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SUMMARY

Learning describes the process by which our internal expectation models of the world are updated by sur-
prising outcomes (prediction errors [PEs]) to improve predictions of future events. However, themechanisms
throughwhich error signals dynamically influence existing neural representations are unknown. Here, we use
functional magnetic resonance imaging (fMRI) in humans solving a two-step Markov decision task to inves-
tigate changes in neural activation patterns following PEs. Using a dynamic multivariate pattern analysis, we
can show that PE-related fMRI responses in error-coding regions predict trial-by-trial changes inmultivariate
neural patterns in the orbitofrontal cortex, the precuneus, and the ventromedial prefrontal cortex (vmPFC).
Importantly, the dynamics of these pattern changes in the vmPFC also predicted upcoming changes in
choice strategies and thus highlight the importance of these pattern changes for behavior.

INTRODUCTION

Living in a multifaceted world requires humans and other organ-

isms to be responsive to the environment. The brain’s internal

model of this world encodes our expectations, enabling us to

predict upcoming events and to respond efficiently to them.

However, when the world changes dynamically, these internal

models have to be updated to allow for adaptive changes in

the behavioral policy. Minimizing the discrepancy between inter-

nal expectations encoded in our models and real-world out-

comes is an essential concept of learning. Prediction errors

(PEs) are the computational equivalent of these expectancy vio-

lations and act as a teaching signal in reinforcement learning

(RL).1 Throughout the learning process, both PEs and expected

values change over time, ideally to the point where our exp-

ectations perfectly match reality, and the PE reduces to zero.

However, the process through which error signals can update

our internal model and how this is implemented at the neural level

is an outstanding question. In RL, PEs together with the contin-

uously updated expected values are sufficient to drive learning.

Though, an implementation of this process in a biological system

(e.g., a human brain) entails not only changes in representations

of these core computational variables but may also evoke

changes in other cognitive systems that facilitate the adjustment

of expectations.2,3 Attentional resources, working memory, and

motor planning are likely to be involved in reshaping our internal

model following a PE.

Multivariate methods have introduced a new window into stim-

ulus representations in the human brain by analyzing the informa-

tion contained in spatially distributed patterns of neural activity as

measured by functional magnetic resonance imaging (fMRI).4–6

While some studies have used machine-learning algorithms to

decode information about stimuli and their properties,7–9 others

have characterized stimulus representations through the (dis)sim-

ilarity of activation patterns and compared them with the percep-

tual or categorical similarity.10–12 It has been demonstrated that

even hidden states, such as subjective value of outcomes, have

a multivariate representation within the brain.13,14 In addition,

the multivariate approach has also been extended to learning-

induced changes in the similarity of activation patterns.15,16

PEs are a quantitative signal of how much expectations

deviate from the experienced stimuli in the environment. The

occurrence of a large PE signals the need for substantial adap-

tations of our internal predictive model, whereas small PEs

only call for minor adjustments. Consequently, patterns of neural

activity encoding these internal representations need to undergo

greater changes following a large PE than in the case of a small

PE. These theoretical considerations suggest that activation pat-

terns of two adjacent trials should change proportionally to the

size of the PE between them. Importantly, to detect error-spe-

cific changes in neural patterns, we utilize two different types

of PEs simultaneously in this project: reward PEs (RPEs) and

state PEs (SPEs). Hereby, we can reveal regions in which neural

patterns are only modulated by one distinct PE type.

Over the past two decades, neural correlates of PEs have been

studied in great detail. RPEs are the key teaching signal ofmodel-

free RL,17–19 a domain of RL algorithms that learn in a pure trial-

and-error fashion and only focus on the obtained outcomes

without considering the transition probabilities between states.

RPEs have been robustly associated with the phasic activity of

dopaminergic neurons in the ventral tegmental area (VTA),20,21

an area projecting to a wide range of subcortical and cortical re-

gions,22,23 including the ventral striatum (VS), where RPEs are

commonly detected in human fMRI studies.24–26 In addition,
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dopaminergic VTA neurons have also been associated with

reward probability and value during reward anticipation.27,28

On the contrary, model-based RL algorithms aim to estimate

state-transition probabilities and build a model of the existing

state space of the task. Following a theoretical distinction be-

tween model-free and model-based RL,29 we identified distinct

brain regions exhibiting a significant correlation of their blood

oxygenation level-dependent (BOLD) activity with the specific

PE signal derived for these two types of learning.30 While RPEs

are represented in the VS, we have shown correlates of model-

based SPEs in the intraparietal sulcus (IPS) and the dorsolateral

prefrontal cortex (dlPFC). These findings have been replicated

multiple times using variants of the original task31 as well as

another two-step Markov decision task.32 Critically, all studies

demonstrated a correlation of brain activity with the magnitude

of these two error signals, suggesting that errors of various sizes

express themselves in corresponding strengths of the BOLD

response. However, none of these studies investigated the

ensuing changes in activity patterns of associated brain regions

that facilitate learning in these two domains.

Here, using a modified two-step Markov decision task that

elicits orthogonal SPEs and RPEs, we investigate representa-

tional changes following two types of PEs during learning. In

particular, we utilize these orthogonal PEs to investigate how ex-

pectancy violations change neural representations that encode

these expectations in our internal model. By using these two

orthogonal error signals, we can further test for the specificity

of these changes in neural patterns of one error-related brain

network but not in the other.

We develop an analytical approach, which combines model-

derived univariate and multivariate fMRI analyses and reveals

the influence of PEs on subsequent changes in patterns of neural

activity. In particular, this method is capable of quantifying the

magnitude of multivariate changes in neural patterns over time

and allows us to dynamically predict these pattern changes using

trial-by-trial BOLD responses in error-coding regions.We demon-

strate that the PE-evoked BOLD activity predicts the magnitude

of subsequent multivariate changes in activation patterns of

cognitive systems involved in working memory, attention, and

motor planning. Additionally, pattern changes in the orbitofrontal

cortex (OFC) and the ventromedial prefrontal cortex (vmPFC) also

predict upcoming adjustments of the behavioral policy. In sum-

mary, our findings point to an immediate effect of PE signals on

the reconfiguration of neural representations in distinct brain re-

gions for two different domains of learning.

RESULTS

Experimental design and behavioral modeling
Each participant (n = 44) performed 5 runs of a two-step Markov

decision task (Figure 1). The first-stage decision (state decision)

determined to which of two possible states (blue, red) the partic-

ipants would transition to. In the second stage (reward decision),

participants chose between one of two boxes to obtain a reward

of either 0, 4, or 6 V. PEs derived from model-based and model-

free learning occurred at the time of state outcome (SPE) and

reward outcome (RPE). The task included reversal trials (perma-

nently swapping states or rewards) and catch trials (onetime un-

expected state or reward in a trial) to subvert expectations and

trigger the participants to react to changes and update their

internal model of the task. Importantly, this task produces

orthogonal SPEs and RPEs (correlation of all model-derived

A C

B

Figure 1. Two-step task and hybrid-learning model

(A and B) Participants (n = 44) performed a modified two-step Markov decision task that produces orthogonal SPEs and RPEs (correlation of SPE and RPE: r =

0.0635) (ITI, inter-trial interval). Detailed information about the task can be found in the STAR Methods.

(C) Schematic of the hybrid-learningmodel combiningmodel-based andmodel-free RL using a constant weighting parameter. s0, the state the agent transitioned
to; a, action; R(s0), reward obtained; T(s,a,s0), state transition probability estimates of the agent; Q(s,a), reward value estimates of the agent;u, constant weighting

parameter.
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SPEs and RPEs: r = 0.0635; see Figure S1), enabling us to study

the effects of both PE types independently. We achieve this by

ensuring that both possible states (blue, red) always allow for

similar amounts of rewards33 so that a state reversal elicits a

large SPE but almost no RPE (see Figure 2B for an example of

both error signals).

Based on previous work in this field,30,32 we assumed that par-

ticipants utilize a mixture of model-based and model-free

learning during the execution of this task. Behavioral modeling

was conducted with a hybrid-learning algorithm combining

model-based and model-free RL using a constant weighting

parameter to predict the behavioral choice data and derive

SPEs and RPEs.30 This hybrid-learning algorithm provides a

significantly better model fit than degenerate versions of the

model using either strategy (model-free or model-based) alone

(see model comparison and group-level mean values for model

parameters in Table S1).

Model-based and model-free PE signals
A number of studies have established that BOLD responses in

the VS convey a model-free RPE signal.24–26 Moreover, in our

previous work, we were able to detect the existence of an

SPE signal in the IPS.30 To define regions of interest (ROIs) for

subsequent analyses, we searched for neural correlates of

SPEs and RPEs derived from the hybrid-learning model. For

this and all other neuroimaging analyses, we decided to present

statistical maps at uncorrected thresholds of p <0.001 and

<0.005 for visualization purposes. However, in the main text,

we report family-wise-error-corrected (FWE) effects using

threshold-free cluster enhancement.34 We were able to repli-

cate the earlier findings in this project (Figure 2A). Specifically,

we found significant clusters resembling the SPE in the right

IPS and the precuneus (SPE in the IPS: x, y, z = 40, �45, 45,

pFWE = 0.019; SPE in the precuneus [PCu]: x, y, z = �10, �70,

43, pFWE = 0.018), while the RPE was located in the VS (RPE

in the VS: x, y, z = �8, 15, �8, pFWE SVC = 0.005 [small-vol-

ume-corrected]). We then defined ROIs of error-coding regions

for the SPE and RPE by combining the current results with the

ones of our previous study30 in a conjunction35 at an uncorrec-

ted threshold of p <0.001.

Measuring short-term changes in neural activation
patterns
To investigate the hypothesis that PEs modulate changes in

neural activation patterns, it is necessary to quantify the

magnitude of multivariate changes in neural patterns over

time. Here, we introduce a metric called pattern change, which

is based on the Pearson correlation coefficient of two pat-

terns. The pattern change occurring between corresponding

patterns of two adjacent trials is defined as the Fisher-trans-

formed correlation distance of the pattern in the current and

upcoming trial:

The resulting pattern change is minimal when two patterns are

perfectly correlated and is maximal when there is a perfect in-

verse correlation.

We used a searchlight-based algorithm (searchlight radius =

10 mm) to calculate pattern change throughout the whole brain

for all trials (Figure 3). The input data for the searchlight algorithm

were trial-wise beta estimates at the time of state and reward

decision. If in alignment with our hypothesis, pattern change at

state decision would correlate with the preceding SPE, and

pattern change at reward decision would correlate with the pre-

ceding RPE (i.e., the pattern change is modeled after the occur-

rence of the PE). This procedure resulted in a set of trial-by-trial

images encoding the magnitude of changes in neural activation

patterns from one trial to the next in every searchlight. Critically,

this approach compresses the multivariate information con-

tained in the transitions of corresponding patterns from the cur-

rent to the next trial into a univariate signal of change. As a

A B

Figure 2. Error-coding regions of SPE and RPE

(A) Results of a univariate regression analysis showing neural correlates of the model-derived SPE and RPE signals. All results are presented at a threshold of p

<0.005 uncorrected (dark area) and p <0.001 uncorrected (light area) for visualization. These and all other images are in radiological orientation.

(B) Exemplary visualization of model-derived SPE and RPE signals throughout a single run. Light blue background represents free-choice trials, and dark blue

background represents forced-choice trials. Solid vertical lines represent reversal trials, and dashed lines represent catch trials. The modified two-step task

produces orthogonal SPEs and RPEs: state-reversal trials elicit a large SPE but almost no RPE, and vice versa.

pattern change½t; t + 1� = � arctanhðcorrðpattern½t�;pattern½t + 1�ÞÞ:

Cell Reports 42, 112931, August 29, 2023 3

Article
ll

OPEN ACCESS

5



consequence, this enables us to directly relate trial-by-trial

changes in neural activation patterns to univariate PE responses

in a general linear model (GLM).

To visualize pattern change throughout the brain, we con-

structed a mean pattern change map of all collected trials (Fig-

ure 4). Additionally, we calculated the mean change in BOLD

signal strength of a given searchlight sphere (i.e., pure univariate

information of each pattern) of all trials for comparison purposes.

This revealed stark differences between these two measures

and their distribution throughout the brain: while mean BOLD

change is strongest in the vicinity of large vessels (e.g., superior

sagittal sinus, medial cerebral artery), mean pattern change was

maximal in the superior parietal lobule (SPL), the OFC, and the

vmPFC. These findings underline that pattern change and

change in mean BOLD responses are indeed different measures

with distinct distributions throughout the brain.

PE-evoked BOLD responses modulate subsequent
pattern change
In a next step, we extracted trial-wise BOLD responses induced

by the SPE and RPE from the error-coding ROIs. These PE-

evoked BOLD responses were then used as predictors for sub-

sequent pattern change at every voxel in the brain in a GLM:

pattern change � b0+b1 � BOLD response to PE in ROI;

where pattern change is a set of trial-by-trial images as created in

the previous section and the BOLD response to PE is a set of trial-

by-trial estimatesof theBOLDresponse toPEs in theVSROI (RPE)

or in the IPS ROI (SPE). It is important to note that the PE event

PE_response[t] predictingpattern_change[t, t+1]occursbetween

the two decision-making events used to calculate the pattern

change (Figure 3A). We hypothesized that a large PE should lead

togreater adjustments of our internalmodel,which in turngoalong

with greater changes in neural activation patterns. In case of the

VS, we therefore used absolute estimates of the BOLD response

(i.e., both negative and positive RPEs of high magnitude should

lead to an increase in pattern change). The SPE is an unsigned

signal and hence needed no correction. We validated the results

of this analysis by performing a permutation test in which the real

SPE and RPE regressors were compared against 10,000 random

permutations (see STARMethods and Figure S2).

The resulting brain maps of this linear model (Figure 5) reveal

areas in which pattern change at the time of decision-making

was significantly modulated by the preceding PE-evoked BOLD

response in thecorrespondingerror-codingROI.TheRPE-evoked

BOLD response in VS modulated pattern change at the time of

reward decision in the OFC, the anterior cingulate cortex (ACC),

the bilateral dlPFC, and the bilateral insula (OFC: x, y, z = �28,

28, �20, pFWE = 0.002; ACC: x, y, z = 13, 38, 10, pFWE = 0.003;

dlPFC: x, y, z = 47, 20, 15, pFWE = 0.001; insula: x, y, z = �35,

�2,�15, pFWE =0.003),whereas theSPE-evokedBOLDresponse

in IPS predicted pattern change at the time of state decision in the

SPL, the PCu, the supplementary motor area (SMA), and the IPS

(SPL: x, y, z = �23, �42, 45, pFWE = 0.002; PCu: x, y, z = 8, �77,

50, pFWE = 0.004; SMA: x, y, z = 10, 0, 62, pFWE = 0.003; IPS: x,

y, z =�55,�42, 42, pFWE = 0.011). These results point to an imme-

diate effect (over the course of a single trial, duration approx. 30 s)

of PEs in the IPS and the VS on the amount of change in subse-

quent neural activation patterns in distinct areas of the brain,

underlining that these different PEs are not only represented in

different brain regions but that they also evoke pattern changes

in dissociable brain networks.

Error-specific dissociation of pattern change
Additionally, we visualized the evolution of pattern change at the

time of state and reward reversals (Figure 6). The OFC exhibited

a sharp increase in the amount of change in neural activation pat-

terns at the timeof rewarddecision following the reversal of reward

contingencies, whereas pattern change at state decision did not

respond to reward reversals (paired t test of pattern change at

reward decision vs. pattern change at state decision: 1 trial after

reward reversal p = 0.0128, 2 trials after reward reversal p =

0.0002). Interestingly, the increase in pattern change following

A

B

Figure 3. Measuring changes in neural acti-

vation patterns

(A) Schematic of detecting SPE-modulated

pattern change at the time of state decision. For

RPE-modulated pattern change at the time of

reward decision, the procedure was performed in

the same way. For each searchlight sphere

(radius = 10 mm), pattern change was calculated

using the patterns of corresponding events in the

current and upcoming trials. We hypothesized the

pattern change at the time of state decision to be

modulated by SPE-evoked BOLD responses in the

IPS ROI. Importantly, the PE occurred between

the two patterns that define the pattern change

and is therefore suited to drive the process of

updating these neural representations.

