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Abstract

The SuperCDMS collaboration has developed detectors to probe potential interactions
between Dark Matter (DM) particles and semiconductor crystals at cryogenic temper-
atures. During the final phase of the Cryogenic Dark Matter Search low ionization
threshold experiment (CDMSlite), vibrations originating from the cooling system were
observed. These vibrations generated broadband low-frequency noise (LFN), which fre-
quently triggered the detector. These LFN events were challenging to remove due to
their variable pulse shapes, which often resembled low-energy signals produced by par-
ticle interactions. In the final analysis, a strict event selection criterion was applied to
the dataset to remove the LFN events. However, this increased the energy threshold
and lowered the signal efficiency, reducing the experiment’s sensitivity to low-mass DM
interactions.
In this work, a new LFN selection criterion using machine learning is presented. This

approach aims to improve the signal efficiency while maintaining the signal purity. Two
neural network architectures are considered: a Convolutional Neural Network (CNN)
and a CNN combined with Long Short-Term Memory (LSTM). The CDMSlite detector
has four phonon signal channels; therefore, LFN identification is probed using individ-
ual channels, the sum of the phonon channels, and multi-channel configurations. The
LFN-background samples for training are data-driven. A novel method for signal sam-
ple generation using pulse shapes and regression is developed. Both this method and
standard phonon signal templates are used for generating signal samples. Among the
tested channel configurations and neural network architectures, the multi-channel con-
figuration with a CNN architecture performs the best in terms of signal efficiency and
purity. This network is used on the CDMSlite Run 3 data to remove LFN events.
The final spectrum reveals additional events compared to the spectrum obtained with

the previous LFN selection criterion. Exclusion limits on the spin-independent DM-
nucleon cross-section are calculated for DM masses between 1GeV/c2 and 10GeV/c2.
The new results are consistent with the previous analysis, with an improvement in sen-
sitivity up to 17.5% in the DM mass range of 2.4GeV/c2 to 5GeV/c2. The gain in
signal efficiency due to the ML-based LFN cut is limited by the application of a fiducial
volume selection criterion. Therefore, case studies are conducted excluding the fiducial
volume selection criterion to investigate its impact, which demonstrates the potential
of the ML-based LFN cut in the low-mass DM parameter space. The sensitivities are
extended down to DM masses of 0.8GeV/c2, with improvements in sensitivity of up to
three orders of magnitude below 1.2GeV/c2.





Zusammenfassung
Die SuperCDMS-Kollaboration hat Detektoren entwickelt, um mögliche Wechsel-

wirkungen zwischen Teilchen der Dunklen Materie (DM) und Halbleiterkristallen bei
kryogenen Temperaturen zu untersuchen. Während der Endphase des Experiments
Cryogenic Dark Matter Search low ionization threshold(CDMSlite) wurden Vibrationen
beobachtet, die vom Kühlsystem ausgingen. Diese Vibrationen erzeugten breitbandi-
ges niederfrequentes Rauschen (LFN1), das den Detektor häufig auslöste. Diese LFN-
Ereignisse waren aufgrund ihrer variablen Pulsformen, die oft niederenergetischen Sig-
nalen aus Teilchenwechselwirkungen ähnelten„ schwer zu entfernen. In der abschließen-
den Analyse wurde ein strenges Kriterium für die Ereignisauswahl auf den Datensatz
angewendet, um die LFN-Ereignisse zu entfernen. Dadurch wurde jedoch die Energi-
eschwelle erhöht und die Signaleffizienz bei niedrigen Energien gesenkt, was die Empfind-
lichkeit des Experiments für Wechselwirkungen leichter DM-Teilchen verringerte.
In dieser Arbeit wurde ein neues LFN-Auswahlkriterium mithilfe von maschinellem

Lernen entwickelt. Dieser Ansatz zielt darauf ab, die Signaleffizienz zu verbessern
und gleichzeitig die Signalreinheit zu erhalten. Es werden zwei neuronale Netzwerkar-
chitekturen betrachtet: ein Convolutional Neural Network (CNN) und ein CNN kom-
biniert mit Long Short-Term Memory (LSTM). Der CDMSlite-Detektor verfügt über
vier Phonon-Signalkanäle; daher wird die LFN-Identifizierung anhand einzelner Kanäle,
der Phonon-Kanalsumme und von Mehrkanal-Konfigurationen untersucht. Die LFN-
Hintergrundproben für das Training basieren auf Daten. Es wird eine neuartige Meth-
ode zur Erzeugung von Signalproben unter Verwendung von Pulsformen und Regres-
sion entwickelt. Sowohl diese Methode als auch Standard-Phonon-Signalvorlagen, so-
genannte Templates, werden zur Erzeugung von Signalproben verwendet. Unter den
getesteten Kanalkonfigurationen und neuronalen Netzwerkarchitekturen schneidet die
Mehrkanalkonfiguration mit einer CNN-Architektur in Bezug auf Signaleffizienz und
-reinheit am besten ab. Dieses Netzwerk wird auf die Daten von CDMSlite Run 3
angewendet, um LFN-Ereignisse zu entfernen.
Das resultierende Spektrum zeigt zusätzliche Ereignisse im Vergleich zu dem Spek-

trum, das mit dem vorherigen LFN-Auswahlkriterium erhalten wurde. Ausschlussgren-
zen werden für den spinunabhängigen DM-Nukleonen-Wirkungsquerschnitt für DM-
Massen zwischen 1GeV/c2 und 10GeV/c2 bestimmt. Die neuen Ergebnisse stimmen mit
der vorherigen Analyse überein, wobei die Empfindlichkeit im DM-Massenbereich von 2,4
GeV/c2 bis 5 GeV/c2 um bis zu 17,5% verbessert wurde. Die Verbesserung der Signal-
effizienz, die sich aus der Verwendung des ML-basierten LFN-Auswahlkriteriums ergibt,
wird durch die Anwendung eines Radius-Auswahlkriteriums begrenzt. Daher werden
Fallstudien ohne das Radius-Auswahlkriteriums durchgeführt, um dessen Auswirkun-
gen zu untersuchen, was das Potenzial des ML-basierten LFN-Schnitts im Parameter-
raum der leichten DM-Teilchen demonstriert. Die Empfindlichkeiten werden bis zu DM-
Massen von 0,8GeV/c2 ausgedehnt, mit Verbesserungen der Empfindlichkeit um bis zu
drei Größenordnungen unter 1.2GeV/c2.

1Aus dem Englischen: Low Frequency Noise





Personal Contribution

The experimental data used in this analysis is from the CDMSlite experiment, a part of
the SuperCDMS collaboration. The detector, experimental design, and operation were
carried out by numerous members of the collaboration. The experimental run used for
this analysis ended in 2015. This project builds on the analysis framework developed for
the CDMSlite dataset by the SuperCDMS collaboration.

- Chapter 2 and Chapter 3: These chapters are collaborative efforts.

- Chapter 4: The machine learning (ML) models were developed entirely by me.
Signal sample generation for training the network in single- and PT-channel anal-
ysis involved adding phonon templates to baseline noise. The phonon templates
were developed by the collaboration, while the baseline noise was taken from the
experimental data. The simulation using pulse shapes and a regressor was my
original contribution, and I independently developed and implemented it for multi-
channel analysis. I used TensorFlow and Scikit-learn to develop LFN models for
low-frequency noise identification and the regressor for simulation, respectively.
The development of various channel configurations and the corresponding neural
networks were carried out entirely by me.

- Chapter 5: Analysis cuts for the final spectrum and signal efficiencies were devel-
oped by the collaboration. I used the SuperCDMS tools, to produce samples for
signal efficiency calculations and limit-setting. The sensitivity studies I performed
to select the final channel configuration were based on background modeling from
the previous analysis developed by the collaboration.

- Chapter 6: Similar to Chapter 5, the analysis for case studies was developed by the
collaboration. However, the extension of this ML-based analysis with case studies
was carried out by me.
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1. Introduction to Dark Matter

The quest to understand the universe — its composition, origins, and underlying prin-
ciples — has driven human curiosity for centuries. The Standard Model (SM) describes
the known elementary particles, and the forces associated with them. However, several
key questions remain unanswered, including (but not limited to) the matter-antimatter
asymmetry, the strong CP problem, neutrino masses, dark matter, and dark energy.
Observations suggest that dark matter constitutes approximately 26% of the universe’s
total energy content, while visible matter accounts for only about 5%. This thesis is a
part of the extensive efforts to uncover the nature of dark matter. In this chapter, an
introduction to dark matter is provided. Section 1.1 discusses the cosmological evidence,
followed by Sec. 1.2, which describes potential dark matter candidates. Finally, Sec. 1.3
outlines direct dark matter search experiments and their results.

1.1. Cosmological evidence
There were several hints of Dark Matter (DM) uncovered in the 20th century, but a
significant observation was made by Fritz Zwicky in 1933[1, 2]. While studying the
redshift of galaxies in the Coma cluster, Zwicky applied the virial theorem to estimate
the mass of the cluster. The time-averaged kinetic energy of a system consisting of N
particles is given by

〈T 〉 = 1
2

N∑
k=1
〈Fk · rk〉, (1.1)

where Fk is the force acting on the kth particle, and rk is the position of the kth particle.
If the forces acting on particles are from a potential energy V that depends on the
distance between particles r such that V (r) ∝ rα, the kinetic energy can be written as

〈T 〉 = α

2 〈V 〉. (1.2)

For a galaxy cluster held by gravity, α= -1, the kinetic energy becomes

〈T 〉 = −1
2〈V 〉. (1.3)

With the gravitational potential energy that depends on mass, the virial theorem implies
that the average kinetic energy of particles in the system is higher for a system with more
mass. Zwicky applied this principle to galaxies in the Coma cluster and observed that
the mass of the galaxies found using luminosity could not account for the observed high
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velocities. Thus, the Coma cluster has to contain a significant amount of non-luminous
matter, or dark matter, which constitutes most of its mass.

1.1.1. Rotation curves of galaxies
Rotation curves of galaxies are among the most widely discussed evidence for dark
matter, derived from observations of the rotational dynamics of galaxies. The time-
averaged gravitational potential energy of an object with massm in a galaxy at a distance
r from the galactic center is given by:

〈V 〉 = −GmM(r)
r

, (1.4)

where G is the gravitational constant, and M(r) is the mass enclosed within radius r.
With an orbital velocity v, the time-averaged kinetic energy of an object is given by

〈T 〉 = 1
2mv

2. (1.5)

Applying Eq. 1.4 and Eq. 1.5 in the virial theorem in Eq. 1.3, the orbital velocity of the
object is derived as

v =

√
GM(r)

r
. (1.6)

Galaxies consist of stars and interstellar gas orbiting the galactic center, and their
orbital velocities are determined by Eq. 1.6, assuming circular orbits. As we move
farther from the galactic center, the density of stars and interstellar gas decreases.
Consequently, the orbital velocity is expected to decline as 1/

√
r, as per the relation in

Eq. 1.6, if visible matter accounts for the entire mass distribution in a galaxy.

In 1970, Vera Rubin and Kent Ford measured the velocity profile of ionized hydrogen
in the Andromeda Galaxy (M31) [4]. Using the Doppler shift of Hα emission lines from
molecular hydrogen, they determined the velocities and observed a flat rotation curve
at large radii. Instead of the expected 1/

√
r decline, the velocities remained constant.

Throughout the 1970s, they cataloged rotation curves for spiral galaxies of various sizes,
consistently observing this flat velocity behavior at large distances [5, 3]. Figure 1.1
shows the rotation curves for various spiral galaxies by Rubin et. al.

Aside from alternative theories, which are discussed in Sec. 1.1.4, there must be
additional mass beyond what is visible to explain this behavior. The constant velocity
profiles are consistent with a spherically symmetric distribution of non-luminous matter
surrounding the galaxy, referred to as the dark matter halo.

Even in the Milky Way, estimates have been made for the local dark matter density.
For a spherical halo, the density is estimated to be between 0.2 and 0.4GeV/c2/cm3

[6]. The commonly used value in the dark matter community is 0.3GeV/c2/cm3, which
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Figure 1.1.: Rotation curves of various spiral galaxies as a function of distance, showing
the velocity remains relatively constant for objects far from the galactic
center. Figure taken from Ref. [3].

is also adopted in this work.

1.1.2. Cosmic Microwave Background (CMB)
The Cosmic Microwave Background (CMB) is the primordial blackbody radiation of
the universe and it provides one of the strongest evidence for the existence of dark
matter. Before the epoch of recombination when the universe was cooled enough for
electrons and protons to combine and form neutral atoms, they were strongly coupled
to photons. As the universe cooled, matter and radiation thermally decoupled, thus the
photons freely travel through space. These photons are still observable today at 2.7K
[7]. Thus, the CMB provides a snapshot of the early universe just after recombination.
Initially, CMB observations exhibited a nearly perfect blackbody spectrum without
anisotropies to the first order [8]. However, anisotropies were later discovered in both
temperature and polarization, on the order of 10−5 and 10−6, respectively [9].

The primordial fluid consisted of baryonic matter and radiation during recombination.
Dark matter was largely decoupled from the primordial fluid and only interacted gravita-
tionally. The gravity of dark matter caused the fluid to compress into over-dense pockets,
that in-turn created under-dense regions. The fluid pressure provided a force that
moved the fluid out of the over-dense regions, leading to oscillating compressions and
decompressions of the fluid. This phenomenon is known as Baryon Acoustic Oscillations
[11, 12]. As radiation escaped from the baryonic matter at the end of recombination, the
oscillation of the fluid density stopped. The leftover baryonic matter “froze” preserving
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Figure 1.2.: Temperature map of the CMB showing the temperature fluctuations from
the inhomogeneities in the photon-baryon fluid in the early universe. The
information was derived from the joint baseline analysis of Planck, WMAP,
and 408 MHz observations. Figure taken from Ref. [10].

the high and low-density regions. The photons escaping from high-density regions
would have a lower temperature, while those escaping from low-density regions would
have a higher temperature. This resulted in the fluctuations observed in the CMB
spectrum. These frozen high-density regions would later become large-scale structures
seen in the universe. As the inhomogeneities in the photon-baryon fluid happened before
photon decoupling, the CMB captures the temperature fluctuations, as shown in Fig. 1.2.

The universe is composed of matter, radiation, and dark energy, each character-
ized by a density parameter Ωi, which is given by

Ω =
∑

Ωi = ΩR + ΩM + ΩΛ, (1.7)

where ΩR, ΩM , and ΩΛ are densities of radiation, matter, and dark energy, respectively.
The matter density is composed of ordinary baryonic matter and dark matter such that
ΩM = Ωb + ΩDM .

The fluctuations observed in the CMB are converted into a power spectrum using spher-
ical harmonics, resulting in the CMB power spectrum shown in Fig. 1.3. The locations
and relative heights of the spectrum’s peaks and troughs reflect the oscillatory behavior
of the baryon-photon fluid at the time of decoupling. The relative heights and the spac-
ing between the peaks are used to estimate Ωb, ΩM , and ΩΛ [14]. Using the best-fit of the
data, the current estimates of the densities of baryonic and dark matter are Ωb ≈ 0.0495
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Figure 1.3.: The CMB power spectrum measured by the Planck experiment. The tem-
perature fluctuation are plotted as a function of the multipole number l.
The relative peak heights and positions of the peaks are used to infer the
energy contents of the universe. Figure taken from Ref. [13].

and ΩDM ≈ 0.264 [15]. This implies that most of the matter content in the Universe is
non-baryonic, and makes up roughly 85% of all matter. The anisotropies in the CMB
and observations of large-scale structures suggest that the non-baryonic matter must be
cold (non-relativistic). If the non-baryonic matter was relativistic, it would have resulted
a structure formation paradigm inconsistent with our cosmological observations [16].

1.1.3. Gravitational lensing: The Bullet Cluster
General Relativity predicts that light follows the curvature of spacetime, bending in the
presence of mass [17]. In other words, in the presence of a mass in the line of sight, the
mass acts like a lens and deflects light. This effect is known as gravitational lensing. In
the simplest example, a point-like lens of mass M that causes the deflection of light by
an angle α is given by

α = 4GM
rc2 , (1.8)

where G is the gravitational constant, r is the distance between the light source and the
lens in the plane perpendicular to the observer, and c is the speed of light. By observing
the distortions caused gravitationally by the lens, the mass of the lens can be estimated
without knowing its composition [18]. Extreme lensing examples are arcs, multiple
images, and ring images (a ring image occurs when the background object, lens, and the
observed are all aligned). However, the majority of the lensing is subtle and referred

5



Chapter 1 – Introduction to Dark Matter

Figure 1.4.: Image of the Bullet Cluster showing the stellar components (left) and the
X-ray-emitting plasma (right). The green contours represent the mass dis-
tribution determined using gravitational lensing. The center of the mass
distribution is offset from the dense hot plasma region, showing the separa-
tion between dark matter and baryonic matter. Figure taken from Ref. [20].

to as weak lensing, where images of the background objects are only slightly distorted
[19]. Also, weak lensing is observed on a large scale with a collection of background
objects rather than individual objects. One of the examples of gravitation lensing that
provides evidence of the existence of dark matter is the Bullet Cluster (1E 065756) [20],
as shown in Fig. 1.4. It demonstrates the different properties of baryonic matter and
dark matter in the collision of two clusters of galaxies.

The Bullet Cluster is composed of stellar components such as stars and galaxies, as
well as X-rays-emitting hot plasma. The stellar components were observed by the
Hubble Space Telescope, and the hot plasma was observed with the Chandra X-ray
Observatory. The distribution of total mass was derived using gravitational lensing.
It was seen that the hot plasma, which accounts for most of the cluster’s visible mass
(ordinary matter), consists of hot gas whose interactions are slowed down due to
electromagnetic interactions. The mass distributions using lensing show that the center
of mass does not align with the plasma. If only baryonic matter were present, the
mass distribution would follow the distribution of the interstellar plasma. However, it
is observed that there are two large regions of non-luminous matter, which accounts
for the majority of the cluster’s mass. This provides evidence of the existence of dark
matter. The large spatial separation between the centers of total mass and baryonic
mass in the Bullet Cluster is 8σ [20]. Additionally, it was observed that the dark matter
components passed through each other with minimal interaction, indicating that dark
matter is mostly collisionless. From this observation, the self-interaction cross-section
of dark matter per unit mass was estimated to be less than 1.25 cm2/g [21].

This phenomenon has also been observed in the merging cluster MACS J0025.4-
122 [22]. These observations also challenge modified Newtonian dynamics theories,
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which propose that gravity behaves differently at large scales.

1.1.4. Modified gravity
The observed behavior of galaxy rotation curves and the mass-to-luminosity discrepancy
has led to alternative theories, including modifications to gravity on large scales. The
Modified Newtonian Dynamics (MOND) theory was introduced by Mordehai Milgrom
in 1983 [23, 2]. MOND proposes that F = ma holds under Newton’s laws, but not in the
regime of very low accelerations (a�∼ 10-10 m/s2). Another theory based on modified
gravity is the AQUAdratic Lagrangian (AQUAL) theory, which modifies the Newtonian
gravitational Lagrangian. AQUAL was later extended to include relativity, resulting in
Relativistic AQUAL (RAQUAL) [24]. While modified gravity theories like MOND and
RAQUAL don’t account for the lensing, another possible theory to the lensing problem is
the Tensor-Vector-Scalar (TeVeS) gravity proposed by Jacob Berkstein in 2004 [25, 26].

1.2. Dark matter candidates
The study of bullet bullet clusters implied that dark matter is non-interacting elec-
tromagnetically and non-baryonic. Observations of CMB indicate that dark matter is
non-relativistic, and constitutes approximately 85% of all matter. This section focuses on
Weakly Interacting Massive Particles (WIMP) in detail, while other particle candidates,
including Light Dark Matter (LDM), dark photons, axions, and Axion-Like Particles
(ALPs), are briefly reviewed. For an in-depth discussion of these candidates, refer to
Refs. [27, 28, 29].

1.2.1. Weakly Interacting Massive Particle (WIMP)
The Weakly Interacting Massive Particles (WIMPs) have long been considered a strongly
motivated and leading candidate for dark matter. During the radiation-dominated era
in the early universe, when temperatures were much higher than the WIMP mass,
WIMPs were in thermal equilibrium. The equilibrium was maintained by annihila-
tion with their antiparticles into lighter particles and the reverse process for creation [30].

As the universe expanded and cooled, the temperature dropped below the WIMP mass.
At this stage, the annihilation rate of WIMPs fell below the Hubble expansion rate,
halting the creation and annihilation processes [30, 31]. This phenomenon is known as
thermal freeze-out. The remaining WIMPs with their number density fixed, constitute
the current relic abundance that can be observed using terrestrial detectors.

To account for the amount of dark matter in the universe, the velocity averaged
annihilation cross-section is estimated to be ∼ 10−26 cm3/s for particles with a mass
in the range of 10s to 100s GeV/c2 [32]. The cross-section is roughly at the scale
of electro-weak force. WIMPS are also predicted by supersymmetry (SUSY), which
addresses the hierarchy problem in particle physics, making WIMPs a compelling
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candidate.

Consider a WIMP with mass mχ that scatters off of a nucleus inside a target material,
resulting in recoil energy Er. The differential event rate for this WIMP-nucleus
scattering is given by [33]

dR

dEr
= NT

ρχ
m×

mTσ0
2µ2

T

F 2(Er)I, (1.9)

where NT is number of target nuclei, mT is the mass of the target nuclei, ρχ is the
local WIMP matter density, µn is the WIMP-nucleus reduced mass given by µT =
mχmT /(mχ + mT ), σ0 is the point-like WIMP-nucleus cross-section, and F (Er) is the
nucleus form factor. The function I denotes WIMP halo model which is given by

I =
∫ vmax

vmin

f(v,vE)
v

dv, (1.10)

where f(v) describes the dark matter velocity distribution that depends on v the ve-
locity of the WIMPs in the halo’s frame, and vE the average velocity of the Earth with
respect to the halo. The total WIMP-nucleus cross-section σ0 in Eq. 1.9 consist of Spin-
Independent (SI) cross-section σSI

0 and Spin-Dependant (SD) cross-section σSD
0 , and the

Eq. 1.9 can be written as

dR

dEr
= NT

mTρχ
2mχµ2

T

[
σSI

0 F
2
SI(Er) + σSD

0 F 2
SD(Er)

] ∫ vmax

vmin

f(v,vE)
v

dv. (1.11)

Assuming Maxwellian distribution boosted to the lab frame of the Earth [34],

f(v,vE) ∝ exp(−|v + vE |2/v2
0), (1.12)

where v0 is the Galactic circular velocity. The minimum WIMP speed vmin in Eq. 1.11
is given by

√
mTEr/2µ2

T [33]. Thus, the vmin scales with the mass of the nucleus, so
heavier nuclei require higher WIMP velocity to produce a recoil of energy Er. The vmax
in Eq. 1.11 is determined by the escape velocity of the galaxy which is vesc ≈544 km/s
[35]. Comparing and combining results from experiments with various target materials
requires isolating the WIMP-nucleon cross-section σSI

n,0 from the WIMP-nucleus cross-
section σSI

0 such that the SI cross-section for any target nucleus containing A nucleons
is given by

σSI
0 = σSI

n,0
µ2
T

µ2
n

A2, (1.13)

where µ2
n is the WIMP-nucleon reduced mass [36]. Spin-dependant (SD) interactions

require both the dark matter particle and the nucleus to have non-zero spin. The ma-
jority of isotopes in materials like germanium and silicon have zero spin, which limits
their sensitivity to SD interactions. For example, only 8% of germanium nuclei and 5%
of silicon nuclei are spin-sensitive [37]. In contrast, spin-independent (SI) cross-section
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Figure 1.5.: Differential event rate as a function of recoil energy for WIMP recoils on a
Ge target with WIMP-nucleon spin-independent cross section of 10-41 cm2

for various WIMP masses.

scales with the square of the atomic mass (A2) as seen in Eq. 1.13, favoring heavy
nuclei as targets. However, heavy nuclei targets have limitations such as high energy
thresholds which limit the sensitivity to low-mass WIMPs, making them more suited for
exploring high-mass WIMPs. In this thesis work, only spin-independent cross-sections
are discussed. Differential event rate as a function of recoil energy for a Ge target with
WIMP-nucleon spin-independent cross section of 10-41 cm2for various WIMP masses is
shown in Fig. 1.5.

1.2.2. Light Dark Matter (LDM)
Light Dark Matter (LDM) are dark matter candidates with masses below 2GeV/c2. For
WIMPs with masses below ∼2GeV/c2 interacting via SM weak mediators, the annihi-
lation cross-section is too small to account for the observed relic abundance. This is
called the Lee-Weinberg limit [38]. The LDM models introduce a new “dark sector” of
particles that mediates the interactions between LDM and SM. The new force mediators
associated with LDM allow for a relic abundance consistent with observations despite
their smaller masses. Unlike WIMPs, which primarily undergo nuclear scattering, LDM
is expected to predominantly interact via electron scattering.
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1.2.3. Bosonic dark matter
Dark Photons

Dark photons arise in a hidden dark sector under a new U(1) gauge group and kinetically
mix with Standard Model photons [39]. They act as mediators between DM and ordinary
matter. They can interact with detectors via electromagnetic cross-sections proportional
to the mixing parameter. Experiments like SuperCDMS search for dark photons through
their absorption signatures in recoil spectra.

Axions and Axion-Like Particles (ALPs)

Axions are low-mass particles (≤meV/c2) originally proposed to resolve the strong CP
problem in quantum chromodynamics (QCD) [40, 41]. Axion-Like Particles (ALPs)
are general pseudo-Nambu-Goldstone bosons arising from the spontaneous breaking of
a global U(1) symmetry [42, 43]. The axions and ALPs provide low-mass DM candi-
dates that interact weakly with photons that could be detected via their electromagnetic
coupling.

1.2.4. Other dark matter candidates
Thus far, the candidates explored within the SuperCDMS collaboration were described.
However, a wide variety of alternative dark matter candidates have been proposed, each
motivated by different theoretical frameworks and experimental observations. Some of
these candidates are briefly outlined below:

Sterile Neutrinos Sterile neutrinos are right-handed chirality neutrinos that interact
only gravitationally and not via the electroweak force (thus, sterile) [44]. They are
massive fermions that can mix with Standard Model neutrinos via the Higgs mechanism
[45, 46]. They could be detected indirectly through their electroweak decay emitting
X-rays or by mixing with a standard neutrino, scattering off of an electron [46, 47].

WIMPzillas WIMPzillas are supermassive DM candidates with masses between 1012

and 1016 GeV/c2. Unlike standard WIMPs, they were hypothesized to not be in thermal
equilibrium during freeze-out, but the production is explained by a freeze-in mechanism.
These non-thermal DM are motivated by unexplained ultra-high-energy cosmic rays,
which may result from the decay of the WIMPZilla [48, 49].

Primordial Black Holes (PBHs) PBHs are non-particle DM candidates formed in
the early Universe, before Big Bang nucleosynthesis [50]. They remain a viable candidate,
particularly after LIGO/Virgo detections of black hole mergers, which reignited interest
in PBHs as a potential DM candidate [51]. The current constraints on the mass range
are detailed in Ref. [52, 53].
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MACHOs MACHOs include non-luminous baryonic objects like brown dwarfs, plan-
ets, and black holes [2]. The microlensing constraints (e.g., EROS-2 [54]) limit their
contribution to less than 8% of the halo mass.

1.3. Direct dark matter searches
Before introducing the direct dark matter detection methods, a brief overview of two
other primary methods for detecting dark matter particles is outlined below.

Indirect detection: This involves searching for the products of dark matter parti-
cle self-annihilation or decay. The products are expected to be SM particle-antiparticle
or high-energy gamma rays. Experiments look for potential excess of decay products
near massive objects such as black holes and stars. The Fermi Gamma-ray Space
Telescope have searched for gamma-ray excesses [55]. PAMELA [56] and AMS-02 [57]
have searched for positron excesses.

Production mechanisms: Collider and beam dump experiments may produce dark
matter particles alongside standard model particles. Due to their rare interactions with
SM particles, it can only be detected as missing mass. This approach has been explored
in the Large Hadron Collider (LHC) with CMS and ATLAS experiments [58] and the
SuperKEKB electron-positron collider with BelleII experiments [59].

The direct detection methods look for signatures of dark matter particles
from the galactic halo interacting with detector materials. These direct dark matter
interactions are characterized by small energy depositions occurring at low rates,
so detectors with low background, high exposure and sensitivity are required. The
interaction of DM with the detector material induces low-energy recoils, which can be
detected using various techniques, including ionization, heat, and scintillation.

Solid state detectors: The detectors are operated at cryogenic temperatures and
measure phonon, scintillation and ionization signals. They can search for DM with
masses from sub-GeV to severals 10s of GeV/c2. Their ability to measure both phonon
and charge signals provides discriminative power to distinguish between electron and
nuclear recoils. Apart from WIMP searches, their sensitivity to small signals enables
them to explore other dark matter candidates such as dark photons and ALPs.
SuperCDMS utilizes Ge and Si crystals to search for DM interactions. The measure-

ments are done using TES and High-Electron-Mobility Transistors (HEMTs) for phonon
and ionization signals, respectively. Details of the experiment are provided in the next
chapter. EDELWEISS [60, 61] used ultra-pure Ge detectors with neutron transmutation
doped (NTD) thermometers for phonon measurements. Cryogenic Rare Event Search
using Superconducting Thermometers (CRESST) [62, 63] uses CaWO4 crystals instru-
mented with silicon-on-sapphire wafers and W-TESs for measuring scintillation light and
phonons.
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Noble liquid detectors Noble liquid detectors measure scintillation light produced
when the DM particles interact with the liquid target, such as xenon or argon. There are
two common types of detectors: single-phase and dual-phase time projection chambers
(TPCs). Single-phase detectors measure only scintillation light, using pulse shape dis-
crimination to distinguish nuclear and electron recoils based on the timing distribution of
emitted photons. The dual-phase TPCs add an electric field to drift liberated electrons
into a gaseous phase, where they produce secondary scintillation. Experiments such as
XENON [64, 65], PandaX [66, 67], and LZ (LUX-ZEPLIN) [68] use a xenon target, while
experiments such as DEAP [69], and DarkSide [70] use liquid argon to search for DM.
Xenon-based detectors set competitive constraints on WIMP-nucleon cross-sections due
to xenon’s high atomic mass. Lower atomic mass noble liquids like helium are promising
for detecting low-mass dark matter.

