
Berichte zur Erdsystemforschung
Reports on Earth System Science

  289

2025

Parameterizing Lagrangian Cloud 
Microphysics using Machine Learning

Shivani Sharma
Hamburg 2025

FÜR METEOROLOGIE



Hinweis

Die Berichte zur Erdsystemforschung werden 
vom Max-Planck-Institut für Meteorologie in 
Hamburg in unregelmäßiger Abfolge heraus-
gegeben.

Sie enthalten wissenschaftliche und technische 
Beiträge, inklusive Dissertationen.

Die Beiträge geben nicht notwendigerweise die 
Auffassung des Instituts wieder.

Die "Berichte zur Erdsystemforschung" führen 
die vorherigen Reihen "Reports" und "Examens-
arbeiten" weiter.

Anschrift / Address

Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg
Deutschland

Tel./Phone: +49 (0)40 4 11 73 - 0
Fax:              +49 (0)40 4 11 73 - 298  

name.surname@mpimet.mpg.de
www.mpimet.mpg.de

Notice

The Reports on Earth System Science are 
published by the Max Planck Institute for 
Meteorology in Hamburg. They appear in 
irregular intervals.

They contain scientific and technical contribu-
tions, including PhD theses.

The Reports do not necessarily reflect the 
opinion of the Institute.

The "Reports on Earth System Science" continue 
the former "Reports" and "Examensarbeiten" of 
the Max Planck Institute.

Layout

Bettina Diallo and Norbert P. Noreiks
Communication

Copyright

Photos below: ©MPI-M
Photos on the back from left to right:
Christian Klepp, Jochem Marotzke,
Christian Klepp, Clotilde Dubois,
Christian Klepp, Katsumasa Tanaka



Parameterizing Lagrangian Cloud 
Microphysics using Machine Learning

Shivani Sharma

Hamburg 2025



Berichte zur Erdsystemforschung / Max-Planck-Institut für Meteorologie                              289
Reports on Earth System Science / Max Planck Institute for Meteorology                              2025

ISSN 1614-1199 - doi: 10.17617/2. 3639728

Shivani Sharma
aus Delhi, Indien

Helmholtz-Zentrum Hereon
Max-Planck-Straße 1
21502 Geesthacht

Max-Planck-Institut für Meteorologie
The International Max Planck Research School on Earth System Modelling 
(IMPRS-ESM)
Bundesstrasse 53
20146 Hamburg

Tag der Disputation: 25. Oktober 2024

Folgende Gutachter empfehlen die Annahme der Dissertation:
Prof. Dr. Nedjeljka Žagar
Dr. David S. Greenberg

Vorsitzender des Promotionsausschusses:
Prof. Dr. Hermann Held

Dekan der MIN-Fakultät:
Prof. Dr.-Ing. Norbert Ritter



This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede.

https://bitbucket.org/amiede/classicthesis/

https://bitbucket.org/amiede/classicthesis/




A B S T R A C T

Parameterizations in weather and climate models are essential for rep-
resenting sub-grid scale processes that cannot be explicitly resolved
due to computational constraints. However, they introduce significant
uncertainties in the prediction of key atmospheric variables such as
precipitation, cloud cover, and the estimation of the radiative balance.
As kilometer-scale models eliminate the need for many parameteri-
zation schemes, micro-scale phenomena such as cloud microphysical
processes emerge as important sources of model error. Cloud micro-
physical processes are represented via bulk schemes, which, while
computationally efficient, rely on simplified assumptions that can
lead to substantial errors in forecasts.

This thesis presents the development of machine learning (ML)
emulators aimed at improving the accuracy of these parameteriza-
tions by leveraging Lagrangian models, specifically the superdroplet
method, which provides a more physically consistent representation
of cloud microphysical processes. I introduce SuperdropNet, an ML-
based emulator trained on superdroplet simulations, designed to pre-
dict the evolution of bulk moments while bypassing the assumptions
of the bulk schemes. I introduce new training techniques and em-
ploy methods such as autoregressive training to develop a physics-
informed ML emulator. SuperdropNet demonstrates a stable perfor-
mance across a wide variety of initial conditions and outperforms
previously available ML emulators for droplet collisions.

The emulator was also evaluated in an online scenario by coupling
it with the ICOsahedral Nonhydrostatic (ICON) model. Coupling ML
emulators to an atmospheric model is usually a labourious task that
impedes the process of developing an effective emulator. I solved the
technically challenging task of coupling a Python-based ML model to
the FORTRAN codebase of ICON. I tested multiple coupling mech-
anisms for flexibility, ease of use, and speed, and found a C-based
interface to be the most suitable. Encouragingly, when coupled to a
warm bubble test scenario, SuperdropNet demonstrated long-term
stability and predicted physically plausible quantities.

This research underscores the potential of ML emulators to bridge
the gap between the computational efficiency of bulk moment schemes
and the physical accuracy of Lagrangian models. Such an approach
could be extended to other ill-represented cloud microphysical pro-
cesses in atmospheric modeling, such as sedimentation and cloud-
aerosol interactions, ultimately leading to more reliable weather and
climate predictions.
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Z U S A M M E N FA S S U N G

Parametrisierungen in Wetter- und Klimamodellen sind unerlässlich,
um Prozesse auf Subgitter-Skalen darzustellen, die aufgrund rech-
nerischer Einschränkungen nicht explizit aufgelöst werden können.
Sie führen jedoch zu erheblichen Unsicherheiten bei der Vorhersa-
ge wichtiger atmosphärischer Variablen wie Niederschlag, Wolkenbe-
deckung und der Abschätzung der Strahlungsbilanz. Da Kilometer-
Skalen-Modelle den Bedarf an vielen Parametrisierungsschemata eli-
minieren, treten mikroskalige Phänomene wie Wolkenmikrophysik-
prozesse als wichtige Quellen von Modellfehlern hervor. Wolkenmi-
krophysikalische Prozesse werden über Bulk-Schemata dargestellt,
die zwar recheneffizient sind, aber auf vereinfachten Annahmen be-
ruhen, die zu erheblichen Fehlern in Vorhersagen führen können.

Diese Dissertation stellt die Entwicklung von Machine-Learning
(ML)-Emulatoren vor, die darauf abzielen, die Genauigkeit dieser Pa-
rametrisierungen zu verbessern, indem Lagrangesche Modelle, insbe-
sondere die Supertröpfchen-Methode, genutzt werden, die eine phy-
sikalisch konsistentere Darstellung von Wolkenmikrophysikprozes-
sen bietet. Ich stelle SuperdropNet vor, einen ML-basierten Emula-
tor, der auf Supertröpfchen-Simulationen trainiert wurde und entwi-
ckelt wurde, um die Entwicklung von Massenmomenten vorherzu-
sagen, während die Annahmen der Bulk-Schemata umgangen wer-
den. Ich führe neue Trainingstechniken ein und wende Methoden wie
autoregressives Training an, um einen physikalisch fundierten ML-
Emulator zu entwickeln. SuperdropNet zeigt eine stabile Leistung
über eine Vielzahl von Anfangsbedingungen hinweg und übertrifft
bisher verfügbare ML-Emulatoren für Tröpfchenkollisionen.

Der Emulator wurde auch in einem Online-Szenario evaluiert, in-
dem er mit dem ICOsahedral Nonhydrostatic (ICON)-Modell gekop-
pelt wurde. Die Kopplung von ML-Emulatoren an ein atmosphäri-
sches Modell ist in der Regel eine mühsame Aufgabe, die den Ent-
wicklungsprozess eines effektiven Emulators behindert. Ich habe die
technisch anspruchsvolle Aufgabe gelöst, ein Python-basiertes ML-
Modell mit der FORTRAN-Codebasis von ICON zu koppeln. Ich ha-
be mehrere Kopplungsmechanismen hinsichtlich Flexibilität, Benut-
zerfreundlichkeit und Geschwindigkeit getestet und festgestellt, dass
eine C-basierte Schnittstelle am besten geeignet ist. Erfreulicherweise
zeigte SuperdropNet in einem Warmblase-Test-Szenario langfristige
Stabilität und sagte physikalisch plausible Größen vorher.

Diese Forschung unterstreicht das Potenzial von ML-Emulatoren,
die Lücke zwischen der rechnerischen Effizienz von Bulk-Moment-
Schemata und der physikalischen Genauigkeit von Lagrangeschen
Modellen zu schließen. Ein solcher Ansatz könnte auf andere unzurei-
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chend dargestellte wolkenmikrophysikalische Prozesse in der atmo-
sphärischen Modellierung, wie Sedimentation und Wolken-Aerosol-
Wechselwirkungen, ausgeweitet werden und letztlich zu zuverlässi-
geren Wetter- und Klimavorhersagen führen.





P U B L I C AT I O N S

The following publications are part of this thesis:

appendix A

Sharma, S., & Greenberg, D. S. (2024). SuperdropNet: A stable and
accurate machine learning proxy for droplet-based cloud mi-
crophysics. under review at the Journal of Advances in Modeling
Earth Systems. https://doi.org/arXiv:2402.18354

appendix B

Arnold, C., Sharma, S., Weigel, T., & Greenberg, D. S. (2024). Effi-
cient and stable coupling of the SuperdropNet deep-learning-
based cloud microphysics (v0.1.0) with the ICON climate and
weather model (v2.6.5). Geoscientific Model Development, 17(9),
4017–4029. https://doi.org/10.5194/gmd-17-4017-2024

ix

https://doi.org/arXiv:2402.18354
https://doi.org/10.5194/gmd-17-4017-2024




C O N T E N T S

i the unifying essay 1

1 introduction 3

1.1 Parameterization in Weather and Climate models 4

1.2 Should we wait for high resolution models? . . . 4

1.3 Bridging the gap through machine learning . . . . 6

1.4 The research questions . . . . . . . . . . . . . . . . 8

2 machine learning and earth system science 11

2.1 Terminology as used in the field . . . . . . . . . . 12

3 superdropnet : learning droplet collisions 15

3.1 The quest to find the best match . . . . . . . . . . 16

3.2 The Superdroplet Setup . . . . . . . . . . . . . . . 16

3.3 Targetting the Bulk Moments . . . . . . . . . . . . 17

3.4 Stochastic Simulations, deterministic outputs . . . 17

3.5 Developing a physics-informed machine learning em-
ulator . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Did SuperdropNet improve upon the bulk moment scheme? 19

4 coupling superdropnet with icon 25

4.1 The need for online coupling . . . . . . . . . . . . 25

4.2 Coupling ML-based parameterizations . . . . . . 25

4.3 The warm bubble test case . . . . . . . . . . . . . . 27

4.4 Lessons from coupling . . . . . . . . . . . . . . . . 27

5 summary and outlook 31

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 32

ii appendix 35

a superdropnet : a stable and accurate machine

learning proxy for droplet-based cloud micro-
physics 37

a.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 40

a.2 Warm rain microphysical simulations . . . . . . . 42

a.3 Problem statement . . . . . . . . . . . . . . . . . . 44

a.4 Data Generation with Droplet Simulations . . . . 44

a.5 Deep learning of warm rain microphysics . . . . . 48

a.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . 50

a.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . 62

a.8 Open Research . . . . . . . . . . . . . . . . . . . . . 63

b efficient and stable coupling of the superdrop-
net deep-learning-based cloud microphysics (v0 .1 .0)
with the icon climate and weather model (v2 .6 .5) 65

b.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 68

xi



xii contents

b.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . 70

b.3 Integrating SuperdropNet in ICON . . . . . . . . 73

b.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . 75

b.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . 82

bibliography 85



Part I

T H E U N I F Y I N G E S S AY





1
I N T R O D U C T I O N

It is always encouraging to find parallels in the most unexpected ar-
eas. Inge Dick became fascinated with capturing the images of the sky
and realized that capturing them with different camera lenses could
reveal the beautiful kaleidoscopic palette of the individual clouds
present. The digital image (Fig.1.1, right) reveals the constellation of
colors as pixels that are only visible in a blurred continuity through
an analog camera (Fig.1.1, left).

Figure 1.1: Inge Dick: Bleu du ciel, analog-digital 2001/2004/34, 2001/2004.
Photo: Andreas Bestle; © VG Bild-Kunst, Bonn 2023. Left:with
analog, right: with digital camera.

The scientific parallel to this photograph lies in the representation
of any atmospheric model, where underneath a model’s cohesive pic-
ture are the variety of small-scale phenomena which emerge only as
we employ more sophisticated methods of representation. It is not
always possible to get the best, most accurate representations of phe-
nomena occurring at finer scales, due to limitation in our understand-
ing or the computational resources available to simulate them. When
equations of motion are discretized to solve for prognostic variables
on a grid, processes that occur at scales below the grid spacing are
represented by their approximate effect on the coarser model (Palmer,
2001). These approximations are what we refer to as parameterizations.
Finer grids and shorter time steps improve accuracy by explicitly rep-
resenting processes that would otherwise occur at sub-grid scales, but
they impose huge memory and computing requirements that push
against the limits of available hardware (Palmer, 2020). Hence, what
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4 introduction

we are often left with are models that merely hint at all the complex
phenomena that lies beneath the surface.

1.1 parameterization in weather and climate models

All parameterizations are approximations and the errors introduced
by them accumulate over time, causing inaccuracies in day-to-day
weather prediction. For example, precipitation which is an extremely
valuable variable on a regional scale, is often poorly estimated (Suzuki
et al., 2011). On global scale, it is a general consensus that the pa-
rameterized representation of aerosols, clouds and cloud processes
introduces uncertainties in climate projections (Boucher et al., 2013).
These misrepresentations create a significant variation amongst cli-
mate models in the estimation of regional precipitation as well (Bony
et al., 2013; O’Gorman & Dwyer, 2018; Wyant et al., 2012). There are
often cumulative effects on other parameterized processes as well. For
instance, poor representation of clouds and cloud processes, in turn,
can throw off the radiative balance on a global scale (Lynn & Khain,
2007; Stephens et al., 2012).

Over the past decades, numerical weather prediction has improved
significantly, corresponding to a better understanding of the physical
processes, an improvement in the quality of observations as well as an
increase in computational power, allowing the use of high-resolution
models (Bauer et al., 2015). On a regional scale, Large-eddy simula-
tions (LES) running at scales of a few meters, can resolve many cloud
processes and represent energy fluxes with greater accuracy (Fig. 1.2).
However, they are computationally expensive and hence, cannot be
used on a global scale. The high resolution Cloud Resolving Models
(CRM), running at approximately 1km scale can resolve many con-
vective processes that previously required parameterization. Despite
their spatial scales, LES and CRMs still require various other pro-
cesses such as cloud microphysical processes, turbulent energy fluxes
and radiation to be parameterized. For operational weather forecast-
ing and long term climate projections, where models are often even
coarser than LES and CRMs, it is still standard practise to parame-
terize sub-grid scale processes with varying levels of sophistication
(Gross et al., 2018; Palmer, 2020; Stevens & Bony, 2013).

1.2 should we wait for high resolution models?

As kilometer scale modelling becomes the norm, convective parame-
terizations can be expected to become obsolete. However, processes
cloud microphysical processes represent an interesting challenge. Cloud
microphysical processes refer to the various physical mechanisms
that influence the formation, growth, and interaction of cloud droplets,
including raindrops and ice crystals, within clouds. Due to high droplet
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counts even at small grid sizes and our incomplete understanding of
processes that occur at the molecular level in clouds (Morrison et al.,
2020), it is unlikely that in the near future, we would have access to
atmospheric models at grid sizes of micrometers that would make
parameterization of cloud microphysics obsolete.

Figure 1.2: Variation in scales between the cloud processes and global cir-
culation models (taken from Clouds and Aerosols, Fifth Assess-
ment Report of the Intergovernmental Panel on Climate Change
Boucher et al., 2013)

1.2.1 Representation of Cloud Microphysical Processes: A Misadventure

Since the only way to represent droplet interactions is to parameterize
them, the parameterization schemes closer to the real physics offer a
more realistic estimate. These are the Lagrangian models that track
the evolution of cloud droplets in time and space. Lagrangian mod-
els developed as a means to study particle interactions in a more de-
tailed manner, particularly effects of aerosols on cloud droplet growth
(Flossmann, 1998; Flossmann et al., 1985). However, due to their high
computational overhead, their use remains limited to research and
development. One great advantage of Lagrangian schemes, lies in
their ability to represent the complete distribution of droplets as they
evolve in the simulation. This provides a complete picture and is as
close as we can get to droplet interactions in a real atmosphere.

The reduction in computational overhead, results in modifications
that simplify the representation at the cost of fidelity. One way to
achieve this is to simplify the size distribution of droplets into a fi-
nite number of bins (Clark, 1974). Unsurprisingly, higher number of
bins implies a better representation that comes at the cost of higher
computational load, while a reduction in the number of bins, implies
a coarser representation yet, faster computation.

