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Abstract

In topological quantum material research, the search for Majorana
bound states (MBSs) has spurred the field of topological supercon-
ductivity. Their use in quantum computation may revolutionize
current quantum computing approaches due to their topological
protection. The ingredients for a topological superconductor are
Rashba spin-orbit coupling (SOC), superconductivity, and mag-
netism. One approach to finding a system with all these proper-
ties is to create it artificially. Following this approach, proximity-
superconductivity can be used to induce superconductivity into
systems that were originally not superconducting. This can lead
to the formation of new states of quantum matter, as we will ex-
plore in this thesis. To this end, the methods of scanning tunneling
microscopy (STM) and scanning tunneling spectroscopy (STS) are
used, providing the ability to build, manipulate, and probe these
quantum systems atom by atom. The main focus of this thesis is
a systematic investigation of the above ingredients of topological
superconductivity one by one and how they interact with each
other.

For this thesis, Nb(110) is used as a superconducting substrate,
where Nb is the elemental superconductor with the highest Tc.

Thin Ag(111) islands were grown on the substrate, exhibiting the
characteristic Ag(111) surface state. Quantum corrals are built
on the surface by assembling non-magnetic atoms to confine the
Ag(111) surface state. The energetic positions of the corral eigen-
modes can be tuned by resizing the corral. Spectroscopic mea-
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surements inside the corral reveal a superconducting gap, where
in-gap states occur whenever a corral state is tuned into the su-
perconducting gap. This gap spectrum is interpreted as a system
with two superconducting gaps, one originating from the strongly
proximitized bulk electrons of the Ag island and one that is ex-
plained by weaker proximitized surface state electrons. The su-
perconductivity induced in the surface state system, which is nor-
mally strongly decoupled from the bulk, is explained by a cou-
pling mediated through scattering processes with the quantum
corral walls.

These Ag(111) corrals are furthermore studied in combination with
single Fe-atoms, which induce Yu-Shiba-Rusinov (YSR)-states on
the proximitized Ag islands. A single Fe-impurity is placed inside
of the corrals, inducing a long-range excitation at the same ener-
getic position as the YSR-states of the Fe-atom, which extends over
several tens of nanometers. This effect, dubbed YSR-mirage, is ex-
plained by an indirect coupling between the Fe-atom and the cor-
ral state mediated by the superconducting bulk. The YSR-mirage
is studied as a function of the corral size. It is found that the in-
tensity of the YSR-mirage state oscillates as a function of corral
size such that the particle-hole composition of the mirage is in-
verted with respect to that of the original YSR-state whenever an
eigenmode is at the Fermi energy. This particle-hole inversion
is less pronounced for the corral with multiple YSR-impurities
forming parts of the corral walls; in addition to that, it is inves-
tigated whether a long-range interaction between multiple YSR-
impurities can be mediated by using the YSR-mirage.
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With the deposition of Bi-atoms onto Ag(111), a BiAg2 surface al-
loy is grown on the superconducting substrate. Topographic and
spectroscopic measurements of the surface are conducted to con-
firm the result. The spectroscopic measurements of the quasi-
particle interference (QPI) patterns on the BiAg2 hint towards a
hybridization between the Rashba-split band structure of the BiAg2

surface state and quantum well states of the Ag bulk. Lastly, STS-
measurements in the low energy regime are performed on the
sample as a function of the temperature, confirming the proximity-
induced superconductivity on the surface.

Finally, Fe-atoms are deposited onto the proximitized BiAg2 sub-
strate. The adsorption sites of Fe on BiAg2 and the associated
spectral properties are investigated. Two different adsorption sites
are identified for Fe (hollow and bridge sites). YSR-states can be
found on Fe-atoms of both sites. Furthermore, hollow-site Fe-
atoms show a pair of YSR-states located close to the Fermi energy,
which is especially interesting for creating topological supercon-
ductivity. The Fe adatoms are arranged in pairs as a function of
distance and orientation, and hybridization effects between the Fe
hollow-site atoms are studied. The magnetic atoms are then used
to build YSR chains on the BiAg2 substrate. Scanning tunneling
spectroscopy techniques are used to probe the spectral properties
of these chains and yield excitations at zero energy localized at
both ends of the chains. The topological properties of these YSR
chains are checked in perturbation experiments.
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Zusammenfassung

Im Forschungsfeld der topologischen Quantenmaterialien hat die
Suche nach den Majorana-Zuständen das Interesse an topologis-
chen Supraleitern stark angefacht. Bei der Verwendung im Bere-
ich des Quantencomputing könnten sie aufgrund ihres topologis-
chen Schutzes die Konzepte zum Bau von Quantencomputer rev-
olutionieren. Die Zutaten zur Erzeugung eines solchen topologis-
chen Supraleiters sind Rashba-Spin-Bahn-Wechselwirkung, Supra-
leitung und Magnetismus. Eine Möglichkeit um diese Systeme zu
finden besteht darin, sie künstlich zu erzeugen. Ein wesentlicher
Bestandteil hierbei ist der Proximity-Effekt, der es erlaubt Supralei-
tung in Systemen zu induzieren, die von Natur aus nicht supralei-
tend wären. So können neuartige Phasen in Quantensystemen
erzeugt werden, wie in dieser Arbeit demonstriert wird. Zur Bear-
beitung dieser Fragestellungen wird auf die Methoden der Raster-
tunnelmikroskopie und -spektroskopie zurückgegriffen, die den
Bau, die Manipulation und die Charakterisierung dieser Quan-
tensysteme auf atomarer Skala erlauben. Diese Arbeit legt den
Fokus auf die systematische Untersuchung der oben genannten
Zutaten, erst im Einzelnen und anschließend im Zusammenspiel.

Für diese Arbeit wird Nb(110) als supraleitendes Substrat gewählt.
Das Element Nb ist weithin bekannt als der elementare Supraleiter
mit der höchsten Sprungtemperatur Tc.

Dünne Ag(111)-Inseln mit dem charakteristischen Ag(111)-Ober-
flächenzustand werden auf dem Nb-Substrat gewachsen. Nicht-
magnetische Atome werden auf der Oberfläche verschoben und
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zu Quantenpferchen arangiert, die die Moden des Ag(111)-Ober-
flächenzustandes einsperren. Diese Moden lassen sich in der En-
ergie, durch das Verkleinern/Vergrößern der Quantenpferche, ver-
schieben. Spektroskopiemessungen im Inneren der Quantenpfer-
che zeigen, dass sich Zustände innerhalb der Energielücke des
Supraleiters (in-gap states) bilden, sobald eine der Quantenpfer-
chmoden energetisch in die Energielücke verschoben wird. Die
innerhalb des Quantenpferches gemessenen Spektren werden als
Zeichen für ein System mit zwei verschiedenen Arten von Supra-
leitung und daher zwei supraleitenden Energielücken interpretiert.
Die erste Lücke wird den Bulk-Elektronen zugeschrieben, die auf-
grund des Proximity-Effektes supraleitend werden. Die zweite
Lücke wird auf eine schwächer induzierte Supraleitung im Ober-
flächenzustand zurückgeführt. Die Supraleitung im Oberflächen-
zustand wird durch eine Kopplung an den Bulk durch Streuung
an den Quantenpferchwänden erklärt.

Die gleichen Quantenpferche werden nun in Kombination mit einzel-
nen Eisenatomen untersucht, die durch die Wechselwirkung mit
dem darunterliegenden Supraleiter sogenannte Yu-Shiba-Rusinov
(YSR)-Zustände erzeugen. Ein einzelnes Eisenatom wird im In-
neren des Quantenpferches platziert. Es werden langreichweitige
Anregungen bei den YSR-Zustandsenergien gemessen, die sich
über den ganzen Quantenpferch erstrecken (im Bereich von mehre-
ren 10 Nanometern). Dieses Phänomen wird "YSR-Mirage" genannt
und entsteht durch eine indirekte Kopplung zwischen dem Eisen-
atom und der Quantenpferchmode, die durch den supraleiten-
den Bulk vermittelt wird. Das YSR-Mirage wird als Funktion der
Pferchgröße untersucht. Es wird festgestellt, dass die YSR-Mirage-
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intensität in Abhängigkeit von der Pferchgröße oszilliert und dass
die Teilchen-Loch-Symmetrie invertiert zu der des YSR-Zustands
des Eisenatomes ist, wenn eine Quantenpferchmode die supralei-
tende Lücke durchquert. Dieses invertierte Verhalten wird nicht
für einen Quantenpferch beobachtet, bei dem Teile der inneren
Wände durch Eisenatome ersetzt wurden. Zuletzt wird unter-
sucht, ob das YSR-Mirage genutzt werden kann, um zwei Atome
im Inneren des Quantenpferches zu koppeln.

Durch das Aufdampfen von Bi-Atomen auf die Ag(111)-Oberfläche
wird eine BiAg2-Oberflächenlegierung auf dem supraleitenden Sub-
strat gewachsen. Es werden topographische und spektroskopische
Messungen zur Bestätigung der korrekten Oberfläche durchge-
führt. Weitere Aufnahmen von QPI-Mustern weisen auf eine Hy-
bridisierung zwischen den Rashba-Bändern und Quantentopfzustän-
den aus dem Bulk hin. Zuletzt wird die supraleitende Energielücke
auf der BiAg2-Oberfläche geprüft. Durch temperaturabhängige
Messungen wird bestätigt, dass die Oberfläche supraleitend ist.

Als letztes werden Eisenatome auf die supraleitende BiAg2-Ober-
fläche aufgedampft. Die Eisenatome werden auf ihre möglichen
Adsorptionsplätze und die damit zusammenhängenden Spektren
untersucht. Es werden zwei Adsorptionsplätze gefunden (hollow
und bridge). Auf beiden Plätzen werden YSR-Zustände gefun-
den. Weiterhin werden für Eisenatome auf Hollowplätzen YSR-
Zustände nahe der Fermienergie gefunden, was sie für den Bau
eines topologischen Supraleiters interessant macht. Eisenatome
werden in Paaren auf der Oberfläche arrangiert. Die Hybridisierung
der YSR-Zustände wird als Funktion der Entfernung und der rel-
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ativen Orientierung gemessen. Die magnetischen Atome werden
dann zum Bau von YSR-Ketten genutzt. Untersuchungen der Ket-
ten mithilfe von Rastertunnelspektroskopie zeigen Zustände bei
Nullenergie an den Kettenenden. In Störungsexperimenten wer-
den die topologischen Eigenschaften dieser YSR-Zustände unter-
sucht.
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1 Introduction

Quantum computing promises to significantly enhance the ability
to solve complex problems currently intractable by classical com-
puters [1]. The most prominent examples are Grover’s algorithm
for searching unsorted databases [2] and Shor’s algorithm for fac-
torizing large numbers. After decades of research, quantum com-
puters are now beginning to demonstrate quantum advantage [3]
over classical computers for several use cases [4–7]. However, one
of the most significant issues that quantum computers face is de-
coherence [8], which might lead to loss of information during the
computational process. To prevent that, error-correcting measures
are used, such as storing the information redundantly on multiple
quantum bits (qubits) [9, 10]. This, on the other hand, increases
the complexity of the quantum computer without increasing its
calculational power. To build a universal quantum computer that
can run Shor’s or Grover’s algorithm, the number of qubits would
have to be much larger, complicating the situation even further
[11].

The field of topological quantum computation provides a differ-
ent solution to this problem [12, 13]. Topological quantum compu-
tation proposes using topologically protected quasiparticles, the
Majorana zero modes (MZMs). MZMs are categorized as non-
Abelian anyons with their own quantum statistics. If two anyons
are interchanged with each other, they acquire a phase [14]. One
can use this property to perform logical operations, known as
braiding operation [12].
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1 Introduction

The first description of these MZMs was given by Kitaev in his
Kitaev chain model [15]. This oversimplified model describes a
tight-binding model for a superconducting 1D chain consisting of
spinless particles where neighboring lattice sites are coupled. The
model demonstrates that the Hamiltonian gets into a topological
phase, leading to topological edge states for specific parameters.
These states appear at both ends of the chain, located at zero en-
ergy, and were shown to have properties of MZMs. The model
is, therefore, an example of a topological superconductor. Unfor-
tunately, the realization of the Kitaev chain Hamiltonian in a real
solid-state system is a challenging task since superconductors are
usually comprised of spinful electrons.

The motivation to find the MZMs has spurred efforts and ideas
to create systems behaving similarly to the Kitaev chain [16–21].
All these proposals have in common that they unite the following
three ingredients: magnetism, Rashba SOC, and superconductiv-
ity [22]. Materials in which all of these properties exist together
are sparse. For this reason, artificially combining materials, where
each material contributes one of the ingredients, is required to
form the desired system.

The experimental platforms for the realization of MZMs can be
roughly categorized into two groups:

1. The semiconductor-superconductor heterostructure approach
involves using semiconducting nanowires such as InAs or
InSb with large SOC [18, 23–25]. By depositing supercon-
ducting material onto these wires, proximity-superconductivity
can be induced into the system. When large external mag-
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netic fields are applied along the wire, the occurrence of
MZMs at the ends of the wire is predicted.

2. In magnet-superconductor hybrids, magnetic textures with
high Rashba SOC or spin spirals are grown/assembled on a
superconducting surface [26]. The spin textures can be cre-
ated either in 1D [27–29] or 2D [30–32].

For the investigation of magnet-superconductor hybrids, STM can
be the perfect instrument as it can characterize these systems and
be used to tailor systems with atomical precision, thereby tuning
specific parameters of the sample to the needs of the experimen-
talist. Majorana physics and STM, therefore, is a perfect fit as tes-
tified by numerous works in this area [26–30, 33–39].

By this time, the complexity of the investigated systems has grad-
ually increased. While in the first works, superconducting sample
surfaces were investigated where self-assembled magnetic chains
were deposited [28], later works added a layer of complexity by
building magnetic chains artificially using atom manipulation tech-
niques [27, 29]. Another level of complexity has been added when
additional layers of materials have been grown on top of a super-
conductor to tune specific properties of the sample [40, 41] before
spins are deposited. The superconductivity is provided by an un-
derlying superconducting substrate, which proximitizes the lay-
ers grown on top.

To choose the materials systematically, following a bottom-up ap-
proach where the interplay between the different ingredients is
investigated separately would be helpful, which would be led by
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1 Introduction

the following questions: How is the superconductivity induced
into the sample surface by proximity? What is the interplay be-
tween a proximitized surface state and a magnetic impurity? How
can Rashba SOC be added to the system?

After this introductory chapter, Chapter 2 introduces the reader
to the theoretical foundations of surface state systems, supercon-
ductivity, Rashba SOC, and the Kitaev chain, which are required
to follow and understand the experiments and results later in the
thesis.

Next, Chapter 3 introduces the experimental techniques used through-
out this thesis, focusing on the basics of STM and STS techniques.
Then, we will take a look at the specific experimental setups that
have been used in the thesis.

Starting with Chapter 4, we will delve into the experimental re-
sults, where we used a Nb(110) crystal surface to grow Ag(111)
islands on top. We will use the Ag(111) surface state and non-
magnetic atoms to build quantum corrals out of it, allowing us
to study one of the simplest quantum systems: a single, non-
magnetic quantum level. In this basic setting, we will observe
whether and, if yes, how proximity-superconductivity is induced
into this quantum state.

Chapter 5 continues the investigations on the corrals from the last
chapter and combines the proximity-superconductivity with mag-
netic impurities, which leads to so-called Yu-Shiba-Rusinov (YSR)
states. We will examine the interactions between a YSR-state and
the quantum corral eigenstates.
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The sample preparation from the last chapters serves as a base
for Chapter 6. We grow a BiAg2 surface alloy by depositing Bi-
atoms onto the Ag(111) islands. BiAg2 is well-known for its large
Rashba SOC. With that, we can study how superconductivity is
induced into this strongly spin-orbit coupled surface state. Then
we look at a system where all the ingredients are combined, form-
ing a potential candidate system for topological superconductiv-
ity. We will take the BiAg2 surface, evaporate Fe-atoms onto it,
and build chains. With this, all the ingredients for topological su-
perconductivity are combined in one system. We will investigate
whether such a system shows indications for topological super-
conductivity and MZMs.

In the last chapter (Chapter 7), I will give a conclusion on the main
results that have been presented throughout this thesis and pro-
vide an outlook for further ideas for investigations to advance the
field.
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2 Theoretical foundations

In this chapter, I will introduce the reader to the theoretical foun-
dations necessary to follow the ideas of the experiments and dis-
cussions of the results presented throughout the thesis. We begin
by exploring the theory behind surface states, examining their ori-
gin and how their properties are altered by introducing Rashba-
type SOC.

We will then delve into the fundamentals of superconductivity,
covering the Bardeen-Cooper-Schrieffer (BCS)-theory and Andreev
reflections and their relevance to the proximity effect. Next, we
will examine systems where superconductivity and magnetism
are combined, leading to the emergence of YSR-states. Finally, we
will touch upon the topic of topological superconductivity. We
will employ a simple toy model to demonstrate the concept of
topology in the context of condensed matter physics. This section
will also discuss how SOC, superconductivity, and magnetism can
create a topological superconductor.
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2 Theoretical foundations

2.1 Surface states in noble metal systems

Bloch-waves describe the electronic states inside of a crystal with
periodic boundary conditions. In this derivation, the crystal is
approximated by an infinitely large periodic lattice. The time-
independent Schrödinger equation for an electron in the crystal
is given by: [

− h̄2

2m
∇2 + V(r)

]
ψ(r) = Eψ(r), (2.1)

where h̄ is the reduced Planck constant, m∗
e is the electron mass,

V(r) is the periodic potential inside the crystal, and ψ(r) is the
wave function of the electron [42, 43]. The periodicity of the crys-
tal leads to the formation of electronic bands, which describe the
properties of the electrons inside the crystal.

This periodic boundary condition is no longer given at the sys-
tem’s surface. Consequently, the lattice potential V(r) has a rela-
tively abrupt jump to the vacuum level. Therefore, under special
conditions, new solutions to the Schrödinger equation (Eq. 2.1)
are possible, which will be discussed in the following.

The solutions in the one-dimensional case can be classified into
two categories as depicted in Figure 2.1A. The first kind of solu-
tion refers to the bulk states (grey and blue), which extend in the
direction of the crystal bulk but decay exponentially into the vac-
uum. The second state shows a decaying behavior in the vacuum
and the bulk. Consequently, the electronic states are strongly lo-
calized at that surface. Due to this, the first kind is referred to as
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2.1 Surface states in noble metal systems

bulk state, while the second is called surface state.

The first to derive the existence of surface states for systems with
weakly interacting electrons was William Shockley [44]. Hence,
these states are also referred to as Shockley surface states. Even
though these states are confined along the direction perpendicu-
lar to the surface, they show a dispersive behavior in the direc-
tions parallel to the surface plane. A depiction of that can be seen
in Figure 2.1B. Here, the dispersion relation of the surface state
is shown in red. The dispersion relations of the bulk bands can
be projected onto the surface as depicted by the blue and grey
shaded areas. The comparison between the energetic locations of
the bands reveals another characteristic property of surface states.
They can only exist in a gap formed by the projection of all bulk
bands onto the surface since the hybridization with the bulk bands
would prohibit the confinement to the surface. Note that this is
only a necessary condition, but not a sufficient one for the exis-
tence of surface states. It is furthermore required that the Fourier
coefficient of the lattice periodic potential V(r) has the correct sign
at the location of the surface [45].

Over the past decades, Shockley-states in noble metal systems
such as Ag, Cu, and Au [46–48] have been the subject of many
investigations in surface science.
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2 Theoretical foundations
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Figure 2.1: Schematic representation of the surface state formation.
(A) At the interface between the metal and the vacuum, the crystal’s
translational symmetry is broken, possibly leading to the formation of
intrinsic surface states as depicted by the red line, which decay into the
vacuum and the bulk of the crystal. (B) Schematic representation of the
band structure of a metal. The grey-shaded areas represent bulk states.
The surface state forming at the surface of the metal is located inside the
surface-projected bulk band gap.
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2.2 Superconductivity

2.2 Superconductivity

Superconductivity is a quantum mechanical phenomenon observed
in some metals when cooled below a specific temperature, known
as the critical temperature Tc. Heike Kamerlingh Onnes first dis-
covered this phenomenon in 1911 [49]. He found out that mer-
cury’s electrical resistance drops to zero when cooled below 4.2 K.
The term superconductor refers to this property. In 1933, Walther
Meissner and Robert Ochsenfeld discovered another characteris-
tic property of superconductors [50]. They noticed that when a
superconductor is cooled below Tc and placed in a magnetic field,
it expels the magnetic field inside, acting like a perfect diamag-
net. This effect was named after its discoverers and is known as
the Meissner-Ochsenfeld effect. It took more than 40 years after
its discovery to develop a theory that could provide a microscopic
understanding of superconductivity. Today, this theory is known
as BCS-theory, named after its developers, John Bardeen, Leon
Neil Cooper, and John Robert Schrieffer. It was reported in 1957
[51] and was honored with the Nobel Prize in Physics in 1972.

2.2.1 Superconductors in magnetic fields

At first glance, one might be tempted to explain the occurrence
of the Meissner effect by considering Lenz’s law. When a mag-
netic field is applied to the superconductor, currents are induced
inside the superconductor. One could argue that these currents
will cause another magnetic field, which counteracts the magnetic
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2 Theoretical foundations

fields that they were caused by. This might play a role in the sce-
nario where the magnetic field is turned on after the superconduc-
tor has been cooled below Tc. However, in the scenario where the
magnetic field is applied first, and the superconductor is cooled
afterward, the same perfect diamagnetism is observed. The su-
perconductor does not care whether the magnetic field is applied
before or after the cooldown. It will repel the magnetic field re-
gardless. Therefore, it is considered that this is an inherent prop-
erty of the superconductor. When the applied magnetic field is
increased further, it will eventually reach a critical value, at which
the superconductivity is quenched. The relation between critical
field and temperature follows an empirical law given by

Hc(T) = Hc(0)

[
1 −

(
T
Tc

)2
]

(2.2)

with Hc(0) being the critical field at T = 0. For some supercon-
ductors, two of these critical magnetic fields are found. These are
called Type-II superconductors, while the first ones are called Type-I
superconductors. In Type-II superconductors, the law for the crit-
ical field only applies to the first critical field Hc,1. After Hc,1, a
Type-II superconductor will show magnetic vortices in which the
magnetic field begins penetrating the superconductor. When the
field is increased, we see that the number of vortices increases,
and in the end, when a second critical field Hc,2 is reached, the
superconductivity breaks down completely.
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2.2 Superconductivity

2.2.2 BCS-theory

In their theory, Bardeen, Cooper, and Schrieffer explain the zero-
resistance of a superconductor with the help of a small attractive
force between electrons with opposing momentum k and spin σ
[51]. This attractive force is mediated by electron-phonon cou-
pling, where one electron moving through the lattice distorts the
lattice locally, creating a phonon mode. The phonon travels through
the lattice and couples to another electron, effectively mediating
an attractive force between the two electrons. The coupled elec-
trons form a new quasi-particle known as a Cooper pair. Cooper
pairs are bosonic particles that allow the coupled electrons to fall
into the ground state of a system, forming a condensate. In the
ground state, the only way to excite the Cooper pairs is to break
them up, requiring the binding energy ∆. Consequently, any in-
teraction between the Cooper pair electrons with the environment
that involves energies below ∆ is forbidden. Therefore, as long
as the current is below a critical value, the electrons can travel
through the material without dissipating energy to the crystal lat-
tice or defects.

To start, we consider a tight-binding Hamiltonian with an attrac-
tive pairing term, which couples electrons with opposing spins
and momenta k with each other [52].

H = ∑
k,σ
ϵkc†kσckσ − ∑

k,k′
Vk,k′c†k′↑c†−k′↓c−k↓ck↑ (2.3)

Here ϵk is the electron energy, c†k,σ and ck,σ are the creation and
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annihilation operators for electrons with wave vector k and spin
σ , and Vk,k′ represents the attractive interaction potential.

The first sum represents the metal’s quasi-free electron dispersion
relation, while the second is the weak interaction mediated via
electron-phonon coupling. While the first term is already written
in the diagonalized form, the second term has to be simplified to
solve the Hamiltonian. To do this, we approximate the interaction
term using a mean-field approach. This leaves us with an effec-
tive Hamiltonian, which has only quadratic terms in creation and
annihilation operators:

Heff = ∑
k,σ
ϵkc†kσckσ − ∆∗

∑
k

c−k↓ck↑ − ∆∑
k′

c†k′↑c†−k′↓ +
|∆|2
V

(2.4)

with
∆ = V ∑

k
⟨c−k↓ck↑⟩ ∆∗ = V ∑

k
⟨c†k↑c†−k↓⟩. (2.5)

and the assumption that the pairing potential is constant for a
small energy window around EF:

Vk,k′ = V for |ϵk −ϵk′ | < h̄ωD (2.6)

with the Debye-frequency of the phononωD.

For the diagonalization of the Hamiltonian, the Bogliubov trans-
formation can be used [53, 54], where we rewrite the electron cre-
ation and annihilation operators in a new set of fermionic opera-
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tors:

αk = ukck↑ − vkc†−k↓ α
†
k = u∗

kc†k↑ − v∗kc−k↓

βk = ukc−k↓ + vkc†k↑ β
†
k = u∗

kc†−k↓ + v∗kck↑ (2.7)

In order to fulfill the fermionic commutation relations, the coeffi-
cients uk and vk must satisfy:

|uk|2 + |vk|2 = 1 (2.8)

We can find that this is given for:

u2
k =

1
2

1 +
ϵk√

ϵ2
k + |∆|2

 v2
k =

1
2

1 − ϵk√
ϵ2

k + |∆|2

 (2.9)

The transformation yields the new Hamiltonian, which is bilinear
in all creation and annihilation operators:

Heff = ∑
k,σ

Ek(α
†
kαk +β†

kβk) +∑
k
(ϵk − Ek) +

|∆|2
V

(2.10)

with
Ek = ±

√
ϵ2

k + |∆|2 (2.11)

By introducing the new fermionic operators, we could break the
problem down to a single-particle problem. The new fermionic
operators represent quasiparticles, the Bogoliubov-quasiparticles
(Bogoliubons).

In Figure 2.2, the coefficients (A) and the energy (B) of the Bogoli-
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Figure 2.2: Properties of the Bogoliubov quasiparticles. (A) Evolution
of the particle and hole coefficients as a function of energy. (B) Bogoli-
ubon energy as a function of the electron energy.

ubon are plotted as a function of ϵk (given by Eq. 2.9 and 2.11).
Panel (A) shows, that for ϵk < 0, the amplitude of vk is much
larger. As we get to ϵk = 0 the amplitudes are equal. For ϵk > 0
the relation between vk and uk is inverted. The interpretation of
these coefficients shows an essential property of the Bogoliubons,
the particle-hole symmetry in energy. Bogoliubons are a superpo-
sition of a particle (electron) and an antiparticle (hole). Depend-
ing on the energy, it shows a more hole-like (E << EF) or a more
electron-like character (E >> EF).

In panel (B), we can see how the quasiparticle energy Ek behaves
as a function of the free electron energy ϵk. The grey lines depict
the relation from Eq. 2.11, while the dashed lines represent the
energies of an electron or hole. Here, we can see that the Bogoli-
ubons behave like electrons or holes for energies far away from 0
(EF). However, when ϵk approaches 0, the Bogoliubon energy de-
viates more and more from the usual electron/hole behavior. We
can see that it approaches |∆|. Here, we realize the real meaning of
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2.2 Superconductivity

the order parameter ∆, which we introduced in the model above.
It represents an energy gap inside the superconductor’s disper-
sion, in which no quasiparticle states are present. This becomes
even more apparent when we plot the density of states (DOS) of
the BCS superconductor given by:

N(E) = ∑
k
δ(E − Ek)

=
∫ +∞
−∞ N(E −µ)δ(E −

√
ϵ2 + ∆2)dϵ

= 2N0

∫ +∞
0

δ(E −
√
ϵ2 + ∆2)dϵ

(2.12)

where we plugged in Eq. 2.11 in the first step and assumed that
the metallic DOS around EF is constant (N0), which is valid for
small energy ranges around EF. The integration leads to:

N(E) =

2N0
E√

E2−∆2 for > ∆,

0 for < ∆,
(2.13)

For a realistic system, the quasiparticles have a finite lifetime. We
reflect this by adding a broadening factor Γ to the equation leading
to:

N(E) = 2N0Re[
E + iΓ√

(E + iΓ)2 − ∆2
]. (2.14)

The function is plotted in Figure 2.3. We can see that a gap is
opened up with the value of 2∆. Inside of this interval, no quasi-
particle states are present. Large local density of states (LDOS)
peaks, known as coherence peaks, appear at both borders of these
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Figure 2.3: Plot of the Dynes function. The superconducting gap ener-
gies at negative and positive bias ranges are marked by the grey dashed,
vertical lines. The green horizontal line depicts the value of N0.

gapped regions. For energies outside of the gapped regions of the
superconductor, the spectrum resembles that of a simple metallic
electrode.

2.2.3 Proximity effect

The proximity effect refers to the phenomenon in which normal
conducting metals are brought into the vicinity of a supercon-
ductor. By that, superconducting correlations inside the normal
metal are induced. This way, a material that is originally metallic
can be made into a superconductor. The proximity effect allows
us to design novel electron phases by pairing superconductors
(SCs) with other interesting materials that were originally non-
superconducting. One of the most prominent applications is given
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e-

h+

N SC

Figure 2.4: Schematic representation of the Andreev reflection process.
The blue circle (e−) represents an electron inside the N approaching the
N-SC interface. The Cooper pair resulting from the Andreev reflection
process is represented by the two circles in the SC. The red circle repre-
sents the reflected hole (h+).

in the field of topological superconductivity, where the proximity
effect is used to create non-trivial phases of superconductivity by
a combination with magnetism [31, 55, 56].

The basic mechanism behind the proximity effect is Andreev re-
flection. Andreev reflections can be found at interfaces between a
normal metal (N) and a SC. The process is depicted in Figure 2.4.
When an electron inside of the N reaches the boundary to the SC,
it can either cross the SC if its energy E > ∆SC or be reflected if
E < ∆SC. Due to the missing energy, the electron cannot enter the
SC. Instead, it can form a Cooper pair with another electron to en-
ter the SC while simultaneously creating a hole reflected into the
N. The hole has the opposite spin and momentum, which results
in spin and momentum conservation throughout the process.
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The Andreev reflection process produces a phase shift δφ between
the ingoing electron and the outgoing hole. This phase shift is
given by:

δφ = Φ+ arccos
ϵ

∆
(2.15)

where Φ is the phase of the superconductor, ϵ is the energy of the
ingoing electron and ∆ is the superconducting gap. This induced
phase correlation leads to the superconducting correlations in the
normal metal. As a measure for the spatial extent of this induced
phase, the coherence length ξN can be used given by [57, 58]:

ξN ≈ h̄vF

2πkBT
(2.16)

with the Fermi-velocity of the normal metal vF and the tempera-
ture T. However, one should note that the upper equation only
applies to sample systems within the clean limit, where the de-
fect rates inside the metal and at the interface are small. In this
case, the transport through the material is considered to be in the
ballistic limit.

Another type of mechanism leading to proximitized superconduc-
tivity can be found in very clean crystalline thin metallic film sys-
tems (N) with a few tens of nanometers thicknesses brought into
the proximity of a superconductor (SC). Typically, the N has one
interface to the superconductor (N/SC) and an interface to the
vacuum. These interfaces can serve as reflective barriers where
electrons and holes can scatter. Due to the comparably short dis-
tances between the interfaces, electrons/holes can coherently scat-
ter multiple times via Andreev reflection at the N/SC interface
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and specular reflection at the vacuum boundary. As a result, the
DOS of the N is gapped out around EF. The multiple Andreev
reflections can be measured as peaks at the ends of the gapped
region and are known as de Gennes-Saint James (dGSJ)-states [59,
60]. Due to their resemblance to the coherence peaks of normal su-
perconductors, they are often referred to as the "coherence peaks"
of the proximitized metal.

2.2.4 Magnetic impurities in superconductors

As the Meissner-Ochsenfeld shows on a macroscopic level, mag-
netism and superconductivity tend to be competing interactions.
L. Yu, H. Shiba, and A. I. Rusinov [61–63] were the first to theo-
retically describe the influence of single magnetic impurities on a
superconductor. The presence of a magnetic impurity in a super-
conducting host material breaks time-reversal symmetry and can
locally disrupt the superconducting order parameter. This leads to
excitations located inside the host’s superconducting gap. These
excitations are known as Yu-Shiba-Rusinov states (YSR-states) [64,
65]. They are quasiparticles that are spatially bound to the mag-
netic impurity. For the case of 3d transition metal atoms coupled
to a SC when the Cooper pairs are in the s-bands of the material,
the origin of the YSR-states is the exchange interaction, which cou-
ples the s-orbitals of the conduction electrons with the magnetic
d-orbitals of the magnetic impurity. One can handwavingly ex-
plain the YSR-states by the exchange field of the magnetic impu-
rity, which destabilizes the Cooper pairs by misaligning the spins
of the paired electrons. As a result, it takes less energy to break up
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the Cooper pair, leading to excitations at energies smaller than ∆.

The Anderson impurity model can be used as a starting point to
describe the YSR-states. The conduction electrons are described
by the effective BCS-Hamiltonian (Eq. 2.10), and the magnetic im-
purity is modeled as a classical spin S, which interacts with the
spin of the delocalized conduction electrons σ . The strength of
the interaction is given by the exchange coupling J:

H = Heff −
J

2N ∑
k,k’

c†kσck’ · S, (2.17)

Another term that considers the Coulomb scattering between the
impurity and the substrate can be used to extend this equation. In
the spectrum, this interaction leads to a particle-hole asymmetry
in the peak intensities. For 3d metal atoms, each orbital can induce
a pair of YSR-states where the spatial shape reflects the orbital.

With the above equation, the energy of the YSR-states is then given
by:

EYSR = ±∆
1 − (πN0 JS)2

1 + (πN0 JS)2 , (2.18)

where ∆ is the superconducting gap and N0 is the normal metal’s
density of states at the Fermi level.

The YSR-state is usually localized around the magnetic impurity.
Unique properties of the underlying substrate, such as strong con-
finement along the surface [66] or the anisotropic shape of the sub-
strate’s Fermi surface [67], can lead to long-ranged patterns of the
YSR-states.
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2.2 Superconductivity

In any case, the amplitudes of the particle- and hole components
of the YSR-state decay with the distance from the impurity with
the following relation:

ur, vr ∝
sin(kFr + δ±)

kFr
exp

(
− r
ξ0

)
, (2.19)

with the Fermi-wavevector of the substrate kF , the scattering phase
shift δ and the coherence length of the superconductor ξ0. Please
note that in this equation, the Coulomb scattering is also implicitly
included.

When two YSR-states are placed near each other, hybridization ef-
fects between them can occur. This leads to a splitting or shifting
of the original YSR-states. The hybridization strength depends on
factors such as the spatial extent of the YSR-state or the distance
between the YSR-impurities, or the strength and direction of the
magnetic moments [68–70]. This can even be extended to chains
or arrays of YSR-impurities. In this case, the hybridization be-
tween the YSR-states will lead to the formation of bands called
YSR-bands. In this thesis, I will refer to a 1D chain system built
this way as YSR-chain.
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2.3 Rashba spin-orbit coupling (SOC)

Rashba spin-orbit coupling (SOC) occurs at the surface of a crystal
[71]. It can be explained by relativistic effects, where the change
to the reference frame leads to a coupling between the momen-
tum of an electron and its spin. At the surface of a crystal, the
inversion symmetry is broken. This leads to an electric field at
the surface region. If an electron moves along the surface of the
crystal, it will be influenced by this surface electric field. From its
reference frame, the movement within the surface electric field ef-
fectively induces a magnetic field coupling to the electron’s spin.
The strength and direction of the magnetic field seen by the elec-
tron depend on its momentum and direction of movement as well
as on the strength of the surface electric field. This effectively
leads to a coupling between the electron’s momentum and its spin
alignment. To describe this phenomenon, we can make use of the
Rashba-Hamiltonian:

HR = αR(σ × k∥) · Ẑ, (2.20)

where αR is the Rashba coupling constant, and Ẑ is the unit vec-
tor perpendicular to the surface plane. It is perpendicular to σ ,
the spin of the electron, and k∥, the momentum component of the
electron parallel to the surface. If we assume a quasi-free electron
model for the electrons residing at the surface, with dispersion
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ER
+k0-k0

2k0

Figure 2.5: Rashba-split dispersion relation. (A) Cut of the Rashba-
split dispersion relation along kx-direction. The color and symbols
(⊗/⊙) depict the spin-polarization of the subbands. (B) Cut of the
dispersion relation along the (kx, ky)-plane. The arrows depict the k-
dependent spin orientation. The color depicts the spin polarization
along the y-direction.

h̄2k2
∥

2m∗
e
, the resulting dispersion relation is given by:

E =
ℏ2k∥

2

2m∗ ±αRk∥ (2.21)

where m∗ is the effective mass of the electrons andαR refers to the
Rashba-parameter indicating the strength of the interaction [72,
73]. From this equation, one can extract the Rashba-energy ER,
which is given by:

ER = 2αRk0, (2.22)

Moreover, the momentum splitting of the bands is given by

2k0 = ∆kR = 2αRm∗/h̄2, (2.23)

When plotting these energy bands as a function of kx, i.e., one
component of k∥, we can see the typical Rashba-split band struc-
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ture (Figure 2.5A). Here, the subbands are spin-polarized as given
by the colors of the two dispersion branches. The Rashba inter-
action lifts the spin-degeneracy. Due to the coupling between the
spin and the direction of movement, the Rashba interaction intro-
duces a chiral structure, as visible in Figure 2.5B. With this cou-
pling, an electron’s spin can be aligned (e.g., by a magnetic field)
to influence its direction of movement or vice versa.

2.4 Kitaev model

The Kitaev model was first introduced by Alexei Kitaev in 2001
[15] and describes a one-dimensional chain of spinless fermions
in which phases emerge that can be categorized according to their
topology. The Kitaev model is particularly known for its predic-
tion of MZMs in the solid state system, which will be localized at
the ends of the chain. This concept is of great interest for topolog-
ical quantum computation [12].

In its usual form, the Kitaev chain is a spinless one-dimensional
tight-binding model, which considers an onsite energy, a hopping
term, and a pairing potential between neighboring sites [74]:

H = −µ
N

∑
j=1

c†j c j −
N−1

∑
j=1

(
tc†j c j+1 + ∆pc jc j+1 + h.c.

)
, (2.24)

Here c†j and c j are the creation and annihilation operators for elec-
trons at site j, µ is the chemical potential, t is the hopping ampli-
tude, and ∆p is the p-wave pairing potential. Note that ∆p is not
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the same as the order parameter used throughout the thesis for
the superconductivity of the substrates. Unlike s-wave supercon-
ductivity, which involves coupling electrons with opposite spins,
the Kitaev model is a spinless system.

To illustrate the topological properties of this model, we can ex-
press the annihilation and creation operators c and c† by a super-
position of new operators [75]:

c j =
1
2
(γ2 j−1 + iγ2 j) c†j =

1
2
(γ2 j−1 − iγ2 j) (2.25)

γ2 j−1 and γ2 j are so-called Majorana operators, with the charac-
teristic property:

γi = γ
†
i , (2.26)

making the particle its own antiparticle. This representation can
be rationalized in the following way. With the normal electronic
operators c, we depict each lattice site by its index j. There can
either be an electron or none for each lattice site. The new repre-
sentation splits up each site into two. Therefore, the number of
sites has doubled. In the new representation, each lattice site is
addressed by the indices given by 2 j − 1 and 2 j.

We rewrite the Hamiltonian in Eq. 2.24 in terms of the Majorana
operators and obtain:

H = −i
µ

2

N

∑
j=1
γ2 j−1γ2 j + i

t + ∆p

2

N

∑
j=1
γ2 jγ2 j+1 + i

−t + ∆p

2

N

∑
j=1
γ2 j−1γ2 j+2.