Bubble chambers and Charge-coupled devices (CCDs) Superheated bubble
chambers detect particle interactions by observing bubble formations in a superheated
fluid target. Energy depositions create bubbles, which are tracked using cameras. The
PICO experiment [71, 72] uses chlorofluorocarbons as the target to search for inter-
actions. The Charge-Coupled Devices (CCDs) can detect small energy deposits from
particle interactions in the bulk of CCDs and are well-suited to detect low-mass DM in-
teractions. The SENSEI [73] and DAMIC [74] experiments use CCDs to search WIMP,
LDMs, and dark photons.

1.3.1. Current WIMP search status
Over the last several decades, numerous experiments have searched for WIMP-nucleon
interactions, excluding a significant portion of the parameter space. Fig. 1.6 shows the
current status of the WIMP parameter space for WIMP-nucleon interactions. Noble
liquid detectors have excluded most of the mass region above 10GeV/c2. Their cross-
sections are getting closer to the “neutrino fog”, where experiments will face irreducible
neutrino backgrounds. For masses below 10GeV/c2, solid-state detectors have excluded
parts of the parameter space, with ongoing and future experiments aiming to probe
even lower cross-sections. Also, this figure highlights the growing focus on low-mass
dark matter searches.
With the information about dark matter explained in this chapter, Chapter 2 details

the SuperCDMS experiment and its detection principles. The CDMSlite Run 3 analysis,
which forms the basis of this work, is outlined in Chapter 3. The CDMSlite Run 3
experiment faced issues with the supplementary cryocooler, leading to vibration-induced
Low-Frequency Noise (LFN). In Chapter 4, a machine learning-based method to remove
these LFN events is detailed. This new method for removing LFN events was applied
to the CDMSlite Run 3 dataset. The results are presented in Chapter 5. Chapter 6
explores various case studies based on the newly developed method to remove the LFN
events. Finally, Chapter 7 concludes this written work with a summary and an outlook.
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Figure 1.6.: SI WIMP-nucleon interaction parameter space for direct detection experi-
ments over WIMP mass. The current results of various DM search experi-
ments are shown by the colored curves [61, 75, 63, 76, 72, 67, 65, 68]. The
excluded parameter space is shown in shaded-grey, and the neutrino fog for
the Xe target is shown in shaded-yellow [77]. The SuperCDMS Limit Plotter
was used to make this figure [78].
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2. The SuperCDMS Experiment

The Super Cryogenic Dark Matter Search (SuperCDMS) experiment uses semiconduc-
tor crystal detectors to search for DM interactions with the detector material. The
silicon (Si) and germanium (Ge) semiconductor crystals used in SuperCDMS are kept
at cryogenic temperatures and are configured to measure either ionization or phonons
or in some cases both. This chapter begins with a short summary of the origins of Su-
perCDMS in Sec. 2.1, followed by the detection principle in Sec. 2.2. Section 2.3 and
Section 2.4 detail the SuperCDMS experiment at Soudan and SNOLAB, respectively.

2.1. A brief history of SuperCDMS
SuperCDMS has a history dating back to 1996, beginning with the predecessor Cryo-
genic Dark Matter Search (CDMS) experiment, followed by CDMS-II, the SuperCDMS
experiment at Soudan, and the upcoming SuperCDMS experiment at SNOLAB. With
each generation, detection volumes have increased, the experiments have moved deeper
underground for better shielding against cosmic rays, and detector technologies have
advanced. This section briefly outlines the progression of these generations; for a more
detailed history, refer to Ref. [79].

CDMS: The CDMS experiment was conducted at the Stanford Underground Facility
(SUF) at Stanford University. The experiment used 1-cm-thick, 7.6-cm-diameter germa-
nium and silicon detectors in 1998 [80, 81]. The shallow underground facility provided
16meter water equivalent (m.w.e.) overburden, which suppresses the background from
cosmic radiation by a factor of 5. Despite this reduction, the dominant background
remained the hadronic component of cosmic radiation [82].

CDMS-II: The second phase, CDMS-II, was relocated to the Soudan Underground
Laboratory (SUL) in Minnesota, USA. It is situated 780m underground in a decom-
missioned iron mine. With an overburden of 2090m.w.e., the muon flux was reduced
by a factor of 104 [82]. Between 2003 and 2008, the experiment deployed 19 germa-
nium detectors (239 g each) and 11 silicon detectors (106 g each), maintaining the same
1-cm thickness and 7.6-cm radius as the original design [83]. The analysis using the
Ge detectors set leading limits (at that time) on the spin-independent WIMP-nucleon
cross-section for WIMP masses above 70GeV/c2 [84].

SuperCDMS Soudan: The subsequent generation, SuperCDMS, utilized 2.5-cm-
thick, 7.6-cm-diameter interleaved Z-sensitive Ionization and Phonon (iZIP) detectors.

14



Chapter 2 – The SuperCDMS Experiment

There were five towers, each consisting of 3 germanium detectors with a total payload
of ∼9 kg [85]. An analysis of 577 kg-days of data resulted in a spectrum consistent with
background expectations while setting leading limits (at that time) on WIMP-nucleon
cross-section in the mass range of 4 and 6GeV/c2 [86]. Sec. 2.3 describes the experiment
facility.

Between 2012 and 2015, two of the detectors were applied a high bias voltage to
probe low-mass WIMP signatures in an experimental mode called the CDMS low ion-
ization threshold experiment (CDMSlite) [87]. The data taken with this configuration
presented leading spin-independent dark matter interaction limits for WIMP masses
ranging from 1.6 to 5.5GeV/c2. This thesis work was developed using the dataset of the
final run [76] in this configuration, and Chapter 3 discusses the experimental conditions
and the analysis in detail.

SuperCDMS SNOLAB The newest generation, SuperCDMS SNOLAB, is under
construction at SNOLAB in an active nickel mine in Sudbury, Ontario, Canada. With
an overburden of 6010m.w.e., the facility offers 2.5-3 times the shielding against cosmic
rays compared to Soudan. The experiment features upgraded detectors with increased
volume, operating at colder temperatures, and in different measurement configurations
[88]. Further details of this experiment are provided in Sec. 2.4.

2.2. Particle detection
This section discusses how particles interact within semiconductor materials, the types
of detectors used in SuperCDMS, the measurement of charge, and phonon signals.

2.2.1. Semiconductors detectors
Semiconductors are widely used in particle detectors due to their unique electronic
properties. In solid-state materials, the discrete energy levels transform into energy
bands: the valence band where electrons are bound to the atomic nucleus, and the
conduction band where they are free to move throughout the material. The energy
difference between the valence and the conduction band is referred to as the band gap.
The band gap is an important quantity in determining conductivity: if the band gap is
large it leads to reduced conductivity and vice versa.

In semiconductors at cryogenic temperatures, electrons predominantly occupy the
valence band. To excite an electron into the conduction band, energy at least equal to
the band gap (Eg) is required. This excitation creates a “hole” in the lattice, which is a
quasiparticle with a net positive charge. The electron and the hole together are referred
to as the electron-hole pair or e−h+pair. When an electron moves from the valence to
the conduction band, the corresponding hole moves from the conduction band to the
valence band.
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Figure 2.1.: Illustration of a dark matter particle χ scattering off an atomic nucleus
in a detector. The interaction produces prompt phonons and liberates a
certain number of e−h+pair. With an application of bias voltage Vbias across
the detector, the e−h+pairs drift towards the electrodes on the detector
surface, denoted by their polarity (+/-). Apart from the prompt phonons,
drifting charges generate additional phonons along the way via the Neganov-
Trofimov-Luke (NTL) effect, referred to as NTL phonons. Sensors on the
detector’s surface measure the energy deposited by these phonons.

When a particle interacts in a semiconductor, it can recoil against an atomic nu-
cleus or a electron, depositing energy. The scattering process can liberate e−h+pairs,
depending on the energy and the recoil type. The interaction also produces phonons in
the crystal called prompt phonons. When an electric field is applied across the detector,
the e−h+pairs drift to the respective electrodes on the opposite sides of the detector
and can be measured by the sensors on the detector surface. When the charge carriers
drift across the detector, they reach terminal velocity due to interactions with atoms
along the way and the additional energy gained from the electric field is dissipated into
the crystal lattice as heat in the form of phonons (lattice vibrations). This phenomenon
is known as Neganov-Trofimov-Luke (NTL) effect [89, 90]. The phonons produced from
the NTL effect are referred to as NTL phonons. A schematic of a particle interaction
in the detector is shown in Fig. 2.1.

Thermal phonons are background thermal fluctuations due to the temperature of the
semiconductor target. At crystal temperatures in the range of mK, the thermal phonons
are negligible. The phonons generated by the interactions are athermal phonons which
have energies higher than thermal phonons. Unlike thermal phonons, the generated
athermal phonons have enough energy to be absorbed by the sensors on the surface of
the detectors, and will be further discussed in Sec. 2.2.3.
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2.2.2. Detector types
SuperCDMS uses silicon and germanium crystal detectors in two distinct configurations:
Inter-leaved Z-sensitive Ionization and Phonon (iZIP) detectors and high voltage (HV)
detectors. The iZIP detectors measure both phonon and charge signals. This allows for
discrimination between electron recoils (ER) and nuclear recoils (NR), which is crucial for
effective background rejection. In contrast, the HV detectors amplify low-energy signal
events by applying a high bias voltage via the NTL effect but lack charge channels.
The measurements from the phonon and charge channels are detailed in Sec. 2.2.3 and
Sec. 2.2.4, respectively. With a low-energy threshold, HV detectors enable low-mass DM
searches. The two configurations are designed to address different scientific objectives,
such as low-mass WIMP searches or accurate background discrimination. In this section,
an overview of the detector configuration types based on Refs. [88, 79] is presented.

Inter-Leaved Z-Sensitive Ionization and Phonon (iZIP) detector: In this type
of detector, the charge channels are interleaved with the phonon channels. Typically,
a small bias voltage of a few volts is applied to collect the charge carriers. NR events
produce fewer electron-hole e−h+pairs for a given recoil energy than ER events of
the same recoil energy. Consequently, measuring both the charge and phonon signals
enables discrimination between ER and NR events. This event-by-event ER/NR
discrimination is crucial, as most background events are γ and β induced ER events,
and WIMPs are expected to interact predominantly via NR.

For the SuperCDMS Soudan experiment, each detector had four phonon channels
and two charge channels on each side. Phonon channels consisted of an outer ring and
three wedge-shaped inner channels. The top and the bottom phonon channels were
rotated by 60◦ for better position information. Figure 2.2 shows a photograph of the
SuperCDMS Soudan iZIP detector and a schematic of the channel layout. In contrast,
the SuperCDMS SNOLAB detectors feature six phonon channels on each side, arranged
as an inner core, four wedge-shaped channels, and an outer ring. An “outer” ionization
channel overlaps with the outermost phonon ring, while an “inner” ionization channel
overlaps with the remaining phonon channels. The wedge-shaped phonon channels in
the bottom are rotated by 45◦ degrees relative to the top. The outer ring channels
enhance event identification at higher radii. A photograph of the SuperCDMS SNOLAB
iZIP detector and a schematic of the channel layout is shown in Fig. 2.3.

CDMSlite: iZIP with high bias voltage: During the SuperCDMS Soudan ex-
periment, two iZIP detectors were operated with a high bias voltage between 70-75V,
utilizing NTL amplification to achieve a low energy threshold. The bias was applied to
one side, with the other side grounded, where the phonon signals were read out. This
approach enabled a low-mass WIMP search but did not allow for ER/NR discrimina-
tion. The success of this method motivated the design of the dedicated high voltage
(HV) detectors for the SuperCDMS SNOLAB experiment.
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Figure 2.2.: A photograph of a SuperCDMS Soudan iZIP detector in its copper housing
is shown on the left, and a schematic of its channel layout on the right, with
phonon channels represented in varying colors. The inset displays a zoomed-
in view of the detector surface, showing the phonon and charge channels.
Figures are taken from Refs. [79, 91].

Figure 2.3.: A photograph of a SuperCDMS SNOLAB iZIP detector in its copper housing
is shown on the left, and a schematic of its channel layout on the right, with
phonon channels represented in varying colors.
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Figure 2.4.: A photograph of a SuperCDMS SNOLAB HV detector in its copper housing
is shown on the left, and a schematic of its channel layout on the right, with
phonon channels represented in varying colors.

High Voltage (HV) detector: This detector was specifically developed to operate
with a high bias voltage, amplifying the phonon signal via the NTL effect. The detector
is designed to be operated at a symmetrical bias voltage of ∼100 V for better field
uniformity. The high bias voltage allows for the detection of interactions that deposit
small amounts of energy, enabling sensitivity to sub-GeV WIMP interactions. However,
due to the absence of charge channels, this detector configuration does not provide
ER/NR discrimination. Each side of the detector has 12 phonon channels, with six
phonon channels on each side, consisting of an inner channel surrounded by three wedge-
shaped channels and two outer ring channels. This arrangement is designed to improve
the rejection of events near the detector’s edge. Fig. 2.4 shows a photograph of the
SuperCDMS SNOLAB HV detector and a schematic of the channel layout. Additionally,
the wedge-shaped phonon channels on the bottom surface are rotated by 60◦ relative
to those on the top side. With a significant fraction of the detector surface covered by
phonon sensors (∼35%), this detector configuration has enhanced phonon absorption.

2.2.3. Phonon measurement
Phonons are measured using Quasiparticle-Trap-Assisted Electrothermal-Feedback
Transition Edge Sensors (QETs) on the detector surfaces [92] and each phonon channel
consists of QETs. These sensors consist of photo-lithographically patterned aluminum
(Al) fins, which are connected to narrow Transition Edge Sensor (TES) made of
tungsten (W). The aluminum fins act as phonon collectors. The TES consists of a
superconducting material (W in this case), whose resistance increases with temperature,
particularly exhibiting a steep rise near its critical temperature, Tc. Below the critical
temperature, the material is superconducting with zero resistance and above the critical
temperature, it transitions to a normal state with finite resistance[93, 94]. Fig. 2.5
shows the resistance vs. temperature curve for a TES. It is seen that the transition
forms a narrow band where small temperature changes result in significant changes in
the resistance, making the TES highly sensitive to minor temperature changes.
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Figure 2.5.: An illustration of the resistance vs. temperature curve for a TES showing
the transition region Tc, where resistance changes steeply with temperature.
The TES operates in this region to detect small temperature variations.
Below Tc, the TES is superconducting with zero resistance, while above Tc,
it transitions to the normal resistive state. Figure taken from Ref. [79].

The setup is cooled to temperatures where both Al and W are superconducting. Most
phonons produced in an interaction bounce off the surface of the detector several times
before reaching the Al fins on the surface of the detectors. As the phonons reach the
Al fins, they may either be absorbed into the fin or reflect back into the substrate.
This probability of absorption is characterized by the phonon collection efficiency,
which depends on factors such as the design of the sensor and the sensor coverage
on the detector surface. If the absorbed phonons have energy greater than twice the
superconducting gap of aluminum, 2∆Al ≈ 340 µeV, they can break Cooper pairs in the
superconducting Al and create quasiparticles. These quasiparticles diffuse through the
Al fins.Absorbed phonons in Al can generate additional phonons and break Cooper pairs
if they have enough energy. The overlap of Al and W forms a bi-layer region, which
reduces phonon reflection. The quasiparticles diffuse through the Al fin to the W TES,
where they are trapped and deposit energy. This energy increases the temperature of
the TES, which is then measured. An illustration of this process is shown in Fig. 2.6. At
cryogenic temperatures, the thermal phonons have energies on the order of O(10-6) eV,
which is less than the energy required to break cooper pairs in both Al and W, and thus
they are not detected. In contrast, the athermal phonons generated in an interactions
have an average energies on the order of O(10-4) eV in Ge and Si crystals, and thus
they can be detected. Apart from particle interactions, vibrations can also produce
phonons with sufficient energy to be absorbed by the Al fins. Developing a method
to distinguish and remove these vibration-induced events is the major focus of this thesis.
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Figure 2.6.: Schematic of quasiparticle trapping in a QET. Phonons from the substrate
with energy E>2∆Al (dark purple) enter the superconducting aluminum fins
(green) and break cooper pairs (blue circles in yellow oval), creating quasi-
particles (solo circles with the gradient of orange indicating the energy). If a
phonon has energy E< 2∆Al (light purple) cannot break cooper pairs. The
quasiparticles diffuse into the tungsten TES (red) depositing their energy.
Figure taken from Ref. [95].

A schematic of the TES circuit is shown in Fig. 2.7. The TES is voltage-biased
with a fixed current source such that Vb ≈ Ib×Rsh, where Ib is the applied bias current.
To maintain a stable bias voltage, a shunt resistor (Rsh) is wired in parallel to the
TES. The energy deposited in the TES by the quasiparticles increases the temperature,
causing the resistance of the TES (RTES) to increase. This, in turn, changes the current
through the TES circuit, resulting in a change in current through the input inductor Li.

The current change in the TES circuit Li is observed as a change in the magnetic field
through the SQUID array, which is registered by an amplifier as the signal readout (V0).
Superconducting Quantum Interference Devices (SQUIDs) are sensitive magnetometers
that measure changes in magnetic flux and output a voltage change [96, 97]. A feedback
inductor (Lfb) is connected to the circuit, producing a current to maintain constant flux
through the SQUID, ensuring stable operation of the SQUID. An amplifier, operated
in feedback mode, stabilizes and linearizes the response from the SQUID. The current
change in the Li induces a current in the feedback inductor (Lfb), where the relationship
between the two inductors is given by the inductor ratio Li/Lfb. The ratio is 10 for
SuperCDMS Soudan, and 2.4 for SuperCDMS SNOLAB. This way, by monitoring the
current through the TES, the energy from the phonons can be measured. The QET is
in thermal contact with the crystal substrate, so the TES is cooled down and goes back
to the transition state. The signal is readout at V0 with a digitization rate of 625 kHz
for SuperCDMS Soudan.
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Figure 2.7.: Schematic of the TES circuit where the TES is voltage-biased with a fixed
current, as shown on the left. When energy is deposited in the TES, its
resistance RTES increases, which leads to a change in the current through
the inductor Li. This change in the current is measured by a SQUID circuit
coupled with an amplifier to read out the phonon signal. The figure is taken
from Ref. [95].

The total phonon energy Ept from an interaction is a sum of the recoil energy Er and
the energy gained via the NTL effect ENTL.

Ept = Er + ENTL. (2.1)

For an e−h+pair drifting across the detector, the energy produced as NTL phonons is
equal to e · Vbias, where e is the elementary charge and Vbias is the voltage bias applied
across the detector. This is assuming that the charges transverse through the full electric
potential and are not trapped in defects or impurities [98]. The total phonon energy can
be written as:

Ept = Er + neh · e · Vbias, (2.2)

where neh is the number e−h+pairs produced. This shows how a small energy deposition
can be amplified by applying a high bias voltage across the detector, utilizing the
NTL effect. This is the motivation for the CDMSlite operation of the iZIP detectors
during the SuperCDMS Soudan experiment and the HV detectors for the SuperCDMS
SNOLAB experiment.

The number of e−h+pairs neh produced is proportional to the recoil energy. For
a given recoil energy, neh is a distribution with a mean 〈neh〉 and a width determined by
the Fano factor parameter [99]. The mean number of e−h+pairs produced for a given
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recoil energy Er is given by
〈ne/h〉 = Y (Er)

Er
εeh

, (2.3)

where Y (Er) is the ionization yield and, εeh is the average energy required to produce
an e−h+pair. εeh for Si is ∼3.8 eV and for Ge it is ∼3.0 eV [88]. The ionization yield
Y (Er) describes how much of the recoil energy is converted into e−h+pair production.
For an Electron Recoil (ER), all of the recoil energy is used for producing e−h+pairs,
thus Y (Er) =1. A Nuclear Recoils (NR) event produces fewer e−h+pairs in comparison
with an ER event. Thus, the yield for NR events is Y (Er)<1 and is characterized based
on the Lindhard theory [100, 101, 102]. Using Eq. 2.3 and Eq. 2.2, the total phonon
energy is written as

Ept = Er

(
1 + Y (Er)

eVbias
εeh

)
. (2.4)

2.2.4. Ionization measurement
As this thesis focuses on the CDMSlite dataset, where only the measurements from the
phonon channels were recorded and the charge channels were used for applying the high
bias voltage, only a brief summary of the ionization measurement is provided here. For
a comprehensive account of ionization measurements, refer to Refs. [79, 95].

A schematic of the charge readout setup is illustrated in Fig. 2.8. In this setup,
Cd represents the detector, where drifting charges induce charge. The charges are
collected into the feedback capacitor Cf in the feedback loop, creating a voltage spike
(V0). The feedback loop consists of an amplifier, capacitor Cf , and resistor Rf . The
capacitor Cf drains through Rf with a time constant Cf · Rf . The coupling capacitor
(Cc) protects the feedback loop from the biasing source. The bias resistor Rb prevents
the induced current from draining into the bias source. Cs represents any stray
capacitance.

Charges propagate through the detector on nanosecond time scales. With the digiti-
zation rate of 1.25MHz (for the SuperCDMS Soudan experiment), the rising edge is
instantaneous, and the fall time is controlled by the feedback loop. The amplitude,
which is the only measurement of the ionization, is proportional to the collected charge
or the energy generated. Considering 100% charge collection efficiency, the measured
ionization energy EQ is given by

EQ = neh · εeh. (2.5)

As previously mentioned, for NR events, only a fraction of the recoil energy Er is con-
verted to producing e−h+pairs, which is determined by the ionization yield Y (Er). Con-
sequently, the measured ionization energy is written as

EQ = Y (Er) · Er. (2.6)
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Figure 2.8.: A schematic of the SuperCDMS Soudan charge readout circuit. A bias volt-
age source Vb is connected to the detector represented by Cd through the
biasing resistor Rb. The feedback loop consists of the amplifier, feedback
resistor Rf , and feedback capacitor Cf . Cc and Cs are the coupling capaci-
tor, which protects the feedback loop, and stray capacitance in the circuit,
receptively. The figure is taken from Ref. [95].

For ER events, Y (Er) = 1, as all of the recoil energy is converted to producing e−h+pairs.
Therefore, for Er events, EQ = Er.

Yield discrimination: The ionization yield term was introduced to relate the recoil
energy with the phonon energy. Rewriting Eq. 2.4 using Eq. 2.6, the ionization yield is
written as

Y (Er) = EQ

Ept − eVb
εeh
EQ

. (2.7)

The values of EQ and Ept are measured from charge and phonon channels. As the iZIP
detectors have both phonon and charge channels, event-by-event ER/NR discrimina-
tion is possible, enabling the removal of ER backgrounds. However, for CDMSlite and
SuperCDMS SNOLAB HV detectors, where charge channel signals are absent, ER/NR
discrimination is not possible.

2.3. SuperCDMS at Soudan
The SuperCDMS Soudan experiment was conducted at the Soudan Underground
Laboratory in Minnesota, located 713m underground (2090 m.w.e.) [85, 86]. Operated
between 2012 and 2015, the experiment used five towers of iZIP detectors with a
total payload of approximately ∼9 kg. Each tower consisted of three Ge detectors,
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Detector
Towers

Figure 2.9.: Schematic of the SuperCDMS Soudan experiment, illustrating the shield-
ing and veto setup. The detector towers are housed within the icebox,
surrounded by multiple shielding layers, including polyethylene and lead,
enclosed within muon veto panels made of plastic scintillator. The detec-
tors are cooled using a dilution refrigerator connected to the icebox via the
C-stem. The electronics are connected to the detector towers through the
E-stem. Figures courtesy of J. Sander.

each with a diameter of ∼76 mm, a height of ∼25 mm, and a mass of ∼600 g. This
section provides an overview of the experimental infrastructure at Soudan, including
its shielding system, cryogenic refrigeration setup, and trigger and Data Acquisition
(DAQ) systems. Information about the experiment is obtained from Refs. [103, 104]
and references therein.

The experimental setup with the shielding layout is shown in Fig. 2.9. A six-stage
Kelvinox 400-S 3He-4He dilution refrigerator was used to cool the detectors from room
temperature. The stages include 300K (room temperature), 77K (nitrogen shield), 4K
(helium bath), 600mK (still), 50mK (cold plate), and 10mK (mixing chamber). The
detector towers were housed inside the “icebox” consisting of six copper cans. Each
of the thermal stages of the dilution refrigerator was connected to the corresponding
copper housing can via the C-stem. On the other side of the C-stem opening in the cans
is the E-stem, which connects the detectors to the electronics. The electronics were
supplemented with cooling from a Gifford-McMahon cryocooler, which was coupled to
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the 4K and 77K stages. The cryocooler had a piston used to expand and contract
helium gas, generating vibrations that contribute to Low-Frequency Noise (LFN), the
subject of this thesis.

The backgrounds in the SuperCDMS Soudan experiment arose from cavern rock
radioactivity, internal radioactive decay from the apparatus, and from cosmic rays.
To mitigate these backgrounds, effective shielding was crucial. An active muon veto,
consisting of forty overlapping 5 cm thick panels of BC-408 plastic scintillator connected
to photomultiplier tubes (PMTs), formed the outer shielding layer, effectively removing
events coincident with muons passing through. The outer layer of neutron shielding
consisted of 40 cm thick polyethylene bricks. For gamma shielding, two sequential
layers of lead, totaling 22.5 cm in thickness, were used, with the inner 4.5 cm made
from ancient lead. Lead is typically contaminated with radiogenically produced 210Pb,
whose decay produces gamma radiation. The ancient lead within the natural lead shield
helped reduce this background. An additional 10 cm thick inner layer of polyethylene
was placed between the lead shield and the cryostat icebox, providing protection against
neutrons generated in the outer shields. Magnetic field protection was provided by
a 0.381mm thick mu-metal (81% Ni, 19% Fe) shield inside the inner polyethylene
layer. The gap between the mu-metal and cryostat was flushed with dry nitrogen
to avoid radon (222Rn) contamination. The cryostat that houses the detector tower
consists of copper cans that were made of radio-pure copper, providing γ and β shielding.

Even though most of the gammas and neutrons are mitigated by the shielding,
the experiment still has backgrounds. The primary source of background after shielding
is from the radioactivity of the shielding and other materials used in the apparatus.
Additionally, cosmogenic activation produces significant background. Cosmic rays
induce spallation, leading to the activation of both detector and apparatus materials
during fabrication and handling. For Ge detectors, background are from tritium
contamination as well as other isotopes that primarily decay through β-decay or
electron capture. Some of these cosmogenic isotopes, which decay via electron capture,
are present in the measured energy spectrum. Neutrons from the 252Cf calibration
source can be captured by 70Ge, producing 71Ge. With electron capture, 71Ge produces
distinct peaks in the energy spectrum [105]. Although these isotopes contribute to an
irreducible background, they are useful for calibration. Other sources of background
include Compton scattering and radon exposure, which produce surface events.

The trigger system for the detectors required signals to exceed predefined thresh-
olds, which were set for charge and phonon channels. Each detector had two trigger
control boards, one for each side. A trigger control boards combined signals from
four phonon channels and the two charge channels. Based on a logical OR to de-
termine if the trigger condition was met, the board issues a trigger. When one of
the detectors is triggered, the data from all detectors is saved, with the triggered
detector’s data aligned to the global trigger time bin. The stored event data contained
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traces of 4096 time samples, with the bin that issued the trigger set at the 500th time bin.

The SuperCDMS Soudan experiment collected various data types to support WIMP
searches and detector calibration. Low-background data, primarily used for the WIMP
search, is the main science dataset. For calibration, two radioactive sources were used:
133Ba and 252Cf which are ER and NR sources, respectively. 133Ba decays to 133Cs,
producing β and γ radiation, with energy peaks at 356.0 keV, 81.0 keV, 302.8 keV,
and 383.8 keV [106]. 252Cf mainly decays via α emissions, but with ∼3% probability
it undergoes a spontaneous fission process which produces 3-4 neutrons per day in
energies of in the range of MeV [107].

2.4. SuperCDMS at SNOLAB
SNOLAB is located in the Creighton nickel mine, operated by Vale mining company in
Sudbury, Canada. The lab is located 2 km underground (6010m.w.e.), which reduces
cosmic muon flux by an additional factor of 2.5-3 compared to the Soudan levels,
eliminating the need for a muon veto. The entire laboratory is a class-2000 cleanroom
standard to minimize intrinsic radiogenic backgrounds.

The schematic of the experiment, along with its shielding layout, is shown in Fig. 2.10.
The shielding consists of passive layers: a 60 cm water shield protects the top and sides,
while the bottom is shielded by 60 cm of High-Density Polyethylene (HDPE) plates.
This protects the experiment from the cavern neutrons. Inside the HDPR layers is a
radon purge barrier, constantly flushed with nitrogen, to mitigate atmospheric 222Rn
contamination. Inside the purge barrier, a 23 cm layer of low-activity lead protects
against gammas, inside which is a layer of ancient lead. The inner neutron shield is made
of 40 cm HDPE to shield against neutrons. The detector towers are housed within a
vacuum-sealed cryostat container, referred to as SNOBOX, consisting of six copper cans.
The operating temperature of the detectors is ∼15mK and is obtained by a dilution
refrigerator. These cans are thermally coupled to the thermal stages of the dilution
refrigerator via bars through the C-stem. The entire shielding system is mounted on
a seismic platform to absorb seismic and mine-related vibrations. Electronics con-
nected to the 4 K stage pass through the E-stem from the detectors out of the SNOBOX.

