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Zusammenfassung

Die Suche nach Physik jenseits des Standardmodells ist ein zentrales Ziel der Teilchenphy-
sik. Diese Forschung wird an Teilchenbeschleuniger-Experimenten durchgeführt und erfordert
eine große Menge an simulierten Daten. Der Ausbau des Large Hadron Colliders (LHC)
zum High-Luminosity LHC steigert den Bedarf an schnellen Simulationen erheblich. Für den
HL-LHC wird der CMS-Detektor mit hochgranularen Endkappenkalorimetern ausgestattet,
und ähnliche hochgranulare Kalorimeter sind auch für zukünftige Teilchendetektoren vor-
gesehen. Zusammengenommen erhöhen diese Faktoren den Bedarf an präziseren schnellen
Simulationen. In dieser Arbeit wird generatives maschinelles Lernen als Werkzeug für sehr
präzise schnelle Simulationen untersucht.

Es werden mehrere Modelle für die schnelle Simulation von Kalorimeterschauern und
Jets vorgestellt. Das Bounded Information Bottleneck Autoencoder (BIB-AE) Modell erzeugt
Kalorimeterschauer als 3-dimensionale Bilder. Eine Analyse des kodierten latenten Raums des
BIB-AE zeigt, dass nur wenige Variablen die meisten Schauerinformationen kodieren. Dies
motiviert eine Verbesserung des BIB-AE durch den Einsatz eines Kernel Density Estimators
zur Modellierung des latenten Raums. Das resultierende Modell ist in der Lage, hochgranulare
Photonenschauer mit hoher Genauigkeit 10-mal schneller zu simulieren als die herkömmliche
Monte-Carlo-Simulation Geant4 auf der gleichen CPU Hardware.

Um die Effizienz der generativen Modelle für Kalorimeterschauer weiter zu steigern, wird
das Diffusionsmodell CaloClouds eingeführt, welches Kalorimeterschauer als Punktwolken
modelliert. Diese Darstellung bietet mehrere Vorteile gegenüber 3D-Bildern; unter anderem
ist sie effizienter und ermöglicht eine geometrieunabhängige Schauermodellierung. Das Ca-
loClouds II Model verbessert diesen Ansatz mittels kontinuierlichem Score-Matching und
erreicht eine höhere Genauigkeit und schnellere Generierung. Das Modell wird weiter zum
Consistency Model CaloClouds II (CM) destilliert, was nicht nur die Geschwindigkeit
erheblich erhöht, sondern auch die Genauigkeit weiter verbessert. CaloClouds II (CM) ist
auf der gleichen Hardware 46-mal schneller als Geant4.

Als letztes wird der Equivariant Point Cloud (EPiC) Netzerk-Layer eingeführt, um die in
der Teilchenphysik verwendeten generativen Punktwolkenmodelle weiter zu verbessern. Der
Layer wird in drei verschiedenen generativen Punktwolkenmodellen verwendet: im adversiel-
len generativen Netzwerk EPiC-GAN, im Diffusionsmodell EPiC-JeDi und im Continuous
Normalizing Flow Modell EPiC-FM, welches mittels Flow-Matching trainiert ist. Die Modelle
werden anhand des JetNet Datensatzes für die Erzeugung von Teilchenjets bewertet. Dabei
zeigt sich, dass EPiC-GAN das effizienteste Modell ist, da es etwa 210-mal schneller ist als
die anderen beiden Modelle und immer noch die Leistung des komplexeren, graphbasierten
MP-GAN erreicht. EPiC-FM ist jedoch das genaueste aller verglichenen Modelle, was den
Flow-Matching-Ansatz und die EPiC Layer als vielversprechende Ansätze für zukünftige
generative Modelle für schnelle Simulationen in der Teilchenphysik hervorhebt.





Abstract

The search for physics beyond the Standard Model is a central goal of particle physics.
This research is conducted at collider experiments and requires a very large amount of
simulated data. With the high-luminosity upgrade to the Large Hadron Collider (HL-LHC)
the need for more and faster simulations is increasing. The CMS detector upgrade for the
HL-LHC will feature high-granularity endcap calorimeters and highly granular calorimeters
are also envisioned to be used at future collider detectors. Together, these factors heighten
the demand for more precise fast simulations. In this thesis, generative machine learning is
explored as a tool for high fidelity fast simulations.

Several models for the fast simulation of calorimeter showers and jets are presented. The
bounded information bottleneck autoencoder (BIB-AE) model generates calorimeter showers
as 3-dimensional images. Its encoded latent space is analyzed and it is shown that only few
variables encode most shower information. This motivates an improvement of the BIB-AE
using a kernel density estimator to model the latent space. The resulting model is able to
simulate highly granular photon showers with high fidelity at 10x faster than the traditional
Monte Carlo simulation Geant4 on the same CPU hardware.

To advance calorimeter shower generative models in terms of computational efficiency,
the diffusion model CaloClouds, which models calorimeter shower as point clouds, is
introduced. The representation as point clouds has several advantages over 3D images,
including being more efficient and allowing for a geometry-independent shower modeling. The
CaloClouds II model improves the approach by applying continuous-time score matching
to achieve a higher fidelity and faster generation. The model is further distilled into the
consistency model CaloClouds II (CM) which not only greatly accelerates the model, it
also increases the fidelity further. CaloClouds II (CM) is 46x faster than Geant4 on the
same hardware.

Finally, the equivariant point cloud (EPiC) layer structure is introduced to further improve
point cloud generative models used in particle physics. The layer is utilized in three different
point cloud generative models: in the generative adversarial network EPiC-GAN, in the
score-based diffusion model EPiC-JeDi, and in the continuous normalizing flow EPiC-FM,
trained with the flow matching objective. The models are evaluated on the common JetNet
benchmark dataset for the generation of particle jets. The EPiC-GAN is the most efficient
model being about 210x faster than the other two models and still reaches the performance
of the more complex previous state-of-the-art graph-based MP-GAN. However, EPiC-FM is
the most accurate among all compared models. This underscores the flow matching approach
and the EPiC layer structure as promising directions for future generative model for fast
simulations in particle physics.
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Introduction

The fundamental goal of physics is to understand the laws of nature that govern the universe.
In particle physics, the elementary building blocks of matter and the forces that act between
them are studied. The Standard Model of particle physics is currently the most comprehensive
description of our understanding of nature at the smallest scales. It describes all known
elementary particles and the mediators of the electromagnetic, weak, and strong forces. The
latest success of the Standard Model is the discovery of the Higgs boson [19,20] by the ATLAS
and CMS experiments at the Large Hadron Collider (LHC) at CERN.

While the Standard Model is among the most successful theories in physics, it has multiple
shortcomings which motivate the search for physics beyond the Standard Model. For example,
it does not include a description of gravity, and it does not explain observed astronomical
phenomena that are attributed to dark matter and dark energy. Experiments at particle
colliders such as the LHC are crucial to probe the SM and search for new physics. Soon, the
LHC will be upgraded to the High-Luminosity LHC (HL-LHC) [21], which will provide a five
times increase in instantaneous luminosity and thereby enable further precision studies at
the energy frontier. Several detector components will be upgraded to maintain a high level of
precision in an environment with much higher collision rates. This includes for example the
CMS endcap calorimeters, which will be replaced with high-granularity calorimeters [22].

To continue precision measurements and searches for new physics, after the HL-LHC
physics program is concluded, the particle physics community is planning the construction
of a future lepton collider as a Higgs factory [23]. A lepton collider would allow for much
more precise measurements of the Higgs boson and other particles than are currently possible
at the LHC. To separate well the hadronic decays of the W± and Z bosons into multi-jet
final states at such a collider, detector experiments are aiming for a jet energy resolution
of 3-4% in the range of about 45–250 GeV [24]. This can be achieved by applying Particle
Flow Algorithms that optimize which detector sub-system is used to reconstruct a given
particle [25]. To separate particles for the application of the PF algorithms, an excellent
tracking system and highly-granular calorimeters are required.

In particle physics, simulations provide an important bridge between theory and experi-
ment. For the analyses at detector experiments, at least as many simulated events as real
data events are needed, so when the HL-LHC luminosity rises, so does the required amount
of simulated events. Full Monte Carlo simulations are computationally expensive, so fast
simulations are used where possible. These fast simulations trade some precision for speed,
but with the advent of highly-granular calorimeters, the required fidelity of fast simulations
is increasing. Both factors together — the increasing collider luminosity and the increasing
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granularity of the detectors — warrant the development of more precise fast simulations.
The Standard Model of particle physics and the physics beyond the Standard Model that

motivates the search for new physics are introduced in Chapter 1. It discusses the experiments
at current and future collider experiments, explains the importance of accurate simulations,
and introduces the study of jet physics. In Chapter 2, the principles of particle-matter
interaction and the formation of particle showers in calorimeters are discussed. Furthermore,
an introduction to the particle flow approach for jet reconstruction and to traditional and
fast calorimeter simulations is given.

In recent years, interest has grown in the application of generative machine learning
models for precise and fast simulations. Generative models employ deep neural networks with
potentially millions of parameters to learn a probability distribution from a given dataset. A
well-trained generative model can then generate new samples from this distribution that are
very similar to the training data. In high-energy physics (HEP), generative models1 have been
investigated as fast simulations tools for various tasks, including event generation [27–38]
and detector simulation [1, 3, 5, 6, 9, 39–61]. The latter is of particular importance, since the
detector simulation is the most time-consuming part of the simulation chain.

The basics of machine learning are explained in Chapter 3. It is discussed how machine
learning models are optimized and how they can be parameterized as deep neural networks.
Two neural network concepts are specifically discussed: Convolutional neural networks, that
are optimal for image data, and graph- and set-based neural networks, that are optimal
for data without a fixed structure such as many measurements at detector experiments.
Chapter 4 introduces five different types of generative models that are utilized in this thesis
for fast simulation studies. These include generative adversarial networks, autoencoders,
normalizing flows, diffusion models, and consistency models.

Most generative models for calorimeter simulation model the shower as a 3D image to be
able to use established convolutional neural network architectures. In Chapter 5 an analysis of
such a model is presented. Specifically, the encoded latent space in the bounded information
bottleneck autoencoder (BIB-AE) model is studied to understand what kind of physics the
model learns. The BIB-AE models high-granularity photon showers in the electromagnetic
calorimeter of the envisioned International Large Detector (ILD) at the International Linear
Collider (ILC) [24]. The information-theoretical analysis motivates recommendations for
improvements of the BIB-AE model. Additionally, several methods for the evaluation of
generative models are evaluated.

Although a high fidelity is reached with the voxelized modeling of calorimeter showers,
the approach is not the most efficient for the simulation of highly-granular calorimeters. In a
typical shower, energy is deposited only in a few percent of the calorimeter cells, i.e. only a
few voxels of the 3D image are non-zero. Hence, generative model produces mostly empty
images, which is computationally inefficient. A better approach would be to model calorimeter
showers as point clouds, where each point represents a cell with an energy deposition. To this
end, the CaloClouds model family is introduced in Chapter 6. These models are designed
to simulate calorimeter showers as high-cardinality point clouds. Three models are presented
that constitute an evolution in the model design. They are evaluated in their generative

1The references listed in the following are not exhaustive. A living review can be found in Reference [26].
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performance and their simulation speed on high-granularity photon showers.
While the approach of modeling calorimeter showers as point clouds is more efficient than

the voxelized approach, it requires a special type of neural network architecture that can
handle data without a fixed structure. In Chapter 7, a novel neural network layer specifically
tailored to the modeling of point clouds is presented. This layer, dubbed equivariant point
cloud (EPiC) layer, is designed to be performant and efficient, with a computational cost
that scales only linearly with the number of points. Further, three models are introduced
that utilize this layer for the generation of jets as point clouds. The models are evaluated on
the JetNet [62] datasets that were previously introduced for the comparison of point cloud
models in HEP.

Finally, in Chapter 8, the results of this thesis are summarized and an outlook on future
research directions is given.
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Chapter 1

Particle Physics

While it is difficult to say when the scientific field of elementary particle physics originated,
early important events were the discovery of the electron by J. J. Thompson in 1897 [63]
and Rutherford’s scattering experiments in 1911 [64]. The latter indicated that nuclei are
tiny and that they are separated by a (comparatively) vast space in between them. These
discoveries gave rise to Niels Bohr’s model of atoms in 1913 [65] involving the discovery of
the proton as the nuclei of the hydrogen atom. It was followed up by Chadwick’s discovery of
the neutron in 1932 [66]. At the time, it seemed that all matter consists of protons, neutrons,
and electrons. Yet over the following decades, a more complex picture of the fundamental
matter particles emerged. All these advancements since the early days of particle physics
are combined in the most complete theory of matter to date: the Standard Model of particle
physics.

In this chapter, the theoretical foundations of this thesis are laid out. In Section 1.1 an
overview of the Standard Model is given and in Section 1.2 the different terms of the Standard
Model Lagrangian are discussed. Phenomena currently not explained by the Standard
Model are discussed in Section 1.3. Section 1.4 gives an introduction to current and future
collider experiments used to probe the Standard Model and search for new physics. Finally,
Section 1.5 discusses the importance of particle physics simulations for consolidating theories
with experiments and Section 1.6 introduces the concept of jets in high-energy physics.

An in-depth introduction to modern particle physics can be found in References [67–70].
Note that in this thesis, the speed of light c and the reduced Planck constant ℏ are set to
unity, i.e. c = ℏ = 1, allowing for a customary and simple expression of units.

1.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is widely recognized as one of the most
successful theories in physics. It encompasses all known fundamental particles of matter
and the interactions (“forces”) that act between them. These interactions include the
electromagnetic force, the strong force, and the weak force — three out of the four fundamental
forces, i.e. gravity is not included. The electromagnetic interaction is governed by Quantum
Electrodynamics (QED) [71] and the strong force by Quantum Chromodynamics (QCD) [72].
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Table 1.1: The three generations of fermions of the Standard Model and several of
their properties. All fermions have an anti-matter counterpart and each quark comes
in one of three colors. The masses are taken from Reference [76]. Table adapted from
Reference [77].

Leptons Quarks

charged neutrino up-type down-type

Charge [e] ±1 0 +2/3 −1/3
Spin 1/2 1/2 1/2 1/2
Interacts electromagnetically yes no yes yes
Interacts weakly yes yes yes yes
Interacts strongly no no yes yes

1st generation e (electron) νe u (up) d (down)
Mass ∼ 511 eV < 0.8 eV ∼ 2.2 MeV ∼ 4.7 MeV

2nd generation µ (muon) νµ c (charm) s (strange)
Mass ∼ 105 MeV < 0.19 MeV ∼ 1.27 GeV ∼ 93 MeV

3rd generation τ (tau) ντ t (top) b (bottom)
Mass ∼ 1.78 GeV < 18.2 MeV ∼ 173 GeV ∼ 4.18 GeV

Both the electromagnetic and the weak force are unified in the Glashow-Weinberg-Salam
(GWS) electroweak theory [73, 74]. These theories use Quantum Field Theory (QFT) as their
mathematical framework and are symmetrical under special gauge groups described by the
Yang-Mills theory [75]:

SU(3)C × SU(2)L × U(1)Y (1.1)

where the special unitary group SU(3)C describes the strong force and SU(2)L × U(1)Y
describes the electroweak processes.

In QFT, each fundamental particle is expressed as a field ϕ and the interactions between
particles are described by the Lagrangian density L (usually just called ‘the Lagrangian’)
as a function of ϕ(x) and the derivatives ∂µϕ(x). In the classical version of the Lagrangian
approach, the terms are given by T − V , i.e. the difference between the kinetic and potential
energy. In particle physics, the potential energy parts of the Lagrangian specify the interactions
(forces) in the SM theory.

1.1.1 Fundamental Matter Particles

The fundamental particles of matter in the SM are known as fermions and are separated into
two classes: leptons and quarks, each with six flavors of particles. They all have a spin of
1/2. The fermions with a negative chirality (left-handed) exhibit a weak isospin of T = 1/2
and are arranged into left-handed isospin doublets with a third weak isospin component
T3 = ±1/2. Fermions with a positive chirality (right-handed) form weak isospin singlets with
T = T3 = 0. An overview of the known fermions is given in Table 1.1.

10



1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Leptons are categorized into three generations, each consisting of a charged lepton and a
neutrino. They are arranged into left-handed weak isospin doublets L:

L =
(
νe
e

)

L
,

(
νµ
µ

)

L
,

(
ντ
τ

)

L
. (1.2)

Here the L on the left-hand side of the doublet indicates the left-handed chirality. The charged
leptons in the bottom row include the electron (e), the muon (µ), and the tau (τ), each carry
a charge of Q = −1e, where e is the elementary charge of about 1.6 × 10−19 C [78], and a
weak isospin of T3 = −1/2. These particles interact electromagnetically and weakly. Their
corresponding neutrinos in the upper row, νe, νµ, and ντ , are electrically neutral, almost
massless, carry a weak isospin of T3 = +1/2, and hence only interact via the weak force. The
right-handed charged leptons form isospin singlets with T3 = 0:

eR, µR, τR. (1.3)

Neutrinos are assumed to be (nearly) massless and there are no right-handed neutrinos in
the SM. Among the leptons, only the electron and the neutrinos are stable, while the muon
decays after a mean lifetime of ∼ 2.2 × 10−6 s and the tau after ∼ 2.9 × 10−13 s into lighter
particles.

Quarks interact via the electromagnetic, the weak, as well as the strong forces and are the
building blocks of hadrons. They are also separated into three generations, each consisting of
an up-type and a down-type quark, and are arranged into left-handed weak isospin doublets
QLα:

QLα =
(
uα
dα

)

L
,

(
cα
sα

)

L
,

(
tα
bα

)

L
. (1.4)

Here the subscript L stands again for the left-handed chirality and the index α denotes the
color charge (red, green, or blue). The up-type quarks in the upper row are the up (u), charm
(c), and top (t) quarks with a charge of Q = +2

3e and weak isospin with T3 = +1/2, while the
down-type quarks in the bottom row are the down (d), strange (s), and bottom (b) quarks
with a charge of Q = −1

3e and weak isospin with T3 = −1/2. The right-handed quarks form
isospin singlets with T3 = 0:

uRα, cRα, tRα, dRα, sRα, bRα. (1.5)

This separation of fermions in doublets and singlets incorporates the experimentally observed
parity violation of the SU(2) interaction into the SM.

Corresponding to each of these particles, there exists an anti-matter counterpart with
the same mass but opposite charge, e.g. the anti-electrons, called positron, with a charge of
Q = +1e and the anti-up-quark ū with a charge of Q = −2

3e. Right-handed anti-fermions are
arranged as isospin doublets and left-handed anti-fermions as isospin singlets.

In addition to the charge, quarks also carry a color charge α. Quarks can have one of
three color charges, red, green, and blue, while anti-quarks can have the anti-colors anti-red,
anti-green, and anti-blue. While the quarks are color triplets, the leptons are color singlets,
so no color index is needed. Quarks have never been observed in isolation and are instead

11



CHAPTER 1. PARTICLE PHYSICS

Table 1.2: The fundamental force mediators of the Standard Model and the Higgs
boson. The gluons g come in eight variants, each carrying a different mixture of color and
anti-color charges. The masses are taken from Reference [76]. Gluons and the photon
are assumed to be massless. Table adapted from Reference [77].

Interaction Particle Mass Charge [e] Spin

Strong g 0 0 1
Electromagnetic γ 0 0 1
Weak W± ∼ 80.38 GeV ±1 1

Z0 ∼ 91.19 GeV 0 1
Higgs h ∼ 125.25 GeV 0 0

confined into color-neutral multi-quark bound states, called hadrons. Hadrons are further
divided into mesons and baryons. Mesons consist of a quark and an anti-quark, while baryons
consist of three quarks. Generally, hadrons are unstable except for the proton (uud) (and the
neutron (udd), when bound with a proton in a nucleus).

Hence, the matter surrounding us is made up of protons, neutrons and electrons. We
can generate fermions of the higher generations in high-energy particle collisions, but these
decay back to the first-generation fermions through diverse decay channels. Additionally,
neutrinos constantly move through the universe with minimal interaction and cosmic muons
are produced by the interaction of cosmic rays (mostly made up of protons and nuclei) with
the Earth’s atmosphere.

1.1.2 Fundamental Force Mediators and the Higgs Boson

The SM encompasses three of the four fundamental forces of nature and according to QFT
each force is associated with one or multiple particles that acts as mediators of the interaction
between fermions. These mediators are the gauge bosons, fundamental particles with a spin
of 1. An overview of some attributes of these bosons is given in Table 1.2. The fourth
fundamental force, gravity, is not part of the current SM and is not yet described by a
quantum field theory.

Both the electromagnetic and the weak forces act between charged particles, i.e. charged
leptons and quarks. The electromagnetic force is mediated by the massless photon (γ) and
has an infinite reach decaying with the radius r as 1/r according to the Coulomb potential.
The weak force allows for flavor-changing interactions such as the β-decay. It is mediated by
the three massive bosons, the W± and Z0 bosons, which are electrically charged and neutral,
respectively. The weak force has a very short range of ∼ 10−17 m, governed by the Yukawa
potential [79].

The strong force acts in the femtometer range (∼ 10−15 m) between color-charged particles
and is mediated by the massless gluons (g). There are a total of eight different gluons, each
carrying a different mixture of color and anti-color charges. Gluons are unique particles
in that they carry color charge themselves and are therefore self-interacting. This leads to
the phenomenon of asymptotic freedom [80,81], which means that the strong force becomes

12
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comparatively small at very small ranges, i.e. within a meson or baryon. This gluon-gluon
self-interaction also relates to the concept of color confinement, which means that only
color-neutral composite particles exist, i.e. quarks are never observed in isolation and instead
form color-neutral hadrons. Due to the asymptotic freedom, the quarks and gluons are
considered to move freely within the hadron. When moved further apart, the strong force
increases linearly with the distance and the potential of the color field between the quarks
increases until it is energetically favorable to create a new quark-antiquark pair. This limits
the reach of the strong force and leads to the creation of more color-neutral hadrons, a process
called hadronization.

Finally, the scalar Higgs boson (h) and the associated Higgs mechanism [82–84] explain the
masses of the weak gauge bosons W± and Z0 as well as the masses of the electrically charged
fermions. For the conservation of local symmetry, the electroweak gauge group SU(2)L×U(1)Y
usually would not include massive fermions and bosons. The Higgs mechanism allows for the
spontaneous breaking of the electroweak symmetry and introduces a self-interacting scalar
field, which predicts the existence of the Higgs boson. It is the only spin 0 particle in the SM,
is neutrally charged, and has a mass of about 125.25 GeV [76]. It was discovered in 2012 by the
ATLAS and CMS experiments at the Large Hadron Collider (LHC) [19,20] and its discovery
was awarded the Nobel Prize in Physics in 2013. The Higgs boson couples to all massive
particles and can decay into all of them, except into the top quark due to its large mass.
Since its discovery, an important research challenge in HEP is the precision measurement
of the Higgs boson properties, such as its mass, its decay width and the couplings to other
particles, in order to validate the SM and to search for new physics beyond the Standard
Model (BSM).

1.2 The Standard Model Lagrangian

The subsequent subsections follow largely the derivation of the Standard Model Lagrangian
as introduced in References [68,70].

The SM Lagrangian of a spin-1/2 fermion (the Dirac Lagrangian) is qualitatively motivated
to give the experimentally plausible equations of motions. This free particle Lagrangian is
given by

LDirac = ψ̄(iγµ∂µ −m)ψ (1.6)

where ψ is a fermion spinor field, m is the mass of the particle, and γµ are the Dirac matrices.
The first term corresponds to the kinetic energy of the free particle and the second term to
the potential.

As any equation written with covariant derivatives is gauge-invariant, replacing the
partial derivatives ∂µ with covariant derivatives Dµ (i.e. ψ̄γµ∂µψ → ψ̄γµDµψ) yields the
gauge-invariant interaction Lagrangian. Here the derivative corresponds to one of the three
aforementioned local gauge symmetry groups.

Demanding local gauge invariance for the electromagnetic gauge group U(1), the covariant
derivative is given by

Dµ = ∂µ − ig1Aµ (1.7)
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where Aµ is the interaction field (i.e. the electromagnetic field) and g1 is the coupling strength
(i.e. the electric charge Q). As the field Aµ is described by a four-vector, it gives rise to a
spin-one particle, the photon. More general, the covariant derivative can be written as

Dµ = ∂µ − ig1
Y

2 Bµ (1.8)

where Y is the hypercharge generator and Bµ a massive abelian field.
Analogous in the electroweak gauge group SU(2), three fields W i

µ are introduced to achieve
invariance under weak isospin transformations, where i = [1, 2, 3] correspond to the three
Pauli matrices σi. The covariant derivative is then given by

Dµ = ∂µ − ig2
σi

2 W
i
µ (1.9)

with g2 as the coupling strength of the interactions. The fields W i
µ are realized as spin-one

particles since they correspond to four-vector transformations under space rotation — just
like the photon in the electromagnetic interaction. These particles have positive, negative
and neutral electromagnetic charges:

W+ = 1√
2

(−W 1 + iW 2),

W− = 1√
2

(−W 1 − iW 2),

W 0 = W 3.

(1.10)

In the internal SU(3) color space of the strong force, eight fields Gaµ are introduced to
achieve invariance under color transformations, where a = 1, 2, ..., 8 correspond to the eight
Gell-Mann matrices λa. The covariant derivative is given by

Dµ = ∂µ − ig3
λa

2 G
a
µ (1.11)

with g3 as the coupling strength of the strong interaction.
The full covariant derivative of the SM combines the three gauge groups and is given by

Dµ = ∂µ − ig1
Y

2 Bµ − ig2
σi

2 W
i
µ − ig3

λa

2 G
a
µ. (1.12)

While the first two terms are singlets, the third and fourth terms are 2 × 2 and 3 × 3 matrices,
respectively. This is consistent as the terms act in different internal spaces. By convention,
any term in Dµ acting on a different fermion matrix form, i.e. a different internal space,
results in zero. This implies, that quarks and leptons act the same under U(1) and SU(2),
since the color charge is only considered in SU(3). Equation 1.12 is one of the main equation
of the SM as it explains the gauge bosons and their interactions with the fermions. The
interaction fields Bµ, Wµ

i , and Gµa give rise to one, three, and eight spin-one gauge bosons,
respectively, which all have been observed experimentally.

We term the essential fermionic part of the SM Lagrangian as Lferm. It arises when the
covariant derivative Eq. 1.12 is inserted into the kinetic energy term of the Dirac Lagrangian
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Eq. 1.6 — ignoring for now the mass terms since they are not gauge invariant (to include the
mass in the theory, spontaneous symmetry breaking is needed, as further discussed below).
The full Lagrangian of the fermions is then given by:

Lferm =
∑

f

f̄ iγµDµf (1.13)

where we write the sum over fermions as f , i.e. for the first generation f = L, eR, QL, uR, dR,
where L is the first generation lepton doublet and QL is the first generation quark doublet.

1.2.1 Electroweak Theory

With the electroweak unification, a single gauge theory with the symmetry group SU(2)L ×
U(1)Y is used to describe both the electromagnetic and the weak forces. The unification allows
for a joint description of their respective coupling constants. The quantities corresponding
to SU(2)L and U(1)Y are the weak isospin IW and the weak hypercharge YW, respectively,
where the weak hypercharge can be expressed as YW = 2(Q− IW ).

We first further develop the theory based on the electroweak unification since both leptons
and quarks act the same under the U(1) and SU(2) gauge groups. Therefore, all equations
can be written only with leptons and apply analogous to quarks. Adding the color charge in
the SU(3) group is discussed in the next Section 1.2.2. We also limit ourselves to discussing
the first fermionic generation as the theory applies analogously to the other generations.

Writing out the fermionic Lagrangian for the right- and left-handed leptons in the U(1)
space by inserting Equation 1.8 into Equation 1.13 — ignoring the partial derivative ∂µ since
it occurs in every equation and just yields the kinetic term of the fermionic field — gives:

Lferm(U(1), leptons) = g1
2 [YL(ν̄Lγ

µνL + ēLγ
µeL) + YR(ēRγ

µeR)]Bµ (1.14)

where YL and YR are the hypercharges of left- and right-handed fermions, respectively. The
SU(2) fermionic Lagrangian for the leptons is analogously derived from the covariant derivative
in Equation 1.9 in the fermionic Lagrangian:

Lferm(SU(2), leptons)

= g2
2
[
ν̄Lγ

µνLW
0
µ −

√
2ν̄Lγ

µeLW
+
µ −

√
2ēLγ

µνLW
−
µ − ēLγ

µeLW
0
µ

] (1.15)

where Equation 1.10 was used to express the W± and W 0 fields. Summing up Equation 1.14
and Equation 1.15 describes all possible interactions of the leptons in the SM (except for the
Higgs mechanism).

Next, we aim to unify the terms without charge transfer, i.e. the Bµ and W 0
µ terms

associated with the ēe and ν̄LνL interactions. Starting the combination with the neutrino
terms (the first term in Equation 1.14 and the first term in Equation 1.15), we define the
electromagnetic field Aµ

Aµ ∝ g2Bµ − g1YLW
0
µ (1.16)

and a second field Zµ is defined as

Zµ ∝ g1YLBµ + g2W
0
µ (1.17)
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orthogonal to Aµ. This way the neutrinos do not interact with the electromagnetic field.
The remaining neutral terms are the electron terms in Equation 1.14 and the last term of

Equation 1.15. By normalizing the above Equations 1.16 and 1.17 and inserting them into
the electron terms, we can write the electron charge as

e = g1g2√
g2

2 + g2
1

(1.18)

when realizing that the hypercharges are YR = 2YL and setting YL = −1. Note that from
electromagnetism we know that the charge Q is −e for electrons.

This shows that the definition of Aµ is consistent with the electromagnetic current as
it facilitates the interaction of electrons, but not neutrinos. The additional novel “neutral
current” Zµ interacts with both electrons and neutrinos.

As both coupling strengths for electromagnetism and the weak interaction g1 and g2 are
used to define the electron charge in Equation 1.18, we can define the electroweak mixing
angle Φw (also known as the Weinberg angle) as an important parameter in the SM. It is
given by

sinΦw = g1√
g2

1 + g2
2

cosΦw = g2√
g2

1 + g2
2

(1.19)

and can be expressed in terms of e via e = g1cosΦw = g2sinΦw. The mixing angle can be
experimentally measured and is about sin2Φw ≈ 0.23 [70]. One can further write the charge
Qf of any fermion f in terms of the weak isospin T3 component and the hypercharge with

Qf = T f3 + Yf
2 . (1.20)

Hence, a unified form of electromagnetism and the weak interaction emerges that includes
a massive neutral Z0-boson that interacts with any fermion f carrying an electric charge Qf
or a non-zero weak isospin T f3 . As will be discussed below, the mass of the Z0-boson can
be calculated, and it was discovered in 1983 by the UA1 and UA2 experiments at CERN’s
Super Proton Synchrotron (SPS) with a mass of about 91 GeV proving the consistency of
the theoretical approach [85,86].

To consider the charged current transitions, we revisit the remaining terms in the SU(2)
Lagrangian Equation 1.15, i.e. the terms involving both electrons and neutrinos:

Lferm = g2√
2

[
ν̄Lγ

µeLW
+
µ + ēLγ

µνLW
−
µ

]

= g2√
2

[
ν̄Lγ

µeLW
+
µ + h.c.

]
.

(1.21)

Note that since the two terms are Hermitian conjugates of each other, it is customary to
write only one term and add “h.c.” to indicate the addition of the Hermitian conjugate. Here
the parity violation of the weak interaction is evident, as only left-handed electrons interact
with the W± particles. Once the Lagrangian is extended to include quarks, also right-handed
terms are added.
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The charged spin-1 bosons, W+ and W−, were also discovered in 1983 by the UA1 and
UA2 experiments at CERN’s Spp̄S with a mass of about 80 GeV [87,88]. Before discussing
the explicit addition of mass terms with the Higgs mechanism, we will first discuss the strong
interaction and the full fermionic Lagrangian including quarks.

1.2.2 Quantum Chromodynamics

While the previously derived electroweak unification theory also applies to quarks, the λaGa
terms in the covariant derivative of the Lagrangian are 3 × 3 matrices in color space and
yield zeros for leptons. For quarks, there is a contribution as they carry a color charge. For a
quark q, the QCD contribution to the Lagrangian is given by

LQCD ∼ g3
2 q̄αγ

µλaαβG
a
µqβ (1.22)

with color charges α, β ∈ {1, 2, 3}, i.e. red, green, and blue, allowing for a color charge
transition. One can identify Ga as the eight gluons. As their electromagnetic charge is
neutral, they do not interact with the electromagnetic field (unlike the W i of the weak
interaction). Their interaction with the quarks is similar to photons, but since the generators
λa include off-diagonal elements, the two interacting quarks need to have different color
charge. The gluon was first experimentally observed in 1979 by the TASSO experiment at
the Positron-Electron Tandem Ring Accelerator (PETRA) at DESY [89].

We can now write the full ‘fermion gauge boson Lagrangian’, which includes all interactions
of leptons and quarks with all gauge bosons. The relevant terms of the U(1) × SU(2) × SU(3)
Lagrangian for the first fermionic generation are given by

L =
∑

f=νe,e,u,d

eQf (f̄γµf)Aµ

+ g2
cosΦw

∑

f=νe,e,u,d

[
f̄Lγ

µfL(T 3
f −Qf sin2Φw) + f̄Rγ

µfR(−Qf sin2Φw)
]
Zµ

+ g2√
2

[
(ūLγ

µdL + ν̄eLγ
µeL)W+

µ + h.c.
]

+ g3
2
∑

q=u,d
q̄αγ

µλaαβqβG
a
µ.

(1.23)

The first term corresponds to the electromagnetic interaction, the second term to the neutral
weak interaction, the third term to the charged weak interaction, and the fourth term to the
strong interaction. Missing are the mass terms for the charged leptons, quarks and W± and
Z0 gauge bosons, which when naively added would break the gauge invariance of the theory
so far derived. For the fermions, one can see this by expanding the mass term mψ̄ψ with the
left-and right-handed projection operators PL and PR:

mψ̄ψ = mψ̄(PL + PR)ψ = mψ̄PLPLψ +mψ̄PRPRψ

= m(ψ̄RψL + ψ̄LψR)
(1.24)

This would imply that ψ̄RψL and ψ̄RψL are SU(2) doublets, although we know from experi-
ments that right-handed fermions are singlets. Hence, adding the mass terms here naively to
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the Lagrangian would break SU(2) gauge invariance. Similarly, the naive mass terms for the
U(1) gauge boson would be given by

1
2m

2
BB

µBµ. (1.25)

However, since the U(1) gauge transformation is given by Bµ → B′µ = Bµ − ∂µχ, the mass
term would not be gauge invariant:

1
2m

2
BB

µBµ → 1
2m

2
B(Bµ − ∂µχ)(Bµ − ∂µχ) ̸= 1

2m
2
BB

µBµ. (1.26)

This argument also holds analogous for the SU(2) gauge bosons W± and Z0 and QCD. While
the photon and gluons are indeed massless, we know from experiments that the W± and Z0

bosons are massive. To mitigate this shortcoming, a theory known as the Higgs mechanism
was developed. The theory was first introduced in 1964 and confirmed with the discovery of
the Higgs boson in 2012.

1.2.3 Spontaneous Symmetry Breaking and the Higgs Mechanism

To understand the Higgs mechanism, which incorporates a spin-zero field, called Higgs field,
into the SM, we examine first how to add the concept of spontaneous symmetry breaking to
the Lagrangian.

To illustrate the mechanism, we consider the following Lagrangian for a basic 1-dimensional
scalar field ϕ:

L = T − V = 1
2∂µϕ∂

µϕ−
(1

2µ
2ϕ2 + 1

4λϕ
4
)

(1.27)

where the last two terms form the potential V (ϕ) with the free parameters µ and λ. Impor-
tantly, this potential is invariant under ϕ → −ϕ.

The parameter λ > 0 is required to have a lower limit of the potential V (ϕ) (the ground
state in terms of quantum mechanics). As known from perturbation theory in quantum
mechanics, one can perturb the system around the ground state to get the excitations. In
QFT, the ground state is called the vacuum and the excitations are particles. We consider
two cases of the potential, where µ2 is either positive or negative. For the case of µ2 > 0
this results in a single-well potential with a single ground state at ϕ = 0, for µ2 < 0 in a
double-well potential (also known as a “Mexican hat potential”) with two ground states at
non-zero vacuum expectation values (vev) ±v. A visualization of the resulting potentials for
either case is shown in Figure 1.1.

For the simple case of a single-well potential with µ2 > 0 the vacuum (the minimum) is at
ϕ = 0 and by comparison with the Lagrangian of a simple real scalar field ϕ(x) with mass m,

L = 1
2∂µϕ∂

µϕ− 1
2m

2ϕ2, (1.28)

it can be seen that, for the single well potential, the parameter µ2 corresponds to the squared
mass.
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φ

V (φ)

(a) µ2 > 0

−v +v
φ

V (φ)

(b) µ2 < 0

Figure 1.1: One dimensional potential V (ϕ) = 1
2µ

2ϕ2 + 1
2λϕ

4 with λ > 0 and (a) µ2 > 0
and (b) µ2 < 0. For the second case, the vacuum expectation value v is non-zero, which
leads to spontaneous symmetry breaking.

The double-well potential with µ2 < 0 is more interesting: The minima of the potential
are at

ϕ = ±v = ±
√

−µ2

λ
, (1.29)

the two non-zero vacuum expectation values. Here the field ϕ is called a Higgs field. To see
what particle the Higgs field is giving rise to, the field is perturbed around η = 0:

ϕ(x) = v + η(x), (1.30)

with the choice ϕ = +v. The opposite choice ϕ = −v, which would be equally possible since
the potential is symmetric under ϕ → −ϕ.

The following Lagrangian is given near the minimum:

L = 1
2(∂µη∂µη) −

(
λv2η2 + λvη3 + 1

4λη
4
)

+ const. (1.31)

Now the λv2η2 term can once again be interpreted as the mass term for a scalar particle with
a mass

m2
η = 2λv2 = −2µ2 (1.32)

and the remaining cubic and quartic terms represent self-interactions with the strengths λv
and 1

4λ, respectively.
The original Lagrangian in Equation 1.27 is invariant under ϕ → −ϕ, yet this symmetry

is gone in the perturbed Lagrangian in Equation 1.31. The symmetry was broken when the
ϕ = +v instead of ϕ = −v was arbitrarily chosen as the vacuum for the perturbation in
Equation 1.30. This phenomenon is called spontaneous symmetry breaking (SSB).

To see how SSB leads to the Higgs mechanism, one needs to consider an equivalent
Lagrangian, but with a complex scalar field and consider local gauge invariance (with global
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invariance this derivation leads to a massless Goldstone boson). The Lagrangian can now be
written as

L = (∂µϕ)∗(∂µϕ) − µ2ϕ∗ϕ− λ(ϕ∗ϕ)2 (1.33)

with the complex scalar ϕ = (ϕ1) + i(ϕ2) and its complex conjugate ϕ∗ = (ϕ1) − i(ϕ2). To
achieve local gauge invariance, a massless vector field Aµ is introduced and the Lagrangian
should be written with covariant derivatives ∂µ → Dµ = ϕµ − igAµ. Under the local
(hence x-dependent) transformation ϕ(x) → ϕ′(x) = eiχ(x)ϕ(x), the gauge field Aµ has a
transformation Aµ → A′

µ = Aµ − 1
g∂µχ(x).

With this local gauge invariance and the covariant derivatives, the Lagrangian can now
be written as:

L = (Dµϕ)∗(Dµϕ) − µ2ϕ∗ϕ− λ(ϕ∗ϕ)2 − 1
4FµνF

µν (1.34)

with the field strength tensor Fµν = ∂µAν − ∂νAµ of U(1) that are used in the kinetic energy
terms −1

4FµνF
µν for the vector field (i.e. the Lagrangian of a free photon field). This term

appears since we introduced the gauge field Aµ by moving to the covariant derivative, but
it can be ignored for the derivation of the Higgs mechanism. For the first case µ2 > 0,
this Lagrangian describes a charged scalar particle of mass µ interacting with the massless
vector field. Again SSB emerges with µ2 < 0: The Lagrangian describes a multi-dimensional
potential with four degrees of freedom, the two real scalars ϕ1,2 and the two polarization
states of Aµ. Analogous as before we can apply a local perturbation with a real scalar h
around the vacuum v and write the local scalar field as:

ϕ(x) = v + h(x)√
2

. (1.35)

Near the vacuum this leads to the following Lagrangian:

L =1
2(∂µh)(∂µh) + 1

2g
2v2AµA

µ − λv2h2 − λvh3

− 1
4λh

4 + g2vhAµA
µ + 1

2g
2h2AµA

µ − 1
4FµνF

µν .
(1.36)

Here the second and third terms describe the mass terms for the vector field Aµ and the
scalar field h, respectively. The mass of the vector boson is given by

mA = gv (1.37)

and the scalar h is now the real Higgs boson with a mass

mh =
√

2λv2. (1.38)

The remaining terms describe cubic and quartic self-interactions of the Higgs and interactions
with the gauge field Aµ. Overall the theory is still gauge-invariant since the original Lagrangian
was gauge-invariant and the perturbation is based on local gauge transformations. This
mechanism by which the mass of the gauge boson and a massive Higgs boson emerge is known
as the Higgs mechanism, and we shall see how it is applied to the Standard Model in the
next section.
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1.2.4 Higgs Mechanism in the Standard Model

To introduce the Higgs mechanism in the SM, the scalar field (Higgs field) becomes a SU(2)
doublet

ϕ =
(
ϕ+

ϕ0

)
(1.39)

with the complex fields
ϕ+ = ϕ1 + iϕ2√

2
, ϕ0 = ϕ3 + iϕ4√

2
. (1.40)

These two rotation states are necessary since the Higgs mechanism is used to explain the
mass of the neutral and charged gauge bosons (both positively and negatively charged, since
(ϕ+)∗ = ϕ−). The Lagrangian has now an analogous form to Equation 1.33:

Lϕ = (∂µϕ)†(∂µϕ) − µ2ϕ†ϕ− λ(ϕ†ϕ)2 (1.41)

with the Higgs potential being V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2. As before, the potential is invariant
under the local gauge transformation

ϕ(x) → ϕ′(x) = eiα⃗(x)·σ⃗/2ϕ(x) (1.42)

where σi are the Pauli matrices and α⃗(x) are free parameters. Setting µ2 < 0 in the Higgs
potential, we find the minima at

ϕ†ϕ = −µ2

2λ = v2

2 . (1.43)

A direction in SU(2) space needs to be chosen to perform the perturbation around the vacuum.
Here a suitable, yet arbitrary choice for the vacuum is

ϕ0 = 1√
2

(
0
v

)
(1.44)

implying that ϕ1 = ϕ2 = ϕ4 = 0 and ϕ3 = v. The expansion around the vacuum can be
performed by the perturbation

ϕ(x) = 1√
2

(
0

v + h(x)

)
. (1.45)

With this choice, three fields are “gauged away” which implies that there are three global
broken symmetries that correspond to the longitudinal polarization state of the three W±

and Z0 bosons. Additionally, the massive Higgs boson emerges once again.
Now the partial derivatives in the Lagrangian Equation 1.41 can be replaced with covariant

derivatives to determine the mass and interaction terms. Recall from Equation 1.12, that
for the electroweak SU(2)L × U(1)Y local gauge symmetry group, the covariant derivative is
given by

Dµ = ∂µ − ig1
Y

2 Bµ − ig2
σ⃗

2 W⃗µ. (1.46)

Inserting these terms into the Lagrangian and setting Y = 1 (which is the hypercharge of the
Higgs doublet according to Equation 1.20, since the doublets’ lower component is neutral
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(see Equation 1.39) and its third weak isospin component T3 = −1
2) results in the following

contributions to the Lagrangian that can be interpreted as mass terms:
1
8v

2g2
2((W 1

µ)2 + (W 2
µ)2) + 1

8v
2(g1Bµ − g2W

3
µ)2. (1.47)

Now one can leverage the insights gained previously from studying the electroweak theory.
Using Equation 1.10 the first term equals

(1
2vg2

)2
(W+

µ W
−
µ ) (1.48)

hence, the Higgs mechanism gives the W± bosons a mass of

mW± = 1
2vg2. (1.49)

Rewriting the second term is slightly more complex but from Equation 1.16 and Equation 1.17
the relation of Bµ and W 3

µ with the photon field Aµ and the Zµ are known. With some
additional computation, this leads to the mass terms

mZ0 = 1
2v
√
g2

1 + g2
2, mγ = 0 (1.50)

for the Z0 boson and the photon, respectively. As expected, the photon turns out massless.
Further, using Equation 1.19 the mass ratio of the W± and Z0 bosons can be written in
terms of the electroweak mixing angle Φw:

mW±

mZ0
= cosΦw. (1.51)

This ratio is a useful quantity to check the soundness of the Standard Model as one can write
ρ = m±

W /(mZ0cosΦw) which has to equal unity. The observed gauge boson masses and the
mixing angle satisfy this condition to an accuracy of about 0.1%, yet deviations that could be
observed in the future might hint at physics beyond the Standard Model (further discussed
in the next Section 1.3).

1.2.5 Higgs Mechanism for Fermionic Masses

The Higgs mechanism is also able to explain the masses of the fermions. To show this one
can add lepton interaction terms to the Lagrangian:

Lint = ge(L̄ϕeR + ϕ†ēRL) = ge(L̄ϕeR + h.c.) (1.52)

where L is the lepton doublet of the first generation, ϕ is the Higgs doublet, and ge is the
Yukawa coupling constant of the electron to the Higgs field. This Lagrangian can be expanded
around the vacuum with the previous perturbation in Equation 1.45 yielding

Lint = gev√
2

(ēLeR + ēReL) + ge√
2

(ēLeR + ēReL)h. (1.53)

The first term can be interpreted as the electron mass given by

me = gev√
2
, (1.54)
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so there is finally a term in the SM Lagrangian that achieves non-zero fermion masses as
known from experiments. The second term describes the electron-Higgs vertex with a strength
of ge/

√
2 = me/v, i.e. the probability of a Higgs decaying into e+e− or for an electron/positron

to radiate a Higgs boson. As no terms for the neutrinos appear, they still do not acquire a
mass through the Higgs mechanism (a shortcoming of the SM, see Section 1.3).

To deduce the mass terms of the first-generation quarks analogously, the conjugate of the
Higgs field doublet is written as

ϕc = iσ2ϕ
∗ =

(
ϕ0∗

−ϕ−

)
(1.55)

with σ2 being the second Pauli matrix. This conjugate has the opposite hypercharge Y = −1.
For a perturbation around the vacuum one finds

ϕc = 1√
2

(
v + h

0

)
. (1.56)

The interaction Lagrangian for the first quark generation is

Lint = gdQ̄LϕdR + guQ̄LϕcuR + h.c. (1.57)

where QL is the quark doublet of the first generation, dR and uR are the right-handed down
and up quarks, and gd and gu are the Yukawa coupling constants of the down and up quarks
to the Higgs field. Expanding the Higgs field and its conjugate around the vacuum, one finds
the mass terms for the down and up quarks similarly to the electron mass:

md = gdv√
2
, mu = guv√

2
. (1.58)

The couplings of the quarks to the Higgs field are derived analogously. This process can be
repeated for the second and third fermion generations. With the Higgs mechanism, we are
hence able to explain the masses of the fermions in the Standard Model. As their couplings
to the Higgs field are proportional to the masses, heavy fermions couple stronger to the Higgs
boson and therefore high energies are needed to produce these fermions for studying Higgs
physics.

This concludes the discussion of the SM Lagrangian, which is the centerpiece of the SM and
describes the interactions of all known elementary particles. It encompasses the knowledge
gained by decades of analyzing the data taken at various particle physics experiments,
especially at colliders. A large focus of the current particle physics research lies in the
precision measurements of all the free parameters of the SM — together with direct searches
for new particles. It is well known that the current SM is not the full story of how the universe
works and its limitations are well described. Precision measurements at current and future
colliders and alternative experiments such as astrophysical observations will help us shape
the next iteration of particle physics theory. Next, a few of these limitations are outlined.

1.3 Physics Beyond the Standard Model

While the SM is a very successful theory, it does not explain all observed phenomena in
the universe. It is known to be incomplete and does not constitute a complete theory of
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everything. Addressing the shortcomings of the SM is one of the main goals of high-energy
physics, and is done by searching for physics beyond the Standard Model (BSM), i.e. for new
particles, forces, or interactions that are not described by the SM. Among the experimental
results currently not explained by the SM are the following phenomena:

• Gravity: As one of the fundamental forces of nature, gravity is famously not included
in the SM. On macroscopic scales, the influence of gravity is clearly visible and well
described by the theory of general relativity [90]. A major advancement of physics
would be the unification of the SM with general relativity.

• Dark matter: Observed gravitational effects such as galaxy (cluster) rotations indicate
that of the total mass-energy budget of the universe, only about 5% is made up
of ordinary baryonic matter and about 25% consists of so-called dark matter, which
appears to only interact gravitationally and does not emit or absorb light. The remaining
mass-energy does not clump via gravitation and is attributed to dark energy, generally
considered a constant energy density in the general relativity equations. Considering
that the SM does not explain 95% of the universe’s mass-energy content is a very strong
motivation for BSM searches. It could be that dark matter is made up of new particles
that interact very weakly with the SM. Such theoretical particles could be discovered at
high-energy colliders and are generally termed as weakly interacting massive particles
(WIMPs).

• Neutrino masses: The SM does not include a process that would allow for neutrinos
to have mass. However, the phenomenon of neutrino oscillations in which neutrinos
change flavor as they propagate through space has been observed and requires neutrinos
to have mass. Such neutrino oscillations are confirmed by various experiments, i.e. by
the Super-Kamiokande experiment [91] and the Sudbury Neutrino Observatory [92]
awarded with the 2015 Nobel Prize for Physics. Recently, an upper limit on the mass
of the electron antineutrino of mν < 0.45 eV at 90 % confidence level was set by the
KATRIN experiment [93].

• Matter-antimatter asymmetry: A widely accepted theory on the inception of the
universe is the Big Bang, which led to the creation of all matter. However, the SM does
not explain the observable asymmetry of baryonic to anti-baryonic matter.

Further, the SM has multiple conceptual shortcomings, including the following issues:

• Hierarchy problem: Unless fine-tuned quantum corrections are applied when cal-
culating the Higgs boson mass in a QFT, its mass would raise to the Planck scale at
∼ 1018 GeV. This would also raise the masses of all quarks, charged leptons and W±

and Z0 bosons. It is unclear why the Higgs boson mass is at the electroweak scale
of ∼ 100 GeV and such fine-tuned corrections are considered unnatural, according to
the theory of naturalness [94]. The theory of supersymmetry [95] would avoid this
fine-tuning since bosonic and fermionic quantum corrections have opposite signs and
would cancel each other out, yet no experimental evidence for supersymmetric particles
has been found so far.
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• Force unification: With the electroweak theory, electromagnetism and the weak
interaction are unified. This unification suggests that an additional unification of the
electroweak theory with the strong interaction should be possible. Such a theory is
referred to as a Grand Unified Theory (GUT), which would also include the unification
of quarks and leptons, i.e. in an SU(5) representation [70].

• Ad-hoc parameters: The SM requires 19 numerical constants (not counting some
associated with Neutrino masses) that are not predicted by the theory and need to be
measured experimentally. These include the masses of fermions and the Higgs boson,
CKM mixing angles, and coupling constants for each gauge group. Additionally, it is
unclear why there are exactly three lepton and quark generations.

Overall, BSM physics is a major field of research in high-energy physics and is pursued with
many experiments, including collider experiments, neutrino experiments, and astrophysical
observations. The work in this thesis focuses on analysis methods for collider experiments,
hence we will discuss next how to probe the SM at high-energy colliders.

1.4 Collider Experiments

Over the recent decades, experiments at particle accelerators have been very successful in
studying nature at the smallest scales. To produce and study elementary particles, a beam of
particles such as electrons or protons is accelerated to high energies and is either collided with
a fixed target (fixed target experiment) or another beam of particles (collider experiment).
All the heavy elementary particles and gauge bosons up to the discovery of the Higgs boson
in 2012 were discovered at collider experiments. Highly energetic beams are needed as the
mass of the produced particles during the collision is limited by the center-of-mass energy

√
s.

With this large success of collider experiments, it is unsurprising that over the past decades,
multiple colliders with ever-increasing center-of-mass energies were built. A list of several
colliders built since 1961 is shown in Table 1.3. A detailed introduction into accelerator
physics and design can be found in Reference [96].

In general, colliders are either built as circular or as linear accelerators. Most colliders so
far were built as circular synchrotrons, with the exception of the Stanford Linear Collider
(SLC). The advantage of circular colliders is that the particles can be accelerated over many
revolutions in the same storage ring to achieve very high collision energies. However, this
energy gain is countered by synchrotron radiation. Whenever a charged particle alters
its direction energy is lost in the form of emitted photons. The energy loss ∆E through
synchrotron radiation is determined by

∆E ∝ E4

m4
0 · r (1.59)

where E is the energy of the particle, m0 its rest mass, and r is the radius of the circular
accelerator. We see that the energy loss is inversely proportional to the particle mass and
the machine radius. For a fixed radius and fixed energy gain with accelerator cavities, light
particles such as electrons loose more energy than heavier particles like protons. Hence, the
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Table 1.3: An abridged list of notable particle colliders. With the exception of the SLC,
all of them are circular accelerators. The size indicates the length of the beam pipe.

Type Name Operation Size max.
√
s Comment

e+e−

Anello Di Accumulazione (ADA) 1961—1964 3 m 500 MeV First e+e− collider
Positron-Electron Tandem
Ring Accelerator (PETRA) 1978—1986 2 km 46 GeV Gluon discovery

Stanford Linear Collider (SLC) 1989—1998 4 km 90 GeV First linear collider
Large Electron-Positron
Collider (LEP) 1989—2000 26.7 km 209 GeV Largest e+e− collider

to date

e−p
Hadron–Electron Ring
Accelerator (HERA) 1992—2007 6.3 km 320 GeV Only lepton-hadron

collider to date
pp Intersecting Storage Rings (ISR) 1971—1984 940 m 62 GeV First hadron collider

pp̄
Super Proton–Antiproton
Synchrotron (Spp̄S) 1981—1991 6.9 km 900 GeV First pp̄ collider

Discovery of W± and Z0

pp̄ Tevatron 1987—2011 6.3 km 1.96 TeV Top quark discovery
pp Large Hadron Collider (LHC) 2010—present 26.7 km 13.6 TeV Higgs boson discovery

easiest way to achieve higher energies when accelerating a given particle is to build a larger
circular collider, explaining why in Table 1.3 we see increasing accelerator circumference as
time progresses. An exception is the SLC, which was built as a linear collider. For linear
colliders, synchrotron radiation can be neglected allowing for potentially larger achieved
energies for light particle such as electrons. Higher energies can also be achieved by increasing
the length of the acceleration distance and by improving the accelerator technology.

We further differentiate colliders by the type of particles they accelerate, either leptons or
hadrons. Colliding stable leptons, i.e. electrons and positrons, has the advantage that the
initial state of the system, including the center-of-mass energy and the spin orientation (for
polarized beams) is well-defined. This enables precision measurements with little background.
When colliding hadrons, in particular (anti-)protons, this initial state is not well-defined, as
hadrons are composite particles consisting of quarks and gluons. Since not the whole protons
are colliding the actual center-of-mass energy is uncertain. Further, the strong interaction
between the quarks and gluons leads to a large QCD background. For hadron collisions, an
important quantity is the momentum transverse to the beam-axis – denoted pT– as in the
initial state it is zero and therefore well-defined.

