
A phase microscope

for ultra-cold quantum gases

Dissertation zur Erlangung des Doktorgrades
an der Fakultät für Mathematik, Informatik und Naturwissenschaften

Fachbereich Physik der Universität Hamburg

vorgelegt von
Justus Christopher Brüggenjürgen

aus Hannover

Hamburg
2024





Gutachter

Gutachter der Dissertation: Prof. Dr. Henning Moritz
Prof. Dr. Christof Weitenberg

Zusammensetzung der Prüfungskomission: Prof. Dr. Henning Moritz
Prof. Dr. Christof Weitenberg
Prof. Dr. Klaus Sengstock
Prof. Dr. Ludwig Mathey
Prof. Dr. Roman Schnabel

Vorsitzender der Prüfungskommission: Prof. Dr. Roman Schnabel

Datum der Disputation: 19.12.2024

Vorsitzender Fach-Promotionsausschuss PHYSIK: Prof. Dr. Markus Drescher

Leiter des Fachbereichs PHYSIK: Prof. Dr. Markus Drescher

Dekan der Fakultät MIN: Prof. Dr.-Ing. Norbert Ritter

iii



Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, die vorliegende Dissertationsschrift selbst verfasst und keine
anderen als die angegebenen Hilfsmittel und Quellen benutzt zu haben.

Sofern im Zuge der Erstellung der vorliegenden Dissertationsschrift generative Künstliche Intelligenz
(gKI) basierte elektronische Hilfsmittel verwendet wurden, versichere ich, dass meine eigene Leistung
im Vordergrund stand und dass eine vollständige Dokumentation aller verwendeten Hilfsmittel gemäß
der Guten wissenschaftlichen Praxis vorliegt. Ich trage die Verantwortung für eventuell durch die gKI
generierte fehlerhafte oder verzerrte Inhalte, fehlerhafte Referenzen, Verstöße gegen das Datenschutz-
und Urheberrecht oder Plagiate.

Ort, Datum Justus C. Brüggenjürgen

Ich versichere, dass dieses gebundene Exemplar der Dissertation und das in elektronischer Form
eingereichte Dissertationsexemplar (über den Docata-Upload) und das bei der Fakultät (zuständi-
ges Studienbüro bzw. Promotionsbüro Physik) zur Archivierung eingereichte gedruckte gebundene
Exemplar der Dissertationsschrift identisch sind.

Ort, Datum Justus C. Brüggenjürgen

iv



Abstract

Coherence properties play a central role in quantum systems and are fundamental to phenomena such
as superfluidity and superconductivity. Ultracold gases in optical lattices provide an versatile platform
for quantum simulation, allowing precise control to explore coherence properties that underlie complex
quantum phenomena.

In this thesis, we investigate the coherence properties of an ultra cold Bose gas in a two-dimensional
optical lattice, focusing on phase coherence and fluctuations across the Berezinskii-Kosterlitz-Thouless
(BKT) phase transition. We utilize matter-wave microscopy with an optical matter-wave lens to mag-
nify the atomic wavefunction, enabling us to image the density distribution with single-site resolution.
The ability to turn off interaction allows us to measure a coherent wavefunction released from a lat-
tice. This reveals the two-dimensional Talbot effect, where the periodic density modulations from the
lattice is self-imaged and we capture in-situ images of these periodic revivals. The strength of the
revivals are a direct measure for the spatial coherence of the system. Furthermore, we present the
implementation of a phase microscope for ultra cold quantum gases. The phase microscope enables
us to extract the relative phases on single lattice sites. We measure the phase correlation towards
the BKT phase transition and obtain a critical exponent for the algebraic decay in our system. The
matter-wave and phase microscopy techniques presented here offer an approach towards exploring co-
herence in strongly correlated quantum systems, providing full spatial resolution and potential insights
into phase transitions and novel quantum phases.

v



Zusammenfassung

Kohärenzeigenschaften spielen eine zentrale Rolle in Quantensystemen und sind grundlegend für
Phänomene wie Supraleitung und Suprafluidität. Ultrakalte Gase in optischen Gittern bieten eine
vielseitige Plattform für die Quantensimulation, die präzise Kontrolle ermöglicht, um die Kohären-
zeigenschaften komplexer Quantenphänomene zu untersuchen.

In dieser Dissertation untersuchen wir die Kohärenzeigenschaften eines ultrakalten Bose-Gases
in einem zweidimensionalen optischen Gitter, wobei der Schwerpunkt auf Phasenkohärenz und
-fluktuationen über den Berezinskii-Kosterlitz-Thouless (BKT)-Phasenübergang hinweg liegt. Wir
nutzen Materiewellenmikroskopie mit einer optischen Materiewellenlinse, um die atomare Wellenfunk-
tion zu vergrößern, was uns die Abbildung der Dichteverteilung mit Einzelplatzauflösung ermöglicht.
Die Fähigkeit, Wechselwirkungen abzuschalten, erlaubt uns die Messung einer kohärenten Wellen-
funktion, die aus dem Gitter freigesetzt wird. Dies offenbart den zweidimensionalen Talbot-Effekt,
bei dem die periodischen Dichtemodulationen des Gitters sich selbst abbilden und wir in-situ-Bilder
dieser periodischen Revivals erfassen können. Die Stärke dieser Revivals liefert eine direkte Messung
der räumlichen Kohärenz des Systems. Darüber hinaus stellen wir die Implementierung eines Phasen-
mikroskops für ultrakalte Quantengase vor. Das Phasenmikroskop ermöglicht es uns, die relativen
Phasen auf einzelnen Gitterplätzen zu extrahieren. Wir messen die Phasenkorrelation unterhalb des
BKT-Phasenübergangs und bestimmen einen kritischen Exponenten für den algebraischen Zerfall
in unserem System. Die hier vorgestellten Techniken der Materiewellen- und Phasenmikroskopie
bieten einen Ansatz zur Untersuchung der Kohärenz in stark korrelierten Quantensystemen und
ermöglichen vollständige räumliche Auflösung sowie potenzielle Einblicke in Phasenübergänge und
neue Quantenzustände.
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CHAPTER1
Introduction

Quantum simulation is by now a well-established concept since Richard Feynman proposed his idea
to utilize nature’s intrinsic principles to tackle quantum mechanical problems[1]. Today, we can dis-
tinguish between two types of quantum simulators: digital simulators, commonly known as quantum
computers, and analog simulators, which replicate Hamiltonians directly. With a quantum simula-
tor, it is possible to gain insights into observables that are challenging or inaccessible in the system
of interest. Additionally, novel systems can be engineered, further expanding the scope of physical
inquiry.

Quantum simulation is possible on various platforms where high control of the system and direct
measurement of observables are achieved. One such platform involves cold atoms[2]. Cold atoms
have become an ideal platform for both analog and digital quantum simulations.

With the first Bose-Einstein condensate of cold atoms[3], the platform was established in quantum
simulation. From here, the toolbox of cold atoms was expanded, from bulk physics to lattice physics
emulating solid-state physics to tweezer systems enabling quantum computing with cold atoms.
Besides preparing quantum systems, various tools have been developed for probing their properties.
The primary method of measurement involves capturing light emitted or absorbed by the atoms.
Absorption imaging allows to probe the system’s density on a macroscopic scale and with a free
expansion prior to imaging, the momentum distribution is detected.

The goal to measure the density and the dynamics of the system on a microscopic scale was achieved
with the advent of quantum gas microscopes, for bosons[4, 5] and fermions[6–11]. Quantum gas
microscopes enable imaging and manipulating single atoms with a resolution of a single lattice site[12].
This allowed, for example, the microscopic observation of the superfluid-to-Mott insulator transition in
the Bose-Hubbard model[13]. With fine potential engineering, major advances were possible towards
the suspected d-wave superconducting phase in the Fermi-Hubbard model, e.g. the observation of the
anti-ferromagnet[14]. The addition of spin-resolution enabled the detection of spin dynamics[15–19].
Recent measurements extended the capabilities to the detection of additional observables like the
current between lattice sites[20].

Quantum gas microscopy relies on high-resolution optics, which are demanding to implement. Re-
cent advances with matter-wave optics allowed the quantum wave function to be expanded prior to
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imaging[21–23], allowing imaging at resolutions below the lattice spacing and making matter-wave
microscopy an essential complement to traditional quantum gas microscopy.

Matter-wave microscopy enhances resolution and introduces new opportunities to measure coherence
in quantum systems. The coherence properties of ultra-cold atomic gases were first shown in [24],
where two BECs overlapped and showed interference fringes. In lattice experiments, the coherence
between lattice sites is a common tool for observing the lattice in momentum space[25]. Coherent
waves passing through a lattice exhibit the Talbot effect[26], which is well known in optics, but also
in matter-waves[27–31].

The interference between two-dimensional Bose gases was utilized to probe the Berezinskii-Kosterlitz-
Thouless (BKT) phase transition. Although true long-range order is forbidden in two-dimensional
systems (Mermin-Wagner theorem), interference remains observable[32]. The BKT theory[33, 34]
describes the existence of quasi long-range order, which, eventually, as temperature is increased, will
vanish due to the unbinding of vortex-anti-vortex pairs. The BKT phase transition is highly intriguing
for quantum simulation, as it is closely connected to two-dimensional superfluidity[35].

In this thesis, we extend the toolbox for quantum simulation with quantum gases. We introduce
matter-wave microscopy with an optical potential enabling us to measure a coherent wavefunction.
With the system still coherent, we are able to observe the two-dimensional matter-wave Talbot effect
in situ for the first time. We use the Talbot effect to probe the coherence properties of the system
across the BKT phase transition. Finally, we present the phase microscope, resolving the increasing
phase fluctuations towards the BKT transition with single-site resolution. With this new tool, we are
able to extract the correlation between lattice sites and obtain a critical exponent of the algebraic
decay.

1.1 | Thesis Outline

The thesis is structured in the following manner:

In chapter 2, I give an overview of the 7Li quantum gas machine we finished building during this
thesis. I recapitulate shortly the relevant atomic properties of 7Li. The setup and the cooling stages
are presented. The chapter concludes with measurements characterizing the evaporation process into
degeneracy.

In chapter 3, I present the versatile lattice setup. I highlight the static and dynamical configurations
possible, which include a static triangular lattice, an averaged optical potential used for evaporation
and matter-wave magnification, a multi-frequency setup allowing for fast dynamical change of ge-
ometry and moving lattices. The core parts of the setup are the combination of a double-pass AOM
and an EOM on each path.

In chapter 4, I introduce our implementation of matter-wave microscope based on the optical
potential created by the dipole trap configuration of the versatile lattice setup. We use matter-wave
microscopy to measure the matter-wave Talbot effect as well as the optical Talbot effect arising from
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the diffraction of coherent light on the magnified lattice. With the matter-wave Talbot effect, we
measure the coherence of the system across the BKT phase transition and determining the correlation
length.

In chapter 5, I present the phase microscope. I give a short recap of BKT physics in quantum gases
and bring our system of tubes into context. I discuss the aberrations present in the optical matter-wave
lens created by Gaussian beams. Analytical estimates for the accumulated phase over a quarter period
oscillation in the anharmonic potential are discussed and I back them with numerical simulations.
This results in a conversion factor from density deviation in respect to a mean distribution on a
single lattice site to the phase on a single lattice site. With this conversion, I present measurements
of magnified in-situ images from which the phase can be extracted on a single lattice site. The
conversion factor is determined via phase thermometry. I close with the extraction of the phase
correlations, from which we obtain the exponent of the algebraic decay below the phase transition.

The results in chapter 4 and chapter 5 are published in [23] and figures in these chapters are closely
adapted. The work leading to the presented results in this thesis has been performed in close
collaboration with Mathis Fischer, whose thesis gives a detailed account of the experimental setup,
and under supervision of Christof Weitenberg.
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CHAPTER2
Lithium quantum gas machine

This chapter provides an overview of the experimental setup and methods used to achieve Bose-
Einstein condensation with Lithium-7 atoms, focusing on laser cooling and evaporative techniques. A
detailed accord on our preparation of Bose-Einstein condensates with Lithium-7 and its relevant prop-
erties can be found in the thesis of Mathis Fischer [36]. Our experimental setup employs a compact
design with an oven placed below a two-dimensional magneto-optical trap (2D-MOT) followed by a
three-dimensional MOT (3D-MOT) for laser cooling. Following the laser-cooling stage, we employ a
magnetic trap for initial evaporative cooling, transitioning to an optical dipole trap for the final evap-
oration. The scattering length is tuned via a Feshbach resonance allowing for fast rethermalization
with strong interactions.

2.1 | Lithium-7

Lithium is the lightest alkali atom, excluding hydrogen, and this property gives it intriguing potential
for quantum simulation. Both isotopes, fermionic 6Li and bosonic 7Li, are stable and have favorable
scattering properties. Laser-cooling and degeneracy has been achieved for the bosonic and fermionic
isotope[37, 38]. Our main motivation to work with 7Li is to study the coherence properties of Bose-
Einstein condensates (BECs) with the aid of a matter-wave microscopy [21, 23]. The matter-wave
microscope enables us to probe the system down to the single-site level. By switching off the contact
interaction during magnification of the wavefunction, we can probe the coherence of the system with
the same spatial resolution. 7Li as well as 6Li feature a broad Feshbach resonance aiding the control
over interactions. In figure 2.1 both the intra- and inter-spin resonances of 7Li are plotted for the
singlet-states of the 2S1/2, F = 1 [39, 40]. The triplet, F = 2, manifold doesn’t exhibit any Feshbach
resonances to our knowledge. The scattering lengthas a function of the magnetic field in the vicinity
of a Feshbach resonance is described by the following relation:

a(B) = aBG

(
1− ∆B

B −B0

)
, (2.1)

where aBG is the background scattering length at |B−B0| ≫ ∆B, B0 is the location of the Feshbach
resonance and ∆B is the width of the resonance. For the singlet state, the scattering length at zero
magnetic field is a(0) = 33(2)a0 and for the triplet state it is a(0) = −27.6(5)a0 [41]. The scattering
lengths are given in Bohr radii a0 = 5.29×10−11m. The intra-spin resonance for the hyperfine state
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Figure 2.1: Feshbach resonances of 7Li. The left panel shows the intra-species resonances; in this work, we use the
resonance of the (1, 1) state (blue). The inset shows a zoom too visualize the zero-crossing of the scattering length,
which we use to turn of the interactions. The right panel shows the inter-species resonances with the respective inset
as on the left. The data were provided by Randy Hulet [40].

F = 1, mF = 1 (referred to as the (1,1) state) lies at B0 = 738.3G with a width of ∆B = 194.7G.
In contrast to general description of the Feshbach resonance above, the intra-spin scattering length
of (1,1) dips below zero for values B < B0 before it reaches the background scattering length of the
singlet-state. The zero-crossing closer to the resonance lies at 543.6G, which will allow us to turn
off the interaction almost entirely.

The two most important transitions for laser cooling in Lithium, as well as other alkali atoms, are the
so-called D1- and D2-transitions. For 7Li these are the transition from 2 2S1/2 to 2 2P1/2 and 2 2P3/2,
respectively. The level scheme is shown in 2.2 with the relevant wavelengths used in the experiment.
For both isotopes, the transitions are spaced by 10.5GHz. The transitions are resonantly driven with
wavelengths λD1 = 670.977 nm and λD2 = 670.962 nm. Both transitions have a natural linewidth of
Γ = 2π× 5.87MHz. The D2-transition is used for initial cooling with magneto-optical traps and for
imaging the atoms. On the D1-transition, we perform a Λ-enhanced gray-molasses cooling scheme
and optically pump the atoms into the (2,2)-state. The ground state 2 2S1/2 hyperfine splitting is
803.5MHz.

As our particles are Bosons, this allows for three-body scattering events. These events can result
in high kinetic energies which will cause the atoms to heat up and/or leave the trap. For 7Li the
three-body loss rate is exceptionally high. With 1 × 10−27 cm6/s [42] it is orders of magnitudes
larger than in Rubidium, 4.3 × 10−29 cm6/s [43], or Sodium, 1.1 × 10−30 cm6/s [44]. The three-
body collision rate also has to be compared to the elastic two-body collision rate, which drives the
rethermalization of the system. The two-body collision rate can be tuned via the Feshbach resonance,
but the three-body collision rate also increases with the two-body scattering length, see [39, 40]. The
high three-body loss complicates the evaporation process for 7Li, but does not render it unfeasible.
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Figure 2.2: Level diagram, Feshbach resonances and spectroscopy setup. (Left) Energy level diagram of 7Li. The red
and orange lines show the transitions to the D2 line for the 2D and 3D MOTs, with the ’cooler’ from F = 2 as solid
lines and the ’repumper’ from F = 1 as dashed lines. In blue, the transition to the D1-line, used for gray molasses and
optical pumping, is shown (solid and dashed as before). The purple line represents the transition for the push-beam,
which is blue-detuned to the D2-line. (Middle) Feshbach resonances of 7Li. The top panel shows the intra-species
resonances; in this work, we use the resonance of the (1, 1) state (blue). The lower panel shows the inter-species
resonances. (Right) Sketch of the spectroscopy setup. The setup enables laser locking to the respective transition and
allows the choice between two different spectroscopy methods, FMS and MTS. Spectroscopy of the fermionic isotope
is also possible by switching the double-pass AOM configuration. (Figure adapted from [36].)

2.2 | Experimental apparatus

Vacuum chamber Ultra-cold quantum gas experiments are only possible in well-controlled envi-
ronments. One key part of this is an ultra-high vacuum. Any collision with background gases reduces
the lifetime of the quantum gas, thereby limiting both the experimental possibilities and the accuracy
of the results. The chamber’s compact design allows for short cycle times, which are essential for
modern quantum gas experiments (Fig. 2.3). More details about the design of the vacuum chamber
can be found in previous theses [36, 45, 46]. The chamber is separated into two parts by a differential
pumping tube to maintain ultra-high vacuum necessary for state-of-the-art quantum gas experiments
in the science region. The science region (also referred to as the 3D-MOT region) exhibits pressures
down to 1×10−11mbar. Values below 1×10−11mbar cannot be measured with the installed probes.
The loading region (also referred to as the 2D-MOT region), which contains a Lithium evaporating
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oven, has a pressure on the order of 1 × 10−10mbar. In the loading region, we prepare an initially
hot gas of Lithium atoms with a simple oven design and capture the atoms with a 2D-MOT. In
this setup, there is no line-of-sight from the oven to the ultra-cold cloud, as would be the case in a
setup using a Zeeman slower. With a Zeeman slower, additional atom transport would be necessary.
On the high-pressure side, a glass cell is attached to the stainless-steel chamber. The glass cell
provides high optical access and is broadband coated for the wavelengths used in the experiment, as
well as for potential future wavelengths [47]. The small diameter of 26mm makes high-NA imaging
possible, which would allow for quantum gas microscopy[4, 5]. In the glass cell, all further cooling
mechanisms are implemented. The experiments with the ultra-cold quantum gas are performed at
the same location as all cooling mechanism besides the 2D-MOT. This allows for high repetition
rates, as (almost) no further transport is needed.

z

y

x

5 mm

26
m
m

26
mm

Figure 2.3: Vacuum setup of the lithium machine.. (Left) CAD drawing of the vacuum chamber used in the
experiment. The chamber is designed to enable loading a 2D-MOT in high vacuum and to perform quantum simulation
in ultra-high vacuum within the glass cell. Initial evacuation is performed by a pre-pump (detached after closing the
connecting valve) and turbo pumps (barely visible in the back). The red cubes represent ion-getter pumps, which
maintain the ultra-high vacuum. The pressure is monitored with gauges (one visible in the front up-going arm).
(Right) Exploded view of the glass cell. The thickness and extent of the glass cell allow for high-resolution microscopy.
(Drawings adapted from [36].)

Laser setups The laser setups for cooling, trapping and manipulating the atoms are all fiber-coupled
and prepared on the same and a separate optical table. On the second table, all near-resonant light is
prepared, e.g., the MOT light and imaging light. For the near-resonant light, we use a combination
of external cavity diode lasers (ECDL) and tapered amplifiers to provide enough power. Two of the
lasers are locked to a lithium spectroscopy. The overlap of the 6Li D2-line and the 7Li D1-line creates
a double feature in the Doppler-free spectroscopy. We lock the D1 light to the more prominent 6Li
D2-line feature. For light on the D2-line, we use the respective feature. For both 6Li and 7Li D2-
lines, we lock the lasers to the crossover between the two hyperfine ground states. We use two types
of Doppler-free spectroscopy. For the D1 light, we use frequency modulation spectroscopy (FMS)
and for the D2-line, we use modulation transfer spectroscopy (MTS). A third laser is offset-locked
to the D2 laser within a range of ∆ = ±2GHz. This enables us to image the atoms in distinct
states and at particular magnetic fields. Besides ensuring the correct frequency by spectroscopy, we
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use single- and double-pass acousto-optical modulators (AOMs) as well as electro-optical modulators
(EOMs) to shift the frequency of the light to the desired values. Additionally, AOMs are used to
switch the light on and off in time-critical cases. For less critical timings we use mechanical shutters
to ensure complete blocking of the light path. Preparation also includes beam shaping, directing
and splitting/combining. We use lenses, (polarizing) beam splitters, half and quarter waveplates
and mirrors extensively to create the needed output. Finally, the light is coupled into polarization-
maintaining (PM) optical fibers and transferred to the experiment. With the PM fibers, we are able
to supply a stable polarization and intensity to the experiment with only a few tweaks to the intensity
required on a more-than-monthly basis.

Two further laser systems are set up on the experiment table. One is the plug laser system at 660 nm;
the other, the heart of the experiment, is our versatile lattice setup at 1064 nm. The plug laser is a
solid-state laser, which is broadband but supplies up to 1W of power. The setup includes an AOM
for fast switching and a shutter for blocking the light entirely. Without the shutter and without
keeping the AOM active, we observe cooling and heating cycles of the AOM, which lead to pointing
issues. Due to this pointing, the fiber coupling efficiency fluctuates substantially when switching on.
As soon as the shutter is closed the AOM is turned back on, i.e. it is always at its high temperature
state and the pointing issues are eliminated. To position the laser beam precisely on the center of
the magnetic trap, we use a mirror mount with piezo actuators. A more detailed account of how we
position and optimize the plug laser can also be found in [36].

The laser setup for the lattice will be described in more detail in Chapter 3. We use a fiber laser with
50W output at 1064 nm as a light source. The fiber laser is single-mode and has very low relative
intensity noise (RIN), which is of high importance for cold atom lattice experiments.

Magnetic fields The main magnetic fields are provided by two sets of water-cooled coil pairs[46].
Both pairs can be used in Helmholtz and anti-Helmholtz configurations. Switching between the
two configurations is realized with high-power insulated gate bipolar transistors (IGBT) in an H-
bridge configuration. The coils are supplied by Delta Electronica power supplies with up to 200A

of current. With the combination of both coil pairs, we are able to create offset fields of up to
1500G and magnetic-field gradients of up to 520G/cm (both in Helmholtz and anti-Helmholtz,
respectively). This covers the ranges needed for the following experiments well. In addition to the
main coils we have three sets of compensation coils in Helmholtz configuration placed around the
glass cell. Enabling us to compensate for stray fields and reposition the center of the quadrupole
field at small gradients in the x-, y- and z- direction separately.