Despite the shielding and the low-background environment at SNOLAB, the Su-
perCDMS experiment still has backgrounds that need to be addressed. Key ER
backgrounds include β-decay from cosmogenic tritium (3H) contamination in detectors,
γ and β particles from radioactive isotopes in surrounding materials, and decay
products from cosmic-ray activation. For silicon detectors, 32Si β-decay is a significant
contributor. For germanium detectors, the major background contribution comes from
the activation lines from electron capture [105]. Other backgrounds include coherent
neutrino-nucleus scattering, α-decay from contaminants, and neutrons produced
cosmogenically or in the cavern environment.
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Figure 2.10.: Schematic of the SuperCDMS SNOLAB experiment setup. The detec-
tor towers are housed within the SNOBOX, which consists of six copper
cans. The SNOBOX is surrounded by multiple shielding layers, including
HDPE and lead, and is enclosed within a water tank. The detectors are
cooled down by a dilution refrigeration system, which is connected to the
SNOBOX via the C-stem. The electronics for the experiment are housed
in the E-tank and are connected to the detectors through the E-stem. The
entire assembly is mounted on a seismic platform to mitigate the impact
of seismic activity on the setup. Figure taken from Ref. [88].
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Figure 2.11.: Projected sensitivities of SuperCDMS SNOLAB experiment to spin-
independent (SI) WIMP-nucleon scattering using different methods: Opti-
mum Interval (dashed), and Profile-Likelihood Ratio (solid). The sensitiv-
ity is calculated for various detector configurations: Ge HV (red-brown),
Ge iZIP (mustard), Si HV (blue), and Si iZIP (cyan). The neutrino fog [77]
is shown in magenta (long dashed and shaded), and the exclusion limits
as of Dec 15, 2022 are shown in the gray shaded region. The plot is taken
from Ref. [108].

The SuperCDMS SNOLAB experiment is expected to begin commissioning in
late 2025. The initial payload will consist of four towers, each with six detectors. The
payload comprises of two HV towers and two iZIP towers, totaling 10 Ge iZIPs, 2
Si iZIPs, 8 Ge HV, and 4 Si HV detectors. Currently, all four detector towers are
already in the SNOLAB and stored in the SuperCDMS clean room. The projected
sensitivity of the SuperCDMS SNOLAB experiment is shown in Fig. 2.11. One of the
HV towers, containing 4 Ge and 2 Si detectors, was successfully tested at the Cryogenic
Underground Test (CUTE) facility at SNOLAB between 2024-2025, and analysis of this
data is underway.
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3. CDMSlite Run 3

During the final phase of SuperCDMS Soudan experiment, an iZIP detector was operated
at high bias voltage as a part of the Cryogenic Dark Matter Search Low Ionization
Threshold Experiment (CDMSlite). The high voltage application amplifies the ionization
signal via NTL effect explained in Sec. 2.2. The amplification enables searches for
low-mass DM particles by boosting sub-keV nuclear recoil energy deposition to surpass
the threshold. With an energy threshold of 70 eV and a live-time of 36.9 kg-days, the
experiment excluded the DM-nucleon cross section for DM masses up to 2GeV/c2. In
this chapter, the experimental setup and an overview of the analysis on which this
thesis work is based are presented. The content of this chapter is adapted from Refs.
[76, 109, 110].

3.1. Description of the experiment
The experiment was conducted from February to May 2015, with a total live-time of
60.9 days. For this experiment, the top detector in the second tower (T2Z1) was selected
because of its operational stability when applying high voltage and its better baseline
resolution due to its reduced susceptibility to instrumental noise which enabled the low
threshold analysis. During this run, the detector had a voltage bias of 75V applied
to one side while the other side was grounded for the readout. The schematic of the
detector with the phonon sensor layout is shown in Fig. 3.1. Waveforms from the charge
collecting electrodes were also recorded but were only used to remove events with bad
noise in the charge channel.

Figure 3.1.: Schematic of the CDMSlite detector showing the layout and labeling of
phonon channels. In this configuration, the high voltage (HV) was applied
to the bottom side, and the phonon channels from the top side were readout.
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Figure 3.2.: Schematic of the HV circuit illustrating the applied voltage Vapplied and the
detector voltage Vdet, which differs from the applied voltage due to parasitic
resistance around the detector that draws some current.

Pre-biasing: A pre-biasing procedure was performed in which the detector voltage
bias was temporarily increased to 85V for 10minutes prior to the start of collecting
each data series where the operating voltage was set to 75V. This procedure helped to
mitigate charge leakage and short noise.

High voltage monitoring: The determination of detector bias voltage was crucial
for determining the energy scale and energy reconstruction, and it depended on the bias
current IHV which was measured to monitor detector voltage. The schematic of the HV
supply circuit is shown in Fig. 3.2. The voltage at the detector Vdet was different from
the applied voltage Vapplied due to the parasitic resistance Rp which caused a voltage
drop across a bias resistor Rb. The voltage at the detector is given by

Vdet = Vapplied − IHVRb. (3.1)

where IHV is the nominal current which should be zero due to infinite detector
resistance, but the parasitic resistance Rp introduced current in the nanoampere (nA)
range. The bias resistor Rb had a resistance of 196MΩ and protected the cryostat from
excessive current flow but reduced the voltage applied to the detector.

During the experimental run, Rp fluctuated over time and was correlated with the
temperature fluctuations in the room that housed the electronics. In April 2015 modifi-
cations were made in the RF room ventilation, impacting the temperature of the room
which consequently increased the parasitic resistance while reducing leakage current
which stabilized the detector at 75V. Prior to this modification, the detector voltage
drifted between 50 and 70V, which resulted in variations in the energy corrections. To
address this, temperature corrections were applied, as explained in Sec. 3.3.3.

When the detector voltage was above >72V, the trigger rate increased, as shown
in Fig. 3.3. This was caused by the increased baseline noise. After the operational volt-
age was increased to 75V on April 1st to stabilize the detector, the noise performance
deteriorated, indicating that the optimal operating voltage was slightly less than 75V.
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Figure 3.3.: Histogram showing the correlation between the trigger rate and the detector
voltage. The charge triggers and detector voltage are shown in blue and
green, respectively. The events are constrained between the energy range
between -2 keV and 5 keV. The plot is taken from [109].

Consequently, the experimental run data was divided into periods before and after
April 1st, named periods A and B, respectively. The hardware trigger threshold also
varied between 50 and 70 eV during the course of the run.

Vibration monitoring: The broadband increase of noise was observed in low-
frequency regions in the PSDs of the phonon signals. This noise surge originated from
vibrations generated by the cryocooler used for cooling the electronics. These vibrations
detrimentally impacted the detector baseline, which also led to more frequent triggering.
Accelerometers were installed to time the vibration and found that the high event rate
corresponded with vibration from the cryocooler. The vibration-induced noise, referred
to as Low-Frequency Noise (LFN), caused more triggers compared to any other back-
ground source. Section 3.4.3 describes the method used to remove the LFN for this
analysis. The motivation for this thesis work is to effectively eliminate this noise while
preserving signal efficiency.

3.2. Data processing
The Data Acquisition (DAQ) issued a trigger when the waveform height crosses a
predefined threshold. When a trigger was issued, the raw waveform was digitized with
an Analog-to-Digital Converter (ADC) and stored. The digitized waveform was stored
with 4096 samples per event with the trigger bin set at the 500th bin. Physics triggers oc-
curred when the pulse height exceeded the threshold, while random triggers were issued
by the DAQ at random times, saving data regardless of the energy deposited. These ran-
dom triggered data were primarily noise, but occasionally also contained signal. Fig. 3.4
illustrates examples of randomly triggered waveforms and signal-containing waveforms.
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Figure 3.4.: Raw traces from the detector phonon channels PA, PB, PC, and PD for
various events. Top left: a baseline noise event which was randomly trig-
gered. Top right: one of the low-energy events that barely passed the trigger
threshold. Bottom left: an event from the L-shell peak from 70Ge activation.
Bottom right: an event from the K-shell peak from 70Ge activation.
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The waveforms were then processed to determine the pulse amplitude which translates
to the deposited energy. Throughout this work, the waveforms are referred to as “traces”.

Optimal Filter (OF)
Optimal Filter (OF) algorithms [111, 112, 113] determines the pulse amplitude by
fitting a template to a measured trace and de-weighting the noise frequency components
while maximizing the signal-to-noise ratio. This section is based on information from
Ref. [79]. A measured event S(t) is assumed to be the sum of an expected signal A(t)
(also called the signal template) scaled by an amplitude a and Gaussian noise n(t):

S(t) = a ·A(t) + n(t). (3.2)

The fit is optimized by minimizing the goodness of fit χ2. The optimum filtering algo-
rithm performs the fitting in the frequency domain, the χ2 is given by:

χ2(a) =
∫ ∞
−∞

|S(f)− aA(f)|2
J(f) df, (3.3)

where J(f) is the Power Spectral Density at each frequency. In the frequency domain,
the OF determines the amplitude for which χ2 in Eq. 3.3 is the lowest by de-weighing
the noise frequencies with the knowledge of power spectral density.

The standard OF assumes that the measured trace and signal template are aligned
in time and does not allow for time shifts of the template. This version is referred to
as OF0 in this thesis and in general the SuperCDMS processing context. The OF0
estimates amplitude at a constant time bin and is typically used for estimating the
noise amplitudes in a dataset. When one considers the signal template starts at t=0,
and a measured trace with a shifted time by t0 takes the form:

A(f)→ e−i2πft0A(f). (3.4)

Allowing for a time offset, the best amplitude and time shift are found by minimizing
χ2:

χ2(a, t0) =
∫ ∞
−∞

|S(f)− a e−i2πft0A(f)|2
J(f) df. (3.5)

In this thesis and in the general SuperCDMS processing context, this version of the
Optimal Filter is referred to simply as OF, without the “0” used in the previous case.

The standard OF procedure assumes a constant pulse shape, however signal pulses vary
in shape depending on the event location in the detector volume. For instance, if an
event occurs near a phonon channel, the channel’s pulse shape will exhibit a “peaky”
rise time compared to other channels. Therefore, each channel’s pulse shape varies
based on the event’s position in the detector. Thus the phonon template is divided
into fast and slow components - the fast component is position-sensitive, while the
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slow component measures energy. The OF is performed using both the fast and slow
templates and is referred to as 2TOF(2-Template Optimal Filtering). In addition to
improvement in the energy reconstruction using 2TOF, the best-fit fast amplitude was
used to apply a correction to the energy estimator which based on the slow template.
This is detailed in Sec. 3.3.3. The fast and slow template for the CDMSlite Run 3 data
analysis is showed in Fig. 3.5.

So far, the assumption has been that the noise in the traces is stationary, but
the observed data exhibited time-dependent noise, so the variability of noise shape over
time needed to be addressed. The Non-Stationary Optimal Filter (NSOF) generalizes
the optimal filter to account for this time-dependent noise behavior. The initial part
of the pulse can vary in shape depending on the event’s location in the detector,
biasing the OF energy estimate. This variability in the shape of the first few bins,
exhibited as “peakiness”, mainly arising from the TES layout sensitive to position. The
NSOF treats positional dependence as time-dependent noise, effectively de-weighting
the first 200 µs of the pulse for better template-signal agreement. This is achieved
by first creating a template from averaging multiple pulses with the same start time
and subtracting this template from the traces to obtain residuals. These residuals are
treated as time-dependent noise. The χ2 for NSOF is written as:

χ2 =
∑
ff ′

[
S∗(f)ei2πft0 − aA∗(f)

] (
V (f, f ′)−1

) [
S(f ′)e−i2πf ′t0 − aA(f ′)

]
, (3.6)

where V (f, f ′)−1 is the non-diagonal covariance matrix. The NSOF provided better
energy estimation compared to the standard OF.

Template generation:
Developing precise phonon templates for the OF/NF/2T algorithms plays a crucial
role in the accuracy of energy and position estimators. The slow template for OF,
NF, and 2T-slow algorithms was generated by normalizing the traces, followed by the
removal of outliers from the χ2 distribution. This process was iterative and involved
evaluating the K-shell peak width of the 70Ge activation at each step. The slow
template (or standard OF template) was generated by averaging many high-quality
pulses. The 2T-fast template is obtained by subtracting the slow template from the
traces, taking the absolute value of the result, and then averaging them. This provides
insights into the pulse peakiness, thereby offering positional information crucial for
fiducial volume cuts. The templates for the CDMSlite Run 3 are shown in Fig. 3.5. An
example of the OF fit applied to a raw trace is shown in Fig. 3.7 with the fit results
displayed in the text box. The standard OF with time delay using the OF (slow) tem-
plate was used for the fit. The χ2 value in the fit results indicates a good fit performance.

Noise PSDs:
Noise PSDs were generated using randomly triggered events, with traces containing
signal pulses removed before calculating the PSDs for each data series. Fig. 3.6 shows
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Figure 3.5.: The standard phonon templates utilized for the OF algorithms: Standard
OF, NSOF, and 2TOF (slow), alongside the fast template used for 2TOF
(fast). The slow template is employed initially for energy estimation, while
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Figure 3.6.: Power Spectral Densities (PSDs) of various noise events randomly picked
throughout the run, displaying the amplitude of noise with respect to the
frequencies.
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Figure 3.7.: An example of the OF fit: the raw trace is shown in blue, and the OF fitted
shown in orange. The fit results are displayed in the orange text box, where
a is the amplitude, t0 is the time delay relative to the template, χ2/ndof is
the reduced χ2 of the OF fit.

selected PSDs from the CDMSlite Run 3, with noise amplitude on the y-axis and
frequency on the x-axis.

The processing of raw traces from each channel included fitting the traces with
OF0, OF, and 2TOF. In addition to this, the amplitude estimation using OF0, OF,
2TOF, and NSOF was performed for the PT channel. The fit results for individual
channels and PT are stored as Reduced Quanties (RQs). Apart from the calculated OF
quantities, some important information about the event such as trigger information,
event timing, HV, and base temperature of the setup were stored as RQs.

3.3. Energy reconstruction
This section details how the Optimal Filter (OF) amplitude of the total phonon pulse,
which is the sum of the four phonon channels, is converted to the measured energy.
Section 3.3.1 describes the energy scale used in the data analysis. The conversion of the
OF amplitude to energy using the 71Ge electron-capture events is explained in Sec. 3.3.2.
Corrections for environmental and detector conditions after applying the calibration
factor are presented in Sec. 3.3.3.
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3.3.1. Energy scale
The “electron-equivalent” energy units (eVee) is the electron recoil energy required to
produce the observed phonon energy in the detector. keVee is a convenient unit for
the CDMSlite analysis due to the predominance of Electron Recoil (ER) events in the
observed backgrounds. To convert the recoil energy in Eq. 2.2 from electron-equivalent
units to Nuclear Recoils (NR) equivalent units Er,nr, the difference in the ionization
yield for NR and ER recoils needs to be accounted for.

Er,nr = Er,ee

(
1 + e∆V/εeh

1 + Y (Er,nr)eVdet/εeh

)
, (3.7)

where e is the elementary charge, εeh is the average energy required to generate a single
electron-hole pair; for Germanium εeh = 3 eV [22]. The yield for ER is 1 as all of the
deposited energy is converted into producing electron-hole pairs. For NR events, the
yield as a function of NR energy using the Lindhard model [114] is given by

Y (Er,nr) = k · g(ε)
1 + kg(ε) , (3.8)

where g(ε) = 3ε0.15 +0.7ε0.6 +ε, ε = 11.5 ·Er,nr(keV)Z−7/3, Z is the atomic number of the
detector material. For this analysis, k = 0.157 from the Lindhard model prediction was
used, which is consistent with yield measurements in Ge [76, 115, 116], and the spread
in k was considered as a systematic uncertainty.

3.3.2. Energy calibration
The energy calibration of the detector is done using a 252Cf neutron source that primarily
induces nuclear recoils. The activation of 70Ge by neutron capture produces 71Ge, which
decays to 70Ge (plus νe) by electron capture with a 11.43 day half-life [105]. 71Ga in
turn decays to gammas and electrons. The reaction is n + 70Ge → 71Ge* , 71Ge* + e−

→ 71Ga + γ + e−. These decays produce peaks at the K-, L-, and M -shell binding
energies of 71Ga at 10.37, 1.30, and 0.16 keV, respectively. The most prominent of these
electron capture peaks is the K shell peak which was used for calibrating the energy
scale and to monitor changes in the detector response with time. The corrections and
calibration determined with the K shell peak were consistent with the less prominent L
and M shell peaks, confirming detector response linearity across the energy range [76].

3.3.3. Energy Corrections
An initial calibration was performed to convert the uncalibrated energy estimator from
OF amplitudes to energies in eV units. The final energy spectrum is determined after ap-
plying several corrections to account for factors such as bias voltage, base temperature,
and event position within the detector. The energy corrections were applied sequentially:
first, corrections for HV current dependence, followed by adjustments for the base tem-
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perature, and finally, the energy is adjusted by considering the position dependence of
the event. These corrections are necessary to improve the energy resolution. This section
details these energy corrections.

Current correction

Observation of the 10 keV activation line showed that the amplification drifted during
the run and was caused by inconsistency in the voltage at the detector. By measuring
the HV current IHV , the detector voltage relative to the applied voltage can be found,
assuming all leakage current is downstream of the bias resistor, Rb. This assumption
was verified by observing that the measured phonon energy of electron recoil calibration
peaks depends on the detector voltage in Eq. 3.1. The current correction procedure
involves solving for the expected total phonon energy of the 10 keV calibration line using
Vdet. The measured total energy of electron recoil events is given by:

Ept = Erecoil · (1 + Vdet · e/ε). (3.9)

Upon solving for the expected total phonon energy of the 10 keV calibration line using a
Vdet corrected by the measured leakage current (IHV ), the expected total phonon energy
of the 10 keV calibration line and the observed drift in the data were in good agreement.

Base temperature correction

Following the current correction, a linear relationship between energy and base temper-
ature was observed, although the underlying cause remains unidentified. Subsequently,
this dependency was removed through a straight line fit which improved the energy
resolution.

Ecorr(Tbase) = Euncorr · (1 + (Tbase −mean(Tbase)) · Cbase), (3.10)

where mean(Tbase) is the mean base temperature of the run and Cbase is the slope of the
aforementioned line fit.

Position correction

The fast template is indicative of the pulse peakiness. During CDMSlite operation, the
position-dependent variation in pulse shape is diminished, as the NTL phonon signal,
which is more collimated in the z-direction, masks the initial recoil phonons from which
the positional information can be derived. There are still variations in pulse shape
characterized by the peaky vs. non-peaky pulse shape correlating with the proximity of
the initial recoil to the phonon channels on the detector. Following the base temperature
correction, a positive linear relationship between energy and the fast template amplitude
was observed. Thus the following correction based on a linear fit was performed:

Ecorr(2Tfast) = Euncorr · (1 + (2Tfast −mean(2Tfast)) · C2Tfast
), (3.11)
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Figure 3.8.: Histogram comparing the energy distribution before and after the energy
corrections. Both histograms show events that passed the quality cuts de-
scribed in 3.4. The corrections were applied to address environmental factors
such as detector voltage variations, base temperature fluctuations, positional
effects, and the NR energy scale correction. The plot illustrates the impact
of these corrections on the dataset.

where mean(2Tfast) is the fast template amplitude of 10 keV events during the run and
C2Tfast

is the slope of the aforementioned linear fit.

NR energy scale correction

For converting the total phonon energy (Ept) to nuclear recoil energy, one needs cor-
rection terms due to the variable detector voltage Vdet in the run. The HV current
corrections were applied to electronic recoils (ER) which have an ionization yield of 1,
while nuclear recoils (NR) require consideration of the yield Y (Enr) for accurate conver-
sion.

Ept = Erecoil · (1 + Vdet · Y (Enr) · e/ε) (3.12)

Not performing this correction could lead to errors up to 12% in the NR energy estimate.
These energy corrections were applied to energies calculated from the OF, NSOF, and
2TOF estimators. After implementing these corrections and applying the data-quality
cuts described in Sec. 3.4, the energy distribution of the CDMSlite Run 3, with and
without corrections, is depicted in Fig. 3.8. The post-correction energy distribution
reveals a more refined activation peak compared to the pre-corrected distribution.
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3.3.4. Energy resolution model
The energy deposited in a detector is not always the energy measured, as various factors
can affect the measured energy. Energy resolution, a measure of the detector’s ability
to accurately measure energy, reflects the uncertainty in these measured energies. A
proper energy resolution is essential for accurately calculating the expected energy
spectra of DM events.

The energy resolution of the detector is influenced by three primary components.
First, the baseline resolution, which arises from the electronics and the experimental
environment. Second, the discrete nature of charge production, governed by the Fano
factor [117]. Lastly, the position dependence arising from different phonon channel
responses, electric field distributions, etc. Therefore, the detector response model is
parameterized as a function of the recoil energy (in electron-equivalent units) Er,ee such
that total energy resolution σT (Er,ee) is written as follows:

σT (Er,ee) =
√
σ2
E + σ2

F (Er,ee) + σ2
PD(Er,ee)), (3.13)

where σ2
E is energy independent baseline resolution. σF is Fano resolution term which

is proportional to
√
Er,ee, and σPD is position dependence term, which is proportional

to Er,ee. With constants A and B, Eq. 3.13 can be rewritten using the three model
parameters σ2

E , A and B [76]

σT (Er,ee) =
√
σ2
E +B · Er,ee + (A · Er,ee)2). (3.14)

Baseline resolution is found using the zero-delay-OF amplitude OF0 of baseline noise
traces (called the zero energy resolution). It varied due to changes in the environmen-
tal conditions in April and the bias voltage discussed in Sec. 3.1. Thus, the values
for the constants are separately calculated for the periods A and B as shown in Table 3.1.

Due to the prominence of the Ge activation peaks, the widths of these peaks were used
to calculate the detector energy resolutions and the energy dependence of the resolution.
After applying all the quality cuts explained in Sec. 3.4, the resolution was calculated by
fitting a Gaussian with a linear background. The final parameters are shown in Table 3.2.

The best-fit parameters for the model in Eq. 3.14 is shown in Table 3.3. The co-
efficients A and B are consistent within uncertainties between the two periods, but
the B parameter is larger than the predicted measurements of Fano factor that is
0.39 [76, 118, 119]. The uncertainties in this model were propagated as systematic
uncertainties in the profile likelihood fit in Ref. [76], In this thesis work, they were
incorporated when calculating the uncertainty on the final limits using the Optimum
Interval (OI) method, as discussed in Sec. 5.4.
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Baseline Energy Resolution
[keVee] [eVee]

Period A 0.0 9.87±0.04
Period B 0.0 12.67±0.04

Table 3.1.: The baseline resolution of
CDMSlite Run 3 for the pe-
riod A and period B. Taken
from Ref. [76].

Peak Energy Resolution
[keVee] [eVee]

K shell 10.354±0.002 108±2.0
L shell 1.328±0.003 36.3±2.0
M shell 0.162±0.002 13.9±2.0

Table 3.2.: The resolution of recon-
structed energies for the K,
L, and M shell peaks from
the activation of 70Ge using
252Cf. Taken from Ref. [76].

σE [eVee] B [eVee ] A (×103)
Period A 9.87± 0.04 0.87± 0.12 4.94± 1.27
Period B 12.70± 0.04 0.80± 0.12 5.49± 1.13

Table 3.3.: The best-fit parameters of the energy resolution model in Eq. 3.14 for period
A and B. Taken from Ref. [76].

3.4. Data-quality cuts
Data-quality cuts are essential to eliminate periods of undesirable detector behavior,
instrumental noise, and poorly reconstructed events. These cuts fall into two categories:
live-time cuts and efficiency cuts. Live-time cuts exclude events during bad time periods
of the run, while efficiency cuts remove unwanted traces.

3.4.1. Live-time cuts
Live-time cuts are essential for eliminating periods of unsuitable conditions arising
during an experimental run. These cuts ensure that only data from stable and reliable
periods were included in the analysis, thereby improving the overall quality and
accuracy of the results at the expense of total exposure. The following are the live-time
cuts applied for the data analysis.

High voltage cut: During the operation of the T2Z1 detector, the detector volt-
age measured wasn’t always 75V, especially during the beginning of this run and during
pre-biasing. Thus this cut ensured that only data measured while the detector had a
bias voltage of -75 V were analysed.

NuMI cut: This cut removed time periods coincident with neutrinos at the Main
Injector (NuMI) beam at Fermilab within 200µs of a NuMI beam spill.

Pre-trigger baseline cut: The raw data has 4096 time bins, and the time bins be-
fore the 500th bin are defined to as “pre-pulse”. For each data series, the standard
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deviation of the pre-pulse was fit to Gaussian. Events with pre-pulse variance larger
than 4σ from the average variance of the data series were removed by this cut.

Trigger cuts: This cut removed time periods that encountered high trigger rates
either due to anomalous detector behavior or due to poor noise performance from
experimental conditions such as cold trap cleaning, following detector calibrations or
when the threshold was set lower after the start of the run. Events not triggering the
detector of interest T2Z1 were also removed.

Glitch cuts: Electronic noise caused glitch events characterized by a fast rise time
and a fast fall time, which triggered multiple detectors. These events were identified by
looking at the number of phonon and charge triggers for each event and the cut was
applied on the number of phonon and charge triggers plane. Events with glitches in
charge channels were removed by placing a flat cut on the charge χ2.

GPS cut: Events with inaccurate GPS time information, where the difference be-
tween the GPS time and the event time exceeded 17 s, were removed by this cut.

3.4.2. Pulse shape cuts
Pulse shape cuts are designed to eliminate events characterized by poorly-fit OF traces
such as saturated events, pile-up events, and those with high noise levels. This was
achieved by placing a quartic cut on the OF fit amplitude and the OF fit χ2 [109].

Another set of pulse shape cuts aimed at removing events such as glitch events,
square pulses, and low-frequency noise events that differ in shape compared to the
expected phonon signal traces. Glitch events have fast rise and fall times and are caused
by electronic noise from the TES bias line. Square pulse events also have fast rise and
fall times but plateau for approximately 200µs at the maximum. Due to their unique
pulse shapes that do not resemble the signal pulse shape, templates were created for
glitch events and another for square pulses to effectively remove them. The glitch noise
template and one of the LFN template is shown alongside the OF template in Fig. 3.9.
However, low-frequency noise has varying shapes, so three templates were developed.
This is explained in detail in 3.4.3.

To remove a noise type, the traces were fitted with both the standard phonon
template and the noise template, resulting in two χ2 values, one for each template fit.
The difference ∆χ2 shown in Eq. 3.15 was used to identify and remove these events
based on the concept that events that are more noise-like would have a positive positive
∆χ2 as the χ2 using the standard phonon template will be higher, and vice versa for
non-noise events i.e. signal-like events.

∆χ2 = χ2
standard template − χ2

noise template (3.15)
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Figure 3.9.: Standard phonon template alongside noise templates such as glitch and low-
frequency noise (LFN). Variations in shape among these templates were
utilized for pulse shape cuts to remove these noise events.

Energy dependent cut for each of the noise types were placed on the ∆χ2 as it is difficult
to remove these instrumental background events at low energies.

The ∆χ2 distribution for “good” events varies with time due to changes in the noise
environment throughout the run, leading to splitting the data into blocks of series with
custom cuts for each block. The series are group together based on the Cryocooler cycle
variable explained in Sec. 3.4.3.

3.4.3. Low-frequency noise removal
More than 75% of the events that triggered the detector during this experimental run
were caused by the Low-Frequency Noise (LFN) fluctuations (in the kHz frequency
range) in the baseline caused by vibrations. These fluctuations in the baseline caused
the energy deposition from the signal events at low energies to be unidentifiable. The
LFN events are difficult to remove as the shape of these events is inconsistent and
the bandwidth of these events overlaps the signal’s dominant frequencies. This section
discusses the methods used in the data analysis to remove this noise.

Cryocooler variable

The source of vibration was found to be from the Gifford-McMahon cryocooler on
the E-stem, as explained in Sec. 2.3, which was used to keep the electronics cold.
The vibrations occurred due to the deterioration of the cryocooler. Accelerometers
were installed to time the cryocooler vibrations, displaying distinct cryocooler chirps
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Figure 3.10.: A heatmap illustrating the cryocooler cycle variable CryoPreTimewith a
0.83,s modulus over the run period in calendar time, with the color inten-
sity representing the number of trigger events. High trigger rates, partic-
ularly notable at CryoPreTime of 0.1, correspond to vibrations occurring
0.1 s after each cryocooler chirp. This high trigger rate correlates with
low-frequency noise (LFN) in the data, attributed to cryocooler vibration,
which deteriorated during the run.

occurring at regular 0.83-second intervals. High LFN was observed 0.1 s after each
chirp. A variable that was developed based on the cryocooler vibration measurement is
the "CryoPreTime".

The CryoPreTime variable is defined as the time elapsed since the last cryocooler chirp.
To address instances where the accelerometer failed to detect a chirp and a period
lasted n × 0.83 seconds, 0.83 s modulus of the CryoPreTime variable was used [110].
Fig. 3.10 shows the number of triggered events on a plane of the CryoPreTime variable
and the calendar time of this run. It indicates a high number of events at 0.1 s of
the cryocooler cycle time, caused by vibration-induced LFN. The figure also shows a
progressively increasing number of events towards the end of the run compared to the
beginning, due to the deterioration of the cryocooler.

Pulse shape cut

Due to its varying shape, one template was not enough to remove the LFN with ∆χ2

method. Thus, a set of three LFN templates were developed to identify range of LFN
shapes, which are shown in Fig. 3.11. The ∆χ2 cut based on series blocks was applied
for events with energy above 5 keVt (∼250 eVee) since the signal-to-noise ratio are high
enough in these energies. For events with energies less than 5 keVt (∼250 eVee), removing
LFN is challenging when the signal-to-baseline noise ratio is low. Under these condi-
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Figure 3.11.: The three low-frequency noise (LFN) templates used for the pulse shape
cuts to eliminate LFN above 5 keVt. The plot is taken from [120].

tions, distinguishing between an actual energy deposition and LFN fluctuations becomes
difficult, as the signal from an energy deposition and the LFN are both buried under
baseline noise. To address this, a cut based on bifurcated analysis was developed, which
is explained below.

Bifurcated analysis cut

In cases where the LFN-background rate is difficult to model, a bifurcated analysis
was employed. This method utilizes sideband information to estimate the background
leakage after the quality cuts. The objective was to achieve less than 1 LFN-background
event passing the cut out of all events. The number of background events leaking past
a cut is denoted as

Nleak = NLFN · P (cuts), (3.16)

where NLFN is the number of LFN-background events, P (cuts) is the passage fraction of
the cuts. Since both NLFN and P (cuts) are unknown, an estimation of both NLFN and
P (cuts) can be achieved if there are two uncorrelated sets of cuts that are both sensitive
to LFN events. These uncorrelated cuts are labeled as A and B, and the known signal
efficiencies for these cuts are denoted as εA and εB, respectively. The unknown leakage
fractions of LFN events past these cuts are represented as LA and LB. The number of
good events is denoted as NG. The events passing cut A and B can be written as

NAB = εAεBNG + LALBNLF . (3.17)

The number of events passing the cut A can be written as

NAB +NAB̄ = εANG + LANLF , (3.18)
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where NAB̄ is number of events that pass cut A when cut B is not applied. The number
of events passing the cut B can be written as

NAB +NĀB = εBNG + LBNLF , (3.19)

where NĀB is number of events that pass cut B when cut A is not applied. With 100%
signal efficiency, the number of LFN events leaking past the cuts can be written as

Nleak = NAB̄NĀB

NĀB̄

(3.20)

For non-100% signal efficiency, a revised method was employed with corrections
applied to Eq. 3.20. Further information can be found in Ref. [76].