(B) Maps of pattern change were created for every

trial. Critically, the use of a searchlight-based

analysis compresses the multivariate changes in

neural activation patterns into a univariate signal of

change. This allowed for directly relating pattern

changes to univariate PE-evoked BOLD re-

sponses in a linear model.

4 Cell Reports 42, 112931, August 29, 2023
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reward reversals was also apparent in the trial after reversal, indi-

cating sustained changes in neural patterns before decreasing

again. In the PCu, we observed the opposite pattern, albeit not

as sustained as in the OFC: following a state reversal, pattern

change in the PCu at the time of state decision exhibited an in-

crease, while pattern change at the time of reward decision

decreased (paired t test of pattern change at state decision vs.

pattern change at reward decision: 1 trial after state reversal

p = 0.0132). These findings also emphasize the dissociation of

increased pattern change induced by the two different PE types.

Information content of observed patterns
To investigate the information content of these evolving neural

patterns, we utilized additional behavioral decision variables

derived from the hybrid-learning model. Specifically, we

searched for voxels coding for the value of the chosen action

at the time of reward decision (i.e., the same time at which

reward-related patterns were acquired). The results revealed

significant clusters coding for the value of the chosen action

in the ACC and the vmPFC (see Figure S3; ACC: x, y, z = 1,

12, �10, pFWE = 0.023; vmPFC: x, y, z = 1, 52, �7, pFWE =

0.036). A conjunction analysis (Figure 5E) found evidence that

the BOLD response of a cluster of voxels in the subgenual

ACC (x, y, z = 2, 10,�12, punc: = 0.00037) both encoded the value

of the chosen action and featured RPE-modulated pattern

change at the time of reward decision, suggesting that ACC

pattern change is involved in configuring the value signal that

guides action selection.

Furthermore, to detect state-related information, we per-

formed a searchlight-based decoding analysis of participants’

expectations of the next upcoming state at the time of state

decision. Neural patterns in the PCu contained significant infor-

mation about the next expected state (see Figure S4; state

expectations in the PCu: x, y, z = 2, �61, 37, pFWE = 0.025).

However, these results did not exhibit a meaningful overlap

with patterns modulated by SPE-evoked BOLD responses (Fig-

ure 5E). In summary, our custom-made GLM analyses detected

several distinct brain regions in which pattern change was pre-

dicted by the PE-evoked BOLD response in the IPS and the

VS, respectively, but only a subset of those were also involved

in representing expectation signals for states and rewards calcu-

lated by the computational model.

Figure 4. Change in mean BOLD signal vs.

pattern change

Whole-brain maps averaged across all trials (145

trials per participant) and participants (n = 44) were

created for comparison between pattern change

(metric of changes in multivariate neural patterns

over time) and change in mean BOLD signal of a

given searchlight (i.e., pure univariate information of

each pattern).

Pattern change predicts ensuing
adaptations of behavioral policy
PEs in IPS and VS modulate the amount

of change in neural activation patterns

during learning. Computationally, PEs are

a teaching signal used to inform and update our internal repre-

sentations of the world. Consequently, adjustments made to

our internal model should also lead to altered behavior in

order to maximize rewards. Therefore, we tested whether the

observed changes in neural patterns over time do also predict

changes in the participants’ actions. Due to the binary nature

of choices in this task, we utilized the continuous action proba-

bilities derived from the hybrid-learning model to separately

calculate changes in the behavioral policy (Dpolicy) of state

and reward decisions (A1 being the participants’ action following

the state decision and A2 being that following the reward deci-

sion). Indeed, relating pattern change at state decision to trial-

by-trial changes in action probabilities of A1 revealed significant

clusters in the primary motor cortex (M1), the vmPFC, the insula,

and the SMA (see Figure S5; M1: x, y, z = 35, �15, 53, pFWE =

0.001; vmPFC: x, y, z = 12, 57, �6, pFWE = 0.001; insula: x, y,

z = 35, �11, �10, pFWE = 0.001; SMA: x, y, z = �12, 10, 52,

pFWE = 0.002). Furthermore, we detected clusters in the vmPFC,

the OFC, the M1, and the dlPFC in which pattern change at

reward decision significantly predicted changes in the behavioral

policy of A2 (vmPFC: x, y, z = �15, 43, 20, pFWE = 0.001; OFC: x,

y, z = �25, 25, �18, pFWE = 0.001; M1: x, y, z = 30, �16, 49,

pFWE = 0.001; dlPFC: x, y, z = �57, 15, 12, pFWE = 0.002).

Importantly, repeating this analysis using the change in mean

BOLD signal of a given searchlight (cf. Figure 4) did not result in

any brain regions showing a significant correlation to changes in

the participants’ actions. This suggests that, indeed, the multi-

variate information contained in pattern changes (and not the

univariate change in mean BOLD signal of a given pattern) holds

information relevant for updating the behavioral policy.

To pinpoint areas featuring changes in neural activation pat-

terns that are both modulated by PE-evoked BOLD responses

and predict ensuing behavioral adaptations, we performed

conjunction analyses.35 Results of these conjunctions are pre-

sented separately for SPE- andRPE-related pattern change (Fig-

ure 7). We found a significant cluster of voxels in the OFC in

which pattern change at reward decision was both modulated

by RPE-evoked BOLD in the VS and predicted subsequent

behavioral adjustments of A2 (OFC: x, y, z = �27, 24, �21,

pFWE = 0.032). In addition, we found clusters in the ACC

and the dlPFC exhibiting the same conjunction, but they did

not surpass an FWE-corrected threshold (ACC: x, y, z = 3, 40,
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19, punc: = 0.00086; dlPFC: x, y, z = 49, 15, 17, punc: = 0.00071). In

the conjunction of pattern change at state decision correlating

with both SPE-evoked BOLD in the IPS and subsequent changes

in participants’ behavioral policy of A1, we observed clusters in

the vmPFC and the bilateral motor cortex (vmPFC: x, y, z = 10,

48,�9, punc: = 0.00093;M1: x, y, z = 39,�19, 48, punc: = 0.00031).

In summary, these results suggest that high amounts of

pattern change are induced by strong PE-evoked BOLD re-

sponses in error-coding ROIs and that they lead to adaptations

in behavior. To underline this finding, we divided trials into bins

of low (<10th percentile) and high (>90th percentile) pattern

change at peak voxels in the OFC and the vmPFC (Figure 7).

For trials with high pattern change at reward decision in OFC,

we observed significantly greater preceding RPE-evoked abso-

lute BOLD responses in the VS andmore pronounced changes in

behavioral policy of A2 (paired t test of RPE-evoked absolute

BOLD response [abs. BOLD resp.] in the VS for high vs. low

pattern change: p = 0.0005; paired t test of Dpolicy of A2 for

high vs. low pattern change: p = 0.0009). When comparing trials

of high vs. low pattern change at state decision in the vmPFC, we

found increased preceding SPE-evoked BOLD responses in the

IPS as well as greater adaptations of participants’ behavior in A1

(paired t test of SPE-evoked BOLD resp. in the IPS for high vs.

low pattern change: p = 0.0094; paired t test of Dpolicy of A1

for high vs. low pattern change: p = 0.0292).

DISCUSSION

An implementation of RL in the human brain requires the exis-

tence of neural representations that are being updated by PEs.

Although being a crucial part of learning, the mechanisms of

transforming neural representations have been sparsely studied.

A

C D
E

B

Figure 5. PE-evoked BOLD responses in error-coding ROIs modulate pattern change

(A) PE-evoked BOLD responses were extracted from error-coding ROIs and served as predictors for subsequent pattern change throughout the whole brain in a

linear regression (statistical maps are presented at a threshold of p < 0.001 uncorrected).

(B) Results of a trial-by-trial regression of pattern change on PE-evoked BOLD responses in error-coding ROIs. Results are presented at a threshold of p <0.005

uncorrected (dark area) and p <0.001 uncorrected (light area).

(C and D) Parameter estimates of peak voxels derived from the trial-by-trial regressionmodel (as in B). Boxplots visualize the median, 25th, and 75th percentiles as

well as minimum and maximum values of the data. Data points represent parameter estimates of individual participants. Half-violin plots visualize the shape of

data distributions.

(E) Violet: conjunction results combining the values of chosen action at reward decision andRPE-modulated pattern change at the time of reward decision. Green:

conjunction results combining the decoding of state expectations and SPE-modulated pattern change at the time of state decision. Results are presented at a

threshold of p <0.005 uncorrected (dark area) and p <0.001 uncorrected (light area).
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Here, we show that the magnitude of short-term changes in neu-

ral activation patterns is driven by PEs. Importantly, we utilized

two distinct PE types, model-based SPEs and model-free

RPEs, and showed specific effects in two learning systems.

Furthermore, we identified brain regions in which the amount

of pattern change also predicted ensuing changes in partici-

pants’ behavioral policy for the corresponding decision that

was triggered by the specific PE. In summary, our results sug-

gest that PEs drive the reconfiguration of dynamic neural activa-

tion patterns that encode our internal expectation models and

guide future behavior.

Our findings reveal that the two different PE types were not

only represented in different regions (VS and IPS) but also that

they influenced distinct areas of the brain. We demonstrated

that pattern change in the OFC, the dlPFC, and the ACC was

modulated by RPEs. These brain regions are consistent with

the current understanding of reward-related processes. The

OFC encodes representations of expected rewards in patterns

of neural activity,12,36–38 and the dlPFC has been shown to

code for the value of individual attributes of a stimulus.39 The ac-

tivity of the dlPFC also increases when context changes require a

reweighting of values.40,41 Furthermore, the ACC holds reward

predictions during decision-making,42,43 reacts to reward

outcome, and is relevant for behavioral adjustments.44 Our ob-

servations of the ACC encoding the value of the chosen action

endorse the central role of the ACC for the decision-making

process.

RPE signals are being distributed throughout the brain via fluc-

tuations in the concentration of dopamine.20 Recent work in the

field suggests that mesolimbic dopamine might even convey

causal associations during learning,45 and another study

observed heterogeneous dopamine responses even at the evi-

dence accumulation phase (before a decision is made).46 This

has prompted a differentiated extension of the classic RPE hy-

pothesis:47 whereas the standard model posits a scalar RPE at

the time of outcome, this new model favors a vector-valued RPE

that encodes feature-specific expectancy violations. However,

the authors also observed in their deep RL model that the

Figure 6. Pattern change progression surrounding state and reward reversals

For illustration, pattern change magnitude at peak voxels of the ROIs is plotted for trials surrounding state and reward reversals. Blue lines represent pattern

change of adjacent trials at state decision and red lines at reward decision. Shaded areas depict standard error of the mean. Pattern change occurring between

corresponding events of trial t and t + 1 is plotted between those trials. Dashed lines represent reversal trials. Pattern change valueswere baseline corrected using

the mean of two trials leading up to state and reward reversals (the task did not include catch trials in an interval of 2 trials surrounding reversal trials, to achieve

more stable representations before and after reversals). Stars indicate significant differences in a paired t test (*p < 0.05 and **p < 0.01) of pattern change between

the blue curve (at state decision) vs. the red curve (at reward decision).
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A

B

C

Figure 7. Pattern change modulated by PE-evoked BOLD responses predicts ensuing adjustments of the behavioral policy

Results generated by a conjunction combining pattern change modulated by PE-evoked BOLD responses in error-coding ROIs and pattern change predicting

ensuing changes in behavioral policy.

(A and B) Yellow and cyan arrows connect error-coding ROIs with clusters identified in the conjunction. Trials were divided into bins of low (<10th percentile) and

high (>90th percentile) pattern change in peak voxels of the OFC and the vmPFC. For trials with low vs. high pattern change, we plotted RPE- and SPE-evoked

BOLD responses in the VS and the IPS. Due to RPE being represented as a signed prediction error we used the absolute parameter estimates of VS. Additionally,

(legend continued on next page)
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vector-value RPE at the time of outcome resembles a scalar RPE.

Therefore, the (scalar) RPE used to detect seed ROIs for the

pattern change analysis are not invalidated by these recent theo-

retical developments. A possible biochemical substrate of the

observed effects of RPEs on changes in neural activity patterns

could be dopamine’s ability to modulate short-term spike-

timing-dependent plasticity (STDP).48–50 Our findings support

the idea that PEs are involved in priming brain regions for subse-

quent functional reconfigurations.

In contrast, we identified SPE-modulated pattern change in

the PCu and the SPL. Recent work established that the PCu is

involved in conscious processing of external information based

on internal beliefs and that it also updates our internal model of

the environment.51 Additionally, the PCu contributes to atten-

tional shifting between different internal representations.52 We

found that the pattern change in a subset of OFC voxels was

also modulated by the SPE, which is consistent with the idea

that the OFC holds a cognitive map about the state space of a

task and that information about the current state can be decoded

from patterns of neural activity in the OFC.13 Our findings also

broadly agree with the cortico-basal ganglia-thalamus-cortex

(CBGTC) loop, which instantiates a direct pathway commonly

associated with the Go response (i.e., action selection) following

positive PEs and an indirect pathway that is usually associated

with NoGo responses (i.e., response inhibition) following nega-

tive PEs.53,54 The network defined by these regions is organized

into several parallel pathways that connect the basal ganglia with

the sensorimotor, associative, and limbic cortices, the latter

including the OFC and the ACC,55,56 which are also involved in

flexible learning of expected values of stimuli and/or states.57

One of the primary findings of this study, namely the prediction

of pattern change in the OFC and the ACC that represents an ex-

pected reward value by BOLD activity in the VS, which encodes

an RPE, is in support of the CBGTC loop and the associated cor-

tico-basal ganglia GoNoGo model of decision-making.53

In RL, expectancy violations elicit modifications of our internal

model of the environment, leading to altered behavior. Here, we

demonstrated that the amount of pattern change in the OFC and

the vmPFC predicts subsequent adaptations of the behavioral

policy. These results are in alignment with recent studies, which

revealed that value representations in theOFC inform the general

value signal constructed in the vmPFC to guide goal-directed

behavior.58–63 Moreover, pattern change in the M1 and the

SMA also correlated with changes in behavioral policy. These ef-

fects were presumably caused by alterations in action planning

and execution andwere therefore also accompanied by changes

in neural activity patterns.

To our knowledge, there are a few other reports of investi-

gating evolving multivoxel patterns of BOLD activity during

learning. Visser and colleagues reported an increase in pattern

similarity in the ACC, the amygdala, and the superior frontal

gyrus during fear conditioning, when formerly neutral stimuli

were negatively reinforced.64 Nassar and colleagues observed

changes in multivariate activity patterns during periods of rapid

behavioral change and found that these ‘‘network resets’’ can

be explained by the degree of uncertainty.16 Howard and Kahnt

identified reward-identity representations in the OFC and

demonstrated that transitions of one representation into another

were directly related to midbrain identity-based error signals.15

In the present study, we present a comprehensive account of

the interactions among PE signals, neural activity patterns, and

behavioral adaptations. Moreover, by leveraging a two-step

task eliciting two types of PEs, we were able to dissociate the ef-

fects of each PE on subsequent pattern change at the time of

decision-making.