2.3 | Hot to ultra-cold

2.3.1 Oven and 2D-MOT

The oven sits at the bottom of the vacuum chamber, see figure .2.4. It is a cup of 83mm length
and 40mm diameter designed to have high output flux [45]. The oven is heated by wires usually
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up to 700K. As Andreas Kerkmann pointed out in his thesis, the added 20 g of lithium should last
for a long period. While writing this thesis, this period seems to be coming to an end. In the last
year, we observed multiple "blobs," named after the signature spike in pressure preceding the loss
of atoms. After a "blob," we lose the fluorescence signal of the 2D-MOT, and no atoms are loaded
into the 3D-MOT. We attribute this loss of signal to an actual loss of atoms in the hottest part
of the oven. As Andreas Kerkmann also described, vaporization in ultra-high vacuum is complex.
Previously heated atoms may have cooled down and condensed further up the oven. We find that
heating the system from the typical 420 °C up to 500 °C brings back the signal, melting some of the
condensed atoms back into the hottest part of the oven.
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Figure 2.4: Vacuum setup cut and 2D-MOT. (Left) A cut through the CAD model of the vacuum chamber viewed
from the side. The left part of the chamber is the high-pressure section, also referred to as the 2D-MOT region. From
below, atoms are ejected from the oven and captured by the 2D-MOT beams. The permanent magnets are mounted to
the left and right of the oven/2D-MOT plane. Perpendicular to that plane, the push beam pushes the atoms through
the differential pumping tube into the science/glass cell on the right. The 3D-MOT region is the low-pressure section.
In the science cell, the location of the 3D-MOT is depicted, where all further cooling stages and experiments take
place. (Middle) View from the front of the experiment showing the ±45◦ angle of the 2D-MOT beams with respect
to the oven axis. The fine black lines indicate the maximum ballistic angle exiting the oven. This design ensures that
the viewports for the 2D-MOT do not get coated with lithium. (Right) Photograph of the 2D-MOT from the same
view as in (b). CAD figures adapted from [36].

To initially cool and trap the hot atoms, we use a 2D-MOT. The atoms are confined to the axis
connecting the centers of the 2D- and 3D-MOT, defined as the x-axis of the experiment, see figure 2.4.
The directional and velocity-dependent force is created by a combination of a magnetic field gradient
and laser light. The magnetic field gradient is generated by eight sets of stacked permanent magnets
mounted to the vacuum chamber. The stacks of neodymium magnets create an octopole field with
a magnetic field zero along the x-axis and a gradient of 56G/cm in the perpendicular plane.

We use the D2 transition to slow down the atoms. Two sets of counter-propagating laser beams
with the same circular polarization are crossed at 90◦ in front of the differentialw pumping tube.
With respect to the oven axis, the beams are shone in through the viewports at ±45◦. The light
is red-detuned from the D2 line by ∆c = 12.42Γ and ∆r = 5.86Γ, with the natural linewidth
Γ = 2π × 5.87MHz. These detunings are larger than the commonly used values [48] due to our
multi-frequency approach. We use two EOMs: one imprints the sideband for the repumper, and the
second one broadens the line by adding sidebands in multiples of 2π × 12.5MHz ≈ 2.13Γ, see also
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[49, 50]. This broadening significantly enhances our loading rate in the 3D-MOT. The retro-reflected
beams have a 1/e2-width of 6mm and an intensity of Ic = 211.8Isat and Ir = 82.1 Isat, where
Isat = 2.54mW/cm2 is the saturation intensity of lithium.

During optimization of the loading rate, we experimented with using just a single beam for the
2D-MOT and folding it back completely. This resulted in similar performance when looking at the
loading rate of the 3D-MOT. We achieved better beam balancing with the two separate beams and
proceed with this approach. During the course of this thesis, we also added offset coils around the
tubing of the 2D-MOT beams. These offset coils allow us to manipulate the position of the magnetic
field zero, optimizing it to be in front of the differential pumping tube. With an estimate of the offset
field created by the coils of 1.7G/A, we get a repositioning of the trap 300 µm/A considering the
magnetic field gradient of 56G/cm.

The radially confined atoms are pushed towards the 3D-MOT side with an additional laser beam
along the x-axis, which is blue-detuned from the D2 transition by ∆push = 5.28Γ. The beam has a
1/e2-diameter of 1.45mm and is slightly tilted upwards, so it does not pierce the 3D-MOT directly.
With this detuning, a power of 1.9 Isat gives optimal performance of the 3D-MOT loading.

2.3.2 3D-MOT, cMOT and gray molasses

In the science cell, the atoms are captured by a 3D-MOT. Similar to the 2D-MOT case, we use
light that is red-detuned from the D2 transition. We also use an EOM to imprint sidebands, one
of which has the correct frequency for the repumper. In particular, the cooler and repumper are
detuned by ∆c = 6.64Γ and ∆r = 8.16Γ. The beams have a 1/e2-width of 10mm and an intensity
of Ic = 21.8 Isat and Ir = 10.1 Isat. The two in-plane beams are rotated ±45◦ with respect to the
x-axis and are retro-reflected after passing through the glass. The two out-of-plane beams propagate
along the z-direction in opposite directions. They are all circularly polarized at the atoms. With a
magnetic-field gradient of 25G/cm, created by the inner coil pair, the atoms are confined and cooled
toward the magnetic field zero in the center of the science cell. Over the course of this thesis, we
optimized the loading rate and the final number of atoms by an order of magnitude. The initial work
was done in [45, 46] and the optimization was performed in close collaboration with Mathis Fischer,
where a detailed account can be found on changes made [36]. We are now able to load 3 × 108

atoms in 3 s, which is sufficient to reach degeneracy in the end. In contrast to the 2D-MOT, we find
no enhancement in loading rate when we employ the multi-frequency approach in the 3D-MOT. We
attribute this to the already reduced velocity distribution, such that additional frequencies only lower
the intensity at the optimal one.

After loading the 3D-MOT for a particular time, we switch off all light in the 2D-MOT, including
the light for the push beam. For the compressed MOT (cMOT), we ramp up the magnetic field
to 100G/cm, lower the intensity of the beams to 0.41 Isat and 0.19 Isat and reduce the detunings
to 5.62Γ and 7.14Γ over a total time of 40ms. These changes result in compression and further
cooling of the cloud by approaching the theoretical temperature minimum (∆ = Γ/2 and I = 0).
The temperature is reduced from about 3.3mK to 800 µK during this cooling step.
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The last laser cooling step is the gray molasses (GM) [51–53]. The GM works best at zero magnetic
field. Following the compression, the magnetic field gradients are switched off. To ensure zero
magnetic field, we use the compensation coils to counter any remaining fields at the atoms. For the
gray molasses, blue-detuned light is required. In contrast to the previous steps, we use the D1 line in
this step. On the D1 line, the level structure supports a Λ-like system which enhances the performance
of the gray molasses scheme [52]. The optimal cooling is reached with zero two-photon detuning
∆two = ∆r−∆c. The single-photon detunings of the cooler and repumper are at ∆c = ∆r = 6.81Γ.
After applying the gray molasses for 5 µs, we reach the final laser cooling temperature of T = ∼35 µK
and a peak phase-space density (PSD) of ∼3× 10−5.

2.3.3 Magnetic trap

Due to the high three-body loss rate of 7Li, we cannot directly load into a deep optical dipole trap as is
done for 6Li. To our knowledge, there is only one instance where an all-optical approach has worked,
and this only with a few hundred atoms in the BEC [54]. Other state-of-the-art 7Li experiments rely
on an evaporative cooling step in a magnetic trap [55–57].

To load the magnetic trap, we transfer all the atoms into a magnetically trappable state. As we are
working with a static magnetic field, this has to be a low-field-seeking state. The low-field seekers
minimize their energy with decreasing magnetic fields. In the Zeeman regime, these are the states
F = 1, mF = −1 and F = 2, mF = 1 and 2. The energy landscape, and thereby the confining
potential, is given by

∆E(r) = mF gFµB|B(r)| , (2.2)

with mF the magnetic quantum number, gF the Landé factor, and µB the Bohr magneton. From
this equation, it is already evident that a larger mF results in a stronger trapping potential. The
Landé-factors have an almost equal absolute value but with an opposite sign, gF (F = 1) ≈ −0.5021

and gF (F = 2) ≈ +0.4997 (footnote1). We will work with the extremal state F = 2, mF = 2. This
choice is also beneficial for the transfer into that state. The F = 2, mF = 2-state is dark for σ+-
transitions to the F ′ = 2-state on the D1-line. We apply a small magnetic bias field of 1G to define
a quantization axis. The atoms are illuminated from above and below to minimize the transferred
momentum. We reuse the light from the gray molasses step, but we switch the polarization on the
lower beam. The detunings are changed to ∆c = 8.5Γ and ∆r = 10.2Γ. The two-photon detuning
ensures that there are minimal Raman-transitions from one hyperfine ground state to the other.
The intensities of the two frequencies are 12.4Isat and 8.6Isat. The atoms are cycled through the
mF -state until they end up in F = 2, mF = 2. On average, three absorbed photons are needed to
transfer the atoms. To reduce the expansion of the cloud, we turn off the light after 150 µs. After
this time, we have transferred almost all atoms into F = 2, mF = 2. The short time and only a few
scattered photons, result in no significant heating of the cloud.

The magnetic trap is created by the combination of both coil pairs in an anti-Helmholtz configuration.
This quadrupole configuration has a linear slope to the center. With both coil pairs, we can reach a

1The Landé-factors are calculated with gJ(2
2S1/2) = 2.0024010(7) [58] and gI(2

2S1/2) = −0.0011822130(3)[59].
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maximum field gradient of 522G/cm in the axial direction. The trap volume essentially extends over
the central part of the science cell. This enables us to trap all atoms in the F = 2, mF = 2-state.
The magnetic trap is loaded by turning on a gradient of 18G/cm linearly in 10ms. This value is
mode-matched to the final extension of the cloud after laser cooling. The extent is primarily given by
the cMOT-parameters. Mode-matching in this context optimizes the overlap of the gaussian density
from laser cooling and the equilibrium density in the quadrupole trap, while ensuring the smallest
possible heating and no atom loss[60]. As a result, there is almost no reduction in the phase-space
density (PSD).

The quadrupole field has a true magnetic zero, i.e. the direction of the magnetic field lines point
always away from this zero. For a particle passing through this point, this is an instantaneous flip
of the direction of the magnetic field. The spin of atoms usually aligns with the slowly varying field
direction. On a trajectory close to the zero-field point, the spin cannot follow the field direction
adiabatically anymore, and an effective spin flip occurs. In our case, the spin is flipped from mF = 2

to mF = −2, which is an anti-confined state, and the atom is lost from the trap. This process is
called Majorana loss[3, 61]. The effective radius at which the atoms are lost is given by

√
2ℏν/πµmB′

[62]. While lowering the temperature, this radius will decrease, but at the same time, the density in
the trap will increase even faster. This leads to an increasing loss rate with decreasing temperature
T as T−2 and renders the goal of the evaporation, which is increasing the PSD, unfeasible. To
eliminate this loss mechanism, there are multiple possibilities: a few are mentioned here. A change
in magnetic field configuration to either a Ioffe-Pritchard trap or clover-leaf trap, both of which have
a non-zero trap floor; a time-orbiting potential (TOP) trap[63], in which the zero point is rotated
around the cloud; or an additional repulsive potential in the center, which repels the atom out of the
loss radius[3]. We use the latter option to prevent Majorana losses, as the other two are not feasible
for our setup. The repulsive potential is created by a blue-detuned laser beam with a wavelength of
660 nm. This is rather close to the D-lines compared to other experiments[55–57]. Moving closer to
resonance reduces the intensity needed to form the repelling potential, but also comes with a higher
scattering rate. With the low occupation in the high-power region, we see no heating of the cloud.
The beam has a 1/e2 beam waist radius of 18µm. A power of P = 700mW on the atoms creates
a potential barrier of more than 1mK.

During evaporation in the magnetic trap, we have to balance the thermalizing two-body collisions
and the lossy and heating three-body collisions. The two-body cross-section scales linearly with the
density σ2 ∼ n, while the three-body cross-section scales quadratically with the density σ2 ∼ n2.
The upper limit given by the high three-body loss rate is a density of 1× 1013 cm−3. The scattering
rate of the elastic collisions scales as Γel ∝ (B′)4/3 in a quadrupole trap, with (B′) the magnetic
field gradient[36]. With the small scattering length in the F = 2-manifold of as = −27a0, the
atoms would take a rather long time to thermalize. To speed up the process, the magnetic field
gradient is increased to its maximum value, ensuring that the upper limit in density is not reached.
The compression from 18G/cm to 533G/cm is done adiabatically; i.e., no PSD is lost during the
process. The temperature is increased significantly, but so is the density of the cloud. The higher
density kickstarts the thermalization process.
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We perform forced evaporation with a so-called RF-knife. We use the radio-frequency transition from
the trapped state F = 2, mF = 2 to the untrapped state F = 1, mF = 1. At zero magnetic
field, the frequency of that transition is the hyperfine splitting of the two ground state manifolds
of ∆E = h × 803.5MHz, where h is the Planck constant. For increasing magnetic fields, the gap
between the two states increases with ∆E(|B|) ∼ 3

2 |B|. Only the hottest atoms are able to probe the
full extent of the cloud’s density, due to energy conservation. This allows us to select only those atoms
at the edge of the cloud, where the magnetic field is highest. We use a home-built radio-frequency
antenna optimized for 800MHz to 1000MHz to flip the spin of the atoms. During the adiabatic
compression, we already apply a radio-frequency of 950MHz to remove exceptionally hot atoms from
the cloud. We now reduce the radio-frequency, thereby removing the hottest atoms from the cloud.
The cloud rethermalizes via elastic collisions. While the overall temperature is reduced, the density
increases and, if unchecked, would lead to exceeding the upper density limit of 1×1013 cm−3. Above
that limit, the lossy three-body collision will dominate the thermalizing two-body collisions, especially
in the coldest part of the cloud where the density is highest. This would counteract the evaporation
process and fail to increase PSD. To circumvent this effect, we decompress the cloud by lowering
the magnetic field gradient simultaneously. The frequency and magnetic field gradient are reduced
linearly in three consecutive ramps, which are each optimized experimentally for maximum final PSD
and short duration. The final frequency is 807.475MHz at a field gradient of 208G/cm. The whole
magnetic field evaporation takes 7.3 s with a PSD gain of almost three orders of magnitude up to
9× 10−2.

2.3.4 Optical dipole trap

Reaching degeneracy with a negative scattering length is possible, but only for a small number of
atoms in the condensate [64]. In our magnetic trap configuration, we are bound to the background
scattering length of the singlet and triplet states, which are both rather small. In an optical dipole
trap (ODT), we can utilize an offset magnetic field to increase the scattering length via the broad
Feshbach resonance, and thereby increase the two-body elastic scattering rate. This results in fast
thermalization and reduces the time of the final evaporation step. To prepare the atoms for evapo-
ration in the ODT, we perform a tiny magnetic transport of approximately 200 µm, load the atoms
from the magnetic trap into the ODT, perform a Landau-Zeener sweep, and ramp up the offset field.
Finally, we lower the depth of the ODT and eventually reach degeneracy. The steps will be described
in the following.

Starting from the field minimum of the anti-Helmholtz configuration, we have to perform a very short
transport of the cloud. In the Helmholtz configuration, there remains a residual field curvature in
the center of the two coils, creating a radially confining potential for low-field seekers and an anti-
confinement in the axial direction. This curvature is minimal and centered in the optimal Helmholtz
configuration; see also [46] for our setup. The machining and wiring cause deviations from the
perfect case, leading to an offset of the symmetry points for each of the coil pairs and configurations.
Unfortunately, this prevents us from reducing the curvature and eliminating it completely[65]. The
zero-field points of the anti-Helmholtz configuration are measured by evaporating deep into the
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magnetic trap and imaging there. For the zero-crossing of the first derivative in the Helmholtz
configuration, we have to jump ahead and utilize the BEC. With the BEC, we are able to perform
oscillation measurements in a single beam and detect the slope minima in the radial plane. The
zero-field point of the combined coils in the anti-Helmholtz configuration is about 400 µm away from
the outer-coil Helmholtz coil slope minimum. The distance to the slope minimum of the combined-
Helmholtz configuration is smaller, about 200 µm, and lies along one of the dipole trap laser beams.
The importance of working at the minimum of the slope stems from the features of the matter-wave
magnifier, which will be discussed in the following chapter. We choose to work in the combined
Helmholtz configuration. We ramp up the intensity of the optical dipole trap and by adjusting the
current in the horizontal compensation coil, we move the zero-field center of the quadrupole field along
the x-axis towards the new position: the slope minimum of the combined-Helmholtz configuration
and the crossing point of the three laser beams.

The optical potential is created by three laser beams intersecting with 120◦ between each pair. The
crossing point is located approximately 100 µm below the magnetic trap center. With a bias field of
0.1G to ensure spin polarization, we lower the trap field and spill the atoms into the optical potential.
The bias field is directed so that the zero-field point is pulled away from the ODT. The atoms are
captured in an optical potential with a depth of approximately U(0) = −240 µK. We are able to
transfer about 30% of the atoms from the magnetic trap to the dipole trap with a slight loss of PSD.
After the transfer of the atoms, the PSD is 9.7× 10−3 at a temperature of 24.4 µK.

With the quadrupole field turned off, we increase the bias field to 4.8G and perform a Landau-
Zeener sweep. We couple the states |F = 2,mF = 2⟩ and |F = 1,mF = 1⟩ with a radio-frequency
at 813.6MHz. This is blue-detuned to the bare hyperfine splitting of F = 1 and F = 2 and to the
Zeeman-splitting at the current field. In this way, we ensure that we only couple the desired extremal
states. By increasing the magnetic field, the radio frequency is brought to resonance and then out of
it again, thereby transferring the atoms adiabatically from one state to the other. We increase the
magnetic bias field to 9.5G in 40 ms and reach near to unity transfer.

In 100ms, we ramp up the Feshbach field, a bias field created by both coil pairs, now in Helmholtz
configuration. The field is ramped up to 702G, which is close to the inter-spin Feshbach resonance
of the |F = 1,mF = 1⟩ state. The scattering length here is as = 76a0. At this field, we start the
forced evaporation process again by lowering the optical power exponentially, thus reducing the depth
of the potential U as

U(t) = U0 exp

(
− t

τ

)
. (2.3)

We experimentally find τ = 0.2 s.

We take time-of-flight (TOF) measurements and analyze the resulting density (Fig. 2.5). Usually,
one extracts the condensate fraction and the temperature from a bimodal distribution consisting of
a Thomas-Fermi profile for the condensed part and a Bose-enhanced Gaussian [62] for the thermal
distribution. The bi-modal function has the following form:
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Figure 2.5: Formation of the Bose-Einstein Condensate. (Top) Formation of a the BEC. From right to left the
atomic cloud is evaporated by lowering the dipole potential and the ground state is macroscopically populated, visible
in the sharp peak in the center of the broad thermal cloud. From right to left the single-beam final power is 438mW,
132mW, 40mW and 12mW at a ToF-duration of 4.5 µs.(Bottom) Condensate fraction and temperature of the cloud.
In blue the condensate fraction of atoms in the ground state is shown with the temperature in red. The inset shows
the width of the thermal and condensate part after 4.5ms time-of-flight as well as the total atom number. The gray
shaded area corresponds to the part where no significant condensate fraction could be extracted.

ntot(r) = nthLi3/2
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1−
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)
, (2.4)

where nth is the peak density of the thermal atoms and nc is the peak density of the condensate, xi,th,0
is the width if the thermal Bose-enhanced gaussian and xi, c is the Thomas-Fermi radius. Liα(z) is
the polylogarithm. The Thomas-Fermi profile here is based on a harmonic potential. However, the
Thomas-Fermi approximation does not fit well for the tight confinement created by the small waist
of w0 = 41µm. The bare ground state of the harmonic oscillator works better, so we assume the
following three-dimensional density profile:
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)
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and fit the column density of the above as

ñtot(x, y) =
ñth,0
Li2(1)

Li2

(
exp

(
1− x2

x2th,0
− y2

y2th,0

))
+

ñc,0
xc,0yc,0

exp

(
− x2

x2c,0
− y2

y2c,0

)
(2.6)

where we integrated out the z-direction. We perform the fit of the bimodal distribution stepwise: first
we roughly fit the distribution to get the center and a rough estimate for the cloud width. We then
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fit the thermal fraction excluding the central region, followed by a fit to the condensate fraction only.
The final fit uses both distributions with the optimal initial fits found from the previous fits. In figure
2.5, we show the extracted temperature and condensate fraction. A first onset of condensation is at
Pi = 200mW per beam, corresponding to an approximate depth of U = 13.7 µK and an almost pure
condensate at Pi = 9mW per beam, with about 3× 104 atoms and a temperature below 50 nK. At
these low temperatures, it becomes difficult to extract the temperature as the thermal part gets lost
in the background signal.

When we estimate the critical temperature Tc by calculating the geometric mean trap frequency
ω̄ = (ω2

rωz)
1/3 via the final power in the dipole trap,(

T

Tc

)
=
kBT

ℏω̄

(
Li3(1)

N

)1/3

, (2.7)

with Li3(1) ≈ 1.2. The trap frequencies range from 2π × 1.16 kHz to 2π × 0.16 kHz. With
the measured total atom numbers, N , the condensate fractions are plotted against the reduced
temperature, T/Tc, in figure 2.6, which matches the expectation for a finite system[66]. From a few
repeated measurements at a time-of-flight between tToF = [4, 4.5, 5, 5.5]µs (in total, 20 repeats per
data point), we can reproduce the number fluctuation in the condensate fraction, as in [67, 68]; but
note that we expect systematic errors on the critical temperature. A more precise calibration of the
trap frequencies would be needed, as well as better atomic number detection calibration. It remains
remarkable what can be learned from a simple calibration measurement, and opens up the possibility
to investigate these phenomena in more depth using this machine.

Figure 2.6: Condensate fraction vs. reduced temperature. (Left) The condensate fraction is plotted against the
reduced temperature T/Tc. (Right) Variance of the number of atoms in the condensate normalized by the total atom
number.

Conclusion & Outlook

In this chapter, we introduced our machine producing BECs of 7Li with up to 3× 104 atoms. Each
experimental cycle has a duration of 13 s, i.e. a repetition rate of about 77mHz. We note the
long stability of the whole system over a duration of multiple months. All cooling stages, including
the MOT, GM, magnetic trap, and ODT, are optimized by natural intelligence, but this comes
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with limitations on time and multi- dimensional processing capabilities. We assume that artificial
intelligence, in particular machine learning, will be impactful in increasing the repetition rate towards
the 1Hz regime and in improving the number of atoms in the condensate. This would allow for more
statistics to be gathered and enable quantum phenomena to be probed in more detail. As of writing
this thesis, first results toward this direction are being achieved with a new experiment control with
direct machine learning capabilities[69].
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CHAPTER3
A versatile optical trap setup

The heart of the experiment is our three-beam versatile lattice/ODT setup. For one thing, the optical
dipole trap used to prepare the BEC in the previous section is one configuration of it. Another use
case is the hexagonal lattice with tunable geometry. During this thesis, we rebuild the lattice setup of
the experiment. The new setup combines those and more features into one. Essentially, starting from
the evaporation in the ODT over the optical lattice up to the matter-wave lens can be realized with
a single setup of three intercepting beams. A single feature can be achieved by carefully selecting
the appropiate frequencies of the light in each beam path. This approach follows innovative work in
[70] and adds more tunability. The setup will be described in the following, see also [36].