For the two different uncorrelated cuts, there were three parameters that were
used to narrow down low-frequency noise:

1. ∆χ2: using the difference in the LFN pulse shape from the standard signal trace.

2. CryoPreTime variable: Time since the last cryocooler cycle correlated with the
high trigger rate caused by LFN.

3. Correlation of raw signal between T2Z1 and other neighboring detectors: The
events triggered due to LFN produce triggered events in other detectors due to the
vibration source affecting all of them.

The bifurcated cut A uses parameter 1, and cut B uses parameters 2 and 3 to identify
LFN events. In this analysis, Boosted Decision Trees (BDTs) [121, 122] were employed to
reduce multiple parameters into a single BDT score. The BDTs were trained using events
from LFN-rich periods as background. For signal events, good phonon pulses were added
to baseline noise extracted from randomly triggered events. Cut values were placed on
BDT A and BDT B scores such that total low-frequency noise leakage remained below
1 event. The “box relaxation” technique verified the uncorrelated nature of variables;
relaxing a cut resulted in new events entering the signal box, thereby changing the
leakage estimate. With uncorrelated cuts the estimate grows proportionally with the
number of new events.

3.4.4. Other efficiency cuts
In addition to the efficiency cuts discussed earlier, several other cuts were applied to
further refine the data quality

Good randoms cut: Random triggers were implemented at the beginning, during
and the end of the series to determine noise characteristics and the detector resolution.
These events were removed for the final DM search analysis.
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Muon veto cut: This cut removed events caused by interacting muons that trig-
gered the muon veto panel and caused a global trigger within 50µs of the veto history
buffer trigger.

Good phonon start time cut: This cut removed events that were outside of the
OF search window which is -200 µs to 100µs around the trigger bin.

Multiple scatter cut: Assuming that the WIMP doesn’t interact with multiple de-
tectors, events triggering multiple detectors are removed. This cut selects multiple
scatter events by first checking whether detectors other than T2Z1 were triggered and
verified the possibility of a glitch or low-frequency noise, which were not considered as
multiple scattering.

3.4.5. Fiducial volume cut
Due to non-uniformities in the electric field as shown in Fig. 3.12, events at the larger
radii had a reduced NTL/Luke amplification as the voltage experienced by charge
carriers is less than the nominal voltage of 75V. For most events, the potential difference
∆V experienced by the charge carriers was the potential difference between the detector
faces resulting in maximal NTL amplification. However, having low ∆V , sidewall events
had reduced amplification leading to significantly lower reconstructed energy. This
created Reduced NTL-Gain Events (RNTLs) in the signal region, and they had to be
identified and removed. This section outlines the method used to remove these RNTLs.
This cut is explained in detail in Ref. [123]. While the exact position of an event could
not be determined to correct for the reduced NTL amplification, a parameter correlated
with the radial position was developed. The radial parameter ξ takes advantage of the
phonon channel layout, i.e. one outer channel and three wedge-shaped inner channels,
by comparing the fast and slow template and the start time between the outer and the
inner channels. In this written work, the terms fiducial volume cut and radial cut are
used interchangeably and refer to the same event selection criterion.

Reduced NTL-gain events (RNTLs)
The characterization of RNTLs was performed by modeling their distribution as a
function of reconstructed energy and ξ through a multi-step process. First, the energy
response of the detector was determined, considering the NTL gain as a function of
position inside the detector. Next, the rates of events contributing RNTLs into the
signal region below 2 keVee were evaluated. Subsequently, the distribution of RNTLs
in ξ space was modeled. Then, the resolution of ξ as a function of energy and ξ was
modeled. Using these models, a Monte Carlo simulation was constructed to determine
the expected distribution of RNTLs in the energy-ξ plane. More information of this
method can be found in [76] [124].

Cut Criteria
For energies below 2 keVee, a cut was placed on the distribution of ξ as a function of
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Figure 1. The drift in the total phonon energy for events in
the 10.37 keVee peak (from 71Ge K-shell decays) is well mod-
eled by the measured variation of the detector voltage (Eq. 6).
Early in April the detector voltage stabilized at 75 V. Three
252Cf calibrations were performed over the course of the run.
The timing of the calibrations (Feb. 2–3, Feb. 20–23, and
May 1–5), along with the 11.43 day half-life of 71Ge, is seen
in the variable intensity of the K-shell decays. Data points la-
beled as background simply represent events originating from
sources other than K-shell decays.

Figure 2. The reconstructed energies of the 10.37 keVee peak
events are positively correlated with the base temperature.
This dependence is approximated as linear and corrected ac-
cording to the fitted dashed line.

structed energy of the K-shell events and the recorded
base temperature, and is shown in Fig. 2.

After all corrections are applied, the energies of the K-
, L-, and M -shell peaks agree with the expected values
to within 3%.

Radial Position
[

mm2
]

800 1000 1200 1400

V
er
ti
ca
l
P
o
si
ti
o
n
[m

m
]

0

5

10

15

20

25

∆
V

[v
o
lt
s]

30

35

40

45

50

55

60

65

70

75

Figure 3. Calculated voltage map for high radius events,
showing the difference in electric potential ∆V between the
final collection points of the positive and negative charge car-
riers, as a function of initial position of the pair (plotted as ra-
dius squared vs. vertical position). Here, the top of the crys-
tal is biased at +75 V and the bottom is grounded. Charge
carriers in the outermost (radius > 800 mm2) detector annu-
lus can experience less than the full detector bias voltage.

C. Optimal Filter Energy and Position
Reconstruction

Because CDMSlite detectors have non-uniform electric
fields, the NTL amplification and the reconstructed recoil
energy vary with the location at which an event takes
place inside the detector. For most events, ∆V in Eq. 1 is
equal to the full potential difference between the detector
faces, resulting in maximal NTL amplification. However,
as shown in Fig. 3, near the detector sidewall ∆V can be
smaller; the voltage drop experienced by an electron-hole
pair (and thus the NTL amplification) can be reduced
such that the reconstructed energy of some high-radius
events is significantly lower.

While we cannot reconstruct the exact position of an
event and thus correct for the specific reduced NTL am-
plification, we can calculate a parameter that correlates
with the radial position of an event and use it to iden-
tify events at large radii. We employ optimal filter al-
gorithms [31] to reconstruct the energy and position of
events. Optimal filters weight frequency components of
the raw pulses to maximize the signal-to-noise ratio when
fitting for the amplitude of a pulse, and the standard op-
timal filter algorithm assumes constant pulse shapes.

CDMSlite phonon pulses are slightly variable in shape,
with differing proportions of “slow” and “fast” compo-
nents from event to event. The former provides a measure
of the total event energy, while the latter is sensitive to
the event position—events occurring directly underneath
a phonon channel cause a faster pulse rise time in that
channel than in other channels. We capture both types of
information with a two-template optimal filter algorithm

Figure 3.12.: Contour plot showing the calculated bias voltage distribution across a 2D
plane of vertical position against radial position. The color gradient de-
notes varying voltage bias across positions, revealing electric field non-
uniformities. The nominal voltage applied across the detector is 75V and
the regions with voltages below 75V had reduced NTL amplification, lead-
ing to fiducial volume cuts. The plot is taken from [76].

energy. The cut boundary was chosen such that the expected distribution of RNTLs
passing the cut is uniform in energy between 0.07 and 2 keVee to limit RNTLs to fewer
than 0.125 events. This radial parameter cut imposes an analysis threshold of 70 eVee,
determined by the lowest well-defined bound of the radial resolution model. For energies
above 2 keVee, the threshold of the fiducial volume cut was set differently due to the
inability to model ξ accurately because of saturation effects in the phonon pulse shape.
Instead, a restrictive cut at -4 × 10−5 in ξ was set above 2 keVee to ensure zero RNTLs
in this region. The result of this cut application on the CDMSlite Run 3 data is shown
in Fig. 3.13

3.5. Live-time and efficiencies
The amount of time the detector was live and recorded data, referred to as live-time,
is essential for determining the expected DM interaction rate during this period and is
detailed in Sec. 3.1. Ignoring annual modulation effects, the number of events observed
from a DM signal increases linearly with live-time.

Quality cuts were developed to remove background events, but they also remove
signal events, leading to a signal efficiency of less than 100%. Calculating this signal
efficiency is essential for scaling the expected DM interactions in the detectors after
cuts, particularly at low energies where signal-background discrimination is difficult.
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Figure 3.13.: CDMSlite Run 3 events on the energy-ξ plane with events passing the radial
cut shown in black and the events failing the cut is shown in red. The plot
is taken from [76].

Therefore, the signal efficiency was calculated as a function of energy.

Additionally, the hardware trigger only records events with a sufficiently high
signal-to-noise ratio, i.e., sufficiently high energy, requiring the calculation of trigger
efficiency as a function of energy. This is outlined in Sec. 3.5.2.

3.5.1. Live-time estimate
The cuts applied in the data analysis were categorized into live-time and efficiency cuts
due to their distinct roles in eliminating events from the dataset. Live-time cuts removed
periods and events of unfavorable experimental conditions. These cuts are the high
voltage (HV), prepulse baseline, charge χ2, bad series, GPS time, bad trigger rate, and
the T2Z1 trigger cuts, as explained in Sec. 3.4.1. After applying the live-time cuts, 95%
of the Run 3 events were retained leading to an exposure of 60.9 days, which corresponds
to 36.4± 0.3 kg-days with a detector mass of 0.597± 0.005 kg.

3.5.2. Trigger efficiency
The DAQ hardware triggers when an event exceeds a certain energy threshold, typically
significantly above the baseline noise level. While high-energy events are triggered in
all cases, events with lower energy slightly distinguishable above baseline noise exhibit
a non-zero and non-unity trigger efficiency. Thus the trigger efficiency was studied as a
function of energy. Calibration data was used for the trigger efficiency calculations due
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to high statistics. The trigger efficiency was calculated by determining the fraction of
events that trigger T2Z1, but also triggered other detectors. Quality cuts were applied
to this dataset ensure the trigger efficiency was calculated based on signal-like events.

3.5.3. Data-quality cuts efficiencies
Efficiencies for pulse shape cuts, including glitch cut, phonon χ2 cut, square pulse cut,
and low-frequency noise cut were determined through a pulse simulation using a soft-
ware called BatFaker, originally developed for salting. In BatFaker, simulated pulses
were generated by combining noise from randomly triggered events with phonon tem-
plates. The phonon templates have fast and slow components by combining a slow and
a fast template scaled to the user-defined amplitude. Slow amplitudes were uniformly
distributed to ensure event energies were uniformly distributed between 0 and 60 keVee.
The relative amplitude between the fast and slow templates was extracted from the DM
search data. These simulated traces were processed to determine the cut variables, and
energy. To measure cut efficiencies as a function of energy, events were generated with
a uniform energy distribution. CryoPreTime was also recreated for simulated traces for
the low-energy LFN cut by choosing noise traces from uniformly distributed CryoPre-
Time. Efficiencies were evaluated separately for periods A and B, and uncertainties were
propagated through Monte Carlo simulations.

3.5.4. Fiducial volume efficiency
The efficiency of the fiducial volume cut was measured using a Monte Carlo simula-
tion based on the resolution model of ξ, simulating the radial parameter distribution for
events with full NTL amplification. The ξ distribution is modeled after events with recon-
structed energies in the L-shell line, with statistical subtraction of non-71Ge-backgrounds
and deconvolution of the radial-parameter resolution at 1.3 keVee. This results in the
expected “true” distribution of ξ for L-shell energy events, which is then scaled accord-
ing to energy to create an energy-dependent probability distribution for ξ. Applying
the fiducial volume cut to these simulated distributions provided the efficiency of the
fiducial volume cut for fully amplified NTL events. The final efficiency was obtained by
multiplying the fiducial volume cut by the percentage of non-RNTLs (86%).

3.5.5. Combining efficiencies
Efficiencies of the trigger, efficiency cuts, and fiducial volume cut are combined by mul-
tiplying the mean of each efficiency and using Monte Carlo simulations to propagate
uncertainties. The effect of the fiducial volume cut is to reduce the difference in the ef-
ficiencies between periods A and B, necessitating a live-time weighted average to merge
these periods into a single efficiency curve.
These efficiency curves were parameterized using a functional form to keep track of

parameter uncertainties and covariances. This parameterization was performed for the
purpose of the profile likelihood fit which is beyond the scope of this thesis work. For the
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Finally, we calculate the BDT scores for the simulated
data and apply the cuts. The combined efficiency of all
data quality cuts, including the energy-independent mul-
tiples and muon veto cuts, is shown in Fig. 9.

B. Fiducial Volume

The efficiency of the fiducial volume cut can be mea-
sured with techniques similar to those used to construct
the RNTL model in Sec. V. We use a Monte Carlo sim-
ulation based upon the resolution model of ξ to simulate
the radial parameter distribution for events having the
full NTL amplification. We model the ξ distribution for
these events after that of events with reconstructed ener-
gies in the L-shell line. We statistically subtract the small
contribution of non-71Ge backgrounds from this distribu-
tion and deconvolve the radial-parameter resolution at
1.3 keVee.

The result is what is expected to be the underlying
“true” distribution of ξ for events at the L-shell energy.
We then use the model of ξ to scale this distribution
according to energy, thereby creating energy-dependent
probability distributions for ξ. Finally, we apply the ra-
dial cut to these simulated distributions, and by doing so
obtain the efficiency of the fiducial volume cut for events
with full NTL amplification.

To obtain the full efficiency of the radial cut, this num-
ber must be multiplied by the percentage of events recon-
structed at the correct energy (i.e. having the full NTL
amplification), as the resolution model for ξ is valid only
for those events at the correct energy. We specifically
set the cut to remove all RNTLs; we therefore estimate
the full efficiency of the radial cut by multiplying by the
percentage of non-RNTLs (86%).

C. Trigger Efficiency

The data acquisition system for CDMSlite issues a trig-
ger and reads out events only when an energy deposition
is large enough to create a significant increase of the sig-
nal above the baseline noise and thus exceed the trigger
threshold. To measure the trigger efficiency we select
events that have triggered in the other active detectors
because they are an unbiased sample of events with re-
spect to the CDMSlite detector’s trigger. The trigger
efficiency is then given by the fraction of events at any
given energy (measured in the CDMSlite detector) that
also generate a trigger in the CDMSlite detector. We use
252Cf calibration data, which has a significantly higher
event rate than the DM-search data, to decrease the sta-
tistical uncertainty of the trigger efficiency measurement.
To model the trigger efficiency as a function of energy, we
fit an error function to the data using the same method
as was used in the Run 2 analysis [9]. The final trigger
efficiency curve is shown in Fig. 9. Above 0.09 keVee the

Figure 9. The signal efficiency with successive application of
the trigger efficiency, quality cuts efficiency, and fiducial vol-
ume cut efficiency. The final data is included with statistical
and systematic 1σ uncertainty. Fitting the efficiency model
to these data gives the final (blue) efficiency curve and the
corresponding ± 1σ uncertainty band.

trigger efficiency is equal to 100% with negligible statis-
tical uncertainty.

D. Parametrization

The efficiencies for the trigger, the data quality cuts,
and the fiducial volume cut are combined by multiply-
ing their mean values and propagating their respective
uncertainties.

Incorporating the signal efficiency into the likelihood,
described in Sec. VIII, is most easily accomplished by
parameterizing the final efficiency using a functional form
with a limited number of model parameters. We find that
a three-parameter error function,

h (E; ~µe) = µe1 ×
[
1 + erf

(
E − µe2√

2µe3

)]
, (15)

is a good parametrization of the total efficiency curve.
This simple efficiency parametrization deviates from the
data slightly (. 4 %) in the 0.15–0.4 keVee range. We
verified that this deviation results in a negligible change
in the expected DM sensitivity. We determine the best-
fit values of µe1 , µe2 , and µe3 as well as the covariance
between these parameters, denoted by a matrix E. This
matrix is used to propagate uncertainties in the efficiency
parameters into the profile likelihood fit of Sec. VIII.

Because the radial cut imposes an analysis threshold
cutoff at 70 eVee, as described in Sec. V, we set the effi-
ciency below this energy to zero, as seen in Fig. 9.

Figure 3.14.: The plot shows the efficiency curves obtained through the sequential ap-
plication of trigger efficiency, quality cuts efficiency, and fiducial volume
cut efficiency. The final efficiency curve in blue is derived via a param-
eterization using a three-parameter fit with an error function. The ± 1σ
uncertainty is depicted as an uncertainty band around the final efficiency.
The plot is taken from [76].

main analysis, the efficiency curves were parameterized using a three-parameter error
function as follows:

f(E) = µ1 ∗ (1− erf(E − µ2√
2 · µ3

)). (3.21)

As the fiducial volume cut imposes a threshold of 70 eVee, the efficiency is set to zero
below this energy. Figure 3.14 shows the signal efficiency after applying the trigger,
quality, and fiducial volume cuts. The trigger efficiency is 100% above 0.09 keVee. The
fiducial volume cut presents the major constraint on signal efficiency, while the quality
cuts also play a significant role, particularly at low energies. his is attributed to poor
data quality arising from a lowered threshold and instrumental noise which lead to a
stringent cut to remove them, such as the low-frequency noise cut which allowed only
less than one noise event to pass the cut. The motivation for this thesis work is to replace
this LFN cut with a Machine Learning (ML) based cut which results in a higher signal
efficiency. The impact of the fiducial volume cut on the signal efficiency gained from the
ML-based LFN cut, as well as its effect on the final results, is discussed in Chapter 5
and Chapter 6.
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4. Low-Frequency Noise Identification
using Machine Learning

As seen in the previous chapter, the vibration-induced Low-Frequency Noise (LFN) has
led to stronger event selection criteria to remove the LFN events which set a higher
analysis threshold and thus reduced the sensitivity of the experiment to low-mass dark
matter candidates. This chapter presents a machine learning-based approach for re-
moving the LFN events while preserving the low-energy signal events. Section 4.1 and
Section 4.2 describe the sample generation methods, followed by a brief introduction to
neural network algorithms in Sec. 4.3. The classification of LFN using single-channel
information, the Phonon Total (PT) channel, and multi-channel information using Con-
volutional Neural Networks (CNNs) and CNN with Long Short-Term Memorys (LSTMs)
Section 4.5 are detailed in Sec. 4.4 and Sec. 4.5, respectively.

4.1. Sample preparation
The dataset for the machine learning method consists of signal sample containing signal
features, and the LFN-background sample ideally consisting of triggered LFN events.
This section details the sample generation process for both signal and LFN-background
sample.

4.1.1. LFN-background samples
The LFN-background events cannot be simulated as the shape of these events varies and
the nature of these events is not well known. Thus, the LFN-background samples are
selected from the CDMSlite Run 3 experimental data, specifically events from periods
of elevated LFN events. The selection is done by choosing periods of intense vibration
during the experimental runtime, as determined by the CryoPreTime quantity shown in
Fig. 3.10. Specifically, the periods between March 4 and 5, and between April 2 and 30,
are selected. Then the events in this period are filtered by passing them through the LFN
cut developed for the analysis of this run explained in Sec. 3.4.3. Events failing this cut
are then used as the LFN-background events for this analysis. It should be emphasized
that these samples from elevated LFN periods may potentially contain signal events,
however they are predominantly triggered by LFN events. Figure 4.1 shows the OF
amplitudes of the PT channel and energy of the LFN events. It can be seen that most
of the events have amplitudes between ∼ 15 and ∼ 40ADC units in the PT channel with
corresponding energy between 0.07 keVee and ∼0.15 keVee. Raw traces of selected LFN
events are shown in Fig. 4.2, showing the varying shape of this noise.
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Figure 4.1.: PT channel OF amplitude (left) and energy (right) distributions of the LFN
events. The events are chosen from vibration-intense periods from CDMSlite
Run 3 experiment, and filtered using the LFN cut developed for this analysis
described in Sec. 3.4.3. The histogram shapes result from applying energy
corrections to the amplitudes to derive the energy.
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Figure 4.2.: Examples of raw traces from LFN-background dataset with four phonon
channels PA, PB, PC, and PD. The traces show varying shapes of the noise
events caused by the cryocooler’s vibration.
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4.1.2. Signal samples
The main idea behind the signal samples generation is to inject phonon templates
of various amplitudes into the baseline noise traces. The baseline noise events are
extracted from randomly triggered events in the CDMSlite Run 3 experimental data.
The randomly triggered events may contain signal events, and to eliminate these, a
cut based on the standard deviation of the raw traces was applied, as signal traces
tend to a higher standard deviation compared to the noise traces. Raw traces of the
randomly triggered events with a standard deviation larger than 15ADC units were
removed by this cut. This cut also effectively removed traces with very poor noise with
high amplitudes, which could submerge low-amplitude signal features. Although these
high-amplitude noisy events resemble LFN, they are excluded from this analysis due
to their amplitudes. This cut preserves LFN in the baseline events, ensuring that the
signal samples have LFN in the baseline. As a result, the ML-models are trained to
identify signal features within traces that contain LFN in the baseline. Some events
removed by this cut are shown in Fig. 4.3, showing events with poor noise and an event
with a signal. With this cut, about 0.16% noise traces were removed. Figure 4.4 shows
examples of raw traces that passed this cut and were used in generating the signal
samples. However, it is important to note that these raw traces may still contain LFN
in the baseline.

The majority of LFN event amplitudes fall within the range of ∼ 18 and ∼ 25ADC units
in the PT channel as seen in Fig. 4.1, and the established cut in the Run 3 analysis
effectively eliminated all events within this amplitude range, so these amplitudes are
chosen for signal samples to train and test the performance of the neural network.

The template used for “spiking” the baseline noise depends on whether the clas-
sification is based on the individual channels (PA, PB, PC, PD), the PT channel, or all
the channels together (also called multi-channel). Figure 4.5 shows the pulse templates
of individual channels as well as the PT pulse template. It can be seen the individual
channel templates are identical, however, the PT pulse template is slightly different
from the individual channel templates. It is important to note that the shape of
individual channel traces varies based on the position of the interaction in the detector
volume, thus the template is inadequate in capturing these features. This is explained
in detail in Sec. 4.2. The PT pulse template, shown in Fig. 4.5, is derived from the sum
of all the channels, thus washing out this position dependency. Most of the CDMSlite
Run 3 analysis of this dataset is done with the PT pulse template. The schematic of
the “spiking” is shown in Fig. 4.6 where it can be seen that the OF template is added
to a random noise trace to get the fake signal samples.

Unlike the individual channels and PT channel, the templates for the multi-channel
are not straightforward as traces in individual channels differ based on the location
of the interaction. Therefore, a single set of templates cannot represent all channels.
Thus the simulation of events in the detector is essential for multi-channel classification
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Figure 4.3.: Examples of raw traces of one phonon channel from randomly triggered
events that did not pass the standard deviation cut. The top left, top right,
and bottom left traces show baseline noise with poor noise quality which
when spiked would submerge the signal features. The bottom right trace
contains a signal, and thus the trace is not suitable to be spiked with the
template.
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Figure 4.4.: Examples of raw traces from one phonon channel of randomly triggered
events that passed the standard deviation cut. These traces are used for
“spiking” in order to generate the signal samples.
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Figure 4.5.: The pulse templates of the individual phonon channels PA, PB, PC, and PD
along with the pulse template for the PT channel. The individual channel
templates are the same.
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Figure 4.6.: Schematic of the signal samples generation. The OF pulse template is added
to baseline noise from randomly triggered events to generate fake signal
events.

with uniformly distributed interactions in the detector volume. Section 4.2 details the
method used for signal samples generation for the multi-channel classification.

4.1.3. Pre-processing
The traces that are used to train and test the network can either be pre-processed with
filters or can be used without any pre-processing. The following are the two methods
that are considered for this LFN analysis, with results presented in Sec. 4.4.

Low-pass filter

A low-pass filter removes the high-frequency components of the trace and only lets the
low-frequency components pass through. As our signal is prominent in lower frequencies,
this filter effectively preserves the signal features.

Moving average

Moving average smooths the trace by performing a series of averages on the subsets of
data within the full trace. This downsampling flattens the small fluctuations, i.e. the
high frequency components. While a small window smooths out a small portion leaving
the major fluctuations intact, a large moving average window would wash out some of
the important components of the trace such as the rising edge of the pulse. This is
not only important in localizing the event in the detector volume but also important in
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identifying signal events as LFN events tend to have a larger rise time compared to the
signal events.

Figure 4.7 shows raw traces of two LFN events and a signal event, all unprocessed (top
row) and after pre-processing: low-pass filter (second row) and moving average (third
row). The pre-processed traces reveal the underlying features more clearly compared to
the unprocessed raw traces.
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Figure 4.7.: Examples of raw traces from each phonon channel for two LFN events are
displayed in the left and middle columns, with an observed signal event
shown in the right column. The unprocessed traces are presented in the top
row, the low-pass filtered traces in the middle row, and the traces with the
moving average applied are shown in the bottom row.
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4.2. Simulation Using Pulse shapes and Regression
(SUPR)

As the SuperCDMS simulation based on G4CMP [125] was not tuned for older
experimental setups like CDMSlite, a data-based simulation is used for signal samples
generation in the multi-channel classification. The basis of this Simulation Using Pulse
Shapes and Regression (SUPR) method is to capture the pulse shapes from existing
data in the CDMSlite dataset.

For an event, each channel has different features based on the position of the interaction
in the detector. For example, if an event occurred close to channel PB, the trace PB will
have the highest amplitude of the four channels since the number of phonons absorbed
in that channel is higher compared to the other channels. Additionally, the rise time
will be shorter for channel PB, as the phonons arrive on this channel earlier than other
channels. The other three channels will have a larger rise time based on their proximity
to the event location. For accurate simulations, interactions distributed throughout
the detector is required to prevent bias toward any specific direction. So, using
calibration source data is not ideal as they are predominantly positionally non-uniform.
On the other hand, events from the activation peaks, as explained in Sec. 3.3.2, are
expected to be uniformly distributed across the detector. Therefore, they are used
to determine the templates corresponding to the position of an event within the detector.

This section presents a novel method for generating traces using the pulse shapes
based on event locations. The pulse shapes are fitted with an exponential function,
and the resulting fit parameters are used to correlate with event localization through a
regressor. This correlation is used to generate additional events.

4.2.1. K-shell events
Of the activation peaks in Ge, the K-shell peak has the highest branching ratio [126],
thus producing a large number of events in the detector on the order of O(103) events.
Among the activation peaks in Ge, the K-shell peak has the highest branching ratio,
resulting in a significant number of events in the detector, approximately O(103) events.
These events were used for the study of other analysis topics like the radial cut, energy
scale corrections, and calculating signal efficiencies.

Event selection

The mean of the K-shell peak is 10.354± 0.002 keVee and the resolution of the peak is
108± 2.0 eVee[76]. The Run 3 low-background events which pass all of the quality cuts
explained in Sec. 3.4, and have energies within the range of 10.354± 0.108 keVee are
chosen.
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Figure 4.8.: The distribution of event energies from the CDMSlite Run 3 analysis that
passed all of the cuts with the selected K-shell events highlighted in red.
The K-shell events are selected by choosing events within the energy range
of 10.354± 0.108 keVee [76].

Characteristics of the K-shell events

The energy distribution of CDMSlite Run 3 events that pass all the quality cuts, with
the region corresponding to the K-shell event selection, is shown in Fig. 4.8. The event
location within the detector volume is a quantity that can not be directly measured
from the event data. However, parameters like the amplitude and rise time correlations
between channels provide insights into the event’s location. One key parameter for
localizing events is the energy partition, which is calculated from the amplitudes of inner
channels that are wedge-shaped. The X energy partition XOF and Y energy partition
YOF are computed using

XOF = cos(30◦)DOF + cos(150◦)BOF + cos(270◦)COF
DOF + BOF + COF

, (4.1)

YOF = sin(30◦)DOF + sin(150◦)BOF + sin(270◦)COF
DOF + BOF + COF

, (4.2)

where BOF, COF, and DOF are the OF amplitudes of channels PB, PC, and PD, respec-
tively. Plotting the XOF and YOF energy partitions, called a partition plot, can be used
to verify the homogeneity of the event distribution in the XY plane. Figure 4.9 shows the
energy partitions of the selected K-shell events. It can be seen that they are uniformly
distributed in the XY plane, as demonstrated by the even distribution throughout the
partition triangle.
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Figure 4.9.: The partition plot of K-shell events, which is a representation of the local-
ization of the events in the XY plane, using the energy partition information
calculated using Eqs. 4.1 and 4.2.

4.2.2. Fitting traces
The purpose of fitting the raw traces is to quantify their shape by measuring the am-
plitude, rise time, and fall time of each channel’s raw trace in an event. Initially, a
simple double exponential fit with one rise constant and one fall time constant was used.
However, it will be shown later in this section, this approach was insufficient to capture
the complexity of the pulse shape. Consequently, multiple rise and fall times were in-
troduced to improve the fit. The following sections describe these methods and their
results.

Double exponential fit with one rise time constant and one fall time
constant

For the double exponential fit, the fit function y as a function of time t can be written
as

y(t) = a(e−(t+t0)/τf − e−(t+t0)/τr ), (4.3)

where a, τf , τr, and t0 are the fit parameters, representing the amplitude, fall time
constant, rise time constant, and the offset in the time, respectively. Although t0 is
calculated during fitting, it is not specifically used for new trace generation. For new
trace generation, x-offset values were drawn from a uniform distribution between 470
and 540 time bins, resembling the K-shell events offset.
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Figure 4.10.: The raw traces from the four channels of a K-shell event were fitted using
an exponential fit based on Eq. 4.3 with the corresponding reduced χ2

shown in the legend. The leading channel PC shows an inadequate fitting
using this version of the exponential fit.