The coarsification of the droplet size distribution (DSD) is most ev-
ident in the commonly used, bulk moment schemes (Kessler, 1969).
Here, the DSD is reduced to its zeroth and first moments, and subse-
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quently, only the evolution of these moments is simulated. The zeroth
moment represents the total droplet concentration while the first mo-
ment represents the water mass. A warm rain scenario, with only
clouds and rain present, is fully described by a density function f(x)

over droplets with mass x. This density function is used to define 4

bulk moments:

Lc =

∫x∗

0

xf(x)dx Nc =

∫x∗

0

f(x)dx

Lr =

∫∞
x∗

xf(x)dx Nr =

∫∞
x∗

f(x)dx (1)

Here x∗ = 2.6×10−10kg is the mass threshold dividing cloud and
rain droplets (Beheng & Doms, 1986). The zeroth moments, Nc and
Nr, are the number density of cloud and rain droplets respectively.
The first moments, Lc and Lr, represent the total cloud and rain water
mass.

The shift from detailed Lagrangian schemes to the bulk moment
schemes, imposes a few strong assumptions. One of the foremost
assumptions is the belief that throughout the simulation, the DSD
evolves in a unimodal fashion as for each hydrometeor, only one or
two moments are calculated. Another set of assumptions are imposed
by the introduction of artificial limits on the size of which droplets
are to be considered cloud or rain. These assumptions serve as the
basis for empirical equations that govern the evolution of the bulk
moments. Even in simplified scenarios of warm rain formation, bulk
moments schemes do not stand the scrutiny of their assumptions (Igel
et al., 2022). Additionally, they struggle to represent more complex mi-
crophysical scenarios with multiple hydrometeors such as snow and
graupel (Khain et al., 2015; Morrison et al., 2020). A concerning issue
is also the inability of the bulk schemes to converge to more accu-
rate results with the increase in the model resolution. This imposes
a limitation to the representation of cloud microphysics even in high
resolution models.

1.3 bridging the gap through machine learning

While it remains challenging to directly implement Lagrangian schemes
in operational weather prediction models, the Lagrangian schemes
are often used within smaller domains to study various aspects of
cloud microphysical processes. They are often used within LES mod-
els to study the effect of aerosols on droplet growth (Andrejczuk et
al., 2010; Grabowski et al., 2017), including on ice particles (Sölch
& Kärcher, 2010). They have also been used to study condensational
growth (Sardina et al., 2017) and effects of turbulent mixing on droplet
growth (Abade et al., 2018). The usage of Lagrangian models is sup-
ported by studies proving their agreement with observations (Arabas
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& Shima, 2012) as well as with the analytical solutions for estimating
the DSDs (Unterstrasser et al., 2017).

Perhaps, more relevant to our purpose, standalone models for La-
grangian cloud microphysics exist (Bartman et al., 2022; Brdar & Seifert,
2018; Naumann & Seifert, 2015). Since the schemes themselves are
highly optimized, they can be used as a toy model to generate large
amounts of data. This is a fertile ground for the data-hungry machine
learning (ML) models that rely on huge amounts of data for super-
vised training.

1.3.1 The Lagrangian Model: Superdroplet Method

The stochastic Lagrangian scheme developed in Shima et al., 2009,
called the superdroplet scheme, is considered one of the best matches
to the DSDs obtained from the stochastic collection equation (Unter-
strasser et al., 2017). It introduces the idea of a superdroplet which
represents many individual droplets of similar size. This assumption
reduces computational load of tracking each individual droplet. The
scheme is also computationally efficient due to the sampling algo-
rithm used for calculating collision efficiency. However, they are never
as computationally efficient as the traditionally used bulk moment
schemes, which limits their use in operational weather and climate
models.

1.3.2 Learning droplet representations

While it is possible to learn the entire evolution of DSDs using ma-
chine learning algorithms, it would not be possible to directly test
them within an operational numerical weather prediction(NWP) model.
Since the representation within NWPs allows only for tracking the
number concentrations and total mass, replacing this with a distribu-
tion would require the complete overhaul of the cloud microphysics
routines. This is a work in progress as many research groups work to-
wards coupling the superdroplet scheme into a complete atmospheric
model. Specifically, our target atmospheric model ICON (ICOsahe-
dral Nonhydrostatic), uses the bulk moment scheme based on Seifert
and Beheng, 2006, and usually only allows only a mass moment based
representation for cloud microphysics.

Instead of directing our focus towards rewriting entire routines,
we focus on improving the currently used bulk moment schemes.
Normally, the total mass and number concentration are calculated
from an assumed DSD at the beginning of the simulation. With each
timestep, these bulk moments evolve due to various processes such
as collisions, condensation, nucleation and more. Using the thermo-
dynamic variables such as temperature and pressure, as well the
bulk moments themselves, the rate of these processes are determined.
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These process rates are then used to update the bulk moments with
each timestep. Our approach differs in that we never calculate the
intermediate process rates. Instead, we learn the characteristic evolu-
tion of bulk moments based on the superdroplet simulations.

This approach has two advantages. Firstly, since we are learning
from a more accurate and realistic approach, we have the advantage
of estimating the changes more accurately. Secondly, we forego the
calculation of intermediate process rates which are a by-product of
the bulk moment scheme’s assumptions and directly calculate bulk
moments in the future from the bulk moments in the present.

1.4 the research questions

The update to the bulk moments comprises of many different individ-
ual processes whose effects are accumulated and then used to deter-
mine the bulk moment tendencies at every timestep. In ICON, these
processes are arranged in individual submodules, each submodule
isolating the effect of one process. Since our ultimate goal is to couple
the ML emulator to ICON, we proceed by creating an ML emulator
for the collision-coalescence process.

We start by individually picking and choosing the appropriate mod-
elling scenario in superdroplet setting, generating training data for a
variety of distributions, training the ML emulator, testing its perfor-
mance on modeling scenarios not encountered during training and
then, coupling the ML emulator with ICON. The specific research
questions that this thesis tries to address are:

• Can we improve the representation of warm rain collisions in
the bulk moment scheme by learning ML-based representations
from the more accurate, superdroplet simulations?

• Can we impose the relevant physical laws on the ML emulator
such that it predicts accurate and plausible bulk moments?

• How challenging is the task of coupling an ML emulator to
ICON? Once coupled, what changes are observed as we move
from the default bulk moment scheme to an ML emulator for
the superdroplet scheme?

In in Study A, I developed an ML-based parameterization for the
collision-coalescence process, SuperdropNet, using superdroplet sim-
ulations. SuperdropNet is evaluated against the bulk moment scheme
in its ability to match closely the evolution of bulk moments, as
obtained form the superdroplet simulations. To accomplish this, I
introduced physical constraints (Yuval et al., 2021), specialized ob-
jective functions and incorporated self-iteration through recurrence
(Brenowitz & Bretherton, 2018) to capture the temporal structure of
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the problem. SuperdropNet conserves mass, does not produce infea-
sible outputs such as negative moments and remains stable for all
sets of initial conditions used in the study.

One of the pitfalls of machine learning parameterizations lies in
their poor performance when coupled to atmospheric dynamics (Brenowitz
& Bretherton, 2018; Gentine et al., 2018; O’Gorman & Dwyer, 2018).
These are often caused by ML emulators that violate physical laws,
thereby destabilizing the simulation. Hence, to test SuperdropNet’s
stability in the presence of other processes, it is coupled to a simple
warm bubble scenario in ICON in Study B. This required the develop-
ment of an effective bridge between the two interfaces to enable cou-
pling. We developed a C-based interface for coupling Python based
SuperdropNet to FORTRAN based ICON. Performance of Superdrop-
Net was evaluated based on accurate evolution of the bulk moments,
precipitation and heat fluxes, while using bulk moment-based ICON
simulations as comparison.

I proceed with highlighting some of the applications of ML in Earth
Science and introduce important terminology unique to the field in
chapter 2. In chapters 3 and 4, I provide detailed explanations of the
studies mentioned above. In chapter 5, I summarize the answers to
all the research questions and discuss the implications of this work
and the way forward.





2
M A C H I N E L E A R N I N G A N D E A RT H S Y S T E M
S C I E N C E

In recent years, the abundance of data in Earth Science, coupled with
unprecedented improvements in machine learning methods have led
to the creation of an altogether new field, i.e, application of machine
learning in Earth Science. Various problems in Earth Science have
benefited from data-driven solutions and here I present some of the
well-researched areas:

• Data-driven Weather Prediction: Completely data-driven weather
prediction models, such as AURORA (Bodnar et al., 2024) and
AtmoRep (Lessig et al., 2023), have been developed. These mod-
els are trained on standard climate datasets such as ERA5 and
are able to produce accurate predictions for a time window of
5-10 days. These datasets are often used to initialize weather
and climate models but the inference time in data-driven mod-
els is significantly reduced, in comparison to running a weather
or climate simulation. It is an active area of research, especially
as researchers try to stabilize these models to obtain long term
predictions.

• Data Assimilation: Corrective methods such as data assimila-
tion methods can benefit from the statistical nature of machine
learning (Bonavita and Laloyaux, 2020; Farchi et al., 2021). The
idea of using observations to course correct models is extremely
relevant for operational weather prediction.

• Physical Parameterizations: Machine learning can be used in
a more process oriented way such that instead of learning the
input-to-output projection for a weather prediction model, it
is instead used for improving the representation of target pro-
cesses.

For the purpose of improving the representation of sub-grid scale
processes in Earth Science, many studies have used high-resolution
simulations for training machine learning models. This approach has
been applied to convection (Brenowitz & Bretherton, 2018; Gentine
et al., 2018; O’Gorman & Dwyer, 2018; Rasp et al., 2018; Yuval et
al., 2021), cloud cover(Grundner et al., 2022), radiative transfer (Be-
lochitski & Krasnopolsky, 2021a; Veerman et al., 2021), gravity wave
drag (Chantry et al., 2021) and gravity wave simulation (Dong et al.,
2023), atmospheric chemistry (Kelp et al., 2020, 2022) and turbulence
(Leufen & Schädler, 2019). Several studies have also focused on de-
veloping ML-based proxies for computationally expensive bin cloud

11



12 machine learning and earth system science

microphysics scheme (Gettelman et al., 2021) as well as similar to our
chosen problem, superdroplet scheme (Seifert & Rasp, 2020).

Generally, the ML models developed in studies learn the high-
resolution tendencies of the target variables, on the assumption that
a high-resolution simulation provides a more accurate picture of the
evolution of the process. These trained ML models are then used
within a low-resolution climate or weather simulation to mimic the
behaviour of a high-resolution simulation, without the additional
computational overhead. Such an approach is insufficient in the case
of cloud microphysics as the modeling scenario considered to be the
more accurate, is not just a high-resolution version of the coarser
model, but rather a completely different modeling approach of the
Lagrangian models.

2.1 terminology as used in the field

In this section I introduce the relevant terminology as has been used
in the thesis as well as the research articles in the appendix.

2.1.1 Terminology in Machine Learning

Machine learning models are mathematical and statistical tools that al-
low machines to learn patterns from data and make predictions or
decisions without being explicitly programmed to perform specific
tasks.

In this thesis, The term neural network is used interchangeably with
machine learning model. Neural networks have several advantages over
other ML methods:

• Handling Spatio-Temporal Data: Neural networks can process
large amounts of structural data which is extremely useful when
using weather or climate data in gridded formats. Traditional
ML methods like decision trees might struggle to handle the
complexity and high dimensionality of such data without ex-
tensive manual tuning.

• Learning non-linear Dependencies: Other ML methods like
Support Vector Machines (SVMs) or k-Nearest Neighbors (k-
NN) may perform well on simpler, more linear problems, but
they struggle with more complex data. A neural network is
made up of multiple layers of interconnected neurons. The out-
puts from each layer of neurons is also processed through non-
linear functions called activation functions. This equips them to
decipher abtract patterns in data.

• Scalability with Large Datasets: Neural networks are particu-
larly effective when trained on large datasets. As the amount
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of data increases, neural networks typically improve in perfor-
mance, while other methods might plateau or even degrade.

2.1.1.1 The Learning Process

A neural network is composed of layers of interconnected nodes,
where each connection between neurons has an associated weight.
Mathematically, it is just a matrix which when processed with tinputs
arrives at the approximated output. During training, the network is
presented with a set of known data pairs: inputs (which could be
numerical data, images, etc.) and corresponding desired outputs.

• Forward Propagation: The input data is fed through the network
layer by layer. Each neuron processes the input it receives by
applying a weighted sum and an activation function, ultimately
producing an output. This output is the network’s prediction.

• Loss Calculation: The prediction is then compared to the actual
desired output using a loss function, which quantifies how far
off the prediction is from the true value. Common loss functions
include mean squared error or mean absolute error for regres-
sion tasks.

• Backpropagation: To minimize this error, the network undergoes
a process called backpropagation, where the error is propagated
back through the network. This involves computing the gradi-
ent of the loss function with respect to each weight in the net-
work using the chain rule from calculus

• Weight Update: Once the gradients are computed, an optimiza-
tion algorithm (often gradient descent) is used to adjust the
weights in the direction that reduces the error. This step is it-
eratively repeated over many examples in the training data set,
gradually improving the network’s accuracy.

• Convergence: The training continues over multiple iterations (called
epochs) until the network’s performance stabilizes, ideally con-
verging to a set of weights that minimizes the error across the
entire training data set.

After the neural network has been trained for a particular task,
it can then be used for inference. During inference, the ability of the
trained network is put to test as now it must look at the input and
produce the output without access to the correct answer. Throughout
this thesis, we have used the terms inference and offline testing inter-
changeably.
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2.1.2 Specific to ML applications in earth science

• A rollout refers to the process of using a trained ML model to
predict the future evolution of a physical system over time. This
involves the iterative process of generating a sequence of pre-
dictions by using the system state at a time step as the input for
the next, allowing the model to simulate the evolution of the
solution over time in an autoregressive manner.

• Offline testing refers to testing the ML parameterization in an
isolated state, without being coupled to an atmospheric model.
This usually implies a lack of dynamics and the effects of other
physical parameterizations.

• Online testing refers to testing the ML parameterization while
being coupled to the atmospheric model, allowing the param-
eterization to encounter the effects of dynamics. The model-
ing scenario usually reflects the data on which the ML model
was trained. Due to the difference in codebases (ML model
in Python and atmospheric models in FROTRAN mostly), on-
line testing requires the development of special coupling mech-
anisms that provide flexibility without sacrificing speed of data
transfer.



3
S U P E R D R O P N E T: L E A R N I N G D R O P L E T
C O L L I S I O N S

Collision-coalescence amongst droplets is one the most fundamen-
tal processes that contributes to breaking up and formation of new
droplets. The treatment of collisions within a parameterization scheme
is dependent upon the sophistication of the scheme itself. In Lagrangian
schemes, including the superdroplet method, droplets are sampled
from an assumed distribution (more detail in Section 3.1) and proba-
bilities of collision are calculated.

However, the bulk moment schemes usually treat collisions in a
more artificial manner. Under a warm rain scenario (where only rain
and cloud droplets are present), collisions amongst rain and cloud
droplets are often broken down into three individual processes, namely
autoconversion, accretion and self-collection. Self collection of cloud droplets
refers to the interactions where cloud droplets collide with other
cloud droplets, forming enlarged droplets which are not large enough
to be considered raindrops. This is an important phenomena that
leads to that precedes any rain formation. Next, the process of au-
toconversion predominates as the cloud droplets collide and coalesce
to form raindrops. Over the course of the simulation, accretion be-
comes dominant as the concentration of raindrops exceeds that of the
cloud droplets. Accretion refers to the process where existing rain-
drops collect additional cloud droplets as they fall, leading to further
growth of raindrops. As all cloud droplets are depleted, collisions
between raindrops leading to the formation of larger raindrops pre-
dominate and is referred to as the self-collection of raindrops. Often,
x∗ = 2.6×10−10kg is the mass threshold dividing cloud and rain and
droplets (Beheng & Doms, 1986). This approach of defining droplet in-
teractions somewhat simplifies the collisions and provides target pro-
cess rates to calculate. The bulk moment scheme used within ICON,
uses empirical equations to calculate the rates of these processes as
defined in Seifert and Beheng, 2001.

In this study I explore the possibility of bridging the gap between
the crude bulk moment representation and more realistic superdroplet
representations using machine learning. While preserving the bulk
moment representation, is it possible to create an ML emulator that
evolves the bulk moments just as they would in a superdroplet simu-
lation?

15
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3.1 the quest to find the best match

With the prevalence of Doppler radars since the 1940s, there had been
a significant interest in observing the size of various hydrometeors.
Raindrops in particular occur in a huge variety. It was found that
an exponential size distribution is generally a good match (Marshall
& Palmer, 1948). However, a more precise representation should be
more general so that a wider range of droplets sizes can be taken
into account and in Willis, 1984, it was shown, using droplets size
measurements from spectrometers that there exist smaller droplets
that can often be left out when using an exponential distribution and
suggested instead the use of a gamma distributions. These smaller
droplets, over time grow in size and hence, need to be accounted
for. Similar results were observed in Ulbrich, 1983 and Ferrier, 1994,
and it was noted that droplets less than 1mm in diameter were of-
ten observed in low clouds. For the purpose of this study, in line
with the current scientific consensus, we have used a form of gener-
alized gamma distribution of cloud/rain droplet size to initialize the
superdroplet simulations. This form of DSD is derived in Seifert and
Beheng, 2006.