(2.27)

By considering different limits in the parameter space between µ,
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Figure 2.6: Topologically trivial and non-trivial phase of the Kitaev
chain. Schematic illustrating the coupling between the Majorana opera-
tors γ j in the trivial (A) and the topological phase (B). The black circles
represent the electronic lattice sites c j. In the Majorana representation,
each electron comprises two Majorana operators, γ2 j−1 and γ2 j. The red
lines depict the couplings between the Majorana operators.

t, and ∆p, the new representation gives an insight into the distinc-
tion between the topological and the trivial phases.

In the limit |µ| > 2|t|, Eq. 2.27 reduces to

H = −µ i
2

N

∑
j=1
γ2 j−1γ2 j. (2.28)

Interestingly, this Hamiltonian no longer couples the Majorana
operators from the same electronic sites to each other; instead,
it couples Majorana operators from neighboring electronic lattice
sites. This phase is, therefore, known as the topologically nontriv-
ial phase.
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Figure 2.7: MZMs as a function of parameter space. (A) LDOS of a Ki-
taev chain with 100 sites as a function of the energy E and position x for
fixed values of µ and ∆p. (B) LDOS at the edge of the chain as a function
of E for varying µ and fixed ∆p. (C) Same as in (B) but with a fixed µ
and a varying ∆p. The calculation was done with a Python toolkit for
tight-binding calculations [76]. For each panel, t = 1. The LDOS and the
color scale are given in arbitrary units.

Figure 2.6 gives a pictorial representation of the two phases. In
this picture, it becomes evident that the Majorana-quasiparticles
at the ends of the chain remain unpaired in the topological phase.

We can calculate the LDOS of the chain numerically. Figure 2.7
shows the calculation for a chain with 100 sites. As seen in panel
(A), a gap is opened due to the pairing potential ∆p. However,
at the ends of the chain, we can see states appearing at E = 0.
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This is the MZM. To see how this mode behaves for different sets
of parameters of the Kitaev chain, we can look at panels (B) and
(C), where the spectrum is taken on the edge sites of the chain for
different values of µ (B) and ∆p (C). Here, the other parameters
are kept constant. In (B), one can see that no MZM can be found
for the value of µ < 2. For µ > 2, a mode appears at E = 0, which
stays constantly at this energy. In panel (C), we can see that as
soon as ∆p > 0, a state can be found at zero energy as long as µ
has the correct value. For small ∆p, we can see that the intensity
of the MZM becomes smaller due to its delocalization along the
chain.

MZMs or MBSs obey non-Abelian exchange statistics, which makes
them candidates for implementing topological quantum bits [12,
13, 77–79]. Due to their topological nature, MZMs are inherently
stable against perturbations smaller than the gap ∆p. Therefore,
they inherently solve the problem of decoherence that usual quan-
tum bits have [8, 80].

This has sparked an enormous interest in the experimental realiza-
tion of the Kitaev model. However, finding a system that shows
the properties the model proposes is still tricky. The most chal-
lenging aspect is the spinless pairing term. This mechanism could
be realized by coupling a p-wave superconductor (which is based
on spin triplet coupling) to a magnet. However, p-wave supercon-
ductivity has not yet been found to occur in any (not artificially
designed hybrid) material, and the most prominent candidate for
p-wave superconductivity, Sr2RuO4 is still under dispute [81, 82].

On the other hand, elemental superconductors, which can be de-
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scribed by BCS theory, rely on an s-wave pairing mechanism in-
volving an antiparallel alignment of the electrons’ spins. One work-
around is to consider completely spin-polarized systems. If the
whole system does not show any differences in the observable,
one can also treat it as if this observable does not exist. Therefore,
the system behaves effectively spinless, at least within one of the
spin-polarized bands. The idea could now be to use such a sys-
tem and proximitize it with a superconductor to induce pairing
correlations. However, magnetism and conventional supercon-
ductivity usually have a rivaling relationship with each other (see
Section 2.2.1). Therefore, a spin-polarized system would usually
not allow s-wave pairing to occur. One way out of this dilemma
is the involvement of SOC. SOC can tilt the spins of the Cooper
pair electrons out of their original plane, thereby inducing a com-
ponent to the correlation, which is not of s-wave but of p-wave
nature. In other words, SOC inside an s-wave superconductor
can mix in p-wave correlations. In contrast to the s-wave corre-
lations, p-wave correlations are not challenged by spin-polarized
systems. Consequently, p-wave superconductivity induced in a
spin-polarized system could realize the Kitaev-chain model [15,
83].

Circling back to the original question, we can say that in order
to realize the Kitaev chain model, there are three ingredients to
consider: magnetism, s-wave superconductivity, and Rashba SOC
(see Section 2.3).

One promising platform, which possibly combines all of these in-
teractions, is based on magnetic chains proximitized by a super-
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conductor [19, 27–29, 38]. In this approach, magnetic impurities
are placed on a superconductor. As mentioned above, the result-
ing YSR-states already combine two (magnetism and supercon-
ductivity) of the three ingredients. The atoms can be used to form
chains of YSR-states, thereby creating YSR-bands. Depending on
the substrate choice, SOC can also be included, which is the topic
of Chapter 6.
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3 Experimental methods and
setup

In this chapter, I will introduce the reader to the scanning tunnel-
ing microscopy (STM) and scanning tunneling spectroscopy (STS)
methods used throughout the thesis. I will start with the gen-
eral principle and then move on to the STM’s various operational
modes. Then, I will continue with the actual setups used to ac-
quire the measurements presented in the results chapters.

3.1 Scanning tunneling microscopy

Heinrich Rohrer and Gerd Binnig developed STM in 1982 [84],
for which they were awarded the Nobel Prize in Physics in 1986.
STM/STS are powerful methods extensively used in surface sci-
ence for investigating conducting surfaces with atomic resolution
[85–88].

To construct a scanning tunneling microscope, an atomically sharp
tip is needed, which acts as one electrode. The sharp metallic tip
is placed above the conducting sample, which acts as the second
electrode, with a bias voltage Vbias between them. Because the
electrodes are very close together, a relatively narrow tunneling
barrier is created. This allows electrons to jump between the elec-
trodes even when the applied bias voltage is smaller than the ver-
tical height of the tunneling barrier. This phenomenon is known
as the tunneling effect [89]. As a result, a small electrical current
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Figure 3.1: Illustration of STM. (A) Components of a STM setup. (B)
Example of a constant current STM image. (C) Schematic of the STM tip
above the sample surface. Taken from Ref. [90].

can be detected between the electrodes, which depends on vari-
ous factors such as the electrical properties of the electrodes, the
applied bias voltage, and the height of the tunneling barrier. As a
first approximation, the relation between the tunneling probabil-
ity P and tip-sample distance d is given by:

P ∝ e−2κd (3.1)

where κ is a factor determined by the electrodes’ work functions,
electron energy, and bias voltage Vbias. The tunneling probability
scales exponentially with decreasing d, which, together with the
relative sharpness of the tip with respect to the flat sample surface,
is the reason for the high spatial resolution of the STM.

While ideally operated under ultra-high vacuum (UHV) condi-
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tions, STM can also function with less precision and more frequent
tip changes under ambient conditions. As depicted in Figure 3.1,
the precise movements of the tip are typically controlled by elec-
tronic parts constructed from piezoelectric materials [91]. When
a high voltage is applied to these materials, they expand or con-
tract depending on their polarity. In modern STM setups, the tip
and tip holder are embedded into a piezoelectric tube, also known
as a tube scanner. It consists of a piezoelectric tube with radial
polarization and five electrodes arranged like four concentrically
aligned sheets on its sides and one in the interior of the tube. By
applying a bias voltage between opposite-facing electrodes, the
tube flexes in one direction, allowing precise movement of the tip
in the x-y plane in the subnanometer range. To move the tip in the
z-direction, the same voltage is applied to each of the four outer
electrodes with respect to the innermost electrode, causing a mo-
tion in the z-direction. Depending on the STM design, the bias
voltage Vbias can be applied to either the sample or the tip side. In
our setup, Vbias is applied to the sample. Thereby, a positive Vbias

means that electrons tunnel from the tip to the sample, while a
negative Vbias implies that electrons tunnel from the sample to the
tip. The tunneling current generated by the scanning tunneling
microscope is on the order of pA to nA and susceptible to errors.
To address this, the tunneling current is fed into a preamplifier,
which converts it into a voltage signal and amplifies it. Subse-
quently, the signal is split into two paths: one to the data acqui-
sition electronics for recording and saving the data and the other
to the feedback loop, which regulates the distance between the
tip and sample. This feedback loop operates in constant-current
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mode, where a setpoint current Iset is maintained by varying the
vertical position z of the tip.

One can raster the sample surface in the x- and y-directions while
recording the vertical position z of the tip at each point. This re-
sults in a 2D matrix of values that can be displayed on a com-
puter, providing the sample surface’s topographic information.
Depending on the mode of operation, the tunnel current can also
be recorded.

3.2 Fundamentals of scanning tunneling
spectroscopy

The basic theory of the tunneling process is part of the undergrad-
uate courses on quantum mechanics and can be found in various
quantum mechanics textbooks [92]. If we consider a particle with
the energy E and mass m, the probability for it to tunnel through
a barrier with height V0 and width d is approximately determined
by the proportionality:

T ∝ e−
2d
h̄

√
2m(V0−E) (3.2)

In the case of STM, the tunneling barrier refers to the vacuum re-
gion between the tip and the sample, with d being the distance
between them. The applied Vbias gives the electron its energy. In
this strongly simplified picture, the electronic structures of the tip
and sample are neglected.
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3.2 Fundamentals of scanning tunneling spectroscopy

John Bardeen gave a more detailed approach to this problem, which
is only outlined in the following (please refer to Ref. [93] for the
detailed description). In Bardeen’s tunneling theory, the tip and
the sample are viewed as distinct quantum mechanical systems
modeled by their respective wavefunctions. A tunneling matrix
describes the tunneling probabilities between the tip and sample
electrode. The elements of this matrix can be calculated by a per-
turbative approach. Using Fermi’s golden rule, one can now ob-
tain the transition rates between the electrodes.

As stated by Tersoff and Hamann, the expression for the tunneling
current can be simplified. The approach is to approximate the tip
electrode by an s-wave function. This is justified because most
of the tunneling current goes through the tip apex, which usually
consists of a single atom [94]. Under this assumption for the tip
state, one gets:

I(V, T, x, y) =
4πe

h̄

∫ ∞
−∞ ρs(E − EF, x, y)ρt(E − EF + eV)

T (E, V, T)( f (E − EF + eV, T)− f (E − EF, T))dE
(3.3)

Here, ρs/t are the LDOS of the sample/tip measured at position
(x,y), V is the bias voltage, T is the transmission coefficient, and
f is the temperature (T)-dependent Fermi-function. In our pic-
ture, tunneling electrons can only tunnel from occupied to unoc-
cupied states. The bias voltage can alter the Fermi level difference
in the electrodes, determining between which states the electrons
can tunnel. When, for example, a positive bias voltage is applied
between the tip and the sample, the Fermi level in the sample is
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lowered relative to the tip. Electrons can now tunnel from occu-
pied states of the tip into unoccupied states of the sample that
are at the same energy. In a real system thermal effects have to
be taken into account. Due to these, electrons can be thermally ex-
cited into unoccupied states, smearing out the occupation number
of the electron states near the Fermi levels. Mathematically, this is
taken into account by the temperature-dependent Fermi function:

f (ϵ,T) =
1

eϵ/kBT + 1
(3.4)

with ϵ = E − EF.

As one can see from Eq. 3.3, the tunneling current depends on the
LDOS ρS(E − EF,x,y) of the sample. Therefore, we can use this
relation to get insights into the sample’s LDOS using a measure-
ment of I. To do this, we take the derivative of Eq. 3.3:

dI/dV(V, T,x,y) ∝∫ ∞
−∞
[
ρs(E − EF,x,y)

∂ρt(E − EF + eV)

∂V
( f (E − EF + eV, T)

− f (E − EF, T)) + ρt(E − EF + eV)
∂ f (E − EF + eV,T)

∂V

]
dE.

(3.5)

Here, the transmission coefficient has been left out as it can be
approximated by a constant value when the applied bias voltages
are sufficiently small.

With the assumption that ρt only changes slowly as a function of
the energy E, which is true for small energy windows (meV), we
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can simplify the above equation to:

dI/dV(V, T, x, y) ∝
∫ ∞
∞ ρt(E − EF + eV)

∂ f (E − EF + eV, T)
∂V

dE

(3.6)
We can further simplify the equation if the temperature is low
enough (kBT << eV):

dI/dV(V, T, x, y) ∝ ρs(E − EF = eV, x, y) (3.7)

This way, STS provides direct access to the sample’s LDOS below
the tip apex’s location (x, y).

3.3 Modes of operation in STM and STS

Despite its basic principle, the scanning tunneling microscope op-
erates in various modes to gather specific information about the
sample. The different modes of operation take advantage of the
fact that the tunneling current in STM depends on the tip-sample
distance and the electronic properties of the tip and the sample.

Constant-current mode

In constant-current mode, the tunneling current is kept constant
while a feedback loop controls the tip’s z-position. This loop ad-
justs the tip-sample distance by retracting the tip from the sample
if the current exceeds a setpoint value Iset, and approaching it if
the tunneling current falls below this value.
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Specroscopy modes

Apart from the topographic information, STM can also provide in-
formation on the spectral properties of the sample. We can deduce
the sample’s LDOS if we know the tip’s DOS or make reasonable
assumptions about this DOS.

As shown in Eq. 3.7, the LDOS of the sample is directly related to
the differential conductance tunneling, which the STM can mea-
sure. The differential conductance is obtained by recording the
tunneling current as a function of Vbias and subsequently calcu-
lating the derivative of the tunneling current with respect to Vbias.

However, in modern STM setups, the lock-in technique is com-
monly used to measure the dI/dV-signal. This technique enables
an almost instantaneous measurement of the differential conduc-
tance tunneling signal and enhances the signal-to-noise ratio through
internal filtering instead of numerically deriving the tunneling
current. In this method, a lock-in amplifier introduces a small
voltage signal Vmod with a high frequency f (typically in the ranges
of a few kHz) to the direct current (dc) bias voltage signal. The
voltage modulation induces a response in the tunneling current
with the same frequency. This signal is fed into the lock-in am-
plifier, where it is multiplied by a reference signal with the same
frequency and phase and integrated over a time τ to isolate the
alternating current (ac) response from the rest of the input. This
part of the response represents the change in the tunneling cur-
rent for a small change in the bias voltage. It is, therefore, di-
rectly proportional to the dI/dV value of the tunneling junction.
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3.3 Modes of operation in STM and STS

For the measurements presented in this thesis, f was chosen to be
1097.1 Hz (for the SPECS setup, see Subsec. 3.5.1) or 4142 Hz (for
the 300 mK setup, see Subsec. 3.5.2). τ was chosen to be 10 ms
for bias-spectroscopy measurements (see more on the operation
mode below) and mostly 3 ms for spectroscopic maps (depending
on the scanning speed and number of data points).

Bias-spectroscopy measurements

In the bias-spectroscopy measurement mode, the tip is stabilized
above a chosen location using a stabilization current Istab and a
stabilization bias voltage Vstab. Then, the feedback is turned off.
During the measurement, Vbias is ramped inside a defined sweep
range, while the tunneling current and the dI/dV-signal are recorded
as described above. The dI/dV-signal then gives information on
the LDOS of the sample at the location of the tip and as a function
of energy (E = EF + eVbias). It is also possible to conduct this mea-
surement along a line or inside a grid with multiple measurement
points. For each point, the bias spectroscopy measurement is re-
peated. In the case of the line, we would call this measurement a
spectroscopic line profile. In the case of the grid, I will refer to this
measurement as grid spectroscopy measurement or spectroscopic
grid.
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Recording spectroscopic maps

Spectroscopic information on the sample can also be obtained while
scanning the surface in a similar fashion to the topographic imag-
ing mode. In contrast to the bias spectroscopy mode, the sample is
scanned with a constant bias voltage applied. Thereby, the LDOS
at energy E = EF + eVbias can be measured using the lock-in am-
plifier technique. This measurement can be done with or without
feedback to prevent artifacts from stabilization effects.

A similar mode used throughout the thesis is the so-called con-
stant contour mode. In this case, the sample is first scanned in
constant-current mode to record the topography of the sample.
Afterward, the feedback is turned off, and the bias voltage is set
to a specific value. Then, the recorded topography is followed,
while the dI/dV-signal is recorded.

Atommanipulation

Atom manipulation is the last mode used very heavily in this the-
sis. With this technique invented by Don Eigler [95], the STM tip
can be used to move around single atoms or even larger objects
on the surface. Atom manipulation can be done vertically or hori-
zontally [96]. During this thesis, only horizontal manipulation has
been used. To do this, a high tunneling resistance is set by switch-
ing to high Iset and low Vbias. When the tip gets near the single
atom, the potential of the tip causes the atom to bind partially to
the tip. This allows for dragging the atom to a location of choice.
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3.4 Tunneling between superconducting electrodes

When the atom is placed in the desired location, the tip can be re-
tracted again by switching to the normal parameters Iset and Vbias

used for scanning.

3.4 Tunneling between superconducting
electrodes

The spectroscopy measurements shown throughout this thesis have
been done with a superconducting tip. The reason for that can
be understood by considering Eq. 3.5. Thermal effects, which
are considered by the Fermi function, lead to an energetic broad-
ening of features in the LDOS. In other words, finite tempera-
tures reduce the energy resolution of the spectroscopy measure-
ments. This problem can be solved by using superconducting
tips. Mathematically, the tunneling current is a convolution be-
tween the tip’s DOS and the sample’s LDOS. The convolution of
a function f (x) with a delta function δ(x) will result in f (x) [97].
Shifting the delta function by a value a (δ(x − a)) will yield the
same result but with a shift of the signal in the x-axis by the value
a, i.e., f (x− a). To make use of this effect, the coherence peaks pro-
vided by a superconducting tip can be used as an approximation
of the delta function. With this method, the energy resolution can
be increased beyond the limit given by the Fermi function [98].

The tunneling process for a superconductor-insulator (vacuum) -
superconductor tunnel barrier is depicted in Figure 3.2. In this il-
lustrated case, a superconducting tip with a gap of ∆t and a super-
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Figure 3.2: Illustration of tunneling processes in SIS-junctions. Tun-
neling processes between a superconducting tip electrode’s LDOS (red)
and a superconducting sample electrode’s LDOS without Vbias (A) and
with Vbias = ∆t + ∆s applied between tip and sample (B). The gap pa-
rameters of the tip (∆t) and the sample electrode (∆s) are depicted by
the dotted line at the coherence peaks. The dashed lines between the re-
spective coherence peaks illustrate EF of the respective electrodes. The
applied bias voltage in (B) leads to a relative shift between EF of the tip
and the sample. Consequently, an electron current flows, depicted by
the black arrow in (B).
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3.4 Tunneling between superconducting electrodes

conducting sample with a gap of ∆s are considered. The dashed
lines mark the coherence peaks labeled ±∆t (±∆s). Dashed lines
between the respective coherence peak pairs mark EF. Panel (A)
illustrates the case for Vbias = 0. The Fermi energies of both elec-
trodes are aligned to each other. No current flows because no bias
voltage is applied. If Vbias ̸= 0 is applied, the Fermi energies of
the electrodes are shifted with respect to each other. We first as-
sume zero temperature T = 0. Since both electrodes are gapped
for voltages |eV| < |∆s + ∆t|, there is no current flow between
the electrodes for Vbias in this range. A current begins to flow at
eV = ±(∆s + ∆t). This scenario is depicted in panel (B). In this
case, the tip electrode’s occupied coherence peak overlaps with
the sample’s unoccupied coherence peak, leading to an electron
current flowing from the tip electrode to the sample electrode. A
sharp tunneling current onset can be measured due to the sharp
LDOS at both electrodes. The same is true for a bias voltage of
eV = −(∆s + ∆t). However, the current flows opposite, from
the sample to the tip. We now consider a non-zero temperature
T > 0. Then, the tunneling can already occur when a bias volt-
age of eV = ±(∆s − ∆t) is applied. This would apply to the cases
where either the thermally depopulated coherence peaks below
EF or the thermally populated coherence peaks above EF of the
electrodes are aligned with each other. Thereby, additional tunnel-
ing processes are caused by finite temperature effects. This leads
to small peaks in the spectrum located close to EF if ∆t ≈ ∆s.

When using a superconducting tip to measure in-gap states (e.g.,
YSR-states), the interpretation of the spectra becomes more dif-
ficult because each in-gap feature gets shifted by ±∆t. On top of
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that, when measuring at elevated temperatures, the thermal peaks
lead to an additional layer of complexity since every in-gap state
will also introduce a thermal resonance at values between −∆t

and +∆t. To account for this, the information on ∆t is added to
each spectrum shown throughout this thesis.

Modelling the SIS-spectra

In order to interpret features in spectra taken with a SC tip, the
SIS-spectra can be modeled using the tunneling current equation
(Eq. 3.3). The LDOS of the superconducting tip and the supercon-
ducting samples are modeled using Dynes functions (Eq. 2.14).

Suppose we insert these into the tunneling current Eq. 3.3 and
take its derivative, we get the current and the STS-spectrum shown
in Figure 3.3. We can see a spectrum with intense coherence peaks
appearing at ±(∆s + ∆t) (C). Furthermore, we can see thermal
peaks around Vbias ≈ 0. By comparison to the measured spectra,
we can extract the values for ∆s and ∆t as done throughout this
thesis. Due to the use of superconducting tips at T ≈ 4.54 K, ev-
ery feature of the sample can be seen doubled and shifted by the
value of the tip gap. This is why, to relate the energies measured
in the SIS-spectra back to a normal spectrum, we mark the tip gap
values, which indicate the bias voltage at which the samples’ EF

can be found. The regions in between ±∆t show redundant infor-
mation. For this reason, we often grey out this area or cut it out to
focus on the real features. This thesis will deal with in-gap states,
such as YSR-states. When we want to model such states, we add

62



3.4 Tunneling between superconducting electrodes

0

1

2

3

4

dI
/d

V
[a

.u
] A

t > s

SC-Gap
Tip Sample

4
2
0
2
4 B

+ t- t

SIS-Current

0

5

10
C

+ t- t

SIS-Conductance

0

1

2

3

4

dI
/d

V
[a

.u
]

D

5.0

2.5

0.0

2.5

5.0 E

5

0

5

10 F

5 0 5
E [meV]

0

1

2

3

4

dI
/d

V
[a

.u
]

G

5 0 5
E [meV]

5.0

2.5

0.0

2.5

5.0 H

5 0 5
E [meV]

0

10
I

Figure 3.3: Modelling of the SIS-spectra. (A, D, G) Modelled gaps of
the tip (blue) and the sample (orange) for a sample without in-gap states
(A) and a sample with in-gap states (D, G) as explained in the text. (B,
E, H) Tunneling current simulated from the LDOS shown in (A) for the
case of a clean gap (B), a gap with in-gap states at T = 4.54 K (E) and
at T = 0.32 K (H). (C, F, I) STS-spectrum calculated from the tunneling
current shown in (B), (E) and (H) for the case of a clean gap (C) a gap
with in-gap states at T = 4.54 K (F) and at T = 0.32 K (I). Parameters:
N0,tip = 1 meV−1 m−3, N0,sample = 1 meV−1 m−3, ∆t = 2 meV, ∆s =

1.5 meV, γsample = γtip = γYSR = 0.02 meV, (A-I), I1 = 0.2 meV−1 m−3,
I2 = 0.3 meV−1 m−3, ϵYSR,1 = 0.5 meV, ϵYSR,2 = 0.5 meV (D-I) T =
4.54 K (A-F), T = 320 mK (G-I).
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additional Lorentzian peaks into the LDOS of the sample as given
by (panels (D-F)):

L(ϵ,I0,ϵ0) =
I0γ

2

γ2 + (ϵ−ϵ0)2 (3.8)

where Ii is the height, ϵi is the energetic location of the peak, and
γ is the peak broadening parameter. This results in the sample’s
overall LDOS:

Ns(E) = 2N0Re[
E + iΓ√

(E + iΓ)2 − ∆2
] +

n

∑
i=0

L(ϵ,I0,i,ϵ0,i) (3.9)

where the summation runs over each in-gap peak of the sam-
ple LDOS. The simulated SIS-spectrum in panel (F) shows that
the in-gap states are energy-shifted by ±∆t. Furthermore, tun-
neling at elevated temperatures leads to thermal copies of those
states inside the redundant energy region (grey, shaded bias volt-
age range). To prevent the occurrence of these thermal excitations,
the experiment can be done at lower temperatures. The panels (G-
I) demonstrate what to expect in this case. Please note that in the
actual experiment, decreasing the temperature from T = 4.54 K
to 320 mK will also affect ∆t and ∆s. However, we only vary the
temperatures between (D) and (G) while keeping the rest of the
parameters constant for demonstration purposes. In panel (H),
we can see that the decreased temperature leads to the disappear-
ance of the thermal peaks. This is more clearly seen in the dI/dV-
signal in panel (I). While the thermal peaks disappear, the peak of
the YSR-states increases in intensity.
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3.4 Tunneling between superconducting electrodes

Tip preparation

The measurements presented in this thesis have all been done us-
ing superconducting Nb tips. These tips were made from a high-
purity Nb-wire, which was mechanically cut and sharpened. The
tip was subsequently prepared under UHV conditions, where it
was flashed to ≈ 1500 K to remove residual contaminants and ox-
ide layers on the surface of the tip. To prepare a tip with a large
and clean superconducting gap ∆t during measurements, the tip
was coated with further superconducting material by indenting it
into the superconducting substrate with a high voltage applied.
To induce small changes in the tip’s spectroscopic properties or
reshape the tip apex’s microscopic shape, the tip was mildly in-
dented into the sample (usually with a few hundred pm) without
applying voltage pulses.
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3.5 Experimental setups

This thesis has utilized two different low-temperature UHV STM
setups. The first setup is a commercially available system manu-
factured by the company SPECS [99]. The second setup is a home-
built STM system capable of operating at temperatures as low as
300 mK [100]. Both STM setups are equipped with UHV prepara-
tion chambers, which will be detailed in the following sections.

3.5.1 The 4.2K/1K SPECS setup

The primary measurement setup used in this thesis is shown in
Figure 3.4 [99]. This setup was used for conducting STM and
STS measurements presented in Chapters 4, 5, and parts of Chap-
ter 6. The diagram in panel (A) shows the three separate cham-
bers. The first chamber, shown in blue, is the Joule-Thomson (JT)-
chamber, which contains a JT-cryostat with a scanning tunneling
microscope. The system was produced commercially by SPECS
and CryoVac. The cryostat includes a liquid nitrogen (LN2) reser-
voir to pre-cool the system to liquid nitrogen temperatures of 77 K
and a liquid helium bath cryostat, which is thermally connected
to the microscope, cooling it to a base temperature of 4.2 K. Uti-
lizing the JT cooling mechanism, the microscope can be cooled
to a base temperature of 1.1 K. However, further discussion is
omitted as the JT-cooling was not utilized in this work due to a
blockage in the impedance capillary. The JT-chamber, located in-
side the cryostat, houses evaporation ports that enable the depo-
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sition of single atoms onto the sample surface while it is cooled to
T ≈ 4.2 K. Adjacent to the JT-chamber is the first preparation
chamber, highlighted in green, interconnected via a UHV gate
valve. This chamber incorporates multiple evaporation ports, a
pyrolytic boron nitride resistive heating stage, and a combined
low-energy electron diffraction (LEED)- and Auger electron spec-
troscopy (AES)-system. The second preparation chamber, marked
in orange, is linked to the first preparation chamber through a
UHV gate valve. It houses an e-beam stage and a sputter gun.
Each chamber has an ion getter pump and a Ti-sublimation pump,
ensuring UHV conditions during operation. Furthermore, both
preparation chambers are linked to turbo pumps for pumping
during preparation. Under normal operational conditions, the
background pressure within the system typically remains in the
range of 10−10 mbar.

To prepare the samples presented in this thesis, we used prepara-
tion chamber 2 to sputter anneal and flash Nb(110) crystals. After
this step, the Ag islands presented in Chapters 4 and 5 were grown
in the preparation chamber 1. For the BiAg2 surface presented in
Chapter 6, the Bi-evaporator in the preparation chamber 1 was
used. Finally, to evaporate individual atoms onto the cold sur-
face, such as the Fe-atoms presented in Chapters 5 and 6, a triple
evaporator manufactured by the company Focus was used.
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A B

C

Figure 3.4: The JT-SPECS setup. (A) Schematic of the STM setup, with
the JT-STM chamber (blue) and the preparation chambers attached to it
(green and orange). (B) Photograph of the system; (C) Cross-section of
the design showing the lower part of the JT-chamber with the STM and
the magnet taken from Ref. [101].
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Figure 3.5: 300 mK UHV STM setup. (A) Schematic of the 300 mK UHV
STM setup consisting of the cryostat with the scanning tunneling micro-
scope and the magnet (blue), the mechanical noise damping system, the
preparation chamber (green), the chamber for sample and tip exchange
(pink) and the LEED/AES chamber (orange). Note that the LEED/AES
was not used during this thesis. (B) Close-up image of the STM head
embedded inside of the cryostat shown in (A). The image was taken
from Ref. [102].
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3.5.2 The 300mK home-built system

The second STM setup utilized for a portion of the measurements
within this thesis is a home-built low-noise UHV system operat-
ing at approximately 300 mK (see Figure 3.5). The system was
designed and constructed by J. Wiebe and A. Wachowiak, and it
is extensively detailed in Ref. [100]. The STM system features
a base temperature of around 315 mK and can be broken down
into two main components: the cryogenic system, which includes
the cryostat and the 3He cooling mechanism, and the UHV multi-
chamber system. Turbo pumps are attached to the chambers to
establish and maintain UHV conditions during sample prepara-
tion and bake-outs. The preparation chamber (green) houses the
e-beam stage for flashing samples, a sputter gun setup, and mul-
tiple evaporators to deposit atoms on a warm sample. During
measurements, the STM-head is located inside the cryostat. How-
ever, the microscope can be brought into the tip/sample exchange
chamber below the cryostat for a tip or a sample exchange. Fur-
thermore, the chamber has an evaporation port with a triple evap-
orator manufactured by Focus attached to it, which can be used
to deposit single atoms onto a cold surface. Titanium sublima-
tion pumps and ion-getter pumps are utilized to maintain UHV
during measurements. Superconducting magnets allow applying
magnetic fields in the out-of-plane direction of the sample up to
12 T. The 3He is used in a closed cycle to cool the STM-head below
the liquid helium temperature down to 315 mK with a hold time
of ≈ 20 h.

For the preparation of the BiAg2 on Nb(110) presented in Chap-
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ters 6, the preparation chamber was used. The Nb(110) crystal
was sputter-annealed and flashed in multiple cycles. The evap-
orators mounted onto the preparation chamber were used to de-
posit Ag- and Bi-atoms for the growth of BiAg2 on Nb(110). To
deposit magnetic atoms, the sample was put into the STM-head,
which was lowered into the tip/sample-exchange chamber. Here,
the sample was cooled, and atoms were evaporated onto it.
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4 Proximity induced
superconductivity in artificial
quantum dots: experimental
discovery of Machida-Shibata
states

This chapter deals with the investigation of artificially constructed
quantum dots and their superconducting properties when being
proximitized by a superconductor. To do this, we grow Ag(111)
islands on the superconducting surface of a Nb(110) crystal. We
examine the surface state of Ag(111) and how it behaves under
the influence of the underlying superconducting substrate. Us-
ing atom manipulation, we will build quantum corrals to also lat-
erally confine the Ag(111) surface state, creating a quantum dot
with spin-degenerate energy levels. With this, we will address the
question of what happens to the eigenmodes when it is coupled
to a superconductor. The results of this chapter will shed light on
the first ingredient of topological superconductivity, the proxim-
ity effect. During the time of my thesis, parts of the results of this
chapter have been published in the following works:
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Lucas Schneider, Khai That Ton, Ioannis Ioannidis,
Jannis Neuhaus-Steinmetz, Thore Posske, Roland
Wiesendanger and Jens Wiebe

Proximity superconductivity in atom-by-atom crafted
quantum dots

Nature 621, 60–65 (2023)

Lucas Schneider, Christian von Bredow, Howon Kim,
Khai That Ton, Torben Hänke, Jens Wiebe and Roland
Wiesendanger

Scanning tunneling spectroscopy study of proximity
superconductivity in finite-size quantized surface states

Phys. Rev. B 110, L100505 (2024)

Experimental and theoretical work sharing

Dr. Lucas Schneider and I conducted and analyzed the measure-
ments presented in this chapter. For the data analysis, we used
self-written Mathematica and Python scripts. Ioannis Ioannidis
derived the resonance scattering model under the supervision of
Dr. Thore Posske. Dr. Lucas Schneider used self-written Mathe-
matica scripts to simulate the particle-in-a-box model.
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Introduction

Inducing superconductivity in systems, which are initially non-
superconducting, can lead to the formation of physical systems
with non-trivial properties [16, 55, 103–105]. In the research field
of topological superconductivity, for example, many proposals in-
corporate the idea of using the proximity effect to induce super-
conductivity onto magnetic systems with non-trivial spin-textures
[30, 31, 106]. For hybrid systems between a normal metal and a su-
perconductor, the proximitized superconductivity depends on the
interface’s transparency. For the clean limit, proximity-supercon-
ductivity in the normal metal can still be observed for normal
metal film thicknesses of up to 45 nm [107]. However, inducing
superconductivity into the surface state of the material requires
a more thorough understanding of the proximity effect since the
surface state is known to be well decoupled from the bulk. In the
field of STM, creating designer quantum states of matter by atom
manipulation often involves the confinement of surface state elec-
trons [108–110]. Experiments in this field range from the creation
of artificial topologically non-trivial lattice systems [111, 112] to
the creation of artificial molecular orbitals [113–115]. Understand-
ing how to induce superconductivity in such systems would open
up new possibilities for emulating superconducting systems.

Experimental procedures

The measurements in this chapter were taken with a supercon-
ducting tip, made from a high purity mechanically cut Nb wire,
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which was flashed to ≈ 1500 K as also described in Section 3.4. In
the spectra, we mark the Vbias value corresponding to the tip gap
energy ±∆t by dashed lines with the respective label. In some of
the measurements, we cut the Vbias-interval between −∆t/e and
+∆t/e to leave out the redundant information of the spectra and
focus on the relevant features.
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4.1 Noble metal system growth on a
superconductor

This section deals with the growth of Ag(111) on Nb(110). The
procedures described here will lay the foundation for the works
on the quantum corrals in the sections hereafter.

Wetting layer growth of Ag

We begin our investigations by growing clean Ag(111) surfaces
on top of Nb(110). To achieve this, we use a Nb-crystal cut in
the (110)-direction and clean the crystal by flashing it to approx-
imately T ≈ 2000 K. This process leaves us with the typical re-
constructed NbOx surface. The characteristic disordered striped
pattern covers the surface [116].

On the reconstructed Nb(110) surface, we deposit Ag from a high-
purity rod using an e-beam evaporator. The deposition rate is
approximately 0.1 MLs per minute while heating the sample to
about 600 K.

After deposition, we observe a coverage of approximately ≈ 15 %,
where the deposited atoms mostly form small Ag islands. An ex-
ample of that can be seen in panel (A) of Figure 4.1. The Ag island
is marked by a blue cross, while the reconstructed NbOx surface
is marked by an orange cross. The islands on the substrate ex-
hibit heights of about 500-540 pm, corresponding to 2 MLs of Ag.
Since the Ag does not fully cover the surface, we can still see the
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Figure 4.1: Growth of 2 MLs islands of Ag on Nb(110). (A) Constant-
current STM image of a thin Ag island grown on oxygen-reconstructed
Nb(110). The apparent height of the island equals 540 pm, indicating
that the Ag grows in DLs. The white bar corresponds to 2 nm. (B)
dI/dV-spectra measured on the Ag DL and the oxidized Nb(110) sub-
strate; the sharp peaks at bias voltages corresponding to ±(∆t+∆s) are
marked by grey, dashed lines and the ones at ±(∆t-∆s) are marked by
black arrows. Parameters: Vbias = 5 mV, Iset = 1 nA (A), Istab = 1 nA,
Vstab = 5 mV and Vmod = 50 µV (B).
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reconstructed NbOx/Nb(110) substrate.

Next, we compare bias-spectroscopy measurements taken on the
island with those taken on the Nb-substrate (marked by the blue
and orange "x" in Figure 4.1A). The spectra can be seen in panel
(B), with the orange line corresponding to the NbOx substrate and
the blue curve corresponding to the Ag island. The result shows
the typical spectrum for SIS-tunneling (see Section 3.4). The sharp
peaks observed at Vbias = ±2.35 mV can be assigned to tunneling
between the coherence peaks of sample and tip given by ±(∆t +

∆s). In contrast, the two peaks at Vbias = ±0.36 mV correspond
to thermally activated tunneling processes between the coherence
peaks of the sample and tip given by ±(∆t − ∆s). By measuring
the spectrum with different microtips, we determine a sample gap
of ∆s = 1.35 meV [117].

Even though we did not clean the Nb(110) surface from the oxy-
gen reconstruction, comparing the spectrum measured on the Ag
wetting layer and the one measured directly on the Nb-substrate
yields almost no differences. The fully opened gap proposes that
the oxide interface between the Nb-substrate and the Ag-film does
not influence the proximity-induced superconductivity on the sur-
face of the Ag DL.

In the next step, we zoom in on the surface of the Ag DL island,
as presented in Figure 4.2. Panel (A) shows the constant-current
STM image at normal imaging parameters. The surface is covered
with impurities of unknown chemical composition. We scan the
same area with larger tunneling currents and lower bias voltages
to uncover the surface’s atomic structure, as presented in panel
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Figure 4.2: Zoom-in on the Ag DL surface. (A) Zoom-in on the DL, ex-
hibiting atomically flat areas of Ag and several twofold symmetric de-
fects of unknown origin. The white bar corresponds to 1 nm. (B) Atom-
ically resolved constant-current STM image of the same area shown in
panel (A). (C) Fourier transform of the atomic-resolution image in (B),
showing Bragg spots incompatible with a hexagonal lattice (a perfect
hexagon is overlaid in blue) but with a pseudomorphic growth on the
bcc(110) surface of clean Nb. The white line corresponds to 1.92 nm−1.
Parameters: Vbias = 1 V, Iset = 0.1 nA (A), Vbias = 2.5 mV, Iset = 10 nA
(B).
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Figure 4.3: Closing of the Ag-wetting layer. (A-C) Constant-current
STM image of Ag grown on NbOx/Nb(110) at different coverages in-
dicated by the labelling above. (D-F) Line cuts through the measure-
ments shown in (A-C) as indicated by the blue dashed lines. Parameters:
Vbias = 1.0 V, Iset = 0.02 nA (A), Vbias = 100.0 mV, Iset = 0.2 nA (B),
Vbias = 100.0 mV, Iset = 0.5 nA (C).

(B). This measurement reveals a pseudomorphic growth on the
underlying Nb(110) surface: The scanned area’s fast Fourier trans-
formation (FFT) shows a 2-fold symmetric structure, with peaks at
the corners of a distorted hexagon (C).

A similar growth behavior has been reported for Au on recon-
structed V(100) [118]. According to the authors, the oxygen atoms
in the V substrate become mobile upon heating the sample. When
the Au atoms are deposited onto the surface, they replace the oxy-
gen atom, forming a relatively clean layer of Au.
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When the amount of deposited material increases, the Ag-atoms
form larger DL islands on top of the Nb-substrate until a closed
Ag DL is formed. Figure 4.3 illustrates the surface for different
degrees of coverage, with a line cut through the scan in the re-
spective panel below. At 48% coverage, panel (A), individual DL
islands cover the surface with a height of around 500 pm. We
can discern the different step edges of the Nb-substrate below
the Ag islands. At a coverage of 92%, panel (B), the individ-
ual islands merge and begin to form almost fully closed layers.
Panel (C) shows the surface for a preparation where the Ag DL is
completely closed. Here, the observed height differences mostly
stem from the step edges of the Nb-substrate. Only then, for even
larger amounts of deposited material, thicker islands are formed
(see below). So, the growth mode of Ag on Nb(110) is a Stranski-
Krastanov growth mode with a wetting layer of two layers of Ag
[119].