Figure 4.10 shows the four raw traces from the four channels of a K-shell event, along
with the fitted traces using Eq. 4.3. The channel closest to the interaction, PC, exhibits
a “peaky” shape and a high amplitude, and will be referred to as the “leading channel”.
The fit for this channel does not accurately represent its shape, as reflected by the higher
reduced χ2 value compared to the other traces. To better capture the pulse shape, a fit
function with two rise time constants and two fall time constants is used, as explained
in the next section.

63



Chapter 4 – Low-Frequency Noise Identification using Machine Learning

0 2 4 6
Time [ms]

0

250

500

750

1000

P
u

ls
e

am
p

li
tu

d
e

[A
D

C
]

PA

raw trace

fitted trace

χ2/ndf=68.42

0 2 4 6
Time [ms]

0

500

1000

P
u

ls
e

am
p

li
tu

d
e

[A
D

C
]

PB

raw trace

fitted trace

χ2/ndf=111.78

0 2 4 6
Time [ms]

0

500

1000

1500

2000

P
u

ls
e

am
p

li
tu

d
e

[A
D

C
]

PC

raw trace

fitted trace

χ2/ndf=276.90

0 2 4 6
Time [ms]

0

250

500

750

1000

P
u

ls
e

am
p

li
tu

d
e

[A
D

C
]

PD

raw trace

fitted trace

χ2/ndf=82.68

Figure 4.11.: The raw traces from the four channels of a K-shell event were fitted using
an exponential fit based on Eq. 4.4 with the corresponding reduced χ2 is
shown in the legend. The leading channel shows an improved fit using this
version of the fit equation compared to the fit based on Eq. 4.3 seen in
Fig. 4.10.

Double exponential fit with two rise time constants and two fall time
constants

For the modified double exponential fit with two rise time constants and two fall time
constants, the fit function y as a function of time t is written as

y(t) = a(e−(t+t0)/τf1 + e−(t+t0)/τf2 − e−(t+t0)/τr1 − e−(t+t0)/τr2 ), (4.4)

where a is the amplitude, τf1 and τf2 are the fall time constants, τr1 and τr2 are the rise
time constants, and t0 is the offset in the time. Similar to the previous section, the offset
t0 is calculated but not specifically used for new trace generation. Figure 4.11 shows the
four raw traces from the four channels of the same event in Fig. 4.10, along with the
fitted traces using Eq. 4.4. The channel closest to the interaction point PC exhibits a
“peaky” shape, and the fit represents the shape more accurately than in the previous
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case, as evidenced by the lower reduced χ2 value. The χ2 is still high because noise
fluctuations are not accounted for unlike OF fit, and the version of fit does not fully
capture the peak. While additional fit parameters could improve the χ2, this version is
considered sufficient for the current analysis.

4.2.3. Using the fit parameters for the traces generation
The goal of this method is to map the pulse shape of the events, obtained from the double
exponential fit, to the location of the interaction in the detector volume, estimated from
the partition. This section details the approach used for this correlation utilizing a
decision tree regressor using the scikit-learn package [127].

Decision tree regressor

A decision tree regressor [128] is a supervised learning method that uses a series of
conditions to predict outcomes. It consist of nodes that represent a condition based
on feature values, which then leads to further conditions on further nodes or predicted
values on leaves. This hierarchical structure enables us to understand how inputs
influence the predicted output. Further information can be found in Ref. [129].

The regressor is trained with the partition information shown in Fig. 4.9 with
the fit parameters as the target. In this analysis, only the fitting method with two
rise times and two fall times shown in Eq. 4.4 is used to find the correlation between
the position of the interaction event to the shape of the waveforms. The training was
performed with 1400 samples. The performance of the model is evaluated using a Mean
Square Error (MSE) given by

MSE = 1
N

N∑
i=1

(yi − pi)2 , (4.5)

where N is the number of samples, yi is the true value, and pi is the predicted value.
Due to its squaring of the penalties instead of applying linearly, MSE results in higher
error for outliers. [130]

4.2.4. Generation of new traces
For generating traces, a uniform distribution of XOF and YOF values within the
partition triangle should be chosen. The partition of K-shell events in Fig. 4.9 shows
that events form a band of triangles with events concentrating around the corners and
very few number of events in the middle. To approximate this distribution, rough
lines were drawn to imitate these bands. Then, a uniform set of partition values was
generated within the band, with events between the corners randomly removed to
replicate the observed distribution.
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Figure 4.12.: The traces generated from the predicted fit parameters using the SUPR
method are shown on the left. In the middle, the traces are rescaled to
the desired PT amplitude, and on the right baseline noise is added to the
rescaled trace.

The partition values are then passed through the trained regression model to ob-
tain the fit parameters, which were subsequently used to generate new traces. These
generated traces were then rescaled to the desired PT amplitudes and combined with
baseline noise to produce the final traces for the analysis. Figure 4.12 shows the process
of generating a signal event using a SUPR method trace. An event generated from
the SUPR method is shown on the left, in the middle it is rescaled such that the
PT amplitude is 200ADC, and the right plot shows the scaled trace combined with
the baseline noise, resulting in a signal event trace. This method using pulse shapes
and regressor serves as a proof of principle, and it can be fine-tuned in the future
for improved performance. The schematic of the signal sample generation process
is illustrated in Fig. 4.13. To generate events, X and Y partition values are provided
as input, and the corresponding pulse shape fit values are predicted by the trained
regressor. These fit values are then used to generate the templates to which baseline
noise is added. Using this method, approximately 28,000 events were generated, limited
by the number of available baseline noise traces.

4.3. ML-based classification approach
For the LFN removal task, two types of network architectures were studied: Convo-
lutional Neural Networks (CNNs) [131] and Long Short-Term Memory (LSTM) [132]
models. The networks were developed using the TensorFlow package [133]. This anal-
ysis primarily focuses on CNNs, with results of CNN combined with LSTM i.e. CNN-
LSTMs used for comparison. This section provides a brief introduction to CNNs and
LSTMs, followed by an overview of the loss functions and metrics used in this study.
Additionally, activation maps, which help identify features important for class decisions,
are discussed. Finally, the classification results using single-channel information, the PT
channel, and multi-channels are presented.
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Figure 4.13.: The schematic for generating signal samples for the multi-channel network
involves adding events generated by the SUPR method to baseline noise
extracted from randomly triggered events to obtain the signal event.

4.3.1. Convolutional neural network (CNN)
Convolutional Neural Networks (CNNs) [131] are a type of deep neural network known
for their performance in computer vision problems [134]; however, they can also be
effectively utilized in any application with a grid-like topology. The key component of
CNNs is the convolution operation performed by a convolution layer which transforms
data into feature maps. In a 1D convolution, the convolution operation is applied along
the trace using a specified kernel size. When a pattern is detected within a segment
of the trace, the same pattern will be recognized later in the sequence regardless of
its position. This property is known as translation invariance which ensures that the
convolutional layer identifies features consistently across different regions of the trace.
This is especially important as the signal features, like the sharp rising edge, vary slightly
in position along the trace due to the trigger procedure, and this is why a neural network
consisting of fully connected neurons such as a Multi-Layer Perceptron (MLP) [135] is
not favored for this classification. A CNN architecture usually contains one or more
convolution layers, followed by regularization and pooling, and fully connected layers.

Convolution: A convolution layer contains filters (or kernels) that slide along the
input data and perform convolutions, which is a dot product of the input and the filter.
The output of a convolution layer is a feature map, which is a representation of the
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input. By applying convolutions, the convolution layer captures local dependencies in a
sequence. The option “strides” determines the steps taken along the data samples as the
filter moves across the input array. The option “padding” is used to control the output
length of the feature map, ensuring that the shape of the output matches the input array
by adding zeros around the input. This is done to prevent the loss of border information.
Given an input sequence x = [x1, x2, . . . , xn] and a filter w = [w1, w2, . . . , wk], the
convolution operation outputs a sequence y = [y1, y2, . . . , yn−k+1], where each element
yi is computed as:

yi =
k∑
j=1

wj · xi+j−1 (4.6)

for i = 1, 2, . . . , n − k + 1. When the output sequence are fed to the successive convo-
lution layers, the network learns increasingly abstract features to get a comprehensive
understanding of the data. The size of the convolution kernel is important, as a large
kernel can pick up features in the larger area in a trace, but they are computationally
expensive. For the LFN analysis, having a larger kernel is favored as the LFN is usually
spread over a larger area in the trace. After the first convolution, the kernel sizes are
reduced to pick out the high-level features.

Pooling: Pooling layers are incorporated to reduce the dimensionality of the feature
maps without losing information and provide translation invariance. They usually
follow the convolution layer, to retain or pick out high-level features while discarding
less important information, thereby making the subsequent layers more efficient in
learning higher-level representations. The following are the different types of pooling
used in the deep neural networks.

Max Pooling: Max pooling [136] selects the maximum value within a sliding win-
dow of the feature map and captures the most prominent feature in that region. It is
commonly used to downsample and reduce the dimensionality of feature maps.

Average Pooling: Average pooling [136] computes the average of all values within
the sliding window, providing a smoother downsampling method by considering the
overall feature intensity rather than focusing on the maximum value.

Global Average Pooling: Global Average Pooling (GAP) [137] reduces each fea-
ture map to a single value by averaging all the elements in that feature map. It is often
used in a network after the convolution layer to convert the spatial dimensions into a
vector before passing it to fully connected layers.

Global Max Pooling: Similar to GAP, global max pooling reduces each feature
map to a single value, but it selects the maximum value across the entire feature map,
emphasizing the most dominant feature present.
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Regularization techniques: Regularization techniques, such as L1/L2 Regulariza-
tion [138, 139], are used to prevent overtraining by adding constraints to the model’s
complexity. L2 regularization penalizes large weights by adding a cost term to the loss
function. Dropouts are a type of generalization where weights are randomly dropped,
in other words, it randomly discards the output of the neurons, to prevent overfitting.
This is especially useful in cases with a large number of parameters where overfitting is
expected.

Fully connected network: Finally, the extracted features are passed through fully
connected layers with appropriate activation in the final layer to make predictions. This
part of the architecture takes care of mapping the information from the features to
output predictions using non-linear activations.

4.3.2. Long Short-Term Memory (LSTM)
Recurrent Neural Networks (RNNs) are a type of neural network typically used for
sequential data. The distinguishing feature of an RNN, compared to a feedforward
network like a CNN, is its ability to take information from prior inputs and incorporate
it into the current step. This is often referred to as “memory”. The memory is updated at
each step based on the current output and the previous step’s information. Long Short-
Term Memorys (LSTMs) are a type of RNNs developed by Hochreiter and Schmidhuber
in 1997 [132]. LSTMs are designed to capture long dependencies in the time series
data using “memory cells”. A memory cell consist of input, forget, and output gates
that determine which information to add to the memory, remove from the memory, and
determine the output, respectively. These memory cells manage the flow of information.
At each time step, LSTM takes in the current input and information from the previous
step in memory to produce output output.

CNN-LSTM In this type of architecture, LSTMs are combined with CNNs. The
convolutional layers are used to extract features that represent the data. These feature
maps are then passed through LSTM layers, which capture long-term temporal depen-
dencies by maintaining the memory of past information. This combination of pattern
recognition using convolutions and sequence learning with LSTMs is tested for the LFN
classification task.

4.3.3. Model training
Model training involves multiple iterations called epochs. The dataset used for network
training is typically split into two parts: the training samples, which are used during
the training process, and the validation samples, which are used only for validation.
In each epoch, the training samples pass through the entire network and the loss is
calculated based on the difference between predicted and true labels. This step is called
the forward pass. Then the loss function is propagated back and the gradients of the
loss functions with each weight are calculated using the chain rule. This step, called
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backpropagation, determines how much each weight has contributed to the loss. The
given optimization algorithm updates the weights based on the gradients such that the
loss is reduced according to the learning rate. The learning rate determines the step
size of the weights updated. A large learning rate leads to a large step size but the
optimal solution may be skipped, while a small learning rate makes the training process
longer but likely achieves optimal solution.

This process is repeated either until the given number of epochs is reached or
stopped early when the model shows convergence. The model reaches convergence
when the loss begins to plateau, which implies no further improvement. Not every
loss reduction means that the model is learning, sometimes it means that the model is
learning too much from the data by picking up on small fluctuations, commonly called
overtraining, and the generalization capacity of the model is lost. This can be observed
when the loss on the validation dataset increases with the epoch. It is ideal to stop
the training at this point, and it is usually done with early stopping options. Thus, by
looking at the training and validation loss, it helps us understand whether the model
has effectively learned the data and make accurate predictions.

4.3.4. Loss function
The loss function used for this classification is the binary cross-entropy loss function
[140]. This loss function measures the performance of the model by comparing the
predicted probabilities with the actual class labels. It is defined as:

L = − 1
N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] , (4.7)

where N is the number of samples, pi represents the prediction of ith event, yi denotes
the true label of the ith event.

4.3.5. Metrics
For evaluating the performance of the neural network, several metrics can be used. In
this analysis, the Receiver Operating Characteristic (ROC) curve, the confusion matrix,
and efficiency and purity as a function of amplitudes are used. The nomenclature used
in this section is shown below:

TP True Positive True signal predicted as signal
TN True Negative True LFN-background predicted as LFN-background
FP False Positive True LFN-background predicted as signal
FN False Negative True signal predicted as background

70



Chapter 4 – Low-Frequency Noise Identification using Machine Learning

The ROC curve

The Receiver Operating Characteristic (ROC) curve is a metric that uses a probabilistic
approach tool for evaluating the classification performance by illustrating their ability
to differentiate between two classes. The True Positive Rate (TPR) is plotted against
the False Positive Rate (FPR) across various thresholds, where the TPR and FPR are
defined below:

TPR = TP

TP + FN
(4.8)

FPR = FP

FP + TN
(4.9)

The Area Under the Curve (AUC) of the ROC curve quantifies overall separability,
with a higher AUC denoting a better separation between true positives and true neg-
atives. The ideal point in a ROC curve is at the top-left corner where TPR equals 1
and FPR equals 0, thus the AUC is 1. AUC values range from 0 to 1, with 1 indicating
perfect classification, 0.5 indicating no discriminatory power, and 0 representing perfect
inverse classification.

Confusion matrix

A confusion matrix summarizes the correct and incorrect predictions by comparing the
actual and predicted classes for a given threshold, as shown in Fig. 4.14. The top-left
quadrant shows the TN, the top-right quadrant is the FP, the bottom-left quadrant is
the FN, and the bottom-right quadrant is the TP.
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Figure 4.14.: Illustration of the confusion matrix.
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Signal efficiency and purity

As the amplitude decreases, it becomes increasingly difficult to distinguish between
LFN and signal events, as their shapes become almost indistinguishable. Therefore,
evaluating the classification performance as a function of amplitude is essential.
However, the ROC curve and the confusion matrix don’t tell us the performance as
a function of amplitudes. Thus, efficiency and purity as a function of amplitudes are used.

Recall or signal efficiency: Recall or signal efficiency is defined as the ratio of the
true positives to all positives. So if the TP is higher, then the ratio would be higher,
increasing the efficiency. For each amplitude, this quantity gives an estimate of the
signal efficiency at that amplitude. For a given amplitude a, it is written as

Efficiency(a) = TP(a)
TP(a) + FN(a) . (4.10)

Precision or signal purity: Precision or signal purity is the ratio of the true positives to
all predicted positives. If there is no FP, the purity would be 1; if the FP is higher, then
the purity would be reduced. Thus, signal purity shows the impact of LFN-background
leakage on signal identification. For a given amplitude a, the signal purity as a function
of amplitude, is written as

Purity(a) = TP(a)
TP(a) + FP(a) . (4.11)

Signal efficiency and purity are crucial in the dark matter (DM) search analysis. Better
signal efficiency enables sensitivity to search of low-mass DM, while higher purity im-
proves LFN-background rejection, enabling the setting of limits on smaller cross-sections.
As will be explained in Sec. 5.4, the DM exclusion limits are set using Optimum Interval
(OI) method assuming a signal-only hypothesis. Therefore, in this analysis, purity is
given higher importance, as the objective is to minimize the presence of LFN events in
the final energy spectrum.

4.3.6. Class activation maps
The Class Activation Maps (CAMs) [141] are used to understand which features from
the convolution layers were given high importance during classification. To enable this,
a GAP layer is applied between the last convolutional layer and the fully connected part
of the network. For an output of the convolution layer Ai of the ith filter, the Class
Activation Map is calculated as

CAM(t) =
∑
i

wi ·Ai(t), (4.12)

where wi is the weight of the ith filter. When these activation maps are overlaid on the
trace, they highlight the temporal regions in the trace that were crucial for the decision.
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Figure 4.15.: A schematic of the CNN architecture for LFN classification. The input is
the raw trace and the targets are 0s and 1s. It consists of two convolution
layers followed by the global average pooling layer and a fully connected
network consisting of dense layers, with the final dense layer for determining
the output between 0 and 1.

4.4. LFN classification using CNN
Prior to the hyperparameter optimization (detailed in Appendix A), various archi-
tectures were tested. This section presents the best-performing model, which was
selected through iterative testing of different architectures and a manual search for
hyperparameters. The results from this model serve as a benchmark and are compared
with the results from the hyperparameter optimization.

Fig. 4.15 illustrates the CNN architecture used in this section for LFN classifica-
tion using single-, PT-, and multi-channels. The model consists of two convolutional
layers: The first convolution layer contain 32 filters with a kernel size of 500, followed
by the second convolution layer with 64 filters with a kernel size of 100. For both
convolution layers, padding is set to “same” to maintain the spatial dimensions,
Rectified Linear Unit (ReLU) [142] is used as the activation function. Following these
convolutional layers, a GAP layer reduces each feature map to a single value, before
feeding into a dense layer of 64 units with ReLU activation. The usage of GAP is
beneficial in this case because the outputs can be used to get the activation maps [141]
discussed in Sec. 4.3.6. A dropout layer with a 50% rate is applied for regularization
before the final layer, which is a dense layer with a single unit and sigmoid activation
[143] to produce binary probabilistic predictions. The schematic of the architecture
is shown in Fig. 4.15. The model is compiled with the Adam optimizer [144] with a

73



Chapter 4 – Low-Frequency Noise Identification using Machine Learning

learning rate of 0.001, binary cross-entropy (explained in Sec. 4.3.4) as the loss function,
and accuracy as the evaluation metric. Table 4.1 shows the model summary of this
architecture.

Layer (type) Output Shape Param #

conv1d (Conv1D) (None, 4096, 32) 16,032

conv1d_1 (Conv1D) (None, 4096, 64) 204,864
global_average_pooling1d
(GlobalAveragePooling1D)

(None, 64) 0

dense (Dense) (None, 64) 4,160
dropout (Dropout) (None, 64) 0
dense_2 (Dense) (None, 1) 33

Table 4.1.: The model summary of the CNN classifier.

A threshold is placed on the output value, also called network score or signal probability,
such that an event with an output greater than this threshold value will be classified as
a signal, and less than the score will be classified as an LFN-background.

4.4.1. Single-channel
This section presents the classification of LFN using single-channel approach, in other
words, using information from raw traces of one phonon channel at a time. Prediction
based on a single-channel trace is made independently of the other channels i.e.
depending solely on the information from a single trace without considering data from
additional channels, making the classification channel-independent. However, this
presents challenges due to the inadequately defined pulse template, which is the same
for all four channels as is shown in Fig. 4.5, and doesn’t capture the variations in
the pulse shape based on the interaction position within the detector. Consequently,
the signal samples may not adequately describe the real data. The training dataset
comprises 80000 samples with equal proportions of signal and LFN-background, with
20% of these samples randomly selected as the validation dataset. This selection
process is repeated for each training epoch to ensure that the validation is conducted on
different subsets at each step. The test dataset contains 131983 (37983 signal samples,
and 94000 LFN-background) samples which are not used during training, and thus are
used to evaluate the performance of the network. There are four phonon channels in
the detector, so the single-channel classifier is applied on individual channel traces.
If all four channels are predicted as signal, the final classification for the event is
considered a signal. If any channel predicts background, the final classification will be
LFN-background, ensuring a more cautious approach to event classification.
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Figure 4.16.: Training and validation accuracy (left) and loss curves (right) of the single-
channel classifier training plotted against epochs. The training set is shown
in blue and the validation is shown in orange, with the accuracy and loss
of each set in the text.

Classifier training

Figure 4.16 presents the training of the single-channel CNN. The accuracy as a function of
epochs is shown on the left, where both training and validation accuracy rapidly increase
during the initial epochs, stabilizing from epoch 5 onwards. The binary cross-entropy
loss as a function of epochs is shown on the right, where both training and validation
losses decrease sharply during the first few epochs, and then losses continue to decline
gradually, with some oscillations observed in the validation loss. Early stopping was
employed to avoid over-training after the stabilization. The final training and validation
accuracy of this model is 93.8% and 93%, respectively.

Classifier performance

Figure 4.17 displays the network performance using the test samples which the network
had not seen during training. On the left is the ROC curve and the signal probability
distribution is on the right. The ROC curve achieves an AUC of 0.993, indicating good
performance in classification. The signal probability distributions for LFN-background
(red) and signal (blue) classes show good separation between the classes, indicated
by the LFN-background distribution peaking at lower network scores and the signal
distribution peaking at higher scores with minimal events in the overlapping regions.

Figure 4.18 shows the confusion matrix of the classification task using the test samples,
placing a cut on signal probability at 0.5 and 0.9. The matrix shows that 94.7% and
99.1% of LFN-background events are properly identified by placing a threshold at 0.5
and 0.9, respectively. Similarly, 96.7% and 90.8% of signal events are correctly identified
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Figure 4.19.: The signal efficiency (left) and purity (right) of the single-channel classifier
when the threshold on signal probability is placed at 0.5 (blue) and 0.9
(orange) as a function of the channel amplitude. The error bars denote the
statistical uncertainty.

as signal when placing a threshold at 0.5 and 0.9, respectively. These results indicate
a high level of accuracy for the model in distinguishing between LFN-background and
signal events, with a particularly strong performance in identifying LFN-background
events correctly when placing the threshold at 0.9.

For the classification using the test samples, Fig. 4.19 shows the signal efficiency on
the left and the signal purity on the right, calculated using Eq. 4.10 and Eq. 4.11,
respectively. Both the signal efficiency and the signal purity decrease with decreasing
amplitude. The signal efficiency shows 100% for both cuts at 0.5 and 0.9 for amplitudes
above ∼ 25ADC, below which it decreases. The signal purity shows 100% purity for
amplitudes until ∼ 20ADC, below which it decreases. The classification with a cut at
0.5 has a higher signal efficiency than when the cut is placed at 0.9, while the signal
purity is higher when the cut is placed at 0.9, which is explained by the lesser number
of LFN events with high network scores. A notable dip in the purity is observed around
12ADC, where the purity decreases temporarily before rising again. This dip is caused
by more LFN-background events in this region, leading to a slight reduction in the
purity before stabilizing.

As seen in the confusion matrix in Fig. 4.18, the amount of FN events is 3.3%
and 9.2% when placing the threshold at 0.5 and 0.9 respectively, where the true signal
events were misclassified as LFN-background. Three randomly selected raw traces
corresponding to false negatives in both threshold cases are shown in Fig. 4.20, with
a moving average applied to show the prominent features. As it can be observed
in the left and the middle plot, the signal feature is small, i.e. the amplitude is
very low. The trace on the right has noise in the signal’s rising edge, leading to a
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triangular-looking trace with slow rise-time which is typical of LFN. Therefore, it can
be concluded that the low amplitudes coupled with noise in the signal rising feature lead
to misidentification and are challenging for the model to accurately identify signal events.

Figure 4.21 shows the class activation maps (CAMs) corresponding to the false
negative traces shown in Fig. 4.20. These CAMs, calculated using Eq. 4.12, show the
temporal regions of the raw traces that were most important to the model’s decision. It
can be seen that the trace on the left was predicted as LFN-background mainly based
on the second bump at around 5ms. The trace on the right shows that the the rising
edge of the trace was given high importance as we predicted before. The middle plot
shows a more uniform activation spread, with lower activation throughout the trace,
possibly explaining why the model failed to identify key signal characteristics.

The confusion matrix in Fig. 4.18 shows that 5.3% and 0.9% of events are
classified as false positive when placing the threshold at 0.5 and 0.9, respectively.
Three randomly selected raw traces corresponding to false positives in both threshold
cases are shown in Fig. 4.22, with the moving average applied to show the prominent
features. The traces exhibit distinct signal-like features, such as sharp rising edges,
which resemble signal events. The class activation maps for these traces are shown in
Fig. 4.23. The plot on the left and the middle show moderately high activations near
the rising edge of the signal feature, but overall show low activations throughout. The
right plot displays activations spread across the entire trace with no clear structure,
highlighting the model’s uncertainty.

It is crucial to note that LFN-background samples may contain signal events, as they
are LFN enriched samples. So the possibility that these false positives contain true signal
events cannot be ruled out.

Comparison of model performance with pre-processed input data

Thus far, the results presented were based on the single-channel classifier using unpro-
cessed data for both training and testing. This section introduces the classifier trained
on traces processed using techniques such as low-pass filtering and moving average, as
outlined in Sec. 4.1.3. The performance of these classifiers is compared with that of the
classifier trained with unprocessed data, as shown in Fig. 4.24. The efficiency and purity
as a function of amplitudes for the classifier using processed data compared with the
classifier using the unprocessed raw data are shown on the left and right, respectively.
The efficiency curves show that the low-pass filtered input performs slightly better than
the unprocessed and moving-averaged inputs in low amplitudes. In contrast, the purity
plot demonstrates that the unprocessed data provide better purity than the processed
inputs. As referenced earlier in Sec. 4.1.3, while pre-processed traces display more pro-
nounced features, this has little effect on the network’s performance. Given that purity
is more important than efficiency in this analysis, as mentioned previously, the unpro-
cessed data offers optimal performance with minimal loss in efficiency without the need
for additional processing.
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Figure 4.20.: Raw traces of randomly selected false negatives of the single-channel clas-
sifier shown in light blue and with the moving average shown in dark blue.

Figure 4.21.: The activation maps of the randomly selected false negatives of the single-
channel classifier shown in Fig. 4.20. The raw traces are shown in transpar-
ent black over which the color maps representing the feature importance
for the prediction is overlaid. The activation maps are calculated using
Eq. 4.12.
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Figure 4.22.: Raw traces of randomly selected false positive of the single-channel classifier
shown in light blue and with the moving average shown in dark blue.
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Figure 4.23.: The activation maps of the randomly selected false positives of the single-
channel classifier shown in Fig. 4.22. The raw traces are shown in transpar-
ent black over which the color maps representing the feature importance
for the prediction are overlaid. The activation maps are calculated using
Eq. 4.12.
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Figure 4.24.: Comparison of single-channel classifier performance trained on processed
data, such as low-pass filtered (orange) and moving average (green), versus
unprocessed input data (blue). Signal efficiency (left) and purity (right)
are evaluated on test samples processed in the same way as their respective
training data, with a threshold of 0.5 on signal probability. The error bars
denote the statistical uncertainty.
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4.4.2. PT-channel
The LFN removal using the Phonon Total (PT) channel is explained in this section.
This method is more reliable than the single-channel approach, as the pulse template
generated for PT is representative of signal events. Most of the CDMSlite analysis was
done using the PT channel, including the pulse shape cut for removing the LFN events
discussed in Sec. 3.4.2. To obtain the PT channel for events, individual channels were
weighted using relative calibration determined based on their respective properties. The
weighted traces were then summed to form the PT channel. For the signal, baseline
noise was similarly weighted and summed, and was injected with the PT pulse template
scaled by a desired amplitude. The LFN event traces were weighted using the relative
calibration and summed to obtain the LFN-background events. The training dataset
comprised 40000 samples with equal proportions of signal and LFN-background, with
20% of these samples randomly selected as the validation dataset. The test dataset
contains 27178 (3678 signal samples, and 23500 LFN-background) samples which are
not used during training, and thus are used to evaluate the performance of the network.
This approach was data-limited as it reduced the number of samples by a factor of
four compared to using single-channel data, where individual channels were treated
independently.

Classifier training

The PT-channel CNN training was completed by early stopping at 29 epochs as shown
in Fig. 4.25. It can be seen that the training and validation loss stayed close throughout
the training, with some fluctuations.

Classifier performance

Figure 4.26 shows the ROC curve on the left using the test sample, and has an AUC
of 0.992, which indicates very high separability. The network score distribution of
the test samples on the right of Fig. 4.26 shows two distinct peaks at 0 and 1 for
LFN-background and signal samples. There is a peak at 0 consisting of signal events
exhibiting misidentification leading to some signal loss. These events correspond to the
lowest amplitudes, which is reflected in the signal efficiencies.

Figure 4.27 shows the confusion matrix in percentage when placing a cut on the signal
probability distribution at 0.5 and 0.9. The 98.9% of the LFN-background and 89.1%
of the signal events are correctly identified for the threshold at 0.5. 99.7% of the
background and 84.2% of the signal events are correctly identified for the threshold
at 0.9. One has to note that the background is not true background but from a
LFN-background enriched samples, and this is important when looking at FP which
could contain potential signal events. In this classification model, the LFN-background
rejection is better than the signal identification.
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Figure 4.25.: Training process of the PT-channel classifier shows the accuracy (left) and
loss (right) per epoch of the training (blue) and validation (orange) set. The
training is stopped using early stopping when the validation loss plateaus.
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Figure 4.26.: The ROC curve (left) and signal probability distribution (right) of the PT-
channel classifier based on an unseen test samples. The threshold on the
signal probability at 0.5 (cyan) and 0.9 (yellow) is shown in dotted lines.
The model achieves an AUC of 0.992 as seen in the text.
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Figure 4.27.: Confusion matrix of the PT-channel classifier of the test samples for the
threshold at 0.5 (left) and 0.9 (right). The values are in percentage.

Figure 4.28 shows the signal efficiency on the left and signal purity on the right
derived from Eq. 4.10 and Eq. 4.11, respectively. The signal efficiency and the purity
decrease as the amplitude decreases. For a threshold at 0.5 and 0.9, the signal efficiency
is 100% for amplitudes from ∼ 45ADC, and below which the efficiency drops as the
amplitude decreases. The signal purity is 100% for amplitudes from ∼ 35ADC for a
cut placed at 0.5 and at 0.9, below which the purity drops drastically. A notable dip is
observed around 22ADC, where the purity decreases temporarily before rising again.
This dip is caused by more LFN-background events in this region, leading to a slight
reduction in purity before stabilizing.