Theuseofmultivariateapproacheshas facilitated thedetection

of neural representationsencoding state-13,65 and reward-related

information.14,58 In the present study,we primarily focused on the

temporal changes these neural activation patterns undergo dur-

ing learning.Multivariate patterns in fMRI data can be considered

complex spatiotemporal filters sampling spatially distributed

neural activity through the fine-grained architecture of vessels in-

side the tissue.66 When examining the magnitude of change in

patterns of the BOLD response to the same event in adjacent tri-

als, we effectively capture how much the underlying distributed

neural activity differs. Combined with the general assumption

that a great portion of neural information is encoded in the multi-

variate interactionsof neurons,67–69 our proposedpattern change

metric is capable of quantifying the differences in neural informa-

tion content over time. Other complementary analyses (e.g.,

representational similarity analyses or decoding analyses as con-

ducted here) performed on the same pattern data can then infer

what the observed neural information represents.

We present an approach of directly relating multivariate and

univariate features of fMRI data through the use of trial-by-trial

searchlight-algorithms. By compressing multivariate features of

fMRI data into univariate signals and incorporating those in

whole-brain GLMs, we were able to dynamically regress trial-

by-trial changes in neural activation patterns against preceding

trial-by-trial, PE-evoked BOLD responses in error-coding re-

gions. Additionally, we show that the sole univariate information

of patterns (i.e., increase in mean neural activity of a pattern) is

not sufficient to predict behavioral adaptations but that, instead,

the multivariate information (i.e., spatially distributed pattern of

neural activity) is required.

Limitations of the study
An alternative interpretation of our findings could attribute the

observed changes in neural patterns to an enhanced allocation

of attentional resources. Surprising events, such as PEs, often

trigger an increase in activation within the fronto-parietal atten-

tion network.70 The greater demand for attentional resources

may arise from both positive and negative PEs, irrespective of

their sign. This correlation with unsigned RPEs suggests the

we display the adaptations in behavioral policyDpolicy of A1 and A2 for low vs. high pattern change trials. Boxplots visualize themedian, 25th, and 75th percentiles

as well as minimum and maximum values of the data. Data points represent parameter estimates of individual participants. Connecting lines are drawn between

the group-level means. Stars indicate significant differences (*p < 0.05 and **p < 0.01) of data in low vs. high pattern change trials assessed using paired t tests.

(C) Two-dimensional slices of the same conjunction results. All results are presented at a threshold of p <0.005 uncorrected (dark area) and p <0.001 uncorrected

(light area).
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possibility of confounding attentional effects. However, by em-

ploying a signed RPE in our model-informed univariate analyses

to identify relevant brain regions, we have taken steps to partially

mitigate the confounding influence of attention. Future studies

could also employ an independent task specifically designed to

measure attentional allocation. By doing so, researchers could

then estimate the effects of attention on neural pattern change

and behavior across different participants, providing additional

insights into the role of attention in the observed findings.

While the study reveals correlations between PEs, neural

pattern changes, and subsequent behavioral adaptations, it

does not establish a definitive causal relationship. The design

and experimental methods of the study does not allow for causal

conclusions to be drawn. Further studies incorporating interven-

tions (like brain stimulation) are necessary to establish a more

robust causal link among PEs, neural patterns, and behavior.

Conclusion
In summary, our work provides insights on the mechanisms

through which PEs facilitate the short-term reconfiguration of

neural representations and, consequently, provoke a shift in

behavioral policy. In addition to the detailed characterization

of the temporal evolution of pattern change, we could also

show that parts of these neural representations encode infor-

mation about expectancy signals. This dual perspective on

neural patterns—the temporal changes during reconfigurations

of these representations and the information that they

encode—also casts new light on the nature of neural activation

patterns in the context of a coherent theoretical framework that

describes learning as the process of updating internal models

to enable flexible and more accurate predictions of future

events.
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resources table.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Forty-four healthy participants (23 female; age range, 18–38 years; mean age ±SD, 24.1 ± 4.3 years) with no history of psychiatric

diseases gave informed written consent to participate in this study. Participants were recruited via advertisement in the university

and through participants’ referral. No participant was excluded from any analyses and all results presented here are from these 44

participants. One subject stopped the experiment after run 4 due to headache. The study protocol was approved by the Ethics

Committee of the Medical Association of Hamburg (2020-10102-B0-ff) and conducted in accordance with the Declaration of

Helsinki.

METHOD DETAILS

Experimental task
The experiment was built around amodified two-stage Markov decision task. The task consisted of 5 runs with 29 trials each. A thor-

ough explanation about the task structure and the existence of state- and reward-reversals throughout the task was given to the

participants before the experiment. Additionally, participants were instructed that they would receive a bonus of up to 5V in addition

to their hourly compensation depending on their performance during the task. Prior to the start of the 5 main runs, participants per-

formed a short training sequence consisting of 5 example trials to get familiar with the controls and visual task presentation inside the

fMRI scanner.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Behavioral data This paper https://doi.org/10.5281/zenodo.8015563

Code This paper https://doi.org/10.5281/zenodo.8015561

Software and algorithms

MATLAB MathWorks https://de.mathworks.com/products/

MATLAB.html, RRID:SCR_001622

SPM12 The Wellcome Center for

Human Neuroimaging

https://www.fil.ion.ucl.ac.uk/spm/,

RRID:SCR_007037

The Decoding Toolbox Martin Hebart https://doi.org/10.3389/fninf.2014.00088

cbm toolbox Payam Piray https://github.com/payampiray/cbm

MRIcroGL Chris Rorden https://www.nitrc.org/projects/mricrogl,

RRID:SCR_002403
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In the first stage of a trial (state-decision, Figure 1), subjects were presentedwith the choice of pressing either the left or right button

(depicted by 2 buttons on the screen and a closed door). Following a delay of 6 s the door opened and, depending on the first-stage

action, subjects were taken to either the blue or red state, represented by two blue or red boxes on the screen. After a delay of 6 s

symbols appeared on both boxes indicating that subjects were now allowed to input the second action. At the second stage (reward-

decision), subjects chose between opening the left or right box and their action was rewarded with money or not (depicted by green

text rising above the opened box e.g., ‘‘6V’’ or yellow text reading ‘‘0V’’, the possible reward quantities were 4V, 6V or 0V). After a

delay of 6 s the rewards were shown for a duration of 2 s followed by a 4 s inter-trial-interval (depicted by a closed door). Response

times by participants were not limited, but they were asked to make prompt decisions (which they did: mean reaction time for state-

decision was 1.23 s and for reward-decision 1.01 s). We decided to use unlimited input timings so that we did not have to discard

parts of the trial-by-trial evolving neural representations in case of delayed actions.

Every run commenced with a new configuration of state transitions and reward distributions, which had to be learned by the par-

ticipants. During each run we implemented 2 reversal-trials, one of them being a reversal of state transitions and the other one a

reversal of rewards, forcing participants to adapt and update their knowledge. For instance, at the state-reversal trial, if the left button

in stage 1 was linked to the blue state, it will from now on be linked to the red state for the rest of this run. At the reward-reversal trial,

the content of the two blue boxes got switched among each other and the content of the two red boxes also got switched among

those. In a given state, one box was always unrewarded, and the other box contained a reward. Importantly, to elicit orthogonal

reward and state prediction errors in subjects, both states had similar rewards associated with them. This way, when a state-reversal

occurred and a subject transitioned to the unanticipated state eliciting a large state prediction error, there would be only a small dif-

ference in achievable rewards and only small reward prediction errors would be induced. We counterbalanced the order in which

state- or reward-reversals occurred.

State transitions as well as rewards were deterministic, but occasional catch-trials were implemented. In catch-trials participants

are confronted with a onetime unexpected state or reward outcome only in this trial. Catch-trials made the task more demanding and

were also used to facilitate the model-informed detection of prediction error correlates by eliciting a more balanced distribution of

prediction error magnitudes. We opted for catch-trials instead of a probabilistic design to retain control over when participants

were surprised by unexpected outcomes and to not confuse them on the 2 trials leading up to or following a reversal-trial in the

task. Hereby, we obtained more stable neural representations before and after a reversal occurred. Per run we included � 3 state

catch-trials and � 2 reward catch-trials.

The task consisted of free- and forced-choice trials to collect a more balanced set of trials in which participants chose also unfa-

vorable states and rewards. This enabled later decoding of state and reward expectations of our participants. Each run consists of 17

free-choice and 12 forced-choice trials (see Figure 1B). We refrained from placing forced-choice trials in the vicinity of a reversal-trial

to prevent interference with the individual decision-making of participants. In forced-choice trials, a green arrowwas used to indicate

which action had to be performed (free-choice reaction-times: state-decision, 1.58 ± 0.77 s [mean ± SEM] and reward-decision,

1.07 ± 0.66 s; forced-choice reaction-times: state-decision, 0.87 ± 0.37 s and reward-decision, 0.95 ± 0.40 s).

Behavioral data acquisition
Stimulus presentation, MRI pulse-triggering, and response recording were implemented using MATLAB R2014b (www.mathworks.

com) and Psychtoolbox-3 (www.psychtoolbox.org). Participants held a four-button MRI-compatible button box in each hand, of

which only one button per hand was active, to choose between the left and right choice options presented on the screen with the

respective hand.

fMRI data acquisition
MRI data collection was conducted on a Siemens Prisma 3T scanner (Siemens, Erlangen, Germany) equipped with a 64-channel

head coil. Each brain volume consisted of 24 axial slices (voxel size, 2.53 2.53 2.5 mm3, with 0.5 mm spacing between slices) ac-

quired using a T2*-weighted echoplanar imaging (EPI) protocol (repetition time, TR = 627 ms; echo time, TE = 30 ms; flip angle = 45�;
field of view = 224 mm, GRAPPA 2, Multiband 2, Phase encoding direction P >> A). The functional imaging orientation was tilted

approximately 30� to the anterior commissure–posterior commissure axis to minimize susceptibility artifacts in OFC. Data for

each participant were collected in five runs resulting in a total of � 6000 volumes, and the first three volumes of each run were dis-

carded to obtain a steady-state magnetization. In addition, a gradient echo field-map was acquired before EPI scanning to measure

themagnetic field inhomogeneity (TE1 = 5.29ms, TE2 = 7.75ms), and a high-resolution anatomical image (voxel size, 13 13 1mm3)

was acquired after the experiment using a T1-weighted MPRAGE protocol.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational modeling
We modeled participants’ behavior using an HYBRID learner, which combines state-action value estimates from a model-based

FORWARD learner and a model-free SARSA temporal difference learner.30 Both the FORWARD and SARSA learner had their own

distinct learning rates aFORWARD and aSARSA, which remained constant per participant. We derived a first-stage and second-stage

RPE using the SARSA learner and a first-stage SPE using the FORWARD learner. Even though the different stages are intended
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to dissociate state and reward prediction errors, this does not exclude the possibility that reward predictions change subtly at the first

stage (see Figure 1B). In fact, as the agent moves to one of the 2 first-stage states, the overall expected reward at that state changes

slightly because of the different rewards available at the subsequent 2nd stage state. However, at the 2nd stage state reward and state

coincide because rewards are deterministically linked to one of the 2nd stage states. Therefore, the state expectations are only up-

dated at the 1st stage state. The state-action valuesQSARSAðs; aÞ of the SARSA learner were uniformly initialized with 0.2 at the start of

each run. The first-stage RPE dRPE;1 is computed as:

dRPE;1 = gQSARSAðs0; a0Þ � QSARSAðs; aÞ
where g is the temporal discount factor. QSARSAðs; aÞ and QSARSAðs0; a0Þ are the state-action values of the current and next state. A

reward rðsÞ could only be obtained in the second-stage (reward-decision) and there were no rewards in the first-stage (state-deci-

sion). In the second-stage, due to being the terminal state in the task, there is no further state to be anticipated, so that dRPE;2 reduces

to a delta-rule as:

dRPE;2 = rðsÞ � QSARSAðs; aÞ
The RPE is used to update existing state-action values as:

QSARSAðs; aÞ = QSARSAðs; aÞ+aSARSA � dRPE
The FORWARD learner uses an SPE to update an estimated state transition matrix Tðs; a; s0Þ of probabilities to transition from the

current state s to s0 given the action a. The transition probabilities in T were uniformly initialized with 0.5 at the start of each run. The

SPE is calculated after the observed transition to s0 and defined as:

dSPE = 1 � Tðs; a; s0Þ
The SPE updates the probability of the observed transition via:

Tðs; a; s0Þ = Tðs; a; s0Þ+aFORWARD � dSPE
and the other possible transition probability is reduced by the same amount to ensure the sumof all transition probabilities given state

s and action a remains 1. Estimated transition probabilities are used in combination with the acquired knowledge about rewards

stored in QSARSA to calculate state-action values of the FORWARD learner:

QFORWARDðs; aÞ =
X

s0
Tðs; a; s0Þ �max

a0
ðQSARSAðs0; a0ÞÞ

A free parameter w, which we assumed to be constant across trials, controlled the relative weighting of both models for action

selection, resulting in combined state-action values QHYBRID calculated as:

QHYBRIDðs; aÞ = w �QFORWARDðs; aÞ+ ð1 � wÞ �QSARSAðs; aÞ
Actionswere selected stochastically according to probabilities determined by transformingQHYBRID using a softmax function with a

constant temperature b, determining how deterministic the choices are. Furthermore, we implemented a free parameter pmodeling

choice repetition during first-stage actions as proposed by Daw and colleagues32 where repðaÞ indicates the action performed in the

previous trial. Thus, action probabilities P are defined as:

Pðs; aÞ =
exp ðb½QHYBRIDðs; aÞ+p � repðaÞ�ÞP
aexp ðb½QHYBRIDðs; aiÞ+p � repðaiÞ�Þ

In total the hybrid-learning model contained 6 free parameters (aSARSA; aFORWARD; b; g;w; p). Free- and forced-choice trials were

modeled together, because forced-choice trials also contribute to the learning process. Parameter estimation was conducted using

hierarchical Bayesian inference as implemented in the computational and behavioral modeling toolbox (cbm).71

fMRI data preprocessing
All fMRI image preprocessing was performed using SPM12 (Statistical Parametric Mapping; Wellcome Trust Center for Neuroimag-

ing, University College London, London, UK). The raw Digital Imaging and Communications in Medicine (DICOM) images were con-

verted to NIfTI (Neuroimaging Informatics Technology Initiative) format. First, a voxel displacement map (VDM) was calculated using

the field-map to account for spatial distortion resulting from the magnetic field inhomogeneity.72 Incorporating this VDM, the EPI im-

ages were corrected formotion and spatial distortions through realignment and unwarping using the first EPI image as reference. The

anatomical image was then co-registered to the first image in the EPI series, skull-stripped and segmented into gray matter, white

matter, and cerebrospinal fluid (CSF), using the ‘‘Segment’’ tool in SPM12. Individual flow-fields were computed by applying the

SPM12 DARTEL toolbox on these gray and white matter images.73 EPI images were then normalized to MNI space using the respec-

tive flow-fields through the DARTEL normalization tool. We applied a Gaussian kernel of 6 mm full width at half maximum (FWHM) to

smooth the EPI images for use in upcoming univariate analyses. For all multivariate analyses we applied a smoothing kernel of only

2 mm FWHM to retain potential spatially distributed information.
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Univariate analyses of prediction error signals
General linear modeling was done using SPM12. To detect neural correlates of state and reward prediction errors we performed

model-informed fMRI analyses incorporating the computational signals of the hybrid-learning model. For each participant, using

the hierarchically fitted individual parameter estimates, we derived trial-by-trial SPE and RPE variables, as well as the univariate state

value (blue state = 0, red state = 1) and reward value. The PE and value signals were entered in the first-level GLMs as unorthogon-

alized parametric modulators to the state and reward outcome events in the task. This ensures that the PE and value regressor only

capture their unique variance respectively thus to rule out confounding value signatures in the detected error-coding ROIs.