3.2 the superdroplet setup

To simplify the representation of droplet swarms, Shima et al., 2009

proposed the superdroplet method. This method reduces the individ-
ual droplets in a swarm to many "superdroplets". A superdroplet is
defined as a representative droplet that informs about various indi-
vidual droplets that are similar in size and close together in space.
Multiplicity defines the total number of individual droplets repre-
sented by a single superdroplet. At every point of the simulation, the
evolution of superdroplets is tracked instead of individual droplets.
A Monte-Carlo algorithm is used to sample droplet pairs and then
probability of collision is determined. To isolate the effect of collisions
and learn an emulator for it, we only simulate collisions in a zero
dimensional control volume of 2500 m3 with multiplicity of 25600.
We chose a box-model setup because collisions in ICON are parame-
terized such that they depend only upon the droplet concentrations
within the grid box.

We assume a warm rain scenario. Such a setup provides an ideal
setting for testing the evolution of collision-coalescence of droplets
by reducing the amount of interactions that can take place: cloud and
rain collisions, rain-rain and cloud-cloud collisions.
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3.3 targetting the bulk moments

In Seifert and Rasp, 2020 the authors used the superdroplet simula-
tions to train an ML emulator to predict the process rates(autoconversion,
accretion and self-collection) corresponding to collisions. In this ap-
proach we go a step further and completely eliminate the need for
calculating the process rates. Our bulk moments evolve with time
as if they were calculated at every timestep from a corresponding
droplet distribution. This simple approach also allows our machine
learning model to be easily coupled to a suitable atmospheric model,
which in our case is ICON.

Since we choose to train neural networks to directly estimate the
bulk moment tendencies (yt+1 − yt)/∆t (assuming explicit Eulerian
integration, as used in ICON for warm rain collisions), so that the
learned time stepping function is

M(yt) = yt + hθ(yt,ϕ)∆t ≈ yt+1 (2)

where,

yt = [Lc(t), Lr(t), Nc(t), Nr(t)] (3)

θ are trainable parameters of the network, hθ its input-output func-
tion and ϕ are additional inputs.

3.4 stochastic simulations , deterministic outputs

The superdroplet simulations are stochastic in nature. The stochastic-
ity arises from the process of sampling of droplet pairs for determin-
ing the probability of collisions. In our superdroplet model where
other processes such as evaporation and condensation do not exist,
the stochasticity in simulations is especially exaggerated. The absence
of evaporation, for instance, can amplify random fluctuations in the
simulation. Since there’s no mechanism to counterbalance the ran-
dom growth events, the outcome of the simulation becomes more
sensitive to initial conditions and random coalescence events.From
the perspective of our machine learning model, with deterministic
targets, learning from stochastic simulations posses a challenge. It
mean that give a yt as an input, there can be multiple possible values
of yt+1.

We carry out multiple experiments to control the stochasticity of
the simulations by lowering multiplicity and increasing the control
volume. In Unterstrasser et al., 2017, the authors found that the su-
perdroplet method yields the best matches to the stochastic collec-
tion equation’s analytical solutions when for every set of initial DSD,
the outcome of 50 superdroplet simulations are averaged. We instead
used the average of 100 superdroplet simulations for training Super-
dropNet.
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3.5 developing a physics-informed machine learning em-
ulator

In the sections below, I highlight some special features of Superdrop-
Net that enable it to emulate collisions from a superdroplet simula-
tion in a physically-consistent manner.

3.5.1 Enforcing Conservation Laws

There are various ways in which the outputs of the neural network
can be forced to be within a certain range. In Beucler et al., 2021, the
authors explore different approaches for enforcing the conservation
of energy and momentum while developing a convective parameter-
ization. They claim that only predicting the "independent" variables
from the neural network and using them to determine other "depen-
dent" variables yielded the best results, instead of learning to predict
all of the variables together. The small deviations in the neural net-
work output can violate conservation laws, which might be extremely
detrimental to maintaining stability over long time integration win-
dows. We used a similar approach where due to the presence of only
cloud and rain droplets, we only predict the change in the cloud wa-
ter mass and then calculate the rain water mass from the difference in
the total water mass. This ensures that SuperdropNet never violates
conservation of mass.

3.5.2 Autoregressive predictions

A network trained to predict the future state of the system, at time t+

1, from the current state at t can quickly run into out-of-distribution
values during inference. This is because the network never predicts
the system state at t+ 1 with 100% accuracy. For a long term rollout,
the model’s output at t + 1 is then used to predict the state of the
system at the next timestep. Over time, this can deviate the trajec-
tory of the system thereby destabilizing it and generating unrealistic
states. For ensuring long term stability, which often is a pre-requisite
for stable online coupling, we introduce autoregressive training, also
known as multi-step training (Brenowitz and Bretherton, 2018; Kelp
et al., 2020, 2022; Um et al., 2020). In autoregressive training, the out-
put of the network is fed into it iteratively for a set number of steps ,k,
to output the next set of bulk moments. This training mode mimics
the long rollouts that the network needs to output during inference.
SuperdropNet is trained to iteratively predict 25 timesteps into the
future. The training loss is given by:

Lk =

k∑
j=1

λj

∥∥∥yt+j −M(j)(yt)
∥∥∥ (4)
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The loss is calculated over the predicted moments through iterative
application of M and the moments derived from the superdroplet sim-
ulations at the same time step. The scalar weights λj emphasize dif-
ferent prediction horizons while training. Initial experiments showed
best results when setting λk = 1 and all other λj = 0. We use the
pushforward trick mentioned in Brandstetter et al., 2022 for stabiliz-
ing the training process by only calculating the loss based on the
k−th timestep. We find that autoregressive training significantly con-
tributes to stable long term predictions and increasing the value of k
during training massively improves the quality of predictions.

3.5.3 Curriculum Learning

The idea of curriculum learning is based on progressively increasing
difficulty, whether through the training data or the training method,
for a machine learning model (Bengio et al., 2009; Ionescu et al., 2016).
This allows the network to learn the easier tasks first, before embark-
ing on more challenging ones. In learning dynamical systems, this
idea is often leveraged to stabilize autoregressive learning, where pre-
dicting for small number of time steps ahead can be considered an
easy task while predicting multiple timesteps ahead can be catego-
rized as hard. During training, we found that directly learning to pre-
dict 25 steps ahead is very challenging for a neural network as the
loss blow up very quickly (even at 8 steps ahead), complicating the
learning process. To remedy this, we first train a neural network to
first predict 1 step ahead, with k = 1. After training ceases and the
model has converged with very low errors for 1-step ahead predic-
tions, we use this model’s weights to jumpstart training for a new
neural network for which k = 2. This process is continued until we
reach k = 25, as at this point, the network does not learn further.

Hence, SuperdropNet is a collection of 25 individually trained neu-
ral networks. Not only does this stabilize training loss, but also makes
intuitive sense to inherit weights from a network that already mas-
tered an easier task.

3.6 did superdropnet improve upon the bulk moment scheme?

We tested SuperdropNet’s long and short term performace against
the bulk moment scheme(SB2001) as well as the ML model developed
in Seifert and Rasp, 2020 (PRNet) which predicts the process rates as
described in the beginning of this section.

Instead of looking at individual simulations, we use a metric t10 for
quantifying the performance of SuperdropNet and other models. The
quantity t10 for cloud water refers to the time in the simulation where
10% of either the cloud water has converted to rain water. The t10 for
cloud number concentration refers to the time when cloud number
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Figure 3.3: Mean Absolute Errors in the estimation of t10 for cloud water
content(Lc) and cloud number concentration(Nc). SB2001 (pink)
refers to the bulk momnet scheme from Seifert and Beheng, 2001,
PRNet refers to the ML model developed in Seifert and Rasp,
2020. Taken from Study A.

concentration has decreased by 10% from its value at the beginning
of the simulation.

A model that provides accurate estimates for t10 on average for
all simulations, is a closer match to the superdroplet simulations. t10
also provides an insight into models which may suffer from delayed
or rapid conversion of cloud into rain, compared to the superdroplet
simulations. I summarize the results below:

• On average, SuperdropNet demonstrates a superior capability
in estimating number concentrations compared to the bulk mo-
ment scheme (Fig. 3.3). This disparity highlights a fundamen-
tal issue with the bulk moment scheme: it is tuned primarily to
produce accurate estimates of water mass, but it falls short in
accurately estimating number concentrations

• SuperdropNet (blue solid line in Fig. 3.4 and 3.5) is a closer
match to the superdroplet simulations (black line in Fig. 3.4 and
3.5) in comparison to the previous ML emulator developed in
(Seifert & Rasp, 2020) (yellow dashed line in 3.4 and 3.5).

• Figures 3.4 and 3.5 also highlight the advantage of autoregres-
sive training as SuperdropNet (blue solid) is a closer match to
the superdroplet simulations (black) than the 1 step neural net-
work(blue dashed).

• Finally, we found that SuperedropNet’s performance was closely
related to the initial conditions of the distribution itself. Simu-
lations with low water content (Fig. 3.5) turned out to be more
challenging. These were also the simulations benefiting most
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from autoregressive training. For slow evolving, low water sim-
ulations, SuperdropNet must learn extremely small tendencies
over time. Even small errors in prediction, derails such simu-
lations very quickly. Encouragingly, SuperdropNet excelled at
simulations with sufficient water that evolve relatively faster.
These simulations, with a run time of approximately 120 min-
utes (Fig. 3.4), correspond to warm rain cumulus in an atmo-
spheric model.

Usage of superdroplet simulations allows for the exploration of
conditions where only a very small amount of total cloud water con-
verts to rain over extended periods, sometimes upwards of 12 hours.
Such conditions are unlikely in real-world scenarios, as evaporation
would typically prevent rain formation in these water-scarce environ-
ments. It is in these unlikely and challenging scenarios that Super-
dropNet performs the worst, struggling to maintain accuracy over
long periods with minimal water content. With this in mind, we next
coupled SuperdropNet to a running simulation in ICON to evaluate
its stability and to finally answer the question: What changes when
SuperdropNet predicts warm rain collisions in ICON?



22 superdropnet : learning droplet collisions

0 100 200 300
0.0

0.4

0.8

1.2

1.6

2.0
L

c
 (

g
/m

3
)

Superdroplet Simulations
Bulk Moments
Neural Network: 1 step
PRNet
SuperdropNet

0 100 200 300

0

2

4

6

N
c
 (

p
e
r 

m
3
)

1e8

0 100 200 300

Timestep

0.0

0.4

0.8

1.2

1.6

2.0

L
r 
(g

/m
3
)

0 100 200 300

Timestep

0.0

0.5

1.0

1.5

2.0
N

r 
(p

e
r 

m
3
)

1e5

Figure 3.4: Superdroplet-derived bulk moments (black lines) compared to
rollouts from a neural network trained to predict 1 step into the
future (red-dashed lines), SuperdropNet (blue solid line), PRNet
(yellow-dashed lines) and from a classical bulk moment scheme
(blue-dotted lines). Results are shown for a simulation with L0 =

2 g/m3, r0 = 9µm, ν = 0. Shaded region indicates +/- 1 standard
deviation over 100 superdroplet simulations. A single time step
corresponds to 20 s of simulation time.Taken from Study A
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Figure 3.5: Superdroplet-derived bulk moments (black lines) compared to
rollouts from a neural network trained to predict 1 step into
the future (red-dashed lines), SuperdropNet (blue solid line),
PRNet (yellow-dashed lines) and from a classical bulk moment
scheme (blue-dotted lines). Results are shown for a simulation
with L0 = 0.2 g/m3, r0 = 9µm, ν = 2. Shaded region indicates
+/- 1 standard deviation over 100 superdroplet simulations. A
single time step corresponds to 20 s of simulation time. Taken
from Study A
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C O U P L I N G S U P E R D R O P N E T W I T H I C O N

4.1 the need for online coupling

The ultimate test for any ML parameterization(or for that matter, any
parameterization scheme) is its ability to perform well when coupled
to a running climate or weather model. It is standard procedure in
most fields of earth science to develop parameterization schemes in
isolated or simplified scenarios and then couple them to the target
numerical model.

Development of any parameterization scheme is an iterative pro-
cess. In its very fundamental form, this iterative process can be bro-
ken down into the following steps:

1. Isolate the target process such that it can be modelled outside
of the outer model

2. Use mathematical models and/or observations for developing
a new representation of the target process

3. Replace the old representation of the target process with this
new representation in the outer model in a very rudimentary
setting. This is done to see if coupling with simplest dynamics
results in any inconsistencies before the added computational
burden and complexity of a full NWP or climate run

4. If the previous step is a success, further coupling to an outer
model with increased complexity

5. If Step 3 is not successful then go back to step 2, until step 3

results in a positive outcome

For the creation of a robust parameterization scheme, coupling to
an outer model during the developmental stage is imperative. We can
be drawn to believe that if a new parameterization scheme is theoret-
ically and mathematically more descriptive than the older version, it
is naturally going to result in better accuracy for the outer model
as well. However, this is not always the case. The new parameteriza-
tion needs to cooperate with various other processes that have been
parameterized. Adding complexity to the outer model progressively
during testing ensures that the point of failure can be easily detected.

4.2 coupling ml-based parameterizations

Since machine learning models are developed in frameworks written
in Python, coupling to the outer model can be technically challenging

25
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and often requires a bridge. However, success in offline performance
does not always translate into good online performance (Brenowitz et
al., 2020a; Pal et al., 2019; Rasp et al., 2018; Yuval et al., 2021). There
exist various methods, with varying degrees of sophistication that can
be used for coupling. However we found them to be lacking due to
the following reasons:

• The earliest studies have used a rather crude approach of train-
ing an ML model and then writing specific routines of matrix
multiplication in FORTRAN for the learned set of weights and
biases. Apart from being prone to errors, this approach is time
consuming, which prevents the ability to immediately couple
a different ML models as for every new ML model, a separate
multiplication routine would be needed.

• There are various bridges that are package specific, in that they
can couple a specific ML framework with FORTRAN (Elafrou
et al., 2023a; Ott et al., 2020). These are widely used for their
convenience and speed but have limited capabilities as they do
not allow for using other aspects of Python and sometimes, only
allow the coupling of a a small variety of standard ML architec-
tures.

4.2.1 The bridges

Ultimately, the choice of a bridge is dependent the target atmospheric
model as well as the available hardware. Due to ICON’s unique icosa-
hedron grids, certain parameterizations might be challenging to cou-
ple. Fortunately for us, warm rain collisions in ICON work on the
level of individual grids (Fig. 4.6), which also analogous to the 0-D
training data for SuperdropNet. From our experience, the following
bridges turned out the the most suitable for our application:

• We create an external Python library and used the C foreign
function interface (CFFI) (Rigo and Fijalkowski, 2018) for com-
munication between the Python library and ICON. There is in-
built functionality in ICON that allows for addition of external
libraries. We found this method to be extremely flexible as we
had complete control over the Python codebase. However, dur-
ing development, it required writing specific modules. Never-
theless, it also turned out to be the fastest means of coupling,
out of the ones we tested.

• Another noteworthy candidate is the ironically named Yet-another-
Coupler, or YAC (Hanke et al., 2023, 2016). YAC is often used
within ICON for coupling different components, and also al-
lows for calls to external Python libraries. While YAC turned
out to be reliable and flexible, it increased runtime by a factor



4.3 the warm bubble test case 27

of 2. Unlike CFFI, YAC runs two different jobs (one for Python
and one for ICON), which adds to the runtime.

Figure 4.6: ICON flow control, where we replace the warm rain collisions
with an external call to SuperdropNet(taken from Study B)

4.3 the warm bubble test case

A warm bubble scenario refers to an experimental setup where the
temperature is high enough to prevent formation of any snow or ice
particles (hence, the term warm) and a single convective cloud (hence,
the term bubble) is simulated. Especially for testing warm rain param-
eterization schemes, a warm rain bubble is a natural choice. The sim-
plicity of a single convective cloud enables coupling to the dynamics
while allowing detailed monitoring of prognostics variables such as
precipitation, heat fluxes and wind velocities. Additionally, we carry
out experiments in a cold bubble as well as a mixed-phase scenario.

4.4 lessons from coupling

In the warm bubble test case, we test SuperdropNet’s performance
against the default two-moment bulk scheme. One key piece of in-
formation to note is that a direct comparison against a superdorplet
scheme coupled with ICON is not possible, as ICON does not allow
for DSD-based representations. Hence, it is impossible to gauge Su-
perdropNet’s deviation from a superdroplet scheme.