3.1 | Setup

The lattice and trap potential is created by three intercepting laser beams with an angle of 120◦

between each pair. We use a single Coherent Mephisto Mopa at 1064 nm as the light source for all
beams. The maximal output power is about 50W. The output power can be tuned, but to keep a
consistent beam shape, we always run it at a constant value, in particular at almost maximum power.
High power light beams cause thermal lensing in optical elements. A careful choice of elements can
reduce it and at a constant power this effect can be compensated, adequately. A sketch of the
setup is depicted in figure 3.1. The setup is described following the laser beam propagation from the
laser head. To protect the laser, we first pass the beam through a high-power optical isolator with
a backwards suppression of approximately 55 dB. Here we deemed a single isolator sufficient as we
are not reflecting the beam back into itself, so only minor reflection could be coupled back into the
laser. We use a λ/2-waveplate and a Glan-Laser polarizer to clean the polarization and set the power
for the preparation setup. The light is split into three paths with equal power by three consecutive
λ/2-waveplate and polarizing beam splitter (PBS) cube combinations. Each path is a copy of the
other two regarding beam shape and length, as well as used devices and optics. A lens before the
splitting of the beam focuses the beam into the acousto-optical modulators (AOM). The AOMs,
A1, A2 and A3, are set up in a double-pass configuration. The s-polarization from the splitting
output is reflected at the following PBS cube and passed through the AOM. With a combination of
a 150mm lens, a quarter-waveplate, and a mirror under 0◦, the light is retro-reflected and passed
a second time through the AOM. All diffraction orders except for the first positive one are dumped
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Figure 3.1: Lattice laser setup and fiber out-couplers. (Left) The lattice setup before the optical fibers. As described
in the text, each path includes a double-pass AOM and an EOM to realize the various potential configurations. Also
shown is a Fabry-Perot cavity, which we use to monitor the carrier and the sidebands created by the EOMs. (Right)
CAD-drawing of the fiber out-couplers. The compact mounting increases stability further. The x-y-translation stage,
to which the final lens is mounted, is used for precise radial positioning of the focus. In the propagation direction, a
non-rotating z-translation is used for precise axial positioning of the focus. The upper right shows the CAD-drawing
of the configuration around the science cell with the beams visualized in blue. (Figure adapted from [36].)

after each pass through the AOM. The light is now p-polarized and is transmitted through the
cube. The transmission through the PBS in the end is essential for a stable polarization over a large
dynamical range of power. The beam is now collimated with a diameter optimized for the following
electro-optical modulator (EOM). The three EOMs, E1-E3, differ in their resonant frequency. The
frequencies are ν0,E1 = 10MHz, ν0,E2 = 35MHz, and ν0,E3 = 45MHz. The values are engineered
for the multi-frequency approach as well as to avoid excitations and heating in the different trap
setups. Behind the EOMs, the size of the beam is shaped with a telescope for optimal fiber coupling.
In front of the fiber coupler, a half-waveplate-PBS-half-waveplate combination is placed. The first
waveplate is mainly there for maintenance, where the power on the fiber can be reduced for fiber
coupling, while having full power up to the cube. With this, we can ensure that thermal lensing
does not affect the coupling efficiency when using full power on the fiber coupler. During runtime,
the waveplate is positioned such that maximal power is transmitted. The PBS cube ensures that we
have a clean polarization in front of the fiber. The second waveplate is used to match either the slow
or fast axis of the high-power polarization-maintaining (PM) photonic crystal fiber. A misalignment
of the polarization will cause stress-dependent polarization fluctuation during transmission through
the fiber and with the PBS behind the fiber, transform those into intensity fluctuations. Intensity
fluctuations are a known heating source for the ultra-cold atoms and are reduced to a minimum with
optimal polarization coupling.

With the fibers, the light is transferred to the experiment. The use of fibers limits the total power
usable per beam path. The upper limit here is 15W of power in front of the fiber, which is sufficient
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for the planned experiments. Currently, 5.3W are used in front of the fiber, which results in a
maximum of power of 3.7W on the atoms per beam. The fiber highly enhances the beam quality
and pointing stability, which are essential for the lattice potential and the matter-wave magnification.
One of the benefits of using fibers is the modularity, essentially decoupling work on the preparation
side and experiment side. The light is coupled out of the fiber, passed through a PBS cube for
polarization cleaning, followed by a half-waveplate to set the final polarization and focused onto the
atoms (Figs. 3.2 and 3.2). A lens with a focal length of f = 150mm creates a beam waist with
a 1/e2-radius of w0 = 41 µm. The setup is the same for beams L2 and L3. The laser beam going
along the glass cell, L1, has no exit on the other side and is dumped onto the steel chamber. To
actually hit the steel chamber and not the graphite differential tube, the propagation axis is tilted
by about 2◦ with respect to the normal of the glass-cell’s front. Because the beam is not exiting
the chamber, the setup in front of the glass differs from the other two described below. Two beam
samplers follow the cube, and one is used for intensity monitoring. A low-pass dichroic mirror allows
imaging the atoms from the other side along this axis by reflecting light at 671 nm.

ADWin

PID

dAOMVVApre-ampamp

L1

L3

L2

L1
L2/L3

Window PBS

L/2 Waveplate

FiberMirror

Photodiode

Beam Dump Lens
y

x z

Figure 3.2: Lattice setup around the glass cell and intensity-lock. (Left) Sketch of the lattice setup around the
science cell. (Upper right) Sketch of the intensity-lock setup. (Lower right) Relative intensity noise of the L1 axis.
We see a reduction of the RIN when we activate the lock. The intensity lock is less efficient for lower powers, but still
reduces the noise compared to the unregulated case. The dashed, half-transparent line is with the lock deactivated.

To control and monitor the power, we use an in-loop photodiode (PD) and an out-of-loop PD,
respectively. The in-loop PD is part of the control circuit in figure 3.2 and directly connected to
the intensity regulator. The set voltage for the intensity regulation is given by a designated analog
output of the ADWin-controller. The base, constant RF-power supplied by a home-built digital AOM
driver is regulated via a variable voltage attenuator (VVA). The RF-power is doubly amplified with a
low-power followed by a high-power amplifier. The maximum RF-power is set such that the AOM is
driven in the optimal range, just below its maximum diffraction efficiency. The intensity-controlled
power of the light is passed through the fibers and measured by the in-loop PD closes the control
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circuit. With the out-of-loop PD, we are able to monitor the intensity without affecting the control
circuit.

With the out-of-loop PD, we measure the relative intensity noise (RIN). In figure 3.2, the RIN for one
of the beams is given. The other two can be found in appendix B. The servo-bump for these settings
is located above 100 kHz. We see the RIN increasing for lower power settings by about 20 dB at
the minimal RIN of the 2.5W-power setting on the atoms with the laser always at maximum output
power. This still gives a reduction in RIN compared to the unregulated case.

3.2 | Three "non-interfering" beams

The intensity field of the red-detuned laser beams forms an attractive potential for the atoms which
is proportional to the intensity of the light field [71]. The oscillating electric field E induces an
oscillating dipole moment d = α(ω)E with complex polarizability α of the atom and ω the frequency
of the light. The resulting potential is given by averaging the oscillations in time as Udip = −1

2 <

dE >= − 1
2ϵ0c

Re(α)I with I = 1
2ϵ0c|E|2, where ϵ0 is the vacuum permittivity and c the sped of

light. While the real part of α is related to the potential the atoms experience, the imaginary part is
related to the probability that a trap photon scatters from the atoms as Γsc = −dE

ℏω = − 1
ℏϵ0cIm(α)I,

with ℏ the reduced Plank constant. For large detunings ∆ = ω − ω0 to the atomic resonance ω0,
the scattering rate Γsc(r) and the dipole potential Udip(r) can be approximated as

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
− Γ

ω0 + ω

)
I(r) (3.1)

Γsc(r) =
3πc2

2ℏω3
0

(
ω

ω0

)3( Γ

ω0 − ω
− Γ

ω0 + ω

)2

I(r) . (3.2)

With the double-pass AOMs, we are able to detune the frequencies of the three beams far enough
from each other to create a running wave pattern with frequencies much higher than any relevant
energy scale in the traps used. This results in a time-averaged potential for the atoms, and the three
beams can be considered essentially non-interfering. The potential is then given by the sum of the
intensities of the three single beams: Uavg(r) =

∑3
i=1 Ii(r). The electric field of the laser beam is

described by a Gaussian beam distribution of the form

E(r, z) = E0x
w0

w(z)
exp

( −r2
w(z)2

)
exp

(
−i
(
kz + k

r2

2R(z)2
− ψ(z)

))
, (3.3)

where E0 is the amplitude of the electric field, x is the polarization direction, w(z) is the 1/e2-radius
of the intensity in the radial direction with w0 its minimum, k is the absolute value of the wavevector,
R(z) is the curvature radius, and ψ(z) is the Gouy-phase [72]. Note that z and r are used as scalar
values. For each beam, zi and ri are defined as the scalar projection z = r·k

||k|| and scalar rejection
r = (r− z)k̂ onto the wavevector k with the vector rejection z. The vector r is the vector pointing
from the waist location z0 to an arbitrary position r′ such that r = r′ − z0. Around the crossing
point, z0 = z0,i, the potential is approximately harmonic and isotropic. The expansion of a single
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beam gives

V (r, z) ≈ −V0
(
1− 2

(
r

w0

)2

−
(
z

zR

)2
)

, (3.4)

with the Rayleigh range zR. The potential depth is given by V0 = κdipI0, with the peak intensity of
the Gaussian beam I0 = 2P/πw2

0 and κdip defined as the pre-factor to the intensity from eq. 3.1.

This results in trap frequencies ωsb,⊥ =
√
4V0/mw2

0 and ωsb,∥ =
√
2V0/mz2R. The latter will be

negligible as w0 ≪ zR. For the three-beam setup, the trap frequencies add up in the axial direction
to ωz =

∑
ωi = 3ωsb,⊥ with ωi = ωsb,⊥. In the radial direction, the frequencies are added up taking

into account their relative angles, resulting in

ωr =
√∑

cos(θi)2ω2
i =

√
3

2
ωsb,⊥ (3.5)

with θi = [0, 2/3π, 4/3π] and ωi = ωsb,⊥. This gives a fixed aspect ratio of ωz =
√
2ωr in our setup.
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Figure 3.3: Non-interfering frequencies and averaged potential. (Left) The three panels visualize the frequencies used
for this setup on each of the three axes. Color represents no intensity, white shows relative maximal intensity. For the
non-interfering setup, e.g. the ODT, the double-pass AOMs are set to 87MHz, 80MHz and 73MHz resulting in an
added frequency of 174MHz, 160MHz and 146MHz to the frequency of the laser. (Middle) The resulting potential
for the time-averaged case, i.e. the non-interfering setting. (Right) Zoom into the center of the potential. On the left,
the top view is depicted showing the radial isotropic potential around the crossing point. On the right, a side view is
shown visualizing the aspect ratio of the trap, wz =

√
2wr.

With the non-interfering beams, we are able to perform forced evaporation by lowering the power of
the beams and thereby reducing the potential depth. We are able to load the atoms into this optical
potential, hold them there, and finally evaporate the cloud to degeneracy. This is only possible
with sufficient detuning of the three laser beams. If the light of the three beams is too close in
frequency, we observe substantial atom loss. The detuning needed is correlated to the maximal
used onsite trap frequency, and we determine it experimentally for our initial potential depth with
P = 3.5W per beam. For a triangular lattice, this gives an onsite trap frequency of approximately
ωonsite = 2π × 0.9MHz, estimated from the trap geometry. In figure 3.4, we measure the atom
number only 1ms after loading from the magnetic trap for different detunings between L1 and L2.
We observe a drastic drop as the detuning is reduced below 4MHz towards 2MHz, where the atoms
are lost completely. This corresponds to approximately a factor of four to the onsite trap frequency.
We attribute this loss to a heating mechanism due to the running waves and possible atom transport.
Setting the two frequencies to resonance, we regain some atomic signal as we essentially load directly
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into a lattice with no running waves. The AOMs have a resonance frequency of ν0 = 80MHz, so
we add a frequency of 2ν0 = 160MHz to the bare laser frequency. The detuning in figure 3.4 is in
reference to the added 2ν0. We usually work with a minimal ∆ν = 14MHz during evaporation to
suppress any heating mechanism while maintaining sufficient power behind the AOM. Larger detunings
to the resonance of the AOM would lead to significant power loss in the first diffraction order.

Figure 3.4: Heating effect for close detuning. The atom number in the ODT after a short hold time and directly
after it has been loaded from the magnetic trap. The slight rise at 1 MHz is a fit error due to the background and is
grayed out. The power per beam is P = 3.5W, which gives an onsite trap frequency of ωonsite = 2π × 0.9MHz. A
detuning with ∆ > 4ωonsite seems to be critical to reduce heating.

With the cloud evaporated down to degeneracy, we are able to further optimize the overlap of the
three beams. A perfect overlap will be crucial for the matter-wave microscope, where the non-
interfering setup is used to create a strong harmonic confinement as the matter-wave lens. We
start with aligning the beams in the out-of-plane direction. The atoms are therefore imaged from
the side. First, we prepare a BEC only with two beams. Prior to imaging, one beam is turned off
instantly and the oscillation mapped out by holding the cloud for different times in the single beam.
From the fitted amplitude and the free-expansion duration, we can determine the distance between
the two beams. The final focusing lens of the out-coupler setup is set in an x-y translation stage,
which we use to carefully adjust to reduce the amplitude of the oscillation. At some point, the
resolution and signal-to-noise of imaging from the side don’t allow a more precise fit, but with the
last reasonable oscillation, we can set an upper limit on the distance between the two beams of less
than a micrometer. We repeat the process with a BEC in all three beams and successively turning
off the third beam. With all beams overlapped in the axial direction, we proceed with overlapping
them in-plane. Here we repeat the process starting directly with a three-beam BEC and turning off
the third again, because the first two beams are crossed optimally already by the initial step. Due to
the coupled degrees of freedom of the translation stage, the whole process has to be iterated a few
times to reach the sub-micrometer overlap.
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3.3 | Triangular lattice

If we set the AOMs to resonance ∆νi = 0, the resulting potential becomes periodic with a hexagonal
basis. With the polarization pointing out of the intercepting plane, one gets a triangular lattice
structure as visualized in figure 3.5. In contrast to the above, the beams cannot be treated separately,
but the full interference has to be taken into account. The resulting intensity is given by

I(r) =
cϵ0
2

|E1(r) +E2(r) +E3(r)|2 (3.6)

=
cϵ0
2

 3∑
i=1

|Ei(r)|2 +
3∑

<i,j>

(Ei(r)
∗Ej(r) + c.c)

 . (3.7)

With the Gaussian beam profile (eq. 3.3), the first sum will result in a slowly varying Gaussian
envelope. The second sum gives rise to a periodic potential, the optical lattice. A simplified version
of the optical lattice can be reached by using plane waves propagating along the wavevectors ki for
the light field, following [73] loosely. The electric field is described by

Ei(r, t) =

√
2Ii
cϵ0

es,i exp (i(ki · r − ωt− ϕi)) , (3.8)

where ω = 2πλ/c is the laser frequency, ϕi a phase delay for each beam, and ei the polarization of
the light. The angle of 120◦ between pairs of the three wavevectors ki, depicted in figure 3.5, gives
the following orientations in our setup

k1 = kL(1, 0, 0), k2 = kL(−1/2,−
√
3/2, 0) and k2 = kL(−1/2,

√
3/2, 0), (3.9)

with |k| = kL = 2π/λ. The polarization is pointing along the z-direction es = (0, 0, 1). Solving the
spatially varying part with the plane waves

cϵ0
2

 3∑
<i,j>

(Ei(r)
∗Ej(r) + c.c.)

 (3.10)

=
cϵ0
2

3∑
<i,j>

EiEj · 2 cos
(
(kj − ki) · r + (ϕj − ϕi)]

)
(3.11)

=
3∑

<i,j>

√
4IiIj cos

(
(kj − ki) · r + (ϕj − ϕi)]

)
(3.12)

we can define the lattice potential as the sum of three 1D-lattices of the form

Vij(r) =
√
ViVj cos(bij · r −∆ϕij) (3.13)

with Vi = −κdip2Ii, ∆kij = ki − kj = bij and ∆ϕij = ϕi − ϕj . Because the ∆ϕij = 0 are defined
cyclic the sum

∑
∆ϕij = 0. A change in one ϕi will only result in a positional change of the lattice

25



y

x z

k1

k2

k3

Figure 3.5: Interfering frequencies and triangular lattice potential. (Left) Same as in Fig. 3.3. For the triangular
lattice setup, the double-pass AOMs are set to resonance at 160MHz with respect to the frequency of the laser.
(Middle) The resulting triangular lattice potential has a lattice spacing of alat = 709 nm. (Right) The sketch shows
the direction of the lattice beams with ki. At the crossing point in the center, the lattice is formed. All beams are
s-polarized as indicated by the blue out-of-plane arrowhead at each beam.

in its 2D-plane, which will be visible in shot-to-shot fluctuations of the lattice position. This could
be controlled by a phase lock between the three lattice beams.

If we set all beams to the same intensity, we get with Vi = Vlat the triangular lattice potential

V (r) = 2Vlat

3∑
i=1

cos(bi · r) , (3.14)

where we discarded the translating phase shifts. The reciprocal lattice vectors are given by

b1 = k1 − k2 =
√
3kL(

√
3/2, 1/2, 0),

b2 = k2 − k3 =
√
3kL(0,−1, 0) and

b3 = k3 − k1 =
√
3kL(−

√
3/2, 1/2, 0).

The lattice depth will be given in units of the recoil energy Erec = ℏ2k2L/2m = h × 25.18 kHz of
a laser photon at λ = 1064 nm. Another relevant energy scale will be the 1D lattice recoil energy,
which will be noted as Erec, lat = ℏ2|bi|2/2m = h × 75.53 kHz. The lattice constant for the two-
dimensional hexagonal lattice is alat = 2/3 × λ = 709 nm. We also note the 1D lattice constant
a1D = λ/

√
3 = 614 nm, if only two of the beams interfere. With this, the absolute value of the

reciprocal lattice vectors is given by |bi| = 2π/a1D.

In addition to the bare interference of the three beams, our setup allows us to push intensity from
the interfering part into non-interfering sidebands via the EOMs. The sidebands at ∆νEOM =

±10MHz, 35MHz and 45MHz will have no resonance with another direction and only contribute
to the envelope potential as Vsb,i(r) ∝ 2Isb,i(r), where the factor two accounts for both positive and
negative sidebands. The intensity per beam Ii is kept constant and is distributed between carrier and
sidebands. The intensity is split like I = Ic + 2

∑
Isb,i with Ic = J0(α)I and Isb,i = 1/2 · Ji(α)I.

Here Ji(α) is the Bessel function of the first kind and α is the modulation index, which is tuned
via the RF-power at the EOM. By keeping the overall intensity constant and only changing the
modulation index of the EOM, we are able to keep the envelope potential almost the same while
tuning the lattice modulation depth. Ensuring that the carrier intensities are equal, we can write the
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optical potential as

V (r) = Vtrap(r) + 2Vlat(r, α)
3∑
i

cos(bi · r) . (3.15)

Lattice loading The key components for the preparations of the lattice are the power of the three
beams, the frequency of the AOMs and the modulation depth of the EOMs. In order to load the
atoms into the lattice, we have to jump the frequencies of the AOMs to the resonance. To minimize
the hard projection into a deep lattice, we use the EOMs to minimize the intensity at the carrier
frequencies. During evaporation, we set the frequency difference to a conservative minimum of
∆ν = 14MHz. This would enclose the sideband of the EOM with the lowest resonance frequency.
To avoid jumping over this sideband and therefore being resonant for some finite time, we jump to
an intermediate detuning of 8MHz, while the sidebands are still off. At the intermediate detuning,
we increase the modulation index in 10ms up to the zero-crossing of J0(α0) = 0. At α0, the carrier
intensity is sufficiently suppressed, see figure 3.6. With almost no intensity in the carrier, we jump
the frequencies to resonance. We now can choose a final trap frequency of the envelope potential by
ramping up the overall power in the lattice beams. This seemingly acts as lattice loading, and we take
care to be adiabatic, minimizing excitations. To reach a desired lattice depth the EOM modulation
is reduced. The increased lattice modulation slightly increases the harmonic confinement, because
the increasing modulation is proportional to the local intensity. An exemplary loading procedure is
depicted in figure 3.6.

evaporation

lattice 
prep

ramp to 
final depth

lattice
loading

Figure 3.6: EOM sideband power and lattice loading sequence. (Left) Carrier-to-sideband ratios. The plot shows the
measured ratios of the carrier and sideband after passing through the EOM. The EOM modulation is non-linear with
voltage as well as the VVA. These data are for the L1 arm. The relative powers are extracted from a fit to Fabry-Perot
cavity scans as shown in the inset. (Right) The lattice loading sequence. The EOM modulation is given from zero
modulation to the modulation value, where the carrier is suppressed sufficiently. With the final value of the EOM
modulation, the lattice depth is set. With a power of about 200mW per beam, lattice depths of Vlat = 1.7Erec to
3.7Erec are typically realized.

We calibrate the lattice depth using Kapitza-Dirac measurements[74, 75]. Here we jump the AOM
frequencies to the intermediate case, set the EOM modulation to its desired value, and ramp up the
power of the dipole trap to a particular harmonic confinement and then instantly project onto the
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Figure 3.7: MFL frequencies and tunable geometry potential. (Left) Same as in Fig. 3.3. For the MFL lattice setup,
the double-pass AOMs are set to 183MHz, 148MHz and 138MHz with respect to the frequency of the laser (brightest
lines). The sidebands created by the EOMs are shown symmetrically around the carrier. One of them matches with
the carrier of a different arm creating the 1D lattices. Note that the frequencies are selected such that no additional
frequency is placed inside the range of the carriers. (Right) The resulting lattice potential when all three 1D lattices
are enabled. By changing the RF-phase on the EOMs, the geometry of the lattice is changed. At ϕgeom = 0 and
ϕgeom = 2π, a triangular lattice is created, whereas at ϕgeom = π, it is a honeycomb lattice. In the vicinity of the
honeycomb lattice, a bi-partite lattice is realized with a potential offset between the two lattice sites, resembling a
Boron-Nitride-like lattice.

lattice by switching the AOMs to resonance. Here we hold for up to a few microseconds before taking
a time-of-flight image. During the short evolution in the lattice potential, the wavefunction of the
BEC acquires local phases depending on the local potential depth and the duration of the pulse[76].
We perform this measurement for each 1D pair independently to ensure that the directions have the
same lattice depth. With the oscillations of the Bragg peak intensities equalized for all beams, we
take a final measurement to get the lattice depth in the triangular case. The EOMs are controlled via
the VVA, and we find a functional dependence experimentally between control voltage and 1D-lattice
depth.

Loading into the lattice potential can easily result in heating the cloud. We ramp adiabatically into
the lattice in 10ms and hold there for 5ms. By ramping into the lattice and back out again, we
check that we do not excessively heat the sample. This confirms a good adiabatic loading of the
lattice. The temperature at the end of the evaporation is at 108 nK (final power 16mW) and after
ramping in and out we are in the same range or even colder. Note that due to three-body losses we
cannot extend the duration in the lattice for much longer as we lose too many atoms, especially for
deeper lattices.

We also ensure adiabaticity for ramping from the shallow lattice into the deep and back again with
a similar procedure. We load the lattice to its initial depth of 1.7ER and then ramp into deeper
and deeper lattices. While increasing lattice depth we see the Bragg peak at ℏklat intensify first and
then the whole distribution becomes Gaussian-like. The check for adiabaticity is that after ramping
back out we again have a coherent sample, which is observed by the reappearing Bragg peaks and
no significantly stronger thermal portion around zero momentum.
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3.4 | Multi-frequency lattice

With the above, we are limited to a single geometry, although this in itself is highly interesting. We
build the setup with more options in mind, namely the multi-frequency lattice, pioneered in [70]. This
technique allows us to change the geometry even during the experimental cycle by only changing the
phase of the EOMs RF source. The principle and the implementation of the multi-frequency lattice
will be explained in the following.

From the equation 3.14, we know that three 1D lattices under 120◦ form a triangular lattice. This is
already a special case of the more general hexagonal basis created by this geometry. The triangular
lattice is the single-atomic basis. With the multi-frequency setup, we are able to change the geometry
to a honeycomb lattice and intermediate geometries. In equation 3.14, the phases were coupled by
∆ϕi = ϕi − ϕj and wouldn’t allow for an independent change. With independent 1D-lattices added
with the same lattice vectors, we can choose ∆ϕi freely,

V (r) = 2Vlat

3∑
i=1

cos(bi · r +∆ϕi). (3.16)

As mentioned, two of those phases will result in translation of the lattice position, but this leaves one
degree of freedom which is defined as the geometry phase ϕgeom[70]:

ϕgeom =
3∑

i=1

ϕi (3.17)

Implementation To change the geometry, we implement the multi-frequency lattice from [70]. This
scheme realizes three independent 1D lattices by matching a carrier of one arm with the sideband of
the EOM on another arm. In particular, we use:

νdA1 = νdA2 + ν0,E2 (3.18)

νdA2 = νdA3 + ν0,E3 (3.19)

νdA3 = νdA1 − ν0,E1 (3.20)

With the EOMs at
nu0,Ei = 45MHz, 35MHz and 10MHz, we set the doubles-pass frequencies to
nudAi = 183MHz, 148MHz and 138MHz, which corresponds a radio frequency input of
nuAi = 91.5MHz, 74MHz and 69MHz to the AOMs (Fig. 3.7). This gives approximately the same
efficiency for the AOMs as they are about the same distance from the optimal setting at 160MHz.