Epitaxial growth of thicker Ag islands

In a three-step process, we deposit Ag-atoms to grow thicker epi-
taxial Ag(111) islands on the Nb-surface. In the first step, we de-
posit 2 MLs of Ag at 600 K to form a closed wetting layer. After a
closed wetting layer is created, thicker islands begin to grow on it.
We decrease the temperature of the sample to 400 K and continue
depositing 2 MLs of Ag. The lowered temperature decreases the
mobility of Ag-atoms deposited on the wetting layer, leading to
the formation of nucleation centers for the thicker islands. In the
last step, we increase the temperature to 600 K and deposit an ad-
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Figure 4.4: Growth of thicker Ag(111) islands on Nb(110). (A) Large-
scale constant-current STM image of a sample with nominal Ag cover-
age of 8 MLs. The DL thick Ag wetting layer covers the Nb-surface. The
additional amount of Ag forms thicker Ag(111) islands. The white bar
corresponds to 500 nm. (B) Atomically resolved constant-current STM
image of a thick Ag island. The white bar corresponds to 0.5 nm. (C) FFT
of the image, showing Bragg spots in good agreement with a hexagonal
fcc(111) growth. The white bar corresponds to 1.52 nm−1. Parameters:
Vbias = 1 V, Iset = 100 pA (A), Vbias = 100 mV, Iset = 1 nA (B).
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ditional 3 MLs of Ag. The increased temperature helps anneal the
surface and create a flat surface on top of the thicker Ag islands.

The result of this sample preparation is presented in Figure 4.4.
In panel (A), a large-scale overview of the surface is shown. The
Nb(110) substrate is fully covered with the 2 MLs thin wetting
layer. On top of the wetting layer, Ag islands with thicknesses
of 20 nm to 40 nm are observed. We can see a clean surface when
zooming onto the island surface. Panel (B) shows an atomically
resolved image of such an island, revealing an atomically well-
ordered lattice. The surface atoms are ordered in a hexagonal lat-
tice. The FFT of the atomically resolved image is shown in panel
(C) to quantify this further. Here, we can see six points around
the coordinate system’s origin, forming the corners of an equi-
lateral hexagon. We conclude that the pseudomorphic growth of
the Ag(110) wetting layer has been followed by the growth of 3D
Ag islands exhibiting a (111) surface orientation and that the mor-
phology of those islands is already like that of bulk Ag.

This result coincides with what has been reported in Ref. [107],
where the Stranski-Krastanov growth mode for Ag on Nb(110) has
been observed.
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Spectroscopy measurements on thicker Ag(111) islands

Next, we look at the spectral properties of the thicker Ag(111) is-
lands grown on the Nb-substrate. Our measurements aim to eluci-
date two primary aspects. Firstly, we delve into the Shockley-type
surface state of Ag(111), a topic previously discussed in Chap-
ter 2.1. It can serve as additional proof that the surface is, in
fact, the Ag(111) surface. Secondly, we will look at spectra in
the low-energy regime around EF. This will allow us to deter-
mine whether superconductivity is induced into the Ag(111) sur-
face state.

The Shockley-type surface state of the Ag(111) surface can be probed
by observing interference patterns in dI/dV-maps resulting from
the scattering of surface state electrons at defects on the surface,
also known as QPI. These defects can be point-like impurities or
one-dimensional step edges. Figure 4.5 provides an example of
a step edge on one of the Ag(111) islands (see panel (A)). In ad-
dition to the step edge, single impurities on the surface serve as
additional scatterers. The dI/dV-maps of the same area were ac-
quired for different Vbias, shown in panels (B-D) and (H-J). These
maps reveal wavy interference patterns across the surface. In the
measurement at −20 mV (B), for instance, a comparison with the
topography in (A) shows that these waves originate from the scat-
tering centers. The respective FFT of the map (E) displays an
isotropic scattering pattern, indicated by the ring-shaped feature.
As Vbias increases, the wavelength of the interference patterns be-
comes smaller, panels (C, D, H-J), which is further illustrated by
the corresponding FFTs shown in the respective panels below (F,
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Figure 4.5: Scattering pattern of the Ag(111) surface state. (A)
Constant-current STM image of a Ag(111) terrace with a step edge. The
white line corresponds to 4 nm. Examples of defects are marked by the
black arrows. (B-D), (H-J) dI/dV-maps of the Ag(111) surface taken
at different bias voltages as indicated on top of each image. (E-G),
(K-M) FFT image of the respective dI/dV-measurement above. The
white line in (E) corresponds to 0.12 nm−1. Parameters: Iset = 200 pA,
Vbias = 5 mV (A); Iset = 200 pA, Vmod = 50 µV, feedback: on (B-D),
(H-J).
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Figure 4.6: Spectroscopic line profile on the Ag(111) island over a large
bias range. (A) Constant-current STM image of the Ag(111) island. The
white line corresponds to 20 nm. (B) Spectroscopic line profile over a
wide bias range, measured along the line depicted by the black arrow
in (A). Parameters: Iset = 100 pA, Vbias = 100 mV (A); Istab = 1 nA,
Vstab = 100 mV, Vmod = 5 mV (B).

G, K-M). The circles’ radii in the FFTs increase with Vbias, cor-
responding to the decreasing wavelength of the interference pat-
terns. Note that the horizontal line is an artifact resulting from
the FFT process. Apart from these artifacts, the circle’s presence
as the only sharp feature in the FFT suggests that the scattering in
one electron band predominantly causes the observed patterns.

A spectroscopic line profile was acquired to investigate how the
surface state behaves as a function of energy along a line on the
surface (see Figure 4.6). Please note that the topographic image
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of the island in panel (A) shows a double tip feature on the right.
Therefore, we limit the spectroscopic line profile to the topmost
terrace. The measurement was taken along the black arrow in
panel (A).

The spectroscopic line profile in panel (B) was taken over a wide
bias range from −100 mV to 100 mV. The measurements taken on
the terraces show the typical spectrum for Ag(111): From the neg-
ative to positive value of Vbias, we observe that between −100 mV
and approximately −55 mV the signal is at a low level and con-
stant as a function of energy. At about −55 mV, we see a step-like
increase in the onset of the surface state band. On closer inspec-
tion of the spectra taken on the flat terraces, we can observe an
oscillation of the dI/dV signal as a function of X for voltages be-
tween the step at −55 mV and 100 mV. Note that the wavelength
of this oscillation decreases as the bias voltage Vbias increases. Fur-
thermore, these oscillations are most apparent near the boundary
to the step and lose intensity as we move toward the island’s inte-
rior.

The scattering patterns in the spectroscopic line profile can be
used to extract the dispersion relation for the Ag(111) surface band.
We take the FFT for each spectroscopic line profile energy slice.
This way, we end up with an intensity map as a function of the
scattering vector q and the energy given by eVbias shown in Figure
4.7. This dispersion can be fitted by using the quasi-free electron
model. The dispersion relation of the quasi-free electron model is
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Figure 4.7: Ag(111) surface-band dispersion relation. The values were
obtained by Fourier transforming the spectroscopic line profile shown
in Fig. 4.6 for each energy line by line. The white dashed line depicts
the fitted dispersion of a quasi-free-electron gas using Eq. 4.1. Fitting
parameters: meff = 0.47me, E0 = −50 meV

given by [120]:

E(k∥) =
h̄2k2

∥
2meff

+ E0 (4.1)

with the electron energy E, the wavevector parallel to the surface
k∥, the effective mass meff and the surface band onset E0. In our
case, k∥ is given by k∥ = q/2 since q describes a scattering vector
from a state at −k∥ to +k∥ or vice versa. For large energies, it has
been reported that the band dispersion relation deviates from a
parabolic relation [121]. In that case, using a tight-binding model-
ing approach would lead to better results. However, in our case,
the quasi-free electron is sufficient to model our system.

The fitted values can be seen in Figure 4.7 as a white dashed line,
where meff = 0.47me and E0 = −50 meV. The value for meff

is in accordance with what has been reported in the literature
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A B

Figure 4.8: Ag(111) island with step edges. (A) Constant-current STM
image of the Ag(111) island with multiple step edges. (B) Zoom-in on
the region marked by the blue square with step edges in panel (A). Pa-
rameters: Iset = 50 pA, Vbias = 1 V (A); Iset = 1 nA, Vbias = 100 mV (B).

(meff = 0.41me [122], meff = 0.42me[123]). However, a more no-
table discrepancy exists between our E0 and the one reported in
Ref. [122] (E0 = −65 meV). One reason could be the strain in
the Ag island, stemming from the lattice mismatch between the
Nb(110) surface and the Ag(111) crystal structure, which can shift
the surface bands onset to higher energies [124].

Next, we take a closer look at the superconducting properties of
the Ag(111) island surfaces. The measurements were taken on the
Ag(111) island shown in Figure 4.8A. The island has a thickness of
approximately 55 MLs. On this island, one can find a region with
multiple step edges (panel (B)). In Figure 4.9A, a low-bias spectro-
scopic line profile is presented, which was taken along the arrow
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Figure 4.9: Spectroscopic line profile on the Ag(111) island over a
small bias range and FFT. (A) Spectroscopic line profile in the low-bias
regime measured along the Ag(111) islands shown in Figure 4.8, where
the arrow in Figure 4.8A depicts the position of the line profile. The
values of the tip gap ±∆t (red) and the sum of the tip and sample gap
value ±(∆t + ∆s) (cyan) are marked by the dashed lines and labeled
respectively. The energy interval between ±∆t and the green dashed
lines depict the induced gaps of the surface state ∆SS,i. The black arrows
on the top mark the edges of terraces. (B) FFT of panel (A). (C) Topo-
graphic line profile of the step edge corresponding to panel (A). See also
supplementary Fig. 5 in Ref. [117] for more information on the island.
Parameters: Istab = 1 nA, Vstab = 5 mV, Vmod = 50 µV (A).
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in Figure 4.8. The spectra range from Vbias = −5 mV to 5 mV
to highlight features around the superconducting gap. As men-
tioned at the beginning of the chapter, the spectra were obtained
using a superconducting tip, which shifts all features inside and
outside the gap by ±∆t with respect to their original energetic po-
sition relative to EF. The energetic positions of ±∆t are marked by
red dashed lines, while the cyan dashed lines indicate ±(∆t +∆s).
In the energy range between −∆t and +∆t, we observe the ther-
mally excited replica of the in-gap features at energies above ±∆t.
For the measurements taken on the terraces, multiple states are
visible between ∆t (−∆t) and +(∆t + ∆s) (−(∆t + ∆s)). Interest-
ingly, these in-gap states are strongly quenched when measuring
at the step edge.

As described in Section 2.2.3 and in Ref. [60], the proximity-induced
superconductivity inside of a metal as a function of thickness is
given by the coherence length of the metal. For a noble metal like
Ag, we extracted a coherence length ofξN = 270 nm (see details in
Ref. [125]). Given that our island’s thickness d ≈ 14 nm is well be-
low the coherence length, we would expect to see a proximitized
gap on the surface. However, when measuring the spectrum on
the Ag(111) surface, we observe that multiple in-gap states dom-
inate the gap, and only a very small gap ∆SS opens on the large
Ag(111) terrace. Interestingly, we can see that the number of in-
gap states and the size of ∆SS differs between the individual ter-
races. Most importantly, we see that ∆SS,1 and ∆SS,2, which corre-
spond to locations with the same island thickness, differ strongly.

This contradicts the interpretation in Ref. [107], where it has been
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stated that the superconductivity induced into the Ag-surface state
will get stronger as the islands get thinner. So, the suggestion is
that proximitized superconductivity in the surface state is not de-
termined by the island thickness but rather by something else, as
we will see later in this chapter (Section 4.3).
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4.2 Artificially constructed quantum dots

In the previous experiments, we investigated the surface state of
Ag(111) using bias spectroscopy measurements. We also exam-
ined the superconducting gap and observed that the sample gap
is filled with in-gap states distributed across the Ag(111) surface.
However, given that the thickness of the island is well below the
coherence length of the proximitized Ag, we would expect to see
some level of proximitized superconductivity. One possible expla-
nation for the lack of a clear proximitized gap is that the Ag island
might need to be more transparent. However, the observation of
an almost fully open gap at the step edge of the Ag island con-
tradicts this explanation. Another explanation could be that the
decoupling of the surface state of Ag(111) from the bulk hinders
the proximity-induced superconductivity on the surface.

In this section, corrals are built using atom manipulation tech-
niques. The surface state of Ag(111) can be confined within cor-
rals to create systems with well-separated energy levels [126]. We
use single Ag-atoms extracted from the substrate surface to build
the corral walls, confining the Ag(111) surface state. This leads
to energetically well-separated eigenmodes in the corral [127]. By
doing so, we can simplify the problem to a single resonance level
at EF, effectively creating a quantum dot and investigating how it
behaves in the presence of the underlying superconducting sub-
strate. By resizing the corral in one dimension, we can tune the
energetic locations of the eigenmodes. We look at spectroscopic
measurements inside the corral in the low-energy regime around
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Figure 4.10: Extraction of single Ag atoms from Ag(111)/Nb(110). (A)
Constant-current STM image of a clean Ag area. The white bar corre-
sponds to 10 nm. (B-E) The same area after indenting the tip into the
surface at different positions along the surface. A single adsorbate of
similar apparent height is found after each indentation process. The
tip was stabilized at the scanning parameters for the indentation and
moved by −600 pm in the Z-direction towards the surface. Parameters:
Iset = 1 nA, Vbias = 15 mV.

the superconducting gap. Note that the terms (quantum) corral
and quantum dot (QD) will be used interchangeably throughout
this chapter.

Extraction of single Ag-atoms

In the first step, single Ag-atoms have been gathered on the sur-
face to build the quantum corrals. On the Ag(111) surface, this
can be done by controlled dipping of the tip into the sample to
coat the tip with Ag-atoms and, another time, to drop some of the
atoms again [128]. The amount of atoms dropped is dependent
on the crashing depth. We follow the procedure described by Ref.
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[129]. This can result in one of the two scenarios:

1. Extract Ag-atoms from the surface, which are then bound to
the tip. After this process, a vacant spot is usually observed
where the tip has been dipped.

2. A single adatom on the surface is left behind (as shown in
Figure 4.10).

The second scenario is explained by the tip being coated with Ag
in a previous dipping process and dropping a single Ag-atom
onto the surface. In the constant-current images of Figure 4.10,
we see an object created with an apparent height of 80 nm. With
this method, we can reliably produce single atoms, which can be
used to build quantum corrals.

Spectroscopy measurements on quantum dots

To construct the quantum corrals, we used lateral atom manipu-
lation of the Ag-atoms with tunneling resistances of R ≈ 100 kΩ
(see example in Figure 4.11A). We built a rectangular corral with
a width of Ly = 9.1 nm and a length of Lx = 24.0 nm. The atoms
were positioned with an interatomic distance of approximately
1.5 nm. An additional wall layer was added to the corral to reduce
the transparency of the corral walls to the surface state waves. The
length Lx of the corral can be tuned by moving one of the walls,
as shown in panel (C), where the upper wall atoms were moved
downwards, as depicted by the arrow. As indicated by the labels,
the new corral has the same width Ly as the one in (A), but the
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Figure 4.11: Spectroscopic line profiles for corrals of different sizes.
(A) Constant-current STM image of a Ag corral with Lx = 24 nm. (B)
Spectroscopic line profile along the dashed vertical line marked in panel
(A). The arrows on the top mark the energetic positions of respective
eigenmodes. The white line corresponds to 1.5 nm. (C) Constant-current
STM image of a Ag corral with Lx = 16.4 nm. The arrow indicates the
shift of the upper wall. (D) Spectroscopic line profile along the dashed
vertical line marked in panel (C). QD eigenmodes with ny = 1 and nx,
as indicated by the arrows at the top, are observed. As the black arrows
illustrate, their energy shifts when Lx changes. Parameters: Iset = 1 nA,
Vbias = 5 mV (A,C), Istab = 2 nA, Vstab = −100 mV, Vmod = 2.0 mV
(B,D).
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length changed to Lx = 16.4 nm.

Spectroscopic line profiles were measured along the central line
inside the corral, as depicted by the grey dashed lines in panels (A)
and (C). The respective spectroscopic line profiles for the corrals
in (A/C) are presented in the panels on the right (B/D).

In panel (B), we observe an increased dI/dV signal at low V,
which decreases to a lower level and forms a low signal plateau
between V = −70 mV and V = −30 mV. At V = −22 mV, a large
peak in the dI/dV signal spans the entire corral. As we increase
the energy, this peak, initially distributed over the whole corral,
separates into two maxima. A large spatial overlap between the
two resonances makes it hard to discern them as separate quan-
tum states. The next resonance with three maxima appears at
Vbias ≈ −10 mV. At higher voltages, a resonance with an increas-
ing number of maxima appears. For each mode, we can define a
number nx, which refers to the number of maxima we can count
along the X-direction. The energetic position and nx numbers are
indicated by arrows.

The spectroscopic line profile through the smaller corral shown
in panel (D) also reveals the quantized resonances with maxima
along the X direction. We match the resonances in (B) with the
ones in (D) by counting the number of maxima. This is indicated
by the black arrows connecting the resonances in (B) with those in
(D). Comparing the energetic positions, we see that the energy in-
tervals between the modes become larger as we decrease the cor-
ral size. This results in a shift of the modes of the smaller corral
to higher energies. Additionally, we observe that the resonances
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in (D) have a larger energy linewidth than the ones in (B). The
linewidth or lifetime broadening of the resonance, which we will
refer to as Γ , gives insight into the coupling between the observed
resonances in the corral and the bulk electron states via the rela-
tion:

Γ ∝ V2 (4.2)

Therefore, we can assume that we get a stronger coupling between
surface and bulk when corral sizes are decreased. This observa-
tion will be investigated more rigorously later in this chapter.

To map the spatial distribution of the resonances, we measured
dI/dV-maps of the corral’s interior at Vbias corresponding to the
eigenmode’s energy. Figure 4.12 shows the spatial pattern of the
Lx = 16.4 nm corral’s eigenmodes. In panel (A), a constant-current
image of the corral is presented, with the orange box illustrating
the area where the dI/dV-maps were acquired. Panels (B-L) dis-
play those maps taken at energies (E = eV) between −18 meV
and 16 meV. The maps show that the interior of the corral forms
patterns that resemble the solution of a particle-in-a-box problem.
Panel (B) shows the (nx, ny) = (1,1)-eigenmode, where nx counts
the number of maxima in the X- and ny the number of maxima in
the Y-direction. It transitions to the (2, 1)-mode in panel (C). Pan-
els (D) and (E) were taken at bias voltages inside the gap and show
the (3, 1)-mode. In panels (F-H), a mixture between the (3, 1)- and
the (1, 2)-mode is observed. Panel (I) resembles a (1, 2)-state and
panels (J-L) resemble different mixtures of (4, 1)- and (2, 2)-states
(see comparison to a particle-in-a-box model below).

Most interestingly, we can see states appearing at energies inside
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Figure 4.12: Constant-height dI/dV-maps of corral eigenmodes. (A)
Constant-current STM image of the corral (also shown in Fig. 4.11C,
but mirrored along the horizontal axis). The orange box depicts the
area of the dI/dV-maps presented in panels (B-L), which has a size
of 15 nm × 5 nm. (B-L) Constant-height dI/dV-maps of the corral’s
interior measured at the bias voltages indicated by the respective la-
bels above the panel. The measurements in panels (D, E) were taken
at the energy of the in-gap peaks shown in Figure 4.13. Parameters:
Iset = 1 nA, Vbias = 5 mV (A), Istab = 1 nA, Vmod = 0.5 mV, feedback:
off (B-L).
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Figure 4.13: Bias spectroscopy at different locations in the corral. The
spectra were taken on the maximum (blue) and minimum (orange) of
the (3,1) eigenmode. In Figure 4.12 (D), these positions are marked with
an "x" with the color corresponding to the spectrum. The bias value cor-
responding to the tip’s superconducting gap Vt =

∆t
e and the bias value

corresponding to the sum of the tip and the sample gap V = ±∆t+∆s
e

with the proximity-induced Ag bulk gap ∆s are marked by dashed lines,
respectively. In-gap states appear at energies ±(∆t + ε), marked by red
arrows. Parameters: Istab = 4 nA, Vstab = 15 mV, Vmod = 50 µV.

101



4 Proximity induced superconductivity in artificial quantum
dots: experimental discovery of Machida-Shibata states

the superconducting gap. To gain more insight into the states
shown in Figure 4.12D/E, we acquire bias spectroscopy measure-
ments at different locations of the corral as depicted by the crosses
in panel (D). We take measurements on the (3, 1)-eigenmode’s
LDOS maximum (blue) and minimum (orange). We focus on the
low-energy regime around the superconducting gap. Figure 4.13
displays both measurements. The measurement taken on the (3, 1)-
maximum (minimum) is depicted by the blue (orange) curve. The
energetic locations of ±∆t and ±(∆t +∆s) are marked by the grey
dashed lines. The region between the ±∆t is greyed out. The bias
spectroscopy measurement acquired at the corral’s minimum ex-
hibits a clean SIS-junction. Conversely, the measurement obtained
at the maximum reveals an additional pair of peaks at ±(∆t +ε).

We interpret the resonances that have been observed in the spec-
troscopic line profiles of Figure 4.11 as well as in the maps in Fig-
ure 4.12 as the eigenmodes of the quantum corral, which result
from the lateral confinement of the Ag(111) surface state. Here, the
surface state electrons behave like particle-in-a-box states, where
the corral walls serve as potential wells. The oscillation we can
see as a function of X represents a standing electron wave. When
the confinement conditions are altered by resizing the corral, the
states of the corral shift in energy. These eigenstates exhibit an en-
ergetic spacing that varies as a function of the corral size. Spatial
mapping of these eigenstates reveals identifiable patterns charac-
terized by the number of maxima present (see the comparison to
a particle-in-a-box model below).

The fact that the (3,1)-mode in the corral shown in Figures 4.12
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and 4.13 displays sharp coherence peaks with a smaller separation
than those of the substrate indicates that the superconductivity is
also proximitized into the quantum corral eigenmode which will
be investigated later on.

Particle-in-a-box model

To simulate the observed corral eigenmodes, we implement the
particle-in-a-box model assuming a box with a rectangular shape
and hard walls, following the analysis procedure used in Ref. [47].

The solution to this problem is given by the product between two
wavefunctions (one for each dimension):

Ψ(nx,ny) = Ψx(nx)× Ψy(ny) (4.3)

with

Ψ(n j) =
√

2/(L j − δ j)×

sin(πn j/(L j − δ j)× j), for even n j

cos(πn j/(L j − δ j)× j), for odd n j

(4.4)
where j ∈ {x,y} refers to the coordinate, nx (ny) refers to the quan-
tum number in x (y), and L j is the length of the corral in the re-
spective direction j. The length we measure in the topography is
not necessarily the length that the scattering electrons experience.
To account for that, the parameter δ j is introduced, which can be
seen as a renormalization parameter for the length.
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The eigenenergies of the wavefunctions in Eq. 4.3 are given by:

E(nx,ny) =
h̄2

2meff

( πnx

(Lx − δx)

)2

+

(
πny(

Ly − δy
))2

+ E0. (4.5)

with the effective mass of the surface state electron meff and the
surface band offset E0.

With this Eq. 4.5, we can now calculate the energy of any eigen-
mode inside the rectangular corral for a given length Lx and width
Ly.

To get the spatial distribution of the LDOS inside of the corral, we
can use the following equation:

LDOS(E) = ∑
nx ,ny

|Ψ (nx,ny)|2

1 + (E − E(nx,ny))
2/Γ 2

, (4.6)

which represents a summation of the contributions stemming from
the eigenfunctions of different quantum numbers nx and ny weighted
by Lorentzians to account for the experimental energy resolution
and lifetime of the eigenmodes.

The results of this simulation can be seen in Figure 4.14, which
show a very good agreement with the modes in Figure 4.12.

Tuning of QD eigenstates

We have seen that the eigenmodes of the QDs can be tuned in en-
ergy and linewidth by varying the dimensions of the corral. To
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Figure 4.14: Particle in a box simulation. Simulations of the LDOS for
the corral are shown in Figure 4.12 corresponding to the measurements
shown in panels (B, C, G, H, L)

explore the relationship between the discovered superconducting
in-gap states of Figure 4.13 and the energetic position of the QD
states, we adjust these energies by resizing the corral in one direc-
tion.

In Figure 4.15, we can see the spectroscopic line profiles for cor-
rals of sizes Lx = 20.5 nm, 19.5 nm, 17.4 nm, and 15.6 nm. In
panels (A, C, E, G), we observe the bias voltage region spanning
−15 mV to 15 mV, revealing the eigenmodes of the corral as a
function of their energetic position. For instance, in panel (A),
the (2,1)-eigenmode at ≈ −13 mV is identifiable from the num-
ber of maxima it exhibits as a function of X. Additionally, the
(3,1)-eigenmode, at 3.5 mV indicated by the arrow, approaches
the superconducting gap. As the corral length decreases in pan-
els (C, E, G), all the modes shift to higher energies. The figure
illustrates the scenario where the (3,1)-eigenmode of the corral
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Figure 4.15: Spectroscopic line profiles measured on corrals of differ-
ent lengths. (A, C, E, G) The spectroscopic line profiles were measured
along the central longitudinal axis inside of the corral (see Figure 4.11)
with the lengths indicated by the label in the top right corner. The ar-
row on the top side of the panel indicates the energetic position of the
corral’s (3,1)-eigenmode. (B, D, F, H) Zoom-in on the spectrum shown
in the respective panel on the left. The spectra were cut in between −∆t
and +∆t. Parameters: Istab = 4 nA, Vstab = 15 mV, Vmod = 50 µV.

106



4.2 Artificially constructed quantum dots

shifts from negative Vbias to positive Vbias (see arrows). Particu-
larly noteworthy is the observation for Lx = 19.5 nm (C), where
the (3,1)-eigenmode moves into the gap. Subsequently, in panels
(E) and (G), the (3,1)-eigenmode begins to exit the gap, eventually
emerging on the positive side. Examining the superconducting
gap region in panels (B, D, F, and H), we notice the appearance of
an in-gap state oscillating in intensity as a function of X (see panel
(B)). As the eigenmode approaches 0 mV, the in-gap state shifts
further into the gap (panels (D, E)). Conversely, the in-gap state
migrates towards the coherence peaks as the eigenmode exits the
gap (panel (H)). An additional observation is the asymmetry be-
tween state intensities, evident in panels (B) and (D), where the
intensity of the state on the negative bias side outweighs its coun-
terpart on the positive bias side. However, in the scenario where
the eigenmode exits the gap (H), the intensity of the peak on the
positive bias side dominates.

We extend our investigation to encompass the complete range of
corrals with lengths spanning from Lx = 3 nm to 24 nm. After
taking the spectroscopic line profile along the corral’s central lon-
gitudinal axis, we average the spectra along the position X. The
resulting averaged spectroscopic line profiles for each corral are
illustrated in the waterfall plot depicted in Figure 4.16. This plot
portrays the averaged line profiles’ evolution as a corral length
function Lx. The eigenmodes, identifiable as local LDOS maxima,
progressively traverse from the negative to the positive bias side
as the corral length decreases and crosses EF. Furthermore, each
time one of the eigenmodes crosses the gap, a pair of in-gap states
migrates into the gap. Notably, the energy of this in-gap state pair
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Figure 4.16: Averaged spectroscopic line profiles as a function of Lx.
Evolution of averaged dI/dV spectra from dI/dV line profiles mea-
sured along the central longitudinal axis of different QDs (see dashed
grey lines in Figure 4.11 as a function of Lx. The dashed colored lines
mark the evolution of the eigenmodes with ny = 1 and nx = 1,2,3,4
obtained from fitting the dI/dV spectra at energies outside the gap. Fit-
ting parameters: δx = −0.28 nm, Ly = 9.1 nm, E0 = −26.4 meV and
meff = 0.58me
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attains a local energy minimum when the eigenmode aligns ex-
actly with EF, as explained below.

The evolution of the QD eigenmode energy as a function of Lx

can be simulated by applying the particle-in-a-box model. We do
this for Lx between 3 nm and 23 nm as presented in Figure 4.16.
The evolutions of the individual eigenmode energies (E = eV)
of Lx are depicted as dashed lines, with each color corresponding
to a specific eigenmode. The fitting parameters δx = −0.28 nm,
Ly = 9.1 nm, E0 = −26.4 meV and meff = 0.58me were chosen to
be the same for each mode. Due to the use of a superconducting
tip, the spectral features are shifted by the tip gap. We account
for this by shifting the calculated values for V by +∆t/e for pos-
itive values and −∆t/e for negative values. In the experimental
data, the LDOS is gapped out between ±(∆t +∆s). Therefore, the
eigenmodes also disappear as they reach the gap. However, with
the theoretically fitted parameters, we can extrapolate the evolu-
tion of the eigenmodes even for energetic values inside of the su-
perconducting gap. Therefore, we can gauge the value for Lx at
which the eigenmode would have been directly at EF.

The comparison between the experimental and theoretical eigen-
mode energies shows that the energy of the eigenmodes can in-
deed be described by a relation E ∝ 1

L2
x
. We can see the same

behavior as observed in the in-gap states in Figure 4.15. When an
eigenmode moves through the gap, the in-gap states move away
from the coherence peak further into the gap. When the eigen-
mode reaches exactly EF, the in-gap state energy reaches a mini-
mal value, εmin. Furthermore, the value of εmin seems to decrease
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for increasing nx.

QD eigenmode lifetime and energy

From the overlay of the theoretically modeled data on the exper-
imental results described above, we have seen that the energetic
evolution of the eigenmodes as a function of corral size can be
described by a particle-in-a-box model. Furthermore, we have
seen that εmin decreases as we shift eigenmodes of increasing nx

through the gap. Already in the discussion of Figure 4.11, we have
seen that the energetical linewidth Γ of the eigenmodes outside
the gap decreases with increasing Lx. In the following, we will ex-
tend the analysis to extract Γ and the energies of the eigenmodes
more accurately.

We start by disassembling the signals in the spectroscopic line pro-
files to analyze the eigenmode-specific contributions. We take a
discrete Fourier Transform of each spectroscopic line profile (like
the ones shown in Figure 4.15) along the position X. This way, we
are left with signals for each eigenmode, where only the contribu-
tion of the nth eigenmode can be seen, while the others are filtered
out. The result can be seen in Figure 4.17 for the first and the sec-
ond and in Figure 4.18 for the third and the fourth component of
the FFT. Here, we can see that each time an eigenmode with the
respective number of maxima appears in the data, the FFT signals
show a peak. All of the eigenmodes represented by peaks in their
component-specific FFTs shift as a function of the corral length.
The FFT-filtered line shapes outside of the gap region are used to
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Figure 4.17: First and second component of the Fourier transform for
different Lx. (A) First component of the FFT signal. (B) Second compo-
nent of the FFT signal. An increasing offset along the y-axis was added
to the curves for better visibility. As indicated by the arrow labeled by
Lx, the curves are ordered by their respective Lx.
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Figure 4.18: Third and fourth component of the Fourier transform for
different Lx. (A) Third component of the FFT signal. (B) Fourth compo-
nent of the FFT signal. An increasing offset along the y-axis was added
to the curves for better visibility. As indicated by the arrow labeled by
Lx, the curves are ordered by their respective Lx.
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extract the bias voltage V (or energies E = eV) and the linewidths
Γ of the eigenmodes by fitting the peaks with a Lorentzian func-
tion: ∣∣∣∣FFTn

(
dI
dV

(x)
)∣∣∣∣ (E) = A0 +

A1

1 +
(
(E−Er)2

Γ 2

) (4.7)

with A1 being the intensity of the peak, Er the resonance energy,
Γ the broadening of the peak and A0 the energy independent con-
tribution to the LDOS. Figure 4.19 shows an example of this fit,
where the peak of the second and third eigenmodes are fitted for
the Lx = 14.9 nm corral. The Lorentzian fit cannot be done for the
energetic region around EF because the eigenmode gets gapped
out here. Figure 4.20 shows the result for Γ for all the spectro-
scopic line profiles and FFT components. Here, we can see that
overall Γ gets smaller as we get to higher eigenmode quantum
numbers, at least if we restrict our analysis to a constant bias re-
gion between −10 mV and 5 mV. This can be rationalized by the
corrals getting larger for higher nx eigenmodes. For larger corrals,
the eigenmode electrons will reside for a longer time inside the
corral until they scatter in the wall if we assume that wall scat-
tering is the only decoherence process. Therefore, the lifetime in-
creases for larger nx, and Γ decreases. The weighted averages of
the determined Γ values shown by the dashed horizontal lines in
Figure 4.21 will be used later in Figure 4.21 for the comparison
to the resonance scattering model. The eigenenergies extracted by
the fitting procedure are shown in Figure 4.21. We compare the fit-
ted values calculated with the particle-in-a-box model (Eq. 4.5) to
the extracted data. The dashed lines represent the theoretical val-
ues, while the squares indicate the experimentally acquired data.
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Figure 4.19: Example showing the fitting for the eigenmode. (A) Spec-
troscopic line profile of the Lx = 14.9 nm corral with the nx = 2 eigen-
mode on the negative bias side and the nx = 3 eigenmode on the pos-
itive bias side outside of the superconducting gap. (B) Lorentzian fit of
the nx = 2 and the nx = 3 eigenmode for the respective component of
the FFT of the spectroscopic line profile shown in (A).
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Figure 4.20: Extracted line widths of the corrals’ eigenmodes. (A)
Linewidth Γ of the eigenmodes extracted by Lorentzian fits from the
spectroscopic line profiles as described in the text. The colors represent
the nx of the eigenmode. The dashed lines indicate the weighted average
of the values from the same eigenmode. (B) Same as (A) but extracted
from a different set of corrals as described in supplementary note 3 of
Ref. [117].
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Figure 4.21: Extracted eigenenergies of the eigenmodes. Eigenenergies
or their voltages V = ER

e extracted from the spectroscopic line profiles
as a function of Lx. The dashed line represents the fit to the particle-in-
a-box model described above.
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We see that the data follows the V ∝ 1
L2

X
behavior, which we have

already seen in Figure 4.16.

Superconductivity in QDs

Next, we analyze the in-gap states of the corrals. As described
in the previous section, the in-gap states change in energy and
intensity when Lx changes. We use a Gaussian function to fit the
in-gap states:

−Re
[

FFTn

(
dI
dV

(x)
)]

(E) = Aε · e
−(E−(∆s+ε))2

γ2 (4.8)

where Aε is the peak’s intensity, ε is the energy of the in-gap state
and γ is a broadening parameter.

Figure 4.22 shows an example of that. In panel (A), we can see the
spectroscopic line profile of the Lx = 17.4 nm corral. On the neg-
ative bias side, we can see the nx = 2 mode. On the positive bias
side, we can see the nx = 4 mode. Around the superconducting
gap, one can see parts of the nx = 3 mode. The in-gap states show
a spatial LDOS distribution with three maxima like the nx = 3
eigenmode. The column-wise discrete FFT is shown in panel (B),
indicated by the black points. We use Eq. 4.8 to fit the in-gap states
(red line).

The extracted values for ε are shown in Figure 4.23 as a function
of the corral length. The colors correspond to the eigenmode that
the spatial distribution of the in-gap state resembles. We can see
that ε for each of the eigenmode follows a dip-shaped behavior,
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Figure 4.22: Example of in-gap state fitting. (A) Spectroscopic line pro-
file taken along the central longitudinal axis of the Lx = 17.4 nm corral.
∆t is indicated by the orange line. (B) Negative real part of the third
FFT component of the line profile in (A) is depicted by the black line.
The in-gap peaks of the data are fitted by a Gaussian fit (see Eq. 4.8 to
determine their peak heights Aϵ and energies ϵ (see also supplementary
material of Ref. [117] for more details on the fitting procedure). From
the peak heights, ΘB (see Eq. 4.19) can be calculated. The results are
presented in Figures 4.29 for ΘB and 4.23 for ϵ.
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Figure 4.23: Averaged energies of the in-gap peaks. Energies ε̄ (average
absolute value of the respective positive and negative peak energies) of
the in-gap states in QDs of varying length Lx extracted from a series of
fits. The colored labels denote the corresponding quantum numbers nx
of the relevant eigenmodes. Dashed lines show the data’s respective fits.

which we can be described by:

ε(Lx) = ∆s

(
1 − 1 −εmin

1 +
(Lx−Lε,min)2

s2

)
, (4.9)

where εmin is the minimal energy, Lε,min is the length at which the
in-gap state reaches that minimum, and s is the width of the dip.
The fits are depicted as dashed lines in Figure 4.23 and are well
aligned with the experimental values. The fitted minimal energies
εmin are used for the plot in Figure 4.28 below for comparison to
the resonance scattering model.

Furthermore, we can use the intensities extracted from the peak
fitting to calculate the Bogoliubov angle, representing the particle-
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Figure 4.24: Particle-hole asymmetry. Bogoliubov angleθB of the in-gap
states extracted from fits as in Figure 4.22. The colored arrows mark the
lengths for which the in-gap state has a minimal energy ε̄ ≈ εmin.

hole asymmetry between the particle-hole pair of peaks at ε+ and
ε− inside the gap:

θB = arctan(
√
|u|2/|v|2) = arctan(

√
Aε+/Aε−) (4.10)

The result is displayed in Figure 4.24. Here θB is shown as a func-
tion of Lx. The grey line marks the value forθB, where the particle-
hole peaks are symmetric in intensity. The correspondence to a
certain eigenmode is again indicated by color. The arrows mark
corral lengths Lx at which the energetic position of the in-gap state
reaches its minimum (see Figure 4.23). We can see that in those
cases, the peaks become particle-hole symmetric in intensity. For
Lx < Lε,min, the resonances get an electron-like character, while
for Lx > Lε,min, the resonance gets a hole-like character. We see
this behavior consistently for each mode.
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4.3 Machida-Shibata theory on resonance
scattering and superconductors

The appearance of in-gap states in a nonmagnetic system we in-
vestigated is unusual. To understand this, one must know that
the in-gap states appearing in STM experiments so far could al-
ways be traced back to one of the two following origins. The
in-gap states have a magnetic origin in the first kind of system.
Here, the incorporation of magnetic impurities leads to the for-
mation of YSR-states (see also Section 2.2.4) [130]. However, this
is not the case for our system. The sample only consists of a no-
ble metal (Ag) and a Nb-substrate, which we investigate with a
Nb tip. Each component has been characterized throughout the
experiments, showing no indications of magnetism. The other ex-
planation for in-gap states involves non-magnetic defects in un-
conventional superconductors [131]. As we know, Nb is a con-
ventional s-wave superconductor. Nb and Ag have a comparably
small Rashba SOC [40, 132]. Since this is one of the main ingre-
dients for spin-triplet pairing, it would be hard to imagine how
these two materials could lead to unconventional superconduc-
tivity induced into the surface state of Ag(111).

Resonance scattering model

The explanation of the observed in-gap states brings us back to
the work developed by Kazushige Machida and Fumiaki Shibata
and published in 1972 on resonance scattering in superconductors
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[133]. This theoretical work deals with the case where a single
spin-degenerate resonance mode is coupled to a superconductor.
Machida and Shibata state that the Hamiltonian of such a system
can be solved by a particle-hole symmetric pair of states, which
appears inside the gap of the superconductor. The Hamiltonian
describing this system is given by:

H = ∑
k,σ
εkc†k,σck,σ︸ ︷︷ ︸

1. electron-dispersion

− ∆s ∑
k
(c†k,↑c†−k,↓ + c−k,↓ck,↑)︸ ︷︷ ︸

2. s-wave pairing

+ ∑
σ

Erd†σdσ︸ ︷︷ ︸
3. Res. eigenmode

+ ∑
k,σ

V(c†k,σdσ + d†σck,σ )︸ ︷︷ ︸
4. Res.-SC coupling

(4.11)

Here, c†k,σ (ck,σ ) refers to the creation (annihilation) operator of the

electron band of the superconductor, d†σ (dσ ) refers to the creation
(annihilation) operator of the quantum dot, the spins are denoted
by σ ∈ {↑, ↓}, εk refers to the average electron dispersion relation
of the superconductor, ∆s is the order parameter of the supercon-
ductor and V ∝

√
Γ refers to the coupling strength between the

superconductor and the quantum dot. In Eq. 4.11, the first two
are the usual terms to describe a conventional BCS-type supercon-
ductor. The third term represents a quantum dot with discretized
spin-degenerate energy levels. The last term describes the cou-
pling between the superconductor and the quantum dot. h̄ is set
to 1. Unlike in the model from Ref. [133], the Eq. 4.11 assumes
that V(k) = V = const.. This is verified by the fact that we have a
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perfectly localized resonance state inside of our quantum corral.

