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Abstract

Medical research increasingly employs statistical methods for various purposes, such
as identifying risk factors for diseases, advancing precision medicine, and evaluating
treatment outcomes. These methods generally require extensive datasets derived from
personal health information, which includes medical histories, lifestyle factors, treatment
results, and even genetic data. But the growing reliance on this highly sensitive personal
data raises serious privacy and security concerns. One way to balance these concerns with
data demands is the application of data privacy techniques, such as pseudonymization
and anonymization. These techniques enable the analysis of respective data while
protecting individuals’ privacy and reducing risks of re-identification. The distributed
nature of medical research data presents significant challenges for the utilization of these
measures, leading to the central topic of this thesis. This thesis explores the application
of data privacy methods in distributed environments without central data collection and
investigates the associated challenges, limitations, opportunities, and advantages.

The first part of this thesis reviews existing literature on data privacy measures, specif-
ically pseudonymization, de-identification techniques, syntactic privacy models, and
semantic privacy models. This includes technical aspects, including basic techniques
and their strengths and weaknesses, as well as legal considerations, particularly the
interpretation of relevant terms and concepts as well as the debate surrounding data
privacy. The subsequent sections investigate the distributed application of data privacy
techniques in selected scenarios representative for the domain of medical research. The
first example involves the generation of pseudonyms in distributed environments where
individuals contribute data at multiple data sources. Additionally to the generation
of pseudonyms, in our next contribution, we provide a way to protect the disclosure
of pseudonyms by distributing the process across multiple parties. The next example
focuses on distributed anonymization protocols. Here, we identify weaknesses in an
existing distributed syntactic privacy protocol and present an updated protocol version
that addresses these weaknesses. The thesis concludes with a more practice-oriented
contribution: a platform concept for privacy-preserving medical registries that allows for
distributed data collection, which has been successfully utilized in real-world studies.

The intersection of data science, regulatory frameworks, and data privacy measures
has significant implications to the future of medical research, and this thesis aims to
contribute to the advancement of data privacy and security practices in this field.
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Zusammenfassung

Der zunehmende Einsatz datenbasierter, statistischer Methoden in der medizinischen
Forschung ermöglicht unter anderem die Identifikation von Risikofaktoren für Krankhei-
ten, die Beurteilung von Behandlungsverfahren und Fortschritte in der personalisierten
Medizin. Diese Methoden basieren im Allgemeinen auf großen Datenmengen, die aus
personenbeziehbaren Gesundheitsdaten wie etwa der medizinischen Historie, Lebensge-
wohnheiten, Behandlungsergebnissen, und genetischen Profilen gewonnen werden. Die
zunehmende Nutzung dieser hochsensiblen personenbezogenen Daten führt jedoch zu
erheblichen Datenschutz- und Sicherheitsbedenken. Eine Möglichkeit zur Vermittlung
zwischen diesen Bedenken und dem Datenbedarf der Forschung ist der Einsatz von
Maßnahmen wie Pseudonymisierungs- und Anonymisierungstechniken. Diese Techniken
ermöglichen die Analyse entsprechender Gesundheitsdaten, reduzieren jedoch das Risi-
ko einer Re-Identifizierung und schützen so die Privatsphäre Betroffener. Die verteilte
Natur medizinischer Forschungsdaten bringt jedoch wesentliche Herausforderungen für
den Einsatz entsprechender Techniken in verteilten Umgebungen mit sich, was zum
zentralen Problemfeld dieser Arbeit führt. Diese Arbeit erkundet die Anwendung von
Datenschutzmaßnahmen in verteilten Umgebungen ohne zentrale Datensammlung und
untersucht Herausforderungen, Einschränkungen und Vorteile ihres Einsatzes.

Im ersten Teil der Arbeit wird der aktuelle Forschungsstand zu Datenschutzmaßnah-
men, insbesondere Pseudonymisierung, Deidentifizierungstechniken sowie syntaktischen
und semantischen Datenschutzmodellen, dargestellt. Dies umfasst technische Aspekte,
einschließlich grundlegender Techniken sowie ihrer Vor- und Nachteile, ebenso wie
rechtliche Betrachtungen, insbesondere die Interpretation grundlegender Begriffe sowie
die Debatte über die Bewertung von Datenschutztechniken. Die nachfolgenden Abschnit-
te untersuchen den Einsatz von Datenschutztechniken in verteilten Umgebungen anhand
von repräsentativen Szenarien aus dem Bereich der medizinischen Forschung. Das erste
Szenario befasst sich mit der Generierung von Pseudonymen in verteilten Umgebungen,
in denen Individuen Daten in mehreren Datenquellen beisteuern können. Ergänzend
zur Generierung von Pseudonymen wird im zweiten Forschungsbeitrag eine Möglichkeit
für den Schutz des Aufdeckungsprozesses von Pseudonymen bereitgestellt, die auf der
Verteilung des Prozesses auf mehrere Parteien besteht. Das nächste Beispiel fokussiert
verteilte Anonymisierungsverfahren. Es werden Schwachstellen in einem verteilten Pro-
tokoll für syntaktische Privatsphäre identifiziert und es wird eine Version des Protokolls
entworfen, die diese Schwachstellen verhindert. Die Arbeit schließt mit einem eher
praxisorientierten Beitrag: einem Plattformkonzept für datenschutzfreundliche medizini-
sche Register, das eine verteilte Datenerfassung ermöglicht und bereits erfolgreich in der
Praxis eingesetzt wurde.

Die Schnittstelle zwischen Data Science, Regulierung und technischen Datenschutzmaß-
nahmen hat erhebliche Auswirkungen auf die Zukunft der medizinischen Forschung und
diese Arbeit zielt darauf ab, zur Weiterentwicklung der Datenschutz- und Sicherheits-
praktiken in diesem Bereich beizutragen.
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1 Introduction

The increased adoption of data-based statistical methods, such as machine learning
(ML) techniques, enables medical researchers to gain insights that are used in evidence-
based healthcare decision-making and personalized treatment strategies [BS22]. These
methods can utilize a variety of personal health data including medical histories, lifestyle
factors, treatment outcomes, and even genetic profiles which provide a comprehensive
view of an individual’s health status [RR14]. Researchers can leverage this data to,
amongst others [HB20; RR14],

• identify risk factors for diseases such as cancer [CA15], diabetes [Ala+21], or
peripheral artery disease (PAD) [Kre+21], and develop prevention strategies,

• examine how genetic and lifestyle factors influence individual responses to treat-
ments, leading to patient-specific medical interventions also referred to as precision
medicine [CV15],

• assess the impact of different treatments on various outcomes, such as recovery
rates [GTC22], quality of life [Chu+22], or healthcare costs [Tri+15],

• investigate how personal factors, such as socio-economic status or geographical
location, affect access to healthcare services and contribute to health inequali-
ties [XV16], and

• improve the reality of medical care by observing and analyzing processes in day-
to-day operations of hospitals [Beh+17a].

However, as the use of personal data becomes increasingly prevalent in medical research,
privacy concerns and data security issues need to be taken into account progressively.
The sensitivity of personal data in the domain of medical research cannot be overrated,
as the data often describes some of the most private aspects of an individual’s life, from
genetic profiles to sensitive diagnoses [McC07; RP18]. Therefore, this data can have
serious implications for an individual’s privacy. This is also evident in the General Data
Protection Regulation (GDPR), where Article 9 categorizes medical data as belonging to
special categories of personal data, the processing of which is generally prohibited and
allowed only under specific conditions.

To balance the conflict between the inherent sensitivity of personal health information
and data demands by medical research, data privacy measures play a crucial role. A
specific class of measures focuses on preventing the identification of individuals from
data records. Pseudonymization and anonymization1 techniques play a central role in
this class of measures [NH11; VSK20]. Pseudonymization refers to the replacement
of direct identifiers with pseudonyms to protect individual identities while retaining
the ability to link data records and to re-identify data within a controlled environment.

1. The terms pseudonymization and anonymization, along with the techniques they encompass, provoke
intense debates. Thus, their usage in this context is for informal understanding only. A comprehensive
investigation of these terms is provided in Section 2.3.
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In contrast, anonymization involves the alteration of data records or data analysis
processes, for example by removing identifying information, in a way that prevents
linking data to specific individuals altogether. These measures can protect the identities
of research participants and mitigate re-identification risks while enabling data analysis
and knowledge discovery from medical data. Their importance in the field of data
protection is also highlighted by the fact that they are one of the few explicitly mentioned
techniques in the GDPR. By implementing robust anonymization and pseudonymization
strategies into data sharing and analysis, medical researchers can balance data utility
and privacy and ensure compliance with data protection regulations.

The application of these methods in itself already presents major challenges. But
additionally, medical data generally is distributed over various data sources, including
general practitioners, hospitals, insurance companies, and research institutions [Bey+20;
Alm+19]. While this allows medical research to incorporate various aspects about a
patient’s health, the distributed nature poses significant challenges for the utilization
of this data in medical research with respect to data integrity, security, and privacy
requirements. A common strategy to utilize this distributed data in research consists
in collecting the data in a central location and applying data privacy techniques before
conducting data analysis. However, this strategy poses the drawback of granting the
aggregating party access to unmodified, identifiable personal medical data. In scenarios
where legal, ethical, or financial restrictions prevent the data from being centrally
collected by a trustworthy party, this method is not a viable option [Zig+20]. Therefore,
the central question that arises from these considerations is: How can we securely apply
data privacy techniques in distributed environments?

In this thesis, we investigate the application of pseudonymization and anonymiza-
tion techniques in distributed environments without the initial central collection of
data. Other researchers recognize this area as a valuable target for future research as
well [Zig+20; Car+23]. This thesis specifically focusses on the characteristics inherent
to the field of medicine and utilizes illustrative scenarios drawn from this domain. How-
ever, the applicability of our contributions is not limited to the healthcare sector, but can
prove relevant in comparable contexts with similar constraints, where sensitive personal
data is employed for research purposes.

In the following, we present the research questions arising from this problem in Sec-
tion 1.1, summarize the contributions of this thesis in Section 1.2, list publications and
real-world uses of contributions in Section 1.3, and provide an overview of the thesis
structure in Section 1.4.

1.1 Research Questions and Methodology

Based on the problem motivation we derive the following research questions:

RQ.1. Which risks arise from data publication of personal data and which technical
measures exist to protect against these? Which advantages and disadvantages do
they entail?

RQ.2. How can existing technical measures be utilized in distributed environments?
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RQ.3. Can existing technical measures for distributed environments be improved with
respect to specific properties?

RQ.4. How can data privacy measures be used to protect patients’ privacy in distributed
systems already present in medical research practice? Which requirements are
dictated by their practical application?

To address the first research question RQ.1, we perform a comprehensive survey of
existing literature and contextualize the results. The survey primarily focuses on differ-
ent classes of technical measures utilized to protect individuals’ data, especially their
basic techniques, advantages, and disadvantages. However, the issue of privacy risks
arising from data publication is equally connected to social considerations as it is to
technical aspects. Additionally, the assessment of privacy-preserving techniques also
is impacted by requirements derived from the application scenario as well as from
regulatory frameworks. Therefore, the survey covers further related topics such as a
systematization of disclosure risks, the diverse use of relevant terms in different fields,
real-world examples of inadequately protected published datasets, and a subsumption
of the debate surrounding data privacy across several fields.

Research questions RQ.2 and RQ.3 are of a general scope. This thesis aims to address
them exemplarily by examining instances of various techniques employed within dis-
tributed environments. To achieve this, we have selected three prevalent examples from
healthcare research, which are well-suited as representative examples.

• Pseudonymization is a data privacy measure widely used by medical practitioners
and researchers due to its preservation of data utility, the option of protected
re-identification, and the central role it plays in the GDPR [GS19; Mou+18]. Our
first example therefore consists in the generation of pseudonyms in distributed
environments where patients contribute data at multiple datasources.

• The second example considers the counterpart of pseudonym generation, that is
the disclosure of patient identities behind a pseudonym. This can be an important
part of pseudonymization in the medical domain, for example used to check the
validity of research data [Pra21]. We investigate an approach to protect the
disclosure by distributing the process across multiple parties.

• Syntactic privacy models are also used frequently in the medical domain as they
preserve truthfulness on the data record level and result in datasets for which
data analysts can use already existing and well-known methods and tools [DE13;
Coh22]. Therefore, in our third example we examine a popular existing protocol
for achieving syntactic privacy for datasets in distributed environments.

The second research question RQ.2 represents the core of the thesis. We investigate
architectures where data privacy measures are applied in distributed environments.
In particular and as dictated by our examples, we look at distributed pseudonym
generation, distributed pseudonym disclosure, and distributed syntactic privacy. While
these architectures tackle specific problems, the encountered benefits, challenges, and
limitations can provide valuable insights for the application of similar techniques in
further distributed scenarios.

The third research question RQ.3 leaves open a wide range of qualities one can look at
for improving the application of data privacy measures in distributed environments. We
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especially focus on improving scenario-specific privacy and security properties which
target the protection of individual’s data or sensitive processes against various actors.
Examples include the preservation of of identity confidentiality in the example of
distributed pseudonym generation, an improved way to update authorized parties for
distributed pseudonym disclosure, and the elimination of weaknesses in a distributed
syntactic privacy protocol. Improving solutions regarding further properties, such
as performance, scalability, reliability, and transparency, present valuable research
opportunities as well, but are not the primary focus of this thesis.

The fourth research question RQ.4 asks about the transfer of theoretical results into
systems already used by medical research in practice. To answer this question we decided
to concentrate on medical registries – systems which collect medical data regarding
a specific study subject systematically over a long period of time – because they play
an important role in healthcare research today [Beh+23]. We approach this question
by developing a concept for a privacy-preserving medical registry using security and
privacy measures including pseudonymization and anonymization techniques. This
concept deals with practical problems such as authentication and authorization, secure
passwords, key safety, and GDPR compliance. The implementation and application in
two real-world medical studies allow us to evaluate our concept in a practical setting.

1.2 Contributions

Within this thesis, various research contributions focusing on the distributed application
of privacy-preserving technical measures for data publication are presented. This section
summarizes the main contributions of this thesis and explains their relation to the
research questions.

C.1: Technical and Legal Literature Review

This contribution entails the results of the comprehensive literature overview. First, we
look at the risks which can arise for data subjects from the dissemination of personal data
and present real-world examples of published, allegedly protected datasets, whose pro-
tection measures turned out to be insufficient. After providing an overview of (legal and
technical) definitions of relevant terms personal data, anonymization, de-identification,
and pseudonymization, we investigate specific techniques for privacy-preserving data
dissemination. We trace the development of the field coarsely and look specifically at
pseudonymization, long-known de-identification techniques like generalization, syntac-
tic privacy models, and finally semantic privacy models and differential privacy (DP) in
particular as a representative for the state-of-the-art. This contribution does not focus
on the distributed setting but just introduces fundamental techniques in detail. The
debate around data privacy and (un-)suitable technical measures caused emotional
discussions, especially in the fields of computer science and law. Therefore we finally
give an overview of different perspectives in this debate, try to clear up the underlying
misunderstandings, and provide an outlook on potential solutions to the debate. The
contribution may be of independent interest to readers who want to gain insight into the
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1.2 Contributions

field of privacy-preserving data dissemination as a foundation for future research beyond
the scope of this thesis. This contribution is directed at research question RQ.1.

C.2: Distributed Pseudonym Generation

We present a solution for the generation of pseudonyms in distributed environments.
Data records regarding indiviuals can be collected at various data sources. A data
processor relies upon these data records but should only ever receive pseudonymized
data records to limit privacy risks. The main objective is to support globally consistent
pseudonyms, in other words each individual is consistently assigned the same pseudonym
regardless of the originating data sources. Building up on related work, we propose
several properties which a solution should entail at best. With these properties in mind,
we present our own scheme which utilizes a specific searchable encryption (SE) scheme
to especially tackle the problem of managing data sources, which was left open in related
work. We compare our scheme to related work with respect to proposed properties
and find that no scheme fulfills all properties, leaving room for further research work.
This contribution addresses research question RQ.2 in that we provide an approach to
distributed pseudonymization. Additionally, it also tackles research question RQ.3 in
that we improve existing solutions to the problem of distributed pseudonym generation
regarding the management of data sources.

C.3: Distributed Pseudonym Disclosure

Additionally to the distributed generation of pseudonyms we present an approach
to distribute the pseudonym disclosure process. Due to the sensitivity of the data
subject-pseudonym relationship this process should be protected at all costs. One
method to protect sensitive processes is the so-called multi-eye principle – the idea to
require the approval and action of multiple parties to perform a process. Our approach
implements the multi-eye principle for pseudonym disclosure based on a cryptographic
scheme referred to as threshold decryption. These schemes distribute the decryption
process in public-key schemes so that multiple authorized parties have to collaborate
for the decryption of ciphertexts. While applying these schemes to protect pseudonym
disclosure is straightforward, further challenges arise in practice. Especially the question
of key management, for instance how to enable or disable parties to participate in
the decryption process, is not trivial. We propose a novel approach to this problem
based on combining threshold decryption and another cryptographic scheme called
proxy re-encryption (PRE) to improve aspects of the key management in comparison to
related work. This contribution addresses research question RQ.2 in that we provide
an approach to distributed pseudonym disclosure. Furthermore we improve on existing
approaches for key management in threshold schemes (RQ.3).

C.4: Distributed Syntactic Anonymization

In this contribution we shift the focus from distributed pseudonymization to distributed
anonymization. In particular, we analyze a specific protocol for distributed syntactic pri-
vacy, uncovering weaknesses that compromise the central syntactic privacy guarantees of
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the protocol. These weaknesses arise from the unthoughtful use of a subprotocol for se-
cure summation of sensitive inputs. We employ a general secure multi-party computation
(SMPC) framework to replace the subprotocol and prevent the weaknesses. Using the
framework requires a deep analysis of the original protocol, a thoughtful construction of
computation circuits essential for the SMPC subprotocol, and an adequate substitution
of the vulnerable subprotocol. This contribution addresses research questions RQ.2 and
RQ.3 in that we provide an updated approach to distributed syntactic anonymization
which prevents vulnerabilities in the original approach.

C.5: Privacy-Preserving Medical Registry

In comparison to primarily academic contributions discussed so far, this contribution
focuses on the practical application of privacy-preserving techniques to improve privacy
and security guarantees in systems prevalent in medical research. In particular, we
target the problem of designing and implementing a privacy-preserving medical registry
– a system to prospectively collect data concerning patients which match certain criteria
over a longer period of time. The registry should offer further functionalities such as
monitoring the validity of collected data and comparing the performance of healthcare
providers. We implement a distributed system which implements various privacy and
security mechanisms to protect personal and medical patient data. Additionally, we
offer an interface enabling researchers to securely access medical data with adequate
privacy protections in place. This contribution tackles research questions RQ.2 and
RQ.4 by concentrating on the practical implementation and deployment of a privacy-
preserving technical solution in a distributed environment and comprehensively detailing
the essential measures required to meet security and privacy requirements.

1.3 Publications and Real-World Use

The central motivation of this thesis and preliminary ideas for contributions C.2, C.3, and
C.5 have been published in the proceedings of the GI Sicherheit [Pet20]. Contribution
C.3 extends work published at the ACM SAC [Zim+20]. The general platform concept
for the privacy-preserving medical registry (contribution C.4) has been published in
DuD [Pet+19]. The developed platform is used in two medical studies. The IDOMENEO
study [Beh+17a] examined the reality of care for patients suffering from PAD in over
30 medical centers in Germany. As part of the study, data from over 5,600 patients was
collected in our platform [BD21]. The ongoing INCREASE study [Klo+22] investigates
the use of modern therapy concepts in minimally invasive heart valve procedures.

1.4 Structure

The thesis is structured as follows: Chapter 2 presents the results of the literature review
and therefore covers contribution C.1. In Chapter 3 we introduce our approach to the
generation of globally consistent pseudonyms in distributed environments (contribution
C.2). Our method for achieving the multi-eye principle for pseudonym disclosure
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(contribution C.3) is covered in Chapter 4. Chapter 5 introduces our contribution C.4: it
demonstrates the vulnerabilities in a protocol for distributed syntactic anonymization
and our updated protocol which prevents these vulnerabilities. In Chapter 6 we present
a technique for privacy-preserving medical registries (contribution C.5). Chapter 7
concludes the thesis.
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2 Data Privacy Measures for Protecting Sensitive Data

The importance of privacy-preserving publishing and processing of sensitive personal
data has been acknowledged for a long time. A substantial body of research literature,
practical guidelines, and legal regulations have emerged from different disciplines,
including statistics, law, computer science, and even philosophy. In this chapter, we
present a comprehensive overview of the achieved results (and failures). While our
primary focus is on the various technical measures employed to protect individuals’ data
in datasets, we include further related topics as well. These include the risks associated
with data publication, an overview of relevant terms and their different understandings,
real-world examples of inadequately protected published datasets, and a subsumption
of the debate surrounding data privacy across several fields.

Our overview concentrates on so-called microdata, that is information about specific
individuals on an individual level [BS08]. One can think of this as data in a tabular
form, in which attributes are represented as columns and each individual is associated
with one (or multiple) rows. We explicitly do not address privacy risks arising from
“rich” data types, such as images, videos, audio, or unstructured text. Readers interested
in these topics can look into several surveys [RAP16; CMV21; ZC22] as a starting point
for further research.

In the following, we briefly introduce fundamental concepts related to data privacy
as a basis for the chapter. There are two main research directions in the area of
privacy-preserving usage of data: privacy-preserving data publishing (PPDP) and privacy-
preserving data mining (PPDM). PPDP deals with the processing of datasets in a way
so that they can be published as individual records without violating the privacy of
included individuals. There are several surveys regarding PPDP [Che+09; Fun+10a;
GLS14; Zig+20; Ola+22]. PPDM, a term coined by Agrawal and Srikant [AS00],
comprises methods that extract knowledge from datasets while preventing the disclosure
of individuals’ sensitive information. These methods can vary from publishing statistical
tables with aggregated values over classical data mining methods like association rule
mining to the privacy-preserving application of modern ML techniques such as neural
networks. There are several surveys about results in this field [AY08; Agg15; MV17].

The distinction between these two fields is not always clear. While some publications
see PPDP as a subcategory of PPDM [MV17; Alp16; AY08; Agg15], others clearly
differentiate between them: Zigomitros et al. [Zig+20] highlight the importance of
truthfulness on the record level for PPDP methods which is not the case for PPDM.
Another difference they bring up is that PPDP methods in most cases do not target
specific types of data analyses but allow for the application of various techniques with
different objectives. This requires to protect the privacy of individuals before releasing
the data against all possible attacks. In comparison, in PPDM scenarios the query must
be known before applying privacy-preserving measures and necessary safeguards specific
to the data mining task can be applied during method execution.

8



A related distinction is the one between interactive and non-interactive privacy mecha-
nisms [Dwo06]. In the interactive setting, the trusted dataset holder provides a query
interface for authorized users. To protect individual’s privacy, one can use query audit-
ing, that is, deny queries which reveal sensitive information, or output perturbation,
in other words, perturb query results in a privacy-preserving way [Agg+05]. In the
non-interactive setting, the dataset is transformed in a way that aims at protecting
the privacy of individuals. An important subcategory is what Ohm [Ohm09] terms
release-and-forget anonymization1: The dataset gets anonymized, for example, by re-
moving direct identifiers and perturbing others, and is afterwards released publicly
without further restrictions. Other possibilities include publishing aggregate statistics or
subsamples of the full dataset.

Finally, we distinguish two classes of privacy models based on their underlying principle.
A class of related models can be subsumed under the term syntactic privacy models2. They
guarantee privacy by syntactic conditions on the structure of the dataset, for example,
by generalizing records in a dataset until an algorithmically verifiable condition is
met [CT13]. One example (we will cover in Section 2.6.2) is k-anonymity – a privacy
model which requires that at least k data records in a dataset share the same set of a
specific kind of attribute. This syntactic condition can easily be checked by just looking
on the dataset.

In comparison, semantic privacy models3 (sometimes also referred to as probabilistic
privacy models) are concerned with the relationship between inputs and outputs of data
releasing mechanisms [KM12]. These models describe a property of the mechanism
and not a property of its result. The most famous representative of this model class
is DP, which we will introduce in Section 2.7. The basic idea of differentially private
mechanisms is to release results on which the presence (or absence) of a single individual
in the dataset has only small and provably bounded influence.

After having introduced these preliminary concepts, we provide an overview of this
chapters’s content and structure. The first Section 2.1 deals with privacy risks arising for
individuals from datasets. Section 2.2 presents a fundamental tradeoff between privacy
and utility when using privacy techniques for datasets. In Section 2.3, we look into
definitions of relevant terms like personal data, pseudonymization, and anonymization.
The following sections cover relevant privacy techniques, including their functionality,
strengths, and weaknesses. In this chapter, we only cover generally applicable meth-
ods, that is methods which can be used for a variety of data analysis tasks, but not
specific privacy-preserving methods for a distinct task (such as the privacy-preserving
computation of association rules [Ver13]). We present details on Pseudonymization in
Section 2.4, on simple de-identification techniques in Section 2.5, on syntactic privacy
models in Section 2.6, and on DP as a representative semantic privacy model in Sec-
tion 2.7. Section 2.8 provides an overview of practical re-identification attacks. The

1. The term anonymization and related terms like de-identification, while inducing some intuitive idea
of their meaning in most people, entail quite varying understandings. We provide an overview in
Section 2.3.

2. The differentiation between syntactic and semantic privacy models probably was first introduced by
Machanavajjhala [Mac08].

3. Here, the term semantic is borrowed from semantic encryption, introduced by Goldwasser and Mi-
cali [GM84]: “Informally, a system is semantically secure if whatever an eavesdropper can compute
about the cleartext given the ciphertext, he can also compute without the cyphertext.”

9
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final Section 2.9 portrays the academic discourse in computer science and law about
data privacy and appropriate techniques, integrates the contents of this chapter in the
discourse, and looks into proposals for necessary policy changes.

2.1 Systematization of Disclosure Risks

Publishing or sharing data can entail different risks for individuals, generally referred to
as disclosure risks (other publications refer to these risks as privacy threats [GLS14]).
Solove [Sol06] defines disclosure as “the revelation of truthful information about a
person that impacts the way others judge her character”. This information can cause phys-
ical, emotional, financial, or reputational harm in varying ways, including [Sol06]:

• The information can put people at direct risk, for example, in the case of published
addresses of domestic abuse victims.

• The information can lead to irrational judgment of an individual based on common
stereotypical opinions with respect to, amongst others, diseases such as human im-
munodeficiency virus (HIV), political views, sexual orientation, and socioeconomic
status.

• It can cause discriminatory and societally undesirable decisions, for example,
employment decisions based on genetic data.

• Scattered information about an individual can distort the assessment of the indi-
vidual by others.

• Published information about an individual’s past can inhibit their ability to change
for the better if the stigma of their past actions sticks to them.

• Public information can be used in a variety of unexpected ways, including many
which deviate from the implicit or specified purpose the data should fulfill.

These risks can harm individuals contributing to published or shared data especially, but
in some cases even other individuals.

In this section, we have a closer look at the disclosure risks individuals may face from
having their information published. Existing literature considers differing sets of risks,
names risks in different fashions, or uses the same term for different risks or as Duncan
and Lambert express it, “different interpretations of disclosure from microdata are
possible and confusion is likely as long as intuition is not formalized.” [DL89] In this
section we provide an overview of these varying risk definitions and develop a unifying
taxonomy of disclosure risks.

2.1.1 Literature Overview

A first disclosure concept was provided by Dalenius [Dal77]: “If the release of the
statistics S makes it possible to determine the value DK more accurately than is possible
without access to S, a disclosure has taken place”. DK in this case describes an arbitrary
attribute value (even for attributes not in the dataset) for some individual (not necessarily
part of the dataset). In other words, according to Dalenius, a disclosure takes place
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as soon as the dataset alters an adversary’s beliefs about any individual’s data to any
extent. This is the broadest definition of a disclosure imaginable. Furthermore, Dalenius
introduces ideas about the (un-)certainty of a disclosure by differentiating between exact
and approximate disclosure.

To the best of our knowledge, the first conceptualization of different disclosure risks was
provided by Duncan and Lambert [DL89]. They distinguish four different risks: identity
disclosure, attribute disclosure, inferential disclosure, and population disclosure. Identity
disclosure and attribute disclosure term related risks: Identity disclosure describes the
association of an individual with a data record and attribute disclosure the possibility to
obtain reliable information about an individual as a result of this association. They use
inferential disclosure as the risk for inferring more information about an individual with
high confidence than what could be determined without the dataset. Finally, they include
the risk of population disclosure (also referred to as model disclosure). This describes the
possibility to draw conclusions about the (confidential) relationship between population
characteristics and sensitive attributes.

Machanavajjhala et al. [Mac+06] cover attribute disclosure in detail. They include the
positive and negative disclosure principles. A positive disclosure occurs if an adver-
sary can deduce the value of a sensitive attribute for some individual. In contrast, a
negative disclosure allows an adversary to rule out one or multiple sensitive attribute
values for an individual. Additionally, they explicitly use a probabilistic formulation,
namely “an adversary can correctly identify the value of a sensitive attribute with high
probability” [Mac+06].

Nergiz, Atzori, and Clifton [NAC07] introduce the concept of membership disclosure
which tells an adversary if an individual’s data is (not) part of the published dataset.
This information can already present a severe privacy violation, for example, when the
presence of an individual in a database of cancer patients can be inferred.

Fung et al. [Fun+10a] categorize disclosure risks into record linkage, attribute linkage,
table linkage, and probabilistic attack. Record linkage describes the unique identification
of an individual’s data record in the dataset and attribute linkage the inference of
sensitive values of an individual from the dataset (without precisely identifying the data
record). Table linkage represents the risk which allows an adversary to determine the
presence or absence of an individual’s data record in the dataset. They extend these
risks with the probabilistic attack: This risk exists, when the prior and posterior beliefs
of an adversary about an individual’s sensitive information in the dataset vary to a large
extent caused by the published dataset.

Another slightly different variant of definitions is given by Templ [Tem17]. They use
identity disclosure as usual, in other words, as the association of an individual with a
specific data record. Attribute disclosure is described as the risk which allows an intruder
to determine new characteristics of an individual based on the information in the dataset.
They categorize membership disclosure as a special case of attribute disclosure which
describes the disclosure of group membership, for example, when the individual is
part of a community of faith. Furthermore, they introduce inferential disclosure as the
possibility to determine some sensitive attribute value of an individual more accurately
with the dataset information than without.
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The European Union (EU) Article 29 Working Party describes three risks the anonymiza-
tion of data should protect against in their Opinion 05/2014 on data anonymization
techniques: singling out, linkability, and inference [Par14]. Singling out means to find
records identifying an individual in the dataset. Linkability allows an adversary to link
records of an individual or at least a group of individuals in the same or different datasets
– a risk, which is not explicitly covered by the previous risk definitions. Finally, inference
is the possibility to deduce an attribute value from a set of other attribute values.

The ISO standard 25237 Health informatics — Pseudonymization [Sta17] also provides
an overview of disclosure risks (referred to as attacker goals). The standard differenti-
ates between full re-identification, partial re-identification (information recovery), and
database membership. Full re-identification describes the association of individual and
data record and further divides this goal regarding the direction of identification: An
adversary’s goal can be to identify the individual related to a specific data record or
to identify the data record for a specific individual. Partial re-identification means the
inference of single characteristics for individuals from the dataset. Database membership
stands for the determination of (non-)participation of an individual in the dataset. It
explicitly mentions the statistical nature of algorithms used to reach these goals.

The ISO/IEC standard 20889 Privacy enhancing data de-identification terminology and
classification of techniques [Sta18] also differentiates re-identification attacks based on
their goals:

• Re-identify a record belonging to a specific individual (prosecutor attack),

• re-identify the individual of a specific record (journalist attack),

• re-identify as many records with the corresponding individuals (marketer attack),

• establish the presence of an individual in the dataset, and

• deduce a sensitive attribute associated with a group of other attributes.

The standard includes the risks from [Par14] as re-identification approaches used to reach
the attacker goals.

2.1.2 Unified Taxonomy

In this section, we provide a unifying taxonomy and categorize the covered disclosure
risks discussed in the literature within it.

First, we specify the scenario to allow for unambiguous disclosure risk definitions. A
dataset D contains n data records D1, . . . , Dn and each data record consists of the same
m attributes A1 ∈ A1, . . . , Am ∈ Am for attribute value domains Ai. Each data record
belongs to exactly one individual I ∈ P for some population P (while there can be
several data records belonging to the same individual, potentially). In most cases, there
are individuals I ∈ P who are not part of the dataset D, so P = {I ∈ D} ∪ {I ̸∈ D}4. As
an example, one can think of the German Cancer Registry providing data like gender, age,

4. We abuse our notation slightly here. I ∈ D should be understood as dataset D contains at least one
record Di which is related to individual I.
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city, cancer diagnosis, and several medical information about individual cancer patients.
All these patients are part of the larger population of German citizens.

Identity, Attribute, and Membership Disclosure

With this scenario in mind, we can develop our unifying taxonomy. In the literature
[DL89; Fun+10a; Sta18; Sta17] there are three main disclosure risks related to individ-
uals I ∈ D:

• An adversary might be able to link a data record Di ∈ D to an individual Ij,
disclosing all attribute values to them. We follow Duncan and Lambert [DL89]
here and use the term identity disclosure. Some authors [Sta18; Sta17] further
divide this risk depending on the goal of an attacker, but the underlying risk of
linking data record and individual remains the same.

• An adversary might be able to deduce some attribute values of an individual Ij
from the dataset D (without directly identifying the specific data record Di). For
this risk we use the term attribute disclosure, like, amongst others, Templ [Tem17]
does.

• An adversary might be able to tell, if an individual I ∈ P is part of the dataset D.
As in the publication introducing this risk [NAC07], we term this disclosure risk
membership disclosure.

Deterministic and Probabilistic Disclosure

Each of these disclosure risks can be either considered in a deterministic or in a proba-
bilistic sense. For the deterministic case, a disclosure happens only if the adversary is
certain about the specific deduction, for example, if they can link the data record to an
individual with probability P = 1. This interpretation is especially common for the case
of identity disclosure and membership disclosure.

A probabilistic disclosure, on the other hand, does not require this certainty. There are
two possible interpretations of this disclosure type:

• First, the disclosure allows an adversary to deduce the disclosing fact with high
certainty. One example for this interpretation is given by Machanavajjhala et
al. [Mac+06] who use this interpretation for attribute disclosure.

• The second interpretation defines the disclosure as the significant change of an
adversary’s beliefs about the disclosing fact based on the dataset. This is described
by Fung et al. [Fun+10a] as a probabilistic attack and is also related to Dalenius’
disclosure definition [Dal77].

While we do not distinguish these cases in our taxonomy to keep it more general, this
distinction can lead to strongly differing disclosure scenarios. For example, if a dataset
D changes an adversary’s belief about an individual I suffering from a specific disease c
from a prior belief of P[DI

disease = c] = 0.01 to a posterior belief P[DI
disease = c | D] = 0.2,

this might not be considered a high certainty in most cases, but surely it changes the
adversary’s beliefs to a large extent. Furthermore, it should be noted that the terms with
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high certainty and to a large extent allow for a wide spectrum of concrete instantiations of
what is defined as a disclosure. Finally, we want to mention that while identity disclosure
in the literature most often refers to deterministic identity disclosure, attribute disclosure
is often regarded in a probabilistic sense.

Positive and Negative Disclosure

Another distinction, often neglected in the literature, is the one between positive and
negative disclosure, as introduced by Machanavajjhala et al. [Mac+06] for attribute
disclosure. A disclosure can not only describe the situation in which an adversary
can determine the specific attribute value Ai for an individual I (positive attribute
disclosure), but also the situation in which they can eliminate possible attribute values
(negative attribute disclosure). For example, when an individual is not attributed as free
from chronic diseases in an insurance dataset, this sole information poses a risk for the
individual – independent from the specific chronic disease the individual suffers from.

Negative Membership Disclosure

While the risks covered so far are related to individuals I ∈ D whose data is part of
the dataset, in specific situations a dataset can also pose disclosure risks for individuals
I ̸∈ D not in the dataset. Analogous to the case of negative attribute disclosure, we
include negative membership disclosure in our taxonomy. The fact that an individual’s
data is not part of a dataset can also pose a risk for affected individuals. For example,
not being part of a donors dataset can lead to social pressure for the individual.

Population Disclosure

Another rarely covered disclosure risk results from deductions an adversary can draw
from statistical or deterministic correlations in the dataset D which are valid in the
whole population P. These correlations learned from dataset D can also be used to
harm individuals I ∈ P whose data is not contained in dataset D, so that publishing
the dataset D results in a disclosure risk for individuals I ̸∈ D. For example, when
an adversary learns from a dataset that specific markers in the human genome are
responsible for an individual’s probability of suffering a depression, they can exploit
this fact against all individuals from the population, not just ones participating in the
dataset. Another example includes the refusal of loans or varying insurance costs for
individuals from a certain subpopulation based on statistical inferences with respect to
the subpopulation drawn from a dataset in which the respective individual’s data is not
contained. Following Duncan and Lambert [DL89], we call this risk population disclosure.
Since this disclosure risk for individuals I in the dataset D is already covered by our
notion of probabilistic positive attribute disclosure, we explicitly exclude individuals
I ∈ D in this disclosure risk.

One can argue that drawing conclusions about individuals whose data is not part of
the dataset D can barely be seen as a disclosure risk related to D. However, Cor-
mode [Cor11] takes a different line of thought here. He argues that it is irrelevant to an
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adversary whether an individual is part of a dataset if it allows them to learn individual’s
sensitive information with a high probability – or as they put it: “The core issue is
that latent properties of a population, when learned, can compromise the privacy of an
individual” [Cor11]. But, as they additionally state, this issue might not be resolvable (at
least in some settings) since learning statistical correlations can represent the exclusive
reason for the existence of datasets.

Related to this disclosure risk is the discussion about the deFinetti attack covered in
Section 2.6.8, where a ML classifier is trained on a syntactically anonymized dataset
to disclose correlations between attribute values of an individual and their sensitive
values. With respect to this attack, Clifton and Tassa [CT13] argue that it should only be
considered a threat to an individual’s privacy if the success of the attack, in other words,
the accuracy of the trained model, is significantly higher for individuals whose data is
part of the database (which we define as probabilistic attribute disclosure).

El Emam and Álvarez [EÁ14] provide similar arguments regarding population disclosure
in general. While “[i]nferences from data can be discriminatory, stigmatizing, creepy,
or surprising” [EÁ14] and decisions based on these inferences can have serious conse-
quences for individuals, this is independent of their participation in the dataset. In the
authors’ view, the problematic part are not the inferences themself but the (potentially
inappropriate) decisions based on them. Similarly, Schwartz and Solove [SS11] rate
this risk from a legal standpoint as something which is broader than just privacy law.
Regulations concerning, for example, civil rights, discrimination, and insurance policies
play a decisive role. This argument is based on the idea that privacy harms result from
the use of data associated with specific individuals.

Resulting Taxonomy

Combining these ideas results in a taxonomy of disclosure risks presented in Figure 2.1.
Table 2.1 provides a mapping of the terms used in literature and our taxonomy. After
looking at the fundamental disclosure risks arising from data publication, in the next
section we present the fundamental problem of privacy-preserving data publication.

2.2 Privacy-Utility Tradeoff

A central concept in the field of privacy-preserving data mining and publishing is the
privacy-utility tradeoff 5. The concept describes the conflict of protecting the privacy of
individuals in a dataset and the feasibility to compute useful statistics based on this
dataset. Protection methods can balance these two opposing goals, but achieving both is
generally not possible. The existence of such a tradeoff for these methods is intuitively
obvious by looking at two extreme cases [RSH07]. Publishing an unaltered version of a
dataset provides maximum utility and no privacy. In contrast, not publishing the dataset
at all provides maximum privacy without any utility.

5. In the literature nearly each and every combination of privacy, risk, or protection and utility, accuracy, or
benefit can be found as term for this tradeoff concept.
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Figure 2.1: Unified taxonomy of disclosure risks. The leaf nodes describe deterministic
(D) or probabilistic (P) risks, respectively. While identity, attribute, and
positive membership disclosure apply to individuals whose data is part
of the dataset, inferential and negative membership disclosure apply to
non-participants (indicated by the different shade of gray).

Li and Li [LL09] point out the differences between privacy and utility and their indirect
relationship: On one hand, publishing data can provide utility to the whole society, for
example, by allowing medical research to use precise data, and each provided data
record potentially increases the utility. On the other hand, the publication can result
in privacy loss for individuals and affect them to different degrees. So privacy is an
individual concept and the publication of a dataset must depend on protecting each
individual, while utility is an aggregate concept and published information adds up,
even when distortion reduces the utility.

When looking at concrete instantiations of the privacy-utility tradeoff, one has to choose
specific measures for both concepts. For privacy, options include the privacy guarantees
of syntactic privacy models like k-anonymity (see Section 2.6) or comparisons of prior
and posterior adversarial beliefs like used in DP (see Section 2.7). There are two generic
approaches for measuring the utility of a dataset. First, one can use generic metrics to
express the general utility of a protected dataset in numerical terms. Since there is no
direct metric for general utility, often a metric based on information loss with respect to
some aspect of the protection process is used as a proxy [BS08]. The basic idea is that
less distorted datasets generally provide better utility. Examples include the number
of generalization steps necessary to obtain the protected dataset or averages sizes of
resulting equivalence classes [LL09]. Brickell and Shmatikov [BS08] argue that the
utility of a dataset must always be assessed with respect to a specific data mining task.
Protected datasets might support the accurate execution of one data mining task, for
example, classification according to a sensitive attribute, while not supporting others,
such as clustering based on another attribute. This leads to the second approach which
assesses the utility of a dataset in terms of a specific data mining task. For example,
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Rastogi, Suciu, and Hong [RSH07] use the estimation of counting query results as a
utility measure. Li and Li [LL09] counter this approach by arguing that if the specific
task is known beforehand, one can just publish the result of this task instead of the
protected dataset.

The general approach to this tradeoff in practice is to (intuitively) choose a privacy
requirement, for example, a specific syntactic privacy model with required parameters,
and to generate a protected dataset afterwards, which meets the requirement and
maximizes a predefined utility measure [LL09].

However, several publications try to formalize the complete space of solutions to the
privacy-utility tradeoff with differing approaches. Li and Li [LL09] employ an eco-
nomic concept from the Modern Portfolio Theory which can be used to guide financial
investments and base their approach on the similarity of the privacy-utility tradeoff and
the expected-return-risk tradeoff. Brickell and Shmatikov [BS08] balance the tradeoff
between privacy in terms of adversarial sensitive attribute disclosure and utility in terms
of concrete ML tasks. Loukides and Shao [LS08] focus on k-anonymity providing an
optimal privacy-utility tradeoff. Sankar, Rajagopalan, and Poor [SRP13] provide an ana-
lytical model based on information theory to guarantee tight bounds on the achievable
optimal privacy-utility tradeoffs. Several publications deal with the privacy-utility trade-
off in DP, amongst others [Alv+12; KL10; KM11; Nan+22]. In this model, the privacy
parameter ε can be considered as an (unintuitive) way to balance privacy and utility.
Recently, it has been shown that the same tradeoff exists in synthetic data generation
(see Section 2.5.9).

After covering this fundamental tradeoff in privacy-preserving data publication, we turn
our attention to a discussion of relevant terms in this field, such as pseudonymization
and anonymization.

2.3 Term Definitions

There often are quite different understandings of relevant terms in the field of the
privacy-preserving publication of data. Depending on the background of the person,
terms like de-identification, anonymization, and pseudonymization can describe many
different concepts and techniques. Additionally there are widespread misunderstand-
ings of these terms in the general public. One common example is the equation of
pseudonymized and anonymized data. In fact, this misconception occurs so often, that a
lot of publications dealing with anonymization or pseudonymization contain sections
about the difference between pseudonymization and anonymization [ENI18]. To clear
up these misconceptions, in this section we want to provide an overview of the under-
standing of the relevant terms de-identification, pseudonymization, and anonymization.
Covering the most relevant fields, we present views popular in the technical as well as
legal community6.

6. We neither have the time resources nor the means to investigate all privacy regulations and discussions
worldwide. Therefore we concentrate on the perspective of the EU, which is not only our origin but
also has one of the most advanced data privacy regulation, and the United States (of America) (US),
which is the home of not only some of the most influental technology corporations but also of several
legal scholars who have provided central contributions to the privacy debate.
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2.3.1 Personal Data and Personally Identifiable Information

As a basis, we first have to introduce the concept of personal data, used in the GDPR, or
personally identifiable information (PII), the central concept in most US privacy laws.
Informally, these terms describe whether some data is related (or relatable) to a specific
individual. For a large range of data protection regulations these principles serve as
a defining factor for the scope and boundaries of the respective regulation [SS11]. If
data meets a law’s definition of personal data or PII, the law applies and restricts the
data collection, processing, or disclosure. Otherwise, the law offers no protection for the
data.

This concept is especially relevant for anonymization, since anonymizing the data frees
it from regulatory burdens and allows, for example, the unregulated dissemination of
anonymized datasets.

The EU Perspective: Personal Data

Personal data is defined in the GDPR, Article 4:

‘personal data’ means any information relating to an identified or identifiable
natural person (‘data subject’); an identifiable natural person is one who can
be identified, directly or indirectly, in particular by reference to an identifier
such as a name, an identification number, location data, an online identifier
or to one or more factors specific to the physical, physiological, genetic,
mental, economic, cultural or social identity of that natural person;

Here, not only data with respect to identified persons is covered, but also data concerning
potentially identifiable persons. Recital 26 of the GDPR provides more details about the
aspect of identifiability. For this, one has to consider “all the means reasonably likely to
be used, such as singling out, either by the controller or by another person to identify
the natural person directly or indirectly”. More details for the term reasonably likely are
given. For assessing the likeliness of identification, according to the GDPR one has to
incorporate “all objective factors, such as the costs of and the amount of time required
for identification, taking into consideration the available technology at the time of the
processing and technological developments.”

The EU Article 29 Data Protection Working Party in their Opinion 05/2014 on Anonymisa-
tion Techniques [Par14]7 provides three key indicators for determining if some informa-
tion should be considered identifiable regarding an individual, in other words personal
data:

• Singling out: Is it possible to isolate some or all data records concerning an
individual in a dataset?

• Linkability: Is it possible to link data records concerning the same individual (or a
group of individuals) in a database or across databases?

7. The Working Party refers to EU Directive 95/46/EC, the predecessor of the GDPR. But most of the
content of Recital 26 is directly transferred to the GDPR. Their results are generally referred to in the
GDPR context as well.
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• Inferences: Is it possible to predict some attribute values of an individual from the
dataset with significant probability?

The Information Commissioner’s Office (ICO) argues that identifiability may be viewed
as a spectrum and the classification of the identification risk depends on the circum-
stances of the data processing [ico22]. They provide more details on factors to consider
when assessing the likeliness of identification. Special attention should be paid to the
release model, such as public release or release to specific groups. For each release, one
should consider the data itself, the context, scope, and purpose of its processing, as well
as applied technical and organizational measures. Additionally, one should incorporate
the motivation for identification, the required competence and further objective factors.
They further emphasize that the understanding of identifiability is based on the like-
liness criterion. It is not required to consider every purely hypothetical possibility for
identifying an individual, in other words, to prevent the risk of identification under all
circumstances, but just what is reasonably likely. Figure 2.2 provides a visualization of
the risk spectrum as envisioned by the ICO.