With the matter-wave microscope, we are able to image the triangular lattice as well as the honeycomb
lattice, see figure 3.8. We also check the ability to change the geometry in momentum space by
performing Kapitza-Dirac measurements. The single 1D lattices with their independent phases imprint
those onto the wave function, creating a momentum space lattice with a staggered flux[70]. This
creates an imbalance between the population at the positive and negative first-order Bragg peaks,
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Figure 3.8: KD measurement of staggered flux and matter-wave images. (Left) We measure the imbalance between
the population at positive and negative first-order Bragg peaks (lower panel). We observe the imbalance oscillate with
the geometry phase. We attribute the non-π phase shift between the two components (upper panel) to not-optimally
equalized 1D lattice depth of the three separate axes. The two zero crossings in the imbalance are the triangular
and honeycomb configurations. The former is at ϕ1 ≈ 0.2π and the latter at ϕ1 ≈ 1.1π, where ϕ1 is the RF-phase
on EOM1. The two matter-wave images are taken at these positions. The triangular case is exceptionally easier to
prepare and magnify, thus showing a clear triangular density modulation. For the honeycomb lattice, a slight mismatch
between the two sites is easily created, and additionally, with the effectively shallower lattice, the imaging has to be
adapted. More fine-tuning will be needed for a clear picture of the two sub-lattice sites as in [21]. All images of the
atomic density in this thesis are obtained through a defringing algorithm as in [77].

see figure 3.8. With this we showed, that the multi-frequency setup is working in our setup and can
be used for future experiments. We note that the populations are not fully in phase and attribute this
to not yet perfectly calibrated lattice depth for the multi-frequency setup. This also makes imaging
a magnified honeycomb lattice difficult. The multi-frequency setup will eventually allow us to work
with honeycomb and boron-nitride-like lattices with dynamical control and probe the density in higher
bands. We will image the in-situ densities utilizing the matter-wave microscope.2

3.5 | Moving lattice

The versatile lattice setup enables us to create controlled running waves in the multi-frequency setup
as well as the triangular setting in a well-controlled manner. The lattice potential given in eq. 3.14
becomes time-dependent,

V (r, t) = 2Vlat

3∑
i=1

cos(bi · r −∆ωit) , (3.21)

where we introduced ∆ωi = ωi − ωi+1 as the frequency difference between the lattice beams.
The slight difference in frequency can be neglected with regard to the lattice constant. As a first
measurement with the moving lattice, we prepare a 1D lattice by detuning one of the beams off
resonant to the others, e.g. by 1MHz or 8MHz. With these detunings, we expect no movement in
the off-axis direction, i.e. by the fast running waves. The radial confinement in this setting has a trap

2The matter-wave microscopy will be explained in the following chapter.
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Figure 3.9: Position in moving lattice. We extract the position of the cloud by fitting a 2D Gaussian distribution. The
relative distance is with respect to the center of the image, matching the initial position of the cloud. The distances
are given in-situ and are along the moving direction of the lattice. We see the cloud dragged along with the lattice
moving with 2 kHz. The center of mass movement has a step-like behavior. We do not observe a significant difference
between the two described cases, where the third beam is detuned by 1MHz (dots) and 8MHz (crosses).

frequency of only ωr ≈ 2π× 0.8 kHz. The onsite trap frequency of the 1D lattice with Vlat = 4Erec

is ωonsite ≈ 2π × 100 kHz.

After the 1D lattice is loaded, we move the cloud by switching the frequency on L1 by ∆ωmov,1 =

2π×2 kHz. We let the system evolve under this running wave for a time tmov and take a matter-wave
microscope image at the end. Example images are shown in fig. 3.10, where we observe two things:
First, as expected, the cloud is pulled along by the moving lattice, as can be seen in the images and
the change in relative distance (Fig. 3.9, position extracted from fitted Gaussian envelope). Over
the duration of 5ms, the cloud is moved by approximately 6 µm, i.e. about 10 lattice sites, which
matches very well to the ten oscillations during that duration. Looking closely at the increase in
relative distance, the center of the Gaussian distribution appears to increase step-like. Confirmation
of this effect would need more statistics, although it might manifest in the second observation as
well. The second observation is a density modulation appearing on top of the lattice structure right
after the start of the translation. This additional modulation is visible as an increased spectral power
between the Bragg peaks and the zero momentum peak in the Fourier transform (Fig. 3.10). The
additional density modulation could be a similar effect as seen in [77]. In their case a strong tilt
of 2 kHz in the confining potential created the spontaneous density modulation. Here we move the
cloud up a harmonic potential, reaching similar gradients to the end. The density pattern appears
directly, whereas in [77] it took time to build up.

Another, rather intriguing feature is the appearance of a modulation perpendicular to the moving
direction when the off-resonant beam is detuned by only 1MHz instead of 8MHz. This modulation
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appears to have a modulation period matching those of a 2D triangular lattice. This can be seen in
the appearance of the Bragg peaks corresponding to the other two lattice directions. The contrast
between the two detunings can be nicely seen from the averaged magnitude of the Fourier transformed
images. While in the far detuning, no additional Bragg peaks appear, they are strongly visible in the
nearer detuned case. The intriguing part is that the interference with the third beam should be
averaged out because all other (onsite) trap frequencies are smaller by order(s) of magnitude. It
would be highly interesting to study this effect further and to see how the lattice momenta of the
other two running waves couple to the condensate.

3.6 | Band structure

The dispersion relation of a free particle is modified by the periodic potential described in the previous
section. The periodicity of the potential also introduces a periodicity in the solution of the Schrödinger
equation, which is the well-known Bloch theorem[78]. For a periodic potential, the Schrödinger

Figure 3.10: Matter-wave images of the moving cloud and their Fourier transform. The first three columns are
matter-wave images and their Fourier transformation taken after 0.1ms, 0.3ms and 4.6ms of lattice movement. The
last column is averages over all times measured presented in figure 3.9. The upper rows show data where the third
beam is detuned by 8MHz, the lower the smaller detuning of 1MHz. In both cases, an additional density modulation
along the lattice direction appears as soon as the cloud starts to move. This modulation is not constant, which leads to
a smeared-out signal in the averaged Fourier image between the Bragg peaks of the present 1D lattice. Intriguingly, in
the less detuned case, additional modulation appears with a reciprocal lattice vector matching those of the hexagonal
lattice for all three beams, i.e. modulation perpendicular to the lattice movement. The clear feature remaining in the
averaged signal of the Fourier transform shows that this modulation is present during the whole movement.
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equation takes the form

Hψ
(n)
q (r) = E

(n)
q ψ

(n)
q (r) with H =

p2

2m
+ V (r). (3.22)

The solution is given by the Bloch wavefunctions

ψ
(n)
q (r) = eiqr/ℏu

(n)
q (r). (3.23)

The wavefunction is described by the quasi-momentum q, which is defined in the first Brillouin zone,
q ∈ [−ℏb, ℏb], and the energy band n. The eigenvalues of the system E

(n)
q describe the energy bands

in momentum space. The eigenvectors give the Bloch coefficients defining the wavefunction. We use
the code from [73] to compute the band structure for the triangular lattice. We perform the band
structure calculation up to the maximal lattice depth Vlat = 3.7Erec used in the following chapters.
From the band structure, we deduce the bandwidth, which gives us the strength of the single-particle
tunneling element K (Fig. 3.11).

Figure 3.11: Bloch coefficients and tunneling rate. (Left) We plot the Bloch coefficients extracted from the band-
structure calculation. (Right) Here we plot the tunneling rate calculated from the bandwidth and the inset shows the
band gap between the first and second band of the triangular lattice.

Conclusion & Outlook

In this chapter, we presented our versatile lattice setup for a hexagonal lattice configuration. The
setup features the possibility not only to create dynamically tunable geometries but also to effectively
remove the lattice modulation by detuning the single arms far enough, such that the resulting potential
is averaged to a bare dipole trap potential. The ability to switch between these configurations allows
us to image the system with matter-wave microscopy, while using the same beam configuration. In
addition to the static lattice potentials realized, it is possible to create "slow" running waves to study
dynamical systems of the lattice potential, which can exhibit interesting phenomena as found in our
preliminary measurements. With the multi-frequency setup in particular, it will be possible to excite
the system to higher bands, and with the imaging capabilities of the matter-wave microscope, it will
be intriguing to push towards imaging of the density orbitals. Eventually, imaging, for example, the
p-band orbital and its hybridization in interacting systems[79].
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CHAPTER4
Coherence magnifier

The coherence of a quantum mechanical system is one of its most fascinating features. With the
observation of interference patterns of two BECs[24], the coherent nature of matter-waves was proven
for ultra-cold atomic gases and has been used as tool, e.g. to probe phase transitions[32]. In this
chapter, we introduce matter-wave microscopy, which magnifies the atomic wavefunction and enables
us to image the density with single-site resolution[21]. Using an optical matter-wave lens, we magnify
a coherent wavefunction released from the lattice potential described in the previous chapter. The
coherence of the system, in combination with a periodic density modulation, results in a self-imaging
effect of the lattice potential, the Talbot effect[26]. We show the first in-situ images of the two-
dimensional matter-wave Talbot effect. By resolving the self-imaged structure, we get a measure
for the coherence between lattice sites. The number of self-images, called revivals, depends on the
coherence of the system[80]. We utilize this tool to probe the loss of coherence while crossing
the critical point of the Berezinskii-Kosterlitz-Thouless (BKT) transition[33, 34]. This chapter will
provide a description of the matter-wave microscope based on the averaged optical potential discussed
in the previous chapter. We outline the theoretical framework and the experimental implementation.
We introduce the Talbot effect and the measurements of the in-situ density for both a 1D and 2D
Talbot effect. Additionally, we present a measurement of the optical Talbot effect, created by the
magnified density and the coherent absorption light. Finally, we present the measurement of the
BKT-transition, at which point we see the Talbot revivals vanish drastically[23].

4.1 | Matter-wave microscope

The matter-wave microscope is a powerful tool to gain insights into the many-body wavefunction
by magnifying the atomic wavefunction prior to imaging. It has been just recently established [21]
for lattice and as of writing this thesis extended to single-atoms from a few-atom, bulk system[22].
We adapted it in our system during this thesis. Here we will recap the method and describe our
implementation, see also [36].

The working principle of the matter-wave microscope is based on two Fourier transformas from real
space to momentum space and back again, see figure 4.1. At the end of an experimental sequence,
the atoms are subjected to a harmonic potential with trap frequency ω, where they evolve for a
quarter period T4 = 2π/4ω. All kinetic energy will be transferred to potential energy, and vice versa.
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Optical imagingMatter-wave protocol

Figure 4.1: Matter-wave microscope protocol. The density distribution evolves first in a harmonic trap with the trap
frequency ω. After a quarter period, the wavefunction is transformed to momentum space. At this point, the potential
is switched off, and a free expansion, time-of-flight, for tToF follows. This Fourier-transforms the wavefunction again
and brings it back to position space. These two steps result in a magnification Mmw = ωtToF of the initial density
distribution. This magnified density distribution is then optically imaged, where additionally optical magnification is
possible. (Figure adapted from [36])

In particular, if we started with a particle at a position x0 and for simplicity, no kinetic energy. After
a quarter period, this particle would be at the center of the trap x = 0 with an acquired velocity of
v = −ωx0. Taking an image at this point would resolve the momentum distribution of the atoms
and has been used as a technique with high-resolution imaging [81, 82]. A more common technique
of capturing the momentum space is a free expansion, or time-of-flight (TOF), at the end of the
experimental cycle[83]. Like in optics, a free expansion will approximate a Fourier transform if taken
to the far-field limit. In the matter-wave microscope protocol, the harmonic confinement is turned
off after the quarter period evolution, and a time-of-flight is used to transfer the wavefunction back
to real space. As the trap is turned off, the particle will travel with its final velocity, and after a time
tToF, it is at a new position given by x = −ωtToFx0. The distance to the trap center is magnified by
M = |−ωtToF|. This results in a magnification of the full atomic distribution, which is then imaged.

4.1.1 Theoretical description of the matter-wave lens

In experiments with ultra-cold atoms, the velocity distribution of the wavefunction of interest will also
differ from v = 0. Especially, in lattice experiments, we expect to observe the momenta of the Bragg
peaks. We therefore have to make sure that we reproduce the initial density while allowing initial
velocity. We derive this focusing condition in the Heisenberg picture. Note that a description in the
Schrödinger picture is also possible and allows us to show that the protocol also recovers correlations
of the system [21]. We will illustrate the derivation in the 1D case, but it can be easily generalized to
2D or 3D. The Hamiltonian of a particle with mass m in harmonic confinement with a trap frequency
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ω is the following:

Ĥho =
p̂2

2m
+
mωx̂2

2
, (4.1)

with the position operator x̂ and the momentum operator p̂. The equations of motion for this
Hamiltonian are

∂tx̂ =
i

ℏ

[
Ĥho, x̂

]
=

p̂

m
(4.2)

∂tp̂ =
i

ℏ

[
Ĥho, p̂

]
= −mω2x̂. (4.3)

The solution for a particular evolution time tho in the harmonic oscillator can be found to be

x̂(tho) = x̂(t0,ho) cos (ωtho) +
p̂(t0,ho)

mω
sin (ωtho) (4.4)

p̂(tho) = p̂(t0,ho) cos (ωtho)−mωx̂(t0,ho) sin (ωtho), (4.5)

depending on the initial position and momentum operators x̂(t0,ho) and p̂(t0,ho). For a quarter period,
this will result in

x̂(tho,4) =
p̂(t0,ho)

mω
(4.6)

p̂(tho,4) = −mωx̂(t0,ho) . (4.7)

The free evolution during the time-of-flight has just H = p̂/2m which gives ẋ = p̂/m and ṗ = 0.
The operators then evolve as x(t) = p̂(t0,ToF)/m · t + x̂(t0,ToF) and just p̂(t) = p̂(t0,ToF), where
x̂(t0,ToF) and p̂(t0,ToF) are the initial operators. Setting x̂(t0,ToF) = x̂(tho,4) and p̂(t0,ToF) = p̂(tho,4)

we arrive at

x̂(tho,4 + tToF) = −ωtToFx̂(t0,ho) +
p̂(t0,ho)

mω
(4.8)

p̂(tho,4 + tToF) = −mωx̂(t0,ho) . (4.9)

Note the derived magnification factor M = | − ωtToF|, which we already got through the simple
example above. For tToF ≫ p̂(t0,ho)/(mω

2x̂(t0,ho)) we can neglect the initial momentum contribu-
tion and get a focused image of the initial density in the actual far-field version of the matter-wave
microscope. For our experimental parameters this would refer to tToF ≫ 2.3ms, where we used
p0 = ℏklatt,1D and x0 = alatt,2D. This limit is difficult to reach as the signal-to-noise ratio would
drastically decrease with decreasing atomic density and we would not be able to distinguish signal
from background anymore. Fortunately, other focusing conditions can be found where the initial mo-
mentum contribution vanishes. By not working directly at T/4, essentially overshooting, the initial
momentum contribution can be compensated. By using x̂(t0) = x̂(tho) and p̂(t0) = p̂(tho), the
position operator after TOF has the following form:

x̂(tho + tToF) =
1

m
tToF(p̂(t0,ho) cos (ωtho)−mωx̂(0) sin (ωtho)) (4.10)

+ x̂(0) cos (ωtho) +
p̂(0)

mω
sin (ωtho) . (4.11)
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The initial momentum is canceled for

tToF = − 1

ω
tan(ωtho) , (4.12)

with which the position operator becomes

x̂(tho + tToF) = (tan(ωtho) sin (ωtho)) + cos (ωtho))x̂(0) (4.13)

= x̂(0)
√
1 + tan(ωtho)2 (4.14)

= x̂(0)
√
1 + (−ωtToF)2 (4.15)

= x̂(0)
√
1 +M2 . (4.16)

The magnification in the matched focusing condition is given by M ′ =
√
1 +M2. For large enough

ωtToF ≫ 1, this simplifies to M ′ ≈M = ωtToF again.

4.1.2 Optical matter-wave lens

The matter-wave lens in our setup is created by the optical potential of the three intercepting
laser beams. Here we use the non-interfering setting, described in section 3.2. At the end of the
lattice experiment, we jump the three driving frequencies of the AOMs out of resonance and let
the cloud evolve in the remaining potential. Usually, the frequencies are switched to νAOM,i =

74MHz, 86MHz and 80MHz. Note that we choose to jump AOM L2 instead of AOM L3. When
jumping AOM L3, we observed a drop in intensity on the monitor PD of the respective path. Using
AOM L2, we reduce this intensity drop, ensuring a sufficiently isotropic intensity evolution at all times.
Finally, the optical potential is switched off entirely, and we perform the needed free expansion to
image in the spatial domain. In the following, we will discuss the crucial settings to realize a matter-
wave microscope with an optical potential.

Interaction During the magnifying protocol, high-density regions are possible, especially when re-
leasing a coherent system from a shallow lattice. Here, the density will peak at the lattice momenta
when reaching the momentum space intermittently. The interaction at these high-density points
leads to density dependent mean-field lensing, which introduces aberration in to the matter-wave
lens. With this, it is not possible to resolve the lattice structure properly, see figure 4.2. In the
initial matter-wave microscope, the wavefunction had to be made incoherent to circumvent these
interaction effects [21] as the interaction is effectively fixed in 87Rb by the constant scattering length
as ≈ 100a0. To remove the coherence of the system, the lattice depth was ramped up until tunnel-
ing is highly suppressed, and each tube evolves independently. This eventually results in independent
BECs per tube with no inter-tube coherence. Without the coherence, the high densities at the lattice
momenta are removed and a Gaussian density distribution remains in the momentum space. This
technique allowed the magnifying technique to work, but at the cost of the loss of potential access
to the system’s coherence, which is of high interest for quantum mechanical systems. Here, we solve
this issue by utilizing the Feshbach resonance present in Lithium. The evaporation takes place at
as = 76a0 (B = 720G). The resulting density without changing the magnetic field is shown in figure
4.2, where a periodic structure is barely visible, if at all. By ramping down the magnetic field towards
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Figure 4.2: Interaction effect on the matter-wave lens. Magnified densities at different interaction. The image on
the left shows the density taken at a scattering length of 76.1 a0 (702G). Here, no lattice structure is visible. As
we reduce the interaction by setting the magnetic field closer to the zero crossing, we are able to increase the lattice
contrast. For 31.5 a0 (670G, middle), a lattice structure becomes visible, and a sharp lattice is captured at 31.5 a0

(610G, right). In all other experiments, we reduce the interaction further to a scattering length of 3.5 a0 (580G).

the zero-crossing of the Feshbach resonance at B = 543G, we can sufficiently suppress the interac-
tion. Working at a magnetic field of B = 560G, we have a scattering length of as = 3.5a0. With
this low interaction, we are able to resolve the lattice structure very clearly, while also maintaining
coherence throughout the whole process. The lattice-resolved density is shown in figure 4.2.

Trap frequency and timing With the optical matter-wave lens, a sufficiently high trap frequency
is necessary. The optical potential is created by the Gaussian beams and is approximately harmonic
only for a small part in the center of the beam. During the magnifying protocol, the density may also
probe the areas outside this harmonic region, which will lead to deviations from the focusing condition
and strong aberrations. Assuming a harmonic potential, the relevant first lattice momentum will be
at xk = ℏk/mω0 after the quarter period. The main deviation from the harmonic potential is the
next higher order in the expansion, the quartic term. The quadratic term is proportional to 1/w2

0

and the quartic term to 1/w4
0, the latter having the opposite sign to the former. For the harmonic

approximation to be valid, we want xk < xc = w0 and with that, ω0 > ℏklatt,1D/mw0. For the
system parameters, the trap frequency should be larger than ωc = 2π× 351Hz. For trap frequencies
above ωc, the quartic potential is less dominant, but still present. The boundaries are also discussed
in [22]. The resulting aberration will be discussed in more detail in section 5.2. We choose a safety
factor of about four, which reduces the contribution of the quartic potential to below 10% and allows
us to properly image the magnified density distribution. With a trap frequency of ω0 = 2π×1.2 kHz,
the Bragg peak would have a distance of ∆xk = 12.3 µm to the zero momentum peak, which would
allow for selective manipulation with high-NA objectives, like phase imprinting or Fourier filtering.
In an ideal case, we would instantly change the trap frequencies after turning off the lattice. This
step-function is very difficult to follow for the power locking electronics. During the lattice, we work
with about 500Hz in the radial plane, which is about 200mW per beam. Setting the lock point for
the power instantly to 1W, we see a fast ramp in the beginning and oscillation at the final value
compensating for the overshoot of the lock. We are able to obtain images of the lattice density,
but without precise control over the intensity. A precise control over the evolution time and the
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trap frequency during magnification is necessary as later in the Talbot measurement, otherwise the
calibration becomes impossible. The necessity of precise control of the trap frequency also deemed
another approach infeasible, where we switched the RF-source from the closed-loop to an open-loop
with a pre-set power. Here, we encountered fluctuations in the power which would lead to deviations
in the T/4-time on the order of µs, which is the range of the expected signals. Fortunately, the
magnifying protocol is not restricted to instant changes of trap frequency but allows for continuous
ramps[84]. The effective frequency will then be th integrated trap frequency performing a Fourier
transform after an effective T/4-time. We find a controlled ramp of 50 µs to work well. This creates
an image around T4 = 200 µs. The exact time depends on the current calibration and even in the
almost non-interacting case on the interaction, and with that the coherence of the system. A last
note on timing, the control system of the experiment has a maximum output frequency of 1MHz in
the analog and digital channels. We find the smallest slot length of 1 µs is just short of the needed
resolution. We extend this resolution to the sub-microsecond range by utilizing the home-built RF-
source (dAOM), which exhibits a programmable real-time unit. The smallest time-step possible is
10 ns. With the combination of the ADwin and the dAOM, we realize a resolution of 250 ns at the
end of the ramp, while deviating the TOF duration only 0.75 µs, which is negligible compared to the
5ms duration. This high timing resolution made us aware of a slight deviation of the turn-off time
between the beams on the order of a few hundred nanoseconds. We find this to be a delay due to
the electronics, although they are identical on each path. We compensate for this by adding delay
lines by means of coaxial wire.

Isotropy Another factor for a clearly resolved lattice structure is the radial isotropy of the optical
potential. An initial optimization is already done by overlapping the beams to the sub-micrometer
scale. We find that this is not sufficient yet. To optimize the isotropy further, we utilize the matter-
wave Talbot effect, which we observe when releasing the atoms from the lattice potential. The
matter-wave Talbot effect will be discussed in the following section, and the calibration method
explained. With this, we get a very good isotropy of the matter-wave lens.

Trap aberrations The ideal case of a matter-wave magnification setup is two consecutive clean
harmonic potentials. Replacing the second harmonic evolution with a free expansion introduces no
significant aberration, only the momentum will pick up slight deviation when calibrated carefully.
Deviations from the harmonic potential, e.g. to a Gaussian potential, will lead to aberration effects
picked up during the evolution in this trap. This sets limits on the resolvable structures and imageable
system size. In our case, the matter-wave lens is created by the three Gaussian laser beams, resulting
in an overall Gaussian potential. The first-order deviation from the harmonic potential is the quartic
term of the Gaussian profile given by the waist of the beam w0. We will discuss the difference in
evolution in more detail as it will allow us to extend our measurement capabilities beyond density
observables.
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Figure 4.3: Talbot carpet. The Talbot effect in 1D creates self-images of the initial grating at multiples of zTalbot,
the primary revivals. In between the periodic structure, revivals occur but shifted by half the period, the secondary
revivals. Depending on the slit width and the wavelength of the wavefunction, higher-order revivals may appear as
seen here in between a primary and secondary revival. These have a periodicity which is an even factor higher than
the original one. The evolution of the intensity distribution is known as the Talbot carpet.

