-EM data tends to have lower resolutions than crys-

tallographic experiments. Because 3D reconstructions are built from

averages of many particles, they may also capture continuous motions

and flexibility of the visualized macromolecule, which can then mani-

fest itself as lower resolution regions. There is thus an added degree

of uncertainty in any static 3D structure that is derived from cryo-

EM data.

One model, which particularly highlighted the importance of

experimental data this year, was H1157. This model had an average

resolution of 3.3 Å with many regions of the map having lower local

resolution. Intriguingly, a large loop which was erroneously modeled

in the target was much better modeled by the top predictions, with

aromatic side chains well placed in the density. If, on the other hand,

we only had the target model as ground truth (i.e., we did not use the

experimental map for assessment), these better predictions would

have not been noticed.

For the majority of targets, where the author's submitted model

(target reference model) and experimental map were in good agree-

ment, some parts of the predicted models resulted in better fit to map

following refinement. At the same time, many targets had loops which

were not well predicted. Typically, the geometry of these loops varied

amongst predictions, with many failing to be refined because they

were too distant from the target. The lack of consensus amongst

some of these loops was often reflected by lower local resolutions in

the experimental map (Figure S2). While we did not investigate the

relationship between these two phenomena in this paper, in CASP14

cryo-EM assessment, we showed anticorrelation between the stan-

dard deviation of the SMOC scores of the predicted models (SMOC

SD) and SMOC scores of the target structures.2

The strong correlation between the rankings based on the cryo-

EM-based docking score and the composite SCASP15 score shows that

high quality models can often be picked using experimental data

alone. For model building practitioners, this is particularly relevant, as

reference structures may not be available. Given the difficulty of

building models into experimental maps and the fact that there is not

a single prediction tool which excels across all targets, docking, and

ranking offers an approach to screen for good starting models, poten-

tially from multiple structural prediction tools. Some maps provided

by the experimentalists had been sharpened with DeepEMhancer.23

This caused a degradation in MolProbity scores, likely because the

TEMPy-ReFF GMM35 puts more weight on the sharpened map, over-

powering the geometry restraints. Another unfortunate side-effect of

DeepEMhancer maps was that low-resolution regions tended to dis-

appear entirely in the sharpened maps. DeepEMhancer attempts to

reproduce the sharpening produced by LocScale36 but without the

need for an atomic model. However, this deep-learning approach
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tends to remove low resolution regions entirely, creating maps that

look like they have been tightly masked, and may also hallucinate den-

sity. The current consensus on this emerging technique amongst the

cryo-EM community is that such maps should not be used for refine-

ment or measuring map-model quality but rather as an intermediate

aid during model building. We would thus advocate for structure pro-

viders to offer raw maps with processed maps optional in future CASP

challenges. Many of the predictions displayed a diverse set of loops in

these regions. While sharpened maps may aid in model building, low-

resolution regions can be an important indicator of flexibility and

F IGURE 8 RNA refinement case studies. In all the visualizations, the target model is gray and the predictions are blue and orange before and
after refinement, respectively. The dark orange line in the plot is the mean SMOC score, with the shaded region representing the minimum and
maximum value for the set of predictions. (A) A SMOC plot of R1126 predictions and their refinements. Some refinements had residues between
155 and 175 with a variable SMOC score, large shaded region. This was due to strands crossing over, in some of the predictions, as shown in the
right panel. (B) A model of R1126 from Chen (group 287) and its refinement. Overall, the R1126 predictions were refinable despite large
conformational changes often being required. On the right, a close-up of the highlighted area showing the breaking of loop interaction during
refinement. (C) A model of R1156 from Alchemy_RNA2 (group 232) and its refinement. After refining the model into the third conformation map,
it better fitted the experimental density. On the right, a close-up of the highlighted area showing the formation of new interactions between an
apical loop and an internal loop.
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disorder. In future CASP cryo-EM assessments it would be useful to

encourage the authors to provide unsharpened maps, and even half

maps for further assessments.