However, an advantage of colliding hadrons is that they are significantly heavier than
electrons allowing for potentially much higher maximum center-of-mass energies. Therefore,
hadron colliders are often dubbed “discovery machines” as they enable us to push the energy
frontier and discover heavier particles than might be possible with a lepton collider, which
on the other hand is excellent for precision measurements at comparatively lower energies.
Currently, the Large Hadron Collider (LHC) is operated as the largest discovery machine
ever built.
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1.4.1 The Large Hadron Collider (LHC)

The LHC [97] is the most powerful particle collider ever built. It reuses the 26.7 km
circumference tunnel infrastructure of the Large Electron-Positron Collider (LEP) and started
its first data-taking run in 2010. Since then, it was upgraded and currently achieves an energy
of

√
s = 13.6 GeV when colliding protons. Apart from protons, also heavy ions, i.e. lead

nuclei, can be accelerated and collided. The LHC not only achieved the highest center-of-mass
energies ever, but it also is the collider with the highest (instantaneous) luminosity. The
instantaneous luminosity in a circular particle collider (assuming equal beam properties) is
defined as

L =
f2n2

pnb

A
(1.60)

where f is the revolution frequency of the beams, np is the number of particles per bunch, nb is
the number of bunches per beam, and A is the cross-sectional area of the beams. Luminosity
has the units of inverse area per time, i.e. cm−2s−1, and it determines how many collisions
occur in a certain time. Together with the cross-section σ for a certain kind of event, the
number of events of a that type that are produced over a given time between T1 and T2 can
be calculated as:

N = σ

∫ T2

T1
Ldt (1.61)

i.e. it depends on the integrated luminosity
∫
Ldt. Together with the energy, the luminosity

is a crucial parameter of any collider. Since the cross-section is inversely proportional to the
square of the mass scale the experiments are probing, a very high luminosity is needed to
produce a sufficient amount of events at the energy frontier.

The LHC is designed for a luminosity of L = 1 × 1034 cm−2s−1 and in the year 2018
achieved a peak luminosity of L = 2 × 1034 cm−2s−1. To achieve this luminosity, the LHC
was designed for np = 1.15 × 1011 protons per bunch, nb = 2808 bunches per beam, and a
bunch crossing frequency of 40 MHz, which translates to a bunch spacing of 25 ns [97]. Such
a high luminosity is needed to produce about one Higgs boson every second. It is expected,
that by the end of the LHC Run 3 (at the end of 2024), the LHC will have achieved a total
integrated luminosity of about 350 fb−11 surpassing the original design goal of 300 fb−1 [21].

To exploit the LHC further and to probe the energy frontier more effectively by producing
more rare events, a major upgrade – the high-luminosity LHC (HL-LHC) [21] —is planned.
The HL-LHC will increase the collision rate by a factor of 5 and the integrated luminosity by
about a factor of 10 compared to the LHCs’ original design — achieving a peak instantaneous
luminosity of L = 5 × 1034 cm−2s−1 and over 12 years an integrated luminosity of 3 ab−1.
For the upgrade several accelerator components are improved, including new magnet designs,
stronger 11-12 T superconducting magnets, more compact superconducting RF cavities for
precise phase control of the beams, and an overall remodeled beam collimation system. The
goals are to increase the bunch intensity to 2.2 × 1011 protons per bunch, to direct and
collimate the bunches for an increased overlapping area, and to optimize the operation by
luminosity leveling. The luminosity leveling is needed to mitigate extreme pile-up in the
experiments, i.e. to limit the additional proton-proton interactions that confuse the study of

1For reference: 1 b−1 = 1024 cm−2 and 1 fb−1 = 1039 cm−2
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Figure 1.1: A perspective view of the CMS detector.

to measure precisely the momentum of high-energy charged particles. This forces a choice of
superconducting technology for the magnets.

The overall layout of CMS [1] is shown in figure 1.1. At the heart of CMS sits a 13-m-
long, 6-m-inner-diameter, 4-T superconducting solenoid providing a large bending power (12 Tm)
before the muon bending angle is measured by the muon system. The return field is large enough
to saturate 1.5 m of iron, allowing 4 muon stations to be integrated to ensure robustness and full
geometric coverage. Each muon station consists of several layers of aluminium drift tubes (DT)
in the barrel region and cathode strip chambers (CSC) in the endcap region, complemented by
resistive plate chambers (RPC).

The bore of the magnet coil is large enough to accommodate the inner tracker and the
calorimetry inside. The tracking volume is given by a cylinder of 5.8-m length and 2.6-m di-
ameter. In order to deal with high track multiplicities, CMS employs 10 layers of silicon microstrip
detectors, which provide the required granularity and precision. In addition, 3 layers of silicon
pixel detectors are placed close to the interaction region to improve the measurement of the impact
parameter of charged-particle tracks, as well as the position of secondary vertices. The expected
muon momentum resolution using only the muon system, using only the inner tracker, and using
both sub-detectors is shown in figure 1.2.

The electromagnetic calorimeter (ECAL) uses lead tungstate (PbWO4) crystals with cov-
erage in pseudorapidity up to |h | < 3.0. The scintillation light is detected by silicon avalanche
photodiodes (APDs) in the barrel region and vacuum phototriodes (VPTs) in the endcap region. A
preshower system is installed in front of the endcap ECAL for p0 rejection. The energy resolution

– 3 –

Figure 1.2: Cutaway overview of the CMS detector at the LHC. It is 21.6 m long and
has a diameter of 14.6 m. Figure taken from Reference [98].

the primary interaction vertex of interest. While currently about 30–60 pile-up interactions
occur during a collision, with the HL-LHC, on average of 140–200 are expected. This
necessitates detectors with better separation of charged and neutral particles (see Chapter 2)
as well as sophisticated algorithms to filter out the pile-up.

Currently, it is envisioned that the HL-LHC will be operational in 2029. With this
significant increase in collisions, also the experiments’ data collection pipelines will need to
be upgraded, and computing systems will need to account for increased computational cost
for the reconstruction of events. For successful physics analyses the amount of simulated
collisions needs to scale with the experimentally recorded ones, leading also to increases in
cost for simulation of data. While the technological challenges to upgrade the LHC are largely
solved, more innovation is needed for simulations to be computationally efficient enough to
fit in the currently envisioned computing budget (see also Section 1.5). This thesis aims to
tackle this challenge with the results presented in the Chapter 5, 6, and 7.

1.4.2 LHC Experiments

The beams of the LHC are brought to collision at four interaction points where large-scale
particle detectors are set up to record the particles produced during the collisions. These
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include the two general-purpose detector experiments ATLAS (A Toroidal LHC ApparatuS)
and CMS (Compact Muon Solenoid) as well as the ALICE (A Large Ion Collider Experiment)
detector for heavy-ion collisions, and the LHCb (Large Hadron Collider beauty) detector
purposely built to study B mesons. So far the greatest scientific success of the LHC experiments
was the discovery of the Higgs boson at a mass of about 125 GeV in 2012 by both the CMS
and ATLAS experiments [19,20].

General-purpose detectors like ATLAS and CMS consist of a strong magnet and several
sub-detectors for dedicated measurements that encapsulate the interaction point in a solid
angle of 4π with multiple layers of components. As an example, a cutaway overview of the
CMS detector is shown in Figure 1.2. Similar to other general-purpose detectors, this detector
consists of four main parts [98]:

1. Magnet: An important part of the detector is the strong solenoid magnet that creates
a magnetic field parallel to the beam axis. Charged particles created by the collision
are bent in the magnetic field allowing the determination of the sign of their charge as
well as their momentum perpendicular to the beam axis. In CMS the magnet is made
up of cylindrical coils of superconducting fiber which create a magnetic field of 3.8 T.
A steel yoke is used to limit the reach of the magnetic field.

2. Tracker: Closest to the beam pipe is the tracking system, which measures the tra-
jectories of charged particles produced by the collision. Due to the trajectories being
bent in the magnetic field, the sign of their charge and their momentum perpendicular
to magnet lines (or beam line), i.e. pT, can be calculated. The reconstructed particle
tracks are further used to reconstruct and identify the primary leading vertex with the
highest total energy, secondary decay vertices, and secondary proton-proton interactions,
which can be used to mitigate pile-up.

The Tracking system at CMS uses technologies such as silicon semiconductor-based
pixel and microstrip detection elements. These operate on the principle that when a
charged particle traverses the silicon, an electron-hole pair is created resulting in a small
charge that is measured. In total, it is 5.8 m long with a diameter of 2.5 m and covers a
pseudorapidity of |η| < 2.5. The first of multiple layers starts at only 2.9 cm away from
the beam pipe and therefore needs to be very resistant to radiation. After an upgrade
in 2017, the pixel tracker has 124 million pixels each with a size of 100 × 150 µm2

achieving a precision of 10 µm when determining the particle’s origin [99].

3. Calorimetry: The calorimeter system that surrounds the tracking system consists of
dense material to fully absorb particles and to measure the deposited energy. While
tracking systems are optimized to be particularly sensitive to charged particles, calorime-
ters are used to detect both charged and neutral particles (except neutrinos). They
are usually separated into an inner electromagnetic calorimeter (ECAL) and an outer
hadronic calorimeter (HCAL), each with different material compositions to best measure
the respective particle types.

The CMS ECAL is a homogenous calorimeter using a total of 75,848 lead tungstate
(PbWO4) crystal scintillators and is divided up into a barrel and endcap region. In the
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barrel, the 61,200 crystals are 230 mm long which equates to 25.8 radiation lengths
(X0) and have a cross-section of 22 × 22 mm2 at the front facing the beam pipe. It
extends to r = 1.77 m away from the beam pipe. The 17,648 endcap crystals are
similarly 220 mm long (24.7 X0) with a front area of 28.62 × 28.62 mm2. In front of the
endcaps, a preshower detector is placed. It is a two-layer sampling calorimeter using
lead absorbers and silicon strip sensors with the main usage of identifying neutral pions.
Enclosing the ECAL, the CMS HCAL is a sampling calorimeter using passive steel or
brass absorbers with various thicknesses and 70,000 active plastic scintillator tiles. The
light from the scintillators is picked up by wavelength-shifting fibers. The barrel section
extends to r = 2.95 m and consists of 17 active layers with a thickness of 3.7 mm. The
first and last absorber layers are steel while the remaining passive layers are made of
brass. This results in an absorber thickness of 5.82 interaction lengths (λint) at η = 0
and 10.6 λint at |η| = 1.3. The endcap section covers a region of 1.3 < |η| < 3.0 and is
made up of 19 active and passive brass layers.
Both the tracking system and the calorimeters are placed inside the solenoid magnet.
In addition, there is a small outer section of the barrel HCAL (a “tail catcher”) as well
as a forward HCAL section placed 11.2 m away from the interaction point. A detailed
overview of calorimetry is given in Chapter 2.

4. Muon System: The outermost part of the detector is inhabited by the muon detector,
which is designed to detect muons since they traverse the tracker and calorimeter systems
without much energy loss. It acts essentially as an extension of the tracker system,
by tracking the bent trajectory of traversing muons. Together with the information
from the tracking detector, the muon momenta can be accurately calculated. At CMS,
the muon system has the largest volume of active material and consists of about 1,472
chambers including 250 drift tubes, 540 cathode strip chambers, 610 resistive plate
chambers, and 72 gas electron multiplier chambers. The chambers are organized into
four stations, which are interlaced with steel plates doubling as the aforementioned flux
return yoke for the magnet and as a hadron absorber. For the physics program of CMS,
the muon system is of particular importance since it allows a good measurement of the
clean Higgs signature via its decay into four muons h → Z0(→ µ−µ+)Z0(→ µ−µ+).

The coordinate system used by the CMS experiment is similar to that employed by other
detectors and uses a right-handed system with the origin at the collision point inside the
center of the detector. The x-axis points towards the center of the collider ring, the y-axis
upwards towards the surface, and the z-axis along the beam pipe in the counterclockwise
direction. When speaking of spherical coordinates in the detector context, r describes the
radial distance from the z-axis, ϕ is the azimuthal angle in the x − y-plane, and θ is the
polar angle measured from the z-axis. The pseudorapidity depends on the polar angle as
η = − ln(tan(θ/2)).

At the nominal LHC instantaneous luminosity of L = 1 × 1034 cm−2 s−1 with a bunch
crossing every 25 ns (40 MHz), about 25 proton-proton interactions occur during a single
bunch crossing. The detector response that is recorded as a result of a bunch crossing is called
an event. For the center-of-mass energy of 13 TeV achieved by the LHC, the total cross-section
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for all collisions is σTOT ≈ 100 mb translating to about O(109) collisions per second with
the nominal luminosity. It is very difficult to filter out the physically “interesting” events
which typically have a cross-section of 0.1–1 pb, i.e. only 10−11 of σTOT [70]. Additionally,
it is technically impossible to process and store the data measured from every single event,
therefore a trigger system is used to filter and significantly reduce the amount of data.

The trigger system usually have multiple levels, first hardware-based ones followed by
software-based triggers, i.e. ATLAS uses a three-stage trigger while CMS uses a two-stage
trigger combining a hardware-based Level-1 trigger and a software-based High-Level Trigger
(HLT) [100]. The Level-1 trigger reduces the event rate to 100 kHz by selecting events with
interesting features such as ionization deposits consistent with muons. The software-based
HLT reduces the event rate further to about 2–3 kHz by reconstructing objects such as
electrons, muons and jets and using those objects to select interesting events. The selected
events, for which all detector systems are read-out, are then stored for later offline analysis.
For reference, the event size is about 1 megabyte (depending on the number of particles
produced in the collision), so each second about 2–3 gigabytes of events are stored resulting
in multiple petabytes of data acquired over a year by each experiment. Capturing interesting
events without discarding major discoveries requires careful tuning of the trigger system.
This challenge becomes even greater when moving towards the HL-LHC with a five times
higher luminosity.

With the HL-LHC come new challenges for the detector experiments: The higher instan-
taneous luminosity means more pile-up, i.e. more interactions the detector needs to resolve
and to record, and the higher integrated luminosity means that the detector sustains more
radiation damage requiring stronger materials. Therefore, for the HL-LHC the LHC detector
experiments are going to be upgraded [101]. This includes replacing parts of the sub-detectors
and much of the electronics to make the detector able to withstand the increased radiation.
To cope with the higher in-time pile-up (IT), the granularity of the tracker and parts of
the calorimeter will be increased. This allows for better segmentation of the many more
trajectories that originate from the interaction region and enables the application of precise
particle-flow algorithms (PFA) (see Section 2.3). Additionally, out-of-time pile-up (OOT)
needs to be suppressed, i.e. energy depositions in the calorimeter that leak into an event from
a previous or later bunch crossing. OOT can be mitigated by increasing the time resolution
of the calorimeter cells.

To achieve a higher detector granularity in both space and time, mainly the tracker and
the endcap calorimeters will be changed during the “Phase II” upgrade of the CMS detector.
For example, the inner tracker pixel system will be replaced to feature two billion pixels
(up from 124 million pixels currently). The endcap calorimeters will be replaced with a
high-granularity calorimeter (HGCAL) [22] which will have 6.4 million read-out channels
using hexagonal silicon cells (with a size of 0.5 or 1 cm2) and scintillator tiles (4 to 32 cm2)
read out by silicon photomultipliers (“SiPM-on-tile design”). Just like the current endcap
calorimeter, it will be separated into an ECAL and an HCAL region. The ECAL will consists
of 26 layers using silicon sensors with passive copper, copper-tungsten and lead absorbers.
The HCAL will be made of 21 active silicon and scintillator layers interleaved with steel
absorbers. In addition, new systems are added to the detector such as a minimum-ionizing
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Figure 5.1: Cross sections of the most important Standard Model processes in e+e� annihilation
in the energy range of the ILC. Initial state radiation is included, and cross section are plotted for
reactions in which the annihilation retains > 90% of the nominal CM energy. The cross sections
are shown for predominantly left-handed beam polarization (�80%/ + 30% for e�/e+) (top) and
for predominantly right-handed beam polarization (+80%/ � 30%) (bottom). It is instructive to
compare the two plots, which have subtle and not-so-subtle di↵erences.

Figure 1.3: Cross-sections of various physics processes at an e+e− collider as functions
of the center-of-mass energy

√
s. Cross-sections were calculated for the International

Linear Collider (ILC) with predominantly left-handed beam polarization (-80%/ for e+

and +30% for e+). Figure taken from Reference [102].

particle precision timing detector (MTD), a luminosity detector, and a gas electron multiplier
(GEM) detector for muon detection in the very-forward region.

1.4.3 Future Collider Experiments

While the physics program around the HL-LHC is decided upon and will last until the
mid-2030s, discussions around the next iteration of collider experiments are already underway.
To provide precision measurements of the known elementary particles and forces, the highest
priority option for a future collider is a high-energy lepton collider which can act as a “Higgs
factory” [23].

The LEP has been of now largest lepton collider with
√
s = 209 GeV and shut down

in 2000 to make way for the LHC built in the same tunnel. To enable efficient precision
measurements of the Higgs boson with the next generation of electron-positron colliders,
at least

√
s = 250 GeV is needed — the energy for the optimal production cross-section of

the Higgs-strahlung process e+e− → Z0h [24]. At this energy, the Higgs mass mh can be
measured particularly precise as its invariant mass recoils against the reconstructed Z0 that
can be well measured from its lepton decays Z0 → e+e− and Z0 → µ+µ−, regardless of any
given h decay mode. However, these Z0 decays are suppressed in comparison to the hadronic
decay (BR(Z0 → µ+µ−) ≈ BR(Z0 → e+e−) ≈ 3.4% vs. BR(Z0 → qq̄) ≈ 69.9%) [76]. To
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utilize the hadronic channel effectively, a very good jet energy resolution of the detector
system is necessary — for example using the particle flow approach (see Section 2.3).

With further increasing energy above
√
s ≥ 450 GeV, the WW fusion process e+e− → νν̄h

becomes dominant and allows for measurements of the absolute normalization of the Higgs
coupling strengths with a precision at the percent level. At even higher energies, the Higgs-
to-top coupling can be studied via the process e+e− → tt̄h, which will help to further study
how the Higgs mechanism leads to the generation of fermionic masses — as the Higgs-fermion
coupling is proportional to the fermion mass (see Equation 1.58). Additionally, the Higgs
self-coupling will become available via e+e− → Zhh. Further interesting physics processes
available at an e+e− machine and their cross-sections as functions of

√
s are shown in

Figure 1.3 (note the specified beam polarizations).
Either a very large radius circular collider or a large linear collider would need to be built

for this purpose. The advantage of a circular lepton collider would be the reusability of the
infrastructure for a future hadron collider, the same way as LEP gave way to the LHC. This
would warrant a circular accelerator of 80–100 km. Further, a circular collider allows for a
higher instantaneous luminosity, since in a circular storage ring the bunches can be collided
over and over again, while in a linear collider, they need to be accelerated anew. It also
allows for multiple interaction points and therefore multiple simultaneously running detectors
(leading to a multiplication of the achievable integrated luminosity). On the other hand, a
linear collider can potentially achieve higher energy with an overall smaller accelerator size
since the energy loss through synchrotron radiation can be disregarded. In addition, there
are further considerations such as the possibility of setting the beam polarization at linear
colliders since the polarization of electrons is preserved during linear acceleration making
specific physics processes more dominant. The choice also has an impact on detector design
which can be more compact at e+e− linear colliders because the application of bunch trains
(a collection of bunches) allows to power down parts of the detectors during the downtime
between bunch trains (”power-pulsing”) and therefore the detector components require less
cooling infrastructure.

There are currently multiple proposals for future circular or linear colliders in various
stages of planning. These proposals all focus on an electron-positron collider — at least in
the initial stage:

• ILC: For linear colliders, the most advanced proposal is the International Linear
Collider (ILC) [24]. The ILC envisions colliding polarized electrons and positrons with
an initial baseline of

√
s = 250 GeV, with the possibility of upgrading the accelerator in

two stages to
√
s = 500 GeV and

√
s = 1 TeV. The overall length of the collider would

be about 20 km for the 250 GeV machine, and 30 to 50 km for the 500 GeV and 1 TeV
collider, respectively. The envisioned site for the ILC is in Japan.

The ILC is designed to host two multi-purpose detectors, the International Large
Detector (ILC) and the Silicon Detector (SiD). Both detectors are designed to achieve
a high-resolution jet energy reconstruction and di-jet mass performance. For this
purpose event reconstruction is performed using Particle Flow Algorithms (PFA) (see
Section 2.3) which require high-granularity calorimeters and very effective tracking
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Chapter 1
ILD: Executive Summary

The International Large Detector (ILD) is a concept for a detector at the International Linear Collider,
ILC [198]. In a slightly modified version, it has also been proposed for the CLIC linear collider [199].

The ILD detector concept has been optimised with a clear view on precision. In recent years
the concept of particle flow has been shown to deliver the best possible overall event reconstruction.
Particle flow implies that all particles in an event, charged and neutral, are individually reconstructed.
This requirement has a large impact on the design of the detector, and has played a central role in
the optimisation of the system. Superb tracking capabilities and outstanding detection of secondary
vertices are other important aspects. Care has been taken to design a hermetic detector, both in
terms of solid-angle coverage, but also in terms of avoiding cracks and non-uniformities in response.
The overall detector system has undergone a vigorous optimisation procedure based on extensive
simulation studies both of the performance of the subsystems, and on studies of the physics reach
of the detector. Simulations are accompanied by an extensive testing program of components and
prototypes in laboratory and test-beam experiments.

Figure III-1.1
View of the ILD detec-
tor concept.

The ILD detector concept has been described in a number of documents in the past. Most
recently the letter of intent [198] gave a fairly in depth description of the ILD concept. The ILD
concept is based on the earlier GLD and LDC detector concepts [200, 201, 202]. Since the publication
of the letter of intent, major progress has been made in the maturity of the technologies proposed for
ILD, and their integration into a coherent detector concept.
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(a) ILD Detector

1.2. ILD layout and performance

Figure III-1.3
Three-dimensional
view of a typical multi
jet final state at the
ILC (500 GeV tt̄ event
with multi-hadronic
final state). The pic-
ture was generated by
the detailed detector
simulation of the ILD
detector.

1.2 ILD layout and performance

The ILD concept has been designed as a multi-purpose detector. A high precision vertex detector is
followed by a hybrid tracking layout, realised as a combination of silicon tracking with a time projection
chamber, and a calorimeter system. The complete system is located inside the large solenoid. On
the outside of the coil, the iron return yoke is instrumented as a muon system and as a tail catcher
calorimeter.

The vertex detector is realised as a multi-layer pixel-vertex detector (VTX), with three super-layers
each comprising two layers, or a 5 layer geometry. In either case the detector has a pure barrel
geometry. To minimise the occupancy from background hits, the first super-layer is only half as long
as the outer two. Whilst the underlying detector technology has not yet been decided, the VTX is
optimised for point resolution and minimum material thickness.

A system of silicon strip and pixel detectors surrounds the VTX detector. In the barrel, two
layers of silicon strip detectors (SIT) are arranged to bridge the gap between the VTX and the TPC.
In the forward region, a system of two silicon-pixel disks and five silicon-strip disks (FTD) provides
low angle tracking coverage.

A distinct feature of ILD is a large volume time projection chamber (TPC) with up to 224 points
per track. The TPC is optimised for 3-dimensional point resolution and minimum material in the
field cage and in the end-plate. It also allows dE/dx based particle identification.

Outside the TPC a system of Si-strip detectors, one behind the end-plate of the TPC (ETD)
and one in between the TPC and the ECAL (SET), provide additional high precision space points
which improve the tracking performance and provide additional redundancy in the regions between
the main tracking volume and the calorimeters.

A highly segmented electromagnetic calorimeter (ECAL) provides up to 30 samples in depth and
small transverse cell size, split into a barrel and an end cap system. For the absorber Tungsten has
been chosen, for the sensitive area silicon diodes or scintillator strips are considered.

This is followed by a highly segmented hadronic calorimeter (HCAL) with up to 48 longitudinal
samples and small transverse cell size. Two options are considered, both based on a Steel-absorber
structure. One option uses scintillator tiles of 3 ◊ 3 cm2, which are read out with an analogue
system. The second uses a gas-based readout which allows a 1 ◊ 1 cm2 cell geometry with a binary or
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(b) Event Display

Figure 1.4: (a) Rendering of the envisioned International Large Detector (ILD) detector.
(b) Event display of the hadronic decay of a simulated tt̄ event in the ILD. The color
coding corresponds to reconstructed tracks of individual particles. Figures taken from
Reference [102].

systems. The concept for the ILD uses a tracking system combined of continuous-
readout time-projection chambers and silicon tracking as well as a high-granularity
calorimeter contained in a 3.5 T magnetic field. A rendering and an event display of
the ILD are shown in Figure 1.4. The SiD detector is focused on a cost-effective design
by using mostly silicon both for tracking and in the highly granular calorimeter and
will use a 5 T magnet. As there is only one interaction region, only one of the detectors
can take data at a time.

• CLIC: Another linear collider is proposed to be built at CERN: The Compact Linear
Collider (CLIC) [103] aims to achieve a multi-TeV collision energy by building the
accelerator in three stages. The first stage would aim for

√
s = 380 GeV with a collider

length of 11 km, the second stage would achieve
√
s = 1.5 TeV with a length of 29 km,

and the third stage
√
s = 3 TeV with a collider length of 50 km. The higher peak

energy in comparison to ILC would be achieved by using accelerator gradients of up
to 100 MV/m (compared to 35 MV/m at the ILC). There are further differences
between the colliders such as the envisioned instantaneous luminosity, bunch spacing
and polarization. A single detector, the CLIC detector (CLICdet) [104], is planned to
study the collisions at the interaction point. The innermost component of CLICdet is a
silicon pixel vertex detector surrounded by an all-silicon tracker. The high-granularity
ECAL and HCAL are optimized for the particle-flow paradigm. Both are placed inside
a 4 T magnet surrounded by the muon system.

• FCC: For a circular lepton collider, CERN proposes to build the Future Circular
Collider (FCC) [105] with a tunnel length of about 100 km. This collider would in its
first variant be a e+e− collider, dubbed FCC-ee, aiming for up to

√
s ≈ 350 − 365 GeV,
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i.e. the optimal energy for tt̄ pair production. Due to synchrotron radiation, it would
be difficult to achieve a much higher energy. At lower energies it would also be used to
generate large amounts of Z0 bosons (

√
s ∼ 91 GeV), WW pairs (

√
s ∼ 160 GeV) and

Higgs boson via the Higgs-strahlung process (
√
s ∼ 250 GeV) (see Figure 1.3).

As a baseline, the FCC-ee is planned with two interaction points, each equipped with a
general-purpose detector. The current conceptual designs are called CLIC-Like Detec-
tor (CLD) and International Detector for Electron-positron Accelerators (IDEA) [106].
The CLD is similar to CLICdet and utilizes a silicon vertex detector and silicon tracker
together with a highly granular 3D-imaging calorimeter (a silicon-tungsten ECAL and
a scintillator-steel HCAL). IDEA employs a silicon vertex detector, a short-drift wire
chamber as a tracker, and a dual-readout calorimeter (see Section 2.2.2). It also uses
SiPMs for read-out and a fine granularity to allow for particle-flow reconstruction. Due
to the beam crossing angle of 30 mrad, the detector solenoid magnets of both detectors
can have a maximum strength of 2 T as with a higher strength the beam emittance
would increase too much leading to a loss in luminosity.

Once the physics potential of the FCC-ee is exploited, the tunnel can be reused to
upgrade the machine to a hadron collider, the FCC-hh, aiming for

√
s ∼ 100 TeV pp

collisions as a discovery vehicle. Just like in the LHC, heavy ion collisions would be
possible as well. Further options are an electron-proton collider, dubbed FCC-eh, that
could produce 3.5 TeV ep collisions following in the footsteps of HERA.

• CEPC: A similar accelerator is proposed in China: the Circular Electron Positron
Collider (CEPC) [107, 108]. This circular e+e− collider is a very similar project to
CERN’s FCC-ee. It is also envisioned to run it at the four different energy levels up to
the tt̄ pair production energy at

√
s ∼ 360 GeV, employs a circular accelerator with a

100 km circumference, and two interaction points with large general-purpose detectors.
For the two detectors, one is envisioned as an adapted ILD design, and the other is a
detector based on IDEA. The CEPC also allows for a follow-up proton collider, the
Super Proton Proton Collider (SPPC), as a high-energy discovery machine.

• Others: Other less developed collider concepts include a muon collider [109], the Cool
Copper Collider (C3) [110], or leveraging plasma-wakefield acceleration [111], i.e. in a
hybrid version combining plasma-wakefield acceleration for electrons and conventional
radio-frequency (RF) acceleration for positrons [112].

All envisioned detectors have in common that they use highly granular calorimeters to
enable efficient particle-flow algorithms for event reconstruction. This high granularity also
makes simulating the detector response more challenging and requires simulation tools that
allow both high fidelity and computational efficiency. To this end, this thesis explores the
application of generative models for highly granular calorimeter simulations in Chapter 5 and
6.
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1.5 Particle Physics Simulations

The scientific method starts with a theory. Based on the theory a prediction is made on how
an experiment might turn out, then the experiment is performed, and the result is compared
to the prediction. Based on this result, the theory might be adjusted and the cycle starts
anew. This is how scientific progress is made.

Above, we have introduced the particle physics theory with the SM Lagrangian at its heart
and discussed how detector experiments at colliders are performed. Considering that the
SM Lagrangian is a theory equation that cannot be evaluated analytically and the detector
experiment yields essentially sensor data, how can we consolidate the two with a prediction?
The answer is a simulated experiment.

The theory — for example, the regular SM Lagrangian or a modified theory — is turned
into a prediction by modeling how the detector measurement would look like, if the theory were
true. Thereby, this modeled interaction can be compared with the real detector experiment
and the theory is confirmed or disproven. For this method to work, the simulations need to
match the accuracy of the experiment and with more precise measurements, i.e. due to the
application of high-granularity calorimeters, the bar for more accurate simulations rises. At
least as many simulated events as real data are required for the results to not be limited by
fluctuations due to the size of the simulated samples, hence with higher luminosity colliders,
also comes an increasing need for more simulated data which may require more computational
resources.

To achieve an accurate modeling of the detector response to a collider interaction,
traditionally a pipeline of multiple separate simulation tools is needed to make up the full
simulation:

• Event generation: The event generation is the first step in a simulation chain and
models the hard scattering processes between the initial state of the beam particles,
i.e. the protons or electrons. These calculations involve multidimensional integrations of
the differential cross-section for every process that can occur, which are analytically very
difficult. Therefore, event generators apply numerical integration approaches, usually
Monte Carlo (MC) methods. The event generator output is a list of particles that are
produced in the initial beam particle interaction. Event generation is usually done with
tools such as MadGraph [113], WHIZARD [114], PYTHIA [115], and Herwig [116].

• Hadronization: Quarks and gluons produced in the initial interaction form hadrons
due to color confinement. This step is called hadronization and results in a collimated
spray of hadrons, known as a jet (see Section 1.6). Their lifetime and decay are also
taken into account at this step. Hadronization is implemented in event generators such
as PYTHIA.

• Detector description: As the produced particles of the interaction as well as their
decay products and said jets interact with detector material surrounding the interaction
point, a detailed description of the detector is needed. This is done in software such as
DD4hep [117], in which the geometry and all material compositions inside the detector
are defined.
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Figure 1.5: Projected evolution of the ATLAS annual CPU consumption from 2020
until 2036 measured in million HS06 [119]. A conservative (blue) and an aggressive (red)
R&D scenario are considered and compared to a 10% and a 20% sustained computing
capacity increase (including budget increases and improvements of new hardware). Figure
taken from Reference [120].

• Transport software: Finally, the interaction between particles and matter is simulated
using a transport software. At this step, all interactions between particles and the
detector matter are simulated, including decays, scattering processes, absorption, and
the impact of the magnetic field. The energy depositions in the active material are
recorded in the same format as the real experiment. Depending on how many particles
enter the detector and the detector volume, this step of the simulation chain can be
very computationally intensive. The most common transport software in high-energy
physics is Geant4 [118]. A more detailed introduction to detector simulation is given
in Section 2.4 with the example of calorimeter simulations.

Now the simulated events can be analyzed with the same software infrastructure as the
real data.

In comparison to a full simulation, a fast simulation uses tools to skip or alter parts of
the full simulation for increased computational efficiency albeit at an often lesser accuracy.
Various fast simulation methods are discussed in Section 2.4. Among the methods for fast
simulations are generative machine learning models, the topic of this thesis.

With the HL-LHC upgrade and its increased luminosity, the computational requirements
for simulations will likely increase significantly to still achieve equal simulated and real
data statistics. An extrapolation of the annual CPU consumption required by the ATLAS
experiment is shown in Figure 1.5. A stark increase is projected after the HL-LHC starts
operation in 2028. This computing usage includes all computational needs of the experiment,
including event reconstruction, event generation, analysis, data processing, and MC simulation.
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Figure 1.6: Breakdown of the projected CPU computing usage by ATLAS during the
LHC’s fourth period of operation (Run 4) in 2031 for either a conservative (a) or an
aggressive (b) R&D scenario. Note that event generation (EvGen) is here separated
from the detector simulation (MC). Figures taken from Reference [120].

Aggressive R&D efforts are needed to stay within a sustained budget.
A breakdown of the projected CPU computing usage by ATLAS in 2031 is shown in

Figure 1.6. A large portion of the computing usage is driven by the MC simulation. With a
conservative R&D scenario, the total computing usage of MC simulations (both full simulation
and fast simulation, without event generation) would take up 31% of the total budget and with
aggressive R&D it would use up 20% (of an overall about 50% lower budget). One should note,
that even the conservative R&D scenario includes already substantial improvements in the
fast calorimeter and tracker simulations [120], i.e. without using novel fast simulation methods,
the computing usage of simulations would be even higher. To achieve such improvements,
this thesis explores the use of generative machine learning models for fast particle physics
simulations.

1.6 Jet Physics

Collisions at hadron colliders produce almost always quarks and gluons and also on lepton
colliders the final state often contains quarks. The strong interaction between them causes
the creation of further quarks and anti-quarks pairs. This process is known as hadronization
and happens on a distance scale of 10−15 m. Hadronization of quarks and gluons take the
form of a parton shower and the collimated stream of hadrons can be measured as a jet, since
due to color confinement the quarks are never observed freely. Each quark produced in the
initial collision can produce a jet, so an event like e+e− → qq̄ would produce two jets directed
in opposite directions in the center-of-mass frame. A detailed introduction to jet physics at
the LHC can be found in Reference [121].

A jet contains on average 60% of its energy in the form of charged particles (like π±),
30% as photons (from π0 → γγ decays), and 10% as neutral particles like neutrons. In
traditional calorimeters, individual particles in the jet cannot be resolved and the jet energy
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is determined by summing up the energy deposited in the ECAL and HCAL. This may
change with future collider experiments featuring high-granularity calorimeters optimized for
particle-flow reconstruction (see Section 2.3).

Qualitatively the hadronization process can be split into five steps: [68]

1. The produced qq̄ separate at a very high velocity.

2. A color field emerges between them with an energy density of ∼ 1 GeV/fm.

3. With increasing distance between the original quarks the energy of the color field rises
until enough energy is accumulated to form new qq̄ pairs.

4. Between the new qq̄ pairs further color fields emerge. This creates a cascade of secondary
pairs.

5. The cascade ends once the quarks and antiquarks have lost enough energy to form
hadrons. Unstable hadrons decay further until only stable particles remain.

How exactly this process works is still unknown. However, there are many models that aim
to simulate the hadronization process. These are implemented in simulation tools such as
PYTHIA and Herwig.

At collider experiments, a precise measurement of the jets allows the study of the initiating
particles. Jet clustering algorithms are used to reconstruct the four-momentum of the jet. In
addition to the four-momentum, several observables can be derived from the jet substructure
that facilitate distinguishing whether they originate from light quarks, gluon, or contain
decay products of heavier particles. A detailed introduction to jet physics at the LHC can be
found in Reference [121].

1.6.1 Jet Simulation

Since the simulation of jets is a highly complex process, an event generator such as PYTHIA
factorizes the generation process into several components. The most important components
for the simulation of a pp → tt̄ event are illustrated in Figure 1.7. Typically, the processes are
categorized according to the “hardness” scale measured in terms of the transverse momentum
pT. The hardness decreases with the radius around the hardest scattering (dσ̂0). Several
sub-processes are outlined below in the order of decreasing hardness following Reference [122].

The hardest process is the scattering of the two partons into several outgoing particles.
The initial partons are chosen according to the parton distribution functions (PDFs) of
each incoming proton and the outgoing particle kinematics are determined by the matrix
elements calculated via perturbation theory. It is common to use an external generator like
MadGraph for the parton-level computations. If short-lived resonances such as the top
quarks are produced, they decay almost immediately into other particles.

Several radiative processes can occur in the next step. Fixed-order radiative corrections
are considered via matrix-element corrections, matching, and merging strategies. The range
where these corrections are valid is shaded violet around the initial hard process in Figure 1.7.
Initial-state radiation (ISR) of additional particles originates from soft gluon emissions and
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branchings and final-state hadrons are slightly less numerous than in real PYTHIA events,
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9

Figure 1.7: Illustration of a pp → tt̄ event as modeled by PYTHIA. Figure taken from
Reference [122].

final-state radiation (FSR) produces additional particles from the initial hard scattering or
the subsequent resonance decays. In the same range, multi parton interactions (MPI) through
scattering with the additional partons of the incoming protons can occur.

A bit farther away, around the blue shaded ring of Figure 1.7, the hadronization process
discussed above begins with the formation of color strings between the outgoing partons.
These strings are color singlets that confine the QCD partons due to the strong interaction.
This is where the transition from the partonic to the hadronic phase is modeled. In PYTHIA,
the Lund string model [123] is used to describe the fragmentation of the strings into hadrons.
If an unstable hadron is produced, it decays further until only stable particles remain. These
particles however may further interact by scattering or annihilation processes. The output of
the event generator is given as a list of particles with their properties such as four-momenta
and particle types. This list can then be used as input for the detector simulation or directly
processed further for example by a jet clustering algorithm. Details about all of these processes
can be found in References [122].

1.6.2 Jet Algorithms

Jet algorithms are used to cluster measured objects (here termed ‘particles’ for the sake
of simplicity) together to reconstruct a jet. There are two types of jet algorithms: cone
algorithms and sequential-recombination algorithms. Cone algorithms cluster particles within
a specific conical angular region, while sequential-recombination algorithms iteratively combine
particles that are closest together in some distance measure. At the LHC and likely also at
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future lepton colliders, the latter algorithms are primarily used.
Infared and collinear (IRC) safety is an important constraint for jet algorithms. IRC

safety implies, that the clustered jet is unchanged after the emission of infinitely soft particles
and under the collinear splitting or merging of particles within the jet. Further constraints
on the algorithms include invariance to longitudinal boosts (ensured by using the rapidity y
instead of the pseudorapidity η in the computations), independence of detector details, and
insensitivity to pile-up.

The distance measure for the sequential-recombination algorithms used at the LHC is
defined between a particle i and j as

di,j = min
(
p2p

T,i, p
2p
T,j

) ∆R2
ij

R2 (1.62)

where pT,i and pT,j are the transverse momenta of the particles, ∆Rij =
√

(yi − yj)2 + (ϕi − ϕj)2

is the angular distance in the y-ϕ plane, and R is a parameter that defines the jet radius. A
second distance measure is defined between the particle i and the beam axis as

di,B = p2p
T,i. (1.63)

The parameter p determines the order in which low- and high-pT particles are clustered:
p = 1 for the kt algorithm [124], p = 0 for the Cambridge-Aachen algorithm [125], and p = −1
for the anti-kt algorithm [126] (the most commonly used one).

The clustering is performed by finding the minimal distance dmin between all distances
di,j and di,B. If dmin ∈ {di,j}, particles i and j are combined by four-momentum addition
into a new pseudo-particle and particles i and j are removed. If dmin ∈ {di,B}, particle i is
declared a jet and removed. This process is repeated until all particles are clustered into jets.

At a future high-energy lepton collider, the jet clustering algorithms will need to be
optimized to take full advantage of the collider and detectors. [127] Challenges for jet
reconstruction include the amount of jet final states, pile-up background, and initial state
radiation. It has been shown that the Valencia algorithm (VLC) [128] outperforms traditional
e+e− jet algorithms and kt-like algorithms at high energy lepton colliders. The VLC algorithm
is also a sequential-recombination algorithm, but it uses a different distance measure compared
to the kt algorithm family. The VLC distance measures are defined as:

di,j = 2 min
(
E2β
i , E2β

j

) 1 − cos θij
R2 (1.64)

and
di,B = E2β

i sin2γ θiB (1.65)

where Ei and Ej are the energies of the particles, θij is the angle between the particles, and
θiB is the angle between the particle and the beam axis. The parameter β is set to β = 1 to
value the softer of the two particles higher (like the kt algorithm). When setting also the
parameter γ = 1, the beam distance becomes di,B = E2

i sin2 θiB = p2
T,i, which is the same

as in kt algorithm. Compared to the kt algorithm, VLC replaces essentially the transverse
momenta with the particle energies and the angular distance with 1 − cosϕij — choices that
seem sensible for a lepton collider where the collision energy is clearly defined.
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1.6.3 Jet Substructure

Not only the study of whole jets but also their internal structure has become more important
over the recent years. This is motivated by the LHC collision energies being high enough
to frequently produce electroweak resonances, such as top quarks, W±/Z0 bosons, and
Higgs bosons, with transverse momenta way beyond their rest mass. Since these resonances
decay predominantly into quarks, they produce boosted jets which are highly collimated and
overlapping in the lab frame. This leads to a very large jet, a so-called fat jet.

To distinguish whether these jets originate from interesting electroweak resonances or the
large QCD background, i.e. jets produced from high-energy quarks and gluons (excluding
top quarks), physicists have started to study the internal structure of jets. These studies are
enabled by the popularization of the above-discussed sequential-recombination algorithms
since they retain the whole history of jet clustering. This study of the internal structure
of jets is known as jet substructure analysis and several observables have been explored to
help in its understanding. Some of these are used for the studies presented in Chapter 7
and introduced in the following. A good general introduction to jet substructure and
boosted-object phenomenology can be found in Reference [129].

N-subjettiness

N -subjettiness [130] encompasses a family of jet shape variables denoted τN , where N is the
number of subjets the jet consists of. It is defined as:

τN = 1
d0

∑

k

pT,k min (∆R1,k,∆R2,k, . . . ,∆RN,k) (1.66)

where k runs over all the particles in the reconstructed jets, pT,k are the transverse momenta
of the particles, and ∆RJ,k is the angular distance between the jet axis of candidate subjet
J and the particle k. The angular distance in the rapidity-azimuth plane is given by
∆RJ,k =

√
(yJ − yk)2 + (ϕJ − ϕk)2. Here, d0 is a normalization factor given by

d0 =
∑

k

pT,kR0 (1.67)

where R0 is the jet radius parameter of the original jet clustering algorithm. By minimizing
τN the subjet axes are found.

Jets with τN ≈ 0 have all particles aligned with the N (or fewer) subjets. Jets with
τN >> 0 contain a lot of particles farther away from the jet axis and have at least N + 1
subjets. Therefore, one can interpret τN as a measure of the radiation distribution around the
subjet axes. Since the value of τN is larger for jets originating by gluons, the N -subjettiness
ratio

τN,N−1 = τN
τN−1

(1.68)

is a good observable to distinguish N -pronged jets from QCD background jets. In particular,
τ2,1 can be used to distinguish W/Z/H jets from QCD jets and τ3,2 can be used to discriminate
top jets.
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Energy Flow Polynomials

Energy Flow Polynomials (EFPs) [131] are a set of jet substructure observables that form
a linear basis for all IRC-safe observables. They can be expressed in the language of graph
theory and for a multigraph G with N vertices and edges (k, l) ∈ G an EFP is defined as

EFPG =
M∑

i1=1
· · ·

M∑

iN =1
zi1 · · · ziN

∏

(k,l)∈G
θikil (1.69)

where the jet is made up of M particles, zi = Ei/
∑M
j=1Ej is the energy fraction of particle i,

and θij is the angular distance between particles i and j. At hadron colliders, zi is the fraction
of transverse momentum and the angular distance is expressed in the rapidity-azimuth plane.

It can be shown that many common jet observables can be expressed as a linear combination
of EFPs. Depending on the application, a certain set of EFPs can be used to distinguish
various jet topologies. In principle, there are an unlimited number of EFPs (for the limit of
jets with an infinite number of particles), but in practice, only the ones with few vertices and
edges are efficient to compute.

Energy Correlator Functions

Energy Correlator Functions (ECFs) [132] are another set of jet substructure variables based
on the energies of particles and the angles between them. Although introduced earlier, they
can be viewed as a special case of EFPs with complete graphs — a graph where every vertex
is connected by a unique edge to every other vertex. The ECFs achieve similar discriminating
power as N -subjettiness but do not require the clustering history.

The 2-point correlators are well suited for quark/gluon discrimination and the 3-point
correlators for boosted W/Z/H identification. They are defined as

e
(β)
2 =

∑

i<j∈J
zizj∆Rβij (1.70)

and
e

(β)
3 =

∑

i<j<k∈J
zizjzk∆Rβij∆R

β
ik∆R

β
jk (1.71)

where zi = pT,i/
∑
j pT,j is the transverse momentum fraction of particle i and ∆Rij is the

angular distance between particles i and j. i, j, and k are particles in jet J . The exponent
is usually set to β = 1. Similar to the N -subjettiness, ratios of ECFs are particularly
sensitive to discriminate boosted massive particles from QCD jets. A common ratio with
large discriminating power is

D
(β)
2 = e

(β)
3

(e(β)
2 )3

. (1.72)
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Chapter 2

Calorimetry

In particle physics, calorimetry is the destructive measurement of a particle’s energy by
its absorption in matter. When a particle interacts with matter, it can deposit energy via
electromagnetic or hard-/hadronic interactions in the material. With a suitable material,
this interaction can be measured and the deposited energy calculated. In modern collider
experiments, a calorimeter has several important tasks, including event selection, triggering,
precision measurements of individual particles and jets, and measuring the energy flow in the
events, for example, to determine missing energy.

This chapter introduces the basic concepts of modern calorimetry as well as novel algo-
rithms and simulation methods that are used to advance calorimeters for future experiments.
Although most of the results in the following chapters were derived from electromagnetic
showers, an introduction to hadronic showers and hadronic calorimeters is given as well. In
particular, hadronic showers are the main motivation for particle flow algorithms, which in
turn are the incentive for the application of high-granularity calorimeters, which are simulated
in the Chapters 5 and 6.

In Section 2.1, the basic electromagnetic and hadronic interactions of particles with matter
are discussed. Section 2.2 discusses the types of calorimeters and their response to different
particles. The particle flow approach to calorimetry is explained in Section 2.3. Finally, full
physics-based as well as fast simulations of calorimeters are introduced in Section 2.4.

A good overview of calorimetry can be found in Reference [133] with a more comprehensive
introduction found in Reference [134]. A very detailed book on calorimetry is Reference [135].

2.1 Particle-Matter Interaction

During the interaction of particles with matter, particles can create cascades of additional
particles. These cascades of secondary particles are called particle showers. Usually one
differentiates between electromagnetic showers and hadronic showers, depending on the type
of fundamental interaction occurring.

Electromagnetic showers are initiated by electrons, positrons, and photons, while hadronic
showers result from interactions with hadrons, such as protons and pions. The possible
interactions and showering behavior are rather distinct, therefore they are discussed separately.
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2.1.1 Electromagnetic Interactions

Several well-understood processes play a role in the formation of electromagnetic showers.
Electrons and positrons lose energy mainly via ionization and radiation (bremsstrahlung).
Ionization occurs when a particle’s energy is sufficient to release the atomic electrons from
the Coulomb fields which are generated by the nuclei of the medium. Many particle detectors
function with ionization as these free electrons can yield an electric signal. Another way to
detect the energy deposition is using scintillation light. This occurs when charged particles
excite atoms in the scintillator material without ionizing them. The de-excitation results in
released photons that can be picked up as a light source from which a calorimeter signal is
recorded. Cherenkov light is also sometimes used for calorimeters. This radiation occurs
when charged particles travel in a medium faster than that medium’s speed of light. At high
energies, bremsstrahlung is a dominant electromagnetic interaction and to a lesser extent
energetic knock-on electrons, so-called δ-rays. At very high energies, even nuclear reactions
through electromagnetic interactions are possible.

Electrons and Positrons

At energies above 10–100 MeV (material-dependent), bremsstrahlung is by far the dominant
form of energy loss by electrons and positrons. It is induced by the Coulomb interaction with
the electric fields of nuclei when the e+/e− traverse matter. In general, any charged particle
traversing matter may undergo bremsstrahlung, though for heavier particles it becomes
dominant only at much higher energies. At lower energies, ionization becomes the primary
source of energy loss for e+/e−, with Møller scattering (for e−), Bhabha scattering (for
e+) and e+e− annihilation contributing to a lesser extent at low energies. These different
contributions to the energy loss of electrons and positrons are shown in Figure 2.1a as a
function of energy.

The energy at which bremsstrahlung and ionization play an equal role is the material-
dependent critical energy. It depends on the electron density in the medium which in turn
is roughly proportional to the material’s atomic number Z. The critical energy1 can be
expressed as [76]

εc = 610 MeV
Z + 1.24 and εc = 710 MeV

Z + 0.92 (2.1)

in solid/liquid materials and gaseous materials, respectively. For iron, the critical energy is
approximately 21 MeV.

Photons

Photons interact mainly by four different processes: the photoelectric effect, coherent
(Rayleigh) scattering, incoherent (Compton) scattering, and electron-positron pair production.
Photo-nuclear reactions play a minor role in only a small range of photon energies. The

1This parameterization is based on an alternative definition of the critical energy from Reference [136] that
defines it as the energy at which the ionization loss per radiation length is equal to the electron energy. It has
been found to describe the transverse electromagnetic shower development more accurately [76].
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19 34. Passage of Particles Through Matter

Table 34.2: Tsai’s Lrad and LÕ
rad, for use in calculating the radiation

length in an element using Eq. (34.25).

Element Z Lrad LÕ
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15Z≠1/3) ln(1194Z≠2/3)

Figure 34.11: Fractional energy loss per radiation length in lead as a function of electron or
positron energy. Electron (positron) scattering is considered as ionization when the energy loss
per collision is below 0.255 MeV, and as Møller (Bhabha) scattering when it is above. Adapted
from Fig. 3.2 from Messel and Crawford, Electron-Photon Shower Distribution Function Tables
for Lead, Copper, and Air Absorbers, Pergamon Press, 1970. Messel and Crawford use X0(Pb) =
5.82 g/cm2, but we have modified the figures to reflect the value given in the Table of Atomic and
Nuclear Properties of Materials (X0(Pb) = 6.37 g/cm2).

34.4.3 Bremsstrahlung energy loss by e±

At very high energies and except at the high-energy tip of the bremsstrahlung spectrum, the
cross section can be approximated in the “complete screening case” as [42]

d‡/dk = (1/k)4–r2
e

)
(4
3 ≠ 4

3y + y2)[Z2(Lrad ≠ f(Z)) + Z LÕ
rad] + 1

9(1 ≠ y)(Z2 + Z)
*
, (34.28)

where y = k/E is the fraction of the electron’s energy transferred to the radiated photon. At small
y (the “infrared limit”) the term on the second line ranges from 1.7% (low Z) to 2.5% (high Z) of
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Figure 34.15: Photon total cross sections as a function of energy in carbon and lead, showing the
contributions of di�erent processes [50]:

‡p.e. = Atomic photoelectric e�ect (electron ejection, photon absorption)
‡Rayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excited
‡Compton = Incoherent scattering (Compton scattering o� an electron)

Ÿnuc = Pair production, nuclear field
Ÿe = Pair production, electron field

‡g.d.r. = Photonuclear interactions, most notably the Giant Dipole Resonance [51]. In these
interactions, the target nucleus is usually broken up.

Original figures through the courtesy of John H. Hubbell (NIST).

electron and the photon “split apart.” The interference is usually destructive. Calculations of the
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(b) γ cross-sections

Figure 2.1: (a) Processes for energy loss of electrons and positrons in lead as a function
of energy. (b) Photon cross-sections in lead as a function of energy. σp.e. is the photo-
electric cross-section. σg.d.r is the photo-nuclear cross-section (“giant dipole resonance”).
κnuc is the cross-section of pair production in a nuclear field and κe is the pair production
cross-section in an electron field. Figures taken from Reference [76].

cross-sections for these interactions are material-dependent. For lead, they are shown in
Figure 2.1b.

The photo-electric effect is dominant at low energies and its cross-section decreases with
the photon energy as E−3. In this process, an atom is excited by the photon and emits an
electron. The atom gets de-excited by emitting X-rays or Auger electrons. Its cross-section is
dependent on the number of available electrons of the atom and is therefore highly sensitive
to the Z value of the medium.

Rayleigh scattering is a coherent process that is also important at low energies. Here a
photon is deflected by atomic electrons without any energy loss. Hence, Rayleigh scattering
does not result in any energy deposition in the medium, but it can affect the spatial distribution
of energy deposits through subsequent processes.

Compton scattering on the other hand describes the scattering of a photon by an atomic
electron with energy and momentum transfer. The momentum transfer is large enough
to release the electron into an unbound state. In most materials, Compton scattering is
dominant for photons in the energy range between a few hundred keV and about 5 MeV. The
process also causes the spatial distribution of energy in the medium as the recoiled electrons
are scattered in the forward hemisphere of the original photon direction. Often, multiple
sequential Compton scattering events lead to a reduction of an initial photon energy in the
MeV range to the keV range, resulting in the absorption the photon via the photo-electric
effect.

At photon energies of at least twice the electron rest mass, i.e. Eγ ≳ 1 MeV, a photon
traversing the field of a charged particle can result in the pair production of an electron-
positron pair. Most pair productions are caused by the electromagnetic field of a nucleus;
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the electron field plays a role only at very high photon energies. The generated electron
and positron can in turn initiate processes like bremsstrahlung and ionization. Eventually,
the positron will (most likely) annihilate with an electron resulting in new photons and the
electron may be absorbed by an ion. As the cross-section of the photo-electric effect and
Compton scattering both decrease with the energy, at very high energies, pair-production is
the dominant process.

Further, photo-nuclear reactions can play a small role at energies around 5–20 MeV.
These are reactions such as γp, γn, or photo-induced nuclear fission. The maximum of the
photo-nuclear cross-section is called the “giant dipole resonance”. At this resonance, the
photon energy is equal to the marginal binding energy of the proton or neutron, i.e. the
binding energy difference the nucleus would have with one nucleon less.

Both photons and charged particles like electrons traverse matter and are eventually
absorbed. There are similarities in how both types of particles interact, i.e. for both the
interaction with atomic electrons is important. Yet the cross-sections for the interactions are
very different: For charged particles, the cross-sections are in the range of 107 to 108 barns.
For photons, they can be 3 to 5 orders of magnitude smaller. This results in electrons
and positrons being much more likely to interact with matter than photons are. Electrons
traversing matter lose continuously energy via ionization and bremsstrahlung, i.e. a multi-GeV
electron radiates thousands of photons by traversing just 1 cm of lead with most of these
photons being very soft in the eV to MeV range. In total, it would lose about 83% of its
energy. On the other hand, a multi-GeV photon traversing a centimeter of lead might not
interact at all. Based on the mean free path λγ of the photon, one can calculate that there is
about 75% chance for the photon to undergo pair production in this material. [134]

Charged Heavy Particles

The critical energy scales with the particle mass as (m/me)2. Therefore, for any particle
other than e, the critical energy is significantly higher and bremsstrahlung becomes only
a consideration at very high energies. For muons (mµ ≈ 207me), the critical energy is
(mµ/me)2 ≈ 40, 000 times larger in the same material. Hence, at the same energy, electrons
and muons behave very differently. At energies below 100 GeV, the primary energy loss of
muons in all absorber materials is due to ionization and δ-rays. This results in an energy loss
of about 1–2 MeV g−1cm−1, i.e. muons traverse a lot of material without losing much energy.
For ionization by charged heavy particles such as muons, the mean energy loss per unit path
length ⟨dE/dx⟩ (also known as the mass stopping power, specific ionization, or ionization
density) is given by the Bethe-Bloch equation [76]:

−
〈
dE

dx

〉
= Kz2Z

A

1
β2

[
1
2 ln 2mec

2β2γ2Tmax
I2 − β2 − δ

2

]
(2.2)

where K = 4πNAr
2
emec

2 is a proportionality constant, β is the velocity, γ is the Lorentz
factor, Tmax indicates the maximum kinetic energy transferred to an electron per collision, I
represents the mean excitation energy of the traversed material, and δ/2 describes a correction
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Figure 34.1: Mass stopping power (dE/dx) for positive muons in copper as a function of —“ =
p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy).
Solid curves indicate the total stopping power. Data below the break at —“ ¥ 0.1 are taken from
ICRU 49 [6] assuming only — dependence, and data at higher energies are from [7]. Vertical bands
indicate boundaries between di�erent approximations discussed in the text. The short dotted lines
labeled “µ≠ ” illustrate the “Barkas e�ect,” the dependence of stopping power on projectile charge
at very low energies [8]. dE/dx in the radiative region is not simply a function of —.