The first-level design matrix of the GLM for the model-informed univariate analyses identifying error-coding regions consisted of 9

regressors: an onset regressor for the start of a trial; 2 onset regressors for the left and right button presses; 2 regressors for the state-

and reward-outcome modeled with a duration of 3 s; 4 parametric modulators using the model-derived SPE, RPE, state value and

reward value variables (SPE and state value modulating state-outcome; second-stage RPE and reward value modulating reward-

outcome). All GLMs in this study were specified using the canonical HRF as a basis function. Data were high-pass filtered using

the ‘‘FAST’’ algorithm implemented in SPM12.

The 2nd-level analyses were performed as voxel-wise one-sample t-tests corrected for multiple comparisons using family wise er-

ror rate (FWE). Error-coding ROIs in the IPS (SPE) and VS (RPE) were defined using conjunctions (threshold of p < 0.001 uncorrected)

of the univariate model-informed analysis locating SPE and RPE correlates in this project and results of the same analysis conducted

in our earlier study.30 The ROIs served as seed regions in subsequent analyses.

Pattern change searchlight analysis
To investigate the evolution of neural representations on a trial-by-trial basis, we implemented a searchlight-based correlation anal-

ysis (Figure 3). The aim of this analysis was to construct for each trial a whole-brain map containing information about the intensity of

change in the spatially distributed shape of neural activity to the next upcoming trial. In order to quantify this change we defined the

pattern change between two trials t and t + 1 as:

pattern change½t; t + 1� = arctanhð � corrðpattern½t�;pattern½t + 1�ÞÞ
where corrðÞ denotes to the Pearson correlation, pattern½t� resembles the searchlight voxel data of an event in trial t and pattern½t + 1�
the searchlight voxel data of the corresponding event in the next upcoming trial t + 1. By using the inverse Pearson correlation co-

efficient r between these two patterns the pattern change measure reached its maximum, when patterns were maximally apart

(i.e., a correlation of�1). The resulting value was then Fisher’s z transformed (z = arctanhðrÞ) to improve the distributional properties

and allow for statistical testing. Defining the pattern change as the change to the next upcoming trial facilitated subsequent analyses,

because hereby the pattern change of a trial twas already in alignment with the corresponding prediction error of trial t, that occurred

between those two pattern events. The pattern change of the last trial in every run remains undefined.

Trial specific beta images served as input patterns to the searchlight analysis. Beta images were calculated using the ‘Least

Squares - Separate’ approach74 by estimating trial-specific first-level GLMs containing 4 regressors each: 2 onset regressors for

the SPE-related pattern (at state-decision) and RPE-related pattern (at reward-decision) of the current trial of interest; 2 onset regres-

sors containing SPE-related and RPE-related patterns of all other trials of the current run. This procedure was repeated for every trial

in each run. Thus, we obtained independent and uniquely identifiable estimates of BOLD activations for each trial.74 Within each

searchlight (spherical searchlight, radius = 10 mm), we calculated the pattern change for each pair of adjacent trials and mapped

values back to the center voxel of each searchlight, resulting in unique brain maps of SPE- and RPE-related pattern change for

each trial in each participant. The Decoding Toolbox75 served as a customizable framework for implementing this searchlight-based

trial-wise correlation analysis.

Using the same searchlight algorithm, we also calculatedmaps of the change inmean BOLD signal of each searchlight sphere (i.e.,

pure univariate change of patterns) for use in confirmatory analyses. The change in mean BOLD signal is computed by calculating the

difference of the average BOLD signal across all voxels in a given searchlight sphere between the current and upcoming trial (i.e., trial

t and t+1). This procedure is perfectly analogous to the way we calculate the multivariate pattern change between the current and

upcoming trial in a given searchlight sphere. Whole-brain images averaged across all trials and participants of pattern change

and change in mean BOLD signal were computed for comparison purposes (Figure 4).

Predicting pattern change using PE-evoked BOLD
To examine the effects of prediction errors on evolving neural representations we constructed an analysis which aims to utilize PE-

evoked BOLD responses in error-coding ROIs to predict subsequent pattern changes throughout the whole brain. To model trial-

specific SPE- and RPE-evoked BOLD responses we set up trial-wise GLMs using the ‘Least Squares - Separate’ approach74

consisting of 4 regressors each: 2 regressors with a duration of 3 s for the BOLD response to SPE and RPE events in the current trial;

2 additional regressors with the same temporal configuration for all other trials of the current run. From these trial-specific beta im-

ages we calculated the mean effect over voxels in each ROI in every trial (Figure 3). In the case of the RPE we used the absolute beta

values, because we expected that large PEs (irrespective of their sign) should result in an increase of pattern change in modulated

brain regions.
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We set up a whole-brain univariate first-level GLM to regress the trial-by-trial pattern change against the trial-by-trial PE-evoked

BOLD response in error-coding ROIs:

pattern change � b0+b1 � BOLD response to PE in ROI

Parameter estimates of this GLMwere tested for statistical significance in a 2nd-level voxel-wise one-sample t test FWE-corrected

for multiple comparisons.

Permutation test of pattern change regression
Weperformed a permutation test to check the validity of the results obtained from the previous analysis in which we used PE-induced

BOLD to predict upcomingmultivariate pattern changes in other brain regions. In this permutation test we randomly shuffled the trial-

wise IPS or VS. PE-induced BOLD regressors within each subject (andwithin the respective PE-type, e.g., not shuffling SPEwith RPE

regressors). We performed 10000 permutations for the regions identified in Figure 5 and then compared the 2nd level t-statistic of all

permuted analyses with the real unpermuted 2nd level t-statistic.

Relating pattern change to behavioral policy
We hypothesized that updates of participants’ internal model of the task should lead to adaptations in behavioral policy, which are

captured in a Dpolicy term (see below). To investigate this effect we set up a whole-brain univariate GLM to regress the trial-by-trial

pattern change against the subsequent trial-by-trial changes in behavior:

Dpolicy � b0+b1 � pattern change

Due to the binary nature of choices in this task we defined Dpolicy using the continuous model-derived action probabilities. The

adaptations in behavioral policy were computed separately for state- and reward-decisions (A1 and A2 respectively) using the

change in action probabilities PA1 or PA2 of the chosen action in a given state for each trial via:

DpolicyA1½t; t + 1� = PA1 chosen on trial t½t; s� � PA1 chosen on trial t½t + 1; s�
The construction of the behavioral policy changeDpolicy followed the logic that a different choice on the next trial should result in a

larger policy change index, than choosing the same action again (i.e., reinforcing the current policy). For instance, if the probability of

the chosen action on trial t is 0.5 and on the next trial the probability for the same action at trial t+1 decreases to 0.2 the resulting

Dpolicy value will be 0.3 and thus positive. This also implies that the probability for the non-chosen action in trial t increases from

0.5 to 0.8 suggesting that a change in the behavioral response is likely. This is captured in the positive Dpolicy. Conversely, if the

probability of the chosen action would increase from 0.5 on trial t to 0.9 on the following trial t+1 the computed Dpolicy will take

on a negative value of �0.4. This also implies that the non-chosen action on trial t decreases from 0.5 to 0.1, thus making a change

in the behavioral response at trial t+1 less likely. In summary, Dpolicy describes the trial-by-trial amount of divergence from the cur-

rent behavioral policy and can be directly related to the amount of pattern change. Parameter estimates of this GLM were tested for

statistical significance in a 2nd-level voxel-wise one-sample t test FWE-corrected for multiple comparisons. To ensure that multivar-

iate information of the pattern change is required for predicting changes in behavioral policy we repeated this analysis using the

change in mean BOLD signal strength of each searchlight as the predictor, resulting in no significant effects.

Detecting the value of the chosen action
In a next step, we wanted to investigate if brain regions showing RPE-modulated pattern change also hold information about the par-

ticipants’ expectations regarding upcoming rewards. To identify brain regions coding for reward expectations we conducted a uni-

variate model-informed analysis detecting the value of the chosen second-stage action A2 during the reward-decision (the same

timepoint where RPE-modulated pattern change was computed). The first-level GLM was set up as follows: 1 onset regressor at

state-decision, 1 onset regressor at reward-decision being parametrically modulated by QHYBRIDðs;achosenÞ, 2 onset regressors for

state and reward outcomes. Parameter estimates of this GLM were tested for statistical significance in a 2nd-level voxel-wise

one-sample t test FWE-corrected for multiple comparisons.

Decoding of state expectations
In contrast to the univariate reward-related action values, we assumed that participants’ expectations about upcoming states are

represented as multivariate information in the BOLD signal. To detect brain regions encoding state expectations we performed a

searchlight decoding analysis (spherical searchlight, radius = 15mm) using support vectormachine (SVM) classifiers as implemented

in The Decoding Toolbox.75 First, we estimated participants’ expectations by deriving the trial-by-trial estimated transition probabil-

ities T from the hybrid learner. Trials were then sorted in one of three different groups: Label ‘blue’, Label ‘red’ and ‘uncertain’ expec-

tation. ‘Uncertain’ trials were excluded from the classification process. A trial was considered Label ‘blue’ or Label ‘red’ when these

states had the highest estimated transition probability for the chosen action in the state-decision. Expectations were assumed to be

‘uncertain’, if:

Tða1chosen;blueÞ = = Tða1other ; redÞ
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The GLM generating the input data for classification was set up as follows: 1 of 3 possible onset regressors (either Label ‘blue’,

Label ‘red’, or ‘uncertain’) modeled the state-decision, 1 onset regressor for all reward decisions. We grouped all trials of a label

in a single regressor instead of estimating single trial regressors to preempt problems regarding unbalanced training data. This tech-

niquemakesmore use of all collected data compared to obtaining balanced training data by bootstrapping single trial regressors and

thus having to exclude trials from training. We applied a leave-one-out cross-validation scheme using 4 runs as training and the fifth

run as test data, repeated for all 5 runs. Mean area under the curve (AUC, an indicator of the distinguishability of all classified labels)

over all cross-validations was group-level tested for being significantly above chance-level in a 2nd-level voxel-wise one-sample t test

FWE-corrected for multiple comparisons.

Group-level statistical analyses
All group-level analyses were performed using voxel-wise t-tests FWE-corrected for multiple comparisons (results were considered

as group-level significant at a threshold of pFWE < 0:05). We also applied threshold free cluster enhancement (TFCE, H = 2, E = 0.5)34

with 5000 permutations per contrast as implemented in the PALM toolbox76 to increase sensitivity for spatially distributed effects.

Conjunctions combining two hypotheses (intersection-union test) were created using the minimal T-statistic35 of FWE-corrected re-

sults (conjunctions of uncorrected p valueswere created for visualization purposes). A full list of results and significant sub-peaks can

be found in the supplementary material.
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Figure S1 | SPE and RPE distributions, Related to Figure 1. a The modified two-step Markov decision 

task elicits orthogonal SPEs and RPEs (correlation of all SPEs and RPEs: r = 0.0635). b The task also 

produces balanced distributions of SPE and RPE magnitudes. 
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Figure S2 | Permutation test of the pattern change regression, Related to STAR Methods. Results of 

a permutation test in which 2nd level t-statistics of the real SPE and RPE induced BOLD responses (red 

dashed line) were compared against 10000 random permutations (gray histogram). Permutation tests 

were performed for relevant ROIs which have been identified in Figure 5. P-values are reported for 

the hypothesis that the real SPE and RPE induced BOLD responses better predict subsequent pattern 

change than the distribution of permutations. 
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Figure S3 | Chosen action value at the time of reward-decision, Related to Figure 5. Yellow: value of 

the chosen action at the time of reward-decision. Red: pattern change at the time of reward-decision 

predicted by RPE-evoked BOLD responses in VS. All results are presented at a threshold of p < 0.005 

uncorrected (dark area) and p < 0.001 uncorrected (light area). 
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Figure S4 | State expectation decoding at the time of state-decision, Related to Figure 5. Green: 

decoding of participant’s state expectations at the time of state-decision. Blue: pattern change at the 

time of state-decision predicted by SPE-evoked BOLD responses in IPS. All results are presented at a 

threshold of p < 0.005 uncorrected (dark area) and p < 0.001 uncorrected (light area).   
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Figure S5 | Pattern change predicts subsequent adaptations of behavioral policy, Related to Figure7. 

Results of a trial-by-trial regression of pattern change on subsequent changes in behavioral policy 

(∆𝑝𝑜𝑙𝑖𝑐𝑦). All results are presented at a threshold of p < 0.005 uncorrected (dark area) and p < 0.001 

uncorrected (light area).  
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Table S1 | Model comparison and hybrid model parameters, Related to STAR Methods. The HYBRID 

learner outperforms both the pure model-based (FORWARD) and model-free (SARSA) RL algorithms. 

Group-level mean parameters of the hybrid learner model (lrSARSA = learning-rate of SARSA learner; 

lrFORWARD = learning-rate of FORWARD-learner; temperature = temperature of softmax action 

selection; discount factor = temporal discount factor of rewards; p = probability to repeat the same 

action during the first-stage decision; w = constant weighting factor combining model-based and 

model-free algorithms, w = 1 is full model-based learning). 

 

Model Description # Par. AIC BIC 

HYBRID 
combination of model-

based and model-free  
6 7620 7629 

MB pure model-based 5 8530 8540 

MF pure model-free 4 9055 9061 

 

 

Hybrid model parameters (group-level mean ± SEM) 

lrSARSA lrFORWARD temperature discount factor p w 

0.874  

[0.860, 0.889] 

0.251 

[0.230, 0.272] 

3.589 

[3.341, 3.838] 

0.094 

[0.081, 0.108] 

0.176 

[0.161, 0.191] 

0.333 

[0.313, 0.353] 
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Table S2 | Univariate GLM and decoding results, Related to STAR Methods. Results of univariate 

model-informed analyses to detect SPE and RPE signals as well as the value of the chosen action in 

the brain. Furthermore, decoding results of participant’s state expectations at the time of state-

decision. Minimum distance of sub-peaks of 30 mm. 

 

H Brain region x y z Size (mm3) p FWE TFCE 

(a) Univariate SPE 

L IPS, PCu -10 -70 43 15585 0.018 850 

R IPS 40 -45 45 6419 0.019 829 

R MFG 35 5 53 1900 0.031 733 

R dlPFC 47 29 29 2707 0.037 697 

R Insula 34 24 -3 36 0.048 642 

(b) Univariate RPE (small volume corrected using the VS ROI of Gläscher et al., 2010) 

L VS -8 15 -8 156 0.005  

(c) Univariate value of chosen action (at reward-decision, i.e. A2) 

 ACC subgenual 1 12 -10 1211 0.023 608 

 vmPFC 1 52 -7 2852 0.036 532 

(d) Decoding of state expectations (AUC minus chance-level) 

 PCu 2 -61 37 9520 0.025 979 
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Table S3 | Pattern change GLM results, Related to STAR Methods. Results of the GLMs combining 

pattern change, PE-evoked BOLD responses and changes in behavioral policy. Minimum distance of 

sub-peaks of 30 mm. 