For the first time in CASP history, RNA structures were provided

as targets and the majority of them had associated cryo-EM density

maps. Compared with the proteins, these RNA maps had much lower

resolutions. Indeed, in some maps such as those of R1156, pitches of

helices were not always visible. Local fit-to-map scores, such as the

newly developed SMOCr, can aid the assessment of RNA models in

these challenging resolutions. Here, this local fit analysis indicated

that many secondary structures and important geometric features can

be accurately predicted. Furthermore, we showed that in silico models

can, after further refinement, offer plausible models that better reflect

the experimental maps even at low resolutions. However, at such low

resolutions, it is possible for many alternative structures to fit the den-

sity with equal likelihood. Due to both the known flexibility of the

RNA molecules and the heterogeneity of the experimental maps,

ensembles of models are arguably a more accurate way to describe

the underlying experimental data.8,37

Despite the overall quality of predictions, some reorientation of

domains and secondary structure elements was often required, partic-

ularly for RNA models. The multistage pipeline presented offers an

approach to fitting and refinement of structural models into cryo-EM

maps at a variety of resolutions. The use of progressively smaller

rigid-bodies has been shown to aid the fitting of models that require

large conformational changes.19 However, if the models contain topo-

logical errors or significant misplacements of elements even such a

detailed approach will fail.

As mentioned above, in CASP15 there were two RNA-protein

complexes (RT1189, RT1190). The predictions associated with these

targets were not refined due to poor accuracy.8 Given the current

progress in the structure prediction field, we expect further improve-

ment on this front in future CASPs.

CryoEM has been an important method for elucidating large

atomic structures, albeit often at a lower resolution than crystallo-

graphic experiments. This CASP15 for example, the largest mono-

meric structure in the history of CASPs, T1169, was a cryo-EM target.

Moreover, cryo-EM experiments are now not just capturing large mol-

ecules but often achieving atomic levels of detail. In CASP15,

focussed maps for the target H1114 reached an astonishing resolu-

tion of 1.52 Å. While at such resolutions, computational models are

not required for model building, high-resolution data offers an oppor-

tunity to assess accuracy at an even finer level. Using the SMOC score

separately for backbone (SMOCb) and side-chains (SMOCs), allowed

us to show that while the overall backbone geometry of H1114 pre-

dictions was well modeled, side-chain orientations did not always

agree with the experimental map. Given the progress in both protein

structure prediction and cryo-EM fields, we foresee such analyses

becoming more routine in the future.
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4
Discussion

The three papers presented in this thesis describe an approach for fitting atomic
models to cryo-EM data and at the same time estimating the resolution of the
atoms. However, there are a number of issues which were not well addressed.

4.1 Overfitting and force determination

In (Beton*, Mulvaney* et al. 2024) a new Gaussian Mixture Model approach
to flexible fitting was developed and tested on a large set of deposited models
(229 in total) with experimental maps reconstructed at 2.1 to 4.9Å. These were
compared to the models obtained from the CERES database containing Phenix-
refined models.

The results of the TEMPy-ReFF benchmark, when broken down by resolution,
were somewhat suprising. At high resolutions, the TEMPy-ReFF refined models
shared the same distribution of model-map cross-correlation scores as their CERES
counterparts, but better (lower) MolProbity scores. At lower resolutions, the cross-
correlation of TEMPy-ReFF models were better, but the MolProbity scores became
worse. It was not expected that the GMM based methods would produce models
with better geometry than Phenix with an equivalent fit to the experimental data
at high resolutions. Rather, we expected it to be more accurate at lower resolutions
where the GMM should better model the underlying experimental data and thus be
less likely to induce distortions. The cross-correlation with the experimental data
was better at lower resolutions, suggesting the GMM does a good job at fitting the
experimental density but is possibly overfitting.