The confusion matrix in Fig. 4.27 shows that 10.9% and 15.8% of events are classified
as false negatives when placing a threshold of 0.5 and 0.9 on the signal probability,
respectively. Fig. 4.29 shows randomly chosen false negative traces in both cut scenarios
with a moving average applied to show features underneath. The left plot shows a
trace with the rising edge of the signal that is in combination with a noise feature. The
middle and the right plots show events with a very small signal that cannot be seen
predominantly. The CAMs for these traces is shown in Fig. 4.30. In all the three plots,
the activations highlight the rising edge of the pulse, corresponding to the primary
signal feature. However, the left and middle plots also display activations in neighboring
time bins. Notably, the middle plot shows a higher activation for a bump near 2 ms,
which suggests an additional feature in the trace that the model is considering in its
classification.

The confusion matrices in Fig. 4.27 show that 1.1% and 0.3% of events are clas-
sified as false positives when placing a cut at 0.5 and at 0.9, respectively. Raw traces
of randomly chosen events from these false positives in both threshold cases are shown
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Figure 4.28.: The signal efficiency (left) and purity (right) of the PT-channel classifier
of the test samples when the threshold is placed at 0.5 (blue) and 0.9
(orange). Both efficiency and purity were made from the test samples
with amplitudes between 20 and 70ADC units. The error bars denote the
statistical uncertainties.

in Fig. 4.31 with a moving average to show the underlying features. It can be seen that
all three traces have rising features like signal events, with the left plot showing noise
near this feature.

The CAMs for these false positive traces are shown in Fig. 4.32 overlaid on the raw
traces. All three CAMs for the traces show high activations near the pulse’s rising edge,
indicating that the model predicts based on this signal-like feature. The activation
map in the left plot shows broader activations across the trace, suggesting some
level of uncertainty or influence from additional features. It is crucial to note that
LFN-background samples may contain signal events, as they are LFN-enriched samples.
So the possibility that these false positives containing a true signal events cannot be
ruled out.

Comparison of model performance with pre-processed input data

So far, the results have been obtained from the PT-channel classifier using unprocessed
data for training and testing. In this section, the classifier trained on traces processed
using techniques like the low-pass filter and moving average discussed in Sec 4.4 is
presented. Fig. 4.33 compares the performance of the classifier by plotting the results
obtained using the unprocessed input data and pre-processed data (low-pass filter and
moving average) in terms of efficiency (left) and purity (right) as a function of amplitude
when placing a threshold at 0.5. Both the unprocessed and low-pass filtered data achieve
higher purity compared to the moving average, though the latter provides slightly better
efficiency. In this case, both the unprocessed data and low-pass filtered are favored.
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Figure 4.29.: Raw traces of randomly selected False Negatives (FN) of the PT-channel
classifier shown in light blue and with the moving average shown in dark
blue.

Figure 4.30.: The activation maps of the randomly selected false negatives in both thresh-
old cases of the PT-channel classifier shown in Fig. 4.29. The raw traces
are shown in transparent black over which the color maps representing the
feature importance for the prediction are overlaid. The activation maps
are calculated using Eq. 4.12.
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Figure 4.31.: Raw traces of randomly selected False Positives (FP) of the PT-channel
classifier shown in light blue and with the moving average shown in dark
blue.
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Figure 4.32.: The activation maps of the randomly selected false positives of the PT-
channel classifier shown in Fig.4.31. The raw traces are shown in transpar-
ent black over which the color maps representing the feature importance
for the prediction are overlaid. The activation maps are calculated using
Eq. 4.12.
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Figure 4.33.: Comparison of the PT-channel classifier performance trained on processed
data, such as a low-pass filter (orange) and a moving average (green), versus
the unprocessed input data (blue). The signal efficiency (left) and purity
(right) are evaluated on test samples processed in the same way as their
respective training data, with a threshold of 0.5 on the signal probability.
The error bars denote the statistical uncertainty.
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4.4.3. Multi-channel
This section discusses the approach of multi-channel classification for removing LFN
events by utilizing all four channels simultaneously. Unlike the single-channel approach,
where each channel is analyzed independently, this method combines information from
all four channels. By processing the combined input, the model can better capture the
spatial and temporal correlations across the channels, leading to a more robust deter-
mination of signal and LFN events. The training dataset comprised 40000 samples with
equal proportions of signal and LFN-background, with 20% of these samples randomly
selected as the validation dataset. The test dataset contains 26086 (6487 signal samples,
and 19599 LFN-background) samples which are not used during training, and thus are
used to evaluate the performance of the network. The approach also reduces the number
of samples by a factor of four compared to a single-channel model, similar to the PT
classification.

Classifier training

Figure 4.34 presents the training performance of the multi-channel CNN classifier show-
ing the accuracy on the left and loss on the right at each epoch of the training. The
training and validation loss stays close throughout the training and decreases as the
training progresses with some fluctuations. The training stopped at 18 epochs by early
stopping.

Classifier performance

The performance of the trained network is evaluated using test samples generated
with the SUPR method, the samples that the network hasn’t seen before, and is
shown in Fig. 4.35. The ROC curve on the left shows the separability performance
for various thresholds and has an AUC of 0.981. The signal probability distribution
on the right shows distinct peaks of LFN-background and signal events at 0 and 1,
respectively, with minimal events in between. This is also reflected in the confusion
matrix in Fig. 4.36. With the test samples and a cut on the signal probability at
0.5, 99.5% of LFN-background and 81.7% of signal events are correctly identified,
and for a cut on signal probability at 0.9, 99.9% of LFN-background and 72.1%
of signal events are correctly identified. One has to note that the LFN-background
samples are LFN-enriched samples and it is uncertain whether the samples represent
a true sigal-free background. The amplitudes of the test samples generated for the
multi-channel model differ from those of the PT-channel, making a direct comparison
of their confusion matrices incompatible. However, efficiency and purity, calculated as
functions of amplitude, are suitable for comparison.

The signal efficiency and purity as a function of PT amplitude for a cut on
signal probability at 0.5 and at 0.9 is shown in Fig. 4.37. The PT amplitude is
used in this case as the classification is done event by event, and the channel-wise
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Figure 4.34.: Training performance of the multi-channel classifier as the function of
epoch. Accuracy (left) and binary cross entropy loss (right) for the training
(blue) and validation (orange) datasets per epoch are shown.
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Figure 4.35.: The ROC curve (left) and signal probability (right) distribution of the
multi-channel classifier with the test samples. The AUC of 0.981 shows
the good separability of the classes. The signal probability distribution
shows the LFN-background samples in red and the signal samples in blue.
The threshold on the signal probability at 0.5 (cyan) and 0.9 (yellow) is
shown in dotted lines.
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Figure 4.36.: Confusion matrix of the multi-channel classifier using the test samples for
a threshold placed on the signal probability at 0.5 (left) and at 0.9 (right).
The values are in percentage.

amplitude is not required in this case, as the model takes all four channels into account
simultaneously.

The signal efficiency and the signal purity reduce as the amplitude reduces. Above
∼ 45ADC, the signal efficiency is 100% for both cuts values at 0.5 and 0.9 on signal
probability. The signal purity is 100% for amplitudes above ∼ 32ADC, below which
the purity decreases for both the cut values, with 0.9 cut performing better than 0.5
cut. The confusion matrix in Fig. 4.36 shows 18.3% and 27.9% of events are false
negatives when placing a threshold at 0.5 and 0.9. Raw traces of three randomly chosen
events from these false negatives in both threshold cases are shown in Fig. 4.38 with
a moving average applied to highlight the underlying features. The trace on the left
shows a signal peak on the PB channel, and the other channel do not have signal
features observable by eye. The middle and the right plots show that noise fluctuations
are too high that they submerged the underlying injected signal event, possibly leading
to misidentification.

The confusion matrix also shows that 0.5% and 0.1% of events are false posi-
tives when placing a cut at 0.5 and 0.9, respectively. Raw traces of three randomly
chosen events from these false positives in both threshold cases are shown in Fig. 4.39,
with a moving average applied to highlight the underlying features. As can be seen,
all the traces show a sharp rising edge like a signal event, with the left and the middle
traces showing high noise fluctuations. It is important to note that the LFN-background
samples is an LFN-enriched samples and could potentially contain signal events, which
is relevant when considering false positives.
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Figure 4.37.: The signal efficiency (left) and purity (right) of the multi-channel classifier
calculated with the test samples. The thresholds placed at 0.5 and 0.9 are
shown by the blue and orange curves, respectively. The error bars denote
the statistical uncertainty.
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Figure 4.38.: Raw traces of randomly selected False Negatives (FN) of the multi-channel
classifier, showing four phonon channels: PA (blue), PB (orange), PC
(green), and PD (red), with moving average applied.
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Figure 4.39.: Raw traces of randomly selected False Positives (FP) of the multi-channel
classifier, showing four phonon channels: PA (blue), PB (orange), PC
(green), and PD (red), with moving average applied.
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Figure 4.40.: Comparison of multi-channel classifier performance trained on processed
data, such as low-pass filtered (orange) and moving average (green), ver-
sus unprocessed input data (blue). The signal efficiency (left) and purity
(right) are evaluated on test samples processed in the same way as their
respective training data, with a threshold of 0.5 on signal probability. The
error bars denote the statistical uncertainty.

Comparison of model performance with pre-processed input data

Until now, the results provided have been based on the multi-channel classifier using un-
processed data for both training and testing. This section describes classifiers trained on
pre-processed traces using a low-pass filter and moving average, as outlined in Sec. 4.1.3.
Their performance is compared with the classifier based on the unprocessed data, and
the results are shown in Fig. 4.40. The efficiency (left) and purity (right) as a function of
amplitude when placing a threshold at 0.5 shows the performance of the multi-channel
classifiers trained with unprocessed and pre-processed data. The unprocessed and low-
pass filtered cases perform similarly in terms of purity, however moving average case
has better efficiency than the other two cases. As having high purity is favored, the
unprocessed case is favored as it also has better efficiency than the case with a low-pass
filter.

4.4.4. Hyperparameter optimized CNNs
Hyperparameter optimization is an important step in building machine learning models.
To achieve a state-of-the-art model for a specific task, it is essential to select the optimal
set of parameters. In this analysis, several hyperparameters are considered, including the
number of convolutional layers, number of filters, kernel size, strides, number of dense
layers, use of normalization and regularization techniques, and dropout rates. A compre-
hensive hyperparameter search was performed using random search [145] and Bayesian
optimization [146] for single-, PT-, and multi-channel models. The parameter combina-
tion yielding high accuracy with minimal deviation when retrained was selected. The
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optimized hyperparameters for single-, PT-, and multi-channel are shown in Table. 4.2.

Layer Layer parameters single PT multi

Conv1D

number of filters (x 32) 1 3 3
kernel size 1000 376 200

stride 1 15 18
kernel regularizer (L2) 0.01 0.01 0.01
bias regularizer (L2) - 0.01 0.01

activation relu relu relu

Conv1D

number of filters (x 32) 2 6 6
kernel size 500 188 100

stride 1 1 1
kernel regularizer (L2) 0.01 0.01 0.01
bias regularizer (L2) - 0.01 0.01

activation relu relu relu
GAP -

Dense units (x32) 2 6 6
kernel regularizer (L2) 0.01 0.01 0.01
bias regularizer (L2) - 0.01 0.01

activation relu relu relu
Dropout rate 0.1 0.276 0

Dense units (x32) 1 3 3
kernel regularizer (L2) 0.01 0.01 0.01
bias regularizer (L2) - 0.01 0.01

activation relu relu relu
Dropout rate 0.1 0.276 0

Dense units 1 1 1
activation sigmoid sigmoid sigmoid

Table 4.2.: The best-performing parameter combination from the hyperparameter-
optimization of the CNN architecture for single-, PT-, and multi-channels.
The optimization details are provided in Appendix A.1. The model was
complied with the Adam optimizer using a learning rate of 0.001.

Thus far, the results from Secs. 4.4.1, 4.4.2, and 4.4.3 serve only as benchmarks. This
section presents the results of the final models that use the best-performing parameters
for each of the single-channel, PT-channel, and multi-channel configurations.

Single channel

Figure 4.41 compares the efficiency and purity of the hyperparameter-optimized CNN
with the previously used CNN for signal-channel classification as a function of amplitude.
The top row shows the results for a threshold of 0.5 on the signal probability, while the
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Figure 4.41.: Performance of the hyperparameter-optimized CNN (orange) with the pre-
viously discussed CNN (blue) for the single-channel classification. The
efficiency (left) and purity (right) as functions of the amplitude were cal-
culated for thresholds at 0.5 (top row) and 0.9 (bottom row), with error
bars showing the statistical uncertainty.

bottom row displays results for a threshold of 0.9. The signal efficiency is comparable
between both models at both thresholds. However, the hyperparameter-optimized CNN
demonstrates a significant improvement in purity, particularly at lower signal amplitudes.
The hyperparameter-optimized model maintains over 90% purity for the 0.9 threshold
across the amplitude range and is chosen out of the two models.

PT channel

The comparison between the hyperparameter-optimized CNN and the previously used
CNN for the PT-channel classification is presented in Fig. 4.42, where the efficiency and
purity are shown as a function of amplitude for both thresholds at 0.5 (top) and 0.9
(bottom). The previously used CNN demonstrates a notable improvement in efficiency
at low amplitudes for both thresholds. The purity plot shows a similar performance
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Figure 4.42.: Performance of the hyperparameter-optimized CNN (orange) with the pre-
viously discussed CNN (blue) for the PT-channel classification. The effi-
ciency (left) and purity (right) as functions of the amplitude were calcu-
lated for thresholds at 0.5 (top row) and 0.9 (bottom row), with error bars
showing the statistical uncertainty.

between these two models with the hyperparameter-optimized model exhibiting slight
improvement in purity at low energies, particularly between 25ADC and 30ADC. The
hyperparameter-optimized CNN includes bias and kernel regularization, which stabilizes
the training process. Despite the loss in efficiency, the hyperparameter-optimized CNN
was selected due to its purity between 25ADC and 30ADC and improved training
stability, which was achieved through the use of kernel and bias regularization in the
model.

Multi channel

For multi-channel classification, Fig. 4.43 compares the hyperparameter-optimized CNN
with the previously used CNN. The efficiency curves for both the 0.5 and 0.9 thresholds
show the hyperparameter-optimized CNN consistently performing better than the previ-
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Figure 4.43.: Performance of the hyperparameter-optimized CNN (orange) with the pre-
viously discussed CNN (blue) for the multi-channel classification. The
efficiency (left) and purity (right) as functions of the amplitude were cal-
culated for thresholds at 0.5 (top row) and 0.9 (bottom row), with error
bars showing the statistical uncertainty.

ous model across all amplitudes. In terms of purity, the hyperparameter-optimized CNN
demonstrates substantial improvements, especially at low amplitudes, for both thresh-
olds. Notably, at the 0.9 threshold, the hyperparameter-optimized CNN achieves 100%
purity, indicating the zero LFN-background events are expected to be misidentified as
signal events. Moreover, it should be noted that the false positives with signal-like fea-
tures, such as sharp rising edges, that were previously seen are removed with this model
at a 0.9 cut. Out of these two models, the hyperparameter-optimized CNN is selected
for its performance in LFN-background rejection, as reflected in purity.
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4.5. LFN classification using CNN-LSTM
The CNN-LSTM model combines a 1D CNN with LSTM layers for binary classification.
The architecture includes two convolution layers, followed by LSTM layers and a fully
connected network. Batch normalization [147] is applied after each layer to improve
training stability. Dropout [148] is incorporated after each layer to reduce overfitting.
The final output layer has a single unit with a sigmoid activation function to produce
output as signal probability. The CNN-LSTM architecture is illustrated in Fig. 4.44. The
model is compiled using the Adam optimizer and binary cross-entropy loss, consistent
with the CNN architecture. The optimized hyperparameters for single-, PT-, and multi-
channel are shown in Table. 4.3. Details of the hyperparameter optimization process
for the CNN-LSTM model are provided in Appendix A.2. This section compares the
performance of the CNN and CNN-LSTM architectures for single-, PT-, and multi-
channel configurations.

Figure 4.44.: A schematic of the CNN-LSTM architecture for LFN classification. The
input is the raw trace and the targets are 0s and 1s. It consists of con-
volution layers followed by LSTM layers, and a fully connected network
consisting of dense layers with the final dense layer for the output between
0 and 1.
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Layers Layer parameters single PT multi

Conv1D

number of filters (x 32) 1 1 2
kernel size 600 600 200

stride 20 20 20
kernel regularizer (L2) - 0.01 0.01
bias regularizer (L2) - 0.01 0.01

activation relu relu relu
BatchNormalization No Yes Yes

Dropout rate 0.1 0.1 0.2

Conv1D

number of filters (x 32) 2 2 4
kernel size 300 300 100

stride 1 1 1
kernel regularizer (L2) - 0.01 0.01
bias regularizer (L2) - 0.01 0.01

activation relu relu relu
BatchNormalization No Yes Yes

Dropout rate 0.1 0.1 0.2

LSTM units (x32) 2 2 4
return sequence True True True

BatchNormalization No Yes Yes
Dropout rate 0.2 0.2 0.1

LSTM units (x32) 2 2 4
return sequence True True True

BatchNormalization No Yes Yes
Dropout rate 0.2 0.2 0.3

Dense units (x32) 2 2 4
kernel regularizer (L2) - 0.01 0.01
bias regularizer (L2) - 0.01 0.01

activation relu relu relu
Dropout rate 0.3 0.3 0

Dense units 1 1 1
activation sigmoid sigmoid sigmoid

Table 4.3.: The best-performing parameter combination from the hyperparameter-
optimization of the CNN-LSTM architecture for single-, PT-, and multi-
channels. The optimization details are provided in Appendix A.2. The model
was compiled with the Adam optimizer using a learning rate of 0.001 for both
single- and PT-channels, and 0.01 for the multi-channel configuration.

4.5.1. Single-channel
Figure 4.45 shows the efficiency on the left and purity on the right as a function of ampli-
tude for the hyperparameter-optimized CNN and CNN-LSTM models, with a threshold
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Figure 4.45.: Performance of the hyperparameter-optimized CNN (blue) with the
hyperparameter-optimized CNN-LSTM (orange) for the single-channel
classification. The efficiency (left) and purity (right) as functions of the
amplitude are calculated for thresholds at 0.9 of the signal probability,
with error bars showing the statistical uncertainty.

set at 0.9 on signal probability. Both models achieve 100% efficiency at amplitudes above
25ADC, with CNN-LSTM exhibiting a higher efficiency at lower amplitudes. The signal
purity for both models is 100% for amplitudes above ∼20ADC, however they decrease
below this amplitude, with the CNN model performing better than the CNN-LSTM
model. Since high purity is more critical for this analysis than efficiency, the CNN
model is chosen, as the addition of LSTM does not provide a significant improvement in
purity.

4.5.2. PT-channel
The performance of the different model architectures, CNN and CNN-LSTM, using the
PT channel, are displayed in the Fig. 4.46. The efficiency as a function of the ampli-
tude on the left illustrates that both models have 100% efficiency for amplitudes above
∼ 50ADC, with CNN-LSTM achieving a better efficiency at lower signal amplitudes
compared to CNN. The purity as a function of amplitude on the right shows that both
models perform similarly throughout, with 100% purity above ∼ 40ADC. However, the
purity of both models converges to nearly identical levels with exhibit a dip at ∼24ADC,
with the CNN model performing better than the CNN-LSTM at low-amplitudes, and
thus CNN model is favored for this channel.

4.5.3. Multi-channel
Figure 4.47 compares the performance of the CNN and CNN-LSTM models for
the multi-channel classification with efficiency as a function of the amplitude on
the left and purity as a function of the amplitude on the right. The threshold for
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Figure 4.46.: Performance of the hyperparameter-optimized CNN (blue) with the
hyperparameter-optimized CNN-LSTM (orange) for the PT-channel clas-
sification. The efficiency (left) and purity (right) as functions of the am-
plitude are calculated for thresholds at 0.9 of the signal probability, with
error bars showing the statistical uncertainty.
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Figure 4.47.: Performance of the hyperparameter-optimized CNN (blue) with the
hyperparameter-optimized CNN-LSTM (orange) for the multi-channel
classification. The efficiency (left) and purity (right) as functions of the
amplitude are calculated for thresholds at 0.9 of the signal probability,
with error bars showing the statistical uncertainty.
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comparison is placed at 0.9 on the signal probability. The efficiency shows that the
CNN-LSTM model outperforms CNN model over all amplitudes. Both models show
100% purity above ∼ 38ADC,with the CNN model maintaining 100% purity across
all amplitudes. As a result, the CNN model is chosen for the multi-channel classification.

In conclusion, hyperparameter-optimized CNN models perform better than CNN-
LSTM models in terms of purity across all channel-configurations: single-channel,
PT-channel, and multi-channel. While CNN-LSTM models exhibit higher efficiency,
particularly at low amplitudes, making them suitable for low-mass DM searches, the
final DM-signal efficiency is limited by the radial cut, as is explained in Sec. 5.2.1.
Therefore, a better purity is preferred, as more LFN-background would lead to setting
limits on larger cross-sections. In total, there are three hyperparameter-optimized
CNN models based on three different channel configurations. To select the best
channel-configuration, it is essential to explore the impact of these models in the DM
parameter space. In the next chapter, a sensitivity study will be conducted to finalize
the channel-configuration to remove LFN events from CDMSlite Run 3 data for the
final DM analysis.
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5. CDMSlite Run 3 Dark Matter Search

This chapter presents the final results of the CDMSlite Run 3 analysis incorporating the
new ML-based cut to remove the Low-Frequency Noise (LFN) events. The previous
chapter presented the three configurations for removing LFN events using ML: single-
channel, Phonon Total (PT) channel, and multi-channel. In this chapter, the selected
LFN cut method is applied to the experimental data to set limits on the WIMP param-
eter space. Sec. 5.1 outlines the limit-setting method for this analysis, while Sec. 5.2
finalizes the ML-model selection among the three channel configurations to remove the
LFN noise, based on sensitivity studies. The application of the ML-based LFN cut to the
CDMSlite Run 3 and corresponding observed energy spectra are discussed in Sec. 5.3.
Lastly, Sec. 5.4 presents the dark matter exclusion limits from the analysis, and Sec. 5.5
investigates the new observed events identified by the ML-based LFN cut.

5.1. Limit setting method
There are several methods used in the DM community to exclude regions of the DM
parameter space. Direct DM searches commonly use the Poisson counting method,
maximum gap method, Optimum Interval (OI) method, and Profile Likelihood Ratio
(PLR) method. Each of these methods allows for parameter exclusion by defining a con-
fidence interval that reflects the confidence in the cross-section excluded. The maximum
gap and OI methods set limits based on a signal-only hypothesis, while PLR includes
background modeling and is used when background can be estimated. The CDMSlite
Run 3 published analysis applied the PLR method to set limits [76]. However, in this
thesis, the focus is on investigating the impact of the ML-based LFN cut. For this
purpose, the OI method is chosen for its simplicity and the influence of event counts is
directly observable in this method due to the limits being set on event counts. In this
section, the maximum gap method, which forms the basis of the OI method, and the OI
method are explained.

5.1.1. Concept of parameter space exclusion
The OI method and the maximum gap method [149] are statistical techniques for setting
upper limits in the case where the background distribution in the observed parameter is
not fully understood or cannot be subtracted. Thus the underlying concept is a signal-
only hypothesis where all the observed events are interpreted as DM signals. These
methods assume a model where signal events are distributed across an observable pa-
rameter, with the event rate directly proportional to the DM cross-section. In this case,
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the observable parameter is the energy. The goal is to identify the interval that satisfies
the specified confidence level.

5.1.2. Maximum gap method
For a dataset with events sorted by some observable variable, the maximum gap method
identifies intervals that contain no events, in other words “gaps”. The main idea is to
find the largest of these gaps as they correspond to the smallest cross-section σ that
can be excluded, leading to a strong limit [149].

For an energy spectrum with event rate (dN/dE), two adjacent events Ei and
Ei+1 form an interval or a gap. The expected number of events within the gap
represented by the “size” of the gap and is given by:

xi =
∫ Ei+1

Ei

dN

dE
dE. (5.1)

To determine the largest gap x, the observed energy spectrum is transformed to a new
parameter space such that dN/dE is uniform, with the total expected number of events µ
corresponding to the given cross-section. For a cross-section σ, the probability C0(x, µ) of
a random experiment finding fewer events than the observed maximum gap is calculated
using

C0(x, µ) =
m∑
k=0

(kx− µ)ke−kx
k!

(
1 + k

µ− kx

)
, (5.2)

where m ≤ µ/x is the highest integer, and x is the largest gap. In other words, C0(x, µ)
represents the probability of a random experiment observing a gap larger than the ob-
served maximum gap x for a given number of expected events µ. For a 90% confidence
level (C.L.) upper limit, the cross-section σ is increased until the condition C0=0.9 is
met, leading to the smallest, and the strongest, upper limit on σ.

5.1.3. Optimum Interval (OI)
The Optimum Interval (OI) method is an extension of the maximum gap method
to account for intervals with multiple events, which enables setting the upper limit
in the case of high event counts. Similar to the maximum gap method, for each
interval containing n observed events, the probability Cn(x, µ) of a random experiment
observing fewer events than n events is calculated [149].

For a specific cross-section σ, Cn(x, µ) is calculated for all intervals with n events,
and the interval with the maximum Cn(x, µ) i.e. the interval where Cn(x, µ) = Cmax,
provides the strongest rejection of σ and is the “optimum interval”. For a 90% C.L.
upper limit, the cross-section σ is increased until the probability of a random experiment
yielding Cmax less than the observed Cmax value reaches 90%. In other words, 90%
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of the random experiment’s Cmax is smaller than the observed Cmax. The OI method
is particularly effective in situations where background levels are low, as it allows for
strong constraints on the signal hypothesis in cases where the background is unknown.

5.2. Model Selection for final analysis
As shown in the previous chapter, three types of the LFN cut were developed based
on different channel configurations: single-, PT-, and multi-channel. In this section,
“signal” refers to non-LFN events, as in the previous chapter, and not the DM signal
unless explicitly stated as “DM signal”. Each channel configuration uses hyperparameter-
optimized CNNs, as discussed in Sec. 4.4.4, with the signal probability threshold set at
0.9, yielding high purity. To select the model for the final analysis, sensitivity stud-
ies were performed. Each ML-model has different signal efficiencies and purities, both
of which are crucial: signal efficiency at low energies enables sensitivity to search of
low-mass DM, while signal purity improves exclusion of parameters space. Therefore,
sensitivity studies were performed to assess the impact of the ML-based LFN cut on
the exclusion of DM-nucleon cross-section parameter space for WIMPs and to select the
optimal model for the final analysis. The sensitivity projections were calculated using
the OI method.

5.2.1. Signal efficiency
The signal efficiencies presented in the previous chapter were calculated using raw signal
data generated by adding pulse templates (shown in Fig. 4.5) to baseline noise for the
single- and PT-channel models and by using SUPR events for the multi-channel models.
Due to the lack of direct methods to calculate the energies of these raw traces from the
OF amplitudes, these samples were not used for the final DM signal efficiency calculation.
Instead, a SuperCDMS software was used for generating raw signal data, which was then
processed through the official reconstruction pipeline to obtain event energies for the DM
signal efficiency calculations.

The samples from BatFaker were first passed through the quality cuts such as the glitch
cut, phonon start time cut, phonon χ2 cut, as described in Sec. 3.4, and finally the
ML-based LFN cut. The efficiency, calculated as the ratio of the number of events
passing these cuts to the total number of events at a given energy, was then combined
with the trigger efficiency to get the quality cut efficiency. Figure 5.1 presents the
quality cut efficiencies based on the ML-based LFN cuts, compared with those from
the previous analysis. The PT- and multi-channel efficiencies perform better than the
previous analysis, however, the single-channel efficiency performs worse than the previous
analysis, except in a narrow energy range around ∼0.07 keVee. The quality cut efficiency
was then multiplied by the radial cut efficiency and parameterized using Eq. 3.21 to
determine the final DM signal efficiency. Detailed information on this method is provided
in Sec. 5.3.1. Figure 5.2 presents the final efficiencies of the different ML-models in
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Figure 5.1.: Quality cut efficiency as a function of energy for the three ML-models to
remove LFN events. The blue, orange, and green data points represent
the single-channel, PT-channel, and multi-channel ML-models, respectively.
The error bars denote the statistical uncertainty. The quality cut efficiency
of the previous analysis is shown in black (dashed), taken from Ref. [76].

comparison with the efficiency from the previous analysis. The systematic uncertainties
depicted in the figure are discussed in detail in Sec. 5.4.1. The results indicate that the
PT- and multi-channel final efficiencies mostly overlap, except for slight deviations at low
energies around 0.08 keVee. They perform better than the previous analysis efficiency up
to ∼0.12 keVee , after which until ∼0.24 keVee , the previous analysis has high efficiency.
In contrast, the single-channel efficiency is significantly lower than that of the PT- and
multi-channel configurations, as well as the previous analysis, up to ∼0.24 keVee; beyond
this energy, it plateaus similarly to the other two efficiencies. All efficiencies reach a
plateau at a DM signal efficiency of ∼0.58, attributed to the radial cut’s effect on the
DM signal efficiency, as will be shown in Sec. 5.3.1. Although the quality cut efficiencies
with the PT- and multi-channel models are higher than those in the previous analysis
(seen in Fig. 5.2), applying the radial cut diminishes the overall efficiencies.