For simplicity, the Nb-substrate and the Ag-bulk are treated as
one system. With the Nb inducing proximitized s-wave super-
conductivity into the Ag bulk, this coupled system is simplified
as "superconducting" Ag. In our system, the coupling between
the superconductor and the quantum dot is mediated by the scat-
tering of the surface state at impurities such as the corral walls,
which leads to a finite coupling between the surface state and the
bulk of the Ag. We use this Hamiltonian to calculate the LDOS of
our system. By using the Green’s function approach, we end up
with the following expression for the LDOS (for more details on
the calculation, please refer to the methods section in Ref. [117]):

LDOS(E) = − 2
π

Im

 ω+ Er +
Γ ω√
∆2

s −ω2

ω2

(
1 + 2Γ√

∆2
s −ω2

)
−Er

2 − Γ 2

 . (4.12)

Here, ω = E + iδE, with δE being a small parameter that ac-
counts for the finite energy broadening observed in the experi-
mental data. The coupling parameter V that is part of Eq. 4.11 is
now implicitly reflected by Γ ∝ V2.

Coupling strength dependence

From the experiment, we have seen that in-gap states appear as
soon as a resonance is shifted through the superconducting gap.
From Figure 4.28, we see a relation between the energetic posi-
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Figure 4.25: Machida-Shibata states for different coupling parameters.
(A) Energy-dependent local electron density of states LDOS(E) of a sin-
gle localized level at energy Er coupled to a superconducting bath with
the parameter ∆s. The coupling strength Γ ∝ V2 and Er = 0∆s. The
induced gap ∆ind and the energies of the in-gap states ±ε are marked.
(B) Same as panel (A) but for Er = 0.5∆s. (C), Same as panel (A) but for
Er = 2.0∆s. An energetic broadening of δE = 0.03∆s has been added in
all panels.
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tion of the resonance (Er) and the coupling. To explore this, we
simulate the LDOS of the superconducting gap for different cou-
plings with the Er fixed. The result is shown in Figure 4.25. Here,
we did that simulation for three cases of a fixed Er. In (A), we
see the case for a resonance mode being tuned to EF. The dashed
lines mark the superconducting gap of the substrate ∆s. We nor-
malized Γ on the y-axis and E (energetic variable of the spectrum)
by the value of the superconducting gap of the substrate ∆s. The
outer tails of the resonances can be seen in the regions outside of
the gap. We can see that a pair of in-gap states appear for finite
couplings, which are marked by ε±. From now on, we will label
these in-gap peaks as Machida-Shibata state (MSS). When Γ is in-
creased, the states shift to the edges of the gap until they reach
the ∆s value. We name the gap between these in-gap states the
induced gap (∆ind). Later, we will explore how this induced gap
can be understood.

When Er is slightly shifted away from EF, as shown in panel (B),
already at zero coupling, we can see that a MSS appears at finite
energies. Furthermore, we see a particle-hole asymmetry in the
MSS-pair for small couplings. The negative bias peak’s intensity
is much lower than that of its particle-hole partner on the positive
side of the gap. This asymmetry decreases with increasing Γ .

In panel (C), we have the case for a resonance outside the gap. We
can see that the in-gap states barely move into the gap regardless
of the coupling strength between the QD and the bulk. A strong
particle-hole asymmetry can be found for the MSS, in which the
electron-like part has a much higher intensity than the hole-like
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part.

Resonance energy dependence

Next, we calculated the LDOS signal for the superconducting gap
as a function of the resonance energy. This is presented in Fig-
ure 4.26 for different couplings between the quantum dot and the
superconducting substrate.

On the y-axis, we see the energy of the quantum dot eigenmode.
We calculate the eigenmode’s resulting gap spectrum for each en-
ergy setting, with the applied bias energy voltage on the x-axis
and the LDOS represented by color. We plotted the cases with
minimal coupling between QD and bath (A), intermediate cou-
pling (B), and strong coupling (C). The dashed lines depict the
gap size of the substrate. The energy values are normalized by ∆s.
In each of these plots, we can see the eigenmode of the QD ap-
pearing as a peak outside of the gap. In our model, the coupling
to the superconducting substrate is given by the linewidth of the
resonance state. This is why, for small coupling, the regions out-
side of the superconducting gap show the eigenmode as a sharp
peak. So, in the case of (A), this sharp resonance shifts through
EF.

For energies outside the superconducting gap, we see a resonance
that shifts in energy. When the resonance shifts into the supercon-
ducting gap, we can observe an in-gap state continuing the shift
of the resonance. The in-gap state shows a negligibly small gap
since we assumed a finite but minimal coupling.
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Figure 4.26: Machida-Shibata states for different coupling parameters.
LDOS of a quantum corral with a spin-degenerate eigenmode shifting
through EF while coupled to a superconductor for (A) negligible, (B)
intermediate and (C) strong coupling between the resonance and the
superconductor.
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In the next panel in (B), we increased Γ to have the same mag-
nitude as the order parameter of the superconductor. As a re-
sult of the increased scattering, the eigenmode’s linewidth has in-
creased compared to panel (A). This time, we can see a particle-
hole asymmetric pair of in-gap states when we shift the resonance
into the superconducting gap. As the eigenmode moves towards
EF, the energy of the in-gap states decreases. Furthermore, we
can see that the asymmetry in the intensity of the in-gap states re-
duces. We start with an intensity of the negative side peak, which
is much larger than its particle-hole partner. When the eigen-
mode approaches EF, this asymmetry decreases. Eventually, the
eigenmode reaches EF. This is where the energy of the in-gap-
state pair reaches a minimum. We see a gap between the peaks,
called 2∆ind. The intensity asymmetry between the in-gap states
has gone to zero. When the eigenmode crosses the Fermi energy
and reaches the positive bias side, the peaks move towards the
coherence peaks again. The intensity asymmetry now becomes
larger again. However, now, we see the opposite behavior. The
peak on the positive bias side is larger than its particle-hole part-
ner. In the last panel (C), we look at the case where the coupling
is much stronger than ∆s. As expected, the linewidth of the res-
onance increased. Differently from panel (B), we can barely see
in-gap states appearing. The induced gap is almost the same as
the substrate gap. Similar to the previous case, we can see the
evolution in the asymmetry of the in-gap states.
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Effective low-energy model

To gain more insight into the Hamiltonian in Eq. 4.11, we perform
a Schrieffer-Wolff-Transformation. This way, we will be able to
judge whether the gap between the MSS described above can be
regarded as induced superconductivity in the corral eigenmode.
The Schrieffer-Wolff-Transformation gives us an effective low-energy
theory when the energetic position of the QD eigenmode is lo-
cated inside the gap of the superconductor. The transformed Hamil-
tonian is given by:

H ′ = eSH e−S = H ′
D +H ′

SC +O(V3). (4.13)

The new low-energy physics of our coupled system is given by

H ′
D = ∑

σ

(Er + Eshift)d†σdσ − ∆ind(d
†
↑d†↓ + d↓d↑), (4.14)

with the new gap induced into the surface state

∆ind ≈ Γ
∆s√
∆2

s − E2
r

(4.15)

and the shift in the chemical potential

Eshift ≈ − Er
∆ind

∆s
. (4.16)

For more details on the derivation, please refer to the methods
section in the Ref. [117]. The resulting Hamiltonian resembles the
BCS-Hamiltonian, with the first term expressing a typical elec-
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tronic dispersion term and the second term acting as a pairing
term. The lowest excitation of the system is εmin = ±∆ind. So,
for a system with weak electron correlations (U = 0), εmin can be
seen as the superconducting gap parameter of the QD system.

Comparison to experiment

In the following, we will compare the result of the resonance scat-
tering model described at the beginning of Section 4.3 with the
experimental data. In the same way, as we did for the results in
Figure 4.26, we simulate the SC gap spectra for a specific eigen-
mode passing through the gap. Here, we used the linewidth that
we extracted from the experimental data. The results are shown in
Figure 4.27, where we can see a very good resemblance between
theory and experiment.

We use Eq. 4.12 to calculate εmin as a function of Γ and compare it
with the experimental data that we extracted before. The compar-
ison is shown in Figure 4.28. The data points from the experiment
are well described by the expression deduced from our effective
low-energy theory. The experimental and theoretical values ap-
proach ∆s when the coupling to the bulk increases.

Next, we compare the particle-hole asymmetry for experiment
and theory. To get particle and hole weights we first calculate
the eigenenergies of the MSS for a specific eigenmode from the
effective low-energy model:

ε = ±
√

E2
r (1 − ∆ind/∆s)

2 + ∆2
ind, (4.17)
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Figure 4.27: Dependence of MSS energy on the localized energy level
Er for individual QD eigenmodes: Comparison of the experiment and
theory. (A) Evolution of averaged dI/dV spectra from dI/dV line pro-
files measured along the central longitudinal axis of different QDs as a
function of the localized level energy Er of the nx = 1 resonance. The
value of Er has been extrapolated from inserting the known QD length
into the fit function Eq. 4.5 for Er(Lx). (B) Energy-dependent local elec-
tron density of states LDOS(E) of a single localized level at energy Er
coupled to a superconducting bath with the parameter ∆s = 1.35 meV.
The coupling strength Γ is set to 4.06 meV, motivated by the average ex-
perimental linewidth of the nx = 1 resonances. (C, D) Same as panels
(A) and (B) but for the nx = 2 resonances and Γ = 2.58 meV. (E, F) Same
as panels (A) and (B) but for the nx = 3 resonances and Γ = 2.02 meV.
For all theoretical panels, an energetic broadening of δE = 0.08 meV is
included corresponding to the experimental energy resolution.
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Figure 4.28: MSS energy as a function of the QD linewidth.
Linewidths Γ of different QD eigenmodes extracted from fitting data
from different QDs to Lorentzian peaks at energies outside the gap.
These are compared with the minimal energies of the MSS found when
Er ≈ 0 (error bars are standard deviations extracted from fitting the
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Figure 4.29: Particle-hole mixture of the in-gap states. Bogoliubov an-
gle θB of the MSS with different mean energies normalized to their min-
imal energies εmin. All error bars are standard deviations extracted from
data fitting. The dashed grey lines represent the expected relationship
for Bogoliubov quasiparticles with an induced gap of ∆ind = εmin as
derived from the effective Hamiltonian in Eq. 4.19. Inset: Bogoliubov
quasiparticles are coherent combinations of electrons (filled circle) and
holes (empty circle). The Bogoliubov angle θB of a quasiparticle quanti-
fies the amount of particle-hole mixing.
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With that, we can calculate the hole weight |v|2:

|v|2 =
1
2
−

Er

(
1 − ∆ind

∆s

)
2ε

=
1
2
−

√
ε2 − ∆2

ind

2ε
. (4.18)

With these values, we can get a function that describes the Bogoli-
ubov angle ΘB as a function of the eigenenergy:

θB(ε) = arctan(
√
|u|2/|v|2) = arctan


√√√√√1 +

√
ε2 − ∆2

ind/ε

1 −
√
ε2 − ∆2

ind/ε

 .

(4.19)
The comparison between the normalized experimental values for
all the eigenmodes and the simulated results can be seen in Figure
4.29. We see that the effective low-energy model describes the
particle-hole asymmetry of the observed in-gap states reasonably
well. This substantiates our identification of the observed in-gap
states as MSSs, which are the coherence peaks related with the
proximity-superconductivity of the quantum corral.

133



4 Proximity induced superconductivity in artificial quantum
dots: experimental discovery of Machida-Shibata states

4.4 Conclusion

This chapter demonstrates the experimental discovery of the the-
oretically predicted Machida-Shibata states. To do this, we cre-
ated corrals by confining the surface state of Ag(111) inside a rect-
angular bottom-up fabricated cage. With the different quantized
eigenmodes of the surface state, this object is similar to a spin-
degenerate quantum dot. We have seen that the eigenmodes of
this quantum dot can be shifted in energy by resizing the quan-
tum corral. When we tune the energy of an eigenmode toward the
Fermi energy, we can observe that a pair of in-gap peaks appears
inside the superconducting gap. By acquiring 2D spectroscopy
maps at the energy of these energy peaks, we see that the spa-
tial distribution of this excitation has the same shape as the eigen-
mode that we tuned toward EF. We acquired a whole set of spec-
troscopy measurements for different lengths of the corral. We
could shift the energies of the individual eigenmodes in and out of
the gap one after the other. We can describe these observed peaks
by the model from Machida and Shibata developed 50 years ago,
which predicts the occurrence of in-gap states for a system where
a spin degenerate resonance mode is coupled to a superconduct-
ing bath. We use this model to calculate the expected gap spectra
with a resonance mode shifting through the superconducting gap
for different couplings. From our calculation, we see that for a
superconducting bath coupled to a quantum dot, where the cou-
pling strength energy scale is in the range of the gap energy, a
pair of in-gap states moves in and out of the gap as the resonance
shifts through the gap. We conclude that the model describes our
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observation very well.

In STM experiments, the appearance of subgap states is usually
brought into conjunction with magnetism or the appearance of
unconventional superconductivity. We have shown that a third
option, the Machida-Shibata state, occurs when a sharp resonance
is energetically positioned inside the superconducting gap. The
reason why this has not yet been experimentally observed is that
to get these in-gap states, the coupling to the superconductor has
to be strong enough so that the resonance mode can scatter with
the superconductor but not too strong because that would lead to
an energy of the in-gap state comparable to the substrate coher-
ence peak. With Ag(111), we have the exact amount of coupling
to see these MSSs. This also explains why we only saw a gap ∆ind

in the corral eigenmode, while for the extended terraces, ∆ind was
almost zero. In the spectroscopic data taken on the clear terraces,
we saw the superposition of many of those states, leading to a gap
almost fully populated with in-gap states, the MSSs [125].
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5 Realization of the YSR quantum
mirage

In this chapter, we continue our work on the Ag(111) islands grown
on Nb(110) and extend the studies by introducing single Fe-atoms.
Magnetism would be the next ingredient for the creation of a topo-
logical superconductor. The interaction between the Fe-atoms’
magnetism and the Ag-substrate’s proximity-induced supercon-
ductivity leads to YSR-states. We will see how the coupling of a
Fe-atom to a corral eigenmode (similar to the ones we investigated
in the previous chapter) can lead to in-gap excitations at the YSR-
energy of the atom, which extend throughout the corral. By using
rectangular corrals, we conduct experiments similar to the ones
in the previous chapter, where we tune the corral eigenmodes in
energy by tuning them in size. This way, we can understand the
relationship between the energetic positions of the corral eigen-
modes and the intensity of the YSR-states. Finally, we will extend
the studies to corrals with multiple magnetic impurities inside as
well as in the corral walls. Large parts of the results presented in
this chapter have been written up in:
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Khai That Ton, Chang Xu, Lucas Schneider, Ioannis
Ioannidis, Thore Posske, Roland Wiesendanger, Dirk
Morr and Jens Wiebe

Non-local detection of coherent Yu-Shiba-Rusinov quantum
projections

arXiv:2410.16054 [cond-mat.supr-con] (2024),

which is currently under review for publication.

Experimental and theoretical work sharing

Dr. Lucas Schneider and I obtained and analyzed the experimen-
tal results in this chapter. I analyzed the data using self-written
Python scripts. Chang Xu from the group of Prof. Dirk Morr from
the University of Illinois at Chicago did the real-space simulations
on the elliptical and rectangular corrals. Ioannis Ioannidis calcu-
lated the analytical results from the effective model under the su-
pervision of Dr. Thore Posske.

Introduction

In the field of topological quantum computation, the read-out mech-
anism in implementation proposals often involves the use of quan-
tum dots. To read out the state of MZMs, the quantum state can be
coupled to the eigenmode of a quantum dot [24, 134–137]. The ba-
sic idea is that the MZM projects its quantum state onto the quan-
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tum dot, which, on the one hand, makes it easier to detect the
MZM and, on the other hand, leads to less perturbation, which
otherwise might lead to decoherence of the quantum state. To in-
vestigate how quantum dots can be coupled to spins on surfaces,
the basic ingredients of the spin-chain platform and the surface
state of noble metal surfaces become interesting. As the last chap-
ter shows, quantum dots/quantum corrals can be created by con-
fining the Ag(111) surface state inside a cage made atom by atom.
These corral states can be coupled to an impurity placed inside of
the corral to project the impurity’s properties to a different loca-
tion inside of the corral. Such a projection of a quantum state is
widely known as a quantum mirage [138], and it was experimen-
tally realized for a Kondo impurity [139], which was coupled to an
atom-by-atom built quantum dot by confining the surface state of
Cu(111). Apart from that, Ag(111) based corral experiments have
been reported in Ref. [140], where the quantum mirage is used to
create logical gates, and Ref. [141], where the corral is used as a
tool to distinguish between Kondo-[142] and Spinaron-impurities
[143–145] from each other.

On the side of the theory, multiple works predict the occurrence
of mirages based on quantum properties such as molecular vibra-
tional modes [146], spin-excitations [147], resonance modes which
are energetically located at EF [148–150] or YSR-states [64, 151].
Since the first experimental realization of a quantum mirage in-
volved an elliptical corral, where the atoms were located on the
focal points (FPs), it has been debated whether the shape and the
position of the impurity inside the corral play an important role in
the occurrence. However, it has been theoretically concluded that
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mirages are not limited to elliptical corrals and that the Kondo im-
purity is not required to be placed on one of the foci [152, 153]. In
this chapter, I will present our work on implementing and inves-
tigating YSR-mirages induced inside a QD built atom-by-atom on
a superconducting Ag(111) surface.
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5.1 YSR-states of Fe on Ag(111)/Nb(110)

This section examines the superconducting properties of a single
Fe-atom on the Ag(111)/Nb(110) surface.

Fe-atom deposition

We deposit single Fe-atoms onto the cold Ag(111) surface grown
on Nb(110) (see Chapter 4 on the characterization of the substrate).
For the experiments presented in this chapter, we used the same
island as in Chapter 4 (see Figure 5.1A). The island has a thickness
of ≈ 12 nm corresponding to ≈ 48 MLs. A comparison between
the surface before (panel (B)) and after Fe-deposition (panel (C))
shows additional objects on the surface. We can identify these as
Fe-atoms. In a direct comparison between the Fe and Ag-atoms
(panel (D)), the apparent height and extent in the x − y directions
of both atom species strongly resemble each other.

YSR-states induced on Ag(111)/Nb(110)

As known from Chapter 4, Ag(111) surface states can alter the su-
perconducting gap spectrum on the surface by inducing MSSs. To
mitigate this effect, we encapsulate the Fe-atom within a double-
walled quantum corral constructed from individual Ag-atoms (see
Figure 5.2A). This can quench possible contributions from a MSS,
by pushing the lowest lying energy mode of the Ag(111) surface
state up in energy, far away from the region around EF. The
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15

x

Fe
Ag

Figure 5.1: Deposition of single Fe-atoms. (A) Constant-current STM
overview image of the island (same measurement as in 4.6A. The white
line corresponds to 20 nm. The black square indicates the location of the
measurements shown in panels (B) and (C), while the cross indicates the
location of the measurement shown in (D). (C, B) Constant-current STM
images of the Ag(111) surface before (A) and after Fe-atom deposition,
where the lower Fe-atom was put into the corral by atom manipulation
(B). The line in (B) corresponds to a length of 3 nm. (D) Constant-current
STM image showing an Fe- and a Ag-atom on a smaller scale. The white
line corresponds to 1 nm. Parameters: Vbias = 5 mV, Iset = 1 nA.
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Figure 5.2: Pristine YSR-states of the Fe-atom. (A) Constant-current
STM image of a single Fe-atom in the center of an Ag-corral of dimen-
sions Lx = 5.53 nm and Ly = 5.98 nm. Lx and Ly are the distances
between the inner rows of Ag-atoms. (B) dI/dV spectra taken on the Fe-
atom (red) shown in (A), a free Ag-atom (green), and a substrate region
(black) where the Ag(111) surface state has been expelled by assembling
Ag-atoms close to each other. Parameters: Vbias = 5 mV, Iset = 1 nA
(A); Vstab = 5 mV, Istab = 1 nA, Vmod = 20 µV (for Fe and Ag) and
Vmod = 50 µV (for the substrate) (B).
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5 Realization of the YSR quantum mirage

double walls are meant to prevent the surface state modes out-
side the corral from leaking into the interior. With dimensions of
Lx = 5.53 nm and Ly = 5.98 nm, we expect that the energetically
lowest lying surface state mode (n = (1,1)) is located outside of
the gap regime as shown in Figure 4.16.

Even the energetically lowest eigenmode of the corral lies above
EF, ensuring it does not interfere with the measurement of the in-
gap spectrum of the Fe-atom. This setup enables us to measure
the spectrum of the Fe-atom without the contribution of the sur-
face state, providing insight into what we refer to as the Fe-atom’s
pristine YSR-states. The spectrum obtained from the Fe-atom in
the center of the corral is depicted by the red curve in Figure 5.2B.
We can compare it to the spectrum obtained from the pristine sur-
face (black) inside a small corral of Ag-atoms. The Ag substrate’s
lowest surface state mode in this corral is also shifted to higher
energies due to confinement. Consequently, the substrate spec-
trum only exhibits the dGSJ coherence peaks at the boundaries
of the superconducting gap. The spectrum taken on a free Ag-
atom (green) is similar to the substrate spectrum, with the only
difference being the enhanced signal appearing near the coher-
ence peaks, which can be explained by the MSS states of the free
substrate.

Both spectra were obtained using a superconducting tip with a
tip gap value of ∆t = 1.32 meV. The positive and negative tip gap
values are indicated in the plot by the gray dashed lines. Compar-
ing this spectrum to the one obtained from the Fe-atom reveals
additional shoulders or peaks distinct from the dGSJ coherence
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5.1 YSR-states of Fe on Ag(111)/Nb(110)

peaks. These peaks occur in pairs and exhibit symmetry in the
bias voltage. We label these states asα+/−,β+/−, andγ+/−, where
the notions "−" and "+" indicate whether the feature is on the neg-
ative or positive bias side.

In total, we identify three pairs of states appearing at β+/− =

±1.67 meV, γ+/− = ±2.32 meV, and α+/− = ±2.46 meV, each
exhibiting varying intensities. Theα− states exhibit the highest in-
tensity, whereas its partner, α+, is scarcely visible, appearing as a
shoulder on the positive bias side of the coherence peak. Theβ+/−

states are discernible as they are energetically well-separated from
other in-gap features. The intensity of β− is about twice as large
as its partner. The γ+/− states have the lowest intensities. While
γ+ is observable as a small peak, γ− manifests as a shoulder of the
α− peak.

The constant-contour dI/dV-maps captured at bias voltages cor-
responding to these in-gap states offer insights into the spatial dis-
tributions of the in-gap states. In Figure 5.3, these maps are dis-
played for the β− (B), β+ (C),α− (D), and γ+ (E) states. Panel (A)
shows the corresponding topographic data. The β+/−-states ex-
hibit triangular-shaped distributions with reduced intensity at the
center. Notably, the triangle points downward for theβ− state and
upward for the β+ state. The β− state has a considerably larger
intensity. In contrast, the α− state displays a circular-shaped dis-
tribution. Finally, theγ− state manifests another upward-pointing
triangular-shaped distribution with larger spatial extent than the
other peaks.

Since the in-gap states observed on the Fe-atom do not manifest
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Figure 5.3: Pristine YSR-states of the Fe-atom. (A) Constant-current
STM image of the Fe-atom inside of the corral from Figure 5.2A. (B-E)
Constant-contour dI/dV-maps of the Fe-atom in panel (A) taken at the
approximate Vbias-value of the β−-peak (B), β+-peak (C), α−-peak (D),
γ−-peak (E), as marked in Figure 5.2B. (F-I) Line cuts through the topog-
raphy (black line) are depicted in (A) by the grey dashed line, and the
constant contour maps (red line) are depicted by the red lines in (B-E)
for the respective YSR-states as indicated by the red labels. Parameters:
Vbias = 5 mV, Iset = 1 nA (A); Vstab = 5 mV, Istab = 1 nA, Vmod =
100 µV (B-E), and Vbias = −1.61 mV (B), 1.61 mV (C), −2.46 mV (D),
2.32 mV (E).
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5.1 YSR-states of Fe on Ag(111)/Nb(110)

on the Ag-atoms, we infer that the peaks in the Fe-spectrum are
caused by YSR-states. The YSR-states are induced by the hybridiza-
tion between the 3d orbitals of the Fe-atom and the underlying su-
perconducting substrate. The excitations’ 3-fold symmetric spatial
distribution can be attributed to the underlying hollow adsorption
site of Fe on the Ag(111) surface, which exhibits a 3-fold symme-
try. This leads to a 3-fold symmetric crystal field influencing the
electronic states of the substrate. The number of YSR-state pairs
correlates strongly with the number of non-degenerate 3d orbitals
of the Fe-atom [154]. For the 3-fold symmetry, the dxy and dx2−y2

orbitals are nearly degenerate, and the same applies to the dxz and
dyz orbitals. Therefore, we are left with three non-degenerate or-
bitals interacting with the superconducting bath, explaining the
three observed pairs of YSR-states. Furthermore, considering the
intensities of the YSR-pairs, we can assign the different YSR-states
to their respective orbitals. Theα state, with its high intensity and
centrally distributed LDOS, likely corresponds to the d2

z orbital,
exhibiting lobes pointing into the z direction. With the second-
largest intensities, the β states correspond to the dxz and dyz or-
bitals. In contrast, the γ states are assigned to the dxy and the
dx2−y2 orbitals, exhibiting the smallest signals in the Z-direction.
Comparing the dI/dV-maps with the topography of the Fe-atom,
we see that the Fe YSR-states are all strongly localized around the
Fe-atom. Their lateral extent is only slightly larger than the radius
of the topographic width of the Fe-atom, which is further quanti-
fied by comparing the line cuts shown in Figure 5.3 (F-I).

The α- and γ-states are energetically located near the coherence
peaks, while the β-states are further inside the gap. This makes
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5 Realization of the YSR quantum mirage

the β-states more favorable for experiments with the quantum
corral as they are less likely to be overshadowed by either the
coherence peak or the MSS close to the gap edge. Hence, we
will primarily focus on the β-states for the experiments presented
throughout this chapter.
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5.2 YSR-mirage effect in elliptical corrals

5.2 YSR-mirage effect in elliptical corrals

In this section, we use the knowledge from the last section to po-
tentially create a YSR-mirage. Similar to the experimental work
reported in Ref. [139] we build an elliptical corral. To understand
the effect that the magnetic impurity has on the corral eigenmode,
we first place a non-magnetic impurity inside the corral and then
a magnetic impurity and compare both cases.

Building elliptical corrals with impurities

From the previous chapter, we know that the energy of the cor-
ral eigenmodes can be influenced by the corral’s geometry and
size. We used this knowledge to design a corral with its (3, 1)-
eigenmode (nx = 3, ny = 1) tuned to EF, which can be seen in
Figure 5.4A. Note that, strictly speaking, elliptical corrals have
different quantum numbers compared to rectangular ones. How-
ever, for the sake of simplicity, we use the assignment (3, 1) in
order to refer to a state that has three lobes along the major and
one along the minor axis. The quantum corral has a major axis
length a = 18.2 nm and a minor axis length b = 13.3 nm. Addi-
tionally, we placed either a non-magnetic impurity (Ag-atom) or a
magnetic impurity (Fe-atom) inside the corral at exactly the same
lattice site. The constant-current images display the topographies
of the corrals without an impurity (A), with a Ag-atom (B) and
an Fe-atom (C). We conducted bias-spectroscopy measurements
for each corral at the impurity position and the lower FP, marked
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Figure 5.4: YSR quantum mirage in an elliptical quantum corral. (A)
Constant-current STM images of an empty double-wall corral assembled
from Ag-atoms (major axis length a = 18.20 nm, minor axis length b =

13.30 nm, eccentricity e =
√

1 − b2

a2 = 0.68, separation of foci 2ea =

24.85 nm). The "x" at the bottom marks the lower FP of the corral. The
white line corresponds to 3 nm. (B, C) Same as in (A) but with a Ag-
atom (B)/ Fe-atom (C) placed inside the corral at the same locations.
(D-F) Constant-height dI/dV-maps of the corral without impurity (D),
with Ag-impurity (E) and Fe-impurity (F) taken at the energy of the β+-
state. For each measurement, the tip was stabilized on the same Ag-
atom located on the outer wall. (G) Difference map between the data
in (E) and (F). (H-J) Same as in (D-F) but taken at β−-energy for the
empty corral (H), corral with the Ag-impurity (I), and corral with the
Fe-impurity (J). (K) Same as in (G) but between (J) and (I). Parameters:
Vbias = −5 mV, Iset = 1 nA (A-C), Vbias = 1.67 mV (D-F), Vbias =
−1.67 mV (H-J), Vstab = −5 mV, Istab = 1 nA, Vmod = 100 µV (D-F, H-
J).
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5.2 YSR-mirage effect in elliptical corrals

by the "x" in the constant-current images (see Figure 5.5). Addi-
tionally, we acquired constant-height dI/dV-maps at the β+ and
β− energies for each corral (Figure 5.4). We stabilized the tip on
the same outer wall Ag-atom for all measurements to ensure re-
producibility between the measurements for the different cases.
The constant-height dI/dV-measurements are depicted in panels
(D) (empty corral), (E) (Ag-atom), and (F) (Fe-atom). The dI/dV-
measurement inside the empty corral reveals a very faint signal
in the corral’s interior. Although weak, the signal suggests the
presence of the (3, 1)-eigenmode. In the measurement with the
Ag-atom inside the corral, the overall intensity of the signal in-
side the corral slightly decreases compared to the empty corral
measurement. Upon examining the measurement with the Fe-
atom inside the corral, a notable signal appears at the Fe-atom’s
position, attributed to the β+ YSR-state of the Fe-atom. More in-
triguingly also, the signal inside the corral undergoes a drastic
increase. We observe the (3, 1)-eigenmode of the corral within it.
The differences between the two corrals with the Ag-atom and
with the Fe-atom become evident when we subtract the image
for the non-magnetic impurity Ag from the one with the mag-
netic impurity Fe. Overall, the difference map displays a (3,1)-
eigenmode. Furthermore, an increased intensity maximum can be
observed around the lower FP of the corral. A similar effect can be
seen for the measurement taken at theβ−-energy. However, while
the dI/dV-map of the empty corral (panel (I)) and the corral with
the Ag-impurities (panel (J)) are comparable to the measurements
taken at the energy of β+, the intensities of the measurements
taken for the corral with the Fe-impurity are much smaller for the

151



5 Realization of the YSR quantum mirage

β− than for the β+ energy. The difference gets even more evi-
dent when comparing the subtracted maps in (G) and (K), where
the β− case shows a faint signal but with the same shape as in
the β+ case. At this point, we can already conclude that due to
the Fe-impurity with its YSR-states, a state at the same energy is
excited in the quantum corral, which has a spatial shape that is
very similar to the quantum corral eigenmode of the empty corral.
To investigate whether this excited state has the same energy as
the β+/− YSR-states of the pristine Fe, we take bias-spectroscopy
measurements at the impurity positions and near the lower FPs,
as marked by arrows and the "x" in panels (A-C) in Figure 5.4 with
the same stabilization procedure as for the dI/dV-maps. A com-
parison between the bias-spectroscopy data taken for the different
corrals (empty, Ag-impurity, Fe-impurity) can be seen in Figure
5.5. Panel (A) shows the measurements of the Ag (Fe)-impurity
atoms as green (orange) lines. The values of ±∆t are indicated
by the dashed lines with the respective label on the top. The in-
terval between ±∆t is greyed out. The measurement performed
on the Ag-atom is similar to what we observed in Figure 5.2. At
Vbias ≈ ±2.77 mV, the peak can be assigned to the dGSJ-state.
At Vbias ≈ ±2.4 mV, we can see the next pair of peaks and as-
sign them to the MSS. There are no additional in-gap states. The
Fe-atom (orange line) spectroscopy data shows additional peaks
compared to the Ag spectrum. The dGSJ and the Machida-Shibata
(MS)-peaks on the negative bias side overlap and are difficult to
discern. On the positive bias side, we can see two well-separated
peaks. However, the MS-peak in the Fe spectrum is shifted to
slightly lower energies than the Ag spectrum. The γ+/− andα+/−
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Figure 5.5: Bias-spectroscopy measurements inside the corral with and
without impurities. (A) Bias-spectroscopy measurement performed on
the impurities placed in the corrals. The green line depicts the mea-
surement on the Ag-atom in Figure 5.4B, while the orange line refers to
the one on the Fe-atom in Figure 5.4C. (B) Bias-spectroscopy measure-
ment performed on the empty spot of the corrals in Figure 5.4(A-C) as
marked by the "x" in the respective constant-current images. The orange
line refers to the empty spot in the corral with the Fe-impurity (Figure
5.4C), the green line refers to the spot in the corral with the Ag-impurity
(Figure 5.4B), and the grey line refers to the spot in the empty corral (Fig-
ure 5.4A). (C) Zoom-in of the spectra shown in (A) on the bias regions
around the β+/−-states. (D) Zoom-in of the spectra shown in (B) on
the bias regions around the β+/−-states. Parameters: Vstab = −5 mV,
Istab = 1 nA, Vmod = 50 µV.
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5 Realization of the YSR quantum mirage

YSR-states of the Fe-atom that we saw for the pristine Fe in Figure
5.2B are overshadowed by the MS-peaks. Most importantly, the
last pair of peaks appears at Vbias = ±1.67 mV, where the peak on
the negative bias side shows about twice as large intensity as its
positive bias partner. This becomes more evident when we zoom
in on the Vbias intervals around the β+/−-peaks shown in panel
(C). The dashed lines indicate the intervals around the respective
β+/−-peaks. For better visibility, we cut parts of the greyed area
between −∆t and +∆t. While the β+/− YSR-peaks are clearly vis-
ible on the Fe-atom, the spectrum taken on the Ag-atom in this
bias voltage range is featureless.

Next, we compare the measurements taken at the empty FP of the
corrals (at the "x"-marks in Figure 5.4(A-C)) for the different cor-
rals. The spectra are shown in Figure 5.5B. We can see that the MS-
peaks (≈ 2.4 mV) are much more prominent this time compared
to the rest of the features, such as the dGSJ-peaks. This is not sur-
prising since we know that the MSSs are caused by the LDOS of
the corral eigenmode. At the impurity location, this eigenmode
is scattered, which leads to a decreased surface state LDOS. Con-
sequently, the MSS intensity is smaller on the impurity than on
an empty spot inside the corral. In contrast, the Vbias-values of
the MS-peaks for the spectra measured on the atom and on the
empty FP of the same corral are identical. For the measurement in
the empty corral, we see that the position of the MSSs appears at
lower energies when compared to the MS-peak of the corrals with
impurity. The different Vbias-values of the MSSs can be explained
by different scattering conditions because of the additional impu-
rity in the non-empty corrals, which leads to an energetic shift of
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5.2 YSR-mirage effect in elliptical corrals

the corral’s eigenmodes.

Due to the large intensity of the MSSs in panel (B), the regions fur-
ther inside the superconducting gap around the β+/−-states look
flat. However, if we zoom in on these regions (see panel (D)) with
the same scales on the x- and the y-axis as in panel (C), clear peaks
at the energy of the β+/− YSR-state can be observed. Surprisingly,
the spectrum taken at the empty focus of the corral with the Fe-
impurity shows peaks at the β+/− bias voltages, which are absent
in the spectra of the corral with the Ag-impurity and the empty
corral. Interestingly, the intensity of the negative bias side peak
is smaller than its particle-hole partner on the positive bias side,
which is the opposite of what can be observed on the Fe-impurity
(panel (C)). The fact that we can see enhanced spectral intensities
atβ+/− energy inside the corral containing the Fe-impurity, which
can neither be observed for the Ag-impurity nor the empty corral,
strongly suggests that this effect is induced by the YSR-state of the
pristine Fe. Another argument for a magnetism-related effect is
that the in-gap states at the empty focus have the same linewidth
as the Fe-atom’s YSR-state. At the same time, the spatial distri-
bution of the spectral intensity mirrors the corral’s eigenmode,
which is currently tuned near EF. The spatial extent in the x and
y directions of the YSR-states of the pristine Fe-atom is less than
0.85 nm, as observed in the constant contour maps of the pristine
Fe YSR-states (Figure 5.3). This rules out the possibility that the
extended in-gap state we observe throughout the corral is due to
a long-range tail of the YSR-state. The resemblance of the spatial
pattern of the in-gap state to the (3, 1)-eigenmode of the corral,
coupled with its energetic alignment with the YSR-state energies,
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5 Realization of the YSR quantum mirage

strongly suggests that this in-gap state arises from hybridization
between the magnetic impurity’s YSR-state and the corral’s eigen-
mode. This hybrid state was baptized mirage for the Kondo case
[139]. We, therefore, refer to it as YSR quantum mirage in the fol-
lowing.

Impurity position dependence

Next, we investigate the same corral with the impurity placed in
different locations inside the corral to see how this affects the YSR
quantum mirage we observed. We choose two different cases. In
the first case, we place the impurity inside one of the ellipse’s FPs.
In the second case, we put the impurity far away from any FP
of the ellipse. As for the measurements above, we compare the
corrals with a magnetic and a non-magnetic impurity.

The first corral can be seen in Figure 5.6 with an Fe-atom (A)
and a Ag-atom (D) placed approximately on the upper FP (FP1)
as marked by "x." Corresponding dI/dV-maps are shown in the
rows beneath for β+ (Fe: (B), Ag: (E)) and β− (Fe: (C), Ag: (F))
and the subtracted maps between the Fe and Ag measurement in
panel (G) for β+ and panel (H) for β−. When we compare the
measurements in (B) and (E), we can see that the LDOS inside of
the Fe-corral is very similar to the Ag-corral. This is accentuated in
the difference map in (G), where no signal can be seen apart from
the YSR-state of the Fe-atom. In the measurements at β− (panel
(H)), the difference between Fe and Ag is slightly more significant
but still very weak.
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Figure 5.6: YSR quantum mirage in the elliptical corral for an impu-
rity close to a FP. (A, D) Constant-current STM images with the Fe-atom
(A)/Ag-atom (D) placed slightly below the upper FP ("FP1"). The lower
FP is indexed by "FP2". Dimensions of the ellipse are the same as in Fig-
ure 5.4. (B, C) Constant-height dI/dV-maps of the corral in (A) taken, as
indicated, at the biases of the YSR-state Vβ+ (B) and Vβ− (C). (E, F) Same
as (B) and (C) but for the corral in (D). (G, H) Difference of the constant-
height dI/dV maps of the corral with Fe and the corral with Ag-atom
(Fe-Ag) for β+ (G) and β− (H). Parameters: Vbias = −5 mV, Iset = 1 nA
(A, D), Vbias = 1.67 mV (B, E), Vbias = −1.67 mV (C, F), Vstab = −5 mV,
Istab = 1 nA, Vmod = 100 µV (B, C, E, F).
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Figure 5.7: YSR quantum mirage in the elliptical corral for an impu-
rity placed far away from the FP. (A, D) Constant-current STM images
with the Fe-atom (A)/Ag-atom (D) placed completely off any FP. Di-
mensions of the ellipse are the same as in Figure 5.4. (B, C) Constant-
height dI/dV-maps of the corral in (A) taken, as indicated, at the bi-
ases of the YSR-state Vβ+ (B) and Vβ− (C). (E, F) Same as (B) and (C)
but for the corral in (D). (G, H) Difference of the constant-height dI/dV
maps of the corral with the Fe and the corral with the Ag-atom (Fe-Ag)
for β+ (G) and β− (H). Parameters: Vbias = −5 mV, Iset = 1 nA (A,
D), Vbias = 1.67 mV (B, E), Vbias = −1.67 mV (C, F), Vstab = −5 mV,
Istab = 1 nA, Vmod = 100 µV (B, C, E, F).
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5.2 YSR-mirage effect in elliptical corrals

In the second case, we place the impurity far away from both of
the FPs as shown in Figure 5.7, with the topographies in the first
row (Fe: (A), Ag: (D)), the dI/dV-map at Vβ+ in the second row
(Fe: (B), Ag: (E)) and the dI/dV-map at Vβ− in the last row (Fe:
(C), Ag: (F)). When comparing (B) and (E), we can see that the
corral with the Fe has a strongly enhanced LDOS. The difference
map in (G) confirms that this is the case. However, this time, the
eigenmode’s shape is strongly distorted compared to the eigen-
modes we saw in Figure 5.4. The intensity of the YSR quantum
mirage is again much weaker for the bias voltage of β− compared
to the β+ measurement.