The strength of the TEMPy-ReFF GMM potential (which is user tuneable) was
set to 105 across all resolution ranges in the benchmark. It is highly likely that the
strength was not always appropriate, and should potentially be reduced at lower
resolutions to prevent overfitting. The earlier discussed approaches to estimate
biassing strength and avoid overfitting (see section 1.2.4) of (DiMaio, J. Zhang,
et al. 2013; Igaev et al. 2019) are currently being assessed.
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4.2 Membranes and other unmodelled regions
Cryo-EM is a particularly relevant technique when it comes to studying membrane
proteins. To study these proteins, they are embedded in lipid nanodiscs which
approximate cellular membranes. The membranes themselves produce a signal
which is significantly higher than background. In GMMs, Gaussians try to fit all
of the observed data. The downsides of this, were observed in some TEMPy-ReFF
runs, where it was noted that membrane proximal regions would sometimes move
into the membrane associated density. Currently, TEMPy-ReFF models the cryo-
EM data with a Gaussian per atom, and a single background component. Establish-
ing a second component, which takes into account this membrane density, would
potentially help prevent atomic Gaussians from trying to expand into these regions.

It is likely that some of the lower than expected MolProbity scores which were
observed in the benchmark of TEMPy-ReFF at lower resolutions, were due to
membrane associated density. It is likely the lower resolution examples in the
CERES benchmark contained more membrane proteins than the high resolution
data set, as theses frequently yield lower resolution reconstructions.

Given the importance of cryo-EM to membrane protein elucidation efforts,
handling membrane density more robustly with in the GMM paradigm described
is something I am actively working on.

4.3 Interpretting TEMPy-ReFF “B-factors”
The local resolution as determined by TEMPy-ReFF is often equated to a Bfactor
or atomic displacement factor. In general, it is probably more accurate to think
of the value as a measure of modelling uncertainty. This is different from the true
uncertainty in atomic positions, due to say molecular motion. The reason for this
is a reconstruction captures not just the atomic motions but also corruptions due
to spherical aberration. Incoherency in the electron source and alignment errors
also lead to Gaussian blurring. Removing all of these global sources of image
blurring (for example by sharpening) in theory will lead to a reconstruction where
local heterogeneity due to actual atomic motion is all thats remains. However,
sharpening is never so accurate, in part because the global sources of blurring can
only be approximately modelled.

4.4 Supported atomic models
TEMPy-ReFF is currently limited in the types of atomic models it can refine. In
particular, chemical modification of amino acids and nucleic acids (a situation which
is not uncommon and often pertinent to the underlying biology) is not currently
supported. Instead, these additional groups are removed from structures before
refinement. In some respects, the situation should be easy to rectify as many
common chemical modifications such as glycosylation and methylation are handled
by modern biomolecular force fields. In practice, these modifications need to be
well defined in the PDB files of the initial structures in order for the force field to
recognise and correctly parameterise them. Poorly defined chemical modifications,
which for example might have atoms missing or have some ambiguity, are difficult
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to handle automatically. It is unclear what the best solution is, but it will likely
require some prompting of users for input.

4.5 Geometry refinement

A large assumption is that starting models have reasonable geometry and that this
local geometry should be preserved or is close enough to an ideal geometry that
MD force fields can further improve it. This is frequently the case for proteins.
Where large conformational changes are required, the hierarchical protocol based
on RIBFIND2 has been shown in thesis to works well. However, it is often the
smaller details such as rotamers and backbone geometry which are difficult to
correct as rotations and flips involve steep energy barriers. Simulated annealing
(Adams et al. 2010; Topf et al. 2008) and search heuristics (Oldfield 2001) could
be employed to better explore this conformational space.

The overall fit to the density and orientation of secondary structure elements of
RNA predictions from CASP15 could be improved using the hierarchical refinement
protocol of TEMPy-ReFF, but the finer details of RNA secondary structure could
only be improved by employing specialised refinement software such as ERRASER
(Chou et al. 2013). A simulated annealing based approach might help here, or
additional restraints on backbone suites as per QRNA (Stasiewicz et al. 2019),
but for the time being I recommend the protocol outlined in the (Mulvaney et
al. 2023) paper.

A major limitation to RIBFIND2 in its current form is while it can produce rigid
bodies clusters from atomic structures of protein-nucleic acid complexes, these rigid
body clusters are generated separately: one for proteins, and one for nucleic acids.
In the case of complexes, this can be sub-optimal, as it leads to independent fitting
of structural regions which may need to be considers as a rigid whole. Future
versions of RIBFIND2 should address this limitation by additionally defining a
protein-nucleic acid interaction distance.