Coupling SuperdropNet, even with CFFI, increases runtime when
compared against an ICON simulation with the default scheme. This
is to be expected as adding an external library requires an interchange
of large data arrays. SuperdropNet can never be faster than the two-
moment bulk scheme but is always faster than superdroplet simula-
tions from McSnow. Unfortunately, this too cannot be yet tested in an
online setting.
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Figure 4.7: Grid-averaged quantities for the bulk moment scheme and Su-
perdropNet under (a) warm bubble scenario, (b) cold bubble sce-
nario and (c) mixed phases scenario. Taken from Study B

We look at various prognostic variables such as precipitation flux,
heat fluxes and profiles of specific humidity and rain droplet mass.
Here are some the key findings:

• First of all, SuperdropNet remains stable throughout the length
of the simulation and never produces physically implausible
results such as excessive rain or unnatural looking profiles of
humidity and rain water mass. For example, precipitation be-
falls in an expected manner such that initially, there is none and
as the simulation progresses, it reaches a peak and then slowly
rescinds without any discontinuities (Fig. 4.7-(a)).

• When compared against the two-moment bulk scheme, the on-
set of precipitation is delayed and it reaches a slightly higher
peak.

• Overall the bulk moment scheme exhibits a higher evaporative
flux near the surface, stronger winds and correspondingly, big-
ger raindrops(Fig. 4.8) near the surface. All of these findings
are coherent as evaporative flux is proportional to the amount
of raindrops and stronger winds point to increased exchange
of energy. We also find that the vertical profiles of rain droplet
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Figure 4.8: Vertical profile of the rain droplet mass, calculated as the ratio
of the specific rain content and the number concentration of rain-
drops at different times for the bulk moment scheme and for
SuperdropNet.Taken from Study B

mass obtained via SuperdropNet are smoother while those from
the bulk moment scheme are more ragged. We infer from this
that SuperdropNet smoothes out collisions in such a way that we
can follow the descent of the rain water through the simulation
(at the end of the simulation, most of the rainwater settles at the
bottom and none is left at the top). On the other hand, the bulk
scheme leaves large amounts of raindrops all over the column.

• In the case of cold bubble scenario (very low ambient tempera-
ture, such that clouds only convert to snow) we find that cou-
pling to SuperdropNet makes no difference due the absence of
cloud-to-rain conversion (Fig. 4.7-(b)). This served as a sanity
check for the coupling mechanism and proved that Superdrop-
Net does not interfere with an ICON simulation unless the mod-
eling scenario activates the formation of raindrops.

• A mixed-phase modeling scenario is perhaps the closest to a
real atmospheric simulation where heterogeneity in hydromete-
ors is to be expected. Coupling with SuperdropNet delays the
onset of rain more than in the case of a warm bubble scenario
(Fig. 4.7-(a)), but contrary to the increased precipitation flux in
a warm bubble, here it is significantly suppressed (Fig. 4.7-(c)).
Warm rain collisions are simulated before processes related to
ice and graupel formation. The suppression of rain formation
leaves excess water mass to be processed by the subsequent sub-
modules, resulting in an excess of snow and graupel.

SuperdropNet’s stability during online testing is an encouraging
result. It is possible to couple SuperdropNet to a complete NWP run
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in ICON, however, it would be computationally expensive due to the
increased runtime. As the efforts to run ICON on GPUs continue, I
believe that it would allow for faster coupling to ML-based parame-
terizations, which are trained to be run on GPUs. This would reduce
the inference time spent within the Python module, making speed of
data transfer the only problem to solve.



5
S U M M A RY A N D O U T L O O K

5.1 results

Can we improve the representation of warm rain collisions in the bulk mo-
ment scheme by learning ML-based representations from the more accurate,
superdroplet simulations?

In Study A, I found that SuperdropNet could emulate the evolution
of the superdroplet derived bulk moments better than the bulk mo-
ment scheme for rapidly evolving simulations (simulations with a
high initial water content). However, for slow evolving simulations
(with low initial water content), the bulk moment scheme was ex-
tremely hard to defeat. These results point to the nature of the prob-
lem, whereby in a slow evolving system, the ML model has to learn
extremely small tendencies. This can be very challenging for the net-
work as any noticeable deviation from the predictions can severely
derail the simulation, as the magnitude of error can very easily sur-
pass the value itself. Since these studies consider only a warm rain
scenario, for realistic cases involving simulations where cloud-to-rain
conversion occurs within 2 hours, the ML emulators provide better
estimates of the bulk moments that the bulk moment scheme.

Can we impose the relevant physical laws on the ML emulator such that it
predicts accurate and plausible bulk moments?

Unlike numerical solutions based on physical laws, machine learn-
ing methods are not inherently designed to follow the law of physics.
Many studies have pointed out that using ML-based emulators can
often violate laws of conservation of mass, energy and momentum
(Rasp et al., 2018; Yuval et al., 2021). Therefore, to create reliable em-
ulators, it is necessary to explicitly enforce appropriate restrictions
that ensure that the ML model does not violate the laws of physics.
The emulator developed in Study A conserves the total mass and re-
mains stable for the duration of the simulations. These attributes are
essential to a successful online coupling of ML-based emulators.
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How challenging is the task of coupling an ML emulator to ICON? Once
coupled, what changes are observed as we move from the default bulk moment
scheme to an ML emulator for the superdroplet scheme?

In Study B, different bridges for ICON and SuperdropNet were tested
(more generally for FORTRAN and Python). It was found that there
are multiple ways of bridging the two codebases, depending upon
one’s specific requirements such as speed, ease of use and flexibility.
We found that a C-based bridge worked the best for this application
as it provided us with flexibility, which was crucial for immediate
testing of different emulators. Ultimately, SuperdropNet remained
stable in a coupled warm bubble scenario while generating physi-
cally plausible results. It was interesting to observe the variation in
the warm bubble simulation when the collision-coalescence with the
default bulk moment scheme is replaced with SuperdropNet. Over-
all, a higher precipitation is observed along with a delay in the onset
of precipitation, a comparative decrease in the evaporative flux and
smoother vertical profiles of moisture.

While it would have been to my great satisfaction to conclude that
coupling with SuperdropNet provides more accurate results, the ab-
sence of a suitable baseline makes this impossible. An accurate ground
truth could only be established by using a superdroplet-based param-
eterization in ICON, which remains impossible to implement. Many
research groups are actively working to accomplish this. Only if cou-
pling with SuperdropNet yielded results closer to the ground truth,
compared to the bulk moment scheme (i.e., if the results from online
coupling resembled Fig. 3.4), could I assert that SuperdropNet offers
more accurate results in an online setting. I also found no conclusive
evidence to suggest that a superdroplet-based representation consis-
tently leads to higher rain formation in warm rain scenarios, similar
to my findings in Study B. Therefore, I recommend interpreting the
results of this study cautiously until the ground truth can be estab-
lished.

5.2 outlook

An obvious future direction is to target other microphysical processes
that are poorly represented in the bulk schemes. Even within the
warm rain scenario, representation of processes such as sedimenta-
tion, for example, can cause instability and introduce shock waves
(Wacker, 2000; Wacker & Seifert, 2001). Unlike the case of collisions,
the gap between the droplet and bulk scheme based representations
is more significant, which implies an even greater need for an ML
emulator. In terms of the modeling scenario, this would introduce
additional spatial complexity with the usage of a single column su-
perdroplet model.
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While it is possible to simulate only sedimentation in a super-
droplet model and develop an ML emulator for it, an alternative mod-
eling approach can also be adopted. For example, the superdroplet
simulations can include multiple processes such as collisions, sedi-
mentation, and evaporation. Depending on the need, either a single
emulator can be developed or multiple emulators can be developed
to isolate the effect of an individual process, splitting the different
operations into separate ML models.

Fortunately, we already have the appropriate tools to couple these
emulators to ICON (Study B). Depending on the processes, the ML
emulators can then be added to ICON with calls to them replacing
the submodules within ICON’s microphysics subroutine.

Besides warm rain microphysics, a very interesting case is that of
ice microphysics where the bulk moment scheme struggles with rep-
resenting riming, nucleation and melting. Similarly, cloud-aerosol in-
teractions are hard to parameterize and remain a source of uncertain-
ity in climate models. A droplet based representation allows for a
more realistic interaction and can be explored through superdroplet
based methods.

Another direction involves the perhaps more challenging task of
overhauling the representations of cloud microphysics within ICON.
The main contribution of this thesis lies in using superdroplet simu-
lations to improve the bulk moment scheme using machine learning.
However, as long as we use the two-moment representation, there
are limitations to the improvements that can be made. In a real at-
mosphere, the droplet distributions are often multi-modal in nature,
or rather evolve into a multi-modal distribution over time. Use of a
single representative set of moments fails to capture this diversity.

There are various generative machine learning methods that enable
learning properties of complete distributions. Such a method would
be able to learn the evolution of the complete DSDs from a super-
droplet simulation for every timestep. However, as of now, this would
only serve as a faster superdroplet emulator, with limited operational
application since operational NWPs do not allow a distribution based
representation of cloud microphysical process.

There remains a lot to be gained from parallel areas of research. In
this thesis, the evolution of the bulk moments with time is treated
simply as a dynamical system where the future state depends upon
itself. Many of the techniques I employ were borrowed (Section 3.5)
from ML models trained for completely different dynamical systems.
These emulators serve as faster numerical solvers, similar to the way
I have utilized SuperdropNet for superdroplet simulations.

ML emulators for cloud microphysics can benefit from using more
complexity in the structure of the ML model, such as addition of
convolution layers (LeCun et al., 1998) for spatial grids. Since Su-
perdropNet is trained on box-model simulations, convolution layers
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were not needed. Newer techniques such as diffusion models have
shown promise in predicting turbulent flow (Kohl et al., 2024) and
would be an interesting method to test when learning DSDs. Some
studies have gained from using multiple time steps as an input to the
ML model and then predicting multiple timesteps forward in time
(Brandstetter et al., 2022). This approach is challenging to adopt in
Earth Science as during online coupling, the state of the system is
modified at every single timestep, limiting the utility of an ML em-
ulator that predicts tendencies multiple steps forward in time for a
particular process.

Benefits of autoregressive training have made it popular. However,
many of its aspects are contested. There are studies disputing the use-
fulness of the pushforward trick in stabilizing training (Lippe et al.,
2023). The ideas of curriculum learning are applied differently in ev-
ery study (Geneva & Zabaras, 2020; Kohl et al., 2024; List et al., 2024).
For me, development of SuperdropNet was an experimental process
in terms of finding suitable techniques that work for my particular
problem. Given the evolving nature of these ML techniques, future
research could reveal both strengths and potential shortcomings of
SuperdropNet. I look forward to revisit and refine the model as new
insights emerge.

As computational power continues to advance and high-resolution
models become the standard, processes like convection, which once
required parameterization, can now be fully resolved. Over time, I ex-
pect fine-scale processes, such as cloud interactions and turbulence,
to become the main source of model uncertainty. These processes are
often not well understood, and stochastic methods, such as the super-
droplet scheme, can help provide better estimates despite our gaps in
understanding. Combined with airborne and ground-based observa-
tions, stochastic models can serve as data assimilation methods, pro-
viding corrective values at regular intervals. Improved representation
of droplets would also enable better estimates of Earth’s radiative
balance, both through the direct estimation of cloud cover and the
improved representation of cloud-aerosol interactions. Until distribu-
tions of droplets in atmospheric models become standard, using ML
to bridge the gap remains a valuable endeavor.
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keypoints

• We train SuperdropNet, a warm-rain emulator that learns from
superdroplet simulations while operating on bulk moments

• For stable and accurate predictions, we employ autoregressive
training, simplify statistical assumptions, and impose physical
constraints

• SuperdropNet significantly outperforms other ML-based param-
eterizations over a broad range of conditions

abstract

Cloud microphysics has important consequences for climate and weather
phenomena, and inaccurate representations can limit forecast accu-
racy. While atmospheric models increasingly resolve storms and clouds,
the accuracy of the underlying microphysics remains limited by com-
putationally expedient bulk moment schemes based on simplifying
assumptions. Droplet-based Lagrangian schemes are more accurate
but are underutilized due to their large computational overhead. Ma-
chine learning (ML) based schemes can bridge this gap by learning
from vast droplet-based simulation datasets, but have so far strug-
gled to match the accuracy and stability of bulk moment schemes.
To address this challenge, we developed SuperdropNet, an ML-based
emulator of the Lagrangian superdroplet simulations. To improve ac-
curacy and stability, we employ multi-step autoregressive prediction
during training, impose physical constraints, and carefully control
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stochasticity in the training data. Superdropnet predicted hydrome-
teor states and cloud-to-rain transition times more accurately than
previous ML emulators, and matched or outperformed bulk moment
schemes in many cases. We further carried out detailed analyses to
reveal how multistep autoregressive training improves performance,
and how the performance of SuperdropNet and other microphysical
schemes hydrometeors’ mass, number and size distribution. Together
our results suggest that ML models can effectively emulate cloud mi-
crophysics, in a manner consistent with droplet-based simulations.

a.1 introduction

In early versions of weather and climate models, low spatial resolu-
tion was the primary source of model errors (Manabe & Bryan, 1969).
Over time, finer grids and shorter time steps improved accuracy by
explicitly representing processes that would otherwise occur at sub-
grid scales (Bauer et al., 2015), but the resulting computational costs,
which scale with the 4th power of relative increases in spatial res-
olution, make further improvements unsustainable on existing and
foreseeable computing hardware (Palmer, 2020).

For operational weather forecasting and long term climate projec-
tions, it is still standard practice to parameterize sub-grid scale pro-
cesses (Gross et al., 2018; Palmer, 2020) such as convection, radiation
and cloud microphysics. All parameterization schemes involve some
form of approximation which, while speeding up calculations, lead
to errors and uncertainties in simulations and forecasts (Gross et al.,
2018). In numerical weather prediction (NWP) models, systemic er-
rors accumulate over time and model errors tend to be of the same
magnitude as the predicted signals after forecast lead times of 7-
10 days (Palmer, 2020). Parameterizations contribute significantly to
these model errors (Gross et al., 2018; Palmer, 2020).

In recent years, a data driven approach has been applied in many
instances to replace the traditional parameterization schemes. Essen-
tially, simulation routines too computationally intensive for use in
operational forecasting are used to generate training data for opti-
mizing a machine learning (ML) model. This approach has been ap-
plied to convection (Brenowitz & Bretherton, 2018; Gentine et al., 2018;
O’Gorman & Dwyer, 2018; Rasp et al., 2018; Yuval et al., 2021), radia-
tive transfer (Belochitski & Krasnopolsky, 2021a; Veerman et al., 2021),
gravity wave drag (Chantry et al., 2021) and gravity wave simulation
(Dong et al., 2023), atmospheric chemistry (Kelp et al., 2020, 2022) and
turbulence (Leufen & Schädler, 2019). Many ML models perform well
in predicting single time steps but exhibit instability when run itera-
tively for many time steps. The primary source of instability here is
the accumulation of error over longer integration times. In(Brenowitz
& Bretherton, 2018) a multi-step loss was applied during training for
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developing a unified physics based parameterization for weather pre-
diction time scales in an aquaplanet whereas in (Lam et al., 2023),
similar approach was carried out to obtain stable results for medium-
range weather forecasting. Both of these studies point to the gain in
performance and long-term stability when using an autoregressive
loss function.

Here we focus on the task of parameterizing cloud microphysics,
and specifically the coalescence of liquid cloud droplets into rain.
Weather prediction models typically employ bulk moment schemes
(Seifert & Beheng, 2001) that simplify particle size distributions into
the total mass and number densities of droplets above and below
a chosen cloud/rain threshold size, and rely on approximate physics
and statistical assumptions to update these quantities over time. While
bulk moment schemes are fairly consistent with droplet-based simu-
lations in simplified scenarios, they struggle in the presence of mixed-
phase clouds, particularly in the representation of ice microphysical
processes(Khain et al., 2015; Morrison et al., 2020). Ultimately, inaccu-
rate cloud microphysics schemes manifest as inaccurate precipitation
forecasts (Lynn & Khain, 2007) and errors in radiative transfer calcu-
lations.

In (Gettelman et al., 2021) an ML emulator for a bin microphysics
scheme was developed and coupled to a general circulation model for
an improved representation of cloud and rain particle distributions
in a warm rain scenario. Another study showed that neural networks
can be trained for computing bulk moment dynamics to match super-
droplet simulations (Seifert & Rasp, 2020). This approache combines
the low memory and compute requirements of bulk moment schemes
with the accuracy, simplicity and physical consistency of superdroplet
simulations. It also offers straightforward compatibility with exist-
ing atmospheric models that rely on bulk moment representations to
simulate radiation transfer, convection and other moisture-dependent
processes. However, while the networks accurately predicted instan-
taneous rates of various coalescence events, they were far less accu-
rate at predicting the evolution of bulk moments over the longer time
scales of cloud-to-rain transitions. Thus, for simulating cloud micro-
physics over the time scale of warm rain generation, ML currently ex-
hibits a major performance gap compared to classical bulk moment
parameterizations.