 

H Brain region x y z Size (mm3) p FWE TFCE 

(a) SPE-evoked BOLD response in IPS predicts subsequent pattern change at state-decision 

L SPL -23 -42 45 186098 0.002 1392 

R ↳  SMA 10 0 62 x 0.003 1286 

R ↳  PCu 8 -77 50 x 0.004 1260 

 ↳  MCC 0 -9 33 x 0.007 1126 

L ↳  PCu -13 -47 74 x 0.011 1030 

L ↳  IPS -55 -42 42 x 0.016 947 

R ↳  Insula 32 10 17 x 0.029 773 

R MFG 22 48 30 14979 0.023 863 

R ↳  vmPFC 13 53 -13 x 0.036 769 

L OFC -30 40 -10 10046 0.032 792 

L ↳  MFG -38 43 30 x 0.036 767 

(b) RPE-evoked BOLD response in VS predicts subsequent pattern change at reward-decision 

R dlPFC 47 20 15 395224 0.001 1637 

L ↳  OFC -28 28 -20 x 0.002 1468 

R ↳  OFC 25 42 -17 x 0.003 1395 

R ↳  M1 42 -25 52 x 0.003 1381 

L ↳  M1 -48 -18 43 x 0.003 1357 

L ↳  Insula -35 -2 -15 x 0.003 1344 

L ↳  IPS -33 -63 38 x 0.003 1341 

 ↳ ACC pregenual 13 38 10 x 0.003 1338 

R ↳  Insula 47 2 -15 x 0.004 1308 

 ↳ ACC subgenual 7 7 -10 x 0.004 1299 

L ↳  dlPFC -38 22 17 x 0.004 1278 

R ↳  IPS 33 -55 38 x 0.028 832 

R ↳  MFG 35 45 30 x 0.032 801 

(c) Pattern change at state-decision predicts subsequent change in behavioral policy of A1 

R M1 35 -15 53 378594 < 0.001 2127 
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L ↳  M1 -30 -23 51 x < 0.001 1866 

R ↳  vmPFC 12 57 -6 x 0.001 1662 

R ↳  Insula 35 -11 -10 x 0.001 1508 

R ↳  OFC 22 25 -18 x 0.001 1499 

L ↳  SMA -12 10 52 x 0.002 1442 

L ↳  vmPFC -7 57 19 x 0.003 1324 

L ↳  OFC -15 22 -18 x 0.003 1287 

R ↳  PCu 17 -52 20 x 0.011 982 

L ↳  dlPFC -53 27 9 x 0.017 893 

R ↳  dlPFC 52 25 7 x 0.037 725 

R ↳  MFG 47 20 42 x 0.037 722 

(d) Pattern change at reward-decision predicts subsequent change in behavioral policy of A2 

L vmPFC -15 43 20 421564 0.001 1766 

L ↳  OFC -25 25 -18 x 0.001 1753 

R ↳  M1 30 -16 49 x 0.001 1677 

L ↳  M1 -37 -19 42 x 0.001 1617 

L ↳  MCC -10 10 34 x 0.002 1397 

L ↳  dlPFC -57 15 12 x 0.002 1312 

R ↳  OFC 20 21 -15 x 0.005 1185 

L ↳  MFG -42 34 37 x 0.110 1014 

L ↳  PCu -10 -64 67 x 0.018 902 

 ↳  SMA 0 7 65 x 0.023 835 

R ↳  MFG 44 36 37 x 0.044 715 

(e) Conjunction: Pattern change at reward-decision correlated with RPE-evoked BOLD response in 

VS AND with change in behavioral policy of A2 (conjunction performed on FWE-corrected results 

without TFCE, because conjunctions may not be performed on TFCE enhanced data) 

L OFC -27 24 -21 121 0.032  
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Table S4 | Uncorrected conjunction results, Related to STAR Methods. Results of conjunction 

analyses on uncorrected results to test joint hypotheses. Minimum distance of sub-peaks of 30 mm. 

 

H Brain region x y z Size (mm3) Peak p unc. 

(a) Conjunction: Pattern change at reward-decision correlated with RPE-evoked BOLD response in 

VS AND with change in behavioral policy of A2 

L OFC -26 23 -17 1895 0.00028 

R Insula 38 -5 16 1318 0.00046 

R dlPFC 49 15 17 722 0.00071 

L M1 -44 -20 44 405 0.00054 

 ACC pregenual 3 40 19 178 0.00086 

(b) Conjunction: Pattern change at state-decision correlated with SPE-evoked BOLD response in IPS 

AND with change in behavioral policy of A1 

R M1 39 -19 48 3322 0.00031 

L M1 -33 -15 56 2135 0.00048 

R vmPFC 10 48 -9 739 0.00093 

(c) Conjunction: Pattern change at reward-decision correlated with RPE-evoked BOLD response in 

VS AND value of chosen action A2 at the time of reward-decision 

 ACC subgenual 2 10 -12 191 0.00037 

(d) Conjunction: Pattern change at state-decision correlated with SPE-evoked BOLD response in IPS 

AND decoding of state expectations at the time of state-decision 

 PCu 3 -65 48 549 0.00186 

 

 

31



 

1.2 Protocol for predicting multivariate change of brain patterns using model-informed fMRI 

activations (STAR Protocols, 2024, Möhring and Gläscher) 
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Protocol

Protocol for predicting multivariate change of
brain patterns using model-informed fMRI
activations

Investigating the spatially distributed information contained in fMRI data is essential for

understanding brain functions. Here, we present a protocol to dynamically predict short-term

changes in neural patterns using trial-by-trial blood-oxygen-level-dependent (BOLD) activity of a

seed region.We describe steps for setting fMRI data acquisition parameters and quantification of

changes in multivariate patterns. We then detail procedures for defining seed regions and

identifying brain areas in which changes in multivariate patterns can be predicted by BOLD

activity of the seed region.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional

guidelines for laboratory safety and ethics.
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SUMMARY

Investigating the spatially distributed information contained in fMRI data is
essential for understanding brain functions. Here, we present a protocol to
dynamically predict short-term changes in neural patterns using trial-by-trial
blood-oxygen-level-dependent (BOLD) activity of a seed region. We describe
steps for setting fMRI data acquisition parameters and quantification of changes
in multivariate patterns. We then detail procedures for defining seed regions and
identifying brain areas in which changes in multivariate patterns can be predicted
by BOLD activity of the seed region.
For complete details on the use and execution of this protocol, please refer to
Möhring et al.1

BEFORE YOU BEGIN

Institutional permissions

This study protocol was approved by the Ethics Committee of the Medical Association of Hamburg

(2020-10102-B0-ff) and conducted in accordance with the Declaration of Helsinki. Any following

fMRI studies will need to acquire permissions from the relevant institutions.

Predicting multivariate pattern change – Description of analysis strategy

Multivariate methods provide novel perspectives on stimulus representations in the human brain,

unveiling the information embedded in spatially distributed patterns of neural activity, as measured

by functional magnetic resonance imaging (fMRI). A plethora of studies have utilized machine

learning algorithms to decode information about stimuli or investigate the (dis)similarity of activa-

tion patterns in relation to perceptual or categorical similarity. However, limited methods exist to

explore the correlation between multivariate changes and potentially causal signals in the brain

that give rise to these alterations in patterns. Our strategy of predicting multivariate pattern changes

integrates both univariate and multivariate techniques. It enables the prediction of pattern alter-

ations by leveraging preceding BOLD responses within specified regions of interest (ROIs) on a

trial-by-trial basis. The protocol involves the following 4 major parts, each of them consisting of

several analysis steps.

1. Define a seed ROI that is hypothesized to elicit pattern change in some other brain region(s).

2. Extract the trial-by-trial BOLD activations in the seed ROI.

3. Calculate multivariate pattern change across the entire brain using a searchlight algorithm. This

condenses the multivariate patterns into a univariate signal of change.

4. Regress the pattern change images series (dependent variable) onto the BOLD activations from

the seed ROI (independent variable, predictor) using a univariate GLM.
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We describe these parts in more detail in the sections below.

Note: This protocol describes the specific steps to investigate pattern change following pre-

diction errors (PE) during a reinforcement learning (RL) task. In the original publication we uti-

lize two distinct seed ROIs exhibiting two different types of PEs to predict subsequent changes

in neural patterns of other brain areas. These seed ROIs are the ventral striatum (VS), a region

well known to show a reward prediction error (RPE) signal, as well as the intraparietal sulcus

(IPS) which exhibits a state prediction error (SPE) signal. This enables us to detect brain regions

in which pattern changes can be predicted by only one of two prediction error types. Though,

the analysis does not require two seed ROIs and can also be used for hypotheses involving

only a single seed ROI.

Note: Themethodological approaches we present are applicable to many other types of tasks

and brain regions. To apply this protocol to your studies the requirement is a seed ROI exhib-

iting a trial-wise explanatory BOLD response in combination with changing neural represen-

tations in other parts of the brain.

Design experimental task

Timing: 4 weeks

5. Choose an experimental task for the project.

Note: There are a number of things to consider when designing a task for multivariate analyses

in fMRI. Some of the points below apply to multivariate analyses in general; others are specific

to this protocol.

a. Dynamics and effect strength of the seed ROI activity.

i. Estimate the required sample size of the project to achieve a significant effect in the

seed ROI.

Note: Such power analysis can be carried out with ready-made tools for fMRI, e.g.

neuropowertools.org by Durnez et al.2 or fmripower by Mumford et al. (although this tool is

no longer developed and updated).3

ii. Aim for a Gaussian distribution of BOLD response magnitudes in the seed ROI to facilitate

estimation of the final GLM.

b. Time interval between adjacent pattern events (i.e., the events at which multivariate patterns

are extracted and used to calculate the pattern change, see Figure 1).

i. Slightly shift the timing of pattern events in each run to reduce temporal autocorrelation.

Note: see Figure 2, the time shift is introduced by participant’s input reaction times during

decision 1 (state-decision) 1.58 G 0.77 s [mean G SEM] and decision 2 (reward-decision)

1.07 G 0.66 s.

ii. The time interval between two adjacent patterns, which will be compared in the analysis,

should not be too short (temporal autocorrelation) or too long (not enough datapoints/tri-

als, possibly greater changes in neuronal background activity masking the real pattern

change of interest).

Note: We were able to produce good results with an interval of around 25–30 seconds be-

tween two corresponding pattern events (see Figure 2 for event timings).
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c. Temporal relation of seed region event to pattern event.

Note: The event eliciting the BOLD response which is hypothesized to predict pattern

changes should occur between the two pattern events used to calculate the pattern change,

see Figure 1.

Optional:When using multiple model-informed computational signals as predictors of BOLD

activity, ensure that these signals are mostly uncorrelated, which helps with the identifiability

of the neural correlates of the computational variables.

Figure 1. Analysis strategy and trial structure

The explanatory BOLD signal at event B (explanatory event) of the seed ROI, which will later be used to predict the

change in neural patterns of other brain regions, occurs between both of the events A (pattern event), which elicit the

patterns that are used to calculate the pattern change metric. In the final GLM the pattern change between two

adjacent events A is regressed onto the explanatory BOLD responses at event B. Notably, the pattern change of the

last trial is undefined, because there is no next pattern to compare the last trial’s pattern against.

Figure 2. Trial timing and seed ROI signal distribution

(A) Timing of events in one trial of the original task design. The input of participant’s decisions is not time restricted

and introduces slight shifts in timing of the pattern events, therefore reducing temporal autocorrelation.

(B) Histograms of the two seed ROI BOLD responses of all participants in the original experiment. Aim for a Gaussian

distribution of BOLD responses in the seed ROI to facilitate the estimation of the final GLM that predicts pattern

change using these signals.
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6. Gather behavioral pilot data to ensure the task is capable of producing the desired behavioral

response and neural effects.

Set fMRI scan parameters

Timing: 1 day

7. Balance scan parameters for functional imaging depending on your specific needs whilst retain-

ing a reasonable temporal signal to noise ratio (tSNR).

Note: We recommend performing test scans on your local MR scanner using multiple param-

eter combinations and calculate the tSNR of your target regions to guide your final decision

(see Figure 3).

Optional: Especially subcortical regions (like the ventral striatum) are susceptible to signal

dropout when the scanning parameters are configured in an unfavorable way. In this case, re-

verting the phase encoding direction might help in recovering signal in these regions.

Note: The following fMRI sequence parameters affect tSNR. We recommend selecting a com-

bination of these parameters that maximize tSNR in the brain region with the lowest tSNR

(either the seed or target region).

Figure 3. Different scan parameters and corresponding tSNR maps

(A) The tSNR maps for 3 different combinations of fMRI scan parameters calculated for 50 scans each.

(B) Comparison of tSNR values for different combinations of voxel sizes and multiband factors (MB) in a subcortical ROI

(VS) and a cortical ROI (dorsolateral prefrontal cortex, dlPFC). Subcortical regions have lower tSNR values in general

and were the limiting factor in this project. We chose to use a voxel size of 2.5 mm and MB 2 for functional imaging.

(C) Repetition times (TR) of the different fMRI scan parameter combinations.

(D) The tSNR is defined as the mean signal strength of a series of scans divided by the standard deviation of the signal.
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a. TR.

b. Voxel size.

c. Acceleration (e.g., Multiband, in-plane acceleration).

d. Scan volume (i.e., brain coverage of slice stack).

Note: The scan parameters we used in this project were chosen and optimized with the inten-

tion to achieve a very short TR. However, the analysis described in this protocol should also

work on conventional TR intervals of around 2 seconds. In this specific project, MRI data

collection was conducted on a Siemens Prisma 3T scanner (Siemens, Erlangen, Germany)

equipped with a 64-channel head coil. Each brain volume consisted of 24 axial slices (voxel

size, 2.53 2.53 2.5 mm3, and 0.5 mm spacing between slices) acquired using a T2*-weighted

echo planar imaging (EPI) protocol (repetition time, TR = 627 ms; echo time, TE = 30 ms; flip

angle = 45�; field of view = 224 mm, inplane acceleration factor = 2, Multiband factor = 2,

Phase encoding direction P >> A). The orientation of the slice pack was tilted approximately

30� upward to the anterior commissure–posterior commissure axis to minimize susceptibility

artifacts in the orbitofrontal cortex (OFC).4

Note: The flip angle that maximizes SNR under repeatedmeasurements (the ‘‘Ernst angle’’ is a

function of the repetition time (TR) and the T1 relaxation time and is calculated as aErnst =

arccos
�
e�

TR
T1

�
. In our Siemens Prisma scanner the T1 relaxation time of gray matter is

measured as 1500 ms, which is the range reported in the literature.

8. Collect additional data for later use during preprocessing of the functional images.

a. Field map: acquired with a gradient echo based sequence before functional EPI scanning to

measure the magnetic field inhomogeneity (TE1 = 5.29 ms, TE2 = 7.75 ms).

b. Anatomical scan: a high-resolution anatomical image (voxel size, 1 3 1 3 1 mm3) acquired af-

ter the experiment using a T1-weighted MPRAGE protocol (FoV 256 mm, TR = 2300 ms, TE =

2,98 ms, phase encoding direction R >> L).

Optional: Collect physiological data (e.g. ECG, breathing belt) to remove physiological noise

from the BOLD data (However, this did not improve sensitivity of the multivariate analyses in

our project).

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Behavioral data This paper https://doi.org/10.5281/zenodo.8015563

Code This paper https://doi.org/10.5281/zenodo.8015561

Imaging data This paper Will be shared by the lead contact
upon request

Software and algorithms

MATLAB MathWorks https://de.mathworks.com/products/
MATLAB.html, RRID:SCR_001622

SPM12 The Wellcome Centre for
Human Neuroimaging

https://www.fil.ion.ucl.ac.uk/spm/,
RRID:SCR_007037

The Decoding Toolbox Martin Hebart https://doi.org/10.3389/fninf.2014.00088

MRIcroGL Chris Rorden https://www.nitrc.org/projects/mricrogl,
RRID:SCR_002403

dcm2niix Chris Rorden https://github.com/rordenlab/dcm2niix

DARTEL Toolbox The Wellcome Centre for
Human Neuroimaging

https://github.com/neurodebian/spm12/
blob/master/toolbox/DARTEL/tbx_cfg_dartel.m

(Continued on next page)
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STEP-BY-STEP METHOD DETAILS

Perform experiment

Timing: 2 h

Note: In this major part the participant performs the experimental task inside the scanner and

all data needed for the analysis are gathered. The participant should receive all necessary in-

structions to perform the task before entering the scanner.