The US Perspective: PII

In the United States of America (USA), the related concept of PII is used. But in compar-
ison to the term personal data, which at least has a distinct definition in the GDPR, there
is a variety of PII definitions in privacy law and no consensus between scholars [Nis+17].
Schwartz and Solove [SS11] differentiate between three predominant approaches for
definition:

• The tautological approach defines PII as any information that identifies a person
or, as Schwartz and Solove express it: “At its core, this approach simply states
that PII is PII” [SS11]. This is an unhelpful definition for the practical purpose of
determining if data should be considered PII.

• The non-public approach defines PII as being data which is not not publicly accessi-
ble and not purely statistical. But this definition is not helpful as well as it does
not incorporate the principle of identifiability at all.

• The specific-types approach consists in listing specific types of data that consitute
PII. However, this approach provides no method to determine whether a type of
information should be considered PII, and therefore be part of the list, or not.

Schwartz and Solove argue, that determining if some data should be considered PII is
complex and “abstract determinations of whether a given piece of information isPII are
insufficient” [SS11] due to the context-dependability of identifiability. Additionally, the
frequent (re-)identification of individuals in datasets assumed to be non-PII (compare
Section 2.8) impede this determination even further. Nissim et al. [Nis+17] provide
similar arguments. The case-by-case determination of whether data identifies an individ-
ual, and thus constitutes PII, is complicated by advanced analytical capabilities, more
available personal data and sophisticated scientific understanding of privacy risks.

Ohm [Ohm09] argues for abandoning the PII concept completely, since the raising
number of re-identification attacks has shown that generally each and every combina-
tion can be used to identify an individual, for example, their movie preferences (see
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Figure 2.2: The identifiability spectrum according to the ICO. Based on [ico22].
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Section 2.8.4). Schwartz and Solove [SS11] disagree with the abandonment. In their
opinion, the concept of PII plays a vital role in providing the boundaries of privacy
law. They introduce an indentifiability continuum (the PII 2.0 model) which places
information in a tripartite categorization of relating to an identified, identifiable, or
non-identifiable person. Information about an identified person describes a singled-out
individual, in other words, an ascertained identity. Information relates to an identifiable
person when the identification is possible, but not significantly probable. Finally, non-
identifiable information introduces only a remote risk for identification, when taking
into account reasonably likely means for identification. A similar reasoning is provided
by Polonetsky, Tene, and Finch [PTF16] who argue against the binary PII/non-PII ap-
proach and for an identifiability spectrum. Their introduced spectrum ranges from
explicitly personal data, containing all unaltered information, over different categories of
pseudonymous and de-identified data, to anonymous data.

2.3.2 Anonymization and De-Identification

The term anonymization, while commonly used in various fields, induces a lot of
discussions in computer science and the legal community. Informally, everyone has
a basic intuition of anonymization, somewhere around the lines of transforming data
about individuals in a way that it cannot be associated with these individuals anymore,
so that the altered dataset can be published without harming the privacy of individuals.
However, when looking into the meanings and implicit assumptions in more detail, they
sometimes differ to a large extent. Altman et al. [Alt+21] provide a high-level overview
of different interpretations of anonymization. Amongst others anonymization can be
understood as

• transforming data using specific techniques like aggregation, suppression, random
swapping, and pseudonymization (see Sections 2.4 and 2.5),

• transforming data in a way that guarantees some specific property of the output,
for example, k-anonymity (see Section 2.6.2),

• transforming data in a way that makes certain disclosure risks, such as identity
disclosure or attribute disclosure (see Section 2.1), unlikely or impossible, or

• transforming data in a way that frees it from regulation, in other words, the
regulation implicitly defines anonymization via its scope.

Additionally, as Ohm [Ohm09] argues, anonymization is often understood in an absolute
way, that is, achieving perfect anonymity and protecting individuals from all privacy risks,
while in practice and when taking the multitude of privacy breaches of “anonymized”
datasets into account, it should be understood as effort to achieve this goal. Due
to these inconsistencies, many people in law, computer science, and standardization
organizations vote for abandoning the term altogether [Sta17; Gar14; Ohm09; RH16;
Alt+21; Par14].

In this section, we give an overview of the term anonymization in computer science and
law.
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The EU Perspective

In the GDPR the term anonymous occurs only in Recital 26:

The principles of data protection should therefore not apply to anonymous
information, namely information which does not relate to an identified or
identifiable natural person or to personal data rendered anonymous in such a
manner that the data subject is not or no longer identifiable. This Regulation
does not therefore concern the processing of such anonymous information,
including for statistical or research purposes.

Anonymization in the GDPR is therefore strongly based on the concept of identifiability
and personal data. If data is not considered personal data in terms of identifiability (see
Section 2.3.1), it is understood as anonymous data. The definition of personal data
already includes an assessment of the likelihood of identifiability. If an individual is not
identifiable in a dataset with the help of all means “reasonably likely” to be used, then the
data is not considered personal data but anonymous data. Hence, a valid anonymization
process is expected to output data for which identifiability is highly unlikely. But this
also indicates that a remaining risk of identifiability is valid for anonymous data. Risk-
freeness8 is not required by the GDPR [DI20]. Furthermore, the GDPR does not prescribe
any particular anonymization techniques – the sole requirement is given by the likeliness
of identification [Par14].

The EU Article 29 Data Protection Working Party in their Opinion 05/2014 on Anonymisa-
tion Techniques provides some guidance for the practical implementation of this concept.
They present several contextual factors to consider when choosing adequate anonymiza-
tion techniques, amongst others the nature and sensitivity of the original data, sample
size, availability of related public information, cost and required know-how for re-
identification, and envisaged release of data to third parties. Furthermore, the Working
Party assesses the suitability of different techniques for anonymization regarding their
ability to prevent singling-out, linkability, and inference (as covered in Section 2.3.1).

There are some criticisms on several recommendations of the Working Party formulated
by El Emam and Álvarez [EÁ14]. While the Working Party sees the requirement of
deleting the original data for any transformed dataset to potentially qualify as anony-
mous, El Emam and Álvarez [EÁ14] argue for treating the data recipient as additional
context factor when determining the identification risk. When a recipient is not in
possession of the original data, it should be possible to consider the transformed dataset
as anonymous with respect to this recipient. In their opinion the absolute deletion
requirement contradicts the risk-based approach.

The working party mentions to treat any third party as a potential adversary when
assessing the identification risk. El Emam and Álvarez demand a more precise wording
here, as otherwise there would be no context-dependent assessment. They recommend
to interpret this requirement as any third party that “has the same context as the data
recipient and is a ‘motivated intruder’” [EÁ14] – a concept provided by the ICO (see
below).

8. Anonymization resulting in data entailing no risk of identification is also referred to as absolute
anonymity or perfect anonymity, in contrast to factual anonymity (also referred to as functional or
computational anonymity) as demanded by the GDPR.
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Another critique by El Emam and Álvarez relates to linkability of data records within
the same database as a generally undesirable property of anonymization techniques.
This would prohibit anonymous longitudinal data, without necessarily increasing the
identification risk.

Recently, the ICO provided guidance on anonymization, pseudonymization and privacy
enhancing technologies [ico22]9. They follow the opinion of El Emam and Álvarez
regarding the requirement of deleting the original data. The same data can represent
personal data to one organization but anonymous data to another depending on the
identification risk controlled by contextual factors of the data processing. They provide
an example of pseudonymous data:

An organisation applies a pseudonymization technique that divides personal
data into two parts – a dataset that by itself does not identify individuals,
and ‘additional information’ such as a key that enables re-identification. The
organisation may refer to the first set as ‘anonymous information’. This may
indeed be the case in the hands of a third party that has no means reasonably
likely to be used to re-identify individuals within that dataset. [ico22]

This also means that an unrestricted public release of anonymous data potentially
requires more robust anonymization techniques than the non-public release to specific
groups.

Another central argument in the guidance relates to the implicit risk-based approach
taken by the GDPR when assessing whether data is considered anonymous or personal
data. It is not required to take every hypothetical risk of identifiability into account but
just what is reasonably likely with respect to the processing context. Instead, the goal of
anonymization is to find the right balance between remaining risk and utility. We have
already presented their spectrum of identifiability in Section 2.3.1. As a tool for assessing
the identifiability, they provide the concept of the motivated intruder test. The idea is to
evaluate whether a intruder, who is determined to identify individuals, is able to do so.
They are expected to be reasonably competent, have access to appropriate resources,
and use investigative techniques, but, on the other hand, do not have specialist technical
knowledge, access to special equipment, and do not illegally gain data access. But the
specifics of a potential intruder still should incorporate the context of the anonymization
process, including the type and sensitivity of the data, the intruder motivation and
potential knowledge, and the circumstances of the data release. Further details are
provided in the guidance [ico22].

9. We incorporate contents from a draft of the document that was open for comment during a consultation
phase. The final guidance documents incorporating these comments have not yet been published at the
time of writing this theses and are expected in spring 2023.
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The US Perspective

Similar to the GDPR, in which anonymous data is characterized as non-personal data,
the applicability of privacy laws in the USA10 is based on the presence or absence of PII
(see Section 2.3.1):

Accordingly, organizations around the world have structured their internal
and external privacy policies and practices around variations of PII – and its
converse, de-identified data – locking themselves into a binary that does not
accurately reflect how data are treated in practice. [PTF16]

A central term for these laws is de-identification – data can be de-identified so that it
does not qualify as PII anymore. However, the specific meaning of this term differs a
lot in the community. For example, Ohm [Ohm09] equates it with release-and-forget
anonymization11 and removal of PII, while Rubinstein and Hartzog [RH16] see it as an
umbrella term for data transformation and data control methods aiming at the prevention
of identity disclosure of individuals from data. Directly related to de-identification is the
concept of re-identification risk – the risk which has to be assessed for qualifying data
as (un-)successfully de-identified. The discussion around this concept includes similar
considerations like the one related to identifiability in the GDPR. Polonetsky, Tene, and
Finch [PTF16] provides some relevant open questions with respect to uncertainties in
determining the re-identification risk and the success of de-identification, including:

• Is it required to really re-identify a particular record to show that the de-iden-
tification of a dataset was not successful? Or is an increased probability for
re-identification already sufficient?

• How many records need to be re-identified to show that a dataset does not qualify
as de-identified?

• Is the identification of a specific individual required or is singling out an individual
from the dataset enough?

• How much confidence is required to qualify a dataset as de-identified or re-
identified?

An example for a Unites States privacy law based on the concept of de-identification
is the HIPAA dealing with privacy in the healthcare sector. § 164.514 contains the
relevant details regarding de-identification. There are two possibilities to make data
quantify as de-identified for the purposes of HIPAA: First, an expert can determine (and
document) a small risk of identifying an individual by the anticipated data recipient, in
which an expert is defined as a “person with appropriate knowledge of and experience
with generally accepted statistical and scientific principles and methods for rendering
information not individually identifiable”. Second, there is an explicit list of 18 attribute

10. In comparison to the universal GDPR in EU, in the US privacy regulations are sector-specific [Nis+17].
For example, the Health Insurance Portability and Accountability Act (HIPAA) deals with privacy in
the healthcare domain and the Family Educational Rights and Privacy Act (FERPA) with the education
domain. An overview is provided by epic.org [epi].

11. The term release-and-forget anonymization was coined by Ohm [Ohm09]. It refers to a anonymization
method, in which data is modified to protect the individual’s privacy and then published publicly or to
third parties without caring about anything regarding the data after publication. In other words, this
describes the common method a layperson considers as anonymization.
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types, including names, dates, and social security numbers, which need to be stripped
or generalized for data to qualify as de-identified (known as the Safe Harbor method).
Additionally, the processing party must “not have actual knowledge that the information
could be used alone or in combination with other information to identify an individual
who is a subject of the information.”

Computer Science Perspective

There are conceptual differences between views regarding anonymization predominant
in computer science and law. While, as we have seen, in law generally a risk-based
approach to anonymization is taken, computer scientists tend to employ a worst-case
approach [Yak11]. They aim to prevent all risks for all individuals in a dataset, against all
adversaries, independent of the processing context. In comparison to legal concepts like
personal data, identifiability, and risk, in computer science formal models of privacy are
the main focus [CN20]. This is also indicated by the language employed. In computer
science, the term anonymization is used less frequently. More often researchers speak
about specific privacy metrics, privacy models, privacy mechanisms, or data privacy
definitions and datasets or processes complying with the specific property. Examples
for these include the syntactic privacy models (covered in Section 2.6) and formal
mathematical models like DP (see Section 2.7).

2.3.3 Pseudonymization

Another concept for preserving the privacy of individuals in datasets that is often
mentioned in the same breath as anonymization is pseudonymization. In this section we
provide details on the concept of pseudonymization in law and computer science.

Law Perspective

Pseudonymization is a central concept in the GDPR. In the USA, the first privacy regulation
to mention the concept is the California Consumer Privacy Act (CCPA), which bases
its definition on the GDPR [LLP19]. Therefore, in this section we focus on the GDPR
perspective to pseudonymization.

The GDPR defines pseudonymization as “the processing of personal data in such a
manner that the personal data can no longer be attributed to a specific data subject
without the use of additional information”. For this purpose, typically one or more
identifiers are replaced with random or derived pseudonyms in the dataset. The addi-
tional information (also referred to as pseudonymization secret [ENI22]) provides the
link between pseudonyms and identifiers. The GDPR emphasises the importance of
keeping this information separately from the data and protecting it against unwanted
access using appropriate technical and organizational measures. Attention deserves
the special status pseudonymization holds in the GDPR. For example, it is explicitly
mentioned in Art. 25 as a possible technique for implementing the principle of data
protection by design. This is unusual, since mentioning specific techniques in laws is
rather the exception.
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The definition includes an assessment of the possibility to link the data to a data subject.
Without the additional information linking an individual with the respective pseudonym
is expected to be hard, which expresses the assumption that pseudonymous data without
access to the additional information in the GDPR sense must provide de-facto anonymity.
However, the GDPR considers pseudonymous data still as personal data due to the
possibility of re-identification. The Article 29 Working Party argues that the possibility
of indirect identification always renders pseudonymous data personal data [Par14]. On
the other hand, as mentioned in the example in Section 2.3.2, from the ICO’s point
of view the pseudonymous data might qualify as anonymous information with respect
to parties without access to the additional information. El Emam and Álvarez [EÁ14]
additionally criticize that the Article 29 Working Party sees linkability of pseudonymous
data records in the same database as a disadvantage, while they consider this as one of
the key benefits of pseudonymization.

Computer Science Perspective

Computer science cares more about technical means for pseudonymization than about
legal implications depending on linkability. These techniques and further technical
aspects about pseudonymity are covered in Section 2.4.

Pfitzmann and Hansen [PH10] define a pseudonym as “an identifier of a subject other
than one of the subject’s real name” and pseudonymity as using pseudonyms as identi-
fiers. Furthermore they see pseudonymization just as the application of a mechanism,
which in principle says nothing about the identifiability of the pseudonym holder and
the potentially achieved privacy.

ISO Standard 20889 [Sta18] defines a pseudonym as a “unique identifier for a data
principal to replace the commonly used identifier” and pseudonymization as a “de-
identification technique that replaces an identifier (or identifiers) for a data principal
with a pseudonym in order to hide the identity of that data principal”. ISO Standard
25237 [Sta17] defines a pseudonym as a “personal identifier that is different from the
normally used personal identifier and is used with pseudonymized data to provide
dataset coherence linking all the information about a subject, without disclosing the real
world person identity”. In addition, the standard notes that pseudonyms usually do not
allow the direct linkage to the normal personal identifier (making pseudonymous infor-
mation “functionally anonymous”). It further defines pseudonymization as a “particular
type of de-identification that both removes the association with a data subject and adds
an association between a particular set of characteristics relating to the data subject and
one or more pseudonyms”.

In conclusion, pseudonymization in computer science focuses on using pseudonyms as
identifiers which enable linking related data records. The (im-)possible identifiability of
individuals is no prerequisite.

After having investigated the legal as well as technical interpretations of relevant terms,
in the following sections we provide detailed information about technical measures, in
particular pseudonymization in Section 2.4, de-identification techniques in Section 2.5,
syntactic privacy models in Section 2.6, and semantic privacy models in Section 2.7.
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2.4 Pseudonymity

In this section we cover relevant literature concerning pseudonymization. This includes
pseudonymization scenarios (Section 2.4.1), which differ in the parties responsible for
data processing and the pseudonymization itself, different pseudonym types and their
connection to linkability (Section 2.4.2), generic attack techniques against pseudonymi-
zation (Section 2.4.3), and techniques for pseudonymization (Section 2.4.4).

2.4.1 Scenarios and Responsible Parties

When applying pseudonymization in a specific scenario, it is important to consider,
amongst others, the goal of pseudonymization, the involved actors, who is responsible for
the pseudonymization, and what utility is required from the pseudonymized data. The
European Union Agency for Cybersecurity (ENISA) provides an overview of six different
pseudonymization scenarios depending on the actors and goals of the pseudonymization
process [ENI19]. In accordance with [ENI19], in the following the term data controller
is used for the party which is responsible for the means of personal data processing, data
processor for the party which performs the processing, and pseudonymization entity for
the party which performs the pseudonymization.

1. Pseudonymization for internal use: The data controller collecting individual’s
data performs the pseudonymization of the data to reduce the risk for individuals
caused by further internal processing, for example, in a different department of a
corporation, or by security incidents.

2. Processor involved in pseudonymization: This scenario is similar to the first one
with the only difference that an additional data processor is responsible for data
collection on behalf of the data controller, while the controller still performs the
pseudonymization.

3. Sending pseudonymized data to a processor: In this scenario the controller
collects individual’s data and performs the pseudonymization. The processor
receives only pseudonymized data for further processing.

4. Processor as pseudonymization entity: Here, the data processor also takes
the role of the pseudonymization entity and the data controller only receives
pseudonymized data. This shifts the risk on the controller’s side to the side of the
processor. The controller is still able to re-identify data subjects through the data
processor.

5. Third party as pseudonymization entity: In this scenario the data is collected
and pseudonymized by a trusted third party (TTP). In contrast to the previous
scenario the controller is not able to re-identify data subjects anymore12.

6. Data subject as pseudonymization entity: In this scenario the data subject acts
as the pseudonymization entity and creates their own pseudonym. Just like in the
previous scenario, the controller has no means to re-identify a subject.

12. To be more precise, they cannot revert the pseudonymization process by using the pseudonymization
secret. Re-identification attacks like the ones covered in Sections 2.6.8 and 2.8 can still pose a threat.
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Roßnagel and Scholz [RS00] provide a similar differentiation between pseudonym types
depending on the party responsible for assigning the pseudonym to an individual. The
first type are pseudonyms chosen by an individual themselves, such as usernames for
online services. The next type are pseudonyms assigned by the party also processing the
pseudonymized data. These pseudonyms protect the pseudonym holder only against
other parties, for example, when data is published by the processing party. The final
type are pseudonyms assigned by a trusted third party, organizationally separated
from the data processing party. The data processing party potentially cannot link the
pseudonymized data to the pseudonym holder without support from the trusted third
party.

2.4.2 Pseudonymity and Linkability

One can differentiate between different types of pseudonyms according to their potential
linkability (usage policy). Pfitzmann and Hansen [PH10] introduce a categorization
focusing on the pseudonym holder with respect to communication relationships:

• Person pseudonym: A person pseudonym is a replacement for the pseudonym
holders identity in many contexts, for example, their social security number.

• Role pseudonym: A role pseudonym is assigned to a pseudonym holder in a
specific role, for example, a job-related pseudonym.

• Relationship pseudonym: A distinct relationship pseudonym is used for each
communication partner.

• Role-relationship pseudonym: The combination of distinct pseudonyms accord-
ing to the pseudonym holders role and the communication partner.

• Transaction pseudonym: Each transaction requires a new pseudonym unlinkable
to any previously used pseudonym.

Even though most of these categories are based on communication relationships and
are not directly applicable to data pseudonymization, the categorization highlights
the relationship of pseudonym categories and the concept of (un-)linkability. They
constitute a series of decreasing linkability. In the case of data pseudonymization and
person pseudonyms, data records containing the same pseudonym can be linked to the
same entity (even though linking the pseudonym to an individual might not be possible).
In comparison, for transaction pseudonyms all data records belonging to one entity are
assigned different pseudonyms and cannot be linked.

A more applicable categorization for data pseudonymity is given by the ENISA [ENI19].
The authors differentiate between deterministic pseudonymization (an identifier is always
assigned to the same pseudonym), document randomized pseudonymization (an identifier
is assigned to the same pseudonym just in a consistent scope), and fully randomized
pseudonymization (an identifier is assigned to a different pseudonym each time). Similar
considerations with respect to linkability to those of Pfitzmann and Hansen can also be
made for this categorization. The linkability of pseudonymized data records for the same
pseudonym holder decreases from deterministic pseudonyms (high linkability) over
document randomized pseudonyms to fully randomized pseudonyms (low linkability).
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2.4.3 Attacks on Pseudonymity

Using pseudonymization in a system requires thoughtful planning of adequate technical
measures. It is especially necessary to think about potential weaknesses and possible
attacks, which is the focus of this section. Note however, that we just cover weaknesses
and attack techniques directly related to pseudonymization. Other, more sophisticated
attacks on sensitive data with the goal of re-identifying individuals which do not attack
the pseudonymization process will be covered in Section 2.6.8.

One can differentiate between three attack goals [ENI19]:

• Attacks to disclose the pseudonymization secret: If an adversary learns the pseu-
donymization secret (mapping table, used cryptographic key, etc.), they disclose
the identity of each and every pseudonym holder.

• Re-identification attacks: The goal of a re-identification attack is to link one or
more pseudonyms to their respective pseudonym holders. While a successful dis-
closure of the pseudonymization secret is the most severe kind of re-identification
attack, a re-identification attack can also just target subsets of or even individual
pseudonym holders.

• Discrimination attacks: This goal describes attacks which identify properties
of a pseudonym holder without directly identifying the individual behind the
pseudonym. Gathered information may already lead to discrimination or may be
used as a basis for further re-identification attacks.

Furthermore there are three generic attack techniques against pseudonymization meth-
ods [ENI19]:

• Brute-force attacks (a.k.a. exhaustive search): If the adversary has oracle-like
access to the pseudonymization function fP (that is, they can compute or query
pseudonyms for arbitrary identifiers), to find the identity of a pseudonym holder
for a pseudonym Pi they can iterate over all possible identifiers Ij ∈ I1, . . . , In
until fP (Ij) = Pi. The feasibility of this attack depends on the size of the identifier
domain. If the pseudonymization secret (for example, the cryptographic key
used in a message authentication code (MAC) calculation) is unknown to the
attacker, they can try to brute-force this secret as well. Therefore it is important to
choose large enough secret domains to prevent this attack, if possible, or rely on
techniques which do not provide adversaries with access to the pseudonymization
function fP .

• Dictionary attacks: These attacks are special cases of brute-force attacks in which
pairs of identity and pseudonym (Ii, Pi = fP (Ii)) are precomputed and stored
by an attacker so that the exhaustive search is replaced by a simple dictionary
lookup. They allow to replace the time required for the brute-force attack with
large amounts of memory for storing the precomputed dictionary.

• Guesswork: By employing background knowledge about pseudonym holders
or the pseudonymization function (for example, in the form of statistical char-
acteristics of identifiers), an adversary might be able to guess the identity of a
pseudonym holder with higher probability than what would be achievable by
exhaustive search.
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Table 2.2: Examples for pseudonymization via mapping tables.

Identifier Pseudonym

I1 1

I2 2

I3 3

...

(a) Counter

Identifier Pseudonym

I1 c732ad5e

I2 be9eb24d

I3 416bdfa8

...

(b) Random

When choosing an adequate pseudonymization mechanism, one has to keep these attack
techniques in mind.

2.4.4 Techniques

In the following sections we describe simple mechanisms which can be used for pseudo-
nymization. While we look at the process for single identifiers, it can easily be extended
to multiple identifiers, for example, by concatenating these identifiers. The covered
mechanisms present basic means for creating pseudonyms. Sophisticated cryptographic
primitives allow for pseudonymization processes which can fulfill special requirements.
Several examples are presented by ENISA [ENI21], for example, using a zero-knowledge
proof (ZKP) to allow a subject to proof the ownership of a pseudonym without revealing
their identity.

Mapping Table

A simple variant for pseudonymization is the utilization of a mapping table as depicted in
Table 2.2. The approach is also referred to as Tokenization [ENI18]. For each occurring
identifier I a pseudonym PI is created and the pair is stored in the mapping table,
which serves as the pseudonymization secret and can also be used for re-identification of
pseudonym holders. The pseudonym can be generated by a simple incrementing counter
(Table 2.2a) or completely random (Table 2.2b). While the counter method is simple to
implement, depending on the context the order of pseudonyms can leak information,
which might be used by an adversary for re-identification attacks. When generating
random pseudonyms, collisions should be prevented by checking for already existing
pseudonyms (this might be unnecessary, if large amounts of random bytes are used).
Since there is no direct connection between identifier and pseudonym, an adversary has
no possibility for brute-force or dictionary attacks. One possible disadvantage of this
approach is that it requires larger amounts of storage since the full mapping table has to
be stored in comparison to a single cryptographic key in other approaches.
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Hashing

A simple, yet insecure way of deriving pseudonyms from identifiers is the usage of a
cryptographic hash function h. For an identifier I we use the hash value h(I) as the
pseudonym. Since hash functions are deterministic, an identifier is always translated
to the same pseudonym. In theory, collisions in the hash output can occur because of
the fixed output domain size of hash functions. This would lead to the assignment of
the same pseudonym to different identifiers. But due to the large output domain of
established hash functions like Secure Hash Algorithm (SHA)-3 [nis15; Ber+11], this is
likely to be not of relevance in practice.

Due to the irreversibility of hash functions, an adversary is not able to directly compute
the identifier from the pseudonym. However, as covered in Section 2.4.3, one possible
attack against pseudonymity is based on exhaustive search. Since simple cryptographic
hashing does not employ a pseudonymization secret, an adversary can perform a brute-
force attack using all potential identifiers. This unsuitability of hashing for the generation
of pseudonyms has already been shown multiple times[Mar+18; Dem+18]. For this
reason, using hash functions for the pseudonymization of identifiers is generally not
recommended [ENI18].

(Hash-based) Message Authentication Codes

The weakness of a hash-based pseudonymization function can be fixed by introducing
a cryptographic key as pseudonymization secret in the process. ehe cryptographic
primitive for this purpose is the MAC and a common instantiation is hash-based message
authentication code (HMAC) [BCK96; KBC97] in combination with a secure hash
function like SHA-3 [nis15; Ber+11]. For the pseudonymization process, a key k is
chosen randomly and used in the process for generating pseudonyms. For an identifier
I we use hmack(I) as the pseudonym. This construction (for a fixed key k) is still
deterministic, so an identifier is always assigned to the same pseudonym. HMAC values,
like hash values, are irreversible, so that even with knowledge of the used key k the
identifier can not be computed directly from the pseudonym. This principle allows
for linking data belonging to one subject while not requiring to store their identifiers
– a possibility to follow the principle of data minimization in the pseudonymization
process [ENI18].

The cryptographic key used in the construction is kept secret, so that adversaries are
not able to perform brute-force or dictionary attacks on identifiers (even for small
finite domains) without the knowledge of this key. While the key length in the HMAC
construction is not fixed, currently common choices of at least 256 bit are large enough
to prevent brute-force attacks against the used key.

Symmetric encryption

Another possibility for the generation of pseudonyms is the usage of symmetric en-
cryption. For a randomly chosen symmetric key k, the pseudonym for an identifier
I is computed as the symmetric encryption Ek(I). The symmetric key serves as the
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pseudonymization secret in this method. A common choice for the encryption algorithm
would be Advanced Encryption Standard (AES) with an appropriate sized key. As with
the MAC-based solution the key is kept private which prevents adversaries from per-
forming brute-force or dictionary attacks. But in contrast to the MAC-based solution, the
pseudonymization process is reversible when a party is in possession of the symmetric
key by simply decrypting the pseudonym.

Special considerations must be put into the choice of the operation mode [ENI19].
Depending on the size of the identifier domain, it might be possible to use the (deter-
ministic) electronic codebook (ECB) mode and just produce a single encrypted block for
identifier domains with values smaller than the AES block size of 128 bit. For identifier
domains with larger values, the choice of an adequate operation mode can prove tricky.
Choosing the ECB mode can leak information about the identifiers, such as common
prefixes or equal block-sized parts, while choosing secure modes like Galois/counter
mode (GCM), which use a random initialization vector (IV), causes indeterministic
behavior and prevents the assignment of the same pseudonym to an identifier for
multiple encryptions. Depending on the context and identifier domain, an alternative
approach for large domain values can be the compression of values into single blocks to
be encrypted [ENI19].

2.4.5 Concluding Remarks

As we have seen, pseudonymization reduces the linkability of a data record with an
individual by replacing identifiers with a pseudonym. But it does so, while still allowing
for the re-identification of individuals with the help of a pseudonymization secret, if
desired. Additionally, pseudonymization can enable the linking of multiple data records
belonging to the same individual – even across multiple datasets. The technique plays
an important role as a privacy-protection technique in the GDPR (see Section 2.3.3).
But it comes with no guarantees regarding re-identification risks for adversaries not
in possession of the pseudonymization secret. Designing adequate pseudonymization
solutions therefore should follow a risk-based approach, considering the purpose and
context of data processing as well as necessary utility levels [ENI18].

2.5 De-Identification Techniques

De-identification techniques (also referred to as (data) masking methods and disclosure
control/protection methods) describe a set of techniques which aim at modifying datasets
in a way which allows a publication of the dataset without putting the data of individuals
at risk. As we have argued in Section 2.3.2 the definition of de-identification comprises a
large spectrum of meanings. Therefore in this chapter we focus on techniques which do
not qualify as pseudonymization and syntactic or semantic privacy models. Nonetheless,
some of the covered techniques such as generalization (see Section 2.5.1) or perturbation
(see Section 2.5.6) play an important role as building blocks for algorithms achieving
syntactic or semantic privacy.

Most of the early results have been provided by the statistics community, where the
terms statistical disclosure control or statistical disclosure limitation are used to describe
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Figure 2.3: Example value generalization hierarchies. Figure based on [Fun+10a].

the study of de-identification techniques and their impact on statistical data [Dwo06].
One can find multiple reviews of results from this field in the literature [MH11; Hun+12;
WD12; Tem17]. Additionally, there is a large amount of reviews from the field of
computer science [Dom08; Fun+10a; El 13; Sta18].

In the following, we provide a discussion of methods that are frequently included in the
aforementioned surveys. We refrain from going into details about the statistical influence
of these methods on re-identification risk or data utility, because these methods are
rarely used in isolation in practice today. Additionally and unlike syntactic and semantic
privacy models, these assessments are generally statistical in nature and provide no
provable guarantees. Readers seeking a more comprehensive understanding of these
methods are encouraged to refer directly to the cited surveys.

2.5.1 Generalization

Generalization describes techniques that reduce the granularity of attribute values
according to a given taxonomy. A taxonomy is often provided in the form of so-called
value generalization hierarchies [Sam01] (also referred to as taxonomy trees [Fun+10b]),
in which each leaf node represents a specific attribute value, each parent node is a
generalization of its child nodes, and the root node represents the most general value,
which embodies all possible values. An example for attributes profession, gender, and
age is displayed in Figure 2.3. An alternative is the partition-based approach where each
attribute is considered as an ordered set and generalization relationships are defined by
partitioning the set into disjoint subsets. We can differentiate between different styles of
generalization [LDR05]. An overview is provided in Figure 2.4.

Local recoding (also referred to as cell generalization [Fun+10b]) allows generalization
of individual data records. For a generalization p→ {c1, c2} of attribute a, local recoding
allows that some records in the dataset keep the more general attribute value p, while
others are generalized to attribute values c1 and c2. While this method can potentially
provide the least distorted data, this comes at the cost of complicated data analysis
since different records potentially contain completely different generalization levels
of the same attribute [WD12]. For example, it is unclear how a data analyst would
utilize a dataset containing records with ANY gender as well as male, female, and diverse
records.
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Global recoding describes a generalization approach in which all data records share
the same generalization level for each distinct attribute value. Global recoding can be
differentiated further into single-dimension or multi-dimension recoding.

Single-dimension recoding describes generalization approaches in which each dimension
is considered for itself. Each data record containing value c for attribute a is generalized
so that c is generalized to value p, where p is equal to c or represents a more general
value, that is, a value on the path from c to the root node in the generalization hierarchy.
For example, when considering the gender attribute in a dataset (see Figure 2.3) for
each female subject their data record either keeps the attribute value female or is
generalized to the value ANY. There are several variants of single-dimension recoding:
Full-domain recoding requires all data records to share attribute values from the same
level of the generalization hierarchy. As an example, for the profession generalization
hierarchy in Figure 2.3 all data records would contain attribute values of the second
level (professional or artist) or of the third level (engineer, lawyer, dancer, or writer).
Full-subtree recoding requires that if a single value is generalized to p, all attribute values
in the generalization hierarchy subtree under p must be generalized to p. Again referring
to the profession attribute from Figure 2.3, if lawyer data records are generalized to
professional this requires lawyers to be generalized as well, while dancers can remain
specialized. Unrestricted recoding just requires valid generalizations but imposes no
further restrictions on the generalization.

Multi-dimension recoding, in opposition to single-dimension recoding, looks at multiple
attributes at once. In this approach, global recoding means that not each single attribute
but only a combination of attributes must be generalized in the same way for all data
records, which allows for more flexible generalizations. Multi-dimension recoding can
be divided in full-subgraph and unrestricted recoding. Full-subgraph recoding, parallel
to full-subtree recoding in the single-dimensional case, means that if a combination of
attributes is mapped to some general attributes, all attribute values in the subtrees of
the respective (single-dimensional) generalization hierarchies must be mapped to the
more general ones. An example based on Figure 2.3 and the attributes profession and
gender: if ⟨engineer, female⟩ is recoded to ⟨professional,ANY⟩, all engineers and lawyers
of any gender must be recoded to ⟨professional,ANY⟩ as well. This restriction does not
apply to unrestricted recoding. For example, unrestricted recoding allows to generalize
⟨engineer, female⟩ to ⟨engineer,ANY⟩ and ⟨lawyer, female⟩ to ⟨professional, female⟩. This
example also shows the flexibility in comparison to single-dimension recoding, as the
given recoding is not possible in single-dimension recoding.

In addition to these general approaches there are also more specific techniques, which
can be seen as generalization techniques [Sta18]. One example is rounding values
either in the classical mathematical way or probabilistically based on the distance of
the attribute value to the nearest rounding base. For example, if the value 3 were to
be rounded to the nearest 10, there was a 30 % chance it would become 0 and a 70 %
chance it would become 10. Another example is top-bottom-coding (also referred to as
clamping) where all attribute values above or below some upper and lower thresholds
would be replaced with these thresholds. This is an approach to protect outliers in the
attribute values.
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Figure 2.4: Taxonomy of generalization approaches.

2.5.2 Suppression

Suppression describes the complete removal of some feature in the dataset. It can be
used if an attribute or attribute value is too sensitive for publishing or not required for
the dataset (data minimization), or to remove outliers from the dataset. Practically this
can also be achieved by replacing values with a special value indicating the suppression
of this value, for example, if not all values in a table column should be removed. There
are different types of suppression [Fun+10a; El 13]:

• Record suppression (also referred to as case-wise deletion) removes full data records
from the dataset.

• Attribute suppression (or quasi-identifier suppression) removes specific attributes
from all records of the dataset.

• Value suppression removes specific attribute values from the dataset.

• Cell suppression (or local suppression) removes just some instances of attribute
values from the dataset.

2.5.3 Swapping

Data swapping (also referred to as shuffling or permutation [Sta18]) describes the inter-
changing of sensitive attribute values of records in the dataset [WD12]. While swapping
removes the relationship between the sensitive attribute value and the remaining data
record, it preserves the distribution of the sensitive attribute within the dataset for
statistical analysis.

A special form of swapping is rank swapping [Fun+10a]. For this technique the sensitive
values for attribute A are ordered and a value x ∈ A is interchanged with another value
y ∈ A which is randomly chosen in the neighborhood of x with respect to the ordering
of A. The neighborhood can be determined, for example, as a percentage of |A|.
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Table 2.3: The two tables for an anatomized dataset.

Name Sex DOB Postcode Group

Alice f 19.02.1978 54321 g1

Bob m 04.09.1983 54328 g1

Carol f 07.03.1979 54321 g2

Dave m 23.09.1975 54319 g2

Eve f 12.11.1978 54373 g2

(a) The quasi-identifier (QID) table.

Group Disease Count

g1 Flu 1

g1 HIV 1

g2 Flu 2

g2 PAD 1

(b) The table for sensitive attributes.

Further considerations and results about swapping are provided by Matthews and
Harel [MH11] and Domingo-Ferrer [Dom08].

2.5.4 Sampling

Sampling describes the publishing of a subset of the whole dataset, so that an individual
can be linked to a record in the dataset only with some degree of uncertainty. This
approach might work for categorical microdata, but can fail for continuous microdata
when attributes are published unaltered since perfectly matching continuous values
increase the probability of matching records [Dom08].

Rocher, Hendrickx, and Montjoye [RHM19] provide a way to estimate the likelihood of
a correct re-identification in incomplete datasets. They show that the population unique-
ness of individuals and with that the risk of correct re-identification increases heavily
with the number of attributes in the dataset. Their result challenges the assumption that
sampling a subset of individuals before publishing a dataset decreases the disclosure
risks for individuals.

2.5.5 Slicing and Anatomization

Slicing is performed by separating the attributes of a dataset into groups and publishing
each group separately (and in randomized order) [MH11]. This approach reduces the
risk of re-identification attacks by limiting the attribute values related to on individ-
ual. For the same reason, it drastically reduces the data utility for analysis in which
relationships between sliced attributes play a vital role.

A related technique is anatomization (also referred to as bucketization). Xiao and
Tao [XT06] present the concept of anatomization and an anatomization-based algorithm
which fulfills l-diversity (see Section 2.6.3). In comparison to generalization-based
approaches (cf. Section 2.6.5) anatomization does not alter attribute values. Instead,
for some attribute to be protected it creates groups of data records and just publishes
aggregated counts for this sensitive attributes for each group. In this way the direct
linkage of individual and sensitive attribute is prevented. An example is shown in
Table 2.3.
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Xiao and Tao show that this approach allows for more accurate query results in com-
parison to generalization-based methods. On the other hand, the authors admit that by
releasing the unaltered attribute values anatomization may have an increased probability
of re-identification in comparison to generalization.

2.5.6 Perturbation

Perturbation (also referred to as noise addition) describes an approach for numerical
sensitive values. The basic idea is simple: Replace a sensitive value s with a perturbed
version s+ r where r is random noise drawn from an appropriate distribution, such as
the normal distribution with a mean µ = 0 and a variance depending on the desired
privacy protection. While this approach can reduce the data utility of a unique data
record, it can preserve statistical properties of the dataset depending on the distribution
the noise is drawn from. The additional gained privacy might, however, be less than
expected due to the potential correlation of attributes [Kar+03]. But perturbation is a
central concept for employing DP introduced in Section 2.7.

2.5.7 Post Randomization Method

The Post Randomization Method (PRAM) [GKW98] describes the application of the
randomized response technique (see Section 2.7.3), not during a study but for an already
existing dataset. For a sensitive attribute with two possible values the real value in a
record is published with some probability p and its opposite value with probability p− 1.
This provides plausible deniability for the sensitive value of each record. PRAM extends
this simple mechanism to continuous variables and different probability distributions
and in comparison to randomized response can depend on the real attribute value. This
technique, while perturbing single data records, can preserve the option of performing
statistical analysis.

2.5.8 Microaggregation

Microaggregation describes a technique in which the dataset is partitioned into groups
and for each of these groups and some continuous attribute the record values are
replaced with the average value within the group. While this approach alters individual
attribute values, it preserves the sum and average of the attribute with respect to
the whole dataset. The technique can be divided into univariate and multivariate
microaggregation [WD12]. In the univariate case a single attribute is averaged in
each group, while in the multivariate case this is performed for multiple attributes.
Central decisions for the application of microaggregation deciding about data utility
and privacy are the size of groups (fixed or variable) and how to partition the dataset
into these groups, for example, completely random or based on similarity of data
records [Dom08].
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2.5.9 Synthetic Data

Instead of releasing the (potentially masked) real dataset, another approach, initially
proposed by Rubin [Rub93], is to publish a synthetically generated dataset so that
real data records of individuals are not published at all. The idea in synthetic data
generation is to create a statistical model from the real dataset, that preserves statistical
relationships of the dataset, and then to sample complete data records (fully synthetic
data) or sensitive attribute values (partially synthetic data) from this model [MH11].
Specific techniques include statistical models, such as Bayesian networks and hidden
Markov models, and non-parametric models, for example, generative adversarial networks
(GANs) and variational auto encoders [SOT22].

Domingo-Ferrer [Dom08] points out that the circumvention of the re-identification
problem might be less clear than apparent at the first glance. For example, it is possible
that data records are generated which are equal to records from the real dataset by
chance. Furthermore, the data utility can be limited since syntactic data provides just
the statistical properties explicitly captured by the generating model. In this sense, it
might be more reasonable to directly publish the relevant statistics. With regard to
this problem, Willenborg and De Waal [WD12] mention the difficulty to control for all
possible analyses data analysts might want to perform, for example, to provide enough
statistical relationships for multiple subpopulations in the dataset.

Recent results of Stadler, Oprisanu, and Troncoso [SOT22] show that synthetic data
generation is subject to the same privacy-utility tradeoff (see Section 2.2) as other
traditional de-identification techniques: Either the synthetically generated data suffers
from poor data utility or is not able to withstand inference attacks. Furthermore,
they find that it is harder to assess this tradeoff for synthetic data generation. The
authors conclude that “synthetic data is far from the holy grail of privacy-preserving data
publishing”. A potential reconstruction attack against aggregate statistics and synthetic
microdata is covered in Section 2.8.12.

Earlier results about synthetic data generation are reviewed by Domingo-Ferrer [Dom08].
Several surveys were published recently, amongst others focussing on privacy [Jor+22],
on GANs [FV22], and on the health [Her+22] and finance sector [Ass+21]. Some
results which include DP into synthetic data generation are covered in Section 2.7.6.

2.5.10 Concluding Remarks

In practice, it has been shown that using simple de-identification measures, such as
stripping identifiers and generalizing some attributes, often leaves datasets vulnerable to
re-identification attacks (see Section 2.8). Additionally the strict separation of attributes
according to their potential for identifying individuals is not tenable, as the identification
of individuals based on watched movies indicates exemplarily (see Section 2.8.4). These
attacks led Ohm [Ohm09] to propose the “failure of anonymization”. Cohen [Coh22]
mentions that these measures lack three important properties: they are not composable,
not robust against post-processing, and they rely on assumptions with respect to data
distributions. Narayanan and Shmatikov see de-identification only as an option to
prevent easy data access by curious insiders and “to keep honest people honest” [NS19],
for example, as an internal control mechanism to reduce the risk of employees peeking
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at data records of specific individuals. However, advances in re-identification science and
more publicly available data about the population drastically decrease the effectiveness
of these measures in their opinion. In general, it is difficult to assess the privacy impact
of simple de-identification techniques, even if they give a feeling of protection at an
intuitive level.

2.6 Syntactic Privacy Models

Sweeney demonstrated that using simple de-identification mechanisms like stripping
identifiers are not enough to prevent identity disclosure (see Section 2.8.2). This lead
to the emergence of syntactic privacy models which allow to check specific privacy
guarantees based on the anonymized dataset.

In this section, we cover the theory behind syntactic privacy models and present
their most well-known representatives k-anonymity [SS98b; SS98a; Sam01; Swe02],
l-diversity [Mac+06], and t-closeness [LLV10]. Furthermore, we provide details about
common algorithms to achieve syntactic privacy for a dataset and introduce a limitation
of syntactic privacy models – the curse of dimensionality. Finally, we introduce several
attacks on syntactic privacy models, which indicate their inherent weaknesses to specific
threats.

We will use the following notations in this section, which mostly follow Machanavajjhala
et al. [Mac+06]. A dataset (or table) T contains n data records (or rows) t1, . . . , tn and
each record represents data related to one individual. A record consists of values (or
cells) t = {a1, . . . , am} for attributes (or columns) A1, . . . ,Am with respective domains.
Let t[Ai] denote the value of attribute Ai for record t and t[C] with C = {C1, . . . , Cp} the
tuple (t[Ci], . . . , t[Cp]) (a projection of t onto the attributes in C). Furthermore, we denote
the set of QIDs (see Section 2.6.1) with QID and the set of sensitive attributes with
SA.

2.6.1 Attribute Types

In the context of syntactic privacy models, data attributes are classified into four cate-
gories [MH22]:

• Identifying attributes (sometimes also referred to as directly identifying at-
tributes): These are attributes which can be used to uniquely identify an individual,
such as the name or the social security number. There exists some public or private
database potentially accessible by an adversary through which the attribute can
directly and uniquely be linked to the individual.

• QIDs [Dal86]: These are attributes13 which, for themselves, are not enough to
uniquely identify an individual, but can be used in combination with auxiliary
information to identify individuals. Examples are the age, postal code, and gender
of an individual.

13. To prevent misunderstandings, we want to point out that in some publications the term quasi-identifier
already refers to the full set of attributes instead of a single attribute [Coh22].
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• Sensitive attributes: These describe the information an individual wants to keep
private, such as their income or health information.

• Nonsensitive attributes: These are attributes which do not fall into any of the
previous categories. It is hard to come up with a universal example for nonsensitive
attributes, because there might nearly always be a scenario where suitable auxiliary
information can be used to deduce something from an attribute.

Classifying the attributes of a dataset according to these categories is a crucial step for
protecting the privacy of individuals in a anonymized dataset. El Emam [El 13] and Fung
et al. [Fun+10a] provide some guidelines on how to categorize attributes according
to these attribute types. These include the idea to categorize attributes an adversary
might obtain from external sources (potential adversarial background knowledge) as
QIDs – even though it is by no means obvious how to determine this. Narayanan and
Shmatikov [NS10], on the other hand, argue that in principle each and every information
distinguishing individuals can be used for re-identification.

2.6.2 k-Anonymity

Samarati and Sweeney [SS98b; SS98a; Sam01; Swe02] introduced the first syntactic
privacy model, called k-anonymity. The basic idea is to hide the identity of an individual
and therefore the connection to their sensitive attribute(s) in a group of other individuals.
A dataset is said to be k-anonymous if the data of an individual cannot be distinguished
from at least k − 1 other data records with respect to chosen QIDs. The following
definition is based on Machanavajjhala et al. [Mac+06].

Definition 2.6.1. More formally, a dataset T satisfies k-anonymity if for every record t at
least k − 1 other records ti1 , . . . , tik−1

exist with t[QID] = ti1 [QID] = · · · = tik−1
[QID].

The set of records sharing the same QID values is referred to as equivalence class
(sometimes also equivalence group [Moh+10]).

As an example, Table 2.4 shows a dataset that includes patient identities, some demo-
graphic information, and the diseases they suffer from. Table 2.5 depicts a 2-anonymous
version of the original dataset. The identifying attribute, in this case the name, was com-
pletely removed and the sensitive attribute, in this case the disease, was left untouched.
The remaining attributes sex, date of birth, and postcode were categorized as QIDs and
were generalized in a way that the two resulting equivalence classes contain at least
k = 2 records.