34.2.3 Stopping power at intermediate energies
The mean rate of energy loss by moderately relativistic charged heavy particles is well described

by the “Bethe equation” [2, 4, 5, 9],
=
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dx
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D
. (34.5)

Eq. (34.5) is valid in the region 0.1 . —“ . 1000 with an accuracy of a few percent. At —“ ≥ 0.1
the projectile speed is comparable to atomic electron “speed,” and at —“ ≥ 1000 radiative e�ects
begin to be important (Sec. 34.6). Both limits are Z dependent. A minor dependence on M at
high energies is introduced through Wmax, but for all practical purposes the stopping power in a
given material is a function of — alone. Small corrections are discussed in Sec. 34.2.6.1,2

This is the mass stopping power ; with the symbol definitions and values given in Table 34.1,
the units are MeV g≠1cm2. As can be seen from Fig. 34.2, dE/dx defined in this way is about
the same for most materials, decreasing slowly with Z. The linear stopping power, in MeV/cm, is
fl dE/dx, where fl is the density in g/cm3.

1For incident spin 1/2 particles, (Wmax/E)2/4 is included in the square brackets. Although this correction is
within the uncertainties in the total stopping power, its inclusion avoids a systematic bias.

2In this section, “dE/dx” will be understood to mean the mass stopping power “È≠dE/dxÍ.”
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Figure 2.2: Mean energy loss per unit path length ⟨dE/dx⟩ for positive muons in copper.
The vertical sections indicate different models. Between 0.1 < βγ < 1000 the behavior is
described by Equation 2.2. Figure taken from Reference [76].

term for the density effect — the effect that limits the electric field extension, that occurs
with large particle energies, due to material polarization. This equation is accurate to a few
percent in the region 0.1 < βγ < 1000. In Figure 2.2 the behavior of ⟨dE/dx⟩ is shown for
positive muons in copper as a function of βγ = p

mc . Charged particles, such as muons and
pions, with an energy equal to the curves’ minimum around βγ ∼ 2 − 4 are called minimum
ionizing particles (MIPs) as they lose the minimum amount of energy via the ionization
interaction.

Considering relatively thin layers of active material present in modern sampling calorime-
ters, the total energy loss ∆E/∆x for a charged heavy particle usually is quite different from
what might be calculated from ⟨dE/dx⟩. The measured energy loss distribution in a thin
calorimeter has its maximum (its most probable value (MPV)) about 60 % below its mean
and a long tail towards larger energy losses, i.e. it follows a Landau-Vavilov distribution.
This is mainly due to MIPs losing a comparatively small amount of energy, but this inter-
action can occur multiple times resulting in many energy depositions around the minimum
ionization energy. The high energy tail is due to the small number of collisions with atomic
electrons (δ-electrons) resulting in very large fluctuations in the energy transferred in such
collisions, bremsstrahlung photons that can induce small electromagnetic showers and nuclear
interactions with localized high energy deposits. As the MPV of the energy loss distribution
is less dependent on the particle’s momentum than the mean of the distribution it is used as
a natural scale of the energy deposition for calibration. Such calibration is usually performed
with muons as the strength of their interactions is small enough to traverse the material while
losing minimal energy through ionization. However, every charged particle traversing the
medium around its minimum ionization momentum can result in an excess of MIP energy
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depositions (as can be observed for example in Figure 5.7).

2.1.2 Electromagnetic Showers

These fundamental electromagnetic interactions happen many times while charged particles
and photons traverse the medium. A primary multi-GeV electron might enter the calorimeter
and radiate a large number of photons on its way through via bremsstrahlung. Most of these
photons are very soft, i.e. carry little energy, and are hence absorbed via Compton scattering
or the photo-electric effect, while slightly harder multi-MeV photons generate e+e− pairs.
The generated electrons and positrons in turn radiate more photons and this cycle continues.
This results in what is known as an electromagnetic shower : a cascade of various electrons,
positrons, and photons. The number of particles generated in a shower induced by an electron
of energy E0 can be estimated with N ≈ E0

εc
.

The shower develops primarily in the direction of the original particle, with the energy
deposited first increasing towards a maximum, the shower maximum, and then decreasing
again until every particle is absorbed in the material — or leaves the calorimeter material
(shower leakage). The initial increase is due to the particle multiplying once the cascade
starts. However, this leads to each particle carrying on average less energy as the shower
progresses and the likelihood of pair production by photons decreases as does the likelihood
of bremsstrahlung by electrons/positrons. Thus, the particle multiplication slows down and
beyond the shower maximum, the number of particles and the energy deposited decrease.
The mean shower maximum x can be parameterized as [135]

x

X0
= ln

(
E0
εc

)
+ C (2.3)

where X0 is the radiation length of the material (see below) and C is a constant equalling
C = −0.5 for an electron as a primary particle and C = 0.5 for photons.

Two common material-independent variables for describing how electromagnetic showers
develop in a medium are the radiation length X0 for the longitudinal shower development
(in the incident particle direction) and the Molière radius ρM for the transverse shower
development. Note that, using these variables, the shower development can be expressed in a
material-independent way, while the values of the variables are material-dependent.

The radiation length X0 is defined as the longitudinal distance in which high-energy
electrons/positrons lose (1 − e−1) = 63.2% of their initial energy via bremsstrahlung. The
radiation length for a given medium is material-dependent and can be approximated by [76]

X0 = 716.4 A
Z(Z + 1) ln(287/

√
Z)

g cm−2. (2.4)

The asymptotic cross-section for photon interactions can be related to the radiation length
by [134]

σ(E → ∞) = 7
9

A

NAX0
(2.5)

where the ratio of Avogadro’s number NA and the atomic mass A is the number of atoms per
gram. Hence, mean free path λγ of very-high-energy photons, i.e. the average longitudinal
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distance traveled by a photon before interacting, can be expressed as

λγ = 9
7X0. (2.6)

The Molière radius ρM describes the transverse shower development and is defined as [134]

ρM = Es
X0
εc

(2.7)

where the scale energy Es is given by Es = mec
s
√

4π/α = 21.2 MeV. Typically, 85–90% of
the shower energy is contained within a cylinder of radius ρM around the longitudinal shower
axis.

Interestingly, the Molière radius is less material-dependent than the radiation length.
This can be seen when comparing Equation 2.4 with Equation 2.7 and 2.1. The impact of the
material variables A and Z is less pronounced in the Molière radius. As an example, one can
compare copper (Z=29) and lead (Z=82). The radiation length in copper is X0 = 14.3 mm
and in lead X0 = 5.6 mm, i.e. a factor of 2.5 difference. So to contain the same shower,
2.5 times thicker copper is needed compared to using lead. On the other hand, the Molière
radius in copper is ρM = 15.2 mm and in lead ρM = 16.0 mm, i.e. a factor of 1.05 difference
implying similar shower containment in the lateral direction [134]. Both the radiation length
and the Molière radius can be approximated also for mixtures and compounds. Details can
be found in Reference [135].

As discussed above, the cross-sections for electrons/positrons and photons are quite
different. This also leads to a difference in the shower development depending on the original
primary particle type. Once an electron enters the calorimeter, it looses continuously energy
through bremsstrahlung and within one radiation length, it has lost on average 63.2% of its
energy. High-energy photons, however, travel on average 9/7 radiation lengths until even
the first interaction occurs. Therefore, comparing photon and electron showers induced by a
particle with the same energy, the photon shower will (on average) develop with a shower
maximum deeper in the material. Further, the shower depth fluctuates more with photon
showers as electrons interact immediately, bremsstrahlung occurs continuously, and the first
photon interaction varies quite a bit. A shower starting through an incident high-energy
photon or electron is illustrated in Figure 2.3.

2.1.3 Hadronic Interactions

In the absorption of high-energy hadrons, the strong interaction plays an important role,
together with electromagnetism, the weak force, and gravity. Several processes can occur
when the hadron traverses the medium. Similar to muons, charged hadrons ionize atoms right
from the start when entering the material. However, unlike muons, the hadron will eventually
interact strongly with an atomic nucleus, which may result in a variety of processes. For
neutral hadrons, such as neutrons generated in the course of hadronic showers, these nuclear
interactions are the only way for them to lose energy as they do not ionize the medium.

The average distance the hadron travels until a nuclear interaction occurs, i.e. the mean
free path, is called the nuclear interaction length λint. It is material-dependent and is

51



CHAPTER 2. CALORIMETRY

(a) Incident photon (b) Incident electron

Figure 2.3: Start of an electromagnetic shower induced by a high-energy photon (a) or
by a high-energy electron (b) once they enter an absorber material.

approximately given by [134]
λint = A

NAσtot
(2.8)

where σtot is the total cross-section for nuclear interactions. Usually, the proton cross-section
is used, although the interaction length also depends on the composition of the incident
hadron, i.e. mesons have a smaller λint than baryons. As an example, the interaction length
for iron is about 132 g/cm2 or 17 cm. The nuclear interaction length is always longer than the
radiation length, i.e. λint/X0 > 1 and the ratio scales with Z2A−2/3 and therefore increases
with Z. This is why the electromagnetic calorimeter is always placed in front of the hadronic
calorimeter in a collider experiment.

The nuclear interactions of high-energy hadrons interacting with a nucleus include mainly
spallation, evaporation, and fission.

Nuclear spallation is the most likely interaction between the hadron and an atomic nucleus
and is generally described as a two-stage process. The first stage is a fast intranuclear cascade:
The hadron collides with the nucleons of the target nucleus, which in turn collide with other
nucleons leading to many fast-traveling nucleons. This way particles like pions and other
short-lived hadrons might also be generated. Some of these hadrons might be highly energetic
enough to escape the nucleus. The second stage is nuclear evaporation: Particles such as free
nucleons, α-particles, or larger nuclei evaporate leading to the de-excitation of the target
nucleus. The evaporation continues until the excitation energy is less than the binding energy
of one nucleon. Further energy might be released as photons. Instead of evaporation, nuclear
fission might occur when highly energetic hadrons interact with very heavy target nuclei,
such as uranium.

The nuclear binding energy needed to release the nucleons from the nucleus in a spallation
event is “lost” in the sense that it cannot be measured with a calorimeter signal. Therefore, it
is often called invisible energy. To a lesser extent, invisible energy can also stem from neutrinos
produced in the interaction (also known as “escaped energy”). Another important source
of invisible energy is the large number of neutrons evaporated during hadronic interactions.
Such neutrons can deposit energy indirectly for example via elastic scattering or neutron

52



2.1. PARTICLE-MATTER INTERACTION

capture. These processes are usually delayed compared to electromagnetic interactions.
On average, invisible energy accounts for about 30–40% of the non-electromagnetic

fraction of shower energy, i.e. the fraction of energy that is not carried away by π0 or
other electromagnetically interacting particles. Yet the amount of invisible energy fluctuates
significantly from event to event leading a reduced precision with which hadron energies can
be measured. Therefore, the energy resolution of electromagnetic calorimeters is commonly
much better than of hadronic calorimeters.

2.1.4 Hadronic Showers

Similar to electromagnetic showers, once a high-energy hadron penetrates the material, a
variety of processes can happen in a sequence leading to a hadronic shower. These processes
can be either electromagnetic or hadronic in nature. Once a charged hadron enters the
medium, it will ionize it and lose about 1–2 MeV g−1cm−1 of its energy (just like for example
muons). After traveling on average one nuclear interaction length, a strong interaction likely
occurs in which new hadrons (especially pions) are created as well as other nucleons and
photons via spallation and subsequent evaporation. Small particles like mesons might travel
about 25% farther than larger baryons before encountering a nucleus. As neutral hadrons do
not ionize the medium, these nuclear interactions are their only way of losing kinetic energy.

The hadron shower develops similarly to an electromagnetic shower. The particles
produced in the interactions, such as mesons, nucleons, and photons, can ionize the material
and lead to further (nuclear) reactions thus inducing a cascade of secondary particles.
Just like for electromagnetic showers, the longitudinal extent of hadron showers increases
logarithmically with the incident hadrons’ energy. However, unlike electromagnetic showers,
the shower maximum does not depend on the indecent hadrons’ energy. Instead, it is always
located around 1λint from the shower start.

This is because a hadron shower has two components: an electromagnetic component
and a non-electromagnetic one (the hadronic component). This is schematically depicted
in Figure 2.4. The electromagnetic component occurs due to the production of π0 and η

mesons in the initial reaction. Both decay almost instantaneously, with the π0 lifetime of
∼ 10−17 s and η lifetime of ∼ 10−19 s. The π0 decays into two photons and the η decays
mostly into photons and π0s. These photons can start an electromagnetic shower. The scale
of this electromagnetic shower is governed by the radiation length X0 which as discussed
above is always smaller than λint.

The proportion of the hadron energy deposited via the electromagnetic component is
called the electromagnetic fraction fem. With increasing incident hadron energy, the number
of particles produced in the intranuclear cascade increases. This leads to an increase in
produced π0 and η mesons and therefore to an increase of the electromagnetic fraction (since
their energy does not induce more strong interactions). The average electromagnetic fraction
scales with the particle energy E as [134]

⟨fem⟩ = 1 −
(
E

E0

)k−1
(2.9)

where k ∼ 0.82 is a constant and E0 is a material-dependent parameter that depends on
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Figure 3.5: Schematic depiction of a hadronic shower starting by neutron-nucleus interaction after a distance
of �I in the matter.

�I value scales with the atomic mass of the material as A1/3. Cross-section measurements for
interactions of protons and pions with di�erent fixed targets have shown an additional dependence
on the projectile’s size and result in a correction factor for pion interaction length �⇡ , which is a
factor 3

2 larger than the proton interaction length (which is usually used to define �I ) [32]. The
nuclear interaction length is typically larger than the radiation length and therefore hadronic showers
are usually larger in extension compared to electromagnetic showers.

The level of complexity of hadronic showers is much higher compared to electromagnetic showers,
due to the following:

The Electromagnetic Component The neutral particles produced in the shower, in particular ⇡0

and ⌘ mesons, decay into two photons and initiate an electromagnetic sub-shower within
the hadronic shower. Since �I � X0 in most materials, this electromagnetic component
is typically narrower and denser than the pure hadronic component. The fraction of the
electromagnetic component varies strongly from event to event, depending on particular
processes occurring in the early phase of the shower development; however, on average, this
electromagnetic component increases with the energy of the initial hadron [37].

The Invisible Energy A certain fraction of the deposited energy produced by the strong inter-
actions is undetectable and thus referred to as invisible energy. The main source of this
phenomenon are energy losses in the excitation or recoil of the target nuclei, which often
do not result in a signal in the active medium. In addition, the neutrons generated within
the shower lose their energy in elastic scattering processes, which reach an end either by the
decay of the neutron or by a neutron capture. In the latter case the excited nucleus releases
additional energy by photon emission. Since this process is very slow compared with the
shower-time-scale, usually the energy it contributes is not measured. Additional energy might
be lost to neutrinos originating from meson decays.

An illustration of the shower development and its two components is shown in figure 3.5.

Figure 2.4: A hadron shower started by a neutron-nucleus interaction. The shower
consists of an electromagnetic (em) component and a hadronic component. The hadronic
component includes “invisible” energy due to nuclear binding energy and released neutrons.
Figure taken from Reference [137].

the average multiplicity in the hadronic interaction (between 0.7–1.3 GeV in copper and
lead for π-induced reactions, respectively). As an example, for a 10 GeV pion, the average
electromagnetic fraction in copper is about ⟨fem⟩ ∼ 0.38, and for a 1 TeV pion about
⟨fem⟩ ∼ 0.73. However, for individual hadronic showers, the actual electromagnetic fraction
can fluctuate significantly.

The hadronic component of the shower involves all the nuclear interactions discussed
in Section 2.1.3. This includes the invisible energy which is another part of the shower
that varies strongly from shower to shower. While the electromagnetic component develops
promptly due to particles generated at relativistic energies, the hadronic component can
be delayed due to nuclear excitations (∼ µs) and thermal neutrons (∼ µs to ms). Thermal
neutrons can travel long distances in the material before being absorbed and deposit energy
in quite a different location than the initial hadron.

2.2 Calorimeters

Calorimeters are devices that absorb incident particles with the purpose of measuring their
energy. They are made up of one or multiple absorption media together and use various
sensors to read out signals used for the calculation of the deposited energy. As the longitudinal
shower depth scales logarithmically with the incident particles’ energy, most of the energy of
the particles reaching the calorimeter can indeed be measured with a moderate amount of
material. Every particle detector at collider experiments uses calorimeters to measure and
reconstruct in detail particles produced in the collision. Typically, in a detector experiment,
one distinguishes the electromagnetic calorimeter (ECAL) and the hadronic calorimeter
(HCAL).

ECALs are optimized for measuring the energy of electromagnetically interacting particles
such as electrons, protons, and photons. HCALs on the other hand are optimized for
measuring hadron energies of particles such as protons, neutrons, charged and neutral pions
and other mesons. The design choices made for either apparatus relate to the nature of the
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interactions discussed in the previous section, e.g. the HCAL is usually significantly thicker
than the ECAL and sits behind it as the nuclear interaction length is much larger than the
radiation length. Note, however, that it is still very much possible for hadrons to deposit
energy in the ECAL and vice versa as all these interactions are highly stochastic.

There are various subtleties in the design of calorimeters, how they respond to different
particles, and how their energy resolution is optimized.

2.2.1 Calorimeter Configuration

The type of calorimeter design is generally separated into two categories: homogenous
calorimeters and sampling calorimeters.

Homogenous Calorimeters

Homogenous calorimeters are built entirely of ‘active material’, i.e. material in which particles
can induce a measurable signal. As all energy deposited in the calorimeter is measured,
the energy resolution can be very good. Typical active materials are crystals that produce
scintillation light (e.g. lead tungstate (PbWO4)) or Cherenkov light (e.g. lead glass). Another
less common material for a homogenous calorimeter is based on liquified noble gases, which
can produce very bright scintillation light in the ultraviolet wavelength region. Liquid argon
can also be used, although here ionization charges produce the signal, not scintillation light.

An example of a homogenous calorimeter used in a collider experiment is the ECAL in
the CMS detector which uses a total of 75,848 lead tungstate crystal scintillators. Having
a short radiation length of X0 = 0.89 cm and a Molière radius of ρM = 2.2 cm allows for a
compact design as the crystal length of 230 mm equates to 25.8 X0 [98]. Arguably the largest
homogenous calorimeters in use are neutrino detectors which use the production of Cherenkov
light in water. Super-Kamiokande [138] uses a detector with 50,220 tons of ultrapure water
and IceCube [139] utilizes 1 km3 of ice for detection.

Sampling Calorimeters

Sampling calorimeters use both active and ‘passive materials’ in their construction. The
passive material is used to induce interactions with the incident hadron to produce secondary
particles that are then measured in the active material. Typically, the passive absorber
medium is a dense material: Lead or tungsten are often used in ECALs and iron, steel, or
copper in HCALs. The higher material density in the passive medium than in the active
allows for a more compact design of sampling calorimeter compared to homogenous ones. It
can also save costs with the passive material usually being cheaper than the more complex
active medium. Just like in homogenous calorimeters, the active materials generate a signal
in the form of scintillation light, Cherenkov light, ionization, or via an electron-hole pair in a
semiconductor.

Most commonly, sampling calorimeters are implemented with active and passive layers
interleaved in a “sandwich” structure with the layers orientated such that the particle passes
them perpendicularly in an alternating fashion. While this structure works fine for many
experiments, it might not necessarily be the optimal arrangement for 4π detectors at collider
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experiments. Other options include placing the scintillators oriented perpendicular to the
beam axis (as is done in the ATLAS HCAL) or using an “accordion” structure, where a liquid
argon active medium is contained in lead absorbers (like in the ATLAS ECAL). Additionally,
longitudinal and lateral segmentation of the active material into small cells can provide
granular spatial information about a particle’s path. This can enable advanced reconstruction
methods for improving the detectors’ energy resolution (see Section 2.3).

2.2.2 Calorimeter Response

To accurately measure the energy of incoming particles, one needs to properly understand
how the calorimeter responds to deposited energy and how a signal is generated. The
calorimeter response is defined as the ratio of the average calorimeter signal to a unit of
deposited energy [133]. In a scintillation crystal as an active medium, this equates to the
number of photons per deposited energy in eV. The linearity of the calorimeter measures
the proportionality of the measured signal to the energy of the incident particle. In an ideal
linear calorimeter, the calorimeter response is constant. The measurement precision the
calorimeter can achieve is given by the energy resolution, which is defined as the relative
width of the signal distribution σ

E . As the energy depositions of electromagnetic and hadronic
showers are governed by different processes, the calorimeter’s response to either shower type
is subsequently discussed separately.

Electromagnetic Response

Electromagnetic showers deposit energy with several well-understood and relatively simple
processes allowing for the construction of ECALs with a high degree of linearity. In particular
homogenous calorimeters are well suited for measuring such showers with a high resolution as
most of the energy of the incident particle is used to create a measurable signal. Deviations
from a completely linear response might still occur due to experimental constraints such as
saturation effects in the photodetectors and read-out electronics or due to shower leakage,
i.e. energy depositions outside the calorimeter medium.

Every shower development is a stochastic process and therefore shower-to-shower functions
are to be expected. Such fluctuations follow Poissonian statistics. Overall, the created shower
particles Nshower are proportional to the incident particle energy E. Further, the measured
signal of the calorimeter is proportional to the number of visible particles Nvis that create said
signal. Hence, the higher the energy of the incident particle, the higher the possible precision
of measurements. For a homogenous calorimeter, we expect Nvis ≈ Nshower. Therefore, the
stochastic fluctuations of Nshower, the intrinsic shower fluctuation, directly relate to the
energy resolution σ

E as the width of the signal distribution scales as σ ∝ √
Nshower ∝

√
E.

These intrinsic shower functions are dependent on the particle type, meaning the calorimeter
resolution depends on a specific particle such as electrons, pions (hadrons), or muons.

In sampling calorimeters, only a fraction of the produced particles and the deposited energy
produce a signal, since a large fraction is absorbed in the passive material (Nshower >> Nvis).
For these calorimeters Nsamp gives the number of particles in the active layers. It is given by
Nsamp = fsamp · Nshower, where fsamp denotes the sampling fraction defined as the ratio of
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expected if the interaction takes place so close to the boundary with an active layer that the photoelectron
(whose range is less than 1 mm) can escape from the absorber into the liquid argon. Because of the crucial
role of the photoelectric process, the effect of this phenomenon on the e/mip response ratio depends on
the Z values of the passive and active materials (e/mip is smallest for calorimeters with high-Z absorber
layers and low-Z active material, as in D0), and on the thickness of the absorber plates (Figure 14). If the
latter are made sufficiently thin, e/mip will eventually become 1.0.

Fig. 15: Schematic representation of the response functions of a non-compensating calorimeter to the em and non-em
components of hadronic showers. The ratio of the mean values of these distributions is the e/h value of this calorimeter
(1.8).

Signal non-linearity is a very common feature for hadron shower detection. The invisible energy phe-
nomenon and the energy-dependent em shower fraction conspire to this effect, which may easily lead to
a response difference of 10% over one order of magnitude in energy. This is schematically illustrated in
Figure 15, which depicts the response function, i.e., the distribution of the normalized signals around the
mean value, separately for the em and non-em components in a non-compensating calorimeter. The ratio
of the mean values of these distributions, i.e., the ratio of the em and non-em responses, is known as the
e/h value of the calorimeter. In this example, e/h = 1.8. A shower induced by a high-energy pion has
both an em and a non-em component. The response function of the calorimeter for such pions thus centers
around a mean value in between those for the em (e) and non-em (h) components, at a value determined by
the average energy sharing between these components at that energy (hfemi). And since hfemi increases
with energy (Figure 6), the response to pions increases as well. This calorimeter is thus non-linear for pion
detection, its response increases with energy.

The e/h value cannot be directly measured. However, it can be derived from the e/º signal ratios,
measured at various energies. The relationship between e/º and e/h is as follows:

e

º
=

e/h

1 ° hfemi(1 ° e/h)
(2)

where hfemi represents the (energy-dependent) average em shower fraction. This relationship is graphi-
cally illustrated in Figure 16. Even though invisible-energy losses in the non-em component are naturally

c∞ 2008 Università degli Studi di Pavia

Figure 2.5: Schematic representation of the response functions for the electromagnetic
(ϕ0) and the hadronic (non-ϕ0) component of a hadronic shower in an under-compensating
calorimeter. The ratio of the mean of the distributions yields e/h = 1.8. Figure taken
from Reference [133].

visible energy Evis deposited in the active material to the total absorbed shower energy Eshower
of minimum ionizing particles (MIPs). Typically, the sampling fraction can be characterized
using the calorimeter response to MIPs as

fsamp = Eactive
MIP

Eactive
MIP + Epassive

MIP
(2.10)

where Eactive
MIP and Epassive

MIP is the energy loss of a MIP in the active and passive material,
respectively. The measurement of the sampling fraction is usually done using muons as they
are the closest to a MIP provided by nature.

The stochastic fluctuations of Nsamp are called sampling fluctuations. These fluctuations
depend on the sampling fraction as well as on the sampling frequency, i.e. the number of
alternating active and passive sampling elements. Sampling fluctuations usually dominate
other sources of statistical uncertainties in sampling calorimeters such as shower leakage,
instrumental effects (e.g. electronic noise) or signal quantum fluctuations (e.g. photoelectron
statistics). As the sampling fluctuations follow Poisson statistics their resulting impact on
the energy uncertainty can be written as σsamp =

√
d/fsamp · E, where d is the thickness of

an active layer. [135]

Hadronic Response

The response of a calorimeter to hadronic showers is more complex than to electromagnetic
showers since hadronic showers contain a well-measurable electromagnetic component and
a more difficult hadronic component which also includes unmeasurable invisible energy.
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Generally, the calorimeter response to a hadronic shower Φ can be expressed as

Φ = fem · e+ (1 − fem) · h (2.11)

where fem is the electromagnetic fraction of the shower, e is the response to the electromagnetic
component, and h is the response to the hadronic component. The calorimeter response to Φ
is non-linear because fem increases with the incident hadron energy and due to the invisible
energy phenomenon.

In general, a hadronic calorimeter has h < e due to parts of the hadronic energy being
‘invisible’. Such a calorimeter would be called non-compensating or under-compensating as
e/h > 1. The response functions for such an under-compensating calorimeter are shown in
Figure 2.5. If e = h the calorimeter is called compensating. A compensating calorimeter has
an equal response to the electromagnetic and the hadronic fraction of the hadron shower,
allowing for a linear calorimeter with an improved energy resolution. The ratio e/h < 1 is
called over-compensating. Typically, calorimeters are undercompensating with e/h values
between 1.5–2.0.

With sampling calorimeters, it is possible to build a compensating calorimeter by carefully
optimizing the active and passive materials and thicknesses to either lower the electromagnetic
response or to raise the hadronic one. Famously the ZEUS hadronic calorimeter at the HERA
collider achieved this by using uranium absorbers and plastic scintillators. Originally, the
hope was to offset the invisible energy loss through nuclear binding energy with the neutrons
produced in the uranium fission, but it turned out that these are uncorrelated and in hindsight,
lead would have been an even better absorber material. ZEUS still achieved e/h ∼ 1 and a
record-breaking energy resolution for pions of σ/E = 35%/

√
E + 2% [140].

If it is not experimentally useful to build a compensating calorimeter, another option
is to try to measure the electromagnetic and hadronic components on a shower by shower
basis and perform a recalibration for each individual shower. This can be achieved with a
dual-readout calorimeter [141] which measures both scintillation light and Cherenkov light
in the active material. As the Cherenkov signal is mainly produced by the electromagnetic
fraction of a shower, it can be used for particle identification and the proportion of Cherenkov
light compared to the scintillator signal is applied to calculate the electromagnetic fraction
fem of a hadronic shower on a per-shower basis. This can be used as a compensation factor
to reach a very high overall energy resolution.

Another option is to increase the spatial resolution of the calorimeter such that it becomes
possible to identify the electromagnetic sub-showers triggered by π0 and η mesons within
the hadronic shower. Once identified, the local energy depositions can be reweighted. This
technique is known as software compensation and has been demonstrated at the H1 experiment
using local hit energy densities for the compensation [142]. A high spatial resolution is also
needed for the particle flow approach to calorimetry discussed below in Section 2.3.
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2.2.3 Energy resolution

The energy resolution σ
E of a calorimeter is parameterized as

σ

E
=
√(

a√
E

)2
+ b2 +

(
c

E

)2
= a√

E
⊕ b⊕ c

E
(2.12)

where ⊕ denotes the addition in quadrature, a, b, and c are free parameters usually quoted
in percent, and E the particle energy in GeV. The first term is the stochastic term, the
second term is the constant term, and the third term is the noise term. They are added in
quadrature because the sources for each term are uncorrelated. Their motivations are:

(a) The stochastic term originates from the intrinsic shower fluctuations and the sampling
fluctuations which are energy-dependent and follow Poissonian statistics. For ECALs a
is of the order of 10% and for non-compensating HCALs of the order of 60%. The best
value ever was achieved with the HCAL of the ZEUS detector at the HERA collider
with a = 35% [140].

(b) The constant term is due to instrumental effects, non-uniformities in the detector such
as dead regions, and calibration uncertainties. These effects scale with the energy and
therefore the term is dominant at high energies with b in the order of a few percent.

(c) The noise term describes the measurement uncertainty because of electronic noise in the
read-out. This term is dominant at low energies. Sometimes the noise term is neglected
and one sets c = 0% yielding the simplified form

σ

E
= a√

E
⊕ b. (2.13)

The energy resolution is usually measured with particles of known energy in a test beam
setup. The results are then fitted with the above function to extract the parameters a, b,
and c.

2.3 Particle Flow Calorimetry

To measure the energy of a single particle or a whole jet with a calorimeter, traditionally
all energy depositions in the ECAL and HCAL are summed up. Using a typical HCAL,
this results in a jet energy resolution on the order of σ/E ≈ 60%/

√
E. However, for the

physics program at a future lepton collider like the ILC a jet energy resolution of 3–4% in
the range of 45–250 GeV is targeted [24]. This equates to a calorimeter resolution of about
σ/E ∼ 30%/

√
E. Such a high jet resolution is necessary to cleanly separate W± and Z0

boson decays into multi-jet final states. This separation requires an invariant mass resolution
on the order of the gauge boson widths, i.e. σ/m = 2.7% ≈ ΓW±/mW± ≈ ΓZ0/mZ0 , enabling
a 3.6σ separation of the W± → qq̄ and Z0 → qq̄ mass peaks [25].

This high requirement on the jet energy resolution motivates the usage of the particle
flow approach to calorimetry in future collider experiments. The purpose of Particle Flow
Algorithms (PFA) is the reconstruction of the individual jet contributions for increased
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(b) Particle flow calorimetry

Figure 2.6: Comparison between the traditional and the particle flow approach to
calorimetry: (a) Traditionally a jet is reconstructed by combining the ECAL and HCAL
response. (b) In particle flow calorimetry the jet contributions are segmented and the
jet is reconstructed using the optimal detector sub-system for a given particle, i.e. the
tracker information for charged particles, the ECAL for photons, and the HCAL for
neutral hadrons such as neutrons. Figures taken from Reference [143].

measurement precision. The reconstruction paradigm shifts from reconstructing the overall
energy deposition in the calorimeter to the reconstruction of individual particles. PFA
is enabled by the possibility of fine spatial segmentation (high granularity) of modern
calorimeters and advanced software tools for clustering and reconstruction.

At LEP it was shown that on average a jet deposits about 60% of its energy via charged
hadrons, 30% via photons, and 10% via neutral hadrons. [25] Therefore, with a traditional
combination of ECAL and HCAL, 70% of the jet energy is measured with the subpar resolution
of an HCAL with ∼ 60%/

√
E, leading to an overall poor precision in jet measurements. With

the particle flow approach, the most efficient detector sub-system for each particle type is
used. For the measurement of charged particles, this is actually the tracking system. Photons
can be measured well in the ECAL and the HCAL is only used for measuring the energy of
neutral hadrons. This reduces the HCALs’ usage to the measurement of only 10% of the
jet energy deposition, improving the overall jet resolution. To gain this performance, an
excellent tracking system is needed in combination with calorimeter systems that have a fine
longitudinal and lateral segmentation. This is necessary to be able to distinguish the energy
depositions of the different particles to choose which sub-system shall be used for the energy
reconstruction. The separation of particles and the clustering of energy deposits is done with
software tools such as PandoraPFA. [25]

It is expected that at the ILC experiments, particle flow will lead to a jet energy resolution
of 3–4% in the energy range 45–250 GeV, which equates to about 30%/

√
E. With particle

flow, the jet energy resolution can be parameterized as

σjet = fcharged · σtrack ⊕ fγ · σECAL ⊕ fneutral · σHCAL ⊕ σconfusion ⊕ σleak (2.14)

where fcharged, fγ , and fneutral are the fractions of the jet energy deposited by charged particles,
photons, and neutral hadrons, respectively. The parameters σtrack, σECAL, and σHCAL are
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ARTICLE IN PRESS

neutral hadrons being lost within charged hadron showers. For all
jet energies considered, fragments from charged hadrons, which
tend to be relatively low in energy, do not contribute significantly
to the jet energy resolution.

The numbers in Table 5 can be used to obtain an semi-
empirical parameterisation of the jet energy resolution:

rms90

E
¼

21ffiffiffi
E
p " 0:7" 0:004E" 2:1

E
100

" #0:3

%

where E is the jet energy in GeV. The four terms in the expression,
respectively, represent: the intrinsic calorimetric resolution;
imperfect tracking; leakage and confusion. This functional form
is shown in Fig. 10. It is worth noting that the predicted jet energy
resolutions for 375 and 500 GeV jets are in good agreement with
those found for MC events (see Table 3); these data were not used
in the determination of the parameterisation of the jet energy
resolution.

For a significant range of the jet energies relevant for the ILC,
high granularity PFlow results in a jet energy resolution which is
roughly a factor two better than the best achieved at LEP
(sE=E¼ 6:8% at

ffiffi
s
p
¼MZ). The ILC jet energy goal of sE=Eo3:8%

is reached in the jet energy range 40–420 GeV.
Fig. 10 also shows a parameterisation of the jet energy

resolution ðrms90Þ obtained from a simple sum of the total

calorimetric energy deposited in the ILD detector concept. The
degradation in energy resolution for high energy jets is due to
non-containment of hadronic showers. It is worth noting that
even for the highest energies jets considered, PFlow reconstruc-
tion significantly improves the resolution compared to the purely
calorimetric approach. The performance of PFlow calorimetry also
is compared to 50%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðGeVÞ

p
" 3:0% which is intended to give an

indication of the resolution which might be achieved using a
traditional calorimetric approach. This parameterisation effec-
tively assumes an infinitely deep HCAL as it does not correctly
account for the effect of leakage (which is why it deviates
significantly from the ILD Calorimetric only curve at high
energies).

8. Dependence on hadron shower modelling

The results of the above studies rely on the accuracy of the MC
simulation in describing EM and hadronic showers. The Geant4
MC provides a good description of EM showers as has been
demonstrated in a series of test-beam experiments [27] using a
Silicon–Tungsten ECAL of the type assumed for the ILD detector

Table 5
The PFlow jet energy resolution obtained with PandoraPFA broken down into contributions from: intrinsic calorimeter resolution, imperfect tracking, leakage and
confusion.

Contribution Jet Energy Resolution rms90ðEjÞ=Ej

Ej ¼ 45 GeV Ej ¼ 100 GeV Ej ¼ 180 GeV Ej ¼ 250 GeV

Total (%) 3.7 2.9 3.0 3.1
Resolution (%) 3.0 2.0 1.6 1.3
Tracking (%) 1.2 0.7 0.8 0.8
Leakage (%) 0.1 0.5 0.8 1.0
Other (%) 0.6 0.5 0.9 1.0
Confusion (%) 1.7 1.8 2.1 2.3

(i) Confusion (photons) (%) 0.8 1.0 1.1 1.3
(ii) Confusion (neutral hadrons) (%) 0.9 1.3 1.7 1.8
(iii) Confusion (charged hadrons) (%) 1.2 0.7 0.5 0.2

The different confusion terms correspond to: (i) hits from photons which are lost in charged hadrons; (ii) hits from neutral hadrons that are lost in charged hadron clusters;
and (iii) hits from charged hadrons that are reconstructed as a neutral hadron cluster.
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Fig. 9. The contributions to the PFlow jet energy resolution obtained with
PandoraPFA as a function of energy. The total is (approximately) the quadrature
sum of the components.
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Fig. 10. The empirical functional form of the jet energy resolution obtained from
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from the confusion term only is shown (dotted). The dot-dashed curve shows a
parameterisation of the jet energy resolution obtained from the total calorimetric
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Figure 2.7: Estimated jet energy resolution achieved with the particle flow approach at
the ILD compared to using only the calorimeter. Additionally, the confusion term that
scales with the energy is plotted. Figure taken from Reference [25].

the energy resolutions of the tracking system, the ECAL, and the HCAL, respectively. The
term σconfusion is arising from the mis-assignment of energy depositions or tracks and σleak is
due to particle leakage outside the instrument area.

The confusion term σconfusion is a limiting factor of the particle flow approach, especially
at higher energies. There are three main sources of confusion:

• A charged hadron might be identified as a neutral hadron. This leads to double counting
of its energy contribution since both the track information and the HCAL measurement
will be used for reconstruction.

• A neutral hadron might be identified as a charged hadron. This leads to a loss of energy,
as its HCAL component will be discarded.

• Photons close to neutral hadrons might be counted together as a neutral hadron
contribution leading to a loss of photon energy.

The confusion term scales with the energy as more particles are produced at higher energies
making it more difficult to distinguish them. The estimated jet energy resolution that could
be obtained at the ILD, as well as the confusion term is shown as a function of jet energy in
Figure 2.7.

Particle flow is an improved version of energy flow that was used in the past at collider
experiments such as D0, H1, and OPAL to improve jet energy resolutions. Currently, CMS
is using particle flow to improve the detector performance [144]. However, none of these
detectors were specifically designed with particle flow reconstruction in mind. At future
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colliders, the experiments are proposed to feature excellent tracking systems and highly
granular calorimeters to fully exploit the particle flow approach. Higher granular calorimeters
enabling more precise measurements increase the need for high fidelity fast simulation
techniques, the topic of this thesis.

2.4 Calorimeter Simulation

Simulating particles traversing the calorimeters is the most computationally intensive part
of a detector simulation. Full simulation tools rely on physics-based Monte Carlo (MC)
techniques that track each particle in the calorimeter medium and simulate all possible
interactions. Considering the amount of simulation needed for future collider experiments,
only relying on such physics-based simulations is not sustainable. Therefore, various methods
for computationally efficient fast simulation exist that alter or bypass parts of the simulation
chain. The generative machine learning models developed in the context of this thesis are
examples of such fast simulations, but there are also several methods for fast simulation that
do not use machine learning. In the following, the full MC-based simulations as well as the
fast alternatives are discussed.

2.4.1 Monte Carlo Simulation

Geant4 (Geometry and Tracking) [118,145] is a transport software toolkit for the simulation
of particle-matter interactions. It uses various physics models to perform a first principle
tracking of the paths and interactions of individual particles over a wide energy range. In
particle physics, Geant4 is synonymous with full MC detector simulations. Therefore, MC
calorimeter simulations are discussed here only in the context of Geant4.

As mentioned in Section 1.5, a transport software like Geant4 takes as input a detector
description as well as individual particles or hadronized showers, e.g. from an event generator.
The detector description contains a “hierarchy” of many volumes, each made up of a specific
compound. The interactions between the particles and the detector are then modeled as a
step-by-step track with the transport software. At each of these simulated steps within a
track (or when crossing the boundary between volumes), a specific interaction is chosen out
of all the possible options.

These interaction options are characterized by the mean free path of a given process λ.
In a composite material it is defined as the inverse of the macroscopic cross-section:

λ(E) =
(∑

i

[ni · σ(Zi, E)]
)−1

(2.15)

where ni is the number density of the i-th element in the material and σ(Z,E) is the total
cross-section per atom of the given interaction. How many mean free path length λ a particle
travels between x1 and x2 is given by

nλ =
∫ x2

x1

dx
λ(x) . (2.16)
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The probability that an interaction occurs within the distance x is then given by

c(x) = 1 − p(x) = 1 − e−nλ . (2.17)

The total step size s can now be expressed as

s(x) = nλ · λ(x) (2.18)

where nλ can be sampled at the start of the computation with nλ = − log(η) and η sampled
from a uniform distribution. This way s is calculated for all possible processes, the shortest s
is selected and the simulation performs that specific process. The simulation continues then
with the next step and further processes until the particle energy falls below a threshold
and its energy is deposited or until the particle leaves the detector volume. Note that at a
material boundary determined in the detector volume, a process occurs regardless of the step
size. For complex detectors, this may reduce the mean step size and lead to overall more
steps taken and processes simulated. As particle are individually tracked, Geant4 is a very
accurate, albeit computationally expensive simulator.

Geant4 uses so-called physics lists to define the possible processes and their cross-sections
for specific particle types. The standard electromagnetic package in Geant4 models the
interactions of charged particles above 1 keV well. However, hadronic interactions are much
more complex and for specific use-cases multiple physics lists including different combinations
of hadronic models are offered. For the simulation of photons in the ECAL, the popular
physics list QGSP–BERT is used in this thesis. This physics list includes the standard EM
processes, as well as the Quark-Gluon string pre-compound Model [146] for high energies and
the Bertini Cascade Model [147] for low hadron energies. For the energies in between where
neither model is optimal, an empirical parameterization is applied.

2.4.2 Fast Simulation

Full MC transport simulations like Geant4 are computationally expensive as every single
particle needs to be tracked individually. Further, these simulations cannot be easily par-
allelized as each step of the simulations depends on the previous one. Therefore, multiple
fast simulation (FastSim) techniques have been developed to accelerate the production of
simulated events. These usually compromise fidelity for speed, but are necessary to achieve
the needed amount of simulated events for the physics programs at large collider experiment
and it is standard practice to use fast simulation wherever the full simulation is not needed.
Traditional fast simulation approaches include methods and tools such as:

• Detector Parameterization: A common framework for the fast simulation of the
general-purpose collider detector is Delphes [148]. It takes the event generator output
and essentially smears the momenta of the long-lived visible particles that would reach
the detector sub-systems like the calorimeters. The smearing applied is determined by
the detector resolution and also takes into account the impact of the magnetic field.
As the calorimeter resolution needs to be known a priori, Delphes cannot be used to
simulate novel systems. It also cannot be plugged seamlessly into the real experiments’
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reconstruction chain no calorimeter hits are produced like with Geant4 because there
is no explicit detector geometry.

• Shower Parameterization: The development of electromagnetic showers is well
understood and their spatial energy distribution can be parameterized relatively simply
as [149,150]

dE(r⃗) = E f(t)dt f(r)dr f(θ)dθ (2.19)

where f(t), f(r), and f(θ) are longitudinal, radial, and azimuthal energy distributions,
respectively. These distributions are determined by the shower depth in radiation lengths
t, the radial distance in Molière radii r, and the polar angle θ. This parameterization
can be adjusted to also include hadronic showers, in particular by considering the
fluctuations in the fem fluctuations. It can also be adapted to apply for homogenous and
sampling calorimeters (by accounting for sampling fluctuations). Within Geant4, a fast
shower simulation based on these parameterizations dubbed GFlash is implemented.
In a recent thesis [151], it was shown that it is challenging to apply GFlash for
highly-granular calorimeters and that it can be outperformed by a simple generative
model.

• Shower Library: A shower library, also known as frozen showers [152], consists of a
large set of pre-simulated showers of different particle types, energies and orientations.
During the simulation, if particles with specific conditions are detected (such as a
certain energy), the simulation of said particle is aborted and instead substituted
with a corresponding shower chosen from the library. At the ATLAS experiment, this
technique has been used for the fast simulation of low-energy electromagnetic showers.

A novel approach to fast simulation is the use of generative machine learning models.
These large parametric models, often with millions of parameters, promise to be able to
simulate the detector response in much greater detail than traditional fast simulation methods
while maintaining a significant speed-up compared to full MC simulations. The advantage of
generative models over MC methods is that they do not track individual particles and are
therefore easily parallelizable. However, they rely still on training data usually produced by
a full simulation like Geant4, but interestingly could also be trained on real data [153]. In
recent years, many generative models have been developed for calorimeter shower simulation
which achieve ever-increasing fidelity as well as computational efficiency. This innovation
is largely driven by novel approaches to generative modeling using deep neural networks as
well as the increased availability of large-scale computing resources such as high-performance
GPUs.

The early seminal work in exploring generative models for calorimeter simulation was
CaloGAN [39–41], a generative adversarial network (GAN) trained to generate electro-
magnetic showers as images with a total of 504 pixels. Since then, various different types
of generative modeling paradigms have been explored for fast calorimeter simulation, in-
cluding GANs [39–48], autoencoder-variants [1, 6, 9, 49–51], normalizing flows [52–58], and
diffusion models [3, 5, 59–61]. This list is by no means exhaustive; a living review of the
field is maintained at Reference [26]. In the recently finished community challenge, dubbed
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“CaloChallenge”, various state-of-the-art models were compared, and the results are about to
be published in Reference [14].

The models are fast progressing and achieving every increasing accuracy even on highly-
granular calorimeters with O(104) readout channels. At the LHC, the ATLAS collaboration
has recently started using GANs in their fast simulation framework [154]. Fast progress is
made of efficiently incorporating these generative models even in the full simulation chain
parallel to Geant4 [13, 155]. Adjacent work has shown that a generative model can indeed
amplify the statistics of a given type of event [156–158].

When evaluating these models in terms of simulation speed, it is important to consider
the cost of the hardware, i.e. traditional fast simulation methods can run on a CPU, while
many generative models require more expensive GPUs. Therefore, in this thesis, we compare
the acceleration of the calorimeter simulation process on both CPU and GPU hardware

— with the same type of CPU is used for the Geant4 simulation and benchmarking the
generative models. The speed-up and the fidelity achieved by the generative models studied
in the context of this thesis are discussed in Chapter 5 and Chapter 6.

65



CHAPTER 2. CALORIMETRY

66



Chapter 3

Machine Learning

Machine learning is a subfield of artificial intelligence (AI) and generally refers to the
development of predictive models that are automatically optimized on data, i.e. they “learn”
from data. The field of machine learning has seen rapid developments in recent years due
to the availability of large datasets, novel algorithms, and a stark increase in computational
power, especially in the form of graphical processing units (GPUs).

Particle physicists have been using machine learning techniques for decades to analyze data
collected at particle colliders. The most frequent types of models are based on decision trees
and neural networks. They are used for various applications such as particle identification,
event reconstruction, anomaly detection, and fast simulation. The rapid development of
machine learning has led to an increased adoption of trainable models in particle physics
analyses as physicists are aiming to extract more information from the available data. A living
review of the machine learning for particle physics research can be found in Reference [26].

An extensive introduction to Machine Learning and Deep Learning is given in Refer-
ences [159,160]. For an introduction targeted specifically towards physicists References [161,
162] can be recommended. The discussion of model training, deep neural networks, and
convolutional neural networks in this chapter follows Reference [161].

In this chapter, an overview of the most important machine learning concepts used in
this thesis is provided. The optimization, or “training”, of predictive models are discussed
in Section 3.1. Deep neural networks as the general class of models used in this thesis are
introduced in Section 3.2 and their training is discussed in Section 3.3. Finally, two specific
types of neural network architectures used in this thesis are outlined: convolutional neural
networks (CNNs) in Section 3.4 and graph- and set-based neural networks in Section 3.5.

3.1 Model Optimization

There are generally three ingredients needed to tackle a problem with machine learning:
a dataset X = {xi}Ni=0 with N entries, a model gθ with trainable parameters θ, and a
differentiable loss function L(X,gθ) which quantifies how well the model gθ is performing
for a given task on the dataset X. The loss function is also often known as “error function”,
“cost function”, or “value function” and although technically different, for practical purposes
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the terms are used interchangeably in this thesis. To make the model perform well on a given
task, the parameters θ are optimized by minimizing the loss function. This optimization
process is known as “training” the model. Conceptually, the training process is very similar
to ‘fitting’ a function to a dataset via χ2 minimization as done regularly in particle physics
analyses.

The training process is typically done with an algorithm based on gradient descent. The
idea is to iteratively update the parameters θ in the direction of the negative gradient of the
loss function. In the optimal case, a minimum of the loss function is found after many update
steps and the model is said to be “converged” meaning the training is finished. In practice
the optimization process is very difficult as modern models contain millions of parameters,
are trained on millions of samples, and the loss functions are often highly non-linear and
non-convex with many local minima in a high-dimensional parameter space. Hence, advanced
optimization algorithms are needed to train these models efficiently. These algorithms are
often referred to as optimizers and are based on the general of idea of gradient descent.

3.1.1 Gradient Descent

At the start of the model training, the parameters θ are randomly initialized as θ0. Since
the loss function is minimized with respect to the parameters θ, we denote the loss in the
following as L(θ). With the simplest gradient descent (GD) algorithm, the parameters are
updated iteratively as

vt = ηt∇θL(θt) and θt+1 = θt − vt (3.1)

where the scale of the optimization at time step t is controlled by the learning rate ηt. Usually,
the learning rate is a set parameter and allows the model to converge to a local minimum.
However, the smaller the learning rate, the slower and the more computationally expensive
the optimization process becomes. On the other hand, a too large learning rate can lead
to the model not converging. A well-chosen learning rate – either fixed or with specific
time-dependent scheduler – is a crucial part of model development.

The simple GD algorithm has several drawbacks. It is deterministic and therefore
converges to a local minimum of the loss function based on the initialization θ0. Since the
loss landscape is often very rugged, this minima might not be close to the global minimum
which might provide significantly better predictive performance. Computing the gradients
with GD is also very computationally expensive, since the loss is computed as the mean
over all N training data samples. Additionally, the GD algorithm is very sensitive to the
choice of the learning rate and can be slow to converge in high-dimensional parameter spaces.
To address these drawbacks, several variants of GD have been introduced which are widely
adopted in practice.

3.1.2 Stochastic Gradient Descent

A widely used variant of GD is stochastic gradient descent (SGD) [163, 164]. In SGD,
the gradient is approximated by as small subset of the training data which introduces a
stochastic element to the optimization. This subset is called a minibatch and usually contains
O(10 − 1000) randomly selected samples. If the minibatch contains n samples, the whole
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training dataset is divided into N/n minibatches. After the algorithm has iterated over
all minibatches, the training set is shuffled again and split into new minibatches. One full
iteration over all minibatches is called an epoch. The SGD algorithm can then be expressed
as

vt = ηt∇θLMB(θt) and θt+1 = θt − vt (3.2)

where LMB(θt) is the loss function computed on a minibatch. SGD addresses two shortcomings
of GD mentioned before: It adds stochasticity to the gradient calculation which helps the
optimization to not get stuck in a local minimum, and it is computationally more efficient
than calculating the gradients on the whole dataset.

3.1.3 Momentum

To impose an overall direction to the descent in gradient space, SGD is usually used in
conjunction with momentum. With the introduction of a momentum parameter γ, the
optimization is modified to gradient descent with momentum (GDM) given by

vt = γvt−1 + ηt∇θL(θt) and θt+1 = θt − vt (3.3)

where γ is a parameter between 0 and 1 and the minibatch subscript is omitted for simplicity.
Since vt is a running average of the gradients, (1 − γ)−1 sets a time horizon over how many
recent gradient updates the average is taken. Setting γ = 0 yields just the standard SGD
algorithm. A momentum parameter γ > 0 helps to accelerate the optimization process in
directions where the gradient points often, while suppressing it in high-curvature directions.
The parameter especially helps in the beginning of the training, where the gradient landscape
is particular noisy.

3.1.4 Adaptive Learning Rate

Ideally, the learning rate should change depending on the current gradient landscape. It
should be large in flat regions to speed up the optimization and small in steep regions to avoid
missing the minimum. One option would be to apply Newton’s method and use the inverse of
the Hessian H(θt) to scale the gradient. This results in the update rule for Newton’s method
as

vt = H−1(θt)∇θL(θt) and θt+1 = θt − vt. (3.4)

However, calculating the approximate Hessian is computationally expensive and often not
possible for large models. The alternative was introduced with optimizers that track the second
momentum of the gradients, such as the RMSprop (Root Mean Square Propagation) [165]
and the Adam (Adaptive Moment Estimation) [166] optimizers.

Considering the second moment of the gradients st = E[g2
t ], the optimization rule for

RMSprop is given by
gt = ∇θL(θt)
st = βst−1 + (1 − β)g2

t

θt+1 = θt − ηt
gt√st + ϵ

(3.5)
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where β is time over which the second momentum is averaged and ϵ is a small constant to
avoid division by zero. Typically, these parameters (also known as hyperparameters since
they are set before the training and not learned) are set to β = 0.9, ηt = 10−3, and ϵ = 10−7.
Due to dividing the learning rate by the square root of the second momentum, the learning
rate is increased when the gradient was small over many previous steps, i.e. in a flat gradient
landscape, and vice versa. This way the optimization process can be accelerated significantly.

The Adam optimizer adaptively changes the learning rate based on both the first and the
second moment of the gradients, i.e. mt = E[gt] and st = E[g2

t ], respectively. Additionally, a
bias correction to the running averages is performed. The update rule for Adam is given by

gt = ∇θL(θt)
mt = β1mt−1 + (1 − β1)gt
st = β2st−1 + (1 − β2)g2

t

m̂t = mt

1 − βt1

ŝt = st
1 − βt2

θt+1 = θt − ηt
m̂t√
ŝt + ϵ

(3.6)

where β1 and β2 are parameters that control the averaging time of the first and second
momentum, respectively. Typically, the hyperparameters are set to β1 = 0.9, β2 = 0.999,
ηt = 10−3, and ϵ = 10−7.

The update expression can be rewritten in terms of the variance σ2
t = ŝt − m̂2

t . For a
single parameter θt it is given by

∆θt+1 = −ηt
m̂t√
σ̂2
t + ϵ

. (3.7)

For past gradient updates with a low variance, i.e. when the gradient landscape is consistent,
the update approximates the learning rate as ∆θt+1 ≈ −ηt. This has the same effect as
cutting off large gradients, i.e. if a large step shall be taken, although the overall gradient
landscape is flat, the optimizer scales that step down. In the limit of high variance, i.e. the
gradient landscape fluctuates significantly, the update approximates ∆θt+1 ≈ −ηtm̂t/σt which
means the learning rate is proportional to the signal-to-noise ratio. Hence, the gradients scale
with their mean in units of the standard deviation, which serves as a natural scale for the
gradient update steps. In this thesis we make use of the Adam optimizer (or a close variant)
for all learning tasks.