To address this challenge we developed SuperdropNet, an emula-
tor for superdroplet simulations in a warm rain scenario. We intro-
duce several innovations in designing and training our network that
improve accuracy and stability over long time integration windows
for diverse initial conditions. These include autoregressive prediction
of multiple time steps during training (Grzeszczuk et al., 1998; Kelp
et al., 2020, 2022; Um et al., 2020), mass conservation as a hard con-
straint, relaxing some assumptions of bulk moment schemes and care-
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fully controlling stochasticity when generating training data. We also
systematically analyze how the length of autoregressive rollouts dur-
ing training affect forecast accuracy at various time horizons. We com-
pare SuperdropNet to a traditional warm rain bulk moment scheme
(Seifert & Beheng, 2001) commonly used in the ICON (Icosahedral
Nonhydrostatic) model, and to a previously described ML-based pa-
rameterization (Seifert & Rasp, 2020). Our results show that Super-
dropNet significantly closes the accuracy gap between ML parameter-
izations and bulk moment schemes, and even outperforms classical
schemes for some initial conditions. We further examine performance
of these schemes, and identify how their accuracy can depend on var-
ious factors in the simulated scenario.

a.2 warm rain microphysical simulations

a.2.1 Droplet schemes

Simulating droplets in a numerical simulation provides the most accu-
rate estimation of droplet interactions that contribute to the cloud mi-
crophysical processes. However, individually simulating droplets can
be computationally expensive even for small domain sizes. In Shima
et al., 2009 this problem is simplified by using ‘superdroplets’ to rep-
resent multiple individual droplets of same size that are close to each
other. The motion of the droplets is simulated along with collision-
coalescence, condensation/evaporation and sedimentation processes.
This method uses a Monte Carlo scheme for estimating the collision-
coalescence process. The droplet size distribution is initially assumed
to be gamma, exponential or a log-normal (Marshall & Palmer, 1948),
and is evolved in time by sampling pairs of colliding droplets from
it.

a.2.2 Bulk moment schemes

In most atmospheric models, cloud microphysical processes are rep-
resented using bulk moment schemes. Instead of simulating droplets
and tracking collision probabilities, bulk moment schemes track only
the evolution of the first and sometimes the zeroth moment of the
droplet distribution. A warm rain scenario, with only clouds and rain
present, is fully described by a density function f(x) over droplets
with mass x. This density function is used to define 4 bulk moments:

Lc =

∫x∗

0

xf(x)dx Nc =

∫x∗

0

f(x)dx

Lr =

∫∞
x∗

xf(x)dx Nr =

∫∞
x∗

f(x)dx (5)
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Here x∗ = 2.6×10−10kg is the mass threshold dividing cloud and rain
and droplets (Beheng & Doms, 1986). The zeroth moments, Nc and
Nr, are the number density of cloud and rain droplets respectively.
The first moments, Lc and Lr, represent the total cloud and rain water
mass.

To provide a baseline when evaluating ML-based microphysical
schemes, we employ here the two-moment bulk scheme of Seifert
and Beheng, 2001. The time evolution of cloud water, rain water,
cloud droplet concentration and rain droplet concentration is esti-
mated through the ordinary differential equation system given by:

dLc

dt
= −AU−AC (6)

dLr

dt
= +AU+AC (7)

dNc

dt
= −2AUn −ACn − SCc =

−2

x∗
AU−

1

xc
AC− SCc (8)

dNr

dt
= +AUn +ACn − SCr =

1

x∗
AU− SCr (9)

The autoconversion rate AU is the rate at which cloud mass con-
verts to rain mass due to collisions between the cloud droplets, while
the accretion rate AC describes the mass flux associated with colli-
sions between rain and cloud droplets. The mean cloud droplet mass
xc = Lc/Nc is the average mass of cloud droplets. AUn and ACn

are autoconversion and accretion rates corresponding to the number
concentrations. They are calculated by assuming that autoconversion
events involve droplets with an average mass of x∗ and that accretion
events lead to the formation of cloud droplets with an average mass
xc. Self collection rates SCc,SCr describe the rate of collisions that do
not convert cloud droplets to rain.

Following standard practice for cloud microphysics in atmospheric
models such as ICON (Zängl et al., 2015), we carry out explicit (Euler)
integration of these differential equations with fixed time step ∆t. In
practice, ∆t used for microphysical processes may be shorter than the
time step used for the dynamical core in an atmospheric model, and
can vary from a few minutes to a few seconds.

The scheme in Seifert and Beheng, 2001 employs several approxi-
mations and statistical assumptions to derive formulas for calculating
the process rates in a warm rain scenario. This approach of approxi-
mating process rates to compute changes in bulk moments is almost
universally applied in operational weather and climate models and
formed the basis for the ML approach formulated in Seifert and Rasp,
2020.
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a.3 problem statement

This study aims to develop a scheme for warm-rain microphysics that
efficiently computes bulk moment dynamics consistent with super-
droplet simulations. Having described droplet-based and bulk mo-
ment schemes, we can now give a concrete formal description of this
task. We use yt to denote the vector of bulk moments at time t in a
superdroplet simulation.

yt = [Lc(t), Lr(t), Nc(t), Nr(t)] (10)

A classical or ML-based scheme is defined by a time-stepping func-
tion M, which can be applied to yt to compute M(yt) ≈ yt+1. We
can also iteratively apply M k times, feeding the outputs back in as
inputs to generate an autoregressive prediction. We denote this re-
peated application by M(k), and can use it to predict y, the vector of
bulk moments, k steps into the future.

M(k)(yt) =

k times︷ ︸︸ ︷
M ◦M ◦ · · · ◦M(yt) ≈ yt+k (11)

We refer to sequence of bulk moment vectors
{
M(yt),M(2)(yt), . . . ,M(k)(yt)

}
computed by k repeated applications of M as a length-k rollout.

Our goal is then to obtain an M that can evolve bulk moments,
starting from initial conditions y0, to match the full course of a super-
droplet simulation:

M(t)(y0) ≈ yt, ∀t (12)

After giving further details on the superdroplet simulations used for
training and evaluation (section A.4), we will describe how we use
neural networks to define M, and how we design and minimize a
loss function to achieve our stated aims (section A.5).

a.4 data generation with droplet simulations

For generating the training data, we simulate superdroplets in a warm
rain scenario in a zero-dimensional box. The superdroplet simula-
tions were carried out using the McSnow software (Brdar & Seifert,
2018; Seifert & Rasp, 2020), and the output is recorded every ∆t = 20

s. This time step was chosen to be consistent with previous work
(Seifert & Rasp, 2020), and to fall within the typical range for atmo-
spheric modeling.

Superdroplet simulations were used to compute bulk moments as
follows:

Lc =
∑

∀i:xi<x∗

xcξc Nc =
∑

∀i:xi<x∗

ξc

Lr =
∑

∀i:xi⩾x∗

xξr Nr =
∑

∀i:xi⩾x∗

ξr (13)
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Figure A.1: Stochasticity of superdroplet simulations with box size 25m3. (a)
and (b) correspond to 100 simulations at multiplicity of 1024. (c)
and (d) correspond to 100 simulations at multiplicity of 25600.
For both sets of simulations, rain water mass (Lr) and rain num-
ber concentration(Nr) are compared. Other initial conditions for
both simulations are the same with L0=0.3 g/m3, r0=13 µm,
ν=0.5.
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Figure A.2: Stochasticity in simulations at a box size of 2500 m3 and mul-
tiplicity is 25600. (a) and (b) correspond to 100 simulations at
ν=0.5. (c) and (d) correspond to 100 simulations at ν=3. For
both sets of simulations, Rain water mass(Lr) and Rain num-
ber concentration(Nr) are compared. Other initial conditions for
both simulations are the same with L0=0.3 g/m3, r0=13 µm.
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Here mass moments (Lc, Lr) measure the total mass of superdroplets
above and below the cloud-rain threshold, while number counts (Nc,
Nr) count the total number to cloud and rain droplets.

a.4.1 Initial conditions

For all simulations the box volume and multiplicity are fixed to be
2500 m3 and 26500, respectively. In the context of superdroplet simu-
lations, multiplicity refers to the number of individual droplets repre-
sented by a single superdroplet. Superdroplet simulations are initial-
ized by sampling droplets with total mass L0 from a gamma distribu-
tion, with shape parameter ν and mean droplet radius r0. For a fixed
mean droplet size, higher values of ν indicate a narrower distribution
around a peak, while ν = 0 gives an exponential distribution peaking
at zero. This form of generalized gamma distribution is commonly
used for describing the distribution of hydrometeors and further ex-
planation and derivations can be found in (Seifert & Beheng, 2006).
We sample from a wide range of parameter values as described in
Table 1. In total, these combinations of parameter values lead to 819

distributions.

Table 1: Initial Conditions for box-model simulations

Quantity Range

L0 {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.2,1.5,1.6,2.0} g/m3

r0 {9, 10, 11, 12, 13, 14, 15} µm

ν {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}

The complete set of ICs was the same as in Seifert and Rasp, 2020.

a.4.2 Measuring and controlling stochasticity

As stated in section A.3, our ultimate aim is to train a neural network
to update bulk moments, using data from superdroplet simulations.
A challenge is posed by the fact that superdroplet simulations are
inherently stochastic, and the same initial conditions can produce dif-
ferent results with in repeated simulations. The randomness in sim-
ulations is a feature of the zero-dimensional setup and in a real at-
mosphere this stochastic behavior is greatly reduced. In initial exper-
iments, we found that randomness in training data, and in particular
large infrequent jumps in the bulk moments, lead to overfitting of in-
dividual stochastic events, and instability in the optimization process
used to train the network.

For fixed mean droplet radius and total water mass, randomness
can be reduced by increasing the box volume or decreasing the mul-
tiplicity while keeping the total droplet count fixed. Since this in-
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creases the total number of simulated superdroplets, with more su-
perdroplets, the effects of random collisions tend to better ‘average
out’. However, computation time also increases quadratically in the
number of droplets. Reducing the shape parameter of the initial dis-
tribution also limits stochasticity by reducing the relative contribution
of extremely large or small droplets.

We measured these effect of stochasticity by computing bulk mo-
ments from repetitive superdroplet simulation runs under the same
set of initial conditions. We first examined the role of multiplicity us-
ing simulations with a low volume (25 m3), moderate density (L0 =

0.3 g/m3) and mean initial droplet size of 13 µm. For over 100 simu-
lations with high multiplicity (m = 25600), we observed considerable
variation in the height and timing of the peak raindrop count(Fig 1-
(d)), and noticeable variation in the time evolution of the rain droplet
mass (Fig. 1-(c)). Simulations with a lower multiplicity (m = 1024)

exhibited noticeably less variation in these quantities (Fig. 1-(a,b)),
suggesting that this stochasticity is an artifact of the superdroplet
technique and exceeds the stochasticity of the original droplet colli-
sion rules.

We next examined the effect of the shape parameter ν in additional
simulations, using the same L0 and r0, multiplicity 25600, a larger box
(2500 m3) and ν=0.5 or 3. As previously observed (Seifert & Rasp,
2020), we found that higher ν values produced greater variation in
bulk moments over repeated runs (Fig. 2). Similarly, variability was
higher for smaller box sizes (Fig. 1, lower vs. Fig. 2, upper).

To limit stochasticity when generating training data for deep learn-
ing (see below), we used the larger box size of 2500 m3. To limit
computation time and allow better comparison with previous work,
we kept the multiplicity value of 25600 from Seifert and Rasp, 2020.
To further limit variability, for each unique set of initial conditions
(r0,ν,L0) we averaged bulk moments from 100 superdroplet simula-
tions. We found that training on all individual simulations resulted
in overfitting, poorer performance and longer computation times.

a.4.3 Data preparation

We carried out superdroplet simulations with 819 unique initial con-
ditions (Table 1). Bulk moments were calculated from the collection
of superdroplets every 20 seconds, and averaged over 100 repeated
simulations of each set of initial conditions. We randomly assigned
100 superdroplet simulations to testing and the remaining 719 were
assigned for training and validation. From those 719 simulations, the
data was randomly chunked and 90% of it was assigned for training
and 10% for validation. We z-scored each dimension of the inputs to
the neural network.
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a.5 deep learning of warm rain microphysics

a.5.1 Time stepping with learned moment updates

We chose to train neural networks to directly estimate the bulk mo-
ment tendencies (yt+1 − yt)/∆t, so that the learned time stepping
function is

M(yt) = yt + hθ(yt,ϕ)∆t ≈ yt+1 (14)

θ are trainable parameters of the network, hθ its input-output func-
tion and ϕ are additional inputs (details in sec. A.5.4).

This contrasts with the strategy presented in (Seifert & Rasp, 2020)
which instead estimates process rates, then uses the same approxima-
tions as the original bulk moment scheme to impute droplet number-
based process rates from droplet mass-based rates (sec. A.2.2). We
compare our results to one such network and refer to it as PRNet.
This network receives the bulk moments as the input and predicts
the process rates which are then used to calculate the changes in the
bulk moments as given in Equations 2-5. Our approach can poten-
tially provide a closer match to superdroplet schemes by avoiding the
approximation of droplet number-based process rates from droplet
mass-based process rates, since it directly outputs the updates to the
bulk moments.

a.5.2 Physically constrained deep learning

To improve accuracy and physical consistency, we enforced constraints
that hold in superdroplet and bulk moment simulations on our neu-
ral networks.

• Mass conservation To ensure the total mass of rain and cloud
droplets is conserved, we trained the neural network to predict
cloud mass updates ∆L̂c = Lc(t+∆t) − Lc(t), and defined L̂r =

L0 − L̂c.

• Irreversibility In superdroplet and bulk moment simulations
the total mass and count of cloud droplets can only decrease
over time. To enforce this, we set any positive updates to cloud
mass and droplet counts to zero at each time step (before cal-
culating ∆̂Lr). Initial experiments showed that this constraint
interfered with learning by preventing backpropagation of loss
gradients, so we used it only with trained models.

• Positivity Mass and droplet counts cannot be negative. We en-
forced this in a postprocessing step after moment prediction for
all time steps, with negative moments set to zero while main-
taining mass conservation. We did not use this constraint dur-
ing training.
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a.5.3 Autoregressive Multi-step Training

Our overall aim (sec. A.3) is to predict the evolution of bulk mo-
ments through repeated application of a trained network. Clearly, if
M(yt) = yt+1 precisely for all t, then also M(j)(yt) = yt+j for all t
and j. This suggests a simple ‘offline training’ strategy of minimizing
1-step prediction error L1 = ∥yt+1 − ŷt+1∥.

However, this fails in practice since L1 does not reflect the rate at
which errors grow over a rollout. Thus when a network trained offline
generates a multistep rollout, it inevitably makes at least some small
errors and encounters inputs outside the training set. This can lead to
inaccurate results or divergence to infinity as rollout length increases.
This problem is particularly severe for simulations with lower water
content, which require a greater number of time steps to produce
rain. The inadequacy of offline training has been noted for several
other parameterization tasks (Kelp et al., 2020, 2022; Kochkov et al.,
2021; Um et al., 2020).

a.5.3.1 Loss Function for Autoregressive Rollouts

To address this limitation, we predict k future time steps during train-
ing. Starting with superdroplet-derived bulk moments yt, we use our
network iteratively k times:

Lk =

k∑
j=1

λj

∥∥∥yt+j −M(j)(yt)
∥∥∥ (15)

The loss is calculated over the moments as predicted by the itera-
tive application of M and the moments as calculated from the super-
droplet simulations at the same time step. The scalar weights λj allow
emphasis of different prediction horizons during the training process.
Initial experiments showed best results when setting λk = 1 and all
other λj = 0. We also used the ‘pushforward trick’, in which M(k− 1)

is treated as a fixed variable, and the loss gradients are not backprop-
agated to times earlier than t+ k− 1. Previous studies reported that
this improved performance in some cases (Brandstetter et al., 2022),
though this seems to depend on the particular application (List et al.,
2024) and the involved mechanism remains an open question.

a.5.3.2 Increasing rollout length during training

A challenge for optimizing functions such as Lk, with repeated self-
iteration of neural network, is that gradients can vanish towards zero
or explode towards infinity over repeated iterations (Goodfellow et
al., 2016). This problem is particularly severe for networks at the start
or early phase of training, since these tend to produce large errors
and have not yet encountered inputs resembling their own erroneous



50 developing superdropnet

outputs. To avoid instability during training, we begin in offline mode
with k = 1, and then gradually increase the value of k during training.
We train until convergence (sec. A.5.5) on Lk, then use the resulting
network parameters to initialize training on Lk+1, for k ⩽ 25.