This property prevents an adversary who knows the QID values of an individual to single
out a data record and to deduce the sensitive attribute of the individual. Therefore it
protects against identity disclosure (see Section 2.1). However, as Machanavajjhala
et al. [Mac+06] have shown, k-anonymity is vulnerable to background knowledge and ho-
mogeneity attacks (see Section 2.6.8) because k-anonymity does not take the distribution
of sensitive values in equivalence classes into consideration.
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Table 2.4: The example dataset for k-anonymity in its unmodified form.

Identifying Attribute QIDs Sensitive Attribute

Name Sex DOB Postcode Disease

Alice f 19.02.1978 54321 HIV

Bob m 04.09.1983 54328 Stroke

Carol f 07.03.1979 54321 HIV

Dave m 23.09.1975 54319 PAD

Eve f 12.11.1978 54373 Breast cancer

Frank m 12.11.1981 54325 Flu

Table 2.5: A possible 2-anonymous variant of the original dataset with three equiva-
lence classes.

QIDs Sensitive Attribute

Sex YOB Postcode Disease

f 1978–1979 54321 HIV

m 1981–1983 5432* Stroke

f 1978–1979 54321 HIV

* 1975–1978 543** PAD

* 1975–1978 543** Breast cancer

m 1981–1983 5432* Flu
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2.6.3 l-Diversity

To overcome the vulnerability of k-anonymity to background knowledge and homo-
geneity attacks (see Section 2.6.8) Machanavajjhala et al. [Mac+06] present l-diversity.
Contrary to k-anonymity this privacy model tries to deal with attribute disclosure (see
Section 2.1). The main idea of l-diversity is to put requirements on the distribution
of the sensitive attributes in equivalence classes, so that an adversary cannot deduce
the specific sensitive attribute of an individual in the equivalence class. The following
definition is provided by Machanavajjhala et al. [Mac+06].

Definition 2.6.2. An equivalence class14 is l-diverse if it contains at least l “well-
represented” values for the sensitive attribute. A dataset T is l-diverse if every equiva-
lence class is l-diverse.

This definition requires an adversary to possess at least l − 1 pieces of background
information to eliminate l−1 possible sensitive values and disclose the sensitive attribute
of an individual. Machanavajjhala et al. provide two practical methods to instantiate
the term “well-represented”, namely Entropy l-diversity and Recursive (c, l)-diversity (and
further variants of this method).

Entropy l-diversity, as the name suggests, uses the (Shannon) entropy of the sensitive
attribute distribution in an equivalence class as a measure for a sufficiently diverse value
distribution. The method requires the entropy to be at least log l in all equivalence
classes. For an equivalence class q∗ it is required that

−
∑
s∈S

p(q∗, s) log p(q∗, s) ≥ log l,

where p(q∗, s) denotes the fraction of sensitive value s in equivalence class q∗.

Recursive (c, l)-diversity is based on the idea that no sensitive value should appear too
frequently or too rarely in an equivalence class. Formally, let ri denote the count for the
ith most frequent sensitive value in an equivalence class. The equivalence class is said to
be (c, l)-diverse if r1 < c(rl + rl+1 + · · ·+ rmj) for a given constant c. Machanavajjhala
et al. provide further variants of this definition which allow higher frequencies for
specific sensitive values or deal with prohibited negative disclosure for specific sensitive
values.

Clifton and Tassa [CT13] point out, that in practice often a simpler method is used:
An equivalence class fulfills l-diversity if the frequency of each sensitive value does not
exceed 1

l
. Another simple, but weaker variant of l-diversity (sometimes referred to

as distinct l-diversity [LLV07]) often found in practice requires that each equivalence
class contains at least l distinct sensitive values. This variant was also independently
introduced as p-sensitive k-anonymity by Truta and Vinay [TV06].

Table 2.6 shows an example of a distinct 2-diverse variant of the dataset depicted in
Table 2.4. In contrast to the 2-anonymous variant presented in Table 2.5, which is

14. Machanavajjhala et al. speak of q∗-blocks here.
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Table 2.6: A possible distinct 2-diverse variant of the original dataset with two equiva-
lence classes.

QIDs Sensitive Attribute

Sex YOB Postcode Disease

f 1978 543** HIV

m 1981–1983 5432* Stroke

* 1975–1979 543** HIV

* 1975–1979 543** PAD

f 1978 543** Breast cancer

m 1981–1983 5432* Flu

vulnerable to the homogeneity attack (see Section 2.6.8), the 2-diverse dataset contains
no equivalence class which violates l-diversity.

Li, Li, and Venkatasubramanian [LLV07] show that l-diversity is vulnerable to skew-
ness and similarity attacks (see Section 2.6.8), because the distribution of sensitive
attribute values in a l-diverse equivalence class can still differ from the distribution in
the population by a large amount.

2.6.4 t-Closeness

Therefore, Li, Li, and Venkatasubramanian [LLV07] propose another privacy model
called t-closeness to tackle weaknesses of l-diversity (see Section 2.6.8). The basic
idea is to bound the distance between the distribution of sensitive attributes in an
equivalence class and in the full dataset by a threshold of t. This limits the individual-
specific information an adversary can learn from an equivalence class. The following
definition is provided by Li, Li, and Venkatasubramanian [LLV07].

Definition 2.6.3. Let P denote the dataset-wide distribution and Q the distribution in
an equivalence class for a sensitive attribute and D[P,Q] a distance measure between
distributions P and Q. The equivalence class fulfills t-closeness if D[P,Q] ≤ t. A table
T fulfills t-closeness if all equivalence classes fulfill t-closeness.

It remains to look at how to measure the distance between given distributions. Li, Li,
and Venkatasubramanian analyze different distance measures regarding their suitability
for t-closeness. They identify the so-called earth mover’s distance (EMD) [RTG00]
as a good fit since it implicitly incorporates some semantic meaning for the sensitive
attributes. They further provide ideas on how to compute the EMD for numerical and
categorical attributes. From the EMD properties follows the range of possible values for
the parameter t: 0 ≤ t ≤ 1.

A small t value allows less deviations of the two distributions and leads to less infor-
mation an adversary can achieve from the equivalence class. However, as Frikken and

44



2.6 Syntactic Privacy Models

Zhang [FZ08] state, since there is no clear relationship between t and the information
gain of an adversary, it is not-trivial how to choose t to prevent specific types of disclo-
sure. Furthermore, a choice for t can have varying implications for privacy depending on
the scenario. Finally, to avoid some specific types of disclosure risks, t has to be chosen
so small that the data utility decreases significantly.

There are some results about relations between t-closeness and DP [Eke+22; DS15],
which imply that these two concepts might be more related than generally assumed
under certain circumstances.

2.6.5 Algorithms

In this section we cover algorithms for syntactic privacy models. Generally, these
algorithms use de-identification techniques, most often generalization and suppression
(covered in Section 2.5), to transform datasets so that they fulfill the privacy condition
of a syntactic privacy model. It has been shown that finding optimal15 solutions for
syntactic privacy models is NP-hard [MW04; Agg+05; LDR06; XYT10], so existing
algorithms use heuristic approaches to achieve their goal.

In the remainder of this section we present two well-known algorithms in more detail:
Incognito [LDR05] and Mondrian [LDR06]. There is a large number of further algorithms,
such as Datafly [Swe98], TDS [FWY05], Hilb [Ghi+07], and OLA [El +09]. Overviews
of syntactic privacy model algorithms are provided by Fung et al. [Fun+10a] and
Gkoulalas-Divanis, Loukides, and Sun [GLS14].

While both algorithms target k-anonymity, Machanavajjhala et al. [Mac+06] mention
that it is simple to transform an algorithm for k-anonymity to l-diversity: Each check for
k-anonymity, that is, checking if an equivalence class contains at least k data records,
can be extended to l-diversity by additionally counting sensitive attributes in each
equivalence class and checking the fulfillment of the condition for the chosen variant of
l-diversity. Although not explicitly stated in the literature, a similar approach should
be possible to achieve t-closeness by checking the distribution distance between the
sensitive attributes in the equivalence class and in the whole dataset.

Incognito Algorithm

LeFevre, DeWitt, and Ramakrishnan [LDR05] introduce Incognito, an algorithm for
achieving k-anonymity. It is based on single-dimension full-domain generalization, a vari-
ant of global recoding (see Section 2.5.1), meaning that attribute values are generalized
independently from other attributes and in a way, that for each attribute all generalized

15. Informally, an optimal solution looses as little information as possible when transforming a dataset so
that it fulfills some syntactic privacy model. This can be formalized in different ways: Meyerson and
Williams [MW04] use the smallest number of suppressed cells or attributes. Aggarwal et al. [Agg+05]
employ the smallest number of suppressed cells or the cost of generalization in terms of the sum of the
level of an attribute value in the generalization hierarchy divided by the total number of levels. LeFevre,
DeWitt, and Ramakrishnan [LDR06] utilize the normalized average equivalence class size metric. Xiao,
Yi, and Tao [XYT10] use the smallest number of suppressed cells or tuples with suppressed cells.
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Age

A3 = {[0− 100)}

A2 = {[0, 50), [50, 100)}

A1 = {[0− 25), [25− 50), [50− 75), [75, 100)}

Gender

G2 = {ANY }

G1 = {Male, Female,Diverse}

Profession

P3 = {ANY }

P2 = {Professional, Artist}

P1 = {Engineer, Lawyer,Dancer,Writer}
⟨G2,P3⟩

⟨G1,P3⟩⟨G2,P2⟩

⟨G2,P1⟩⟨G1,P2⟩

⟨G1,P1⟩

Figure 2.5: Domain generalization hierarchies for the attributes profession, age, and
gender introduced in Figure 2.3 as well as a multi-attribute generalization
lattice for the attributes profession and gender.

values are located in the same level of the generalization hierarchy. The authors further
state the usage of optional tuple suppression, but provide no further details.

In the following we re-use the value generalization hierarchies introduced in Figure 2.3
for the attributes profession, age, and gender as an example. Since in full domain
generalization the generalization is well defined by the level of the generalization hier-
archy, we can simplify the hierarchy and just look at domain generalization hierarchies.
Figure 2.5 shows the respective domain generalization hierarchies for the value gen-
eralization hierarchies depicted in Figure 2.3. When we describe the generalization
of multiple attributes, this can be achieved by multi-attribute generalization lattices, as
depicted in Figure 2.5 for the attributes profession and gender. This lattice describes
possible generalization paths from the fully specialized (that is, not generalized) state to
the point of full generalization.

Incognito uses an iterative process to find all possible k-anonymous full-domain general-
izations. The algorithm starts with single QID attributes and iteratively checks larger
subsets of all QID attributes for the fulfillment of k-anonymity with respect to given
generalization lattices. In each iteration i the algorithm performs two operations:

• The iteration starts with a given graph of candidate multi-attribute generalizations
with nodes Ci (containing QID sets of size i) and edges Ei. This graph can be seen
as a set of generalization lattices, like the one depicted in Figure 2.5. The algorithm
performs a breadth-first search for nodes which would result in a k-anonymous
table. The resulting nodes are denoted Si. This is done by starting at all root nodes
of the graph and checking if the application of respective generalizations leads
to a k-anonymous table. The authors use frequency sets for this purpose, which
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Figure 2.6: 2-anonymous multidimensional partitioning for QID attributes age and zip
code. Image taken from [LDR06].

allows for faster computation of child nodes. If k-anonymity is fulfilled for the
dataset at a node, than all child nodes also would lead to a k-anonymous dataset
(generalization property), so they can directly be marked. The search is performed
until all nodes are checked.

• Using Si the algorithm constructs the graph (Ci+1, Ei+1). This construction is a
three-step process. First, nodes from Si, in other words, k-anonymous domain
generalization values, are joined in a specific way to yield nodes representing
domain generalization values for QID sets of size i + 1. Some of these joined
nodes need to be pruned since they contain subsets of generalizations, which are
not present in Si, that is, which do not result in a k-anonymous table. Finally,
the correct edges must be created with respect to the domain generalization
hierarchies.

The first iteration uses all values of the QID attribute domain generalization hierarchies
(examples are shown in Figure 2.5) as candidate nodes C1 and their paths as edges E1.
The final iteration results in the set of all full-domain generalizations whose application
results in a k-anonymous dataset. These candidates can be compared against each other
regarding some notion of minimality, for example, based on the varying importance of
some attributes being unaltered.

There exist variants of the Incognito algorithm which result in tables fulfilling l-diversity
and t-closeness [Mac+06; LLV07].

Mondrian Algorithm

LeFevre, DeWitt, and Ramakrishnan [LDR06] present Mondrian, an algorithm for achiev-
ing k-anonymity via partitioning-based multidimensional recoding. In partition-based
models, the attribute domains are partitioned and the data records are sorted into the
respective partitions according to their attribute value. Therefore these models are
especially well-suited for continuous (for example, numeric) data. An example for a
k-anonymous multidimensional partition is shown in Figure 2.6.

Even though, as LeFevre, DeWitt, and Ramakrishnan show, optimal k-anonymous
multidimensional partitioning as an NP-hard problem, with Mondrian they provide a
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1 function MultiDimPartition(partition)
2 if (no valid multidimensional cut for partition)
3 return partition
4 else
5 dim ← choose_dimension ()
6 fs ← frequency_set(partition , dim)
7 median ← find_median(fs)
8 lPart ← {t ∈ partition: t.dim ≤ median}
9 rPart ← {t ∈ partition: t.dim > median}

10 return MultiDimPartition(lPart) + MultiDimPartition(rPart)

Listing 2.1: The multidimensional partitioning algorithm of Mondrian. Listing based
on [LDR06].

heuristic algorithm and prove that it results in constant-factor approximations of the
optimal solution. Mondrian proceeds in two steps:

1. The algorithm constructs multidimensional regions that cover the attribute domain
space for all QID attributes by top-down greedy partitioning. For this purpose
a recursive approach (depicted in Listing 2.1) is used. Starting with the whole
attribute domain space, in each recursive call the space is partitioned in two
parts with respect to a specific attribute and a split value as long as there is a
partition which does not violate k-anonymity. The dimension and split value can
be chosen in multiple ways. The authors propose to choose the dimension with
the widest (normalized) value range and the median of attribute values for the
chosen dimension as split value.

2. After partitioning, the algorithm computes summary statistics for the data records
in each region, which represent the equivalence classes of the resulting dataset,
and maps all data records in the region to these summary statistics.

There exists a variant of the Mondrian algorithm which results in a table fulfilling
t-closeness [LLV10].

2.6.6 Further Privacy Models

While k-anonymity, l-diversity, and t-closeness are the most well-known privacy models,
there is a variety of work constructing similar privacy models which tackle the same
weaknesses or improve on these models in certain scenarios or with respect to certain
attackers. Some examples are the following:

• k-Map [Swe01] is a relaxation of k-anonymity which requires k data records to
share the same QID values – yet not with respect to to the published dataset but
with respect to the whole population.

• δ-presence [NAC07] is a privacy model which protects the information whether an
individual is part of a anonymized dataset.

• (α, k)-anonymity [Won+06] provides a similar approach to l-diversity in that
it bounds the frequency of sensitive attributes in all equivalence classes of a
k-anonymous table.
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• (k, e)-anonymity [Zha+07] improves the privacy guarantees for k-anonymous data
with respect to numerical sensitive attributes by requiring the range of the sensitive
attribute values in each equivalence class to be at least e.

• m-confidentiality [Won+07] restricts the probability of successfully linking individ-
uals and data records in a table as a countermeasure against a minimality attack
(see Section 2.6.8).

• km-anonymity [TMK08] deals with transactional databases, in which multiple data
records can belong to a single individual.

• (X, Y )-Privacy [WF06] generalizes k-anonymity for the scenario of multiple anony-
mized releases of the same dataset.

• m-Invariance [XT07] is a privacy model for the publication of multiple anonymized
versions of a dynamic dataset.

Comprehensive overviews providing details to these examples and presenting further
models can be found in several publications [Che+09; Fun+10a; De +12; GLS14;
Zig+20; MH22].

2.6.7 Curse of High Dimensionality

The curse of (high) dimensionality16 describes the problem that certain data mining
tasks depending on the distance between elements, such as similarity search or nearest-
neighbor clustering, are ineffective or inefficient in high-dimensional spaces due to the
sparsity of elements in these spaces. Even the mere concepts of spatial locality, similarity,
proximity, or distance are not useful under some assumptions in high-dimensional spaces.
[Bey+99] has shown that the ratio of distances between nearest and farthest neighbors
of elements approaches 1 in these situations. This problem is well-known in the data
mining community [WSB98; IM98; Bey+99; AHK01].

The same limitation applies to k-anonymity and its successors, as Aggarwal [Agg05]
has shown, since the concept of (utility-preserving) generalization depends on spatial
locality. k-anonymity can be achieved by finding clusters of k similar data records and
generalizing these data records to an equivalence class, so that the generalization does
not unnecessarily impede the data utility. This intuition shows the direct relationship
of k-anonymity and the nearest-neighbor problem and indicates the relevance of the
curse of high dimensionality for syntactic privacy models. Aggarwal shows that in many
high-dimensional scenarios, even for 2-anonymity, the loss of utility can render the
results unacceptable for data mining tasks. Stadler, Oprisanu, and Troncoso [SOT22]
formulate this insight in an inverse way: “information-rich datasets that are valuable for
statistical analysis also always contain enough information to conduct privacy attacks.”

The curse of high dimensionality is also related to privacy breaches, in which the
information in de-identified large sparse datasets is sufficient to re-identify individuals
in these datasets. One example is the case of the Netflix Prize dataset presented in
Section 2.8.4.

16. Presumably, the term was introduced by Clarkson [Cla94].
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Table 2.7: Vulnerability of covered syntactic privacy models to covered attacks.

Attack k-anonymity l-diversity t-closeness

Homogeneity Attack x

Background Knowledge Attack x

Skewness Attack x x

Similarity Attack x x

Minimality Attack x x

Downcoding Attack x x x

Attacks when publishing multiple datasets x x x

- Unsorted Matching Attack

- Complementary Release Attack

- Temporal Attack

- Composition Attacks

- Correspondence Attacks

deFinetti Attack x x x

2.6.8 Attacks on Syntactic Privacy Models

In this section, we describe attacks on syntactic privacy models. Some of them are just
applicable to specific models, while others pose general weaknesses in syntactic privacy
models. Table 2.7 provides an overview of these attacks and their applicability to the
privacy models covered before. A similar overview which includes more syntactic privacy
models, but less detailed attack categories is provided by Zigomitros et al. [Zig+20].

Homogeneity Attack

The homogeneity attack, introduced by Machanavajjhala et al. [Mac+06], is possible
when all records in an equivalence class share the same sensitive attribute. Even though
an adversary might not be able to pinpoint the explicit record for an individual (identity
disclosure), they can directly infer the value of the sensitive attribute for that individual
(attribute disclosure).

An example for a vulnerable dataset is shown in Table 2.8. Even though the table
provides k-anonymity for k = 2, one of the equivalence classes consists of HIV patients
only. An adversary, who identified a target individual in this equivalence class, can
directly deduce the sensitive value of that individual.
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Table 2.8: A 2-anonymous dataset vulnerable to the homogeneity attack.

Sex YOB Postcode Disease

f 1978–1979 54321 HIV

* 1975–1983 543** Stroke

f 1978–1979 54321 HIV

* 1975–1983 543** PAD

* 1975–1983 543** Breast cancer

Table 2.9: A 2-anonymous dataset vulnerable to the background knowledge attack.

Sex YOB Postcode Disease

f 1978–1979 54321 HIV

* 1975–1983 543** Stroke

f 1978–1979 54321 PAD

* 1975–1983 543** Ovarian cancer

* 1975–1983 543** Breast cancer

Background Knowledge Attack

Machanavajjhala et al. [Mac+06] propose the concept of background knowledge attacks.
Based on additional insights not given by the anonymized table, an adversary can
deduce the sensitive value of an individual with a higher probability than promised by
the privacy model. These additional insights (also referred to as background knowledge,
external knowledge, auxiliary information, or side information [GKS08]) can comprise
instance-level background knowledge, such as Alice showing symptoms of a specific
disease, as well as demographic background knowledge, such as the prevalence of cancer
in young individuals being low. An adversary with additional background knowledge
might be able to violate the privacy guarantees of a specific model, when this knowledge
is not considered during anonymization.

An example for a vulnerable table with respect to demographic background knowledge
is given in Table 2.9. An adversary targeting a male patient with postcode 54328 can
deduce that his target suffers from a stroke with high probability, since men usually do
not suffer from breast or ovarian cancer.

The main problem when dealing with this type of attack is that it is often hard or even
impossible to accurately model the adversary’s background knowledge (or more precisely,
the background knowledge of each and every potential adversary). Furthermore, the
background knowledge of an adversary can change over time, for example, when further
datasets are published or research publishes new findings about correlations between
QIDs and sensitive attributes.
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Tao et al. [Tao+08] present a specific type of background knowledge attacks, called
corruption attacks. These attacks deal with a special type of background knowledge:
A corruption describes the situation in which an adversary has learned the sensitive
attribute of an individual I from a different source than the published table T . This
knowledge can put other individuals in the same equivalence class as I in danger since
knowledge about corruptions can potentially render the guarantees of the privacy model
meaningless.

Martin et al. [Mar+07] propose a theoretical framework to capture all pieces of back-
ground knowledge an adversary might possess in form of a formal language. Based
on this language, they provide algorithms for the efficient calculation of worst-case
disclosure risks for adversaries bounded in the number of background information pieces.
Even though Martin et al. show theoretically interesting results, it is unclear how to
these results would translate into practice.

Skewness Attack

Li, Li, and Venkatasubramanian [LLV07] present the skewness attack applicable to
situations in which the global distribution of sensitive attributes is skewed. If an
equivalence class contains a different distribution of sensitive values in comparison to
the overall distribution, this presents a privacy risk for individuals in this class.

An example given by Li, Li, and Venkatasubramanian [LLV07] deals with the result
table for a medical test in which just a small minority of individuals tests positive for a
particular virus. For the sake of convenience we assume a prevalence of 0.01 in the test
population. An equivalence class of size n = 50 with 49 positive and 1 negative cases
would fulfill distinct 2-diversity17, but would pose a serious threat to an individual for
which the probability of a positive test is now 0.98.

Similarity Attack

The similarity attack, introduced by Li, Li, and Venkatasubramanian [LLV07], is possible
when multiple sensitive attribute values are semantically similar. Even though the
specific sensitive attribute value remains protected, an adversary could deduce the
“generalized” type of sensitive attribute when all records in an equivalence class share
semantically similar values.

An example is shown in Table 2.10. All patients in one equivalence class suffer from a
stomach-related disease. Even though an adversary does not learn the detailed disease,
they still find out about the specific class of diseases for the target.

A similar attack, called proximity attack, is described by Li, Tao, and Xiao [LTX08]. It
is possible when an adversary can deduce the narrow interval, in which the numerical
sensitive attribute of a victim falls, with high confidence.

17. Similar considerations for entropy diversity and (c, l)-diversity are provided by Machanavajjhala et
al. [Mac+06] as well.
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Table 2.10: A dataset vulnerable to the similarity attack.

Sex YOB Postcode Disease

f 1978–1979 54321 Gastritis

* 1975–1983 543** Flu

f 1978–1979 54321 Gastric ulcer

* 1975–1983 543** PAD

* 1975–1983 543** Breast cancer

Table 2.11: A dataset vulnerable to the minimality attack.

Name Age

Alice 48

Bob 44

Carol 47

Dave 51

Eve 58

Frank 53

Grace 54

(a) The adversaries background knowledge.

Age Disease

40–60 HIV

40–60 HIV

40–60 Flu

40–60 Skin cancer

50–60 PAD

50–60 Breast cancer

50–60 HIV

(b) The distinct 3-diverse table.

Minimality Attack

Wong et al. [Won+07] introduce the concept of minimality attacks. This class of attacks
are based on the fact that most algorithms for syntactic anonymity rely on the so-called
minimality principle: The algorithm should not alter (for example, generalize) the data
more than necessary to achieve the desired privacy model and therefore minimize
the utility loss. Minimality attacks exploit this principle. Given that an adversary has
knowledge about the used algorithm, they can draw conclusions about algorithm steps
which lead to the anonymized dataset and with that also about the original dataset. The
minimality attack then allows to increase the adversary’s belief about the sensitive value
of an individual.

An example is shown in Table 2.11. We assume an adversary with full background
knowledge as given by Table 2.11a. When the distinct 3-diverse (see Section 2.6.3)
dataset depicted in Table 2.11b is published, the adversary can deduce that the records
of age 40-50 did not fulfill 3-diversity and had to be generalized again. Therefore,
both records having HIV as the sensitive attribute value must be part of this age group.
This increases the adversary’s belief about Alice suffering from HIV to 2

3
(assuming no

further background knowledge) which violates the guarantees from l-diversity. This
inference would have not been possible without an anonymization algorithm following
the minimality principle.
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Table 2.12: A 2-anonymous dataset vulnerable to the downcoding attack.

Sex Postcode Disease

∗1 54321 Flu

∗2 54321 Stroke

∗3 54328 HIV

∗4 54328 PAD

Wong et al. provide examples on how to attack a variety of privacy models including
l-diversity and t-closeness. They introduce the concept of m-confidentiality and an
algorithm for it to protect against minimality attacks.

As Cormode et al. [Cor+10] state, this attack makes strong assumptions about an
adversary’s knowledge: They are assumed to know the QID values for all data records,
the anonymization method, and the anonymized data. Cormode et al. find three
properties making algorithms vulnerable to minimality attacks: deterministic behavior,
asymmetric equivalence class choices, and considering QIDs and sensitive attributes
together during anonymization. Indeterminism, symmetric equivalence class choices, or
focusing on QIDs or sensitive attributes only (as all k-anonymity algorithms proceed)
can reduce or completely prevent the vulnerability of algorithms to the minimality
attack. Furthermore, the authors examine an example algorithm (Greedy Grouping)
which should be strongly vulnerable to minimality attacks and show that the increase in
an adversary’s posterior belief (and therefore the criticality of the attack) is bounded by
e
l

with e ≈ 2.718828 being Euler’s number and l being the syntactic privacy parameter of
l-diversity. They conclude that the effect of the minimality attack for larger datasets and
larger privacy parameters is less dramatic than in the small examples given by Wong
et al.

Downcoding Attack

Cohen [Coh22] introduces the concept of downcoding attacks which also take advantage
of the minimality principle. The downcoding attack allows to undo anonymization by
minimal hierarchical generalization and to recover some fractions of the generalized
data. In comparison to the minimality attack, the downcoding attack does work against
k-anonymity as well.

The foundation of the downcoding attack is the observation that minimality leaks
information. A simple example is given in Table 2.12. Since the k-anonymization with
k = 2 in this example is assumed to be minimal, an adversary can infer that each
generalization step was necessary in the sense that the equivalence class before the
generalization did violate k-anonymity. Therefore, without any background knowledge,
the adversary learns that {∗1, ∗2} = {∗2, ∗3} = {m, f}. An equivalence class with two
female or male patients is not possible due to minimality. Given a data distribution
from which the data records are drawn, Cohen proofs that inferences of this kind can be
exploited to recover generalized data values with non-negligible probability.
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Cohen provides an example on an artificial dataset of clustered Gaussian distributed
data. But several questions remain open for future work: It is unclear, in which settings
regarding data distributions and generalization hierarchies downcoding attacks are
possible or provably impossible and if we can assess the vulnerability against downcoding
attacks. Finally, the applicability of downcoding attacks on real-world datasets has not
been demonstrated at the moment.

Attacking Multiple Published Datasets

The covered privacy models are concerned with singular publications of anonymized
datasets. In comparison to this scenario of static anonymization, dynamic anonymization
deals with anonymizing a potentially updated dataset multiple times [HBN11]. In this
scenario additional challenges and weaknesses arise.

In one of the early publications about k-anonymity Sweeney already provides some of
these weaknesses [Swe02]. Let T denote the original dataset and T ∗

1 , T
∗
2 two different

anonymized versions of T . The Unsorted Matching Attack is possible, when the order
of data records in T ∗

1 and T ∗
2 remains the same as in the original dataset. By linking all

records t(i)1 ∈ T ∗
1 and t

(i)
2 ∈ T ∗

2 via their index i an adversary can obtain more information
about an individual than the individual anonymized tables allow. The Complementary
Release Attack describes an attack where the records of T ∗

1 and T ∗
2 contain some attributes

which are not considered to be part of the QIDs. Then an adversary might be able to
link records in these two anonymized datasets via these attributes and to single out
unique individuals, violating the guarantees of k-anonymity. The Temporal Attack is
enabled when T ∗

1 and T ∗
2 are anonymized versions of T at different moments and T

is dynamically changing between these moments. Since the later anonymization does
not respect the earlier one, linking the tables can reveal sensitive information about
new records as well as about already present records. This is caused by the potentially
different anonymization due to the influence of new records.

Ganta, Kasiviswanathan, and Smith [GKS08] introduce the concept of composition
attacks – attacks which are possible when individuals appear in multiple anonymized
datasets. They provide the intersection attack, a simple example of a composition attack,
which works when the anonymization methods preserve sensitive values (exact sensitive
value disclosure) and allow to find the equivalence class of an individual based on their
QIDs (locatability). An adversary can compute the intersection of sensitive values for an
individual over all datasets. This potentially allows to increase the adversary’s belief for
sensitive attribute values in comparison to the individual datasets or even to single out a
specific value. Composition attacks can be seen as background knowledge attacks with
independently anonymized datasets as background knowledge.

Fung et al. [Fun+08] provide the concept of correspondence attacks. These are possible
in a scenario in which (potentially differently) anonymized versions of a growing dataset
are released at multiple points in time. It is assumed, that records are not deleted and
all releases contain all existing records present at that moment in time. Records which
exist at times T1 and T2 are therefore present in respective data releases R1 and R2 and a
record r1 ∈ R1 always has a counterpart r2 ∈ R2 called the corresponding record. This fact
can be exploited by an adversary in possession of both data releases in different ways.
Fung et al. propose three types of correspondence attacks (Forward-attack, Cross-attack,
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Backward-attack) which depend on the time the target individual was included in the
dataset and the release to attack. Furthermore, they provide the notion of BCF-anonymity
and an algorithm for it to deal with correspondence attacks.

Byun et al. [Byu+06] look at the same problem (while calling the type of attacks
inference attacks). In comparison, their solution requires to withhold some records in
later releases under special circumstances. A similar problem is studied by Xiao and
Tao [XT07]. In comparison they also include the possibility to delete records between
data releases. They provide the principle of m-invariance to protect subsequent releases.
He, Barman, and Naughton [HBN11] extend these attack variants by the equivalence
attack which additionally covers inferences drawn with respect to the equivalence of
sensitive attribute sets for sets of individuals.

The deFinetti Attack

The deFinetti attack (named after De Finetti’s theorem from probability theory), invented
by Kifer [Kif09], takes advantage of the fact that syntactic anonymization methods
preserve statistical correlations between QIDs and the sensitive attributes. A classifier
trained on the anonymized data can be used to predict the sensitive attributes of an
individual in the dataset with a much higher certainty than assumed by privacy models.
These models generally base their privacy guarantees on simplified assumptions. For
example, in the random worlds model an adversary computes the probability of sensitive
attribute values for an individual by looking at the unweighted frequency of values
in all possible worlds. Kifer shows that a well-trained classifier allows for way better
predictions of a sensitive attribute value than expected with these simplified assumptions
on the example of a Naive Bayes classifier and the Anatomy anonymization method (see
Section 2.5.5).

Cormode [Cor11] shows a similar attack for DP (see Section 2.7) by using a Naive Bayes
classifier computed on differentially private histograms for all QIDs and the sensitive
attributes. Furthermore, Cormode states that the deFinetti attack loses its accuracy
for moderate parameters of l-diversity and that certain parameter choices can make
DP even more suspectible to this attack. While Kifer blames the immaturity of privacy
models for the success of the attack, Cormode makes a more fundamental argument: The
release of anonymized data can reveal statistical correlations of sensitive attributes in
the population – and often this is even the objective of data collection and publication18.
Therefore this attack falls under the category of probabilistic disclosure (see Section 2.1)
and Cormode argues for making decisions with respect to a tolerable level of potential
adversary’s belief change.

2.6.9 Concluding Remarks

In comparison to the application of simple de-identification techniques (see Section 2.5),
syntactic privacy models, like k-anonymity or t-closeness, introduce measurable guaran-
tees regarding specific threats. They reduce the disclosure risks in comparison to the

18. Cormode provides the example of scientific studies being presented in the form of conditional probabili-
ties, such as Drinking two glasses of wine each day reduces the chance of heart disease by 50 %.
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original data and provide truthfulness on the data record level in the sense that the origi-
nal attribute values are kept or are replaced by generalizations of these values [CT13].
But these models also bring major problems with them:

• One of the central issues is the need to classify the dataset attributes into the
categories identifying attribute, QID, sensitive attribute, or nonsensitive attribute,
as covered in Section 2.6.1. The assessment of attributes must incorporate potential
background knowledge of possible adversaries and it is by no means obvious how
to do this [De +12]. Missing attributes when determining QIDs can lead to high
re-identification risks.

• On the other hand, classifying all attributes as QIDs – especially for higher-
dimensional data – can severely impact the utility of a dataset due to the curse of
high dimensionality (see Section 2.6.7).

• Furthermore, there is a variety of attacks against syntactic privacy models (see
Section 2.6.8). While some of these are specific to a particular model, others are
generally applicable to most models. Additionally, later models fix weaknesses of
earlier models often at the expense of higher utility losses. For example, t-closeness
is not suspectible to some attacks against k-anonymity and l-diversity but comes
with higher utility costs (see Section 2.6.4).

• While the privacy parameters, such as k in k-anonymity, especially in comparison
to ε in DP, carry some intuitive meaning with respect to potential disclosure risks,
it is often unclear how to choose suitable values for actual scenarios.

• Finally, as shown in Section 2.6.8, these models generally do not allow for compo-
sition.

2.7 Differential Privacy

With the observed weaknesses and subtleties in the application of syntactic privacy
models, there was the need for a paradigm shift. This happened with the upcoming
of semantic privacy models and their most well-known representative DP, which was
introduced by Dwork [Dwo+06b; Dwo06]. While there are further related semantic
privacy models (see Section 2.7.6), the concepts are quite similar. Therefore we focus
on DP as the most well-known representative.

The basic idea of DP is to reduce the impact, a single individual has on the result of
a computation, by introducing a specific amount of randomness into the computation.
This indicates a fundamental difference to syntactic anonymity models: DP is not a
property of a published dataset (or, more generally, the result of a computation) but of
the computation itself.

Figure 2.7 provides a visual intuition of DP. We look at two databases D1 and D2,
which differ in a single data record. DP guarantees, that a computation performed
by a (probabilistic) differentially private mechanism M on both databases produces
similar results. This minimizes the influence a single individual has on the result of a
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differentially
private

mechanism

M : D → R

D1 ∈ D

D2 ∈ D

M(D2)

M(D1)

?
P[M(D1)=S1]
P[M(D2)=S1]

≤ eε

Figure 2.7: Intuition for ε-DP. Computing the result of a (probabilistic) mechanism
M on two databases D1, D2 which differ in a single individual (depicted
in red) should provide an adversary with minimal information about the
influence of the individual’s data.

computation and prevents adversaries from drawing conclusions about this individual
by looking at the computation result19.

DP provides several properties which syntactic privacy models generally lack [Hsu+14;
DKM19]: It enables us to quantify the influence a single individual has on the result
and respectively the risk the individual is exposed to by publishing the result of the
computation. The privacy guarantees do not depend on adversary’s background infor-
mation, capabilities, or goals – and this holds even for future adversaries. And, as we
will see in Section 2.7.2, multiple computations are composable and the resulting risk is
measurable as well.

In this section we provide a detailed introduction to DP. Section 2.7.1 will formalize the
given intuition and lead to the notion of ε-DP. In Section 2.7.2 we look at composability
properties ε-DP offers. Section 2.7.3 introduces differentially private mechanisms which
translate the concept to specific computations. The following Section 2.7.4 looks at
another often used variant of DP, called (ε, δ)-DP. In practice, it is relevant how to
choose the privacy parameters ε and δ. Several approaches for this purpose are surveyed
in Section 2.7.5. Because we just cover the most relevant DP basics in this section, in
the final Section 2.7.6 we provide an overview of further DP-related topics as a starting
point for research in the field of DP.

19. To be more precise, the results of a computation let an adversary infer nothing about the individual that
could not be inferred without the individual participating in the computation. So DP does not protect
against, such as population disclosure (see Section 2.1).
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2.7.1 ε-Differential Privacy

In this section we formalize the given intuition for DP. The following definitions originate
from [DR+14]. We begin with defining databases and the distance between databases,
for which a histogram-based definition is used. A data record is represented as an
element x of the base set of all possible elements X 20. A database can be interpreted as
a histogram N|X | which contains the count of respective data records (elements from the
base set). For readability reasons, we refer to this domain as D.

This histogram-based definition allows us to define the distance between two databases
with respect to the l1-norm ∥·∥1 (the so-called manhattan distance). The l1-norm of a
single database D is defined as

∥D∥1 =
|X |∑
i=1

|D(i)|,

which can be understood as the number of elements in this database. The distance
between two databases D1, D2 is then naturally given by ∥D1 −D2∥1. This results in a
histogram of count differences between D1 and D2 and describes in how many data
records the databases D1 and D2 differ. With these preliminary definitions, we can
formalize ε-DP.

Definition 2.7.1. A randomized algorithm M with domain D is called ϵ-differentially
private, if for all S in the range R of M and for all D1, D2 ∈ D with ||D1 −D2||1 ≤ 1

Pr[M(D1) ∈ S] ≤ eεPr[M(D2) ∈ S]

holds. The probability space follows from the randomization of M .

Given this definition, one might ask how it relates to the informal intuition presented in
the beginning of this section. The database distance describes two databases which differ
in a single individual’s data, which can be understood as looking at the same database
with and without the data of an individual21. For a differentially private mechanism M
and a potential result S the probability for S being the result of M computed on these
two databases must not differ by more than eε. This captures our informally described
intuition of M producing similar results on both databases. Figure 2.7 shows this relation
for a single result S ∈ R. The parameter ε presents a way to mediate between privacy
and data utility. A smaller value leads to smaller deviations of algorithm results with
respect to databases D1 and D2, that is it reduces the influence of individual data records
on the result and therefore increases the privacy for individuals. Section 2.7.5 presents
approaches for choosing an adequate parameter value for ε. The next section covers
convenient properties which directly follow from defining privacy in this way.

20. We observe the theoretical nature of this definition. In practice it would be quite laborious to list all
possible database elements. However, this definition allows for a clean understanding of database
distances.

21. Formally, one can differentiate between bounded and unbounded DP here [KM11]. Bounded DP describes
a definition in which a single tuple in the database is changed, while in unbounded DP D2 is obtained
from D1 by adding or removing a tuple.

59



2 Data Privacy Measures for Protecting Sensitive Data

2.7.2 Properties of Differential Privacy

An important reason for the relevance of DP is the possibility to quantify the privacy
loss even under composition of multiple queries (in contrast to syntactic mechanisms).
The following sections cover properties of DP under composition and with respect to
postprocessing.

Sequential Composition

If several queries are executed on the same database, the achieved level of privacy is
inevitably reduced. For example, multiple executions of the Laplace mechanism for
the same type of query would potentially allow to deduce the real value with a high
probability. An advantage of DP is the possibility to quantify by how much the privacy
guarantee is weakened. For two queries A(D) and B(D) with privacy parameters εA
and εB the combined query C(D) = (A(D), B(D)) fulfills εC-DP with εC = ε1 + ε2. This
property is called sequential composition [McS09].

The proof for the sequential composition property is simple. The ratio of probabilities
for a result (rA, rB) of the combined query is

P[C(D1) = (rA, rB)]

P[C(D2) = (rA, rB)]

=
P[A(D1) = rA]P[B(D1) = rB]

P[A(D2) = rA]P[B(D2) = rB]

=

(
P[A(D1) = rA]

P[A(D2) = rA]

)
·
(
P[B(D1) = rB]

P[B(D2) = rB]

)
≤ exp (εA) exp (εB)

= exp (εA + εB).

Because of the sequential composition property the privacy parameter ε often is referred
to as privacy (loss) budget. The privacy budget for n queries, which in combination
guarantee ε-DP, can be split over these n queries by using n privacy parameters ε1, . . . , εn
with

∑n
i=1 εi = ε for the queries. Further results for the influence of composition on the

achievable privacy level are provided by Dwork, Roth, et al. [DR+14], Murtagh and
Vadhan [MV16], and Vadhan and Wang [VW21]. These results allow a better choice
of privacy parameters when using multiple queries and extend the given property to
(ε, δ)-DP.

Parallel Composition

Another composition property of DP is called parallel composition [McS09]. This property
is based on the idea that, when performing queries on disjoint subsets of the database, a
single individual can just contribute to one of these queries. Let D1, . . . , Dn be disjoint
subsets of the database D. For queries M1(D

1), . . . ,Mn(D
n), where each query Mi(·)
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guarantees ε-DP, the combination of all queries also guarantees ε-DP. For queries
with differing privacy parameters the combination fulfills εmax-DP with εmax being the
maximum privacy parameter over all queries. A proof for this property is provided by
McSherry [McS09].

In comparison to sequential composition, which would give us a guarantee of nε-DP, this
allows for a much better estimation of the achieved privacy for the scenario of disjoint
subsets. A natural application example for parallel composition are histogram queries
(see Section 2.7.3).

Postprocessing

Often, there is a necessity to postprocess the result of a differentially private query
before outputting it. For example, it can be required to round values or to substitute
0 for negative values in a histogram query. The following result shows that such
subsequent, data-independent transformations of a DP mechanism do not violate the DP
guarantees.

Given a deterministic postprocessing function g : R→ R′ and a DP mechanism M : D →
R, then g ◦M : D → R′ is also differentially private. The following proof is provided by
Dwork, Roth, et al. [DR+14]. Given two databases D1, D2 with ∥D1 −D2∥1 ≤ 1 and a
result S ⊆ R′ of the mechanism M as well as T = {r ∈ R : g(r) ∈ S}, we obtain

P[g(M(D1)) ∈ S] = P[M(D1) ∈ T ]

≤ exp (ε)P[M(D2) ∈ T ]

= exp (ε)P[g(M(D2)) ∈ S].

This result shows that each data-independent transformation of a differentially private
mechanism result does not violate the guarantees of DP – this property holds completely
independent of any additional information an adversary may possess.

2.7.3 Differentially Private Mechanisms

After presenting the principle of DP, this section will introduce examples of mechanisms
that fulfill ε-DP. The main approach used in these methods is to add random noise to the
result of a calculation. The amount of added noise, which, for example, can be obtained
from a Laplace distribution, depends on the privacy parameter ε.

Randomized Response

A simple mechanism which fulfills DP is the randomized response mechanism. It was
introduced for study questions, for which respondents are not willing to give correct
answers, or answers at all, due to the sensitivity of the question topic. The basic idea is
to introduce randomness in the response process to encourage respondents to answer
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honestly by providing some sort of plausible deniability. The concept has been used in
the social sciences way before DP was introduced [War65; Gre+69]. Later it has been
shown that it is a differentially private mechanism.

As a simple example, we look at a question with binary answers, for example: Have
you been smoking marijuana in the last week?. For answering the question, respondents
are asked to covertly flip a coin. For heads they should provide the real answer to the
question. For tails they flip the coin again and answer with yes for heads and no for tails.
In this way the interviewer cannot deduce the respondents real answer with certainty.
But a large number of answers still allows statistical conclusions about the response
distribution in the study population.

It is easy to show that this randomized response mechanism fulfills DP [DR+14]. Looking
at a single answer for a respondent who would answer the original question with yes,
they would answer yes when the first coin shows heads (P = 1

2
) as well as when the first

coin flip shows tails and the second one shows heads (P = 1
4
). Therefore we obtain the

conditional probability P[result = yes | truth = yes] = 3
4
. Similar considerations can

be made about the other relevant conditional probabilities. When we compare these
probabilities, we obtain

P[result = yes | truth = yes]

P[result = yes | truth = no]
=

P[result = no | truth = no]

P[result = no | truth = yes]
=

3
4
1
4

= 3.

Comparing this to the definition of ε-DP, we can directly see that this particular mecha-
nism is ln 3-differentially private. Other values of ε, and therefore more or less privacy for
respondents, can be obtained by using an unfair coin, where heads and tails probabilities
P ̸= 0.5.

This mechanism is not just a toy example for a DP mechanism, but is used as a
base for large-scale DP implementations, for example, in the RAPPOR framework by
Google [EPK14]. Further, more theoretical results related to randomized response and
DP are provided by Kasiviswanathan et al. [Kas+11].

Laplace Mechanism

A quite natural way to achieve a differentially private version of a function f : D → Rk

arises from the Laplace distribution in the form of the Laplace mechanism [Dwo+06b].
For this we simply compute

MLaplace(D, f(·), ε) = f(D) + (Y1, . . . , Yk),

in which Yi represents a random variable drawn from the Laplace distribution Lap(∆f
ε
).

∆f denotes the so-called sensitivity of function f – a value that describes the maximum
change a single individual can cause in the output of f22:

22. Given here is the so-called global sensitivity, that is, the maximum change an individual can cause in
two of all possible databases. This kind of sensitivity can potentially lead to the addition of much noise.
There are other definitions of sensitivity, such as smooth sensitivity [NRS07], which relax the definition
of global sensitivity. Further references to other sensitivity definitions are presented by Desfontaines
and Pejó [DP20].
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∆f = max
D1,D2∈D

∥D1−D2∥1=1

∥f(D1)− f(D2)∥1 .

Again, ∥·∥1 describes the l1-norm of the function results23. The used scale of the Laplace
distribution ∆f

ε
is responsible for its spread. For functions with a higher sensitivity ∆f

or stronger privacy guarantees, in other words, smaller values for ε, the probability of
adding more noise is higher.

The following proof is presented by Dwork, Roth, et al. [DR+14]. We can show that
the Laplace mechanism fulfills ε-DP by comparing the probability density functions
for two databases D1, D2 ∈ D with ∥D1 −D2∥1 ≤ 1. The probability density function
of the Laplace distribution is formed by p(x) = 1

2σ
e

|x|
σ . We compare the probability

densities pD1 for algorithmMLaplace(D1, f(·), ε) and pD2 for algorithmMLaplace(D2, f(·), ε)
at an arbitrary point z ∈ Rk:

pD1(z)

pD2(z)
=

k∏
i=1

exp
(
− ε·|f(D1)i−zi|

∆f

)
exp

(
− ε·|f(D2)i−zi|

∆f

)


=
k∏

i=1

exp

(
ε · (|f(D2)i − zi| − |f(D1)i − zi|)

∆f

)
(1)

≤
k∏

i=1

exp

(
ε · |f(D1)i − f(D2)i|

∆f

)

= exp

(
ε ·
∑k

i=1 |f(D1)i − f(D2)i|
∆f

)

= exp

(
ε · ||f(D1)− f(D2)||1

∆f

)
(2)

≤ exp (ε).

Inequality (1) follows from the triangle inequality24. Inequality (2) uses the fact ||D1 −
D2||1 ≤ 1 and the definition of the sensitivity

||f(D1)− f(D2)||1
∆f

≤ 1.

23. A distance metric is used here, since the function results can potentially be multidimensional. This is
especially relevant in comparison to the Gaussian mechanism introduced in Section 2.7.4 in which a
different distance metric is used. However, for the following examples in this section this plays no role
since they all are based on functions with single-dimensional results.

24. More precisely, the inequality follows from a variant of the triangle inequality, we achieve by some
transformations:

|A+B| ≤ |A|+ |B| ⇐⇒ |A− C| − |B − C| ≤ |B −A|.
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Name Income (ke)

Alice 40

Bob 17

Carol 123

Dave 51

Eve 59

... ...