4.2 | Talbot effect

The Talbot effect is an intrinsically coherent effect. First observed in optics by Henry Fox Talbot
in 1836 [26] and later further studied by Lord Rayleigh [85]. The Talbot effect takes place when
coherent light is scattered off a grating. Behind the grating, the emitted Huygens waves interfere
and, in the far field, form the known diffraction pattern. In the near field, directly after the grating,
the waves self-image the grating’s structure. An image of the grating is formed after the so-called
Talbot length zTalbot = 2d2/λ, with the slit period d and the wavelength of the light illuminating the
grating λ. This relation holds for λ≪ d. Keeping the introduction to 1D, one can see a second image
of the grating between it and the first primary Talbot revival, the secondary revival at zTalbot/2. It
has the same periodicity and images the grating, with one particular feature: that it is shifted by half
a period. Besides full revivals, there can be structures with higher periodicity in n-multiples of the
original period, the so-called fractional revivals. Solving the Fresnel integral for the near field, one
gets the so-called Talbot carpet as in figure 4.3. The structure repeats itself multiple times depending
on the system size.

The Talbot effect is also known in matter-wave optics. The coherent nature of quantum particles
made it possible to observe the Talbot effect with atoms [27, 28], electrons [29], molecules [30],
and plasmons [31]. This being a non-extensive list. With early experiments studying the Talbot
effect with atoms, it has been the point of interest for multiple cold atom experiments, showing the
effect of the reviving periodicity in 1D [28, 86], measuring coherence by Bragg scattering from the
self-imaged density [87], or by releasing and recapturing the reviving density pattern with the lattice
itself [80, 88]. Here we build on this pioneering and fascinating work, by showing the reviving density
of a 2D triangular lattice structure. The near-field evolution is imaged in situ with the matter-wave
microscope. This allows us for the first time to measure the in-situ density distribution of the 2D
Talbot revivals of ultra-cold atoms released from a 2D lattice. We are also able to measure the 1D
Talbot effect[89], which we extensively use to calibrate our system to high isotropy. We will first
discuss the matter-wave Talbot effect in 1D and show measurements as well in 2D. In section 4.2.2,
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we will recap the optical Talbot effect as it is also present when imaging the atoms with coherent
light. Finally, we will discuss measurements across the BKT phase transition by increasing the lattice
depth. With deeper lattices, we observe a decrease in visible Talbot revivals.

4.2.1 Matter-wave Talbot effect

With the ability to keep the system coherent during the matter-wave protocol, the wavefunction
released from the lattice undergoes Talbot revivals. We measure the matter-wave Talbot effect in
the time-domain, i.e. we measure revivals at multiples of the Talbot time TTalbot. With ultra-cold
atoms in optical lattices, we can model each lattice site as an emitter in the plane wave basis. Upon
release from the lattice, the dynamics are governed by the kinetic energies, namely the recoil energy
of the corresponding modulation, Erec = ℏ2k2/(2m). Taking the inverse of the recoil frequency
νrec = Erec/h, we get the Talbot time [90],

TTalbot = 2π
2m

ℏk2
=

2a2

h/m
. (4.17)

Here, we used the relation k = 2π/a with a being the lattice constant. Note that one has to use
the 1D lattice constant a1D in the 1D case and the 2D case. The reciprocal lattice vectors bi are
defined via the 1D lattice constant |bi| = 2π/a1D and are responsible for the dynamics after release.
For the 2D lattice, we get TTalbot,i = 2π 2m

ℏ|bi|2 and by ensuring the same lattice spacing, we have

TTalbot =
2a21D
h/m

= 13.24 µs (4.18)

for the experimental parameters. As in the optical Talbot effect, there are also secondary revivals
at TTalbot/2, which shift the density pattern again by half a period compared to the initial density,
which for the triangular lattice means the density of a honeycomb lattice. Higher order revivals for
n/q · TTalbot are also possible, but elusive in our system. The higher orders only appear if the initial
wavepackets are strongly confined. Another limiting case is the finite resolution of our matter-wave
microscope.

To get an analytical feeling for the matter-wave Talbot effect after release from a lattice, we model
the system with Gaussian wavepackets spaced with the 1D lattice constant, following [80]. The initial
state is

Ψ(x, t = 0) =

∞∑
n=−∞

ψ(x− nd) exp(iθn) (4.19)

with ψn(x) =
1

π1/4
√
σ
exp

(
−(x− nd)2

2σ

)
, (4.20)

where n denotes the nth lattice site with θn the phase of the nth wavepacket, d is the spacing
between the lattice sites and σ the 1/e-width of the wavepacket. An exemplary initial state in a
lattice is shown in figure 4.4. Upon release from the lattice, the wavefunction evolves freely, which
in momentum space is given by
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Figure 4.4: Matter-wave Talbot effect. The matter-wave Talbot effect is observed by a propagation in time after the
coherent atomic wavefunction (blue filled line) is released from a periodic potential (purple line). We present here a
finite system compared to the (almost) infinite one in figure 4.3 as it is closer to the situation in the experiment. The
Talbot carpet is obtained by a GPE-simulation as presented in the following chapter. As in the infinite carpet, we
observe primary revivals, which now correspond to the Talbot time TTalbot with secondary revivals in between. Here,
we do not observe higher order revivals due to the broader initial wavepackets at each lattice site.

Φ(k, t) = π1/4
√
2σ exp

(
−k

2σ2

2
− i

ℏk2

2M
t

) ∞∑
n=−∞

exp(iknd− iθn) (4.21)

= π1/4
√
2σ

2π

d

∞∑
ñ=−∞

δ(k − 2π

d
ñ) exp

(
−2π2σ2

d2
ñ2 − i

2π2ℏ
d2m

tñ2
)

(4.22)

= π1/4
√
2σ

2π

d

∞∑
ñ=−∞

δ(k − 2π

d
ñ) exp

(
−ñ2

(
2π2σ2

d2
− 2πi

t

TTalbot

))
(4.23)

where the Fourier representation of the Dirac comb is used and we substituted TTalbot = 2d2/(h/m).
The last term in the exponential reveals the revival character of the Talbot effect. For t = lTTalbot

the initial wavefunction is restored, Φ(k, lTTalbot) = Φ(k, 0). Transforming Φ(k, t) back to position
space and using τ = t/TTalbot, which sets the time relative to the Talbot revival, we get

Ψ(x, τ) =

√
σ

π1/4
√
σ2 + id2τ/π

∞∑
n=−∞

exp

(
− (x− nd)2

2(σ2 + id2τ/π)
+ iθn

)
. (4.24)

The calculation of the resulting density, n(τ) =
∣∣〈Ψ†(x, τ)

∣∣Ψ(x, τ)
〉∣∣2, becomes quite involved, and

we state the result from [80]. They find, by projecting back onto a single Gaussian wavepacket, that
the overlap of the revival wavefunction with the initial wavefunction is a measure for the coherence.

The projection is given as n(τ) =
∣∣∣〈ψ†

n(x)
∣∣∣Ψ(x, τ)

〉∣∣∣2. The average density becomes

n0(τ = N) ≈
√
2πσ

d

∞∑
n=−∞

C2Nn exp

(
−2π2σ2

d2
n2
)

, (4.25)
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where C is defined as the phase correlator via Cn−n′ = ⟨exp(i(θn − θn′))⟩ and N is the number of
the primary revival. For typical experimental settings, the above can be approximated taking only
n ≤ 1 into account,

n0(τ = N) ≈
√
2πσ

d

(
1 + 2C2N exp

(
2π2σ2

d2

)
+ ...

)
. (4.26)

There are two things we can take away from this result: first, the projection back onto the initial
density depends on the phase correlators C between lattice sites and gives a measure for the coherence
of the system, and second, at the N th primary revival, the projection probes the correlation at a
distance of 2N lattice spacing. Therefore, if we extract the contrast of the density modulation of the
in-situ images, thus comparing it to the maximal possible contrast of the image, we get a measure
for the correlation length at 2Nalat when setting t = NTTalbot.

Implementation In the experiment, we measure the matter-wave Talbot effect by varying the time
in the harmonic trap after switching off the lattice potential. With this, we image the density just
shortly after release from the trap. Varying the time in the first trap measures the Talbot effect of
the unmagnified system, and we expect a Talbot time TTalbot of 13.24 µs. Note, if we would vary
the TOF duration (or similar, the time in a second harmonic trap), the lattice spacing is magnified
by M , and the Talbot time by M2. As the system expands outwards, this eventually leads to too
low densities and impractical Talbot times.

With the versatile lattice setup, we are able to create 1D lattices by interfering only two beams while
the third beam is kept far detuned. This ensures the same harmonic envelope during the lattice
section and the magnification. Matching harmonic confinement during the matter-wave protocol for
the 1D and 2D lattices is important, because we use the 1D Talbot revivals to calibrate the isotropy
also for the 2D case. In figure 4.5, the magnified density of the 1D Talbot revivals is plotted. The
lattice contrast vanishes while increasing the duration in the harmonic trap up to TTalbot/4. Here,
one would expect a fractional revival to be present. Due to the shallow trapping and finite size effects,
this is not present in our system. From this point on, the contrast increases again, and we find a
revival of the lattice structure at TTalbot/2, the secondary revival. This is shifted by half a period
from the initial density modulation, but due to the current lattice setup, we do not have a phase lock
on the lattice position with respect to the trap center. This leads to variation of the lattice position
from shot to shot. We do not see any in-shot movement though. Progressing in time, we observe
the lattice contrast vanish again before it revives at the primary Talbot revival.

To extract the Talbot time TTalbot, we Fourier-transform the image and identify the peaks corre-
sponding to the wavevectors of the density modulation. We get a measure for the contrast of the
lattice by integrating over a small area containing the peaks’ signal, see inset in figure 4.6. These
peaks are at the position of the Bragg peaks of the lattice, but differ insofar that they are created by
the density of the wavefunction and not the wavefunction itself. Repeating the analysis for a full scan
of the harmonic evolution time reveals the full 1D carpet in terms of the contrast. It is notable that
we not only see the Talbot effect by looking in positive times but also when looking at shorter times
compared to the T/4-time of the trap. This is an effect of the symmetry of the magnification process
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in the harmonic trap. For a perfect harmonic trap, full symmetry around the image of the density is
expected as we find in simulations. Here we see a slight asymmetry which we account for the essential
Gaussian shape of the trap. We see the intensity of the contrast reducing while increasing the time
difference to the image. This is an effect of the finite size of our system. A reduced picture explains
this by imagining multiple copies of the cloud moving apart with the respective lattice momenta. As
soon as the copies are too far apart to interfere, the contrast is lost. We observe about 8-10 revivals
from negative to positive, including secondary ones, which matches the diameter of the cloud of 8-10
lattice sites. Following the cloud’s density, we assume the envelope to be Gaussian as well.

Figure 4.5: Calibration of isotropy. We calibrate the isotropy of the three axes by creating a 1D lattice and magnifying
it with all three beams (left). We vary the power of one beam and scan through the Talbot carpet. On the right,
we show nine exemplary scans. For each lattice direction, the Talbot carpet is scanned separately. The top row
corresponds to the image on the left, and its reciprocal lattice vector is perpendicular to the beam, the power of which
is increased from left to right. We observe a substantial shift in the center of the envelope and use this to align the
envelope’s center of all three axes. The power in L1 is 385mW, 435mW and 485mW from left to right.

Calibration of isotropy To measure the 2D Talbot effect, it is essential that all lattice directions
are well aligned in their Talbot revivals. This is realized by an optimal isotropy of the magnifying
potential. A change in the harmonic trap frequency changes the position of the matter-wave image
in time. To overlap all 1D matter-wave images, we change the trap frequency in the direction of the
current lattice vector a few percent and measure the shift on the center of the envelope, see figure
4.5. We find that this mainly changes the selected axis and use it to equalize all directional trap
frequencies. First, we match the envelopes as good as possible, and then we optimize the overlap of
the revivals for positive times. This gives us a very precise way to ensure isotropy of the matter-wave
lens.

2D matter-wave Talbot effect As in 1D, we expect the density to undergo self-imaging at the
Talbot times TTalbot. In figure 4.6 we again have the magnified in-situ density, and when increasing
the harmonic evolution time in the first trap, we see the contrast of the lattice modulation vanish at
T4. Also here, we do not observe the possible fractional revivals. At the secondary revival, we see a
fascinating phenomenon of the 2D Talbot effect. In 1D, the single lattice axis would be shifted by
half a period; in 2D, this leads to a change of geometry, though. We find a honeycomb-like structure
at the secondary revival. We call this the inverted lattice structure. Increasing the harmonic evolution
time further, we see the contrast vanish again, and at TTalbot, we have the revived lattice structure.
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F(OD)

Figure 4.6: 2D Talbot effect. (Top, first row) Example images of 7Li BECs released from a triangular optical
lattice with a matter-wave magnification of 35.3(5) and evolution times of 197.5 µs, 201.0 µs, 204.25 µs, 207.0 µs and
210.5 µs, showing the Talbot revivals and the loss of lattice contrast for intermediate times. The images show the
optical density (OD) in an area of 8.8 µm width in the atomic plane. In the second row, we show the magnitude of the
Fourier transformed images of the above with a logarithmic color scale. In the intermediate images, centric structures
are visible at the Bragg peaks, which we attribute to the finite size of our system. In the third row, the phase of the
Fourier transforms are shown. Here, the phase jump in these centric structures is clearly visible. (Bottom) Lattice
contrast as a function of evolution time around the imaging condition at 197.5 µs evaluated along the three directions
of the lattice vectors featuring in total 14 Talbot revivals for positive and negative times (b1 in orange, b2 in blue and
b3 in purple). The contrast is evaluated as the signal in the boxes around the Bragg peaks in the Fourier transformed
images (see inset).

Exemplary magnified in-situ images are shown in figure 4.6 as well as the magnitude and the phase of
the Fourier transformation of the images. As in the 1D analysis, we extract from the Fourier analysis
the contrast of the lattice modulation by integrating around the momentum peaks of the lattice
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vectors as visualized in the inset in figure 4.6. We measure the contrast in two different manners.
The first is to integrate over the whole area after taking the absolute value of each pixel. This results
in a contrast observable greatly known in cold atom lattice experiments, but without the reference
to the background. The second one differs in such a way that we first integrate the whole area while
keeping the complex numbers resulting from the Fourier transform and then take the absolute value
of the integrated result. This has two effects: on the one hand, this eliminates a lot of noise, as this
has random phase fluctuations and will integrate to zero; on the other, we have an effect which is
particular to our finite size system. As in 1D, we see not a complete depletion of the contrast at
bi, but a crossover between two phases of the lattice, see figure 4.4. With this second approach, we
are highly sensitive to this position where we would expect the lattice contrast to fully vanish for an
infinite system. The effect is nicely visible in the intermediate images, where the Bragg peaks show
a ring-like structure in their magnitude as well as in the phase. The phase changes approximately
by a factor of π, which fits the expected π-phase shift between primary and secondary revival. With
this, we can map out the contrast of the Talbot carpet with high resolution. In figure 4.6, we show
the contrast for a full scan of all three axes. Note the precise overlap of all three axes. This was
only possible with the above-described fine intensity alignment procedure using the 1D Talbot effect
and is of high importance for all further analysis. When reaching higher revivals, we see a dephasing
between the three axes. We attribute this to the slight misalignment from the optimal 120◦ setting
for the triangular lattice. We observe a slightly smaller Talbot time of TTalbot ≈ 12 µs than expected.
A decrease in the Talbot time can be attributed to an increased effective mass in the lattice. This
matches with an observed decrease of the Talbot time with increasing lattice depth.

4.2.2 Optical Talbot effect

As described in the introduction of the Talbot effect, the coherent nature of the absorption light
also exhibits the Talbot effect when passing a grating, which is here created by the magnified density
modulation of the atoms. Typical lattice quantum gas experiments have lattice constants in the
sub-micrometer scale and imaging wavelengths on the same order. The Talbot length in that case
would also be on the sub-micrometer scale and difficult to image. In our case, the 1D lattice constant
a1D = 614 nm and an imaging wavelength of λ = 671 nm gives a Talbot length zTalbot = 1.12 µm.
With a typical depth of field around 100 µm, this is impossible to resolve. Even with high-NA
microscopy as done in quantum gas microscopes [12], the depth of field around one micrometer
deems the task of separating primary and secondary revivals extremely difficult and elusive to the
authors’ knowledge. For a few special cases, the optical Talbot effect on an atom density grating was
measured. In [91] they observed the optical Talbot effect from the interference fringes of two BECs.
In [92] they had a large lattice spacing of d = 67.8 µm created by KD scattering from which they
observed the optical Talbot effect. By magnifying the lattice structure prior to imaging, we make
the optical Talbot effect measurable for atoms released from a lattice with a sub-micrometer lattice
constant. The Talbot length for the magnified sample is given by

zTalbot = 2
d2

λ
= 2

M2
mwa

2
1D

λ
= 1.42mm, (4.27)
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atoms

camera

Figure 4.7: Optical Talbot effect. (Left) Sketch of the imaging system. By scanning the camera position, we image
different planes around the atom plane. (Upper right) Magnified densities of the BEC in the lattice for the fixed
matter-wave imaging condition. The position of the optical imaging plane is varied, yielding primary and secondary
optical Talbot revivals. From left to right, at z = 0 the image of the magnified lattice is captured, at z ≈ 0.7mm the
secondary revival, and at ≈ 1.4mm the primary revival. The found distances fit well with the expected value of the
optical Talbot length zTalbot = 1.4mm. (Bottom right) The lattice contrast as a function of the image plane is shown
(b1 in orange, b2 in blue, and b3 in purple). In the measured range, we observe six revivals (primary and secondary).
The slight dephasing between the revivals along the different directions is due to a small deviation of the lattice angles.

where we used a matter-wave magnification of Mmw = 35.5. A separation of 1.42mm is easily
resolved by our imaging system, as well as the separation between secondary and primary revivals
of 0.72mm. We measure the optical Talbot effect by moving the camera with a translation stage
(sketch fig. 4.7). This moves the imaging plane of the imaging system. A translation ∆z in the atom
plane is given by a movement of the camera of M2

opt∆z, with the magnification of the optical imaging
system Mopt = 3. For an optimally aligned imaging system, we get a sharp image of atomic density.
Moving the camera about 6.3mm allows us to image the secondary revival as well as the primary
revival with an additional movement of the same amount. The images are shown in figure 4.7. We
move the camera continuously and capture the whole optical Talbot carpet. As in the matter-wave
Talbot case, we extract the contrast and find good agreement with the above the Talbot length, see
figure 4.7.

We find that the observation of the optical Talbot effect is highly sensitive to the optical alignment
of the imaging system. A misalignment leads to dephasing of the three axes and a strong reduction
in contrast of the revivals. We find that especially the reduction in contrast is correlated to an
asymmetric behavior of lattice-like structures around the central density when imaging far out of
focus. We assume this structure to be an intermediate case between near-field and far-field diffraction
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from the lattice. The asymmetry increases with worse alignment accompanied by a reduced contrast
of the corresponding lattice axis. We use this as a tool and optimize the optical alignment in a far
out-of-focus condition by creating a symmetric positioning of the lattice-like structures.

4.3 | Coherence carpet

We utilize the matter-wave Talbot effect to study the coherence properties of the 2D lattice system
across the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The array of tubes with weakly
interacting BECs can be mapped to a classical XY model [93–95], which exhibits the BKT transition
at low temperature. The transition is associated with the unbinding of vortex-anti-vortex pairs to
free vortices. The free vortices scramble the phase coherence between the tubes and destroy the
superfluidity of the array [32, 96–101]. We are able to measure the phase coherence via the contrast
of the Talbot revivals.

Figure 4.8: Coherence carpet. Contrast around the reciprocal lattice vectors. We measure the lattice contrast for
the different lattice depths. The solid line indicates the image branch, the dashed lines the positive primary revivals,
and the dotted lines the positive secondary revivals. The branches bend to shorter times due to the finite interaction
strength. We assume the phase transition to be at Vlat = 3.25Erec, where the contrast in the higher revivals quickly
drops.

Increasing lattice depth We probe the BKT transition by increasing the lattice depth and thereby
reducing the tunneling between the tubes. For each configuration, we measure a full scan of the
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Talbot carpet as in figure 4.6. We average the contrast of all three axes and get a 2D map of the
contrast, the coherence carpet (Fig. 4.8). At a lattice depth of Vlat = 1.7Erec, we reproduce a
similar signal as before with a slight difference in the timing of the imaging condition as different
trapping frequencies are used during magnification. The image branch, maximum contrast around the
imaging condition, starts at an evolution time of t ≈ 208 µs, is shifted to shorter evolution times, and
settles at deep lattices around t ≈ 200 µs. This shift of about 4% in evolution time, we attribute to
interaction effects even for the small scattering length of aS = 3.6 a0. The interaction effects are more
prominent in the shallow lattice because the high density at the Bragg peaks and zero-momentum
create a mean-field repulsive potential, while the wavefunction passes through the momentum space
associated portion of the matter-wave protocol. Next to the image branch at longer evolution times
in the matter-wave-lens potential, we observe the maximum contrast branch of the secondary revival
followed by the branch of the first primary revival. The secondary revival has less contrast than
the primary revivals, as we already observed. A possible reason for the difference might be, that
we use the same analysis for the different geometries, triangular and honeycomb-like. We also find
this difference in simple numerical simulations of the free-space two-dimensional Talbot effect. This
effect is more pronounced with stronger confinement, i.e. deeper lattices. The higher-order revival
branches reduce in contrast as we expect due to finite system size. As before, we also see Talbot
revivals towards shorter evolution times. The overall envelope we observe is asymmetric in all axes.

Figure 4.9: Strength of the Talbot revivals. (Left) The lattice contrast along the image branch (solid line in fig. 4.8)
and the first and secondary Talbot revival branch (dashed lines in fig. 4.8). (Right) The contrast along the secondary
revivals (dotted lines in fig. 4.8). The primary revivals are almost constant up to the phase transition, where all drop
to zero. Only the image branch remains finite. The secondary revivals reduce gradually with a steeper decline in the
vicinity of the phase transition. (The branch for the third primary revival is not fully captured, thus the missing data
points at low lattice depth.)

We fit the contrast for each lattice depth with a heuristic model to extract the time-wise positions
of the branches. We additionally fit an exponential function to the former result to get a smooth
curve along which we plot the contrast averaged over ±1 µs (Fig. 4.9). Initially, the contrast slightly
increases in all shown branches up to Vlat = 2.0Erec and then stays almost constant. Around
Vc = 3.25Erec we observe a drop of the contrast in the first and second primary revival and a strong
reduction of the image branch, indicating a loss of coherence in the system. We take Vc as the
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critical value of the BKT-transition in our system. For lattice depth above the transition, we fit an
exponential decay with respect to the index of the primary revival (the image branch we take as
index zero). The Talbot revivals show the coherence mainly at d = 2 ∗ nrevival[80]. We take this
into account and get the correlation length in terms of lattice presented in figure 4.10. We observe
a divergence towards the critical value, which matches well with the expectation from theory. We
fit a Gaussian envelope as we expect it for a finite Gaussian system size. In figure 4.10 we also
show the reduced χ2 for both fits across the phase transition and find that the exponential decay
fits better above the phase transition, whereas the Gaussian shape matches much better below the
phase transition. With the small system size, i.e. only a few primary revivals for extraction of the
correlation length, this analysis has to be treated with caution.

Figure 4.10: Correlation length from Talbot revivals. We fit an exponential decay to the strength of the primary
revivals around the phase transition and find a vanishing correlation length. Towards the phase transition, the correlation
length diverges, but we note that an exponential decay is not a valid model anymore in this regime. We additionally
fit a Gaussian envelope to the same data and find that it holds better below the phase transition. For an infinite
system, we would expect the revival strength to be (almost) constant for a fully coherent system. Our finite size of
Gaussian shape reduces the revival strength with system size, i.e. with the Gaussian shape, we assume the system
to be coherent. The reduced χ2 above the phase transition, shown in the inset, is mainly smaller for the exponential
decay, confirming the change in functional behavior and the loss of coherence. On the right, we show two exemplary
lattice depths below and above the phase transition, Vlat = 3.05 and Vlat = 3.55, (top and bottom, respectively). The
left shows the exponential fit, the right the Gaussian fit.