We can conclude that the intensity of the YSR-mirage depends on
the impurity’s location with respect to the lobes of the quantum
corral eigenmode. Different from the Kondo mirage in corrals,
which confine the Cu(111) surface states [139], we do not find that
the YSR-mirage is only restricted to positions close to the FPs of
the ellipse. Also, the intensity of the YSR-mirage is not strongly
localized on the empty FP, which is in contrast to what was de-
scribed in [139]. We conclude that the YSR-mirage we observe is
more accurately described by a quantum rather than by a classical
model.
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Figure 5.8: Comparison of experiment and simulated LDOS of ellip-
tical corrals. (A) Same as Figure 5.4D. (B) Same as 5.4E. (C) Same as
Figure 5.4F. (D) Same as Figure 5.4G. (E) Simulated LDOS of empty Ag
corral comparable to data shown in (A). (F) Simulated LDOS of the cor-
ral with Ag-impurity comparable to data shown in (B). (G) Simulated
LDOS of the corral with Fe-impurity comparable to data shown in (C).
(H) Difference maps between data in (G) and (F).

Theoretical model for YSR-projection

To gain more insight into the effect, we model our results with the
following Hamiltonian:

Ĥ =Ĥbulk + Ĥsurf + Ĥadatom + Ĥcorral (5.1)

With this model, the spatial distribution of the LDOS is calculated
for the corrals shown in Figure 5.4. The result can be seen in Figure
5.8. The computed LDOS agrees quite well with the experimen-
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5.2 YSR-mirage effect in elliptical corrals

tal data, further solidifying that our results can be interpreted as a
YSR quantum mirage. Importantly, the model assumes that the Fe
spin is mostly coupled to the bulk Ag-states, while the coupling
to the surface state is assumed to be negligible. Thereby, the en-
ergy of the β+/− YSR-state on the Fe and of the YSR-mirage are
essentially always the same, independent of the coupling of the
β+/− state to the corral eigenmode. This is consistent with the ex-
periment, as we can see in Figure 5.5C and Figure 5.2B that the
energies of the YSR-state of the pristine Fe, of the Fe in the corral,
and of the YSR quantum mirage are largely the same.
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5 Realization of the YSR quantum mirage

5.3 Tuning YSR-mirages in rectangular corrals

In the last section, we saw that coupling a magnetic impurity to
the eigenmode of a corral can lead to the projection of that state
mediated through surface-bulk scattering into the eigenmode. The
scattering conditions inside the corral strongly depend on the po-
sition of the embedded impurity because it influences (i) the over-
lap of the Fe spin with the corral eigenmode as well as (ii) the
energetic position of the eigenmode.

With these results, an intriguing question arises regarding how
the mirage varies with the quantum numbers of the eigenmode
and how it behaves as we tune these eigenmodes across EF. We
employ the same methodology as in Chapter 4 to address this.
To this end, we utilize rectangular corrals and adjust the ener-
getic positions of the corral eigenmode by resizing them. This
enables us to shift the corral’s different eigenmodes across EF and
observe the mirage’s behavior. By rescaling the corral in one di-
mension and shifting the wall on one side, we can efficiently alter
the corral’s properties with minimal atomic rearrangement. This
saves time during the rescaling process and maintains consistent
boundary conditions for most atoms, thus streamlining the exper-
imental procedure.

YSR-mirage in rectangular corrals

We initiate our measurements with the corrals depicted in Fig-
ure 5.9, featuring a width of Ly = 9.1 nm and a length of Lx =
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Figure 5.9: YSR quantum mirage in a rectangular quantum corral. (A)
Constant-current STM images of a Ag-corral (Lx = 22.26 nm, Ly =
9.1 nm) with a Ag-atom placed in the topmost quarter (Fourier-filtered).
(B) Constant-height dI/dV-maps taken inside the corral of (A) at the
β−-energy. (C) Same as in (A) but with an Fe-impurity placed at the
same location as the Ag inside of the corral. (D) Same as in (B) but taken
in the corral with the Fe-atom shown in (C). Parameters: Vbias = −5 mV,
Iset = 1 nA (A, C) Vbias = −1.68 mV, Vstab = −5 mV, Istab = 1 nA,
Vmod = 100 µV (B, D).
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5 Realization of the YSR quantum mirage

22.26 nm. After placing the impurity atom into the upper quarter
of the corral, we obtain the respective constant-current STM im-
age in panel (A) for a non-magnetic Ag-atom and in panel (D) for
an Fe-atom replacing the Ag-atom at the same location. Following
the procedure used for the elliptical corrals, we conduct constant-
contour dI/dV-measurements at bias voltages corresponding to
β+/−, with the tip stabilized above the same Ag-atom located in
the outer wall of the corral. The resulting maps taken at β− are
displayed in panel (B) for the corral with the Ag-impurity and
panel (D) for the corral with the Fe-atom. Similar to what has
been observed in Section 5.2, introducing the Fe-atom leads to an
enhanced LDOS at theβ+/−-bias voltage, which has the same spa-
tial shape as the (4, 1) corral eigenmode. Furthermore, subtle dif-
ferences are noted in the spatial LDOS distributions of the mag-
netic corrals between the maps obtained at β− and β+. While the
measurement in (E) displays a (4, 1)-eigenmode, the pattern in (F)
resembles a (3, 1)-eigenmode.

The YSR quantum mirage is also evident in spectroscopic line pro-
files measured along the central vertical axis inside the corral (see
Figure 5.10). The spectroscopic line profile measured inside the
corral with the Ag-atom is shown in panel (A), with the redundant
area between −∆t and +∆t greyed out. Across the line profile, a
pair of in-gap states near the gap edge, oscillating in intensity as
a function of position X, can be observed, corresponding to the
quantum corrals’ MSSs. However, no additional in-gap states are
apparent throughout the corral. This observation differs from the
measurement inside the corral with the Fe-impurity (panel (B)). In
the spectroscopic line profile, the YSR quantum mirage at β+/β−
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Figure 5.10: Spectroscopic line profiles taken inside the rectangular
corrals with Ag- or Fe-atoms. (A) dI/dV line profile taken inside of
the corral in Figure 5.9A along the central vertical line. The greyed-
out area indicates the region between −∆t and +∆t. The blue dashed
lines correspond to the ones in Figure 5.11. (B) Same as (A) but taken
inside of the corral in Figure 5.9C The energetic location of the β+/−-
states are marked by the arrow with the respective labels. Parameters:
Istab = 1 nA, Vstab = −5 mV, Vmod = 50 µV.
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Figure 5.11: Spectroscopic line profile zoom on the bias range of the
β+/− YSR-states. (A) Zoom-in on the line profile shown in Figure 5.10A
with the Ag-atom at Vbias corresponding to β+/− YSR-states indicated
by the blue dashed lines in Figure 5.10A. (B) Same as in (A) but for the
measurement shown in Figure 5.9B with the Fe-atom. The red and blue
arrows indicate Vbias of the β− and β+ YSR-states. Parameters: Vstab =
−5 mV, Istab = 1 nA, Vmod = 50 µV.
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5.3 Tuning YSR-mirages in rectangular corrals

is visible in between the blue dashed lines.

A zoom into the areas around the β+/− energies, as depicted by
the blue dashed lines in both panels, can be seen in Figure 5.11.
Panel (A) shows the zoom for the corral with the Ag-atom. The
plot reveals the decaying tails of the MSSs. Aside from the MSS,
no other in-gap states are observed. Contrastingly, the zoom into
the measurement taken inside of the corral with the Fe-impurity in
(B) shows clear peaks at the location of the Fe-atom (X ≈ 20 nm),
which are marked by the arrows labeled as β− and β+. Further-
more, the YSR quantum mirage appears throughout the corral at
β+/−, oscillating as a function of position. For β−, this oscillation
features three maxima, with another overshadowing the YSR peak
of the Fe-atom. On the β+ energy, a similar pattern with compa-
rable linewidth is evident. When we compare the intensities of
the β− and β+ mirage, we see that, in contrast to the mirage in
the elliptical corral where the β+ mirage had the higher intensity
(Figure 5.4F, J, and Figure 5.5D), here in the rectangular corral the
β− mirage has a larger intensity. This effect will be more closely
investigated in the next sections.
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5 Realization of the YSR quantum mirage

Tuning the corral length

To explore how the YSR-mirage correlates with the corral’s eigen-
modes, we tune the corral size in one dimension, similar to the
approach in Chapter 4. This manipulation enables us to adjust the
energy eigenmodes, thereby allowing us to observe the behavior
of the YSR-mirage as an eigenmode traverses EF.

We vary the corral’s length (Lx) in the x direction, generating cor-
rals ranging from Lx = 4.7 nm to Lx = 24.1 nm. For all the mea-
surements that require stabilizing the tip, we consistently stabilize
above the same Ag-atom located in the outer wall of the corral.
Constant-height dI/dV-maps are taken at the voltage of the β+/−

state.

The outcome is depicted in Figure 5.12 for the maps taken at β−

and in Figure 5.13 for those taken at β+. We observe changes in
the corrals’ eigenmodes as we manipulate their size. Moreover,
the intensity of the YSR-mirages oscillates in response to these
variations. For the mirages, whose oscillation begins/ends be-
tween two of the displayed corrals, we use the mean length be-
tween the respective corrals to approximate the beginning/end
length of the mirage oscillation. To exemplify this, let us focus on
the maps taken at β− for corrals with Lx ranging from 24.1 nm
to 20.3 nm. For the 24.1 nm corral, we observe a YSR-mirage dis-
playing the (4, 1)-mode with moderate intensity. As we decrease
Lx to 23.9 nm, the YSR-mirage still manifests as the (4, 1)-eigenmode,
but its intensity increases. With a continued decrease of the cor-
ral’s size, the mirage progressively fades until it becomes scarcely
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5.3 Tuning YSR-mirages in rectangular corrals
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(6.25 nm)

Figure 5.12: β−-YSR quantum mirages of all rectangular corrals.
Constant-height dI/dV-maps taken inside all corrals at the bias of the
β− state. The lengths Lx are indicated above each panel, and the widths
are constant Ly = 9.1 nm. The black arrows with annotation (nx = 3,2,1
on EF) mark the lengths Lx for which the respective eigenmode crosses
EF according to the fit described later in the text. The red horizontal
bars with annotations nx = 4, 3, 2, 1 mark the Lx range, over which the
β− quantum mirages with the according quantum number are high in
intensity. For bars ending or beginning between two corrals, we calcu-
late the mean length of the corrals and assign this value to the begin-
ning/end of the bar. Parameters: Vbias = −1.67 mV, Vstab = −5 mV,
Istab = 1 nA, Vmod = 100 µV
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Figure 5.13: β+ -YSR quantum mirages of all rectangular corrals.
Same as in Figure 5.12 but taken at Vbias of the β+-state. The blue
horizontal bars with annotations nx = 3, 2, 1 mark the Lx range, over
which the β+ quantum mirages with the indicated quantum number
have a high intensity. Parameters: Vbias = 1.67 mV, Vstab = −5 mV,
Istab = 1 nA, Vmod = 100 µV.
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5.3 Tuning YSR-mirages in rectangular corrals

distinguishable from the noise, as evident in the Lx = 20.3 nm cor-
ral. Moving on to the next corral (Lx = 19.5 nm), we already see
the (3, 1)-mode emerging, repeating the oscillation in intensity as
we transition to smaller corrals. This oscillating intensity behavior
accompanying the transition between different eigenmodes per-
sists throughout the entire set.

Upon comparing the YSR-mirage intensities of the different cor-
rals, we can approximate the corral size at which a specific eigen-
mode has considerable intensity in its YSR-mirage, as indicated
by the red bars above the dI/dV-maps. The ny quantum num-
ber of the eigenmode remains constant at 1, while nx varies be-
tween nx = {4,3,2,1}. We, therefore, in short, denote the dif-
ferent eigenmodes by the nx quantum number. For the nx = 4
mode, the YSR-mirage intensity peaks between Lx = 24.1 nm and
Lx = 22.65 nm. For nx = 3, it peaks between Lx = 21.65 nm
and Lx = 17.35 nm, for nx = 2 between Lx = 16.3 nm and Lx =

11.1 nm, and for nx = 1 between Lx = 7.7 nm and Lx = 6.25 nm.
Similarly, we analyze the maps taken at β+ energies (Figure 5.13).
For nx = 3, the maximum intensity of the quantum mirage oc-
curs between Lx = 21.65 nm and Lx = 18.95 nm, for nx = 2
between Lx = 15.9 nm and Lx = 12.4 nm, and for nx = 2 be-
tween Lx = 9.4 nm and Lx = 7.15 nm. Comparing the results for
β− with those taken at β+, we observe that the YSR-mirage of an
eigenmode always appears at β+ first (for longer corrals than for
β−) before appearing at β−. For instance, the nx = 3 mode’s β+-
mirage peaks in intensity between 21.65 nm and 18.95 nm, while
for β−, the peak occurs later, between 21.65 nm and 17.35 nm.
This leads to a particle-hole intensity asymmetry oscillation of the
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5 Realization of the YSR quantum mirage

quantum mirage, which will be investigated in detail in section
5.4. We also use the theoretical model presented in Section 5.2 to
compare three representative cases of the corrals with the simu-
lation (see Figure 5.14). The first case shows the Lx = 16.29 nm
corral (panel (A)). Here, the β−-mirage reaches a maximum in in-
tensity (panel (D)), displaying the (2, 1)-eigenmode, while the in-
tensity of the β+-mirage is very weak. The simulations for this
case (J, M) agree well with the measurements. The next corral
(Lx = 20.27 nm) displays a case where the β+-mirage reaches a
maximum showing the (3, 1)-eigenmode. At the same time, the
β−-mirage has a small intensity, agreeing well with the respective
theoretical data (K, N). In the last corral (Lx = 23.91 nm) shown
in panel (C), again the β− mirage reaches a maximum, showing
the (4, 1)-eigenmode, while the β+ mirage is barely visible which
agrees with the theoretical data in panels (L, O).
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Figure 5.14: Particle-hole asymmetry oscillation of the YSR quantum
mirage intensity. (A-C) Constant-current STM images of Ag-corrals, in-
cluding an Fe-atom at the top, with constant widths Ly = 9.1 nm and
different lengths Lx = 16.29 nm (A), 20.27 nm (B), and 23.91 nm (C).
(D-F) Experimental constant-height dI/dV-maps taken inside the cor-
rals of (A-C) at the Vbias of β−. (G-I) Same as in (D-F) but taken at the
Vbias of β+. (J-O) Simulated LDOS maps taken inside the corrals of (A-
C) at the energy of β+/− as indicated by the colored frame (red: β−,
blue: β+). The arrows on the right indicate the positions of respective
eigenmodes’ maxima. Parameters: Vbias = −5 mV, Iset = 1 nA (A-
C), Vbias = −1.67 mV (D-F), Vbias = 1.67 mV (G-I), Vstab = −5 mV,
Istab = 1 nA, Vmod = 100 µV (D-I).
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5 Realization of the YSR quantum mirage

5.4 Oscillations in the YSR-mirage intensity

In this part of the chapter, we aim to delve deeper into the oscilla-
tory behavior of the YSR-mirages. We first model the eigenmode
as we did in Section 4.2 for the empty Ag-corrals. Next, we extract
the intensity values of the YSR-mirages by fitting the dI/dV-maps
for β+/−. We can then compare the oscillations of the amplitudes
with the evolution of the corral eigenmodes.

Determination of the corral eigenmodes

We measured spectroscopic line profiles for each corral along the
central line of the corrals to further elucidate this oscillating be-
havior.

As a first step, we measure Lx of the corral defined by the distance
between the inner wall at the top and the inner wall at the bottom
(see Figure 5.15).

Second, we average the spectroscopic line profile taken for each
corral over the coordinate x, excluding measurements taken on
the Fe-atom and its immediate vicinity (r = 0.85 nm, see Figure
5.15), focusing solely on the YSR-mirage contribution. Next, we
stack the averaged measurements to create a waterfall plot with
energies on the x-axis and the corral length on the y-axis.

The result can be seen in Figure 5.16. The panels display various
Vbias and intensity scales to highlight particular spectral features.
panel (A) features scales suitable for distinctly observing the gap
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Figure 5.15: Extracting the corral length. (A) Constant-current STM im-
age of a rectangular corral with Lx = 23.91 nm, where the light blue lines
indicate how the length of the corral is measured. The turquoise dashed
line corresponds to the line profile shown in panel (B). (B) Line profile
along the central vertical axis inside of the corral shown in panel (A).
The grey area around the position of the atom accounts for the mask,
which is used to exclude the YSR-impurity from the spectroscopic line
profiles when extracting the YSR-mirage (see Figure 5.18).
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Figure 5.16: Determination of the Lx-dependent corral eigenenergies.
(A, B) Averaged dI/dV spectra taken inside all corrals with the Fe-
impurities as a function of Lx. Each line represents the average of a
corral’s spectroscopic line profile taken along x, where the region with
a radius of r < 0.85 nm around the Fe-atom is excluded (see Figure
5.15). The color scale has been optimized to accentuate the MSSs (A) and
the corral eigenmodes outside the gap region (B). The colored, diagonal
lines show the Lx-dependent evolution of the eigenmode energies with
(nx,ny) = (1,1), (2,1), (3,1), (4,1) obtained from fitting the corral eigen-
modes at energies outside the gap. Fit parameters: δx = 1.4 nm (nx = 1),
2.3 nm (nx = 2), 2.6 nm (nx = 3), 2.4 nm (nx = 4), and δy = −0.28 nm,
E0 = −26.4 meV, meff = 0.58me.

176



5.4 Oscillations in the YSR-mirage intensity

2.5 0.0 2.5
V [mV]

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

L x
[n

m
]

Lx = 7.25x

Lx = 14.00x

Lx = 20.12x

+

nx = 1 nx = 2 nx = 3 nx = 4

0.00

0.10

dI
/d

V
[a

.u
.]

Figure 5.17: Zoom on YSR-mirage spectrum as a function of Lx. The
same measurement as shown in Figure 5.16 but with Vbias range and
the color scale accentuating the YSR-mirage features. The energetic po-
sitions of the β+/− mirages are indicated by the bottom labels. The evo-
lution of the eigenmodes is depicted by the horizontal lines, where the
labeled "x" at V = 0 mV indicate the Lx at which the respective mode
is positioned at EF. The values were approximated by reading out the
Lx at which the oscillation of the MSS reaches a local energy minimum
(Figure 5.16A).
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5 Realization of the YSR quantum mirage

region. Besides the coherence peaks, which remain constant for
each corral length, a pair of in-gap states oscillates in energy and
intensity, representing the MSS. We’ll leverage these states to esti-
mate the energetic position of the corrals’ eigenmodes.

panel (B) focuses on the regions outside the gap, where broad res-
onances appear at energies beyond the gap, shifting as a function
of corral length. On the negative bias side, we recognize three
maxima (Lx = 22 nm, 16.29 nm, 9 nm), and on the positive bias
side, we also observe three maxima (Lx = 18 nm, 13 nm, 6 nm).

As a first step of the analysis, we need to know at which energy an
eigenmode is located for a given corral length. It is crucial to tell
when a certain corral eigenmode shifts through the superconduct-
ing gap and EF. To do that, we use the particle-in-a-box model
from Eq.4.5 to simulate the evolution of the corral eigenmodes in
Figure 5.16 as a function of Vbias and the length of the corral Lx.

Apart from the impurity inside the corral and the precise posi-
tions of the Ag-atoms forming the moving wall, the rectangular
corrals in this chapter and the one we used in Chapter 4 are iden-
tical. For this reason, we can reuse most of the fit parameters in
Section 4.2. The parameters E0 = −26.4 meV and meff = 0.58me

are solely associated with the underlying Ag island and can thus
be reused without modification. Furthermore, δy represents an
effective corral shortening, accounting for increased scattering in
the Y-direction. In our case, the impurity is located in Y-direction
close to the upper wall, resulting in a relatively weak influence
on the width y all over the corral length. For this reason, we ap-
proximate δy of the impurity corral by the value we used for the
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Figure 5.18: Extraction of the YSR-mirage energy and quantum num-
ber. (A) Example of a spectroscopic line profile taken along the central
vertical axis inside of the corral shown in Figure 5.15A (Lx = 23.91 nm)
with the greyed-out area depicting the data around the Fe-atom, which
is excluded before extracting the YSR-mirage. The black dashed line il-
lustrates the position of the line cut shown in (C). (B) Bias-spectroscopy
measurement taken at the position of the Fe-atom (grey area in (A)). The
light blue lines depict the area of the zoom around β− shown in (D).
(C) Bias-spectroscopy measurement taken at the position depicted by
the dashed line in (A). The light blue lines depict the area of the zoom
around β− shown in (E). (D) Zoom-in on the measurement shown in (B)
with a Gaussian fit (blue line) of the β− peak. (E) Same as (D) but for
data in (C) with a Gaussian fit of the β− mirage. Parameters: same as in
Figure5.10.
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5 Realization of the YSR quantum mirage

empty corral δy = −0.28 nm. In the x-direction, however, the im-
purity effectively acts as an additional wall atom, causing a short-
ening of the corral in Lx, taken into account by the parameter δx.
Later in the text, I will describe how we obtain a value for δx.
To extract the eigenmode’s quantum number nx, we can exam-
ine the spectroscopic line profile measurements, where the inten-
sity is plotted as a function of energy and position, as depicted
in Figure 5.18. By analyzing this measurement, we can determine
nx. We count the maxima observed at a specific energy outside
the gap. For example, the corral eigenmode with three maxima
along the x-direction (nx = 3) manifests in the Lx = 23.91 nm
corral of Figure 5.18A with significant intensity outside the gap at
negative Vbias = −4.5 mV, while the corral eigenmode with four
maxima along the x-direction (nx = 4) is still visible at position
Vbias = 4.5 meV.

With a similar analysis, we can, therefore, assign the intensities at
±4.5 meV of the Lx = 20.98 nm data in Figure 5.16B to the nx = 3
and nx = 4 eigenmodes (see orange and red dashed lines). By a
similar analysis of the spectroscopic line profiles, we can identify
the other peaks outside the gap to other eigenmodes as shown by
the yellow and white dashed lines in Figure 5.16B.

With these peaks outside the gap from the line-averaged spectro-
scopic line profile alone, we cannot fit the whole evolution of the
eigenmode. Therefore, we utilize the MSS appearing in Figure
5.16A to determine the points for fitting the line. The energy of
the MSS is linked to the energetic distance between an eigenmode
and EF (see Section 4.2). Using this information, we interpolate Lx
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5.4 Oscillations in the YSR-mirage intensity

at which a certain eigenmode crosses EF. This is given by the cor-
ral length in Figure 5.16A, at which the MSS is maximally split
off from the coherence peak (see horizontally running parts of
the dashed lines in Figure 5.16A). This way, we obtain sufficient
points to fit Eq. 4.5 to the data in Figure 5.16. Finally, we vary the
value of δx until the curves intersect their supposed values. This
yields the following parameters for the respective modes that pass
through EF: δx,nx=1 = 1.4 nm, δx,nx=2 = 2.3 nm, δx,nx=3 = 2.6 nm
and δx,nx=4 = 2.4 nm. Figure 5.16 depicts the fit results as dashed
lines.

Using these fitted eigenmode energies of the states nx = 1, 2, 3, 4,
we can now focus on the YSR-mirage. Figure 5.17 focuses on
the energetic positions around β+/−. Consistent with the dI/dV-
maps, a pair of peaks appears at β+/−, attributed to the YSR-
mirage. Additionally, these peaks oscillate in intensity with corral
length.

Similar to the dI/dV-map data in Figure 5.12 and 5.13 , the anal-
ysis of the spectroscopic line profiles in Figure 5.17 show the fol-
lowing trend. Whenever an eigenmode crosses EF, the β+ mirage
spectral intensity has a maximum, while theβ− mirage has a min-
imum. At the same time, the energies of the β+/− mirage seem
unaffected and stay at the bias voltage of the β+/− YSR-state of
the pristine Fe. This will be investigated in more detail in the fol-
lowing.
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5 Realization of the YSR quantum mirage

Extraction of YSR-mirage energies

We analyze the spectroscopic line profiles with the procedure de-
scribed in the following example to extract energies of the β+/−

Fe mirages as a function of corral length Lx.

First, we take the spectroscopic line profile of the corral as shown
exemplarily in Figure 5.18A, locate the position of the Fe-atom
from the height-profile measurement and exclude an interval of
about ±1.5 nm around the Fe-atom’s position (see grey area in
panel (A)). We apply this mask to the spectral data to separate the
contribution of the pristine YSR-states from the YSR-mirage. The
pristine YSR-state data is then used to determine the bias offset.
As shown in (B), we zoom into the β+/−-peak. We apply a Gaus-
sian fit over this peak (see panel (D)). This way, we can determine
a value Vbias corresponding to the peak. Then, the offset can be
calculated by:

∆V =
Vβ+ + Vβ−

2
. (5.2)

We correct all the remaining values in the spectroscopic line pro-
file by the offset and apply the same Gaussian fitting procedure
(see panels (C and E)). The points are omitted if a fit does not
converge (e.g., for positions around a nodal line of the mirage).
Finally, all the extracted Vbias are averaged and weighed by the
errors of the individual Gaussian fits. This leads to the average en-
ergies of the β−- and β+-mirages for the respective corral length
Lx.

The result of this procedure is shown in Figure 5.19. As supposed
before, the energies of theβ+/−-mirages show minimal variations.
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Figure 5.19: Energies of the YSR-mirages. Energies of theβ−- (red),β+-
mirage (blue), and the average of both (green) extracted from the fitting
procedure exemplified in Figure 5.18 as a function of the corral length
Lx.
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Figure 5.20: Bias-spectroscopy measured on the Fe-impurity in the cor-
ral. (A) Bias-spectroscopy measurements taken on the single Fe-atom
inside the corrals shown in Figures 5.12 and 5.13. The tip was stabi-
lized on the same Ag-atom inside of the corral wall. (B) YSR-state en-
ergy extracted by fitting the YSR-peaks in (A) as explained in Figure 5.18
and averaging the values for β+ and β−. Parameters: Vstab = −5 mV,
Istab = 1 nA, Vmod = 50 µV, feedback: off (A).
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5.4 Oscillations in the YSR-mirage intensity

Interestingly, when we compare these to the energies extracted
from pristine YSR-states (±1.67 meV), we only see a small devia-
tion from each other (≈ 80 µeV).

On the other hand, to see whether the presence of the corral eigen-
mode influences the YSR-states of the impurity, we can look at the
spectra taken on the Fe-atom inside the corral. In Figure 5.20A,
these spectra are depicted as a function of the corral length. We
can see that the MSS located next to the coherence peaks oscil-
lates in energy as a function of Lx whenever an eigenmode tra-
verses the gap, similar to the findings in Chapter 4. More in-
terestingly, the β+/− states marked by the respective labels on
the top are constant in energy as a function of Lx. In panel (B),
the YSR-energy extracted from a Gaussian fit is displayed. The
plot shows that the variations in the energy are in the order of
≲ 0.03 meV, which is even smaller than our energy resolution
limited by Vmod = 50 µeV. Therefore, we conclude that the di-
rect coupling between the corral eigenmode and the YSR-state of
the Fe is negligible or below our energy resolution.

This behavior indicates that the spins residing in the 3d-orbitals of
the Fe-atom, forming the YSR-states, are mainly coupled to the Ag
bulk states and not so strongly to the Ag(111) surface state, which
is responsible for the corral eigenmodes. This is different from
what has been assumed in Ref. [151], where a strong coupling
between the impurity spin and the substrate’s surface state would
lead to a significant variation in YSR-energy. Therefore, it was
already assumed in the model described in Section 5.2 that the
direct coupling of the Fe spin to the surface state is negligible.
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5 Realization of the YSR quantum mirage

Moving Impurity

Another way of proving that there is no direct interaction between
the Fe-atoms’ spins and the surface state of Ag(111) is to move
the Fe-atom along the corral and probe its YSR-states. As seen in
Section 5.2 for the elliptical corrals, moving the impurity inside
the corral leads to different scattering conditions and shifts the
corral eigenmodes in energy. Here, we investigate this behavior
more systematically.

To this end, we use a rectangular corral with Lx = 24.1 nm and
Ly = 9.1 nm (same as in Figures 5.12/5.13) with an Fe-impurity
inside. As depicted in Figure 5.21, we move the Fe-impurity along
the central longitudinal axis of the corral from the top wall to the
center of the corral. We define the distance ∆X as the distance
between the impurity and the atoms of the inner top wall, and
vary ∆x between 2 nm and 12.5 nm. We measure the spectrum on
the Fe-atom and the empty spot depicted by the gray circle at the
bottom for each corral.

The result can be seen in Figure 5.22 for the Fe-atom in panel (A)
and the empty spot in panel (B). The color scale is adjusted to
show the coherence peaks and the MSS features. The labels indi-
cate the β−- and β+-states.

As we move the Fe-atom toward the center of the corral, we can
see in the "empty spot" measurement (panel (B)) that the MSS
shifts further into the gap. The MSS energies reach a local mini-
mum for ∆x = 4.4 nm. Furthermore, a strong particle-hole asym-
metry of the MS-peak occurs from ∆X = 2 nm to 5 nm, where the
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L x
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Figure 5.21: Rectangular corral with an Fe-impurity on different posi-
tions. Constant-current STM image of the rectangular corral with the
Fe-atom moving along the corral’s central axis. ∆x is the distance be-
tween the upper wall and the impurity, as depicted in the last panel. The
orange circle marks the position of the Fe-impurity, and the grey circle
depicts the location we define as empty spot. Parameters: Iset = 1 nm,
Vbias = −5 mV.
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Figure 5.22: Spectra taken inside of the corral as a function of impu-
rity position. (A) Bias-spectroscopy measurement performed on the Fe-
atom (see Figure 5.21, orange circle) as a function of the distance be-
tween atom and upper corral wall ∆x as depicted in the same Figure.
The label on the top marks the voltages of the β+/−-state. The white
dashed lines mark the values between −∆t and +∆t. (B) Same as (A)
but taken on the empty spot as depicted in Figure 5.21 by the grey circle.
Parameters: Vstab = −5 mV, Istab = 1 nA, Vmod = 50 µV, fedback: off.
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5.4 Oscillations in the YSR-mirage intensity

Figure 5.23: Spectra taken inside of the corral as a function of impurity
position (color scale adjusted) (A, B) same as Figure 5.22 but with the
color scale and Vbias range adjusted to accentuate the YSR-states (A) and
-mirages (B).

peak on the negative bias side is much more intense than the one
on the positive bias side. At 5 nm this asymmetry is reversed. For
the corrals at ∆X = 10.8 nm or 11.6 nm, another local minimum
of the MSS energy seems to occur. However, due to the limited
energy resolution, the MSS is hard to discern from the coherence
peak.

For the Fe spot presented in panel (A), the MSS behaves similarly
to that in the empty spot (B). However, the separation between
MSS and the coherence peak is much less apparent. For the first
oscillation, we can see the particle-hole asymmetry of the MSS be-
haves the same as for the measurement in panel (B).

Next, we zoom in on the β YSR-state and YSR-mirage features
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5 Realization of the YSR quantum mirage

shown in Figure 5.23. Panel (A) shows the measurements on the
Fe. Similar to Figure 5.20A, the energies of both β-states stay con-
stant. The same applies to the particle-hole asymmetry, where β−

is always larger in intensity than β+. In panel (B), we can see
the measurement on the empty spot. The respective labels at the
top of the figure mark the voltages of the β-mirages. Like in the
observations in Figure 5.17, the YSR-mirages are constant in en-
ergy but oscillate in intensity. For β−, we see peaks in intensity at
∆X = 3.3 nm and 8 nm, whileβ+ has peaks at 5.8 nm and 11.6 nm
where the β−-mirage has minima in intensity.

We can interpret the results qualitatively with the knowledge we
gained from the previous parts: Apart from the magnetic scat-
tering, the Fe-impurity also induces Coulomb scattering (like the
Ag-atoms) [155]. This way, the Fe-atom can be seen as another
wall to the surface state eigenmodes. However, the wall must be
treated as relatively transparent since it is only one atom. As we
move the Fe-atom, we mimic a scenario where we move the up-
per wall towards the center of the corral, which, on the other hand,
tunes the eigenmodes of the corrals in energy. The MSS, visible in
Figure 5.22B, can be used to get insights into the evolution of the
corral eigenmodes as a function of ∆X. One example can be seen
between ∆X = 2 nm and 8.8 nm. The evolution of the MSS asym-
metry in Figure 5.22 implies that a mode moves from negative to
positive Vbias and crosses EF at ∆X = 4.4 nm.

At this corral length, the β+-mirage has maximum intensity (Fig-
ure 5.23, and the β−-mirage has maximum intensity. The same
can be observed around ∆X ≈ 11 nm. Overall, the evolution of
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5.4 Oscillations in the YSR-mirage intensity

the mirage intensity with eigenmode energy is consistent with the
previous experiment using corrals of different lengths.

Amplitudes of the YSR-mirages

Finally, we analyze the intensity oscillation of the mirages quan-
titatively (β− > β+ to β+ > β−), which is the same as in Figure
4.16 whenever an eigenmode crosses EF. We take the constant-
height dI/dV-maps that we obtained at the voltage of the β+/−

state (Figure 5.12, 5.13 ) and fit the data as I will describe in the
following.

As a first step (see Figure 5.24), we cut out the interior rectangular-
shaped area of the corral, restricted by the inner wall atoms. We
also exclude an area around the Fe-atom, as shown in Figure 5.24,
to exclude the contribution coming from the YSR-state of the Fe-
atom. With this area cut out, we average over the y-coordinate
and end up with a line representing the y-averaged YSR-mirage
intensity in the corral. In the next step, we proceed to fit the line
using a sinusoidal fit, which is given by:

ψ(x) = A sin(kx +Φ) +ψ0, (5.3)

with the amplitude A, the wavevector k, the phase shift Φ and an
offset ψ0. The fitted value A is what we extract as the intensity
value for each corral. For the corrals smaller than 11.13 nm, no
reasonable fits could be done for the β−-mirage due to the lack of
data points after the cutout. We omit these measurements from
the analysis. The same applies to corrals smaller than 13.01 nm in
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Figure 5.24: Extraction of the YSR-mirage amplitude. (A,B) Constant-
height dI/dV-map of the Lx = 23.9 nm corral with the Fe-impurity at
β−/β+ (A/B) energy. The orange lines depict how the cutout is done, as
shown in (C/D). The same measurement is shown in Figure 5.12/5.13.
(C/D) Area which is cut out for further analysis as depicted in (A/B).
(E) Data from the cut in (C) averaged along the width of the dataset as a
function of x and depicted by the points. The line represents a sinusoidal
fit (see equation 5.3) of the data points. (F) Same as in (E) but for the data
in (D) for β+.
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5.4 Oscillations in the YSR-mirage intensity

the case of the β+-mirage.

The extracted values for theβ− andβ+ YSR-mirage intensities can
be seen in Figure 5.25 in panel (A) alongside the values extracted
from the theoretical model described in Section 5.2 in panel (B).
The values corresponding to the β+ (β−) are shown in blue (red).
The energetic positions of the corral eigenmodes, extrapolated by
the particle-in-the-box model, are depicted by the color gradient
in the background and the schematic at the top of the plot. The
border where the color changes from blue to red represents the Lx

at which the eigenmode is crossing EF from positive to negative
energy. By comparing the data in Figure 5.25 with the dI/dV-
maps in Figures 5.12 and 5.13, we can match the intensity maxima
with the dI/dV-maps.

In the experimental data shown in Figure 5.25, we see for the β+-
mirage that the value reaches an intensity maximum when a cor-
ral eigenmode is shifted through EF. The maximum ofβ+ for both
eigenmode cases ((3,1) and (2,1)) appears when the correspond-
ing eigenmode is near to EF according to the extrapolated values
(shading from blue to red). We see a different behavior if we look
at the oscillations of the intensity of the β−-mirage. Each time an
eigenmode is crossing EF, the intensity of the mirage decreases.
For the corral lengths, where an eigenmode is tuned to EF, the
β−-mirage reaches a minimum. The maxima appear when the
eigenmode is tuned out of the gap. The same qualitative behav-
ior can be seen for the theoretical values of the mirage intensities
(see panel (B)). Here, however, the maxima of β+ mirages are sys-
tematically shifted to smaller corral lengths, which indicates that
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Figure 5.25: Intensity oscillation of the YSR quantum mirage. (A) Ex-
perimental and (B) simulated intensities of the β− (red) and β+ (blue)
YSR quantum mirages as a function of corral length Lx extracted from
corrals of lengths Lx = 4.7 nm to Lx = 24.1 nm as described in the text.
The schematic on the top and the colored background depict the relative
position of the corral eigenmode with respect to EF (blue eigenmode en-
ergy > EF, red eigenmode energy < EF). The arrows in the schematic
indicate the Lx at which the indicated eigenmode is crossing EF. The
double arrows underneath panel (A) indicate the lengths of the corrals
shown in Figure 5.14.
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5.4 Oscillations in the YSR-mirage intensity

the corral eigenmodes cross EF for slightly shorter Lx in the sim-
ulation compared to the experiment. This might indicate that the
Coulomb repulsion of the Fe-atom on the corral eigenmode is not
accurately considered in the model. Most importantly, in both the
experiment and the simulation, the YSR-mirage intensity oscilla-
tions result in an inversion of the particle-hole intensity of the mi-
rage with respect to that of the pristine β− YSR-state of the Fe.
While for the pristine Fe YSR-state, β− has always larger intensity
compared to β+, this is reversed in the mirage whenever a corral
eigenmode crosses EF.

Effective model and analytical results

In order to rationalize the experimentally observed oscillation in
the YSR-mirage intensities and the particle-hole inversion, we take
the same model used in Section 4.3 and extend it by an additional
term to describe the YSR-impurity:

HM =HMSS + HYSR + HSC,

HSC =∑
k,σ
ϵkc†k,σck,σ − ∆∑

k

(
c†k↑c†−k↓ + c−k↓ck↑

)
,

HYSR =∑
σ

(σ J + U)d̃σ
†d̃σ + ∑

k,σ
Ṽ(k)c†k,σ d̃σ + Ṽ∗(k)d̃†σck,σ ,

HMSS =ER ∑
σ

d†σdσ + ∑
k,σ

V(k)c†k,σdσ + V∗(k)d†σck,σ .

(5.4)

Here, the operators dσ and d̃σ refer to the non-magnetic and the

magnetic level, respectively, and ϵk =
k2

2m
− EF is the dispersion
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5 Realization of the YSR quantum mirage

relation of the 3D bulk superconductor with Fermi energy EF. The
coupling constants V(k) = V and Ṽ(k) = ṼeikR describe a corral
state localized at the origin and a magnetic level located at posi-
tion R, respectively.