(a) The income microdata. (b) The distribution of incomes. This figure (and the fol-
lowing ones) additionally show the medians as well
as the first and third quartiles for the distribution.

Figure 2.8: The artificial income dataset.

This general formulation of the Laplace mechanism can be used to obtain differentially
private variants of different functions.

In the following sections we use an artificial dataset of income microdata DIncome to
show the influence of DP to specific queries. For this dataset 1,000 data records with
random25 income values were created. An excerpt from this dataset and the distribution
of income values of the whole dataset are shown in Figure 2.8a and Figure 2.8b. In
the following mechanism descriptions based on the example we omit the digits below
the thousands to reduce visual clutter. For the upcoming example queries we use a
fixed privacy parameter ε = 0.5 (see Section 2.7.5 for how to choose reasonable privacy
parameters).

Counting queries A counting query computes the number of individuals D(i) in a
database D which fulfill a certain property (described by the indicator variable I(·)):

fcount(D) =

|D|∑
i=1

I(D(i)).

For example, this could be the number of people suffering from a specific type of
cancer. To construct a differentially private counting query, we can resort to the Laplace
mechanism. A single individual can change the result of a counting query by 1 at most,
therefore the sensitivity of a counting query ∆f = 1. Therefore it is sufficient to add
random noise drawn from Lap(1

ε
) to the original result of the counting query.

When considering our income dataset an example query is counting the number of
individuals with an income above 60.000e. The real result of the query fcount(DIncome) =

25. The income values were drawn from the Gumbel distribution, which can be used to model the chances
of natural disasters. Similarities are completely coincidental – but undeniable. It may be worthwhile for
future economic studies to explore the question whether the current income distributions represent a
special kind of natural disaster.
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Figure 2.9: The distribution of differentially private counting query results for individ-
uals with an income above 60,000 e.

173. Adding noise from Lap(1
ε
) with ε = 0.5 does alter this value slightly. Figure 2.9

shows the distribution of differentially private results of this query. As we can see, most
of the results fall into the range of 170 to 176. So the query should provide an result
accurate enough for most use cases.

Histogram queries A histogram query divides the database D based on certain criteria
into distinct subsets Hi and provides the number of individuals in these subsets. An
example would be the age distribution of individuals in a database in ranges of 5 years:

fhist(D) = (H1, . . . , Hn) with Hi =

|D|∑
j=1

I(D(j), Hi).

The indicator variable I(D(j), Hi) describes the (non-)membership of an individual D(j) in
the specific subset Hi. A single individual belongs to exactly one of the subsets and does
influence the count for this subset by 1 – an example for the parallel composition property
of DP (see Section 2.7.2). Therefore, just as in the case of simple counting queries, the
sensitivity of the query ∆f = 1. Similarily, we can use the Laplace mechanism by adding
random noise drawn from Lap(1

ε
) to each subset count.

Table 2.13a shows the histogram fhist(DIncome) for our income database and Table 2.13b
a possible differentially private result of the query is shown. Noise from the Laplace
distribution Lap(1

ε
) with ε = 0.5 was added independently to each of the bins. Addi-

tionally all resulting counts were rounded to the next integer. This does no harm to
the DP guarantees due to the postprocessing property (see Section 2.7.2). Notice, that
the result in Table 2.13b is just one example and does not show the result distribution.
However, since the amount of noise is the same as in the counting query covered before
and the noise is drawn independently for each income range, the distribution for each
differentially private count value follows the one covered in Figure 2.9 (obviously with
respective median values).
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Table 2.13: An example for a differentially private histogram query.

Income Count

0–30 221

30–60 606

60–90 153

90–120 16

120–150 3

(a) The unaltered income range histogram
query result.

Income Count

0–30 224

30–60 606

60–90 151

90–120 20

120–150 4

(b) Example result for the differentially private
histogram query.

Figure 2.10: The distribution of differentially private query results for the sum of all
incomes.

Sum queries A sum query calculates the sum over certain attributes (given by the
function a(·)) of all individuals D(i) which satisfy some condition (described by the
indicator variable I(·)):

fsum(D) =

|D|∑
i=1

a(D(i)) ∗ I(D(i)).

In contrast to the previous mechanisms, the influence of a single individual and thereby
the sensitivity of the query can be much higher depending on the scenario. The query
sensitivity ∆f does fully depend on the attributes the sum is computed over. For a
maximum individual influence C we get the sensitivity

∆f = C = max
D∈D

a(D)−min
D∈D

a(D).

By using the Laplace mechanism with random noise drawn from Lap(C
ε
) we obtain a

differentially private sum query. For sum queries with an unknown sensitivity, we can
limit the values to a reasonable range [0, . . . , C] or [−C

2
, . . . , C

2
]. Outliers are reduced to

the lower or upper bound. This process is also referred to as clamping.
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Coming back to our income example, we now want to compute a differentially sum over
all incomes for a real value of fsum(Dincome) = 43, 841. In comparison to the examples
of counting and histograms, it is more complicated to determine the sensitivity of the
function now. We have to choose reasonable minimum and maximum income values
and compute the sensitivity of the query from these values. For our example we use
0 as the minimum and 150,000 e26 as the maximum value and obtain a sensitivity
∆f = 150. Therefore, we must add noise drawn from Lap(150

ε
) with ε = 0.5 to the

real result. Figure 2.10 shows the distribution of sum query results. Even though the
absolute amount of required noise is much higher than in the query examples covered
before, the relative result error is in a similar range since the sum result is much larger
than the results covered before.

Average queries The following section is based on ideas provided by Brubaker and
Prince [BP21]. An average query calculates the average over certain attributes (given
by the function a(·)) of all individuals which satisfy some condition (described by the
indicator variable I(·)):

favg(D) =

∑|D|
i=1 a(D

(i)) ∗ I(D(i))∑|D|
i=1 I(D(i))

.

The easiest approach for computing a differentially private average consists in the direct
application of the Laplace mechanism to the average function. Like for the sum query
considered above, the sensitivity of the average query is formed by a to be determined
value C, which depends on the specific scenario. This sensitivity takes the case, in which
a single individual is responsible for the full average, into account. Therefore we need
the same amount of noise as for sum queries. But this method has a big disadvantage
with respect to the required amount of noise. While the final sum value in a sum query
is generally much higher than the individual summands and the sensitivity of the query
– which reduces the influence of the added noise – the average is generally smaller than
the sensitivity of the query. Therefore, the required amount of added noise has a high
impact on the result of the query. This can also be illustrated by the fact that the noise
must also cover the worst case, which, as described, consists of a single person being
included in the calculation.

One way to prevent this problem is the combination of the DP mechanisms for sum
queries and counting queries. By employing the sequential composition property (see
Section 2.7.2) of DP we can apply both mechanisms with privacy parameters ε1 and ε2
and ε1 + ε2 = ε. The result of this combined average query is obtained by dividing the
result of the sum query by the result of the counting query for given privacy parameters.
This approach preserves the privacy guarantees of ε-DP while simultaneously drastically
reducing the influence of the added noise to the result of the query.

This relation is visualized in Figure 2.11 for our income dataset. The real income average
is favg(DIncome) ≈ 43.8. For the simple average mechanism depicted in Figure 2.11a we
directly add noise drawn from Lap(150

ε
) for ε = 0.5 (the same amount as for the sum

26. This choice might exclude the income of the CEO of a multi-billion dollar company (who is almost
always part of ordinary income datasets in data privacy research). However, these are exactly the
decisions in DP which provide quite accurate query results while still preserving the privacy of CEOs.
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(a) Simple average mechanism. (b) Combined average mechanism.

Figure 2.11: A comparison between the simple and combined average mechanism.

query) to the real result. We can observe that the amount of required noise renders the
results nearly meaningless, with income average quartiles ranging from −162.6 up to
255.5. In comparison, combining the sum query with noise drawn from Lap(150

ε1
) and

the counting query with noise drawn from Lap( 1
ε2
) and ε1 = ε2 = ε

2
= 0.25 provides

accurate differentially private average results. These results are shown in Figure 2.11b,
where we observe income average quartiles of 43.4 and 44.3.

Further differentially private mechanisms for computing averages, which provide varying
results depending on the privacy parameter ε, are presented by Li et al. [Li+16].

Report Noisy Max

Another elegant mechanism, which – similar to computing averages – allows higher
accuracy in comparison to multiple single queries, is called report noisy max [DR+14].
This mechanism allows us to compute the element r in a set of possible results R with
the highest score given by a score function u : D ×R → R for a database x:

frnm(D) = argmax
r∈R

u(D, r).

For example, the score function u can simply count the number of occurrences of
elements in the database having the element r as an attribute, such as the type of cancer
in a database of cancer patients. Report noisy max would allow us to find the prevalent
cancer type in the database. But the mechanism also enables us to find the element r
with the highest score in scenarios, in which an individual can contribute to the count of
multiple elements r ∈ R (in comparison to histogram queries).

The basic idea of the mechanism is to add Laplace noise to the score for each element
r ∈ R and just return the element with the highest score. The complete mechanism is
shown in Listing 2.2.

Since the mechanism just returns a single element, we can achieve ε-DP, independently
of the size of the result set |R|. A proof for this statement is provided by Dwork, Roth,
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1 function reportNoisyMax(D, u, ε)
2 for i← {1, . . . , |R|}
3 Yi ←R Lap(∆u

ε )
4 ci ← u(D, ri) + Yi

5 noisyMaxIdx = argmaxi∈{1,...,|R|} ci
6 return R[noisyMaxIdx]

Listing 2.2: The report noisy max mechanism.

et al. [DR+14]. In comparison, we just achieve |R|ε-DP when we perform the |R|
queries independently and choose the highest noisy score value afterwards.

Exponential Mechanism

With report noisy max we already presented a mechanism, which allows non-numeric
outputs. Another mechanism, which allows this, is the exponential mechanism [MT07].
In comparison to Report Noisy Max, this mechanism does not add noise to the results of
the computation but to the probabilities for all outcomes. In this way we can answer
queries in a reasonable manner, for which adding noise to single outcomes would not
make sense. An example given by Dwork, Roth, et al. [DR+14] deals with an auction
scenario in which individual bids are to be protected, but noise in individual bids can
completely prevent sensible price determination and thus tamper with the outcome of
the auction.

The main idea behind the exponential mechanism is based on a utility function u :
D ×R → R, which assigns a score value to each result r in the set of possible result R.
This score describes the quality of an answer as a result of the query – in the case
of illnesses, for example, the frequency of an illness. The exponential mechanism
simply consists in outputting a result value r ∈ R based on the probability distribution
proportional to exp

(
εu(D,r)
2∆u

)
. The sensitivity ∆u for the utility function is computed

over all elements r ∈ R for databases D1, D2:

∆u = max
r∈R

max
∥D1−D2≤1∥1

|u(D1, r)− u(D2, r)|.

A proof for the fulfillment of ε-DP is provided by Dwork, Roth, et al. [DR+14].

2.7.4 (ε, δ)-Differential Privacy and the Gaussian Mechanism

In this section we cover a relaxation of ε-DP, called (ε, δ)-DP [Dwo+06a] (sometimes
also referred to as approximate DP). The parameter δ can informally be interpreted as
the probability that the guarantees of DP do not hold27. We start with the definition of
(ε, δ)-DP and afterwards cover the Gaussian mechanism, which fulfills this definition of
privacy.

27. This interpretation is formally incorrect, but allows for an intuitive understanding of the param-
eter. Details on the real meaning of the parameter δ can be found in an excellent blog post by
Desfontaines [Des20].
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Definition 2.7.2. A randomized algorithm M with domainD is called (ε, δ)-differentially
private, if for all S in the range of M and for all D1, D2 ∈ D with ||D1 −D2||1 ≤ 1

Pr[M(D1) ∈ S] ≤ eεPr[M(D2) ∈ S] + δ

holds. The probability space follows from the randomization of M .

We have seen the Laplace mechanism, which works by drawing noise from the Laplace
distribution and fulfills ε-DP. Another DP mechanism, the so-called Gaussian mechanism,
works by drawing noise from the normal (or Gauss) distribution. For the Gaussian
mechanism we can use a variant of the sensitivity, which just differs in the used distance
measure:

∆2f = max
D1,D2∈D

∥D1−D2∥1=1

∥f(D1)− f(D2)∥2 .

∥·∥2 describes the l2-norm (also known as the Euclidean distance) of the function results.
For the Gaussian mechanism we compute

MGauss(D, f(·), ε, δ) = f(D) + (Y1, . . . , Yk),

in which Yi represents a random variable drawn from the normal distribution N with
mean µ = 0 and variance σ2 = 2 ln(1.25/δ)·(∆2f)2

ε2
28. The Gaussian mechanism fulfills (ε, δ)-

DP. A proof for this statement is provided by Dwork, Roth, et al. [DR+14]. (ε, δ)-DP
provides similar composition properties like ε-DP [DR+14].

The question remains as to why or when the Gaussian mechanism and (ε, δ)-DP should be
used, even though it provides less strict privacy guarantees in comparison to ε-DP. A first
reason is the familiarity of data analysts with the normal distribution and its properties
compared to the less often used Laplace distribution. Another, more important reason
shows up when we look at multiple queries being performed on the same database. The
amount of required noise to achieve the same level of privacy with respect to ε generally
is lower for the Gaussian mechanism when performing multiple queries (at the cost of
δ > 0). This is especially relevant for differentially private machine learning applications,
in which noise has to be applied to large vectors (see Section 2.7.6).

2.7.5 Choosing Parameters ε and δ

When deploying DP into a practical setting, we have to look at instantiations of the
privacy parameters – or in other words: How do we choose ε and δ? They play a vital
role in the privacy protection capabilities of a system and decide between strong and
meaningless protection of privacy [DKM19]. The importance of choosing appropriate
parameters can be compared to the choice of security parameters in cryptosystems:
The key length establishes the security of the crypto system and using a short key can
compromise the security of an otherwise secure system. But while choosing large keys

28. It has been shown, that the original formulation of the mechanism given here adds more noise than
necessary. Balle and Wang [BW18] provide details on how to choose the standard deviation σ for
tighter bounds.
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can at most interfere with the performance of a cryptosystem, choosing oversized privacy
parameters can impair the quality of the query result and in the worst case render it
meaningless. Furthermore, in comparison to the choice of key length, for which suitable
parameters are quite easily determinable, the choice of privacy parameters is not directly
obvious and can depend on properties of the scenario: the value of data usage, the
sensitivity of the data, present data attributes, and practices and policies to restrict
the analysts who query the data [DKM19]. To some extent it is a societal problem to
choose the right degree of privacy protection in specific scenarios. But even an informed
decision about this tradeoff does not allow to directly determine an appropriate value
of ε. A similar argument is given by Lee and Clifton [LC11]. According to them, a
suitable value for ε is not obvious due to the missing direct relation between this privacy
parameter and practical disclosure risks as given in Section 2.1.

A survey conducted by Dwork, Kohli, and Mulligan [DKM19] examined how the param-
eter ε was chosen in practice. They found a wide range of methods:

• Simulations were performed to find a value of ε which did disturb the query result
little enough to still meet the business requirements.

• Others performed threat modeling to deduce suitable parameter values from the
resulting models.

• Some practitioners fell back on values being used in existing implementations.

• A final group admitted to use somewhat arbitrary choices without much considera-
tion.

Based on these results, Dwork, Kohli, and Mulligan propose the idea of a Epsilon Registry
including amongst others the paths of privacy loss, the choice of ε and the variant of DP,
and a justification of implementation details. This registry could serve as a resource for
shared learning in the field of DP. Furthermore, the disclosure of a company’s choice of ε
and other details would allow regulators to assess the effect of used privacy measures.

Since such a registry currently does not exist, we present several existing approaches in
this chapter which can support adopters of DP in the choice of the privacy parameter ε.

Visual Support Tools

There are several publications providing visual tools which allow the data analyst to di-
rectly see the influence of their choices of privacy parameters. Gaboardi et al. [Gab+18]
developed the tool PSI29 which allows sharing and exploring privacy-sensitive datasets
in a differentially private fashion. Hay et al. [Hay+16] provide DPComp30, a tool to
visually assess the influence of DP on the accuracy of different algorithms on publicly
available datasets. Overlook31, developed by Thaker et al. [Tha+20], enables interactive,
differentially private exploration of data and the impact of privacy parameters. John
et al. [Joh+21] present differential privacy policy tool (DPP)32 which abstracts from

29. A deployed version of PSI is available at http://psiprivacy.org/ (visited on 23.11.2022), the code
at https://github.com/opendp/PSI (visited on 23.11.2022).

30. DPComp is accessible at https://www.dpcomp.org/ (visited on 17.11.2022).
31. The code of Overlook is available at https://github.com/vmware/hillview (visited on 23.11.2022).
32. Unfortunately, we are not aware of an available deployment of this tool.
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concrete parameters and allows data analysts to explore the relation between risk,
sensitivity and trust w.r.t added noise with simple parameter choices from very low to
very high. Nanayakkara et al. [Nan+22] introduce Visualizing Privacy (ViP)33 which
depicts expected accuracy and privacy risks based on different choices for ε.

An Economic Model

Hsu et al. [Hsu+14] propose an economic model for choosing the privacy parameters
of DP in privacy-preserving studies. The main idea of their approach is to assign costs
to all possible privacy violation events. They look at the problem from two sides: the
side of the data analyst and the side of a potential participant in the study. The data
analyst has a minimum required accuracy α given by an accuracy function A(ε,N) for
the study and a budget B they can spend on the study to compensate participants
for possible disadvantageous events arising from their participation. The participant
decides to participate in the study only if their compensation exceeds the increase in the
expected worst-case cost C in comparison to the costs of not participating E. The data
analyst can then compute suitable values for ε by respecting constraints with respect
to budget and accuracy. Additionally, the authors provide several refinements for their
model in terms of additional constraints for upper and lower bounds on ε and in terms
of using (ε, δ)-DP. Even though this approach and the introduction of several additional
parameters might seem complex, Hsu et al. argue that their model makes real-world
considerations explicit which are condensed in the single parameter ε in the original
definition of DP. On the other hand, they also admit that the assumption of participants
being able to estimate the expected cost of events when they participate as well as when
they do not participate might be a too simple approach for some applications.

A Vote-based Model

The approach of Kohli and Laskowski [KL18] differs from the other approaches covered
in this section in that they empower the individuals to choose the value of ε themselves.
According to the authors this has several benefits, including the ideas that individuals
would better understand their own privacy risks in specific situations than uninvolved
data analysts, and that it would allow individuals to partially control the behavior of
a system directly affecting their lives. The main idea is to let each individual vote
for their preferred value of ε (potentially in a set of appropriate values ε1, . . . , εk). A
chooser mechanism aggregates these values and outputs the final choice for varepsilon.
This mechanism has to fulfill three properties: It has to be truthful, meaning that the
mechanism should provide individuals an incentive to report their real preference. It
must keep votes private, as the sole information about an individuals privacy preferences
can already indicate the motivation to hide something. Finally, it should be anonymous
(in a game-theoretic sense), meaning that it does not favor the vote of some individual
over the vote of another one. The authors provide different mechanisms for two
scenarios: arbitrary preferences and single-peak preferences – a variant in which a single
individual has high privacy requirements in comparison to others.

33. A demo can be found at https://priyakalot.github.io/ViP-demo/ (visited on 17.11.2022).
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The central assumption of this approach (and possibly a severe limitation) is that
individuals are able to understand their personal privacy risks and to accurately quantify
these in terms of ε. As covered in the beginning of this section, there seems to be now
agreement even under privacy experts on how to choose these parameter. It is unclear,
how each directly affected individual should be able to do so.

A Model based on Estimation Theory

Naldi and D’Acquisto [ND15] provide an approach for a more intuitive choice of privacy
parameters when using Laplace noise for counting queries based on interval estimation.
The original Laplace mechanism just uses ε as a privacy parameter, which determines the
scale of the Laplace distribution noise is drawn from. Naldi and D’Acquisto describe this
as an unintuitive way of determining the desired level of privacy. Instead, they propose
the usage of two parameters, namely the confidence interval width w and the confidence
level p, which describe the probability that the real result c of the query is placed in
the given interval around the differentially private result. Given these parameters, the
required value for ε can be computed as

ε = − ln(1− p)

wc
.

The authors provide an interesting idea which might prove useful for a more intuitive
way of choosing ε. A major disadvantage is the dependence of ε on the real result of
the query c, which prevents weighting privacy and utility before performing the query.
Furthermore, it is not clear how to translate their results to other mechanisms.

A Risk-based Model

Lee and Clifton [LC11] provide a way to compute a suitable value for ε based on a
specific adversary model: the probabilistic disclosure of the presence of an individual in
the dataset. Their approach uses an adversaries posterior belief about the presence of
the individual. This is related to our notion of membership disclosure (see Section 2.1).
Providing an upper tolerable bound for this belief allows for computing a suitable
parameter ε. The computation is based on the Laplace mechanism (see Section 2.7.3)
and incorporates the sensitivity of the desired function ∆f , the maximum distance
between function values of all possible worlds ∆v and the number of elements in these
worlds n – so it is highly application and data specific. Using these values they propose
the following choice for ε given the upper bound for the adversaries posterior belief p:

ε ≤ ∆f

∆v
ln

(n− 1)p

1− p
.

Mehner, Voigt, and Tschorsch [MVT21] extend the results of Lee and Clifton. By just
considering worst-case estimates of the number of elements and the sensitivity, they
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introduce the global privacy risk and leak, which allow for global upper bounds. Further-
more, they apply these risks to the randomized response mechanism (see Section 2.7.3)
for a more intuitive explanation of privacy risks.

Another, more general Bayesian interpretation of DP, which we describe in the next
section, allows for more general statements about choosing ε.

Bayesian Interpretation

The following interpretation comes from [Des18] and is based on [KS14a]. It allows
for a graphic view on DP and especially the privacy parameter ε. The interpretation
follows from looking at the information which is available to an adversary. Given a
database D, a ε differentially private algorithm A and an algorithm output O, resulting
from applying the algorithm A to the database D. Depending on the output O the
adversary’s beliefs about the presence or absence of an individual in database D can
change. We can compute lower and upper bounds for the maximum changes of these
adversary’s beliefs.

We assume the adversary to possess knowledge about all individuals in the database
with the exception of a single individual. For this individual the adversary does not
know whether the individual is part of the database. We call this an adversary with
full background knowledge. P[D = Din] describes the initial beliefs of the adversary
(in terms of a probability) that the individual is part of the database. Accordingly,
P[D = Dout] = 1− P[D = Din] describes the converse probability for this event. When
the adversary learns the output O, they can update their beliefs depending on this output.
We can model this updated beliefs as the conditional probability P[D = Din | A(D) = O].
The privacy guarantees of ε-DP allow us to quantify the maximum changes to the
adversary’s beliefs. For this purpose we employ Bayes’ Theorem

P[D = Din | A(D) = O] =
P[D = Din] · P[A(D) = O | D = Din]

P[A(D) = O]
.

For better readability, we can replace P[A(D) = O | D = Din] with P[A(Din) = O]. To
get rid of the unknown term P[A(D) = O] we instead consider the quotient of updated
beliefs P[D = Din | A(D) = O] and P[D = Dout | A(D) = O]:

P[D = Din | A(D) = O]

P[D = Dout | A(D) = O]
=

P[D = Din]

P[D = Dout]
· P[A(Din) = O]

P[A(Dout) = O]
.

The ratio between P[A(Din) = O] and P[A(Dout) = O] is directly present in the definition
of ε-DP and is bounded by the privacy parameter:

e−ε ≤ P[A(Din) = O]

P[A(Dout) = O]
≤ eε.

This leads to the inequality
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Figure 2.12: Relationship between an adversary’s initial and updated beliefs for differ-
ent values of the privacy parameter ε. Own illustration based on [Des18].

e−ε · P[D = Din]

P[D = Dout]
≤ P[D = Din | A(D) = O]

P[D = Dout | A(D) = O]
≤ eε · P[D = Din]

P[D = Dout]
.

By replacing P[D = Dout] with 1 − P[D = Din] and P[D = Dout | A(D) = O] with
1− P[D = Din | A(D) = O] we obtain

e−ε · P[D = Din]

1− P[D = Din]
≤ P[D = Din | A(D) = O]

1− P[D = Din | A(D) = O]
≤ eε · P[D = Din]

1− P[D = Din]
.

Solving the inequality for P[D = Din | A(D) = O] results in

P[D = Din]

eε + (1− eε) · P[D = Din]
≤ P[D = Din | A(D) = O] ≤ eε · P[D = Din]

1 + (eε − 1) · P[D = Din]
.

Figure 2.12 visualizes this inequality for different values of the privacy parameter ε. This
allows us to assess the worst-case changes of the adversary’s beliefs caused by some
output O. An example conclusion we can draw from it is the following: When we use a
privacy parameter ε ≥ 2, 5 the result of a ε-differentially private algorithm can already
convince an adversary without prior knowledge (P[D = Din] = 0, 5) of the existence of
an individual in the database in the worst case (P[D = Din | A(D) = O] ≥ 0, 9). Similar
statements can be used for the purpose of risk assessment when choosing the privacy
parameter ε.
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2.7.6 Outlook on Further Topics

So far we provided an introduction to DP and its most relevant basic concepts. However,
there are multiple directions in which research extended these basic concepts or applied
DP in other domains. In this section we outline some of these as a starting point for
further research. This includes the concept of centralized, local and hybrid DP, adjusted
DP definitions, using DP in the field of ML, and the differentially private generation of
synthetic data.

Centralized, Local, and Hybrid Differential Privacy

Up to this point we have dealt especially with what is referred to as centralized DP (also
referred to as trusted curator model [Ave+17] or global model [DP20]): A central trusted
party is in possession of the complete dataset, performs some differentially private
computation and can publish the result without putting individuals in the dataset at
risk.

Another possibility which removes the need for a trusted centralized party is called local
DP, introduced by Kasiviswanathan et al. [Kas+11]. In local DP the differentially private
mechanism is performed by each user locally and the perturbed results are sent to a
central party. This removes the risk of data disclosure by an adversarial central party so
that the central party does not have to be trustworthy anymore34.

Local DP requires a slightly changed definition in comparison to ε-DP (see Section 2.7.1).
The following definition is based on the one provided by Cormode et al. [Cor+18].

Definition 2.7.3. An algorithm M satisfies ε-local DP, where ε ≥ 0, if and only if for all
y in the range of M and for any input v and v′, we have

∀y ∈ Range(M) : P[M(v) = y] ≤ eεP[M(v′) = y].

The algorithm M is applied to each individual’s data independently. Informally, this
means that local DP bounds the differences of result probabilities for each individual.

Most local differentially private mechanisms are based on randomized response, but the
Laplace or Gaussian mechanism can be used as well(see Section 2.7.3). The downside
of this approach is that it requires much noise to be added to the individual’s data when
a reasonable value for ε is chosen. Due to this requirement local DP is only suitable for
scenarios with many individuals participating in the process.

Local DP has attracted a lot of attention in recent years and is used by Google [EPK14],
Microsoft [DKY17], and Apple [Tea17]. Yang et al. [Yan+20] provide an extensive
survey and Cormode et al. [Cor+18] a short tutorial on local DP.

But due to the non-universal applicability of local DP, researchers have looked for
solutions in the space between central DP with the requirement of a trusted central party
and local DP which imposes large amounts of noise to the computations. There are two

34. At least the party has not to be trustworthy with respect to preserving the privacy of individuals.
Trustworthiness regarding the publication of correct computation results is still needed.
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general directions for this middle ground: distributed DP and hybrid models Kairouz
et al. [Kai+21]. In distributed DP a secure computation function, for example, based on
SMPC, is employed to aggregate the client results before sending the differentially private
aggregation result to the server. One example is provided by Dwork et al. [Dwo+06a],
who provide a solution for distributedly compute Gaussian noise. Another example is
the Encode-Shuffle-Analyze framework and its implementation Prochlo introduced by
Bittau et al. [Bit+17]. Hybrid models, on the other hand, allow individuals to choose
between placing trust in the central party and using local DP and provide a way to
combine the received results. An example of a hybrid approach is BLENDER introduced
by [Ave+17].

Other Semantic Privacy Models

In previous sections we have covered two definitions of DP: ε-DP and (ε, δ)-DP. But in the
literature a large number of further definitions can be found which relax, change or gen-
eralize different aspects of the original definition. Examples include Rényi DP [Mir17],
personalized DP [JYC15], noiseless privacy [Bha+11], Pufferfish privacy [KM12], and
coupled worlds privacy [Bas+13].

Desfontaines and Pejó [DP20] have provided a comprehensive survey for definitions and
introduce a systematic taxonomy. They present seven dimensions in which the original
DP definition can be modified: quantification of privacy loss, neighborhood definition,
variation of privacy loss, background knowledge, formalism change, relativization of
knowledge gain, and computational power. Furthermore, they categorize about 200
definitions found in the literature according to these dimensions and their relation to
the original definition and among each other.

Differentially Private Machine Learning

One field in which DP has attracted high attention is the field of ML. Adversaries with
access to the model parameters or even just with the capability to query the model are
potentially able to execute a variety of attacks, amongst others:

• Membership inference attacks [Sho+17; NSH19] determine if a data record was
part of the training data.

• Attribute inference attacks [Yeo+18] infer missing information about an incomplete
data record.

• Model inversion attacks [FJR15] attempt to reconstruct training data records.

These attacks can represent risks to individuals in the training datasets when dealing
with sensitive (for example, medical) data and DP can be used to reduce these risks.
While early results using DP for simple models, such as regression models [Zha+12a]
and decision trees [FS10], received considerable attention, the combination of DP and
ML received a boost with the work of Abadi et al. [Aba+16]. They provided a way to
introduce DP into deep learning – training neural networks with multiple layers which
are suitable for a variety of problems, including image recognition [He+16], natural
language processing [OMK21], or even board games [Dee24]. DP is especially relevant
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for these types of models since the complexity of trained models can encode details of
data records from training data and leak this data to adversaries. DP allows to reduce
the impact a single individual has to the training process and the resulting model and
can proof helpful in reducing the success probability of these attacks.

Recent surveys in this area are provided by Ouadrhiri and Abdelhadi [OA22] (focuses
on deep learning), Fletcher and Islam [FI19] (deals with decision trees), and Liu et
al. [Liu+21] (considers the interplay between privacy and ML in different areas).

Jayaraman and Evans [JE19] looked at the influence of the DP privacy parameters and
showed that the privacy-utility tradeoff (see Section 2.2) unsurprisingly also applies to
DP when used in ML.

A subfield of ML in which DP plays an important role is federated learning (FL), intro-
duced by McMahan et al. [McM+17]. FL describes a concept for distributed machine
learning in which the training is performed iteratively by the participants on their local
data without sharing this data with other parties. The local updates are aggregated in a
secure manner and finally result in a trained model. DP can be used to reduce the risk of
disclosure via local updates and also reduce the influence of a single individual on the
final model. Recent surveys about FL which also look into DP are provided by Kairouz
et al. [Kai+21], Li et al. [Li+20], Yang et al. [Yan+19], Rieke et al. [Rie+20], and Wei
et al. [Wei+20].

Differentially Private Synthetic Data Generation

Further mechanisms try to bridge the gap between differentially private queries and
microdata release by synthetic data generation. Instead of publishing an altered version
of the original data, a new synthetic dataset is constructed in a differentially private man-
ner, which statistically resembles the original data. We briefly mention some publications
in this area as a starting point for further results. Machanavajjhala et al. [Mac+08] look
into synthetic data generation for commuting patterns under a relaxed definition of DP.
Hardt, Ligett, and Mcsherry [HLM12] present MWEM which produces synthetic datasets
that respect any set of linear queries. Blum, Ligett, and Roth [BLR13] provide methods
for releasing synthetic datasets for answering particular classes of queries, including
counting and interval queries. Qardaji, Yang, and Li [QYL14] develop a method for differ-
entially private synthetic marginal tables. Ping, Stoyanovich, and Howe [PSH17] provide
DataSynthesizer, an open-source tool for creating differentially private datasets from sen-
sitive data. Zhang et al. [Zha+17] present PrivBayes, a synthetic data generation method
based on Bayesian networks with a focus on high-dimensional data. Torkzadehmahani,
Kairouz, and Paten [TKP19] use a differentially private version of a conditional GAN
for generating artificial image data. Jiang, Zhou, and Grossklags [JZG22] translate the
problem to the distributed setting and use local DP, FL, and generative autoencoders
to generate synthetic data. An overview of further approaches to differentially private
synthetic data generation and a comparison of the utility of resulting datasets is given
by Bowen and Liu [BL20]. A recent survey is provided by Hu et al. [Hu+24]. The
differentially private generation of synthetic data is a field of active research and new
results are constantly published, for example, with a focus on increasing the accuracy or
performance of models for specific tasks [LVW21; Vie+22; Ayd+21].
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2.7.7 Concluding Remarks

As already covered in Section 2.7, the semantic privacy model DP entails several useful
properties [NHF15]. It protects individual information in worst-case scenarios and
does not require any assumptions with respect to potential attacks, in other words, the
(proven and quantifiable) guarantees are independent of any auxiliary information,
adversary’s capabilities, and currently known or future attacks techniques. It is possible
to directly quantify the tradeoff between privacy and utility (see Section 2.2) via the
privacy parameter ε. Furthermore, we have seen that DP provides composability –
the possibility to perform multiple computations in a way that still allows for the
quantification of privacy loss (see Section 2.7.2). Hardt [Har15] makes the point that
in comparison to other models, such as the de-identification measures required by the
HIPAA safe harbor mechanism (see Section 2.3.2), DP can even provide better data
utility because the original data distribution remains unchanged. Additionally, they
argue that DP provides a sort of stability guarantee for ML applications since the idea of
learning about populations not specific individuals is fundamental in statistical learning.
Aaron Roth, one of the leading minds behind DP, mentions that the main benefit of DP
is increased access to data in scenarios in which data access is otherwise problematic
due to regulations [Har15]. One example for this is the collection of large-scale user
data with the help of RAPPOR by Google [EPK14] – data which wasn’t accessible at all
beforehand.

On the other hand, DP is not a silver bullet for each and every problem in privacy-
preserving data publishing and mining. First, the main idea of DP is to bound the
influence a single individual’s data has on the result of a computation to protect their
privacy. Therefore DP is not suitable for studying outliers or small datasets and it
might hide important specifics of small subpopulations in larger datasets [DKM19]. In
comparison to simple de-identification techniques or syntactic privacy models, which
result in modified datasets, there is no one-to-one correspondence in DP results [Coh22],
which might be expected by practitioners. Additionally, the idea of adding noise to the
original data can create opposition from practitioners [CT13], ignoring the fact that
the original data itself can often be noisy [Des21]. Therefore, providing confidence
intervals with DP results is a quite important method to increase the interpretability of
results [Gue+20]. Another thing to be aware of is that DP does not prevent conclusions
to be drawn about individuals based on knowledge derived from differentially private
computations [DKM19; Nis+17]. Correlations like smoking increases the risk of lung
cancer learned in a differentially private way can still cause harm to a smoking individual,
for example, in the form of higher insurance fees. But DP guarantees, that this harm does
not depend on the presence of the individual in the database (see also the discussion
about population disclosure in Section 2.1).

Furthermore, there is a variety of challenges for the practical application of DP. The first
challenge lies in the correct choice for privacy parameters, which is by no means a simple
task (see Section 2.7.5), amongst others, because there is no clear relationship between
the parameter ε and legal concepts like identifiability [CT13] (cf. Section 2.3). With
regard to these difficulties, Dankar and El Emam [DE13] also mention the hurdles that
can arise when it comes to explaining parameter choices to individuals or justifying them
in potential litigation. Even when a suitable value for ε is chosen, there exist further
related challenges [CT13; DE13]. When ε is treated as a privacy budget, practitioners
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have to think about how to split this budget between multiple users. Additionally, they
must decide how much budget to spend for different queries, which is especially chal-
lenging as the amount required to achieve a query result deemed sufficiently accurate
can vary dramatically between different query types. These questions are especially
challenging in scenarios, in which potential users and query types are not known in
advance. Domingo-Ferrer, Sánchez, and Blanco-Justicia [DSB21] mention the danger of
using unreasonably large values for ε, in which case there are no useful privacy guar-
antees provided by DP anymore. They further criticize some simplifications regarding
composability found in practice. For example, Apple uses the full privacy budget of their
DP solution for each individual per day, so that this budget is violated due to sequential
composition (see Section 2.7.2).

We have already mentioned the need to illustrate the effect of parameter choices. But
there is also the necessity to explain DP to practitioners as well as affected individ-
uals and to clarify potential misconceptions [Gue+20]. Anecdotal evidence for this
necessity can be found in the article Fool’s Gold: An Illustrated Critique of Differential
Privacy [BMS13]. This article confidently presented some factually incorrect arguments
against the use of DP and produced several harsh criticisms from researchers engaged
in DP35. There is a line of research dealing with the question of how to make DP more
understandable [Fra+22; KAF22; CKR21; Bul+17].

Further challenges for translating the theoretical DP results into practice include a lack
of robust and usable implementations of common DP algorithms36 [Har15], missing
domain-specific tutorials for the application of DP [Har15], the complexity of deter-
mining global sensitivities, especially in the multidimensional space [CT13], and the
difficulties in securely implementing these results while preventing information leaks,
such as the one caused by insecure floating-point number handling [Gue+20; Mir12].

After examining specific protection measures and their strengths and weaknesses in the
last sections, in the next section we turn to practical examples where an inappropriate
use of these measures for the processing of personal data has led to publicized datasets
incorporating a large re-identification risk for individuals.

2.8 Privacy Breaches

In the following we review some of the most relevant breaches of published “anonymized”
datasets. Similar overviews of or references to these and other breaches are provided in
several publication [El 13; DKM19; RHM19; Zig+20; SOT22].

35. The interested reader can enjoy criticisms by Frank McSherry (https://github.com/frankmcsher
ry/blog/blob/master/posts/2016-02-03.md), Anand Sarwate (https://ergodicity.net/2014/
11/03/an-exercise-in-uncareful-misreading/), and Adam Smith (https://web.archive.org/
web/20180803034501/https://plus.google.com/+ShriramKrishnamurthi/posts/j2GtfgKAh6d),
a response by Jane Bambauer (https://blogs.harvard.edu/infolaw/2016/05/17/diffensive-
privacy/), and a response to the response by McSherry again (https://github.com/frankmcsherry
/blog/blob/master/posts/2016-05-19.md) (visited on 14.06.2023).

36. This challenge is currently approached by various parties. For a survey of existing DP frameworks see
Section 6.4.3.
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2.8 Privacy Breaches

2.8.1 Chicago Homicide Victims Dataset

A study performed at the Massachusetts Institute of Technology in 2001 [Och+01] looked
at a de-identified dataset of homicide victims in Chicago. By combining this dataset with
the Social Security Death Index – a dataset provided by the Social Security Administration
containing information about reported deaths, including individuals names and dates of
birth – the authors were able to re-identify about 35 % of victims. Since the homicide
dataset also contained details about the involvement of drugs, child abuse, gang violence,
or domestic abuse in the homicide, there were clear implications to the privacy of the
victims with potential bad consequences at least for their families.

2.8.2 Massachusetts Health Dataset

Sweeney [Swe97; Swe00; Swe15] was able to identify individuals in a dataset published
by the Group Insurance Commission, a health insurance company for state employees.
She combined the dataset with a voter registration list of Cambridge (Massachusetts) by
taking advantage of the fact that both datasets contained individual’s zip code, date of
birth, and sex. This enabled her to exemplarily identify the Massachusetts governor’s
health records. Based on these insights, she developed k-anonymity as a measure against
these types of linkage attacks (see Section 2.6.2).

2.8.3 AOL Dataset

In 2006, AOL published a dataset of 20.000.000 search queries from about 650.000
Americans stripped from directly identifying information [BZH06]. Reporters from
the New York Times were able to identify an individual by their search queries, which
included, for example, the last name of relatives or information about their city. The
article mentions several sensitive search query topics, including sexual preferences,
emotional state, and medical conditions.

2.8.4 Netflix Prize Dataset

Narayanan and Shmatikov [NS08] provide re-identification algorithms focusing on
high-dimensional, sparse microdata, such as movie or book preferences or transaction
histories, often used for collaborative filtering37. The algorithms are based on the idea
that single individuals in a sparse dataset can be identified by a rather small number of
non-null entries, such as movie ratings. This is especially true if these entries are rare in
the dataset, for example, when an individual often watches non-mainstream movies.

They use the developed algorithm to identify individuals in the Netflix Prize dataset. The
dataset was published in the context of a contest to improve the Netflix recommendation
algorithm and consisted of about 100.000.000 movie ratings created by nearly 500.000
users (a fraction of about 1

8
of all Netflix users). By correlating the dataset with

background knowledge in the form of public Internet Movie Database data, the authors

37. Also known as recommender systems or “Customers who bought this item also bought...”.
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were able to uniquely identify individuals. Although some consider their movie ratings
as insensitive, the authors argue that sensitive information such as political views or
sexual orientation can often be inferred from these ratings.

2.8.5 Social Networks Datasets

Narayanan and Shmatikov [NS09] look at the problem of de-anonymizing social network
datasets, in which identifiers are stripped and just the structure of the network graph
is preserved: individuals are represented as nodes and relationships between them,
such as follow information in social networks, as edges in the graph. The authors
show that this structural information is enough to re-identify individuals using auxiliary
graphs and mapping algorithms on these graphs. They demonstrate the applicability
of their algorithm on a de-identified Twitter dataset using a Flickr dataset as auxiliary
information.

2.8.6 Kaggle Social Network Challenge Dataset

In 2011 Narayanan, Shi, and Rubinstein [NSR11] won the Kaggle Social Network Chal-
lenge, in which links between individuals in a large dataset of Flickr users stripped from
user identities should be predicted, based on their ideas from [NS09]. They gamed the
competition by de-anonymizing the dataset to a large extent using a combination of
crawling public Flickr information and weighted graph matching. By combining the
de-anonymized part of the dataset with a regular ML approach for the remaining data
records, which they were not able to de-anonymize unambiguously, they achieved the
best prediction results of all competitors.

2.8.7 Mobile Phone Location Dataset

De Montjoye et al. [De +13] use a dataset consisting of location data from 1.500.000
mobile phone users collected over the period of 15 months. The data records were
stripped from directly identifying information. Nonetheless, the authors show that the
uniqueness of mobility traces is high and that little background knowledge is required
to re-identify individuals in such datasets.

2.8.8 Credit Card Dataset

Montjoye et al. [Mon+15] examine the credit card transactions (pseudonym, day of
transaction, price) from 1.100.000 users collected in 10.000 shops over 3 months. The
dataset was stripped from directly identifying information. They show that with just 4
known transactions, an adversary would be able to re-identify over 90 % of all individuals.
Similar results are expected for similar sparse, high-dimensional datasets, such as
“browsing history, financial records, and transportation and mobility data” [Mon+15].
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2.8.9 New York Taxi Dataset

The New York Taxi and Limousin Commission publicly released a dataset of all taxi rides
in New York including pickup and drop-off locations and times as well as fare and
tip. This data has been abused to deduce residence and tipping patterns of celebrities
by matching the rides data with public images of them getting in a taxi [Dou+16].
Furthermore, also the privacy of the taxi drivers could be violated due to bad hashing of
the taxi license numbers.

2.8.10 Australian Health Dataset

Culnane, Rubinstein, and Teague [CRT17] exposed severe weaknesses in a dataset
containing individual medical billing information about 2.9 million Australian citizens
published by the federal Department of Health. While the patients’ direct identifiers
were obfuscated and only the gender and year of birth were provided, the dataset
contained individual billing information including codes for the respective treatment
or drug prescription, the slightly altered event date, the price, and the state in which
the event happened. The authors show that this information is enough to uniquely
identify specific individuals due to the sparsity of the dataset (see Section 2.8.4). They
provide several graphic re-identification examples, including mothers identified by
their children’s date of birth, football players identified by required surgical treatments,
and politicians identified by hospital admissions reported in newspapers. All these
examples only required auxiliary information that was perceived as public information.
Furthermore, the authors discuss implications for individuals when linking the dataset
with several non-public datasets, such as the data of credit card companies.

2.8.11 edX Dataset

Cohen [Coh22] presents a re-identification attack against the Harvard-MIT edX38 dataset,
which contains student’s demographic information, information about their activities,
as well as their edX course outcomes. Even though the dataset has been “‘properly
de-identified’ by ‘statistical experts’” [Coh22] in a k-anonymous way, he presents three
attacker models with varying potential background knowledge (prospective employer,
casual acquaintance, edX classmate) and provides the amount of uniquely linkable
data records for each of these models. Furthermore, by using public LinkedIn profile
information he exemplarily identifies three students who failed at least one course with
high certainty.

2.8.12 Reconstruction Attack against Aggregated Statistics

Recently, Dick et al. [Dic+23] show that publishing precise aggregate statistics derived
from a private dataset D imposes the risk of being vulnerable to a specific kind of

38. edX provides open online courses in a variety of disciplines accessible at https://www.edx.org/
(visited on 26.04.2023) and was initially created by the Massachusetts Institute of Technology and
Harvard University.
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reconstruction attack. The introduced attack results in a set of potential data records
ranked by the likelihood of their presence in the private dataset D. The attack is based
on a recent result from synthetic data generation (see Section 2.5.9), called relaxed
adaptive projection (RAP) [Ayd+21]. RAP is a randomized algorithm that takes as input
a set of counting queries and their results on dataset D and generates a synthetic dataset
D′ by trying to solve the optimization problem of minimizing the difference between
the counting query results on D and D′. The idea behind the reconstruction attack is to
generate K synthetic datasets via RAP and output their union (with multiplicities) as a
confidence set (ranked by number of occurrences). Due to the probabilistic nature of
RAP, different result sets are generated. The intuitive idea behind the attack is that data
records being constructed more often in these datasets are more likely to be present in
D.

They evaluate the effectiveness of their reconstruction attack against synthetic microdata
and real datasets released by the US Census Bureau. Their results indicate a reconstruc-
tion of a subset of all data records with high confidence. The authors further state that
their attack can also be used against synthetically generated data simply by computing
the underlying statistics from the generated microdata. Limitations of the work are that
generally only some fraction of all records can be recovered with high confidence and
that the confidence of resulting data records being part of the dataset D is just given via
their order but not in absolute estimates.

2.9 Subsumption of the Privacy Debate and Technical Measures

In the last 15 years, a vivid discussion about disclosure risks which sensitive data about
individuals can entail and the suitability of measures for reducing these risks has taken
place in computer science and law and severely oppositional positions crystallized. In
this section we summarize this discussion, integrate results covered in this chapter so
far into the discussion and review some proposals for required policy changes in privacy
regulation based on these results.

2.9.1 Discussion Summary

One of the first relevant articles is Broken promises of privacy by Ohm [Ohm09] who
publicized the danger of re-identification attacks to the legal community. Ohm is
influenced especially by the work of Narayanan and Shmatikov (see Section 2.8.4)
and therefore considers the threat of re-identification attacks based on (even innocent-
looking) background knowledge to be highly relevant. He proposes the passing of what
he calls the robust anonymization assumption – the idea of robustly protecting individual’s
privacy with simple de-identification techniques. Instead, the easy re-identification result
takes its place which doubts the abilities of simple release-and-forget anonymization due
to the success of re-identification attacks. Based on these ideas, he argues against any
PII-based regulation. Instead, he votes for rigorous scenario-dependent risk assessments
regarding potential privacy harm from data disclosure based on factors like applied
data protection techniques, data sensitivity and quantity, and the nature of potential
adversaries. By weighing the identified risks against the potential data benefits one can
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determine if the data can be disseminated, if further risk-reducing measures have to be
applied, or if the dissemination is not possible.