In figure 4.11 we show exemplary images along the image and first primary revival branch, as well
as the first secondary branch. Along the image branch we see the system’s 1/e2-diameter increase
from 5 to 9 lattice sites, which is due to the increased effective onsite interaction, which indicates
thermal equilibrium. This interaction effect is separate from the interaction effect during expansion.
With increasing lattice depth we see fluctuations in the density per lattice site get stronger up to
Vc. This effect will be discussed in detail in the following chapter. The lattice structure on the
image branch remains triangular throughout all lattice depths. This is in stark contrast to the other
exemplary images of the primary and secondary revival around and above Vc. This confirms the
correct determination of the image branch. Along the branch of the revivals the triangular lattice
structure is lost above the critical lattice depth. Instead we observe a speckle-like structure. This is a
phenomenon analogous to laser speckle, where the emitters are coherent light but the phase between
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them is random. Here, we have separate BECs in each tube which in themselves are still coherent.
The phase between them is scrambled above the phase transition resulting in random relative phases.
This produces the speckle pattern as seen in the 1D Talbot effect[89].

Figure 4.12: Coherence carpet with interactions. Same as in figure 4.8 but with increased interactions. The scattering
lengths are 8.3 a0, 31.5 a0 and 76.1 a0 compared to 3.6 a0. For stronger interactions, the branches bend more strongly
to later times with less lattice depth, which is according to expectations. For the strongest interaction measured
here, we see the contrast vanish for all times and low lattice depths as no sharp image of the lattice structure can
be acquired. For intermediate lattice depth, the Talbot branches reappear weakly, before the contrast vanishes for all
branches except the image branch. This takes place at a lower lattice depth than in the almost non-interacting case,
Vc,76 a0 ≈ 3Erec compared to Vc = 3.25Erec.

Different interactions The above measurements were taken at as = 3.6 a0, which results in
almost no contact interaction. We took brief measurements of the coherence carpet also for stronger
interaction values. As these are earlier measurements, we note that the timing of the imaging
condition varies to the above measurement. In addition, we optimized the ramping procedure of the
lattice depth between this and the above measurement. The following data thus has to be taken
with care in terms of thermal equilibrium. Nonetheless, they provide a great intuition on interaction
effects during the matter-wave protocol. The additional measurements are taken at 610G, 670G
and 702G, which correspond to a scattering length of 8.3 a0, 31.5 a0 and 76.1 a0[40]. The coherence
carpets are plotted in figure 4.12. With increasing interaction, we see the revivals shift to longer
evolution times. The effect increases with decreasing lattice depth. Whereas, we find the image
branch at Vlat = 1.7Erec and 610G at an evolution time of T4,eff = 213 µs, the shift at 670G is
increased by almost 20 µs (10% of the quarter period) to T4,eff = 230 µs. At 702G, it is quite difficult
to follow the image branch to shallow lattices as here the interaction effect during the matter-wave
protocol becomes so strong that it completely washes out the lattice structure. We identify the
branch with a peak at about t = 225 µs and Vlat = 2.25Erec as the image and follow it to shallower
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lattices. At t = 230 µs and Vlat = 2.2Erec it closes in with a next branch, which is barely visible
here. This branch is at t = 242 µs for the shallowest lattice, i.e. the image branch is outside the
measured area and would have an increase in quarter period of more than 20% compared to the
(almost) non-interacting case. The shift to longer evolution times confirms the mean-field effect
introduced by interaction as described in [21]. The wavefunction acts as a concave matter-wave lens
on itself, increasing the effective focal time. For the deepest lattices in these measurements, we only
see a small shift from the almost non-interacting to the stronger interacting case of about 5%. This
corroborates the notion that in momentum space high densities lead to an effective concave lens.

The Talbot effect does not seem to be affected strongly by the higher interaction strengths. In all
measurements multiple revivals are visible although hardly distinguishable from the background for
the strongest interaction and higher revivals. In [80, 88] they also find that interactions only have a
small effect on the Talbot effect.

The location of the phase transition barely changes for 8.3 a0 and 31.5 a0, but at 76 a0 it shifts down
to Vc ≈ 3Erec. The behavior is still similar though, along all revivals the contrast drops and only
the image branch remains. A stronger interaction can lead to a reduction of the BKT temperature,
compare [102], but also enhanced multi-particle tunneling rate due to a larger number of atoms could
explain the shift. It will be highly interesting to study this in more detail and push it to the strongly
correlated regime, eventually.

Conclusion & Outlook

In this chapter, we presented the matter-wave microscope using an optical matter-wave lens. Our
ability to image coherent systems allowed us for the first time to image the matter-wave Talbot effect
from a 2D grating. The necessary coherence for the Talbot effect enabled us to probe the coherence of
the system. In our system of tubes, we were able to measure the loss of coherence at the BKT phase
transition. We will discuss the BKT-transition in more detail in the following chapter and extend the
measurement capabilities. Besides the exploration of the BKT transition, this new tool opens the
possibilities to probe other phase transitions, like the BEC transition, and more complex phenomena
in the many-body regime. In the following chapter, we will introduce the phase microscope, but we
want to note that already in the first secondary and primary revival, the information of the relative
phase should be present. The relation between the phase on single sites and the resulting density is
complex, as we have seen in the theoretical description. We thus envision a Gerchberg-Saxton-like
(GS) algorithm[103] to extract the phase from a Talbot revival, either the secondary or the primary
(possibly also even density distribution in between). We performed first numerical simulations in that
direction and were able to restore the phase per lattice site from a revival image (Fig. 4.13). Here,
the propagation was straightforward and possible to back-propagate. For an experimental system,
this can become quite involved, and machine learning could be employed as a helpful and powerful
tool to realize a full-fledged Talbot phase microscope.
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Figure 4.13: Phase retrieval from Talbot revivals. (Left) Sketch of the principle of the GS-like algorithm used to extract
the onsite phase. The input phase is added to the input density, and this wavefunction is propagated forward. From
the propagated wavefunction, the phase is extracted and added to the final (measured) density. This is propagated
back, and again the phase is extracted and added to the input density. From here, the loop is repeated for several
iterations until a threshold or hard cap is reached. (Right) A first test of the algorithm with a free space propagation
of the experimentally close density distribution. 30 iterations reconstruct it very well with only a global phase offset.
The leftmost column shows the initial density (top) and its phase (bottom). The top right shows the propagated
density (here the primary revival) used as the measured density from which the phase at the bottom is retrieved. The
rightmost image shows the difference between the two to the right.

55





CHAPTER5
Phase microscope

The Talbot effect is a great tool to infer global as well as local coherence properties [80], relying
on its intrinsic interference between many lattice sites. The interference between multiple lattice
sites can be limiting when the initial phase profile on a single site is of interest. In the previous
section, we laid out a route to still accomplish this with Gerchberg-Saxton-like algorithms and an
envisioned use of machine learning. Here we present a phase microscope inspired by [104], which
provides direct access to the local phases. This scheme relies on a momentum-dependent phase
imprint, which can be realized during the matter-wave optics. The idea is sketched in figure 5.1
on the left. The phase imprinting in the Fourier plane is analogous to the well-known technique of
phase contrast imaging [62, 105, 106]. Phase fluctuations can be mapped in a similar fashion by a
short free evolution [98, 101, 107–110]. Here we push the local resolution of the phase-to-density
mapping to the single-site level of the used lattice. Instead of imprinting a momentum-dependent
phase in the Fourier plane, e.g. with a tightly focused beam addressing only particular momenta,
we utilize the aberrations introduced by the first lens of the matter-wave microscope, see figure 5.1
on the right. We confirm this approach by measuring the decrease of phase correlation towards
the Berezinskii-Kosterlitz-Thouless (BKT) transition, which we already encountered in the coherence
carpet measurement in the previous chapter. With the phase microscope, we are able to extract the
critical exponent ηc of the algebraic decay[23].

We first recap the BKT phase transition and its applicability to our system. Secondly, the aberration-
induced phase accumulation is discussed. Finally, the experimental implementation and analysis are
presented.

5.1 | BKT phase transition

The Berezinskii-Kosterlitz-Thouless (BKT) transition [33, 34] highlights the impact of dimensional-
ity on the properties of a physical system. In a three-dimensional system at temperatures below a
critical temperature Tc,BEC, a Bose gas condenses and exhibits true long-range order (LRO). In a two-
dimensional system, however, no true long-range order is possible at any finite temperature. Thermal
fluctuations prevent long-range order from building up, and the formation of BEC is formally prohib-
ited. Instead, a transition of the functional form in the first-order correlation g1(r) =

〈
ψ†(r)ψ(0)

〉
from exponential to algebraic is found in interacting systems. The algebraic decay of the correlation
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Figure 5.1: Sketch of the phase microscope. (Left) Phase microscope realization with imprinting a constant phase
on the zero momentum. The wavefunction is propagated in a harmonic trap to momentum space, indicated by the
dashed line, where the phase is imprinted and then propagated back to position space to measure the density deviation,
i.e. the phase. (Right) Realization with a continuous phase accumulation in an anharmonic trap. The wavefunction
accumulates phase while propagating in the anharmonic trap up to the focusing condition, effective momentum space,
indicated by the red dashed line. From there, the propagation is performed in a harmonic trap (or by free expansion).

function is very slow, and quasi-LRO is observed below a critical temperature Tc,BKT. In this section,
we give a short introduction to the topic and, in particular, discuss the mapping from an array of tubes
with coupled BECs to the XY-model. We will follow loosely the comprehensive review by Hadzibabic
and Dalibard[111].

No true LRO in 2D The notion that systems with a dimensionality d < 3 will not exhibit LRO
was first investigated by Peierls[112, 113] and later studied by Bogoliubov[114], Hohenberg[115], and
Mermin and Wagner[116]. Their finding states that there is no LRO order at any finite temperature
for 1D or 2D systems, which is the known Mermin-Wagner theorem. In 3D, the low-temperature
phase transitions are accompanied by the spontaneous breaking of a continuous symmetry in the
Hamiltonian. In low dimensions, the spontaneous symmetry breaking is prevented by low-energy,
low-wavelength thermal fluctuations, always restoring the symmetry. For the infinite homogeneous
Bose gas, this prevents condensation into the ground state. In 3D, the critical temperature for
condensation can be found via the density of states and the saturation of the excited states, forcing
all particles into the ground state. The density of states in 3D is energy-dependent via

DoS(ϵ) = V

√
2

2π2ℏ2
(m)3/2

√
ϵ, (5.1)

where V is the considered volume and m is the mass of the particles. The energy ϵ is given as the
kinetic energy ϵ = p2/2m. For the density of states, the following dependence on the dimension can
be found

DoS(ϵ) ∝ ϵα−1, (5.2)

where α describes the dependence on the dimension with respect to a considered volume element.
For the homogeneous case, α is given by α = d/2, for the often experimentally relevant case of
a harmonic confinement, it is α = d. The number density for the Bose gas with the respective
Bose-Einstein statistic 1/(exp(−β(ϵ− µ)− 1) is solved with the polylogarithm Liα(z):

nd(ϵ) ∝ Liα(z) (5.3)
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For a homogeneous 3D Bose gas with α = 3/2, the polylogarithm is finite on the interval of the
fugacity z ∈ [0, 1], i.e. the number of possible excited states is capped and goes to zero for T → 0.
This results in a macroscopically populated ground state, and a BEC is formed. In the two-dimensional
homogeneous case, we have α = 1, and the polylogarithm diverges at z = 1, and the population of
the excited states is always possible apart from T = 0, no condensation takes place. As we will see
for a harmonic confinement with α = d, the 2D number density will be n2,HO ∝ Li2(x), which is
finite for z ∈ [0, 1] and condensation will be possible.

Correlation at low-energy - ideal Bose gas From the number density of the 2D uniform Bose
gas, we can deduce the first-order correlation function as

g1(r) =
1

(2π)2

∫ ∞

0
d2k nke

ik·r, (5.4)

where nk = 1/(exp(β(ϵk−µ)−1) and ϵk = ℏ2k2/2m. Without condensation, the correlation always
vanishes for r → ∞, but the decay shows different behavior at low and high temperatures. For high
temperatures, the number density is given by

nk ≈ ze−βϵk ≈ nλ2dBe
−k2λ2/4π ≪ 1(∀k) (5.5)

and all momentum states are weakly occupied. This gives a Gaussian decay of the correlation

g1(r) ≈ ne−πr2/λ2
(5.6)

with a length scale of λ/
√
π. Thus, the high-temperature Bose gas shows only short-range correla-

tions.

At low temperatures, in the degenerate regime, where nλ2 > 1, we have to differentiate between low
and high-energy states. While the high-energy states are still only weakly populated, the low-energy
states are highly populated. The number density for the high-energy states remains Gaussian. With
βϵk ≪ 1 for k2 ≪ 4π/λ2, the number density becomes

nk ≈ kB
ϵk = |µ| =

4π

λ2
1

k2 + k2c
≫ 1, (5.7)

with kc =
√
2m|µ|/ℏ. This gives a bimodal form of the correlation function. At short distances,

r ≈ λ (Fourier transform of the high momenta), g1 remains Gaussian, but at large distances with
r ≫ λ the decay becomes exponential:

g1(r) ≈ e−r/l with l = k−1
c ≈ λenλ

2/2/
√
4π (5.8)

Although there is no phase transition, there is a change from a Gaussian decay to an exponential
decay, the correlation length of which l ∝ enλ2 grows exponentially with decreasing temperature.
This can lead to correlations spanning over the whole system in a finite-size experiment.
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Interactions With repulsive interactions, the low-temperature behavior changes, and a phase tran-
sition from normal fluid to superfluid is found, the BKT phase transition. For the homogeneous
case, the prior statement of no condensation into a BEC holds, though. For the low-temperature
atomic gas we consider here, we have only contact interactions. The interaction strength in 3D is
g3D = (4πℏ2/m)as, where as is the 3D scattering length. The 3D interaction is proportional to the
scattering length; in 2D, the relation can be defined as

g =
ℏ2

m
g̃, (5.9)

where g̃ is dimensionless. The healing length becomes ξ = ℏ/√mgn = 1/
√
g̃n. The strongly

interacting regime is reached for Eint = Ekin, which in the case of the 2D gas is given at g̃ = 2π.

For a weakly repulsively interacting gas, the thermal fluctuations at low temperatures are strongly
suppressed. The energy cost for adding a particle is

∂Eint

∂N
= gn =

ℏ2

m
g̃ (5.10)

and comparing it to kBT confirms the suppression for low temperatures where D ≫ 2π/g̃. When
assuming a macroscopic wavefunction Ψ =

√
neiθ and suppression of thermal density fluctuations,

an effective low-energy Hamiltonian can be found including only phase fluctuations:

Hθ =
ℏ2

2m
ns

∫
(∇θ)2d2r, (5.11)

where ns ≤ n is the superfluid density. This is the continuous version of the Hamiltonian of the
XY model with spins on a lattice. A formal mapping though is only given if density fluctuations
are fully suppressed. Hadzibabic and Dalibard follow with a Bogoliubov analysis showing why the
density fluctuations are sufficiently suppressed and that the phase fluctuations destroy true LRO. The
argument here is that the energy cost for phase fluctuations k → 0 goes to zero and due to the
population of the low k energy states in 2D becomes relevant. With the Bogoliubov analysis, they
also arrive at the low-energy Hamiltonian. Finally, they derive the algebraic decay of the correlations
for r ≫ ξ and k ≪ 1/ξ. Starting again with ψ =

√
nse

iθ, the one-body correlation function is

g1(r) =
〈
ψ†(r)ψ(0)

〉
= ns

〈
ei(θ(r)−θ(0))

〉
(5.12)

= nse
− 1

2(⟨∆θ(r)2⟩), (5.13)

where ∆θ = θ(r)− θ(0) is introduced, which is assumed to be an independent Gaussian variable u
such that

〈
eiu
〉
= e−1/2⟨u2⟩. With the analysis of the low-energy momentum modes, they arrive at

the following algebraic decay:

g1(r) = ns

(
ξ

r

)1/(nsλ2)
, (5.14)

where nsλ2 is the superfluid phase space density.
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BKT mechanism - vortex-anti-vortex unbinding The microscopic theory by Berezinskii and
Kosterlitz and Thouless takes into account another natural occurrence of phase fluctuation besides
phonons: vortices. The vortices play a crucial role in describing the phase transition. While the
phonon excitation can explain the destruction of true LRO, they cannot explain the sudden transition.
With the addition of vortices, this is explained by the unbinding of vortex-anti-vortex pairs. A vortex-
anti-vortex pair consists of two (single-charged) vortices with opposite rotation, i.e. opposite sign in
their phase winding, ±2π, for a single-charged vortex. A bound pair of vortices, a "dipole", causes
only a distortion of the phase in the close vicinity of the pair. At larger distances around the pair,
no significant change of the phase is present. The dipoles affect the correlation function g1(r) only
at short distances but do not change the behavior at long distances. The pairs are (tightly) bound
below the BKT transition temperature TBKT. Above the critical temperature, the pairs unbind, and
eventually, free vortices are present. Their disorder and long-range phase field completely "scrambles"
the phase and thereby destroys quasi LRO in the system and reduces the superfluid density. The BKT

Figure 5.2: Sketch of the vortex-anti-vortex unbinding. For temperature below the phase transition, T < TBKT,
vortex excitation only appears in pairs of counter-rotating vortices (left). As the temperature is increased, the distance
between the two vortices becomes larger and eventually decouples, i.e. free vortices are created. The free vortices
scramble the phase and destroy the quasi LRO of the system.

phase transition can be considered a topological one. At temperatures below TBKT, the whole system
has a common phase; the phonons add only smooth variation, as do the dipole vortices. On a closed
contour, the defect can be annihilated, which makes this state topological comparable with that of a
BEC. For free vortices, this argument does not hold anymore; i.e. the distortion cannot be eliminated
by continuous deformations. We will follow the simple physical picture presented by Hadzibabic and
Dalibard to explain how the vortices drive the phase transition. A full thermodynamical description
was formally derived in [117]. The main finding here is that the superfluid density exhibits a universal
jump from ns = 0 in the normal fluid to ns = 4/λ2dB below the critical temperature. This signature
was experimentally first shown in thin superfluid helium films[118]. The argument is based on the
free energy F = E − TS associated with single vortices. The kinetic energy of a vortex is given by

E =

∫ R

ξ

1

2
ns

(
ℏ
mr

)2

d2r =
ℏ2π
m

ns ln

(
R

ξ

)
, (5.15)

where the integration goes from the vortex radius ξ to the edge of circular geometry at radius R≫ ξ

with R → ∞. All possibilities of placing the vortex inside this geometry give the entropy associated
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with the vortex as

S = kB ln

(
R2π

ξ2π

)
= 2kB ln

(
R

ξ

)
. (5.16)

With this, the free energy becomes

F =

(
ℏ2π
m

ns − 2kBT

)
ln

(
R

ξ

)
(5.17)

=
kBT

2

(
nsλ

2
dB − 4

)
ln

(
R

ξ

)
. (5.18)

The change of sign of the free energy at nsλ2dB = 4 defines the transition temperature TBKT. Below
TBKT, the large positive free energy ensures the stability of the superfluid, i.e. no free vortices can
be formed. Going across the transition from below, the now negative free energy does not prevent
the creation of free vortices and thus lowers the superfluid density, which enhances the creation
of vortices. This becomes an avalanche process, and the superfluid is completely destroyed. The
superfluid density can only take values above 4/λ2dB or zero, but not in between. The curve jumps
from zero to this value at the phase transition, but then further increases for even lower temperatures.

Experiments in trapped 2D gases Besides the observation of the BKT transition in liquid helium,
experiments with ultra-cold quantum gases made efforts to observe the transition in systems confined
to 2D. The first signature of the BKT transition in atomic gases was found in [32]. Here, they
prepared two separate 2D gases and had them interfering at the end of the experiment during a
free expansion. The interference showed a clean, unwavy modulation below a critical temperature,
whereas above the critical temperature, the interference pattern became wavy. Recent experiments
[100, 101] build up on this and find a critical exponent of η = 0.17 in their finite-size system. In
[101], they employ a mapping form the phase fluctuations onto density fluctuations developed in
[109], see also [119, 120]. In [99, 121, 122] they let the system freely expand and probe the form
of the density distribution. In [99], they find a significantly larger exponent of up to η = 1.4. The
larger values can be explained by the averaging nature of the measurement as pointed out by [123].
Measuring the vortices in the system [94, 124] or stirring it[97, 125] probes the phase transition.

XY model As mentioned, the low energy Hamiltonian, found above, is the continuous version of
the XY model. The XY model describes classical spins si on a lattice structure,

H = J
∑
⟨i,j⟩

si · sj − h
∑
i

si, (5.19)

where J is the interaction coupling between spins and h an external (magnetic) field. The indices
denote single lattice sites. As the continuous version, the discrete version in 2D exhibits a BKT phase
transition. Here the transition is seen in the magnetization m of the system going from a finite value
to zero at the transition temperature. The transition temperature depends on the coupling strength
between the spins and is found by Monte Carlo simulations to be at kBT/J = 0.898(1)[126].
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Array of tubes to XY model In [93] they map a 2D lattice structure of tubes with BECs, as
we have it in our system, to the Hamiltonian of the XY model. For frozen out axial excitation and
harmonic oscillator length larger than the system size, the field operator is expanded to

Ψ(r, t) =
∑
j

ψj(t)ϕj(r), (5.20)

where ϕj(r) is the Wannier function on a lattice site, ψ the bosonic creation operator, i.e. N = ψ†
jψj

the bosonic number operator each on the jth site. With the expanded field operator, the Bose-
Hubbard Hamiltonian is constructed:

H = −K
∑
⟨i,j⟩

(
ψ†
iψj + h.c.

)
+
U

2

∑
j

Nj (Nj − 1) (5.21)

∑
⟨i,j⟩ denotes the sum over nearest neighbors, the onsite interaction U = (4πℏ2a/m)

∫
d3dϕ4j is set

by the s-wave scattering length, and the tunneling element K ≈ −
∫
dr(ℏ2/(2m)∇ϕi ·∇ϕj+ϕjV ϕj)

is controlled by the lattice potential. From the (single-particle) tunneling element, a multi-particle
tunneling is defined with the average onsite particle number N0 via

J = 2KN0. (5.22)

For the case that N0 ≫ 1 and J/N2
0 ≪ U , the Bose-Hubbard model reduces to

H = HXY − U

2

∑
j

∂2

∂θ2j
with HXY = −J

∑
⟨i,j⟩

cos(θi − θj). (5.23)

θj is the phase on the jth lattice site, and HXY the Hamiltonian of the XY model with the spins in
equation 5.19 given as sj = (cos(θj), sin(θj)). The point of the phase transition TBKT is proportional
to the multi-particle tunneling element TBKT ∝ J/kB. To study the BKT transition in this system,
the critical temperature TBEC for condensation in a single well should be TBEC ≫ TBKT. For
low temperatures T < TBEC, a macroscopic wavefunction ψj per site can be assumed. With the
number fluctuations per site strongly suppressed, the wavefunction is ψj ≈

√
N0e

iθj , where N0 is the
average site population and assumed to be constant. From HXY, the magnetization of the system
is, expanding the cosine and keeping only the quadratic term,

M(N,T ) =

〈∣∣∣∣∣ 1N
N∑
i=1

si

∣∣∣∣∣
〉

=

(
1

2N

)T/8π

, (5.24)

where ⟨·⟩ describes a thermal average and N is the number of spins[127]. The Monte Carlo simulation
in [127] and [93] show a deviation from the spin-wave result at kBT/J ≈ 1 for the 2D XY model.
This is due to the unbinding of the vortex-anti-vortex pairs, which leads to the randomization of the
phase and a zero magnetization.

The model also describes an array of Josephson junctions in superconducting networks and the
mapping is well known[128, 129]. A first experimental implementation of BECs in an array of tubes
looking at the BKT transition was performed in [94]. There they used a triangular lattice with 87Rb-
atoms and probed the proliferation of free vortices at the transition. The vortices were detected in
time-of-flight and they observed the onset of free vortices around J/(kBT ) = 1. The phase transition
is also observed in an antidot lattice[95].
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Experimental parameters We estimate the relevant parameters for our experimental setting and
set them in relation with the above bounds. The critical temperature TBEC for condensation in
a single well is given by TBEC ≈ 0.94N

1/3
0 ℏω̄/kB [62], where N0 is the atom number per tube.