In addition to optimizers that adjust the learning rate based on the gradient landscape,
there are also many learning rate schedulers that change the learning rate ηt itself over time
regardless of the gradient. Usually the learning rate change induced by a scheduler is much
larger than the adjustment by the optimizer. Common learning rate schedulers include the
decrease of the learning rate after a fixed amount of update steps or the exponential decay of
the learning rate over time. For the training of the EPiC-CNF models in Chapter 7 we make
use of the cosine annealing scheduler [167].

70



3.2. DEEP NEURAL NETWORKS

47

input w x

linear nonlinearity

output

x1

x2

x3

w1

w2

w3

{

{
{

input
layer

hidden
layers

output
layer

B

A

. + b

FIG. 35 Basic architecture of neural networks. (A)
The basic components of a neural network are stylized neu-
rons consisting of a linear transformation that weights the
importance of various inputs, followed by a non-linear activa-
tion function. (b) Neurons are arranged into layers with the
output of one layer serving as the input to the next layer.

is usually the same for all neurons. The linear trans-
formation in almost all neural networks takes the form
of a dot product with a set of neuron-specific weights
w(i) = (w

(i)
1 , w

(i)
2 , . . . , w

(i)
d ) followed by re-centering with

a neuron-specific bias b(i):

z(i) = w(i) · x + b(i) = xT · w(i), (117)

where x = (1, x) and w(i) = (b(i), w(i)). In terms of z(i)

and the non-linear function �i(z), we can write the full
input-output function as

ai(x) = �i(z
(i)), (118)

see Figure 35.
Historically in the neural network literature, common

choices of nonlinearities included step-functions (percep-
trons), sigmoids (i.e. Fermi functions), and the hyper-
bolic tangent. More recently, it has become more com-
mon to use rectified linear units (ReLUs), leaky recti-
fied linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 36). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(i) and the bias b(i).

Notice that the derivatives of the aforementioned non-
linearities �(z) have very different properties. The
derivative of the perceptron is zero everywhere except
where the input is zero. This discontinuous behavior
makes it impossible to train perceptrons using gradient

descent. For this reason, until recently the most pop-
ular choice of non-linearity was the tanh function or a
sigmoid/Fermi function. However, this choice of non-
linearity has a major drawback. When the input weights
become large, as they often do in training, the activation
function saturates and the derivative of the output with
respect to the weights tends to zero since @�/@z ! 0
for z � 1. Such “vanishing gradients” are a feature of
any saturating activation function (top row of Fig. 36),
making it harder to train deep networks. In contrast, for
a non-saturating activation function such as ReLUs or
ELUs, the gradients stay finite even for large inputs.

2. Layering neurons to build deep networks: network
architecture.

The basic idea of all neural networks is to layer neurons
in a hierarchical fashion, the general structure of which is
known as the network architecture (see Fig. 35). In the
simplest feed-forward networks, each neuron in the in-
put layer of the neurons takes the inputs x and produces
an output ai(x) that depends on its current weights, see
Eq. (118). The outputs of the input layer are then treated
as the inputs to the next hidden layer. This is usually
repeated several times until one reaches the top or output
layer. The output layer is almost always a simple clas-
sifier of the form discussed in earlier sections: a logistic
regression or soft-max function in the case of categorical
data (i.e. discrete labels) or a linear regression layer in
the case of continuous outputs. Thus, the whole neural
network can be thought of as a complicated nonlinear
transformation of the inputs x into an output ŷ that de-
pends on the weights and biases of all the neurons in the
input, hidden, and output layers.

The use of hidden layers greatly expands the represen-
tational power of a neural net when compared with a sim-
ple soft-max or linear regression network. Perhaps, the
most formal expression of the increased representational
power of neural networks (also called the expressivity) is
the universal approximation theorem which states that a
neural network with a single hidden layer can approxi-
mate any continuous, multi-input/multi-output function
with arbitrary accuracy. The reader is strongly urged
to read the beautiful graphical proof of the theorem in
Chapter 4 of Nielsen’s free online book (Nielsen, 2015).
The basic idea behind the proof is that hidden neurons
allow neural networks to generate step functions with ar-
bitrary offsets and heights. These can then be added
together to approximate arbitrary functions. The proof
also makes clear that the more complicated a function,
the more hidden units (and free parameters) are needed
to approximate it. Hence, the applicability of the ap-
proximation theorem to practical situations should not
be overemphasized. In condensed matter physics, a good
analogy are matrix product states, which can approxi-
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mon to use rectified linear units (ReLUs), leaky recti-
fied linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 36). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(i) and the bias b(i).

Notice that the derivatives of the aforementioned non-
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derivative of the perceptron is zero everywhere except
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descent. For this reason, until recently the most pop-
ular choice of non-linearity was the tanh function or a
sigmoid/Fermi function. However, this choice of non-
linearity has a major drawback. When the input weights
become large, as they often do in training, the activation
function saturates and the derivative of the output with
respect to the weights tends to zero since @�/@z ! 0
for z � 1. Such “vanishing gradients” are a feature of
any saturating activation function (top row of Fig. 36),
making it harder to train deep networks. In contrast, for
a non-saturating activation function such as ReLUs or
ELUs, the gradients stay finite even for large inputs.

2. Layering neurons to build deep networks: network
architecture.

The basic idea of all neural networks is to layer neurons
in a hierarchical fashion, the general structure of which is
known as the network architecture (see Fig. 35). In the
simplest feed-forward networks, each neuron in the in-
put layer of the neurons takes the inputs x and produces
an output ai(x) that depends on its current weights, see
Eq. (118). The outputs of the input layer are then treated
as the inputs to the next hidden layer. This is usually
repeated several times until one reaches the top or output
layer. The output layer is almost always a simple clas-
sifier of the form discussed in earlier sections: a logistic
regression or soft-max function in the case of categorical
data (i.e. discrete labels) or a linear regression layer in
the case of continuous outputs. Thus, the whole neural
network can be thought of as a complicated nonlinear
transformation of the inputs x into an output ŷ that de-
pends on the weights and biases of all the neurons in the
input, hidden, and output layers.

The use of hidden layers greatly expands the represen-
tational power of a neural net when compared with a sim-
ple soft-max or linear regression network. Perhaps, the
most formal expression of the increased representational
power of neural networks (also called the expressivity) is
the universal approximation theorem which states that a
neural network with a single hidden layer can approxi-
mate any continuous, multi-input/multi-output function
with arbitrary accuracy. The reader is strongly urged
to read the beautiful graphical proof of the theorem in
Chapter 4 of Nielsen’s free online book (Nielsen, 2015).
The basic idea behind the proof is that hidden neurons
allow neural networks to generate step functions with ar-
bitrary offsets and heights. These can then be added
together to approximate arbitrary functions. The proof
also makes clear that the more complicated a function,
the more hidden units (and free parameters) are needed
to approximate it. Hence, the applicability of the ap-
proximation theorem to practical situations should not
be overemphasized. In condensed matter physics, a good
analogy are matrix product states, which can approxi-

(b) Neural network

Figure 3.1: Structure of a neural network. A single neuron (a) is composed of a
linear transformation of the input features x and a non-linear activation function. Many
neurons are connected in a neural network (b) which is composed out of multiple layers
of neurons where the output of one layer is the input of the next. Figures taken from
Reference [161].

3.2 Deep Neural Networks

Neural networks are non-linear models composed of many connected functions. The name is
inspired by neurons connected in the human brain. The atomic unit of a neural network is a
neuroni that takes an input a set of d features x = {x1, x2, . . . , xd} and computes a scalar
output ai(x). A neural network is usually organized into layers, where each layer consists of
a set of neurons that are computed in parallel. The layers are computed sequentially, i.e. the
output of one layer is the input of the next layer. The first layer in a neural network is called
the input layer and the final layer the output layer. The layers in between are called hidden
layers. As every neuron is connected to every neuron in the adjacent layers, this type of
neural network is called a fully-connected network (FCN) and the layers are often referred to
as fully-connected layers or dense layers.

The function ai can be decomposed into a linear function z(i) that weighs the input
features and a non-linear activation function σi(z(i)) that introduces non-linearity into the
neural network. The linear transformation in a single neuron is usually a dot product with
a weight vector ω(i) = {ω(i)

1 , ω
(i)
2 , . . . , ω

(i)
d } and a bias b(i) addition. The transformation is

given by
z(i) = ω(i) · x+ b(i) = xT · w(i) (3.8)

where the bias term is expressed as another weight by adding a constant feature x0 = 1 to
the input vector x = (1,x) and defining w(i) = (b(i),ω(i)). Including the activation function,
the output of a single neuron is then given by the non-linear transformation

ai(x) = σi(z(i)) = σi(xT · w(i)). (3.9)

The basic structure of a neural network is depicted in Figure 3.1.
In the past, common activation functions were step-functions (perceptrons), sigmoids, and

hyperbolic tangents. Currently, more popular are rectified linear units (ReLUs) and variants
like leaky rectified linear units (LeakyReLUs) and exponential linear units (ELUs). These
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FIG. 36 Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear
functions that do not saturate for large inputs (bottom row) rather than saturating functions (top row).

mate any quantum many-body state to an arbitrary ac-
curacy, provided the bond dimension can be increased
arbitrarily – a severe requirement not met in any useful
practical implementation of the theory.

Modern neural networks generally contain multiple
hidden layers (hence the “deep” in deep learning). There
are many ideas of why such deep architectures are fa-
vorable for learning. Increasing the number of layers in-
creases the number of parameters and hence the represen-
tational power of neural networks. Indeed, recent numer-
ical experiments suggests that as long as the number of
parameters is larger than the number of data points, cer-
tain classes of neural networks can fit arbitrarily labeled
random noise samples (Zhang et al., 2016). This suggests
that large neural networks of the kind used in practice can
express highly complex functions. Adding hidden layers
is also thought to allow neural nets to learn more complex
features from the data. Work on convolutional networks
suggests that the first few layers of a neural network learn
simple, “low-level” features that are then combined into
higher-level, more abstract features in the deeper layers.
Other works suggest that it is computationally and al-
gorithmically easier to train deep networks rather than
shallow, wider nets, though this is still an area of major
controversy and active research (Mhaskar et al., 2016).

Choosing the exact network architecture for a neural
network remains an art that requires extensive numer-
ical experimentation and intuition, and is often times
problem-specific. Both the number of hidden layers and
the number of neurons in each layer can affect the per-
formance of a neural network. There seems to be no
single recipe for the right architecture for a neural net

that works best. However, a general rule of thumb that
seems to be emerging is that the number of parameters in
the neural net should be large enough to prevent under-
fitting (see theoretical discussion in (Advani and Saxe,
2017)).

Empirically, the best architecture for a problem de-
pends on the task, the amount and type of data that is
available, and the computational resources at one’s dis-
posal. Certain architectures are easier to train, while
others might be better at capturing complicated depen-
dencies in the data and learning relevant input features.
Finally, there have been numerous works that move be-
yond the simple deep, feed-forward neural network ar-
chitectures discussed here. For example, modern neural
networks for image segmentation often incorporate “skip
connections” that skip layers of the neural network (He
et al., 2016). This allows information to directly propa-
gate to a hidden or output layer, bypassing intermediate
layers and often improving performance.

B. Training deep networks

In the previous section, we introduced the basic ar-
chitecture for neural networks. Here we discuss how to
efficiently train large neural networks. Luckily, the basic
procedure for training neural nets is the same as we used
for training simpler supervised learning algorithms, such
as logistic and linear regression: construct a cost/loss
function and then use gradient descent to minimize the
cost function and find the optimal weights and biases.
Neural networks differ from these simpler supervised pro-

Figure 3.2: Several non-linear activation functions. Figures taken from Reference [161].

activation functions are depicted in Figure 3.2. When training a neural network with gradient
descent-based optimizers, the various activation functions lead to different optimization
properties. For sigmoid and hyperbolic tangent activation functions, the gradients are well-
defined around the origin, but vanish for large inputs. This makes it difficult to train very
deep networks. ReLU and its variants are often preferred, since for ReLU the gradients are
well-defined for all positive inputs and for LeakyReLU the gradients are non-zero for negative
inputs as well. This is why in this thesis for most models LeakyReLU is used. The sigmoid
activation function is mostly used for the output of classification models (classifiers).

The general structure of a neural network is known as the network architecture. Figure 3.1b
depicts the architecture of a simple feed-forward neural network composted of four layers:
an input layer, two hidden layers, and an output layer. The overall network can be thought
of as a complex non-linear function that maps inputs x to an output ŷ depending on the
learnable parameters w. All trainable parameters are commonly called the weights of the
network. The output of each network layer can be thought of as a feature representation of
the input data and with increasing layers size and depth, the network can learn more complex
representations of the data. In fact, it can be shown [168] that a feedforward neural network
with a single hidden layer can approximate any continuous, multi-input/output function to
an arbitrary accuracy given a sufficiently large number of neurons. However, empirically it
is easier to train deeper and less wide networks than shallow and wide networks [169] and
therefore modern neural networks usually contain many hidden layers. These are called deep
neural networks (DNNs) which also motivates the term deep learning.

Particularly deep neural networks often contain so-called skip connections or residual con-
nections which connect layers that are not directly adjacent to each other. These connections
allow the network to access learned representations from earlier layers or to bypass layers
completely. These residual connections are the core of the ResNet architecture [170] and the
U-Net architecture [171] which are widely used in computer vision.

The choice of the network architecture and the functional form of its layers is highly
dependent on the task and type of data that is used. For example, if the data contains certain
symmetries, it is often advantageous to choose a layer type that is invariant under these
symmetries to enforce that the network output is invariant and to make the optimization
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task easier. Without an invariant network architecture, the network would need to learn
these symmetries from the data which may reduce the model performance. For example,
image data is often translation invariant which motivates the use of convolutional neural
networks (see Section 3.4) and set data is permutation invariant which is exploited by a
network architecture known as deep sets (see Section 3.5).

3.3 Training Deep Neural Networks

To train the weights w of a DNN model with common optimizers such as the ones discussed
in Section 3.1, a loss function L(w) needs to be specified that measures the model predictive
performance appropriately. In case of supervised training, i.e. when the model is trained on
labeled data, an example of the data set is given as (xi, yi) where yi is the true property of xi
that the model should predict. The model prediction may be given as ŷi(w). For regression
problems, the loss function is often the mean squared error (MSE) also known as the L2
norm:

L(w) = 1
n

n∑

i=1
(yi − ŷi(w))2 (3.10)

where n is the number of samples per minibatch.
For a classification problem, i.e. for categorical data, usually the cross-entropy loss is used

as the model is usually a logistic classifier for binary data or a softmax classifier for multi-class
data. For the binary case, the output of the DNN is the probability ŷi(w) = p(yi = 1|xi; w)
that the sample xi belongs to class 1. The corresponding binary cross-entry loss for true
labels yi ∈ {0, 1} and predicted probabilities is given by

L(w) = −
n∑

i=1
yi log(ŷi(w)) + (1 − yi) log(1 − ŷi(w)). (3.11)

When training the DNN, the loss function is minimized with respect to the model
weights w. To apply gradient-based optimizers, the gradients of the neural network need to
be computed. This is done via a specialized algorithm known as backpropagation [172]. In
general, backpropagation is simply the chain rule of calculus for practical differentiation and
is outlined in the following [168].

3.3.1 Backpropagation

Considering a neural network that consists of M layers with the indices m = 1, . . . ,M , we
denote the weight that connects the k-th neuron in layer m− 1 to the j-th neuron in layer l
as ωmjk and the bias of the latter neuron as bmj . The activation for this neuron can then be
written as

amj = σ

(∑

k

ωmjka
m−1
k + bmj

)
= σ(zmj ) (3.12)

where σ is the activation function and zmj the linear transformation

zmj =
∑

k

ωmjka
m−1
k + bmj . (3.13)
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The loss function L depends on the output activations aMj of the last layer M and therefore
also on all the weights and biases in the previous layers. The error of the j-th neuron in the
last layer M is expressed as

∆M
j = ∂L

∂zMj
(3.14)

and the error of a neuron in any layer m is given by

∆m
j = ∂L

∂zmj
= ∂L

∂amj
σ′(zmj ) (3.15)

where σ′ is the derivative of the activation function with respect to the input evaluated at x.
One can rewrite this error in terms of the partial derivative of the bias bmj as

∆m
j = ∂L

∂zmj
= ∂L

∂bmj

∂bmj
∂zmj

= ∂L

∂bmj
(3.16)

since according to Equation 3.13 the partial derivative of the bias with respect to the linear
transformation is ∂bmm/∂zlm = 1. As the error ∆m

j depends on the neurons in the subsequent
layer m+ 1, the chain rule can be applied to rewrite the error as

∆m
j = ∂L

∂zmj
=
∑

k

∂L

∂zm+1
k

∂zm+1
k

∂zmj

=
∑

k

∆m+1
k

∂zm+1
k

∂zmj
=
(∑

k

∆m+1
k ωm+1

kj

)
σ′(zmj ).

(3.17)

Finally, the partial derivative of the loss with respect to the weights ωmjk can be expressed as

∂L

∂ωmjk
= ∂L

∂zmj

∂zmj
∂ωmjk

= ∆m
j a

m−1
k . (3.18)

Equipped with these equations, the overall backpropagation algorithm for calculation of
all network gradients can be written in multiple steps as follows:

1. Input Activations: compute the activations a1
j for the input layer.

2. Feedforward: using Equations 3.12 and 3.13, compute the all am and zm for all
following layers.

3. Output Error: compute the error of the last layer M using Equation 3.15.

4. Backpropagation: using Equation 3.17, the error can be propagated backwards to
calculate ∆m

j for all layers.

5. Gradient Calculation: finally, calculte the gradients of the loss with respect to the
weights ∂L/∂ωmjk and biases ∂L/∂bmj using Equations 3.18 and 3.16.

With the backpropagation algorithm, the gradients of the loss functions with respect to
all model parameters can be efficiently calculated as it only requires one “forward” pass
of the model to calculate the output and the output error and then one “backward” pass
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Figure 3.3: (a) Illustration of the multidimensional convolutional filter that takes
the input over the R, G, and B channels of an image. (b) Trainable kernel weights
represented as a 3 × 3 × 3 tensor. Figures taken from Reference [160].

to propagate the error back through the network for the gradient computations. Knowing
the gradients, the model weights can be updated with an optimizer such as Adam. The
backpropagation algorithm is essential for training deep neural networks and is implemented
in all modern deep learning frameworks such as PyTorch [173], which was used to develop
the models in this thesis.

3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) [174] are a class of neural networks that are translation
invariant and respect the locality of input data, which makes them particularly well-suited
for predictive tasks on image data. An example for such a task could be the identification of
objects in images regardless of their position in the image. A CNN is commonly made up
of two types of layers: convolutional layers that apply a convolution operation to the input
data with a set of learnable filters, and pooling layers that down-sample the input data while
keeping the locality and spatial structure of the image. Usually, a CNN is composed by a
sequence of convolutional layers and pooling layers before the intermediate output features
are flattened and fed into a fully-connected neural network to compute the final output.

For 2D data like images, a layer l is defined by the height Hl, the width Wl, and the
depth Dl, also known as the number of channels. The “area” (Wl, Hl) corresponds to the size
of the 2D filter (or kernel) in the 2D plane and the number of channels Cl gives the number
of filters in the layer. If the input is an image, the number of channels often corresponds to
the three color channels R, G, and B. For 3D convolutional layers, there is an additional
depth dimension Dl, hence the filter covers a “volume” (Wl, Hl, Dl). A square 2D filter of
size F is defined by the three-dimensional trainable weight tensor of size F × F × Cl−1. The
output of the convolutional layer is computed by sliding the tensor over the input data plane

75



CHAPTER 3. MACHINE LEARNING

and computing the scalar product of the tensor with the input data in its receptive field. A
visualization of the convolution operation is shown in Figure 3.3. A hyperparameter called the
stride S defines by how many neurons (pixels) the filter is translated between each operation,
and it is common to pad the input with P zeros to keep the output size the same as the input
size. With a large stride and little padding, the dimensionality of the image is reduced. After
computing the filter output, a non-linearity such as a ReLU activation function is applied.

Using the scenario in Figure 3.3a as an example, a convolutional layer with a filter size of
3 × 3 and a stride of S = 1 applied to a 5 × 5 pixels image with 3 color channels results in an
output of size of 5 × 5 with 1 color channel. We can pad the input with P = 1 zeros around
the image resulting in a 7 × 7 input image and a 5 × 5 output image. We can further apply
multiple filters such that the output has multiple channels. The output can be thought of as
feature maps that represent certain properties of the input data. Many convolutional layers
can be stacked to learn very complex features, i.e. a filter in an early layer could learn to
detect edges or another filter in a later layer could learn to detect eyes in a picture of a face.
Note, that the weights of the filters are shared, i.e. the same filter is applied to all locations
of the input data. This property is what makes CNNs translation invariant and keeps the
parameter count in check. The locality is preserved, since the filter output correlates with
the input in its spatial vicinity. If the filters were not shared across the input, but initialized
for each location, we speak of a locally connected layer which is not translation invariant and
leads to a much higher number of weights.

In many CNNs, convolutional layers are intertwined with pooling layers that coarse-grain
the spatial information by down-sampling the input. Typical pooling operations are max
pooling or average pooling where either the maximum of the input or the average of the input
over a small receptive field is taken. The pooling kernel for example could be of size 2 × 2
with a stride of 2 which would reduce an input image of size 32 × 32 to 16 × 16. Pooling
layers are usually applied to reduce the dimensionality of the feature maps, which is especially
important if their output is fed into a fully-connected network where parameter count of
the first layer scale quadratically with the input image size. This kind of dimensionality
reduction can also be achieved with convolutional layers and large strides with little padding,
but pooling layers have the advantage of not introducing additional parameters to the model.

The reverse operation to a convolution layer is performed by a transpose convolution [175].
This layer can increase the dimensionality of the input and is often used in generative models
to generate images from a low-dimensional noise vector. The trainable filters and their
translation over the input image works similarly to a convolution layer, but the output is
computed by summing every input pixel with every filter weight individually. The stride of
the transpose convolution defines how much of the filter output is overlaid with adjacent
filter outputs. A stride of 1 results in an output image of same dimensionality and a stride of
larger than 1 yields an up-sampled image. For example, an original image with size 9 × 9
and a filter size of 3 × 3 with S = 3 would result in an output image of size 27 × 27. We use
3D convolutional layers in the encoder and 3D transpose convolutions in the decoder of the
BIB-AE model in Chapter 5.

76



3.5. GRAPH- AND SET-BASED NEURAL NETWORKS

3.5 Graph- and Set-based Neural Networks

Neural networks that operate on graph-structured data are known as graph neural networks
(GNNs). The simplest type of graph is simply a set of nodes (points) without any edges
(pair-wise connections), this is known as a set. A set containing a discrete number of data
points in some space is also often called a point cloud. The elements of a set are invariant
under permutations, i.e. their order is undefined or irrelevant. If a predictive model based on
a fully-connected neural network takes a set as input, it has to learn that the output should be
invariant under permutations of the set entries which may hinder the optimization considerably.
Therefore, it is advantageous to use a model with the inductive bias of permutation invariance.
Generally, an inductive bias allows an algorithm to prioritize certain solutions over others,
and in the context of neural networks, the inductive bias can be encoded into the network
architecture itself. This is realized for example in the Deep Sets architecture [176]. Deep
Sets and various implementations of GNNs can be generalized under the graph network (GN)
framework as introduced in Reference [177].

In the GN framework, the computation is made up of multiple GN blocks, which takes a
graph as an input and also outputs a graph. The graph G itself is defined as a 3-tuple

G = (u, V, E) (3.19)

where u are global attributes of the graph, V = {vi}i=1:Nv is a set of nodes of cardinality
Nv with attributes vi, and E = {ek, rk, sk}k=1:Ne is a set of edges of cardinality N e with
attributes ek, the index of the sender node sk, and the index of the receiver node rk. The GN
block uses three functions to update the graph attributes, and three functions to aggregate
node and edge features. These functions are given by

e′
k = ϕe (ek,vrk

,vsk
,u) e′

i = ρe→v (E′
i

)

v′
i = ϕv

(
e′
i,vi,u

)
e′ = ρe→u (E′)

u′ = ϕu
(
e′,v′,u

)
v′ = ρv→u (V ′)

(3.20)

where E′
i = {e′

k, rk, sk}rk=i,k=1:Ne is the set of the updated edge attributes for each node
i, V ′ = {v′

i}i=1:Nv is the set of updated node attributes, and E′ = {e′
k, rk, sk}k=1:Ne is

the set of all updated edge attributes. The functions ϕe, ϕv, and ϕu are the edge, node,
and global update functions, respectively, and ρe→v, ρe→u, and ρv→u are the edge-to-node,
edge-to-global, and node-to-global aggregation functions, respectively. The ϕ functions can
be modeled by neural networks and the ρ functions are permutation invariant aggregations
such as element-wise summation, averaging, or max-pooling. This way also the ϕ functions
can be invariant under permutations of the respective node or edge features — here ϕv is
invariant under edge permutation and ϕu is invariant under both edge and node permutation.
Further, since the ϕv and ϕe functions are shared across all nodes and edges, their output is
equivariant under node/edge permutation.

The computations in a GN block are visualized in Figure 3.4a and can be summarized
with the following steps:

1. Edge Update: Apply ϕe to update the edge features based on the previous edge
attributes, the sender and receiver node attributes, and the global attributes.
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(a) Full GN block (b) Message-passing neural network

(c) Attention-based network (d) Invariant Deep Sets

(e) Equivariant Deep Sets (f) EPiC layer

Figure 3.4: Different types of graph neural network configurations. Figures adapted
from Reference [177].

2. Edge-to-Node Aggregation: Apply ρe→v to aggregate the updated edge attributes
on a per-node basis.

3. Node Update: Apply ϕv to update the node attributes based on the previous node
attributes, the aggregated edge attributes, and the global attributes.

4. Node-to-Global Aggregation: Apply ρv→u to aggregate the updated node attributes.

5. Edge-to-Global Aggregation: Apply ρv→u to aggregate all updated edge attributes.

6. Global Update: Apply ϕu to update the global attributes based on the previous
global attributes, aggregated node attributes, and the aggregated edge attributes.

This is the sequence of computations as shown in the GN block depiction, but depending on
the implementation, the order can be adapted.

A variety of graph- and set-based neural network architectures can be expressed as special
cases of the GN framework. Several examples are depicted in Figure 3.4. The message-
passing neural network (MPNN) [178] (Figure 3.4b) uses GN blocks without any global graph
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attributes as input, no edge information is part of the output, and the global attribute is
computed only based on an aggregation of node features. The eponymous “message function”
is analogous to the edge update function ϕe but without any global information.

Attention-based neural networks can be expressed as the structure shown in Figure 3.4c.
Here “attention” refers to the update of a node’s features based on a weighted sum (of a
function) of the attributes of the neighboring nodes. The edges, i.e. the weights between nodes,
are calculated via a scalar pairwise function of the node attributes. Often, attention-based
networks consider a fully-connected graph, i.e. all nodes are connected to all other nodes
including themselves (self-attention). Often the in- and output of an attention block are only
the node features and the edges are computed in every block anew, but the concept can be
extended to incorporate general edge attributes as well [179]. A popular version of attention
is multi-headed self-attention [180] where multiple ϕe and ρe→v functions – each with different
neural network weights – take the same input and are computed in parallel before their
output is concatenated. This way the different heads can focus on different aspects of the
same input. Multi-headed self-attention constitutes the basis of the transformer architecture
which is used in most modern image generation and language models.

The above-mentioned Deep Sets architecture is purely set-based and uses only global
information and nodes attributes without any edges. Deep Sets comes in two variants: an
invariant (Figure 3.4d) and an equivariant Deep Sets block (Figure 3.4e). In the invariant
case, the model produces only a global output which could be for example a classification
label. This way a permutation invariant classifier can be constructed. In high-energy physics,
this network structure is used in the particle flow networks (PFNs) [181] for jet tagging. As
jets are a set of particles, the Deep Sets paradigm is uniquely suited for this task. Additionally,
since no edge features are calculated, the computational cost of such as classifier scales linearly
with the set cardinality. In the equivariant Deep Sets case, the model produces a set of
transformed node attributes instead of a global output. This output is optionally conditioned
on a fixed global vector. This way the blocks can be easily stacked to learn more complex
node representations and, for example, provide the input for an invariant Deep Sets model.
The ConcatSquash layer (CSL) used in the PointWise Net of the CaloClouds models for
calorimeter point cloud generation in Chapter 5 can be viewed as a realization of equivariant
Deep Sets.

The equivariant point cloud (EPiC) [2] layer is closely related to Deep Sets and shown
in Figure 3.4f. It performs an equivariant transformation of the node attributes and an
invariant transformation of the global attributes. Together with the computational order
and the specific pooling implementation, this makes the EPiC layer a novel contribution to
the machine learning literature. It is used in the EPiC-GAN and EPiC-CNF models for jet
generation in Chapter 7 and in the encoder of the CaloClouds model for calorimeter shower
generation in Chapter 6. A detailed discussion of the EPiC layer is provided in Section 7.2.
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Chapter 4

Generative Machine Learning

Many of the practical advancements in generative machine learning, also often referred to as
generative modeling, have been developed in the field of computer vision. Therefore, some
examples for the generative model implementations discussed in this chapter focus on image
generation. However, these techniques are by no means limited to images and can be applied
to any kind of data, including lists, time series, point clouds, or even (tokenized) text.

A generative model uses machine learning to learn a probability distribution for a set of
training data. The trained model can then be used to generate new data samples from the
learned distribution. In general, a generative model can be thought of as a distribution pθ(x)
where x is a data vector and θ are learnable model parameters. For many applications, the
generative model needs to be conditional, i.e. it is given by pθ(x|c) where c is a condition
vector. Using a particle physics example, x could be a particle jet and c the jet energy. For
real-world data, such as photos or physics sensor data, the data vector space can be very
complex. With the introduction of deep learning, it has become possible to train generative
models on such high-dimensional data spaces with high fidelity. Therefore, these models are
also often coined Deep Generative Models (DGMs).

Currently, the most common generative model families are generative adversarial networks
(GANs), variational autoencoders (VAEs), normalizing flows, and diffusion models. Recently,
consistency models have been introduced as a new generative modeling paradigm. In this
thesis, we made use of all of these concepts, either as stand-alone models or in combination
with each other.

As an overview, the following models are discussed in this thesis:

• The bounded information bottleneck autoencoder (BIB-AE) model in Chapter 5 uses
the information bottlneck (IB) principle and combines a variational autoencoder (VAE),
an adversarial autoencoder (AAE), and a Wasserstein generative adversarial network
with gradient penalty (WGAN-GP).

• The CaloClouds model in Chapter 6 combines a VAE-like encoder, two normalizing
flows, and a denoising diffusion probabilistic model (DDPM).

• The CaloClouds II model in Chapter 6 combines a normalizing flow and a diffusion
model trained with score matching.
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Figure 4.1: Overview of the different generative modeling paradigms used in this thesis.

• The CaloClouds II (CM) model in Chapter 6 combines a normalizing flow and a
consistency model.

• The EPiC-GAN model in Chapter 7 is trained as a least squares GAN (LSGAN).

• The EPIC-CNF models in Chapter 7 are continuous normalizing flows (CNFs) trained
with either the score matching or the flow matching objective.

An overview of these modeling paradigms is given in Figure 4.1. In the following
sections all these models and some of their variants are outlined. A concise comparison
of normalizing flows, variational autoencoders, and generative adversarial networks can be
found in Reference [182]. A comprehensive overview of deep generative modeling is given
in Reference [183]. This chapter follows largely the introduction to GANs, autoencoders,
normalizing flows, and diffusion models outlined in Reference [160]. Generative modeling
is a very fast-moving field with many new modeling paradigms and implementations being
developed. Hence, some of the most state-of-the-art techniques like flow-matching and
consistency models cannot be found yet in textbooks or literature reviews.

This chapter is structured as follows: Section 4.1 introduces generative adversarial networks
(GANs) and two of their variants (LSGAN and WGAN) used in this thesis. The family
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of autoencoders, including variational autoencoders (VAEs) and the bounded information
bottleneck autoencoder (BIB-AE), is discussed in Section 4.2. Normalizing flows as well as
continuous normalizing flows (CNFs) are introduced in Section 4.3. In Section 4.4, multiple
parameterization of diffusion models and their relation to stochastic and ordinary differential
equations are discussed. Finally, Section 4.5 introduces consistency models as the newest
generative modeling paradigm used in this thesis.

4.1 Generative Adversarial Networks

A generative model can be considered as a non-linear transformation from a latent space z to
a data space x. The distribution of the latent space p(z) may take the form of a Gaussian
distribution p(z) = N (z|0, I) and the non-linear transformation may be given as

x = g(z,θ), (4.1)

where g is a deep neural network with weights θ. In generative modeling, the neural network
g is known as the generator. For brevity, we continue with writing the weights for neural
networks in the style gθ(z) ≡ g(z,θ).

The nonlinear transformation and the latent space together define a distribution over x.
For training, this model needs to be fitted to the training set {xn} with n = 1, . . . , N and a
total of N examples in the set. However, this fitting is complicated, because the likelihood
function for optimizing θ can generally not be evaluated in closed form. To the rescue comes
the concept of generative adversarial networks (GANs) [184].

In a GAN, a second network, coined the discriminator dϕ, is trained simultaneously with
the generator gθ and provides the gradients to update θ. While the goal of the generator is
to generate synthetic (‘fake’) data indistinguishable from real data, the training objective
of the discriminator is to distinguish the generated synthetic data from the real data. For
the discriminator, this is achieved by training it with a simple classification loss function
like binary cross-entropy. Thereby the loss of the generator is defined as maximizing the
discriminator loss, i.e. by generating real-looking samples to make the classification task for
the discriminator very difficult. One can therefore see the models gθ and dϕ as adversaries.
This training concept is visualized in Figure 4.2

To train the discriminator, a binary target t is defined with t = 0 for synthetic (fake) data
and t = 1 for real data. The neural network dϕ with weights ϕ uses as output activation
a single logistic-sigmoid function, i.e. the output gives the probability of the data vector x
is real as P (t = 1) = dϕ(x). The normalized cross-entropy loss function for training the
discriminator is given by

L(θ,ϕ) = − 1
N

N∑

n=1
[tn log dn + (1 − tn) log(1 − dn)] (4.2)

where dn = dϕ(xn) is the output of the discriminator for the data vector xn. The training set
for the discriminator is a (usually balanced) mixture of real examples xn and synthetic (fake)
examples gθ(zn) with zn drawn from the latent distribution p(z) (often a simple normal
distribution).
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Generator Discriminator 0/1

Figure 4.2: Illustration of a generative adversarial network (GAN). The generator
gθ generates synthetic data x′ from a low-dimensional latent space z. The generator
is trained with an adversarial loss against the binary discriminator dϕ that tries to
distinguish between real data x and the generated data x′.

For the adversarial training to work, we train dϕ to maximize the probability of correctly
distinguishing between real and fake samples. We simultaneously train gθ to minimize the
probability that dϕ can correctly identify the generated samples as fake, i.e. we minimize
log(1 − dϕ(gθ(z))). This initially seems a bit confusing, but it is the same statement as
training the generator to maximize the probability that the discriminator falsely classifies the
generated samples as real. The total GAN loss function can be written as

LGAN(θ,ϕ) = Ex∼preal(x) [log dϕ(x)] + Ez∼p(z) [log(1 − dϕ(gθ(z)))] (4.3)

Here E denotes the expectation with its suffix indicating which variable is averaged over.
For the adversarial training to work, the loss is maximized with respect to the discriminator
weights ϕ and minimized with respect to the generator weights θ.

In practice, the discriminator and generator are trained alternatingly each one or multiple
steps before the other one is updated again. Loss convergence is usually not reached in GAN
training since the generator and discriminator are ideally in a constant state of competition.
A GAN “convergence” would imply a Nash equilibrium between the two, but this is rarely
achieved in practice. Instead, the generator is regularly evaluated by a quantitative score
or a visual inspection of the generated samples and the training is stopped once the desired
quality is reached. When the GAN is done training, the discriminator is not used anymore
and the generator can be used to generate synthetic data samples by sampling from the latent
space. Further, a conditional GAN [185] can be implemented that sample from a conditional
distribution p(x|c) where c is a condition vector. This way, the GAN can be conditioned to
generate samples with specific properties such as a certain jet energy or particle type. The
generator and discriminator networks then take the form gθ(z, c) and dϕ(x, c), respectively.

While GANs are very effective in generating high-quality samples and can compete with
more recent popularized generative approaches such as diffusion models (see Section 4.4) in
image generation [186, 187], their training remains challenging. For instance, it is unclear
when to best stop the training process. While one can track the training process with external
measures, the generated sample quality often fluctuates strongly during training. Another
often occurring challenge is mode collapse, where the generator only samples a small subset
of valid outputs, i.e. always the same realistic image. If the discriminator does not learn to
always reject those samples, the generator will continue to produce them and the training
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process gets stuck. The training process can also be very difficult and slow if the generator is
initialized such that it generates samples that are very different from the real data distribution.
In this case, the discriminator can easily distinguish the samples but provides only very small
gradients to the generator. To elevate these problems and to improve the overall training
stability, several variants of the original GAN formulation have been developed.

4.1.1 GAN Variants

Many variants [188] of the training objective for GANs have been proposed. They differ in
the loss functions used, but all keep the general concept of adversarial training. Two popular
versions that are applied in this thesis are the least squares GAN (LSGAN) [189] and the
Wasserstein GAN (WGAN) [190,191].

LSGAN aims to stabilize the training by providing a stronger gradient. This is achieved
by using a discriminator with a linear output activation and training it with a least-squares
loss function instead of the cross-entropy loss. The general formulation of the LSGAN loss
function is then given by

LLSGAN(ϕ) = 1
2Ex∼preal(x)

[
(dϕ(x) − b)2

]
+ 1

2Ez∼p(z)
[
(dϕ(gθ(z)) − a)2

]

LLSGAN(θ) = 1
2Ez∼p(z)

[
(dϕ(gθ(z)) − c)2

] (4.4)

where a and b are the labels for the fake and real data, respectively, and c is the target value
G wants D to output for the fake data. Opposed to a ‘vanilla’ GAN, both loss functions
are minimized during the LSGAN training. In practice, it works well to adopt a 0-1 binary
labeling scheme, i.e. a = 0 and b = c = 1. This scheme was used for the training of the
EPiC-GAN in Chapter 7.

Another way of increasing the stability of a GAN is to use the distance between the
generator distribution pG(x) and the real distribution pdata(x) as a measure in the training.
This is done in a WGAN by estimating the Wasserstein-1 distance, also known as the earth
mover’s distance, between the two distributions. The Wasserstein-1 distance arises from
optimal transport theory and is defined as the minimum “cost” of transforming one distribution
into the other. Since for high-dimensional data spaces, the Wasserstein distance is very
difficult to compute, the WGAN [190] uses a discriminator dϕ with a linear output activation
to approximate a surrogate. An improved version of the WGAN uses a gradient penalty (GP)
term to stabilize the training process further. This model is known as WGAN-GP [191] and
its loss function is given by

LWGAN-GP(θ,ϕ) = − Ex∼preal(x) [dϕ(x)] + Ez∼p(z) [dϕ(gθ(z))]

+ λGPEx̂∼p(x̂)

[(
∥∇x̂dϕ(x̂)∥2 − 1

)2
] (4.5)

where λGP is a hyperparameter that weights the gradient penalty term and x̂ are random
samples from the combined distribution of real and fake data p(x̂).
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4.2 Autoencoder

A large topic in deep learning is representation learning, i.e. learning a representation of the
data that is useful for subsequent applications. One well-known method for representation
learning is the usage of auto-associative neural networks, also known as autoencoders. An
autoencoder is a neural network that is trained to generate an output y that resembles closely
its input x. The internal representations the network learns, i.e. its latent space, can then be
used to extract a representation z(x) of the data. Generally, an autoencoder network is split
into two parts: the encoder network that maps the data to the latent space z(x), and the
decoder network that maps the latent vectors back to the data space y(z). To avoid that the
network simply learns to copy the input to the output, i.e. learns the identity function, a
constraint on the network needs to be introduced. The most common constraint is to limit
the dimensionality of the latent space, i.e. to introduce a bottleneck in between the encoder
and decoder.

A simple linear autoencoder consisting just of two linear layers can at a global minimum
achieve the same representation as a principal component analysis (PCA) with M components,
where M is the dimensionality of the latent space. [192] Using deeper non-linear neural
networks for the encoder and decoder, the autoencoder can learn more complex representations
of the data, i.e. a non-linear form of PCA, but there is a risk that the optimization process
gets stuck in a local minimum. The training of the autoencoder is done by minimizing a loss
function that measures the difference between the input and output data. A common loss
function is the mean squared error (MSE) or L2 loss:

LAE(θ) = Ex∼pdata(x)
[
∥yθ(x) − x∥2

]
(4.6)

where yθ is the autoencoder with weights θ and pdata(x) is the data distribution.
The autoencoder structure discussed so far is also sometimes known as a deterministic

autoencoder. These are generally not used as generative models. In the following other kinds
of autoencoders are introduced that can indeed be used for generative modeling.

4.2.1 Variational Autoencoder

The likelihood function for a latent-variable model is given by

pθ(x) =
∫
pθ(x|z)p(z)dz (4.7)

where the conditional distribution pθ(x|z) over a D-dimensional data space is given by a
deep neural network dθ(z) and p(z) is the prior distribution over an M -dimensional latent
space. pθ(x|z) will emerge as the generator or decoder of an autoencoder model and the
prior can be given by a latent distribution over a normal Gaussian p(z) = N (z|0, I). It
is unfeasible to directly evaluate the likelihood Equation 4.7, but we can make use of an
approximation to train a variational autoencoder (VAE) [193,194], which can be used as a
generative model. For training a VAE, three ingredients are needed: an evidence lower bound
(ELBO) that is used to approximate the likelihood function, an encoder network that is used
to approximate the posterior distribution that in turn can be used to calculate the ELBO

86



4.2. AUTOENCODER

Encoder Decoder

Figure 4.3: Illustration of a variational autoencoder (VAE). The encoder pϕ(z|x) maps
the data x to the – usually lower-dimensional – latent space z and the decoder pθ(x|z)
learns a reverse mapping.

and a parameterization known as the reparameterization trick to apply gradient descent to
the ELBO. The general VAE structure is shown in Figure 4.3.

Evidence Lower Bound (ELBO)

To derive this likelihood approximation we consider another probability distribution qϕ(z)
over the latent space z with parameters ϕ. This distribution is also given by a neural network
and will emerge as the encoder or inference network of the VAE. For any choice of qϕ(z) the
log-likelihood can be rewritten as [194]

log pθ(x) = LELBO(θ,ϕ) +DKL(qϕ(z)||pθ(z|x)) (4.8)

where LELBO is the evidence lower bound (ELBO) or variational lower bound and DKL(·||·)
is the Kullback-Leibler divergence between two distributions. The ELBO is given by

LELBO(θ,ϕ) =
∫
qϕ(z) log

(
pθ(x|z)p(z)

qϕ(z)

)
dz (4.9)

and the Kullback-Leibler divergence term is given by

DKL(qϕ(z)||pθ(z|x)) = −
∫
qϕ(z) log

(
pθ(z|x)
qϕ(z)

)
dz (4.10)

where pθ(z|x) is the posterior distribution over the latent space given the data x.
The Kullback-Leibler divergence DKL measures the difference between two probability

distributions, and it is always non-negative — although it is not symmetric and therefore not
a true metric, i.e. it does not satisfy the triangle inequality. In general, with a probability
distribution P and a probability distribution Q in the same sampling space X it is defined as:

DKL(P ||Q) =
∫
P (x) log

(
P (x)
Q(x)

)
dx = −

∫
P (x) log

(
Q(x)
P (x)

)
dx. (4.11)

In Bayesian inference terms, the distribution Q is the prior distribution, and the distribution
P is the posterior distribution. Hence, the DKL measures the information loss when using
the prior Q to approximate the posterior P . Technically in Equation 4.10 the reverse DKL is
used since it corresponds to DKL(Q||P ).

Because the DKL is always non-negative, the ELBO is a lower bound to the log-likelihood
function, i.e. LELBO ≤ log pθ(x), and provides us with an approximation to the log-likelihood
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function that can be evaluated with a Monte Carlo estimate and therefore used for model
training.

For an independently and identically distributed (i.i.d.) training dataset D = {x1, . . . ,xN}
where xn are samples from the model distribution pθ(x), the log-likelihood is given by the
sum of the ELBO and the DKL terms:

log pθ(D) =
N∑

n=1
LELBO,n(θ,ϕ) +

N∑

n=1
DKL(qϕ,n(zn)||pθ,n(zn|xn)) (4.12)

where
LELBO,n(θ,ϕ) =

∫
qϕ(zn) log

(
pθ(xn|zn)p(zn)

qϕ(zn)

)
dzn. (4.13)

This indicates that there are separate latent variables zn for each data vector xn and therefore
each latent variable is associated with an independent distribution qϕ,n(zn). We will exploit
this in Chapter 5 to analyze the distributions of information-rich latent variables.

Hence, maximizing the log-likelihood log pθ(x) is equivalent to maximizing the ELBO
LELBO or to minimizing the DKL term, i.e. to minimize the difference between qϕ(z) and
pθ(z|x).

Encoder or Amortized Inference

The latter implies that the log-likelihood is maximized when qϕ(z) = pθ(z|x), i.e. the
Kullback-Leibler divergence is DKL(qϕ(z)||pθ(z|x)) = 0. This is achieved by optimizing qϕ(z)
to approximate the posterior distribution pθ(z|x). For this to work, we implement amortized
inference which requires that the model q needs to be conditioned on the data x, so we
replace qϕ(z) with qϕ(z|x). This network is called the encoder or inference model as it maps
the input data space to the latent space.

Usually, the encoder is chosen such that it produces a Gaussian distribution with a
diagonal covariance matrix where the mean µj and the variance σ2

j are given by the output
of the neural network:

qϕ(z|x) =
M∏

j=1
N (zj |µj(x,ϕ), σ2

j (x,ϕ)). (4.14)

Now we have described both models in the ELBO and can maximize it with respect to the
parameters θ and ϕ to train the VAE.

Reparameterization Trick

One problem remains: the ELBO Equation 4.13 is intractable as we cannot properly back-
propagate through the sampling process of the latent variables zn. Equation 4.13 can be
rewritten as

LELBO,n(θ,ϕ) =
∫
qϕ(zn|xn) log

(
pθ(xn|zn)p(zn)
qϕ(zn|xn)

)
dzn

=
∫
qϕ(zn|xn) log pθ(xn|zn)dzn −DKL(qϕ(zn|xn)||p(zn))

(4.15)
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where the first term can be interpreted as the reconstruction error and the second term as a
regularizer. Since the second term is the DKL between two Gaussian distributions, it can be
calculated analytically as [193]

DKL(qϕ(zn|xn)||p(zn)) = −1
2

M∑

j=1

(
1 + log(σ2

j (xn)) − µ2
j (xn) − σ2

j (xn)
)
. (4.16)

In principle, this approach works with any latent prior distribution that is analytically
tractable, but we consider here only the simple case of a Gaussian distribution. The first
term can be approximated with a Monte Carlo estimate:

∫
qϕ(zn|xn) log pθ(xn|zn)dzn ≃ 1

L

L∑

l=1
log pθ(xn|z(l)

n ) (4.17)

where z(l)
n are sampled from the encoder qϕ(zn|xn) and l = 1, . . . , L are the sample indices.

By drawing samples from the encoder, we can optimize the decoder, but we cannot yet
optimize the encoder.

To resolve this issue, the so-called reparameterization trick is applied: Considering the
random variable ϵ drawn from a normal Gaussian, the quantity z = µ+ σϵ is also normally
distributed with mean µ and variance σ2. This parameterization is applied to the outputs
of the encoder µj(xn) and σ2

j (xn). Instead of drawing samples from the encoder, we draw ϵ

from a standard normal distribution and then transform it with the encoder outputs:

z
(l)
nj = µj(xn) + σ2

j (xn)ϵ(l)n j (4.18)

This allows the gradients with respect to ϕ to be calculated and for backpropagation through
both the decoder and encoder networks.

The full loss function that shall be minimized during the VAE training, i.e. the upper
bound to the negative log-likelihood, can finally be written as

LVAE(θ,ϕ) = −
∑

n


1

2

M∑

j=1

(
1 + log(σ2

nj) − µ2
nj − σ2

nj

)
+ 1
L

L∑

l=1
log pθ(xn|z(l)

n )


 (4.19)

where z(l)
n has elements z(l)

nj = µnj +σnjϵ
(l) with µnj = µj(xn) and σnj = σj(xn) as the output

of the encoder qϕ(zn|xn), and n elements in the mini-batch. In practice, the log-likelihood
term for the reconstruction error is often replaced with a reconstruction error suitable for the
specific task, such as a mean squared error like in the regular autoencoder loss Equation 4.6.
After the model is trained the encoder may be discarded and the decoder can be used as a
generative model by sampling the latent space from the prior distribution p(z) and using the
neural network to map it back to the data space.

The first term of the loss function Equation 4.19 moves the encoder distribution qϕ(z|x)
towards the Gaussian prior distribution p(z). This enables the decoder to produce realistic-
looking samples when sampling directly from the prior distribution instead of the encoded
space. However, when during training the encoder converges towards the prior, i.e. DKL = 0,
the latent space carries zero information and the decoder cannot use it anymore to reconstruct
the data. This is known as posterior collapse and leads to a bad reconstruction performance.
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On the other hand, when the DKL term is too high, the latent space cannot be properly
approximated by the prior distribution during sampling. This leads to a very good reconstruc-
tion performance of the VAE, but when sampling novel data from the prior, the generated
samples do not resemble the data distribution.

Both of these problems can be tackled by weighting the DKL term and the reconstruction
term appropriately. This is done by introducing a hyperparameter β that weights the terms
in the loss function. This concept is known as the β-VAE [195]. In Chapter 5 we will study
the impact of the posterior collapse on the generation quality of BIB-AE (a VAE-like model
discussed below) and examine an alternative to the prior sampling. Another method of
preventing posterior collapse is to clip the DKL term to a certain minimum value. This
method is introduced for the encoder of the CaloClouds model in Chapter 6.

4.2.2 Adversarial Autoencoder

The Adversarial Autoencoder (AAE) [196] was proposed as an alternative way to the VAE for
training an autoencoder as a generative model. The model combines ideas from an autoencoder
with a GAN, i.e. it is trained using a reconstruction error as well as an adversarial loss to
regularize the latent space. Just like a VAE, the AAE consists of an encoder and a decoder
network, but it includes also an additional discriminator network. This discriminator is used
to distinguish between the latent space distribution and an arbitrary prior distribution. The
encoder learns to map the data space to this prior latent distribution and tries to fool the
discriminator. The decoder is used to map the latent space back to data and after training
can be used as a generative model by sampling from the prior distribution.

Let p(z) be the prior distribution of the latent space and pdata(x) the data distribution.
Often the prior is defined by a normal Gaussian distribution like in out example of the VAE,
but the advantage of an AAE is, that it can be any distribution, even if it is not analytically
tractable. We further define three distributions that are given by deep neural networks: the
encoder eϕ(x) with weights ϕ that maps the data space to the latent space, the decoder
dθ(z) with weights θ that maps the latent space back to the data space, and the binary
discriminator cω(z) with weights ω that distinguishes between the prior distribution and the
encoder distribution.

All three models are simultaneously trained, i.e. the encoder and decoder are trained as an
autoencoder with a reconstruction loss, and the encoder and discriminator are trained with
an adversarial loss. The weight updates occur in multiple stages per mini-batch: first, the
encoder and decoder are updated with the reconstruction loss between data and reconstructed
samples, then the discriminator is updated with the cross-entropy loss between samples
from the prior and encoded samples, and finally, the encoder is updated to confuse the
discriminator.

The optimization of the encoder eϕ(x) and decoder dθ(z) is done by minimizing the
reconstruction loss such as an MSE (analogous to Equation 4.6):

LAE(θ,ϕ) = Ex∼pdata(x)
[
(dθ(eϕ(x)) − x)2

]
. (4.20)

Optimization of the discriminator cω(z) and the encoder eϕ(x) (as additional objective) is
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done analogous to the GAN loss Equation 4.3:

Ladv(ω,ϕ) = Ez∼p(z) [log cω(z)] + Ex∼pdata(x) [log(1 − cω(eϕ(x)))] (4.21)

where the function is maximized with respect to the discriminator weights ω and minimized
with respect to the encoder weights ϕ.

An advantage of the AAE is the arbitrary choice of prior distribution, which may be chosen
to fit well for a certain data space. In Reference [196] a generalization of the reparameterization
trick is introduced that allows for the backpropagation through the sampling process for
non-Gaussian priors. A disadvantage of the AAE might be unstable training due to the
adversarial loss. This problem may be mitigated by using alternative GAN implementations
such as WGAN or LSGAN.

4.2.3 Bounded Information Bottleneck Autoencoder (BIB-AE)

The information bottleneck (IB) method [197] is an information-theoretical principle intro-
duced for determining how much relevant information a random variable X ∼ px contains
about another statistically dependent random variable Y . Considering the joint distribution
of these variables p(X,Y ), the relevant information is defined by the mutual information
I(X;Y ). The mutual information can be given in terms of the Kullback-Leibler divergence
via

I(X;Y ) = DKL(p(X,Y )||p(X) ⊗ p(Y )) (4.22)

where p(X) ⊗ p(Y ) is the product distribution of the marginals p(X) and p(Y ), i.e. the
joint distribution if the variables were independent. An optimal representation of X would
capture all relevant aspects that are necessary to predict Y while compressing (discarding)
the irrelevant features. The relevant information of X shall be denoted by X̂. Finding the
optimal representation of X̂ is done by minimizing the Lagrangian

L[p(x̂|x)] = I(X; X̂) − βI(X̂;Y ) (4.23)

where the Lagrangian multiplier β scales the trade-off between the complexity of the rep-
resentation I(X; X̂) and the amount of preserved relevant information I(X̂;Y ). Here the
Lagrangian is used in the context of Lagrangian multipliers, i.e. functions that shall be
optimized under certain constraints. Hence, the Lagrangian can be viewed as a loss function
for neural network optimization.

The IB principle can be used for the interpretation of deep neural networks from an
information-theoretical perspective [198]. It can also be used to gain a nuanced understanding
of certain types of generative models. In Reference [199] the IB method is used to study various
VAE and GAN implementations. This results in the introduction of an overarching framework
termed the bounded information bottleneck autoencoder (BIB-AE), that encompasses the VAEs
and GANs as special cases. Generative models based on the VAE and GAN principles can be
viewed through the IB principle as all introducing different bounds on mutual information
terms as regularizers. The main difference in the models can therefore be viewed by the
choice of target objective, i.e. how to judge the fidelity of the model, and the choice of the
regularizer, i.e. what modes of information compression restrict the model.
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We define a generative model (a decoder in the autoencoder setup) as pθ(x|z) which
generates a data distribution pθ(x) = Ez∼pθ(z) [pθ(x|z)] where pθ(z) is a target distribution
of the latent space. An inference model (an encoder in the autoencoder setup) is defined as
qϕ(z|x) with qϕ(z) as the prior “true” distribution of the latent space. The empirical data
distribution is given by pdata(x).

Analogous to the Lagrangian of the IB principle, we can define for unsupervised models
Lagrangian of the BIB-AE as

LBIB-AE(θ,ϕ) = Iϕ(X;Z) − βIϕ,θ(Z;X) (4.24)

where X is a data vector and Z is a latent vector. The mutual information depends on the
model parameters θ and ϕ.