5.2.2. Expected energy spectra
The expected energy spectra for this sensitivity study were derived from background
models estimated for the CDMSlite Run 3 PLR analysis [76]. The backgrounds modeled
were from tritium, Compton scattering, activation peaks of 71Ge and 68Ga, and the
three components of the surface events (Top Lid (TL), Housing (H), and Germanium
(Ge)) [104]. Figure 5.3 shows the best-fit background models for each source, overlaid
on the CDMSlite Run 3 event spectrum from the previous analysis. The probability
density function (pdf) of the total background was used to generate toy experiments for
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Figure 5.2.: The DM signal efficiency obtained by consecutively applying the trigger
efficiency, the quality cut efficiency calculated using the three ML-models,
and the fiducial volume (radial cut) efficiency. The parameterization of
the combined efficiency data using Eq. 3.21 is shown by the solid lines.
The uncertainties, which include statistical and systematic uncertainties, are
shown as a band around the parameterized curve. The blue, orange, and
green colors represent the single-, PT-, and multi- channels, respectively.
The final DM signal efficiency of the previous analysis is shown in black
(dashed), taken from Ref. [76].

this sensitivity study. The public data for this run has 401 events (from the previous
analysis), and therefore this value was used as the mean when drawing a number from a
Poisson distribution for event generation. Monte Carlo toy experiments were generated
with 100 trials with the number of events drawn from a Poisson distribution.

The background models shown in Fig. 5.3 didn’t account for the contributions from LFN
events as the previous analysis assumed that less than one LFN event passed through the
bifurcated LFN cut. However, with the ML-based LFN cut, LFN events may leak into the
energy spectra if the signal purity is below 100%, thereby contributing to the expected
spectra. So, based on the purity of the ML-model being considered and convolving it with
the pdf of the LFN-background events shown in Fig. 4.1, the LFN events contribution
was added to the generated spectra. The uncertainties in the DM signal efficiency were
not considered for this sensitivity study as the objective was to select the ML-model for
the final analysis. Thus, the sensitivity band was solely based on Poisson fluctuations.
The expected spectra for the three models are shown in Fig. 5.4, where the lowest energy
peak in the single- and PT-channel arises from the LFN contribution. It is absent in the
multi-channel, which has 100% signal purity.
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19

Figure 12. The CDMSlite Run 3 final energy spectrum over-
laid with the best-fit background components. The best-fit
rates for the 65Zn and 55Fe components are below the scale
of the plot.

put from the fit to the data is the covariance between
all systematic uncertainty parameters. We then generate
1000 pseudo-experiments that are representative of the
model’s fit to the data. Using the covariance matrix be-
tween systematic uncertainty parameters, we randomize
the systematic uncertainty parameters for each pseudo-
experiment, which slightly changes the shape of the in-
dividual background components. We then sample those
individual background components using Poisson fluctu-
ations around the best-fit value from the fit to the final
spectrum. Finally, we fit these pseudo-experiments and
calculate a Cramér-von Mises statistic for each of them.
The p-value is then the fraction of pseudo-experiments
with a Cramér-von Mises statistic greater than the one
for the data fit.

Prior to unsalting, we agreed on a p-value threshold
of 0.05, below which we would investigate inaccuracies
in the background model, abandon the limit obtained
with the profile likelihood method, and resort to the more
conservative optimum interval [48, 49] limit-setting tech-
nique. Upon unsalting we found a p-value of 0.988, in-
dicating a particularly good fit. Checks of biases in the
GOF evaluation were performed and none were discov-
ered. We therefore accept the 90% CL limit provided by
the profile likelihood method.

C. DM Limit and Background Rates

The final Run 3 spectrum after application of all selec-
tion criteria is shown in Fig. 12. The main features are
the 71Ge electron-capture L- and M -shell peaks at 1.30
and 0.16 keVee respectively. Events contributed from
backgrounds other than 71Ge exist between the peaks
and are well modeled. We do not observe a population
of events below the M shell, which is consistent with the

Range Run 2 Rate Run 3 Rate

[keVee] [keVee kg d]−1 [keVee kg d]−1

0.2–1.2 1.09± 0.18 1.9± 0.3
1.4–10 1.00± 0.06 1.3± 0.1
11–20 0.30± 0.03 0.71± 0.07

Table VI. Average single-scatter event rates for energy regions
between the activation lines in Run 2 and Run 3, corrected
for efficiency. All errors contain ±

√
N Poissonian uncertain-

ties, and the lowest energy range values additionally include
uncertainty from the signal efficiency.

steep decrease of the signal efficiency in this range and
consistent with the expectations from the background
model.

While the best-fit individual background components
are shown in Fig. 12, this figure does not provide a vi-
sualization of the covariances between background com-
ponents. As expected, a strong covariance is observed
between the Compton and 3H background components,
which in this energy range do not contain sufficiently dis-
tinct spectral features to remove their degeneracy in the
fit. The surface background components are strongly cor-
related through the prior constraint covariance matrix,
M, described in Sec. VII D 4. We find that the surface
background component covariances from the likelihood
fit match the prior constraint covariances, indicating that
these 0.07–2.0 keVee data do not provide any additional
information on the surface background.

We calculate the average background rates of single-
scatter events between the 71Ge peaks, corrected for ef-
ficiency, as shown in Table VI. The higher background
rates, relative to Run 2, are consistent with the expected
background rates based on the position of the detector
in the tower. The Run 2 detector had neighboring detec-
tors on both of its faces. By contrast, the Run 3 detector
was the top detector in the tower and therefore had one
face exposed to the top copper lid. Additionally, it is
expected that identification of multiple scatters in the
Run 3 detector is diminished because of its position in
the tower; therefore, a higher fraction of multiple scatter
events could be passing the multiples cut and contribut-
ing to the background rates shown in Table VI for Run 3.

Figure 13 shows the final CDMSlite Run 3 limit calcu-
lated with the spectrum in Fig. 12. From 2.5–10 GeV/c2

we find a factor of 2–3 improvement in the excluded DM-
nucleon cross section over the CDMSlite Run 2 optimum
interval analysis [18]. This improvement is achieved de-
spite the smaller exposure (36 vs. 70 kg-days) and higher
background rate in Run 3, demonstrating the discrimi-
nation power of the PLR method. Below 2.5 GeV/c2, we
exclude little to no additional parameter space because
the effective energy threshold for this analysis is slightly
higher than that for CDMSlite Run 2.

Figure 5.3.: The CDMSlite Run 3 best-fit background models overlaid on the previous
analysis energy spectrum. The background contributions are from Compton
scattering, tritium,71Ge and 68Ga, and surface events from the Top Lid (TL),
Housing (H), and Germanium (Ge). The total background estimate in red
is used to generate toy experiments. This plot is taken from Ref. [76].
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Figure 5.4.: Toy experiments generated using the total background estimation shown
in Fig. 5.3 and the LFN contribution added using the purity of each of
the channel configurations. The expected energy spectra for single-channel
is shown on the left, PT-channel in the middle, and multi-channel on the
right.
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Figure 5.5.: Sensitivity projections using the single-channel (blue), PT-channel (orange),
and multi-channel (green) ML-models for removing the LFN noise events.
The 1σ uncertainty band is shown around the median of each case.

5.2.3. Sensitivity projections
The sensitivity projections were calculated using the OI method. The expected DM
signal was scaled according to the DM signal efficiency of each model and smeared using
the energy resolution discussed in Sec. 3.3.4. Based on the expected DM signal and the
expected energy spectra, sensitivity projections for the toy experiments were calculated
using the OI method. The median of the sensitivities along with 1-σ uncertainty band
for the single-, PT- and multi-channel are shown in Fig. 5.5. It is evident that the multi-
channel model outperforms the other two models by excluding smaller cross-sections
for DM masses below ∼5GeV/c2, which can be understood by the better purity of this
model. Its ability to probe lower DMmasses correlates with the high DM signal efficiency
of the multi-channel model at the low-energies. As a result, the multi-channel network
was selected for the final analysis.

5.3. Analysis results
In the previous section, the multi-channel ML-model for the LFN event removal was
selected for the final analysis. This section presents the resulting DM signal efficiency,
the outcomes of applying this model to the CDMSlite Run 3 data, and the corresponding
final energy spectrum.

5.3.1. DM signal efficiency
The motivation of any event selection is to remove unwanted events like noise and back-
grounds, but in the process, these cuts can also remove DM signal events. Quantifying
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this loss of the signal events is important in calculating the expected DM spectrum since
not all of the signal events will make it through the cuts. This section describes the DM
signal efficiency formulation for the DM search analysis.

Sample generation

For calculating the DM signal efficiency, one needs a data sample containing signal-like
events. The multi-channel LFN cut was developed and evaluated using samples gener-
ated with the SUPR method, as explained in Sec. 4.2, and the output raw data from
this method was stored as arrays. However, the SuperCDMS reconstruction pipeline
requires the raw data to be stored in a specific binary format. As it was not possible to
convert the SUPR raw data arrays into the binary format due to technical difficulties,
the SuperCDMS software called “BatFaker” was used to generate the signal-like sample.

BatFaker uses the pulse templates and baseline noise events to generate fake sig-
nal events in the binary format. The BatFaker was used in several analyses mainly
using the PT template to inject the baseline noise. However for the ML-based LFN
removal, one needs to correctly reconstruct events in all 4 phonon channels, thus using
PT template was not the correct option. Therefore, in this analysis, the signal-like
samples were generated using the fast and slow templates, which capture the positional
dependencies, for calculating the final DM signal efficiencies. Furthermore, This was the
method used to generate samples for the signal efficiency calculations for the previous
analysis.

For the baseline noise, randomly triggered events from the beginning of the data
series were chosen. The fast and slow template amplitudes were extracted for each
phonon channel from the K-shell events and were rescaled to the desired amplitude.
These amplitudes were then used to scale the fast and slow template as shown in
Fig. 3.5, and were then added to the baseline noise. The samples were then processed
through the SuperCDMS reconstruction pipeline required to get the event energies.

DM signal efficiency parametrization

The data quality cuts were first applied to the signal samples, which include the glitch
cut, phonon χ2 cut, phonon start time cut, square pulse cut, as described in Sec. 3.4,
and the ML-based LFN cut. All of these cuts were applied to the signal samples except
the square pulse cut since the implementation of this cut was no longer possible. As
this cut has 100% signal efficiency, it was ignored as all the events will pass the cut
anyway. The efficiency obtained from applying the quality cuts was multiplied by the
trigger efficiency to obtain the quality cut efficiency.

The quality cut efficiency was combined with the radial cut efficiency to obtain the
final DM signal efficiency. The radial cut was developed separately for periods A and
B, as the noise conditions changed between these periods, as explained in Sec. 3.1. The
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Figure 5.6.: The radial cut efficiency for Run 3 periodA (left) and periodB (right) as a
function of energy. The plots taken from [124].

efficiencies of the radial cut are shown in Fig. 5.6, where it is seen that the efficiency
is ∼58% for event energies above ∼0.25 keVee and below this energy, the efficiencies
drop drastically. As explained in Sec. 3.4.5, the radial cut sets a hard threshold at
an energy of 0.07 keVee. The ML-based LFN cut was developed irrespective of the
time periods, thus there is only one quality cuts efficiency for the whole of Run 3. The
quality cut efficiency was multiplied with the radial cut for periods A and B separately,
producing two final efficiencies which are then combined using a weighted live-time
average. The DM signal efficiency was parameterized using Eq. 3.21 where µ1, µ2,
and µ3 are the parameters to optimize. The Minuit package [150] was used for the
parameterization of the efficiency data points with error propagation. The optimized
values for µ1, µ2, and µ3 are 0.292± 0.002, 0.114± 0.002, and 0.047± 0.003, respectively.

In the CDMSlite Run 3 analysis, the correlated systematic uncertainty arising
from the radial efficiency was not included initially. An uncorrelated fit was performed
for the efficiency. Since the µ1 parameter controls the vertical scale of the efficiency
curve, the correlated systematic uncertainty was incorporated into the covariance
matrices derived from the uncorrelated fit [123, 124]. However, as the correlated
systematic uncertainty could not be found, the quantity was empirically determined by
comparing the CDMSlite DM signal efficiency covariance with the calculated covariance
of this analysis. The systematic uncertainty was found to be approximately 1/0.125,
which was then used to scale the uncertainty on µ1. Figure 5.7 shows the hardware
trigger efficiency, quality cut efficiency, and the combined efficiency data with the
parameterized final DM signal efficiency. The jump around 0.08 keVee arises from the
radial cut, which sets a hard threshold at 0.07 keVee. The combined efficiency data
points in the figure show an increased efficiencies below 0.1 keVee, , which results from
the radial cut efficiency shown in Fig. 5.6.
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Figure 5.7.: The final DM signal efficiency of CDMSlite Run 3 calculated by applying the
trigger efficiency (red), quality cut efficiency (green), and fiducial volume
i.e. radial cut efficiency (black) successively. The quality cut is calculated
using the ML-based LFN cut. The parameterized final efficiency is shown
in blue with 1σ uncertainty band consisting of systematic and statistical
uncertainties. The hard threshold at 0.07 keVee is enforced by the radial cut
efficiency.

5.3.2. Application of the new LFN cut to CDMSlite Run 3 data
There were a total of ∼28M events in CDMSlite Run 3, of which ∼24.7M events are
physics-triggered events. These ∼24.7M events were passed through the ML-model and
the network predictions were extracted. Table 5.1 summarizes the number of events
passing each selection criterion, including the new ML-based cut used in this analysis.
The major event loss occurs due to the LFN cut (old and new) and the radial cut. The
new LFN cut retains more events compared to the previous bifurcated LFN cut due
to its higher DM signal efficiency at low energies (as seen in Fig. 5.2) compared to the
previous LFN cut, thus allowing more events to be retained. After applying these cuts,
the number of events remaining in the region of interest (ROI) between 0.07 keVee and
2 keVee is 401 for the previous analysis using the bifurcated LFN cut and 406 for the
new analysis using the ML-based LFN cut.
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Name of the event selection Number of events passed Fraction of events passed [%]
High voltage 24216313 97.87
NuMI beam 24739506 99.99

Pre-trigger baseline 24721938 99.92
Charge χ2 24664257 99.68
Bad series 24047906 97.19

Trigger glitch 24733487 99.96
GPS 24741113 99.99

Trigger rate 24741036 99.99
T2Z1 triggered 24298565 98.21
Good randoms 24742506 100.00
Muon veto 24492864 98.99

Multiple scatter 24622315 99.51
Good phonon start time 22832570 92.28

Phonon χ2 24647762 99.62
Glitch 24119133 97.48

Square Pulses 24693265 99.80
Low-Frequency Noise (old) 64045 0.26
Low-Frequency Noise (new) 83335 0.34

Radial 361319 1.46

Table 5.1.: The number of events passing each selection criterion individually, including
results for both the old and new LFN cuts in the whole analysis energy range.
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Figure 5.8.: The final energy spectra of CDMSlite Run 3 using the previous analysis
with the bifurcated LFN cut (orange), and the new analysis with ML-based
LFN cut (blue). Bottom panel shows pull, which is defined as difference
between the previous and the new analysis spectrum in each bin divided by
the uncertainty.

5.3.3. Observed energy spectra
The final energy spectra obtained using the bifurcated LFN cut and the new ML-based
LFN cut are shown in Fig. 5.8. There are notably more events below 0.2 keVee in the
new analysis. The residual plot below further quantifies the differences between the two
spectra for events below 0.2 keVee. These additional observed events are discussed in
Sec. 5.5. The M- and L-shell activation peaks at ∼0.16 keVee and ∼1.3 keVee are visible
in the spectra. There are five additional events in the new analysis energy spectrum
when compared to the old analysis energy spectrum. Upon investigating these events,
an issue with energy reconstruction for two of these five events was found. Addressing
the problem with the energy reconstruction scripts is beyond the scope of this work,
however, the findings are discussed in Appendix. B.
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Figure 5.9.: The CDMSlite Run 3 90% C.L. OI limits on the spin-independent WIMP-
nucleon cross-section using the previous analysis with the bifurcated LFN
cut (orange) and the new analysis with the ML-based LFN cut (blue).

5.4. DM exclusion limit with OI
The 90% C.L. OI exclusion limits on the spin-independent WIMP-nucleon cross-section
were calculated for this analysis with (1) the bifurcated LFN cut and (2) the ML-based
LFN cut. The results are shown in Fig. 5.9. While the overall profiles of both the limits
are similar, the new limits performs slightly worse around DM masses of ∼2GeV/c2.
This is due to the OI selecting a larger interval in the previous analysis compared to the
interval selected for the new analysis, which is constrained by the presence of additional
events. The bump that occurs at a DM mass of ∼5GeV/c2 arises from the presence of
the activation peak at 0.16 keV, which prevents OI from having a smooth transition of
intervals to higher masses. Beyond a DM mass of ∼5GeV/c2, both limits overlap, which
is explained by having no difference in the observed spectra at high energies in the old
and new analysis.

5.4.1. Systematic uncertainties
Similar to the previous CDMSlite Run 3 analysis, the systematic uncertainties consid-
ered in this analysis were from the DM signal efficiency, energy resolution, and Lindhard
k factor. The DM signal efficiency was parameterized using Eq. 3.21 with the three
parameters µ1, µ2, and µ3. The uncertainty of the signal efficiency is propagated using
the uncertainties of these three parameters discussed in Sec. 5.3.1. The signal resolution
consists of three quantities: the baseline resolution, the position dependence term, and
the Fano resolution term reflected in parameters σE , A, and B in Eq. 3.14. The uncer-
tainties in both the DM signal efficiency and resolution follow a Gaussian distribution,
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Figure 5.10.: The systematic uncertainty estimation for the 90% C.L. OI limits on the
spin-independent WIMP-nucleon cross-section using the new analysis with
the ML-based LFN cut. The 1σ band is shown in gray with the median
shown in black.

while the systematic uncertainty for the Lindhard k parameter is represented by a uni-
form distribution between 0.1 and 0.2.

2000 trials were performed, leading to a median and 1-sigma uncertainty band shown
in Fig. 5.10. It should be noted that for DM masses below ∼1.5GeV/c2, limits with k
values below ∼0.125 were inaccessible, i.e. small k values make the analysis insensitive
to DM masses below ∼1.5GeV/c2, and thus they are not included in the uncertainty
band calculation.

5.5. Investigation of the additional observed events
As shown in Fig. 5.8, there are additional events in the final spectra with the new analysis
compared to the previous analysis spectra. These events passed the new ML-based LFN
cut but failed the previous bifurcated LFN cut. As mentioned in Sec. 5.3.3, five new
observed events were identified. The raw traces of these events are shown in Fig. 5.11,
and their energy and ML predictions are shown in Table 5.2.

In Fig. 5.11, event 1 shows an event peak around 5.9ms instead of the trigger window,
which was set around 0.8ms (500th time bin). However, for the CNN, the location of the
signal-feature is irrelevant due to its translational invariance. Events 2 and 3 are events
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Event Energy [keVee] ML prediction
1 0.0881 0.9985
2 0.1905 1.
3 0.0907 1.
4 0.0731 0.9621
5 0.0714 0.9781

Table 5.2.: The energy and network predictions for the newly identified events.
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Figure 5.11.: Raw traces of the new observed events with the four phonon channels PA,
PB, PC, and PD. The new signal events passed the new ML-based LFN
cut but failed the previous bifurcated LFN cut.

with one channel exhibiting a distinct “peakier” pulse compared to the other channels,
indicating the location of the event. These events have ML-score of 1 and have a high
amplitude, which can be deduced from the noise levels. Events 4 and 5 exhibit small
pulse-like features around 1ms, with lower network scores of 0.96 and 0.98, respectively.
The Class Activation Maps (CAMs) for these new observed events is shown in Fig. 5.12.

For event 1, the peak around 5.9ms is given the highest importance in the classification
decision. For events 2 and 3, the rising part, which is a very differentiating signal-like
feature, is given the high importance. Event 4 visually exhibits the peaky nature of the
pulse to some extent. However, for event 5, this characteristic is not visually evident due
to the very small energy deposition. In any case, both events require further investigation
to quantify the signal-like characteristics.
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Figure 5.12.: The activation maps of the new observed events with the raw traces shown
in the transparent black over which the color maps representing the fea-
tures that are given high importance for the prediction are overlaid. The
activation maps are calculated using Eq. 4.12.

5.6. DM exclusion limit with OI without
mis-reconstructed events

Events 2 and 3 in Fig. 5.11 are events with a high amplitude that are mis-reconstructed
to low energies. In this section, the 90% C.L. OI exclusion limits were calculated af-
ter removing these two events from the observed energy spectrum. This was done to
accurately calculate the limits, as these events should not be present at the energies
of 0.19 keVee and 0.09 keVee , respectively. The result is shown in Fig. 5.13. The per-
formance deficit observed around DM masses of ∼2GeV/c2 in Fig. 5.9 is absent after
removing the mis-reconstructed events. This is because the optimum interval used to set
the limits for these DM masses is between 0.073 keVee and 0.131 keVee , where the two
mis-reconstructed events were present. The presence of these events at those energies
was not “expected” based on DM signal efficiency, which determines expected number
of events. The new analysis shows a slight improvement in limits between DM masses
of 2.36GeV/c2 and 5GeV/c2. The optimum intervals for these DM masses are also be-
tween 0.07 keVee and 0.131 keVee , where the DM signal efficiency with the new analysis
performs better than the old analysis, as seen in Fig. 5.2 (multi-channel), leading to a
slight improvement in the limits. The overall profiles of both the old and the new limits
remain similar below DM masses of 2.36GeV/c2, and above 5GeV/c2.

116



Chapter 5 – CDMSlite Run 3 Dark Matter Search

1 2 3 5 7 10

DM Mass [GeV/c2]

10−41

10−40

10−39

10−38

10−37

D
M

-N
u

cl
eo

n
C

ro
ss

S
ec

ti
on

[c
m

2
] CDMSlite Run 3 analysis

previous analysis

new ML-based analysis
(this work)

Figure 5.13.: The CDMSlite Run 3 90% C.L. OI limits on the spin-independent WIMP-
nucleon cross-section using the previous analysis with the bifurcated LFN
cut (orange) and the new analysis with the ML-based LFN cut (blue). The
misreconstructed events (Event 2 and 3 in Fig. 5.11) were removed.
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6. Case Studies

In the previous chapter, it was seen that the radial cut had a significant impact on the
final DM signal efficiency.While the new ML-based LFN cut improved signal efficiencies,
its effectiveness was constrained by the radial cut. To explore this further, a case study
without the radial cut was conducted and discussed in Sec. 6.1. Another case explored
the ML-based LFN cut’s potential under the assumption of no observed events, focusing
solely on signal efficiency. Sec. 6.3 details this scenario with and without the radial cut.
Additionally, the impact of applying a stringent cut with and without the radial cut is
presented in Sec. 6.2.

6.1. Impact of radial cut
The radial cut was implemented to remove RNTL events caused by HV field non-
uniformities, as explained in Sec. 3.4.5. This cut had the efficiency of ∼58% for events
with energies above 0.25 keVee, but showed a sharp decline in efficiency for lower
energies, significantly reducing the final DM signal efficiency. To evaluate the impact
of not applying the radial cut, this case study was conducted by applying all the
live-time and quality cuts to the CDMSlite Run 3 data, but the radial cut was omitted.
Both the previous bifurcated LFN cut and the new ML-based LFN cut were applied
independently for comparison. Therefore, in this case, the final DM signal efficiency
was the quality cuts efficiency showed in Fig. 3.14 for the bifurcated LFN cut and in
Fig. 5.7 for the ML-based LFN cut. The analysis thresholds were set at ∼0.069 keVee
for the previous analysis, and ∼0.034 keVee for the new analysis. Further details of this
case are documented in Appendix C.

The observed spectra for this case study are shown in Fig. 6.1. The spectrum
with the ML-based LFN cut shows an excess of events around 0.05 keVee. Upon
inspection of these events, they consist of: signal-like features in the non-trigger region
(trigger is set around 0.8ms i.e. 500th time bin) like event 1 in Fig. 5.11, noise-like
events (e.g., glitch, square pulse, or LFN) in the non-trigger region, signal-like events
mis-reconstructed in energy, and signal-like events with properly reconstructed energies.

It is important to note that the ML models were trained and tested on LFN-
background samples that had passed the radial cut, which ensured event energies above
0.07 keVee. The peak at 0.05 keVee was not anticipated during the development of this
cut, as the purity was calculated only for amplitudes with corresponding energies above
0.07 keVee. However, the network was trained with signal events that have energies
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Figure 6.1.: The energy spectrum of CDMSlite Run 3 using the previous analysis with
the bifurcated LFN cut (orange), and the new analysis with ML-based LFN
cut (blue) without the radial cut. Bottom panel shows pull, which is defined
as difference between the previous and the new analysis spectrum in each
bin divided by the uncertainty.

down to ∼0.04 keVee. In the region between ∼0.04 keVee and 0.07 keVee, it is possible
for the network predictions to be biased toward higher signal probabilities due to the
absence of LFN-background events in this energy range during training. Validating this
would require a pure LFN-background sample within the energy range of ∼0.04 keVee
to 0.07 keVee. However, obtaining such a sample poses a challenge, as no established
methods currently exist to isolate LFN events in this range. This introduces uncertainty
in the signal efficiency for energies below 0.07 keVee. Therefore, this case study is not
part of the main analysis but rather a case study that requires further investigation
in the future. The energy spectrum resulting from the bifurcated LFN cut does not
have these low-energy events due to its analysis threshold at ∼0.069 keVee, effectively
eliminating those low-energy events entirely.
The corresponding DM sensitivities are shown in Fig. 6.2, comparing the results with
and without the radial cut. In both cases, mis-reconstructed events were not removed.
The results for the case with the radial cut are provided only as a reference, and thus
the findings discussed below correspond to the case without the radial cut.

- For DM masses >4GeV/c2: Both the previous analyses and new analysis perform
similarly, excluding large cross-sections in comparison to the case with radial cut.
This arises from the overall increase in the number of events in the spectrum when
the radial cut is omitted.
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Figure 6.2.: Effect of the radial cut on the 90% C.L. OI-based sensitivities on the spin-
independent WIMP-nucleon cross-section for CDMSlite Run 3 using the pre-
vious analysis with the bifurcated LFN cut (orange) and the new analysis
with the ML-based LFN cut (blue). The solid lines represent the cases where
the radial cut is applied, and the dashed lines represent the cases without
the radial cut. The mis-reconstructed events were not removed in this case
study.

- For DM masses between 1.3GeV/c2 and 4GeV/c2: The previous analysis excludes
smaller cross-sections than the new analysis due to the peak at 0.05 keVee in the
latter, which led to excluding higher cross-sections.

- For DM masses <1.3GeV/c2: The new analysis outperforms the previous one due
to its lower analysis threshold, which allows it to explore DM masses as low as 0.8
GeV/c2—an important goal of the ML-based LFN cut. The improvement in the
sensitivity for DM masses below 1.2GeV/c2 is up to three orders of magnitude.

The study emphasizes that obtaining better results depends on resolving issues caused
by training ML models with the samples that have already passed through the radial
cut.

6.2. Placing a stringent cut
In Sec. 6.1, events at energies below ∼0.01 keVee were observed when the radial cut
was not applied. The proper approach to handling the case without radial cut is
to re-train the neural network using events that have not been filtered through the
radial cut. Alternatively, with the current neural network for LFN cut, the signal
probability threshold value can be increased to allow only highly signal-like events to
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pass. This modification minimizes the presence of events below ∼0.01 keVee, which
exhibit square-pulse-like and glitch-like features outside the trigger region. However,
this approach constitutes a post-unblinding study.

The impact of increasing the signal probability threshold to 0.99 is discussed in
this section. It is important to note that the signal samples used to calculate the signal
efficiencies in the previous analysis based on bifurcated LFN cut are not the same as
those used in the new analysis based on ML-based LFN cut. The signal samples used
for the previous analysis are unavailable, and it is currently not possible to recalculate
the previous analysis efficiencies with the current sample due to the unavailability of
the necessary computational facilities. Therefore, the results presented in this chapter
should be interpreted with caution. Despite these limitations, this chapter serves as
a proof of principle, highlighting the impact of the ML-based LFN cut with a higher
threshold and motivating future work to incorporate this approach.

6.2.1. With radial cut
This case study involved applying a signal probability threshold of 0.99 to remove the
LFN events with the radial cut. Based on this case study, this section presents the final
DM signal efficiencies, the resulting spectra, and sensitivities on the SI WIMP-nucleon
cross-section.

Signal efficiency

The final DM signal efficiency for this high-threshold case was determined using the
same method described in Sec. 5.3.1. The final efficiency was obtained by sequentially
applying the hardware trigger efficiency, quality cut efficiency, and radial cut efficiency.
The efficiency was parameterized using Eq. 3.21. The final DM signal efficiency using
the ML-based LFN cut with a signal probability threshold of 0.99 is shown in Fig. 6.3.

The comparison of the final DM signal efficiency for the new analysis using the ML-based
LFN cut with thresholds at 0.99 and 0.9 is shown in Fig. 6.4, alongside the previous anal-
ysis using the bifurcated LFN method. The signal probability thresholds at 0.9 and 0.99
show similar efficiencies compared to the previous analysis above energies of 0.24 keVee.
Between 0.13 keVee and 0.24 keVee, the previous analysis exhibits higher efficiency com-
pared to the ML-based signal efficiencies. Below 0.13 keVee, the new analyses provide
higher signal efficiency than the previous analysis, with the signal probability threshold
of 0.9 showing higher efficiency than the threshold at 0.99.

WIMP-nucleon sensitivities

The ML-based LFN cut with the signal probability threshold of 0.99 was applied
to the CDMSLite Run 3 dataset, and the resulting final energy spectrum is shown
in Fig. 6.5. In this case, only three additional events are observed compared to the
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Figure 6.3.: The DM signal efficiency of CDMSlite Run 3 calculated by applying the
trigger efficiency (red), quality cut efficiency (green), and fiducial volume or
radial cut efficiency (black) successively. The quality cut is calculated using
the ML-based LFN cut with a signal probability threshold of 0.99. The
parameterized final efficiency is shown in blue with 1σ uncertainty band
consisting of systematic and statistical uncertainties. The hard threshold at
0.07 keVee is imposed by the radial cut efficiency.
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Figure 6.4.: Comparison of the DM signal efficiencies of CDMSlite Run 3 for the previous
analysis using bifurcated LFN cut (orange), and new analysis using ML-
based LFN cut by placing a threshold on signal probability at 0.9 (blue)
and at 0.99 (green). The uncertainty band is omitted for visual clarity.
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Figure 6.5.: The energy for of CDMSlite Run 3 using the previous analysis with bifur-
cated LFN cut (orange), and the new analysis with ML-based LFN cut using
signal probability thresholds of 0.9 (blue) and 0.99 (green), shown after ap-
plying the radial cut.

previous spectrum using the bifurcated LFN cut. These additional events are Events 1,
2, and 3 in Fig. 5.11. The events with mis-reconstructed energies, Event 2 and Event 3,
were removed.