While this procedure required longer computation time than a sin-
gle optimization procedure, we found that initializing the neural net-
work from the weights of the previous k value greatly reduced the
number of optimization steps required. This is equivalent to a ‘warm
start’ in training as the neural network at k+ 1 receives pre-trained
weights from k-th model instead of randomly initialized weights.

a.5.4 Network Architecture

We use a fully-connected network with 3 hidden layers of 200 neurons
each with ReLU (Rectified Linear Unit) activation functions. The total
number of trainable network parameters was 83,200. In addition to
yt the network receives 5 additional inputs ϕ: the liquid water time
scale (τ = Lr/L0), mean cloud droplet mass xc = Lc/Nc, r0, ν and
L0. The outputs of the neural network are the tendencies for the four
moments.

a.5.5 Optimization Procedure

We minimized Lk (eqn. 15) using the ADAM optimizer(Kingma &
Ba, 2017) with initial learning rate 2e-4 for k = 1 and the batch size as
256. As we subsequently increased k, the learning rate was decreased
as the updates to the network weights also decreased in magnitude.
The learning rate was halved if at the subsequent value of k, training
ended before 10 epochs. This procedure to update the learning rate
was followed until k = 24. For k = 25, the learning rate was set to
2e-8 and decreasing it further did not yield continued reduction of
the loss.

Optimization for each k used a maximum of 500 epochs. Training
was cut short using early stopping when the validation loss did not
decrease for 50 consecutive epochs. Bulk moments and network pa-
rameters were represented using 32-bit floating point.

a.6 results

a.6.1 Accuracy of Single Step Training

We first trained a neural network to predict superdroplet-derived
bulk moments one time step into the future. After convergence, this
‘1-step’ network closely predicted all 4 bulk moments one time step
ahead (Fig. A.3-top panel). We calculated the mean absolute percent-
age errors(MAPE) between the predicted tendencies(direct output of
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Figure A.3: Upper row changes over single time steps (∆t = 20s) in bulk
moments derived from superdroplet simulations (x-axes) vs.
change predicted by a network trained to predict one step into
the future (y-axes). Lower row values of bulk moments pre-
dicted one step ahead by the same network (y-axes) vs. actual
superdroplet-derived bulk moments one step ahead. Results are
shown only for held-out testing data. Mean absolute percentage
errors (MAPE) are reported.
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Figure A.4: Superdroplet-derived bulk moments (black lines) compared to
rollouts from a neural network trained to predict 1 step into
the future (red-dashed lines), SuperdropNet (blue solid line),
PRNet (yellow-dashed lines) and from a classical bulk moment
scheme (blue-dotted lines). Results are shown for a simulation
with L0 = 2 g/m3, r0 = 9µm, ν = 0. Shaded region indicates
+/- 1 standard deviation over 100 superdroplet simulations. A
single time step corresponds to 20 s of simulation time.
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Figure A.5: Superdroplet-derived bulk moments (black lines) compared to
rollouts from a neural network trained to predict 1 step into
the future (red-dashed lines), SuperdropNet (blue solid line),
PRNet (yellow-dashed lines) and from a classical bulk moment
scheme (blue-dotted lines). Results are shown for a simulation
with L0 = 0.2 g/m3, r0 = 9µm, ν = 2. Shaded region indicates
+/- 1 standard deviation over 100 superdroplet simulations. A
single time step corresponds to 20 s of simulation time.
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Figure A.6: Superdroplet-derived bulk moments (black lines) compared to
rollouts from a neural network trained to predict 1 step into the
future (red-dashed lines), SuperdropNet (blue solid line), PRNet
(yellow-dashed lines) and from a classical bulk moment scheme
(blue-dotted lines). Results are shown for a simulation with L0 =

1.6 g/m3, r0 = 12µm, ν = 0. Shaded region indicates +/- 1

standard deviation over 100 superdroplet simulations. A single
time step corresponds to 20 s of simulation time.
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the neural network) and superdroplet-derived bulk moment tenden-
cies as well as between the predicted moments and the superdroplet-
derived bulk moments. MAPE between the predictions P, of the ac-
tual values A, is given by:

MAPE(A,P) =
100

N

N∑
i=0

Ai − Pi
Ai

(16)

where N is the total number of samples. Bulk moments at the next
time step were inferred with mean absolute errors ranging from 0-
3% (Fig. A.3-bottom panel). Since Lr and Lc sum to L0, their mean
absolute percentage errors (MAPEs) are comparable, while MAPE
is lower for droplet number concentrations. These results confirmed
that our network architecture can closely predict how bulk moments
will evolve over a single time step.

We next examined whether the 1-step network could predict bulk
moments further into the future. Starting from the initial conditions
of each simulation in our dataset, we iteratively applied the network
to generate rollouts over the full course of the simulation. For ex-
ample, in a simulation with high water content and an initial expo-
nential droplet size distribution (ν = 0, Fig. A.4) the 1-step network
(red-dashed line) roughly reproduced the bulk moments dynamics of
superdroplet simulations (black line) except for Nr, where it diverged
halfway through the simulation.

We also examined a more challenging case (Fig. A.5), where low ini-
tial water content necessitated a longer rollout and ν = 2 produced a
‘wider’ droplet size distribution. In this case, the 1-step network con-
verted cloud to rain faster than superdroplet simulations. In a third
case with intermediate water content, higher initial droplet radius
and ν = 0 (Fig. A.6), the network matched superdroplet simulations
more closely than the bulk moment parameterization for cloud and
rain water content and cloud droplet concentration. For all three sim-
ulations (Fig. A.4-A.6), the 1-step network failed to produce stable
and accurate predictions of rain droplet concentration.

a.6.2 Accuracy of Multistep Training

Given that a network trained ‘offline’ (k = 1, eq. 15) could accurately
predict the next time step, but not long-term evolution of moments,
we increased rollout length during training to a maximum value of
k = 25. In general, we expected to observe an improvement in perfor-
mance for predictions many time steps in the future, along with at
least some degradation for single time step predictions as there will
no longer be the only contributing factor our loss function. In fact,
MAPE for tendencies over single time steps decreased for all mo-
ments except for Nr, for which it increased from 171.17 to 242.61 (Fig.
A.7-top panel). This did not strongly impact prediction errors for bulk
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Figure A.7: Top panels, red – Superdroplet-derived changes in bulk mo-
ments over single time steps (∆t = 20s) vs. changes over single
time steps predicted by SuperdropNet, a neural network trained
to predict 25 time steps into the future. Bottom panels, blue
– Superdroplet-derived bulk moments vs. predictions on time
step ahead by SuperdropNet. Results are shown only for initial
conditions in the held-out testing data. Mean absolute percent-
age errors (MAPE) are shown for each comparison.

moments one time step ahead (Fig. A.7-bottom panel). MAPE for bulk
moments increased slightly with k = 25 for Nc (0.81 to 0.87) and Nr

(0.39 to 0.49) compared to the network trained with k = 1 (Fig. A.3).
For the mass moments, MAPE decreased from 2.89 to 1.95 when the
rollout length was increased to 25. Given that multistep training did
not lead to major or consistent degradation of the results for single
time step predictions, we next examined its effects on longer rollouts.

a.6.3 Rollout Lengths in Training and Evaluation

The optimal rollout length for the training was not obvious: too low a
k value could reduce accuracy for longer prediction horizons, while
too high could make optimization unstable or reduce accuracy for
shorter horizons. To investigate this further, we calculated accuracy
as a function of both k and the prediction horizon (Fig. A.8). We cal-
culated the mean MAE over normalized values of the four moments
for all forecast horizons, from 1 to 20 steps, both on training/vali-
dation data (Fig. A.8-left panel) and on held-out testing data (Fig.
A.8-right panel).

For 10 ⩽ k ⩽ 20 changes were smaller and less consistent, while
for 21 ⩽ k ⩽ 25 we again observed reduction of errors by several
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Figure A.8: Log10 MAEs corresponding to model training steps and infer-
ence steps. The left panel includes all 719 training simulations
and the right panel includes all 100 testing simulations.

orders of magnitude for all prediction horizons with the exception
of single time steps. This reduction of errors for prediction horizons
longer than the training rollout length k was only observed when us-
ing the pushforward trick (λj = 0, ∀j < k, sec. A.5.3), and not when
setting all λj = 1. Surprisingly, for k > 21 we achieved better pre-
dictions for 2 or more time steps into the future than for single time
steps, suggesting the network is correcting its own errors. Overall, ac-
curacy on training/validation data strongly resembled accuracy on
test data, suggesting that overfitting is negligible for this combina-
tion of network architecture, data and training procedure, and that
our trained network can generalize to initial conditions not observed
during training. In light of these results, we used the network trained
with k = 25 for all subsequent analyses, and termed it SuperdropNet.
The network’s ability to correct it’s own errors can be seen clearly in
Fig. A.9. While the prediction errors for the 1-step trained network
(blue line) accumulate with longer rollouts, SuperdropNet’s errors
decrease over time (Fig. A.9-b).

a.6.4 Rollout Accuracy Depends on Droplet Distribution Shape and Water
Content

We further investigated how SuperdropNet’s accuracy over long roll-
outs depended on the conditions of the simulated warm rain process.
Fig. A.4 -A.6 show SuperdropNet rollouts (dark-blue solid lines) over
the full length of 3 simulations, starting from initial conditions. We
also show rollouts for PRNet, which is the ML model developed to
predict the process rates as in (Seifert & Rasp, 2020). SuperdropNet
produced stable output in each case which match the superdroplet
simulation (black lines) better than the 1-step network (red-dashed
lines), but with varying accuracy.
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Figure A.9: Time evolution of errors as a function of rollout length during
inference. (a) Mean absolute error as a function of rollout length
using model trained to predict only one time step ahead (blue)
vs. SuperdropNet. Errors are computed by averaging over 100

rollouts starting from randomly selected simulations and time
points in the test set. The dashed black line shows Superdrop-
Net’s training rollout length (k = 25). (b) As in ‘a,’ but showing
only SuperdropNet.

Fig. A.4 shows a scenario with high water content, in which Super-
dropNet predictions match the superdroplet simulations better than
the bulk moment scheme (dotted blue lines) while PRNet (yellow-
dotted lines) converts clouds to rain faster than in superdroplet simu-
lations. In Fig. A.5, a simulation with low water content and a higher
shape parameter, SuperdropNet predictions show a significant im-
provement over the 1-step network’s predictions. SuperdropNet and
the 1-step network convert the cloud droplets to rain faster than su-
perdroplet simulations, while the bulk moment scheme is a more ac-
curate match. However, the bulk moment scheme overestimates rain
droplet concentrations, while SuperdropNet does not. In Fig. A.6,
the 1-step network matches the superdroplet simulations better than
SuperdropNet for the mass moments but SuperdropNet is a better
match for the droplet concentrations. While the bulk moment scheme
converts the cloud water to rain water faster than the superdroplet
simulations, the bulk moment scheme takes longer than the super-
droplet simulations. This is a case with relatively higher water con-
tent and a low value of shape parameter. PRNet overestimates the
conversion time of cloud to rain in Fig. A.5 and A.6 .
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We observe a general pattern of SuperdropNet struggling with
cases where the initial water content is low and the distribution of
droplet sizes is wider (higher values of ν). The PRNet model (Seifert
& Rasp, 2020) also struggled on simulations with a low water content.
In general the bulk moment scheme closely predicts Lc and Lr but
struggles with Nr.

a.6.5 Comparison of t10 and Mean Absolute Errors

An important test of any representation of warm rain coalescence is
whether it accurately captures the timing of cloud-to-rain transitions.
We therefore evaluated the match between SuperdropNet and alter-
native methods in the time t10 at which 10% of total water mass had
converted to rain. In order to obtain a full picture over all initial con-
ditions, and as previous analyses showed a lack of overfitting (Fig.
A.8), we conducted this analysis on all 819 simulations.

True t10 values showed overall agreement with t10 values com-
puted from SuperdropNet rollouts (Fig. A.10, blue, MAE=14.83 g/m3)
but tended to underestimate transition times. The classical bulk mo-
ment scheme exhibited a lower MAE (Fig.A.10-(a), red, MAE = 3.97

g/m3) but tended to overestimate transition times. PRNet underesti-
mated many t10 values to a greater extent than SuperdropNet (Fig.
A.10, yellow, MAE=71.95 g/m3), but also frequently failed to reach
10% mass conversion before the end of the simulation (shown as neg-
ative values). For these simulations, the MAE was calculated by as-
suming the end of the simulation as the t10 value.

We further examined the accuracy with which the timing of droplet
number dynamics were represented, by calculating the time t10 at
which cloud droplet count had decreased by 10% of its initial value.
Here we observed a closer match to superdroplet simulation for Su-
perdropNet than for the bulk moment parameterization (Fig. A.10-
(b)). We also observe an overall lower MAE for SuperdropNet than
the bulk moment scheme and PRNet (Fig. A.10-(c)).

Given our finding that the accuracy of all schemes‘ bulk moment
predictions depended on the simulation’s initial conditions, we fur-
ther examined how these initial conditions impacted the accuracy of
t10 values based on Lc and Nc (Fig. A.11). Consistent with our pre-
vious findings, SuperdropNet and PRnet performed best at higher
water content. SuperdropNet’s predictions also improved at higher
initial droplet sizes (Fig. A.11-(b),(e)) and lower values of the shape
parameter (Fig. A.11-(c-f)). For PRNet, the shape parameter affected
the accuracy of prediction the most with an increased accuracy at
higher values of ν (Fig. A.11-(c-f)). The bulk moment scheme’s tim-
ing accuracy was largely unaffected by L0 and r0, but higher values
of ν increased the magnitude of errors (Fig. A.11-(c-f)). Superdrop-
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Figure A.10: The t10 values for Lc (a) and (b) Nc as calculated for 819 sim-
ulations using SB2001, SuperdropNet and the ML model from
(Seifert & Rasp, 2020) based on estimating process rates, re-
ferred to as PRNet. Each point is one of the 819 simulations.
True t10 on the x axis corresponds to the values from the su-
perdroplet simulations. The negative values on the y-axis rep-
resent simulations for which the 10% of initial water never con-
verted to rain during the length of the simulation. (c) Mean Ab-
solute Errors (MAE) in approximation of t10 values for cloud
water content (Lc) and cloud number Concentration (Nc)
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Figure A.11: (a)-(c) Ratio of predicted/true t10 values for Lc as a function
of initial conditions of the superdroplet simulation. Here ‘true’
refers to the superdroplet simulation. Each point is one of the
819 simulations. (d)-(f) same as (a)-(c) but for t10 predictions
for Nc.
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Net yielded more accurate transition times for Nc across all initial
conditions compared to the bulk moment scheme.

Together, these results show that SuperdropNet improves signif-
icantly upon the state of the art in ML-based parameterization of
warm rain microphysics. SuperdropNet closes most of the existing
performance gap between previous ML-based representations and
classical bulk moment schemes, and exceeds the accuracy of those
classical schemes in some cases.

a.7 discussion

We developed SuperdropNet, a neural network emulator of the warm
rain formation process, and trained it on data from stochastic box-
model simulations. SuperdropNet significantly advances the state of
the art for ML-based emulation of warm-rain processes. For predict-
ing the timing of cloud-to-rain transitions in droplet-based simula-
tions, it closed most of the performance gap between neural networks
and classical bulk moment parameterizations, and in some cases ex-
ceeded the accuracy of classical approaches. This performance gain
can be attributed to several novel aspects of our approach: multistep
rollouts, the pushforward trick, measurement and averaging out of
stochasticity, and discarding the approximations used to link process
rates for mass and droplet count. The striking improvements we ob-
served with multistep training (Fig. A.8) can be considered a case of
properly aligning our objective function with the ultimate task we
wish to accomplish: emulating the warm rain dynamics accurately
over many time steps.

We found SuperdropNet’s accuracy to depend strongly on the con-
ditions of the warm rain process, with better performance for high
water content and a less-dispersed droplet distribution. In general
these conditions make for an easier prediction task, as they lead
to shorter but smoother cloud-to-rain transitions. On the whole, we
found that SuperdropNet tends to underestimate transition times cal-
culated using rain vs. cloud mass, but predicts transitions of droplet
counts more accurately than a classical bulk moment scheme. In case
of shallow convection where the t10 is usually less than 60 min, Super-
dropNet estimates both cloud water mass and droplet concentrations
accurately (Fig. A.10). Many simulations with extremely low initial
water content would never lead to formation of rain droplets in a real
atmosphere due to the effects of evaporation.

Particle-based schemes allow for better approximation to the stochas-
tic collection equation by estimating pure stochastic growth (Unter-
strasser et al., 2017). These properties can be leveraged to improve
representation of processes such as sedimentation where the bulk
moment schemes are known to introduce numerical discontinuities
(Seifert & Beheng, 2006; Wacker & Seifert, 2001). Additionally, initial
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successes in a warm rain scenario with only rain and cloud open the
possibility of emulating more complex microphysical phenomena in-
volving additional hydrometeors such as ice, snow and graupel, as
proposed in a previous study (Seifert & Rasp, 2020).