The Lagrangian can be rewritten as [199]

LBIB−AE(θ,ϕ) = Ex∼pdata(x) [DKL (qϕ(z|x)∥pθ(z))]
︸ ︷︷ ︸

A

−DKL (qϕ(z)∥pθ(z))︸ ︷︷ ︸
B

−β[Ex∼pdata(x)

[
Ez∼qϕ(z|x) [log (pθ(x|z))]

]

︸ ︷︷ ︸
C

−DKL (pdata(x)∥pθ(x))︸ ︷︷ ︸
D

].
(4.25)

Here, the reconstruction terms (C) and (D) ensure the fidelity of the model and the terms
(A) and (B) regularize the latent space. The BIB-AE parameters θ and ϕ are optimized by
minimizing the Lagrangian.

In the context of GANs and VAEs, the terms are implemented in the following ways:

(A) The term denotes the DKL between the encoder and the target latent distribution. It is
commonly implemented in a VAE to regularize the latent space and can be analytically
solved for Gaussian distributions.

(B) The term denotes the DKL between the prior latent distribution and the target latent
distribution. It is implemented in an AAE with a latent space discriminator or with a
maximum mean discrepancy (MMD) [200] term.

(C) Describes the log-likelihood of the decoder that reconstructs the encoded latent space.
It corresponds to the reconstruction error in an autoencoder and may be implemented
for example with an MSE.

(D) The term denotes the DKL between the data distribution and the generated distribution.
This term is implemented in a GAN by the discriminator network that distinguishes
between real and synthetic samples.

A detailed analysis of the utilization of one or multiple of these terms in generative models such
as VAE, β-VAE, AAE, InfoVAE [201], GAN, and VAE-GAN [202] is given in Reference [199].

We used the BIB-AE principle to design a novel generative model for calorimeter shower
simulations [6] that uses multiple model accuracy measures such as MSE and adversarial
training and multiple regularizers for optimal information compression such as the DKL and
adversarial training to constrain the latent space. The model is introduced in Chapter 5 and
subsequently used for an analysis of the information compression of calorimeter showers in
its latent space.
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Flow Inverse Flow

Figure 4.4: Illustration of a normalizing flow as a generative model, where the flow fθ
maps data to a Gaussian latent space and the inverse flow f−1

θ can be used to generate
new data samples.

4.3 Normalizing Flows

Another way to train a non-linear transformation from a latent space to a data space is by
using normalizing flows (NFs) [203–205]. The goal for these types of models is to restrict
the form of the transformation (the neural network) such that the likelihood function can be
evaluated directly. For this purpose, we define a latent distribution pz(z) — also known as
the base distribution for flows — with latent vectors z together with the function x = fθ(z)
that maps the latent space to the data space, where fθ is a neural network with weights θ.
Usually the base distribution is chosen to be very simple, i.e. a normal Gaussian distribution,
such that novel latent space samples z∗ ∼ pz(z) can be easily sampled to generate new data
samples x∗ = fθ(z∗). Hence, fθ can be viewed as a generator network.

For the calculation of the likelihood function, a data space distribution is needed that
depends on the inverse of the neural network function fθ. The inverse function shall be given
by z = gθ(x) = gθ(fθ(z)). This definition requires that the fθ and gθ are bijective functions,
i.e. they are invertible. A special kind of neural network architecture is needed to allow such
invertibility. These are discussed below. With this formulation, each value of the data space x
has a unique value in the latent space z and vice versa. This also implies that the data space
and the latent space have the same dimensionality. The general idea for using normalizing
flows as generative models is illustrate in Figure 4.4.

The change of variables for multivariant distributions can be used to determine the data
density:

px(x|θ) = pz(gθ(x)) |det J(x)| (4.26)

where J(x) is the Jacobian matrix whose elements are given by the partial derivatives

Jij(x) = ∂gθ,i(x)
∂xj

. (4.27)

Since the dimensionality of x and z are equal, the models can be very large and computationally
expensive for high-dimensional data such as images. Further, the evaluation of det J(x)
generally scales with the dimensionality D as O(D3), which can be very costly. Therefore,
in addition to invertibility further restrictions on the model are imposed to calculate the
determinant efficiently.

For training the neural network, we need to maximize the log-likelihood or equivalently
minimize the negative log-likelihood. For a training set of D = x1, . . . ,xN data points, we
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can use Equation 4.26 to write the log-likelihood function as

log p(D|θ) =
N∑

n=1
log px(xn|θ)

=
N∑

n=1
[log pz(gθ(xn)) + log |det J(xn)|] .

(4.28)

To ensure that the neural network fθ is invertible, every layer of the network needs to be
invertible by itself since for several layers of successive transformations

x = fA(fB(fC(z))) (4.29)

their inverse is given by
z = gC(gB(gA(x))) (4.30)

where gi∈{A,B,C} are the inverse transformations of f i∈{A,B,C}. This also allows for an easy
evaluation of the Jacobian determinants for each layer by using the chain rule:

Jij = ∂gi
∂xj

=
∑

k

∑
l
∂gCi
∂gBk

∂gBk
∂gAl

∂gAl
∂xj

. (4.31)

Hence, the log-determinant of the Jacobian matrix is given by the sum of log-determinants
for each layer.

This type of modeling is known as normalizing flows because it allows transforming
a complex data distribution into a “normalized” form such as a simple Gaussian latent
distribution, and it uses a sequence of invertible mappings that lets the transformation “flow”
in between the data and latent spaces.

4.3.1 Coupling Flows

To implement a normalizing flow, we need to define invertible neural network layers which in
sequence can be used to create the flow transformation. A popular flow architecture that is
used in this thesis is a coupling flow [203]. A coupling flow such as the RealNVP model [206]
is made up of coupling layers and permutation layers.

In the following, an example of such a coupling layer is given. Consider the input z and
output x of a layer to be partitioned into two parts, i.e. z = [zA, zB] = [x1:d,xd+1:D] where
z has dimensionality D and zA dimensionality d (the same split is performed for x). The
output of a coupling layer is given in two parts. One is simply a copy of the input:

xA = zA (4.32)

and the second part is a linear transformation:

xB = exp(sϕ(zA)) ⊙ zB + bϕ(zA) (4.33)

where sϕ and bϕ are non-linear transformations, i.e. neural networks, with weights ϕ, and ⊙
denotes the Hadamard product, i.e. element-wise multiplication. s and b can be implemented
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zA

zB

NN1 NN2

xA

xB

⊙ +

exp(s(·)) b(·)

(a) Single layer

zA

zB

NN1 NN2 NN3 NN4

⊙ +

⊙ +

(b) Two layers permuted

Figure 4.5: Example of an invertible coupling architecture for normalizing flows. (a)
shows a single coupling layer and (b) two coupling layers with the second one permuted.
Shown is the forward direction, but the transformation is easily invertible. Figures taken
from Reference [160].

as two separate networks with different weights or as two outputs of the same network. This
formulation is easily invertible as

zA = xA (4.34)

zB = exp(−sϕ(zA)) ⊙ (xB − bϕ(zA)). (4.35)

The forward direction of this transformation is depicted in Figure 4.5a.
This allows also a simplification in calculating the Jacobian determinant by splitting the

Jacobian matrix into four parts:

J =




Id 0
∂zB
∂xA

diag(exp(−s))


 . (4.36)

The Jacobian matrix is now a lower triangular matrix and as such its determinant is simply
given by the product of the diagonal elements, i.e. det J = ∏

i exp(−si).
To increase the flexibility of such a flow, multiple coupling layers are stacked. However,

the value of xA = zA would not be changed. Therefore, permutation layers are introduced
in between the single coupling layers. For two coupling layers with a reverse permutation
in between, this is illustrated in Figure 4.5b. With this architecture, it is possible to build
complex normalizing flows that can be trained with the negative log-likelihood loss.

In a generalized form, Equation 4.33 can be written as

xB = h(zB, gθ(zA)) (4.37)

where h(·) is an efficiently invertible function, known as the coupling function, and gθ(zA) is
a neural network, known as the conditioner.

4.3.2 Continuous Normalizing Flows

Another approach to normalizing flows is to apply “infinitely” deep neural networks that
are defined in terms of ordinary differential equations (ODEs). These are called neural
ODEs [207] and can be used to construct a continuous normalizing flow (CNF).
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The idea is to define a neural network with a very large amount of layers approaching
infinity. A single layer of said network may be defined with a residual connection such as

z(t+1) = z(t) + fθ(z(t)) (4.38)

where t = 1, . . . , T are the labels of the sequential layers. To keep the parameter count finite,
the weights θ of the neural network are shared across all layers. When exploring the limit of
infinite layers, the change introduced by a single layer because infinitesimally small. This
allows us to define the vector z as a function of continuous variable t, i.e. z(t), with its
evolution described by a differential equation

dz(t)
dt

= fθ(z(t)) (4.39)

where the variable t is usually called the “time”. This differential equation is known as a
neural ordinary differential equation [207] (‘ordinary’ because it depends on a single variable).

The input of the network may be given by z(t = 0), then the output at time t = T is
obtained by integrating the neural ODE:

z(T ) = z(0)
∫ T

0
fθ(z(t))dt. (4.40)

This integral can be solved by using any numerical integration method, such as the Euler
method given by Equation 4.38. In such a ‘continuous network’ the number of integration
steps (ODE evaluation steps) can be seen as the depth of the network and generally the
predictions improve with more steps. Non-linear ODE solvers and with fixed or adaptive step
sizes can be applied to approximate the ODE with fewer steps and network evaluations.

With the neural ODE Equation 4.39 we can implement a continuous normalizing flow
(CNF) by defining a base distribution over the input vector p(z(0)) and then transforming
it to the target distribution p(z(T )) by integrating the neural ODE with a standard ODE
solver. It can be shown [207] that such a transformation can be evaluated by integrating a
differential equation

d log p(z(t))
dt

= −Tr
(

∂f
∂z(t)

)
(4.41)

where ∂f
∂z is the Jacobian matrix with elements ∂fi

∂zj
and Tr(·) denotes the trace of the matrix.

This non-linear transformation is called a CNF and is depicted in Figure 4.6. CNFs can be
trained with the adjoint sensitivity method [208] that are essentially a continuous version of
backpropagation. Just like in a regular normalizing flow, the CNF for density estimation is
trained with the maximum likelihood estimation analogous to Equation 4.28. The training,
however, is computationally expensive and memory intensive as it requires evaluating an
ODE solver with a sufficient number of steps for every weight update.

Evaluating the Jacobian determinant in a (discrete) normalizing flows model scales with
O(D) when it is implemented with layers such as coupling blocks. Evaluating a CNF requires
calculating the trace of the Jacobian matrix (O(D)), but as every element of the matrix
requires solving the ODE which scales with O(D) itself, the overall scaling behavior of a CNF
is generally O(D2). The scaling can be brought down to O(D) by approximating the trace
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p(z(T ))
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t

z

p(z(0))

Figure 4.6: Illustration of a continuous normalizing flow (CNF). The transformation of
the Gaussian base distribution at time t = 0 to the target distribution at time t = T is
shown. The density of continuous flow lines indicates the density of the target distribution.
Figure taken from Reference [160].

with a Monte Carlo estimator known as Hutchinson’s trace estimator which for a matrix A is
given by

Tr(A) = Eϵ∼N (0,I)
[
ϵTAϵ

]
(4.42)

where ϵ is a random vector sampled from a normal distribution. For M samples this results
in a trace approximation of

Tr(A) ≃ 1
M

M∑

m=1
ϵTmAϵm. (4.43)

With M = 1, this results in a noisy Jacobian trace estimate, but it can be still sufficient as
part of a stochastic gradient descent optimization. This estimator was introduced for the
implementation of an efficient CNF called FFJORD [209].

Recently, the flow matching method [210–212] was introduced as a more efficient way for
training CNFs. With flow matching there is no need for backpropagation with an integrator
which reduces the memory footprint further and allows for more stable training while also
keeping the sampling via ODE solvers fast and flexible. The method is closely related to
score matching and diffusion models and is discussed in Section 4.4.3.

4.4 Diffusion Models

For many applications in generative modeling (i.e. text-to-speech models, image generation)
diffusion models [213,214], also known as score-based generative models [215], have emerged
as the current state-of-the-art, outperforming GANs in generative fidelity [216] usually at the
cost of increased computational complexity. The general idea behind diffusion models is the
corruption of an input data sample by adding noise to it sequentially over a large number of
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Figure 4.7: Illustration of the general diffusion model framework with the forward
diffusion process q(xt|xt−1) and the reverse denoising process pθ(xt−1|xt).

steps until the data sample is indistinguishable from random noise. This corruption process
can be seen analogously to an encoding process in an autoencoder setup, although in diffusion
models this encoder is a fixed Gaussian distribution. A deep neural network is trained to
learn to revert this process, i.e. a decoder is trained that learns to remove a bit of noise from
the data sample at each step until the data sample is reconstructed, or a novel sample is
generated. The diffusion framework provides stable training for generative models and can
generate high-fidelity samples. As the generation process potentially involves thousands of
denoising steps, it might however be computationally expensive. A graphical illustration of a
diffusion model is shown in Figure 4.7.

There are many variants of diffusion models with more being developed as this is currently
a very active field of research in computer vision and machine learning. The approach was
popularized by the denoising diffusion probabilistic model [214] which implements a diffusion
model that predicts the noise that needs to be removed from an input sample (instead of the
data sample itself) and is trained on a fixed number of denoising steps (usually O(1000)).
The model has strong connections to denoising score matching [215, 217] which describes the
diffusion process with a stochastic differential equation (SDE). This allows for solving the
denoising process with standard numerical differential equation solvers and therefore with a
variable number of model evaluations for faster sample generation.

A process to streamline the training of diffusion models and relate them to CNFs was
introduced with flow matching [210–212]. The flow matching objective allows for a very stable
training and fast data sampling with standard ODE solvers. To mitigate the computational
cost of sampling from diffusion models, various distillation methods [218] are explored to
create variants of the models that are more efficient to evaluate without compromising the
generative fidelity. To this end, a computationally particular efficient method is the distillation
of a score-based generative model into a consistency model [219] which allows single and
multi-step generation. All these methods are introduced in this section and are utilized in
the following chapters for the generation of calorimeter showers and particle jets.
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4.4.1 Denoising Diffusion Probabilistic Models

To introduce the first type of diffusion model, termed denoising diffusion probabilistic model
(DDPM), we consider the data x0 ∼ q(x0) and latent variables x1, . . . ,xT with the same
dimensionality. The index denotes the “time” t just like in the CNF case and T is the total
number of diffusion steps, i.e. the total number of latent vectors. It is common in diffusion
models to use the index zero in x0 to denote the data space and the index T in xT to denote
the latent variable with the maximum noise, i.e. where the corrupted data is indistinguishable
from random noise. Note that the latent spaces previously were denoted with z, but to
be consistent with the common diffusion model literature, we use xT here. The following
derivation follows Reference [214].

The DDPM model takes the form of a latent variable model pθ(x0) =
∫
pθ(x0:T )dx1:T

with the trainable parameters θ. Here x0:T is shorthand for x0,x1, . . . ,xT . The reverse
process, i.e. the denoising process “noise to data”, is characterized by the joint distribution
pθ(x0:T ) with a Markov chain of learned Gaussian transition as

pθ(x0:T ) = pθ(xT )
T∏

t=1
pθ(xt−1|xt). (4.44)

The chain starts with Gaussian noise p(xT ) = N (xT ; 0, I) and each link in the Markov chain
is given by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4.45)

where the Gaussian transitions µθ and Σθ are the outputs of a neural network (the “decoder”)
which take the current latent variable xt and the current time step t as input with 1 < t ≤ T .

The forward process or diffusion process, i.e. the encoding process “data to noise”, is
characterized by the approximate posterior q(x1:T |x0) which is a Markov chain made up of a
fixed Gaussian process

q(x1:T |x0) =
T∏

t=1
q(xt|xt−1) (4.46)

with the Gaussian transitions according to the variance schedule β1, . . . , βT :

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI). (4.47)

The variances βt are typically set hyperparameters according to a specific scheduler function.
An important property for training is that the forward process allows for sampling any xt
directly without the need to sample all previous steps:

q(xt|x0) = N (xt;
√
αtx0, (1 − αt)I) (4.48)

where αt = ∏t
i=1 αi with αt = 1−βt. Overall the forward process has no trainable parameters

and only the reverse process is learned. In the DDPM implementation [214], the variance of
the reverse process is also fixed depending on the scheduled variance βt as Σθ(xt, t) = σ2I
where σ2 is function of βt. So the generative neural network is only used to approximate the
mean of the Gaussian noise.
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The DDPM model is trained in a similar way as the VAE by maximizing the ELBO since
the log-likelihood cannot be directly evaluated. The ELBO to the log-likelihood is given by

E [log pθ(x0)] ≤ Eq
[
log pθ(x0:T )

q(x1:T |x0)

]
. (4.49)

As a loss function, the negative log-likelihood is minimized and the ELBO can be rewritten
as the upper bound leading to the general DDPM loss function:

LDDPM(θ) = Eq


− log p(xT ) −

∑

t≥1
log pθ(xt−1|xt)

q(xt|xt−1)


 (4.50)

with the first term being simply the negative log-likelihood of the initially sampled Gaussian
noise to start the denoising process. Note that since the q encoding distribution is fixed,
there is no need for the reparameterization trick like in a VAE setup.

The ELBO can be rewritten in terms of the KL divergence and since both the forward
and reverse processes are written in terms of Gaussians, the KL divergence can be calculated
in closed form like in the VAE case. For a specific time step, the loss can be evaluated with a
mean squared error (MSE) as

LDDPM,t−1(θ) = Eq
[ 1

2σ2 ∥µ̃t(xt,x0) − µθ(xt, t)∥2
]

+ const. (4.51)

where the constant second term does not depend on θ and the forward process posterior µt is
given by a linear combination of the data sample and the sample at the current time step as

µ̃t(xt,x0) =
√
αtβt

1 − αt
x0 +

√
αt(1 − αt−1)

1 − αt
xt. (4.52)

Hence, the neural network µθ is trained to predict the mean of the forward process posterior,
i.e. the Gaussian noise that needs to be removed from the data sample at each time step.
Empirically, the loss can further be simplified to [214] the final DDPM training loss:

LDDPM,simple(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(

√
αtx0 +

√
1 − αtϵ, t)∥2

]
(4.53)

where t is uniformly sampled between 1 and T , ϵ is sampled from a standard Gaussian
distribution, and ϵθ is a neural network that predicts ϵ from xt (where xt is here the
corrupted data sample as xt =

√
αtx0 +

√
1 − αtϵ). During training, the t is sampled

individually for every data sample in the mini-batch which means that multiple time steps
are optimized for in parallel. Note that the neural network ϵθ needs to have the same input
and output dimensionality as the data (not counting the conditioning t), therefore often a
U-Net architecture [171] is used.

For generation, first xT is sampled, then the reverse process is sequentially applied as

xt−1 = 1√
αt

(
xt − βt√

1 − αt
ϵθ(xt, t)

)
+ σtz (4.54)

where z is sampled from a standard Gaussian distribution. This process is successively applied
from t = T, . . . , 1 until a novel data sample is generated. Only in the final step to x0 the
second term σtz is omitted to generate a noise-free data sample.
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While the DDPM model can create high-fidelity data samples, the sampling is compu-
tationally expensive considering the number of model evaluations needed. An alternative
approach to diffusion is the convert the reverse process into a differential equation that can
be solved with adaptive for fixed-step numerical solvers. This approach is discussed in the
next section.

4.4.2 Score Matching

Generative models trained via score matching [217,220] are closely related to diffusion models,
but introduce them from a different perspective. This is why diffusion models are also often
called score-based generative models. Both DDPM and the score-based model introduced in
Reference [217] are based on a discrete denoising process with potentially thousands of steps.
This naturally leads to the question of what would happen in the infinite limit of steps, i.e. a
continuous denoising process. It turns out, that one can describe the denoising process with a
stochastic differential equation (SDE) [215] which allows for a much more flexible description
of diffusion models. In the following, first the concept of score-based generative modeling
and score matching is introduced. Then the connection to continuous denoising processes
with SDEs is discussed.

The score function, Stein score, or simply score is defined as the gradient of the log-
likelihood of a probability distribution p(x) with respect to the data vector x, i.e. it is given
by the vector-valued function

s(x) = ∇x log p(x). (4.55)

Since the score function has the same dimensionality as the data, for images one can visualize
the score as a vector field pointing towards the direction of the highest local data density.
Knowing the score function means one is able to model the original data density and this
means one can use it to generate novel data samples. In a score-based generative model,
this is done by approximating the score with a deep neural network sθ(x) with trainable
parameters θ. Since the score model needs to have the same dimensionality as the data, often
a U-Net architecture is used.

To train the score model, one can simply minimize the distance between the real data
score and the model with a simple MSE loss such that the loss function becomes

LSM(θ) = 1
2Ex∼pdata(x)

[
∥sθ(x) − ∇x log pdata(x)∥2

]
. (4.56)

However, since the real score function is not known, this loss cannot be directly optimized.
This is where methods for score matching [220] comes into play. It can be shown that the
above objective is equivalent to

LSM(θ) = Ex∼pdata(x)

[
tr(∇xsθ(x) + 1

2∥sθ(x)∥2)
]

(4.57)

where the Jacobian of the score model is given by ∇xsθ(x). Since for high-dimensional data
the trace of the Jacobian is expensive to compute, a popular approximation is the application
of denoising score matching [221]: A pre-defined noise distribution qσ(x̂|x) is used to corrupt
the data sample x such that score matching can be applied to estimate the score of the
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perturbed data distribution qσ(x̂) =
∫
qσ(x̂|x)pdata(x)dx. This leads to the denoising score

matching loss

LDSM(θ) = 1
2Ex∼pdata(x),x̂∼qσ(x̂|x)

[
∥sθ(x̂) − ∇x̂ log qσ(x̂|x)∥2

]
. (4.58)

However, the approximation sθ(x) ≈ ∇x log qσ(x) ≈ ∇x log pdata(x) is only valid for small
noise levels such that qσ(x) ≈ pdata(x).

A common choice for the noise distribution is a Gaussian distribution qσ(x̂|x) = N (x̂|x, σ2I).
With this Gaussian perturbation, one can rewrite the score function as

∇x̂ log qσ(x̂|x) = − 1
σ2 ϵ (4.59)

where ϵ = x̂ − x is sampled from a normal distribution. Considering the noise model for the
forward process of DDPM in Equation 4.48, this is equivalent to

∇x̂ log qσ(x̂|x) = − 1
1 − αt

ϵ. (4.60)

With this formulation, it can be seen that the loss function in Equation 4.58 is the MSE
between the score model output and the noise vector ϵ. Hence, the denoising score matching
loss has the same form as the DDPM loss in Equation 4.53 and the score model sθ plays the
same role as the noise predictor model ϵθ in DDPM up to a given scaling factor −1/(1 − αt).

To implement the training based on the denoising score matching loss, one needs to
choose the variance σ2 for the noise that smears out the data distribution. However, a too
large variance might corrupt the data too much and leads to a poor approximation of the
score function. Therefore, in Reference [217] it proposed to use a sequence of noise values
σ1 < σ2 < · · · < σT where σ1 is small enough to not distort the data distribution much
and σT is large enough to mitigate problems in the score estimation such as too low data
density regions. This σi sequence can be seen as a schedule for the noise level and can be
implemented with the βt schedule in DDPM.

For an accurate score estimation, the score model then takes σ as an additional input
similar to the time step t conditioning in DDPM. The score network is hence given by sθ(x, σ)
which is known as a noise conditional score network (NCSN) [217]. Finally, the loss function
for training the NCSN via denoising score matching can be written as

LDSM(θ, σ) = 1
2Ex∼pdata(x),ϵ∼N (0,I)

[
∥sθ(x, σ) + 1

σ2 ϵ∥
2
]
. (4.61)

and combined over all σ ∈ {σi}Ti=1 yields

LDSM(θ, {σi}Ti=1) = 1
T

T∑

i=1
λσiLDSM(θ, σi) (4.62)

where λ(σi) are weighting coefficients. Hence, this training procedure mirrors closely the
DDPM training objective.

Once trained, new samples can be generated with the score model by sampling from the
model sequentially with i = T, T − 1, . . . , 2, 1. This sampling procedure from the score can
be described in terms of Langevian dynamics and is therefore known as annealing Langevian
dynamics. Overall the sampling process is analogous to the generating with the DDPM
model.
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a d ˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ arg min
✓

Et

!
�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq��2

2

‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E“ ��rxptq log p0tpxptq | xp0qq��2

2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced

4

Figure 4.8: Illustration of the forward and reverse diffusion process of a score-based
generative model described by a stochastic differential equation (SDE). Additionally, the
associated deterministic probability flow ODE trajectories are shown. Figure taken from
Reference [215].

Stochastic Differential Equations

In general, the more steps are used in the denoising process, the higher fidelity data samples
can be generated. Therefore, it is natural to ask a similar question as was discussed in the
context of discrete normalizing flows: What happens in the limit of an infinite number of
steps? It turns out, that similar to flows where the continuous limit is described by a neural
ODE, the continuous limit of denoising steps is described by a stochastic differential equation
(SDE) [215]. Both the DDPM and the score-based model can be seen as discretizations of
the continuous SDE model.

The forward diffusion process can be modeled with a general SDE of the form

dx = f(x, t)dt+ g(t)dw (4.63)

where t ∈ [0, T ] is a continuous time variable, f is a deterministic vector valued function
called the drift coefficient, g(t) is a scalar function called the diffusion coefficient, and w
is the standard Wiener process also known as Brownian motion. While the drift term is
deterministic (like in an ODE), the diffusion term is stochastic and given by infinitesimal
Gaussian steps.

The corresponding reverse diffusion process is also given by an SDE

dx = [f(x, t) − g(t)2∇x log pt(x)]dt+ g(t)dw̃ (4.64)

where w̃ is the Wiener process in reverse time from T to 0 and ∇x log pt(x) is the score
function at time t. The forward and reverse diffusion processes in terms of the SDEs are
illustrated in Figure 4.8.

The score function can be estimated with a neural network and trained with score matching
as discussed above. The continuous version of the denoising score matching loss is given by

LSDE(θ) = Et,x0,xt|x0

[
λt∥sθ(xt, t) − ∇xt log p0t(xt|x0)∥2

]
(4.65)
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where λt is a time-dependent weighting function and t is uniformly sampled from [0, T ], x0 is
sample from the training data distribution, and pt0(xt|x0) is the forward transition kernel
from time step t = 0 to t (usually a fixed Gaussian process that is easily evaluated).

A trained score model can be used to generated new samples by solving Equation 4.64
in reverse time. This can be done with numerical solvers that discretize the time variable.
Among the simplest solvers is the Euler-Maruyama solver [222] which uses a pre-determined
number of equally spaced time steps. This results in a sampling procedure that mirrors the
DDPM sampling and the score-based modeling via Langevian dynamics. The advantage of
the reverse SDE formulation is that it allows to apply more complex SDE solvers that can
improve the overall generative fidelity with fewer model evaluations.

Any diffuison process expressed as an SDE has also an associated deterministic process
expressed as an ODE. This ODE is called the probability flow ODE and its trajectories have
the same marginal probability densities {pt(x)}Tt=0 as the SDE. The probability flow ODE of
the reverse process corresponds to Equation 4.64 without the stochastic Wiener process and
is given by

dx =
[
f(x, t) − 1

2g(t)2∇x log pt(x)
]
dt. (4.66)

When the score in this ODE is approximated by a neural network, it is an example of a
neural ODE. Form this perspective, a continuous normalizing flow can be implemented using
a score model. For sample generation, the advantage of the ODE formulation is that it allows
for the application of very efficient (adaptive and fixed step) numerical ODE solvers that
can potentially generated high-fidelity samples with significantly fewer model evaluations
than the SDE solvers. It also allows for an exact log-likelihood evaluation as possible with
normalizing flows.

Expressing diffusion models very generally through an SDE allows for a flexible study
of different model implementation choices. Such as study was performed in Reference [223]
where the authors did a systematic scan over various ODE and SDE samplers, the associated
noise levels of the SDE solvers, and different noise parameterization, schedulers, and weighting
functions. From this scan, suggestions for efficient sampler and training parameterization are
derived which we adapted for the CaloClouds II model used in Chapter 6.

4.4.3 Flow Matching

A diffusion model with a neural network that models the score function can be sampled
from with numerical ODE solvers. This effectively results in a continuous normalizing flow
(CNF). However, the training still is based on a stochastic diffusion process with the score
matching objective. Flow matching [210–212] was introduced as an alternative training
method for CNFs based on deterministic probability paths. It allows for a very stable and
fast training of diffusion models resulting in models than can be very efficiently sampled
from with standard ODE solvers. In the following, flow matching is introduced as well as its
per-sample training objective conditional flow matching [212] — analogous to score matching
that is implementable with the denoising score matching objective.

To introduce flow matching , we write the neural ODE Equation 4.39 in terms of a
time-dependent vector field v(t) that is used to construct a time-dependent mapping ϕt(x)
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which is the flow. The flow is a time-dependent function of the data that maps the data x to
a specific time step, i.e. xt = ϕt(x). The neural ODE is then given by

dϕt(x)
dt

= vt(ϕt(x)). (4.67)

As introduced in Section 4.3.2, the vector field vt is usually given by a neural network with
trainable parameters θ, and we write it in accordance with the previous notation as vθ(x, t).
The neural network vθ becomes then a model of the flow ϕt and is known as the CNF.

Unlike Reference [212], we continue to use the time step t = 0 to denote the data space
and t = T to denote the maximally corrupted space, i.e. the Gaussian latent space. In the
following we set the maximum time step T = 1 to make the linear interpolation between
t = 0 and t = 1 more intuitive.

In Reference [207] the training of vθ is done with the adjoint sensitivity method which is
computationally expensive since it requires many ODE evaluations. A novel way to train
the CNF is inspired by score matching: We consider a target probability density path pt(x)
with a corresponding vector field ut(x) that allows to map p1 to p0, where p1 is a simple
distribution such as a standard Gaussian and p0 is the data distribution pdata(x). The flow
matching objective is now simply to minimize the distance between the model vector field vθ
and the target vector field ut via an MSE loss:

LFM(θ) = Et∼U(0,1),x∼pt(x)
[
∥vθ(x, t) − ut(x)∥2

]
. (4.68)

However, a priori, the appropriate choices for the target vector field ut and pt(x) are not
known.

In Reference [212] it is shown that an equivalent objective can be derived which is called
conditional flow matching (CFM), where the condition are examples from the data space,
i.e. the training set. The CFM objective is given by

LCFM(θ) = Et∼U(0,1),x0∼pdata(x0),x∼pt(x|x0)
[
∥vθ(x, t) − ut(x|x0)∥2

]
(4.69)

where pt(x|x0) is a conditional probability path starts in data space at t = 0 and ends in
Gaussian space at t = 1 with the associated vector field ut(x|x0). Interestingly, the CFM
objective works with any choice of conditional probability path and vector field.

We see once again the strong relation of this objective to diffusion models, where the
conditional probability trajectory is given by the forward diffusion process. The final CFM
objective bears close resemblance to the DDPM loss in Equation 4.53 and the denoising
score matching loss in Equation 4.61 with the difference that here the model is not trained
to predict the original sampled noise, but the perturbed data at each time step. This
approach to training diffusion models is also implemented in various other diffusion model
parameterization and among the suggestions in Reference [223].

Among other possibilities, a straightforward choice for the trajectory is introduced
in Reference [212] with optimal transport conditional vector fields. Considering Gaussian
conditional probability paths of the form

pt(x|x0) = N (x|µt(x0), σt(x0)2I) (4.70)
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where µ is the time-dependent mean and σ is the time-dependent scalar standard deviation
of a Gaussian distribution, the associated conditional flow can be expressed as

ψt(x) = σt(x0)x + µt(x0). (4.71)

To ensure that all conditional paths converge to the same Gaussian distribution p(x) =
N (x|0, I) at t = 1, the mean and standard deviations are chosen such that µ1(x0) = 0 and
σ1(x0) = 1. We further require µ0(x0) = x0 and σ0(x0) = σmin where σmin is small enough
to not distort the data much. The corresponding vector field can then be written as

ut(ψt(x)|x0) = dψt(x)
dt

(4.72)

which yields to the CFM loss for Gaussian trajectories:

LCFM(θ) = Et∼U(0,1),x0∼pdata(x0),x1∼N (0,I)

[∥∥∥∥vθ(ψt(x1), t) − dψt(x1)
dt

∥∥∥∥
2]
. (4.73)

Note that here ψt is conditioned on the data sample x0. The time dependent mean and
standard deviation can be chosen to scale linearly in time, i.e. µt(x) = tx0 and σt(x) =
1 − (1 − σmin)t. Inserting these choices into the flow Equation 4.71 to substitute the second
term in Equation 4.73 finally yields the optimal transport CFM loss that can be used to
effectively train vθ:

LCFM(θ) = Et,x0,x1

[
∥vθ,t(ψt(x1)) − (x0 − (1 − σmin)x1) ∥2

]
(4.74)

where x0 are samples from the data distribution and x1 are samples from a standard normal
distribution.

Since the mean and standard deviation interpolate linearly between the data and Gaussian
space, the conditional flow ψt is the optimal transport displacement map between the two
Gaussians. Data points that are transformed under such a map move along a straight line
trajectory at constant speed. This leads to particular stable and fast training of the CNF
model compared to the above discussed diffusion models where the noise scheduler leads to
curved trajectories (as can be seen in Figure 4.8). Empirically, the straight paths also allow
for faster sampling at the same fidelity or higher fidelity at the same sampling speed [212,224].

Once trained, we can generate new samples with various black-box ODE solvers, where
the simplest fixed-step solver is the Euler solver given by Equation 4.38. We employ flow
matching for training the EPiC-FM model for jet generation in Chapter 6.

4.5 Consistency Models

Consistency Models [219] are the newest type of generative models discussed in this chapter.
They are based on the idea of learning a consistent mapping of a probability path between
data space and a simple distribution such that the model can map from any point of this
trajectory to the data space. An important property of the model is self-consistency, i.e. any
point on the trajectory is mapped to the same initial point in data space. This allows for
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Consistency Models

Figure 2: Consistency models are trained to map points on
any trajectory of the PF ODE to the trajectory’s origin.

Diffusion models are bottlenecked by their slow sampling
speed. Clearly, using ODE solvers for sampling requires
iterative evaluations of the score model s�px, tq, which is
computationally costly. Existing methods for fast sampling
include faster numerical ODE solvers (Song et al., 2020;
Zhang & Chen, 2022; Lu et al., 2022; Dockhorn et al., 2022),
and distillation techniques (Luhman & Luhman, 2021; Sali-
mans & Ho, 2022; Meng et al., 2022; Zheng et al., 2022).
However, ODE solvers still need more than 10 evaluation
steps to generate competitive samples. Most distillation
methods like Luhman & Luhman (2021) and Zheng et al.
(2022) rely on collecting a large dataset of samples from
the diffusion model prior to distillation, which itself is com-
putationally expensive. To our best knowledge, the only
distillation approach that does not suffer from this drawback
is progressive distillation (PD, Salimans & Ho (2022)), with
which we compare consistency models extensively in our
experiments.

3. Consistency Models
We propose consistency models, a new type of models that
support single-step generation at the core of its design, while
still allowing iterative generation for trade-offs between sam-
ple quality and compute, and zero-shot data editing. Consis-
tency models can be trained in either the distillation mode or
the isolation mode. In the former case, consistency models
distill the knowledge of pre-trained diffusion models into a
single-step sampler, significantly improving other distilla-
tion approaches in sample quality, while allowing zero-shot
image editing applications. In the latter case, consistency
models are trained in isolation, with no dependence on pre-
trained diffusion models. This makes them an independent
new class of generative models.

Below we introduce the definition, parameterization, and
sampling of consistency models, plus a brief discussion on
their applications to zero-shot data editing.

Definition Given a solution trajectory txtutPr✏,T s of the
PF ODE in Eq. (2), we define the consistency function as
f : pxt, tq fiÑ x✏. A consistency function has the property

of self-consistency: its outputs are consistent for arbitrary
pairs of pxt, tq that belong to the same PF ODE trajectory,
i.e., fpxt, tq “ fpxt1 , t1q for all t, t1 P r✏, T s. As illustrated
in Fig. 2, the goal of a consistency model, symbolized as
f✓, is to estimate this consistency function f from data by
learning to enforce the self-consistency property (details
in Sections 4 and 5). Note that a similar definition is used
for neural flows (Biloš et al., 2021) in the context of neural
ODEs (Chen et al., 2018). Compared to neural flows, how-
ever, we do not enforce consistency models to be invertible.

Parameterization For any consistency function fp¨, ¨q, we
have fpx✏, ✏q “ x✏, i.e., fp¨, ✏q is an identity function. We
call this constraint the boundary condition. All consistency
models have to meet this boundary condition, as it plays a
crucial role in the successful training of consistency models.
This boundary condition is also the most confining archi-
tectural constraint on consistency models. For consistency
models based on deep neural networks, we discuss two
ways to implement this boundary condition almost for free.
Suppose we have a free-form deep neural network F✓px, tq
whose output has the same dimensionality as x. The first
way is to simply parameterize the consistency model as

f✓px, tq “
#

x t “ ✏

F✓px, tq t P p✏, T s . (4)

The second method is to parameterize the consistency model
using skip connections, that is,

f✓px, tq “ cskipptqx ` coutptqF✓px, tq, (5)

where cskipptq and coutptq are differentiable functions
such that cskipp✏q “ 1, and coutp✏q “ 0. This way,
the consistency model is differentiable at t “ ✏ if
F✓px, tq, cskipptq, coutptq are all differentiable, which is criti-
cal for training continuous-time consistency models (Appen-
dices B.1 and B.2). The parameterization in Eq. (5) bears
strong resemblance to many successful diffusion models
(Karras et al., 2022; Balaji et al., 2022), making it easier to
borrow powerful diffusion model architectures for construct-
ing consistency models. We therefore follow the second
parameterization in all experiments.

Sampling With a well-trained consistency model f✓p¨, ¨q,
we can generate samples by sampling from the initial dis-
tribution x̂T „ N p0, T 2Iq and then evaluating the consis-
tency model for x̂✏ “ f✓px̂T , T q. This involves only one
forward pass through the consistency model and therefore
generates samples in a single step. Importantly, one can
also evaluate the consistency model multiple times by al-
ternating denoising and noise injection steps for improved
sample quality. Summarized in Algorithm 1, this multistep
sampling procedure provides the flexibility to trade com-
pute for sample quality. It also has important applications
in zero-shot data editing. In practice, we find time points

3

Figure 4.9: The probability flow ODE trajectories between data space and a simple
noise distribution which are modeled by a consistency model fθ. The consistency model
maps any point on the trajectory to the data space. Figure taken from Reference [219].

both single step generation, i.e. by sampling from the simple distribution and evaluating
the consistency model once to generate a new data sample, but it allows also for multi-step
generation since iteratively samples can be denoised, “renoised”, and denoised again. Hence,
with consistency models one can trade between fast single-step generation and potentially
more accurate multi-step generation. A consistency model can either be trained directly from
data, or it can be distilled from an already trained diffusion model. By distilling a diffusion
model into a consistency model one can achieve single-step generation with similar generative
fidelity as the diffusion model achieves with many model evaluations. In the following the
training and distillation process are introduced in accordance with Reference [219].

The theory behind consistency models is based on the probability flow ODE Equation 4.66.
Considering a unique solution trajectory {xt}t∈[ϵ,T ] of the ODE, the consistency function is
defined as f : (xt, t) → xϵ where time step t = ϵ denotes the minimum data perturbation
such that xϵ ≈ x0. The consistency function is self-consistent such that evaluating it at any
point yields the same output, i.e. f(xt, t) = f(xt′ , t′). A consistency model fθ with trainable
parameters θ is trained to estimate the consistency function by utilizing the self-consistency
property. This idea is visualized in Figure 4.9.

Once trained, we can sample from the simple distribution, i.e. x̂T ∼ N (0, T 2I) where T
is the maximum time step like in diffusion models, and generate new data samples x̂ϵ by
evaluating the consistency model:

x̂ϵ = fθ(x̂T , T ). (4.75)

Hence, generation is performed in a single model evaluation step just like in a GAN. Addi-
tionally, multi-step generation is possible by first evaluating x̂ϵ = fθ(x̂T , T ), then sampling
another noise vector z ∼ N (0, I), using that noise to produce a “renoised” sample for time
step t′ along the ODE trajectory as x̂′

t = x̂ϵ+
√
t′2 − ϵ2z and finally evaluating the consistency

model again to generate an (ideally) higher fidelity data sample x̂′
ϵ = fθ(x̂t′ , t′). This would

be a two-step generation process, but it can be expanded to arbitrary many steps with
ϵ < t′1 < t′2 < · · · < T where time steps t′i are found by a greedy algorithm that maximizes the
final generative fidelity. The overall single- and multi-step generation procedure is illustrated
in Figure 4.10.
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Consistency Model

Figure 4.10: Illustration of the single- and multi-step generation process with a
consistency model.

A consistency model can be either from a trained diffusion model or directly from data.
Here first is the distillation approach discussed, known as consistency distillation (CD). As
ingredients for the distillation we consider the score model sϕ plugged into the probability
flow ODE Equation 4.66 and a numerical ODE solver to evaluate the ODE trajectory. We
discretize the time steps in the interval [ϵ, T ] into N − 1 steps as t1 = ϵ < t2 < · · · < tN = T .
With sufficiently large N , we assume xtn ≈ xtn+1 when running the numerical ODE solver one
step from tn+1 to tn. Specifically, the sample x̂ϕtn produced by the update function Φ(· · · ;ϕ)
of a single-step ODE solver applied to the ODE is given by

x̂ϕtn = xtn+1 + (tn − tn+1)Φ(xtn+1 , tn+1;ϕ). (4.76)

When using the Euler solver given by Equation 4.38, i.e. Φ(x, t;ϕ) = −tsϕ(x, t), the update
function simplifies to

x̂ϕtn = xtn+1 − (tn − tn+1)tn+1sϕ(xtn+1 , tn+1). (4.77)

A sample xtn+1 along the ODE trajectory can be generated by first sampling x ∼ pdata(x)
and then corrupting it with Gaussian noise, i.e. xtn+1 ∼ N (x, t2n+1I).

This way two adjacent points (x̂ϕtn ,xtn+1) on the ODE trajectory can be created — one
from data and the other from one step of the ODE solver. Due to the self-consistency
requirement, the loss function of the consistency model is given by a distance such as MSE
between the two points:

LCD(θ,θ−;ϕ) = Ex,n,xtn+1

[
λtn∥fθ(xtn+1 , tn+1) − fθ−(x̂ϕtn , tn)∥2

]
(4.78)

where n ∼ U(1, N − 1), λt is a time-dependent weighting function usually set λt = 1, and θ−

is a running average of the previous values of θ. For the optimization of fθ the CD loss is
minimized with respect to θ while θ− is updated with an exponential moving average (EMA).
Using common distillation terminology, we can call fθ− the “target model”, fθ the “student
model”, and sϕ the “teacher model”. Ideally, the loss converges and θ = θ− is achieved,
i.e. after sufficiently long training the student model is equivalent to the target model. A
flow chart of the overall CD procedure is shown in Figure 4.11.
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Figure 4.11: Overview of the consistency distillation performed to distill a diffusion
model (teacher) into a consistency model (student and target model). The student
model weights are updated via gradient descent, while the target model weights are an
exponential moving average of the student model weights. Figure originally published in
Reference [5].

The alternative method of training a consistency model directly is called consistency
training (CT). Instead of approximating the score with sϕ one can make use of the following
unbiased estimator of the score [219]:

∇x log pt(x) = Ex∼pdata,xt∼N (x;t2I)

[xt − x
t2

]
. (4.79)

In CT, this estimator replaces the score model that is used for CD. Assuming the Euler
method for the ODE solver, the CT loss function is given by

LNCT(θ,θ−) = Ex,n,z
[
λtn∥fθ(x + tn+1z, tn+1) − fθ−(x − tnz, tn)∥2

]
(4.80)

where z ∼ N (0, I) and N → ∞. In practice, the CT loss is implemented with a progressively
increasing number of steps N to approximate the continuous limit of ∆t → 0. Like in CD,
the CT loss is minimized with respect to θ while θ− is updated with an EMA.

Empirically, Reference [219] shows that using CD leads to more accurate consistency
models than CT. In subsequent work [225], suggestions for an improved parameterization
of CT are made that include alternative distance measures other than MSE in the CT loss,
an alternate weighting function, the removal of the EMA update of the target model, and
a changed noise and time step scheduler. We employ consistency distillation in Chapter 6
to distill the diffusion model CaloClouds II into a consistency model dubbed Calo-
Clouds II (CM) for calorimeter shower generation. This greatly speeds up the generation
process while maintaining high generative fidelity.
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Chapter 5

Voxelized Modeling of Calorimeter
Showers

The results presented in this chapter have been previously published in Reference [1] in
collaboration with Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Anatolii
Korol, and Katja Krüger. It is a more detailed analysis of the bounded information bottleneck
autoencoder (BIB-AE) introduced in Reference [6] by the same authors. My contributions
to this research were hyperparameter studies of the BIB-AE model, analyzing the physics
encoded in the latent space of the BIB-AE, improving the BIB-AE with a kernel density
estimation of the latent space, writing the majority of Reference [1], and presenting the
results at the 25th International Conference on Computing in High-Energy and Nuclear
Physics (vCHEP 2021). Additional results discussed in this chapter on the evaluation of
generative models were obtained under my supervision as part of the bachelor theses of Jan
Schreiber [17] and Nana Marie Werther [16]. The figures and tables in this chapter are similar
or identical to the ones published in References [1, 6, 16,17].

To compare theory predictions with measurements at collider experiments a lot of simulated
events are necessary. With increasing luminosity and data collection capabilities of detector
systems at future colliders, the need for larger simulated datasets increases as well. To keep
the computational cost sustainable, novel fast simulation techniques are being developed. In
particular, high-granularity calorimeter systems require high-fidelity fast simulation methods.
A very promising method for such fast simulations is using generative deep learning models.
This was pioneered with the CaloGAN in References [39–41] for calorimeters with a regular
granularity similar to the one found in the current CMS and ATLAS detectors. The work
presented here builds upon the introduction of a high fidelity generative model for the fast
simulation of high-granularity calorimeter showers.

To study the performance of the generative model, we use it to simulate electromagnetic
showers in the electromagnetic calorimeter (ECAL) of the envisioned International Large
Detector (ILD). Since the cells in the ILD calorimeter system are rectangular, the showers can
be conveniently represented as a fixed-grid 3-dimensional image with each voxel representing
a sensor cell of the calorimeter. This way we can use a convolutional neural network (CNN)
architecture and common machine learning frameworks to create high-fidelity models for fast
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shower simulation. A downside of this voxelized representation of high-granularity showers is
that the images are rather sparse, leading to many empty voxels on the cost of computation
efficiency. This limitation is overcome in subsequent work discussed in Chapter 6.

Based on the information bottleneck (IB) principle [226] and as a unification of autoencoder
and generative adversarial network variants, the bounded information bottleneck autoencoder
(BIB-AE) was introduced in Reference [199]. A theoretical introduction to the BIB-AE is
given in Section 4.2.3. In Reference [6], we introduce a BIB-AE implementation that can
produce high-granularity calorimeter showers with high fidelity at a high speed.

In this chapter, the latent space of a BIB-AE — trained to generate high-granularity
photon calorimeter showers — is explored to interpret what physical information is encoded
in its latent space. This understanding helps in optimizing the hyperparameters of the model,
allows for improved latent space sampling, offers the possibility of targeted sampling, and
increases the trust in the model’s capability. We further explore evaluation metrics to better
benchmark the performance of calorimeter shower generative models.

In a follow-up publication, we applied the same BIB-AE model — with slight modifications
— to hadronic showers of charged pions in the ILD HCAL. We refer to Reference [9] for details,
since in this thesis the focus lies on the generative modeling of electromagnetic showers. The
BIB-AE was further applied to photon showers with a non-perpendicular incident angle in
Reference [51].

In Section 5.1 we introduce the dataset of simulated photon showers and their voxelization
into 3D images. The BIB-AE model is introduced in Section 5.2 and its training and sampling
methods are discussed. In Section 5.3 we analyze the latent space of the BIB-AE model and in
Section 5.4 we apply the understanding of the latent space to improve the generative fidelity
of the BIB-AE. We conclude with studies of several evaluation metrics for generative models
in Section 5.5 and the introduction of a novel evaluation measure, the Fréchet regression
distance (FRD), in Section 5.6. A summary is provided in Section 5.7.

5.1 Calorimeter Shower Images

For this study, a large number of photon showers in the Si-W ECAL of the proposed ILD
were simulated1. The ECAL is a sampling calorimeter with 30 active silicon layers and 30
passive tungsten layers — with the first 20 having a thickness of 2.1 mm and the following
10 a thickness of 4.2 mm. The silicon sensors have a size of 5 × 5 mm2 and a thickness of
0.525 mm. In the lateral x− y plane, we consider a 30 × 30 cells section of the ECAL (for
each of the 30 layers). Together with the z-axis in the longitudinal direction (the incident
shower direction and direction of shower development), this allows us to represent the photon
showers in a 30 × 30 × 30 regular grid. We will be referring to this data tensor x ∈ R30×30×30

as a 3-dimensional calorimeter image, where each voxel (a 3D pixel) corresponds to the energy
deposited in a specific cell sensor. Depending on the specific layer, the cells are slightly
staggered in the x-direction (but uniform in the y-direction), hence slight irregularities are
introduced by moving the pixel positions to a cubic 3D image.

1The simulated data was created by Engin Eren.
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(a) ILD ECAL geometry (b) 50 GeV Geant4 shower

Figure 5.1: (a) Visualization of a Geant4 simulated photon shower in the ILD ECAL
with an incident energy of 60 GeV. For reference, the cylindrical structure of the tracker
is shown. Figure taken from Reference [6]. (b) 3D image of a 50 GeV Geant4 shower.
The arrow shows the direction of the incident photon.

The ILD simulation runs in the iLCSoft [227] framework. For the full simulation of
photon showers in the ECAL, Geant4 [118] Version 10.4 with the QGSP-BERT physics list
is used. The realistic detector is implemented in DD4hep [117] Version 1.11.

All incident photons are aimed at the center of the x− y lateral plane of the barrel ECAL
section. A visualization of a photon shower in the ILD ECAL is shown in Figure 5.1. A
total of 950,000 photon showers with uniformly distributed incident energy between 10 and
100 GeV are simulated for the training set. Multiple datasets are simulated for evaluation of
the generative models: 40,000 uniformly distributed showers for the evaluation of the full
(10-100 GeV) energy spectrum as well as 4,000 single energy showers for energies between
20 and 90 GeV in discrete 10 GeV steps. Further details on the dataset can be found in
Reference [6].

5.2 Bounded Information Bottleneck Autoencoder (BIB-AE)

In Reference [6] we introduce the bounded information bottleneck autoencoder (BIB-AE) as
a generative model for the generation of photon calorimeter showers. We find an increased
generative fidelity with the BIB-AE model when comparing it to a GAN and a Wasserstein-
GAN (WGAN). The BIB-AE implementation2 is inspired by Reference [199] and is a
unification of multiple (variational) autoencoder and GAN variations such as VAE [193], β-
VAE [195], adversarial autoencoder (AAE) [196], GAN [228], WGAN [190], WGAN-GP [191]
and VAE-GAN [202]. For a theoretical introduction of the BIB-AE, see Section 4.2.3.

2The BIB-AE was implemented by Sascha Diefenbacher. A detailed explanation of the BIB-AE components
can be found in his PhD thesis [153].
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Figure 5.2: Schematic of the BIB-AE model including the Post Processor network. The
model consists of multiple sub-models: An encoder, a decoder, two reconstruction critics,
a latent space critic, and a Post Processor Network. The BIB-AE is conditioned on the
energy of the incident particle E (blue lines). Figure adapted from Reference [6].

5.2.1 BIB-AE Model

An overview of the complete BIB-AE model framework is shown in Figure 5.2. The blue line
indicates, that all sub-models are conditioned on particle incident energy Einc. At the core of
the model is a VAE, with the Encoder and Decoder model components. The Encoder encodes a
3D calorimeter image x in the latent space parameterized by the mean µ and variance σ vectors.
The Encoder network is implemented as a CNN using 3D convolutional layers intertwined
with layer normalization [229] and a fully connected network stem. LeakyReLU [230] is
used for all activation functions in the BIB-AE. Using the reparameterization trick (see
Section 4.2.1) a latent space vector z is sampled. To regularize the latent space towards a
normal Gaussian, the Kullback-Leibler divergence (KLD) is used as a loss function (scaled
with a hyperparameter with respect to the reconstruction loss terms, just like a β-VAE [195]).
For an additional latent space regularization, we employ a WGAN-like Latent Critic (like
in an AAE [196]) and a maximum mean discrepancy (MMD) [200] loss. The latent critic is
implemented as a simple fully connected network.

During training, the Decoder is used to reconstruct the encoded calorimeter images
based on the latent vector z. It is implemented as a reverse CNN and largely inverts the
network architecture of the Encoder. The model stem is a fully connected network, followed
by 3D transpose convolutional layers intertwined with layer normalization used for further
up-sampling, and additional regular 3D convolutional layers with layer normalization. The
output of the Decoder is a full 3D image in the same data format as the original training data.
Once trained the Decoder is used to generate novel calorimeter showers from a randomly
sampled z.

Instead of an MSE reconstruction loss, we employ two Wasserstein critic networks to
optimize the shower generation by the encoder-decoder. Just like in a WGAN, the Critic
learns the difference between Geant4 and generated/reconstructed showers. As it is a
distributional loss, i.e. it minimizes the difference between the distribution of (a batch of)
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Geant4 showers vs. the distribution of (a batch of) reconstructed showers, we need an
additional critic that directly compares individual showers, namely the encoded shower with
the decoded/reconstructed shower. For this purpose, we employ a Difference Critic which is
used to minimize the (shower-wise) distance between an input and a reconstructed shower.
Through adversarial training and the right balancing of loss terms, the Encoder and Decoder
improve as the Critic and Difference Critic improve simultaneously. The critics are trained
using gradient penalty [191] and weight updates are alternated between iterations with either
critic training or encoder-decoder training. In practice, both critics are implemented in a
single neural network with a single critic output (the learned Wasserstein distance). The
Critic part of the network is implemented as a CNN with 3D convolutional layers intertwined
with layer normalization and a fully connected network stem. The Difference Critic part is a
fully connected network. The FCN stems of both critics are combined to allow for a single
output.

The final model part is the Post Processor Network which refines the reconstructed/gen-
erated shower. It consists of a pixel-wise neural network (3D convolutional layers with kernel
size = (1,1,1) with layer normalization [229]) effectively able to slightly adjust each pixel.
This allows the model to i.e. achieve a very good representation of the cell energy spectrum
including the precise modeling of the MIP (minimum ionizing particle) peak. The model is
trained using both MSE and MMD loss functions. The MSE loss is applied pixel-wise, while
the MMD loss is used to compare the distribution of pixel values. Since computing the MMD
for up to 27,000 pixels is prohibitively expensive, we implemented a Sorted-Kernel-MMD. For
this MMD variant, we first sort all pixel values for both generated and Geant4 showers and
then apply the MMD on subsets of the 100 pixels using 25 moving comparison windows. This
comparison includes an adequate number of total hits, as anticipated above the half-MIP
energy threshold.