1. Position participant inside the scanner and install a 64-channel head-coil.

2. Perform localizer scans.

Optional: This is a good time to check any input devices the participants will use throughout

the task and run a test trial to make participants familiar with the setup.

3. Acquire a field map to measure inhomogeneities of the magnetic field before collecting the func-

tional EPI data.

Note: The positioning of the slice pack is automatically copied from the positioning of the field

map measurement.

4. Start task using a presentation software tool, perform task and acquire functional imaging data

(EPI).

5. After the experiment acquire anatomical images of the participant (MPRAGE).

Preprocess data

Timing: 30 min

Note: There are many protocols for preprocessing fMRI data in various software packages

(SPM, FSL, AFNI, Brain Voyager) or using a combination of them (e.g. fMRIprep) that aims

for standardization and replicability. The protocol below represents a fairly standard way of

preprocessing fMRI data with SPM12, you can find the preprocessing code used in this proto-

col in the code depository (https://doi.org/10.5281/zenodo.8015561).

6. Convert all imaging data fromDICOM format into NIfTI (.nii) format (e.g., using the dcm2niix soft-

ware package).

7. Realign and unwarp functional imaging data (to minimize noise introduced by head movement

and rotation of participants in the functional imaging data).

a. Create a voxel displacement map (VDM) using the fieldmap data.

b. Perform the SPM12 realign and unwarp5 on the functional imaging data using the first func-

tional EPI scan as reference.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Siemens Prisma 3T scanner Siemens, Erlangen, Germany https://www.siemens-healthineers.com/de/
magnetic-resonance-imaging/3t-mri-scanner/
magnetom-prisma

Head/Neck 64 (64-channel
head coil)

Siemens, Erlangen, Germany https://www.siemens-healthineers.com/
magnetic-resonance-imaging/options-
and-upgrades/coils/64-channel-head-neck-coil
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8. Normalization of all images to the MNI space (this step involves aligning the individual data from

all participants into a common normalized space, enabling second-level group analyses).

a. First co-register the anatomical image to the first functional EPI scan.

b. Skull-strip and segment the anatomical image into gray matter, white matter, and cerebrospi-

nal fluid (CSF) using the ‘‘Segment’’ tool of SPM12.

c. Use the results of the segmentation to create a flow-field in the DARTEL toolbox.6

d. Normalize the anatomical and functional image data by applying the flow-field to all images

(troubleshooting 1).

9. Smoothing of functional images (to enhance the signal-to-noise ratio in the functional data. We

applied less smoothing specifically for use in multivariate analyses to preserve spatially distrib-

uted information).

a. For univariate analyses smooth with a Gaussian kernel of FWHM = 6 mm.

b. For multivariate analyses smooth with a Gaussian kernel of FWHM = 2 mm.

Define ROI of seed region

Timing: 1 h

Note: The first major step is to define the Region of Interest (ROI) of the seed region which will

be used to predict subsequent pattern changes in other areas of the brain. There are several

ways to define a ROI for the seed region:

10. Anatomical ROI definition:

a. Anatomical mask image defined in a brain template (e.g., MNI154, Colin27).

b. Anatomical mask image defined individually for each participant (e.g., by tracing and

anatomical region on a T1 image using the drawing tools of established software packages,

e.g., MRIcroN, MRIcroGL).

11. Functional ROI definition:

a. Localizer experiment: short fMRI run presenting stimuli that activate the intended seed

region.

b. Localizer contrast: similar to a., except that the ROI is identified with a functional contrast in

the main experiment.

c. Model-informed analysis: using variables (e.g., a reward prediction error) derived from a

computational model (in the case of this protocol we used a reinforcement learning algo-

rithm to model prediction error signals) as parametric modulators in the definition of the

design matrix in a GLM.

Note: This additional regressor will specify model-derived modulations of the height of the

BOLD response (i.e., a large prediction error will result in a larger predicted BOLD response

in the design matrix). This approach is similar to b., but it utilizes variables from a computa-

tional model to identify the seed ROI. In the SPM software package, which was a used in

the original study, the values of these model-derived variables can be included in the onset

definition during model specification.

Note: In the main paper that this protocol describes, we used the option ‘Model-informed

analysis’ to identify 2 ROIs that correlated with a model-derived reward and state prediction

error. However, this protocol does not require 2 separate ROIs, a single explanatory seed ROI

is sufficient. Below are additional details for running this analysis.

12. Specify a 1st level GLM for each participant using all experimental events in a single condition

(regressor) and the model-derived computational signal as parametric modulators of these

onset events.
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13. Estimate themodel and include the beta images for the parametric modulators in a second-level

group analysis.

Note: If the modulator(s) are independent of each other, a one-sample t-test as the 2nd level

design is appropriate, if the ROI is only identified via a differential contrast (e. g.

modulator1 > modulator2), then a paired t-test is the more appropriate design choice.

Optional: If the statistical results do not survive family-wise error correction, but the statistical map

shows wide-spread activations just below the statistical threshold, refer to troubleshooting 2.

14. Save the results for each ROI as a mask image and use it subsequently to extract single-trial

BOLD activations of the seed ROI.

Extracting BOLD activations from the seed ROI

Timing: 2 h

Note: The goal of this part is the creation of a vector of BOLD activations in the seed ROI that

can be used as a predictor to detect correlated pattern change. Thus, the result of this step is

no longer a time-series in the traditional sense (i.e. a value for every EPI image in the original

BOLD time series recorded in the scanner), but rather a vector of trial-by-trial estimates of the

BOLD activation for each event in the experiment. It involves 2 analysis steps:

15. Obtain the BOLD activation at the time of the explanatory event (see event B in Figure 1) by us-

ing a first-level analysis that estimates the BOLD activation for each trial separately. There are

two approaches to setup this first-level design detailed in Mumford et al.7 We found that the

Least-squares Separate method was able to slightly improve the sensitivity of the pattern

change analysis described in this protocol (this is especially the case for estimating first-level

BOLD activations of the pattern events). However, this method is computationally intensive,

see troubleshooting 3.

a. Least-squares All: A single first-level design with as many onset regressors as the number of

trials in the experiment.

Note: Each regressor contains only one trial of each event type in the experiment (i.e. it’s

onset). This results in as many beta images as there are trials each representing the BOLD ef-

fect for its trial.

b. Least-squares Separate: one first level GLM for each trial containing the trial in question in a

single onset regressor and all other trials in a second regressor.

Note: This requires estimating as many first level GLM as there are trials in the experiment.

Only the single trial beta image is of interest for further analyses. Although being a heavier

computational burden, this approach supposedly provides more precise estimates of the sin-

gle trial BOLD effect (see Mumford et al.7 for a more thorough and nuanced discussion). Fig-

ure 4 contrasts the first level designs for Least Square – Separate and Least Square – All as dis-

cussed in the Mumford paper.

16. Extract the mean BOLD effect for each trial in the seed ROI from the results of the trial-wise first-

level GLM using the ROI mask image created in the previous part.

Note: This script shows how to use SPM functions to open .nii beta images, remove non

numeric values (NaN, not a number) and then extract the mean BOLD signal of the ROI

mask in every trial:

ll

8 STAR Protocols 5, 102978, June 21, 2024

Protocol

41



Calculate pattern change maps

Timing: 2 h

Note: The result of this part is a trial-by-trial image series (across the entire brain) that contains

the multivariate change in BOLD activation patterns between an event in a trial (e.g. a screen

with decision cues that elicit the calculation of expected values for each option) and the same

event in the next trial. This is done using a searchlight algorithm, which averages the pattern

change within a searchlight and writes the resulting pattern change index into the center voxel

before moving to the next voxel.

> ROI_mask_header = spm_vol(char(ROI_mask_filename));

> ROI_mask_vol = spm_read_vols(ROI_mask_header);

>

> for i_trial = 1:n_trials

> beta_image_header = spm_vol(char(beta_image_filename));

> vol = spm_read_vols(beta_image_header);

> vol(isnan(vol)) = 0;

> seed_ROI_BOLD(i_trial) = sum(vol .* ROI_mask_vol, ’all’) / nnz(ROI_mask_vol);

> end

Figure 4. Examples of first-level design matrices for two different analysis approaches to obtain single-trial estimates of BOLD activation

(A) In Least Square – All, each trial event is included in the design matrix as an individual regressor, but all events are included in the same first level

analysis.

(B) In Least Square – Separate, the event of interest is included in a separate regressor, whereas all other events are included in another regressor. This

design is repeated for every trial. From each of these first level analyses the beta image of the regressor with the single event is retained for further

analyses.
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17. Obtain the BOLD activation at the time of the pattern event (see event A in Figure 1) by using a

first-level analysis that estimates the BOLD activation for each trial separately.

Note: The Least-squares Separate approach (see step 15) is again favorable for the sensitivity

of the analysis.

18. Employ a searchlight algorithm to calculate the pattern change of the whole brain in every trial.

We used spherical searchlights with a radius of 10 mm (4 voxels).

Note: The searchlight radius should be large enough to include a sufficient number of voxels

to facilitate meaningful pattern analyses, but small enough to retain spatial specificity. We

found that a radius of 4 voxels is a good balance for the pattern change analysis presented

in this protocol.

a. The Decoding Toolbox (TDT)8 provides an adaptable framework for calculating multivariate

pattern change in the context of a searchlight algorithm.

Note:Most searchlight algorithms are intended to be used for pattern classification. They only

provide you with the patterns of all trials of a specified condition/class and discard information

about the temporal relationship of patterns. However, for this analysis we need the patterns of

all trials in chronological order.

b. To achieve a chronological order of all trial, expand the TDT with information about the trial

number for each pattern.

c. Label all trial patterns with the same class/condition to pass them to the searchlight function

in one batch.

d. Within the searchlight function, iterate through all trial patterns in backwards order. This im-

plies that the resulting pattern change of two adjacent trials t and t+1 will be stored at trial t.

Note: This order is beneficial for setting up the linear model in later analyses, because the

pattern change[t, t+1] is already aligned with its predicting BOLD activation in the seed

ROI at trial t.

Note: The pattern change of the last trial in each run remains undefined (i.e. there is no trial to

compare the last pattern with).

CRITICAL: The following script describes the above steps that should happen within the

searchlight function. TDT passes the data of each searchlight (i.e. patterns of voxel activa-

tions for every trial) using the current_data 2D-array (the first dimension if this array are all

trials and second dimension are all the voxels of the current searchlight sphere). The var-

iable current_decoding indicates the index of the current searchlight sphere. When

dealing with several runs you have to add another for-loop for all runs surrounding this

code snippet.

> previous_pattern = NaN(length(current_data(1,:)), 1);

>

> for i_trial_forward = n_trials : -1 : 1

>

> if(isnan(previous_pattern))

> % pattern_change of the last pattern is undefined
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Note: You can find the code that uses TDT functions for this analysis in the code repository of

this protocol (https://doi.org/10.5281/zenodo.8015561).

19. An important choice is the multivariate distance measure that is used for calculating the pattern

change. We choose to utilize a Fisher z-transformed correlation distance as explained below.

a. Calculate the Pearson correlation coefficient between the BOLD activation patterns in the

searchlight between the same event in two adjacent trials (If some of the resulting correlation

coefficients are undefined (i.e., NaN), refer to troubleshooting 4).

b. Apply a Fisher z-transformation to improve the distribution of correlation coefficients toward

a Gaussian distribution.

Note: Figure 5 exemplifies the effect of this transformation: data points (voxel activation at

both ends of the distribution are exaggerated, whereas those in the middle are mostly left un-

changed). The Fisher-z transformation can be performed by calculating the atanh() of a corre-

lation coefficient.

c. Flip the sign of the transformed correlation distance.

Note: That way, two highly correlated patterns will result in a low amount of pattern change

and vice versa.

d. Write the pattern change of the searchlight sphere to the center voxel.

20. Store the resulting pattern change maps of all trials in NIfTI format for subsequent analyses. This

can be achieved with spm_write_vol() when using SPM.

Note: To store the data with the same volume settings (e.g. rotation, voxel size) as your input

data it is easiest to use the header of existing NIfTI files (we used the ROI_mask_header here,

troubleshooting 5).

> result(i_trial, current_decoding) = 0;

> else

> pattern_change = [calculate pattern change here];

> result(i_trial, current_decoding) = pattern_change;

> end

>

> previous_pattern = current_data(i_trial, :);

> end

> correlation_matrix = corrcoef(searchlight_voxels(t, :), searchlight_voxels(t+1, :));

> pattern_change = - atanh(correlation_matrix(1,2 ));

> output_header = ROI_mask_header;

>

> for i_trial = 1:n_trials
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Optional: There are different options when choosing the multivariate distance measure for

pattern change calculation. We achieved best results when using the described Fisher z-trans-

formed correlation distance, but here are examples of other possible distancemeasures to try:

Mahalanobis distance: similar to the correlation distance, but it also considers the covariance

between the whole distribution of voxel activations in the searchlight sphere over all trials.

First, you have to calculate the covariance matrix of all patterns (all trials in a given searchlight)

to then determine the Mahalanobis distance of each individual pattern to the whole distribu-

tion of patterns in that searchlight.

Sum of squared differences: the simplest (and unscaled) distance measure corresponding to

the cost function in ordinary least squares designs (e.g. multiple regression analysis)

Figure 5. A correlation based pattern change metric

This figure illustrates how to calculate the magnitude of pattern change between two patterns.

(A) Simulated patterns of a searchlight in trials 1 to 6 with linear gradients and different gradient directions. Patterns 1

and 2 have the same direction. Patterns 2 and 3 as well as 3 and 4 have slightly different gradient directions (45�).
Patterns 4 and 5 show completely opposite gradients (180�). Patterns 5 and 6 feature a medium change in gradients

(90�).
(B) Scatter plots of patterns in adjacent trials to visualize the pattern correlation.

(C) Pearson’s correlation coefficients (black dashed line) and Fisher-Z transformed correlation values (blue line).

(D) The pattern changemetric (red line) is a measure of the magnitude of change. Similar patterns produce low pattern

change values (patterns A and B) while inverse patterns result in high pattern change (patterns D and E).

> filename = sprintf(’betas_%03d.nii’, i_trial);

>

> output_header.fname = fullfile(output_dir, filename);

> output_header.private.dat.fname = output_header.fname;

> spm_write_vol(output_header, result(i_trial, :)

> end
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Predict pattern change using BOLD of seed ROI

Timing: 30 min

Note: In this major step of the analysis we combine the extracted BOLD signal of the seed ROI

and the whole brain pattern change maps described above in a univariate GLM to localize

areas of the brain in which changes in neural patterns can be predicted by the seed ROI

activity.

21. Specify a first-level GLM for each participant by regressing the trial-by-trial pattern change im-

age series (dependent variable) onto the trial-by-trial BOLD activations from the seed ROI (inde-

pendent variable, predictor):

22. Estimate the model and include the resulting beta images (b1) in a second-level group analysis.

23. Identify brain areas in which changes in neural patterns can be significantly predicted by the

BOLD activity of the seed ROI using a one-sample t-test in the second-level group analysis.

Note: If the statistical results do not survive family-wise error correction, but the statistical map

shows wide-spread activations just below the statistical threshold, refer to troubleshooting 2.

24. Visualize significant clusters by overlaying statistical results onto an anatomical image using es-

tablished software packages (e.g., MRIcron, MRIcroGL).

Further analyses

Optional: Several analyses can be explored to further investigate the observed pattern

changes, validate related hypotheses, or affirm the results of the pattern change predictions

outlined in this protocol. All of the methods listed below are well established and thus we do

not provide a detailed explanation for them in this protocol. Instead we want to illustrate ways

to expand on the results gained in the primary analysis.