We further plan to couple SuperdropNet to atmospheric fluid dy-
namics and other physical processes. This will require solving the
technical challenge of bidirectional communication between Python/Pytorch-
based deep learning and FORTRAN based atmospheric simulation,
as well as developing new training algorithms that encourage sta-
bility and accuracy of the coupled dynamics. We believe that fast,
accurate microphysics emulators that can be used as modular simu-
lation components could offer significant benefits in predicting and
understanding weather, climate and air quality phenomena.

a.8 open research

The code for training and developing SuperdropNet can be found at
https://github.com/m-dml/warm-rain-emulator. The training data
is available at: https://zenodo.org/records/10054101. The data was
generated using McSnow which is a lagrangian cloud microphysics
model. It is part of the ICON modelling framework which is now
available under BSD-3-C license at https://www.icon-model.org/. Ac-
cess to McSnow can be granted by the developers (Brdar & Seifert,
2018) upon request.
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abstract

Machine learning (ML) algorithms can be used in Earth System mod-
els (ESMs) to emulate sub-grid-scale processes. Due to the statistical
nature of ML algorithms and the high complexity of ESMs, these hy-
brid ML-ESMs require careful validation. Simulation stability needs
to be monitored in fully coupled simulations, and the plausibility of
results needs to be evaluated in suitable experiments.

We present the coupling of SuperdropNet, a machine learning model
for emulating warm rain processes in cloud microphysics, into ICON
(Icosahedral Nonhydrostatic) 2.6.5. SuperdropNet is trained on com-
putationally expensive droplet based simulations and can serve as
an inexpensive proxy within weather prediction models. Superdrop-
Net emulates the collision-coalescence of rain and cloud droplets in a
warm rain scenario and replaces the collision-coalescence process in
the two-moment cloud microphysics scheme. We address the techni-
cal challenge of integrating SuperdropNet, developed in Python and
PyTorch, into ICON, written in Fortran, by implementing three differ-
ent coupling strategies: embedded Python via the C Foreign Function
Interface, pipes, and coupling of program components via YetAnoth-
erCoupler (YAC). We validate the emulator in the warm bubble sce-
nario and find that SuperdropNet runs stable within the experiment.
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In comparing experiment outcomes from the bulk moment scheme
and SuperdropNet, we find that the results are physically consistent,
and discuss differences that are observed for several diagnostic vari-
ables.

In addition, we provide a quantitative and qualitative computa-
tional benchmark for three different coupling strategies—embedded
Python, coupler YAC, and pipes—and find that embedded Python is
a useful software tool for validating hybrid ML-ESMs.

b.1 introduction

Machine learning (ML) is increasingly used in Earth system models
(ESMs) to emulate sub-grid-scale processes that are typically param-
eterized or neglected due to their high computational cost (Chris-
tensen & Zanna, 2022; Dueben et al., 2021; Gentine et al., 2018; Ir-
rgang et al., 2021). ML algorithms are statistical algorithms that are
trained on data. Neural networks are a widely used class of ML al-
gorithms. They contain trainable parameters, the weights and biases,
that are learned from data by minimizing a cost function. The trained
algorithm can then be used for inference, i.e. application on unseen
data of the same kind. When sub-grid-scale processes are replaced by
ML algorithms, the improvement can aim at speeding up the overall
simulation by emulating the existing parameterization. This was first
established by using neural networks to emulate long-wave radiative
transfer (Chevallier et al., 2000; Krasnopolsky et al., 2005). Recent ex-
amples include the emulation of gravitational wave drag (Chantry et
al., 2021), cloud microphysics (Brenowitz et al., 2022), the ocean in a
coupled climate model (Sonnewald et al., 2021), and cloud radiative
effects (Meyer et al., 2022).

Other studies aim to improve the overall description of the Earth
system by providing a better parameterization. ML algorithms can
be trained on high-resolution ESM output or even on separately sim-
ulated processes to emulate resolved processes in a low-resolution
simulation, e.g. for gravity waves (Dong et al., 2023), cloud cover
parameterizations (Grundner et al., 2022), general parameterizations
(Brenowitz & Bretherton, 2018), sub-grid-scale momentum transport
(Yuval & O’Gorman, 2023), effects of cloud resolving simulations
(Rasp et al., 2018), ozone distributions (Nowack et al., 2018), and ra-
diative transfer (Belochitski & Krasnopolsky, 2021b).

Many parameterizations in ESMs can be removed at higher resolu-
tions if the process can be completely resolved, such as the convec-
tive parameterizations. On the other hand, some others would need
to be parameterized even for 1-km scale weather models. Cloud mi-
crophysical processes fall in this category. Processes dealing with the
droplet interactions that lead to precipitation are lumped together
and referred to as cloud microphysical processes. Due to high parti-
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cle counts even at small grid sizes and our incomplete understanding
of processes that occur at a molecular level in clouds (Morrison et
al., 2020), we cannot expect cloud microphysical parameterizations to
become obsolete in the near future for high resolution models.

The parameterization of these processes suffers from a unique ac-
curacy/speed trade-off. The most accurate droplet based Lagrangian
schemes such as the superdroplet method (Shima et al., 2009) are com-
putationally expensive. The commonly used bulk moment schemes
represent the complex particle size distributions as only the first two
moments, referring to the total droplet concentration and the total wa-
ter content of the hydrometeors. For modelling the droplet collisions
in a warm-rain scenario, ICON uses the well studied bulk moment
scheme developed in Seifert and Beheng, 2001. To bridge this gap
and to make the use of more complex microphysical schemes feasible
within operational models, a data-driven approach can be employed.
We present here the integration of SuperdropNet (Sharma & Green-
berg, 2024), an ML algorithm for emulating warm rain processes in
cloud microphysics, into ICON 2.6.5. SuperdropNet is trained on zero
dimensional box model superdroplet simulations from McSnow 1.1.0
(Brdar & Seifert, 2018), a superdroplet based cloud microphysics model,

in a warm rain scenario and replaces the warm rain processes in
the two-moment scheme available in ICON 2.6.5 (Seifert & Beheng,
2006).

Due to the statistical nature of ML algorithms and the complex non-
linear interactions in ESMs, hybrid systems of numerical ESMs and
ML algorithms require careful validation and verification (Brenowitz
& Bretherton, 2019; Dueben et al., 2022). Stand-alone ML algorithms
are first trained on a dataset and then validated on a hold-out test
dataset that is not seen during training. This test set is within the
distribution of the training data. When an ML algorithm is coupled
to an ESM, it may encounter conditions outside of the range of the
training data, and the required extrapolation could lead to instabili-
ties (Yuval et al., 2021). Thus, the so-called offline performance of an
ML algorithm is often not a good indicator of its online performance
(Brenowitz et al., 2020c; Rasp, 2020). Stability is a major concern when
introducing ML emulators into ESMs. It can be improved by adapt-
ing the training procedure (Brenowitz & Bretherton, 2018; Brenowitz
et al., 2020b; Qu & Shi, 2023; Rasp, 2020) or by fulfilling physical con-
straints in the network architecture (Beucler et al., 2021; Yuval et al.,
2021). Careful validation setups can help the scientific community to
build trust in so-called black box ML algorithms (McGovern et al.,
2019).

To avoid devoting resources to the development of ML algorithms
that fail in contact with reality, we encourage incorporating online
testing at an early stage. ML algorithms are developed iteratively, and
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new versions should be tested quickly in their final place of applica-
tion in the Earth system model.

The popular software libraries for ML algorithm development, such
as PyTorch (Paszke et al., 2019), Keras (Chollet et al., 2023), or Ten-
sorflow (Abadi et al., 2016), are based on the Python language. On
the other hand, ICON is written in Fortran. Online testing requires
either rewriting the ML emulator in Fortran, or integrating the two
programming languages with one another (Brenowitz & Bretherton,
2019). Since ML algorithm development is an iterative process, fre-
quent rewrites of the ML algorithm would be required in the former
case. In order to save developer resources, we recommend coupling
Python and Fortran at least during the stage of algorithm develop-
ment.

In Sect. B.2.1 we introduce the warm bubble scenario, which serves
as a test case for SuperdropNet. The ML algorithm itself is described
in B.2.3. Different strategies for integrating SuperdropNet into ICON
are discussed in Sect. B.3. The results and the impact of Superdrop-
Net on atmospheric processes and prognostic variables are presented
in Sect. B.4.2A computational and qualitative benchmark of three dif-
ferent strategies is included in Sect. B.4.3.

b.2 methods

b.2.1 Warm bubble scenario

We validate SuperdropNet in the warm bubble scenario, a test case
for cloud microphysics available in ICON 2.6.5. It describes an atmo-
sphere temperature profile with a warm air bubble at the bottom that
rises vertically. The test case operates on a torus grid. This grid is
created by a domain of 22× 20 cells where periodic boundary con-
ditions are applied in x and y direction. The horizontal resolution is
5 km, and there are 70 vertical levels in z direction. The simulation
time step is 20 s with a total simulation time of 120 min. The exper-
iment is computationally lightweight and runs on a single compute
node. We test SuperdropNet in a warm atmosphere with no ice parti-
cle formation, as well as in a mixed-phase and a cold atmosphere that
both allow ice formation. All simulation parameters are summarized
in Table 2. We transport the tracers required for two-moment cloud
microphysics, i.e. first and second moment of the hydrometeors cloud
water, cloud ice, rain, snow, graupel, and hail.

b.2.2 Bulk moment scheme for cloud microphysics

In our test case, a two-moment bulk scheme is employed to com-
pute the number concentration and total mass for all hydromete-
ors involved. In ICON, the bulk moment scheme used for warm
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Parameter Description Warm bubble Mixed-phase bubble Cold bubble

LD Torus domain length 5000 m

tdyn Dynamical time step 20 s

t2mom Two-moment scheme time step 20 s

zlev Atmospheric levels 70

psrfc Surface pressure 1013.25 hPa

T0 Cold point of atmosphere 303.15 K 273.15 K 268.15 K

γ0 Vertical temperature lapse rate 0.006 K/m 0.009 K/m

z0 Altitude up to which γ0 applies 3000 m 4000 m

γ1 Lapse rate above z0 0.00001 K/m 0.0001 K/m

Tperturb Temperature perturbation 10 K 5 K

ϕbg Background relative humidity 0.7

ϕmx Maximum relative humidity 0.9 0.95

ξ Half-width of temperature perturbation in x 12500 m

ζ Half-width of temperature perturbation in z 200 m 250 m

x0 Center of temperature perturbation in x 0 m

Table 2: Experiment parameters for the warm bubble, mixed-phase bubble,
and the cold bubble test case. Note that tdyn and t2mom reflect the
time step used for training SuperdropNet.

rain cloud microphysics is based on Seifert and Beheng, 2001. To
account for collision-coalescence, the number concentration and to-
tal mass for both cloud and rain are determined by calculating the
rates of collision-coalescence processes, including autoconversion, ac-
cretion, and self-collection. Here autoconversion refers to the process
by which cloud droplets coalesce to form rain droplets while accre-
tion accounts for collisions between rain and cloud droplets. Self-
collection rates for cloud and rain droplets account for collisions that
do not convert cloud droplets into rain. These process rates rely solely
on the droplets themselves and are subsequently utilized to update
the bulk moments for the following time step using a set of ordinary
differential equations.

b.2.3 SuperdropNet cloud microphysics model

SuperdropNet is a machine learning emulator for superdroplet sim-
ulations in a warm rain scenario. It is a neural network consisting of
fully connected layers and is trained to predict updates of the bulk
moments for cloud and rain over different droplet size distributions.
SuperdropNet is detailed in (Sharma & Greenberg, 2024); therefore,
we will provide only a brief summary of the training procedure here.

The superdroplet simulations used for training are generated with
McSnow (Brdar & Seifert, 2018). In (Brdar & Seifert, 2018) McSnow
was used for simulating ice particles, while in (Seifert & Rasp, 2020) it
was simulating a warm rain scenario. Similar to (Seifert & Rasp, 2020),
the training data for SuperdropNet is generated in a warm rain sce-
nario that describes only the conversion of cloud droplets into rain
in a dimensionless control volume. As superdroplet simulations are
stochastic in nature, we use multiple realizations of simulations to
train SuperdropNet. Hence, given a set of initial conditions, Super-
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dropNet is completely deterministic in nature and the bulk moments
estimated by it are the equivalent of averaged superdroplet simula-
tions (Sharma & Greenberg, 2024). The microphysical processes ac-
counted for are accretion, autoconversion and self-collection of rain
and cloud droplets. In ICON, the droplet collisions corresponding
to warm rain processes are treated in a separate module where the
process rates for accretion, autoconversion, and self-collection of rain
and cloud droplets are calculated. The parameterization scheme is lo-
calized, i.e the process rates calculated for a grid cell depend only on
the rain and cloud moments corresponding to that grid cell. Other mi-
crophysical processes and the vertical transport are accounted for in
separate modules, which implies that the parameterization in ICON
is structured such that all individual grid points can be considered
zero-dimensional boxes. Thus, the parameterization setup for droplet
collisions in ICON mimics the training data for SuperdropNet. This
justifies the choice of using a test scenario in ICON for online cou-
pling and testing of SuperdropNet.

Note that only the warm rain processes are replaced with Super-
dropNet. In a cold atmosphere, SuperdropNet can still be coupled to
ICON, but since warm rain processes are not relevant there, including
SuperdropNet is expected not to change the experiment results.

b.2.4 ICON program flow

ICON time loop

Parameterizations

Cloud microphysics

Two moment scheme

Warm rain processes

SuperDropNet

nproma grid cells 
on one thread

process 
atmospheric levels 
sequentially for 
nproma grid cells

Figure B.1: We replace the warm rain processes (gray) with a call to Super-
dropNet (orange). At this point, each thread has access to an
ik-slice, a specific representation in the cloud microphysics pa-
rameterization that corresponds to one atmospheric level for one
block of grid cells.

To illustrate at which point of program execution ML-ESM cou-
pling becomes necessary, we show the flowchart for a single ICON



B.3 integrating superdropnet in icon 73

time step in Fig. B.1, focusing only on the steps relevant to our appli-
cation. Starting from the general ICON time loop, where the full grid
information is available, we enter the cloud microphysics parameter-
ization. At this point, a given thread has access to one block of grid
cells with block length nproma, and all threads work in parallel. The
two-moment scheme has its own grid representation, called ik-slices,
where the block of grid cells is again divided by atmospheric levels.
In our experiment, we simply replace the warm rain processes with
a call to SuperdropNet, which provides updated moments for cloud
and water droplets.

Since the call to the ML component is not at the grid level, but
operates on ik-slices far down in the nested structure of the ICON
program flow, we need to call SuperdropNet several times per time
step – once for each block of grid cells and once for each atmospheric
level. Note that saturation adjustments and evaporation are handled
outside of the parts of the ICON code replaced by SuperdropNet.

b.3 integrating superdropnet in icon

There are several ways to integrate Python machine learning compo-
nents into Fortran code (Partee et al., 2022). Based on a pre-selection
of suitable methods, we have implemented three strategies, so-called
Fortran-Python bridges. For convenience, we add a namelist to ICON
that allows the selection of the coupling strategy. We perform the
experiment with all three methods on the DKRZ Levante system.
Levante is a BullSequana XH2000 supercomputer with 3042 compute
nodes using the 3rd generation of AMD EPYC CPUs (Milan) with 128

cores per node, NVIDIA A100 GPUs, and a 130 Petabyte DDN filesys-
tem. The nodes are connected to a Mellanox Infiniband HDR100 fab-
ric.

b.3.1 Embedding Python as a dynamic library

Using the techniques in (Brenowitz, N., 2023), we develop a dynamic
library based on Python code. The library is generated using the C
Foreign Function Interface (CFFI) (Rigo & Fijalkowski, 2018) and is
linked to ICON at compile time. At runtime, Python code is executed
from the library. Employment of CFFI results in Python and Fortran
sharing their address space, hence passing memory pointers is suffi-
cient to access the same data. Jobs are run in a homogeneous setting,
with Python code executed on the same CPU compute node as ICON.

b.3.2 Using the coupling software YAC

YetAnotherCoupler (YAC) (Hanke et al., 2023, 2016) is commonly
used to couple different ICON components, e.g., atmosphere, ocean
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and I/O. YAC provides Python bindings so that external Python pro-
grams can be coupled with little effort to ICON.

YAC requires a definition of fields that are to be exchanged, and
an exchange schedule that cannot be below the time step of ICON.
For the warm-bubble scenario, we set the block length to the number
of grid cells (880) and define two exchange fields per atmospheric
level, one for the ICON-to-Python exchange, and one for the reverse
exchange. This yields a total of 140 fields, that are exchanged at each
time step. A smaller block length would require the developer to de-
fine more exchange fields, such that bulk moments in each grid cell
can be exchanged at every time step.

Data transfer is building on Message Passing Interface (MPI) rou-
tines that are integrated in YAC. This offers the flexibility to use
heterogeneous jobs, i.e., running ICON on CPU nodes and ML in-
ference on GPU nodes. Due to current limitations of the scheduling
software employed in the DKRZ Levante system, it was not possible
to schedule simulations that span the CPU and the GPU partition of
the system. Thus, we were not able to test the performance in a het-
erogeneous setting. With ICON shifting to GPUs, we foresee that in
the future homogeneous jobs will be run on GPU nodes.

b.3.3 Pipes

We implemented a coupling between n ICON processes and one
Python process running on the same node using FIFO (first-in-first-
out) pipes. The first ICON MPI rank on the node will spawn a sepa-
rate Python process that runs a worker script. Each rank also creates
two pipes, one for each direction of communication (input and output
to the Python worker). The worker iterates over all input pipes, per-
forms the warm rain calculation on data being available and writes
results back to the corresponding ICON process via its output pipe.