The whole BIB-AE model has about 71M weights, of which the Decoder (the actual
generator) takes up about 35M weights — largely attributed to the use of fully connected
layers in the stem of the Decoder before applying 3D convolutions. The BIB-AE model was
implemented using PyTorch [173].3

5.2.2 BIB-AE Training

To train the overall BIB-AE model, we update the Encoder and Decoder networks, while
keeping the weights of the critic networks fixed, and vice-versa. We define the Encoder e,
the Decoder d, the Critic c, the Latent Critic cL, the Difference Critic cD, and the Post
Processor Network nPP. Overall the loss during training of the BIB-AE model (without the
Post Processor Network) is a weighted summation of the reconstruction losses (Critic and
Difference Critic) and the latent space regularization losses (reverse DKL, MMD, and Latent

3The BIB-AE model is available at: https://github.com/FLC-QU-hep/getting_high
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Critic):

LBIB-AE = − βc · Ex[c(d(e(x)))]
− βcD · Ex[cD(d(e(x)) − x)]
− βcL · Ex[cL(e(x))]
+ βKLD ·DKL(z||e(x))
+ βMMD · MMD(e(x), z),

(5.1)

with hyperparameters β for weighting each loss contribution, x sampled from the data
distribution, and z sampled from normal distributed noise N (0, I). For simplicity, the explicit
conditioning of all sub-models on the incident energy Einc is omitted.

While training the critic networks, the Encoder and Decoder weights remain fixed.
Following the definition of the WGAN loss with gradient penalty [191], the loss LC for critic
c is given by:

LC = Ex[c(d(e(x)))] − Ex[c(x)] + λ Ex̂[(∥ ∇x̂c(x̂) ∥2 −1)2], (5.2)

with x̂ being an equal mixture of samples drawn from the data distribution and reconstructed
data d(e(x)), and λ as a weighting hyperparameter for the gradient penalty term (typically
set to 10). The loss for the Difference Critic cD is similarly given by:

LCD =Ex[cD(d(e(x)) − x)] − Ex[cD(x− x = 0)]
+ λ Ex̂[(∥ ∇x̂cD(x̂) ∥2 −1)2].

(5.3)

Finally, the Latent Critic loss LCL is given by:

LCL = Ex[cL(e(x))] − Ez∼N (0,1)[cL(z)] + λ Ex̂z [(∥ ∇ẑxcL(ẑx) ∥2 −1)2], (5.4)

with ẑx being a equal mixture of the encoded data e(x) (including reparameterization) and
normal distributed noise z ∼ N (0,1).

After training the BIB-AE, the Post Processor Network nPP is trained using the Sorted-
Kernel-MMD between the input and output calorimeter shower images and the MSE between
the reconstructed and output images. While the MMD helps to align the hit energy spectrum
directly with the original data distribution, the MSE guarantees that the modifications by
the Post Processor Network are minimal. The loss function is implemented as:

LPP = MMD(nPP[d(e(x))],x) + βMSE · MSE(nPP[d(e(x))],d(e(x))). (5.5)

5.2.3 BIB-AE Sampling

During shower generation, only two model parts are used: The Decoder and the Post Processor
Network. While during training data showers are reconstructed, during sampling new (unseen)
showers are generated. For generating showers, a conditional incident energy is set and a
random latent vector z is sampled from a normal Gaussian distribution N (0,1). z is decoded
by the Decoder and the generated shower is refined by the Post Processor Network. A
detailed comparison of the BIB-AE fidelity in comparison to a GAN and a WGAN is given
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in Reference [6]. Generating a shower with Geant4 on a single CPU core takes (on average
over the whole 10-100 GeV range) 4082 ± 170 ms, while the sampling with the BIB-AE takes
418.04 ± 0.20 ms on the same hardware (with batch size 100), resulting in a 10× speed-up.
Using a NVIDIA® V100 (32 GB) GPU, the speed-up is even greater with 1.42 ± 0.01 average
sampling time of a single shower (with batch size 100), leading to a speed-up of 2874×. Note
that the speed-up using CPUs in comparison to Geant4 is of more practical importance
than the GPU timing since GPUs are much more expensive and not as widely available.
Additionally, Geant4 is currently only available for CPU hardware.

An advancement over the baseline BIB-AE introduced in Reference [6] constitutes the
introduction of the latent kernel density estimation (KDE) in Reference [1]. This multi-
dimensional KDE estimates the distribution of the encoded (resampled) z latent space of the
whole training dataset. During sampling, instead of z ∼ N (0,1) we now sample z from the
KDE. This way correlations encoded in the latent space are replicated by the KDE sampling
and a higher fidelity modeling is achieved. This simple idea to extend a VAE was previously
used in publications such as Reference [27], where it is introduced as density information
buffer for event generation. In subsequent work, such as References [50, 51], the KDE is
replaced with a normalizing flow to allow for conditional latent space sampling. The latent
space and the KDE are further discussed in the following Section 5.3.

More details on the BIB-AE model including the exact architectures and hyperparameters
can be found in References [1, 6, 153]. With small changes, the BIB-AE was also used in
subsequent work [9, 51].

5.3 Latent Space Decoding

In any autoencoder, some information about the original data is encoded into the latent
space and then used for the reconstruction. After benchmarking the high generative fidelity
and the substantial speed-up of generating showers with the BIB-AE compared to Geant4
in Reference [6], we are exploring the latent space of the BIB-AE to understand if and what
physics information is encoded (learned) by the model. This understanding of the latent
space can be used either for targeted sampling — of photon showers with specific physical
properties — or to improve the overall fidelity when sampling from the BIB-AE, i.e. by
optimizing hyperparameters or by using the above-mentioned KDE sampling. A connection
of this latent space study can be drawn to similar studies performed with autoencoders
trained on photos. Here, researchers are able to interpolate between specific latent variables
to change specific aspects of generated photos, i.e. the rotation of objects or faces [231].

5.3.1 Latent Space Size

As a baseline, the BIB-AE model in Reference [6] is implemented with n ≡ dim(z) = 24
trainable latent variables µi∈[1,n] and σi∈[1,n]. Additionally, m = 488 (not trainable) latent
space variables are sampled from a normal Gaussian N (0, 1). Hence the total dimensionality of
the latent vector ztotal is dim(ztotal) = n+m. To understand the optimal size of the trainable
latent space z, we vary n while keeping dim(ztotal) = 512 constant (for the calculation of the

119



CHAPTER 5. VOXELIZED MODELING OF CALORIMETER SHOWERS

BIB-AE loss in Equation 5.1 only the n trainable latent variables are considered). The size
of the latent space should be explored in relation to its information content, since even a low
number of latent variables could contain more information than a large number.

We use the Kullback-Leibler divergence (KLD) to measure the difference between the
distribution of the latent space z and a normal Gaussian distribution N (0, I). Note we
refer here technically to the reverse Kullback-Leibler divergence, which is typically used in
VAE trainings. The KLD of a single set of latent variables µi and σi compared to a normal
Gaussian distribution is in practice given by [193]:

DKL,i = −1
2
(
1 + log(σ2

i ) − µ2
i − σ2

i

)
, (5.6)

typically calculated with the natural logarithm. The total DKL of the latent space (the same
as used as part of the BIB-AE loss function) is the summation over the DKL,i of all latent
variables i, DKL = ∑n

i=1DKL,i. With the KLD, we can quantify how much information is
encoded in the latent space and each latent variable i individually [232,233]. Depending on the
logarithm in Equation 5.6, one unit of information is typically measured in nats (natural units
of information, based on the natural logarithm), or bits (binary units of information, using
the base-2 logarithm). Latent variables sampled from a normal Gaussian N (µi = 0, σ2 = 1)
contain no information (0 nats (bits)), while latent variable zi sampled with µi ̸= 0 and/or
σ2
i ̸= 1 contains information DKL,i > 0 nats.

By adjusting the hyperparameter βKLD in Equation 5.1 as well as by changing n, the
amount of information encoded in the latent space is steered. By reducing βKLD with a
fixed and large enough n, the information content is increased as the KLD term is lower
weighted in the overall loss allowing for a higher KLD. For a fixed βKLD and increasing n,
the information content is increased as more variables are available to contain information.
The information content however saturates around a certain n once a KLD value is reached
that is bound by the βKLD weight in comparison to the other loss terms.

We demonstrate this behavior of the latent space scaling by training multiple models with
various n ∈ [2, 512] and fixed βKLD = 0.05 (the default value in Reference [6]), Note that
for n = 24 the training from Reference [6] was used. For comparison, we also trained one
model with a larger βKLD = 0.4 and a fixed n = 24. In Figure 5.3 we show the performance
of the resulting KLD in this study. In both figures, the individual latent variables per model
are sorted with descending KLD (x-axis). In the left figure, we show the integrated KLD,
i.e. the sum of all individual DKL,i up to and including latent variable i. We see, that with
increasing n, the total KLD of the latent space of a model increases until it saturates above
60 latent variables and about 45 nats (≈ 64 bits). Hence, at βKLD = 0.05, more than 60
trainable latent variables do not increase the information encoded in the latent space. If
n > 64 variables are available, the remaining ones contain little to no information.

This can be observed in Figure 5.3 (right), where we show the KLD of the individual
latent variables (sorted on the x-axis with decreasing KLD). For all models, a similar pattern
emerges: two variables contain a much larger amount of information than the remaining
ones, and at around latent variable 60, the KLD drops off to DKL < 0.3 nats. Note that for
the model with βKLD = 0.4, only 7 latent variables contain information and the information
saturates at DKL ≈ 5 nats.
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Figure 5.3: Left: Integrated Kullback-Leibler divergence (KLD) for latent variables
sorted with decreasing KLD for BIB-AE models with various latent space sizes. Right:
KLD of individual latent space variables sorted with decreasing KLD for BIB-AE models
with various latent space sizes. The vertical dashed lines represent the latent space sizes
investigated. All models are trained with a baseline weight βKLD = 0.05, except stated
otherwise. Figures originally published in Reference [1].

Based on this assessment, we would naively expect that a model with about n = 60
yields optimal performance at βKLD = 0.05. To evaluate the models, we introduce the fidelity
score SJSD based on the Jensen-Shannon distance (JSD) [234] between Geant4 and BIB-AE
sampled showers in various 1D physical observables. The JSD is the square root of the
Jensen-Shannon divergence DJS, a symmetric version of the Kullback-Leibler divergence DKL,
given by:

DJS(P ||Q) = 1
2 (DKL(P ||M) +DKL(Q||M)) (5.7)

where P and Q are the two distributions being compared and M is the mixture M = 1
2(P+Q).

As observables, we chose the ones closely investigated in Reference [6], namely the visible
cell energy, the total visible shower energy for three individual incident energies, the number
of cell hits (occupancy) for three individual incident energies, the center of gravity in z

direction, the longitudinal energy profile, and the radial energy profile, i.e. the histograms
presented in Figure 5.7. The total fidelity score SJSD is calculated as a weighted summation
of the SJSD of each of the six distributions. Specifically, the weighting is done based on the
JSD of each individual histogram compared to the JSDs of the other histograms (from the
same model). The weighting is implemented as follows [1]:

1. Calculate the JSD of each histogram for each model and epoch that are compared in
the overall score: JSDi,m,e where i ∈ [1, . . . , 6] is the histogram index, m is the model
index, and e is the epoch index.

2. The weighting factor for the JSD of each i histogram is given by the average JSDi,m,e.
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Table 5.1: Fidelity score SJSD for the best epoch of multiple model configurations with
various latent space sizes n. For n = 24 the best score out of multiple trainings is given.
The mean score and standard deviation for those trainings is: SJSD,24 = 1.02 ± 0.12.
Only one training was performed for sizes n ̸= 24. Table adapted from Reference [1].

latent size n 2 6 12 18 24 64 128 512

SJSD 1.64 1.12 1.11 0.95 0.83 0.88 0.94 0.98

3. The final fidelity score SJSD for each model m and epoch e is given by:
SJSD,m,e = 1

6
∑
i

[
JSDi,m,e · (JSDi,m,e)−1

]
.

The resulting fidelity scores for the best epochs of the different model configurations
are presented in Table 5.1. We observe worse performance for very low n, the performance
saturates for increasing n, and the best performance we observe for n = 24. At n = 24
we trained a total of seven models and show in the table the best-performing model with
the lowest score. Over these seven training, we observe a mean and standard deviation of
the fidelity score at SJSD,24 = 1.02 ± 0.12. Due to computational limitation — the BIB-AE
training takes up to 3 weeks on an NVIDIA® V100 GPU — the other models with n ̸= 24
were only trained once. Yet, we observe that the original BIB-AE hyperparameter choice in
Reference [6] is well motivated, a high generative fidelity can be reached with n = 24, and
significantly larger latent space sizes do not offer a benefit. This further suggests, that the
maximum amount of encoded information at 45 nats — encoded for example in the model
with n = 64 — is not necessary for optimal generative fidelity.

5.3.2 Latent Space Analysis

Next, we investigate what kind of physics information is encoded in the latent space of the
BIB-AE model. As we have seen, only a few latent variables contain most of the information.
Therefore, we calculate the Pearson correlation coefficient r [235] between the five most
information-rich latent variables zi∈[0,4] (the five highest KLD variables) as well as the
conditioning E and various shower physics observables. As observables, we choose the 1st

and 2nd moment in x-, y-, and z-direction mi∈{1,2},j∈{x,y,z} (the first moment is equivalent
to the showers’ center of gravity), the total visible energy Evis, the particles incident energy
Einc, the number of hits nhits, and the visible energy fraction in the first, second, and third
third of the detector (in z-direction) Ei∈{1,2,3}/Evis.

In Figure 5.4 we show these correlations for four model configurations: n = 12, 24, and
512, and for n = 24 either βKLD = 0.05 (training from Reference [6]) or βKLD = 0.4. Here,
the encoded latent variables zi are sampled from the encoding N (µi, σ2

i ) (“reconstruction”)
and not from a normal Gaussian distribution N (0, 1) (“generation”). An expected perfect
correlation of r = 1.0 is the correlation of the incident energy with itself, the visible energy,
and the number of hits. An unexpected correlation is the very strong correlation of r = 0.9
between the most information-rich latent variable z0 and the center of gravity in z-direction
m1,z. As the center of gravity in z is correlated to the shower start, it is also correlated to
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Figure 5.4: Pearson correlation coefficients between various physics observables and the
latent space variables zi of the five highest KLD latent variables (in descending order) as
well as the incident particle energy E. Shown for BIB-AE models with latent size n = 12,
24, and 512. The baseline latent weight is βKLD = 0.05 is used except for one training
with βKLD = 0.4 and n = 24. Zero Pearson correlation values are omitted. Figures
originally published in Reference [1].

the total deposited energy in the first and third third of the detector, which shows a similarly
strong correlation with z0. The second most information-rich variable is correlated with
r ≈ 0.5 to the second moment in z m2,z and similarly correlated to the visible energy in the
second third of the detector. Interestingly, these correlations are apparent in all four models,
regardless of latent size n and KLD weight βKLD. Hence, we can conclude that the BIB-AE
always learns to encode the center of gravity in z-direction (and other associated observables
such as the shower start) in the highest KLD variable. The correlation between z0 and m1,z
is also much stronger (r = 0.9) than between the conditioning energy E and m1,z (r = 0.4),
which indicates that this is a very useful observable for the network to learn in addition to
its conditioning.

Having identified this correlation, we can use the z0 latent variable for targeted sampling
of showers with a certain m1,z. We demonstrate this in Figure 5.5, where we visualize
five generated showers as a 3D image. These showers were sampled with the model from
Reference [6] trained with n = 24 and βKLD = 0.05 and all latent variables zi ̸=0 = 0 and
values between -3 and 3 for z0. We observe that with increasing z0 values the shower starts
later in the calorimeter effectively shifting the center of gravity. This is further visualized in
Figure 5.6, where we show the energy profile of these five showers and observe how the layer
with the highest energy shifts by changing the value of z0.

Not only does this knowledge of the encoded latent information allow for targeted sampling
of calorimeter showers with certain physical properties, it also highlights the fact that indeed
important information is encoded in the latent space. This information may be lost when
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Figure 5.5: BIB-AE generated showers as 3D images. Generated from a latent space
with all zi>0 = 0, except the highest KLD variable z0 is varied between -3 and 3. The
color coding corresponds to the cell energy. With increasing z0 the shower start is moved
to later in the calorimeter, since z0 correlates with the center of gravity in z (shower
incident axis). Figures originally published in Reference [1].
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Figure 5.6: Longitudinal energy profile for multiple showers decoded from a latent
space with all zi>0 = 0, except the highest KLD variable z0 is varied between -3 and 3.
Figure originally published in Reference [1].
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generating new showers from a latent space simply sampled from N (0, 1) — as is usually
done in a VAE and our baseline BIB-AE setup — and might ultimately impact the achievable
generative fidelity of the BIB-AE model.

5.4 Improved Generation with Latent Space Sampling

An alternative approach to sampling the latent space from a standard normal distribution
N (0, 1) is the sampling from a distribution that mirrors the encoded latent space during
training and therefore can capture correlations between the latent variables that contain
information. If each variable is sampled independently and identically distributed (i.i.d.)
from N (0, 1) these correlations are lost. Additionally, even independently the high KLD
variables differ from normal distributed samples (otherwise they would contain DKL,i = 0 nats
of information) and are hence differently modeled during generation than during training by
sampling them from N (0, 1). Another sampling option would be to increase βKLD weight
thereby enforcing less information in the latent space. This way a sampling from N (0, 1)
is closer to the encoded latent space which could increase sampling fidelity. However, this
requires a retraining of the BIB-AE model, while sampling from the encoded space can be
performed with an already trained model.

5.4.1 Differential Distributions

We compare both Geant4 and the baseline BIB-AE from Reference [6] with both options for
improving the accuracy of the latent space sampling. For a model with a stronger regularized
latent space, we retrain the BIB-AE with a higher βKLD = 0.4 than the baseline βKLD = 0.05.
Additionally, we advance the BIB-AE model by sampling from a model of the encoded latent
space, i.e. a kernel density estimate of the reparameterized z space. We implemented this
by encoding 500,000 showers of the training set and applying a 25-dimensional KDE to
model the latent space (25 dimensions, due to n = 24 and the energy conditioning). This
way we can reuse the exact BIB-AE training done for Reference [6] (with βKLD = 0.05 and
n = 24). Among other methods for sampling from the encoded space, this KDE sampling is
also suggested in Reference [27] for the so-called Buffer-VAE.

In Figure 5.7 we show six differential distributions of shower observables: the visible
cell energy (top left), the total visible energy for three fixed incident photon energies at 20,
50, and 80 GeV (top center), the number of hits for these three energies (top right), the
center of gravity in z-direction (bottom left), the longitudinal energy profile (bottom center),
and the radial energy profile (bottom right). All three models align well with Geant4 in
the cell energy distribution. Note that the edge around 0.2 MeV corresponds to the most
probable energy deposition of a minimum ionizing particle (MIP) in a silicon sensor of the
ILD Si-W ECAL at a perpendicular incident angle. This feature is particularly challenging
to model and a good benchmark for a high-fidelity model such as the BIB-AE. The region
below 0.1 MeV is greyed out as for all other shower observables a low energy cut is applied at
this value since below about half a MIP the visible energy cannot be distinguished from the
electronic noise of the silicon sensor.
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Figure 5.7: Differential distributions comparing various shower physics observables
between Geant4 and BIB-AE models with βKLD = 0.05, βKLD = 0.4 and βKLD = 0.05
with KDE sampling. 40,000 showers are shown for the full energy spectrum and 2,000
showers for each single energy. Figures originally published in Reference [1].
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Figure 5.8: Mean and relative width (similar to the energy resolution) of the total
visible energy deposited in the calorimeter for multiple incident particle energies for
Geant4 and BIB-AE models with βKLD = 0.05, βKLD = 0.4 and βKLD = 0.05 with KDE
sampling. Figure originally published in Reference [1].

Both models with βKLD = 0.05 reproduce well the single energy distributions, however
the model with βKLD = 0.4 results in slightly too narrow distributions. We already observed
in Reference [6] a slight mismodeling of the center of gravity in z distribution of the baseline
BIB-AE model. This distribution is significantly improved with the newly trained model and
with the KDE sampling, especially in the high center of gravity tail of the distribution. All
three models perform equally well in reproducing the longitudinal and radial energy profile,
however, for the βKLD = 0.4 we observe a mismodeling at a high radius.

5.4.2 Linearity & Fidelity Score

To further benchmarks we show in Figure 5.8 the mean and relative width of the total visible
energy distribution for multiple fixed incident energies between 20 and 90 GeV. Here the
mean µ90 and width σ90 are calculated based on the 90 percentile of the distribution with
the lowest root mean squared (RMS), as is customary for high-granular calorimeters made
for particle-flow analyses [25]. These plots represent the linearity of the calorimeter response
and calorimeter resolution (although it is not exactly the resolution as no calibration for the
different sampling fractions is applied).

The linearity of all three models compared to Geant4 is well reproduced. Outliers do not
exceed more than 3%. Notably both the βKLD = 0.05 and its KDE sampling variant perform
very similarly. Further, all three models represent the relative width well, however, the KDE
sampling model overestimates the width compared to the baseline, while the βKLD = 0.4
model shows an outlier of almost −25% at 30 GeV. The baseline BIB-AE exhibits the best
performance in this quantity.
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Table 5.2: Fidelity score SJSD for multiple model and sampling configurations of BIB-AE
models with a latent size of n = 24. For βKLD = 0.05 the best score out of multiple
training runs is given – incidentally the model from Reference [6] – while the mean score
and standard deviation for those trainings is: SJSD,24 = 1.02 ± 0.12. For βKLD = 0.4 only
one training was performed. Tabel adapted from Reference [1].

config. βKLD = 0.05 βKLD = 0.4 βKLD = 0.05+KDE sampling

SJSD 0.83 0.88 0.67

Overall, based on the six histograms and the single energy linearity and resolution, the
baseline model with KDE sampling performs best, since it models all distributions similarly
well as the baseline without KDE sampling, including the single energy distributions, and
improves the center of gravity distribution. This is consistent with our earlier exploration
of the latent space correlations, where we found the center of gravity to be encoded in the
latent space.

To quantify the fidelity of the model variant further, we present their fidelity score SJSD
in Table 5.2. The fidelity score is calculated based on the differential distributions shown in
Figure 5.7 and is lowest for the baseline model with KLD sampling (SJSD = 0.67). This is
explainable by performing in most distributions similar to the baseline BIB-AE (SJSD = 0.83),
better in the single energy distributions than the βKLD = 0.4 model (SJSD = 0.88), and much
better in the center of gravity distribution than the baseline.

From these results, we conclude that between the two options of improving the latent
space sampling with either (1) decreasing the information in the latent space by increasing
the KLD weight βKLD or (2) sampling the latent space from KDE of the encoding, the latter
yields a BIB-AE model with superior generative fidelity.

5.4.3 Latent Kernel Density Estimate

We can further visualize this by investigating the differential distributions of the two highest
KLD latent variables zo and z1 for both models with n = 24 and βKLD = 0.05 and βKLD = 0.4.
The resulting distributions are shown in Figure 5.9 together with normal Gaussian distributed
samples and samples drawn from a KDE of the βKLD = 0.05 model z encoding. We see, that
the βKLD = 0.05 model latent values deviate from a normal distribution, but that the KDE
can precisely replicate them. The model with βKLD = 0.4 follows much more closely the
normal Gaussian distribution, hence less information is encoded. Considering that the most
information-rich variable z0 encodes the center of gravity, sampling it from N (0, 1) yields
a mismodeling, but the KDE preserves the information. Hence, we observe how the KDE
sampling helps to preserve information encoded in the latent space resulting in an overall
improved BIB-AE model.

128



5.5. EVALUATION OF EVALUATION SCORES

4 3 2 1 0 1 2 3 4
sampled z latent value

10-4

10-3

10-2

10-1

100

101
no

rm
al

iz
ed

 e
nt

ri
es

latent var. Z0

Normal distribution
n= 24, βKLD = 0.05

n= 24, βKLD = 0.4

KDE of βKLD = 0.05

6 4 2 0 2 4 6 8
sampled z latent value

10-4

10-3

10-2

10-1

100

101

no
rm

al
iz

ed
 e

nt
ri

es

latent var. Z1

Normal distribution
n= 24, βKLD = 0.05

n= 24, βKLD = 0.4

KDE of βKLD = 0.05

Figure 5.9: Sampled zi values of the highest (left) and second-highest (right) KLD
latent variables for 50,000 showers for BIB-AE models with a latent size of n = 24 and
βKLD = 0.05 or βKLD = 0.4. Additional lines are added for a Normal distribution
and the kernel density estimate (KDE) of the βKLD = 0.05 model. Figures originally
published in Reference [1].

5.5 Evaluation of Evaluation Scores

For any kind of generative modeling effort, it is important to decide on robust evaluation
methods to compare the fidelity of the samples generated with generative models to the ground
truth (in HEP often full simulations). Generally, the evaluation methods can be classified
into qualitative and quantitative methods: Qualitative methods are based on the visual
inspection of visualizations of the individual generated samples or differential distributions of
low- or high-level observables calculated from a large number of generated samples. Therefore,
such visual inspections are highly subjective. Quantitative methods are based on calculated
scores that either compare individual generated samples to the ground truth or differential
distributions of calculated observables. Such scores are often related to optimal transport,
i.e. the Wasserstein distance or the maximum mean discrepancy (MMD). Quantitative scores
can appear objective, however there are often still subjective choices involved such as the
choice of observables used or how the scores are calculated. This is even true for the “classifier
score” where a decision has to be made whether high- or low-level observables are used and
what kind of classifier network is trained. Overall there is no such thing as the one “ultimate
score”, there are always trade-offs between them and the choice of score depends on the use
case.

To understand this trade-off and to make more educated choices about which scores to use
for the evaluation of calorimeter shower generative models, we investigate the Wasserstein-1
distance, the MMD, and the AUC of multiple low-level and high-level classifiers. We focus on
evaluating the scores on their ability to distinguish between generative models, not whether
a generative model is actually “good enough” to be used in a physics analysis since the latter
question is highly dependent on the use case.

129



CHAPTER 5. VOXELIZED MODELING OF CALORIMETER SHOWERS

0 5 10 15 20
y [cells]

0

5

10

15

20

x 
[c

el
ls

]

untransformed

10-2

10-1

100

101

102

energy [G
eV]

(a) Projection on z-axis

0 5 10 15 20
y [cells]

0

5

10

15

20

x 
[c

el
ls

]

Sigma 5.0

10-2

10-1

100

101

102

energy [G
eV]

(b) Smeared projection

10-1 100 101
visible cell energy [MIPs]

10-2 10-1 100 101

visible cell energy [MeV]

10-3

10-2

10-1

no
rm

al
iz

ed

untransformed
Sigma 0.5
Sigma 1.0

Geant4

(c) Cell energy

Figure 5.10: (a) Overlay of 5,000 pion showers projected along the z-axis. (b) Overlay
of 5,000 pions showers smeared with a N (1, 52) distribution projected along the z-axis.
(c) Cell energy distribution of 40,000 showers of the pion dataset without transformation,
with N (1, 0.52), and with N (1, 1) smearing. Figures taken from Reference [17].

5.5.1 Data Augmentation

To evaluate the scores, we use Gaussian-smeared pion showers with variable levels of smearing.
As the unperturbed baseline dataset, we use the charged pion shower dataset from Reference [9]
and apply various levels of perturbations to the data. The positively charged pions were
simulated in the envisioned highly granular analog hadron calorimeter (AHCal) of the ILD.
The AHCal uses 3 × 3 cm2 scintillator tiles read out with silicon photomultipliers (SiPMs). A
total of 48 active layers with stainless steel absorber plates make up the AHCal volume. The
pions are simulated with a uniformly distributed incident energy between 10 and 100 GeV
and a fixed angle and incident point. Showers in a subsection of the AHCal with the size of
25 × 25 × 48 cells (pixels) are used as the 3D image dataset for this study — each 25 cells
in transverse x and y direction and 48 cells in longitudinal z direction. For the simulation
Geant4 was used with the detector model implemented in DD4hep. A total of 510,000 pion
showers were generated for this dataset — half of them are used for the perturbations and
the other half is used as the baseline dataset.

As perturbation to the dataset, we smear the cell energy distribution by multiplying each
cell energy with a random value z ∼ N (1, σ2). By varying σ and applying the half-MIP
cut at 0.25 MeV, we create multiple transformed datasets for comparison with the baseline
(untransformed) data. This Gaussian smearing is motivated by a common failure mode of
calorimeter generative models which might not be able to precisely predict the cell energy,
i.e. the GAN and WGAN from Reference [6] which do not model the “MIP-peak” well.
Note that we also create a σ = 0.0 dataset, which is equivalent to the baseline dataset,
but with different events. A comparison of the baseline and the smeared datasets is shown
in Figure 5.10. By comparing the overlays of 5,000 showers projected along the z-axis in
Figures 5.10a (untransformed) and 5.10b (transformed with σ = 5.0), we observe that the
smearing essentially widens the shower core and increases the overall deposited energy as
cell hits that were below the half-MIP cut are pushed above the threshold. For smaller

130



5.5. EVALUATION OF EVALUATION SCORES

0.0 0.2 0.4 0.6 0.8 1.0
Sigma

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
W

as
se

rs
te

in
 d

ist
an

ce

Wasserstein distance 0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

M
M

D

MMD score

Figure 5.11: Wasserstein distance and energy-distance MMD between the baseline and
Gaussian smeared pion datasets with increasing σ calculated based on 106 high-level
observables. For each perturbation, the median score over five subsets of the baseline and
perturbed datasets is shown, and the error bars indicate the minimum and maximum
scores of the five subsets. Figure taken from Reference [17].

σ = 0.5 and σ = 1.0 this can also be seen in Figure 5.10c where the cell energy distribution
is smeared out compared to the untransformed dataset and hence the MIP-peak is less
pronounced. More data augmentations, i.e. adding a fixed single cell hit with variable energy
deposition or adding a variable number of additional hits with a fixed energy, are investigated
in Reference [17].

5.5.2 MMD and Wasserstein Distance Evaluation

We investigate how sensitive the Wasserstein-1 distance and a multi-dimensional energy-
distance MMD [236] are to the Gaussian smearing applied to the pion dataset. These measures
have the advantage that no hyperparameter choice is necessary. For the MMD, the energy
distance kernel is given by k(x, y) = −∥x− y∥.

For reference, the MMD between two distributions P and Q is defined as [200]:

MMD2(P,Q) = E(x,x′)∼P [k(x, x′)] + E(y,y′)∼Q[k(y, y′)] − 2Ex∼P,y∼Q[k(x, y)] (5.8)

where x and x′ are independent random samples from P (analogous for y and Q). In the energy
distance MMD, the energy distance kernel k(x, y) = −∥x − y∥ is used. The Wasserstein-1
distance between two probability measures µ and ν is defined as [237]:

W1(µ, ν) = inf
γ∈Γ(µ,ν)

E(x,y)∼γ [∥x− y∥] (5.9)
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where Γ(µ, ν) is the set of all probability distributions with marginals µ and ν.
Both measures are used to evaluate the datasets based on high-level observables calculated

from the pion showers. In total 106 features are calculated, including the total visible energy,
the number of hits, the center of gravities in x-, y-, and z-direction (3 features), the first
moment in x−, y−, and z-direction (3 features), and the energy profiles summed along the
x−, y−, and z-axis (25 + 25 + 48 = 98 features). To stabilize the numerical variance of the
features, they are normalized by the maximum values of the features from the baseline dataset.
The Wasserstein-1 distance can be efficiently applied to one-dimensional distributions, while
for multi-dimensional distributions it becomes costly to compute. Therefore, we calculate the
Wasserstein distance between the baseline and each of the transformed datasets for each of the
106 features separately. For the total Wasserstein distance, we quote the mean over all 106
separately calculated ones. The energy-distance MMD on the other hand can be efficiently
computed for multi-dimensional distributions. Hence, we can calculate the MMD between the
baseline and each of the transformed datasets directly based on the 106-dimensional feature
space. To estimate an error, we split the baseline and the transformed datasets into five
equally sized subsets and calculated the scores for each of the five subsets separately (51,000
showers per subset). For the calculation of the Wasserstein-1 distance, we use the SciPy [238]
implementation and for the energy-distance MMD, we use the GeomLoss library introduced
with Reference [236].

The results are shown in Figure 5.11. We observe that both measures are similarly sensitive
to the Gaussian perturbation, however at σ ≤ 0.25 the MMD saturates while the Wasserstein
distance only saturates at σ ≤ 0.10. This means that at σ = 0.25 the Wasserstein distance is
already sensitive to the perturbation, while the MMD is not. Above σ = 0.25, neither measure
saturates and both behave similarly allowing us to distinguish between increasing levels of
Gaussian smearing. This would allow us to use both measures to distinguish even stronger
σ > 1.0 levels of distortion. Note that for this study the absolute scale of the measures
is irrelevant, only their gradient is important for the comparison of differently modeled
(perturbed) datasets. Overall it appears that the mean of the 1-dimensional Wasserstein
distances is more sensitive to small dataset perturbations than the multi-dimensional energy-
distance MMD. This might be because for very similar datasets the MMD is subject to
vanishing gradients due to electrostatic screening [239]. Additional studies with the MMD
and Wasserstein measures using further perturbation on the pion dataset are presented in
Reference [17].

5.5.3 Classifier Evaluation

As a “classifier score” we use the AUC score of a classifier trained to distinguish between the
baseline and the perturbed datasets. We contrast four different classifier setups: a low-level
classifier with a fully connected architecture (15M parameters), a low-level classifier with a
convolutional architecture (1.4M parameters), a high-level classifier with a fully connected
architecture using all 106 features (22k parameters), and a high-level classifier with a fully
connected architecture using 8 features (all observables mentioned above except the 98 energy
profiles) (9k parameters). The low-level classifiers are trained on the 3D images directly, while
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Figure 5.12: AUC scores of four different classifier setups trained to distinguish between
the baseline and Gaussian smeared pion datasets with increasing σ. For each perturbation,
five trainings with different datasets splits are performed. The median score is shown as
well as the minimum and maximum scores as error bars. Figure taken from Reference [17].

the high-level classifiers are trained on the calculated observables. The CNN architecture
consists of two 3D convolution layers and four fully connected layers. All three fully connected
classifier consists of three dense layers. As activation functions, LeakyReLU [230] (α = 0.1)
is used for all layers except the last one, where a sigmoid activation is used. All classifiers are
implemented with PyTorch [173]. More details on the architectures and the training are
given in Reference [17].

For each classifier setup, we train five times with different dataset splits, i.e. 77% training,
8% validation, and 15% test set. For each split different events are in the test set and in
each set 50% are from the baseline and 50% from a perturbed dataset. Hence the test set for
evaluation contains 76,500 showers. This way we can show how consistent the classifiers are
trained and how stable the AUC score is, since it is a requirement for any useful evaluation
score for generative models to allow for a high degree of reproducibility [240].

The median AUC scores of the five classifiers for various levels of Gaussian smearing
with σ ∈ [0, 1] are shown in Figure 5.12 together with the minimum and maximum scores
as error bars. Overall, all classifiers approach a high AUC score of ≥ 0.95 at σ = 1.0. We
observe that at σ = 0.1 the low-level convolutional classifier has a distinctly higher AUC
> 0.5, while the other classifiers cannot distinguish between the baseline and the perturbed
dataset. Above σ = 0.5 the low-level convolutional classifier saturates at an AUC ≈ 1.0 and
therefore the AUC score of this classifier cannot be used anymore to distinguish between
levels of perturbation. The other classifiers appear to saturate when approaching σ = 1.0,
but still exhibit a strong gradient between σ = 0.5 and σ = 1.0. Interestingly, both the
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low-level fully connected and the high-level 106 features classifier behave very similarly. The
high-level 8 features classifier picks up and saturates the slowest, making it possibly the best
choice for distinguishing between even stronger perturbations σ > 1.0. For this purpose, the
low-level convolutional classifier may not be the best option, as it tends to reach saturation
the fastest. Yet if a generative model produces events already at a very high fidelity, we
would expect rather small perturbations and here the low-level convolutional classifier might
be a good choice as it is the most sensitive to small perturbations. Overall both very powerful
(i.e. low-level convolutional classifiers) and less accurate classifiers (i.e. high-level classifiers
with limited features) have their raison d’être, as depending on the fidelity of a generative
model one or the other is best suited to evaluate which is best. This conclusion can also be
drawn from studying these classifiers with other perturbations in Reference [17].

A notable difference between using either MMD and Wasserstein distances or classifiers
for model evaluation is the evaluation time: While the training of a classifier takes several
hours on a GPU, the calculation of the Wasserstein distance and the MMD takes only a few
minutes on a CPU. Especially for small-scale studies, this makes the Wasserstein distance
and the MMD more attractive evaluation metrics than the classifier AUC score. When it
comes to the related question of whether a generative model faithfully reproduces the ground
truth, a powerful classifier is likely a very good choice as it can distinguish between even small
perturbations in a multivariant way. However, this specific question was not investigated in
this study. More details on classifiers as evaluation tools for generative models can be found
in Reference [241].

5.6 Fréchet Regression Distance

In computer vision, a popular evaluation method for generative models is the Fréchet
Inception Distance (FID) [242]. It is calculated as the Fréchet distance between a (usually
low-dimensional) embedding of the generated samples and the embedding of the real samples.
As embedding, the FID utilizes the activations of the second-to-last layer of the Inception
network [243], a multi-classification network trained on the ImageNet dataset [244]. It was
adapted for the evaluation of generative models for jets as particle clouds with the Fréchet
ParticleNet distance (FPD) [62], where the Inception network is replaced with a multi-classifier
based on the ParticleNet architecture [245].

As part of an ongoing effort to investigate novel evaluation methods for calorimeter shower
generative models, we explore a custom implementation of the FID based on a regression
network for calorimeter shower energy reconstruction. We dub this score the Fréchet regression
distance (FRD). Previous custom implementations of the FID have only explored classifiers
as embedding networks, but since the Fréchet distance is calculated based on the activations
of the embedding network, a regression model is technically also a valid choice.

In this section, we outline our exploration of the FRD based on a simple regression neural
network. Further studies with more complex regression networks as well as the application of
the FID itself to calorimeter shower images can be found in Reference [16]. We present here
the most representative results of this study.

The regression network is the same as the energy constrainer network used as part of the
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Figure 5.13: Fréchet regression distance between Geant4 and BIB-AE generated
showers for various training epochs using the trained regression network (a) and a
randomly initialized model (b). For comparison, the fidelity score SJSD is shown as
well. Note that the BIB-AE training up to epoch 35 does not include the Post Processor
Network, after epoch 35 it is enabled. Figures adapted from Reference [16].

WGAN model in Reference [6]. It consists of three 3D convolutional layers intertwined with
layer normalization followed by two fully connected layers. All layers use LeakyReLU as the
activation function, except the last layer which uses ReLU. The second to last layer has 100
activations, which are used for the calculation of the FRD.

For studying the FRD, we use the ILD ECAL photon shower dataset in 3D calorimeter
image format as introduced in Section 5.1. The regression network is trained on a subset of
the data using 80,000 showers with a uniform energy distribution between 10 and 100 GeV.
The validation set consists of 20,000 showers. We train the network for 200 epochs using a
mean absolute error (MAE) loss with the default Adam optimizer and choose the model with
the lowest validation loss as the final model.

To evaluate the effectiveness of the FRD, we apply for the comparison of the Geant4
test set with various BIB-AE generated datasets. For the generated showers we use the
epoch-wise checkpoints of the BIB-AE training performed for Reference [6]. The Geant4
test set includes 49,800 showers and the same amount is generated with the BIB-AE model
for each epoch of the BIB-AE training up to epoch 49. Note that for this training between
epochs 1 and 35, the Post Processor Network (PPN) is not used, while after epoch 35 it is
enabled. For the results in Reference [6], epoch 39 was chosen as the best epoch. This is also
the epoch with the lowest fidelity score SJSD. The fidelity score is a combination of JSDs
calculated from multiple calorimeter shower observables and is therefore physically motivated
(see Section 5.3.1). It is a good baseline for comparing the FRD to, since naively we would
expect them to behave similarly.

For all epochs of the BIB-AE training, the FRD and the SJSD are shown in Figure 5.13a.
We observe that compared to the SJSD, the FRD is more sensitive to the training progress of
the BIB-AE model and varies stronger between epochs. We observe the lowest FRD for epoch
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Figure 5.14: Cell energy distribution (a), longitudinal energy profile (b), and radial
energy profile (c) comparing photon showers simulated with Geant4 and BIB-AE
generated showers with 35 (without post-processing) and 49 (with post-processing)
epochs of training. 40,000 showers are shown for the full energy spectrum and 2,000
showers for each single energy. Figures taken from Reference [16].

38, but the previously chosen best epoch 39 is among the ones with the lowest FRD. Similarly
to the SJSD, the FRD increases again towards the end of the post-processing training after
epoch 40. Interestingly some high FRD outliers correlate with high SJSD outliers, but not all.
Unlike the fidelity score, which offers physical interpretability via the underlying differential
distributions, it is not clear what the FRD is sensitive to. Naively we would expect it to
be sensitive to showers that allow energy reconstruction similar to the training data. We
also investigate a few deeper regression networks, but the progression of the resulting FRDs
proves to be inconclusive. Detailed results can be found in Reference [16].

To further study the FRD, we calculate it also using the regression network in the untrained
state, i.e. with randomly initialized weights. The resulting FRD is shown in Figure 5.13b.
We observe that the untrained FRD is more stable than its trained counterpart and decreases
almost monotonic with the BIB-AE training epochs until epoch 35. With the post-processing
enabled, the FRD increases again until epoch 49 where its value is similar to the one at
epoch 3. Hence, according to the untrained FRD, serious mismodeling is introduced with the
combined BIB-AE and PPN training.

To understand this behavior, we compare the cell energy distribution, the longitudinal
energy profile, and the radial energy profile of the Geant4 test set with the BIB-AE generated
showers for epochs 35 and 49 in Figure 5.14. As expected, the cell energy distribution — in
particular the MIP peak — is better modeled with the post-processing enabled, however, the
longitudinal and radial energy profiles are better modeled without the PPN. Specifically, the
generated showers by epoch 49 exhibit outliers in the later layers of the calorimeter and at
high radii, indicating that too much energy is deposited at the outer edges of the calorimeter.
This likely results in showers that are separable from the Geant4 test set in the embedding
space of the untrained regression network resulting in the high FRD. However, such outliers
would likely not be reconstructed and might therefore in practice not be of high relevancy for
a physics analysis.
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In conclusion, the FRD is an interesting evaluation measure for calorimeter generative
models but is held back by its lack of interpretability. When applied with a simple regression
model, the metric overall seems to pick up on some physically important changes in the
modeling, however, it is not clear which changes exactly. Using the FRD with a randomly
initialized model might be a promising research direction since the random embedding might
more generally pick up on dataset features that are not necessarily important for the regression
training. However, these features might also not be physical at all or could be ignored for
a downstream task. Considering portrait photos of people, an analogy for this behavior is
that a model is rather sensitive to the background, however as an observer, one might only
be interested in the person. It appears that when untrained, the FRD is sensitive to any
kind of change in the picture, regardless of physically important or not. For further research,
more physical observables could be predicted by the regression network which might overall
improve the reliability of the FRD as a generative modeling evaluation measure.

5.7 Summary

Generative models are a promising tool to speed up the simulation of particle showers in
calorimeters, which are traditionally simulated with Monte Carlo-based simulators such as
Geant4 and therefore require a lot of computational resources. To apply machine learning
models originally developed for computer vision tasks, the energy depositions in calorimeter
cells are represented as 3D images. This allows us to deploy convolutional neural networks
for the modeling of calorimeter showers. In this chapter, we have discussed the application of
the BIB-AE model to the generation of photon calorimeter showers. Since large models such
as the BIB-AE require resource-intensive hyperparameter optimizations and training efforts,
we study how a better understanding of the encoded latent space can increase the model’s
generative fidelity.

We first investigate the size of the latent space and find that for a fixed βKLD = 0.05 the
information content encoded saturates around 45 nats. However, we find the best-performing
model – measured by the physically motivated fidelity score SJSD – at n = 24 and an
information content of about 29 nats. This indicates that more encoded information does
not necessarily lead to a better generative model meaning that some information that is
contained in the latent space does not contribute to the generative fidelity. An interesting
open research question is, therefore, how the “useful” information in the latent space could
be quantified.

Most information of the latent space is consistently encoded in the first two latent variables.
To understand what kind of physical information might be stored in the latent space, we
study the correlations between the five most information-rich latent variables and several
shower observables. We find that consistently across model configurations, the first latent
variable encodes the center of gravity (first moment) in z-direction, while the second latent
variable encodes the second moment in z-direction. This kind of encoding can be leveraged to
generate calorimeter showers with for example a specific center of gravity or shower start layer.
Further, more precise modeling of the encoded latent space can improve the overall generative
fidelity of the BIB-AE. This can be achieved with two options: (1) decreasing the information
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content in the latent space by increasing the KLD weight βKLD in the total training loss and
(2) sampling the latent space from a KDE of the encoding. Pushing the latent distributions
more towards a unit normal distribution enhances the modeling of physical observables that
have the strongest correlation with the most information-rich latent variables , i.e. the center
of gravity in z. However, this results in a decrease in the performance of the other variables
such as the number of hits. The latter strategy proves to be the most effective, providing the
added advantage of being easily applicable to the previously trained BIB-AE model (or any
other VAE-like model).

With the increasing applications of generative models in particle physics, a deeper
understanding of the model’s inner workings helps establish trust in their generative fidelity
and can help to improve them. Considering the abundant amount of labeled simulated data in
particle physics, these datasets are uniquely qualified for comprehensive studies of generative
models and their latent spaces. The physics understanding of the data offers the opportunity
for detailed model studies that can improve the generative models and answer interesting
questions about the balance of encoded information and generative fidelity.

To answer such questions various models need to be evaluated and their generative
fidelity compared. This requires robust evaluation methods that can be applied to generative
models for physics data such as calorimeter showers. We studied several previously proposed
evaluation methods including the Wasserstein-1 distance, the MMD, and the AUC score of
classifiers. Additionally, we introduced a custom implementation of the Fréchet inception
distance (FID) based on a regression network, which we dub the Fréchet regression distance
(FRD).

We find that the mean of one-dimensional Wasserstein-1 distances and the multi-dimensional
MMD are similarly sensitive to a large range of Gaussian perturbations of the pion shower
dataset. However, for small perturbation levels, the MMD saturates while the Wasserstein-1
distance is still able to distinguish between such small perturbations. The AUC of a clas-
sifier is another good evaluation measure but depends strongly on the choice of classifier
architecture and the choice of observables used. Interestingly, we found that a less powerful
classifier architecture might be more suited to distinguish between a large set of generative
models. This is because a powerful classifier might already saturate (separate perfectly) at
small perturbation levels, while a less powerful classifier is still able to distinguish between
stronger perturbations. A further consideration is the evaluation time: Measures such as the
Wasserstein distance and the MMD can be calculated in a few minutes on a CPU, while the
training of a classifier takes several hours on a GPU.

The FRD offers an alternative way of using a neural network for the multi-variant
evaluation of generative models. Since the FRD is based on a single regression model,
it can be used as an evaluation measure as fast as the MMD and Wasserstein distance.
However, it is currently held back by its lack of interpretability. This could be remedied by
using explainability methods such as layer-wise relevance propagation (LRP) [246, 247] to
understand which features the regression network is sensitive to. The use of an untrained
network for the embedding might be another promising research direction.
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Chapter 6

Point Cloud Modeling of
Calorimeter Showers

The results presented in this chapter have previously been published in References [3, 5] in
collaboration with Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, William
Korcari, Anatolii Korol, Katja Krüger, and Peter McKeown. The figures and tables are similar
or identical to the ones published. My contributions in obtaining these results include the
implementation of the EPiC Encoder and Latent Flow networks and the total loss objective
in the CaloClouds models, the implementation and training of the CaloClouds II model,
as well as the implementation of the consistency distillation for CaloClouds II (CM). I
wrote parts of Reference [3], large parts of Reference [5], and addressed most of the reviewer
comments during the publication processes. The discussion in this chapter closely follows the
above-mentioned publications.

As seen in the previous Chapter 5, photon calorimeter showers can be well modeled
as 3D images with a CNN-based generative model such as the BIB-AE. Other generative
models for calorimeter shower generations include generative adversarial networks [39–48],
autoencoder-variants [1,6,9,49–51], normalizing flows [52–58] and diffusion models [59–61].
A GAN-based generative model for simulating the calorimeter response has already been
successfully deployed by the ATLAS collaboration [154].

However, the photon shower images are very sparse, i.e. the number of image pixels is
27,000 while the average number of hits is around 1,000 — only around 4% filled pixels and
the remaining are zero-padded. It is much more computationally efficient, to only generate
these few percent filled pixels with a generative model. This can be done by representing the
calorimeter shower as a point cloud X = {xi}Ni=1 instead of a 3D image, where each point
xi is an energy deposition in the calorimeter with its 3D position and energy as features
(4 features in total) and N is the cardinality.

A second advantage of calorimeter point clouds is, that more granular information than
just cell hits can be used. The points can be clustered Geant4 steps, i.e. energy depositions on
an ultra-high granular grid not accessible in experiments. This increases the number of points
to be simulated but allows for a largely cell geometry-independent shower simulation. Within
the calorimeter, the shower becomes translation invariant and can be projected anywhere
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in the calorimeter (without changing its depth and the layer layout). These projections are
less likely to produce artifacts due to cell gaps and staggering than if they were performed
with regular cell-level granularity. Representing such ultra-high granular calorimeter showers
as 3D images would be even more computationally inefficient than images with cell-level
information. Hence, this geometry independence can currently only be achieved with the
point cloud representation.

An early attempt at a point cloud generative model for calorimeter simulation using
ordinary normalizing flows was presented in Reference [248], yet it still resulted in low-fidelity
showers. After the publication of Reference [3], a comparison between an image- and point
cloud-based diffusion model for pion showers was presented in Ref. [249], but it only considered
low-granularity showers with up to 200 points per shower. Also, after the publication of
Reference [3], geometry-aware models [250] were introduced as a complimentary way of
achieving geometry independence by training an image-based autoregressive model on a
dataset containing various calorimeter geometries.

This chapter focuses mainly on the implementation, the generative fidelity, and the
computational efficiency of the CaloClouds and CaloClouds II models. Studies on the
geometry-independence can be found in Reference [3].

The dataset and the point cloud representation of calorimeter showers are introduced in
Section 6.1. The model components of the CaloClouds model are explained in Section 6.2
and the CaloClouds II as well as its distilled variant are explained in Section 6.3. We
compare the performance of all three models against Geant4 with both qualitative and
quantitative evaluation methods in Section 6.4. A chapter summary is provided in Section 6.5.

6.1 Calorimeter Showers as Point Clouds

The point cloud dataset1 was created from simulated photons that shower in the electromag-
netic calorimeter (ECAL) of the proposed International Large Detector (ILD). The ECAL is
a highly granular sampling calorimeter made up of 30 active silicon sensor layers and passive
tungsten absorber layers. The silicon sensor cells have a size of 5 × 5 mm with a thickness of
0.525 mm. Out of these 30 tungsten layers, the first 20 have a thickness of 2.1 mm and the
remaining 10 have a thickness of 4.2 mm.

The showers are simulated using Geant4 Version 10.4 [118] (using the QGSP-BERT
physics list) with the ILD detector implemented in the iLCSoft [227] framework. The ILD
ECAL model is implemented in DD4hep [117]. It is a realistic model including air gaps
between silicon sensors and position-dependent cell staggering, resulting in an irregular 3D
grid.

To describe the origin of the simulated particles in the ILD, we use a global coordinate
system denoted as [X ′, Y ′, Z ′], where X ′ lays in the horizontal plane, Y ′ points vertically,
and Z ′ parallel to the beam pipe. Simulated photons are produced at [X ′ = 0, Y ′ =
1811.3 mm, Z ′ = 40 mm] and their trajectory points along Y ′. As this position is right in
front of the ECAL, interactions outside the ECAL are mitigated. This position was further

1The dataset simulation and processing was implemented by Anatolii Korol.

140



6.1. CALORIMETER SHOWERS AS POINT CLOUDS

Table 6.1: Overview of the three types of point clouds, either on Geant4 step-level, on
clustered step-level (“points”), or on cell-level (“hits”). The number of points per shower
(second column) indicates the maximum at 90 GeV. Table adapted from Reference [3].

points / shower Note

All Geant4 steps 40 000 Initial output of Geant4
Clustered Geant4 steps 6 000 Input/output of CaloClouds
Hits in calorimeter grid 1 500 Calculation of physics observables

chosen to avoid hitting large gaps in the ECAL itself. The incident photons are simulated
with a uniform energy distribution between 10 and 90 GeV.

6.1.1 Clustering

In the full Geant4 simulation, a large number of energy depositions, called Geant4 steps, are
created in the sensitive sensor material due to secondary particles traversing the calorimeter
cells. For the simulated photon showers in the ILD ECAL, this results in up to 40,000
Geant4 steps per shower. Usually, all Geant4 steps in the area of one calorimeter cell are
summed up and a resulting calorimeter hit with the summed up energy depositions is stored.
These calorimeter hits can be directly compared to hits measured in real experiments, as the
step information is only a byproduct of the simulation and is not available in reality.

Ideally, to save computing time for the full Geant4 simulation, a generative model should
create hits at the cell level. This is also what other generative machine learning models for
fast calorimeter simulations do, i.e. the BIB-AE discussed in Chapter 5. Yet, the generation
of discrete cell hits as a point cloud is difficult as small mismodelings like overlapping points
can heavily impact the quality of the generated data in various observables, for example by
changing the total number of hits Nhits.

Instead, one could train a generative model that emulates simulated Geant4 steps.
This also adds the above-discussed advantage of making the generative model cell-geometry
independent, allowing for a projection of the shower anywhere in the calorimeter without
adding reconstruction artifacts. However, this would result in a much more granular point
cloud with up to 40,000 steps per cloud (at 90 GeV), which would be prohibitively expensive
and difficult to compute.

Therefore, we introduce here a middle ground between all Geant4 steps and simple
cell hits. We cluster the Geant4 steps within an ultra-high granular grid with 36× higher
granularity than the real simulated cell sizes, using a square grid with sizes of 0.83 × 0.83 mm
(and as thickness the cell thickness of 0.525 mm). All Geant4 steps within one ultra-high
granular cell are summed up and we denote these as clustered steps. The size of the ultra-high
granular grid was tuned such that this results in a point cloud with up to 6,000 clustered
steps at 90 GeV — a size which is computationally feasible to allow for a fast generative
model, yet keeps the advantages of the full Geant4 steps. An overview of the different point
cloud sizes is given in Table 6.1.
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6.1.2 Data Processing

We define a second local coordinate system [X,Y, Z] near the impact point of the photon
showers into the ECAL. Here, X and Y points parallel to the calorimeter layers, while Z
is directed perpendicular to the layers along the trajectory of the incident particle. Since
no Geant4 steps are recorded outside the silicon layers, this results in discrete Z positions
with various gap sizes. For a generative model, continuous distributions are easier to learn
than discrete ones, therefore, these gaps in the Z direction are removed. The Z coordinate is
smeared within the size of one layer, to achieve a continuous Z distribution between layers 1
and 30.

Since generative models work well with normalized inputs, a square box around the incident
point is defined as Xmin = −200 mm and Xmax = 200 mm as well as Ymin = −160 mm and
Ymax = 240 mm. All points outside are discarded (less than 4 ‰). As a final pre-processing
step the X, Y , and Z features are normalized to a scale of [-1,1] based on their respective
maximum value.

As part of the post-processing pipeline, the normalization is reversed and the layer
positions are set to the exact positions in the layer centers of the simulated ECAL between
Z ∈ [1811.5 mm, 2010.3 mm]. A visualization of the pre-processing pipeline is shown in
Figure 6.1.

6.1.3 Simulated Statistics and Evaluation

For the training set, 525,000 photon showers with uniformly distributed incident energies
between 10 and 90 GeV are simulated using Geant4. For the evaluations in Section 6.4,
multiple test sets are simulated: 40,000 showers uniformly distributed showers are used for the
full spectrum evaluation plots; for the single energy evaluation plots at 10, 50, and 90 GeV,
2,000 showers for each energy are generated; and for the evaluation scores another 500,000
uniformly distributed showers are simulated.