To picture what that model means, I will briefly explain each part
of the Hamiltonian. The parts of the Hamiltonian HSC and HMSS

are the terms that we have already treated in the previous chapter
(Section 4.3). These two terms describe a superconductor (HSC)
and a resonance mode coupled to that superconductor (HMSS).
The new term HYSR describes a magnetic resonance d̃σ , which is
coupled to the spin of a magnetic impurity given by the first part
in HYSR. The second part in HYSR describes the coupling between
the magnetic state and the corral resonance. The coupling con-
stant in this case is given by Ṽ(k) = ṼeikR. The coupling depends
on an artificial distance between the YSR-impurity and the super-
conductor. Since this is a 0D model, it does not consider any corral
geometry. This model can give us a very basic explanation of the
origin of the intensity oscillating in the mirage that we observe in
the experiment. Using the Greens function approach, we can cal-
culate the LDOS of the YSR-mirage in the case of a corral eigen-
mode shifting through the superconducting gap by changing ER.
This way, we can simulate how the YSR-mirage intensity behaves
when a corral eigenmode shifts through the superconducting gap.

The result is shown in Figure 5.26. Here, the YSR-mirage intensi-
ties are depicted as colored lines for theβ− (red) and theβ+ (blue)
states, which evolve as a function of the corral eigenmode energy
ER normalized by ∆. The x-axis is reversed and runs from posi-
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Figure 5.26: Evolution of the YSR-mirage intensity for different pa-
rameters. (A) YSR-mirage intensities of β− (red) and β+ (blue) as a
function of the corral eigenmode’s energy ER normalized by the sam-
ple’s superconducting gap ∆. The plot shows an example of the single
crossing mirage, where the β−-state peaks first while β+ has a mini-
mum (labeled as "−1"). (B) Same as (A) but for parameters such that the
behavior is inverted. The plot shows an example of the single crossing
mirage, where the β+-state peaks first and the β− has a minimum (la-
beled as "1"). (C(D)) Same as (A(B)) but for different parameters such
that the mirage shows the shape we label as double-crossing, with the
β−- (β+)-mirage exhibiting a maximum exactly where the eigenmode
crosses EF while β+ (β−) has a minimum (labeled as "+2"("−2")). Sim-
ulation parameters: J

∆ = 26 (A), J
∆ = 24 (B), U

∆ = 1 (A, B), J
∆ = 44,

U
∆ = 35 (C), J

∆ = 33, U
∆ = 12 (D), R = 4.1 nm (A-D).
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tive to negative ER. This depiction corresponds to the case where
the length of the corral Lx is increased, starting with small Lx on
the left and ending with large Lx on the right (see Figure 5.25).
Depending on the parameter sets, we get results that are qualita-
tively different from each other. We label these cases by "−1", "1",
"−2" and "2". The origin of the label choice will be evident later.

I will start the description of this Figure with the "−1"-case (Fig-
ure 5.26A). For large ER, both mirages show very low intensities.
However, the more we shift ER towards 0, the more the mirage
intensities deviate from each other. β− increases, while β+ de-
creases in intensity. Right before ER reaches EF, β− reaches a max-
imum and β+ a minimum. After that, the β− intensity decreases
drastically, while β+ increases in intensity when ER is shifted off
EF towards negative energies, and β+ peaks in intensity.

Interestingly, we can achieve the opposing behavior by increas-
ing the magnetic coupling J between the impurity and the super-
conducting substrate while keeping the remaining parameters the
same. Note that this case corresponds to tuning the pristine impu-
rity YSR-state through the quantum phase transition (QPT) [156].

The result can be seen in (B). When we compare these results to
(A), we see that the curves for β+/− have been exchanged. Apart
from that, the evolution of the YSR-mirage intensities resembles
that of the "−1"-case. Both mirage intensities peak as a function of
ER, where the peaks appear at different values for ER. This time,
β+ reaches its peak before β−.

For larger values of J, we get the behavior as shown in panels
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5.4 Oscillations in the YSR-mirage intensity

(C) and (D). Here, we see that the β− (C) or β+ (D)-mirage inten-
sity shows a maximum right where the corral eigenmode crosses
EF, while the β+ (C) and the β− (D) mirage intensities show a
minimum. Since, for this case, the curves for the different mirages
show two crossings, we refer to this case as "double-crossing" cases
"2" and "−2". Accordingly, we will refer to the cases in (A) and
(B) as "single-crossing" cases. The labeling of the cases reflects
whether the mirage has one or two crossings and whether the β−

("-") or the β+ ("+") part has the overall maximum first. Overall,
we can see that the case "−2" in Figure 5.26D resembles both the
experiment as well as the simulations in Figure 5.25. With these
classifications, we can simulate the mirages for different parameter
sets of J and U to understand better how these phases are related
to the parameter sets.

In Figure 5.27, the phase space of the model is depicted for dif-
ferent parameters of R as functions of EN and U. The black lines
correspond to the parameter set at which the resulting YSR-state
would be located at the coherence peak, whereas the red line cor-
responds to the parameters at which the bare YSR-state of the im-
purity crosses EF, which is often referred to as a QPT. The phase
space is separated into four quadrants for R = 4.1 nm. For large
values of U, we see that the mirage can either be in the "2"-phase
or the "−2"-phase depending on whether the YSR-states are lo-
cated before or after the QPT, which is determined by J. For
smaller U up to large negative values of U, the system either ex-
hibits the "1"- or the "−1"-phase. The small arrow connects the
two parameter sets referring to the calculations from Figure 5.26.
We can see that Figure 5.26A corresponds to a case where the YSR-
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Figure 5.27: YSR-mirage phase diagram. (A) Simulated YSR-mirage
phase diagram as a function of the Coulomb scattering U and the mag-
netic coupling J for different values of R. The individual colors corre-
spond to the cases shown in Figure 5.26. The red lines correspond to
the parameter sets, where the bare impurity YSR-state would cross EF,
which is often referred to as the QPT. The black lines correspond to
the cases where the YSR-state is at the same energy as the coherence
peak. The black arrow exemplifies two points in the phase space, which
would lead to the same YSR-energy but are on different sides of the QPT.
R = 4.1 nm. (B) Same as in (A) but with R = 4.175 nm.
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impurity is before the QPT while Figure 5.26B reflects the case of
the YSR-impurity after crossing the QPT.

The plot in Figure 5.27A suggests that by measuring the inten-
sity oscillations of the YSR-mirage and assigning it to one of the
cases (-2, -1, 1, 2), we can determine whether the YSR-mirage is
before or after the QPT. Mirages of cases "2" and "1" would in-
dicate a YSR-impurity before a QPT, and cases "-2" and "-1" to a
YSR-impurity behind the QPT. Even though this is true for pa-
rameters in panel (A), panel (B) shows that the whole phase space
changes for a different value of R such that an unambiguous cor-
relation between QPT and YSR-mirage intensity behavior while
the corral eigenmode crosses EF does not exist. However, we can
see that the model can reproduce the particle-hole inversion of
the YSR-mirage intensity we observed in the experiment, which
occurs whenever an eigenmode crosses EF (see Figure 5.26D).
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5.5 Multiple impurity corral

So far, we have only considered corrals with a single impurity. In
this section, we will look at corrals with multiple impurities. One
exciting aspect is that due to the coupling between the impurity
and the eigenmode, we can potentially cause a long-range cou-
pling between two atoms using the YSR-mirage [66]. Also very
interesting is to see what happens to the YSR-mirage when the
eigenmode is caused by scattering with corral walls made of Fe-
atoms.

Elliptical corrals with multiple impurities

We use the elliptical corral from one of the previous Sections 5.2
for our experiments. The upper atom is placed at the same loca-
tion as in Figure 5.4. In addition, we place another impurity into
the lower half of the ellipse, symmetrical to the upper atom, con-
cerning the horizontal half-axis.

In Figure 5.28A, we can see this for a corral with an Fe-atom on
the top and a Ag-atom at the bottom called in the following Fe-
corral with Ag-impurity (1). For this corral, we record the dI/dV-
maps taken at the voltages of the β− (B) and β+ (C) YSR-state.
Similar to the cases discussed in Section 5.2, the Fe-atoms cause a
YSR-mirage inside the corral. The shape resembles that in Figure
5.4. Crossing both impurities, we take a spectroscopic line profile
through the corrals along the major axis (see panel (D)). The la-
beled arrows mark the YSR-states of the Fe-atom. We can see an
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Figure 5.28: Elliptical corral with Fe and Ag-impurity (Fe-Ag-impurity
corral (1)). (A) Constant-current measurement of the same elliptical cor-
ral as in Figure 5.4 but with a Fe-impurity at the top and a Ag-atom at
the bottom. (B, C) Constant-height dI/dV-map of the corral shown in
(A) taken at the voltage of the β−-state (B) and the voltage of the β+-
state (C). (D) Spectroscopic line profile taken along the major axis of
the corral shown in (A). The greyed out area marks the Vbias-interval
between −∆t and −∆t. Parameters: Iset = 1 nm, Vbias = −5 mV
(A), Vbias = −1.67 mV (B), Vbias = 1.67 mV (C), Vstab = −5 mV,
Istab = 1 nA, Vmod = 100 µV, feedback: off (B, C), Vstab = −5 mV,
Istab = 1 nA, Vmod = 50 µV, feedback: on (D).
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5 Realization of the YSR quantum mirage

oscillating pattern appearing at the β voltages. At the position of
the Ag-atom, no notable increase in the intensity at this energy can
be found. Notably, there is again an inversion of the particle-hole
asymmetry in the intensity of the mirage with respect to the pris-
tine YSR-state of the Fe, i.e., the positive energy mirage has higher
intensity compared to the negative counterpart.

In the next measurement, we replace the Ag-impurity with an
Fe-atom (see Figure 5.29A, called Fe-Fe-impurity corral (2) in the
following). The dI/dV-maps show an additional strong spectral
intensity at the bottom of the corral at the location of the lower
Fe-atom for the scan at β− (B) and β+ (C). When we compare the
dI/dV-maps of this corral to the Fe-corral with the Ag-impurity
(Figure 5.28), we see that the shapes of the LDOS signal inside
of the corral are otherwise similar. However, in the core of the
Fe-Fe-impurity corral (2) the intensity of the mirage β+ is consid-
erably increased. Still, in the cases of the Fe-corral with the Fe-
impurity (2), the β+-mirage has a higher intensity compared to
the β−-mirage.

In the spectroscopic line profile in panel (D), we see the YSR-states
of the atoms at both ends and the YSR-mirage between them.
When we compare this to Figure 5.28D, we see, apart from the
appearance of a YSR-state at the location of the atom, also here
that the YSR-mirage intensity changes. The intensities are larger
for the Fe-corral with the Fe-impurity.

In order to see whether there is an interaction between the Fe-
impurities, we have to compare the spectra taken on the impu-
rity atoms. In Figure 5.30, the single spectra taken on the impuri-
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Figure 5.29: Elliptical corral with two Fe impurities (Fe-Ag-impurity
corral (2)). (A) Same as in Figure 5.28 but with an Fe-atom at the top
and the bottom inside of the corral. (B, C) Constant-height dI/dV-map
of the corral shown in (A) taken at the voltages of the β− (B) and β+

(C) YSR-state. (D) Spectroscopic line profile taken along the major axis
of the corral shown in (A). The greyed out area marks the Vbias-interval
between −∆t and −∆t. Parameters: Iset = 1 nm, Vbias = −5 mV (A),
Vbias = −1.67 mV (B), Vbias = 1.67 mV (C), Vstab = −5 mV, Istab =
1 nA, Vmod = 100 µV, feedback: off (B, C), Vstab = −5 mV, Istab = 1 nA,
Vmod = 50 µV, feedback: on (D).

205



5 Realization of the YSR quantum mirage
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Figure 5.30: Bias spectroscopy measurement on impurities in corrals.
(A) Bias-spectroscopy performed on the impurities inside of the ellip-
tical corrals as shown in Figure 5.28 and 5.29. The indices (1, Fe-Ag-
imp.) and (2, Fe-Fe-imp.) refer to the respective corrals. (B) Same as
(A) but zoomed in on the β+/−-peaks. Parameters: Vstab = −5 mV,
Istab = 1 nA, Vmod = 50 µV, feedback: off (stabilization on the same
Ag-wall atom for all measurements).
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5.5 Multiple impurity corral

ties of the Fe-Fe-impurity corral (2) and Fe-Ag-impurity corral are
compared to each other. In panel (A), we can see the usual spec-
trum of the Ag-atom confined inside the corral, which has already
been discussed in the previous sections. More interestingly, the
Fe-atom spectra for the Fe-Fe-impurity corral (1) and the Fe-Ag-
impurity corral (2) look very similar. For the β+/−-states far from
the MSS, we can see in the zoom (panel (B)) that the Fe spectra on
both corrals look almost identical. This proves that no additional
interaction is induced by placing the two Fe-atoms inside the cor-
ral, as this would lead to a splitting or shifting of the YSR-peak.

An explanation for the negligible interaction of the Fe YSR-states
via the quantum corral mirage is the aforementioned negligible
coupling between the eigenmodes of the corral and the YSR-states
(Section 5.4). As explained in this previous section, the coupling
is indirect. Therefore, we would expect it to be weak. This con-
trasts with other works on YSR-mirages where the impurity state
couples directly to the 2D surface state [151].

Fe-wall corrals

Our last experiment examines hybrid corrals we constructed from
Ag- and Fe-atoms. We vary the corrals in size and investigate the
YSR-mirages inside them to see whether there is a qualitative dif-
ference to the single Fe-impurity corrals investigated before. We
start the experiment by constructing a rectangular corral (see Fig-
ure 5.31), where we place rows of Fe-atoms at the top and the bot-
tom, forming the inner upper and the inner bottom wall of the
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5 Realization of the YSR quantum mirage
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Figure 5.31: Topography of hybrid-wall corrals. Constant-current STM
image of the hybrid corral. As depicted by the orange box, the inner
wall atoms at the top and the bottom are made of Fe-atoms. To resize
the corral, the lower wall is shifted upwards. Parameters: Iset = 1 nA,
Vbias = −5 mV.

corral (as depicted by the orange boxes). The remaining walls
are made from Ag-atoms. The example presented in Figure 5.31
shows a corral of Lx = 23.9 nm and Ly = 9.1 nm.

For the experiment, we move the lower corral wall upwards to
resize the corral, as can be seen in Figure 5.32. We measure the
dI/dV-maps for each corral length at the voltages of the β+/−

YSR-states. For the measurements, the tip is stabilized on the
same Ag-atom located in the outer wall of the corral.

The maps taken at the β− voltage can be seen in Figure 5.33. The
panels of the Figure are labeled according to their Lx. As expected,
we see strong intensity on the Fe-atoms at the corral’s top and
bottom boundary. The YSR-states of the Fe-atoms are locally sep-
arated and show no sign of hybridization. We see a standing wave
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5.5 Multiple impurity corral

Fe

Figure 5.32: Hybrid-wall corral set. Constant-current STM images of
hybrid corrals with different lengths Lx as indicated and Ly = 9.1 nm.
Parameters: Iset = 1 nA, Vbias = −5 mV.

209



5 Realization of the YSR quantum mirage
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Figure 5.33: dI/dV-measurements at β− voltage for hybrid corrals.
Constant-height dI/dV-maps of the hybrid corrals shown in Figure 5.32
taken at the voltage of theβ− YSR-state. Parameters: Vbias = −1.67 mV,
Vstab = −5 mV, Istab = 1 nA, Vmod = 100 µV.
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5.5 Multiple impurity corral

Eigenmode From Lx [nm] To Lx [nm]
(4,1) 23.9 23.1
(3,1) 19.3 16.6
(2,1) 11.8 11.1
(1,1) 6.8 3.3

Table 5.1: Hybrid corral β−-mirage lengths. Mirage quantum number
and Lx-intervals at which they can be found in the corral; extracted from
Figure 5.33.

pattern inside the corral, where the number of maxima along the
x-direction varies between nx = {4, 3, 2, 1, 0} as we tune Lx. In
contrast, ny, the number of maxima along the y-direction stays
constant at 1. Like in the case with the single Fe-impurity (Sec-
tions 5.3, 5.4), we can see that the intensity of the YSR-mirage os-
cillates as a function of Lx. From the measurements, we can read
out the approximate Lx at which a specific eigenmode appears.
The values are summarized in table 5.1:

Next, we analyze the dI/dV-maps, taken at the β+ voltage (see
Figure 5.34). Like in the β− case, the wall atoms show YSR-states
with a strong localization. Concerning the YSR-mirage, we can
see the same eigenmodes ((4, 1), (3, 1), (2, 1) and (1, 1)) as for the
β− case and an oscillation in intensity. The eigenmodes and the
lengths at which they appear are read out and summarized in ta-
ble 5.2 like for the β− maps. We can see that the YSR-mirage as a
function of Lx shows the same behavior for β− and β+. The cor-
relation of maximum/minimum intensities of the β− and β+ mi-
rages observed for the single impurity corrals in Section 5.4 cannot
be observed for these corrals.
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Figure 5.34: dI/dV-measurements at β+ voltage for hybrid corrals.
Constant-height dI/dV-maps of the hybrid corrals shown in Figure 5.32
taken at the voltage of the β+ YSR-state. Parameters: Vbias = 1.67 mV,
Vstab = −5 mV, Istab = 1 nA, Vmod = 100 µV.

Eigenmode From Lx [nm] To Lx [nm]
(4,1) 23.9 23.1
(3,1) 19.3 16.6
(2,1) 11.8 11.1
(1,1) 6.8 3.3

Table 5.2: Hybrid corral β+-mirage lengths. Mirage quantum numbers
and Lx-intervals at which they can be found in the corral; extracted from
Figure 5.34.
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5.5 Multiple impurity corral

(1, 1)

(2, 1)

(3, 1) (4, 1)

Figure 5.35: Intensity of the quantum mirages of all hybrid corrals as
a function of Lx. The amplitude of the YSR-mirages inside the hybrid
corrals was extracted with the same procedure described for the data in
Figure 5.24. The labels correspond to the quantum numbers (nx, ny) of
the mode and indicate the intensity maxima of the respective modes.

To quantify this observation, we use the same procedure demon-
strated in Figure 5.3 to extract the intensity of the YSR-mirages for
each corral. The result can be seen in Figure 5.35, where we com-
pare the values extracted forβ− andβ+. We can see that the inten-
sities of both mirages oscillate with the same period (λ ≈ 6.5 nm),
as in the case of the single Fe-impurity corral (Figure 5.25). How-
ever, now, the maxima of both, theβ+ andβ−-mirages, appear for
the same corral length. Note that for these corral lengths, the β+

mirage still has a larger intensity compared to the β− mirage. So,
the particle-hole asymmetry of the mirage is still inverted with re-
spect to that of the pristine Fe YSR-state. Interestingly, we see that
these intensity maxima occur for shorter corral lengths (≈ 2.5 nm)
compared to the single Fe-impurity corrals.
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5 Realization of the YSR quantum mirage

Most of the results of this experiment can be understood by ap-
plying the same explanation from the previous sections of this
chapter. The appearance of the YSR-mirage results from an indi-
rect coupling between the corral eigenmode and the YSR-impurity
mediated via their interactions with the bulk. By resizing the cor-
rals, we shift the corral eigenmodes in energy. The oscillatory
behavior can be explained by the individual eigenmodes shifting
through EF. The 2.5 nm shift of the EF crossings can be explained
by a less effective Coulomb scattering of the Fe-atoms compared
with the Ag-atoms. This is why the corral appears to be longer to
the surface state electrons.

A significant remaining question for the single-impurity corral
from Section 5.4 is the antiphasing between the mirages at β− and
β+. While the β+-mirages reached their intensity maximum, ev-
ery time one of the corral eigenmodes is shifted through EF, the
β−-mirage had a minimum there. The effective model we treated
in Section 5.4 suggested that this effect was related to a particular
set of parameters J, K, and R. However, this model is probably in-
sufficient to describe the case of a hybrid corral involving multiple
YSR-impurities.

5.6 Conclusion

In this chapter, we showed the first realization of the YSR-mirage
inside of the atom-by-atom built quantum dot by positioning a
magnetic impurity inside of it. The corrals show a long-range
spectroscopic feature at the energy of the YSR-states of the mag-
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5.6 Conclusion

netic impurity inside the superconducting gap, which can not be
seen for a non-magnetic impurity. The occurrence of this effect is
independent of the geometric shape of the corral [152, 153]. To
investigate how the mirage is related to the energy of the corrals’
eigenmodes, we built rectangular corrals and tuned the lengths,
thereby shifting corral modes through the gap. The analysis shows
that the YSR-mirages oscillate in intensity as a function of the cor-
ral length whenever an eigenmode crosses EF. Interestingly, we
can see that the mirage intensities show a peculiar behavior, where
the positive energy mirage intensity always maximizes when the
corral eigenmode crosses EF, while the negative energy mirage
minimizes. This leads to a particle-hole asymmetry inversion of
the mirage intensities with respect to that of the pristine Fe YSR-
states.

We explain the occurrence of the YSR-mirage by extending the
MSS model from Chapter 4 with a magnetic interaction term, de-
scribing the YSR-states of the impurity. In this model, the spins of
the magnetic impurity are mainly coupled to the bulk supercon-
ductor, inducing the YSR-states. The coupling to the corral eigen-
mode can be understood as a scattering of the YSR-states at the
corral walls, connecting the impurity spins to the quantum corral
eigenmodes indirectly. The corral eigenmode also scatters at the
atom walls [157–160], leading to MSS [117].

The model can reproduce the intensity oscillations of the YSR-
mirage between β− and β+. Furthermore, it shows that the co-
incidence of maxima and minima in the β+ and in the β− mi-
rage intensities can be switched to opposite behavior by varying

215



5 Realization of the YSR quantum mirage

the coupling between the impurity and substrate so that the YSR-
states are driven through the quantum phase transition [155, 156,
161].
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6 Bottom up constructed
YSR-chains on a
superconducting Rashba surface

This chapter deals with the growth and properties of a Rashba sur-
face of BiAg2/Ag(111) grown on top of superconducting Nb(110).
We then continue with scattering experiments on the BiAg2 sur-
face. Finally, we will look at the proximitized superconductivity
of the surface. Here, we investigate the last remaining ingredient
of topological superconductivity, which is Rashba SOC, and will
investigate it under the influence of proximity-superconductivity.
Building on these findings, we explore the properties of magnetic
adatoms adsorbed on the superconducting BiAg2 surface alloy.
We will begin by discussing the adsorption behavior of the mag-
netic atoms on the surface. This involves examining how the atoms
interact with the surface and identifying the resulting YSR-states.
Following this, we will investigate the behavior and properties
of pairs of Fe-atoms on the surface, focusing on their interactions
and the resulting hybridization of YSR-states. Subsequently, we
will use atom manipulation techniques to construct chains of Fe-
atoms. This will allow us to study the band formations within
these chains. Notably, we observe that some of these chains ex-
hibit end states. To understand these end states better, we perturb
them using atoms adsorbed at different distances from the chain’s
ends and analyze the effects.

217



6 Bottom up constructed YSR-chains on a superconducting
Rashba surface

Experimental and theoretical work sharing

The experimental results in this chapter were measured by Dr.
Lucas Schneider and myself. I analyzed the data by using self-
written Python scripts.

Introduction

Rashba spin-orbit coupling is one of the main ingredients in creat-
ing topological superconductors [162, 163]. Even though Nb pro-
vides a substantial superconducting gap with a critical tempera-
ture Tc of 9.25 K, being the highest for any elemental superconduc-
tor, it has only a relatively weak SOC. Therefore, elemental super-
conductors exhibiting higher SOC due to their higher Z-numbers
have been considered as well. This includes experiments on Ta
[164, 165] (Tc = 4.5 K) or Re [27, 166] (Tc = 1.7 K). However, the
problem with these substrates is that even though the SOC should
be larger, the superconducting gap of these substrates is much
smaller, which, on the other hand, cannot yield clear mini gap
structures such as on Nb [29]. Pb is a heavy substrate with a com-
parably high Tc (7.2 K), but atoms cannot be manipulated on this
surface. Therefore, the chains on the Pb surface must be created by
depositing adatoms and rely on the self-assembling mechanisms
[28, 34]. Another idea for increasing the SOC is to use substrates
with significant superconducting gaps and depositing films with
high SOC, which get superconducting properties by the proxim-
ity effect. Attempts have been reported using heavy-metal films
[40, 167]. Another class of material known for its high SOC is the
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so-called Rashba surface alloy. These materials are created by al-
loying a noble metal surface with a heavy element such as Bi or
Pb [168]. The heavy element atoms replace every third atom on
the surface of the noble metal. Even though the main motivation
in this thesis is the use of the substrate for creating topological su-
perconductors, Rashba SOC is a topic that is also relevant for a
plethora of other fields of condensed matter physics like topolog-
ical insulators [169, 170], spintronics [171, 172] and non-collinear
magnetism [173, 174]. Therefore, the results from this chapter can
also be used to progress the research in these directions.
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6 Bottom up constructed YSR-chains on a superconducting
Rashba surface

6.1 Topographic and spectroscopic properties of
BiAg2 on Ag(111)/Nb(110)

This section uses the Ag(111) islands grown on Nb(110) to deposit
Bi-atoms to create the BiAg2 surface alloy. We characterize the
surface by analyzing its topographic structure.

Growth modes of Bi on Ag(111)

For the growth of the BiAg2 surface alloy, we use the sample prepa-
ration described in Chapter 4 as a starting point. The example in
Figure 4.4 shows the growth of Stranski-Krastanov Ag islands on
Nb(110) while the rest of the surface is covered by a Ag-wetting
layer. The island thicknesses range from ≈ 5 nm to ≈ 30 nm
(17 MLs-104 MLs). In order to create the surface alloy, we follow
the preparation procedure described in Refs. [168, 175]. We de-
posit 1

3 of a ML of Bi-atoms at room temperature (T ≈ 293 K)
onto the Ag(111) islands on Nb(110). Afterward, the sample is
annealed at ≈ 375 K.

The outcome of this process is presented in Figure 6.1, which show-
cases the surface of a Ag(111) island on Nb(110) covered by Bi-
atoms. Panel (A) displays an island with dimensions of dy ≈
560 nm in the y-direction and dx ≈ 560 nm in the x-direction.
The island’s height, denoted as Z, relative to the wetting layer,
is between 3.8 nm to 5 nm (13-17 MLs). The variation in height is
a consequence of the island covering multiple step edges of the
substrate underneath. Upon closer examination of the surface, as

220



6.1 Topographic and spectroscopic properties of BiAg2 on
Ag(111)/Nb(110)

depicted in (B), we discern two distinct growth modes on the is-
lands. We label these phases as the "striped" phase and the "al-
loyed" phase.

Figure 6.2 shows a close-up image of both phases. Panel (A) presents
a zoomed-in view of the alloyed phase. Here, we notice a hexag-
onal pattern of protrusions spanning the entire area. Panel (C),
displaying the scan’s FFT, supports this observation. In the FFT,
six bright spots are visible around the center coordinates, each at
a reciprocal distance of 5.69 nm−1 from the origin. Translated to
real space, this pattern corresponds to a distance of a = 175 pm.
This observation can be compared to findings in previous studies
[175], where it is explained that the hexagonal pattern we observe
arises from the periodic arrangement of Bi-atoms within the alloy.
Illustrated in panel (E), we depict the atomic lattice of the BiAg2 al-
loy. Here, a Bi-atom replaces every 3rd atom of the Ag(111) lattice.
This arrangement results in a superstructure where 6 Ag-atoms
surround each Bi-atom. Due to the slightly larger radius of the
Bi-atom (specific values can be found in Ref. [168]), it protrudes
from the lattice in the Z-direction (∆Z ≈ 1.70 pm), as depicted in
the upper part of the panel (E). The Bi-atoms form a lattice super-
structure conforming to a

√
3 ×

√
3, R30◦ pattern.

In examining the striped phase (panel (B)), we observe protru-
sions arranged in stripes along the [110] direction. These stripes
appear approximately equidistant from each other. These char-
acteristics are also evident in the FFT, shown in panel (D). Two
bright spots appear, indicated by the arrows labeled "1". Further-
more, we see additional spots indicated by the circles labeled "2",
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Rashba surface

[211]

[011]

Figure 6.1: Different growth modes of BiAg2: (A) Constant-current
STM measurement of a Ag island on Nb(110) with a BiAg2-alloyed sur-
face. (B) Constant-current image of an area on the island from (A) show-
ing the different growth modes of Bi on Ag. The cyan point marks the
"striped" phase, while the black spot marks the alloyed phase (BiAg2).
Parameters: Iset = 10 pA, Vbias = 1 V (A), Iset = 1 nA, Vbias = 500 mV
(B).

which hint toward shorter-ranged disorder along the line features.
Similar structures have been reported in an earlier growth study
for Bi on Ag(111) [176]. The structure is interpreted as the result of
a dealloying process, which occurs when the amount of deposited
Bi-atoms exceeds the number of atoms required to form the alloy.

Spectroscopy on BiAg2

To verify whether the alloyed phase we obtained corresponds to
the BiAg2-alloy, we need to examine the surface’s spectroscopic
properties. This involves conducting bias-spectroscopy measure-
ments on the surface. The results of these measurements are de-
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6.1 Topographic and spectroscopic properties of BiAg2 on
Ag(111)/Nb(110)
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Figure 6.2: Different growth modes of BiAg2: (A) Constant-current
STM image of an area showing the alloyed phase and the striped phase
(B) (taken at the locations marked in Figure 6.1A). (C) FFT of (A). The
features marked by "1" are located at a reciprocal distance from the ori-
gin of a1 = 5.69 nm−1 and form a hexagon (white dashed line). The
directions of the Brillouin zone ΓM (blue) and ΓK (green) are given
by the arrows. (D) FFT of (B). The characteristic features "1" and "2"
are described in the text. (E) Schematics of the hexagonal lattice of
BiAg2 corresponding to the measurement showing the alloy from the
side view (upper part) and top view (lower part). The arrows indicate
the crystallographic orientations of the surface. Parameters: Iset = 1 nA,
Vbias = 10 mV (A, B).
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Rashba surface

[2 1 1]

[0 1 1]
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Figure 6.3: Spectroscopy on BiAg2 surface: (A) Constant-current STM
measurement of the BiAg2-alloyed surface with line a defect. (B) Illus-
tration of the BiAg2 surface band dispersion as a function of k with blue
and red depicting the different spin polarities of the bands (with the
calculated spin topology taken from [177]). The grey lines mark the en-
ergies of the vHS. The green lines correspond to the Rashba energies
of the respective bands ER,1 = 507 mV and ER,3 = −390 mV. (C, D)
Spectroscopic line profile taken along the white dashed line in (A). The
blue dashed lines at V1 = −170 mV and V1 = 657 mV mark the ener-
getic positions of the vHSs, depicted in (B). (E) Bias spectroscopy taken
above the line defect in (A). Parameters: Iset = 1 nA, Vbias = 50 mV (A),
Istab = 0.8 nA, Vstab = 800 mV, Vmod = 20 mV and feedback: on (C-E).
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6.1 Topographic and spectroscopic properties of BiAg2 on
Ag(111)/Nb(110)

picted in Figure 6.3. Panel (A) displays the area’s topography near
a line defect of the island, which shows a peak-to-peak height dif-
ference of approximately 95 nm.

The spectroscopic line profile is presented in panel (C, D), with an
example of a single-point spectrum on the terrace in panel (E). By
comparing the direction of the line with the lattice structure, we
extract that this measurement was taken along the ΓM-direction
of the crystal [178]. The spectral data shows four distinct peak
features. One can be found at −170 meV (1) and one at 657 meV
(2). Both do not vary as a function of position X. Below the peak
(1), we can find a series of equidistant peaks, which also do not
vary as a function of X (3). Finally, there is a series between peaks
(1) and (2), which shift in energy as a function of the position (see
panel (D)) (4). Given that these peaks vanish upon reaching the
line defect, their presence can be attributed to the sample rather
than the tip.

Peaks (1) and (2) bear characteristic features consistent with spec-
tra previously measured on the BiAg2-alloy [168]. This phenomenon
can be understood by considering the dispersion relation of the
Rashba-split surface state, illustrated schematically in panel (B).
The dispersion is made up of two pairs of Rashba-split bands. The
first pair of bands is located at higher energies. The second pair
of bands is located at lower energies entirely below EF. Since the
first pair encloses the second pair of bands, we refer to the first
pair as outer bands and the second pair as inner bands. While the
outer bands can be well-approximated by two shifted quadratic
functions, the inner bands, in reality, have a much more complex
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Rashba surface

structure, as most recent works suggest [178]. Despite this differ-
ence, we can still use this simplified model to interpret the spectra
in (C) and (E).

In k-space, we have a uniform distribution of electron states. If the
parabolic dispersion relation is now Rashba-split in k-space, tun-
neling at the energetic positions of the band onset leads to a peak
in the dI/dV-signal [175]. This way, we can read out the onsets
of the pairs of subbands, which is at E0,1 = 657 meV for the outer
bands and at E0,2 = −170 meV for the inner bands. These values
are lower than the ones reported in the literature (E0,1 = 731 meV
in Ref. [178], E0,1 = 725 meV in Ref. [179] and E0,2 ≈ −130 meV
[168] and E0,2 ≈ −110 meV [179]). One possible explanation for
this discrepancy could be a strain-related effect. When Ag(111)-
islands are grown on the Nb(110) surface at elevated tempera-
tures, thermal strain can be induced when the sample is cooled
down due to different thermal expansion coefficients of Nb and
Ag [124]. This strain can shift the band bottom of the Ag(111)
surface state [107, 180–182]. In the same way, the surface state
of BiAg2 grown on Ag(111)/Nb(110) could be influenced by the
strain in the Ag(111)-island, leading to a shift of the band edges
compared to a BiAg2 surface grown on a Ag(111) bulk crystal.

The remaining analysis and explanation of the series of peaks will
be given in Section 6.3 for (3) and 6.2 for (4).
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Figure 6.4: Rashba surface band structure according to different
sources in literature: (A) Calculated BiAg2, surface band structure taken
and refined from [177]. The red and black colors depict the different di-
rections of the spin-polarization. The blue line depicts the Ag-surface
state band. (B) Proposed BiAg2 surface band structure as proposed in
[179]. (C) Calculated BiAg2 surface band structure as reported in [178].
The blue and red colors depict the different spin-polarization directions.

6.2 Scattering patterns on the BiAg2 surface

The series of peaks labeled as (4) in Figure 6.3C/D are the ones
that we observed in the spectroscopic line profiles on the Ag(111)
surface in Figure 4.6 in Chapter 4. These are similar to the Ag(111)
peaks, originating from the QPI of the BiAg2 surface state. This
section will take a closer look at these QPI patterns.

Modelling the Rashba-split bands of BiAg2

To understand the QPI patterns of the Rashba surface states, we
will use a simple model for the Rashba-split surface bands. Figure
6.4 shows a selection of these proposed spin-polarized BiAg2 dis-
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persions reported in the literature. Starting with the first example
in panel (A), we see that the surface band dispersion of BiAg2 is
mainly made out of two pairs of subbands, which are shifted in
k. One pair has its onset at around 600 meV. These bands are the
pxy-type bands [183] and will be referred to as the outer bands. The
other pair of subbands (spz) has its onset at around 100 meV and
will be referred to as the inner bands. As we can see, the dispersion
relation is not a classical Rashba-type dispersion relation. First, we
can see that the parabolas are all turned upside down by a nega-
tive effective mass. In addition, we see that the spin polarization
for each parabola changes the more we get to the maximum of
the band. The next example in panel (B) shows another example
of the BiAg2 dispersion relation. Here, the split parabolas have a
constant spin polarization. However, the bands show an avoided
crossing at the intersection between the inner and outer bands.
The last example in panel (C) again shows bands in which the
spin-polarization changes. However, in this calculation, the bands
show a more complex band shape for the inner bands, which is
strongly distorted from a usual parabola. We will assume a sur-
face band dispersion for our models like the one shown in (A).
On the one hand, this simplifies the modeling as it can be done
by just making use of quadratic functions, and on the other hand,
there are results measured by angle-resolved photoemission spec-
troscopy (ARPES) that support the work in (A) [183].

The Hamiltonian referring to a system with Rashba-spin-orbit-
interaction was already given in Chapter 2. For simplicity, we will
assume that our system can be approximated by a quasi-free elec-
tron gas with Rashba interaction. As a result, the energy bands
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Figure 6.5: Rashba-split surface band model: (A) Dispersion relation
of a Rashba-split quasi-free electron gas. (B) Scattering qi vectors as a
function of the energy calculated from the dispersion in (A). Simulation
parameters: m∗

1 = −0.16me, k0,1 = 0.8 nm−1, E0 = 0.657 eV.

are spin-split in the k-component. To understand the scattering
patterns, we first approximate our system with the dispersion re-
lation given by Equation 2.21. For the outer bands, we use m∗

1 =

−0.16 meVme and k0,1 = 0.8 nm−1 (taken from Ref. [178]). For
the inner bands we used m∗

2 = −0.35 nm−1me and k0,2 = 1.3 nm
(taken from Ref. [175]). E0,1 = 0.657 eV and E0,2 = −0.170 eV
were determined by reading out the energetic position of van-
Hove singularities (vHS1 and vHS2).

The result can be seen in Figure 6.5A. With the modeled disper-
sion relation, we can calculate the different scattering vectors by
calculating the difference in k between the individual branches of
the parabolas. When we do this for each energy value, we end
up with the scattering vectors as a function of the energies seen in
panel (B). We can use this as a first approximation to understand
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our results for parabolically shaped dispersion relations. How-
ever, when it comes to the inner bands, which for our case start
at E ≈ −170 meV (see Figure 6.3), the bands deviate from the
parabolic shape. This has been reported from experimental [178,
179] as well as theoretical side [177]. Note that the spin depen-
dence of the scattering has been neglected so far.

Extracting scattering vectors from spectroscopic line profiles

We delve into a spectroscopic line profile’s FFT, as depicted in
Figure 6.6. By performing a FFT on the real space wave pattern of
Figure 6.3C for each energy slice in the spectroscopic line profile,
we can visualize the scattering processes observed in the QPI.

The resulting FFT signals, shown in Figure 6.6, are plotted against
energy on the horizontal axis and the calculated scattering vector
q on the vertical axis. Notably, a prominent scattering branch, in-
dexed by q1, originates at the first Van-Hove singularity at E0,1 =

657 meV. However, after crossing E = 0, this branch either di-
minishes or vanishes entirely. Additionally, a less pronounced
scattering branch, q3, emerges from the first Van-Hove singular-
ity but is shifted in q compared to q1. Around E ≈ 450 meV,
another feature, which, however, does not show a clear disper-
sion, q5, manifests. Lastly, just below ER,1, a feature denoted as
q4, which has an inverted slope compared to q1 and q3, is evident.
Panel (B) displays the model outlined in section 6.2, where we
utilize the energetic positions of the Van-Hove singularities from
bias-spectroscopy measurements to determine the values for ER,1
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Figure 6.6: Electron scattering processes at a BiAg2 line defect: (A)
Fourier Transform of the spectroscopic line profile in Figure 6.3C. (B)
Calculated scattering branches, plotted on top of the data of (A), ob-
tained using the simple band structure model shown in (C). The scatter-
ing processes are shown as arrows in (C). Red lines depict the position of
the series of peaks labeled as (3) in Figure 6.3. (C) Simplified band struc-
ture of BiAg2. The k-splitted bands are modeled as quadratic functions.
Simulation parameters: m∗

1 = −0.16me, k0,1 = 0.8 nm−1 (taken from
Ref. [178]), m∗

2 = −0.31me, k0,2 = 1.3 nm−1 (taken from Ref. [175]),
E0,1 = 0.657 meV and E0,2 = −0.17 meV extracted from 6.3E.
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and ER,2 and incorporate them into our model.

Analyzing the possible scattering vectors without presuming a
specific spin texture of the bands reveals that a constant q-vector
should displace the scattering vectors q1 and q3. Assuming these
scattering vectors correspond to what was marked in panel (A) as
q1 and q3 enables us to determine the shift in q between these two
parabolas, consequently yielding a value for the Rashba-splitting
k0. Utilizing the theoretical values for the band structure, we com-
pute the possible scattering vectors. Panel (B) displays the scatter-
ing vectors qi as a function of energy overlaid on the data depicted
in panel (A).

Comparing the experimental values with the theoretical ones re-
veals an astonishingly accurate similarity, at least for the scatter-
ing branches q1 and q3. However, due to the complexity of the
signals, it’s challenging to discern anything meaningful for pro-
cesses below EF.