25. Investigate the temporal dynamics of pattern changes.

a. The trial-by-trial pattern changemaps created in this protocol can be used to plot the trial-by-

trial evolution of pattern changes in different brain regions at specific events in the task. Fig-

ure 6A plots the mean magnitude of pattern change over all subjects in the orbitofrontal cor-

tex (OFC) before and after a reward reversal in the task.

26. Pattern classification: the pattern change analysis described in this protocol is capable of quan-

tifying differences in neural information content over time. Other analysis strategies have to be

utilized to gain insights about the information encoded in those patterns. This can be achieved

through a decoding analysis (multivariate classification) or representational similarity analysis.9

27. Permutation analysis: confirm the results of the primary pattern change analysis by employing a

permutation test in the final GLM. The concept is to simulate an analysis with many randomly

shuffled combinations of the input data and then compare the test-statistic of the analysis using

the real input data against the distribution of permutations (see Figure 6B).

a. During the first-level analysis (single subject): within each subject, permute the trial-by-trial

BOLD in seed ROI (predictor) while keeping the true order of trial-by-trial pattern changes.

b. Calculate the second-level group analysis using all subjects and store the resulting second-

level t-statistics of all permutations.

c. Compare the second-level t-statistic of the real analysis against the distribution of permuted

t-statistics.

> pattern_change � b0 + b1 * seed_ROI_BOLD
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28. Conjunction analysis: when testing multiple hypotheses you can test the statistical significance

of a combination of several analyses throughout the brain by employing a true conjunction

analysis.10

Note: Conjunction analyses must not be performed on threshold-free cluster enhancement

(TFCE) enhanced results.

EXPECTED OUTCOMES

After performing all analyses described above, the expected outcome is a statistical map of the

whole brain displaying the significance that pattern change in a brain region is predicted by the pre-

ceding BOLD signal strength of the seed ROI. Figure 7 depicts an overview of all major analysis steps

and the final GLM, which produces the statistical map.

LIMITATIONS

The multivariate analysis outlined in this protocol can draw conclusions about the magnitude of

pattern changes in different areas of the brain, the temporal dynamics of these changes (e.g., for

how many trials the pattern change persists) and the relationship to potential seed regions inside

the brain. It does not make assumptions about the information contained in the observed patterns.

To explore the information content of patterns other existing analysis types can be employed (see

further analyses).

The results of using this analysis strategy can also be impaired by different factors. These include

weak BOLD signal in seed and target regions, problems during seed ROI definition and insufficient

statistical power.

TROUBLESHOOTING

Problem 1

During the first data analysis you cannot obtain robust statistical group-analysis results for simple

contrasts (e.g., motor contrasts) (step 8).

Figure 6. Further analyses to consider

(A) Investigate the trial-by-trial temporal dynamics of pattern changes in different brain regions at important events in

the task. This figure shows the pattern change in the orbitofrontal cortex (OFC) after a reward reversal in the task. The

red line depicts the mean pattern change over all subjects and the light red area illustrates the standard error.

(B) Confirm the results of the primary pattern change analysis using a permutation test in which the trial-wise predictor

variable (BOLD in seed ROI) is randomly shuffled during the first-level analysis within each subject. Then plot a

histogram of the second-level T-statistic and compare the T-statistic of the real data against the distribution of

permutations (here we simulated the analysis with n = 10000 random permutations).
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Potential solution

� It might be worthwhile to manually check if the normalization process worked for all participants.

You can check this by overlaying all normalized images in a viewer like MRIcroGL.

� Also check if the order of your NIfTI files is correct and potential dummy scans at the start of the

experiment have been removed properly.

Problem 2

The statistical results of the final second-level pattern change GLM (or other GLMs, e.g., for func-

tional seed ROI definition) do not survive family-wise error correction (steps 13 and 23).

Potential solution

Depending on the shape of the activation clusters (e.g., wide-spread and rather flat vs. spiky with

smaller peaks in a larger cluster), TFCE (threshold-free cluster enhancement), an iterative permuta-

tion-based correction for multiple comparisons, can be used.11

Problem 3

The Least-squares Separate method requires the estimation of one whole GLM per trial in the exper-

iment. It may be extremely time and memory consuming (step 15).

Potential solution

Use parallel computing to estimate GLMs of all trials in the experiment. When a GLM is finished,

directly copy the beta image of interest (i.e., the beta image of the current trial in its own regressor)

into a new folder and discard the GLM to save memory.

Problem 4

The pattern change searchlight algorithm produces NaN values in the trial-by-trial pattern change

maps of some subjects (step 19).

Figure 7. Overview of all major analyses

Schematic overview of all major steps and the final GLM to predict changes in neural patterns using BOLD in a seed

ROI. The final GLM regresses the trial-by-trial pattern change in every voxel of the brain (dependent variable) onto the

trial-by-trial BOLD responses of the seed ROI (independent variable). The resulting beta images of all subjects are

then tested for statistical significance in a group analysis using a one-sample T-test.
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Potential solution

� Corrcoef() gives NaN values as an output, when one of the input variables contains a NaN. You can

use the option corrcoef(X, Y, ’rows’, ’complete’) or corrcoef(X, Y, ’rows’, ’pairwise’) to ignore NaN

in the input. You should also check the cause for the existence of NaN values in the input and fix

potential problems.

� Corrcoef() also produces NaN values, when at least one of the input patterns contains only iden-

tical values (i.e., the standard deviation of one pattern is zero). This results in a divide by zero

computation and the correlation of these two patterns is undefined. If this impairs the second level

GLM results and happens rarely you can try to replace these NaN values with zeros. If there are

many undefined correlation coefficients you should inspect the potential cause of that problem.

Problem 5

The stored NIfTI image has the wrong orientation or is stored in integer format so that information is

lost (step 20).

Potential solution

Make sure to use the correct header file when manually saving the NIfTI images. When saving the

results transforms your data into integer format you have to use the header of one of the realigned

and normalized images instead of the mask image header.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Jan Gläscher (glaescher@uke.de).

Technical contact

Questions about the technical specifics of performing the protocol should be directed to and will be

answered by the technical contact, Leon Möhring (l.moehring@uke.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Behavioral data have been deposited at Zenodo and are publicly available as of the date of pub-

lication. DOIs are listed in the key resources table. Imaging data reported in this paper will be

shared by the lead contact upon request.

� All original code has been deposited at Zenodo and is publicly available as of the date of publi-

cation. DOIs are listed in the key resources table.

� Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.
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2. Description of the publication with references 

2.1 Introduction 

Reinforcement learning (RL) encompasses a group of algorithms focused on guiding 

intelligent agents in selecting actions to maximize accumulated rewards (Sutton and Barto 

2018). These algorithms have had a significant impact on computational neuroscience by 

serving as effective models for understanding the learning and decision-making mechanisms 

in the brain. When navigating the complexities of the world, organisms, including humans, 

rely on responsive behaviors driven by internal models of their environment (Dayan and Daw 

2008). These internal models encode expectations, enabling the anticipation of future events 

and facilitating efficient responses. In dynamic environments, where the world undergoes 

constant changes, adaptive adjustments in behavioral strategies are essential. Learning, in 

this context, revolves around minimizing the disparity between internal expectations and 

real-world outcomes. Prediction errors (PEs) play a pivotal role in this process, serving as 

computational signals representing deviations from expected outcomes and acting as 

instructive cues in reinforcement learning paradigms. 

In the realm of RL, the continual updating of prediction errors and expected values is crucial 

for driving the learning process. Ideally, this iterative adaptation results in a convergence 

where internal expectations align perfectly with reality, and prediction errors approach zero. 

However, the intricate neural mechanisms underlying these adjustments in a biological 

system, such as the human brain, remain a profound question. Beyond the changes in the 

representations of core computational variables, the neural implementation of this process 

may also involve alterations in other cognitive systems (Niv 2009). Attentional resources, 

working memory, and motor planning likely contribute to the reshaping of internal models 

following a prediction error. 

Over the past two decades, considerable research has delved into the neural correlates of 

prediction errors (Garrison et al. 2013). However, none of these studies investigated the 

subsequent changes in activity patterns in brain networks that underlie reinforcement 

learning. This study integrates model-derived univariate and multivariate functional magnetic 

resonance imaging (fMRI) analyses, unveiling the short-term influence of prediction errors on 

patterns of neural activity in the human brain (Möhring and Gläscher 2023). 

 

2.2 Model-free and model-based Reinforcement learning 

To increase the specificity of observed changes in neural patterns induced by prediction 

errors, this study employs two distinct types of such errors. Using a task designed to evoke 
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orthogonal prediction errors, wherein one prediction error is large while the other is not, our 

goal is to establish a form of in-brain control group. Thus, enabling us to distinguish genuine 

error-related pattern changes from general effects of arousal. The two types of prediction 

errors used here are the reward and state prediction error. 

In the origins of research on reinforcement learning Schultz and colleagues were the first to 

observe a prediction error signature in neural recordings (Schultz 2019). They made the 

remarkable discovery that the phasic activity of midbrain dopaminergic neurons encodes a 

reward prediction error (RPE), which serves as the central teaching signal in model-free 

reinforcement learning (Schultz et al. 1997). 

Model-free RL is essentially rooted in a habitual principle, where actions followed by a 

reinforcer tend to be repeated in the future (Jocham et al. 2011, Lerner et al. 2021). 

However, beyond this habitual aspect, there is evidence suggesting the development and 

mental simulation of an internal task model to enhance effective decision-making (Daw et al. 

2011, Lee et al. 2014). From a computational perspective, these learning mechanisms are 

viewed as two distinct forms of reinforcement learning. Model-free reinforcement learning 

focuses exclusively on learning the values of potential actions in each state. The driving 

force behind model-free learning is the reward prediction error, which arises when 

anticipated rewards are not met. In contrast, model-based reinforcement learning aims to 

construct a mental representation of the state space and potential state transitions. Initially, 

the acquisition of information about the world's structure is independent of reward-related 

information. The central element responsible for updating expectations in model-based 

learning is the state prediction error (SPE), which occurs when there are deviations from the 

expected upcoming state (Gläscher et al. 2010). Subsequently, this knowledge of state 

transitions can be integrated with rewards, leading to a more sophisticated decision-making 

process. 

In an earlier study, Glaescher et al. utilized a probabilistic Markov decision task to distinguish 

between two distinct neural correlates of model-based and model-free reinforcement 

learning (Gläscher et al. 2010). They employed computational modeling with a novel hybrid-

learner, which integrated value estimates from both model-based and model-free learning 

algorithms using a free weighting parameter. Through this hybrid approach, they identified 

reward prediction errors in the ventral striatum (VS), replicating previous findings. 

Additionally, evidence for neural correlates of the state prediction error was observed in the 

intraparietal sulcus (IPS) and the dorsolateral prefrontal cortex (dlPFC). Importantly, they 

demonstrated that these signals were not merely related to general attention or salience but 

were better explained by the concept of model-based state prediction errors. These findings 
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suggest that human decision-making is influenced by a combination of these learning 

systems, and error signals from each system are computed in distinct brain areas. 

Figure 1. Neural correlates of the reward and state prediction error in the human brain.  

Using fMRI the RPE can be observed in BOLD signals of the ventral striatum (red) while the 

SPE is located in the intraparietal sulcus (blue). The figure is adapted from Möhring and 

Gläscher (2023). 

 

2.3 Neural correlates of the reward prediction error 

The reward prediction error signal initially observed by Schulz et al. is being distributed 

throughout the brain by dopaminergic neurons in the ventral tegmental area (VTA). On a 

rapid sub-second scale, known as phasic dopamine activity, these dopaminergic neurons 

encode highly time-specific reward prediction errors and impact swift behavioral responses 

(Schultz et al. 1997). The dopamine reactions can be directly assessed through 

electrophysiological methods and voltammetry. Using fMRI one can detect RPE signatures 

in blood oxygenation level-dependent (BOLD) responses of the ventral striatum (O’Doherty 

et al. 2003). The BOLD activations in this region likely reflects peri-synaptic activity caused 

by projections of midbrain dopaminergic neurons. 

In addition to transmitting the reward prediction error signal, dopamine is involved in multiple 

other cognitive systems. Slower alterations in dopamine levels, spanning seconds to 

minutes, correlate with diverse brain functions such as stress, reward, punishment, attention, 

and movement (Büchel et al. 2017, Datla et al. 2002, Howe et al. 2013, Young 2004). These 

gradual shifts in dopamine levels likely occur independently of rapid phasic activations and 

some theories suggest they may arise from presynaptic interactions or slower changes in 

impulses (Anzalone et al. 2012, Threlfell et al., 2012). Longer-lasting fluctuations in 

dopamine concentrations might modulate sensitivity to phasic dopamine impulses (Grace et 

al. 2007). Additionally, dopamine exerts a continuous influence on postsynaptic neurons and 

dopamine receptors. In Parkinson’s disease, the depletion of dopamine levels can be 

alleviated through pharmacological activation of dopamine receptors, which mimics healthy 

tonic dopamine levels but fails to trigger phasic responses (Frank 2005). Tonic dopamine 
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effects are associated with movement, cognition, and motivation (Schultz 2016). In 

conclusion, dopamine contributes to a variety of neuronal processes and affects behavior 

across phasic, intermediate, and tonic timeframes. 

 

2.4 The BOLD response and model-informed fMRI analyses 

In functional magnetic resonance imaging, the disparity in magnetic properties between 

oxygenated and deoxygenated hemoglobin is exploited to detect alterations in brain regions' 

oxygenation and perfusion over time, stemming from preceding neuronal activity. The 

resultant measure in fMRI is termed the blood oxygenation level-dependent signal, which 

responds to neuronal activations with a delay of approximately 4 to 6 seconds. To infer 

neuronal activity from its effects on the BOLD signal, researchers utilize a hemodynamic 

response function (HRF) to model the data. The HRF aims to characterize the temporal 

relationship between neuronal activations and the resulting increase in oxygenation due to 

vessel dilation and enhanced perfusion (Huettel et al. 2009). 

The statistical framework used for investigating functional neuroimaging data is known as 

statistical parametric mapping (SPM). Within this framework, a parametric statistical model is 

applied to each voxel of the collected fMRI data using the general linear model (GLM). The 

conventional approach for analyzing fMRI data is known as univariate analysis, where each 

voxel is examined separately (Friston et al. 1994). The objective is to characterize the 

variability in the data in terms of both experimental effects of interest and confounding 

effects, while accounting for some level of residual variability. First, multiple preprocessing 

steps are applied to the collected fMRI data to clean images from various potential noise 

sources. This typically involves correcting artifacts caused by head movement, transforming 

the data of all participants to a shared normalized space and enhancing the signal-to-noise 

ratio by applying slight smoothing. 

A design matrix is constructed, which includes regressors at defined onsets during the task 

for all experimental events as well as for potential confounding events in the data. 

Additionally, a regressor can be modulated in magnitude over time by applying a parametric 

modulator to it, often used to represent varying strengths of neuronal processes. These 

regressors are then convolved with the hemodynamic response function, and the resulting 

GLM is estimated based on the acquired BOLD data (Friston et al. 1994). Given the large 

number of statistical tests conducted for all voxels, it is crucial to address the issue of 

multiple comparisons to control false positive rates. 
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Figure 2. The hemodynamic response function and estimated BOLD signals.  

The regressors of the design matrix are convolved with the hemodynamic response function 

to emulate a hypothetical combined BOLD response which would result from the 

hypothesized underlying neural activations throughout the task. Subsequently, a general 

linear model is used to test the hypothesis of the convolved BOLD response being present 

for every voxel of the brain while accounting for some level of residual variability. 