The onsite trapping frequency is given by ℏωt = 3
√
2V0Erec. We have a vertical confinement

with a trap frequency of ωz = 2π × 941(31)Hz. For the lattice depth used in the experiments
V0 = 1.7 Erec to 3.7 Erec, we get onsite trap frequencies between ℏωt = 2π× 140 kHz and 200 kHz.
We take the geometric mean as ω̂ = (2ωtωz)

1/3. With average atom numbers between N0 ≃
600 and 100, the critical temperature is in the range of TBEC ≈ 10 µK to 7 µK. With the temperatures
measured in chapter 2 and reasonable adiabatic loading of the lattice, we have T < TBEC, i.e. the
atoms in the wells can be considered as coherent, single BECs with a macroscopic wavefunction and
constant phase. The observed speckle patterns in figure 4.11 for deeper lattices support this phase
coherence within the tubes.

The relation J = 2KN0 for the Josephson coupling energy is valid for J/N2
0 ≪ U ≪ J . We estimate

the interaction with U = 4πℏ2
m as(

1
2π )

(3/2) 1
a2taz

, where at and az are the transverse and vertical
harmonic oscillator lengths. We find U ≈ h × 20Hz. With the single-particle tunneling element
found in chapter 3, the above relations are fulfilled. Furthermore, the interaction is sufficiently small
that a shift of the transition temperature is not expected [102]. The energy of the axial confinement
ℏωz = h× 941(31)Hz = kB × 45 nK is larger than the temperatures of 38 to 13 nK (see Fig. 5.10).
In our range of lattice depths between 1.7 and 3.7Erec, the band gap between the first two bands
is between 4, 600 and 43, 000 times larger than the single particle tunneling energy, and thermal
excitations into the second band can be completely neglected.

5.2 | Aberrations by the matter-wave lens

The matter-wave microscope works aberration-free only in the case of two successive harmonic po-
tentials.3 The potential given by the three overlapped beams is only approximately harmonic, but
rather an isotropic Gaussian potential for the relevant area around the intercepting point (Fig. 5.3).
The influence of the quartic part leads to a deviation from the trajectories in the harmonic potential,
i.e. it creates momentum-dependent phase differences at an effective quarter period. The negative
quartic term in the Gaussian potential will lead to an increased quarter period and will, for comparison
with optics, introduce anti-spherical aberrations.

A perturbative approach for the evolution in anharmonic traps can be found in [130]. We follow this
approach to discuss the effective trap frequency and the resulting phase shift.

We will consider here the 1D case and the Hamiltonian of a perturbed harmonic oscillator of the
following form

H =
p2

2m
+

1

2
mω2

0x
2 +mf(x) , (5.25)

3The use of a free expansion instead of the second propagation in a harmonic potential creates only very minor
aberrations in the momentum distribution. The free expansion as the second matter-wave lens, as used in the
experiment, is therefore of no concern.
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Figure 5.3: Momentum space density distribution in an (an-)harmonic potential. The density distribution after a
quarter period in a harmonic trap (dashed orange line, density in blue) and Gaussian trap (solid orange line, density in
red) are plotted. The first Bragg peaks of the lattice have higher effective momenta in the Gaussian potential than in
the harmonic potential. We also observe a slight decrease in peak intensity, which is linked to slight broadening of the
peaks. The Gaussian potential has the same trap frequency in the center as the harmonic potential, ω̃0 = 1.2 kHz.

with f(x) =
∑

n≥3
1
nλnx

n. In the case of the Gaussian potential, we only have symmetric contribu-
tions, i.e. only even n. The potential of the trap has the form V (x) ∝ (1 − exp(−2x2/w2

0)). We
will investigate the system only upto quartic perturbation. We expand the potential around zero and
get

V (x) = (1/2)mω2
0x

2 +m(λ4/4)x
4 , (5.26)

where we kept terms upto fourth-order and obtained the parameter λ4 = −2(ω0/w0)
2. Here ω0 is

the trap frequency of the harmonic potential, w0 is the 1/e2-radius of the Gaussian beam and m the
mass of the atom.

The perturbative approach is based on the classical equation of motion

ẍ− ω2x = −df

dx
(5.27)

The trajectory of a classical wavepacket in this potential is given as

xβ = x0,β + x1,β (5.28)

= Aβ sin(wβt) +
λ4Aβ

32ω2
0

sin(3ωβt) (5.29)

= Aβ sin(wβt) +
Aβ

16
α2
β sin(3ωβt) , (5.30)

where we introduced αβ =
Aβ

ω0
with the momentum as pβ = βℏb. b is the lattice momentum as in

chapter 3. The effective frequency is ωβ = ω0 + ω1 and ω1 is given by

ω1 =
λ4
ω0
A2

β

4!

4!!
= −3

4
α2
βω0. (5.31)
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So we can rewrite ωβ as ωβ = ω0(1 + ϵ) with ϵ = −3/4 · α2
β . The amplitude of the main oscillation

is Aβ , which will be given in terms of the lattice momenta Aβ = β ℏb
mω0

with βb = β · 2π/a1D. Note
that all parameters introduced here are dependent on their initial momentum. In the following, we
will drop the momentum-dependent indices for readability.

To describe the effect of the aberration of the matter-wave lens, we are interested in the phase
evolution of the system. Here, we look at the phase deviation after a quarter period in the trap. The
accumulated phase during the process can be described by the classical trajectory of a wavepacket
and calculating its action over the time interval [0, t]. The phase is then given by

ϕ =
1

ℏ

∫ t

0
(T − V )dt . (5.32)

For the perturbed trap, we have to solve the following integral

ϕ =
m

2ℏ

∫ t

0

(
ẋ2 − ω2

0x
2 +

ω2
0

w2
0

x4
)
dt . (5.33)

We would set x = x0 + x1 and ẋ = ẋ0 + ẋ1 in the integrand, but as we only consider small
perturbations in αβ , we find that the terms with x1 do not contribute to ϕ when considering terms
up to quartic order in αβ . The integral vanishes for quarter-period evolution in a harmonic trap, but we
get contributions from the slightly mismatched integration time τ = T/4+γ for γ ̸= 0 and from the
quartic potential. We substitute u = ωt and set integral boundaries to [0, π/2(1−3/4α2

β +3/4γα2
1],

which we introduced to vary the time around the effective T/4-time. The phase for a particular
momentum is then given by

ϕβ =
mw2

0ω0

2ℏ

∫ π
2
(1− 3

4
α2
β+

3
4
γα2

1)

0

1

2
α2
β

(
cos2(u)− sin2(u)

)
− 1

8
α4
β

(
−4 sin4(u) + 3 sin2(u) + 3 cos2(u)

)
+O

(
α5
β

)
du

(5.34)

=
mw2

0ω0

2ℏ · 128

(
3πα2

β(−3γα2
β + 3α2

β − 4)− 2α2
β sin

(
3

2
π(α2

β − γα2
1)

)
− 16 (α2

β − 2) sin

(
3

4
π(α2

β − γα2
1)

)) (5.35)

≈ mw2
0ω0

2ℏ
α2
β

(
−3 (πγ)α2

1

8
+O

(
α4
1

))
+ α4

β

(
3π

16
+

3πγα2
1

32
+O

(
α4
1

))
+O

(
α5
β

)
(5.36)

≈ mw2
0ω0

2ℏ

(
−3πγα2

1

8
α2
β +

3π

16
α4
β

)
(5.37)

where we expanded the sine around zero in α2
β and α2

1, while keeping only quartic orders also in their
product αn

βα
m
1 with m + n ≤ 4. With this, we get a phase evolution of a particular k-vector when

imaging at times around the focusing condition, where the phase of the first Bragg equals that of
zero momentum. We will consider the accumulated phase ϕβ now in terms of momentum via the
dimensionless constant β in the following form

ϕβ = −3π

8
α4
1ϕ̃γβ

2 +
3π

16
α4
1ϕ̃β

4 = −1.784πγβ2 + 0.892πβ4, (5.38)
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where ϕ̃ =
mw2

0ω0

2ℏ . We find the focusing condition, where the zero-momentum and first-order Bragg
peak have equal phase, for β = 1 at γ = 0.5.

Here, we used typical values according to our experimental parameters. With a trap frequency
ω0 = 2π × 1.25 kHz and a 1/e2 waist radius w0 = 41 µm for the Gaussian beam profile, we have
A1 = 11.82 µm after a quarter period. The dimensionless prefactor at the first Bragg peak becomes
αβ = α1β = Aβ/w0β = 0.283β and the pre-factor ϕ̃ = 742.1. The accumulated phase for an
effective T/4-pulse is shown in figure 5.4(a) as well as a comparison with a phase imprinting approach
resulting in a Heaviside-function. When the phase difference between zero-momentum and b vanishes,
i.e., when ϕ0 = ϕ1, the lattice has maximal contrast. This is given at the effective quarter-period
time given by γ = 0.5. The effective quarter-period is a fraction of γϵ1 = 0.031 longer than the
bare harmonic quarter-period. This matches well to the fraction of 0.036 longer time that we find in
the numerical simulations (Sec. 5.2.2). We find a minimum of the phase accumulation of −0.24π

at β = 1/
√
2. This will result in a maximal conversion between phase and density fluctuation for

phase-fields with a modulation frequency b/
√
2 for homogenous densities.

Figure 5.4: Accumulated phase and conversion factor. Momentum dependent conversion between phase and density.
(Left) The acquired phase from the matter-wave aberrations is momentum dependent and goes to zero at the reciprocal
lattice vector b (purple line). The phase imprinted by the phase mask is shown for comparison (orange line). (Right) The
conversion factor α from initial phase fluctuations to measured relative density fluctuations is momentum dependent,
but similar in both cases (dashed lines, same colors as on the left). In addition to the analytical results, we plot data
retrieved from numerics (blue discs), which simulate the evolution of the system close to experimental parameters. We
find a good agreement between the analytic theory and the numerical simulations.

5.2.1 Mapping the phase to density

Revealing the phase of the wavefunction as envisioned in [104] relies on the k-dependent interference
of the wavefunction with itself. The simplest case is analogous to the technique used in phase contrast
imaging. In the Fourier plane, i.e. momentum space, a phase mask is added to the wavefunction
before it gets transformed back to real space. To reveal the phase profile of the initial system, the
zero-momentum part is used as an interference reference by changing its phase with respect to the
other momenta. The idea here is easily understood when approximating the phase in the wavefunction
ψ =

√
n0e

iθ(x) for small phase variations as

ψ(x) ∝ eiθ(x) ≈ 1 + iθ(x). (5.39)
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We Fourier-expand θ(x) =
∑
θke

ikx and assume a global phase of θ0 = 0. The phase imprinting to
the zero-momentum will only manipulate the first term,

ψ̃(x) = eiϕ0 +
∑
k ̸=0

θke
ikx = eiϕ0 + iθ(x). (5.40)

With this, the constant part has an imaginary part and will interfere with the complex phase part.
The resulting density is modulated by the phase profile θ(x) via

ñ(x) = |ψ̃(x)|2 = n0(1− 2 sin(ϕ0)θ(x)− θ2(x)). (5.41)

The comparison with the non-manipulated density n0 allows us to extract the initial phase profile
from the manipulated density ñ(x) through

ñ(x)− n0
n0

= −2 sin(ϕ0)θ(x), (5.42)

here we neglect the quadratic term in θ(x) as we consider only small phase fluctuations. The relative
density reveals the phase with a conversion factor α = −2 sin(ϕ). The approach relies on small
phase fluctuations and sufficient population of the zero-momentum state, the BEC. When phase
fluctuations get too strong and the zero-momentum population is reduced, the mapping breaks
down. We assumed a global phase offset of θ0 = 0, which in hindsight is reasonable because the
interference with the zero-momentum part cancels. With this approach, a measurement of the order
parameter of the BEC, its phase, is not possible.

A special case we consider here is that of a lattice. The modulated density leads to a reduced
conversion factor as we will lay out. To illustrate this, we assume a density modulation of the form
ψ(x) ∝ eiθ(x)(c0 + 2c1 cos(bx)), where c0 and c1 = c−1 are the first Bloch coefficients of the lattice
structure and b is the lattice vector given by b = 2π/a1D. As above, we manipulate the wavefunction
in the Fourier plane by adding a phase to the zero-momentum, which will add a phase to Bloch
coefficient c0:

ψ(x) ∝ (1 + iθ(x))(c0 + 2c1 cos(bx)) (5.43)

= c0 + ic0θ(x) + 2c1 cos(bx) + 2iθ(x)c1 cos(bx) (5.44)

→ ψ̃(x) = c0e
iϕ0 + ic0θ(x) + 2c1 cos(bx) + 2iθ(x)c1 cos(bx) (5.45)

From this we can already see that the relative density modulation as in 5.42 will be only scaled by
the zero Bloch coefficients c0, which gives

α = −2 sin(ϕ)c20. (5.46)

With increasing lattice depth, the conversion between phase and relative density fluctuations is sup-
pressed and matches the limit for c0 → 1 for no modulation.

This simple and idealistic case needs to be adapted to the experimental settings. Using matter-wave
optics to transform between real and momentum space, it is possible to imprint a phase onto a
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particular momentum, e.g. the zero-momentum of the system. One option to imprint a phase onto
the wavefunction of the atoms is by using the atom-light interaction. A laser beam focused on the
zero-momentum position for a pulsed time around T/4 creates an accumulated phase with respect to
the non-illuminated region. This technique is well established in the quantum gas community[131].
The finite extent of the optical potential has to be taken into account, as well as the finite time the
potential is active, while the wavefunction is in momentum space, i.e. very fine control is needed here.
The mapping from phase to density in our system does not need an additional external light potential.
The aberrations in the matter-wave lens create a momentum-dependent phase in the Fourier plane,
while the second matter-wave lens, i.e. the free expansion, is nearly aberration free. The mainly
quartic aberration leads to an accumulation of a phase as estimated in (5.38). With the smooth
change in phase, the conversion factor is not reduced only to the zero-momentum component. We
calculate the mapping for the modulated density in the following. We Fourier-expand the phase field
to

θ(x) =

∫ 1

β=0
(aβ cos(βbx) + bβ sin(βbx)) (5.47)

with the real valued Fourier components aβ and bβ . We restrict the integral from zero to the lattice
momentum, due to the effective sampling on the lattice, i.e. due the Nyquist theorem. We substitute
the Fourier expansion into 5.43 and obtain

ψ(x) ≈ c0 + c1 cos(bx) (5.48)

+ i

∫ 1

β=0
[c0(aβ cos(βbx) + bβ sin(βbx)) (5.49)

+ 2c1(aβ cos(bx) cos(βbx) + bβ cos(bx) sin(βbx))] dβ, (5.50)

where β is a dimensionless factor describing the momentum pβ = βℏb. The wavefunction with the
accumulated phase is

ψ̃(x) ∝ c0e
iϕ0 + 2c1e

iϕ1 cos(bx)

+ i

∫ 1

β=0

[
c0e

iϕβ [aβ cos(βbx) + bβ sin(βbx)]

+ c1e
iϕ1+β [aβ cos((1 + β)bx) + bβ sin((1 + β)bx)]

+c1e
iϕ1−β [aβ cos((1− β)bx)− bβ sin((1− β)bx)]

]
dβ.

Here we set ϕ0 = 0 and neglect terms quadratic in aβ and bβ as well as terms with wave vector
outside [0, b]. With this we obtain a density

|ψ(x)|2 = c20 + 4c0c1 cos(ϕ1) cos(bx) + 4c21 cos
2(bx) +

∫ 1

β=0
αβ [aβ cos(βbx) + bβ sin(βbx)] dβ

= [c0 + 2c1 cos(bx)]
2 +

∫ 1

β=0
αβ [aβ cos(βbx) + bβ sin(βbx)] dβ
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with the momentum-dependent conversion factor

αβ = −2c20 sin(ϕβ)− 2c21 sin(ϕ1+β − ϕ1)− 2c21 sin(ϕ1−β − ϕ1). (5.51)

With this, we can compare the two methods in their conversion factor depending on the momentum.
The calculated phases result in a conversion factor shown in figure 5.4. The lattice and phase-
accumulated version describes a smooth momentum dependence, whereas the phase-imprinting gives
a sharp jump. In the former, oscillations of the conversion factor are present as the terms in 5.51
all depend on the phase over different momenta, here considered up to β = 2. Above β = 1 the
quartic term dominates, leading to stronger oscillations. In the range β ∈ [0.3, 0.9] the phase can be
assumed approximately constant, which is essential for the experimental implementation as this allows
to define an averaged conversion factor. The range also includes the maximal phase accumulated
from the aberrations at β = 0.71. The Bloch coefficients used in figure 5.4 are c0 = 0.9 and c1 = 0.9,
which approximately describe the density used in the following numerical simulations.

For a 2D system, as in the experiment, the situation is qualitatively similar, but the calculations
become more involved. We therefore calibrate the conversion factor experimentally, as follows. We
use the expected temperature dependence of the extracted phase fluctuations and find a conversion
factor of α = 0.35(3). It can be assumed constant for our range of lattice depths and for the
wave vectors of the phase fluctuations corresponding to distances up to three sites that we evaluate
below. For the experimental lattice depths, V0 = 1.7 Erec to 3.7 Erec, we obtain the following Bloch
coefficients from the band structure calculation: c0 ∈ [0.6134, 0.5135], c1 ∈ [0.3056, 0.3151], and
c2 ∈ [0.0885, 0.1376]. For a typical value of c0 = 0.56, we get with the estimate for the conversion
factor α = −2 sin(ϕmax)c

2
0 = 0.43 with the phase set to a maximal magnitude of ϕmax = −0.24π.

This matches well with our calibrations.

5.2.2 1D-simulation in a Gaussian trap

To corroborate our analytical model, we perform numerical simulations of a one-dimensional system.
We evolve the density-modulated wavefunction by solving the Gross-Pitaevskii equation (GPE)[132,
133] with the split-step method [134]. The GPE is given by

iℏ
∂Ψ(r, t)

∂t
=

(
− p̂

2m
+ V (r) + g |Ψ(r, t)|2

)
Ψ(r, t), (5.52)

where g is the inter-particle interaction. The time evolution of the wavefunction Ψ(r, t) is computed
with the time evolution operator U(t) = exp(−iĤt/ℏ). The time evolution is split into two parts
of the Hamiltonian, one acting in momentum space Ĥk and the other in real space Ĥr. With the
Baker-Campbell-Hausdorff formula and strang splitting, the time evolution becomes

Ψ(r, t+ dt) =

(
e

−iĤrdt
2ℏ e

−iĤkdt

ℏ e
−iĤrdt

2ℏ

)
Ψ(r, t) +O(dt3) (5.53)

with only a third-order error in dt. The time evolution operators can now be implemented numerically
on a vector grid, and the algorithm alternates between momentum and position space with fast Fourier
transforms.4

4A great introduction to the split-step method with simple numerics can be found in [134]
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Figure 5.5: Numerical simulation of the aberration-induced phase microscope.. (A) Density of the wave function
after evolution in the Gaussian trap for times around the T/4-time in a harmonic trap (T4 = 208.3 µs, blue dashed
line) and the imaging condition including the aberrations (T4,eff = 215.8 µs, red dashed line). (B) Density of the wave
function, when the stated time evolution in the Gaussian trap is continued by a time evolution in a harmonic trap for
T4,2 = 208.3 µs to complete the matter-wave protocol. The imaging condition leads to a sharp lattice structure. The
sharp lattice structures shifted out of phase, which occur around ±6.5 µs from the imaging condition, are the first
secondary Talbot revival (positive) and its negative counter-part. (C) The absolute value of the Fourier transform of
the final density shows the strongest Bragg peaks for the sharp lattice structures. In between, the Bragg peaks vanish
in a way that gives rise to a double peak, which we identify as a finite size effect. The two halves of the peaks are
out of phase and can cancel each other out. (D) Density profile at the evolution time of 215.8 µs in the Gaussian
trap (purple) and Fourier transform of the initial density (gray dashed). (E) Density profile after the full matter-wave
protocol (purple) and the initial density for comparison (gray dashed). The Wannier functions on the lattice sites are
broadened due to the aberrations in the matter-wave protocol. The matter-wave image is slightly demagnified due to
the longer evolution time to compensate for the aberrations. (F) The absolute value of the Fourier transform of the
density profiles in (E) also illustrates the slight demagnification.

Here we use a grid of 105 points with a spacing of 2 nm. This minimizes boundary effects. The lattice
vectors can quickly introduce momenta at the edge of the system, which then get reflected back,
causing large errors. For simplicity, we work with SI units but find no significant errors introduced
by floating-point variations. A change to a matching atomic unit system would probably increase
computation speed and render 2D simulation feasible. For the numerical simulations presented, we
model the wavefunction Ψ as a sum of Gaussian wavepackets of width σwp = 130 nm with an overall
Gaussian envelope matching our system size σenv = 3 a1D,

Ψ(x) ∝ exp(− x2

2σ2env
)

(∑
exp(−(x− na1D)

2

2σ2wp

)

)
. (5.54)

We use the 1D lattice spacing a1D between neighboring wavepackets (Fig. 5.5). The width of the
wavepackets is on the order of the onsite harmonic oscillator length for the relevant trap depth range
of 1.7Erec to 3.7Erec.

The initial wavefunction resembles the wavefunction in the lattice at the instance, where the potential
is switched off. As in the experiment, we perform the matter-wave protocol, but here now numerically.
We subject the wave function to the anharmonic potential of the first matter-wave lens, a Gaussian
potential,

V (x) = V1 exp(−2x2/w2
0), (5.55)
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Figure 5.6: Numerical determination of the momentum-dependent conversion factor. (Top row) Determination of
the conversion factor for an example phase profile of wavevector kθ = 2π/(aphase) with aphase = 2.8, 3.5 and 6.8 a1D

(left to right). Density after the matter-wave protocol with the phase profile (purple) and with constant phase (blue)
to calculate the deviation. The data points give the densities integrated over the Wigner-Seitz cells (adapted to
the slight demagnification). (Bottom row) Phase profile extracted from the relative density profile (purple) together
with the initial density profile (blue) (adapted to the slight demagnification). We extract the conversion factor
α ≈ 1.0, 0.75 and 0.25, respectively, to make the two amplitudes match. The slight shift in the wavevector is also
visible.

where w0 is the 1/e2-radius of the waist of the beam, and we set the potential depth to V1 =

−(1/4)mω2
0w

2
0. This matches the trap frequency at the center with its respective harmonic potential.