4.6 Modelling of atomic charges

The approach established in this paper is able to optimize the positions and Bfactors
of atoms under a model where all atoms are effectively neutral. This is because
we (and others) use an approximation (eq 1.6) of the more accurate scattering
factors of (eq. 1.5). Many atoms, are known to posess partial charges and to thus
deviate from neutral scattering curves. Indeed, this is observed in cryo-EM maps
and explored in reviews (Bick et al. 2024; Marques et al. 2019).

While our GMM approach produces Bfactors which are generally in good agree-
ment with other methods for determining local resolution, it is probable that they
are less accurate for negative atoms. Here, I would hypothesise that, the Bfactors
end up being higher to accomodate for the lack of density. Good computational
models should be able to explain the experimental data. TEMPy-ReFF and other
tools which take account of local resolution are a step in the right direction, but
charge is something that also needs to be accounted for.
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Considering that RNA molecules have negatively charged phosphate backbones
and that their tertiary structure is dependent on positively charged metal ions,
accurate simulations of these charge effects have been shown to be important (J.
Wang, Z. Liu, et al. 2018) and not accounting for them has been the source of
modelling errors (J. Wang, Natchiar, et al. 2021).

The more accurate the simulated cryo-EM map is the better we are able to
determine discrencies between model and observed data. Simulated maps, are the
basis for many scores in the TEMPy package. Being able to detect discrepancies
between atomic model and observed data due to unexpected charge distribution
may also be important for understanding ligand binding sites.

Some attempts have been made to manually adjust the charge to better model
the data in Phenix (Hryc et al. 2017). Here, as partial charges cannot be set, the
atomic occupancy was reduced or made negative, to account for negative density.

It is clear that accounting for this in an automated fashion will lead to a better
description of the observed density and a more nuanced interpretation of the atomic
model and the underlying chemistry.

4.6.1 Is flexible fitting still the future?

During the course of this PhD, a method has emerged for biassing AlphaFold
during the structure prediction stage itself, using restraints derived from cross-
linking experiments (Stahl et al. 2023). It is foreseeable, that incorporating low
resolution cryo-EM data into AlphaFold-like structure prediction methods could
lead to an alternative, more streamlined approach to model building. Figuring out
a general strategy for doing so would be useful for other low resolution experimental
methods such as small angle X-ray scattering (SAXS).

4.7 Conclusion

In this thesis, a new biassing potential for flexible fitting of structural models in
cryo-EM maps is described (Beton*, Mulvaney* et al. 2024). Its accuracy was
compared against 229 models previously refined with Phenix. With the help of
rigid bodies (Malhotra*, Mulvaney* et al), this culminated in the refinement of a
diverse set of proteins and RNA structure predictions in the CASP15 modelling
challenge (Mulvaney et al. 2023). Overall, when compared to Phenix, the method
produced models with better geometry and fit to density at high resolutions, but
performed slightly worse at lower resolutions.

RNA predictions from CASP15 often deviated far from the experimental model,
yet these could still be successfully fit to the maps with good agreement with
the experimental model.

Some of the methods reported by experimentalists for building the target RNA
models for CASP15 involved complex protocols. One such example included: initial
manual model building in ChimeraX starting from crystal structures, flexible fitting
with MDFF, manual refinement using ISOLDE, Phenix real space refinement, and
finally RNA geometry adjustments with QRNA (Sampedro Vallina et al. 2023).
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In my CASP15 paper, I offer a glimpse into a more automated future, where
RNA structure predictions can be flexibly fit to experimental data with similar
accuracy to hand-tuned models using a simple pipeline.

Handling the diverse array of chemical modifications which are common
amongst biological molecules is an important next step in making the software
more applicable.

Finally, charge is an overlooked aspect of modelling including in the software
presented in this thesis. An interesting direction for the future would be to either
explicitly model any partial charges during map simulation, or to attempt to
determine them along with local resolution during refinement.
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