Yakowitz [Yak11] takes a mostly opposing stance to Ohm and focuses on the benefits of
research based on public data. She underlines that the dissemination of anonymized
data has influenced most of public policy debates, such as health insurance or census
microdata. Often this data was collected for unrelated purposes. She concludes that
policymakers cannot determine potential contributions of data in advance and “any rule
that significantly impedes the release of research data imposes a social cost of uncertain
magnitude” [Yak11]. Furthermore, she highlights the chances of crowdsourcing by
general and unrestricted access to research data. She criticizes the computer science
literature about re-identification risks for inaccurate assertions. Amongst others, she
disagrees with the general assumption that each attribute can pose as an indirect
identifier (QID). In her opinion, law only focuses on indirect identifiers that potentially
are in the public domain. Other sources of information (and especially self-revealed
information about extroverted individuals) should not determine the bounds of data
dissemination. Another critique is directed against the idea that the public datasets
generally have value for adversaries. While she admits that it is possible for adversaries
to learn sensitive information, the comparison to risks existing independent of the data
dissemination. Examples for these risks include self-reported information, commercially
collected consumer data, or the risks imposed by insecure data processing in the presence
of intruders. Finally, she does not agree with the assumption that, in principle, everyone
is able to perform re-identification attacks due to the expertise required by adversaries.
Due to these reasons, she votes for general and easy to apply rules and punishment for
re-identification. The proposed rules include minimum subgroup sizes of five individuals,
that is, k-anonymity for k = 5, and random sampling. We have seen in Sections 2.5.4
and 2.6.8 that these measures entail several weaknesses.

Wu [Wu13] accuses both of misinterpreting several aspects of the relevant computer
science literature and sees their disagreement as based on varying understandings of
the concepts of privacy and utility. According to Wu, Ohm underestimates the chances
of even simple de-identification techniques (due to misunderstandings related to an
impossibility result by Dwork [Dwo06]) and DP (see Section 2.7), while Yakowitz relies
on the vulnerable concept of k-anonymity and improperly downplays the success of
re-identification attacks. Rubinstein and Hartzog [RH16] provide similar arguments and
furthermore mention that Ohm as well as Yakowitz limit their analyses almost exclusively
to what Ohm refers to as release-and-forget anonymization, while disregarding further
measures like restricted access or interactive mechanisms.

Another contribution is provided by Cavoukian and Castro [CC14]. They argue for the
effectiveness of de-identification in minimizing re-identification risk while preserving
data utility and make arguments similar to the ones of Yakowitz. But they also admit
that effective de-identification is not a simple task and might not be suitable for all
situations (for example, for high-dimensional data) and propose restricted access in the
form of data enclaves as a solution in these cases. In principle, they advocate a risk-based
approach which does not guarantee full privacy protection but reduces the risks the data
imposes on individuals in the dataset:

While it is not possible to guarantee that de-identification will work 100
per cent of the time, it remains an essential tool that will drastically reduce
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the risk of personal information being used or disclosed for unauthorized or
malicious purposes. [CC14]

Narayanan and Felten [NF14] criticize several aspects of the work by Cavoukian and
Castro. In their opinion, the work ignores adversaries with non-public background knowl-
edge as well as targeted re-identification attacks. It assumes (like Yakowitz) that only
highly specialized experts can perform these attacks, while in the opinion of Narayanan
and Felten simple programming and statistics skills are sufficient. Further, they disagree
with the implicit penetrate-and-patch approach present in the work by Cavoukian and
Castro: The risk-based approach just considers attack types and background knowledge
at a particular time. Future weaknesses in terms of re-identification successes cannot
be prevented once data is disseminated. In summary, they view de-identification as
promoting a false sense of security as it fails in theory as well as in practice.

Further publications include the one of Bambauer, Muralidhar, and Sarathy [BMS13]
(which we have already covered in Section 2.7.7), several ones taking a more mediating
stance [SS11; PTF16] just like Wu [Wu13] and Rubinstein and Hartzog [RH16], and
others who propose formal solutions to legal questions [Nis+17; CN20; Alt+21] (see
Section 2.9.3). Another example for the different positions is provided by an exchange
in Science [Bar+15; MP15].

Rubinstein and Hartzog [RH16] summarize the discussion by identifying two opposing
schools of thinking, they term pragmatists and formalists. They attribute the disagree-
ments to the “very different histories, questions, methods, and objectives” [RH16] of
the originating disciplines. The pragmatist position is determined by valueing “practical
solutions for sharing useful data to advance the public good” [RH16]. Pragmatists
focus on de-identification methods and assess the progress in re-identification attacks
(see Section 2.8) as mostly academic. Formalists, on the other hand, judge simple
de-identification techniques as providing a false sense of privacy due to their somewhat
artificial adversary models. Additionally, formalists view examples of re-identification
attacks as proof for the insufficient guarantees of simple de-identification techniques.
As a consequence, they insist on quantifiable and mathematically provable privacy
guarantees.

2.9.2 Technical Background for the Discussions

In the light of these discussions and to understand why they arise, we provide an
overview of potential for misunderstandings as well as advantages and disadvantages of
privacy techniques covered in this chapter and beyond it.

Section 2.1 has shown that the term (data) privacy comprises a variety of concepts.
A violation of privacy can mean the association of a data record with an individual
with 100 % certainty (deterministic identity disclosure in our introduced terminology), an
increase in an adversary’s belief about a specific sensitive attribute value for an individual
(probabilistic positive attribute disclosure), or the information that an individual is part of
a dataset (deterministic positive membership disclosure). Therefore, even the concepts
behind the discussion vary to a large extent. Wu [Wu13] elaborates on the different
understandings of privacy, threats, and adversaries (see Section 2.1).
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Similarly, also the understandings of terms used in the discussion and concepts behind
these terms can diverge greatly (see Section 2.3). A central example is the definition of
PII which serves as the most important concept forUS privacy laws. Since the definition
of PII is directly related to identifiability, it comes at no surprise that the understandings
differ a lot depending on the assessment of re-identification risks. From these varying
understandings, it follows that also the interpretation of practical risks and the appraisal
of past re-identification attacks (see Section 2.8) can vary to a large degree.

This holds true for the rating of the effectiveness of privacy techniques as well, as we
have seen in the illustrated discussions. This is not astonishing, since they all involve
advantages as well as disadvantages with respect to privacy and utility aspects (see also
Section 2.2). First, we shortly summarize the privacy details of techniques covered in this
section. Pseudonymization (see Section 2.4) allows for the linking multiple data records
and re-identification of individuals, but provides no data privacy guarantees. Simple
de-identification techniques (covered in Section 2.5), while giving a feeling of protection,
generally do not allow for provable privacy guarantees. For this reason, most of the
re-identification attacks covered in Section 2.8 are associated with de-identified datasets.
Syntactic privacy models (see Section 2.6) introduce measurable guarantees with respect
to specific disclosure risks, but do not come without problems. The classification of
attributes depends on potential current and future background knowledge of adversaries,
the necessary transformations of high-dimensional data can result in large utility losses
and there is a number of known attacks on these models. Finally, semantic privacy
models and DP in particular (see Section 2.7) provide provable and quantifiable privacy
guarantees independent of adversarial background knowledge and capabilities, which
compose nicely. But practical issues, such as the question of how to choose and split
the privacy budget ε for multiple users and queries, can impede the wider use of DP.
Furthermore, DP is not suitable for small datasets or the studying of outliers.

But the discussions also illustrate the necessity to consider aspects of utility (or benefit)
as well. We have to recognize the necessity to balance privacy with the public good that
data-based research can create [CT13], in other words, we have to weigh the disclosure
risks for individuals with the social significance of the information. On the technical
side there are some ways to measure the utility loss of specific privacy models (see
Section 2.2). But there are also less technical and more practical considerations to
take. First and foremost, carelessly applied privacy techniques can drastically reduce
the utility of data or even render datasets unusable. Furthermore, privacy techniques
can require a change in the way data users perform their tasks [DE13]. If a technique
allows the processing of data with sufficient privacy guarantees and utility, but requires
practitioners to radically change the way they perform their research, for example, by
requiring other methods or preventing the use of established tools, this might prevent
the research from taking place at all. Another aspect is that research often is based
on exploratory data analysis [Agg+05] and specifics of datasets, such as data errors,
unusual data distributions, or unexpected correlations, are easier to assess with direct
data access [DE13]. Methods based on interactive DP prevent this access. Additionally
and in comparison to the simplicity of the release-and-forget model, they require to
provide a query interface, pay for server resources, and perform regular updates and
audits [NS10]. On the other hand, for non-interactive data publishing it would be
required to know in advance which information should be considered (most) socially
useful and to choose the privacy protection measures accordingly to maximize the
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utility. But this is no practical assumption and instead, one aims at supporting multiple
uses simultaneously [Wu13], which potentially reduces the possible utility. Other
scenarios to consider are the ones in which researchers might want to be able to contact
individuals. Reasons for this include, amongst others, re-feeding research results for
a better treatment outcome, warning about drug side effects, or finding patients with
unusual attributes relevant for research. Finally, the influence of privacy techniques
can be hard to understand, as we have exemplarily presented for the case of DP in
Section 2.7.7. A lack of comprehensibility can lead to disregarding research results, even
if they might actually be valid.

2.9.3 Proposals for Policy Changes

As we have seen in the previous section, there is no silver bullet in data privacy. The
advantages in re-identification research have resulted in the need for new regulatory
paradigms [NS19]. Narayanan and Felten [NF14] see three alternative approaches for
data custodians:

• Using de-identification measures and hope for the best.

• Switching to provable guarantees like the ones DP provides and handle the poten-
tial losses in utility and convenience.

• Relying on legal agreements that limit the dissemination and use of sensitive data.

None of these solutions (and no combination of them) is viewed as fully satisfactory or
best suited for all situations and “policy makers must confront hard choices” [NF14].
Based on this insight, several scholars (from law as well as computer science) vote for
multi-layered approaches using suitable technical and organizational measures based on
thorough risk assessments on a case-by-case basis.

Cormode [Cor11] argues for nuanced threat models, taking into account potential
adversaries, data recipients, perceived threats, and consequences of successful attacks.
Depending on this modeling, the suitable measures can include de-identification, syn-
tactic privacy models, semantic privacy models, or refrain from release completely.
Garfinkel [Gar14] differentiates release models to reduce the risk of re-identification.
In addition to the release-and-forget model, these include the use of data use agree-
ments (DUAs), and the enclave model employing interactive queries. Dwork, Kohli, and
Mulligan [DKM19] mentions the possibility of legally constrained data access, use, and
sharing, especially for small datasets for which DP is not a suitable technical measure.

According to Narayanan, Huey, and Felten [NHF15] there is no one-size-fits-all solution
for data privacy since each dataset entails a distinct risk-benefit tradeoff. One needs to
balance privacy threats and the expected damage from sensitive information leakage
with benefits from wider data access and improved analysis. The main problem is that
one in this case has to weigh uncertain risks against uncertain benefits. Due to the
unknowable risks of simple de-identification techniques, the authors argue against the
default policy of allowing unrestricted public data release in many privacy regulations
based on the PII concept. Instead, they favor two alternatives: using provable privacy
methods like DP or restricting the access to datasets to a narrow audience. They provide
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several aspects to consider when choosing the adequate scope for the dataset release,
amongst others:

• Is it possible to use techniques with provable privacy guarantees?

• Can the data holder provide an interactive query service instead of data release?

• Are there aggregate statistics providing similar benefits to microdata release?

• Are there subsets of the general public, such as researchers, most likely to achieve
the benefits?

• Is it possible to provide different forms of the dataset with distinct privacy risks
and utility according to the recipient’s needs and trustworthiness?

• Can the recipient be required to sign data use agreements?

These and similar aspects can be used to determine an appropriate release scope to
prevent the risks of unrestricted data dissemination.

Another proposal for necessary policy changes is provided by Rubinstein and Hart-
zog [RH16], who focus on the process of minimizing privacy risks. They acknowledge
that there is no perfect anonymity as well as that de-identification is severely limited
and vote for using the full spectrum of (technical and legal) privacy measures, including
differential privacy, tiered access, DUAs, and even educational efforts. One central aspect
of their proposal is the evolution of current outcome-based data privacy regulations to
something similar to the process-based data security regulation, especially with respect
to three key ideas:

• The regulation should focus the process of protecting individuals by using adequate
privacy techniques in combination with access and use restrictions.

• The necessary protection level depends on contextual factors, including potential
harms resulting from data use, adversarial motivation and abilities, desired data
utility, and the possibility to use further risk minimization controls.

• There is no perfect security, so the goal should be to reduce the privacy risks
respectively increase the costs for re-identification to acceptable levels.

Due to the contextual dependency on multiple factors, there is no one-size-fits-all stan-
dard or the possibility of detailed checklists, which do not get outdated fast. For this
reason, the authors suggest (similar to data security regulations) to rely on industry
standards to assess the reasonability of processes – even though there exists no glob-
ally accepted standard at the moment. Finally, they reason that release-and-forget
anonymization is rarely (if ever) an acceptable strategy, since risk assessment is difficult
when one loses control over the shared data.

Another recent line of research [Nis+17; CN20; Alt+21] tries to deduce formal re-
quirements from law. The goal is not a formalization of regulations but to provide
support for practitioners and regulators via formal tools, in other words, a “hybrid
legal-technical approach to the evaluation of technical measures to render information
anonymous” [Alt+21]. This can help to reduce uncertainty or even contradictory recom-
mendations regarding interpretation of regulations. Otherwise this uncertainty can often
lead to increased disclosure risks due heuristic processes being implemented [Nis+17].
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Nissim et al. [Nis+17] provide an approach to bridge the gap between privacy require-
ments of FERPA and DP. They extract an adversarial privacy game from the law, its
history, and official guidance. This game can be used to test whether computations
meet the privacy requirements of FERPA. Another approach is introduced by Cohen
and Nissim [CN20] and complemented by Altman et al. [Alt+21]. They consider the
singling-out principle, which is a fundamental principle with respect to anonymization
in the GDPR (see Sections 2.3.1 and 2.3.2), by means of so-called predicate singling out
(PSO) security. The basic idea is to consider predicates p : X → {0, 1} for individuals
X in a dataset D. A mechanism M is PSO secure, if an adversary is not able to find
a predicate p which singles out a unique individual in M(D), that is, p(Xi) = 1 and
p(Xj) = 0 for all i ̸= j. The authors show that k-anonymity and further syntactic privacy
models do guarantee PSO security, DP, on the other hand, might do. But the additionally
argue that PSO security is a necessary but insufficient property for secure anonymization
due to further threats, such as membership disclosure or attribute disclosure.

After this comprehensive overview of the field of privacy-preserving data publishing, in
the following chapters we investigate the application of specific techniques in distributed
environments. We begin by presenting an approach for the generation of pseudonyms
for data records collected at various data sources in Chapter 3.
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Medical data from patients is collected in a variety of different places, for example
by family doctors, in treating hospitals, in rehabilitation facilities, or by insurance
companies. In some situations, the integration of data from these data sources is
essential for medical researchers to conduct comprehensive studies and gain insights
into complex medical conditions and treatment outcomes. For example, to assess the
long-term success of a treatment it is not sufficient to only look at data collected during
the patient’s stay at the hospital. One has to link this data with the data collected during
rehabilitation (and potentially even in later years) to evaluate the success.

However, leveraging these disparate data sources for research purposes imposes technical
and regulatory challenges. Protecting patient privacy is of utmost importance when
working with medical data and the combination of multiple data records related to one
patient can drastically increase the privacy risks for the patient. In addition, there may
be legal restrictions that prevent the data from being combined directly. Pseudonymizing
medical data is a common practice to reduce privacy risks while still enabling data
analysis. Pseudonymization involves replacing identifying information, such as names or
social security numbers, with unique identifiers (see Section 2.4). This allows researchers
to link data from different sources without learning the patient’s identity. While the
pseudonymization of local data is relatively simple, the pseudonymization of distributed
data in a way that a patient gets assigned the same pseudonym at all data sources (we
will refer to this as global pseudonym consistency) requires more thought – especially
when no single party should be able to access all identity-pseudonym relationships.

In this chapter, we present a solution to the problem of distributed pseudonymization.
For this purpose we utilize SE – a technique which enables protected search queries
over encrypted data. Our solution improves on related work in that individual data
sources can be included and removed from the pseudonymization process easily, while
supporting so-called fuzzy search capabilities as well as ways to limit the linkability of
data records.

Our main contributions are the following:

• We provide a scheme for distributed pseudonymization based on SE.

• We extend the basic scheme with fuzzy search capabilities to allow the linkage of
patient’s data even in the presence of different spellings or typos.

• We provide ways to limit the linkability of data records with respect to time or
budget restrictions.

In Section 3.1 we provide background information about SE and the specific SE scheme
we utilize in this chapter. Section 3.2 explains specifics of the scenario and proposes
several properties which schemes for globally consistent pseudonyms should entail. In
Section 3.3 we introduce our SE-based scheme for single identifying attributes as well as
extensions for multiple attributes and fuzzy search. Furthermore, we cover options for
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limiting the linkability in the scheme. We present our adversary model for the scheme
in Section 3.4. In Section 3.5 we describe the scheme implementation and evaluate its
performance. Section 3.6 compares our scheme to related work based on the properties
given in Section 3.2. We conclude the chapter in Section 3.7.

This chapter builds up on work by Zimmer et al. [Zim+20] which in turn is based on
parts of my master thesis [Pet18]. The scheme presented in Section 3.3 was initially
implemented by Herbst [Her23] in his bachelor’s thesis and he also developed the
approach for fuzzy search capabilities (see Section 3.3.3).

3.1 Background

In this section we provide the technical background for the SE protocol we employ in
our solution to the problem of globally consistent pseudonyms. Section 3.1.1 provides
an introduction to SE. Section 3.1.2 shortly describes bilinear pairings as a prerequisite
for the specific employed SE protocol we detail in Section 3.1.3.

3.1.1 Searchable Encryption

SE describes a family of schemes invented for the scenario of encrypted remote storage.
One or multiple users store their data in encrypted form on a server so that this server
has no access to the plaintexts. SE techniques enable one or multiple users to search
this data remotely.

The following general model of SE provided by [Bös+14] formalizes this setting. An
overview of this model is provided in Figure 3.1. Most1 of the SE schemes are based on
search indices a user has to provide alongside with the encrypted data. For a collection
of documents D = (D1, . . . , Dn) a list of searchable keywords W = (w1, . . . , wm) is
extracted. The SE algorithm BuildIndex provided with a user key kS, the documents D,
and the keywords W computes the search index I – a data structure which enables the
server to perform searches without access to plaintext documents or search keywords.
Another SE algorithm Enc is used with another user key kE to encrypt the documents D,
resulting in ciphertexts C. The search index I and the encrypted documents C are then
stored at the server. When a search is to be performed, the user sends a specific search
request T (often referred to as trapdoor) computed by the SE algorithm Trapdoor using
the key kS and a search keyword w (or a search predicate based on the keyword) to the
server. The server can query the search index I based on this trapdoor T using the SE
algorithm Search, find the matching documents Cw and return them to the user. These
received encrypted documents can be decrypted using the SE algorithm Dec with the
user key kS resulting in documents Dw. All this is achieved in a way that does not allow
the server to learn the content of the documents Dw or the search term w.

One can differentiate between four categories of SE schemes depending on the potential
number of writers and readers in the scheme [Bös+14]. The most researched categories

1. One example of an exception is the first ever searchable symmetric encryption (SSE) scheme introduced
by Song, Wagner, and Perrig [SWP00]. They employ a specifically crafted symmetric encryption scheme
which allows to perform search operations on ciphertexts directly.

92



3.1 Background

kS

Client

D C

Tw

W

w

I

CwDw

Server

ke

ke

BuildIndex

Enc

Dec

Trapdoor Search

C

I

wrd

wrd
wrd

wrd

wrd

Figure 3.1: General model of index-based SE schemes.

are the single-writer/single-reader and the multi-writer/single-reader categories. Single-
writer/single-reader schemes are generally referred to as SSE schemes. These schemes
focus on the scenario of personal data to be stored on a not-fully trusted remote server in
a searchable manner. Respective keys used for searching and encryption are kept by the
data holder. Pioneering work in the field of SSE has been performed by Song, Wagner,
and Perrig [SWP00], Goh [Goh03], Chang and Mitzenmacher [CM05], and Curtmola
et al. [Cur+06]. Multi-writer/single-reader schemes are generally known as public key
encryption with keyword search (PEKS)2. The main usage scenario for these schemes is
searchable storage of emails and alike. Senders use the public key of the receiver and
together with the encrypted document they store a search index based on keywords of
the respective document. Only the receiver in possession of the private key is able to
create trapdoors to search through all documents. The first PEKS scheme was introduced
by Boneh et al. [Bon+04], who also coined the term PEKS. Other research extends
the field with schemes allowing multiple readers to perform searches on encrypted
data. Examples for these schemes can be found in the survey by Bösch et al. [Bös+14].
Our technical solution to the problem of globally consistent pseudonyms is based on
a multi-writer/multi-reader scheme introduced by Bao et al. [Bao+08] detailed in
Section 3.1.3.

Apart from the supported reader/writer setting, schemes can be differentiated by further
properties [Poh+17]. They can support various query functionalities, ranging from
simple single keyword searches to conjunctive multi-keyword queries to fuzzy or range
queries. Some schemes (dynamic schemes) are able to update the documents and
respective indices, that is, add or remove individual documents, while others (static
schemes) are not. Further properties include the verifiability of operations, performance
of scheme algorithms, size of generated indices, and achieved security model3. For

2. Some publications refer to PEKS as asymmetric searchable encryption [ATR14].
3. There are different security definitions for SE such as semantic security against adaptive chosen keyword

attacks (IND1-CKA) [Goh03]. Further definitions were provided by Chang and Mitzenmacher [CM05],
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the interested reader there are several surveys [Bös+14; WWC16; Poh+17; ZXL18],
which can be contacted for further information about SE, specific schemes, and their
properties.

3.1.2 Bilinear Pairings

The following definition is given by Menezes [Men09].

Definition 3.1.1. For a prime p, a group G1 of order p with generator P and identity∞
(written in additive notation), and a second group GT of order p with identity 1 (written
in multiplicative notation), a bilinear pairing ê : G1 ×G1 → GT is a map satisfying the
following three conditions:

1. ∀R, S, T ∈ G1 : ê(R + S, T ) = ê(R, T ) · ê(S, T ) and ê(R, S + T ) = ê(R, S) · ê(R, T )
(bilinearity).

2. ê(P, P ) ̸= 1 (non-degeneracy).

3. ê can be efficiently computed (computability).

The security of pairing-based protocols is commonly based on the hardness of the bilinear
Diffie-Hellman problem (BDHP): For a bilinear pairing ê on groups G1, GT and given
values P, aP, bP, cP , compute ê(P, P )abc. The SE protocol we use in this chapter (see
Section 3.1.3) relies on the fact, that the computational Diffie-Hellman problem (CDHP)
in G1 (given P, aP, bP , compute abP ) is still hard, but the decisional Diffie-Hellman
problem (DDHP) in G1 (given P, aP, bP, cP , is cP = abP?) is efficiently solvable with
the aid of ê. Further details are provided by Menezes [Men09].

3.1.3 A Multi-Reader/Multi-Writer Searchable Encryption Scheme

Bao et al. [Bao+08] provide a multi-reader/multi-writer SE scheme. It allows a set of
users to write records to an encrypted database and to perform searches over all records,
that is, records created by a user themself as well as records created by other users.
For this purpose the scheme relies on two components: A database server Serv, which
stores encrypted records and performs the search, and a user manager UM , which is
responsible for user enrollment and revocation.

The multi-user scheme consists of several algorithms4. Setup() for setting up systems
parameters and generating key material, Enroll() for adding new users to the system
and providing them with required keys, GenIndex() for generating indices required for
searchable encrypted records, Write() for storing encrypted records and their respective
indices, ConstructQ() for constructing search queries, Search() for performing a search
query on the database, and Revoke() for removing search capability from users.

Curtmola et al. [Cur+06], and Boneh et al. [Bon+04]. Overviews are provided by Bösch et al. [Bös+14]
(Section 2.3) as well as Poh et al. [Poh+17] (Section 4).

4. Bao et al. speak of algorithms here, even though algorithms GenIndex() and Write() would be better
described as interactive protocol steps. For the sake of simplicity, however, we stick to the terminology
introduced by Bao et al.
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The scheme is based on bilinear pairings, for which we use the notation introduced in
Section 3.1.2. Let p be a prime, G1 a group of order p with generator P and identity
∞ (written in additive notation), GT a second group of order p with identity 1 (written
in multiplicative notation), and ê : G1 × G1 → GT a bilinear pairing. Let h : GT → K
denote a cryptographic hash function mapping elements in GT to the key space K
of a symmetric encryption scheme and hS : S × W → G1 a keyed hash function
mapping a keyword w ∈ W to an element of G1 under a seed s ∈ S. Further, let
E :M×K → C and D : C × K →M denote the encryption and decryption operations
of a symmetric encryption scheme with message spaceM and ciphertext space C. For
cleaner presentation, we use the following additional notations: hs(w) = hS(s, w),
Ek(m) = E(m, k), and Dk(c) = D(c, k). In the following, we provide details for each
algorithm as introduced by Bao et al. [Bao+08].

• Setup(1κ): This algorithm is executed by the user manager UM to set up the
system. For a given security parameter κ, it picks public parameters G1, GT , and ê
and creates the user manager key kUM from Zp∗, the symmetric encryption key
e ∈ K, and the seed s ∈ S for hs randomly.

• Enroll(kUM , u): This algorithm is executed by the user manager UM to enroll
a new user given by their identity u. The user manager UM includes u in the
list of authorized users UA, selects a random xu ∈ Zp∗ and computes a pair of
related keys specific for user u: the query key qku = (xu, s) and the complementary
key ComKu = (kUM − xu)P . User u receives qku and e. The database server
Serv receives ComKu and stores it together with the user identity u in a list of
authorized users.

• GenIndex(qku, w;ComKu): This algorithm is executed interactively by user u
and the database server Serv to generate an index for the keyword w. User u
selects a random blinding element rw from Zp∗ and sends a generate index request
(u, rw ·hs(w)) to Serv. The database server Serv returns ew = ê(rw ·hs(w), ComKu)

to u. The user then computes k = h((ew)
xu
rw ) and the final index Iw = ⟨r, Ek(r)⟩ for

a random r ∈M.

• Write(qku, e, di;ComKu): This algorithm is executed interactively by user u and
the database server Serv to write an encrypted record to the database D′. For
a document di, the respective keyword di.w and the index Idi.w (computed via
GenIndex()), user u sends d′i = ⟨Ee(di), Idi.w⟩ to Serv. The database server Serv
appends this tuple to the database D′.

• ConstructQ(qku, w): This algorithm is executed by user u to construct a query
for a keyword w. For this the user, in possession of the query key qku = (xu, s),
computes the query qu(w) = xu · hs(w).

• Search(qu(w), ComKu, D
′): This algorithm is executed by the database server Serv

to perform the search over all encrypted database records D′. For a query (u, qu(w)),
the database server Serv looks for ComKu and computes k′ = h(ê(qu(w), ComKu)).
It then adds all encrypted records d′i = ⟨Ee(di), Idi.w⟩ with Idi.w = ⟨r, Ek(r)⟩ to the
query result set, for which r

?
= Dk′(Ek(r)). Finally, it outputs the result set

aq = {E(di) ∈ D′|di ∈ D, di.w = w}.
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The search algorithm is correct, in other words, the search result set only contains
records di with di.w = w, if k = k′, meaning that Serv can successfully decrypt
Ek(r). This is quite simple to show. For a keyword w and the respective query
qu(w) = xu · hs(w) we obtain:

k′ = h(ê(qu(w), ComKu))

= h(ê(xu · hs(w), (x− xu)P ))

= h(ê(hs(w), P )
x·xu
xu )

= h(ê(hs(w), P )x)

Comparing this to the key k computed by the client during index generation results
in the same key (for the same keyword w):

k = h((ew)
xu
rw )

= h(ê(rw · hs(w), ComKu)
xu
rw

= h(ê(rw · hs(w), (x− xu)P )
xu
rw

= h(ê(hs(w), P )rw
x
xu

xu
rw

= h(ê(hs(w), P )x)

• Revoke(u): This algorithm is executed by the user manager UM to remove the
search capabilities for user u. It removes u from the list of authorized users UA and
instructs Serv to delete the entry (u,ComKu) from the respective list.

Bao et al. [Bao+08] provide proofs for three security properties of this scheme in the
honest-but-curious attacker model [PMB14]:

• Query privacy: The database server Serv does not learn any information, apart
from observable database access patterns5, from a query, especially not the keyword
w. This property does not hold under collusion of users and servers.

• Query unforgeability: Neither other users nor the database server Serv are able
to craft valid search queries for user u without access to their search key qku.

• Revocability: Revoked users are no longer able to perform searches.

3.2 Scenario and Properties

In this section we provide the general scenario for globally consistent pseudonymization.
Additionally, we present several important properties for technical solutions achieving
this kind of pseudonymization.
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Figure 3.2: Scenario of globally consistent pseudonymization

3.2.1 Scenario

The scenario we focus in this chapter is based on a number of distinct data sources in
which data records related to individuals arrive continuously. A data record contains
identifying attributes which have to be pseudonymized as well as additional attributes
required to be processed for further purposes, such as data-based research. The key
problem is that individuals potentially provide data records at multiple data sources.
The goal of this chapter is to pseudonymize data records in a way that data records
relating to the same individual are assigned the same pseudonym – regardless of the
data source. Following Zimmer et al. [Zim+20] and Lehmann [Leh19] here, we call
these pseudonyms globally consistent.

To achieve this global consistency, there are two basic ideas [Zim+20]:

• Pseudonyms are derived from identifying data alone in a deterministic fashion
without any communication with other parties, for example, by employing a
hash function (see Section 2.4.4). Zimmer et al. [Zim+20] refer to this as local
deterministic pseudonymization.

• Pseudonyms are created fully random and some sort of global lookup table maps
identifying attributes to these pseudonyms. Zimmer et al. [Zim+20] call these
truly random pseudonyms.

However, local deterministic pseudonymization opens up the possibility to perform
dictionary attacks due to typically small attribute domains (see Sections 2.4.3 and 2.4.4).
For this reason, we focus on truly random pseudonyms. Another party, we call pseudony-
mization service, is responsible for creating random pseudonyms or providing existing
pseudonyms for the data records based on the identifying information.

5. As stated by Curtmola et al. [Cur+06], any SE scheme reveals certain information, for example, two
records sharing the same keyword, to the performing server.
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Translating this scenario in the medical domain as an example results in the follow-
ing description depicted in Figure 3.2. Patient data records, consisting of identifying
information and medical information6, are collected at medical centers such as hospi-
tals, insurance companies, general practitioners, and other medical facilities. These
medical centers contact the pseudonymization service to obtain a pseudonym based on
the identifying information and replace this information in the data record with the
pseudonym. Afterwards the pseudonymized data record is sent to the data processor.
This party can study medical research questions after correlating data records about
the same patient via the globally consistent pseudonym. Incorporating medical data
from multiple data sources allows for the answering of more comprehensive research
questions in comparison to research based on data from only a single data source.

3.2.2 Properties

There are several relevant properties a system which offers globally consistent pseudonyms
might entail. Zimmer et al. [Zim+20] proposed several properties which focus on
preventing participants of the pseudonymization process from learning unnecessary
information (data minimization). We extend these properties with further ones which
play an important role in practical scenarios.

• Attribute Confidentiality7 [Zim+20]: During the pseudonymization process no
party apart from the data source itself learns information about the identifying
attributes the pseudonym is created for. This property does not cover information
which another data source obtains by processing the same identifying attribute in
another pseudonymization process.

• Re-Use Indistinguishability [Zim+20]: During the pseudonymization process
a data source obtains no information about how often a pseudonym has already
been provided to other data sources. This includes not being able to distinguish
between already existing and newly created pseudonyms.

• Matching Pseudonym Unobservability [Zim+20]: The pseudonymization service
does not learn the resulting pseudonym for a request during the pseudonymization
process.

• Limited Linkability [Zim+20]: Data records relating to the same individual
receive the same pseudonym only for some given validity period. This can be
represented by a time period, a maximum number of usages (budget), or some
other property.

• Fuzzy Search Capability: The pseudonymization process allows to match similar,
but not equal, identifying attribute values relating to the same individual to the
same pseudonym. This property is relevant in practice where small differences like
typos or other inhomogeneities in attribute values can occur [LBÜ15].

6. In the German medical domain these concepts are often referred to as IDAT and MDAT. See Section 6.2.1
for a short discussion of this distinction.

7. Zimmer et al. [Zim+20] use the term deposit confidentiality here and also introduce another party
called depositor as the pseudonymizing component at the data source. But attribute confidentiality is a
better name for this property, since it directly indicates the type of the stored deposit.
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• Multiple Data Sources: The number of data sources participating in the pseudo-
nymization process supported by the system is not constrained.

• Manageable Data Sources: Individual data sources can be enrolled in as well as
revoked from the system. This is achieved without requiring any changes, such
as updated cryptographic keys, for other data sources, which prevent already
provided pseudonyms from being reused.

3.3 Globally Consistent Pseudonyms via Searchable Encryption

Prior work [Zim+20] looked at the problem of globally consistent pseudonymization,
but left out the important question of key management. The authors assume a shared
symmetric key, but provide no further details: “privacy-enhanced event pseudonymi-
sation with limited linkability (PEEPLL) utilises HMACs by equipping all data sources
Depositors with a shared secret k not known to the PVault8” [Zim+20]. This leaves open
several substantial questions with respect to key management, amongst other things:

• How are new data sources enrolled in the system and how do they receive the
required key material?

• How can the system revoke single data sources and prevent them from querying
pseudonyms?

• How can the system handle disclosed or lost keys?

Two simple approaches are the collaboration of all data sources to collectively generate
key material or the utilization of a TTP, which generates and distributes the key material.
The collaboration approach, however, requires communication between all data sources
which might not be feasible in all scenarios9 and can impede a large communication
overhead. Relying on a TTP prevents these disadvantages, if there exists a trustworthy
party in a given scenario. But both approaches provide no simple answers to the
questions of how to revoke users and how to handle disclosed key material. Generating
new key material in these cases (collaboratively or through the TTP) would render
already created pseudonyms meaningless, but sticking to the old key material would
still allow adversaries in possession of these keys to query pseudonyms.

In this section, we provide a way to handle the problem of enrolling and revoking data
sources by employing the SE scheme by Bao et al. introduced in Section 3.1.3. We
start with a simple variant, in which each pseudonym holder is uniquely identified by a
single identifying attribute. Afterwards we look at a more complex scenario, where a
pseudonym holder can be identified by a combination of multiple identifying attributes,
while these combinations not necessarily uniquely identify a pseudonym holder. Based
on this extension we look at a variant, which includes fuzzy search capabilities for
determining pseudonyms. Finally, we present options for limiting the linkability of data
records in given schemes.

8. PVault is their description for our pseudonymization service.
9. One counterexample is the practical reality in sensitive areas of hospital networks where allowed

communication connections have to be created manually for each communication partner, for example
via firewall rules.
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3.3.1 Solving the Key Distribution Problem

Our basic idea is to employ the keyword search functionality of the SE scheme for the
detection of already existing pseudonyms by treating identifying attributes as keywords.
Since in our scenario all data sources should be able to create new pseudonyms as well
as query existing pseudonyms, we need to use a multi-reader/multi-writer SE scheme
(see Section 3.1.1). One of the few schemes in this field is the one of Bao et al. [Bao+08]
(see Section 3.1.3).

For the scenario of creating globally consistent pseudonyms for multiple data sources,
we can adapt the scheme quite naturally. The user u in the SE scheme acts as a data
source and the database server Serv plays the role of the pseudonymization service. The
user manager UM is introduced as a new party to our scenario, but participates only in
enrolling or revoking users, not in querying or creating pseudonyms. The processing unit
is responsible for the processing of pseudonymized data records and does not participate
in the pseudonymization process. In this first variant, a data record is pseudonymized
based on a single unique identifier id.

In the beginning, the system is set up by the Setup() algorithm, which defines public
cryptographic parameters and creates required key material. Each data source u is then
enrolled via the Enroll() algorithm, which provides them with the required key material
qku. In comparison to the full scheme of Bao et al., for this variant we do not require the
symmetric encryption key e, because it is not necessary to store the encrypted records
themselves on the database server.

When a data source receives a new data record to pseudonymize, they extract the identi-
fying attribute value id and perform a search using the value as keyword. They compute
a search query using the ConstructQ() algorithm and send this query to the pseudony-
mization service. The pseudonymization service uses this query to perform the Search()
algorithm and returns the query result set. This set consists of a potential matching
index and the respective pseudonym Pid. We expect a single result when a pseudonym
for the identifier has already been created and an empty result set otherwise.

If the result set is empty, the pseudonym for id has not been created yet. In this case,
the data source u and the pseudonymization service perform the GenIndex() algorithm
interactively for the keyword id, resulting in the index Iid. Afterwards, data source u
sends this index to the pseudonymization service, who performs the Write() algorithm.
In comparison to the full scheme of Bao et al., for this variant the data source does
not send the symmetrically encrypted record, but just the index, because this index is
enough to determine if the value id has already been assigned to a pseudonym. The
pseudonymization service receives the index, generates a random pseudonym Pid, stores
the resulting tuple ⟨Pid, Iid⟩ to the database D′, and returns Pid to the data source.

When a new data source uN is to be enrolled, this can be done just like during the initial
setup phase via the Enroll() algorithm performed by UM . This process has no influence
on enrolled data sources or existing pseudonyms. After receiving their key material, uN

can query all pseudonyms – including pseudonyms created before the enrollment of
uN .

Revoking a data source can be done by UM by performing the Revoke() algorithm.
Afterwards, the revoked data source cannot query the pseudonymization service or
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kUM
R← Z∗

p, e
R← K, s R← S

Enroll()

xu
R← Z∗

p

ComKu = (kUM − xu)P

(u,ComKu)

Enroll()
UA = UA ∪ (u,ComKu)

qku = (xu, s)

Revoke()

u

Revoke()
UA = UA \ (u,ComKu)

Figure 3.3: The initial setup, enroll and revoke operations in our protocol.

generate indices for creating pseudonyms anymore. Just like in the case of enrolling
new data sources, this process has no influence on enrolled data sources or existing
pseudonyms.

The full scheme is depicted in Figure 3.3 and Figure 3.4.

3.3.2 Extending the Scheme with Multi-Keyword Search

In the last section, we have only covered the case of one unique identifying attribute
id being used for determining the pseudonym. But in reality there can occur scenarios,
in which individuals are identified only by a combination of attributes, such as first
name, last name, and date of birth. In these scenarios it might even be the case, that
this combination of identifiers refers to multiple individuals. Another possibility would
be, that individuals are identified uniquely by several distinct attributes, such as ID card
number and health insurance ID. Therefore, in this section we extend the introduced
scheme to multi-keyword search.

For multiple keywords, a data source has to provide a list of indices for a pseudonym
for the Write() operation, where each of these indices was generated by the GenIndex()
algorithm as described in the single-keyword case. For performance reasons, we can
batch all index requests in a single communication round.
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There are two possible ways to introduce multiple keywords in the database: as a
simple list or in the form of attribute-value pairs, such as distinct first name or last
name attributes. Therefore, for a data record R with identifying attributes (a1, . . . , an) ∈
A1 × · · · × An a record in the database consists of the tuple ⟨PR, {Ia1 , . . . , Ian}, Ee(R)⟩
for the simple list case and ⟨PR, {A1 : Ia1 , . . . , An : Ian}, Ee(R)⟩ for the attribute-value
approach.

The simple search operation in the scheme of Bao et al. allows us to easily introduce
complex search queries like logical AND (∧), OR (∨), or NOT (¬) expressions of simple
search queries of the form record di contains keyword w (for keyword lists) or attribute a
of record di is equal to keyword w (for attribute-value pairs). This can be expressed in
the form of a simple grammar:

P →¬P
P →(P ∧ P )

P →(P ∨ P )

P →p(w ∈ di.w) (for simple keyword lists)
P →p(di.a = w) (for attribute-based keywords)

These complex queries can be provided by the data source during the ContructQ()
algorithm and executed by the pseudonymization service when executing the Search()
algorithm.

Depending on the scenario, the extension to multi-keyword search might require re-
introducing the storage of encrypted records. When the scenario demands real search
capabilities, for example, to find all patients with the last name Schmidt, a data source
must be able to look for the desired pseudonym holder in the result set by further
attributes. These attributes can be stored encrypted together with the indices and
pseudonym in the database as provided by the original scheme of Bao et al.

Since the keyword is just used during generating the symmetric encryption key k which
is used for the encryption taking place in index generation, the cleartext is just a random
bit string. The pseudonymization service just receives a blinded version of hs(w) with
a distinct blinding value rw for each keyword, so that even equal keywords result in
different indices. Therefore, the pseudonymization service does not learn anything about
the keywords.

3.3.3 Extending the Scheme with Fuzzy Search Capabilities

Building up on the extension of the scheme to multiple keywords, we can even provide
fuzzy search capabilities – searching in which results must not match the keyword but
just resemble it to some extent. This extension can prove helpful in the case of typos
or inconsistent spellings for identifying attributes, for example, when the pseudonym
for an individual is requested using differing spellings of the last name like Schmidt and
Schmitt by different data sources.
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One method for fuzzy SE is provided by Li et al. [Li+10] and is based on so-called
wildcard-based fuzzy sets. These serve as a representation of possible deviations of a
word according to the edit distance10, that is, all words obtainable by deleting, inserting,
or substituting a character of the word. Such a fuzzy set is achieved by creating multiple
variants of a keyword through substituting one character at a time by a wildcard
character * and inserting the wildcard character at all possible positions in the keyword.
For example, for the keyword abd the wildcard-based fuzzy set is represented by

Sabc = {*abc, *bc, a*bc, a*c, ab*c, ab*, abc*}.

The fuzzy set for the search term abD (which contains a typo) is created in the same
manner and results in

SabD = {*abD, *bD, a*bD, a*D, ab*D, ab*, abD*}.

Searching for a match through comparison would be successful because of the match
ab*.

To use this technique in a SE scheme, before index construction the fuzzy keyword sets
Sw for the keywords w of a document are generated. Afterwards the same computations
as for single keyword index generation are performed for each fuzzy keyword set
member individually. The resulting index set is transferred to the server. Searching for
the keyword w′ is achieved by creating the fuzzy keyword set Sw′ for w′ and sending
the trapdoors for each of the members of the set to the server. The search procedure
than checks all keyword-index pairs for matches. At least one match indicates similarity
between keyword and document keyword.

We transfer this fuzzy search technique to our solution. Based on the multi-keyword
variant detailed in Section 3.3.2 the extension to fuzzy search is straightforward. During
index construction via GenIndex() we construct an index for all members of the fuzzy
keyword set Sw for the identifying attribute w. Similarly, the construction of the query via
ContructQ() is performed for each member of the fuzzy keyword set for the respective
attribute value.

Through fuzzy search, result sets with multiple potential pseudonyms can emerge. To
allow a data source to differentiate these results and to find the correct pseudonym,
we employ the full protocol of Bao et al., including the storage of encrypted records.
During the Setup() algorithm the symmetric encryption key e is generated and each data
source receives this key from the UM via the Enroll() algorithm. When performing the
Write() operation, a data source provides the search indices and the encrypted record
containing all details of an individual required for identifying the matching record for
a query. After receiving all results for a query via the Search() algorithm, the data
source decrypts these records and looks for the matching record and pseudonym. If
no matching result is found, they ask the pseudonymization service to create a new
pseudonym for provided indices and encrypted records.

The downside of this approach consists in harming attribute confidentiality regarding
other pseudonyms. Another option would be to always just return the best matching
result, for example, based on the number of matching fuzzy set records, like some

10. More specific, this variant of the edit distance is called the Levenstein distance [Lev66] with a fixed
maximum distance d = 1.
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related work does it (cf. Rohde et al. [Roh+21]). But this alternative can potentially
lead to false positives, in other words, pseudonyms being incorrectly used for multiple
individuals.

3.3.4 Limiting the Linkability

Limited linkability is a way to balance the tradeoff between data minimisation and
linkability. The limitation can be a way to mediate between data demands and increasing
re-identification risks through linking more data records. Similar to the approach taken
in PEEPLL, we can limit the linkability in our scheme in two ways – with respect to time
periods and by using budget accounting.

There are two possible approaches for limiting the time period t, in which pseudonyms
are valid. For the first approach, when moving from time period t to t+ 1, the pseudo-
nymization service can simply delete its pseudonym database. Alternatively, it stores
the current database at another location and uses a fresh database, if pseudonym dis-
closure is a requirement (see Chapter 4 for further details to and a technical solution
for pseudonym disclosure). Afterwards, when a data record R is searched for (by a
single keyword, multiple keywords, or fuzzy search), a previously existing pseudonym
P t
R for this record cannot be returned and a new pseudonym P t+1

R must be created. This
allows a limitation of validity time periods without affecting any data sources, the user
manager UM , or any used keys or parameters. The second approach consists in letting
the UM set up the system in a fresh state via the Setup() algorithm and enrolling every
data source again. Since relevant keys change, data records and respective pseudonyms
created in the former time period t cannot be queried in time period t+1. By combining
both approaches, we can achieve what Zimmer et al. [Zim+20] call anytrust. If only one
party – UM or pseudonymization service – acts according to protocol, we still achieve
the limited linkability property.

Limiting the linkability by budget can be achieved by adding a counter c to each database
record. Each time when a query result contains a data record R, so that a data source
uses the respective pseudonym P , the counter c is incremented. The simplest case is an
unweighted count with a constant budget C. For this case, the counter c is incremented
by 1 for each usage until c ≥ C. Afterwards, the corresponding pseudonym P is no
longer returned in requests. Depending on the scenario, more complicated budget
limitations are imaginable. By incrementing the counter c not by a fixed value but
depending on the query or data record and by using record-dependent budgets Ci, we
can achieve flexible budget accounting. In the case of query result sets with multiple
results (for example, in the case of fuzzy search), we have to increase all counters of
the results and the budget only represents an upper use limit. We have not found a
simple way to design this limitation in a way that fulfills anytrust. Anytrust would
require some sort of global knowledge of usage counts of a pseudonym accessible to
every data source, but data sources in our setting are organized independently without
communication between them. All ideas of sharing knowledge between them would
require this communication and complicate our architecture.
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3.4 Adversary Model

Based on this utilization of the SE scheme, we can present our adversary model for
the full protocol. The extensions of the protocol in Sections 3.3.2 to 3.3.4 extend the
capabilities of the protocol, but do not change the validity of this adversary model. We
assume the semi-honest (also referred to as passive or honest-but-curious) adversary
model [PMB14], in which adversaries do not deviate from a given protocol but try
to learn as much information as possible from messages legitimately received during
the protocol execution. In our opinion, this is a valid assumption since the scenario
inherently dictates trust being placed in the data sources to some extent (for example by
requiring them to provide valid data and using the correct pseudonym). Even though a
malicious pseudonymization service could provide invalid pseudonyms, in this chapter
we focus on the confidentiality of identity data (with regards to various properties,
see Section 3.2.2) but not the integrity of research data. Furthermore, we assume
secure connections between all parties. An adversary in the position to observe message
contents would learn the provided pseudonyms and with that would be able to violate
properties like re-use indistinguishability. Finally, we assume the well-established ciphers
which we use as building blocks for our scheme to be practically secure when used with
keys of adequate length.