For experimental applications and downstream analyses, only the cell-level energy deposi-
tions are available, hence, all comparisons between the Geant4 simulation and generative
models need to be performed on observables calculated from cell hits. All observables and
evaluation metrics shown in this chapter are therefore derived from cell-level hits. For this
purpose, the generated point clouds as well as the Geant4 steps are binned using the real
geometry of the ECAL such that for each event 30 layerwise 2D histograms with 30 × 30 bins
are created.

6.2 CaloClouds Model

Point cloud generative models transform points sampled from random noise into points with
a meaningful structure. If one were to order the points in a fixed size point cloud, i.e. an
ordered list of features, this generative task would be comparatively easy as simple network
structures such as fully connected layers can be used. However, a point cloud is usually
defined as an unordered list of points with a variable cardinality. This directly reflects the sets
of measurements taken at particle detectors, which are often unordered. To make a learning
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6.2. CALOCLOUDS MODEL

Figure 6.1: Overview of the data processing pipeline for the calorimeter showers used
in CaloClouds. First, all Geant4 steps (up to 40,000) are clustered in an ultra-high
granular grid (up to 6,000 points). Afterward, the gaps (air gaps and absorber material)
between layers are removed and the z positions are smeared within its layer to achieve a
continuous distribution. Figure originally published in Reference [3].
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task on such point cloud data easier, the model architecture should reflect these attributes,
i.e. functions learned should be permutation equivariant and applicable to a variable number
of points. Of course, one could simply order the point cloud and apply zero padding to be
able to use simple fully connected layers, but such a fixed neural network needs to learn to
not use any unphysical ordering within the list of particles. A model with the inductive bias
of permutation equivariance can therefore make the learning task easier and it ensures that
indeed the output of the model is invariant to the order of the input points.

For generating calorimeter showers as point clouds, we introduce CaloClouds, a com-
bination of two regular fixed-size neural networks, a permutation-invariant network, and a
permutation-equivariant network. The two fixed-size neural networks are the Shower Flow,
a normalizing flow responsible for generating conditioning variables and calibration factors,
and the Latent Flow, another normalizing flow that generates a shared latent space used as
conditioning for all points. During training, this latent space is created by a permutation-
invariant EPiC Encoder, during sampling it is derived from the Latent Flow. The latent
space is used as a conditioning for the permutation-equivariant PointWise Net, a diffusion
model that transforms randomly sampled points into a physically meaningful calorimeter
shower representation. Core parts of this model architecture are inspired by Reference [251].
Additionally, the CaloClouds model involves several calibration steps to achieve a high-
fidelity calorimeter shower generation. In the following these different generative models
and their purpose during training and sampling are explained. For a detailed discussion of
the generative modeling paradigms used, see Chapter 4. An overview of the training and
sampling pipelines of CaloClouds are shown in Figure 6.2.

6.2.1 PointWise Net

Core to the CaloClouds model is the diffusion model dubbed PointWise Net2. In Calo-
Clouds, we use the denoising diffusion probabilistic model (DDPM) [214] paradigm (see
Section 4.4.1). The DDPM is implemented with T = 100 time steps (for training and
sampling) and uses a quadratic variance scheduler with βT = 0.02 and β1 = 10−4. The
architecture used is based on fully connected layers with weight sharing across all points.
This way the model is applied to every single point individually and therefore permutation
equivariant. PointWise Net is a conditional model conditioned on the incident energy E, a
latent space z shared across all points, and the number of points N of the point cloud — also
used to sample the appropriate amount of random points to be transformed (or “denoised”).
As for all diffusion models, the time step t is an additional conditioning feature.

The PointWise Net itself consists of five ConcatSquash layers (CSL), inspired by Refer-
ence [252]. The exact architecture and layer structure are shown in Figure 6.3. The input
and output dimensionalities of the model are four features: three positional point features
xpoint, ypoint, and zpoint and the point energy Epoint. Every CSL is individually conditioned
on the context features. The CLS can be viewed as a realization of the equivariant Deep Sets
concept [176] (see Section 3.5).

Using the global conditioning including the learned latent vector z, every photon shower
2Model taken from Reference [251] and adapted by Engin Eren and Anatolii Korol.
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Figure 6.2: Overview of the training and sampling pipeline of the CaloClouds model.
The separate training of the shower and latent flow are not shown. Figures adapted from
Reference [3].
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Figure 6.3: (a) Architecture of the PointWise Net in the CaloClouds model with the
number of dimensions indicated. (b) Layout of a ConcatSquash layer (CLS) containing
multiple multi-layer perceptrons (MLP). ∗In the last layer, no activation function is
applied. Figures originally published in Reference [3].

point is sampled independently and identically distributed (i.i.d.). The i.i.d. assumption
simplifies reality as photon showers are a cascade of secondary particles that develop lon-
gitudinally in time through the calorimeter. However, for photon showers this results in a
simple topological shower structure, and even for complicated point cloud structures, i.e. a
point cloud representing a plane or a chair, this assumption appears to work well as shown
in Reference [251]. Future developments of point cloud generative models for more complex
hadronic calorimeter showers likely will need to implement models that account for inter-point
correlations. This could be done with more complex model architecture such as self-attention
transformer networks [180], graph networks [177], sequence convolutions [253], or equivariant
point cloud (EPiC) layers (see Chapter 7). A disadvantage of these more complex layers is
their computational cost. These models are slower than the PointWise Net and for O(1000)
points and diffusion models with O(10 − 100) steps this likely results in a slower generation
speed than Geant4 (at least on a single CPU). Therefore, as a first step to developing
a geometry-independent point cloud generative model for calorimeter showers, we use the
simple model architecture presented here and leave the exploration of more complex models
to future work.

6.2.2 EPiC Encoder

During training, the latent space z for the conditioning of the diffusion model is created by
the EPiC Encoder model. This model is a permutation-invariant VAE-like encoder, which
uses three equivariant point cloud (EPiC) layers (see Chapter 7 and Reference [2]), average
and summation pooling as permutation invariant pooling functions, and three fully connected
layers to encode calorimeter showers into a mean and variance vector, µ and σ respectively.
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The latent space z is sampled using the reparameterization trick (see Section 4.2.1). The
encoder is conditioned on the number of points N and the incident energy E. Each layer uses
residual connections [254], has a hidden dimensionality of 128, and the latent space size is set
to 256. The hidden dimensionality is the same as used in the EPiC-GAN [2] and the latent
size is the same as suggested in Reference [251]. To achieve a close-to-normal distributed
latent space, the Kullback-Leibler divergence (KLD) loss LKLD is used:

LKLD = DKL(Z||N (0, 1)) = −1
2
(
1 + log(σ2) − µ2 − σ2

)
, (6.1)

with the natural logarithm and the latent space given by z ∼ Z = N (µ,σ2).
Just like in the training of a VAE and the training of the BIB-AE, the LKLD is combined

with the reconstruction loss (namely the diffusion model loss L(t−1)
diffusion at a random time

step t) and scaled with a weighting hyperparameter βKLD. As seen in Chapter 5, the choice of
βKLD has a large implication on the information content (the scale of LKLD) encoded in the
latent space z. Therefore, as an advancement over the BIB-AE model loss, we introduce the
minimum KLD mKLD as a novel hyperparameter that clips LKLD to prevent posterior collapse

— i.e. the collapse of LKLD to zero and therefore a latent space without any information. The
training loss for the PointWise Net diffusion model and the EPiC Encoder is hence given by:

L
(t−1)
total = βKLD · max(LKLD,mKLD) + L

(t−1)
diffusion, (6.2)

with βKLD = 10−3 and mKLD = 1.0 nats.

6.2.3 Latent Flow

For generating new data, we need to sample novel latent space encodings z. Therefore, a
separate model is trained simultaneously with the EPiC Encoder and the PointWise Net.
This normalizing flow model, dubbed Latent Flow, learns to replicate the encoded latent
space and is conditioned on both N and E. This flow model represents an advancement over
the kernel density estimator (KDE) latent space sampling introduced in Chapter 5 since it
allows for conditional generation. A theoretical introduction into normalizing flows and the
specific coupling flows used for this model is given in Section 4.3.

The Latent Flow consists of ten coupling blocks with monotonic rational-quadratic
splines [255]. Each spline is modeled by a two-layer neural network with LeakyReLU
activation functions and a hidden dimensionality of 128. It is trained with the Adam
optimizer and the negative log-likelihood (NLL) loss (see Section 4.3). Disentangling the
NLL loss from the loss given in Equation 6.2, proved to be a more stable optimization regime
than combining the losses as done in Reference [251].

The PointWise Net, the EPiC Encoder, and the Latent Flow are simultaneously trained3

for 800k iterations with a batch size of 256. The learning rate is set to 2 · 10−3 for the first
300k iterations and afterward reduced with a linear schedule targeting 10−4 at 2M iterations.
All three models are implemented in PyTorch [173]. Additionally, the Latent Flow uses the
nflows library [256].

3The presented training of CaloClouds was performed by Anatolii Korol.
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6.2.4 Shower Flow

As the Latent Flow and the PointWise Net are conditioned on N , a separate model is needed
during inference to produce this conditioning. This model is also conditioned on E and
implemented as another normalizing flow, termed Shower Flow. The Shower Flow generates
shower observables used for conditioning and calibration of the generated calorimeter point
clouds. Overall it generates the total number of points per layer N , the relative number of
points per layer Nz,i∈[1,30], the total visible energy Esum, the relative visible energy per layer
Ez,i∈[1,30], and the center of gravity in X- and Y -direction. The model architecture of the
Shower Flow consists of ten normalizing flow blocks with each containing seven coupling
layers — six with affine transformations [206], and one with rational-quadratic splines [255].

The Shower Flow is implemented4 with PyTorch using the Pyro library [257]. It
is trained separately from the other model parts for 350k iterations with a batch size of
2048 using the Adam optimizer with a learning rate of 10−5. For the CaloClouds model
presented in Reference [3], a simplified version of the Shower Flow is used, which produced
only the number of points per layer and the total visible energy. The Shower Flow version
discussed here is introduced in Reference [5] together with an improved calibration pipeline
explained below. To be consistent across all models compared in Section 6.4, we apply this
Shower Flow in CaloClouds as well.

6.2.5 Sampling & Calibration

The pipeline for sampling from the CaloClouds model is shown in Figure 6.2b and the
pipeline for sampling from the CaloClouds II model in Figure 6.4b.

For a given incident energy E, the Shower Flow generates the relative layer-wise visible
energies Ez,i, the relative layer-wise number of points Nz,i, the total number of points N ,
the total visible energy Esum, and the center of gravities in X and Y direction, m1,X and
m1,Y . Note that in the original CaloClouds model introduced in Reference [3], the Shower
Flow generated a reduced set of observables and the calibration pipeline deviates slightly.
For consistency between both models, the Shower Flow and calibration procedure from
CaloClouds II is used here for CaloClouds as well.

Using the Shower Flows’ generated number of points N directly to generate this number
of points in the photon shower leads to an overestimation of the number of binned cell hits
Nhits because the points are generated a bit too spread out. Therefore, a calibration factor is
applied to scale down the N points by roughly 80% to achieve an accurate Nhits distribution.
For a precise N -dependent estimation of this calibration factor, we define it as:

c = pgen(pdata(Nuncal, gen)), (6.3)

where pgen is a cubic polynomial fit of the ratio of the number of generated cell hits Nhits, gen
(projected without calibration) to the uncalibrated number of generated points Nuncal, gen
(direct output of the Shower Flow) and pdata is a cubic polynomial fit of the ratio of the
uncalibrated number of data points Nuncal, data to the number of data cell hits Nhits, data. The

4The Shower Flow was implemented by Anatolii Korol.
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Figure 6.4: Overview of the training and sampling pipelines of the CaloClouds II
model. During sampling with CaloClouds II (CM), just one denoising step is performed.
Figure originally published in Reference [5].

calibrated number of points Ncal, gen used for generating the calorimeter point cloud (and
conditioning of the Latent Flow and PointWise Net) is then given by Ncal, gen = c ·Nuncal, gen.
For the remaining text, we set N ≡ Ncal, gen.

This scaled N is used to sample the latent space z then used in turn in conjunction with
N and Einc as conditioning for the diffusion model PointWise Net. A total of 100 function
evaluations are used to denoise a sampled noise point cloud into a calorimeter shower.

Afterward, multiple calibration steps are applied to refine the generated showers. First,
all generated points are ordered by their Z-coordinate, and starting from the first layer
i = 1, the first Nz,i=1 are set to the physical position of the center of the first layer, i.e. at
Z = 1811.5 mm. This procedure is sequentially performed until the last layer i = 30 at
Z = 2010.3 mm. Second, the total energy per layer Ez,i is calibrated to match the one
generated by the Shower Flow. Third, the center of gravities m1,X and m1,Y are calculated
and calibrated to match the Shower Flow generated ones. The resulting calibrated calorimeter
point clouds are compared to the simulated Geant4 showers (both after projection to the
irregular grid cell structure).

6.3 CaloClouds II Model

The CaloClouds II model is an evolution of the CaloClouds model and improves it
on multiple frontiers with the goal of increased generation speed without compromising
generative fidelity:

1. The DDPM [214] discrete-time diffusion paradigm is replaced with the more advanced
continuous-time EDM5 [223] diffusion framework based on score matching through
stochastic differential equations (SDEs) (see Section 4.4.2). This allows the usage
of various ODE and SDE solvers with a variable number of function evaluations

5The term EDM is derived from the title of Reference [223] “Elucidating the Design Space of Diffusion-Based
Generative Models”.
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without retraining, essentially trading sampling speed for generative fidelity. For
CaloClouds II, this leads to fewer function evaluations during generation without a
loss in generative fidelity.

2. The size of the latent space is set to z = 0 virtually removing the EPiC Encoder and the
Latent Flow from the training and sampling pipeline, as we did not observe a noticeable
difference with a latent space z > 0 with CaloClouds II. This improves the sampling
speed.

3. The already mentioned improvements to the calibration procedure involving a new
Shower Flow are implemented.

4. We apply consistency distillation to distill the EDM diffusion model in CaloClouds II
into a consistency model [219] (see Section 4.5). The resulting model, dubbed Calo-
Clouds II (CM), can be used for single-shot sampling, greatly improving the sampling
speed on both CPU and GPU.

An overview of the training and sampling with the CaloClouds II model is given in
Figure 6.4. The conditioning of the PointWise Net is the same as in CaloClouds. During
sampling, the same calibration procedure as in the previous Section 6.2 is performed. The
CaloClouds II EDM diffusion model is implemented using PyTorch [173] with the same
PointWise Net architecture. For the parameterization of the score-based EDM diffusion
model training, we follow the suggestions given in Reference [223]. With a batch size of 128,
the model was trained for 2M iterations using the Adam optimizer and a fixed learning rate
of 10−4. As the final model, an exponential moving average (EMA) of model weights over the
whole training is used. For sampling, we follow Reference [223] and use the Heun 2nd-order
Runge-Kutta ODE solver without any noise injection, essentially sampling it as a continuous
normalizing flow (CNF) (see Section 4.3.2). For the step size parameterization, we follow
Reference [223] as well. With T = 80 (σmax) and ϵ = 0.002 (σmin), we found that below 25
function evaluations (13 Heun ODE solver steps, as the final step is only a 1st-order Euler
step) the performance degrades.

To further speed up the shower generation, we distill the EDM diffusion model into a
consistency model (CM). Following Reference [219], we use n = 18 Heun ODE solver steps
as the baseline to perform the consistency distillation. The distillation training is done for
1M iterations at a batch size of 256 with the Adam optimizer. Note that compared to
progressive distillation [218], only a single training is necessary to achieve a model capable of
single-shot sampling. Furthermore, the resulting CaloClouds II (CM) model can be used
for single-shot and multi-step generation. We found the single-step generation on par with
the fidelity of CaloClouds II leading to a significant speed-up of the shower generation.

6.4 Photon Shower Generation

We benchmark the generative fidelity of the CaloClouds model variants — CaloClouds,
CaloClouds II, and CaloClouds II (CM)— by generating many photon showers with
uniformly distributed energy conditioning as well as fixed energy showers. These photon
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Figure 6.5: Histogram of the cell energies (left), radial shower profile (center), and
longitudinal shower profile (right) for Geant4, CaloClouds, CaloClouds II, and
CaloClouds II (CM). In the cell energy distribution, the region below the half-MIP
threshold of 0.1 MeV is grayed. In all three plots, 40,000 showers are shown, sampled
from a uniform distribution of incident particle energies between 10 and 90 GeV. The
bottom panels provide the ratio between the generative models and Geant4. The error
band corresponds to the statistical uncertainty in each bin. Figures originally published
in Reference [5].

shower point clouds are projected back into the real ILD ECAL cell geometry, including
realistic cell gaps and staggering. In Section 6.4.1 we judge the performance with histograms
of various physics observables, while we use Wasserstein distance-based evaluation scores
in Section 6.4.2. Additional classifier scores are shown in Section 6.4.3 using a high-level
fully-connected classifier. In Section 6.4.4 we compare the generation speed of all three models
both on CPU and GPU to the Geant4 baseline (CPU only).

6.4.1 Physics Performance

To evaluate the generative fidelity of all three CaloClouds models on a uniform energy
spectrum (10 – 90 GeV), we generate with each model 40,000 showers and compare histogram
of various shower observables to the Geant4 baseline. In Figure 6.5 we show the distribution
of cell energies (left), the radial shower profile (center), and the longitudinal shower profile
(right). In the cell energy spectrum, a threshold at 0.1 MeV is shown. This is the applied
half-MIP cut which is used for all high-level observables, since below this threshold the cell
energy response is indistinguishable from electronic noise. All models represent the spectrum
well, but the CaloClouds II models model the bulk of the distribution a bit better than
CaloClouds, yet overestimate the maximum cell energy slightly.

The radial shower profile, i.e. the mean distribution of energy in a concentric region of
a certain radius around the shower incident axis, is also modeled well by all three models,
yet the best in particular at high and very large radii is the CaloClouds II (CM) model.
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Figure 6.6: Center of gravity distributions along the X- (left), Y− (center), and Z−axis
(right) of the Geant4 and model generated photon showers. 40,000 showers are shown,
sampled from a uniform distribution of incident particle energies between 10 and 90 GeV.
The error band corresponds to the statistical uncertainty in each bin. Figures originally
published in Reference [5].

This radial profile is not affected by the layer-wise energy and number of hits calibration
and is therefore a particularly good benchmark for the diffusion model itself without the
post-diffusion calibration pipeline.

All three models underestimate the mean energy in the first few layers, but model well
the remaining ones, except CaloClouds II around layer 10. This longitudinal shower profile
is largely determined by the Shower Flow, as it generates the layer-wise energies. A sequence
of higher and lower energy depositions is visible in the center of the distribution. This is
because (for technical reasons) every second tungsten absorber layer is sandwiched between
two active silicon layers each facing this respective absorber. The result is an observable
pair-wise difference in the sampling fraction of consecutive layers.

Figure 6.6 shows the center of gravity (the energy-weighted center of the shower or the
first moment) of the photon showers along the X- (left), Y - (right), and Z-axis (center) — for
a given axis, the energy is summed up along the other two. In the X- and Y -direction, these
distributions are affected by the center of gravity calibration on point-level, although slight
deviation can occur due to the projection to the cell level. All three model very well the X-
and Y -direction, while for the Y -direction, the spectra deviate a bit with the CaloClouds
model producing a too narrow distribution. The challenge in the Y -axis is due to the cell
staggering, which is layer-dependent in the Y -direction, but uniform in the X-direction.
Additionally, the simulated magnetic field affects the showers in Y -direction.

Next, we explore single incident samples. For set energies at 10, 50, and 90 GeV, 2,000
showers were generated with each model. Figure 6.7 shows their total visible energy (left)
and their number of hits distribution (right). All three generative models reproduce the
energy sum well. The number of hits distribution is particularly challenging as during the
projection into cell-level multiple points are binned together. Overall the modeling is accurate,
yet small mismodelings are still visible in particular for 90 GeV, where CaloClouds II is
best, CaloClouds too broad, and CaloClouds II (CM) overestimates the number of hits.
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Figure 6.7: Total visible energy (left) and the number of cell hits (right) for fixed energy
showers at 10, 50, and 90 GeV. 2,000 showers are shown for each model and energy.
The error band corresponds to the statistical uncertainty in each bin. Figures originally
published in [5].

These mismodelings at large energies are due to the polynomial fit used in the number of
points scaling. The fit does not perform well on the edges of the energy range. Were the
energy range expanded, we would expect a higher fidelity for the 10 and 90 GeV photon
showers.

In summary, the physics performance of all three CaloClouds variants is good. In
particular, for the radial distribution, it is visible that the CaloClouds II models are slightly
better than CaloClouds, yet their main advantage lies in their improved computational
efficiency.

6.4.2 Evaluation Scores

To gain a more precise understanding of the generative fidelity of the three models compared
to Geant4, we calculate multiple evaluation scores based on the distributions shown in
Section 6.4.1. In line with publications such as References [2,62,240], we use the 1-Wasserstein
distance W1 to compare 1-dimensional distributions. The advantage of the Wasserstein
distance is, that it is trivial to calculate in one dimension and that it is an unbinned estimator,
so no parameter choices have to be made in the distance calculation. A disadvantage is, that
it does not always align well with results gained from density-based measures, such as the
Kullback-Leibler divergence or the visual inspection of histograms, and it is prone to outliers.
Therefore, these scores can give a good indication of a well-performing model, but should
always be considered in conjunction with other evaluation methods such as histograms.

For these distributions, we consider the number of cell hits Nhits, the sampling fraction
Evis/Einc, the cell energy Ecell, the center of gravity in X-, Y -, and Z-direction m1,α∈{X,Y,Z}
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Table 6.2: Evaluation of the three CaloClouds variants in comparison to Geant4
using 1-Wasserstein distance-based scores for various standardized shower and cell level
observables. The values are the mean and standard deviation of 10 calculated scores
comparing 50k Geant4 and 50k generated showers each. Table originally published in
Reference [5].

Simulator WNhits
1 W

Evis/Einc
1 WEcell

1 W
Elong
1 WEradial

1 W
m1,X

1 W
m1,Y

1 W
m1,Z

1
(×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3)

Geant4 0.7 ± 0.2 0.8 ± 0.2 0.9 ± 0.4 0.7 ± 0.8 0.7 ± 0.1 0.9 ± 0.1 1.1 ± 0.3 0.9 ± 0.3

CaloClouds 2.5 ± 0.3 11.4 ± 0.4 15.9 ± 0.7 2.0 ± 1.3 38.8 ± 1.4 4.0 ± 0.4 8.7 ± 0.3 1.4 ± 0.5
CaloClouds II 3.6 ± 0.5 26.4 ± 0.4 15.3 ± 0.6 3.7 ± 1.6 11.6 ± 1.5 2.4 ± 0.4 7.6 ± 0.2 3.9 ± 0.4
CaloClouds II (CM) 6.1 ± 0.7 9.8 ± 0.5 16.0 ± 0.7 2.0 ± 1.4 8.3 ± 1.9 3.0 ± 0.4 9.5 ± 0.6 1.2 ± 0.5

as well as ten longitudinal and radial energy observables, Elong,i∈[1,10] and Eradial,i∈[1,10], based
on the longitudinal and radial shower profiles in Figure 6.5. These ten longitudinal (radial)
observables are calculated with the energy depositions clustered together in ten equiprobable
bins of consecutive layers (concentric regions), i.e. the bin edges (layer-wise or radial) of each
observable is determined such that each observable is calculated with the same statistics.
Histograms of the energy observables and their bin edges can be found in Appendix A.

A total of 500,000 photon showers are generated with the generative models as well as
with Geant4 with a uniformly distributed incident energy between 10 and 90 GeV. Each
Wasserstein score is ten times calculated using batches of 50,000 showers. The Geant4 scores
are calculated the same way, using not-overlapping batches of Geant4 vs. Geant4. For
the WEcell

1 score, only the first 50,000 cell hits are used, since using all hits from all 50,000
showers would be computationally impractical. For the radial and longitudinal observables,
we quote the mean value of the respective set of observables, Eradial and Elong. To achieve
overall comparable scores, each observable is standardized, i.e. their mean and standard
deviation are shifted to zero and one. Tabel 6.2 shows the resulting scores with mean and
standard deviation over the ten batches.

The scores paint a very similar picture to the histograms shown in Section 6.4.1, namely
all models perform similarly, yet all deviate from the Geant4 truth. The largest difference
between the models is observable for the WEradial

1 score, there the CaloClouds II (CM)
model performs best and the CaloClouds model quite a bit worse than both CaloClouds II
and CaloClouds II (CM). This is in line with what can be seen in Figure 6.5 (center) as
well as in the individual radial observables shown in Figure A.1 of Appendix A. Overall, all
three models produce high-fidelity photon showers, tho further research is needed to exactly
match the Geant4 baseline.

6.4.3 Classifier Scores

Since the Wasserstein scores only compare 1-dimensional distributions and are complex to
compute for multiple dimensions, we use as a third evaluation method the classifier score.
This classifier score is given by the area under the receiver operating characteristic curve
(AUC) score of a binary classifier trained to separate “real” Geant4 showers from “fake”
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Table 6.3: Comparison of the CaloClouds model performance to Geant4 with the
area under the receiver operating characteristic curve (AUC) score. The AUC score was
calculated using a high-level binary classifier with shower observables as input trained to
separate Geant4 from CaloClouds generated showers. The values presented are the
mean and standard deviation of ten AUC scores with each of the ten classifiers trained
and evaluated with a different (not overlapping) dataset split. Table originally published
in Reference [5].

Simulator AUC

CaloClouds 0.999 ± 0.001
CaloClouds II 0.928 ± 0.001
CaloClouds II (CM) 0.923 ± 0.001

generated showers. For HEP applications, the classifier score and its variants were explored
in detail in Reference [241]. In general, the classifier score (i.e. fooling the classifier with
AUC = 0.5) could be seen as the “gold standard”, that one should strive to achieve with
a generative model. However, it is not trivial to develop a generative model that achieves
anything but AUC = 1.0. AUC values between 0.5 and 1.0 are difficult to interpret, yet can
indicate which model might perform better.

To calculate the score, we use a high-level classifier with a fully connected network
separating real and fake showers based on the shower observables introduced in Section 6.4.2,
namely the number of hits, sampling fraction, the three center of gravity observables, ten
radial observables, and ten longitudinal observables. An alternative would have been to use a
low-level classifier directly on a cell-level point cloud, but such a classifier would need to be
permutation-equivariant and work with O(1000) points and is therefore difficult to implement.
Additionally, we have seen in Section 5.5 that a high-level classifier offers better separability
between multiple models than a low-level classifier.

As a classifier6, we use a three-layer fully connected network (32, 16, 8 nodes) with
LeakyReLU activations and an output Sigmoid activation. The classifier is trained for 10
epochs using the Adam optimizer and the binary cross-entropy loss. Out of the ten epochs,
the epoch with the lowest validation loss is chosen for the AUC evaluation on the test set.
For the training, validation, and test dataset split, we apply 80%, 10%, and 10% on the full
set containing 500,000 Geant4 and 500,000 generated showers. To estimate an error in the
classifier score, the classifier was trained ten times for each generative model, each using a
different data split resulting in ten different (not overlapping) test and validation sets.

For all three models, we show in Table 6.3 the mean and standard deviation of the AUC
scores over the ten trainings. Based on the high-level observables, the classifier can perfectly
distinguish between CaloClouds generated and Geant4 simulated showers (AUC ≈ 1.0).
The showers generated with CaloClouds II already achieve a better score with AUC =
0.928, and the CaloClouds II (CM) model is best with a score of AUC = 0.923. This
result can be explainable by the better generation of the radial energy observables by the

6The classifier was implemented by Anatolii Korol.
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Table 6.4: Computational efficiency of CaloClouds, CaloClouds II, and Calo-
Clouds II (CM) in comparison to the baseline Geant4 simulator on a single core of an
Intel® Xeon® CPU E5-2640 v4 (CPU) and on an NVIDIA® A100 with 40 GB of memory
(GPU). Per run 2,000 showers were generated with incident energy uniformly distributed
between 10 and 90 GeV. The values are the means and standard deviations over 10
runs. The number of function evaluations (NFE) indicates the number of diffusion model
passes. Table originally published in Reference [5].

Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up

CPU Geant4 3914.80 ± 74.09 ×1

CaloClouds 100 1 3146.71 ± 31.66 ×1.2
CaloClouds II 25 1 651.68 ± 4.21 ×6.0
CaloClouds II (CM) 1 1 84.35 ± 0.22 ×46

GPU CaloClouds 100 64 24.91 ± 0.72 ×157
CaloClouds II 25 64 6.12 ± 0.13 ×640
CaloClouds II (CM) 1 64 2.09 ± 0.13 ×1873

CaloClouds II variants, as we already observed in the previous sections. Hence, we find
that CaloClouds II constitutes an improvement over the previous CaloClouds model,
but more research is needed to achieve a model able to produce samples on a level of fidelity
able to fool the high-level classifier.

6.4.4 Timing Comparison

We observe high fidelity by all three CaloClouds models, yet they do not achieve an
accuracy exactly on par with Geant4. However, depending on the application, i.e. proof of
principle studies or large parameter scans, a slight loss in performance might be acceptable
if it comes with the advantage of greatly increased generation speed. Therefore, a detailed
benchmark of the computational efficiency of each model is of interest. Since most generative
models are based on deep learning libraries such as PyTorch, which are optimized for
parallelizable computations on GPUs, the models allow for a straightforward generation
speed-up on GPUs when compared to the Geant4 simulation, which is only available to
run on CPUs. However, GPUs are generally more expensive than CPUs and not as widely
available, since most of the computational infrastructure in HEP requires large numbers of
CPUs. Hence, a more fair comparison between Geant4 and the CaloClouds models can
be drawn when sampling on a single CPU.

In Tabel 6.4 we provide the average generation time for generating a single shower7.
We quote the mean time of 10 runs, each generating 2,000 showers with a uniform energy
distribution between 10 and 90 GeV. Note that just like Geant4 and unlike fixed grid- /
image-based generative models, the generation speed of the point cloud-based CaloClouds

7The Geant4 benchmark was performed by Anatolii Korol.
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models scales with the number of points generated and therefore also with the incident energy.
We additionally provide in the table the number of function evaluations in each model, as
this constitutes the source of the large speed improvements of the CaloClouds II models
over the CaloClouds model. The batch sizes on GPU are optimized for computational
performance and are set to 64 for all three models.

On CPU, the CaloClouds model achieves a speed-up of 1.2× over Geant4, Calo-
Clouds II achieves a speed-up of 6.0×, and CaloClouds II (CM) achieves a speed-up of
46×, which is even about 5× faster than the BIB-AE model introduced in Chapter 5. For
reference, this large of a speed-up means, that using the CaloClouds II (CM) model one
can generate within a day as many showers as with Geant4 in 1.5 months. On GPU these
speed-ups are naturally even larger and a speed-up of up to 1873× can be achieved using
CaloClouds II (CM).

The training of the CaloClouds model on a NVIDIA® A100 GPU took about 80 hours
and the training of the CaloClouds II model took around 50 hours on the same GPU. The
consecutive distillation of CaloClouds II (CM) took about 100 hours. This distillation is
fast compared to other distillation methods such as progressive distillation, for which multiple
models have to be trained, each with half as many denoising steps as the previous.

Overall, the CaloClouds model yields already a large speed-up for generating photon
showers using a GPU, while CaloClouds II and particularly CaloClouds II (CM),
achieve comparable fidelity, yet with greatly improved sampling speed even on CPU.

6.5 Summary

For the simulation of particle showers in highly-granular calorimeters, generative models are
being explored to accelerate this process within the currently expected computing budget.
Previous fixed-size or image-based generative models, such as the BIB-AE discussed in
Chapter 5 are on the one hand faster than Geant4, but on the other hand computationally
inefficient as particle showers in highly-granular calorimeters are very sparse when represented
as a 3-dimensional image using much of the computation to essentially produce non-existing
sensor responses. Representing showers as point clouds is a way around this limitation as
only existing cell hits are simulated. Additionally, the point cloud can be made up of (virtual)
ultra-high granular energy depositions, effectively leading to a largely geometry-independent
generative model. However, this requires the generation of high cardinality point clouds
with many more points than previously explored point cloud generative models in HEP can
handle.

With CaloClouds we have developed a model able to generate photon calorimeter show-
ers as high cardinality point clouds with an unprecedented fidelity. Its core is a permutation-
equivariant DDPM-based diffusion model, dubbed PointWise Net, for generating point clouds.
PointWise Net is accompanied by multiple other sub-models, including the Shower Flow
for conditioning and calibration, the EPiC Encoder (during training), and the Latent Flow
(during generation). Together, the full CaloClouds model is able to generate high-fidelity
photon showers in the IDL ECAL 20% faster than Geant4 on a single CPU and 157× faster
on a GPU.
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To increase the generation speed even further, we introduce CaloClouds II and its
variant CaloClouds II (CM) as an evolution of the CaloClouds model, which yields
better generative fidelity and offers a significant speed-up over both CaloClouds and
Geant4 even on a CPU. The main speed-up is gained by moving from the DDPM-based
discrete-time diffusion paradigm to the EDM-based continuous-time diffusion. This allows
for the use of a more advanced sampler, reducing the number of needed function evaluations
by a factor of four, and makes it possible to distill the PointWise Net into a consistency
model for single shot sampling without loss in fidelity. This effectively reduces the number of
diffusion model passes from 100 in CaloClouds to a single pass in CaloClouds II (CM),
therefore leading to a significant speed-up. Additionally, the Latent Flow is omitted, and
further calibrations are introduced in CaloClouds II.

Together, these improvements allow for the CaloClouds II (CM) model to gain an
impressive speed-up of 46× over the Geant4 simulation on CPU, and for a speed-up of up
to 1873× on a GPU. On CPU this is even 5× faster than the BIB-AE. Further, consistency
distillation is much more computationally efficient than other distillation methods such as
progressive distillation, which was previously explored for HEP generative models [60,258], as
it just needs a single training to allow for single shot generation. The CaloClouds II (CM)
model constitutes the first application of a consistency model for calorimeter shower simulation.

Comparing the three CaloClouds variants based on shower observables, using both
histograms and evaluation metrics, including a high-level classifier, we find slightly improved
performance with CaloClouds II over CaloClouds and the best performance with
CaloClouds II (CM) while being computationally the cheapest. The student model
CaloClouds II (CM) outperforming the teacher model CaloClouds II appears counter-
intuitive. However, it is known that errors introduced in earlier ODE solver steps of a
diffusion model can propagate and negatively impact later solver steps [223]. The consistency
model avoids such mismodelings with single-shot sampling. Yet, clear deviations from the
Geant4 baseline are still observable. Further comparisons with other established image-based
generative models such as the BiB-AE or the CaloScore models [59,60] should be conducted.
To this end, the CaloClouds II model is included in the CaloChalle nge [14] community
benchmark.

To achieve a high-fidelity generation of hadronic showers, such as charged pion showers, it
may be necessary to go beyond the i.i.d. assumption and consider inter-point correlations. This
could be done by using transformer (cross)-attention layers [180], fast attention layers [259],
or equivariant point cloud (EPiC) layers [2] (see Chapter 7). All these methods are more
computationally costly than the PointWise Net, hence the exact layer implementations,
the diffusion modeling framework, and the number of denoising steps need to be carefully
considered.

Currently, the CaloClouds II and CaloClouds II (CM) models are being investigated
for the generation of electromagnetic showers in the CMS HGCAL, where the geometry is
more complex with hexagonal tiles. The results look promising and advance the CaloClouds
models by including the hit time, i.e. modeling a 5-dimensional point cloud [260].
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Chapter 7

Point Cloud Modeling of Particle
Jets

The results in this chapter have previously been published in References [2,4] in collaboration
with Cedric Ewen, Darius A. Faroughy, Tobias Golling, Gregor Kasieczka, Matthew Leigh,
Guillaume Quétant, John Andrew Raine, Debajyoti Sengupta, David Shih, and Jesse Thaler.
My contribution to Reference [2] was the development and implementation of the EPiC-GAN
model including the EPiC layers, the training and evaluation of the model, the majority
of the manuscript writing process, the monitoring of the reviewing process, and addressing
the reviewer remarks. I was part of the inception of the project leading to Reference [4], as
it combines the EPiC layers of the EPiC-GAN model with diffusion models / continuous
normalizing flows. The EPiC-FM model was implemented, trained, and evaluated by Cedric
Ewen under my supervision as part of his master thesis [18]. Further, I wrote sections of
the manuscript and addressed reviewer comments. The figures and tables in the chapter are
similar or identical to the ones in the original publications.

I further contributed to applying the EPiC-FM model to anomaly detection in Refer-
ence [12] and to its application to the JetClass [11] dataset in Reference [261]. As my
involvement was larger for References [2,4] and the focus in this thesis lies on the development
of the generative models themself, I am focusing this chapter on these two publications.

In the previous Chapter 6, the CaloClouds models are introduced as generative models
for calorimeter shower point clouds with up to 6,000 points per event. Although reaching
high fidelity on relatively simple electron showers and excelling at computational efficiency,
the models are not as accurate as other voxel-based generative models such as the BIB-AE
discussed in Chapter 5. This limitation is likely due to the simplified assumption of sampling
each point i.i.d. (independent and identically distributed) using the PointWise Net. Yet this
i.i.d. assumption also allows for the computational efficiency of the models. More complex
generative models based on graph-networks [62] and transformers [240, 249, 258, 262, 263]
are being developed for HEP applications, yet these layer types come with a significant
computational cost as they usually scale quadratically with the size of the point cloud.

In this chapter, a novel kind of neural network layer structure for point cloud data is
introduced. It is based on the Deep Sets [176] principle (known in the particle physics
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community as energy and particle flow networks [181]) and allows building generative
models that are similarly performant as graph-network and transformer models, but with a
computational cost that only scales linearly with the point cloud size. As a layer optimal
for point cloud data, it models an equivariant function and works with variable-sized point
clouds. We, therefore, introduce it as the equivariant point cloud (EPiC) layer.

We further introduce three generative models that utilize this layer: a generative adver-
sarial network, dubbed EPiC-GAN, a diffusion model, dubbed EPiC-JeDi, and a continuous
normalizing flow trained with optimal-transport flow matching, dubbed EPiC-FM. The models
are applied to the benchmark datasets JetNet30 [264] and JetNet150 [265]. Extensive compar-
isons between the three models of their generative fidelity on the JetNet datasets are shown,
as well as comparisons with the graph-based message-passing GAN (MP-GAN) [62] and the
transformer-based PC-JeDi (Point Cloud Jets with Diffusion) [262] — both state-of-the-art
jet generative models. We find that the EPiC generative models allow for high-fidelity jet
generation while being significantly more resource-efficient than the graph- and transformer-
based models. Further, the EPiC layers contain a global latent space allowing for a vector to
interpret the physical quantities learned by the models.

The EPiC-GAN is particularly resource-efficient but is surpassed in generative fidelity by
the EPiC-JeDi and EPiC-FM models, which can both be viewed as continuous normalizing
flows (CNFs) [207] during sampling. As they need O(100) model passes for sampling a
single jet, this comes however at an increased computational cost. Both EPiC-JeDi and
EPiC-FM use the same neural network architecture but with two distinct training objectives:
DDIM1-based score matching [266] (EPiC-JeDi) or optimal-transport flow matching [212]
(EPiC-FM). This allows us to directly compare these two objectives for training CNFs.

The JetNet dataset consists of particle constituents of jets, reconstructed from a simplified
LHC detector simulation. When generating jets like these with a generative model, one
would bypass the complete simulation chain, including the generation of the hard process, the
parton showering, the hadronization, the detector simulation, and the reconstruction of the
jets. This would greatly speed up the simulation of particle collisions, however, one would
need to train a generative model for every single SM and BSM process.

Much simpler is the replacement of individual steps in the simulation chain, such as the
event generation or the detector simulation, with a generative model. Of these, the detector
simulation, i.e. the calorimeter response, is the most time-consuming step and relatively easy
to replace, as mostly electrons and pions interact with the calorimeter. Hence, an accurately
trained generative model only trained on electrons and pions would be sufficient to replace a
large part of the detector simulation. This introduces another problem, that the simulated
objects in calorimeters are much larger than the number of reconstructed jet constituents
O(1, 000 − 10, 000) vs. O(100). Such a model is proposed with the CaloClouds model
family in the previous Chapter 6.

For training generative models that replace either parts of or the whole simulation chain,
an ideal dataset would consist of separate but consistent sub-datasets stored after each part
of the chain. This way one could investigate which part is easier to replace, or whether it is
possible to replace the whole chain.

1The term DDIM is derived from the title of Reference [266] “Denoising Diffusion Implicit Models”.
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As it stands the JetNet dataset is an interesting R&D laboratory for the development of
generative models in particle physics, but not a realistic application for such a model. It is
well suited for the evaluation and optimization of different point cloud generative models, e.g.
how they model particle interactions and their training objectives. Since its release, several
generative models were evaluated on JetNet, including GANs [2,62,240,267,268], normalizing
flows [4, 269], and diffusion models [258,262,263].

The JetNet datasets used for the studies in this chapter are introduced in Section 7.1.
The EPiC-GAN model is introduced in Section 7.2 and its evaluation on both fidelity and
computational efficiency is presented in Section 7.3. We further introduce the EPiC-FM and
EPiC-JeDi models in Section 7.4 and compare them to both the EPiC-GAN and PC-JeDi in
Section 7.5. A summary concludes this chapter in Section 7.6.

7.1 Jets & Particle Clouds

Jets consist of a collection of particles, the jet constituents, with each particle i being
defined for example as a 4-momentum vector pi = (Ei, px,i, py,i, pz,i) or in collider coordinates
(pT,i, ηi, ϕi) (transverse momentum, pseudorapidity, and azimuthal angle) — when assuming
massless particles. This set of particles can be represented as a point cloud P = {pi}Ni=1,
where N is the number of particles in the jet (the particle multiplicity).

To benchmark the performance of the models introduced in this chapter, we use the
JetNet30 [264] and JetNet150 [265] datasets which are specifically designed to study the
performance of jet generative models and were introduced in Reference [62]. The jets in the
datasets were first simulated for studying the impact of calorimeter effects on jet substructure
observables of highly-boosted jets in Reference [270] and published as the “HLS4ML LHC
Jet dataset (30 particles)” [271].

As outlined in Reference [270], the events are produced from simulated proton-proton
collisions at a center-of-mass energy of

√
s = 13 TeV. Highly-boosted parton-level top

(tt), light quark (qq), and gluon (gg) events are generated at leading-order using Mad-
Graph5_aMC@NLO [272] (version 2.3.1). The parton and gauge boson energies are
centered around 1 TeV with a window of δpT/pT = 0.01. Their decay and showering are
simulated with PYTHIA [115] (version 8.212) using the Monash 2013 tune [273]. After
hadronization, the samples were passed through a custom parametric simulation of a LHC
detector which considers real detector effects by smearing and granularization of the particle
level features [270,274].

All jets are clustered using the anti-kT algorithm [275] with a radius parameter of R = 0.42

using FastJet [276] version 3.1.3. Afterward a jet pT cut of 0.8 TeV < pT < 1.6 TeV is
applied to remove outlier events since the jet pT spectrum is broadened by kinematic recoil
and energy migration in and out of the jet cone.

This generation procedure resulted in about 170,000 particles per jet class. To create the
JetNet30 and JetNet150 datasets, additional processing is applied to the samples as outlined in

2In Reference [270] the clustering radius was incorrect stated as R = 0.8, which was subsequently propagated
to various later publications, including Reference [62]. From observing the η and ϕ distributions as well as the
W -peak in the jet mass distribution, we deduce that the actual radius must be R = 0.4.
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Figure 7.1: Visualization of a single top jet event in the JetNet dataset. Each point
represents a jet constituent. The size of the point scales with the particle pT. The first
30 jet constituents are used in the JetNet30 dataset (red). All 96 jet constituents are
used in the JetNet150 dataset (red & black).

Reference [62]: The jet constituents (particles) are normalized, centered, and represented with
three particle features, the relative transverse momentum3 prel

T = pparticle
T /pjet

T , the relative
pseudorapidity ηrel = ηparticle − ηjet, and the relative azimuthal angle ϕrel = ϕparticle − ϕjet.
Afterward, the particles are pT ordered and a particle multiplicity cut is applied. A cut at
30 particles is performed for the JetNet30 datasets and at 150 particles for the JetNet150
datasets. For model training and evaluation we use a 70%/15%/15% dataset split — about
120,000 training events and about 25,000 validation and test events.4 A visualization of the
same single top jet in JetNet30 and JetNet150 is shown in Figure 7.1.

7.2 EPiC-GAN

When EPiC-GAN was introduced, the state-of-the-art model on the JetNet30 dataset was a
graph neural network, the message-passing GAN (MP-GAN) [62], using layers based on fully-
connected message-passing neural network (MPNN) blocks [178] (illustrated in Figure 3.4b).
While the MPGAN achieves very good generative fidelity on all three JetNet30 datasets
(gluons, light quarks, and tops), it is rather slow to evaluate considering that fully-connected

3In Reference [62], the assumption pjet
T ≈

∑
i
pparticle

T,i was made and the terminology in this chapter follows
that assumption.

4Note that the validation set is only used for the model choice of the EPiC-GAN. For the evaluation of the
continuous time generative models, we combine the validation and test sets.
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Figure 7.2: Structure of the equivariant point cloud (EPiC) layer. The global function
ϕg and point function ϕp are implemented as two-layer neural networks. The ⊕ symbol
describes the (permutation-invariant) aggregation function ρp→g with both element-wise
summation and average pooling. Figure originally published in Reference [2].

MPNN blocks scale quadratically with the number of input points. Therefore, no results were
published for this model (or by any other model previous to the EPiC-GAN) on JetNet150.

In this section, we are introducing the equivariant point cloud (EPiC) layers, which we
developed to provide a minimal layer structure that is still able to account for inter-point
correlations. We then outline the generator and discriminator architecture of the equivariant
point cloud generative adversarial network (EPiC-GAN), which largely consists of EPiC layers.
Further information on the EPiC-GAN training and sampling is detailed below. The code for
the EPiC layers and the EPiC-GAN as well as the trained weights are publicly available5.

7.2.1 Equivariant Point Cloud (EPiC) Layer

In contrast to MPNN layers, the computations performed in the EPiC layers scale linearly
with the number of points as they are based on the DeepSets framework [176]. Adapting the
notation in Reference [177], a 2-tuple point cloud is defined as C = (g, P ) (a graph without
edge features). As defined above, P is a set of points pi and g represents the global attributes
of the whole point cloud, e.g. the pT of a jet or particle multiplicity N .

The structure of the EPiC layers is outlined in Figure 7.2. Transformation of both
the global attributes g → g′ and the points P → P ′ are performed with two consecutive
computations:

g′ = ϕg(g, ρp→g(P )), (7.1)
p′
i = ϕp(g′,pi). (7.2)

Both the global function ϕg and point function ϕp are learned by a 2-layer fully connected
network with LeakyReLU activation functions. To achieve permutation-equivariance with
respect to the points P , the aggregation function ρp→g is a concatenation of both element-wise

5Code and weights available on GitHub: https://github.com/uhh-pd-ml/EPiC-GAN
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CHAPTER 7. POINT CLOUD MODELING OF PARTICLE JETS

summation and average pooling — both permutation-invariant operations. It maps the point
features into a common global feature space. For this global space to contain information
about the set cardinality, both summation and average pooling are necessary; only one would
not be sufficient without adding N as a global conditioning feature (which we avoided for the
sake of simplicity).

All set- and graph-based layer structures, such as References [176,178,277], can be seen
as specific cases of the graph network block of Reference [177]. This is also true for the EPiC
layers, where we made the following implementation choices:

• No edge features are used to allow for a linear scaling of the computational cost.

• The point attribute transformation ϕp is performed after the global transformation ϕg

to allow for global information aggregation already within one EPiC layer.

• Both summation and average pooling are used in the permutation-invariant aggregation
function ρp→g as summation as an injective aggregation operator preserves set cardinality
information in conjunction with average pooling, which in turn supports faster model
convergence as it scales cardinality-independent.

This formulation of the EPiC layers and the EPiC-GAN is, to the best of our knowledge,
a novel contribution to the machine learning literature, not just in particle physics. A
comparison to the full graph network block and the Deep Sets models is shown in Figure 3.4.

The EPiC layers allow a minimal formulation of a graph network block by limiting the
amount of inter-point information transfer. This limitation can be induced by choosing the
number of global attributes, i.e. the dimensionality dim(g), as well as by the choice of the
number of stacked EPiC layers in the overall model architecture. This “bottlenecking” of the
information transferred between points can be optimized to gain a model with the minimum
information sharing necessary to perform a given task. Additionally, this limited global latent
space allows interpretability of the network in terms of learned global features, as discussed
below in Section 7.3.

7.2.2 EPiC-GAN Architecture

The architectures of the generator and discriminator of the EPiC-GAN are shown in Figure 7.3.
Both consist of a number of EPiC layers L as well as (permutation-equivariant/ -invariant)
blocks ϕpin, ϕpout, ϕ

g
in and ϕgout for input- and output dimensionality reduction/expansion of

either the global or point attribute vectors, respectively. Residual connections [170] are added
to every EPiC layer as well as between the input to the first EPiC layer and the output
of every EPiC layer. These residual connections allow the model to learn to “skip” one or
multiple EPiC layers. For simplicity, these connections are not shown in Figure 7.3.

Generator

The generator is shown in Figure 7.3a. For jet generation, depending on the jet particle
multiplicity N , the particles are randomly initialized as zi∈[1,N ] from normal noise N (0, 1),
each with three features (same as the output features: prel

T , ηrel, and ϕrel). Additionally,
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Figure 7.3: Overview of the EPiC-GAN architecture. Generator (a) and discriminator
(b) consist of multiple EPiC layers (see Figure 7.2) as well as weight-shared neural
networks for input/output dimensionality expansion/reduction. The ⊕ symbol describes
the permutation-invariant aggregation function ρp→g with both element-wise summation
and average pooling. Additional residual connections between EPiC layers are described
in the text. Figures originally published in Reference [2].
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the global attribute vector zg is initialized with a fixed dimensionality dim(g) (see all
hyperparameter choices in Table 7.1). The dimensionality expansion and reduction layers
ϕpin and ϕpout are learned by a 1-layer MLP with LeakyReLU activations and the global
dimensionality expansion block ϕgin is learned by a 2-layer MLP with LeakyReLU activations.
These random vectors are transformed by Lgenerator = 6 EPiC layers and result in generated
jet constituents pi∈[1,N ].

Discriminator

The jet constituents pi∈[1,N ] are the input to the discriminator (shown in Figure 7.3b).
After dimensionality expansion via ϕpin, a permutation-invariant aggregation with average
and summation pooling is performed to create a global attribute vector g. This output
is fed through ϕgin and then used as input to the first EPiC layer. The discriminator was
implemented with Ldiscriminator = 3 EPiC networks. After the final EPiC layer, another
average and summation aggregation is performed to create a permutation-invariant feature
vector that is fed into the output block ϕgout, which has a single Sigmoid output activation to
discriminate between real and fake (generated) jets. In the discriminator, ϕpin, ϕgin, and ϕgout
are implemented with 2-layer MLPs with LeakyReLU activations.

7.2.3 EPiC-GAN Training

For training the EPiC-GAN, each batch needs to be composed of jets with the same particle
multiplicity. As the particle multiplicity is variable (up to 30 for JetNet30 and up to 150 for
JetNet150), we implemented a dynamic PyTorch dataloader class, which composes batches
of equal cardinality with a maximum batch size as a hyperparameter. In each epoch, the
batches are shuffled anew. However, for some cardinalities with fewer jets in the dataset than
the maximum batch size (i.e. N > 10) the batches remain the same in each epoch. During
sampling, the set cardinality for all generated jets is sampled from a kernel density estimation
(KDE) of the particle multiplicity distribution of the training set. Like during training, these
cardinalities are clustered into batches of the same cardinality when generating novel jets.

An alternative approach to this cardinality clustering strategy was implemented in the
EPiC-FM and EPiC-JeDi models (see Section 7.4) (as well as in the CaloClouds models
(Section 6.2)). In EPiC-FM the maximum number of points are always sampled/used while
zero-padding unphysical points. Masking is applied such that in each pooling operation as
well as in the final generation step, the masked points (i.e. the zero-padded points) are set
to zero. This has the advantage, that no custom dataloader class needs to be implemented,
although it is slightly less computationally efficient.

Due to the particle multiplicity cut at either N = 30 or N = 150, the jets in the JetNet30
and JetNet150 datasets are not necessarily centered anymore. Therefore, we apply as a
preprocessing step a re-centering to ηjet = 0 and ϕjet = 0 based on the subset of kept
particles. This centering is also applied as a postprocessing step to the generated jets. To
allow for a consistent evaluation, we also apply this step to both the test events and the
MP-GAN-generated events, although the changes are so small that a difference is noticeable
neither in the histograms nor in the evaluation scores.
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Table 7.1: Hyperparameters used for the EPiC-GAN trainings. Table adapted from
Reference [2].

Hyperparameter Value

Lgenerator EPiC layers 6
Ldiscriminator EPiC layers 3
dim(g) global dimensionality 10
dim(pi) point dimensionality 3
Hidden dimensionality 128
Activation function LeakyReLU(0.01)
Adam [166] learning rate 10−4

Max. batch size 128
Max. training epochs 2,000

Generator weights ∼ 425,000
Discriminator weights ∼ 313,000

As an additional preprocessing step, we standardized the features to follow a normal
distribution with N (0, 52). We found that this five times wider standardization than a unit
Gaussian improves the discriminator performance since low particle prel

T values are numerically
more separated than just with a standard unit Gaussian (a similar effect can be achieved by
taking the logarithm of the input as preprocessing). To avoid unphysical (negative) particle
pT values, we apply a minimum prel

T cut, i.e. we set all prel
T values below the minimum prel

T of
the training set to that value.

We train the EPiC-GAN with the Least Squares GAN (LSGAN) [189] objective using the
binary 0-1 labeling scheme (see Section 4.1.1). Compared to the vanilla GAN objective [228],
which employs binary cross-entropy as a loss function, we found that the least squares objective
leads to more stable training since it avoids vanishing gradients. To further stabilize the GAN
training, we employ weight normalization [278] in all hidden layers. The hyperparameter
choices for the EPiC-GAN are presented in Table 7.1.

The epoch for model evaluation (“best epoch”) is chosen based on the generated relative
jet mass distribution compared to the one of the validation set (∼ 25, 000 samples). To make
a stable estimation of the generative fidelity of this distribution, we generated 10 sets of jets,
each with the same statistics as the validation set. We chose the best model based on the
mean of the 1-Wasserstein distance between the validation distribution and each generated
distribution. Since GANs are inherently unstable to train, we opted to train the GAN for each
dataset three times and present the best model out of the three here. A similar procedure is
done in Reference [62] for the training of the MP-GAN and we are therefore able to fairly
compare the two generative models. Further, the jet mass is correlated to various other
jet physics observables, including numerous Energy Flow Polynomials (EFPs) [131], and is
therefore an overall good indicator for a well-performing model.
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7.3 Jet Generation with the EPiC-GAN

The EPiC-GAN is applied to the generation of JetNet30 and JetNet150 particle jets. At the
time of publishing the EPiC-GAN, the state-of-the-art equivariant generative model for this
dataset was the MP-GAN [62], for which weights are publicly available. Hence, we compare
the EPiC-GAN generative performance here with the MP-GAN as well as the test dataset.

The MP-GAN, however, was only trained on the JetNet30 datasets, likely because the
message-passing layers scale quadratically with the point cloud cardinality resulting in
computationally impractical training performance on the larger JetNet150 dataset. Hence,
with the EPiC-GAN we introduce the first generative model trained on the JetNet150 dataset.