The scattering vector labeled q2 might correspond to the contin-
uous line of constant intensity observed for different energy val-
ues at q = 0.8 nm−1. Upon reviewing the scattering vectors, it
becomes apparent that the most evident scattering processes are
observed for q1; q3 is only observed in a very limited energy range
below EvHS,1, and q5 only at EvHS. The non-spin-flip scattering
process q2 is nearly nonexistent for energies between EF and EvHS.

This observation aligns with the one reported in [178], assuming
the complex band structure. According to that interpretation, scat-
tering processes in the q-direction involve a change of orbital an-
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gular momentum at the step edges. This change requires the elec-
trons to flip their spin to compensate for the altered orbital an-
gular momentum, maintaining the conservation of total angular
momentum.

Additionally, the report suggests that scattering processes may de-
pend on the scattering direction. However, in the FFT of the spec-
troscopic line profile, we can only observe what is happening in
one direction. To observe the direction dependence of the scatter-
ing patterns, we need to record 2D-QPI maps, as discussed in the
next section.

Quasi-particle interference patterns on BiAg2

As previously mentioned, spectroscopic maps of the surface pro-
vide valuable insights into the scattering behavior of the surface
band electrons of the sample. This is illustrated in Figure 6.7 for
three different energies. In panel (A), we observe the topography
of the investigated area, which includes the edge of the island on
the top and a line defect on the left side, serving as scattering cen-
ters for the QPI measurements. These objects are oriented perpen-
dicular to each other, allowing for scattering processes from the
x- and y-directions. Recording dI/dV-maps at different energies
enables the acquisition of various scattering patterns, as depicted
in panels (C-E). These panels demonstrate that the wavelengths
of the scattering patterns increase with the energy. We perform
a Fourier transform of these patterns to get more quantitative in-
sights. Given the 6-fold symmetry of our sample, the resulting
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3.2 nm-1

B

K

Figure 6.7: QPI on the BiAg2 surface: (A) Constant-current STM mea-
surement of the BiAg2 island with the red square depicting the area in
which the data shown in (C-E) was recorded. (B) FFT of the real space
patterns shown in (D) on a large scale in k-space, showing the Bragg
spots of the BiAg2-lattice. (C-E) Constant-current dI/dV-maps show-
ing the quasi-particle interference patterns. (F-H) Zoomed-in FFT of the
real space patterns shown in (C-E). The color-coded, radial lines depict
the position of the line cuts shown in panels (H-J). (I-K) Radial line cuts
taken from the center point of the FFTs for different directions of the BZ
(blue: ΓK and green: ΓM). The arrows correspond to the hexagonal fea-
ture seen in (F-H). Parameters: Vbias = 2 mV (B), 100 mV (C), 350 mV
(D) and Iset = 1 nA (B-D)
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FFT pattern should exhibit this exact symmetry. The directions of
the k-space can be deduced from the Bragg spots of the FFT, as
shown exemplarily in panel (B). This way, we can relate the BiAg2

lattice orientation with the features of the QPI. To see these fea-
tures, it is necessary to zoom in on the FFTs as shown in panels
(E-G). Here, the FFTs of the data shown in (C-E) are presented. To
increase the FFT quality, the data was first multiplied by a Ham-
ming window before the FFT process [184]. This decreases the in-
tensity of artifacts that occur due to finite-sized arrays. However,
with this process, it was not possible to eliminate these artifacts
completely, as we can see by the high-intensity lines along qx = 0
and qy = 0. The results for the FFT show a hexagonal pattern for
panels (F-H). However, the size of the hexagon decreases as the
energy increases. This can be seen even clearer in the line cuts
shown in panels (I-K), where the black arrow indicates the posi-
tion of this feature. The feature exists for both directions; how-
ever, the q value for this peak is slightly larger for the ΓK- than
the ΓM-direction. These features in the FFT patterns correspond
to scattering branches of the BiAg2 surface alloy. Comparing this
feature with the FFT of the spectroscopic line profile in Figure
6.6, we observe that the prominent hexagon corresponds to the
scattering vector q3. Although additional features exist inside the
hexagon, they are obscured by the oversaturated signal and are
not discernible.

In Figure 6.8, I present the entire set of Fourier transformed dI/dV-
maps recorded in the area depicted in Figure 6.7A at different en-
ergies. In contrast to the data presented in Figure 6.7, noticeable
differences emerge across different bias voltages.

235



6 Bottom up constructed YSR-chains on a superconducting
Rashba surface

ΓKΓM

Figure 6.8: Complete set of FFT-QPI on BiAg2: FFT of dI/dV-
measurements performed within the area shown in Figure 6.7 for dif-
ferent energies. The scale bar in the first panel corresponds to 1 nm−1.
The colored hexagons correspond to and point out certain scattering fea-
tures, which are described in the text.
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At Vbias = 50 mV, a ring-shaped or curved-out hexagon is evident
(grey), with its edges converging towards the origin as the energy
increases to V = 300 mV. However, the distinct hexagonal pat-
tern becomes progressively washed out. Conversely, identifying
the hexagon or ring as a hexagonal feature becomes challenging at
Vbias = 0.05 V. Furthermore, at Vbias = 0.05 V, an additional fea-
ture at smaller q-values (q ≈ 1.9 nm−1) is apparent (teal), which
could correspond to the scattering vector q5. The measurements
obtained at Vbias = 1.3 mV and Vbias = 2 mV were conducted
within the superconducting gap. We will discuss the supercon-
ductivity related observations as part of Section 6.4.

The features represented as hexagons in the reciprocal space indi-
cate that the band structure of BiAg2 is anisotropic. This effect,
known as warping, has been reported in [179], as well as for simi-
lar systems such as BiCu2 [185, 186].

6.3 Quantum well states

In this section, we take a closer look at the series of peaks that
are labeled as (3) in Figure 6.3. In Figure 6.9A, the same bias-
spectroscopy measurement as in Figure 6.3E is shown, but with
arrows marking the energetic position of these peaks. The labels
correspond to the index n of the peak. In panel (B), the peaks’
Vbias values are plotted as a function of n. This plot shows that
the peaks are equidistantly distributed on the Vbias-axis. This is
further proven by the linear regression through these points. The
spectrum shown here with the peak structure differs from the ones

237



6 Bottom up constructed YSR-chains on a superconducting
Rashba surface

800 600 400 200 0 200 400 600 800
V [mV]

0

1

2

dI
/d

V
[a

.u
.]

A

n=5 4 3 2 1

1 2 3 4 5
n

800

600

400

200

V
[m

V]

B

Figure 6.9: Spectroscopy on the BiAg2 surface: (A) Same data as shown
in Figure 6.3E with the labeled arrows depicting the positions of the
peaks on the Vbias-axis. (B) Vbias-values of the peaks as a function of
n (blue), read out from (A), with a linear regression (red). Fitting param-
eters: slope m = −127.6 ± 3.3 mV, intersection V0 = −101.6 ± 11.0 mV
(B)
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6.3 Quantum well states

Figure 6.10: Intersection points between fitted QWS and Surface state
dispersion: The quantum well state dispersion is depicted in blue,
while the grey parabolas depict the dispersion of the inner BiAg2 surface
bands (see also Figure 6.3). The energetic position of the measured peaks
(see Figure 6.9) are depicted as horizontal lines, where the green ones
correspond to energies where an intersection between the QWS and the
surface band can be found (black circles) and red corresponds to the ones
where none is found. Simulation parameters: m∗

z,QWS = −0.5me (taken
from Ref. [187]), d = 3.945 nm, E0,QWS = −420 meV. For the parame-
ters of the surface state dispersion, see Figure 6.3.
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reported in Refs. [178, 179].

Different from the cases of Refs. [178, 179], the underlying Ag(111)
was grown as thin film [188, 189] on the Nb(110)-surface. For
Ag thin films, QWSs can form inside the Ag-bulk along the z-
direction [187, 190]. Here, the surface and the interface between
the Ag and the underlying Nb(110)-substrate act as boundaries,
and the bulk electrons of the Ag are reflected, forming standing
waves. This confinement effect is similar to what we have seen
in the corrals built on the Ag-surface; however, this confinement
occurs naturally inside the Ag-bulk and goes along the z-direction
instead of the xy-plane.

To model the energetic positions of these QWSs, we start with a
similar approach described in Ref. [187]. Possible wavelengths of
the QWSs λQWS are given by the quantization condition:

λQWS,zn = d, (6.1)

with the thickness of the Ag island d and an integer number n.
We assume a quasi-free electron dispersion for the QWS, which is
valid as the QWS appears inside the Ag bulk. We split the disper-
sion into a contribution coming from the movement of the elec-
trons parallel to the surface and the movement perpendicular to
it:

E(n)
QWS =

h̄2k2
∥

2m∗
∥
+

h̄2k2
z

2m∗
Z,QWSd2 + E0 (6.2)

Here k2
∥ refers to the k vector component and m∗

∥ to the effective
mass of the electrons moving parallel to the surface. kz refers to
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the k vector component and m∗
z to the effective mass along the z-

direction, and E0 refers to an energetic band offset. We use Eq. 6.1
to deduce an expression for kz:

kz =
2π
λz

QWS
=

2πn
d

(6.3)

This can be plugged into Eq. 6.2:

E(n)
QWS =

h̄2k2
∥

2m∗
∥,QWS

+
(2πh̄)2n2

2m∗
Z,QWSd2 + E0 (6.4)

With this formula, we can reproduce the QWSs reported in Ref.
[187] for islands with a similar thickness (≈ 15 MLs). The results
reported in this reference are based on ARPES-measurements, which
refer to the binding energies. Therefore, the sign of the energy
scale compared to our formalism is switched. For m∗

Z,QWS we take
the value reported in [187]. For m∗

∥,QWS, we assume the same value
as for the inner surface state bands. E0 is fitted in such a way that
the minimum of the QWS with n = 1 is at around −0.5 eV leading
to E0 = −420 meV. With the dispersion relation for the QWS, we
can now compare this to the inner surface state bands of BiAg2

and the energetic positions of the peaks from Figure 6.9. The re-
sults in Figure 6.10 show that some of the peaks (1,3 and 4) are
located at energies, for which the surface bands and a QWS inter-
sect, while for the peaks 2 and 5, we can not find any intersecting
area between the surface state and the QWS.

As reported in Refs. [187, 190] the intersection between the (s, pz)
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type bands and the QWS leads to hybridization, opening up a gap
in both bands. If this is true, this might be an explanation for the
peaks since such a gap can lead to vHSs with an increased LDOS
around the gap.

Furthermore, by looking closely at the energetic position of the
peaks in Figure 6.3A/B, we can see that the series of equidis-
tantly spaced peaks alternate slightly in energy as a function of q
at q ≈ 0.8 nm−1 and ≈ 1.9 nm−1. This hints towards more physi-
cal phenomena that must be understood to fully explain the peak
series’ appearance.
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6.4 Proximity induced superconductivity on BiAg2

In this part of the chapter, we will examine the superconductivity
proximitized in the BiAg2 surface alloy.

As we saw in Chapter 4, the Ag islands should be thin enough to
be proximitized by the superconductivity of the underlying Nb-
substrate. As we learned, it is essential to distinguish between
bulk and surface-state superconductivity. Even for islands with
thicknesses well above the coherence length of Nb, superconduc-
tivity can still be induced on the surface if the island’s interior is
within the clean limit, allowing for ballistic electron transport to
the surface [191].

Spectroscopy measurements at 4.2 K

In the preceding section, we observed that the LDOS on the sur-
face, and consequently the scattering patterns, enormously dimin-
ish in intensity as we approach the low-energy bias region (see
Figure 6.8). We focus on spectroscopy in the low-energy range
around EF to investigate the sample’s superconductivity.

Interestingly, a scattering feature with a hexagonal shape is ob-
servable at Vbias = 2 mV. This observation is unexpected, as one
would not anticipate states inside of the superconducting gap.
Typically, such states would originate from YSR-states, which can
be excluded in this scenario, as no magnetic impurities were de-
posited onto the sample. An alternative explanation could involve
MSSs, akin to those observed in Chapter 4.
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Figure 6.11: Proximitized superconductivity of BiAg2 on Ag/Nb: (A)
Constant-current STM measurement of BiAg2 with the white dashed
line depicting the location of the spectroscopic line profile in (B). (B)
Spectroscopic line profile measured along the white dashed line in (A).
The red-dashed lines depict the tip gap values. (C) Spectroscopic line
profile averaged along the line of measurement shown in (B). The grey
area depicts the bias range of the zoom-in shown in the panel below.
The red dashed lines mark the tip gap value at ±∆t = ±1.275 meV.
Parameters: Iset = 500 pA, Vbias = 5 mV (A), Istab = 500 pA, Vstab =
5 mV, Vmod = 200 mV (B).
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The spectroscopic data of the surface is shown for the energetic
region around EF in Figure 6.11. In panel (A), we see the region’s
topography. The topography shows no surface defects, and the
surface shows a clear BiAg2-lattice. The spectroscopic line profile
in the area looks homogeneous for each point along the surface,
as shown in (B). We observe two distinct peaks at ±2.18 meV.
Between those two peaks, the LDOS decreases drastically. In-
side the gap around Vbias = 0 meV, two minor peaks appear at
±0.37 meV. Since the spectroscopic line profile suggests that the
measurements are homogeneous for each point over the whole
line, we average over the whole line to get a more distinct look at
the peak structure.

To interpret the gap spectrum, we consider that the gapped LDOS
of the superconducting tip affects the spectrum. In that case, the
outer peaks are interpreted as the dGSJ-states, which appear at
±(∆t + ∆s). The inner peaks around Vbias = 0 meV are the ther-
mal resonances discussed in 3.4. All the spectra were bias-offset
corrected by reading out the coherence peaks caused by the dGSJ-
states. We extracted the parameters for the tip gap and the sam-
ple gap by modeling the LDOS of the tip and the sample using
two Dynes functions, as we did in the preceding chapters with
Equation 3.9. We found the tip gap to be ∆t = 1.28 meV and
the sample gap to be ∆s = 0.90 meV, which is about 60 % of the
superconducting gap of Nb and 68 % of the NbOx-gap that we ex-
tracted from the measurements in Chapter 4. The tip gap energy is
depicted as red dashed lines in each spectroscopy measurement.
The dGSJ-state can be read out at ±(∆g + ∆s) = ±2.18 meV.
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Figure 6.12: Temperature dependent point spectra taken on BiAg2 on
Ag/Nb(110): (A) Bias-spectroscopy measurements on BiAg2 on Ag/Nb
for different temperatures, as stated in the legend. (B) Evolution of
the bias-spectroscopy measurements with temperature T. Parameters:
Istab = 1 nA, Vstab = 10 mV, Vmod = 100 µV, feedback: on.

We can see that even though there is a superconducting gap, the
LDOS inside of the gap is not completely flat. This is in accordance
with the dI/dV-maps shown in Figure 6.8 taken at energies inside
the gap (Vbias = 1.3 mV and Vbias = 2 mV), which show a finite
signal even for energies inside the gap. With the knowledge of
the interaction between surface states and a superconducting sub-
strate from Chapter 4, these excitations could be caused by MSSs.

Temperature dependence of the sample gap

Another way to verify whether the gap observed in Figure 6.11
is due to the proximitized superconductivity from the underlying
Nb-substrate is to examine the evolution of the gap with temper-
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ature T. If the gap is due to proximitized superconductivity, we
expect it to decrease as the temperature increases.

To investigate this, we performed bias-spectroscopy measurements
on the BiAg2 alloy at different temperatures. The results are shown
in Figure 6.12. In panel (A), we can see the bias-spectroscopy data
for different temperatures between T = 4.54 K and 9 K. At T =

4.54 K we see the coherence peaks at ±2.18 meV. At T = 6 K we
see the coherence peaks appearing at ±1.77 meV. At T = 7.5 K,
the peaks shift to ±1.2 K. Finally, at T = 9 K, the peaks disappear
almost entirely.

In panel (B), the evolution of the superconducting gap with tem-
perature is displayed as a waterfall plot, illustrating how the spec-
tral features change as the temperature increases. It becomes ap-
parent that the outer peaks (±∆t +∆s) almost linearly decrease in
energy as a function of temperature. However, the inner peaks
as thermal resonances increase in energy as the temperature in-
creases. Notably, this increase is not entirely linear.

We must consider that we are observing tunneling between two
superconducting electrodes, both of which exhibit a superconduct-
ing LDOS influenced by temperature. As the temperature increases,
both gaps will gradually close. The tip and the sample electrode
do not have the same gap size. At low temperatures, we observe
both gaps in our bias-spectroscopy measurements. As the tem-
perature rises, both gaps gradually close. At a specific tempera-
ture (denoted as T1), the gap of one electrode will be completely
closed while the superconductivity in the other electrode remains.
Consequently, we will only see the superconducting gap of the re-
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Figure 6.13: ∆t and ∆s as a function of T. ∆t and ∆s extracted from
the bias-spectroscopy measurements shown in Figure 6.12 by fitting the
spectrum with Eq. 3.8. Fitting parameters: γ = 0.05 meV, I0,t =

0.5 m−3meV−1, I0,s = 0.55 m−3meV−1,

maining electrode closing as the temperature increases. This re-
sults in a kink in the superconducting gap’s evolution as a func-
tion of temperature.

To quantify this, we can fit the spectra for each temperature with
the model introduced in Chapter 3.4. This way, we can extract
the values for the tip gap ∆t and the sample gap ∆s for each bias-
spectroscopy measurement in the temperature-dependent data set.
The result is shown in Figure 6.13. We can see that both gaps de-
crease with increasing temperature. Since ∆s is smaller than ∆t,
∆s disappears first. Then, right below 9 K, also the superconduct-
ing gap ∆t goes to zero. It should be noted that for these sim-
ulations, the superconducting electrodes are described by BCS-
theory. However, this is not necessarily true for a sample, such as
the BiAg2 surface alloy, which has a strong SOC.
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6.5 Single Fe-atoms on BiAg2

In the previous sections, we demonstrated the successful growth
of a Rashba material on a superconducting substrate. Specifically,
we showed that the surface alloy grown on a Ag(111) surface atop
Nb(110) exhibits a strong proximity effect. With what we have
learned from the previous parts, we are finally ready to investi-
gate a system that brings together all the components of topolog-
ical superconductivity. With the use of atom manipulation tech-
niques we can assemble the atomic structures atom-by-atom and
taylor the interactions between them to our needs. In this section,
we deposit Fe-atoms onto the BiAg2 surface. We investigate the
different adsorption sites of these Fe-atoms and look at their spec-
tral properties.

To build a YSR-chain on the high SOC surface, it is necessary to
find magnetic atoms that exhibit YSR-states, ideally far inside the
gap. The energies of the YSR-states vary with the Fe adsorption
sites. So, the first step to building Shiba-chains is to classify the
YSR-states of the magnetic atoms.

Adsorption of individual Fe-atoms on BiAg2

Individual Fe-atoms were deposited onto the BiAg2 surface through
cold deposition (see Figure 6.14). The distribution of the Fe-atoms
appears statistically uniform across the surface. Upon examining
the reference lattice of the substrate, we can identify two distinct
adsorption sites for the Fe-atoms. The first adsorption site is illus-
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Figure 6.14: BiAg2 surface after Fe deposition. The black line corre-
sponds to 3 nm. Parameters: Iset = 50 pA, Vbias = 5 mV. Temperature
during deposition was < 10 K.
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Figure 6.15: Schematic of Fe adsorption sites on BiAg2 (A, B) Schemat-
ics showing Fe-atoms on the hollow adsorption site (Feh) (A) and on the
bridge adsorption site (Feb) (B). (C, D) Constant-current STM images of
an Fe-atom adsorbed on a hollow site (C) and a bridge site (D). The grey
circles represent the Bi-lattice underneath. The black line corresponds to
a length of 300 pm. Parameters: Iset = 1 nA, Vbias = 5 mV (C, D).
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trated in Figure 6.15A. The model shows that the Fe-atoms are ad-
sorbed on a site, which is threefold coordinated by Bi-atoms. The
underlying Bi-atoms form a triangle. As the schematic shows, we
can reach that by two different configurations, with the triangle ei-
ther pointing upwards or downwards. This configuration will be
called the hollow site (Feh). The average height of the Fe-atoms at
the hollow site is ≈ 176 pm, and the constant-current STM-image
resembles a triangular shape.

The second type of adsorption site is depicted in Figure 6.15B,
accompanied by its schematic. The Fe-atom resides on the con-
necting line between two Bi-atoms, i.e., it is twofold coordinated.
The schematic drawing shows the three different possible orienta-
tions of this kind of site. We will refer to this site as the bridge site
(Feb). The Fe-atoms at the bridge sites have an average height of
≈ 186 pm and resemble an elongated shape in the STM image.

At Vbias of approximately 5 mV and currents above 20 nA the Fe-
atoms can be moved along the surface. By manipulating the atom
on the surface, we found that Fe-atoms predominantly prefer the
bridge sites: While positioning Fe-atoms onto the bridge sites is
relatively straightforward, placing them onto the hollow sites re-
quires multiple careful attempts and the adjustment of various
parameters. Additionally, applying voltages of 1 V or higher can
cause Fe-atoms initially located at the hollow sites to hop onto a
bridge site.
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Figure 6.16: In-gap states of Fe-atoms adsorbed on hollow sites of
BiAg2 on Ag(111) on Nb(110): (A) Bias-spectroscopy measurement
taken on Feh with different YSR-states marked by the arrows in compar-
ison to a spectrum taken on the substrate. The white line corresponds
to 500 pm. (B) Constant-current STM image of Feh. (C-F) Constant-
contour maps taken on Feh at the respective energies of the YSR-peaks.
Parameters: Istab = 1 nA, Vstab = 6 mV, Vmod = 20.0 µV, T = 320 mK
(A), Iset = 500 pA, Vbias = 5 mV (B), Vstab = 5 mV, Istab = 500 pA,
Vmod = 20.0 µV (C-F), T = 320 mK.
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Spectroscopy on Fe-atoms

Next, we investigate the spectral features of single Fe-atoms. First,
we examine the spectrum taken on Feh, depicted in Figure 6.16A.
The spectrum was measured with a superconducting tip, and the
tip gap value was determined by fitting the gap spectrum with the
model shown in Section 3.4 (see the detailed fit analysis below).
The grey dashed lines in the spectrum indicate this tip gap energy.
The orange line represents the measurement taken on the Fe-atom,
while the blue line is a reference spectrum taken on the substrate
of the same island. The plot focuses on the low-energy features of
the spectra between −3 meV and 3 meV, highlighting the features
within the superconducting gap.

A comparison of the two spectra reveals the presence of addi-
tional in-gap states within the superconducting gap of the spec-
trum taken on the Fe-atom. These peaks appear in symmetric
pairs concerning energy. We observe two pairs of peaks in total,
which we label as hi,−/+, where i = 1,2 and the sign (−/+) in-
dicates whether the peak is at a positive or negative bias voltage.
The energetic positions of these peaks are summarized in Table
6.1. The most prominent pair (h1,±) is located near the Fermi en-
ergy of the tip (±1.31 meV). These peaks are nearly symmetric in
intensity. The second pair of peaks (h2,±) is located at a bias volt-
age of ±2.56 meV, close to the coherence peak of the substrate at
±2.68 meV. At first sight, this pair of peaks could be interpreted
as a pair of coherence peaks, which is shifted in energy with re-
spect to the substrate’s coherence peaks. However, a closer in-
spection shows a strong particle-hole asymmetry for the pair of
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hi Vbias E E/∆s
h1± ±1.31 mV 0 meV 0.0 %
h2± ±2.56 mV 1.25 meV 0.91 %

Table 6.1: Extracted YSR-state Vbias and energies E of Feh.

peaks, which would be unusual for a pair of coherence peaks. For
this reason, we interpret these as YSR-states. Since the coherence
peak and h2 are so close to each other, both are superimposed,
making it hard to identify the coherence peak separately.

We obtained constant contour maps for each peak, shown in pan-
els (C, D) for the negative energy side and (E, F) for the positive
energy side. The maps for the h2,± peaks (C, E) are very noisy
due to the strong overlap with the substrate’s coherence peaks.
However, a triangular-shaped structure is discernible. h1,± (E, H)
shows that a sixfold symmetric ray structure originating from the
atom’s position is more clearly visible at negative than at positive
bias.

The spectral properties of an Feb atom are depicted in Figure 6.17,
with the topography of the atom shown in (B). Three pairs of in-
gap peaks labeled as bi,± with i = 1,2,3 are observed (see ener-
gies of the peaks summarized in Table 6.2). The first pair, b1,±, is
located at V = ±1.52 mV. There is a slight asymmetry in peak
heights, with the negative side peak slightly higher in intensity.
The second pair (b2,±) appears at V = ±1.9 mV. The negative
bias side peak is slightly larger in intensity. Lastly, the b3,± peaks
are located at V = ±2.31 mV. This pair exhibits a much smaller
intensity than the others and a different asymmetry pattern: The
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Figure 6.17: In-gap states of Fe-atoms adsorbed on bridge sites of
BiAg2 on Ag(111) on Nb(110): (A) Bias-spectroscopy measurement
taken on Feb with different YSR-states marked by the arrows in com-
parison to a substrate spectrum. White line corresponds to 500 pm. Pa-
rameters: Istab = 1 nA, Vstab = 6 mV, Vmod = 20.0 µV, T = 320 mK
(B) Constant-current STM image of Feb. (C-J) Constant-contour maps
taken on Feb at the respective energies of the YSR-peaks and ±∆t (F, J).
Parameters: Vstab = 5 mV, Istab = 500 pA, Vmod = 20.0 µV.
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bi Vbias E E/∆s
b1± ±1.52 mV 0.21 meV 0.15 %
b2± ±1.9 mV 0.59 meV 0.43 %
b3± ±2.31 mV 1 meV 0.73 %

Table 6.2: Extracted YSR-state Vbias and energies E of Feb.

positive side peak is higher in intensity.

In panels (C-J), constant-contour maps taken at the energies of the
peaks are shown, along with a map taken at the Fermi energy of
the sample. The LDOS maps taken at the peak positions appear
mostly oval-shaped. Around the atom, disordered wavy patterns
are observed, as seen in panels (E, F, I, J). However, compared to
Feh, these patterns appear somewhat random and much weaker
in intensity.

The in-gap states observed in the spectra on the Fe-atoms can be
attributed to YSR-states. These states arise from the interaction
between the d-orbitals of the Fe-atom and the superconducting
BiAg2 substrate. The symmetry of the substrate influences the
shape of the YSR-states [154]. For Feb, which occupies a twofold
symmetric adsorption site, the short-range YSR-states exhibit twofold
symmetric shapes. Conversely, Feh resides in a threefold symmet-
ric adsorption site, resulting in a corresponding threefold sym-
metric wavefunction of the YSR-states. The orbitals of the mag-
netic impurity also influence the symmetry of the YSR-states. Ac-
cording to Ref. [154], the C3ν-symmetry of the Feh is expected to
lead to degeneracies of the spin, yielding exactly three YSR-states.
However, we only found two pairs of YSR-states in our case. One

256



6.5 Single Fe-atoms on BiAg2

possible explanation for this discrepancy could be that the inten-
sity of the last pair of peaks is so small that it is buried below the
signal of other peaks.

The spectra obtained on Feh, Feb, and the substrate were further
analyzed using the model presented in Section 3.4. The LDOS
of the tip and the sample are modeled as BCS-type gap spectra.
Lorentzian peaks were added to the sample spectrum to model
the in-gap states. This way, we extract the values for the tip and
sample gap. The fitting results are depicted as red lines in Figure
6.18 with the substrate in panel (A), Feb in (B), and Feh in (C).

Please note that a comparison of the fit and the data in (A) shows
a significant difference between the height of the fitted and mea-
sured coherence peaks. However, the fit is sufficient for our pur-
pose as we are primarily interested in the values for ∆t, ∆s, N0,t,
N0,t and γYSR.

By fitting the spectra for the substrate and the Fe-atoms, we extract
the gap values ∆1 = 1.31 meV and ∆2 = 1.41 meV.

To assign these gap values to either ∆t or ∆s, we did a measure-
ment of the MARs, which occur as a result of the tunneling process
between two superconducting electrodes (for more information,
see Ref. [192]). To do that, the tip is stabilized above the sub-
strate surface at low tunneling gap resistances (e.g., by increasing
the stabilization current), and a bias spectroscopy measurement
is performed. At sufficiently low tunneling gap resistances, addi-
tional in-gap peaks appear. Figure 6.19 shows such an example.
We can see that additional in-gap features appear at Vbias = 0,
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Figure 6.18: Fitted spectra taken on the Fe-atoms with different ad-
sorption sites. (A) Bias-spectroscopy measurement taken on the sub-
strate (blue) and the corresponding fit using the model as described in
the text. (B) Same as (A) but for the spectrum of an Feh. (C) Same as (A)
but for the spectrum of an Feb The measured data is the same as in Fig-
ures 6.16A and 6.17A. Simulation parameters: Eb,{1,2,3} = ±0.206 meV,
±0.59 meV, ±1 meV, Eh,{1,2} = 0 meV, ±1.247 meV ∆t = 1.31 meV,
∆s = 1.37 meV, γYSR = γSC = 0.05 meV, N0,t = N0,s = 0.1 meV−1,
T = 320 mK.
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Figure 6.19: Measurement of MARs on BiAg2. (A) Bias-spectroscopy
measurement performed on the BiAg2 substrate. (B) Same as (A) but
zoomed on the Vbias-interval in (A), which is not greyed out. Parame-
ters: Vstab = 5 mV, Istab = 30 nA, Vmod = 20.0 µV.

Vbias = ±1.12 mV and Vbias = ±1.37 mV. As described in Ref.
[192] the peak at Vbias = 0 can be assigned to Josephson tunnel-
ing processes [193]. The other pairs of peaks can be assigned to
∆s or ∆t. When we compare the measurement in Figure 6.19 to
the results in Figure 6.18, one of the gap values is similar in both
measurements, while the other differs. Taking into account that
the measurements were taken on the same substrate but with dif-
ferent tips, we can now assign the features at Vbias = ±1.37 mV to
∆s and the other one Vbias = ±1.18 mV in Figure 6.19 (or Vbias =

±1.31 mV in Figure 6.18) to ∆t.

With the knowledge of the tip and sample gap values, we can ex-
tract the YSR-state energies of Feh and Feb, which can be found in
tables 6.2 and 6.1.
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Figure 6.20: Long-range scattering patterns of YSR-states of Fe on
BiAg2 on Ag(111) on Nb(110). (A) Constant-current map of the
BiAg2 surface with adsorbed Fe-atoms. The white line corresponds to
a length of 2 nm. Parameters: Iset = 500 pA, Vbias = 5 mV (A), (B-E)
Constant-contour maps at the corresponding YSR-energies as stated by
the label in the top right corner. The arrows mark examples of Feh (cyan)
and Feb (green). Parameters: Vbias = 5 mV (A), Vbias = ±1.35 mV
(B/C), ±1.92 mV (D/E), Vstab = 5 mV, Istab = 500 pA, Vmod = 0.2 mV
(B-E).
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Figure 6.20 presents constant-contour maps captured at various
YSR-state energies extracted from the spectra. Panel (A) displays
the topography of the investigated area. In panel (B/C), the constant-
contour maps at energies h1± are shown, while the ones at ener-
gies b2± are shown in panels (D/E).

By inspecting the constant-contour maps, we can identify two types
of objects that show similar behavior throughout each panel. The
first type, marked by the blue arrows, shows strong long-range
excitations on each map. Hexagonal-shaped scattering patterns
originate from these Figure6.20B and C. The wavelength of this
oscillation along the ΓK-direction is estimated to be ≈ 1.88 nm−1.

By comparing these objects to the YSR-states shown in Figure 6.16D/F,
a strong resemblance to the YSR-states of Feh can be found. In con-
trast to that, the other group of objects that can be found, marked
by the green arrows, shows very compact oval-shaped excitations,
resembling the h2± states shown in Figure 6.17H/D. We, therefore,
assign the long-ranged objects to Feh and the short-ranged ones to
Feb. Please note that the strong scattering pattern on Feh at ener-
gies b2± might be an indication towards another pair of YSR-states
of Feh that was not identified in Figure 6.16, due to its low inten-
sity.

Typically, there are two ways to explain the appearance of long-
ranged YSR-states. The first possibility is explained by a quasi-
two-dimensional character of the superconductor to which the
spins of the magnetic impurities couple, such as the one reported
in Ref. [194]. The other explanation involves so-called quasi-
particle-focussing effects along directions perpendicular to low-
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curvature regions of the Fermi surface [67]. For our case, where
the Fermi surface of Ag can be seen as sphere-shaped, the second
effect can be neglected, and we can conclude that the long-range
wavefunction indicates a coupling of the Feh to the BiAg2 surface
state. Nevertheless, it seems that the k-vector extracted for the
oscillation pattern of the long-range YSR-state (k = 1.88 nm−1)
is much larger than the Fermi wavelengths of the BiAg2 (kF,1 =

0.44 nm−1, kF,2 = 1.22 nm−1), which can be estimated by using
the dispersion relation model in Figure 6.6C.
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6.6 Hybridization between YSR-states on BiAg2

In this part of the chapter, we examine the interaction between
Fe-atoms. We manipulate atoms to place two Fe-atoms next to
each other and measure their spectral properties through bias-
spectroscopy measurements. By varying the distance between the
atoms, we can observe changes in the spectroscopic features due
to their interaction.

Distance dependent hybridization in Fe-pairs

When two atoms are placed near each other, their electron orbitals
overlap and hybridize, splitting the atomic orbitals in energy and
forming molecular orbitals. Typically, electrons form a bonding
orbital, in which electrons have a high probability of being lo-
cated between the atomic cores, and an antibonding orbital, where
the electrons have zero probability of being located between the
atomic cores. Similar behavior is observed for YSR-states of mag-
netic atoms coupled to a superconductor, which hybridize when
placed near each other [68–70, 195–197]. However, it should be
noted that for the case of spins with antiferromagnetic alignment
and zero SOC, no splitting is expected for the YSR-states [70].

Please note that the measurements in this subsection were done in
the SPECS setup (see Section 3.5.1) at T = 4.2 K and on a different
sample as opposed to the spectra shown in the rest of this chapter,
which were all measured in the 300 mK setup (see Section 3.5.2).

The effect of hybridization between two atoms is investigated in
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Figure 6.21: Hybridization between Feh for different interatomic dis-
tances (A-C) Constant-current STM image of atomic pairs for an in-
teratomic distance of 5a (A), 2a (B) and 1a (C). The white line corre-
sponds to 500 pm (A, B) and 1 nm in (C). (D-F) Spectroscopic line pro-
files taken through the atomic pairs as marked by the lines in the re-
spective panel above. (G) Bias-spectroscopy measurement taken at the
location of the atom as depicted by the color-coded lines in panels (D-F).
(H) Bias-spectroscopy measurement taken at the location between the
atoms as depicted by the color-coded solid lines in panels (D-F). Para-
meters: Vbias = 5 mV (A, C), Vbias = −5 mV (B), Iset = 500 pA (A-C),
Istab = 500 pA, Vstab = 5 mV, Vmod = 50 µV (D-H), T = 4.2 K (A-H).
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Figure 6.21. In this measurement set, we take a look at the Feh.
Two atoms are placed next to each other at different inter-atomic
distances of 5a (A), 2a (B), and 1a (C), where a refers to the distance
between two neighboring lattice sites of the same kind and orien-
tation. Usually, the manipulation only allows the creation of pairs
down to a 2a distance. 1a-pairs, as presented here, can only be
found in a self-assembled way right after deposition. We record a
spectroscopic line profile for each pair that crosses both atoms, as
shown in (D-F).

When comparing these measurements to the measurements shown
in Figure 6.18 we consider that the higher temperature leads to
thermal resonance peaks that occur at Vbias between ±∆t. In ad-
dition to that, the values of ∆s and ∆t differ from the measure-
ments before. We also evaluate the data at the position of one of
the atoms (panel (G)) and in between the atoms (panel (H)). In the
spectroscopic line profile of the 5a chain, we see very prominently
the h1-peak located at ≈ ±0.76 mV. We look at the corresponding
spectrum in panel (G), taken on the pair’s left atom, to understand
the spectroscopic features better. Comparing this to a single Feh

(c.f. Figure 6.16A), we can not spot any significant difference. The
spectrum taken in between the atoms (see panel (H) in green) is
almost identical to the substrate spectrum (grey). Next, we look
at the 2a-pair (B). The spectroscopic line profile along this adatom
pair shows apparent differences from (D). The intensity of the h1-
peak pair has decreased. The spectra in panels (E), (G), and (H)
of the 2a-pair show a splitting of the h1-peak. Finally, we inspect
the 1a-pair shown in panel (C). The corresponding spectroscopic
line profile (F) shows an even stronger splitting of the h1-peak.
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Also, the splitting increases at locations between the atoms of the
pair. In the spectroscopy taken on the left atom of the pair (panel
(G), blue curve), we can see a clear splitting on the negative bias
side. To understand the splitting of the peaks, we model the gap
spectrum by assuming the tunneling between two superconduct-
ing electrodes (see Section 3.4). In the first step, we model the
superconducting spectrum taken on the substrate. This way, we
can extract parameters such as the broadening parameter for the
tunneling between the tip and substrate γSC, ∆t, and ∆s. This is
presented in Figure 6.22A. In the next step, we model the spec-
trum of a free Feh-atom. The energetic positions of the YSR-states
can be calculated by assuming the values in the last row of Ta-
ble 6.1, which are the relative positions of the YSR-states concern-
ing the sample gap. With the known values for the sample gap,
we can calculate the energetic positions of the YSR-states. Each
state is modeled by two Lorentzian functions with the same en-
ergy. Later in the text, it will be evident why we do this. This
way, we end up with 8 Lorentzians in total, which are tuned in
intensity Ii together with the other parameters (N0, γYSR) until the
peaks show similarities in shape and broadening. For simplicity,
we assume the same broadening for all the YSR-peaks. In any
case, the states that are the most prominent ones are the h1-states.
We model the pair spectra with these values fixed, adding a finite
energy shift between the two Lorentzians at the same energy δ.
This way, we can mimic the splitting or shifting of the YSR-states.
With the assumption that the changes between the reference Feh

spectrum and the spectrum of the paired Feh-atoms are mainly
due to the interaction with the other pair atom, we reuse the val-
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Figure 6.22: Modelling of the gap spectra for pairs of Feh. (A-D) Data
and gap fit of substrate spectrum (A), single Feh (B), 5a-pair (C), and 2a-
pair (D). Except for (B), the spectra are also shown in Figure 6.21G. Simu-
lation parameters: δ = 6 % (C), 20 % (D), ∆t = 0.8 meV, ∆s = 1.29 meV,
γsc = 0.055 meV, γysr = 0.05 meV, Eh1 = 0 and Eh2 = 1.25 meV (A-D).
Measurement parameters: Vstab = 5 mV, Istab = 1 nA, Vmod = 50 µV
(A, B); for (C, D) see description of Figure 6.21.

267



6 Bottom up constructed YSR-chains on a superconducting
Rashba surface

ues for γSC, γYSR, ∆t and ∆s from the free atom. To model the split-
ting of the YSR-states, the pairs of redundant Lorentzians with the
same energy, which we used to model one YSR-peak before, are
now shifted by a small Vbias value with respect to the energy of
the unperturbed YSR-state consequently. For each YSR-peak, we
now have one peak atϵi + δ∆s andϵi − δ∆s, whereϵi corresponds
to the unperturbed position of the peak i. Now, we vary the inten-
sities of the peaks until we have an appropriate fit describing the
splitted and shifted peaks of the pair spectra. We focus on captur-
ing the overall linewidth of the peaks. The intensities are hard to
catch. As we can see in the results in Figure 6.22, the fitted curves
are not entirely identical. However, it gives us a rough indication
of how large the splittings of the YSR-states are. We do this proce-
dure for the 5a- and 2a-pairs. Due to the thermally excited peaks,
the spectra become more complex. Despite the thermal peaks, the
fitting method can be used for the 5a and the 2a-pair. We can find
δ ≈ 6 % for the 5a-pair and δ ≈ 20 % for the 2a-pair, given as a
percentage of ∆s. For the 1a-pair, however, the spectrum becomes
so complicated that finding an appropriate fit for the data is chal-
lenging, as we would have to consider an additional peak shift.