The collusion of parties is a valid scenario in the semi-honest adversary model [EKR18].
Our protocol is suspectible to some combinations of colluding parties and our scheme
does not protect against the following threats. If pseudonymization service and user
manager collude, the pseudonymization service would be able to learn specific user
key material qku. This is used for the preparation of search queries in the ConstructQ()
algorithm. The pseudonymization service in possession of this material would be
able to perform brute-force or dictionary attacks (see Section 2.4.3) against potential
identity data id by just performing the ConstructQ() algorithm with the key material
and comparing the result with a received query. This would violate our property attribute
confidentiality. A collusion between pseudonymization service and an adversarial data
source would allow a similar attack. The data source would be able to perform the brute-
force attack by running search queries for potential identity data id until the targeted
pseudonym is member of the result set in the search() algorithm. While an adversarial
data source would generally also be able to perform this attack without colluding
with the pseudonymization service, they would need to learn the target pseudonym
somehow and be able to perform a lot of search queries without being detected (or rate
limited). The collusion of adversarial data sources does not present a real advantage to
an adversary since all data sources have the same access to the search interface and the
key material of multiple scheme users does not increase the adversary capabilities. The
only minor advantage for an adversary would be the distribution of brute-force attacks
and a slightly more complex detection of these attacks.
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3.5 Implementation and Performance Evaluation

We have implemented our scheme in Python using Charm11, a library for fast prototyping
of cryptosystems. Each party (data source, pseudonymization service, and UM) provides
a representational state transfer (REST) interface for performing necessary operations.

For the pairing-based cryptography we use a super singular curve with a 512-bit base field
provided by Charm. For the encryption of records in the Write() operation we chose an
authenticated encryption with additional data (AEAD) cipher to provide confidentiality
and authenticity for the records. For the encryption during the generation of indices in
the GenIndex() operation (and the respective decryption in the Search() operation) we
use AES in ECB mode and random elements r ∈M with a size equal to the block size of
AES (128 bit). While ECB is a bad choice in general, in our scheme we only utilize it
to encrypt or decrypt completely random, insensitive individual blocks, which are just
employed to determine search results.

We measured the computational performance for our single-keyword as well as fuzzy
search schemes with respect to write and search operations. These are the operations
executed regularly during creating and searching for pseudonyms, so they determine the
practical applicability of the scheme in our setting. For the write operation we included
the index generation GenIndex() and for the search operation the query construction
ConstructQ() to achieve measurements for the complete operations. We omit measure-
ments for the multi-keyword extension (see Section 3.3.2) because it would yield the
same performance (in the attribute-based keyword setting) or a constant multiple of the
performance (in the simple keyword list setting) in comparison to the single-keyword
protocol. All measurements were performed on an off-the-shelf laptop using an Intel
Core i7-6600U CPU with 2.6 GHz and 20 GB RAM.

The single-keyword search depicted in Figure 3.5 requires a search time proportional
to the database size since for each database record a single index has to be checked.
This results in a quite performant scheme, in which a query, even for a large database
size |D′| = 100.000, needs less than 0.5 s. The write operation is independent of the
database size and a single write operation takes 0.005 s.

Additionally, we have inspected the computation time distribution for the individual
instructions in the search operation. For a database size |D′| = 1 the pairing opera-
tion k′ = h(ê(qu(w), ComKu)) requires nearly 89 % of the computation time and the
decryption of indices just about 6 %. But the pairing operation has to be performed
only once for a single-keyword search, while the decryption operation is required for
each record in the database. In our experiments, the operations even out and take the
same amount of computation time for a database size |D′| = 90. In larger databases,
symmetric decryption takes up the larger share of the computation time. Increasing
the performance of the scheme in scenarios with large number of created pseudonyms
therefore should focus on increasing the speed of symmetric crypto operations.

For the fuzzy keyword search, we have to consider not only the database size |D′| but
also the length of keywords w because the amount of generated indices and required
search tokens depends on this length. For the following measurements, we always
use fully random keywords and search tokens, so that a search hit is improbable for

11. The Charm repository is available at https://github.com/JHUISI/charm (visited on 24.03.2023).
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Figure 3.5: Computation times for performing the single-keyword search operation for
varying database sizes. The error bars present the standard deviation for
100 runs.

Figure 3.6: Computation times for performing the fuzzy-keyword search operation
for varying database sizes and a fixed word length w = 10. The error bars
present the standard deviation for 100 runs.
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Figure 3.7: Computation times for performing the fuzzy-keyword search operation for
a fixed database size |D′| = 100 and varying word lengths. The error bars
present the standard deviation for 100 runs.

larger word lengths. The complete database including all indices has to be processed.
Figure 3.6 shows the required computation time for a fixed word length and varying
database sizes. While we see a linear trend, the required time is way higher than
in the single-keyword case. This is expected since each database record in our fuzzy
scheme contains multiple indices and has to be compared against multiple search tokens.
This relationship is observable Figure 3.7, in which the search times for varying word
length are presented. Since the number of search tokens as well as indices per database
record is proportional to the word length, the computation time is quadratic in the word
length.

For the fuzzy keyword search, the computation time for the write operation also depends
linearly on the word length as shown in Figure 3.8. A word of size n requires 2n + 1
indices and for each of these indices the server has to perform the computationally
expensive pairing operation ew = ê(rw · hs(w), ComKu).

In conclusion, the single-keyword scheme should perform well even for scenarios
with hundreds of thousands of records and frequent queries. The fuzzy keyword
search scheme might be too computationally expensive even for medium-sized scenarios
(depending on the word length at hand). Approaches to increase the performance of the
scheme include improving the performance of the symmetric decryption operation and
parallelizing the search operation, as all data records can be independently checked for
search hits.
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Figure 3.8: Computation times for performing the fuzzy-keyword write operation for
varying word lengths. The error bars present the standard deviation for
100 runs.

3.6 Related Work

The problem studied here is related to the concept of privacy-preserving record linkage
(PPRL) [Gko+21; Vat+17] – the problem of finding data records from different data
sources referring to the same individual in a way that does not leak personal data of
respective individuals to the party executing the linking process. But in comparison,
PPRL solutions generally focus on one-time matching of datasets and not the incremental
setting of this chapter in which data records must be pseudonymized at different points
in time [Roh+21]. In the following, we compare our solution to related work with
respect to the properties detailed in Section 3.2.2.

3.6.1 PEEPLL

Zimmer et al. [Zim+20] introduce the pseudonymization framework PEEPLL. They
utilize a combination of different techniques to achieve different configurations of
the system each fulfilling a different subset of all of their proposed protection goals.
A HMAC-based construction is employed to prevent the central party from learning
the real value of identifying attributes. Each data source is equipped with a key k
and sends HMACk(a) for attribute value a to the pseudonymization service (which
does not possess k). By comparing this value to stored values, an existing pseudonym
with the same HMAC value can be returned. Furthermore, PEEPLL can use Secure
Indexes [Goh03] to hide the requested pseudonym from the pseudonymization service
and a simple oblivious transfer (OT) protocol to prevent a data source from being able
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to perform dictionary attacks against HMAC values potentially belonging to another
data source. Finally, PEEPLL allows for limited linkability in form of temporal as well as
budget limitation.

PEEPLL achieves Attribute Confidentiality by employing the HMAC based comparison of
attribute values. There are different instantiations of the framework which fulfill Re-Use
Indistinguishability, Matching Pseudonym Unobservability, and Limited Linkability based
on different means such as Secure Indexes, OT, and budget accounting. However, the
combination of Matching Pseudonym Unobservability and Re-Use Indistinguishability is
not supported. Additionally, PEEPLL does not support Fuzzy Search Capabilities. The
framework can handle multiple data sources by equipping all of them with a fixed
symmetric key, but their enrollment and revocation is not considered.

3.6.2 Mainzelliste

Mainzelliste introduced by Lablans, Borg, and Ückert [LBÜ15] is an open-source12

software that provides a pseudonymization service for medical data in the form of a
REST interface. Clients ask the service for pseudonyms using unaltered identifying data,
such as full names and dates of birth. The service searches for an existing pseudonym
in the stored data with the help of a configurable record linkage algorithm. Since
data is provided in cleartext, some fuzziness (for example, typos) in the data can be
tolerated if a error-tolerant record linkage algorithm like, in the case of Mainzelliste,
EpiLink [Con+05] is applied. If there already is an existing pseudonym for the received
identifying data, this pseudonym is returned. Otherwise the service creates a new
random pseudonym and returns it.

Mainzelliste performs simple similarity comparisons between received and stored clear-
text attribute values during the pseudonymization process. Therefore, it does not
fulfill Attribute Confidentiality and Matching Pseudonym Unobservability. Re-Use Indistin-
guishability, on the other hand, is achieved since the pseudonymization request always
provides the data source with the correct pseudonym independent from whether it has
existed beforehand. Limited Linkability is no design goal and not covered (just as for the
Mainzelliste extensions covered below). Since values are transmitted in cleartext, Fuzzy
Search Capabilities are easily achieved. Multiple data source are directly supported and
are managed by simple authentication measures.

3.6.3 Optimized Mainzelliste based on PPRL

Rohde et al. [Roh+21] provide an update to the Mainzelliste software based on ideas
from PPRL. They employ bloom filters [Blo70] during record linkage instead of the
comparison of plaintext identifying data following the approach of Schnell, Bachteler,
and Reiher [SBR09]. The basic idea is to partition a data attribute, store all the resulting
parts in a bloom filter, and compare similarities of resulting filters during the linkage
process. Equal filters indicate the same attributes and consequently data records referring
to the same individual. This solution also allows for a fuzzy comparison of data records

12. The repository can be found at https://bitbucket.org/medinfo_mainz/mainzelliste/src/maste
r/ (visited on 13.03.2024).
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since small deviations in attributes lead to small deviations in the bloom filters due to
the partitioning of attributes. The problem of multiple matches with a high similarity
is solved by simply choosing the record with the largest similarity score (based on the
number of matching bloom filter entries). They present an additional blocking approach
to reduce the number of required comparisons and to increase the performance of
their solution. However, bloom filter-based PPRL has shown to be vulnerable for some
time [Kuz+11; Kuz+12; Nie+14; KS14b; Chr+17]. The attacks are more sophisticated
variants of simple dictionary attacks13 in which the public encoding process is performed
for lists of potentially included attribute values and the results are compared to stored
bloom filters .

With respect to our properties, the updated version of the Mainzelliste employs bloom
filters to hide the identifying attribute values and therefore fulfills Attribute Confiden-
tiality – at least to some extent due to the vulnerability to dictionary attacks. Re-Use
Indistinguishability is fulfilled just like in the regular Mainzelliste. This is achieved by
always treating the best match above some threshold as the correct one and creating
a new pseudonym if none exists. If multiple similar records are present, this approach
can lead to a higher false positive rate and incorrectly linked records. Based on these
thoughts, it directly follows that Matching Pseudonym Unobservability is not fulfilled
since the pseudonymization service learns the matching pseudonym. Due to the way the
Bloom filters are constructed, the solution provides Fuzzy Search Capabilities. Just as for
the original Mainzelliste, multiple data source are directly supported and managed by
simple authentication measures.

3.6.4 MainSEL

Stammler et al. [Sta+22] introduce the Mainzelliste SecureEpiLinker (MainSEL)14 to
prevent the weaknesses of the bloom filter-based approach by Rohde et al. [Roh+21] by
using SMPC. Their basic idea is to compute the similarities of bloom filters and respective
best matches between data records from two different origins through 2-party SMPC.
This approach does prevent adversaries from learning and utilizing the real bloom filter
values. They use the SMPC framework ABY [DSZ15], a mixed protocol framework for
2-PC. Because of this, linking records from multiple data origins requires the protocol
to be performed between all origins respectively. MainSEL introduces a third party
called linkage service which receives and combines the shares resulting from the SMPC
protocol and distributes the resulting pseudonyms (or creates new ones in case of no
matching records).

MainSEL hides the identifying attributes by using SMPC to compute the similarities
of Bloom filters. Therefore it prevents the vulnerability to dictionary attacks present
in the solution of Rohde et al. [Roh+21] and fulfills Attribute Confidentiality. Re-Use
Indistinguishability is fulfilled as well because the introduced linkage service hides

13. This is also related to the comment on the unsuitability of hashing as a pseudonymization technique in
Section 2.4.4. Due to the fairly small size of typical identifying attribute domains, such as names, these
attacks become practically feasible.

14. The repositories for MainSEL can be found at https://github.com/medicalinformatics/SecureEp
ilinker (SMPC node) and https://github.com/medicalinformatics/MainzellisteSEL (central
component) (visited on 13.03.2024).
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the information whether a pseudonym is re-used or generated. Matching Pseudonym
Unobservability, on the other hand, is not achieved because the linkage service can
pinpoint the matching pseudonym, if any. Just like the version of Rohde et al. [Roh+21]
MainSEL supports Fuzzy Search Capabilities through their Bloom filter construction.
Since MainSEL employs an SMPC framework for two parties, direct support for multiple
parties is not provided. Supporting multiple parties could be achieved by letting a
party perform the protocol with each other party on a one-by-one basis. But due to the
high communication and computation costs of SMPC protocols (cf. Section 5.4), this
would impose large performance losses, supposably rendering the solution impractical
for multiple parties. Also for this reason, managing the enrollment or revocation of
individual data source is not dealt with.

3.6.5 ScrambleDB

Lehmann [Leh19] presents ScrambleDB, a pseudonymization concept which does not
provide pseudonyms based on identifiers but handles the pseudonymized dataset storage
and the data dissemination. The concept introduces four entities. Data sources upload
their sensitive personal datasets. A converter splits the received dataset into multiple
datasets, one for each data attribute, which include attribute and identity-specific
pseudonyms. A data lake stores these unlinkable (“scrambled”) datasets. Finally, data
processors can receive joined versions of the datasets containing only attributes they
are interested in. By employing a novel cryptographic construction, namely a 3-party
oblivious and convertible pseudorandom function (PRF), the solution achieves several
useful properties. Apart from the data source, no party has access to the original
identifier of a data record. Data sources and converter do not learn the pseudonyms
stored in the data lake. During the joining of datasets on the request of a data processor
the converter and data lake remain unaware of which attributes belong to the same
individual. Furthermore, this join is non-transitive, meaning that multiple joins cannot
be correlated to deduce more information about individuals. These properties only hold
under a non-collusion assumption of converter, data lake, and data processor.

A clever combination of the mentioned PRF and blinding allows ScrambleDB to hide
the identifiers from all parties (apart from the data sources) and therefore to fulfill
Attribute Confidentiality. In comparison to related work presented before and our
work, ScrambleDB does not output pseudonyms to the data sources but handles all
the data in the data lake and forwards it on request of the data processors. Data
sources do not learn any pseudonym, so that Re-Use Indistinguishability is fulfilled as
well. Furthermore, ScrambleDB also achieves Matching Pseudonym Unobservability again
due to the employed PRF technique. Additionally, Limited Linkability is fulfilled via the
distinct join operation which allows for combining parts of the collected data tailored
to the needs of the data processor, but not beyond. On the other hand, ScrambleDB
does not support Fuzzy Search Capabilities and the deterministic PRF-based approach
rules out any easy extension for supporting these. Finally, multiple data sources are
supported, but ScrambleDB provides no procedure for managing the authorization of
these data sources at all.
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Table 3.1: Comparison of our work to related work with respect to the properties
AC (Attribute Confidentiality), RUI (Re-Use Indistinguishability), MPU
(Matching Pseudonym Unobservability), LL (Limited Linkability), FSC
(Fuzzy Search Capability), MulDS (Multiple Data Sources), and ManDS
(Managable Data Sources) covered in Section 3.2.2.

Approach AC RUI MPU LL FSC MulDS ManDS

PEEPLL [Zim+20] ✓ (✓) (✓) ✓ x ✓ x

Mainzelliste [LBÜ15] x ✓ x x ✓ ✓ ✓

Mainzelliste with Bloom filters [Roh+21] (x) ✓ x x ✓ ✓ ✓

MainSEL [Sta+22] ✓ ✓ x x ✓ (x) x

ScrambleDB [Leh19] ✓ ✓ ✓ ✓ x ✓ x

This work ✓ x x ✓ ✓ ✓ ✓

3.6.6 Comparison to our Work

Our solution accomplishes Attribute Confidentiality by employing the SE scheme by
Bao et al. [Bao+08] and its property of query privacy in particular (see Section 3.1.3).
Because data sources have to actively store new entries if a query does not result in a
matching pseudonym, Re-Use Indistinguishability is not achievable with our solution.
Matching Pseudonym Unobservability is also not realized in general since the pseudo-
nymization service learns the result set for a search query in which pseudonyms are
contained. Limited Linkability can be achieved (detailed in Section 3.3.4) as well as Fuzzy
Search Capabilities (described in Section 3.3.3). Furthermore, our solution supports
multiple data source and also allows for actively managing allowed data source through
the Enroll() and Revoke() algorithms and the protocol property of revocability (see
Section 3.1.3). A summarizing comparison to related work is depicted in Table 3.1.

In summary, these considerations make it clear that there currently is not a perfect
solution to the problem of globally consistent pseudonyms that achieves all of our
properties. Depending on the constraints specified by the application scenario, such
as necessary security properties and number of parties, a suitable solution must be
selected.

3.7 Conclusion

In this chapter we have presented a scheme for globally consistent pseudonyms which
allows to link data records from various data sources in a privacy-preserving manner
without relying on a trusted party which learns all identity-pseudonym relationships.
It employs a SE scheme supporting multiple readers and writers introduced by Bao
et al. [Bao+08]. In comparison to the work of Zimmer et al. [Zim+20] this scheme
enables us to manage authorized data sources, in other words, enrolling or revoking data
sources or change keys in case of lost or disclosed keys. We have provided variants of the
scheme for deriving pseudonyms from single attributes, multiple attributes, and even

114



3.7 Conclusion

similar versions of attribute values (fuzzy keyword search). Furthermore, we presented
ideas to limit the linkability of data records with respect to time or budget restrictions.
The limitation can be a way to mediate between data demands and increasing re-
identification risks through linking more data records. An implementation has been
used to evaluate the practical performance of the scheme. Finally, we have compared
our scheme to related work in terms of several proposed properties.

One drawback of our scheme is that our approach for fuzzy search is computationally
expensive, especially since it does depend on the length of identifiers. Using a bloom
filter based approach like the one utilized by Rohde et al. [Roh+21] would be expected
to reduce the search times substantially. Whether it also achieves practical accuracy for
linking the correct identifiers without many false positives remains to be investigated.

As we have seen, currently there is no scheme – ours included – which fulfills all of our
proposed properties. Depending on the constraints dictated by the application scenario,
one must choose the most suitable scheme. Future research might look further into
practical, privacy-preserving schemes for globally consistent pseudonyms.

Despite continuous developments in privacy-preserving computations, such as in SMPC
(see Section 5.1) and federated learning (see Section 2.7.6), and their expanding ap-
plication in privacy-preserving data analysis without central data collection (whether
pseudonymized or in cleartext), pseudonymization still has its place. Its central role
in the GDPR underscores this importance. Furthermore, pseudonymization is the only
technique which directly enables the re-identification of the respective data subject when
disclosure is necessary. In Chapter 4 we present an approach to protect this sensitive
disclosure process.
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In some situations, it is a necessity to re-identify pseudonym holders, also referred to
as the disclosure of pseudonyms. For example, the disclosure of patient identities for
pseudonymized medical research data is required when the patient must be contacted in
case of incidental findings in studies, for data quality management (cf. Section 6.1.3), or
for consultative participation [Pra21]. On the other hand, disclosing the identity behind
a pseudonym can have severe consequences for data subjects, especially in domains
like medicine – consequences which pseudonymization should prevent in the first place.
So the decision about a disclosure should not be made carelessly and disclosure by
individual adversaries should be prevented at all cost. For this reason, our goal in this
chapter is to enforce the multi-eye principle for pseudonym disclosure.

The multi-eye principle, a specific variant of the separation of duties concept, is a control
measure in environments with high security requirements. The principle states that
critical actions, decisions, or processes require the approval of two or more authorized
persons. The aim of the principle is to reduce the risk of errors or misconduct like
theft, fraud, or misuse of information. Other terms used for this principle include
four-eyes principle (4EP), two-person rule, and dual control principle. It is compulsory
in several areas including the access to bank vaults, corruption prevention in public
administration1, the administration of computers systems2, and as far as the launch of
nuclear weapons.

The main idea of this chapter is to employ threshold cryptography to distribute the
pseudonym disclosure process across multiple parties to enforce the multi-eye principle.
Threshold cryptography, a concept established in the 1980s and 1990s, deals with
distributing the capability to perform cryptographic operations across multiple parties.
This is accomplished by requiring collaboration of a specified minimum number of
parties to perform the operation, achieved through the distribution of involved secret
key material. Thus, this approach enables the distribution of trust among multiple
parties. There are schemes for distributing the signing operation in cryptographic
signature schemes [Sho00; Bol02] (threshold signatures). Other schemes allow to
distribute the decryption operation in public-key encryption schemes [DF90] (threshold
decryption). We focus on the latter of the two in this chapter and transfer it to the
problem of pseudonym disclosure.

Basic schemes in the area of threshold cryptography have been known for years. But
the practical application of cryptographic schemes does not only depend on the scheme

1. For example, the multi-eye principle is a central measure mentioned in the Federal Government Guidelines
for the Prevention of Corruption in the Federal Administration (in german Richtlinie der Bundesregierung
zur Korruptionsprävention in der Bundesverwaltung) accessible at https://www.verwaltungsvorschr
iften-im-internet.de/bsvwvbund_30072004_O4634140151.htm (visited on 25.03.2024).

2. For example, in the IT-Grundschutz-Kompendium [BSI23] of the Federal Office for Information Security
(BSI) the principle is mentioned for the administration of systems with increased need for protection
(in german erhöhter Schutzbedarf).
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itself. Especially questions of key management are highly relevant. This is a non-
trivial problem for regular public-key schemes already, but it gets even harder when
dealing with multiple parties and shared keys in threshold schemes. Apart from lost
or compromised keys, we now have to deal with extra tasks like joining or resigning
parties. An example in the business environment is the adjustment of the scheme in case
of new or terminated employees.

In the context of threshold decryption it is not trivial to change authorized parties,
because a message is encrypted for a specific set of parties and the distributed decryption
operation is performed at a later point in time. The set of authorized parties might
change between encryption and decryption of a message. This leads to the problem of
updating the composition of authorized parties in a secure manner, such that existing
ciphertexts can be decrypted by the new set of parties afterwards. There are several
approaches for updating shares to deal with certain reasons for changing authorized
parties, but they all suffer from disadvantages.

In this chapter we introduce a novel approach for updating key shares in a threshold
decryption setting. The main idea is the application of PRE, a technique that translates
ciphertexts encrypted with the public key of one key pair to be decryptable with a secret
key of another key pair. In our setting, these schemes allow to transfer the ability to
decrypt ciphertexts encrypted for a set of parties to another set of parties.

Our main contributions are the following:

• We recap an approach to enforce the multi-eye principle for pseudonym disclosure
based on threshold decryption.

• We propose a novel scheme for updating threshold decryption key shares.

• We instantiate our approach with existing schemes for threshold decryption and
bidirectional, multi-hop PRE and provide a way to compute the proxy key in a
distributed way.

• We develop a library, which implements this scheme, and evaluate the performance
and therefore the practical applicability of our scheme.

The chapter is structured as follows: In Section 4.1 we describe our notation and fun-
damental techniques on which we build our work. Section 4.2 presents our approach
to pseudonym disclosure based on the multi-eye principle by utilizing threshold de-
cryption. In this section we just provide an abstract approach without instantiating it
with a specific threshold decryption scheme for a cleaner presentation of the idea. We
explain different scenarios in which cryptographic keys in the scheme have to be updated
and properties an update process might entail in Section 4.3. An overview of existing
approaches for these updates is provided in Section 4.4. In Section 4.5 we describe
our update solution in detail and also introduce a scheme instantiation with specific
cryptographic schemes. Section 4.6 presents the attacker model for the pseudonym
disclosure approach based on our update solution. We cover implementation details and
a performance evaluation in Section 4.7 and conclude this chapter in Section 4.8.

The idea of using threshold decryption as a method for enforcing the multi-eye principle
(recapped in Section 4.2) was developed in my master’s thesis [Pet+19]. The use of
elliptic-curve cryptography (ECC) and distributed key generation (DKG) protocols in
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Section 4.2 and the remaining parts of the chapter dealing with updating cryptographic
key material are novel to this work.

4.1 Background

In this section we clarify the notation that we use and provide a brief overview of
fundamental techniques that our work relies on.

We use the term party for the entities involved in the described protocols. Related work
sometimes refers to a party as participant, share-holder or share-owner. When talking
about the i’th party we denote this as Pi. We denote an access structure, the family of
sets of parties able to perform a threshold decryption operation (see also Section 4.2), as
capital letter, such as A. The value x related to access structure A is denoted as x[A].

For computations performed in finite prime fields of order p we omit the required
modulo operation (mod p) for cleaner presentation if the situation is unambiguous. An
elliptic curve over a finite field Fp is denoted as E and we use P as a generator point
of order q in a large subgroup of the curve. We use additive operation notation and
denote curve points by uppercase letters and multiplicative scalars by lowercase letters.
In the public-key setting we use d ∈ Zq as the secret scalar and Q = dP as the public key
point.

4.1.1 Shamir’s Secret Sharing

Shamir’s secret sharing [Sha79] is a method to split a secret s into n shares so that
a threshold t of shares is required to reconstruct the secret. Less than t shares reveal
no information about the secret at all, establishing information-theoretic security. The
scheme works as follows. Let p be prime and all calculations performed in Zp.

• For a secret s ∈ Zp choose a polynomial f(x) = s + a1x + · · · + at−1x
t−1 with

a1, . . . , at−1 chosen randomly from Zp.

• The evaluations f(xi) of this polynomial for distinct values x1, . . . , xn form the
n shares of the secret.

• The secret s can be reconstructed from any t shares f(xi) via Lagrange interpolation

s =
t∑

i=1

f(xi)λi
3

using the Lagrange coefficients λi =
∏t

j=1,j ̸=i
−xj

xi−xj
.

3. We slightly overload the notation here, since indices are re-assigned potentially in comparison to their
initial generation.
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4.1.2 Threshold Decryption

Threshold decryption is a technique which allows to distribute the decryption operation
of a public-key scheme over n parties in possession of shares of the secret key in a way
that t parties are required to interact for decryption. The parameter t is the basis for
referring to these schemes as threshold schemes, as it defines the minimum threshold
that must be met to enable the execution of the operation. It allows to mediate between
trust distribution and safety requirements in the sense that multiple but not all parties
are required to perform the operation. In the decryption operation, parties compute
so-called partial decryptions using their respective shares of the private key, which then
can be combined to yield the plaintext. During this process the private key sk is not
disclosed to any party and less than t partial decryptions do not reveal the plaintext
for a given ciphertext encrypted with public key pk. The following definition is based
on [BS20].

Definition 4.1.1. A public-key threshold decryption scheme consists of four efficient
algorithms (GTD, E,DTD, CTD):

• GTD(n, t, σ)→ (pk, sk1, . . . , skn): The key generation algorithm GTD takes a secu-
rity parameter σ and outputs a public key pk and n secret key shares sk1, . . . , skn
depending on the threshold parameter t.

• E(pk,m) → c: The encryption algorithm E takes the public key pk and the
plaintext message m ∈M and outputs the ciphertext c.

• DTD(ski, c)→ c̃: The partial decryption algorithm DTD takes a secret key share ski
and the ciphertext c and computes a partial decryption c̃.

• CTD(c, c̃1, . . . , c̃t) → m: The combine algorithm CTD takes the ciphertext c and
t partial decryptions c̃1, . . . , c̃t computed with t distinct private key shares and
outputs the plaintext message m corresponding to c.

4.1.3 A Threshold Decryption Scheme

Desmedt and Frankel [DF90] developed one of the first threshold decryption schemes
based on the ElGamal public-key scheme [Elg85] and Shamir’s secret sharing [Sha79].
Koblitz [Kob87] describes a version of the ElGamal scheme based on ECC, which we
adapt here for the given threshold decryption scheme. The scheme works as follows:

Let E be an elliptic curve over a finite field Fp and P a generator point of order q in a
large subgroup of the curve. During key generation each party Pi receives their share
(xi, yi) = (xi, f(xi)) of the randomly chosen secret key d ∈ Zq using the approach of
Shamir’s secret sharing with the polynomial f(x) = d+a1x+ · · ·+at−1x

t−1 for randomly
chosen a1, . . . , at−1 ∈ Zq. Furthermore, the public key Q = dP is constructed. This step
can be performed by utilizing a trusted third party or in a distributed manner without a
trusted third party (cf. Section 4.2).

The encryption of a message M is performed just like in the ElGamal scheme by com-
puting the ciphertext (C1, C2) = (rP, rQ+M) for a random element r ∈ Zq. The partial
decryption C̃i is computed by party Pi as C̃i = yiC1. At least t partial decryptions can be
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combined by an arbitrary party to reveal message m using the Lagrange coefficients λi

for secret reconstruction: M = C2 + (−
∑t

i=1 λiC̃i). The correctness of this construction
is easy to validate:

C2 + (−
t∑

i=1

λiC̃i)

=C2 + (−
t∑

i=1

λiyirP )

=rQ+M + (−(
t∑

i=1

λiyi)rP )

=rdP +M + (−drP )

=M

4.1.4 Distributed Key Generation

While threshold decryption schemes allow parties in possession of shares of a private
key to collaboratively decrypt ciphertexts, they do not deal with the problem of how to
generate these shares in the first place. This generation can be achieved by a central
trusted party which creates the keys and distributes them to the parties. However, in
a lot of scenarios where distributed trust is an objective such a party does not exist.
This challenge can be tackled by DKG schemes which allow a set of parties to jointly
compute the public key and a set of secret key shares without disclosing the private key
to any party (as long as there are enough non-colluding parties). The first DKG scheme
was published by Pedersen [Ped91] and an improved version preventing an attack
manipulating the secret key distribution was introduced by Gennaro et al. [Gen+99]. In
the following, we present the scheme of Pedersen to clearly showcase the basic principles
in these schemes and not hide them between additional safeguarding protocol steps as
it would be the case in the scheme of Gennaro et al.

For parties P1, . . . , Pn, an elliptic curve E over a finite field Fp, and a generator point P
of order q in a large subgroup of the curve the scheme works as follows.

• Each party Pi chooses xi ∈ Zq at random and computes hi = di · P . Additionally,
they choose a random string ri and broadcast a commitment Ci = C(hi, ri).

• When all parties have exchanged their commitments, they broadcast the values
hi and ri and check the validity of all commitments. Afterwards, the public key
h =

∑n
i=1 hi can be computed.

At this point, the public key h as well the (virtual) private key d =
∑n

i=1 di are already
set. But the private key can only be computed based on each and every share di – the
shares represent a (n, n) sharing of d). The remaining steps are performed to achieve
a (t, n) sharing of the private key so that only t shares are required to recompute the
private key.
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• Each party Pi chooses a polynomial fi(z) = di + fi1z + · · ·+ fit−1z
t−1 with random

coefficients fik ∈ Zq. This polynomial has degree t− 1 and fi(0) = di.

• For the coefficients of this polynomial each party Pi computes Fij = fij · P (j ∈
{0, . . . , t− 1}) and broadcasts these values.

• Each party Pi sends the values sij = fi(j) secretly to Pj. They keep the value sii to
themselves.

• Each party Pi verifies the received sji values by checking sji · P
?
=
∑t−1

l=0 Fjl · il.

• If all checks are successful, each party Pi computes their private share si =
∑n

j=1 sji
and signs the public key h to indicate its validity (using some signature scheme
independent of the key generation scheme).

In a final verification step all parties can review the validity of the key generation.

• For this purpose each party Pi broadcasts σi = si · P .

• Any party can then check that σi
?
=
∑n

j=1(hj+
∑t−1

l=1 Fjl ·il) based on the broadcasted
values hj and Fjl.

In the end, each party Pi is in possession of a share of the private key si and the parties
have jointly computed the respective public key h.

4.1.5 Proxy Re-Encryption

Let (pki, ski) and (pkj, skj) be two key pairs for an asymmetric encryption scheme. PRE
is a technique for converting ciphertexts encrypted with public key pki to ciphertexts
being decryptable with skj. In other words: PRE allows to re-encrypt ciphertexts for a
different key pair. The re-encryption can be performed by a third party, the proxy, using
a so-called proxy key computed from both key pairs or a subset of these keys. During
this operation the proxy does not learn any plaintext or any of the involved private
keys. The principle of PRE was introduced by Blaze, Bleumer, and Strauss [BBS98] and
they also proposed the first PRE scheme based on a modified version of the ElGamal
cryptosystem.

There are two properties of PRE schemes relevant for this paper:

• bidirectional/unidirectional: This property describes if the re-encryption with
one proxy key can just be performed in one or in both directions, that is, only from
ski to skj) or vice versa as well [Ate+06]. The same property is sometimes also
referred to as symmetry/asymmetry [BBS98].

• single-/multi-hop: Single-hop schemes just allow a single re-encryption of a
ciphertext, whereas multi-hop schemes allow further re-encryptions of already
re-encrypted ciphertexts [CH07].
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Further properties, like proxy invisibility or collusion safeness, which are not directly
relevant to this work, are described in more detail by Ateniese et al. [Ate+06]. A
comprehensive overview of further PRE research is provided by Qin et al. [Qin+16].
In this paper only multi-hop schemes are of interest, therefore we give the following
definition based on [MS17].

Definition 4.1.2. A multi-hop PRE scheme consists of five probabilistic polynomial time
algorithms (GPRE, E,DPRE, RGPRE, REPRE):

• GPRE(σ)→ (pk, sk): Given a security parameter σ, the key generation algorithm
GPRE outputs a key pair pk, sk.

• E(pk,m)→ c: The encryption algorithm E computes a ciphertext c from message
m and public key pk.

• DPRE(sk, c) → m: The decryption algorithm DPRE takes a secret key sk and
ciphertext c and returns the message m.

• RGPRE(ski, pki, skj, pkj) → πi→j: The proxy key generation algorithm RGPRE

takes two key pairs pki, ski and pkj, skj and computes the proxy key πi→j.

• REPRE(ci, πi→j) → cj: The re-encryption algorithm REPRE takes the proxy key
πi→j and a ciphertext ci encrypted with pki and translates it to ciphertext cj
decryptable with skj. If the scheme is bidirectional, REPRE can be used with πj→i

to translate a ciphertext cj to ci as well.

4.1.6 A Bidirectional Multi-Hop Proxy Re-Encryption Scheme

A bidirectional multi-hop PRE scheme based on the ElGamal public-key encryption
scheme is introduced by Ivan and Dodis [ID03]. The already mentioned ECC-based
version of the ElGamal scheme by Koblitz [Kob87] is adapted for this scheme as well.
The scheme works as follows:

Let E be an elliptic curve over a finite field Fp and P a generator point of order q in a
large subgroup of the curve. Party Pi chooses a secret key di ∈ Zq and computes their
public key Qi = diP . The encryption of a message M works just as in the regular ElGamal
scheme. Select a random element r ∈ Zq and compute the ciphertext as (C1, C2) =
(rP, rQi +M). To decrypt a ciphertext, party Pi computes M = C2 + (−diC1).

Given another key pair dj, Qj for Party Pj, the proxy key can be generated as πdi↔dj =
dj − di. To perform the re-encryption, the C2 component of a ciphertext encrypted with
Qi has to be updated so that the public key Qj is included instead and Party Pj can
decrypt the ciphertext. Component C1 remains unchanged. To re-encrypt ciphertext
component C2 one computes

C ′
2 = C2 + πdi↔djC1

= rQi +M + (dj − di)rP

= rQi +M + rdjP + (−rdiP )

= rQi +M + rQj + (−rQi)

= rQj +M
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Figure 4.1: The high-level overview of pseudonym disclosure via threshold decryption.

4.2 Pseudonym Disclosure Protected by Multi-Eye Principle

The main idea of this chapter is to employ threshold decryption as a technical measure
to achieve the multi-eye principle for pseudonym disclosure. Details about threshold
decryption schemes are presented in Section 4.1.2. In the following we describe the
pseudonym generation and disclosure processes utilizing threshold decryption on a
scheme-agnostic level. An instantiation with a specific threshold decryption scheme will
be given in Section 4.5. We stick to the system model and parties (data source, data
processor, and pseudonymization service) introduced in Section 3.2.1 – even though the
general method is applicable to further pseudonymization scenarios. The high-level idea
of this chapter is depicted in Figure 4.1.

First, the (t, n) threshold decryption scheme has to be initialized by performing the key
generation algorithm GTD. During this process a public key pk as well as key shares ski
for the n parties responsible for decryption are generated. This setup can be achieved
by using a central trusted party. However, in a lot of scenarios where distributed trust
is an objective such a party does not exist. Therefore, we focus on the case where
the parties perform this setup interactively via a DKG scheme. These schemes allow a
set of parties to jointly compute the public key and a set of secret key shares without
disclosing the private key itself to any party (as long as there are enough non-colluding
parties). Details about DKG schemes are provided in Section 4.1.4. The schemes require
secure (authenticated and encrypted) point-to-point channels between the parties, so
the existence of these channels is assumed from now on. Approaches on how to establish
these channels are provided by Aumasson, Hamelink, and Shlomovits [AHS20].

When a data source in possession of the public key pk pseudonymizes a data record R
containing identifying information id, apart from substituting id with a pseudonym Psid
obtained from the pseudonymization service (see Chapter 3), the identifying information
id is also encrypted with the encrypt algorithm E of the threshold decryption scheme
using the public key pk. The resulting ciphertext C is stored together with Psid in the
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4 Pseudonym Disclosure based on the Multi-Eye-Principle

mapping table of the pseudonymization service4. Afterwards, the pseudonymized data
record R′ is sent to the data processor.

When the data subject behind the pseudonym Psid has to be disclosed on the data
processor’s instructions, a qualified subset of all parties perform the partial decryption
algorithm DTD using their respective key share ski and the ciphertext C forwarded by
the pseudonymization service. The family of sets of parties, which are able to perform
this cryptographic operation is referred to as the access structure (sometimes also com-
mittee [Mar+19]) of the scheme. For (t, n) schemes this family is given by all sets of
parties with at least t members. Note that simple (t, n) schemes can easily be general-
ized to more complex access structures [ISN89]. The partial decryptions C̃i resulting
from the partial decryption can then be combined by employing the partial decryption
combination algorithm CTD (performed by a dedicated party or the pseudonymization
service) to restore the identifying information id. Finally, these information are sent to
the data processor. Since less than t parties are not able to restore these information, this
approach cryptographically enforces the multi-eye principle for pseudonym disclosure.

In comparison to simple approaches, however, key management tasks in distributed
protocols like threshold decryption schemes entail additional complexity. There are
situations which require updating the party composition or shares of the parties in an
access structure. More formally, for access structures A and B with respective public keys
pk[A] and pk[B] and underlying (t[A], n[A]) and (t[B], n[B]) threshold decryption schemes,
we want to perform an update operation, so that ciphertexts originally encrypted
with pk[A] can afterwards be decrypted by combining t[B] partial decryptions computed
using shares from access structure B5 In the remainder of this chapter we focus on how
to perform access structure updates. We provide relevant situations for and properties of
update approaches, review existing approaches, and present our own solution. Since the
remainder of this chapter is not specific to pseudonym disclosure anymore, we stick to
terms and parties used in threshold decryption or proxy re-encryption literature (party,
proxy, client) in the next sections for clarity.

4.3 Situations and Properties

There are several situations in which we have to change the access structure of the
scheme. Common situations we focus on in this chapter are adding a party (also referred
to as enrollment), removing a party (also referred to as disenrollment), increasing or
decreasing the threshold parameter t, lost key shares, compromised key shares, proactive
key rotation, and transferring ciphertexts to a completely different access structure.
Some of these situations can be handled by custom-tailored protocols. However, we look
for a generic solution, which is applicable to all given situations.

4. When used for other pseudonymization techniques (see Section 2.4.4) the ciphertext might have to be
stored in a distinct database. If reversible techniques for pseudonym creation (for example, symmetric
encryption) are used, it must be ensured that this reversibility does not undermine the multi-eye
principle.

5. When we informally mention the public key of an access structure or speak about decryption being
performed by an access structure, it should be understood as described here.
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In addition, we propose several properties the access structure update operation should
entail.

• Plaintext secrecy (PS): Plaintexts of existing ciphertexts remain encrypted.

• Key secrecy (KS): Neither the shared private key nor any key share of the old or
new access structure is disclosed to non-owners.

• Prevention of previous access structure access (PAA): The previous access structure
must not be able to perform threshold decryption of ciphertexts after the access
structure update.

• Erasure free model (EFM): PAA holds without requiring parties to delete their keys
or key shares. This prevents the old access structure from performing the decryp-
tion operation even if enough malicious parties keep their old shares. Therefore,
in addition to PS and KS, this property is central to the practical security of the
scheme.

• Update operation without ciphertext access (UCA): The update operation can be
performed without requiring parties to access ciphertexts. This property enables
the separation of ciphertext storage and update operation. Otherwise, if a malicious
set of parties is part of the scheme’s access structure and these parties need to
access the ciphertexts during the update operation, they can decrypt all ciphertexts.
An update operation that does not require ciphertext access allows the scheme to
recover from this situation.

• Unchanged public key (UPK): Performing the update operation does not require
to replace the public key. This property is desirable because replacing a public key
is associated with (sometimes complex) organizational overhead to distribute the
new public key to clients and to ensure its authenticity.

4.4 Existing Approaches for Access Structure Updates

This section covers existing approaches for updating access structures in a threshold
decryption scenario and how they fulfill our properties (cf. Section 4.3).

4.4.1 Naïve solution

The simplest solution is to decrypt the ciphertext c[A] or to recover the private key sk[A]

by collaboration of at least t parties. Afterwards, the directly or indirectly resulting
plaintexts can be encrypted with the new public key pk[B] of a new access structure.
This solution would be suitable in all of our situations, but has the major disadvantage
that it discloses all plaintexts (and in case of key recovery also the private key) to the
combining party. This solution might be suitable when a trusted third party exists (which
would have to delete plaintexts after the update operation). However, as stated before,
we focus on scenarios where such a party is not present.
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4.4.2 Monotonous access structure updates

Ito, Saito, and Nishizeki [ISN89] presents a theoretical approach for monotonous access
structure updates, meaning that the new access structure is an extension of the old one.
This approach is suitable for adding new parties to the access structure, but not for
other situations such as removing parties. Additionally, the approach does not consider
practical aspects, such as the distribution of new shares.

4.4.3 Dynamic secret sharing

A class of related approaches can be summarized under the term dynamic secret sharing
schemes, which can be employed for secret sharing-based threshold decryption schemes.
They extend secret sharing schemes with the ability to update aspects of the scheme,
such as changing the threshold or disenrolling parties. These schemes can be divided
into three classes based on the underlying communication models and their objective.

Redistributing shares

First, there are approaches [DJ97; MSW99] which achieve dynamic access structures
by redistributing shares to the parties of the new access structure via secure channels.
These approaches are suitable for all of our situations. They keep the shared secret and
update the shares via redistribution between all parties without necessary ciphertext
access, but require the parties to delete their old shares. Therefore, they are not able to
recover from existing sets of malicious parties in the old access structure.

Updating shares via broadcast

Next, there is a variety of related work [Mar+99; Zha+12b; BJM05; Blu+94; Bla+93]
which covers schemes allowing to update the access structure in some predefined
ways by just using public broadcast messages after relying on secure channels during
initialization. These schemes require a priori knowledge of possible changes (like the
maximum number of disenrollments or further thresholds) and are not able to enroll
new parties. Furthermore, most approaches keep the original secret and require the
deletion of old shares or prohibit their usage.

Proactive secret sharing

Another family of approaches, called proactive secret sharing schemes, is concerned
with the secure renewal of shares of the original access structure, protecting against
mobile adversaries, who compromise parties one-by-one over a period of time. Schemes
are introduced by, amongst others, Herzberg et al. [Her+95], Schultz, Liskov, and
Liskov [SLL10], and Maram et al. [Mar+19]. These schemes are just usable for some of
our situations and furthermore require the deletion of old key shares.
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4.4.4 Quorum-controlled approach

A unidirectional PRE scheme based on threshold cryptography is proposed by Jakobs-
son [Jak99]. The re-encryption of ciphertexts is performed by a quorum of proxy servers,
which are in possession of shares of the global secret key. This scheme can be used for
access structure updates in our setting. The parties (proxy servers) of the current access
structure A can re-encrypt respective ciphertexts for the new access structure B by
using just the new public key pk[B]. This solution is suitable for all considered situations
without disclosing keys or plaintexts. However, for the re-encryption all parties must col-
laborate for every single ciphertext. Afterwards they have to delete their shares and the
processed ciphertexts. In case of a malicious set of parties in the access structure, these
parties have access to and can decrypt all ciphertexts during the update operation.

4.4.5 Blinding-based approach

Zhou et al. [Zho+05] design a protocol similar to the previously described quorum-based
solution by Jakobsson. They incorporate a distributed blinding protocol and so-called
verifiable dual encryption, so that some computations during the re-encryption can be
performed by the new access structure or even in preparation. This approach suffers
from the same drawback as the one presented before: A collaboration of all parties is
required for the re-encryption of all individual ciphertexts, shares and ciphertexts have
to be delete after the update operation, and malicious parties are able to decrypt all
ciphertexts.

4.4.6 Summary

All existing solutions to the problem of updating access structures suffer from not satis-
fying relevant properties. Table 4.1 summarizes the different approaches with respect to
proposed properties. We discuss stated properties of this work in Section 4.5.6.

4.5 Employing Proxy Re-Encryption for Access Structure Updates

In this section, we introduce a novel scheme for access structure updates. The general
idea is to use proxy re-encryption for updating the ciphertexts from access structure A
to B. We employ the ideas and algorithms of PRE and threshold decryption, but extend
them with the possibility to compute the proxy key in a distributed manner.

PRE schemes require a proxy key π generated from the old and new key pair or a subset
of these keys. To achieve a secure protocol in the given setting, this key must be created
by the parties in a distributed manner interactively without revealing shares or private
keys. Our idea is to perform this operation similar to the approach taken in threshold
decryption to distribute the decryption operation. A party Pi uses their private key shares
for the old and new key pair to compute an intermediary result, we call partial proxy
key π̃i. A set of partial proxy keys can be combined to provide the proxy key. Afterwards
this key can be used by the proxy, which performs the re-encryption without being able
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Table 4.1: Overview over existing approaches and their properties. PS = non-
disclosure of plaintexts for existing ciphertexts, KS = non-disclosure of
the shared private key or key shares, PAA = the old access structure can-
not perform the threshold decryption after translation, EFM = PAA holds
without relying on parties deleting keys or key shares, UCA = the update
operation does not require parties to access existing ciphertexts, UPK = the
update operation does not require replacing the public key. For approaches
which are not suitable for all situations, the covered situations are given:
adding a party (A), removing a party (R), changing the threshold param-
eter t (T), lost key shares (L), compromised key shares (C), proactive key
rotation (P), and transferring ciphertexts to a completely different access
structure (D). Properties in parentheses indicate incomplete fulfillment of
properties.