We use a harmonic trapping frequency of ω0 = 2π×1.2 kHz and a waist w0 = 42 µm. As the second
matter-wave lens, we use a pure harmonic potential of the same trapping frequency, replacing the
free expansion in the experiment. Using a free expansion instead of a harmonic potential introduces
only a small deviation in the resulting momenta[84]. The choice of matching the trap frequencies
of the two lenses gives a magnification of order one and makes the numeric implementation less
demanding because the extension of the wavefunction remains restricted mainly to the initial extent.
We are now interested in the evolution of the wavepacket around the effective quarter period time
T4,eff of the anharmonic trap. We expect the effective time to be delayed compared to the respective
bare quarter period T4 = 208.3 µs by about a factor γϵ1 = 0.031. This gives an effective quarter
period of T4,eff ≈ 214.8 µs. The numeric evolution of the wavefunction is split into three parts:
an initial propagation in the anharmonic trap up to a time t1 < T4,eff , a continued propagation in
the anharmonic trap to time t2 > T4,eff , where the wavefunction is stored for each intermediate
evolution step, and a final propagation in the harmonic for exactly T4. The final propagation is
performed for all stored intermediate wavefunctions separately. A propagation from t1 = 202.33 µs
to t1 = 226.33 µs is shown in figure 5.5. From the maximal overlap with the initial density, we find an
effective quarter period time T4,eff ≈ 215.8 µs, i.e. a factor of 0.036 longer in good agreement with
the estimated value. The longer effective quarter-period introduces a slight demagnification of the
density of M = 0.96. The propagation for times around the quarter period also reveals the Talbot
effect of the released periodic wavefunction in the anharmonic trap. The timing of the secondary
Talbot revivals in the simulation matches the expected value of tT,a1D/2 ≈ 6.5 µs very well. The
numerical simulation reproduces also a finite size artifact, which we found in the experimental data.
The intensity around the Bragg peaks is split by a phase jump between revivals when taking the
Fourier transform of the final density. This effect vanishes when simulating larger system sizes.
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To simulate the influence of a phase profile, each initial wavepacket is multiplied with an individual
phase. Here we only propagate for the found T4,eff -time, the imaging time, in the anharmonic
potential. The final propagation in the harmonic trap remains the same. In figure 5.6 we compare
the resulting density profiles with an additional phase modulation with those without one. As expected
we see an increase/decrease in density for a lattice site with an initial positive/negative phase. We
also observe a reduction of that mapping as we increase the modulation length to longer wavelengths.
We extract the relative density deviation ν = (Ni − N̄i)/N̄i, where Ni is the integrated density per
Wigner-Seitz cell with a non-zero phase profile and N̄i without one. When comparing the extracted
phase profile to the original one, we take into account that the matter-wave protocol inverts the
image and also account for the small demagnification. We fit the extracted relative density deviation
with a cosine and compare its amplitude to the amplitude of the imprinted phase modulation. The
resulting ratios are plotted with the computed values by the aberration of the anharmonic trap in
figure 5.4. Beside the momentum dependent conversion factor we find a reduction of the wavelength
of the mapped phase modulation with increasing wavelength. This is possibly caused by the effectively
momentum dependent demagnification in the Gaussian trap. The effective quarter period found here
is that of the first lattice momenta. The effect of the anharmonicity of the Gaussian potential becomes
stronger for larger momenta, leading to larger effect quarter periods, i.e. stronger demagnification in
this setting. We find good agreement between the numerical and analytical methods.

5.3 | Phase extraction

As we have shown in section 5.2, the anharmonic shape of our matter-wave lens realizes a mapping
from phase fluctuation to density fluctuation, and the phase fluctuations are the direct observable
for the BKT-transition. We now extract the phase for each lattice site. The data analysis to confirm
the viability of our approach is a self-consistent estimate of the relevant scales. We begin with the
extraction of the onsite population. As in the coherence carpet measurements we measure in the
range of V0 = 1.7 to 3.7Erec, this time only along the image branch. Each data point is measured
100 times to fit a mean density profile, which will be a Gaussian distribution. With almost no
interaction and large trap frequency the use of the harmonic-oscillator ground state distribution is
motivated instead of using the Thomas-Fermi approximation. From the comparison of single-shot
and mean onsite densities, we get the relative onsite densities, which we will convert to the phase of
the lattice site. To estimate the conversion factor α, we use phase thermometry[135].

Onsite population To extract the onsite population, we follow the approach used in [21]. Initially,
we use the OD-images to find the lattice constant and the rotation of the lattice with respect to the
pixel grid of the camera. This is done by rotating the image and successively integrating along one axis.
The integrated density is fitted by a heuristic model of a lattice modulation by a Gaussian potential
as an envelope. The lattice modulation will be strongest when the integration is perpendicular to
one of the reciprocal lattice vectors bi. This yields the rotation and the lattice constant of the
particular lattice vector. With an average lattice constant of a2D,M = 11.57(18) px = 25.06(38) µm
and an expected lattice constant of a2D = 709 nm, we get a matter-wave magnification of Mmw =
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OD (arb. units) Onsite population

Figure 5.7: Extraction of onsite population. (Left) Exemplary OD image of the magnified lattice on the image branch.
We overlay the triangular lattice with hexagonal Wigner-Seitz (WS) cells. The position and rotation is optimized as
described in the main text. The colormap is in atoms per pixel. (Right) We integrate the atomic density in each WS
cell and obtain the onsite population visualized here. The colormap represents the atom number per lattice site.

35.33(53). With respect to the pixel grid of the camera, the lattice is rotated by −1.5(5)◦. This
analysis also recovers the slight misalignment of the laser beam along k1 of 1.5(5)◦ with respect to
the other two beams. With the magnified lattice constant and the rotation, we create an array of
Wigner-Seitz (WS) cells. To match the shot-to-shot fluctuation in the positional phase of the lattice
potential, we maximize the integrated value of the OD in half-sized WS-cells. The onsite populations
are then extracted by integrating over the optimally positioned WS cells. Here, we increase the pixel
resolution artificially by a factor of four to reduce allocation errors at the edge of the WS cells.

We fit the distribution of onsite population Ni with eq. 2.6. The fit to the sample image from
above is shown in figure 5.8. Here we refrain from a step-wise fit routine, because the thermal
fraction should be very small at these low temperatures. We are not able to make out any significant
thermal fraction above the noise floor of approximately ten atoms per pixel. Additionally, the in-situ
density distribution of the thermal and condensed part overlap. The single run may stand only as an
example, as we proceed with taking all available data for one lattice depth to get an average signal.
Especially for the deeper lattices this is of essence as here the phase fluctuations lead to large density
fluctuations and the fit to a single image would not match the actual in-situ density. The result for
two exemplary lattice depths are given in figure 5.8. We assume that this average density profile N̄i

of 100 iterations per lattice depth matches the in-situ density very well. With this we can define the
relative density fluctuations per lattice site as

νi =
Ni − N̄i

N̄i
, (5.56)

where the index i denotes a single lattice site. The total atom number N , the mean atom number
in the central Wigner-Seitz cell N0 and the Gaussian width of the cloud are plotted in figure 5.9 as
a function of the lattice depth V0.
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Figure 5.8: Determination of the mean density profile. To the extracted onsite population we fit a bi-modal distribu-
tion. (Top) The left column shows the exemplary onsite distribution from figure 5.7 represented as scatter-dots above
the fitted density distribution. The middle column shows the radially integrated signal, visualizing the matching fit.
The right column shows the density deviation between the fit and the measured data (red negative deviation, green
positive, single image ±50 atoms, averaged images ±150 atoms). (Middle row) Here, we take all onsite populations
from the 100 iteration of a single lattice depth to obtain a good mean density profile. Columns same as above. The
top and middle row have Vlat = 2.0Erec, the bottom row has Vlat = 3.1Erec.
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Figure 5.9: Atom numbers and system size. Relative total atom number N (blue), relative atom number in the
central Wigner-Seitz cell N0 (orange) and 1/e2-Gaussian width of the cloud (purple) as a function of the lattice depth
V0. The maximum values of the atom numbers are Nmax = 14, 743 and N0,max = 567.

Figure 5.10: Variance of relative density fluctuation and extracted temperature. (Left) Measured variance of the
relative density fluctuations σ2

ν as a function of the inverse of local tunnel coupling 1/J for example lattice depths of
V0 = 1.7, 1.9, 2.1 and 2.3Erec. We fit the slopes for each lattice depth and extract the temperature, which is shown
on the right.

Phase thermometry The phase thermometry is based on the assumption that for T ≪ J the
phase fluctuations are given by

〈
∆ϕ2

〉
= kBT/J [135, 136]. This holds for lattice depths with about

V0 = 3Erec, if we assume a temperature of T = 50nK as measured at the end of the evaporation.
The relative density fluctuations σν are directly proportional to the phase fluctuations ∆ϕ = σν/α,
i.e. we expect a linear dependence in 1/J . For each lattice depth, we determine the local multi-
particle tunneling element with J = 2KN̄i and plot the relative density fluctuations σν against 1/J
(Fig. 5.10). Each data point is a J-binned average located at the bin center. The exemplary lattice
depth in figure 5.10 shows a clear linear correspondence. We perform a linear fit and extract the
slope τ for each lattice depth. From the slopes τ , we get the temperature via T (V0) = cττ(V0) with
the scaling factor cτ . We parameterize the slopes τ(V0) with the single-particle tunneling K(V0).
We choose a polynomial model of the form

τ(V0) = a0 + a1K(V0) + a2K(V0)
2, (5.57)
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which is motivated by the expectation that the temperature scales linearly with the single particle
tunneling, T (V0) ∝ K for an adiabatic ramp of the lattice depth[137]. The additional quadratic
term is added to account for non-adiabaticity, e.g. due to three-body losses. We take the above
approximation as the limit (V0 = 3Erec) for the data used in the fit. The fit results in the following
parameters: a0 = 0.0011Erec, a1 = 1.7, and a2 = 970 1/Erec. We use this parameterization to
extrapolate to deeper lattices and determine the scaling factor cτ via the condition (kBT/J)|V0=Vc =

0.898. We use the critical lattice depth found in the coherence carpet measurement of Vc = 3.25Erec

and the largest value in J of this lattice depth, i.e. at the center of the density distribution. With
this, we get

cτ = J/τ |V0=Vc × 0.898 ≈ 8.5. (5.58)

Figure 5.11: Experimental calibration of the conversion factor. With the temperature curve in figure 5.10 the
variance data of the relative densities collapse to a single line when plotted against the scaled temperature kBT/J .
We fit this slope and enforce σ2

θ = kBT/J onto it. With this, we get the conversion factor of α = 0.345(1).

The rescaled temperature is shown in fig. 5.10 with the rescaled parametrization. With the temper-
ature T (V0), we can scale the 1/J-axis to kBT/J , and all variances with small kBT/J collapse to a
single line (Fig. 5.11). This confirms the expectation of σ2ν/α

2 = ∆θ2 ≃ kBT/J for thermal phase
fluctuations in the XY model [94, 136]. At the phase transition, the condition kBT/J = 0.898[126]
allows us to fix not only the temperature curve but also to determine a global conversion factor α
between the relative density fluctuations σν and the phase fluctuations ∆ϕ. We perform a linear fit
to all variances with Vlat < 3Erec and obtain a value of

α = 0.345(1). (5.59)

In addition to the statistical error, we estimate a systematic error of 10% due to the uncertainty in
the calibration of atom number. This is in good agreement with estimates from section 5.2. With
parameters close to our experimental setting, we obtain an estimate of the aberration-induced phase
imprint of ϕmax = −0.24π and Bloch an average coefficient c0 = 0.56, yielding a conversion factor
α ≈ −2 sin(ϕmax)c

2
0 = 0.43. With the conversion factor, we are able to convert the relative density

77



deviation into a phase for each lattice site. The density fluctuation due to increasing kBT/J was
already visible in the coherence carpet measurement along the image branch. Here, we show them
now as phase fluctuations (Fig. 5.12). These are exemplary images, and each configuration looks
different, especially approaching the phase transition. At and beyond the phase transition, we have
to note that the mapping breaks down as we are only able to measure small phase fluctuations, and
the loss of coherence leads to a depletion of the zero-momentum, which we use as an interference
reference.

5.4 | Spatially-resolved phase correlations

With the single-site resolution of the phase microscope, we are able to extract the phase correlation
of the system with spatial resolution of a single lattice site. Below the BKT transition, we expect
an algebraic decay of the first-order correlation function g1(d). We want to extract the exponent
η of the decay. We therefore extract the phase correlation between the lattice sites and obtain the
g1-function[111] as

g1(d) =
〈
ψ†(r)ψ(r+ d)

〉
∝ exp(−1/2

〈
(∆θ)2(d)

〉
), (5.60)

where ∆θ = θ(r)− θ(r+ d) is the phase difference between lattice sites at a distance d. We restrain
the evaluation of the g1-function to a radius rd around the center of the density distribution and
average the tunneling element J over this area (Fig. 5.13). For each iteration, we identify the lattice
sites, the centers of which are located inside the disc. We then compute the phase difference between
all lattice sites in a single shot and take the average over all iterations with respect to the distance
between lattice sites. The resulting correlations are plotted in figure 5.13 for a few exemplary lattice
depths below the phase transition in a log-log plot and show the expected algebraic decay. We fit
the algebraic model g1(d) ∝ d−η to the extracted correlations up to a distance of d = 2.56 alat and
obtain the exponents shown in figure 5.14. Here, we also extended the radius of the evaluation region,
and remarkably, we find all data collapsing to one curve when scaling the data with the averaged
tunneling element J , supporting the validity of the algebraic decay in inhomogeneous systems.

Beyond the phase transition, the stronger fluctuations are not properly mapped by the phase mi-
croscope, leading to a shallow g1(d) profile and small exponents under the invalid assumption of
algebraic decay. In the superfluid regime, the exponents follow a linear scaling with temperature as
predicted by Nelson and Kosterlitz[117]. Experimental evidence of this prediction has been shown
recently in [101]. We fit this linear scaling including data points up to kBT/J = 0.75 and get a slope
of 0.668(7), which yields a critical exponent at the phase transition of ηc = 0.598(6). In addition to
this statistical error, we estimate a systematic error of 10% due to the uncertainty in the calibration
of atom number and lattice depth.

Our value and also the one found in [99, 100] differ from the expected critical value of the infinite
homogeneous system ηc = 0.25. In [123], they performed a spin wave approximation of a harmonically
confined Bose gas. They not only confirm the algebraic decay persists in the confined case but in
addition find that the critical exponents are increased with decreasing system size. Especially, in the
case of averaged g1-functions, they find an increase of the critical exponent of a factor between 1.5
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Figure 5.13: Extraction of g1-correlation function. (Left) We extract the correlation of the extracted phases over
a small area in center of the cloud to reduce averaging errors. Here the radius is r = 1.5 alat, i.e. distances with
d < 3 are extracted. (Right) The phase coherence function g1(d) as a function of the distance d evaluated from
the phase microscope shows an algebraic decay and we fit an exponent. The values are extracted for lattice values
V0 = 1.7, 2.1, 2.5, 2.9 and 3.3Erec (from top to bottom).

.

and 2, which matches the results in [99]. In [100], they explain the reduction in the critical exponent
by their finite size system [138].

We find a similar behavior when increasing the radius R and evaluated distance d to the edge of the
cloud as in [123] (Fig. 5.15). We do not change the system size, but as in figure 5.14, we increase
the radius of evaluation. For small T/J , we find an algebraic decay up to about half the system size
with only slightly increasing exponent and an increasing vertical offset. Our system has an R/λ ≈ 4,
where λ for our discrete spin model is the lattice spacing. In [123], they find a change in behavior
only for the ratio of R/λ ≳ 100. We already find a plateau-like behavior when increasing the radius of
evaluation to the edge of the cloud for significantly smaller systems (Fig. 5.15). The differences from
the theory here may be explained by experimental fluctuations and initial density fluctuations at the
edge of the system as well as the limits of the phase microscope at and above the phase transition.
Probing the system with the phase microscope opens the possibility to compare the experiments to
theory on a very detailed level in larger systems in the future.

Conclusion & Outlook

In this chapter, we introduced the phase microscope for quantum gases based on matter-wave mi-
croscopy, with which we are able to measure the phase on a single site level. We presented aberration-
induced phase accumulation for this implementation of the phase microscope and compared it with
numerical simulation. Experimentally, we presented the analysis to calibrate the conversion factor
between the measured density deviations and the extracted phases. The calculated and calibrated
conversion factor matches well, corroborating the analytic and calibration method. With the phase
microscope, we probed the coherence properties and phase fluctuation across the BKT phase tran-
sition, utilizing the knowledge from the previous chapter. We extracted the correlation between
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superfluid normal

Figure 5.14: Algebraic exponents of the g1-function. The exponents η evaluated on disks with increasing radius
(1.5, 2.5, 3.5 and 4.5 alat (blue, purple, orange, yellow)) collapse onto a single line. The tunneling element J is the
mean over the selected area. The data follows the expected linear increase with kBT/J in the superfluid regime
(non-shaded area) and we fit a slope using data up to kBT/J = 0.75 (black line), which yields ηc = 0.598(6) at the
phase transition to the normal phase (shaded area).

single lattice sites and were able to extract the algebraic decay below the phase transition. When
extrapolating towards the critical value, we obtain ηc = 0.598(6).

With the single-site resolution of the phase fluctuations, it is possible to extract the magnetization
of the system as described in [93]. We take the Fourier transform on a hexagonal grid.5 of our finite
system with extended zero-padding. When averaging over all 100 configurations per lattice depth
and extracting the zero-momentum component, we get a decreasing magnetization towards the phase
transition as in figure 5.16. The behavior matches the spin-wave result for values below the phase
transition [93, 127]. The onset of the predicted steep decrease towards the phase transition is, if at
all, only barely visible. More data close to the phase transition would be needed. In addition, at and
above the transition, this implementation of the phase microscope ceases to function, which explains
the unexpected increase in magnetization and might deem the extraction of lower magnetization
impossible. Other variations might be more effective in this region.

5The fast Fourier transform on a hexagonal grid is described in appendix A
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Figure 5.15: Averaging effects on the correlation function. Extraction of the correlation function for ever larger radii.
When increasing the evaluation radius, we observe a decrease in the correlation length and an increase of the algebraic
exponent at small distances. When reaching the edge of the cloud the correlation drops to zero. This behavior
resembles the results in [123], but at much smaller R/λ.

Figure 5.16: Magnetization extracted from hexagonal Fourier transform. (Left) The magnetization, the mean zero-
momentum component, is plotted against the lattice depth. The insets show exemplary averaged Fourier transforms
of the phase field. (Right) Here magnetization is plotted against the kBT/J , where the temperature T is the result
from the phase thermometry and the tunneling element J is the mean multi-particle tunneling element of the radius
r = 2alat. The dashed line shows the spin-wave result as in [127], M = (1/2N)1/8πK with a manual adaption to
data.
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CHAPTER6
Conclusion & Outlook

In this thesis, we presented the coherence magnifier utilizing the Talbot effect and the implementation
of the phase microscope as new tools for quantum simulation with quantum gases.

In chapter 2, we provided an overview of the experimental setup used to achieve Bose-Einstein
condensation with Lithium-7 atoms, focusing on laser cooling and evaporative cooling techniques.
The setup features a compact design with an oven, a 2D-MOT, and 3D-MOT for initial laser cooling.
We employ two evaporative stages, one in a magnetic trap and the other in an optical dipole trap,
where we reach degeneracy. The lowest temperatures are below 50 nK with a condensate fraction
around 90% and up to 3× 104 atoms.

In chapter 3, we described the development and functionality of a versatile optical trap setup that
allowed multiple configurations, including the triangular lattice, the optical dipole trap, the multi-
frequency lattice, and a moving lattice. The versatile lattice paves the way for advanced studies of
lattice dynamics and coherence properties.

In chapter 4, we focused on using matter-wave microscopy to investigate coherence in quantum gases.
By magnifying the atomic wavefunction, we captured density distributions at single-site resolution and
explored the Talbot effect, which reveals coherence across lattice sites. This chapter demonstrated
how the Talbot effect could be used as a tool to measure loss of coherence across the Berezinskii-
Kosterlitz-Thouless (BKT) phase transition.

In the final chapter, we introduced the phase microscope that provided direct access to the local phase
with a single-site resolution. We discussed the aberrations in the matter-wave lens, allowing us to
extract the phases and confirmed the analytic methods with numerical simulations. We gave a short
recap of the BKT phase transition and used the phase microscope to extract the local correlations.
We obtained a critical exponent at the phase transition of ηc = 0.598(5), discussed it in the context
of trapped systems and compared it to other experimental results.

With a refined phase retrieval algorithm, which could possible be enhanced by machine learning[139],
we envision a Talbot microscope measuring the phase on local sites, extending the capabilities of the
presented phase microscope, possibly above kBT/J = 1. With the addition of the magnetization
analysis, a close comparison with theory will then be possible. Furthermore, a detection method for
vortex-anti-vortex pairs could be realized and the unbinding be measured in-situ.
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On the experimental front, the introduction of rapid interaction switching at the beginning of the
matter-wave protocol will facilitate studies of strongly interacting systems with minimal perturba-
tion in the matter-wave protocol[140]. For further studies of strongly correlated systems, achieving
single-atom sensitivity through spin-resolved, free-space fluorescence imaging[141–144] will be cru-
cial. Reinstalling the high-resolution objective into the setup will enable this[45]. For this purpose,
we developed a new method to shine the MOT beam through the objective. In Nora Bidzinski’s
master thesis, we developed a fiber-in-objective approach[145]. The fiber is polarization-maintaining.
The end utilizes a 45◦ rotated piece of fiber to rotate the polarization from linear to circular at the
output. The output facilitates a strong curvature, creating a focus behind the fiber and enlarging the
numerical aperture, thus creating a large collimated beam in combination with the high-resolution
objective.

A combination of high-resolution imaging and matter-wave microscopy as in [22] could expand the
resolution limit. A full-fledged phase microscope would bring the characterization of quantum many-
body systems to a new level. The possibilities may include distinguishing superfluid phases from
Bose glass phases [146], probing of coherence locally in trimerized Mott insulators [147], identifying
ergodic bubbles in many-body localized systems [148], or detecting chiral domains[149, 150].

With the matter-wave microscope, the emerging lattice structures from off-resonant laser beams, as
we have seen in the moving lattices measurement, could be explored further[151]. The moving lattices
could also be used to study the superfluidity of the condensate. Finalizing the implementation of the
multi-frequency lattice will allow fast lattice ramps to excite the system into higher Bloch bands[70].
A particularly interesting direction would be the study of chiral superfluidity in these systems[79];
with a high-resolution objective, the matter-wave microscope could directly image the vortices and
orbital structures of chiral phases with a sub-lattice constant resolution[21, 152].
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APPENDIXA
Magnetization from hexagonal fast Fourier

transform
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Figure A.1: Hexagonal representation in split array. Phase map from the phase microscope. The triangular lattice
structure on the left is split into two, with the even rows in the upper panel (a = 0) and the odd rows in the lower
panel (a = 1). These two arrays are used for the HFFT. The right shows a combined version of the two arrays on
a square grid. The lattice depth is at Vlat = 3.1 Erec, i.e. close to the phase transition. The included radius of the
cloud here is r = 4alat.

The magnetization in [93] is obtained from the lattice model by taking the Fourier transform of the
wavefunction, i.e. the phase, because the density is assumed to be constant,

ψ̃→k =
1

N

∑
→j

e−i→k→j (A.1)

and extracting the zero-momentum value at → k = 0

M =
〈
|ψ̃0|

〉
. (A.2)

They considered a quadratic lattice. The phase information in our lattice is on a triangular lattice,
and the straightforward method of taking the computational fast Fourier transform on a 2D square
grid is not possible. In [153], they adapted the fast Fourier transform (FFT) to a hexagonal grid,
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representing the position of the WS cells perfectly. The hexagonal fast Fourier transform (HFFT)
algorithm they present is based on the hexagonal discrete Fourier transformation (HDFT) [154] and
the array set addressing[155]. The hexagonal array is split into two separate arrays for odd and even
rows. The coordinates are represented with three values instead of two, (a, r, c) ∈ 0, 1 × Z × Z.
a is the array index, and r and c are the row and column indices of the two arrays. We transform
the triangular lattice to the split array set, see figure A.1. We adapt the MATLAB code in [153] to
Python and Fourier-transform the data (Fig A.2).
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Figure A.2: Hexagonal fast Fourier transform. The left shows the HFFT performed on the split array and visualized
on the triangular lattice again. On the right, we compare the HFFT with a standard FFT performed on the combined
array in figure A.1. The close ensures the correct implementation of the algorithm, but the errors due to the wrong
representation are expected. The lattice depth is at V0 = 3.1 Erec, i.e. close to the phase transition.

We obtain the magnetization in figure 5.16 by averaging over all 100 iterations per lattice depth and
extracting the value at (0,0,0). We show a few exemplary HFFTs for different lattice depths and
their averaged signals, see figure A.3.
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Figure A.3: HFFT for increasing lattice depth . (Left) Single shot HFFTs. (Right) Average of 100 iterations. HFFTs
are performed on phase profiles with an inclusion radius of r = 4. We observe a decrease in the central peak intensity.

87



APPENDIXB
RIN spectra and EOM calibration

In figure B.1 the noise spectra for the beams L2 and L3 are shown. In figure B.2 we show the EOM
calibration measurements.
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Figure B.1: RIN spectra of L2 and L3. (Top) RIN spectrum of L2. (Bottom) RIN spectrum of L3.

Figure B.2: EOM calibration for L2 and L3. The relative intensities carrier and the sidebands created by the EOMs.
(Left: L2, right: L3)
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