The 90% C.L. OI-based sensitivity on the spin-independent WIMP-nucleon cross-
section for this case study is shown in Fig. 6.6. The threshold at 0.99 results in overall
comparable sensitivities to the threshold at 0.9 and the previous analysis, with a slight
improvement for DM masses below ∼1.9GeV/c2. This improvement is due to the
reduction in the number of events (Event 4 and 5 in Fig. 5.11) in the final spectrum
compared to the analysis with a signal probability threshold of 0.9, as well as the
enhanced signal efficiency at low energies compared to the previous analysis.

6.2.2. Without radial cut
This case study examined the effect of applying a signal probability threshold of 0.99
for removing the LFN events without the radial cut, and the results are shown in this
section. This study is particularly essential as it examines how the events with energies
below ∼0.01 keVee discussed in Sec. 6.1 are impacted with the higher threshold.

Signal efficiency

The final DM signal efficiency without the radial cut was obtained from the quality cut
efficiencies. Fig. 6.7 shows the DM signal efficiency without the radial cut for the previous
analysis using the bifurcated LFN cut, as well as the new analyses using the ML-based
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Figure 6.6.: Effect of applying a stringent signal probability threshold with the radial cut
for the ML-based LFN cut on the 90% C.L. OI-based sensitivities on the
spin-independent WIMP-nucleon cross-section for CDMSlite Run 3. Results
from the previous analysis with the bifurcated LFN cut (orange) and the
new analysis with the ML-based LFN cut by placing a threshold on signal
probability at 0.9 (blue) and at 0.99 (green, dashed) are shown.

LFN cut for signal probability thresholds at 0.9 and 0.99. The efficiency data points
for the new analyses are shown with the parameterized curve, while for the previous
analysis, only the parameterized curve is shown, as the data points are unavailable.
As expected, the signal efficiency is lower for the signal probability threshold of 0.99
compared to 0.9. However, it should be noted the signal efficiency for the threshold at
0.99 is still higher than that of the previous analysis, indicating a gain even with a more
stringent threshold.

WIMP-nucleon sensitivities

The final spectrum of the CDMSlite Run 3 using the ML-based LFN cut with a
signal probability threshold of 0.99 and without the application of radial cut is shown
in Fig. 6.8. It is evident that the low-energy events below ∼0.1 keVee observed in
the spectrum with a threshold of 0.9 are significantly reduced in the spectrum with
the threshold of 0.99. Further information on the remaining events is provided in
Appendix C. In addition to less number of events below ∼0.1 keVee, there are fewer
events in the M-shell peak at 0.16 keVee compared to the spectrum with a threshold
of 0.9 and the previous analysis using the bifurcated LFN cut. In total, this threshold
removed 50 events that had previously passed the bifurcated cut, which requires further
investigation.
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Figure 6.7.: Comparison of the DM signal efficiencies of CDMSlite Run 3 without the
application of the radial cut for the previous analysis using bifurcated LFN
cut (orange), and new analysis using ML-based LFN cut with signal prob-
ability thresholds of 0.9 (blue) and 0.99 (green). The shown efficiencies are
parameterized from the efficiency data points shown for the new analysis
(blue for 0.9 threshold and green for 0.99 threshold); efficiency data points
for the previous analysis are not shown as the data points are unavailable.

The 90% C.L. OI-based sensitivity on the spin-independent WIMP-nucleon cross-
section for the new analysis using the ML-based LFN cut with a signal probability
threshold of 0.99, without applying the radial cut, is shown in Fig. 6.9. For DM masses
below ∼1.35GeV/c2, the threshold at 0.9 performs better than the 0.99 threshold due
to better signal efficiency at the lowest energies for the 0.9 threshold.

A substantial improvement in sensitivity is observed for DM masses between
∼1.35GeV/c2 and 10GeV/c2. This improvement is attributed to a higher signal
efficiency compared to the previous analysis, a reduced number of events with energies
below ∼0.18 keVee, and the optimal intervals for the entire mass range being below
0.37 keVee. The events removed by the high-threshold LFN cut, which previously passed
the bifurcated LFN cut and the 0.9 threshold with the ML-based cut, have energies
between 0.08 keVee and 0.17 keVee. The optimal intervals for all masses are within this
energy range, leading to a better sensitivity due to low number of events.

However, it is important to note that the ML model was not trained for energies
below 0.07 keVee, so results in this range should be interpreted with caution. This study
highlights the impact of the radial cut on the ML-based LFN cut’s performance and
demonstrates the ML-based cut’s unhindered potential. While the stringent threshold
of 0.99 results in some loss of signal efficiency, it effectively removes LFN and other
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Figure 6.8.: The energy spectrum of CDMSlite Run 3 from the previous analysis with
bifurcated LFN cut (orange), and the new analysis with ML-based LFN cut
(blue) without the application of the radial cut.
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Figure 6.9.: Effect of applying a signal probability threshold at 0.99 and excluding the
radial cut on the 90% C.L. OI-based sensitivities on the spin-independent
WIMP-nucleon cross-section for CDMSlite Run 3. Results from the previous
analysis with the bifurcated LFN cut (orange) and the new analysis with
the ML-based LFN cut by placing a threshold on signal probability at 0.9
(blue) and at 0.99 (green) are shown.
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low-energy events below ∼0.01 keVee, representing a trade-off between efficiency and
background reduction.

6.3. In the absence of observed events
To fully understand the extent of the ML-based approach, a case study was conducted
under the assumption that no events were observed. In this scenario, the results directly
reflect the signal efficiencies. This case was similar to the main results shown in Sec. 5.4
in that the DM signal efficiencies and expected DM spectra remain unchanged, but the
number of observed events was set to zero. The study was performed both with and
without the radial cut to examine its impact on the results. The sensitivity for this case
study is shown in Fig. 6.10.

With the radial cut applied, there is no improvement in the reach of low-mass
DM search because the signal efficiencies are constrained by the energy threshold of the
radial cut at 0.07 keVee. Both the previous and the new analysis with the radial cut
yield similar sensitivities, although the new analysis performs slightly better for DM
masses below 3.5GeV/c2.

Without the radial cut, both the previous and the new analyses show improve-
ment in the low-mass DM search, with the new analysis demonstrating substantial
improvement in the sensitivity down to a DM mass of 0.8GeV/c2, reflecting it’s ability
to explore events in low-energy regime. For mid-range DM masses between 2GeV/c2

and 10GeV/c2, both analyses have sensitivity to smaller cross-sections, with the new
analysis performing better than the previous analysis.

This case study highlights the potential of the ML-based LFN cut approach compared
to the previous bifurcated LFN cut. The results underscore the impact of the radial
cut on the signal efficiency, which in turn affects the sensitivity to DM at lower masses.
Without the radial cut, the new analysis demonstrates its capability without the
influence of the event excess in the low energies observed in Sec. 6.1, providing a clear
view of the method’s capabilities.
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Figure 6.10.: 90% C.L. OI-based sensitivities on the spin-independent WIMP-nucleon
cross-section for CDMSlite Run 3 with the assumption of no observed
events. The previous analysis using the bifurcated LFN cut and the new
analysis with the ML-based LFN cut are shown in orange and blue, respec-
tively. The solid lines represent the cases where the radial cut is applied,
and the dashed lines represent the cases without the radial cut.
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7. Conclusion and Outlook

The primary focus of this thesis work was the development of a machine learning (ML)-
based cut for the Low-Frequency Noise (LFN) induced by vibrations during the CDM-
Slite Run 3 experiment. This written work began with an introduction to Dark Matter
(DM) in Chapter 1, followed by an overview of the SuperCDMS experiment in Chapter 2.
Chapter 3 outlined the CDMSlite Run 3 experiment and its analysis. The development
of the ML-based LFN cut is presented in Chapter 4, and its implementation and results
are discussed in Chapter 5. Chapter 6 explored extensions of the analysis through dif-
ferent case studies. This final chapter summarizes the thesis in Sec. 7.1 and concludes
with an outlook in Sec. 7.2.

7.1. Summary
The cryocooler that provided supplemental cooling deteriorated over the course of
CDMSlite Runs, as discussed in Sec. 3.1. Particularly in Run 3, it caused vibration-
induced LFN, which triggered the detector often. Due to the similarity in pulse shape
between LFN traces and low-energy signal traces, removing these LFN events from
experimental data was challenging. The previous analysis applied a bifurcated cut to
remove the LFN events, as detailed in Sec. 3.4.3. However, this method resulted in poor
signal efficiency at low-energies. Therefore, the motivation for this work was to develop
a new method based on ML to remove LFN events with an improved signal efficiency
while maintaining a high signal purity.

Three channel configurations were explored: single-channel, Phonon Total (PT)-
channel, and multi-channel (4 channels). LFN-background samples were data-driven for
all configurations, as described in Sec. 4.1.1. For the signal samples, phonon templates
scaled by desired amplitudes were added to the baseline noise traces for the single-
and PT-channel configurations, as explained in Sec. 4.1.2. Due to the lack of proper
SuperCDMS simulation that’s needed for the multi-channel configuration, a novel
method called Simulation Using Pulse shapes and Regression (SUPR) to generate
templates based on event positions was developed, as detailed in Sec. 4.2. The ML
models considered for this analysis were Convolutional Neural Networks (CNNs) and
CNN with Long Short-Term Memorys (LSTMs) Section 4.5 demonstrated that the
hyperparameter-optimized CNNs performed better than the CNN-LSTMs in terms of
signal purity across all channel configurations. High signal purity was crucial for this
analysis, as the Optimum Interval (OI) method was used to set limits, which is based
on a signal-only hypothesis. Sensitivity studies, explained in Sec. 5.2, were conducted
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to determine the best channel configuration for the LFN cut. The multi-channel con-
figuration was found to perform better than the single- and PT-channel configurations,
leading to its selection for the final implementation of the LFN cut.

Application of the new ML-based cut, along with other quality cuts, to the CDMSlite
Run 3 dataset revealed five additional events in the final energy spectrum within
the ROI of 0.07 keVee to 2 keVee. Upon investigation, two of these five events have
mis-reconstructed energies, as detailed in Secs. 5.3 and 5.5.

Exclusion limits were set on the spin-independent WIMP-nucleon cross-section based on
the OI method. Two cases were analyzed: (A) including the mis-reconstructed events
in the final spectrum, discussed in Sec. 5.4, and (B) excluding the mis-reconstructed
events in the final spectrum, discussed in Sec. 5.6. The results show that, overall, the
analysis based on the new ML-based LFN cut performed similarly to the previous
analysis based on the bifurcated LFN cut. However, in case A, the limits (shown in
Fig. 5.9) displayed slightly worse performance for DM masses around ∼2GeV/c2, as the
additional events resulted in limits being set at higher cross-sections. In case B, where
the mis-reconstructed events were excluded, the performance deficit was not observed,
confirming that the mis-reconstructed events caused poor performance at those mass
ranges. Additionally, both cases demonstrated an improvement of up to ∼17.5% over
the previous results for DM masses around 5GeV/c2 due to the improvement in the
signal efficiency.

The radial cut imposed a threshold at 0.07 keVee, and limited the signal efficiency gains
with the use of the ML-based LFN cut developed. Sec. 6.1 presented a case study
where the radial cut was removed. The study revealed a significant number of events
below ∼0.1 keVee in the energy spectrum of the new analysis using the ML-based LFN
cut. As the developed neural network was not trained for energies below 0.07 keVee
and used samples already filtered by the radial cut, all the case studies without the
radial cut should be interpreted with caution. Sec. 6.2 examined a higher signal
probability threshold. This study demonstrated improved sensitivities in the low-mass
DM, highlighting the potential of the ML-based LFN cut. Additionally, a case study
assuming no events were observed was discussed in Sec. 6.3, which demonstrated the
potential of the ML-based LFN cut based on its signal efficiency.

7.2. Outlook
First and foremost, the solution to mitigate vibration-induced LFN events is to
implement a vibration isolation system. The Cryogenic Underground TEst (CUTE)
facility at SNOLAB, where SuperCDMS detector towers were tested, implemented a
suspension system that decouples the detectors from the pulse tube of the dilution
refrigerator, effectively dampening vibrations. This is expected to reduce the LFN
events significantly for future experiments.
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The ML-based approach developed in this analysis has broader potential applica-
tions, such as removing other types of noise, including glitch noise and square pulse
noise. To adapt this method, the LFN-background sample should be replaced with cor-
responding noise samples. Ongoing efforts in positional reconstruction are particularly
significant, as accurate position reconstruction will improve the ability to discriminate
surface events and properly fiducializing events.

It was evident in the CDMSlite Run 3 analysis that the radial cut significantly
limited the final DM signal efficiency, and constrained the ability to search for low-mass
DM. Improvements in the HV field uniformity are essential to reduce the occurrence
of RNTL events, which the radial cut primarily addressed. Furthermore, developing
a more accurate positional reconstruction method are also expected to enhance event
fiducialization without severely impacting DM signal efficiency.

However, removing the radial cut in this analysis led to an excess of events in
the low-energy region in the case of the new analysis based on the ML-based LFN
cut. This outcome was attributed to the ML model being trained and tested on
LFN-background samples that had already passed the radial cut. The LFN-background
samples therefore had energies starting from 0.07 keVee, and the purity was also
calculated for energies above 0.07 keVee. Consequently, the network was not exposed to
lower-energy events. The proper solution for this case involves training the ML model
with events that are not passed through the radial cut, which allows for a more robust
response to low-energy events.

To use the current ML model for the case without the radial cut application,
placing a stringent cut on the signal probability to remove low-energy events can be
a workaround, as most of these events have a signal probability below 1. Although
such a stringent cut reduces signal efficiency, it is still expected to perform better than
the previous bifurcated LFN cut. A short study, discussed in Sec. 6.2, examined the
effects of applying a signal probability cut at 0.99. The events passing through the
signal probability cut at 0.9 need to be studied to identify potential issues with the
signal purity. One needs to determine whether these events were removed with a more
stringent cut or if the stringent cut merely resulted in poor efficiency without achieving
the purity necessary for the DM search analysis.

A robust simulation of samples is essential for ML-based analyses. The lack of
such samples initially posed a big challenge during the development of this project,
leading to the development of the SUPR method. This method is planned to serve as
a tool for comparing simulated traces from other data generation methods for future
analyses. While the samples from the official SuperCDMS simulation for this analysis
were not adequately developed due to the outdated experiment and limited use of
its data, ongoing simulation efforts for the SuperCDMS SNOLAB experiment aim to
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provide robust simulation datasets.

Another critical issue identified in this work was the mis-reconstruction of ener-
gies for certain events, which negatively impacted limit-setting by introducing events
in energy regions where they should not be present. For the case with the radial cut,
two mis-reconstructed events in low-energies were observed, which passed the ML-based
LFN cut but failed the previous bifurcated LFN cut. At first, the cause of these events
failing the previous cut has to be identified. This was not done in this analysis as the
necessary computing facilities to reapply the cuts are no longer operational, preventing
a more detailed investigation within this thesis timeline. Additionally, the final energy
spectrum contained fewer than five mis-reconstructed events, which also require further
study. Similar issues were noted in the case without the radial cut, so a thorough
investigation is needed to find the extent and causes of this energy mis-reconstruction
and its broader impact on this and other analyses using this dataset.

Closing remarks:
In conclusion, the ML-based LFN cut demonstrated high signal efficiency and purity,
enabling the identification of additional events and setting competitive limits compared
to the previous analysis using the bifurcated LFN cut. This analysis also revealed issues
with energy reconstruction. Furthermore, the SUPR method was developed for trace
generation based on event position during this analysis and is planned to serve as a
validation tool for other simulation efforts. The gain in the signal efficiency was limited
by the radial cut application. Thus case study when radial cut was not applied was
investigated, it showed imporved sensitivy upto 0.8GeV/c2. The gain in signal efficiency
was particularly evident in the case study assuming no observed events, highlighting
the ability of this approach to improve sensitivity for low-mass DM searches.
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A. Hyperparameter Optimization

The hyperparameter optimization was performed for both the CNN and CNN-LSTM
models, as explained in Sec. 4.4 and Sec. 4.5, respectively. The optimization procedure
involved using random search [145], Bayesian optimization [146], or a combination of
both, depending on computing availability at the time. Random search picks parame-
ter combinations randomly to find the best parameter combination; however, Bayesian
optimization builds a probabilistic model to obtain the optimal parameters. The key
metric for evaluation is accuracy, represented by the score. The optimization was carried
out using a 3-fold cross-validation [151, 152], with the final score being the average of
the cross-validation results. Cross-validation is a resampling technique used to train the
network on different subsets of the training data in order to evaluate the robustness
of the results. The score error mentioned in this section corresponds to the standard
deviation of the cross-validation results. The models were finalized based on achieving
the highest score with the lowest possible error.

A.1. CNN architecture
Among the architectures tested initially, the simplest one that yielded the highest
accuracy is shown in Fig. 4.15. This architecture consists of two 1D convolution layers,
followed by a Global Average Pooling (GAP) layer, two dense layers, and a final dense
layer that outputs the signal probability. Table. 4.2 shows the values of the finalized
model for all three channel configurations.

The details of the parameter tuning for this architecture are presented in this
section. For all three channel configurations, 10000 samples consisting of equal portions
of signal and LFN-background samples, were used. Both random search and Bayesian
optimization were applied for the single-channel and PT-channel configurations, while
only Bayesian optimization was used for the multi-channel configuration due to time
and computing constraints.

A.1.1. Single-channel
The combinations tested during the hyperparameter optimization are showed in Fig. A.1.
The final combination chosen is shown with a thick line, while the other combinations
are represented with thin lines. In addition to achieving high accuracy, L2 kernel reg-
ularization with a regularizer value of 0.01 was applied to the convolution layers and
dense layers to improve stability during training.
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Figure A.1.: The hyperparameter optimization graph for the CNN model with the single-
channel configuration. The finalized combination is highlighted with a thick
line, while other combinations are shown as thin lines. The number of filters
(shown as # of filters) was scaled by a factor of 32. The stride, kernel size
(shown as kernel), and number of filters correspond to the first convolutional
layer, whereas the second convolutional layer uses half the kernel size, twice
the number of filters, and a stride of 1. Dropout is applied between the fully
connected layers. The optimal combination was selected based on achieving
the highest score with the lowest error.

A.1.2. PT-channel
For the PT-channel configuration, the hyperparameter optimization was performed using
10000 samples, consisting of equal portions of signal and LFN-background samples.
Fig. A.2 shows the combinations tested during the hyperparameter optimization. The
final combination chosen is shown with a thick line, while the other combinations are
represented with thin lines. In addition to achieving high accuracy, L2 kernel and bias
regularization with a regularizer value of 0.01 was applied to the convolution layers
and dense layers to improve stability during training. Additionally, the samples were
pre-processed using a low-pass filter, as it showed the highest accuracy.

A.1.3. Multi-channel
For the PT-channel configuration, the hyperparameter optimization was performed using
10000 samples, consisting of equal portions of signal and LFN-background samples.
Fig. A.3 shows the combinations tested during the hyperparameter optimization. The
final combination chosen is shown with a thick line, while the other combinations are
represented with thin lines. In addition to achieving high accuracy, L2 kernel and bias
regularization with a regularizer value of 0.01 was applied to the convolution and dense
layers to improve stability during training.
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Figure A.2.: The hyperparameter optimization graph for the CNN model with the PT-
channel configuration. The finalized combination is highlighted with a thick
line, while other combinations are shown as thin lines. The number of filters
(shown as # of filters) was scaled by a factor of 32. The stride, kernel size
(shown as kernel), and number of filters correspond to the first convolutional
layer, whereas the second convolutional layer uses half the kernel size, twice
the number of filters, and a stride of 1. Dropout is applied between the fully
connected layers. The optimal combination was selected based on achieving
the highest score with the lowest error.

Figure A.3.: The hyperparameter optimization graph for the CNN model with the multi-
channel configuration. The finalized combination is highlighted with a thick
line, while other combinations are shown as thin lines. The number of filters
(shown as # of filters) was scaled by a factor of 32. The stride, kernel size
(shown as kernel), and number of filters correspond to the first convolutional
layer, whereas the second convolutional layer uses half the kernel size, twice
the number of filters, and a stride of 1. Dropout is applied between the fully
connected layers. The optimal combination was selected based on achieving
the highest score with the lowest error
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A.2. CNN-LSTM architecture
The CNN-LSTM architecture consists of two 1D convolution layers, followed by two
LSTM layers, two dense layers, with the final layer that outputs the signal probability.
Dropouts are applied between convolution, LSTM layers. Batch normalization are
applied between convolution, LSTM layers for only PT- and multi-channels. Fig. 4.44
displays a schematic of the architecture. The values of the finalized model for all three
channel configurations is shown in Table. 4.3.

The details of the parameter tuning for this architecture are presented in this
section. Both random search and Bayesian optimization were applied for the multi-
channel configuration, while only random search was used for the single-channel and
PT-channel configuration due to time and computing constraints.

A.2.1. Single-channel
For the single-channel configuration, 5000 samples consisting of equal portions of signal
and LFN-background samples, were used. The combinations tested during the hyper-
parameter optimization are showed in Fig. A.4. The final combination chosen is shown
with a thick line, while the other combinations are represented with thin lines.

Figure A.4.: The hyperparameter optimization graph for the CNN-LSTM model with-
out batch normalization in the single-channel configuration. The finalized
combination is highlighted with a thick line, while other combinations are
shown as thin lines. The number of filters (denoted as # of filters) was
scaled by a factor of 32. The stride, kernel size (denoted as kernel), and
number of filters correspond to the first convolutional layer, while the sec-
ond convolutional layer uses half the kernel size, twice the number of filters,
and a stride of 1. Dropout 1 is applied after the first and the second convo-
lutional layers, Dropout 2 is applied after the first LSTM layer, Dropout 3
is applied after the second LSTM layer, and Dropout 4 is applied between
the fully connected layers. The optimal combination was selected based on
achieving the highest score with the lowest error.
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A.2.2. PT-channel
For the PT-channel configuration, 8000 samples consisting of equal portions of signal
and LFN-background samples, were used. The combinations tested during the hyper-
parameter optimization are showed in Fig. A.5. The final combination chosen is shown
with a thick line, while the other combinations are represented with thin lines. In ad-
dition to achieving high accuracy, L2 kernel and bias regularization with a regularizer
value of 0.01 was applied to the convolution and dense layers to improve stability during
training.

Figure A.5.: The hyperparameter optimization graph for the CNN-LSTMmodel with the
PT-channel configuration. The finalized combination is highlighted with a
thick line, while other combinations are shown as thin lines. The num-
ber of filters (denoted as # of filters) was scaled by a factor of 32. The
stride, kernel size (denoted as kernel), and number of filters correspond to
the first convolutional layer, while the second convolutional layer uses half
the kernel size, twice the number of filters, and a stride of 1. Dropout 1
is applied after the first and the second convolutional layers, Dropout 2 is
applied after the first LSTM layer, Dropout 3 is applied after the second
LSTM layer, and Dropout 4 is applied between the fully connected lay-
ers.BatchNormalization is applied after each convolutional and LSTM layer
and before the corresponding dropouts. The optimal combination was se-
lected based on achieving the highest score with the lowest error.

A.2.3. Multi-channel
For the PT-channel configuration, 10000 samples consisting of equal portions of signal
and LFN-background samples, were used. The combinations tested during the hyper-
parameter optimization are showed in Fig. A.6. The final combination chosen is shown
with a thick line, while the other combinations are represented with thin lines. In ad-
dition to achieving high accuracy, L2 kernel and bias regularization with a regularizer
value of 0.01 was applied to the convolution and dense layers to improve stability during
training.
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Figure A.6.: The hyperparameter optimization graph for the CNN-LSTM model with
the multi-channel configuration. The finalized combination is highlighted
with a thick line, while other combinations are shown as thin lines. The
number of filters (denoted as # of filters) was scaled by a factor of 32. The
stride, kernel size (denoted as kernel), and number of filters correspond to
the first convolutional layer, while the second convolutional layer uses half
the kernel size, twice the number of filters, and a stride of 1. Dropout
1 is applied after the first and the second convolutional layers, Dropout
2 is applied after the first LSTM layer, Dropout 3 is applied after the
second LSTM layer, and Dropout 4 is applied between the fully connected
layers.BatchNormalization is applied after each convolutional and LSTM
layer and before the corresponding dropouts. The optimal combination
was selected based on achieving the highest score with the lowest error.
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B. Energy Mis-reconstruction

The final spectrum resulting from the ML-based LFN cut, as discussed in Sec. 5.5,
revealed five additional events compared to the previous analysis using the bifurcated
LFN cut. Among these, two events were improperly reconstructed, resulting in lower
energies than expected. This section provides an estimation of energy for these events,
which are shown in Fig. B.1.The energies of these two events are estimated using the
Optimal Filter (OF), which provides amplitudes in ADC units (or amperes if the input
traces are in amperes).

Figure B.2 presents the OF amplitude of the PT channel against energy in the
keVee scale for events from the final spectrum of the previous analysis using the bifur-
cated LFN cut. Both quantities are obtained from the official reconstruction pipeline.
It is important to note two points: 1) this energy estimation uses the Non-Stationary
Optimal Filter (NSOF) to obtain amplitudes, however the estimated energies shown
in this section are based on the standard OF amplitudes. 2) non-linearities in the
conversion from ADC amplitudes to keVee arise from the energy corrections discussed
in Sec. 3.3.3. Consequently, the OF amplitude of the PT channel on the x-axis is
uncorrected, while the energy on the y-axis includes these corrections, as shown in
Fig. 3.8 where the spectra before and after energy correction was shown. Despite these
non-linearities, a rough linear relationship provides a reasonable estimate of the events’
energies from amplitudes.

Event Mis-reconstructed energy Current estimated energy
2 0.191 0.581 - 0.945
3 0.091 2.239 - 2.522

Table B.1.: Comparison of the assigned energy and the currently estimated energy for
mis-reconstructed events.

The estimated energies are presented as ranges due to the aforementioned reasons.
Table B.1 provides a comparison between the assigned and estimated energies. The
estimated energies are significantly higher than the assigned values, exceeding them by
over three times for Event 2 and more than 25 times for Event 3.
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Appendix B – Energy Mis-reconstruction
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Figure B.1.: Raw traces of the additional events observed that have mis-reconstructed
energies. The four phonon channels PA, PB, PC, and PD are shown in blue,
orange, green, and red, respectively. The new signal events passed the new
ML-based LFN cut and failed the previous bifurcated LFN cut.
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Figure B.2.: Energy in keVee scale is plotted against the OF amplitude of the PT channel
in ADC units for events in the final spectrum from the previous analysis
using the birfurcated LFN cut. Both quantities are obtained from the official
reconstruction pipeline.
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C. Supplementary Information on the
Impact of Radial Cut

Section 6.1 discussed the impact of the radial cut on the final spectrum in both the
previous analysis using the bifurcated LFN cut and the new analysis using the ML-
based LFN cut. The new analysis revealed an excess of events at low energies below
0.1 keVee, as seen in Fig. C.1. This section provides an overview of the characteristics of
these events and their raw traces for both the nominal signal probability threshold of 0.9
(used in the final analysis) and the more stringent threshold of 0.99, which was explored
in a post-unblinding study described in Sec. 6.2. For the case with the radial cut applied,
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Figure C.1.: Energy spectrum of the CDMSlite Run 3 events below 0.08 keVee for previ-
ous analysis using the bifurcated LFN cut and the new analysis using the
ML-based LFN cut for signal probability thresholds 0.9 and 0.99.

there are 351 additional events in the energy spectrum that passed the ML-based LFN
cut with a signal probability threshold of 0.9 and failed the bifurcated LFN cut. Of
these, ∼54% have noise-like or signal-like features outside the trigger region (trigger is
set around 0.8ms i.e. 500th time bin). Additionally, 10 events are high-energy events
that were mis-reconstructed and have low-energies. Raw traces of randomly selected
events from the energy spectrum of the new analysis with a signal probability threshold
of 0.9, and that did not pass the bifurcated LFN cut, are shown in Fig. C.2, along
with their reconstructed energies. The Event 4 and 9 in the figure are high-energy mis-
reconstructed events, while Events 2, 3, and 7 exhibit key features outside the trigger
region. Events 1, 5, 7, and 8 show signal-like features with small amplitudes, but these
are predominantly affected by high baseline noise.
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Appendix C – Supplementary Information on the Impact of Radial Cut
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Figure C.2.: Raw traces of additional events observed with the four phonon channels (PA,
PB, PC, and PD). The radial cut was not applied. These events passed the
ML-based LFN cut with a signal probability threshold of 0.9 and failed the
previous bifurcated LFN cut. Reconstructed energies are displayed in the
text box. Moving average is applied on the raw traces for visual aid.
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Chapter G – Supplementary Information on the Impact of Radial Cut

For the case without the radial cut applied, there are 30 additional events in the energy
spectrum that passed the ML-based LFN cut with a signal probability threshold of 0.99
and failed the bifurcated LFN cut. Of these, 14 events exhibit noise-like or signal-like
features outside the trigger region. The 10 high-energy events identified in the threshold
0.9 case are also present in this case due to their signal probability of 1, as expected.
Raw traces of randomly selected events from the energy spectrum of the new analysis
with a signal probability threshold of 0.99, which did not pass the bifurcated LFN cut,
are shown in Fig. C.3, along with their reconstructed energies. Events 2, 4, 5, and 6 in
the figure are high-energy mis-reconstructed events, while Events 1, 3, and 8 show key
features outside the trigger region. Event 7 is difficult to interpret due to the baseline
noise and any underlying feature with very low amplitude. Event 9 shows signal-like
features with small amplitudes but is predominantly affected by high baseline noise.
Although the events below 0.1 keVee were significantly reduced with a signal probability
threshold of 0.99, this stringent threshold also excluded 50 “good events” below an energy
of ∼0.16 keVee that had passed the bifurcated LFN cut but did not pass the ML-based
cut with a higher threshold.
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Figure C.3.: Raw traces of additional events observed with the four phonon channels
(PA, PB, PC, and PD). The radial cut was not applied. These events
passed the ML-based LFN cut with a signal probability threshold of 0.99
and failed the previous bifurcated LFN cut. Reconstructed energies are
displayed in the text box. Moving average is applied on the raw traces for
visual aid.
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