Approach PS KS PAA EFM UCA UPK All Situations

Naïve threshold decryption x ✓ ✓ x x x ✓

Naïve private key recovery x x ✓ x ✓ x ✓

Monotonous update ✓ ✓ x x ✓ ✓ x (only A)

Redistributing shares ✓ ✓ ✓ x ✓ ✓ ✓

Update via broadcast ✓ ✓ ✓ x ✓ ✓ x (only R, T, L, C & P)

Proactive secret sharing ✓ ✓ ✓ x ✓ ✓ x (only C & P)

Quorum-controlled ✓ ✓ ✓ (x) x x ✓

Distributed blinding ✓ ✓ ✓ (x) x x ✓

This work ✓ ✓ ✓ (✓) ✓ x ✓
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Figure 4.2: Overview of our scheme and interplay of the algorithms, as defined in
Definition 4.1.1, 4.1.2, and 4.5.1, including key generation GTD, the
generation of partial proxy keys PPG, the combination of partial proxy
keys PC, and the re-encryption REPRE for access structures A and B. For
a cleaner presentation the algorithms for encryption E, partial decryp-
tion DTD, and combination CTD are only shown for access structure A.

to reveal the ciphertexts, the private key or key shares. An overview of the complete
scheme is depicted in Figure 4.2. The following definition formalizes such a scheme by
extending Definitions 4.1.1 and 4.1.2 and introducing new operations for the distributed
generation of the re-encryption key.

Definition 4.5.1. Our scheme extends the algorithms of Definitions 4.1.1 and 4.1.2 and
consists of seven algorithms (GTD, E,DTD, CTD, PPG, PC,REPRE):

• GTD, E,DTD, CTD, and REPRE are the same algorithms as in Definitions 4.1.1
and 4.1.2.

• PPG(pk[A], sk
[A]
i , pk[B], sk

[B]
i ) → π̃i

A→B: PPG takes the private key shares for ac-
cess structures A and B of party Pi as well as the respective public keys as input
and outputs a partial proxy key π̃i

A→B.

• PC(π̃1
A→B, . . . , π̃

t
A→B, pk

[A], pk[B]) → πA→B: PC takes t partial proxy keys as well
as the respective public keys as input and outputs the proxy key πA→B.

In the following we present an instantiation of such a scheme, cover its correctness and
security, analyze the applicability to the situations given in Section 4.3 and discuss the
properties of the scheme with respect to the ones given in Section 4.3.
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4.5.1 Scheme Instantiation

In this section, we develop an instantiation of our scheme based on the threshold
decryption scheme given in Section 4.1.3 and the bidirectional multi-hop PRE scheme
given in Section 4.1.6. Using a multi-hop scheme is a vital requirement for our solution
as this allows updating the access structure an unlimited number of times. Using a
bidirectional scheme allows reverting the re-encryption process of ciphertexts using the
same proxy key. Since we want to prevent the old access structure from performing the
decryption operation, it is disadvantageous to be able to reconstruct the ciphertexts for
the old access structure after the re-encryption operation (see Section 4.5.6 for further
discussion). So ideally we want to use a unidirectional multi-hop scheme. However, we
have found no way to compute a proxy key in a distributed manner in such a scheme, so
we leave this as an open problem for future research.

The instantiation uses variants of the operations GTD, DTD, and CTD from the threshold
decryption scheme, REPRE from the PRE scheme and the encryption operation E which
is the same in both schemes. Furthermore, we provide constructions for the novel
operations in our scheme – the generation and combination of partial proxy keys, PPG
and PC. In the following we present the scheme operations in detail.

Let E be an elliptic curve over a finite field Fp and P a generator point of order q in a
large subgroup of the curve. The parties compute their private key shares (xi, yi) for the
(virtual) secret scalar d ∈ Z∗

q and the public key point Q = dP employing an ECC-based
variant of the DKG protocol from [Gen+99].

In the original ECC-based ElGamal scheme [Kob87] the public key Q is used for encrypt-
ing a message encoded as curve point M : (C1, C2) = (rP,M + rQ) for a random r ∈ Z∗

q.
However, in practice this textbook version of the scheme is insecure [BJN00]. Our
scheme therefore uses a hybrid approach based on Elliptic Curve Integrated Encryption
Scheme (ECIES) [ABR01]. Further we utilize an authenticated encryption scheme for
symmetric encryption, which removes the requirement of an additional MAC in ECIES as
proven by Kurosawa and Matsuo [KM04]. Based on this, encryption works as follows: A
random value k ∈ Z∗

q is chosen and used to compute the point K = kP . A key derivation
function KDF is employed to derive a symmetric key ks = KDF (K). This key is used
to encrypt the message m with the authenticated encryption scheme AE to compute cs.
The ciphertext has three components (C1, C2, cs) =

(
rP, K + rQ, AEenc

ks
(m)

)
.

A partial decryption of the ciphertext is obtained by a party in possession of share (xi, yi)

by computing C̃i = yiC1. Combining t partial decryptions discloses dC1:

t∑
i=1

λiC̃i =

(
t∑

i=1

λiyi

)
C1 = dC1

This is used to compute the point K:

C2 + (−dC1) = K + rdP + (−drP ) = K

This point K is used to derive ks = KDF (K) and to decrypt the message m =
AEdec

ks
(cs).
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4.5 Employing Proxy Re-Encryption for Access Structure Updates

We now cover the new operations PPG for generating partial proxy keys and PC for
combining partial proxy keys to compute the proxy key itself. In particular, we provide a
way to perform these operations in a distributed manner without leaking secret keys or
key shares.

Let A and B be two access structures for respective (t[A], n[A]) and (t[B], n[B]) schemes.
The parties of these schemes have setup their respective (virtual) private keys d[A] and
d[B] in the form of key shares (x

[A]
1 , y

[A]
1 ) . . . , (x

[A]

n[A] , y
[A]

n[A]) and (x
[B]
1 , y

[B]
1 ), . . . , (x

[B]

n[B] , y
[B]

n[B])
employing the already mentioned DKG protocol.

Assume that for all different situations (cf. Section 4.3) there exists a shared set of
shares in both access structures, the old one A and the new one B. The validity of this
assumption will be justified in Section 4.5.5. Each party Pi in this shared set computes
their partial proxy key π̃i

A→B = λ
[B]
i · y

[B]
i − λ

[A]
i · y

[A]
i . The Lagrange coefficients λi state

which shares are included in the secret reconstruction and are not secret, so they can just
be precomputed by the proxy and forwarded to the participating parties. After receiving
t = max(t[A], t[B]) partial proxy keys, the proxy computes the proxy key as the sum of
these partial proxy keys πA→B =

∑t
i=1 π̃

i
A→B.

The re-encryption can afterwards be performed similar to the PRE scheme given in Sec-
tion 4.1.6. With the proxy key πA→B = d[B] − d[A] the proxy re-encrypts the second
component of a ciphertext (C1, C

[A]
2 , cs) (which is the only component dependent on the

access structure): C [B]
2 = C

[A]
2 + πA→BC1. The components C1 and cs remain unmodified.

This is also advantageous from a security and a performance perspective, since in case
of an access structure update only a small key component needs to be re-computed,
while the authenticated encryption cs of the (potentially large) message m remains
untouched.

An overview of the complete scheme is presented in Table 4.2. A proof for its correctness
is given in Section 4.5.2 and arguments for its security in the semi-honest adversary
model in Section 4.5.3.

4.5.2 Proof of Correctness

The correctness proofs for the underlying threshold decryption scheme [DF90] (cf. Sec-
tion 4.1.3) and the PRE scheme [BBS98] (cf. Section 4.1.6) remain valid in our scheme.
It remains to show that ciphertexts originally encrypted for access structure A and
re-encrypted for a new access structure B can in fact be decrypted by B. The proxy key
computation

πA→B =
t∑

i=1

π̃i
A→B

can be transformed to

πA→B =
t∑

i=1

λ
[B]
i · y

[B]
i −

t∑
i=1

λ
[A]
i · y

[A]
i .

According to Shamir’s secret sharing (cf. Section 4.1.1), the secret D with shares
(x1, y1), . . . , (xn, yn) is reconstructed as D =

∑t
i=1 λi · yi with λi =

∏t
j=1,j ̸=i

xj

xj−xi
. In our
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4 Pseudonym Disclosure based on the Multi-Eye-Principle

Table 4.2: An overview of the full scheme including all of its algorithms.

Algorithm Responsible Computations

Key Generation GTD Parties DKG following the steps from [Gen+99] pro-
viding the public key Q and n key shares
(xi, yi).

Encryption E Client For message m to be encrypted:
k

r← Z∗
q

K = kP

ks = KDF (K)

r
r← Z∗

q

(C1, C2, cs) = (rP,K + rQ,AEenc
ks (m))

Partial decryption
DTD

Parties For Pi holding share (xi, yi) and ciphertext
(C1, C2, cs):
C̃i = yiC1

Partial decryption
combination CTD

Proxy For ciphertext (C1, C2, cs):

dC1 =
t∑

i=1

λiC̃i

K = C2 + (−dC1)

ks = KDF (K)

m = AEdec
ks (cs)

Partial proxy key gen-
eration PPG

Parties For access structure update from A to B and
Pi holding shares (x[A]

i , y
[A]
i ) and (x

[B]
i , y

[B]
i ):

π̃i
A→B = λ

[B]
i y

[B]
i − λ

[A]
i y

[A]
i

Proxy key combina-
tion PC

Proxy For access structure update from A to B:

πA→B =

max(t[A],t[B])∑
i=1

π̃i
A→B

πA→BP
?
= Q[B] + (−Q[A])

Re-Encryption REPRE Proxy For access structure update from A to B and
ciphertext (C1, C

[A]
2 , cs):

C
[B]
2 = C

[A]
2 + πA→BC1
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4.5 Employing Proxy Re-Encryption for Access Structure Updates

threshold scheme this recovers the secret scalars. Since the partial proxy keys π̃i
A→B are

assumed to be computed from parties in a shared set of both access structures, we obtain
πA→B = d[B] − d[A], which is exactly the proxy key of the PRE scheme in Section 4.1.6.
During re-encryption the only access-structure-dependent component C [A]

2 is transformed,
so that the secret scalar d[A] is replaced with d[B]:

C
[A]
2 + πA→BC1

=rd[A]P +K + (d[B] − d[A])rP

=rd[B]P +K

=C
[B]
2

Ciphertexts encrypted for access structure A and re-encrypted with πA→B can afterwards
be decrypted by utilizing the given threshold decryption process from Definition 4.1.1.

4.5.3 Security Arguments

We use the semi-honest adversary model for reasoning about the security of our scheme.
Involved parties do not actively deviate from the protocol derived from the scheme, but
are curious to learn all possible information from legitimately received messages.

We argue that knowing a ciphertext (C1, C2, cs), the proxy key πA→B = d[B] − d[A], any
number of partial re-encryption keys πi

A→B, and less than t partial decryptions do not
leak any private key shares, the private key itself or the plaintext.

Due to the semantic security of the employed encryption schemes and relying on the
security guarantees from [ID03] and [DF90] we can argue that: Proxy key and ciphertext
do not reveal the plaintext, the proxy key does not reveal secret keys d[A] or d[B], less
than t partial decryptions do not reveal the plaintext, and partial decryptions do not
reveal private key shares.

It remains to show that partial proxy keys π̃i
A→B = λ

[B]
i y

[B]
i − λ

[A]
i y

[A]
i (mod q) do not

reveal private key shares of the old or new access structure. As already mentioned
in Section 4.5.1 the Lagrange coefficients are public values. The key shares y[B]

i and y
[A]
i

are drawn from a uniform distribution due to the used DKG protocol for all parties. As
the partial proxy keys are computed over the finite field Fq, the uniform distribution still
holds for λiyi. An attacker gains no additional information about y[A]

i or y[B]
i from the

difference of the two uniformly distributed random values.

We want to emphasize that these arguments do not represent a formal proof of the
security of our method, but simply indicate that the intended security requirements are
potentially met. A cryptographic security proof could not be provided within the scope
of this work and is considered future work.

4.5.4 Extension to Malicious Adversaries

In order to provide guarantees against stronger, malicious attackers, we can enhance
our protocol with additional sanity checks. We can rely on guarantees of the used DKG
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4 Pseudonym Disclosure based on the Multi-Eye-Principle

protocol, which uses a verifiable secret sharing scheme [Fel87], to detect inconsistent
shares and cheating parties during the key generation phase. Before re-encryption the
validity of a computed proxy key can be verified using only the old and new public
keys by checking πA→BP

?
= Q[B] + (−Q[A]). However, detecting which parties behave

dishonest during the generation of the proxy key, that is which parties provide an
incorrect partial proxy key, would require more sophisticated techniques and is left
for future research. Another open problem in the malicious setting is the question
of how to prove the honesty of the proxy for the re-encryption step. Techniques like
Jakobson’s translation certificates [Jak99] or the verifiable proof by Zhou et al. [Zho+05]
might be a starting point for research in this direction. But the employed authenticated
symmetric encryption via AEAD ciphers at least provides a way to check the authenticity
of a ciphertext when decrypting a message during the partial decryption combination
operation.

4.5.5 Applicability to Situations

As stated, we require a shared set of parties in the old and new access structure.
Furthermore, it is required that a honest set of parties from the old access structure is
initially able to perform the decryption operation (which is an important requirement in
the case of lost key shares).

Section 4.3 mentions several situations which require an update of the access structure
or the key shares. In the following we just consider the situations one-by-one and
not in combination. If the scheme is not applicable for combined variations of the
situations, the scheme can be applied by iterative executions. We now justify that
under all conditions a shared set in the access structures A and B exists (except for
access structures differing completely, where a slightly more complicated construction is
given):

• Adding a party: Any set of parties of A can be used since A ⊂ B.

• Removing a party: When removing party Pr, each set of A not containing Pr

is still member of B and can be chosen to generate the proxy key. An exception
would be an (n, n)-scheme, but this is no reasonable case since afterwards the
decryption would not be possible anymore.

• Increasing the threshold parameter from t[A] to t[B] with t[A] < t[B]: Each set of
A with at least t[B] parties can be used. If t[B] > n there exists no such set, but this
would render the scheme useless anyway.

• Decreasing the threshold parameter: Any set of parties of A can be used since
A ⊂ B.

• Proactive key rotation: This is the easiest case, since A = B. Each set of the
access structure can be used.

• Lost key shares: A = B holds as well, with the caveat that the owner of the lost
share Pl cannot be included in the proxy key generation. If t = n holds for the
threshold scheme, there exists no valid set without Pl. In this case, the threshold
decryption is not possible anymore.
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• Compromised key shares: For this situation A = B holds as well with the caveat
that the owner of the compromised share Pc should not be included in the proxy
key generation. If this is not preventable, it must be assured that the attacker gets
no access to the partial proxy key of Pc. Otherwise with the knowledge of the old
share and the partial proxy key, the new share can be trivially computed as well.

• Transferring the ciphertexts to a different access structure with A ∩ B = ∅:
For this situation our scheme is not directly applicable. However, a solution is to
perform a two-step approach. First, re-encrypt the ciphertexts to a scheme with
access structure A ∪ B under collaboration of a set of parties in A. Afterwards
re-encrypt the resulting ciphertexts to a scheme with access structure B under
collaboration of a set of parties in B.

4.5.6 Properties of the Scheme

What remains is a look at the properties of our new scheme with respect to the ones
given in Section 4.3. An overview of the fulfilled properties is given in Table 4.1.

As justified in Section 4.5.3 the provided approach does not disclose keys, key shares or
plaintexts during execution of the scheme to unauthorized parties and therefore fulfills
our properties PS and KS.

Since the ciphertexts are re-encrypted for the new access structure (using a new shared
key), the old one is not able to perform the decryption of the resulting ciphertexts
anymore, which fulfills our property PAA.

However, this just holds under the assumption that old ciphertexts are deleted after
re-encryption or that less than the threshold t parties of the old access structure keep
their shares. In this sense our scheme does not completely fulfill our property EFM, but
makes it harder to exploit the weakness in comparison to existing approaches, especially
the ones based on share redistribution (cf. Section 4.4), by requiring malicious parties
to keep their old shares and a malicious proxy to keep old ciphertexts. In other words,
we distribute the required trust: It is sufficient that the proxy or the parties of the old
access structure act honestly.

There is one more limitation. Since we instantiate our scheme based on a bidirectional
PRE scheme, a malicious proxy in possession of the proxy key and the re-encrypted
ciphertexts would be able to reverse the re-encryption process and enable the old
access structure to perform threshold decryption again. Using a unidirectional scheme
and deleting the old ciphertexts would prevent this malicious action. However, as we
would still rely on some deletion taking place at the proxy, this presents just a minor
limitation.

Another benefit of our solution compared to related work is that we can recover from
a malicious set of parties being able to decrypt ciphertexts at one point in time since
the virtual private key changes. Messages encrypted with the new public key cannot be
decrypted by the malicious set providing forward secrecy (assuming that the malicious
set is not a member of the new access structure).

This comes at the cost of a new public key after the access structure update. Therefore
our solution does not fulfill our property UPK. It might require organizational processes,
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such as employing existing public key infrastructure (PKI) approaches, to deal with these
changes. Another solution would be to keep all proxy keys and update new ciphertexts
encrypted with the initial public key on-the-fly (with the problem a bidirectional PRE
scheme entails, given above).

Finally, the parties just have to collaborate in order to compute the proxy key once, but
are not required to perform operations on all ciphertexts. The re-encryption itself can be
performed by any third party acting as the proxy without disclosing plaintexts or keys
to this party. This fulfills our property UCA. Furthermore, this property is vital for the
aforementioned recovery from malicious sets of parties in the access structure. Since
parties do not have to access ciphertexts during the update operation, we can prevent
malicious access structure sets from decrypting all existing ciphertexts after receiving
them in schemes where this access is required.

4.6 Adversary Model for Pseudonym Disclosure

In this section we extend the security considerations with respect to the presented
update scheme to an adversary model for the full pseudonymization disclosure process.
We assume the semi-honest (also referred to as passive or honest-but-curious) adversary
model [PMB14], in which adversaries do not deviate from a given protocol but try to
learn as much information as possible from messages legitimately received during the
protocol execution. Even though some steps are taken to extend the scheme to a mali-
cious adversary model (see Section 4.5.4), some key algorithms such as the re-encryption
of ciphertexts are not secure in the presence of malicious adversaries. The semi-honest
model is nonetheless a helpful assumption in our scenario because it lets us reason about
confidentiality aspects in the presence of colluding adversarial parties. Note that the
collusion of adversaries is allowed in the semi-honest model [EKR18]. Furthermore, we
assume secure point-to-point connections between all parties. Otherwise adversaries
would be able to reconstruct key shares and the secret key during execution of the
DKG protocol. Finally, we assume the well-established ciphers which we use as building
blocks for our scheme to be practically secure when used with keys of adequate length.

The employed threshold scheme provides security against t− 1 colluding passive adver-
saries. In our architecture we have separated the decryption process from the storage of
ciphertexts. Therefore, even when adversarial parties collaborate with an adversarial
pseudonymization service which provides them with access to ciphertexts, less than
t adversarial parties are not able to decrypt these ciphertexts (and with that perform
pseudonym disclosure).

An adversarial pseudonymization service has the capability to initiate the disclosure
process. However, this illegitimate process, in particular the comutation of partial
decryptions, requires the participation of at least t adversarial (or at least inattentive)
parties. A adversarial minority or even honest parties only prevent the disclosure.
Organizational processes which can be used to assess the legitimacy of a disclosure
request are considered out-of-scope in this work.

The presented method for updating the access structure of the scheme allows regular
updates of the access structure, for example adding or removing parties. But it also
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allows to recover from a set of adversarial parties in the access structure as long as
there are at least t honest parties and an honest pseudonymization service which can
successfully perform the update operation. This is possible only because of the separation
of proxy key generation from ciphertext storage and re-encryption. If adversarial parties
would be able to access ciphertexts they could disclose any pseudonym at will.

As described in Section 4.5.6 our scheme does not completely fufill our property EFM.
We still require that deletion occurs after the update operation, either by parties deleting
their old key shares or by the pseudonymization service deleting old ciphertexts and the
proxy key (which is required since we employ a bidirectional PRE scheme).

4.7 Implementation and Evaluation

We have implemented our new scheme in Python6 in combination with a DKG protocol
based on elliptic curves. Where possible existing open-source implementations for cryp-
tographic building blocks were employed. Specifically, we use pynacl for authenticated
encryption based on the XSalsa20 stream cipher and Poly1305 as MAC for authentica-
tion as well as PyCryptodome for elliptic curve operations on the National Institute of
Standards and Technology (NIST) curve P-256.

To evaluate the performance of our implementation, we performed several measurements
on an off-the-shelf laptop using an Intel Core i7-6600U CPU with 2.6 GHz and 20 GB RAM.
All parties were simulated on this machine with communication happening locally. We
analyze influence of operational parameters, like the used scheme or the message size.

Figure 4.3 shows the measured computation times for the DKG protocol which depend
on the utilized (t, n)-scheme. The measurements show that the computation times are
influenced by the threshold t as well as the number of parties n. Due to its complexity
(see Section 4.1.4), this protocol generally requires the highest computation time by far
in comparison to other operations of the scheme, up to several seconds for reasonable
access structures. In comparison, Figure 4.4 shows the measured computation times for
the centralized key generation operation. Because in this case the keys and shares are
computed directly without requiring a sophisticated protocol, the computation times are
just in the millisecond range.

In Figure 4.5 the resulting times for encrypting messages E with varying sizes are
displayed. It is expected that larger message sizes result in longer computation times
since the message is encrypted using an authenticated symmetric encryption scheme
whose encryption time grows linearly with the message size. The asymmetric part of the
encryption has a constant share on the overall computation time of about 2 ms.

In Figure 4.6 the computation times for combining partial decryptions CTD of encrypted
messages with varying sizes are displayed. It is expected that larger message sizes
lead to higher operation times since the message is encrypted with an authenticated
symmetric encryption scheme whose decryption time grows linearly with message size.
The combination of partial decryptions has a constant share on the overall computation
time, but depends on the used scheme and in particular the number of required partial

6. Our open-source implementation is publicly available at https://github.com/tompetersen/thresho
ld-crypto.
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Figure 4.3: Scheme-dependent computation times for DKG. The measured time de-
picts the arithmetic mean of overall computation times (that is the sum of
all parties’ computation times). Communication times between parties are
not considered. The error bars present the standard deviation for 10 runs.

Figure 4.4: Scheme-dependent arithmetic mean of computation times for centralized
key generation. The error bars present the standard deviation for 10.000
runs.
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Figure 4.5: Arithmetic mean of computation times for encrypting messages of varying
sizes. The error bars present the standard deviation for 10.000 runs.

Figure 4.6: Arithmetic mean of computation times for combining partial decryptions
for the encryption of messages of varying sizes. In this setup three fixed
schemes were used for comparative purposes. The error bars present the
standard deviation for 10.000 runs.
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Figure 4.7: Scheme-dependent arithmetic mean of computation times for combining
partial decryptions for a fixed encrypted message size of 1.024 bytes. The
error bars present the standard deviation for 10.000 runs.

decryptions, that is the threshold t. This correlation is also displayed in Figure 4.7 for
various (t, n)-schemes.

Figure 4.8 displays the computation times for the combination of proxy keys PC from
partial proxy keys for various (t, n)-schemes. Even though the scheme, in particular the
threshold t, influences the computation times, this influence is small. This is because the
computation time is dominated by the additional check of the proxy key validity (see
Section 4.5.4).

In addition, we measured the computation times required for the remaining operations
– the computation of partial decryptions DTD, of partial proxy keys PPG, and the
re-encryption of ciphertexts REPRE. The computation times for these operations are
independent of the used scheme as well as the message size.

In practice, some operations such as the decryption of messages would take more time
due to network communication, but since most operations require at most one round-
trip, this would just add constant time which we omitted in the measurements. The only
exception is the DKG, which needs 4 communication rounds between the parties.

In conclusion, the computation times for all of the operations which are expected to
be performed on a regular basis and potentially multiple times (encryption, partial
decryption, partial decryption combination, and re-encryption) are in the single digit mil-
lisecond range for reasonable access structure sizes. The same holds for the computation
of partial proxy keys and their combination as well as centralized key generation. The
only operation which can take several seconds (depending on the used (t, n)-scheme)
is the distributed key generation. But this operation has to be performed only once for
each access structure update which is not expected to happen often and should therefore
be no obstacle in any practical setting.

140



4.7 Implementation and Evaluation

Figure 4.8: Scheme-dependent arithmetic mean of computation times for proxy key
combination. The error bars present the standard deviation for 10.000
runs.

Figure 4.9: Arithmetic mean of computation times for operations (partial proxy key
generation, partial decryption, re-encryption) which do not depend on
the used scheme or the message size. The error bars present the standard
deviation for 10.000 runs.
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The sizes of messages sent over the network are similar to the ones known from regular
public-key schemes. Namely, the scheme sends less than 1 kB for ciphertexts (apart from
the symmetrically encrypted part, which grows linear in the size of the message m),
partial decryptions, and partial proxy keys when using common elliptic curves offering
128 or 256 bit of security.

4.8 Conclusion

We have introduced an approach for enforcing the multi-eye principle for pseudonym
disclosure based on threshold decryption. While the application of threshold decryption
for this purpose is straightforward, key management issues are more complex in these
schemes in comparison to simple public-key schemes. We have introduced a novel
scheme for updating access structures in a threshold decryption setting based on proxy
re-encryption. In comparison to former approaches our scheme ensures secrecy of
plaintexts and keys without completely relying on parties deleting their old shares and
without requiring an interactive translation of old ciphertexts. We have provided an
instantiation of our scheme and implemented it showing its practical applicability. The
approach outlined in this chapter may prove beneficial beyond the issue of pseudonym
disclosure, serving to protect sensitive data by the multi-eye principle.

Still, there are some limitations and room for future research. In comparison to erasure-
dependent approaches we improve the situation in that our scheme does not solely
depend on parties deleting their old shares. Instead, it requires enough parties of the old
access structure or the proxy to act honestly. In this sense, we improve the situation in
comparison to erasure-dependent approaches, but still depend on some erasure taking
place.

Another limitation of our solution is the fact that the public key changes after the access
structure update. It might require organizational processes, such as employing existing
PKI solutions, to deal with these changes. Another solution would be to keep all proxy
keys and update new ciphertexts encrypted with the initial public key on-the-fly (with
the problem a bidirectional PRE scheme entails, given in Section 4.5.6).

There are three major directions for future research:

• We have instantiated our scheme using a bidirectional, multi-hop scheme. Using
a unidirectional, multi-hop scheme like [Pho+16] and especially computing the
proxy key in a distributed manner in the respective scheme remains an open
problem.

• In Section 4.5.3 we covered basic arguments for the security of our scheme. These
should not be confused with a full formal security proof, which we do not provide
within the scope if this thesis.

• As stated in Section 4.5.3, we use the semi-honest adversary model for our scheme.
Giving security guarantees in a malicious adversary model with respect to malicious
parties or a malicious proxy server would further increase the usefulness of our
scheme. Some indications for potential extensions of the current scheme are
provided in Section 4.5.4.
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4.8 Conclusion

After discussing an architecture for pseudonymization for distributed data sources in
Chapter 3 and examining a way to decentralize the pseudonym disclosure process in
this chapter, we shift our focus to anonymization methods. When linking data records
from different data sources and disclosing data subjects in datasets is not required, it
can be a better approach to compute research datasets protected by privacy models in a
distributed manner. In Chapter 5 we investigate a specific protocol for the decentralized
computation of syntactically private datasets.
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As we have seen in Sections 2.6.9 and 2.7.7 there is no silver bullet in data anonymiza-
tion. In this sense syntactic privacy models (see Section 2.6) like k-anonymity can
still have their merits, even in the presence of stronger privacy models like DP (see
Section 2.7). While the syntactic anonymization of locally available data can already be
challenging, oftentimes data is held by different parties not necessarily trusting each
other. Naive approaches to syntactic anonymization in this context commonly involve
two strategies: first, local anonymization of data according to a specified syntactic pri-
vacy model followed by the integration of the results (generalize-then-integrate), second,
the aggregation of all data by a trusted third party that performs the syntactic anonymiza-
tion locally afterwards (integrate-then-generalize) [JX09]. The generalize-then-integrate
approach is associated with significant utility loss, while the integrate-then-generalize
method relies on the presence of a trustworthy party, which may not be available in
all scenarios. A better approach is to have the parties perform a distributed syntactic
anonymization protocol. These protocols result in a dataset which fulfills some syntactic
privacy model without sharing more information with other parties than necessary. This
approach preserves data utility without requiring a trusted third party.

However, it is a challenging task to design these protocols in a way that parties do
not leak additional information. In this chapter we present weaknesses in one of the
most-cited distributed syntactic anonymization protocols which, to the best of our
knowledge, have not been identified before. Recent advances in the field of general-
purpose SMPC frameworks allow us to provide an updated protocol version which fixes
these weaknesses while still being practically applicable.

The main contributions of this chapter are the following:

• We identify weaknesses in the distributed syntactic privacy protocol by Mohammed
et al. [Moh+10].

• We provide an updated protocol mitigating these weaknesses. It utilizes an SMPC-
based subprotocol, which might prove beneficial in situations unrelated to the one
of distributed syntactic anonymization.

• We implement the updated protocol employing a recent SMPC framework called
MOTION [Bra+22] and evaluate the computation and communication demands of
our updated protocol on two datasets and with a varying number of parties and
QIDs.

The chapter is structured as follows: In Section 5.1 we provide an overview of related
work relevant for this chapter. We explain the details of the protocol by Mohammed
et al. [Moh+10], their privacy claims, and the shortcomings of the protocol with
respect to these privacy claims in Section 5.2. In Section 5.3 we provide an enhanced
protocol which mitigates the weaknesses and we evaluate its performance in Section 5.4.
Section 5.5 concludes the chapter.
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5.1 Background

In this section we provide an overview of distributed syntactic anonymization protocols
as well as the field of SMPC – a technique our updated protocol employs to fix the
weaknesses of the original protocol.

5.1.1 Distributed Syntactic Privacy

In the field of distributed anonymization one can differentiate between vertically and
horizontally partitioned data [Koh+14]. Vertically partitioned data describes data of
individuals being shared between different parties, where each party is in possession
of only a subset of all data attributes, while horizontally partitioned data means that
each party holds the same set of data attributes for different individuals. An example for
anonymizing vertically partitioned data in a distributed manner is provided by Jiang and
Clifton [JC06]. We focus on horizontally partitioned data anonymization in this paper.

Jurczyk and Xiong [JX09] introduce a protocol for the anonymization of horizontally
partitioned data. It is based on Mondrian (see Section 2.6.5) and uses simple SMPC
protocols like secure k-th element for distributing the split operations of Mondrian.
This protocol does not suffer from the information leakage we identified in this work
at the cost of only allowing binary splits of numerical or ordinal data in comparison
to arbitrary taxonomy trees. Furthermore, the authors introduce l-site-diversity as a
special syntactic privacy models for the distributed setting. Tassa and Gudes [TG12]
provide algorithms for the anonymization of horizontally and vertically partitioned data
supporting k-anonymity, l-diversity and l-site-diversity. The algorithms are based on
sequential clustering and employ simple SMPC algorithms for secure sums and boolean
AND operations. Goryczka, Xiong, and Fung [GXF14] introduce the notion of m-privacy
dealing with colluding parties in a distributed anonymization scenario and provide
algorithms for the anonymization of horizontally partitioned data with respect to k-
anonymity or l-diversity (see Sections 2.6.2 and 2.6.3). The algorithm is based on the
idea of Mondrian and simple SMPC protocols employing secret sharing. Kohlmayer et
al. [Koh+14] introduce a flexible framework for anonymizing horizontally and vertically
partitioned data. It is based on deterministic and commutative encryption and supports
different syntactic privacy models. Chen et al. [Che+15] provide a differentially private
version of the protocol of Mohammed et al. [Moh+10] which outputs noisy counts
of equivalence class records after a fixed number of specializations and relies on a
semi-trusted data aggregator and crypto service provider.

5.1.2 Secure Multi-Party Computation

SMPC is a cryptographic technique that allows multiple parties to jointly compute the
output of a public function f() on their private inputs, without revealing any information
about these inputs to each other, apart from what can obviously be deduced from the
functions output. The classical example in SMPC is Yao’s millionaire’s problem, where
a certain number of people want to determine who is the most wealthy among them,
without revealing their actual wealth (for example, their account balances) to each other.
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In some sense SMPC allows computation on encrypted or masked data, offering various
degrees of security, according to the requirements of the specific deployment scenario.

SMPC Protocols

There are several SMPC protocols that enable secure and privacy-preserving computation,
whose origins date back to the 1980s. The two-party SMPC protocol Yao’s garbled
circuits [Yao86] is based on an encrypted (“garbled”) form of a Boolean circuit, which
represents the function f() that the two parties want to compute. One party (called
the garbler G) creates this garbled circuit and securely encodes their own inputs into
it. The other party (the evaluator E) gets a garbled version of their inputs privately via
OT [Ish+03]. E also receives the garbled circuit, which E can then evaluate using their
encoded inputs in order to reveal an encoded representation of the function’s output.
G and E can then jointly decode the plaintext output. Yao’s protocol was extended to
more than two parties in the BMR protocol [BMR90].

Another protocol that is commonly used in SMPC is the GMW protocol [GMW87], which
uses exclusive OR (XOR)-based secret-sharing to mask private values and process them in
a Boolean Circuit. The core idea in GMW is to chose random masks (called “shares”) for
every value such that the XOR of all shares adds up to the plaintext value. These shares
are distributed to all parties that can then jointly run the computation. Certain operations
(namely data-dependent AND gates) require interaction and the computation of OTs
between the parties in order to correctly update each shares after the operation. The
circuit’s output is a secret-shared value that the parties can reconstruct by exchanging
their shares. The GMW protocol can naturally scale to an arbitrary number of parties
≥ 2. It can also easily be modified to handle arithmetic values with bit-length k in the
ring Z2k by using additive secret-sharing.

There exist further protocols like SPDZ [Dam+12] which is also secret-sharing-based,
allows computation for 2 or more parties, but originally works in prime fields.

SMPC Frameworks.

The first implementation of an SMPC protocol was Fairplay [Mal+04] that brought
the theoretic constructs of the 1980s into the realm of practicality. ABY [DSZ15] was
a framework for secure 2-party computation with passive security and the ability to
securely convert between the above-mentioned protocols. MOTION [Bra+22] extends
ABY’s functionality to ≥ 2 parties and further optimizes several protocol aspects. Im-
plementations of SPDZ and other protocols, providing several levels of security, are
implemented in SCALE-MAMBA [Aly+22] and MP-SPDZ [Kel20].

In the past few years, a vast body of research emerged that also covers various levels
of security and certain specific numbers of parties. The authors of MOTION [Bra+22]
provide a broad overview of those protocols and their corresponding implementations.
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5.2 A Vulnerable Distributed Syntactic Privacy Protocol

In this section we present the protocol of Mohammed et al. [Moh+10]. It extends the
ideas from [FWP07] to the distributed setting with horizontally partitioned data. For
reasons of better transferability, we mainly stick to the notation of Mohammed et al. in
the following sections.

In the distributed anonymization setting for horizontally partitioned data n parties
own disjoint local data tables T (i). Each record in these tables has d attributes from
domains {D1, . . . , Dd} and an additional sensitive attribute, such as the disease a patient
is suffering from, from the domain of sensitive values Sens. Some of the attributes are
defined as QIDs which in combination are suited to link individual records and therefore
their sensitive value to individuals. The goal of the distributed syntactic privacy protocol
is to determine a dataset T ′ from the combined dataset T = ∪ni=1T

(i) which satisfies the
targeted privacy model. This should be performed in a way that does not allow parties
to learn more information than the final table T ′ offers. This informally phrased privacy
requirement is covered in more detail at the end of this section.

The protocol allows the distributed computation of an anonymized dataset fulfilling
a k-anonymity-based syntactic privacy model called LKC-privacy. LKC-privacy tries
to deal with the curse of high dimensionality (see Section 2.6.7) – the effect that a
larger number of attributes leads to high information loss in k-anonymity due to a
sparse distribution of data points in the high-dimensional space. The general idea of
LKC-privacy is to assume bounded adversary knowledge in the number of known
QID attributes given by parameter L. An anonymized dataset fulfills LKC-privacy iff
any combination of at most L QID attributes occurs at least K times. Additionally, to
prevent homogeneity attacks (see Section 2.6.8), the ratio of any sensitive value in any
group of records sharing the same QID attributes with respect to L must not surpass C.
However, in our opinion, the assumption of limited attacker knowledge in the number
of QID attributes is an improper weakening of the privacy guarantees of k-anonymity. In
practice, there exist scenarios in which it makes sense to limit attacker knowledge based
on different data sources. For example, a doctor in a hospital has access to different
data attributes than an employee of an insurance company. Limiting only the number of
possibly known attributes, on the other hand, is an oversimplification. For this reason,
we cover a variant of the protocol which results in a k-anonymous dataset instead of
one fulfilling LKC-privacy. This is achieved by a minor change to the way the validity
of further protocol steps is determined. The exchanged data remains the same and the
information leakage described in Section 5.2.3 is not affected in any way.

The authors provide two protocol variants which target two different use cases: classifi-
cation and general data analysis. While these protocols differ slightly, the information
leakage exists in both variants. Therefore we describe the protocol for general data
analysis because of its wider applicability. In the following we cover the relevant protocol
steps in detail and point out where the protocol would deviate for LKC-privacy or the
classification task.
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Job Sex Age

ANY ANY 1-99

Blue-collar White-collar male female 50-991-49

Figure 5.1: Taxonomy trees and Cut = {ANY Job,male, female, 1− 99}. Figure based
on [Moh+10].

5.2.1 Protocol Description

Recall that the protocol involves n parties which each have a set of data records with the
same attributes, since the data is horizontally partitioned among the parties. The parties
are assumed to communicate in a ring topology. One of the parties takes the role of the
leader being responsible for organizing the anonymization process. The basic protocol
idea is to anonymize a table by specializing QID attributes one at a time as long as there
are valid specializations, starting with the most general value for each QID attribute Di

(which is also known as a top-down strategy [JC06]).

For each QID attribute the protocol expects a taxonomy tree1 for possible specializations.
Figure 5.1 provides example trees for different QIDs. Leaf nodes of such trees describe
domain values and parent nodes more general values. A specialization v → child(v)
describes the replacement of a specific QID attribute value v with the appropriate child
value cj ∈ child(v), where child(v) describes the set of less generalized values of v. An
example based on Figure 5.1 is the specialization ANY → {Blue−collar,White−collar}
of the job attribute. In the protocol of Mohammed et al. specializations are performed
for all records containing v simultaneously which is also known as global recoding (see
Section 2.5.1). For the taxonomy tree of QID attribute Dl we keep track of the current
state of specialization by looking at the cut Cutl of the tree which contains one value on
each root-to-leaf path of the tree given by performed specializations. The union of all
cuts Cut = ∪dl=1Cutl determines the current state of specialization for all QID attributes.
Performing a specialization v → child(v) can be interpreted as pushing the cut down for
a specific QID attribute value v by replacing v with child(v) = {c1, . . . , cj}. An example
for a possible cut after one specialization is shown in Figure 5.1. The protocol starts
by initializing Cut with the topmost values of all taxonomy trees for QID attributes
D1, . . . , Dd – a state in which no specialization has been applied.

In addition, the current state of specialization given by the current Cut determines
a set of current equivalence groups. An equivalence group (in other publications also
referred to as equivalence class [LLV07]) describes the group of records sharing the
same values for all QID attributes. For example, in the first round of the proto-
col we have Cut = {ANY Job,ANY Sex, 1 − 99} and a single resulting equivalence
group EANY Job,AnySex,1−99.

As the first protocol step, the leader collects initial count statistics cs. These are gathered
via Information messages sent from party to party via the communication ring. Count

1. We refer to these taxonomy trees as generalization hierarchies (see Section 2.5.1), but stick to the
notation and wording of Mohammed et al. [Moh+10] in this chapter.

148



5.2 A Vulnerable Distributed Syntactic Privacy Protocol

statistics provide a global view on the distribution of all parties’ data records with respect
to the current equivalence groups as determined by the current Cut. For each of these
groups the count statistics cs contain the number of records in this group. Additionally
for each QID attribute value vl in an equivalence group the count statistics cs contain the
number of records in all child equivalence groups if the specialization vl → {c1, . . . , cm}
would be performed2. The authors provide an example for count statistics cs for the
initial equivalence group EANY Job,ANY Sex,1−99:

(ANY Job, ANY Sex, 1-99, 3):
(ANY Job, 2, 1),
(ANY Sex, 2, 1),
(1-99, 3, 0)

This is to be understood as follows: The depicted equivalence group contains three
records. If the QID attribute sex is specialized, the resulting equivalence groups
EANY Job,male,1−99 and EANY Job,female,1−99 will contain two respectively one records.

To prevent the parties from learning individual contributions to the global count statistics,
a simple secure sum protocol [Sch07] is employed for this step and all subsequent
computations of count statistics. Let pi be the record count of party Pi for a specific
equivalence group Ev or possible child equivalence group Ecj . The goal is to compute
the sum

∑n
i=1 pi over all record counts. The leader chooses a random integer r ∈ Z,

adds its record count p1 and sends the result to P1. Each party Pi adds their input pi to
the received sum and sends the result to Pi+1. Finally Pn sends the result r +

∑n
i=1 pi to

the leader who can compute the final sum by subtracting r.

The count statistics cs are used by the leader to determine the validity of possible
specializations in the current Cut. A candidate specialization v → child(v) for v ∈ Cut
is valid if the table resulting from this specialization does not violate k-anonymity. This
means that for every cj ∈ child(v), all equivalence groups Ecj contain at least k records3.
Furthermore, the leader also uses the count statistics to find the best specialization
Best → child(Best) among all valid specializations using the discernibility cost as a
scoring function4. This scoring function is computed as Score(v) =

∑
Ev
|Ev|2 and favors

specializations of larger equivalence classes. The best candidate for specialization is
given by the specialization with the highest score.

Based on this information the leader chooses the valid specialization with the highest
score and informs the other parties about this next specialization Best → child(Best)
via an Instruction message. Each party performs this specialization on their local data.
The use of a suitable data structure called Taxonomy Indexed Partitions (TIPS) reduces
the necessary computations for the new local data record counts (details can be found
in section 4.2 of [Moh+10]). Afterwards updated count statistics cs are collected

2. For classification analysis additional record counts for the distribution of classification labels would be
contained in the Information messages.

3. This validity criterion differs for LKC-privacy. Using the same count statistics cs, we determine if for
each cj ∈ child(v), every set qidcj of QID attributes of size L containing cj leads to equivalence groups
Eqidcj

with at least K records and no sensitive attribute sens appears in these groups with probability
larger than C.

4. For classification analysis, the score would additionally depend on the classification label distribution to
choose the specialization with the highest information gain.

149



5 Distributed Syntactic Privacy

to compute the validity for all specializations possible in the next iteration of the
protocol. These steps are repeated until no more valid specializations are found. Then
the local dataset T (i) is transformed to T ′(i) by each party according to the performed
specializations. Finally the resulting datasets are integrated into a final dataset T ′ =∑n

i=1 T
′(i) fulfilling k-anonymity by using a secure set union protocol [JX08] which hides

the data origin from other parties.

5.2.2 Privacy and Security Claims

Mohamed et al. [Moh+10] assume the semi-honest (also referred to as passive or honest-
but-curious) adversary model [PMB14], in which adversaries do not deviate from a given
protocol but try to learn as much information as possible from messages legitimately
received during the protocol execution. They claim that parties in the protocol do not
share more detailed information than what can be extracted from the final integrated
table T ′ and especially that exchanged information in the count statistics cs do not violate
this requirement. In particular, the child equivalence group record counts determining if
an equivalence group E can be further specialized do not reveal anything more than the
final integrated table because “a specialization should take place as long as it is valid”.
The authors mention that the integrated data is less anonymous to data holders as they
can always remove their own data from the anonymized table T ′ which possibly results
in a violation of k-anonymity. Finally, they explicitly state that the party acting as leader
during the protocol does not need to be more trustworthy than others.

5.2.3 Weaknesses in the Protocol

According to the privacy and security claims no party should learn more about other
parties and their data than what the final generalized, integrated table T ′ reveals. Parties
can only deduce further information by removing their own data records from the final
table. However, we identified another information leakage which allows the leading
party to deduce more information about individual records than the final table T ′

allows (completely independent of local data). This information leakage emerges from
the final count statistics the leading party collects for an equivalence group E which
cannot be specialized further in the next step without violating k-anonymity. Because
no further specialization is possible the count statistics for the equivalence group must
contain record counts for child equivalence groups Ecj being smaller than k. This leaks
additional information about the distribution of attributes in the equivalence group E
and in particular more information than can be deduced from the final table T ′.

In the following we provide a small example in the medical domain highlighting the
consequences which might follow from this additional information obtained by the
leading party. We use our well-known QIDs job, sex and age and the patient’s disease as
sensitive attribute. Imagine the following as a part of the final count statistics cs:

(White-collar, ANY Sex, 50-99, 5):
(White-collar, 3, 2),
(ANY Sex, 4, 1),
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(50-99, 2, 3)

Obviously any further specialization would violate the requirement of at least k = 5 data
records in all resulting equivalence groups. For example, specializing the age attribute 50-
99 would lead to equivalence groups with two and three data records. Further, imagine
the relevant part of the final anonymized result table T ′ for the given equivalence group
EWhite−collar,ANY sex,50−99 gathered by the leading party as given below.

Job Sex Age Disease

White-collar ANY 50− 99 Testicle cancer

White-collar ANY 50− 99 Breast cancer

White-collar ANY 50− 99 HIV

White-collar ANY 50− 99 Testicle cancer

White-collar ANY 50− 99 Influenza

By employing background knowledge about the prevalence of breast and testicle cancer
in the male and female population, we can conclude that there are at least two male
patients and at least one female patient present with high probability. Furthermore
we know from the final count statistics that specializing the equivalence group by sex
would lead to equivalence groups with one and four data records. By combining these
information we can infer that there is a single woman between 50 and 99 years of
age employed in a white-collar job in our dataset who suffers from breast cancer. This
inference would have not been possible from the final table T ′ without the additional
information leaked by the final count statistics. Note that, depending on the data
distribution, similar conclusions might be drawn for all possible further specializations
and final equivalence groups.

A further weakness of the protocol with respect to the privacy claims arises from a
well-known weakness in the used secure sum protocol [Cli+02]. Colluding parties Pi−1

and Pi+1 are able to reconstruct the record counts of Pi by subtracting the counts Pi+1

received from the ones Pi−1 sent. Information about the local data distribution of parties
might even be possible for a set of victim parties being surrounded by adversarial parties,
for example the maximal number of records in equivalence classes or their absence.
Note that relying on the semi-honest attacker model does not eliminate this attack since
it involves the possibility of colluding parties [EKR18].

5.2.4 Adversary Model of the Original Protocol

Based on this analysis we provide the realistic adversary model for the original protocol.
As already stated, Mohammed et al. assume the semi-honest adversary model, in which
adversaries do not deviate from the protocol but try to learn as much information as
possible from legitimately received protocol messages. In our opinion, this is a valid
assumption since the scenario inherently dictates trust being placed in the data-providing
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parties to some extent (for example by requiring them to perform computations on their
real local data) for a correct execution of the protocol.

Even though not explicitly stated by Mohammed et al., communication connections
around the ring are assumed to be secure so that no outside adversary nor any other
party can access or tamper with the message content. Otherwise an adversary might be
able to obtain equivalence class counts of individual parties similar to the ones obtained
through the weakness in the secure sum protocol.