We do the same pair experiment for the bridge site atoms (see Fig-
ure 6.23). This set was measured with a different tip and sample
preparation compared to Figure 6.21. Consequently, the gap val-
ues in both sets differ. As shown in panels (A-C), we perform the
experiment again with interatomic distances of 5a (A), 4a (B), and
2a (C). The black arrow marks the fixed atom in (A). The spectra
taken on the fixed atom are shown in panel (D). When we compare
the different spectra, we can see slight variations in the intensities
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Figure 6.23: Spectra of Feb-pairs as function of interatomic distance
(A-C) Constant-current measurements of Feb-pairs with an interatomic
distance of 5a (A), 4a (B) and 2a (C). The arrow in (A) marks the fixed
atom on which the bias-spectroscopy measurements in panel (D) were
measured. The black line corresponds to a length of 400 pm (D) Bias-
spectroscopy measurements on the fixed Feb for different interatomic
distances of the Feb-pair. Parameters: Vbias = −5 mV, Iset = 1 nA (A-
C), Vstab = −5 mV, Istab = 1 nA, Vmod = 50 µV (D), ∆t = 0.88 meV,
∆s = 1.15 meV (A-D)
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Figure 6.24: Splittings of the YSR-peaks of Feh-pairs as a function of
distance and orientation. (A) The white circles represent the Bi-atoms
of the underlying BiAg2 substrate. The grey circle depicts the fixed Fe-
atom, while the colored circles represent the relative positions of the
other. The numbers indicate the fitted YSR-state splitting δ, which
is induced on the fixed Feh for the respective relative orientation of
the moving atom. The values were extracted as described in the text.
The arrows depict the crystallographic direction [198]. (B) Direction-
dependent splittings as a function of the interatomic distance.

of the peaks. However, when it comes to the peak positions, it
looks as if there is no change as a function of the interatomic dis-
tance. Furthermore, there is no sign of peak broadening.

The absence of peak splittings in the Feb indicates a weak interac-
tion between the Feb pairs. This is consistent with the strong local-
ization of Feb YSR-states compared to Feh YSR-states (c.f. Figure
6.20). Due to this weak interaction strength, building chains from
Feh-atoms should be more promising for forming YSR-bands than
Feb-atoms. For this reason, we will focus on the Feh-atoms from
here on.

We conduct the pair experiment with Feh for different distances
and orientations of pairs with multiple tips and extract the split-
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ting δ from the spectra described above. Some pair configurations
were measured in various sets. We take the average of the fitted δ-
values in these cases. Figure 6.24 sums up the extracted splittings.
In (A), the grey circle depicts the position of the fixed Fe-atom. The
colored circles represent the relative position of the other atom in
the pair. The number and color represent the splittings of YSR-
states extracted from the spectra measured on the fixed Fe-atom in
each pair. We look at the splitting along the [0 1 1]- and the [2 1 1]-
directions [198]. Panel (B) shows the splitting as a function of the
interatomic distance between the atoms in each pair. The split-
ting increases for decreasing interatomic distances between the
pair atoms along the [2 1 1]-directions. We can even see a mono-
tonic decrease in the splitting as a function of the distance. For the
[0 1 1]-direction, extracting more points to claim anything about
the functional behavior would be necessary.

We investigated the interaction between Fe-atoms placed at dif-
ferent lattice sites and interatomic distances. To build magnetic
chains on superconducting Rashba materials, which could poten-
tially host topological superconductivity, we can use the insights
gained from the Fe pair experiments to decide on the chain config-
uration. The interaction is weak for Feb atoms. Even at small dis-
tances of 2a, the peak splittings are not notably strong. In particu-
lar, they are smaller than the separation of the YSR-states from EF.
Therefore, we do not expect that it is possible to realize YSR-bands
from hybridized YSR-states of Feb atoms that cross EF, which is
required for the formation of topological SC bands. Feh pairs be-
gin to interact at distances of approximately 3a, with a notable
increase in interaction for interatomic distances below that. For
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the chains, strong hybridization is favorable. Building chains from
Feh atoms with an interatomic distance of 1a would be ideal. How-
ever, manipulating atoms onto Feh adsorption sites is not easy.
The closer the Feh atoms are brought to each other, the more dif-
ficult the placement onto hollow sites becomes. As the single Fe-
atoms get nearer, the probability that the atoms snap together and
form a dimer increases. This process is not reversible and risks
breaking the tip. Given these challenges, we found a good com-
promise by choosing 2a as the interatomic distance for building
the chains.
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6.7 YSR-chains on superconducting BiAg2

In this section, we use the information on the interaction strength
as a function of the distance from the previous section to build a
YSR-chain. We perform spectroscopy measurements for different
Fe chain lengths and temperatures to investigate the YSR-bands’
properties toward topological superconductivity. We will focus on
the chains along the [2 1 1]-directions as their spectroscopic data
shows the most interesting features. From the results of the last
chapter, Fe chains with an interatomic distance of 1a along the
[0 1 1]-direction could also be interesting. However, these chains
did not show symmetric zero energy states at the edges (see Sec-
tion 6.7) and were already disqualified as candidates for chains
hosting MZMs.

Building chains from Fe-atoms

The creation of the 2a chain can be seen in Figure 6.25. The chains
are built along the [2 1 1]-directions, which should lead to sym-
metric YSR-states on both ends of the chain due to the symmetry
of the chain. In panel (A), topographic images show the chain
built atom-by-atom. Atoms are added one by one to the chain
from either the left or the right side. The chains are labeled by Feh,i

with i being the number of constituting atoms. The longest chain
built this way is the Feh,11 chain, consisting of 11 Fe-atoms placed
on hollow sites separated by 2a. A model of the arrangement is
presented in panel (B), showing the adsorbed atoms placed on the

273



6 Bottom up constructed YSR-chains on a superconducting
Rashba surface

A Feh, 1

Feh, 2

Feh, 3

Feh, 4

Feh, 5

Feh, 7

Feh, 9

Feh, 11

B

Bi
Fe

0.00 0.05 0.10 0.15 0.20
Z [nm]

Figure 6.25: Atomic Fe chains with 2a interatomic distance along
[2 1 1]. (A) Constant-current STM images of the Fe 2a chains for differ-
ent numbers of atoms. The black line corresponds to 500 pm. (B) Sketch
showing an example of a Feh,4-chain (red) and the Bi-atoms (grey) of the
underlying substrate. Parameters: Iset = 500 pA, Vbias = 5 mV.
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Bi-atoms of the BiAg2 substrate.

Spectroscopy on Feh chains

We performed a spectroscopic line profile measurement each time
an atom was added to the chain. In Figure 6.26, results are shown
for the Feh,5, Feh,9 and Feh,11 chains. Above the spectroscopic data,
the corresponding topography measurement for each chain is dis-
played. The image size is scaled to match the x-axis positions in
the spectroscopic line profile below, allowing for a direct compar-
ison between spectroscopic signals and atomic positions within
the chain. Already for the Feh,5 chain, the h1 YSR-state shows
shifts and splittings due to interactions with other atoms in the
chain. This effect increases towards the center atom of the chain.
The magnitude of the splittings and shifts is symmetric around
the center atom of the chain. However, on top of this systematic
effect, there is an additional, unsystematic variation in the intensi-
ties of the spectral signal along the chain. For example, the outer
peaks of the second and fourth atoms show differences in inten-
sity. This unsystematic LDOS variation persists in longer chains,
as seen in Feh,9 and Feh,11. Additional excitations appear in be-
tween the split peaks. The atoms at the edges of the chains ex-
hibit negligible splitting. The splitting/shifting increases for the
second atom and saturates around the third or fourth atom. In
this central region of the chain, it can be seen that the spectral in-
tensities on each atom sometimes consist of more than two peaks
in the energy range between |∆t + ∆s| and |∆t|. This behavior is
symmetric around the center atoms; for instance, the second atom
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Figure 6.26: Spectroscopic line profile of the Feh,i chain for different
lengths (A) Feh,5 chain with the topography adjusted to the position
coordinate x of the spectroscopic line profile shown below. The Vbias-
values corresponding to ±∆t are depicted by the grey, dashed lines (B)
Same as (A) but for a Feh,9 chain. (C) Same as (A) but for a Feh,11 chain.
The scans in panels (A-C) are the same as shown in Figure 6.25A. Pa-
rameters for spectroscopic line profiles: Istab = 500 pA, Vstab = 5 mV,
Vmod = 20 µV, T = 4.2 K.
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Figure 6.27: Spectroscopic line profile of Feh,9 chain at different tem-
peratures. (A, B) Spectroscopic line profile through Feh,9 chain at 4.2 K
(A) and 320 mK (B). The region between ±∆t is cut out for better visibil-
ity. Parameters: Istab = 500 pA, Vstab = 5 mV, Vmod = 50 µV.

from the left end of the chain shows a similar splitting for the sec-
ond atom from the right end. These measurements were taken at
4.2 K, meaning that thermal excitation processes contribute addi-
tional peaks, complicating the gap structure.

Temperature dependence of chain spectra

We, therefore, also conducted measurements at lower tempera-
tures to get more insight into the YSR-band structure. Figure 6.27
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shows a comparison between Feh,9 measurements at 4.2 K and
320 mK. Superconducting tips introduce redundancies in the spec-
tra, necessitating a focus on relevant features by cutting the energy
window between −∆t and ∆t, similar to previous measurements.
The cyan dashed lines indicate the positive and negative sum of
the tip and sample gap. The grey lines mark the respective tip gap
values. The labeled arrows E1 to E6 signify specific energy val-
ues and their corresponding positions in the measurements. By
comparing both measurements, we make several observations. A
slight increase in sample and tip gap values is observed from 4.2 K
to 320 mK, when comparing the cyan lines with each other. In
the 320 mK-measurement, the spectral features are more clearly
resolved due to the increased tip gap. Moreover, the overall inten-
sities of the in-gap states are increased. However, qualitatively,
both measurements show a very similar behavior concerning the
energies of the peaks in the spectra on the individual atoms. For
example, for the third atom from the left and the right chain end,
we can see a state at the tip gap energy and another at higher en-
ergy for the features on the positive bias side. These two states
are well separated in terms of energy. We can see the same qual-
itative behavior for the same atom in the 320 mK-measurement;
however, the gap between the peaks can be seen much more evi-
dent. This gap appearing at the third atom could be due to a nodal
line of the confined quasi-particle state residing in the YSR-band
around this energy.

Figure 6.28 presents a comparison of constant-contour maps of
Feh,9 at the two different temperatures, focusing on the energies
marked by the arrows in the spectroscopic line profiles in Figure
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Figure 6.28: dI/dV-maps of the Feh,9 chain at energies marked in Fig-
ure 6.27 for different temperatures (A) Constant-current STM image of
the Feh,9 chain. The black line corresponds to 1 nm (B, C) Constant-
contour maps measured at 320 mK (B) and 4.2 K (C). Parameters: Iset =

500 pA, Vbias = 5 mV (A), VE1,E6
bias = ±1.50 mV, VE2,E5

bias = ±1.27 mV,
VE3,E4

bias = ±1.13 mV (B), VE1,E6
bias = ±1.39 mV, VE2,E5

bias = ±1.16 mV,
VE3,E4

bias = ±1.02 mV (C), Vstab = 5 mV, Istab = 500 pA, Vmod = 20 µV
(B, C).
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6.27. Energies from the 4.2 K data were matched to the 320 mK
data by normalizing the energy scales to the respective ∆t. At E1,
the dI/dV-maps for both temperatures show a signal distributed
all over the chains, while the edge atoms exhibit almost vanishing
intensity. A pattern is visible in the measurement, with the LDOS
alternating between high and low for each atom. At 4.2 K, this
alternating signal becomes more disordered, with varying inten-
sities among the atoms. At E2, E3, and E4, the distinction between
edge and bulk states is evident for the 320 mK, but not so clearly
for the 4.2 K measurement. In the case of E3 and E4, it is crucial
to note that these maps are taken at ∆t, i.e., at the Fermi energy of
the sample. The measurements for E5 at 320 mK show a mostly
uniform intensity over the chain, while the 4.2 K data shows a
more disordered pattern. The E6 measurement at 320 mK, shows
slightly more disorder compared to the 4.2 K measurement.

In summary, the measurements show that the spectra of atoms
within the bulk of the chain change as more atoms are added,
strongly indicating the formation of a YSR-band. The band has
a width of about 500 µeV and shows intensity close to ∆t, indi-
cating that the band crosses EF. This minigap that opened is the
∆p that we referred to in the Kitaev model (see Section 2.4). How-
ever, there is no clear reopening of a minigap at ∆t. Nevertheless,
the spectroscopic line profiles and the dI/dV-maps show a strong
spectral intensity at ∆t, i.e., the sample’s EF, localized on the edge
atoms. This intensity could hint towards a MZM.

There are multiple reasons to explain the absence of a minigap.
The spectroscopic line profiles show that the in-gap states are still
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quite localized on the atoms. The insufficient overlap between
YSR-states may prevent a band with a large bandwidth. Also,
there is disorder occurring in the chain due to electronic disorder
of the substrate, which could suppress the formation of an ordered
YSR-band.

Comparison of chains along different directions and with
different interatomic distances

In Figure 6.29 Feh chains on BiAg2, of different orientations and
different interatomic distances are shown (panels (A-C)). The mea-
surements were taken on a different preparation compared to the
chains shown in the last section. Through each chain, a spectro-
scopic line profile was recorded (panels (D-F)). For the 3a chain,
we can see that the YSR-states of the constituent atoms are well
separated from each other. The YSR-states are broadened as we
get from the edges into the bulk. However, there is no evidence of
a continuous band formation.

The chain shown in panel (B) is a Feh,9 chain with interatomic
distances of 2a and is the same kind of chain that was discussed
in sections 6.7 to 6.8. When we compare the spectroscopic data
of this chain to the one shown in Figure 6.26, it seems as if the
chain here shows less disorder in the YSR-states. However, this
might also be due to a lower relative energy resolution. In this
case ∆s + ∆t = 2 meV, while the chain in Figure 6.26 is taken at
∆s + ∆t = 2.3 meV for 4.2 K. Therefore, it might also be that we
are just measuring with a smaller energy resolution and, therefore,
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Figure 6.29: Further Feh chains on BiAg2. (A) Feh,9 chain with an in-
teratomic distance of 3a along the [2 1 1] direction. (B) Feh,9 chain with
an interatomic distance of 2a along the [2 1 1] direction. (C) Feh,7 chain
with an interatomic distance of 1a along the [0 1 1] direction. (D/E/F)
Spectroscopic line profile along the chain shown in (A/B/C). The spec-
tra were recorded with the same tip with ∆t = 0.8 meV and the same
island with ∆s = 1.2 meV. Parameters: Iset = 1 nA, Vbias = −5 mV,
(A-C), Istab = 1 nA, Vstab = −5 mV, Vmod = 50 µV (D-F), T = 4.2 K.
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cannot distinguish single features from each other.

The last chain shown in panel (C) is a Feh,7 chain built along the
[0 1 1] direction with an interatomic distance of 1a. We can see
that the YSR-states inside of the chain show a stronger splitting.
However, we can also see a difference between the YSR-states on
the left end of the chain and the YSR-states on the right. While the
left end YSR-state shows an energy splitting, the right end seems
to show none.
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6.8 Perturbing the edge states of a YSR-chain

In this section, we probe the stability of the chain’s end states,
which were investigated in the previous section against local per-
turbation. To do this, we place another atom adsorbed near the
chain’s end. We vary the distance between the perturbing atom
and the chain end atoms and measure the spectroscopic changes
compared to the unperturbed chain.

The upcoming experiment has been designed to verify or falsify
that the zero bias signal observed on the chain’s ends is due to a
topological edge state.

Expected outcomes for perturbed edge states

The procedure follows the method used in Ref. [39]. A chain was
constructed using atom manipulation. To probe the chain’s topo-
logical nature, the ends of the chains were perturbed by placing
atoms of a different adsorption site next to one end of the chain.
The possible outcomes of this experiment are depicted in Figure
6.30. The panels (A-D) depict the states of the YSR-chain as a func-
tion of energy E and position x, similar to the information that a
spectroscopic line profile can provide for the different outcomes.
The corresponding spectroscopic 2D maps taken at zero energy
(±∆t) are shown in the panels (E-H).

The grey boxes in (A-D) represent the YSR-band states of the chain.
Due to the interaction with each other, the YSR-states of the atoms
are split in energy. If the hybridization between the YSR-states is
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Figure 6.30: Schematics of the possible outcomes of the perturbation
experiment (A) Schematic representation of the unperturbed YSR-band
with edge-states at EF as a function of energy and position. (B-D) Same
as in (A) but with a perturbation on the left, showing the states’ expected
energy shifts for a chain with a trivial zero-bias edge state (B), with a
PMZM at the end of the chain (C) and with a MZM at the end of the
chain (D). (E-H) Illustration of the 2D zero-bias maps taken on the chain
corresponding to the different cases, with the perturbing atom on the
left end of the chain (green) and the zero-energy edge states depicted
by yellow circles. (I-L) Difference maps of the unperturbed case (I), the
trivial case (J), the precursor case (K), and the MZM case (L) subtracted
by the unperturbed case (I).
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strong enough, the YSR-states overlap and form band-like struc-
tures with some energy-dependent confined states illustrated in
panel (A). For some YSR-bands, zero-energy edge states can form
inside those bands. In the spectroscopic line profiles, these are de-
tectable as states at ±∆t, located at the chain ends (yellow). The
corresponding zero bias dI/dV maps (E) show them as intensity
in the LDOS appearing at the chain ends (yellow). The chain can
be perturbed on one of the ends to probe whether the states at the
ends are topological or trivial. This perturbation is green in the
2D zero-bias maps (E-H).

The most basic case is when the perturbation is too weak to influ-
ence the YSR-states inside the chain. Here, the spectroscopy on the
chain before and after the perturbation will look the same (A). The
same applies to the zero-bias dI/dV map, where the LDOS on the
edges stays the same (E). If the perturbation is strong enough, we
can end up in one of the cases shown in panels (B-D). In the trivial
case (panel (B)), where the edge state just consists of a local mode
at the chain’s end, which is not extended along the chain, the per-
turbation will lead to the edge state being split away from ∆t, but
only on the perturbed end. The rest of the chain stays mostly un-
affected. In the 2D spectroscopy map shown in (F), we expect the
zero-energy excitation on the left end of the chain to disappear
while the edge state on the right end of the chain stays the same.
Most importantly, we do not expect another zero-energy state to
form somewhere close inside the chain. The next case illustrates
the result for a PMZM (panel (C)). These states are characterized
as non-local edge states with a strong overlap of the wave func-
tion of the parts of the MZM localized on the left and on the right
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end. Consequently, these states can be destabilized and split away
from ∆t. However, due to the entanglement of the states at both
ends, a perturbation on one end of the chain will have to cause the
same to the other. In the 2D-spectroscopy map (G), the increased
zero-bias LDOS will disappear on both ends. The last case demon-
strates the expected outcome for MZMs. In this scenario, a per-
turbation weaker than the topological gap will shift the zero-bias
spectral intensity on the perturbed atom to higher energy. How-
ever, the zero bias spectral intensity will now move to the side,
e.g., towards the chain’s bulk or also onto the perturbing atom at
the perturbed end of the chain. In other words, the MZM moves
further into the chain’s bulk, as can also be seen in (H) (or onto the
perturbing atom).

To better see the changes inside the chain, one can subtract the
unperturbed spectra from the spectra of the perturbed chain. This
will subtract out the same features for both cases and accentu-
ate where states have appeared or disappeared due to the pertur-
bation. This method makes it easier to detect shifts in the spec-
tral intensity of the YSR-bands as edge modes. The panels (I-L)
show the expected outcomes for the subtraction maps for the dif-
ferent cases. Since we subtract the unperturbed chain from the
perturbed ones, negative values (blue) indicate the disappearance
of a state, and positive values (red) indicate the appearance of a
state. Panel (I) shows the difference map for a weak perturbation.
In this case, the subtraction should show no difference signal. The
trivial case (J) will lead to positive difference signals away from
∆t and a negative signal at ∆t for measurements at the perturbed
chain end. The result for the PMZM case (panel (K)) is similar
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to the trivial case in (J), with one difference. Instead of splitting
the states only on the perturbed side, it splits them on both ends.
Therefore, the signature in (J), which we see on the left, will be
visible on both ends of the PMZM case. Finally, we have the ex-
pected outcome for the subtraction map in (L). Here, we can see
that signals on the perturbed chain end are similar to panels (J, K);
however, here, the atoms further inside of the chain show an in-
crease in the difference signal at ∆t, while the LDOS further away
from ∆t shows a more negative signal.

Perturbation arrangements

Figure 6.31 displays topographic images from the perturbation
experiment. Each panel represents a different perturbation ar-
rangement. The bottom part of each panel shows the constant-
current STM image, while the top part provides the ball model of
the atomic positions. The blue circles depict the perturbing atom.
The perturbing atom is placed on the bridge site or buried next to
the chain to introduce a perturbation without extending the chain
with a YSR-state, which is slightly off the Fermi energy (c.f. Figure
6.17). panel (A) shows the unperturbed Feh,11 chain used for this
experiment. Perturbations are applied to the left end of the chain.
Different perturbation geometries are indexed for reference in the
subsequent sections. The unperturbed case is indexed as "0". In
the geometries labeled "1", "2," and "3," we placed the perturbing
atom on bridge lattice sites in the lower left corner of the chain.
Distances between the first chain atom and the perturbing atoms
range between d = 973 pm (1) and 790 pm (2). For case 4, the

288



6.8 Perturbing the edge states of a YSR-chain

0
A

1
B

2
C

3
D

4
E

Bi
Feh

Pert. Fe

5
F

6
G

0.0 0.2
Z [nm]

Figure 6.31: Perturbation experiment with Feh,11 (A) Constant-current
STM image of the unperturbed Feh,11 chain (bottom) with a model de-
picting the adsorption sites of the Fe-atoms (top). The black line corre-
sponds to a length of 1.2 nm. (B-E) Constant-current STM measurement
of different perturbation constellations for the Feh,11 chain (bottom). The
Feb atoms are placed near the chain’s left end, as the schematics depict
(top). The distances between the chain and the perturbing atom are
973 pm (B), 790 pm (C), 886 pm (D), 620 pm (E). (F) Same as (B-E) but
with a subsurface impurity created from a Fe-atom beneath the second
chain atom from the left. The distance between the chain and the defect
is 1.038 nm. (G) Same as (F) but with an additional perturbing Feb atom
below the first chain atom from the left. The distance between the chain
and the defect is the same as in (F), and the distance between the chain
and the perturbing atom is 620 pm. The cases are labeled by the num-
bers 1-6. Parameters: Iset = 500 pA, Vbias = 5 mV.
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perturbing atom is placed below the second chain atom with a
distance of d = 620 pm. In case 5, a subsurface defect is created
below the second chain atom (d = 1.038 nm). In the last geometry
(6), in addition to the same subsurface defect as in (5), an Feb atom
is placed below the first chain atom (d = 620 pm).

2D spectroscopy maps at zero bias

Figure 6.32, shows the constant-contour maps taken at ∆t
e , i.e. at

the samples EF. Panel (A) displays the chain and the constant con-
tour maps taken at ∆t for the unperturbed chain and the individ-
ual perturbation geometries (B-G) as discussed in Figure 6.31. The
labels 1-6 in the lower left of the panels assign the measurements
to their respective perturbation case in Figure 6.31. The topog-
raphy (A) and the constant-contour maps are scaled in lengths
so that the positions of the atoms in (A) roughly correspond to
the chain atoms’ positions in panels (B-H). Each of these panels
is split into two, where the left part shows the raw data, and the
right part shows the data after being subtracted by the data of the
unperturbed chain (A). Note that the perturbing atoms are now
located next to the top end of the chain.

When we look at the perturbation cases 1 and 2 shown in panels
(B and C), we see that both cases look very similar. The raw data,
and even more the subtraction maps, show that the LDOS over
the whole chain is smaller than in the unperturbed cases. Espe-
cially the edge state on the top side (with the arrow), where the
perturbation atom has been placed, shows a decline in the LDOS.
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Figure 6.32: dI/dV maps corresponding to the sample’s EF of Feh,11 for
different perturbation geometries (A) Constant-current STM images of
(left) and constant-contour 2D-spectroscopy map (right) of the unper-
turbed Feh,11 taken at ±∆t. (B-H) Constant-contour 2D-spectroscopy
maps taken at −∆t for the perturbed chains (left part) and the data sub-
tracted by the unperturbed data (right part). The number labels corre-
spond to the perturbation cases in Figure 6.31. The perturbation atom
is placed at the chain end on the top. Please note that the color scale in
the unsubtracted data in (F) was adjusted. Parameters: Iset = 500 pA,
Vbias = 5 mV (A, left), Vstab = 5 mV, Istab = 500 pA, Vbias = −∆t,
Vmod = 20 µV, T = 320 mK (A, right, B-G).
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Interestingly, from there on, every second atom (numbers 3 and
5) in the chain shows a more significant decrease in LDOS com-
pared to the rest of the chain. We can not see any atom with an
increased LDOS. The measurement for case 3 (panel D) shows al-
most no reaction to the perturbation atom. The difference between
the perturbed and unperturbed chains is negligible for the pertur-
bation geometry 4 shown in (E). As marked by the arrows, the
first and the third atoms show a notable increase in their LDOS’s.
The dI/dV-signal on the other atoms only shows slight changes.
Next, for case 5 in panel (F), the signals on atoms 1-3 (marked
by the arrow) show a notable decrease in LDOS. Also, inside the
chain on atoms 5 and 7, we can see a slight reduction in intensity.
Significant changes in the chain spectrum can be seen in panel (G)
(case 6). As marked by the upper red arrow in the difference map,
the LDOS in the second atom increases slightly. More importantly,
beginning from atom 5, a notable increase in the LDOS is detected.
Atoms 5, 7, and 10 show the strongest increase.

By comparing the perturbed and unperturbed cases, we can clas-
sify the perturbation cases (1-6) and interpret the results accord-
ing to the expected scenarios. First, let’s examine case 3. Here,
the changes with respect to the unperturbed chain are very small.
Therefore, I conclude that this measurement indicates an example
of a chain with a negligible disturbance.

Another interesting observation is that the measurement for case
3 shows very little to no perturbation effect in the chain, while
cases 1 and 2 show a drastic change. It is not intuitively clear why
the cases are so different. This can not be explained solely by the
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distance between the perturbing atom and the chain because even
though case 1 has the largest distance, it shows a similar LDOS
change as case 2. As seen in Figure 6.17, the YSR-states have their
elongated axis along the vector connecting the Bi-atoms, forming
the bridge on which the Fe-atom is adsorbed. Therefore, in case
3, the YSR-state should be elongated towards the chain and show
the most substantial perturbation in comparison to cases 1 and 2
(see Figure 6.31), but the opposite is observed. We conclude that
the strength of the perturbation is not straightforwardly linked to
the shape of the Feb YSR-state. In cases 1 (B) and 2 (C), the pertur-
bation results in an overall decrease in the local density of states
(LDOS). The edge state at the perturbed end exhibits the most sig-
nificant decrease. The absence of any increase in the LDOS at any
other chain atom suggests that the edge state was destroyed rather
than being shifted further into the chain. This leaves us with ei-
ther a trivial edge state or a PMZM inside the chain. To distinguish
these two cases, one must examine the other chain end. To distin-
guish between these two cases, in the case of a PMZM, the other
chain end must show a decrease in the LDOS of similar strengths
as on the perturbed chain end. In the trivial case, the edge state
on the unperturbed side would remain unchanged. Looking at
the other chain end in panels (B) and (C), we observe decreased
LDOS on the lower chain end. However, it is not as strong as on
the upper chain end. Furthermore, the decrease is of the same
magnitude as the overall LDOS decrease that occurs all over the
chain. Case 5 in panel (F) is similar to cases 1 and 2, i.e., it shows
a similar behavior as for panels (B) and (C). This perturbation ex-
periment strongly suggests the trivial state scenario because only
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the edge state on one end is disturbed, not the other. There is no
increase in LDOS over the chain either. Cases 4 and 6 show in-
creasing LDOS signals at multiple locations inside the chain. In
panel (E), we see an increase in the LDOS on the first atom and
further inside the chain on the third atom. If we interpret this ob-
servation as the edge state appearing further in the bulk of the
chain, this would be evidence for a topological edge state. How-
ever, the measurement of case 6 (panel (G)) is again difficult to
reconcile with the MZM scenario:

The slight decrease on the perturbed chain end and the slight in-
crease of LDOS on the second atom look like what would happen
for a MZM. However, the rise of LDOS throughout the unper-
turbed half of the chain, beginning with the fifth atom, is unex-
pected and cannot be explained by any of the cases from Figure
6.30.

In summary, from the zero bias-spectroscopy maps, we cannot
find a coherent answer on whether the edge states appearing in
the Feh,11 are of a topological or trivial nature. While some of the
perturbation geometries (cases 1, 2, and 5) indicate that the edge
states are trivial states or PMZMs, other geometries (cases 4 and
6) show features that could be interpreted as signatures of a topo-
logical edge state.

A general problem of the perturbation experiment via dI/dV-
maps is that it is unclear which energies the spectral intensity at ∆t

are shifted after perturbation. E.g., an increased dI/dV-intensity
in the map of Figure 6.32 may also result from off-zero energy
modes, which are still detected by the measurement. To do a more
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well-defined experiment, we performed a series of spectroscopic
line profiles for all the perturbation geometries along the chains
as sketched in Figure 6.30 (A-D) and (I-L).

Spectroscopic line profiles

The results of the spectroscopic line profile measurements are dis-
played in Figure 6.33. Similar to the previous measurements, the
individual cases are identified by numbers ranging from 0 to 6,
linking the spectroscopic line profiles to the perturbation geome-
tries depicted in Figure 6.31. The measurement on the unper-
turbed chain is presented in panel (A). Panels (B-G) showcase
the spectroscopic lines for the perturbed chains, with the num-
ber in the upper right corner corresponding to the labeled cases.
Each panel includes the raw data (top) and a difference map (bot-
tom) obtained by subtracting the unperturbed chain from the per-
turbed chain. The topographies of both measurements were com-
pared to ensure that corresponding points were aligned.

We examine the subtracted maps to identify changes in the LDOS.
In Figure 6.33, the blue areas represent the disappearance of a state
after perturbation, while the red areas indicate the appearance of
a state. This visual representation allows us to comprehend the
entire spectroscopic behavior within the chain. Consequently, we
can observe when a state transitions from one energy level to an-
other. The grey dashed lines indicate ±∆t corresponding to the
sample’s EF. The unperturbed spectroscopic line profile (panel
(A)) displays the zero-energy edge states at ±∆t. However, it
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Figure 6.33: Spectroscopic line profiles for perturbed Feh,11 (A) Spec-
troscopic line profile of unperturbed Feh,11 (B-G) Spectroscopic line pro-
files of perturbed Feh,11 with the index in the top right correspond-
ing to the different perturbation cases. Parameters: Istab = 500 pA,
Vstab = 5 mV, Vmod = 50 µV and T = 320 mK.
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is important to note that the zero-bias states are observed at the
edges and with a smaller intensity inside the chain. When exam-
ining the difference maps in panels (B-D, F), we can observe that
the edge states formerly located at zero ∆t are shifted away from
∆t on the perturbed chain end. The example in panel (D) clearly
shows the state is shifted away to higher energies as indicated by
the red signal just above ±∆t. In (B-D), these states are marked by
the blue arrows. Looking at the rest of the chain, we can not see
any clear appearance of a new state at ±∆t further into the chain.
The other side of the chain shows no clear signal change. This is
consistent with the findings from Figure 6.32. In panel (E), we ob-
serve stronger changes. On the left end of the chain, we can see
a shift of spectral intensity towards the Fermi energy. The shift
to higher energies also affects the YSR-states of the second and
third atoms. The most significant changes can be seen in panel
(G). Here, the edge state on the left side moves away from EF.
The same applies to states on the second atom. On the fifth atom,
marked by the red arrow, we observe an increase in spectral in-
tensity, but it is located off the sample’s EF. Also, upon examining
the raw spectroscopic line profile in (G), the state’s energy, which
is off from EF, does not change, but its intensity increases.

There is also the possibility that the zero energy excitation is not
wandering further into the chain but moving onto the perturbing
atom. We can check this by looking for excitations on the perturb-
ing atom at ±∆t. The spectra of the perturbing atoms for cases 1,
3-6 are shown in Figure 6.34. Please note that the measurement for
perturbation case 2 is missing. Furthermore, the perturbing object
for the perturbation case 5 is the buried subsurface defect. At first,

297



6 Bottom up constructed YSR-chains on a superconducting
Rashba surface

3 2 1 0 1 2 3
V [mV]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

dI
/d

V
[a

.u
.]

t- t | s + g|-| s + g|

1 3 4 5 6

Figure 6.34: Bias spectroscopy measurements taken on the perturbing
atoms: The measurements were taken on the perturbing Feb, with the
indices corresponding to the perturbation cases shown in Figure 6.31.
The red line, corresponding to case 5, was taken on the buried atom
Figure 6.31F. Note that the measurement for the perturbation case 2 is
missing. Parameters: Istab = 500 pA, Vstab = 5 mV, Vmod = 50 µV and
T = 320 mK.
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the spectra for the cases look very different. This can be explained
by the atom being adsorbed in different locations on the sample.
We can also not exclude possible effects of local disorder in the
substrate, either caused by defects below the surface or by a small
surface distortion by the adsorption of the chain atoms itself. The
measurement of case 6 might even indicate a small tip change,
as seen from the deviation of the coherence peaks energetic posi-
tion from the other measurements. The spectra measured on the
perturbing Feb do not show any clear peak located at ±∆t. There-
fore, we can exclude that the edge state of the chain moved onto
the perturbing atom. For case 5, a minimal excitation can be seen
−∆t. However, compared to the other YSR-states, it is too small
to draw any conclusions from this measurement.

6.9 Conclusion

In this chapter, we made use of the unique properties of thin epi-
taxially grown Ag(111) islands to create a Rashba alloy on top of
Nb, the elemental superconductor with the highest Tc. By em-
ploying the QPI method, we not only confirmed the presence of
the expected scattering pattern in our sample, as reported in other
works but also found scattering branches that have not yet been
reported. In addition, indications of quantum well states formed
in the thin Ag films were seen. These quantum well states are
expected to hybridize with the Rashba surface states [187, 190].

Furthermore, we analyzed the spectroscopic low-energy behavior
and extracted a proximitized gap on the surface of about 60 % of
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the gap of elemental Nb at a temperature of 4.52 K. We observed
that the measured gap closes as the temperature inside the STM
increases. We see a gap closing at around 8.5 K, a bit smaller than
the Tc of Nb.

We then proceeded to deposit magnetic Fe-atoms onto the super-
conducting Rashba surface, aiming to investigate whether we can
realize a topological superconductor. According to theory, this
system would possess all the required ingredients for construct-
ing a topological superconductor. We identified two adsorption
sites for the Fe-atoms on the surface, labeling them as hollow and
bridge site Fe.

Both types of Fe-atoms exhibit YSR-states, where the hollow site
Fe-atoms were identified as most promising for building a topo-
logical superconductor for two reasons. Firstly, the Feh shows a
YSR-state right at EF, suggesting a higher likelihood of a YSR-
band crossing the EF when starting to hybridize along the chain.
Secondly, this hollow site YSR-state exhibits a longer-range decay
compared to Feb, which explains why pairs made out of Feh atoms
show considerable shifts and splitting of their YSR-state already at
quite long interatomic distances.

We arranged Feh atoms to form YSR-chains and observed a band-
like structure forming along the chain, yielding edge states close
to zero energy. However, the YSR-bands reveal no obvious mini-
gap, i.e., if there is one, it has a width below our experimental
energy resolution of 50 µeV.

Several reasons might account for this. One potential issue could
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be the local electronic disorder of the substrate, as evidenced by
variations in intensity in the spectroscopic line profiles through-
out the chain. This local disorder might hinder the formation of a
clean minigap.

Another possible reason could be that the hybridization strength
between the atoms is not sufficiently robust. The spectroscopic
line profiles indicate that the YSR-states appear very localized on
specific atoms, making it challenging to speak of a YSR-band com-
pared to other systems that used artificially bottom-up fabricated
YSR-states.

A third reason could be that the strong SOC in the Rashba surface
state does not enter the YSR-bands, leading to a negligible size of
a potential minigap.
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In this thesis, I have demonstrated three main results. The first
part shows the first experimental real-space investigation of Machida-
Shibata states (MSSs), which gives us a better understanding of
the mechanisms of proximity superconductivity in systems host-
ing surface states. These results state a difference between the su-
perconductivity proximitized in a system’s bulk and the one prox-
imitized in the system’s surface. Overall, the system behaves like
a two-band superconductor with two different gaps: one for the
bulk and one for the surface. This brings fundamental consider-
ations to the design of the superconducting hybrid system. The
second main result is the creation of a so-called Yu-Shiba-Rusinov
(YSR) mirage, which demonstrates a coupling between the surface
state mode of a quantum corral and a YSR-impurity. With this, a
YSR-state can be projected over large distances inside the corral.
This effect enables us to detect and measure YSR-based systems
non-locally and without perturbing the YSR-state. When we think
of the implementation of topological qubits, this effect can be used
for reading out the qubit’s states non-locally and non-evasively by
coupling Majorana zero modes to a corral. The final result is the
first demonstration of a potential system to create a topological
superconductor based on Rashba-surface alloys. Rashba surface
alloys are interesting materials due to their large spin-orbit cou-
pling (SOC). Rashba SOC has become a fundamental building
block in creating exotic states of matter [199]. Its use as an ingre-
dient for topological superconductivity, as shown in this thesis,
is only one of the many applications. The platform presented in
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this thesis allows a detailed study of the interplay of strong spin-
orbit interaction in conjunction with magnetism and proximitized
superconductivity.

In this thesis, only simple artificial lattice systems, such as single
quantum corrals or 1D chains, have been explored. However, to
progress on this work’s topics, one can consider building more
complex atom-by-atom structures and study them under the in-
fluence of superconductivity.

Several works on creating artificial lattices on noble metal sur-
faces have been published in the last decade. Similar as in the
present work, atoms have been arranged on a noble metal’s (111)
surface to create quantum states by confining the surface state.
The examples range from the creation of an artificial graphene lat-
tice [113] over the engineering of p-bands [112] to the design of a
lattice with fractal geometry [200] or the realization of a Lieb lat-
tice [111]. However, these ideas have only been realized in bulk
noble metal systems and have not yet been studied under the in-
fluence of superconductivity. As we have shown, combining ar-
tificial lattices with proximity superconductivity can lead to the
discovery of new exciting phenomena such as the MSSs. With
this in mind, creating states with flat bands, such as the Lieb lat-
tice, is particularly interesting. Flat band systems are known for
strong electron-electron correlations, which can give rise to vari-
ous exotic phenomena [201]. Combining strongly correlated states
with proximity-superconductivity is particularly interesting due
to their potential connection to unconventional superconductiv-
ity.
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The above examples have all been built on a Cu(111) surface. There-
fore, one could consider growing Cu(111) instead of Ag(111) on
Nb(110) to build up on the existing works on noble metal surface
artificial lattices. Furthermore, the studies on these proximitized
complex artificial lattices could be studied in conjunction with
magnetism by introducing magnetic atoms similar to our studies
on the YSR-mirage.

For the superconducting BiAg2, further studies could be done in
the direction of corrals, as we did on the Ag(111) surface. Studies
on BiCu2 have shown that it is possible to create quantum corrals
by confining the surface state of the Rashba surface alloy [186].
It would be interesting to see how the MSSs that we have learned
about during this thesis interact with the Rashba SOC of the BiAg2

surface state. Finally, one could also consider switching to similar
Rashba surface alloys such as PbAg2 or BiCu2, which are similar
in terms of preparation procedures but provide different surface
band dispersions.
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