While this solution does not incur the potential overhead of using
MPI to communicate locally, it is not a full shared memory solution re-
lying on pointers exclusively. The corresponding extensions to ICON
and the Python worker script are optimized to do as few memory
copies as possible, though naturally some copying cannot be avoided
when interacting with the pipes. As FIFO pipes only work on a lo-
cal node, no cross-node setups are possible, such as running ICON
and Python on different types of nodes (CPU, GPU). As the Python
worker runs as a separate process on a dedicated core, the number of
cores available to ICON is also marginally reduced by one.
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b.3.4 Other methods

We note that the selection of methods in Sects. B.3.1–B.3.3 is by no
means encompassing all the available tools and summarize here the
alternatives to the best of our knowledge:

Four software libraries developed at ECMWF (Bonanni et al., 2022),
the Cambridge Institute for Computing in Climate Science (Elafrou et
al., 2023b), NVIDIA (Alexeev, D., 2023), and Tongji University (Mu et
al., 2023) address ML inference directly by exposing the Tensorflow
and Pytorch APIs for Fortran, respectively. This adds the benefit of
not requiring a Python runtime environment at the time of execution.
Since we require flexibility to use Python code beyond ML inference,
and data exchange is done here via RAM comparable to the approach
described in Sect. B.3.1, we did not investigate these libraries further.

During development, we noted that integrating SmartSim (Partee
et al., 2022) would require a rewrite of the ICON startup routine that
is beyond the scope of this project. On a similar note, the coupling
routines developed in WRF-ML for the open source Weather Research
and Forecasting (WRF) model cannot easily be adjusted to work with
ICON (Zhong et al., 2023).

The Fortran-Keras bridge (Ott et al., 2020) allows for ML inference
in Fortran based on ML algorithms developed in the Keras frame-
work. This limits flexibility, since only those network layers and func-
tionalities supported by the library can be used. On a similar note, the
implementation of the ML algorithm in Neural Fortran (Curcic, 2019)
is contingent on the library, and the Fortran InferenceEngine (Rouson
et al., 2023) is restricted to feed-forward neural networks. We chose to
forego these methods since we desire the flexibility to use any novel
Pytorch developments without depending on their integration into
an external library.

b.4 results

b.4.1 Experiment description

Using the three coupling techniques described in Sects. B.3.1–B.3.3,
we integrate SuperdropNet in ICON. The experiment results are the
same since the same network is called, but the impact on compu-
tational performance is different. We run the warm bubble scenario
and the cold bubble scenario, both with a representation of warm
rain processes using SuperdropNet, as well as using the existing bulk
moment scheme in the two-moment cloud microphysics module.

We compare the effect of replacing warm rain processes with Super-
dropNet on the experiment outcome in Sect. B.4.2. In Sect. B.4.3, we
compare the impact on computational performance that is incurred
by integrating SuperdropNet for all three coupling techniques.
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b.4.2 Comparison of the bulk moment scheme and SuperdropNet

b.4.2.1 Rain rates
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Figure B.2: Grid-averaged quantities for the bulk moment scheme and Su-
perdropNet under (a) warm bubble scenario, (b) cold bubble sce-
nario and (c) mixed phases scenario.

Figure B.2a shows the grid-averaged rain rate in the warm bub-
ble scenario deriving from warm rain processes using ICON’s two-
moment bulk cloud microphysics, with a comparison to Superdrop-
Net microphysics. Since SuperdropNet was trained on particle-based
simulations that avoid certain statistical approximations of bulk mo-
ment schemes, we do not expect the rain rates in both scenarios to
match. Due to the experimental setup, it is not possible to identify
with certainty which model produces the more accurate rain rates.
We do note, however, that SuperdropNet yields physically plausible
rain rates. The rain rate obtained using SuperdropNet evolves in a
predictable way, i.e, there is no rain at the beginning of the simulation,
which eventually builds up to a peak and then slowly rescinds. At the
end of the simulation, the rain rate is zero for both the simulations.
No negative values are observed, and the coupling with Superdrop-
Net does not result in significant divergence of the simulation. This
emphasizes that SuperdropNet is stable over longer simulation runs
and overall behaves as a realistic ML based emulator for droplet colli-
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sions. One of the key differences in the evolution of the rain rate with
the two different parameterizations is that the onset of rain is slightly
delayed with SuperdropNet coupling which indicates a slower con-
version of cloud droplets to rain droplets.

As a sanity check, we perform the cold bubble experiment using
both the bulk moment scheme and SuperdropNet for the warm rain
processes. In this scenario, warm rain processes are not relevant for
the cloud microphysics, and we expect that including SuperdropNet
does not affect processes with frozen particles. Figure B.2b shows the
grid-averaged snow rate.

Both schemes show identical snow rates, which confirms that there
are no undesired side-effects from coupling SuperdropNet when the
conditions in the atmosphere do not allow warm-rain processes.

We also perform a mixed-phase experiment with the same setup.
In this scenario, both frozen and non-frozen particles occur in the at-
mosphere. Figure B.2c shows the grid-averaged rain rate. The grid
average values for all hydrometeors are included in the appendix.
In this case, coupling to SuperdropNet significantly drops the total
rain rate. Since the total water mass remains conserved in ICON, the
suppression of rain formation leads to increased ice, cloud and snow
formation (Figure B.7). In ICON, the warm rain processes are simu-
lated before other processes such as ice nucleation, ice self-collection,
snow melting etc. Hence, SuperdropNet’s effect on decreasing rain
formation is subsequently reflected in the excess of other hydromete-
ors.

b.4.2.2 Heat Transport Fluxes
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Figure B.3: Grid-averaged evaporative heat fluxes for the bulk moment
scheme used in ICON two-moment cloud microphysics, and for
SuperdropNet. The gray area shows the grid-averaged rain ob-
tained using the bulk-moment scheme (see Figure B.2a). High
negative values indicate a larger amount of heat transfer.
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Figure B.4: Averaged meridional winds for the bulk moment scheme used
in ICON two-moment cloud microphysics (left) and for Super-
dropNet (right).

Figure B.3 shows the grid-averaged evaporative fluxes as it evolves
with time during the coupled warm-bubble simulation in ICON. While
in the beginning both the bulk moment scheme and SuperdropNet
produce similar fluxes, the values diverge approximately after about
30 minutes, corresponding to the onset of rain. This difference be-
tween the magnitude of fluxes is also reflected in the evolution of
winds during the simulation. Winds are the primary source of energy
transport and Fig. B.4 shows the evolution of meridional winds in
the simulation. After approximately 40 minutes, which roughly cor-
responds to the end of the first rainfall with both parameterizations,
the wind patterns are markedly different for the bulk moment and the
SuperdropNet parameterizations. The winds appear much stronger
in case of the bulk moment parameterization across the vertical col-
umn. The reduced magnitude of winds in SuperdropNet coupling
corresponds to reduced heat fluxes in Fig. B.3.

Figure B.5 shows the vertical profile of specific humidity at differ-
ent timesteps during the simulation. For the first 40 minutes of the
experiment, both parameterization schemes produce similar specific
humidity profiles but this changes during the later part of the simu-
lation. Close to the surface, it can be observed that the bulk moment
parameterization produces a stronger humidity gradient in compari-
son to SuperdropNet. This difference in the specific humidity gradi-
ent possibly results in a higher evaporative flux for the bulk moment
coupling than the SuperdropNet coupled simulation.

Similarly, in Fig. B.6 the evolution of mean rain droplet mass (X̄r)
is shown. The differences in X̄r close to the surface as calculated us-
ing the bulk moment scheme vs. SuperdropNet become more visible
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Figure B.5: Vertical profile of the specific humidity at different times for the
bulk moment scheme and for SuperdropNet.

0
1500
3000
4500
6000 00:20:00 00:30:00 00:40:00

0 100 200
0

1500
3000
4500
6000 01:00:00

0 100 200

01:20:00

0 100 200

01:40:00

Ge
om

et
ric

 h
ei

gh
t (

m
)

Mean rain droplet mass (µg)

Bulk moment SuperdropNet

Figure B.6: Vertical profile of the rain droplet mass, calculated as the ratio
of the specific rain content and the number concentration of rain
droplets at different times for the bulk moment scheme and for
SuperdropNet.



80 superdropnet in icon

after 40 minutes. In general with the bulk moment parameterization
X̄r values are higher than those with the superdroplet parameteriza-
tion close to the surface. Since the evaporative flux is propotional to
the mean rain mass, higher X̄r in bulk moment coupling results in
higher heat fluxes. Throughout the vertical column, the Superdrop-
Net parameterization usually corresponds to lower X̄r, except at the
40 minutes time step where the high X̄r value near the 3000 m height
also corresponds to a higher amount of the vertically integrated rain
rate as seen in figure B.2a.

Note that the warm-bubble scenario in ICON is highly sensitive
to tiniest fluctuations within the assumptions made for cloud micro-
physics parameterization. Since

many other complex phenomena are simplified and the focus is
only on the formation and dissipation of a single cloud, small devi-
ations in the approximation of the cloud and rain moments lead to
changes in other diagnostic variables that can accumulate over time.

b.4.3 Computational performance upon including SuperdropNet

b.4.3.1 Benchmark

Experiment t2mom (s) Nodes

Bulk moment scheme (Fortran) 1.25 1

CFFI 24.1 1

SuperdropNet (Pytorch) Pipes 62.6 1

YAC 49.5 2

Table 3: Time spent in the two-moment scheme in the ICON warm-bubble
scenario, using the bulk-moment scheme (Fortran), and Superdrop-
Net (Pytorch) coupled to ICON. Note that by coupling Superdrop-
Net to ICON we introduce a scheme that would be computationally
intractable for cloud microphysics in standard numerical simula-
tions. A direct comparison of runtimes is therefore not possible.

We run the experiments on the Levante compute system at the Ger-
man Climate Computing Center on compute nodes equipped with 2

AMD 7763 CPUs with a total of 128 cores and 256 GB main memory.
The nodes are connected with a Mellanox Infiniband HDR100 fabric.

SuperdropNet provides a significant speedup by emulating pro-
cesses that would otherwise be computationally infeasible to include
in ICON, but when adding a Python component to the existing highly
optimized Fortran code we expect an impact on computational per-
formance. Table 3 summarizes the total time spent in the calculation
of the two-moment scheme in the ICON warm bubble scenario, us-
ing the bulk moment scheme and SuperdropNet coupled to ICON
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through three different coupling strategies. The fastest time to solu-
tion is provided by including SuperdropNet via embedded Python,
i.e. the C Foreign Function Interface (CFFI) (Sect. B.3.1). Coupling Su-
perdropNet via YAC (Sect. B.3.2) increases the relative runtime by a
factor of two compared to embedded Python. Note that when cou-
pling with YAC, the ICON and the Python main program run on two
different computational nodes, which doubles the amount of compu-
tational resources required for the experiment. In the current config-
uration, YAC can only be used when the block length is equal to the
grid size, which limits us to small experiments like the bubble scenar-
ios. Coupling SuperdropNet and ICON using pipes is almost three
times slower than embedded Python. On a qualitative note, imple-
menting the coupling via pipes requires changes to core components
of ICON beyond the cloud microphysics parameterization and may
be an additional challenge for ML developers.

We note that coupling a superdroplet model directly to our test
case in ICON is extremely challenging. ICON represents the warm
rain processes as bulk moments, while McSnow represents them as
droplet distributions. For an ideal benchmark simulation, we would
need to completely overhaul the current representation of cloud mi-
crophysics processes in ICON and represent them as superdroplets
for a two-way coupling. At the time of conducting this research, ICON
did not allow for the representation of cloud microphysical processes
as superdroplets, mainly because doing so would be computationally
expensive. This is an active area of research but as of now, remains a
work in progress, which makes SuperdropNet a cheaper, data-driven
alternative to the superdroplet simulations.

b.4.3.2 Detailed evaluation for coupling with embedded Python

Process Time (µs) Fraction

Time reported by ICON 5.0× 102 100%

Time reported by Python 4.8× 102 96%

↪→ out of which time reported for inference 4.4× 102 87%

↪→ out of which time reported for data transfer 4.2× 101 8.5%

Table 4: Processes when coupling SuperdropNet to ICON via embedded
Python and their associated duration. Machine learning inference
is executed on a CPU node of the Levante compute system at the
German Climate Computing Center.

We now turn to the fastest coupling scheme, embedded Python,
and investigate the contribution of the individual steps to the total
runtime. By including SuperdropNet, we incur computational cost
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for data exchange and for machine learning inference. Table 4 sum-
marizes the contribution of the individual parts, measured with a
block length of nproma = 44 grid cells using the ICON timer mod-
ule. ICON averages the execution time across a total of 496, 800 calls
to SuperdropNet. Most of the time can be attributed to model infer-
ence, while the actual data transfer is less significant. This could be
attributed to the fact that ML inference has to be done on CPU. On a
node equipped with an NVIDIA A100 GPU, we measure an inference
time of 267 µs. This corresponds to 33% of the inference time reported
on a CPU (see Table 4).

Note however that a heterogeneous setup, where moments are trans-
fered to and from the GPU nodes via the Mellanox Infiniband net-
work, would likely lead to a larger overall wall time. Given the suc-
cessful efforts of porting ICON to GPU, a future experiment could
be run exclusively on GPUs. By only applying SuperdropNet when
at least one input moment is nonzero, we are already reducing the
number of calls to ML inference to improve performance.

b.5 conclusions

We have coupled SuperdropNet, a machine learning algorithm em-
ulating warm rain processes in a two-moment cloud microphysics
scheme, to ICON. In the warm bubble experiment, the ML emulator
is stable, and the results are physically sound.

The strategies to bridge ICON and Python provide flexibility for
the development of the ML component and account for the fact that
ML development is done iteratively. Both embedded Python and YAC
can be integrated with little programming overhead into ICON. For
a later ML emulator, that replaces a full parameterization at the grid
level, YAC can be used regardless of the block length. Coupling via
pipes is comparatively slow and does not scale well. Since it requires
an extensive rewrite of core components of ICON, we would not rec-
ommend it for implementation. Out of the three coupling strategies
we tested, embedded Python provided the fastest performance. It can
be used independent of the ICON grid to execute any Python code at
any level of the ICON time loop.

We note that by coupling SuperdropNet to ICON we introduce
a scheme that would otherwise be computationally intractable for
cloud microphysics in a standard numerical simulations. A direct
comparison of runtimes is therefore not possible. Note however that
integrating a Python component will slow down the overall time to
solution due to the incurred cost in network inference and data trans-
fer. For applications that are more demanding than our warm bubble
scenario test case, and if the ML component is thoroughly tested, a
reimplementation in Fortran would likely increase performance, at
the expense of losing the flexibility of development.
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A natural extension of this work are more complex modelling sce-
narios. This would involve training machine learning based emula-
tors for other cloud microphysical processes and/or introduction of
other hydrometeors apart from clouds and rain. Apart from droplet
collisions, processes such as sedimentation of droplets and deep con-
vection can be challenging to represent with bulk moment parameter-
ization schemes. Hence, in the future we want to explore the possibil-
ity of creating ML based proxies for these processes while continuing
to use hybrid ML-ESMs for continuous online testing.

appendix

b.5.1 Mixed-phase bubble

We include the grid-averaged cloud ice, cloud water, graupel, snow,
and ice for the mixed-phase experiment described in Section B.4.2.1.
The results are shown in Figure B.7.
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Figure B.7: Grid-averaged quantities for the bulk moment scheme and Su-
perdropNet under mixed phase scenario.
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code availability

The SuperdropNet (version 0.1.0) inference code, trained model weights,
and modules describing the coupling between SuperdropNet infer-
ence and generic Fortran code, analysis scripts and Jupyter notebooks,
as well as the experiment description files are available under the MIT
license here: https://doi.org/10.5281/zenodo.10069121. The license
file is included in the repository. The ICON model code used for the
simulations in this paper is available under https://doi.org/10.5281/
zenodo.8348256. It is based on the ICON release 2.6.5 and includes ad-
ditional code for coupling SuperdropNet. ICON is now publicly avail-
able under BSD-3-C license at https://www.icon-model.org. The ex-
periment results obtained with SuperdropNet (version 0.1.0) coupled
to ICON (version 2.6.5) are available under https://doi.org/10.5281/
zenodo.8348266. We used McSnow (version 1.1.0) for generating the
training data in a warm rain scenario. McSnow is not publicly avail-
able. Access to McSnow can be granted upon agreeing to the ICON
licensing terms by the developers of McSnow (Brdar & Seifert, 2018).
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