We further limit the discussion in this section to the JetNet30 and JetNet150 top datasets.
For the top decay, we consider its hadronic decay channel via the b quark and the W boson
with the decay chain t → bW → bqq′ into three quarks. Since with R = 0.4 a rather small
anti-kT clustering radius was chosen, not all three quarks are always contained within the
jet. This leads to two distinct peaks in the jet mass distributions: the main peak at the t
quark mass and a secondary peak at the W boson mass. Therefore, the phase space of the
top dataset is more complex than the one for the gluon and light quark decays, which is why
we limit our discussion here to the top. Arguably the generation of jets with a clustering
radius of R = 0.8 and fully contained top jets would physically be more practical, however, to
benchmark a generative machine learning model, this complex structure is more challenging
and offers a more interesting playground. Our conclusions apply equally to the gluon and
light quark datasets and results for these can be found in Reference [2].

Overall we shall observe that the EPiC-GAN reaches a comparable fidelity as the MP-
GAN, which is a very satisfying result, since it is computationally significantly more efficient
and offers the opportunity to work on larger point cloud datasets such as JetNet150.

7.3.1 JetNet30 Top Generation

To investigate the physics performance of the EPiC-GAN on the JetNet top datasets, we
generated the same amount of jets as in the test dataset (∼ 25, 000) and calculated various
physics observables. In this section, we qualitatively assess the performance of the generative
models using differential distributions of nine observables: the relative particle features prel

T ,
ηrel, and ϕrel (aggregated over all particles of all jets), the 1st, 5th, and 20th leading relative
particle prel

T per jet, the particle multiplicity N , the relative jet mass mrel
jet, and the relative

jet prel
T,jet.

We show the resulting distributions for the test set, the EPiC-GAN, and the MP-GAN
generated jets in Figure 7.4. The relative particle prel

T is very well reproduced by both GANs.
The same is true for the particle ηrel distributions, although both GANs do not generate
outliers |ηrel| > 0.4 like the ones present in the test set. The particle ϕrel distribution is
similarly well generated, although the MP-GAN creates a distribution slightly too broad.
Looking in detail at the leading relative prel

T distributions, we observe comparably good
performance for both GANs in the first and fifth leading particle prel

T , yet the EPiC-GAN
achieves a slightly better representation of the high and low pT tail of the 20th particle. For
the jet observables, we first explore the particle multiplicity distribution, which is similarly

168



7.3. JET GENERATION WITH THE EPIC-GAN

0.00 0.25 0.50 0.75 1.00
relative particle prel

T

100

101

102

103

104

105

pa
rti

cle
s

JetNet30
EPiC-GAN
MP-GAN

1.6 0.9 0.2 0.5 1.2
particle pseudorapidity rel

100

101

102

103

104

105

pa
rti

cle
s

0.50 0.25 0.00 0.25 0.50
particle angle rel

100

101

102

103

104

pa
rti

cle
s

0.0 0.2 0.4 0.6 0.8
1st relative particle prel

T

100

101

102

103

pa
rti

cle
s

0.02 0.06 0.10 0.14
5th relative particle prel

T

100

101

102

103

pa
rti

cle
s

0.00 0.01 0.02 0.03
20th relative particle prel

T

100

101

102

103

pa
rti

cle
s

15 20 25 30
particle multiplicity N

100

101

102

103

104

je
ts

0.0 0.1 0.2 0.3
relative jet mass mrel

jet

100

101

102

103

je
ts

0.6 0.8 1.0 1.2
relative jet prel

T, jet

100

101

102

103

je
ts

Figure 7.4: JetNet 30 top dataset: Various particle- and jet-level differential distributions
comparing the test set, MP-GAN generated, and EPiC-GAN generated jets. Figures
originally published in Reference [2].
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Table 7.2: Wasserstein-based evaluation scores and Fréchet ParticleNet distance (FPND)
for the JetNet 30 top dataset. The “truth” values are calculated between the test
and training set. The MP-GAN scores are calculated using the trained models from
Reference [62]. Table adapted from Reference [2].

Jet class Model WM
1

( x10−3 )
WP

1
( x10−3 )

WEFP
1

( x10−5 ) FPND

Top
Truth 0.2 ± 0.1 0.3 ± 0.1 0.6 ± 0.5 0.02 ± 0.01
MP-GAN 0.5 ± 0.1 2.4 ± 0.2 1.0 ± 0.7 0.35 ± 0.04
EPiC-GAN 0.5 ± 0.1 2.1 ± 0.1 1.7 ± 0.3 0.31 ± 0.03

well modeled by both GANs — although in the case of the EPiC-GAN, this is actually due
to the cardinality KDE. As one of the most challenging distributions, the relative jet mass
mrel

jet is well represented by both GANs with the double peak feature due to the W and top
mass being distinctly visible. Finally, the relative jet prel

T,jet < 0.9 is well generated by both
GANs. Above 0.9 both GANs deviate from the test distribution. The MP-GAN generates
large outliers, while the EPiC-GAN generates maximum values below 1.05. This cut-off at
prel

T,jet = 1.0 is due to the normalization of the relative jet pT and could be introduced with
the GANs as a post-processing calibration. Yet, without calibration, it is interesting how
well the models can generate the cut-off. Here, we see an advantage of the EPiC-GAN over
the MP-GAN.

Overall we observe a comparable generative fidelity between the EPiC-GAN and the
MP-GAN in this qualitative assessment of differential distributions for the JetNet30 top
dataset. Next, we approach this comparison quantitatively with evaluation scores based on
the 1-Wasserstein distance between physical distributions.

For these evaluation scores, we calculate similar ones as in Reference [62]. These scores are
either based on the 1-Wasserstein distance between certain physics distributions or based on
the Fréchet distance between latent space of a multi-classifier. For the Wasserstein scores, we
use the same observables as in Reference [62]: the Wasserstein distance between the relative
jet mass distribution WM

1 , the mean of the Wasserstein distance between the relative particle
feature distributions (prel

T , ηrel, and ϕrel) WP
1 , and the mean of Wasserstein distance between

five Energy Flow Polynomial (EFP) distributions (the loop-less multi-graphs with 4 nodes
and 4 edges) WEFP

1 . We further calculate the Fréchet ParticleNet distance (FPND) using
trained ParticleNet weights implemented in the JetNet package [62].

Compared to Reference [62], we increase the statistics for calculating the WO
1 (for

observable O) and FPND scores. With the “truth” scores, we compare the training set with
the test set to estimate the score an “optimal” generative model would achieve. We calculate
four “truth” Wasserstein scores between the test set and four subsets of the training data with
equal size and quote the mean and standard deviations of the four. For the “truth” FPND,
we quote similarly the mean and standard deviation of four scores using the same subsets.
The MP-GAN and EPiC-GAN scores are calculated using ten subsets (i.e. we generated
about ∼ 250, 000 jets with each model) and we report their mean and standard deviation.
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Table 7.3: Wasserstein-based evaluation scores and FPND for the JetNet 150 top
dataset. The “truth” values are calculated between the test and training set. Table
adapted from Reference [2].

Jet class Model WM
1

( x10−3 )
WP

1
( x10−3 )

WEFP
1

( x10−5 )

Top Truth 0.3 ± 0.1 0.2 ± 0.1 1.3 ± 0.8
EPiC-GAN 0.6 ± 0.1 3.7 ± 0.3 2.8 ± 0.7

In Table 7.2 we present the resulting scores for the MP-GAN and the EPiC-GAN compared
to the truth values. As already qualitatively observed, both generative models perform very
similarly. Considering the standard deviations, all scores are in the margin of error from
each other. Comparing the GAN scores to the Monte-Carlo truth, we find that the GAN
samples are still distinguishable from the truth samples, which is also apparent from the
histograms. In particular, the particle-level features calculated with WP

1 and the FPND
are quite off. However, the scale of the FPND is difficult to interpret as it is unclear what
features the ParticleNet classifier is sensitive to. Note that in Reference [62] two more scores
were calculated — coverage and minimum matching distance — however, it was observed
that these scores were not sensitive enough to be useful for the evaluation of the generative
models.

Overall, we conclude that both GANs perform equally well on the task of generating
JetNet30 top jets. Next, we evaluate the performance of the EPiC-GAN on the JetNet150
top dataset, for which the EPiC-GAN constitutes the first generative model published.

7.3.2 JetNet150 Top Generation

We trained the EPiC-GAN on the JetNet150 top dataset with the same hyperparameters as
for the JetNet30 top dataset. Here, we compare the EPiC-GAN only to the test set, since
the MP-GAN is not available for JetNet150. The same nine distributions as in the previous
section are shown in Figure 7.5.

The overall relative particle features, prel
T , ηrel, and ϕrel, are accurately modeled by the

EPiC-GAN, although the high angle tail of the ϕrel distribution is slightly underestimated.
The leading relative prel

T distributions are also well modeled, except for the 20th leading
particle, where the distribution is slightly shifted to higher values. As a jet observable, the
particle multiplicity is very well reproduced by the KDE of the EPiC-GAN. The relative jet
mass distribution is also very well modeled. This was also the distribution for discriminating
the best epoch choice. Finally, the relative jet prel

T,jet is narrowly distributed around 1.0, yet
the mean is slightly above 1.0. As previously mentioned, this could be calibrated with a
post-processing step, however, it is a good benchmark that the EPiC-GAN can generate this
cut-off reasonably well without any calibration.

For the quantitative evaluation scores, we calculate the same Wasserstein-based scores as
for the JetNet30 top dataset. We do not include the FPND here, since its calculation for
JetNet150 was not supported by the JetNet package. The calculated mean and standard
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Figure 7.5: JetNet 150 top dataset: Various particle- and jet-level differential distribu-
tions comparing the test set and EPiC-GAN generated jets. Figures originally published
in Reference [2].
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Figure 7.6: Timing performance of the EPiC-GAN compared to the MP-GAN as a
function of a (fixed) generated particle multiplicity. For either GAN, a total of 500k
jets were generated. The batch size was optimized for optimal generation speed and
generation was performed on a system with a single NVIDIA® A100-40GB GPU. Figure
originally published in Reference [2].

deviation of the calculated scores for the test set compared to either the training set (“truth”)
or to the EPiC-GAN generated samples are shown in Table 7.3. Comparing the EPiC-GAN
scores to the truth scores, we find that the EPiC-GAN samples are worse than the truth
samples, in particular for the particle-level features. However, the scores are only slightly
worse than the ones calculated on the JetNet30 top dataset.

Overall, we observe that the EPiC-GAN performs comparably well on the JetNet150 top
dataset as on the JetNet30 top dataset. Yet, more research is needed to achieve truth-level
generative fidelity. While the generative performance of the EPiC-GAN is in line with
the MP-GAN, it is computationally significantly more efficient. Its timing performance is
discussed in the next section.

7.3.3 Timing

As the EPiC layers scale linearly with the cardinality of the point cloud and the fully connected
message-passing layers scale quadratically, the EPiC-GAN is computationally more efficient
and allows for a faster generation of larger point clouds than the MP-GAN on the same
hardware. In Figure 7.6 we show the generation time per jet for a fixed particle multiplicity
for both the EPiC-GAN and the MP-GAN. We ran both GANs on the same hardware — a
single NVIDIA® A100-40GB GPU — and generated 500k jets with each model. For both
models, we used randomly initialized weights, since a trained model is not necessary for this
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Figure 7.7: Distance correlation between several physical jet observables and the global
attribute vector g after (and before) each EPiC layer. The JetNet 30 light quark training
is shown. Figure originally published in Reference [2].

comparison.
The EPiC-GAN generates a jet with 30 constituents 13x faster than the MP-GAN (2µs

vs. 26µs), while for 150 particles its 55x faster (12µs vs. 660µs). Note that these are the
generation times for a fixed particle multiplicity. JetNet30 and JetNet150 contain jets with a
variable cardinality and therefore the average generation time is lower than for example the
quoted time for fixed 30 particles. This better scaling behavior of the EPiC-GAN allows it
to be used for the generation of larger point clouds such as the JetNet150 dataset and even
larger point clouds such as calorimeter point clouds. For example, we applied the EPiC layers
in the encoder of the CaloClouds model to calorimeter point clouds with a cardinality of
up to 6,000 (see Chapter 6).

7.3.4 Interpretability

Several global variables, such as the jet mass, the jet pT, and the particle multiplicity, define
the overall particle jet. Ideally, the global attribute vector g of the EPiC layer should learn
such global features. To study, if and what kind of physical information is learned/encoded in
the multi-dimensional global attribute vector, we calculate several important jet variables of
5,000 EPiC-GAN generated jets and calculate their distance correlation [279] to the encoded
g space of the generator. These variables include the relative jet mass mrel

jet, the relative jet
prel

T,jet, the particle multiplicity N , and two energy flow polynomials (EFP) — two out of the
five EFPs calculated for the WEFP

1 .
The resulting distance correlations are shown in Figure 7.7. We show the distance

correlation between the observables and the vector g before the first EPiC layer (g of EPiC
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layer No. 0) and after each of the six EPiC layers (g of EPiC layer No. 1-6). We observe
virtually no correlations before the first EPiC layer, but already strong correlations with
the particle multiplicity after the first EPiC layer. Correlations with all other variables are
increasing with the number of EPiC layers. Notably, the strongest correlation (0.90) with the
particle multiplicity is observed after the third EPiC layer. The second-strongest correlation
(0.73) is with the jet mass after the fifth EPiC layer, which is particularly well modeled by the
EPiC-GAN, as this is the variable used for the final evaluation epoch choice. This indicates,
that indeed these physical observables are learned by the EPiC-GAN.

Observing these distance correlations with the global attribute space allows one to
monitor the training and interpret the physics learned by the EPiC model. Depending on the
application, this might increase the trust in a model based on EPiC layers, if one observes
that important physical features are learned by the model.

7.4 EPiC Diffusion Models for Particle Jets

With the high fidelity that can be reached using the EPiC layers in the EPiC-GAN model,
as well as the advantages of these layers in terms of computational efficiency, scaling, and
interpretability, we endeavor to use them together with more recent advancements in generative
modeling: diffusion and flow matching generative models.

For generative modeling tasks in computer vision, diffusion generative models [213–215,
217,280] — often also referred to as score-based generative models — have largely surpassed
the fidelity of GANs, albeit at an increased computational cost [216]. Recently, the flow
matching [210–212] paradigm for training continuous normalizing flows (CNFs) [207] has been
introduced, which makes training of CNFs significantly more stable and lets them approach
or even surpass the fidelity of some diffusion model implementations. An introduction to
CNFs is given in Section 4.3.2 and an overview of diffusion, score matching and flow matching
is given in Section 4.4.

At the time of publishing the results of the studies presented in this section, diffusion
models were used in high-energy physics for the generation of particle jets [258, 262, 263, 281]
and calorimeter showers as voxelized images [59–61, 282]. Flow matching was used for
generating jet-level observables [281]. Further examples of the application of diffusion models
for calorimeter shower generation can be found in Chapter 6.

Shortly after the publications of the EPiC-GAN results in Reference [2], the PC-JeDi
(Point Cloud Jets with Diffusion) [262] model was introduced, which achieves comparable
performance to the EPiC-GAN and even surpassing it in certain sub-jet observables. However,
as a transformer-based diffusion model, which scales quadratically with the particle multiplicity
and requires 200 model passes for denoising, this increase in fidelity comes at a significant
computational cost. This computational cost further makes PC-JeDi impractical for generating
point clouds larger than the ones in the JetNet30 dataset, such as JetNet150.

Together with the authors of PC-JeDi, we implemented an EPiC-variant of the PC-JeDi
model, dubbed EPiC-JeDi, using a similar layer structure as the EPiC-GAN, but with
the PC-JeDi diffusion model parameterization. Further, we trained the same model with
the optimal-transport flow matching objective from Reference [212] to compare the two
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Figure 7.8: Overview of the “EPiC Network” architecture used in both EPiC-JeDi and
EPiC-FM. It is based on the EPiC-GAN generator (see Figure 7.3). Each multi-layer
perceptron (MLP) is a two-layer neural network and the pooling operations are summation
and averaging. The unconditional models only use the time step t as conditioning. Figure
originally published in Reference [4].

training objectives. This model we call EPiC-FM. However, during inference, both models
are identical (except their trained weights) as they both utilize the midpoint ODE solver.
Since no stochasticity is involved in the sampling process, both models can be technically
referred to as CNFs.

We observe, that both approaches outperform PC-JeDi and EPiC-GAN and that EPiC-
FM even outperforms EPiC-JeDi, suggesting an advantage for the flow matching objective.
However, compared to EPiC-GAN, these performance increases come at a significantly higher
computational cost.

7.4.1 EPiC-JeDi and EPiC-FM Architecture

EPiC-JeDi and EPiC-FM share the same model architecture and only deviate in their training
objective. During sampling, they resemble a CNF, we will therefore refer to both models as
EPiC-CNF whenever a technical detail applies to both models. The models presented here
are designed to work for both the JetNet30 and the JetNet150 datasets.

The network architecture of EPiC-CNF is dubbed EPiC Network. An overview of the
EPiC Network is shown in Figure 7.8. Similar to most diffusion model architectures —
usually designed as U-Nets [171] — the input and output dimensionality must be equal. Six
consecutive EPiC layers make up the bulk of the EPiC Network. Each MLP in the network
is implemented with a hidden dimensionality of 128 and LeakyReLU activations. The input
point cloud has a feature dimensionality of three, corresponding to the relative particle prel

T ,
relative pseudorapidity ηrel, and the relative azimuthal angle ϕrel of the jet constituents. To
expand the input dimensionality to the hidden network dimensionality and to create the
global attribute vector g (with dim(g) = 10), a Projection Network is set before the first
EPiC layer. This Projection Network is made up of two MLPs and the same average and
summation pooling as in the EPiC layer. A single linear output layer without activation is
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used for dimensionality reduction after the sixth EPiC layer.
Two changes are made to the EPiC layers in EPiC-CNF in comparison to the ones used

for the EPiC-GAN: the addition of conditioning and masking of zero-padded particles in
the pooling layers. The conditioning is needed as diffusion models are conditioned on the
time step t. Additionally, this conditioning can be used to steer the model with additional
jet properties such as the jet mass or the jet pT. The conditioning is implemented as a
concatenation to the input of every layer of both MLPs (ϕp and ϕg in Figure 7.3). This
conditioning also applies to the Projection Network and the output layer. For the studies in
Reference [4], we have implemented two versions of the EPiC-CNF models: an unconditional
model (only conditioned on the time step t, which is mandatory for diffusion models) and a
conditional version (adding jet mass and jet pT conditioning; the same conditioning used for
PC-JeDi [262]). As the unconditional version can be directly compared to the (unconditional)
EPiC-GAN, we will focus in this section on the unconditional EPiC-CNF models. Detailed
comparisons of the conditional EPiC-CNF models with the (conditional) PC-JeDi model can
be found in Reference [4].

Masking is added to the EPiC layers via a separate input for the mask which represents
whether a particle actually should be generated or is a zero-padded particle (to allow for jets
with variable cardinality within a single batch). As particles communicate only via the global
function ϕg, the masked particles are set to zero before the permutation-invariant aggregation.
This way, ϕg is applied only to non-padded (existing) particles. Note that the local function
ϕp is applied to both masked (zero-padded) and unmasked (existing) particles, but since
they do not contribute to the global attribute vector g, this does not change the result. In
the generated output particle cloud, the masked particles are set to zero in the same way
and disregarded in downstream jet observable calculations. This masking is mainly done for
convenience as it allows the omission of a preprocessing step necessary for the EPiC-GAN, in
which the jets were sorted in equal cardinality batches.

7.4.2 Training and Sampling

Here, we discuss the specific implementation choices that were made for EPiC-JeDi as a
diffusion model and for EPiC-FM as a CNF trained with flow matching. An overview of the
training and sampling process of both models is shown in Figure 7.9.

The EPiC-JeDi training objective is the same for PC-JeDi outlined in Reference [262]. It
is inspired by score-based generative modeling through SDEs (see Section 4.4.2) and follows
the variance preserving framework discussed in Reference [215] and the exact implementation
follows Reference [266]. The overall loss function for training the score model sθ in EPiC-JeDi
is given by

LJeDi(θ) = Et,ϵ,xt

[(
1 + α

β(t)
σ(t)2

)
∥sθ(xt, y, t) − ϵ∥2

]
, (7.3)

where α is a weighting parameter set to α = 10−4, β(t) and σ(t) are variance schedulers, and
y denotes conditional information for the conditional version of EPiC-JeDi. The expectation
is taken over the time step t uniformly sampled from U(0, 1), the total noise ϵ ∼ N (0, I),
and the noised input xt = γ(t)x0 + σ(t)ϵ where x0 ∼ pdata is the input point cloud and
γ(t) = 1 − σ(t)2.

177



CHAPTER 7. POINT CLOUD MODELING OF PARTICLE JETS

EPiC
NetworkJet , , 

 Data   (0, 1) 

Noising function

Predicted
Point Cloud 

 = 

(a) Training

EPiC
NetworkJet , , 

At start of loop

t = 1

Integration Step

Predicted
Point Cloud 

 Data

(b) Sampling

Figure 7.9: Pipeline of the EPiC-JeDi and EPiC-FM training (a) and sampling (b)
process. Figure originally published in Reference [4].

EPiC-FM on the other hand is trained with the optimal-transport conditional flow
matching objective from Reference [212]. A derivation of flow matching and its implementation
via conditional flow matching is given in Section 4.4.3. The EPiC-FM loss function is given
by Equation 4.74 and the minimum noise is set to σmin = 10−4.

The two training objectives differ in two main aspects: (1) The JeDi loss function trains a
model that essentially predicts the noise added to the input data and the flow matching loss
function trains a model that predicts the perturbed data directly. (2) The linear noise-to-data
scaling in optimal-transport flow matching leads to straight probability trajectories, while
the variance-preserving framework in score-based modeling exhibits curved probability paths.
From this perspective, the flow matching objective may be advantageous for efficient training
and sampling with fewer model evaluations [212].

The EPiC-CNF models are implemented with PyTorch and we used the Adam-W
optimizer [283] with an initial learning rate of 10−3. A cosine learning rate scheduler is
employed, including warm-up for 1,000 epochs. Both models were trained6 for 10,000 epochs
with a batch size of 1,024 and the last epoch was chosen for model evaluation. For the
differential equation solvers, we used the torchdiffeq library [284]. Further hyperparameters
as well as the model and training data sizes can be found in Table 7.4.

Both EPiC-CNF models are sampled with the same midpoint ODE solver, a 2nd-order
Runge-Kutta variant. We found this solver works best for both models and we use it with a
fixed 200 number of function evaluations (NFE), i.e. with 100 solver steps. This is the same
number of solving steps used with the DDIM and Euler-Maruyama (EM) [222] sampler in
PC-JeDi. Further results on experiments with other solvers for the EPiC-CNF models can
be found in the appendix of Reference [4].

To sample the correct cardinality (particle multiplicity) for the initial point cloud, we use
6The presented EPiC-FM model was trained by Cedric Ewen and the presented EPiC-JeDi model was

trained by Debajyoti Sengupta.
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Table 7.4: Hyperparameters used for the EPiC-JeDi and EPiC-FM trainings. Table
originally published in Reference [4].

Hyperparameter Value

EPiC layers 6
EPiC global dimensionality 10
Hidden dimensionality 128
Activation function LeakyReLU(0.01)
Adam-W [283] learning rate 10−3

Learning rate scheduling Cosine with warm-up
Warm-up epochs 1,000
Batch size 1,024
Training epochs 10,000

Model weights ∼ 560, 000

Training events ∼ 110, 000
Test events ∼ 27, 000

a (discrete) normalizing flow trained on the particle multiplicity distribution — in addition
to the jet mass and the jet pT, which are used only for the conditional EPiC-CNF models.
The normalizing flow is implemented with four rational quadratic spline (RQS) coupling
blocks [255] in conjunction with invertible linear layers using the nflows [256] library.
For training the flow model, we apply de-quantization to the discrete particle multiplicity
by adding continuous noise [285] and use during sampling the nearest integer for the jet
generation.

7.5 EPiC Jet Generation with Diffusion Models

To study and benchmark the fidelity that can be achieved with the EPiC-CNF models, they
were trained on the JetNet30 and the JetNet150 datasets. In the following Section 7.5.1, we
compare the unconditional EPiC-CNF models to the EPiC-GAN based on various particle-
and jet-level observables. We calculate various evaluation scores for all conditional and
unconditional models and show them for both JetNet30 and JetNet150 in Section 7.5.2. A
more detailed comparison of the conditional EPiC-CNF models with the PC-JeDi model
can be found in Reference [4]. A timing comparison of the EPiC-CNF models to PC-JeDi is
provided in Section 7.5.3.

7.5.1 Unconditional Top Jet Generation

To assess the physics performance of the unconditional EPiC-JeDi and EPiC-FM models
compared to the EPiC-GAN, we generate 270,000 jets with each model. For comparison,
the test set consists of about 27,000 jets. On the particle level, we compare the differential
distributions of the 1st, the 5th, and the 20th leading relative particle prel

T (for the jet
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constituents sorted by pT after generation). As we have seen for the EPiC-GAN, only with
such a detailed look at individual constituent distributions we can observe any differences
for generated samples on a particle level. To compare the jets on jet level, we calculate the
following jet observables: The relative jet mass mrel

jet, the relative jet transverse momentum
prel

T,jet, the relative N -subjettiness ratios τ rel
21 and τ rel

32 , and the energy correlator D2. These
observables are in line with Reference [262].

JetNet30 Top Dataset

For the JetNet30 top dataset, the resulting differential distributions for these observables are
shown in Figure 7.10. All these distributions include overflow bins and an error band based
on the statistical uncertainty of the bin count (which is lower for the test dataset (MC) than
for the generated data due to 10× more generated data).

The leading particle prel
T distribution is well modeled by both EPiC-JeDi and EPiC-FM

(within the uncertainty). In comparison, the EPiC-GAN models well the core of the distribu-
tions but underestimates the tails. The 5th leading particle prel

T is particularly well modeled
by the EPiC-FM model, i.e. on par with the test distribution. The EPiC-JeDi model slightly
overestimates values below the mean, while it underestimates values above the mean. The
EPiC-GAN performs similarly, although here it is vice versa. A similar behavior is observable
for the 20th prel

T : Within the uncertainty, the EPiC-FM model is comparable to the Monte
Carlo simulation, while both EPiC-JeDi and EPiC-GAN mismodel the low pT tail.

As previously mentioned, the double-peak relative jet mass distribution of the top dataset
is a particularly good distribution for benchmarking the quality of a generative model. This
distribution is very well reproduced by both the EPiC-FM and EPiC-GAN models. However,
one should note that this distribution was used to make the epoch choice for the EPiC-GAN
model, while for the EPiC-FM model simply the last epoch was used for evaluation. The
EPiC-JeDi model mismodels the W peak by about 50% and the high mass tail by almost
100%. Similarly, the relative prel

T is very accurately modeled by EPiC-FM. EPiC-JeDi
underestimates the distribution mean and leads to an increased width, while EPiC-GAN
oversamples in the mean of the distribution while undersampling the low prel

T tail. All models
produce a few events above the prel

T = 1.0 maximum of the Monte Carlo distribution.
Jet substructure observables such as N -subjettiness ratios are precision jet features that

are difficult to model for a point cloud generative model. The ratio τ rel
21 is equally accurately

modeled by both EPiC-JeDi and EPiC-FM— though both do not exactly reproduce the test
distribution. This ratio is slightly worse reproduced by the EPiC-GAN. Larger differences
are observable for the τ rel

32 ratio: both EPiC-JeDi and EPiC-GAN oversample the edges of
the distribution while undersampling the center. EPiC-FM reproduces the shape of the
distribution much better. The energy correlator D2 distribution is very well modeled by both
EPiC-JeDi and the EPiC-FM model. However, the EPiC-GAN leads to deviations of up to
50%.

Overall we observe the highest jet generation fidelity with the EPiC-FM model. In most
distributions, the EPiC-JeDi model is more accurate than the EPiC-GAN.
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Figure 7.10: Unconditional top jet generation with 30 constituents: Various particle-
and jet-level observables for the test set, EPiC-FM, EPiC-JeDi, and EPiC-GAN. Top
row: relative pT distribution of the leading (left), 5th leading (middle), and 20th leading
(right) constituents. Middle row: relative jet mass (left) and jet pT (right) distributions.
Bottom row: relative jet τ21 (left), τ32 (middle), and D2 (right) distributions. The
error bands correspond to the statistical uncertainty of the bin count. Figures originally
published in Reference [4].
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JetNet150 Top Dataset

For the JetNet150 top dataset, the resulting differential distributions for the same observables
are shown in Figure 7.11. The leading jet constituent is very well modeled by both EPiC-FM
and EPiC-JeDi. Like in the JetNet30 distribution, the EPiC-GAN underestimates the high
pT tail of the distribution. The behavior observed in the JetNet30 5th leading constituent
distribution is less pronounced for JetNet150: EPiC-FM is very accurate, while EPiC-JeDi
and EPiC-GAN slightly mismodel the center and the low pT tail. The 20th leading pT is
very well reproduced by both EPiC-FM and EPiC-JeDi. However, strong deviations above
50% are observed for the EPiC-GAN, since it creates a distribution with the mean shifted to
higher values.

The relative jet mass distribution is much better modeled by the EPiC-GAN than by either
EPiC-FM and EPiC-JeDi. The top mass peak is equally well modeled by the two EPiC-CNF
models, yet EPiC-JeDi undersamples the W mass peak (just like for JetNet30). As mentioned
before this distribution was used to choose the best epoch of the EPiC-GAN, which likely
explains its superior performance in this observable. A stark difference between the models is
observable in the relative jet prel

T distribution: Due to the particle pT normalization and the
high multiplicity cut at 150 particles, almost all jets in the training and test distributions have
a prel

T of 1.0. This is comparatively well reproduced by the EPiC-FM model. The EPiC-GAN
overestimates the prel

T and the EPiC-JeDi model underestimates it. Further, both generated
distributions with a much larger width than EPiC-FM.

The distribution of the ratio τ rel
21 is best modeled by the EPiC-GAN, likely due to its

correlation with the jet mass. The two EPiC-CNF models perform similarly to each other,
but slightly worse than the EPiC-GAN. In the ratio τ rel

32 , all three models lead to rather large
deviations from the test distribution, though overall EPiC-FM is closest. The distribution of
energy correlator D2 is equally well reproduced by all three models.

Overall on JetNet150, we can draw the same conclusions as for the JetNet30 top dataset:
Out of the three models, the highest jet generation fidelity is achieved by EPiC-FM.

7.5.2 Evaluation Scores

To quantify the performance of the EPiC-CNF models in more detail, we calculate various
evaluation scores based on several particle- and jet-level observables. To this end, we are
calculating scores based on the Kullback-Leibler divergence (KLD) for several observables O.
We refer to these scores as KLO scores.

Since we are here benchmarking very accurate generative models, we replace the previously
calculated WO

1 scores with KLO scores. The Wasserstein distance represents the minimal
“work” that is required to move one probability density distribution onto another. It is
particularly well suited for comparing distributions whose supports do not completely overlap.
However, for largely overlapping distributions it is less sensitive to density variations than
the KLD.

A downside of the KLD in comparison the the Wasserstein distance, is that it requires
binning of the distributions, while the Wasserstein distance is an unbinned estimator. This
introduces additional hyperparameter choices which previously was a reason to simply use
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Figure 7.11: Unconditional top jet generation with 150 constituents: Various particle-
and jet-level observables for the test set, EPiC-FM, EPiC-JeDi, and EPiC-GAN. Top
row: relative pT distribution of the leading (left), 5th leading (middle), and 20th leading
(right) constituents. Middle row: relative jet mass (left) and jet pT (right) distributions.
Bottom row: relative jet τ21 (left), τ32 (middle), and D2 (right) distributions. The
error bands correspond to the statistical uncertainty of the bin count. Figures originally
published in Reference [4].
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the Wasserstein distance for generative modeling evaluation [62]. Yet, when comparing
histograms in high-energy physics, one often cares about the matching of densities in the two
distributions, i.e. an overdensity in a distribution might indicate a resonance signal among a
large background. An example of the failure of a Wasserstein-based score to convey properly
the performance of a distribution is given in Section 7.5.2.

To use the KLD consistently across various jet observables, we made the following binning
choices: The binning range is set by the minimum and maximum values of the target (truth)
distribution. A total of 100 bins are chosen and the bin edges are adjusted so that they result
in equiprobable quantiles of the target distribution, i.e. equal bin content in each bin. No
overflow bins are used, hence outliers in the model distributions are discarded — yet, since
we compare equal-sized distributions, outliers lead to deviations in some model bins. This
binning allows for equal statistical significance across the whole distribution and simplifies
the KLD Equation 4.11 to:

DKL(P ||Q) = − 1
N

N∑

i=1

(
log(qi) − log

( 1
N

))
(7.4)

with Q as the model distribution and P as the uniform target (“truth”) distribution with
pi∈[1,N ] = 1

N in N bins. The KLO scores are hence equally sensitive to variations in all bins
and in comparison to the Wasserstein distance not sensitive to the distance between these
bins, i.e. mismodelings are equally weighted across the whole distribution and not depending
on their relative distance.

We have a test statistic of about 27,000 jets and sampled 270,000 from each generative
model. The KLO scores are calculated 40 times with 50,000 samples using bootstrapping. We
report the mean and standard deviation of the KLO scores. As observables O, we calculate
the KLO scores with the relative jet mass, the jet constituent pT/jet pT distribution, the
N -subjettiness ratios τ21 and τ32, and the energy correlator D2. In addition to the KLO scores,
we calculate the Fréchet ParticleNet Distance (FPND) [62] (introduced in Section 7.3.1). For
the JetNet150 dataset, we approximate the FPND by calculating it with the first 30 leading
constituents.

JetNet30 Top Dataset

The resulting FPND and KLD scores for both the unconditional and the conditional versions
of EPiC-FM and EPiC-JeDi as well as the scores for the EPiC-GAN (unconditional) and
PC-JeDi (conditional) on the JetNet30 top dataset are shown in Table 7.5.

Comparing the unconditional models with each other, we observe that EPiC-FM reaches
the lowest FPND score with the EPiC-GAN being only slightly worse. The scaling of this score
is however difficult to interpret since it is unclear how the ParticleNet discriminator weights
each feature. In all KLO scores, except the KLm, the EPiC-FM model is performing the
best and the EPiC-GAN slightly worse than EPiC-JeDi. In the KLm score, the EPiC-GAN
performs better than EPiC-FM, likely since the mass was used for the epoch choice. EPiC-JeDi
performs significantly worse in the mass distribution, which is also clearly visible in Figure 7.10.

Comparing the conditional models with each other, we observe the best performance
across all evaluation scores by the EPiC-FM model. Compared to PC-JeDi, the EPiC-JeDi
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Table 7.5: Top jet generation with 30 constituents: summary of performance metrics
for generated jets using the Fréchet ParticleNet Distance (FPND) and the Kullback-
Leibler divergence for various particle- and jet observables. As comparisons to EPiC-FM
and EPiC-JeDi (either with conditional or unconditional generation), the results of
EPiC-GAN (unconditional) and PC-JeDi (conditional) are shown. Table adapted from
Reference [4].

Generation Model FPND KLm(×10−3) KLpconst
T (×10−3) KLτ21(×10−3) KLτ32(×10−3) KLD2(×10−3)

Unconditional
EPiC-GAN 0.34 3.71 ± 0.42 3.33 ± 0.03 8.28 ± 0.76 17.68 ± 0.91 13.18 ± 1.04
EPiC-JeDi 1.63 18.42 ± 1.12 3.73 ± 0.08 8.00 ± 0.80 15.27 ± 1.35 12.33 ± 1.06
EPiC-FM 0.14 5.80 ± 0.54 2.03 ± 0.01 7.69 ± 0.71 9.24 ± 1.00 4.51 ± 0.58

Conditional
PC-JeDi 0.40 8.56 ± 0.75 3.25 ± 0.09 12.82 ± 1.16 27.08 ± 1.40 11.91 ± 0.92
EPiC-JeDi 0.42 5.26 ± 0.51 2.99 ± 0.05 7.81 ± 0.61 17.34 ± 1.08 6.58 ± 0.73
EPiC-FM 0.11 3.77 ± 0.50 2.03 ± 0.02 7.40 ± 0.64 8.09 ± 0.93 4.31 ± 0.46

model yields lower KLO scores, however, in the FPND score, it is just slightly worse than
PC-JeDi. Note that PC-JeDi uses the Euler-Maruyama (EM) solver as suggested in Ref-
erence [262]. Overall it appears that although PC-JeDi and EPiC-JeDi share the same
diffusion parameterization, the simplified EPiC layer in combination with the midpoint solver
is advantageous. Replacing the diffusion model with a flow matching CNF as in EPiC-FM
leads to even better results.

Comparing the conditional and unconditional EPiC-FM with each other, we observe equal
or slightly improved scores using the conditional model. In the mass score, we can see the
largest improvement, which is to be expected since the model was specifically conditioned on
the jet mass. One could argue that giving a model conditional information is “cheating” since
one could in principle add a very large number of jet observables as conditioning to improve the
model performance, i.e. all jet observables the models are evaluated on here. However, when
the best-performing model is required, then such a conditional model might be exactly what
should be used. Yet it is remarkable, that the EPiC-FM model even without conditioning
performs very well and that the conditioning only leads to marginal improvements.

JetNet150 Top Dataset

The resulting FPND and KLD scores for both the unconditional and the conditional versions
of EPiC-FM and EPiC-JeDi as well as the scores for the unconditional EPiC-GAN on the
JetNet150 top dataset are shown in Table 7.6.

Comparing the unconditional models with each other, we observe a similar result as with
the unconditional models on JetNet30. EPiC-FM is best in all scores except the mass score,
where it is again outperformed by EPiC-GAN. EPiC-JeDi performs better than EPiC-GAN
only in the KLτ21 and the KLτ32 scores, in the remaining scores EPiC-GAN achieves lower
scores.

Note that the KLτ32 score is much lower for EPiC-FM (KLτ32 = 9.24 ± 1.00) than for
EPiC-JeDi (KLτ32 = 15.27±1.35). This aligns well with our observation of the τ32 distribution
in Figure 7.10, where the shape of the EPiC-FM distribution resembles more closely the
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Table 7.6: Top jet generation with 150 constituents: summary of performance metrics
for generated jets using the Fréchet ParticleNet Distance (FPND) and the Kullback-
Leibler divergence for various particle- and jet observables. As comparisons to EPiC-FM
and EPiC-JeDi (either with conditional or unconditional generation) and the results of
EPiC-GAN (unconditional) are shown. Table adapted from Reference [4].

Generation Model FPND KLm(×10−3) KLpconst
T (×10−3) KLτ21(×10−3) KLτ32(×10−3) KLD2(×10−3)

Unconditional
EPiC-GAN 0.93 6.50 ± 0.63 2.22 ± 0.09 20.60 ± 1.55 69.64 ± 3.30 6.04 ± 0.64
EPiC-JeDi 1.93 27.46 ± 1.24 6.39 ± 0.60 20.15 ± 1.25 36.50 ± 1.81 11.70 ± 0.98
EPiC-FM 0.18 12.95 ± 0.90 0.87 ± 0.02 10.59 ± 0.88 12.14 ± 0.97 4.39 ± 0.55

Conditional EPiC-JeDi 0.52 9.10 ± 0.79 6.42 ± 0.76 14.32 ± 1.08 19.92 ± 1.21 9.40 ± 0.88
EPiC-FM 0.12 4.30 ± 0.53 0.84 ± 0.02 9.43 ± 0.61 11.22 ± 1.02 4.28 ± 0.56

MC distribution than EPiC-JeDi does. However, if we were to calculate the τ32 score based
on the 1-Wasserstein distance, the resulting W τ32

1 score would indicate that EPiC-JeDi
(W τ32

1 = 11.67 ± 0.60) performs better than EPiC-FM (W τ32
1 = 19.85 ± 1.29). This is a result

of the shape of the τ32 distribution where an underestimation of the center of the distribution
is surrounded by an overestimation of the edges of the distribution, which cancels out in
the Wasserstein score and leads to an overall better score for a seemingly worse distribution.
This is an example of the failure mode of the Wasserstein scores compared to the KLD scores
and shows that the KLD scores align more closely with a density-based interpretation of
histograms.

Comparing the conditional models with each other, we observe the same result as with
the unconditional models on JetNet30: EPiC-FM performs better than EPiC-JeDi across all
scores. PC-JeDi was not available for this comparison since it would be too computationally
costly to train on JetNet150. When comparing the conditional and the unconditional
EPiC-FM models with each other, we can observe again that the conditioning improves the
fidelity of the model leading to a better performance of the conditional EPiC-FM model
across all scores.

7.5.3 Timing

An advantage of the EPiC-CNF models over PC-JeDi is the linear computational scaling
with the point cloud size of the EPiC layers compared to the self-attention transformer
layers employed by PC-JeDi, which scale quadratically. To benchmark the computational
performance difference, we generated 270,000 jets with (fixed) constituent sizes between
10 and 150 with PC-JeDi and with EPiC-JeDi (which during inference has the identical
computational requirements as EPiC-FM) on the same hardware with an NVIDIA® A100-
40GB graphics card. Similar to the timing study for EPiC-GAN in Section 7.3.3, the batch
size was adjusted for each fixed jet size. For this study, the models were randomly initialized
and not trained. Note that i.e. the timing for a fixed 150 particles is not equal to the
average timing of generating a JetNet150 jet, as most JetNet150 jets contain less than 100
constituents.

In Figure 7.12 we show the generation time per jet for each fixed generated particle
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Figure 7.12: Timing performance of PC-JeDi compared to the EPiC-FM/EPiC-JeDi
as a function of (fixed) generated particle multiplicity. As EPiC-JeDi and EPiC-FM use
the same EPiC Network, the timing is representative of either approach. The batch size
was optimized for optimal generation speed and generation was performed on a system
with a single NVIDIA® A100-40GB GPU. The timing is calculated as an average of all
test events generated. For reference, EPiC-GAN generates jets with 10 (150) particles in
a little over 1 µs (10 µs) (see Figure 7.6). Figure originally published in Reference [4].

multiplicity of both PC-JeDi and EPiC-JeDi (EPiC-FM). The faster generation time of the
EPiC-CNF models is apparent. Due to the O(N) scaling of the EPiC layers, the speed-up
of the EPiC-CNF models over PC-JeDi is increasing with the point cloud size N . At 150
particles per jet, the EPiC-CNF models are 6.2× faster than PC-JeDi (2.5 ms vs. 15.5 ms).
Overall, this much faster generation timing makes the EPiC-CNF models viable for modeling
even larger point clouds, such as calorimeter showers as point clouds with O(1, 000) points
(see Chapter 6).

For comparison, the EPiC-GAN is about 210× faster than EPiC-CNF, generating 150
particles in just 12 µs. This speed-up is consistent as we generated jets using the midpoint
ODE solver with 200 model evaluations. As the EPiC-GAN and the EPiC-CNF models share
largely the same architecture, each EPiC-CNF model pass takes about as much time as a
jet generation with EPiC-GAN. Yet, this speed-up comes at the cost of reduced generative
fidelity with the EPiC-GAN. Distillation techniques for diffusion models, such as progressive
distillation [218] and consistency distillation [219], could be applied to the EPiC-CNF models
to further increase their computational efficiency. Hence, this work of speeding up the
model architecture itself using the EPiC layers is orthogonal to work that has implemented
distillation procedures for jet generative diffusion models using transformers [258,263].
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7.6 Summary

Many measurements among various sciences can be best represented as point clouds or sets
of data. As point (particle) clouds are a natural representation for jets, the JetNet30 and
JetNet150 datasets are specifically designed to develop point cloud generative models for
particle physics applications. Apart from the potential to speed-up traditional Monte Carlo
simulations, the generation of complex particle jets provides an interesting playground for
developing point cloud generative models. Among the multiple jet types contained, we focus
on the top jets with the most challenging mass distribution to model.

Motivated by the high computational requirements of graph-network and transformer-
based point cloud generative models which limits their applicability to high cardinality point
clouds (such as calorimeter showers), we introduce the equivariant point cloud (EPiC) layers.
The EPiC layers are based on the Deep Sets principle, scale linearly with the size of the
point cloud, and allow for variable-size point clouds. Using these layers allows us to develop
the EPiC-GAN, a generative adversarial network, which can generate particle jets as point
clouds.

We use the JetNet30 and the JetNet150 datasets to benchmark the performance of the
EPiC-GAN against the (at the time) state-of-the-art MP-GAN. With both the qualitative
evaluation of histograms of various particle- and jet-level observables and the quantitative
evaluation of Wasserstein distance-based scores, we find comparable generative fidelity is
reached by the MP-GAN and the EPiC-GAN.

While the two models reach a similar fidelity, the EPiC-GAN requires significantly fewer
computational resources and can generate jets with fixed 150 particles 55× faster than the
MP-GAN on the same GPU hardware. This linear scaling with the point cloud size allows
for the application of the EPiC-GAN to the JetNet150 datasets as well as for possible future
generation of even larger point clouds, such as calorimeter shower point clouds with O(1, 000)
cardinality. Additionally, the EPiC layers in the EPiC-GAN provide a global latent space,
which can be correlated with physical observables allowing for an interpretation of the models’
decision-making. This can help with establishing trust in the model predictions as well as
with monitoring the physics encoding during training.

We further employ the EPiC layers to speed-up the PC-JeDi model, a recently introduced
transformer-based diffusion model for jet generation. As a first step, we replace the transformer
layers in PC-JeDi with EPiC layers resulting in the EPiC-JeDi model. As a second step, we
replace the DDIM diffusion model training objective with optimal transport flow matching
leading to the EPiC-FM model. Both models share the same architecture and the same
sampling procedure, yet deviate in their training objective. Together we refer to them as
EPiC-CNF, as they both resemble the same continuous normalizing flow (CNF) during
sampling.

We compare the EPiC-CNF models with the EPiC-GAN and PC-JeDi on various dif-
ferential distributions of particle and jet observables. To quantify their performance, we
introduce the KLO scores using the Kullback-Leibler divergence for the estimation of the
similarity of model distributions to the Monte Carlo “truth” as an improvement over the
previously used Wasserstein distance scores WO

1 . The KLO score is density-based and weights
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dis-similarities between distributions equally across the whole parameter space instead of by
their relative distance like the WO

1 scores. We see that especially for subtle differences like
in the N -subjettiness ratios the KLO scores capture better a physicists’ view of comparing
histograms.

We find that across almost every metric on both datasets and for both conditional and
unconditional models EPiC-FM performs best. EPiC-JeDi outperforms EPiC-GAN and
PC-JeDi in many distributions, yet does not represent the test distributions as closely as
EPiC-FM. This shows that on the one hand using the EPiC layers instead of transformer
layers for a particle cloud generative diffusion model does not negatively impact the model
performance and that the flow matching objective for training CNFs leads to superior results
compared to the DDIM diffusion model parameterization.

In addition to the increased generative fidelity using the EPiC-FM model, it is also more
computationally efficient than using transformer layers, as the EPiC layers scale linearly with
the point cloud cardinality. Compared to PC-JeDi this leads to a 6.2× faster generation of
jets with 150 particles with the same number of model evaluations. This improvement is
complementary to research investigating distillation methods that aim to reduce the number
of model evaluations [258,263].

Overall, these results seem counter-intuitive since one would expect that message-passing
and transformer layers have much more capacity for learning complex structures in the data
compared to the simple EPiC layers. We speculate that since jet generation is a stochastic
process with a relatively small number of important features, this simple architecture works
still well, even though the inter-point correlations are only modeled by a small number of
global feature vectors. Alternatively, the potentially smaller capacity of the EPiC layers
improves the training as the overall gradient landscape might be simpler leading to an easier
optimization. For future research into optimal layer structures for point cloud neural networks
for HEP research it could be beneficial to disentangle the relative importance of point-, edge-,
and global features.

However, none of the models reproduce exactly the test data in every single distribution,
so at least some jets are still distinguishable from the MC “truth” distribution. While the
research presented here provides an improvement in both fidelity and computational efficiency
over previous approaches, further research should be performed to develop models with even
higher fidelity and even greater speed-ups. However, for some applications, i.e. for large-scale
parameter scans or proof-of-principle studies, it might be advantageous to use one of the
presented generative models if the gains in computational efficiency outweigh the potentially
lower fidelity.

In subsequent work [11], the EPiC-FM model was successfully applied to generate jets from
the more complex JetClass [261] dataset and advanced the model by modeling more particle
observables such as particle identification and track displacement information. Additionally,
the EPiC-FM model was adapted [12] to explore anomaly detection with the R&D dataset of
the LHC Olympics [286] using the full phase space in the Cathode approach [287].
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Chapter 8

Conclusion

The increasing luminosity and growing granularity of detector systems at current and future
collider experiments motivate the development of more precise fast detector simulations.
Generative machine learning models offer powerful and flexible modeling frameworks that
are well suited for this task. In this thesis, multiple generative models for the simulation
of calorimeter showers in highly-granular calorimeters as well as for the simulation of jets
are presented and evaluated. This work advances the research on generative models for fast
simulations in several ways:

In Chapter 5, the BIB-AE model for the generation of electromagnetic calorimeter
showers is studied. The BIB-AE model unifies VAE- and GAN-based modeling approaches
and generates calorimeter showers in the form of 3D images. It generates photon showers
10× faster than Geant4 on the same CPU hardware. A comprehensive study of the latent
space encoding is presented, which shows that only few variables are utilized to encode most
of the information. These latent variables are highly correlated to observables such as the
center of gravity in shower incident direction. This result can be used for targeted sampling
for showers with specific properties, and it motivates an improvement of the latent space
sampling via a kernel density estimate of the encoded latent space. By sampling from the
KDE, correlations in the latent space are preserved, and the generative fidelity is increased.

Additionally, studies on the evaluation of generative models for calorimeter simulation are
presented. The mean of 1D Wasserstein distances and a multi-dimenisonal MMD are found
to be similarly sensitive to Gaussian perturbations in the shower dataset and very fast to
compute. The AUC of a high-level classifier is a sensitive score on a wide range of Gaussian
perturbation, especially compared to a low-level classifier that can already almost perfectly
separate small perturbations and is therefore less suitable for comparing various generative
models. The novel Fréchet Regression Distance is introduced, however it proves difficult to
interpreted what shower properties contribute to a low FRD score.

In Chapter 6, three models for calorimeter shower generation as point clouds are introduced:
CaloClouds, CaloClouds II, and CaloClouds II (CM). Representing showers as point
clouds has several advantages over voxelized representations: only hits with energy depositions
are generated, the generation speed scales with the number of points, and the shower is
largely geometry-independent. With CaloClouds, we introduce a high-fidelity generative
model for calorimeter showers as high-cardinality point clouds. The model is based on the
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discrete-time DDPM diffusion model ansatz and achieves a modest speed up of 20% compared
to Geant4 on a CPU. With CaloClouds II, we introduce an improved version based on
continuous-time score matching, which leads to a significant speed of 6× compared to Geant4
on the same CPU. Finally, we are able to distill the consistency model CaloClouds II (CM),
which achieves a speed up of 46× as well as the highest generative fidelity. The latter model
constitutes the first consistency model for calorimeter shower generation and highlights the
potential of consistency distillation for future generative models in high-energy physics.

In Chapter 7, we present two types of models for the generation of particle jets as
point clouds. Both models are implemented with the novel equivariant point cloud (EPiC)
layer, which is optimized for point cloud data, provides a global latent space for inter-point
correlations and its computational requirement scales linear with the point cloud cardinality.
Together with the EPiC layer, the EPiC-GAN model is introduced. It is evaluated on the
JetNet benchmark dataset against the MP-GAN and we find that it provides a very similar
generative fidelity, but generates jets with 150 particles 55× faster due to the superior scaling
of the EPiC layer.

Additionally, EPiC-CNF is introduced, which is either trained with flow matching (EPiC-
FM) or with score matching (EPiC-JeDi), and also utilizes the EPiC layer. Comparing the
two training objectives, we find that EPiC-FM achieves the higher generative fidelity. It
also outperforms the transformer-based diffusion model PC-JeDi in terms of both generative
fidelity and generation speed. Both EPiC-CNF models achieve a higher fidelity than EPiC-
GAN, but are significantly slower in generation speed. Overall, both the EPiC layer and the
flow matching objective promise to be useful tools for future point cloud generative models
in high-energy physics.

From here, several directions for future research can be identified:
Since the BIB-AE model was introduced, a novel but very similar class of generative

models has emerged in the realm of image generation: latent diffusion models (LDMs) [288]
contain the same building blocks as the BIB-AE – a VAE, an adversarial training loss, and a
model for sampling the latent space. The difference is, that in the BIB-AE the latent space
is sampled from a KDE (and in subsequent implementations from a normalizing flow) and in
LDMs the latent space is sampled from a diffusion model. Over the recent years, LDMs have
proven to be very powerful in generating high-quality images and it would be interesting if the
already great generative fidelity of the BIB-AE could be further improved by incorporating
the diffusion model sampling.

Although point cloud generative models have several advantages when it comes to the
generation of calorimeter showers, they are not yet on par with image-based models in
terms of generative fidelity. Future comparisons between the two model types, similar to
Reference [249] and as pursued by the CaloChallenge [14], may help in identifying the best
modeling practices and improve either model type. Future iterations of the CaloClouds
model could be based on the transformer architecture to allow for inter-point communication.
This may be needed for an accurate modeling of hadron showers. However, it may come at
the cost of generation speed and the trade-off between fidelity and speed should be carefully
considered. Currently, efforts are made to apply the CaloClouds model to hadronic showers,
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to model showers in the CMS HGCAL, and to incorporate the model into the full Geant4
simulation chain.

EPiC-FM has since been explored for its application in anomaly detection [12] and for
the generation of jets in the JetClass dataset [11]. For future R&D of point cloud generative
models in HEP, the JetClass dataset is a good candidate, as it is significantly larger than
JetNet, includes more jet types, and more jet properties. With EPiC-FM, the flow matching
objective is shown to be very effective for stable training of diffusion models / CNFs. It
would be interesting to explore the distillation of EPiC-FM, e.g. into a consistency model,
which could accelerate the generation process significantly. Recently, consistency trajectory
models (CTMs) [289] were introduced as a unification of diffusion models and consistency
models. Applying this modeling paradigm to fast simulation could be very promising. Overall,
generative machine learning models for fast particle physics simulations will continue to be
an active and interesting field of research in the coming years.

193



CHAPTER 8. CONCLUSION

194



Appendix A

Supplementary Calorimeter
Observables

Bin edges 0 1 2 3 4 5 6 7 8 9 10

Edges for Eradial,i∈[1,10] [mm] 0 6.6 9.8 13.0 17.0 23.4 33.6 40.1 48.5 68.8 300
Edges for Elong,i∈[1,10] [layer] 1 9 12 14 16 17 19 20 22 25 30

Table A.1: Bin ranges for calculating the radial and longitudinal energy observables
Eradial,i∈[1,10] and Elong,i∈[1,10]. They are determined on 40,000 events of the CaloClouds
test dataset for ten quantiles each including on average the same number of cell hits. All
bins are half-open, except the last bin. The bin edges are precisely calculated for the
radial energy observables, but rounded to the nearest integer for the longitudinal ones.
Table originally published in Reference [5].
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Figure A.1: Histograms of 10 radial energy observables comparing Geant4 to Calo-
Clouds, CaloClouds II, and CaloClouds II (CM). A total of 50,000 showers are
shown, sampled from a uniform distribution of incident particle energies between 10 and
90 GeV. The error band corresponds to the statistical uncertainty in each bin. Figure
originally published in Reference [5].
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Figure A.2: Histograms of 10 longitudinal energy observables comparing Geant4 to
CaloClouds, CaloClouds II, and CaloClouds II (CM). A total of 50,000 showers
are shown, sampled from a uniform distribution of incident particle energies between
10 and 90 GeV. The error band corresponds to the statistical uncertainty in each bin.
Figure originally published in Reference [5].
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