 

Model-informed fMRI represents a powerful method for testing hypotheses regarding the 

underlying neuronal computations involved in cognitive systems of the human brain. 

Computational models, such as Reinforcement learning, can be calibrated to the behavioral 

data of participants gathered during the experiment and subsequently assessed based on 

the degree to which the model mirrors observed behaviors. The trial-by-trial time course of a 

variable (i.e. prediction errors) derived from this computational model is then employed as a 

parametric modulator assigned to a regressor in the GLM (Gläscher and O’Doherty 2010). 

The model-informed fMRI analysis results in a statistical map of the entire brain, highlighting 

regions where the observed BOLD signal corresponds with the expected convolved 

regressors of the computational model. 

 

2.5 Predicting multivariate change of brain patterns using PEs 

The advent of multivariate methods has provided a novel perspective on stimulus 

representations in the human brain, unveiling the information embedded in spatially 

distributed patterns of neural activity, as measured by functional magnetic resonance 

imaging (Haynes 2015, Kahnt 2018, Mahmoudi et al. 2012). While some studies have 

utilized machine learning algorithms to decode information about stimuli (Liu et al. 2022, 

Wilbertz et al. 2017, Wittkuhn and Schuck 2021), others have explored the (dis)similarity of 
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activation patterns in relation to perceptual or categorical similarity (Freund et al. 2021, 

Schuck et al. 2016, Yan et al. 2016). This approach has extended to the investigation of 

learning-induced changes in the similarity of activation patterns (Howard and Kahnt 2018). 

Prediction errors, as quantitative signals reflecting the deviation of expectations from 

environmental stimuli, necessitate proportional changes in the neural activity patterns 

encoding these internal representations. This study adopts a unique approach, 

simultaneously employing two distinct types of prediction errors: reward prediction errors and 

state prediction errors. This dual-error paradigm enables the identification of brain regions 

exclusively modulated by a specific type of prediction error, shedding light on error-specific 

changes in neural patterns. 

The analytical approach developed in this study integrates model-informed univariate and 

multivariate fMRI analyses, unveiling the influence of prediction errors on subsequent 

changes in patterns of neural activity. This method dynamically quantifies the magnitude of 

multivariate changes in neural patterns over time and predicts these pattern changes using 

trial-by-trial BOLD responses in error-coding regions (RPEs in VS and SPEs in IPS). The 

study introduced a metric ‘pattern change’ to quantify multivariate changes in neural patterns 

over time. Searchlight-based analyses were used to calculate whole-brain maps of pattern 

change for each trial (Möhring and Gläscher 2023). 

A searchlight analysis in fMRI involves systematically moving a small spherical "searchlight" 

across each voxel in the brain, performing a local analysis within each searchlight. The size 

of the searchlight, typically defined by a radius, determines the number of neighboring voxels 

included in the analysis. At each voxel location, the surrounding voxels within the chosen 

radius are considered, and a local analysis is conducted to characterize the patterns of 

activity within the searchlight. In this study, we employed a correlation-based metric to 

assess patterns of neighboring trials within the same searchlight, allowing us to quantify the 

degree of pattern change over time. The results of the local analysis are then mapped back 

onto the original brain space, creating a spatial map showing the outcome of the analysis at 

each voxel location (Etzel et al. 2013). 

  

56



 

Figure 3. Schematic of a searchlight analysis.  

This figure illustrates a searchlight analysis on fMRI data. The analysis utilizes a small 

spherical "searchlight" which is systematically moved across each voxel in the brain. Within 

each searchlight, we performed a local analysis comparing neural patterns from adjacent 

trials, utilizing a correlation-based distance metric. The outcomes of this local analysis were 

then mapped back onto the center voxels of each searchlight sphere. 

 

There are numerous options of multivariate distance measures that can be used for 

assessing pattern change. In our methodology, we adopt a Fisher z-transformed correlation 

distance for this purpose. Firstly, we calculate the Pearson correlation coefficient between 

the BOLD activation patterns in the searchlight for corresponding events in adjacent trials, 

with provisions to handle undefined correlation coefficients. Subsequently, we apply the 

Fisher z-transformation to these correlation coefficients to normalize their distribution 

towards a Gaussian distribution and allow for statistical evaluation of the pattern change 

metric. This transformation involves taking the arctanh() of each correlation coefficient. 

Afterward, we flip the sign of the transformed correlation distance, ensuring that highly 

correlated patterns correspond to low pattern change and vice versa (Möhring and Gläscher 

2024). 

𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑐ℎ𝑎𝑛𝑔𝑒[𝑡, 𝑡 + 1] = − arctanh(corr(𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑡], 𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑡 + 1])) 

Finally, we write the pattern change of the searchlight sphere to the center voxel and store 

the resulting pattern change maps of all trials. 

 

2.6 Results of the publication 

In this study, 44 participants completed a two-step Markov decision task over five runs. 

Initially, participants made decisions leading to transitions into either a blue or red state. 

Subsequently, in the second step, participants selected one of two boxes, each offering 
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either 0 €, 4 €, or 6 €. The task incorporated reversal and catch trials to induce unexpected 

changes, forcing participants to update their internal task model throughout the experiment. 

Hereby, prediction errors in model-based (SPE) and model-free (RPE) learning emerge. 

Importantly, the task design produced orthogonal SPEs and RPEs, allowing independent 

investigation of their effects. 

To model participant behavior, a hybrid-learning algorithm blending model-based and model-

free reinforcement learning was employed, emphasizing the interplay between both learning 

strategies during task execution. This hybrid approach utilized a constant weighting 

parameter to specify the impact of each learning strategy for an individual participant. During 

model evaluation, the hybrid-learning algorithm outperformed pure model-free and model-

based approaches. 

Neural correlates of SPEs were localized in the intraparietal sulcus and precuneus (PCu), 

while RPEs were identified in the ventral striatum. Notably, these results replicate the 

findings of an earlier study by Gläscher et al. (Gläscher et al. 2010). Regions of interest 

(ROIs), which will serve as seed regions for later predictive multivariate analyses, were 

defined based on a conjunction of those findings and the present study. 

The study introduced a metric ‘pattern change’ to quantify multivariate changes in neural 

patterns over time. Our results revealed that the mean pattern change over all trials shows a 

distinct distribution different from the distribution of mean change in blood oxygenation level-

dependent signal strength throughout the brain. This suggests that the introduced pattern 

change metric does capture information varying from pure univariate BOLD signals. 

Trial-wise BOLD responses induced by SPEs and RPEs were extracted in error coding ROIs 

and utilized to predict subsequent pattern change throughout the brain. This pattern change 

analyses unveils that RPE-evoked BOLD responses in the ventral striatum predicted 

subsequent pattern changes in orbitofrontal cortex, anterior cingulate cortex (ACC), 

dorsolateral prefrontal cortex, and bilateral insula. Contrarily, SPE-evoked BOLD responses 

in the intraparietal sulcus predicted pattern changes in superior parietal lobule (SPL), 

precuneus, supplementary motor area (SMA), and the intraparietal sulcus itself. Our results 

reveal short-term (20 - 30 s) effects of prediction errors on neural activation patterns in the 

brain. Importantly, these findings demonstrate a dissociation between RPE- and SPE-driven 

pattern changes, supporting the idea that distinct PEs influence different neural networks. 

Additionally, we explored the information content of evolving neural patterns. Clusters in the 

anterior cingulate cortex and ventromedial prefrontal cortex (vmPFC) coded for the value of 

the chosen action at reward-decision. The precuneus contained information about 

expectations of the next state at the time of state-decision. 
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Importantly, the introduced pattern change metric significantly predicted subsequent 

adaptations in behavioral policy of participants. Clusters in the primary motor cortex (M1), 

ventromedial prefrontal cortex, bilateral insula, and supplementary motor area were found to 

correlate with alterations in action probabilities for state-decisions. Furthermore, clusters in 

the orbitofrontal cortex, and dorsolateral prefrontal cortex were linked to changes in action 

probabilities for reward-decisions. 

Conjunction analyses identified brain regions where pattern change, modulated by PE-

evoked BOLD responses, predicted ensuing behavioral adaptations. Specifically, OFC 

exhibited such conjunction for reward-decision and RPEs, while vmPFC showed it for state-

decision and SPEs. These findings underscore the intricate relationship between prediction 

errors, neural activation patterns, and subsequent behavioral adjustments. 

 

2.7 Discussion 

In our study, we delved into the intricate workings of reinforcement learning in the human 

brain, focusing on the pivotal role of prediction errors in orchestrating dynamic changes in 

neural patterns that ultimately guide behavior. Despite its critical importance, the 

mechanisms leading to the transformation of these neural representations have been largely 

overlooked in previous research. 

Our findings show that prediction errors, specifically two distinct types – model-based SPEs 

and model-free RPEs – play a central role in driving short-term changes in neural activation 

patterns. These prediction errors exert specific effects on two learning systems, inducing 

alterations in neural patterns of particular brain regions. Notably, we established a direct link 

between the magnitude of pattern change and subsequent modifications in participants' 

behavioral policies, underscoring the profound impact of prediction errors on both neural 

representations and behavior. 

Our research sheds light on the segregation of these two prediction error types in different 

brain regions. RPEs were found to modulate pattern changes in regions associated with 

reward-related processes, including the orbitofrontal cortex, dorsolateral prefrontal cortex, 

and anterior cingulate cortex. These regions are known for encoding expected rewards, 

attributing values to stimuli, and participating in decision-making based on reward 

predictions (Hare et al. 2008, Klein-Flügge et al. 2013, Li et al. 2016, Yan et al. 2016). The 

involvement of ACC in encoding the value of chosen actions further emphasizes its crucial 

role in decision-making processes (Becker et al. 2016, Silvetti et al. 2013, Vassena et al. 

2014). 
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Conversely, SPEs were associated with pattern changes in the Precuneus and superior 

parietal lobule. The Precuneus, in particular, emerged as a key player in conscious 

processing of external information based on internal beliefs and updates to the internal 

model of the environment (Bzdok et al. 2015, Lyu et al. 2021). 

We also explored the distribution of RPE signals throughout the brain, highlighting the role of 

dopamine in mediating these effects. This suggests a potential biochemical substrate for the 

observed effects on neural activity patterns, implicating dopamine's ability to modulate short-

term synaptic plasticity (Brzosko et al. 2017, Condon et al. 2019, Yagishita et al. 2014). Our 

study supports the idea that prediction errors are involved in priming brain regions for 

subsequent functional reconfigurations, providing insights into the neurobiological 

underpinnings of learning. 

A major aspect of our findings is the connection between pattern changes in the orbitofrontal 

cortex and ventromedial prefrontal cortex and subsequent adaptations in behavioral policy of 

reward-related decisions. This aligns with existing research indicating that OFC value 

representations inform the general value signal constructed in vmPFC, guiding goal-directed 

behavior (Algermissen et al. 2022, Howard and Kahnt 2017, Lee et al. 2021, Schuck et al. 

2016, Vaidya and Badre 2020). Additionally, we observed correlations between pattern 

changes in motor-related regions (M1 and SMA) and changes in behavioral policy of state-

related decisions, suggesting a link between neural activity patterns, action planning, and 

execution. 

Our study contributes to the understanding of evolving multivoxel patterns of BOLD activity 

during learning, emphasizing the temporal changes in neural activation patterns. Leveraging 

multivariate approaches, trial-by-trial searchlight algorithms, and whole-brain general linear 

models, we provide a comprehensive account of the interplay between prediction error 

signals, neural activity patterns, and behavioral adaptations. The proposed pattern change 

metric captures differences in neural information content over time, offering valuable insights 

into the nature of neural activation patterns. 

In conclusion, our work offers insights into the mechanisms through which prediction errors 

drive short-term reconfigurations of neural representations, influencing subsequent shifts in 

behavioral policy. The dual perspective on neural patterns, considering both their temporal 

changes and the information they encode, contributes to a more nuanced understanding of 

learning within a theoretical framework that views learning as the process of updating 

internal models for more accurate predictions in the future.  
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3. Summary 

3.1 English version 

Surviving in constantly changing environments necessitates the brain's ability to update 

internal models and predict future events. A fundamental aspect of learning involves 

minimizing the gap between internal expectations and real-world outcomes, wherein 

prediction errors (PEs) serve as instructive signals. This study focuses on elucidating how 

PEs, specifically reward prediction errors (RPEs) and state prediction errors (SPEs), drive 

dynamic changes in neural patterns and consequently shape adaptive behavior. Multivariate 

analyses of functional magnetic resonance imaging (fMRI) data offer a unique perspective 

into neural representations, allowing the investigation of the effects of distinct PEs on the 

brain's spatially distributed activity patterns. Searchlight-based algorithms were employed to 

calculate pattern change across the entire brain, which was then related to trial-by-trial 

BOLD responses of PEs. Pattern change analyses revealed that RPE-evoked BOLD 

responses in the ventral striatum predicted subsequent pattern changes in orbitofrontal 

cortex (OFC) and anterior cingulate cortex (ACC). Conversely, SPE-evoked BOLD 

responses in the intraparietal sulcus predicted pattern changes in superior parietal lobule 

(SPL) and precuneus (PCu). Notably, changes of neural activation patterns, modulated by 

RPEs and SPEs, were found to predict subsequent adaptations in participants' behavioral 

policy. This study provides comprehensive insights into how PEs, specifically RPEs and 

SPEs, drive short-term changes in neural activation patterns, influencing subsequent 

behavioral adaptations. 
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3.2 German version 

Das Leben in ständig wechselnden Umgebungen erfordert die Fähigkeit des Gehirns, 

interne Modelle zu aktualisieren, um zukünftige Ereignisse vorherzusagen. Ein zentraler 

Aspekt des Lernens besteht darin, die Diskrepanz zwischen internen Erwartungen und 

realen Ereignissen zu minimieren, wobei Vorhersagefehler (PEs) als Lernsignale dienen. 

Diese Studie erforscht die Mechanismen, durch welche PEs, insbesondere 

Belohnungsvorhersagefehler (RPEs) und Zustandsvorhersagefehler (SPEs), dynamische 

Veränderungen in neuronalen Mustern beeinflussen und folglich adaptives Verhalten 

ermöglichen. Multivariate Analysen funktioneller Magnetresonanztomographie (fMRT)-Daten 

bieten eine einzigartige Perspektive auf neuronale Repräsentationen und ermöglichen die 

Untersuchung der Auswirkungen unterschiedlicher PEs auf räumlich verteilte 

Aktivitätsmuster des Gehirns. Searchlight-basierte Algorithmen wurden verwendet, um 

Musteränderungen im gesamten Gehirn zu berechnen, die dann mit BOLD-Antworten von 

PEs in Beziehung gesetzt werden. Die Analysen der Musteränderungen zeigen, dass RPE-

ausgelöste BOLD-Antworten im ventralen Striatum nachfolgende Musteränderungen im 

orbitofrontalen Cortex (OFC) und im anterioren cingulären Cortex (ACC) vorhersagen. Im 

Gegensatz dazu können SPE-ausgelöste BOLD-Antworten im intraparietalen Sulcus 

nachfolgende Musteränderungen im superioren parietalen Lappen (SPL) und im Precuneus 

(PCu) prognostizieren. Hierbei konnte gezeigt werden, dass Veränderungen der neuronalen 

Aktivierungsmuster, die durch RPEs und SPEs moduliert werden, nachfolgende 

Anpassungen in der Verhaltensstrategie der Teilnehmer vorhersagen. Diese Studie liefert 

umfassende Einblicke wie PEs, insbesondere RPEs und SPEs, kurzfristige Veränderungen 

in neuronalen Aktivierungsmustern beeinflussen und nachfolgende Verhaltensanpassungen 

bewirken. 
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