The leading party has to be more trustworthy than other parties due to the described
weaknesses in the protocol. As we have shown, an adversarial leading party can break
the k-anonymity guarantees. Parties are not allowed to collaborate in an adversarial
manner, that is beyond communication that is required by the protocol. Otherwise they
might be able to deduce specific equivalence class counts of other parties (depending on
their position in the communication ring) due to the weakness in the employed secure
sum protocol.

A final note: As Mohammed et al. [Moh+10] state, parties are more trusted in that
they can always remove their own data from the final table. There are two potential
solutions to this problem: either this is assumed acceptable in the application scenario
or the parties must not get access to the final table. In this case an additional party
without any data themselves can act as the leading party and must be the only party
which obtains the final k-anonymous table. This is possible due to the employed secure
set union protocol in the final protocol step.

5.3 Improving the Protocol through Secure Multi-Party Computation

In this section we present our approach to prevent the weaknesses in the protocol by
Mohammed et al. [Moh+10]. We cover the basic idea of our approach, its implementa-
tion based on a specific SMPC framework, and finally the updated adversary model of
our solution.

5.3.1 Basic Idea

First, we just consider a single equivalence group Ev and the specialization v →
{c1, . . . , cm} of this equivalence group with respect to a single quasi-identifier, for
example, the specialization of age value v = ANY to age groups c1 = 0 − 49 and
c2 = 50− 99.

The main idea behind our approach is based on the fact that assessing the validity
of the specialization does not require the exact record counts |Ec1|, . . . , |Ecm| of the
resulting child equivalence groups Ec1 , . . . , Ecm. It is sufficient to know whether each
child equivalence group contains more than k records (or none which also does not
put individual data records at risk). The real counts are just required for the score
computation when choosing the next best specialization. Since invalid specializations
must not be performed, record counts for the child equivalence groups resulting from
these specializations are not required at all. We can utilize this by using a method which
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just yields counts for child equivalence groups with none or more than k records and
hides the counts otherwise.

In the original protocol a simple secure sum protocol is used which computes the sum∑n
i=1 |Ecj |(i) for child equivalence groups Ecj based on the record counts of all parties

|Ecj |(i) (i ∈ {1, . . . , n}). Our goal is to achieve a protocol which can distinguish three
cases: no records, at least one and less than k records, and at least k records, in which
case the exact count should be provided. This allows us to hide the leaked information
of the original protocol which occurs when child equivalence group record counts lower
than k are received by the leading party.

Furthermore, we have to consider that whenever a child equivalence group Ecj would
contain less than k records, we have to hide the record counts of other child equivalence
groups Ecx for x ̸= j as well. Otherwise we could leak the hidden record count |Ecj |
since the difference of parent count and the sum of other child equivalence group
record counts |Ev| −

∑m
x=1,x ̸=j |Ecx| equals the hidden record count |Ecj |. Hiding all

child equivalence group record counts does no harm because the entire specialization is
invalid as soon as a single child equivalence group would violate k-anonymity. In other
words, we want to compute

f(Ecj) =

{
kmask, if there exists cx ∈ {c1, . . . , cm} with 0 <

∑n
i=1 |Ecx|(i) < k∑n

i=1 |Ecj |(i), otherwise

for each child equivalence group Ecj. The value kmask describes an indicator for the fact
that the sum of record counts is hidden.

The described functionality cannot be achieved by a protocol comparably simple to the
one used in the original protocol. However we can use SMPC protocols like GMW (see
Section 5.1) that allow to compute any finite function in a distributed manner without
leaking the private inputs (in our case record counts) to the other parties.

5.3.2 Implementation via SMPC

In our updated protocol implementation we employ a SMPC framework called MO-
TION [Bra+22] which provides security against n − 1 passive adversaries. Using the
framework therefore directly prevents the attack of colluding parties which exists in
the original secure sum protocol. Each protocol run in MOTION starts with an input-
independent setup phase where required values are shared between all parties. After-
wards a provided circuit consisting of input gates, intermediary gates for boolean or
arithmetic computations, and output gates is evaluated. MOTION offers the possibility
to switch between arithmetic and boolean circuit based SMPC protocols. Since our
functionality requires multiple additions as well as multiple comparison operations (see
below), using arithmetic and boolean circuits and switching between them allows to
combine the faster additions in arithmetic circuits with the faster comparison operations
in boolean circuits. To achieve the desired functionality we have to provide it in the
form of a circuit to MOTION. We will cover this circuit in two parts below.
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Figure 5.2: First part of the SMPC circuit used in our protocol. The depicted circuit part
covers the counts for just one potential child equivalence class.

The first part of the circuit, visualized by Figure 5.2, computes the sum of all parties’
(private) record counts |Ecj |(i) for a specific child equivalence class and checks if this sum
is larger than zero. For this purpose, the counts |Ecj |(i) for child equivalence class Ecj

are provided to the circuit via input gates and afterwards added through addition gates.
These computations are performed based on the arithmetic GMW protocol. Afterwards
the resulting sum is converted to be usable in the boolean GMW protocol, since the
remaining operations are comparisons or are dependent on comparison results. The
next step is to compare the sum to zero in an equal gate to distinguish the case of empty
child equivalence groups. We then use a MUX gate which outputs one of two values
depending on the single signal bit being computed by the equality comparison. This gate
outputs |Ecj |0 which is the real sum |Ecj | if it is larger than zero and a special mask value
0mask otherwise. We use a integer for this mask value, which is larger than practical
record count sums, so that we can compare the sum |Ecj |0 to k without the necessity to
treat 0 as a special case. This circuit is performed for all child equivalence groups Ecj in
parallel (j ∈ {1, . . . ,m}).

The second part of the circuit (depicted in Figure 5.3) starts by comparing all sums
|Ecj |0 to the anonymity parameter k via larger-than gates. We combine the resulting
bits with OR gates to achieve a final bit which is 1 if any child equivalence group record
counter |Ecj |0 is less than k, and 0 otherwise. This bit is used as a signaling bit for the
final m MUX gates so that they output the sums |Ecj |, if no child equivalence group
contains less than k records, and another mask value kmask for all child equivalence
groups, otherwise. As a final result of this circuit we get m outputs for the specialization
v → {c1, . . . , cm} where each output is either the real sum |Ecj |, a mask value 0mask

for empty child equivalence groups, or a mask value kmask if there is at least one child
equivalence group with less than k records.

This circuit – presented for one equivalence group Ev and one specialization v →
{c1, . . . , cm} – has to be performed for all equivalence groups and all possible specializa-
tions given by the Cut. But these computations can be performed in parallel so that we
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Figure 5.3: Second part of the SMPC circuit used in our protocol. This part shows the
circuit for all potential child equivalence classes, that is, each input value
|Ecj |0 has been computed by the circuit part depicted in Figure 5.2.

just need to compute a single MOTION circuit per round of the original anonymization
protocol.

The described protocol can be used as a drop-in replacement for the simple secure
sum protocol used by Mohammed et al. with the only difference that we require peer-
to-peer communication compared to the ring topology used by the original protocol.
The leakage in the protocol of Mohammed et al. we have identified in Section 5.2.3
emerged from record counts of potential child equivalence classes for specializations
which would contain less than k records and therefore violate k-anonymity. Since these
counts are hidden for all children in our updated protocol, we have effectively prevented
the information leakage and potential privacy violations by the leading party. Our
implementation of the original and updated protocol is publicly available5.

5.3.3 Updated Adversary Model

The improvements of the protocol achieve a stronger attacker model in comparison to
the one given in Section 5.2.4 for the original protocol. In the following we provide
details about the adversary model for our improved protocol variant.

Our solution still assumes the semi-honest adversary model, which is a valid model
as we have argued in Section 5.2.4. The utilized SMPC framework MOTION uses this
assumption as well. In comparison to the ring communication in the original protocol,
we additionally assume secure peer-to-peer connections between all parties, which are
required by MOTION.

In contrast to the original protocol the leading party in our improved protocol does not
require more trust than any other party. Because equivalence class records smaller than

5. The repository can be found at https://github.com/tompetersen/decentralized-syntactic-
privacy.
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the threshold k are hidden from the leading party, the party cannot infer information
violating the guarantees of k-anonymity.

The employed SMPC protocol MOTION provides full-threshold security, that is all but
one party can be corrupted (in the sense of a semi-honest adversary) and the private
inputs are still secure [Bra+22]. This property prevents the weaknesses arising from
collaborating parties in the secure sum protocol in the original protocol.

Just like in the original protocol, in our variant parties can extract their own data from
the resulting dataset in order to violate the k-anonymity guarantees. Potential solutions
covered in Section 5.2.4 apply for the improved protocol as well.

5.4 Performance Evaluation

To compare the performance of the original protocol and our SMPC-based protocol and
especially to identify the overhead that our solution imposes, we have conducted several
experiments. The experiments were performed on a system with two Intel Xeon E5-2630
processors (10 cores, 2.20 GHz) and 128 GB of RAM. We have used a fixed anonymity
parameter k = 5 for all experiments and employed two datasets:

• The ADULT dataset [Koh96] consists of 48 842 records of the 1994 US Census
database. It includes amongst others the following attributes for each individual:
the age, number of education years, marital status, occupation details, sex, and
race.

• A non-public synthetic dataset from the medical domain consisting of 2 240 records
just containing the age and sex of individuals as QIDs.

Our first experiments compare the runtime and communication demands of our protocol
in comparison to the original protocol for different numbers of participating parties.
During each experiment the respective dataset was partitioned into equally-sized parts
according to the number of participating parties and all parties were simulated on the
same system. The results for the medical dataset (using the two QIDs age and sex) and
for the ADULT dataset (using the three QIDs age, gender, and occupation) are displayed
in Figure 5.4. To better spot the overhead of our protocol, Table 5.1 additionally provides
the exact running times and communication costs.

Our protocol imposes a heavy overhead in runtime and communication demands, which
is not surprising as it is built upon a universal SMPC framework. This also explains the
increase of communication overhead with each additional party, whereas the original
protocol only requires constant additional resources for each party (given the simple
ring structure used in the protocol).

Our next experiments determine the influence of using different sets of QIDs. For this
purpose we performed our measurements with the ADULT dataset only, as it allows
for more different QID combinations than our medical dataset, and used six QIDs (age,
education years, marital status, occupation, race, and sex). We measured the runtime
and communication demands for all possible combinations of these QIDs for a fixed set
of three parties.
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Table 5.1: Overall runtime and communication costs for the protocol by Mohammed
et al. and our protocol for a varying number of parties. The given standard
deviations for the runtime were collected across 10 runs. The amounts of
exchanged data did not vary across runs, as expected.

Runtime Communication

Dataset Parties Mohammed Our Protocol Mohammed Our Protocol

Medical 2 0.6 s ± 0.1 80.4 s ± 0.3 1 MB 63 MB
3 0.6 s ± 0.0 87.8 s ± 0.7 1 MB 171 MB
4 0.7 s ± 0.0 95.9 s ± 1.0 2 MB 375 MB
5 0.7 s ± 0.0 106.3 s ± 0.8 2 MB 720 MB
6 0.7 s ± 0.0 119.4 s ± 0.6 2 MB 1.26 GB
7 0.8 s ± 0.1 133.8 s ± 1.0 2 MB 2.06 GB
8 0.8 s ± 0.0 152.4 s ± 1.5 3 MB 3.18 GB

ADULT 2 13.2 s ± 0.1 81.1 s ± 1.8 26 MB 687 MB
3 13.4 s ± 0.1 112.1 s ± 3.2 30 MB 1.86 GB
4 13.6 s ± 0.1 160.9 s ± 3.6 34 MB 4.14 GB
5 13.8 s ± 0.3 221.1 s ± 5.8 38 MB 8.03 GB
6 14.0 s ± 0.2 292.9 s ± 6.9 42 MB 14.12 GB
7 14.2 s ± 0.1 367.3 s ± 8.3 46 MB 23.11 GB
8 14.4 s ± 0.1 468.0 s ±12.2 51 MB 35.79 GB
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(a) Running times for medical dataset. (b) Communication for medical dataset.

(c) Running times for ADULT dataset. (d) Communication for ADULT dataset.

Figure 5.4: Experimental runtime and communication requirements for medical and
ADULT dataset depending on the number of parties. The error bars present
the standard deviation for 10 runs.

The runtime displayed in Figure 5.5 is primarily dominated by the number of proto-
col rounds which depends on possible specializations and the number of performed
specializations. The experiment with the lowest runtime performs the only possible
specialization: specializing ANY sex to male and female. Using more attributes as
QIDs in principle leads to higher running times. On the other hand, the curse of high
dimensionality (see Section 2.6.7) also comes into effect: More QID attributes can cause
less protocol rounds since fewer specializations already produce a state in which any
further specialization would violate k-anonymity. This leads to lower running times as
well. One example for this is the usage of all QIDs, which results in an average runtime
compared to all experiments.

The communication complexity displayed in Figure 5.6 is not directly proportionate to
the runtime. Even though the communication complexity depends on the number of
rounds just like the runtime, the number of QIDs has a high impact as well. In each round
the number of records in possible child equivalence groups has to be computed for the
specialization of all QIDs. This causes larger circuits which require more communication
for their evaluation.
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Figure 5.5: Overall running times for using combinations of the attributes age (0),
education years (4), marital status (5), occupation (6), race (8), and sex (9)
as QIDs (3 parties).

Figure 5.6: Overall communication demands for different QID sets ordered by increasing
running times.
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To summarize, using our updated SMPC-based protocol implicates an expected high
performance overhead in terms of computation as well as communication demands.
A simple first measure for reducing this overhead would be to pre-compute the data-
independent values in the setup phase of the SMPC protocols just once and reuse these
values across all protocol runs. This functionality is planned but unfortunately not yet
implemented in MOTION6.

5.5 Conclusion

In this chapter we have identified an information leak in a well-known distributed
syntactic privacy protocol by Mohammed et al. [Moh+10]. The leak arises from the
necessity in the protocol to collaboratively compute sizes of all potential next equivalence
groups if a specialization takes place. The sizes of equivalence classes resulting from
specializations that are not conducted due to k-anonymity constraints provide more
insights into the attribute distribution within the equivalence class than the resulting
k-anonymous table permits. A further weakness emerges from the simple secure sum
protocol utilized by Mohammed et al. Colluding parties which are predecessor and
successor of the victim party are able to compute the sensitive count statistics of the
victim. We provided an updated protocol variant which prevents these weaknesses by
replacing the simple secure sum protocol with a SMPC protocol which hides the size of
a potential equivalence group E if 0 < |E| < k. This variant prevents the information
leak and additionally the vulnerability against colluding parties in the original protocol.
The protocol was implemented based on the SMPC framework MOTION [Bra+22] and
might be of independent interest in similar scenarios.

We have extensively evaluated the computation and communication overhead of the
updated protocol. While this overhead is comparably high, it might be acceptable
when dealing with sensitive (for example, medical) data – especially since publishing
anonymized datasets should be performed only once for local datasets to prevent attacks
(see Section 2.6.8). Furthermore, we observe an interesting consequence from the curse
of high dimensionality in our evaluation: Running times and communication demands
are related to the considered QIDs in a non-obvious way.

Directions for future research include the extension of our protocol variant to incorporate
further syntactic privacy models like l-diversity (see Section 2.6.3) or t-closeness (see
Section 2.6.4). These extensions potentially require further updates to the SMPC circuits
to incorporate demands of the models’ privacy conditions. Another line for improvements
is to increase the performance via enhanced circuit design and the use of future SMPC
framework functionality.

In the past chapters we have presented rather theoretical results regarding distributed
pseudonymization and anonymization. The following Chapter 6 introduces a practical
approach for distributed data collection in the medical domain. The method employs
pseudonymization and anonymization techniques along with further privacy-preserving
techniques.

6. The respective issue can be found at https://github.com/encryptogroup/MOTION/issues/4 (visited
on 2024-09-13)
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6 A Privacy-Preserving Medical Registry Platform

In healthcare research, medical registries, in addition to randomized controlled trials,
play a crucial role in researching new therapies as well as improving and reviewing
already established treatment procedures [Beh+23]. A medical registry is an organized
system in which data about observation units, such as patients or medical devices,
on a defined question is collected prospectively and in a standardized manner for a
longer period of time [Nie+21]. These registries provide researchers with access to real-
world patient data, enabling them to identify trends and evaluate treatment outcomes.
However, concerns about patient privacy have led to increased scrutiny of how medical
registries handle sensitive information [Beh+17b]. Ensuring the confidentiality of
sensitive medical data while still enabling data analysis poses significant technical and
organizational challenges. Traditional approaches to medical registry platforms often
involve centralized databases where patient data is stored in plaintext and is accessible
by a large user base.

In this chapter, we present a technical platform concept and implementation serving as
a base for privacy-preserving medical registries. The platform supports the collection of
data at multiple points in time, in other words, it allows for longitudinal studies. The
main goal of the platform is the protection of patient’s personal and medical data while
allowing researchers to use the medical data for their research. For this purpose, we
design a security architecture and chose appropriate security measures to achieve this
goal. While legal considerations are essential for the legally compliant operation of
medical registries, in this chapter we focus on technical aspects of such registries and
omit legal details, such as the legal basis, consent management, or joint controllers.

Our main contributions are the following:

• We provide a concept for a medical registry platform with strong privacy and
security guarantees which supports longitudinal studies.

• We enhance the platform with several features including monitoring and bench-
mark capabilities, ways for patients to execute data subject rights, and the option
for patients to provide their own medical data.

• We propose an extensible data interface for researchers to export or query medical
data in a privacy-preserving manner. The interface provides plugins employing
syntactic privacy models as well as DP.

The chapter is structured as follows: In Section 6.1 we provide basic functional details
of the platform including the general idea of the platform, participating roles, and
features specific to the medical domain. Section 6.2 explains the security architecture of
and specific measures taken in the platform. We provide details about the distinction
between personal and medical data, the adversary model, the main security measure
of cryptographically enforced client separation, as well as further measures. In the
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following two sections we cover further platform features in distinct sections. In Sec-
tion 6.3 we describe the platform feature which allows patients to provide medical data
to the platform themselves. Section 6.4 presents the data export and query interface
for researchers, which offers privacy guarantees based on syntactic privacy models or
DP through different plugins. Section 6.5 describes details about the platform imple-
mentation. In Section 6.6 we compare our platform to other open-source platforms for
medical registries and Section 6.7 concludes the chapter.

The general platform concept presented in this chapter has been published [Pet+19].
More information about the concept and especially further details about regulatory
requirements were described in the (non-public) data protection concept [Beh+21]. The
developed platform was used in two medical studies. The IDOMENEO study [Beh+17a]
examined the reality of care for patients suffering from PAD in more than 30 medical
centers in Germany. As part of the study, data from more than 5,600 patients was
collected in our platform [BD21]. The ongoing INCREASE study [Klo+22] investigates
the use of modern therapy concepts in minimally invasive heart valve procedures. The
mobile app described in Section 6.3 was implemented by Krause [Kra20] during his
master’s thesis. Preparatory work for the data interface’s DP plugin was performed by
Krass [Kra23] in his master’s thesis in the form of a preliminary review of existing DP
frameworks and some initial implementation attempts.

6.1 Functional Description

The basic idea of the platform is to allow a number of medical centers, such as hospitals,
to record medical research data about their patients, to collect this data in a central
place, and to provide researchers with the possibility to use this data in their research.
For this purpose there is a central software component as well as distributed software
components in all participating medical centers. Figure 6.1 shows a high-level overview
of the platform. In the following, we provide an overview of its functionality.

The platform provides the so-called survey admin, the person responsible for organizing
the medical study, with the possibility to create new medical centers and respective
medical center admin accounts. In medical centers patients are examined and treated.
Data is collected during these procedures by the medical staff and they are tasked with
entering the patient’s data. Each user of the platform in a medical center can take on one
of three roles (study nurse, doctor, or medical center admin) with different responsibilities
and rights. Details about the different roles in the platform are given in Section 6.1.1.

For each patient personal data, such as their name, address, or social security number, as
well as medical data, such as measurements of vital functions, drug doses, or treatment
success, are stored (see Section 6.2.1 for an in-depth discussion of this distinction). The
personal data is used for data quality, documentation, and contact purposes. The medical
data forms the basis for research purposes, such as studying the relationship between
risk factors like smoking behavior and treatment outcomes. The platform provides forms
to enter personal and medical data. These forms consist of different fields. The platform
supports fields for different data types as well as data-type-dependent validation for
individual fields and logical relationships between fields. There can be as many different
forms and sub-forms as required by the scenario. To document the current review state
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Figure 6.1: Platform overview for an individual medical center including data flow
and user roles.
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of form data, forms support multiple states from incomplete to fully entered and checked.
This functionality is covered in Section 6.1.2. To ensure the correctness of entered data,
external reviewers (monitors) can visit medical centers and compare the data entered in
the platform with data from physical or digital health records present at the medical
center. Details are given in Section 6.1.3.

A benefit for participating medical centers is the benchmark functionality provided by
the platform. The platform makes data available to medical centers which allows them
to compare their own patient-centered care to others, so that they can potentially learn
from other centers. The benchmarking functionality is covered in Section 6.1.4.

The GDPR grants data subjects several rights in relation to the processing of their
data. The platform allows patients to execute these rights. Details can be found in
Section 6.1.5.

There are two other functions we cover in separate sections due to their extent and
because they require details about security measures given in Section 6.2.

• Some medical studies are based, among other things, on data that describes a
patient’s health status on a daily basis. Often this data can be collected by the
patient themselves. The platform allows patients to transfer this data digitally, as
described in Section 6.3.

• Finally, the platform provides data export and query functionality for researchers
while preserving patient’s privacy. Section 6.4 provides more details about this
functionality.

6.1.1 Role Model

The platform provides a tiered role concept with differing access rights for different roles
to follow the need-to-know principle:

• Study nurses enter personal and medical patient data in the system. This data
can, for example, originate in paper-based health records or in patient-filled forms.

• Doctors, just like study nurses, have the right to enter data. Additionally, they can
accept completed data records after thorough review (see Section 6.1.2).

• Medical center admins are responsible for a single medical center. They create
accounts for doctors and study nurses. Additionally, they can perform the tasks of
study nurses or doctors.

• Monitors are responsible for reviewing the validity of data created in medical
centers. For this purpose, after a successful request to the medical center admin,
they get time-restricted access to medical data and paper-based access to personal
data locally in the medical center.

• Researchers can apply for full medical data access or the results of specific
computations on the data. Survey admins or an external committee can the accept
or reject this application.
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• Survey admins are responsible for organizing and running the study. They create
new medical centers and pass initial account credentials to the responsible medical
center admin. Furthermore, they create accounts for researchers and monitors.
Depending on the scenario, they can access the combined medical research data of
all medical centers, but never any identifying personal data.

There are further roles which are not part of the medical domain but are required for
the operation of the platform:

• Developers write the code the platform functionality is based on. They should not
get access to any data (medical or personal).

• Server admins operate the hardware the platform is executed on. Just like
developers, they should not get access to any data (medical or personal).

6.1.2 States of Data Records

Medical data records offer different states: draft, complete, accepted, and monitored.
These states describe different levels of validity of the data. The draft state is used for
incomplete data records or data records likely to change and is automatically set for
new data records. After entering and checking all data, the study nurse sets the state to
complete. To enforce a multi-eye principle regarding data validity, a doctor is required
to review the entered data and set the accepted state for the data record. If the data
record is chosen for monitoring (see Section 6.1.3), the monitor checks the data again
and finally sets the monitored state – the highest level of validity present.

6.1.3 Monitoring

Monitoring in this context means the process of verifying the correctness of collected
data by an entity not part of the medical center. The responsible users, hereinafter
referred to as monitors, compare the medical data entered in the platform to the data
present in the medical center, for example, based on electronic health record (EHR).
The personal data is not monitored since this process is just supposed to guarantee
the validity of the medical data and scientific questions answered based on this data.
To follow the principle of data minimization and to not tamper with the encryption of
personal data solely for the medical center users (see Section 6.2.3), the monitors only
get access to the medical data. The connection between pseudonyms and real patient
identities (see Section 6.2.3) is provided to them in paper form at the medical center on
site, where they also have access to treatment documentation. They mark medical data
records as monitored or create queries for erroneous data. Users of the medical center
can then correct these errors afterwards.
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6.1.4 Benchmarking

Benchmarking in the medical domain describes performance and result comparisons
between different healthcare providers with the aim of learning from each other through
the structured exchange of experiences [KGS11]. In the platform this functionality is pro-
vided through statistics accessible by all medical centers. These statistics might include
patient’s demographic data, risk factors, or treatment details and success, aggregated
for each medical center respectively. All users of a medical center are allowed to access
these statistics of all medical centers to assess their treatment success in comparison
to others. This may lead to insights calling for action, for example when a hospital
experiences notably more treatment-related side effects compared to other hospitals
treating patients with similar demographic characteristics.

Privacy considerations play an important role in this concept. Publishing even aggregate
statistics can negatively impact the privacy of patients, for example, for medical centers
with small patient numbers or for outliers with respect to demographic data. A first
data-independent measure the platform takes is to use pseudonymous medical center
names and to change their order in the published order randomly (but consistently over
all published statistics). But care has to be taken when choosing the statistics to be
published. In the spirit of the data protection principle of data minimization, one should
pay attention to publish only statistics relevant for the given context. Additionally, further
measures like generalization or suppression approaches (see Sections 2.5.1 and 2.5.2)
should be considered. For example, this might include publishing only generalized age
distributions or removing outliers.

The publication of regularly updated statistics for updated collected data requires
particular attention. In these scenarios the pseudonymization and random ordering
of medical center statistics might be easily reversed, for example, in the presence of
outliers or by tracking statistical distributions. Differences between consecutive data
distributions might allow deductions about patients being treated in the timespan
between the publication of these distributions. This problem is similar to the weaknesses
which can occur when releasing multiple syntactically anonymized datasets (covered in
Section 2.6.8).

A possible solution, not implemented at the moment of writing, would be to employ DP
for the computation of these statistics. This would require carefully choosing the total
privacy budget ε and deciding on how to split this budget over multiple statistics and
potentially over multiple timespans. Ideas and caveats can be taken from considerations
about our privacy-preserving data interface (see Section 6.4), even though the context
of the benchmarking functionality differs from this interface in its purpose, the trust
placed in the user, and in the per-medical center requirement of the benchmarking.

6.1.5 Offering Data Subject Rights

The GDPR grants data subjects a number of data subject rights in accordance with
articles 12 to 23 including amongst others the right of access, right to rectification, and
right to erasure. The platform enables patients to execute these rights. The central
platform component has no access to personal data since it is encrypted in a way that
only medical centers can decrypt and access the data (see Section 6.2.3). Therefore the
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component would not be able to act on the request of a patient to execute their rights
since it cannot even determine the correct data records belonging to a specific patient.
For this reason data subject rights must be performed by the medical center which has
treated the patient and collected their data.

6.2 Security Architecture and Measures

In this section we provide details about security measures implemented in the platform to
protect patients’ privacy. In Section 6.2.1 we provide preliminary details about collected
data and the separation into medical and personal data. Section 6.2.2 establishes
the attacker model for the platform as a basis for the following sections. The central
security measure of the platform is the separation of personal patient data collected
at different medical centers based on cryptographic techniques and pseudonymization
introduced in Section 6.2.3. Sections 6.2.4 and 6.2.5 provide details about password
security in the platform – an important aspect since these passwords are used for
authentication as well as key derivation. But additionally to security requirements
the safety of cryptographic keys plays an important role as well, since lost keys can
potentially render previous efforts to collect study data useless. Measures for key
safety are covered in Section 6.2.6. Another security measure concerns data access by
developers while performing maintenance tasks. To prevent any unauthorized data
access during these tasks, a maintenance mode has been implemented. This aspect is
discussed in detail in Section 6.2.7. Finally, in Section 6.2.8 we introduce measures to
impede the re-identification of patients through the pseudonymized medical data.

6.2.1 Personal and Medical Data

As already mentioned, we differentiate between patient’s personal data and medical
data1. Personal data refers to data which can be used to identify a patient, such as health
insurance identifier, name, address, or the date of birth. Medical data is describing facts
about a patient’s health or medical issues, for example, treatment documentation or the
patient-reported quality of life. This distinction is not necessarily exclusive. For example,
the patient’s age can play a vital role in medical decisions about the right treatment
but can also be used for identifying purposes. It is also related to the classification
of attributes in syntactic privacy models in directly identifying attributes, QID, and
(non-)sensitive attributes (see Section 2.6.1). As covered in Section 2.6.1, in the domain
of syntactic anonymization there are advocates for treating all attributes as potentially
identifying. Therefore, the distinct classification used in our platform is artificial to some
extent. Another take on this distinction is to classify medical data as data not directly
identifying a patient, but fulfilling a medical research purpose.

In our platform, the personal data is stored in a way that allows only the patient’s medical
center to access this data (see Section 6.2.3). The medical data, on the other hand, can
be accessed by the platform’s central component for purposes such as research data
export (see Section 6.4) or benchmarking (see Section 6.1.4). But it is still processed
securely to prevent any unnecessary or adversarial access.

1. In the German-speaking medical domain these concepts are often referred to as IDAT and MDAT [For21].
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One might ask why the processing of personal data is required at all. There are several
reasons for this. First, our platform aims at providing support for longitudinal medical
studies, that is, studies in which medical data related to a patient is collected at multiple
points in time, for example, after the initial treatment and during follow-up examinations.
The medical staff has to be able to connect acquired data with the correct existing data
record of the patient by means of a pseudonym (see Section 6.2.3). Additionally this
connection is also required for the execution of data subject rights (see Section 6.1.5).
Since our platform handles pseudonymized (and not anonymized) data, the GDPR
still grants patients several data subject rights. But to execute these rights, the correct
data records for a patient must be detectable. A second reason is that under certain
conditions it can be necessary to re-identify a patient. Examples include data quality
management through monitoring (see Section 6.1.3), special research interest in case
of extraordinary disease conditions, or the delivery of warnings about discovered drug
side-effects. Finally, the personal data is also used for convenience functions such as the
automatic generation of personalized patient consent documents.

A possibility would be to not use the platform for storing the personal data, but to rely
on some distinct solution for mapping the patient’s identity to the given pseudonym
– local to the medical center or via a TTP. There are several potential approaches for
this.

• A first idea would be to store the mapping in the medical center by means of some
platform-unrelated software or even in not-digital paper format. But this would
not only impede the usability for users of the platform, but can potentially also
reduce the safety requirements for this mapping since each medical center would
have to take required precautionary measures by themself. As already covered, an
irrecoverable mapping would not only impede the collection of further research
data but also prevent patients from executing their data subject rights.

• Another idea would be to store the mapping in the medical center’s client software,
but in this case similar considerations like the ones given in Section 6.2.4 regarding
cryptographic keys would impair the safety requirement. Since we developed the
software component in the form of a web application, as justified in Section 6.5,
there are no reliable places to safely and securely store the mapping.

• A final possibility would be to rely on a solution for distributed pseudonymization,
such as the one covered in Chapter 3. The medical center would request the
pseudonym for a patient, indirectly identified by their personal data, from the
pseudonymization service and use it to store medical data with this pseudonym in
the platform. Combining this with a solution for being able to disclose pseudonyms
in a protected manner, such as the one presented in Chapter 4, this would also
enable features such as the execution of data subject rights. But in this case a
committee would have to disclose the patient identity for each data subject right
request. Additionally, this solution would involve at least one other party which
would increase the attack surface of the system. Furthermore, the mentioned
convenience features would be not possible.

In our opinion, our concept based on cryptographically enforced client separation
covered in Section 6.2.3 represents the best balance between the safety, security, and
usability requirements, as it behaves like local storage of the pseudonym mapping
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through encryption, but also provides safety properties in control of the platform, while
still enabling useful platform features.

6.2.2 Adversary Model

In this section we describe the adversary model of our platform, that is, the types of
adversaries the platform protects collected data against. We assume secure point-to-point
connections between hospitals and the central server. Eventhough in their absence the
personal data would still be protected as it is encrypted directly at the hospital, the access
to medical data during transport would tamper with further protection mechanisms
like just allowing access through the privacy-preserving data interface (see Section 6.4).
Furthermore, we assume the well-established ciphers which we use as building blocks in
our platform to be practically secure when used with keys of adequate length.

With respect to the protection goals of information security confidentiality, integrity,
and availability, the platform focusses especially on confidentiality. Protecting patients’
personal and medical data is the first priority. A breach of confidentiality, for example
through an unauthorized person linking medical data to a data subject, can have serious
consequences for those affected (see Section 2.1). The integrity of medical data plays an
important role as well for the medical study using this data, but cannot result in direct
negative consequences for patients. The availability of the platform is not important.
Medical centers can transfer collected data at a later point in time if the platform is not
accessible.

With these considerations in mind, we look at potential adversaries the platform should
protect against – within and outside of the platform user base. Outside adversaries with
no relation to the platform must not able to access any data, let it be personal or medical,
in unencrypted or even encrypted form. Developers of the platform must not be able
to access any data in unencrypted form. The access to encrypted data records in the
database during maintenance tasks might be necessary due to practical reasons, for
example, the necessary debugging of bugs not reproducible on test systems. Server
admins, operating the hardware the central component of the platform is deployed on,
might get access to unencrypted medical data. This is not avoidable since the platform
performs operations on this data, such as providing researchers with results to specific
research queries in a privacy-preserving manner (see Section 6.4). Since the platform is
expected to be deployed in hospital data centers, in which a high security level is present,
the risks from this access are tolerable. Additionally, adversarial actions by developers
or server admins might at least be detectable through adequate logging mechanisms.
Researchers must only get access to medical data which was altered in a way to protect
the privacy of patients. Monitors need to access medical data for a patient sample to
review the correctness of this data. For this purpose, they also have to connect this
data with patient identities to compare the data to health records in the medical center.
However, this mapping should only be provided to the monitor in the (physical) medical
center to reduce the probability of adversaries accessing it. The survey admin might be
allowed to access collected medical data depending on the trust model employed for the
medical study. If they are fully trusted, complete medical data access might be granted,
for example, to perform data-based research or reviewing tasks on their own. Otherwise,
they can simply take on an orchestrating role for the study without having access to
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Figure 6.2: Overview of cryptographic keys and encrypted data in the platform.

medical data. Finally, medical center users (medical center admin, doctor, and study
nurse) have access to medical and personal data of their own patients. In particular, they
are the only parties to have access to unencrypted personal data of patients treated or
examined at their medical center. They must not be able to access medical or personal
data of other medical centers.

6.2.3 Cryptographically Enforced Client Separation and Pseudonymization

The platform stores the personal data for patients of a participating medical center in a
way so that no other party, such as other medical center users, survey admins, or devel-
opers, can access this data. For this functionality we employ cryptographically enforced
client separation and pseudonymization. Figure 6.2 shows the relevant cryptographic
keys and encryption relations for one user of a specific medical center.
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Each medical center user (study nurse, doctor, admin) chooses their own password pw.
Then, a key derivation function (KDF) derives the password key kpw = kdf(pw ∥ "key")
from this password. The concatenated label is used to separate this key from the authen-
tication token discussed in Section 6.2.4. The password key kpw is employed to encrypt
the user key pair (pku, sku), which is generated in the medical center environment when
a user logs into their account for the first time.

For each medical center there is a personal data key kP for the encryption of personal
data and a medical data key kM for the encryption of medical data. These keys are
generated in the medical center environment the first time the initial medical center
admin logs into their account. All users in the medical center share these keys and they
are encrypted with the help of the user public key pku for each respective user.

Equipped with these keys we can look into the details of encryption and storage of per-
sonal and medical data. The personal data of a patient together with a randomly created
pseudonym Pi is encrypted with the personal data key kP and stored in the personal
data database. Since kP is only accessible for medical center users (via decryption with
their private key sku) the personal data of patients can only be accessed by users of this
medical center.

A medical record key kmi
is generated and used to encrypt the medical data of patients.

This key itself is encrypted twice: once with the medical data key kM and once with
the so-called server key kS. This server key is generated during the initialization of
the platform. Encrypting the medical record key with distinct keys is essential for
enabling the medical center to access their patients’ medical data, while also allowing
the platform to utilize this data for research purposes (as discussed in Section 6.4)
and additional purposes such as benchmarking (see Section 6.1.4). This approach also
forms the basis for restricting access to the medical data during maintenance tasks (refer
to Section 6.2.7). A tuple consisting of the unencrypted patient pseudonym Pi, the
encrypted medical data, both encryptions of the medical record key kmi

, and additional
metadata is stored in the medical data database.

Each medical data record belonging to a patient gets assigned the same pseudonym,
making this a person pseudonym and the process deterministic pseudonymization (see
Section 2.4.2). The resulting linkability is a requirement from the application sce-
nario. Longitudinal medical studies require the connection of data collected at different
points in time, for example, initial treatment data and data from subsequent follow-up
examinations.

6.2.4 User Authentication

As already described, the platform uses the user password pw for deriving the password
key kpw (see Section 6.2.3). Additionally, the password is used to generate a token for
user authentication as well. For this purpose, the password pw is given to a KDF in the
medical center client software. The resulting value lpw = kdf(pw ∥ "login") is treated as
authentication token and is stored in the platform database for the user account in once
more hashed format (following password storage best practices). The concatenated
label, again, is for separating the authentication token from generation of the password
key kpw discussed in Section 6.2.3. Due to this approach, the highly sensitive password
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is only known to the client software, which derives password key and authentication
token, but is never transmitted to the central component.

On the other hand, this still opens up the potential for brute-force attacks on the
authentication token to figure out the password, derive the password key kpw, and
consequently get access to the patient’s personal data.

A more secure approach would be to use an independent encryption key instead of one
derived from the password. There would be different options for this, but they come
with practical downsides or impossibilities in our scenario:

• Two independent passwords could be used – one for authentication2 and another
one for deriving the password key. But this would require users to memorize two
passwords and enter them during or after login. Since choosing and memorizing a
single password is already a major challenge for users (see also Section 6.5), two
passwords could potentially even weaken the security, for example, by encouraging
users to write down both passwords on sticky notes pinned to their monitor.

• The same consideration applies to splitting the user provided password in halves,
since this would require unusually long, harder to memorize passwords for suffi-
ciently secure password halves.

• Another possibility would be to generate a random cryptographic key in the place
of our password key and store this key in the central platform component with
the user account data. But storing this key in unaltered form would render the
whole concept useless against anyone with access to the database. Storing the key
in encrypted form would just open up the question of which key to use for this
encryption.

• Another option would be to generate and store the password key in the medical
center client software only. This would be a favourable solution if there was a
dedicated client software for the platform. However, as detailed in Section 6.5,
the platform’s client software is developed as a web application. Keys could be
generated in the medical center client software, but would have to be stored
in unreliable places like the browser cache, which are suspectible to data loss.
Additionally, they somehow would have to be transferred to all devices of a user in
the medical center without support of the platform.

• Finally, one could use suitable hardware tokens to generate and store the key pair
(pku, sku) for each user and perform the decryption operation without exposing
the private key to any platform software component. From a security standpoint,
this would be a great solution. However, this would require every user of the
platform to be equipped with a hardware token. This would not just be a financial
problem, but also a practical one, since often computers in medical centers have
strict policies against any additional external devices.

Therefore, the current way of using the password for both operations is the only viable
solution. By using a memory-hard, state-of-the-art KDF like Argon2 [Wet16], strong
passwords, and two-factor authentication (see Section 6.2.5) the success probability of
brute-force attacks is minimized.

2. One could derive an authentication token as already described or just sent the plain password like it is
state-of-the-art in regular web applications.

172



6.2 Security Architecture and Measures

6.2.5 Strong Passwords and Second Factor Authentication

As Section 6.2.3 indicates, the user password plays a vital role in the security of patients’
personal data since the relevant personal data key kP used for encrypting personal data
is encrypted with a user’s secret key sku, which in turn is encrypted with the password
key kpw directly derived from the user password. Therefore this password serves as a
security anchor for the most sensitive data in the platform. But a large amount of real-
world incidents3 shows that regular users are inherently bad at choosing secure (that is,
high-entropy) passwords. To impede the vulnerability arising from weak passwords, the
platform uses a password strength estimator and two-factor authentication (2FA). This
twofold approach ensures two things. First, it prevents brute-force attacks by outside
adversaries against the password through the regular authentication interface. Secondly,
it impedes brute-force attacks against the authentication token or the encrypted user
key pair by adversaries with access to the database.

For password strength estimation we employ the free software zxcvbn [Whe16]. zxcvbn
is not based on simple heuristics like counting the occurrences of upper- and lowercase
letters, digits, and symbols. Instead it uses various data sources (leaked password sets,
common names, and common words), variations and combinations of words in these
data sources, as well as keyboard patterns to estimate the commonness of a password.
This leads to better strength estimation in comparison to simple heuristics.

We further use time-based one-time password (TOTP) [MRa+11] as a method for 2FA.
TOTP is an HMAC-based one-time password algorithm depending on a secret K shared
between prover (the user in our setting) and verifier (the platform server) and a time
value T derived from Unix time and a time step parameter:

TOTP (K,T ) = Truncate(HMAC-SHA-1(K,T ))

On the first login the platform provides the user a randomly generated shared secret
K and stores it in its user database. The user stores this secret on a device other than
their device used for accessing the platform, such as their mobile phone. On subsequent
logins the user computes the TOTP value on their second device, submits it together
with their regular login information, and the platform verifies it by comparing the value
with its own computation. Since TOTP values are based on the current time, they are
short-lived and a loss of these values does less harm than the loss of long-lived secrets.
Using another device as a second channel increases the security of the technique.

6.2.6 Key Safety

In addition to security aspects, safety aspects play an important role as well. If the
personal data key kP of a medical center is no longer accessible, all personal data cannot
be decrypted (or, slightly less seriously, has to be re-entered and matched to the correct
medical data records if the documentation still exists). If the server key kS gets lost,
no medical record key kmi

and therefore no medical data is accessible for the platform
anymore. In this case, all medical centers would have to decrypt their copy of kmi

for

3. For example, in 2023 the most common user passwords obtained from data breaches and stealer
malware still included passwords like password, 123456, and qwerty [Nor23].
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their medical records and the platform would be required to encrypt all these keys with
a new server key. In summary, loosing access to these keys has severe consequences for
the availability of research data.

For this reason the platform provides users the opportunity to create physical backups
of relevant keys in the form of printed quick-response codes (QR codes). This refers
to the server key kS for the survey admin as well as the personal data key kP and the
medical data key kM for medical center admins. Additionally, each user in a medical
center has this option for their secret key sku. By using a regular webcam, a user can
conveniently restore respective keys using these QR codes without having to correctly
type cryptographic keys4.

6.2.7 Maintenance Mode

To prevent developers or server admins from accessing the medical data during mainte-
nance operations like software updates or similar tasks the platform provides a mainte-
nance mode. The survey admin can activate this mode before maintenance takes place.
This deletes the server key kS – one of the two keys used for encrypting the medical
record key kmi

(see Section 6.2.3) – from the platform. The survey admin is responsible
for storing it safely during the time of maintenance. Afterwards they can re-introduce
this key to the platform and regular operation can proceed.

At the time of writing the maintenance mode is just implemented as an organizational
measure, that is, the survey admin is required to start this mode before developers enter
the platform server, but it is not technically enforced. A more sophisticated solution
could connect the activation of the maintenance mode with the server access technology,
for example, by just starting the secure shell (SSH) server, which is used for developer
access to the platform server, after the server key is deleted.

6.2.8 Reducing the Re-Identification Risk from Medical Data

While the platform prevents the access to patients’ personal data for users not related to
the patients’ medical centers, it might be possible to re-identify the patients based on
their medical data. While this risk cannot be prevented generally for arbitrary data (cf.
Sections 2.6.1, 2.6.8 and 2.8), we introduce two measures to prevent common means of
re-identification.

The first is tackling re-identification through information provided in free text fields.
Medical center users can inadvertently enter data which supports the identification
of individuals, such as names or gender information not being part of the medical
data. This data can be used for re-identification purposes. To prevent these mistakes,
users are initially trained to not enter directly identifying information in free text fields.
Additionally, all text fields are marked with a prominent warning.

4. For example, for common cryptographic key lengths of 256 bit this would require a user to correctly
type 64 characters (when using hexadecimal encoding), which one would not directly consider usable
software.
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Another option for easy re-identification is to use time data and combine it with real-
life observations, such as witnessed hospital visits by acquaintances. Therefore, all
time-related data regarding patients, such as the treatment date or dates of follow-up
examinations, is shifted by a random amount of days with respect to the original point
in time. For this purpose each patient’s personal data contains a shifting value tS drawn
uniformly at random from a span of 30 days. All time information in the medical
data of a patient is shifted by this value tS. Using the same value keeps all time spans
between relevant medical events consistent, which is important as they can provide
valuable insights for medical research, for example, when studying the occurrence of
drug side effects. Because tS is part of the personal data, it is encrypted in a way that
only the patient’s medical center can access the unencrypted value (see Section 6.2.3)
and re-shift the time information. The platform handles this fully transparent to the
medical center users. This measure is meant to impede adversaries with (legitimate
or unauthorized) access to the medical data from connecting medical data records to
patients via real-world observations.

6.3 Patient-Provided Medical Data

An additional feature of the platform is the possibility to let patients provide self-collected
medical data. Examples for the usefulness of this feature include daily questionnaires
about data attributes they can assess by themselves (often referred to as patient-reported
outcome measures (PROMs)) or data collected by wearables. As a proof of concept,
we have developed a mobile app for collecting quality of life data. This type of data
can include daily data points about, for example, pain, physical abilities, or general life
satisfaction.

To transfer the collected data to the database, an application programming interface
(API) endpoint accessible from the internet is provided. Since the personal data in the
database is encrypted and not accessible for the platform, we have to rely on the patient
pseudonym Pi (see Section 6.2.3) to assign the patient-provided data to the correct
patient data record. For this purpose the patient receives a copy of this pseudonym as a
QR code and scans this code with the developed mobile app. The API request contains
the pseudonym and new medical data can be assigned to the correct data record.

To prevent misuse of the public endpoint, the request must contain authentication
information. Even though the pseudonyms have a length of 256 bit and are therefore
large enough to act as authentication token by themselves in principle, a lost copy of
the QR code would allow anyone to act as the patient. For this reason, we use the
patient’s birth date d as a second authentication factor not included in the QR code.
When the QR code is created in the medical center, the platform client chooses a random
value r ∈ {0, 1}n and computes the authentication token t = H(Pi) ⊕ H(d) ⊕ r using
a cryptographic hash function H, such as SHA-3, with an output length n. Since the
medical center is able to decrypt the personal data, they have access to the contained
birth date. The value r is included in the QR code data, but not stored anywhere else.
The token t is then stored in the database accessible for the platform. Because of the
random value r the platform is not able to achieve information about the patient’s birth
date even when performing a brute-force attack using all reasonable birth dates. The
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patient has to enter their birth date in the mobile app as well. Afterwards, the mobile
app is able to compute the authentication token t′ using the provided birth date and
the information given by the QR code (pseudonym Pi and random value r) in the same
manner. This token is then provided in API requests. The platform compares the received
token value t′ with their stored token value t. Equal values result in an authenticated
request.

Lost or compromised QR codes can be handled by simply deleting the stored token
t and providing the patient with a freshly generated QR code using another random
value r. To prevent brute-force attacks against the birth date value by an adversary
in possession of the QR code, the token is invalidated after a specifiable number of
requests with an invalid token. Using the birth date as second factor instead of for
example a fully random token represents a compromise between security and usability.
The second token would have to be transferred to the patient by other means (such as
postal delivery) increasing the required effort and potentially time for authentication.
Additionally, this would increase the practical risk that both factors would be stored
side-by-side by the patient.

Currently the API endpoint is only allowed to write data to the patient’s data record.
Even if an adversary gets access to the authentication information, the only adverse
action is to provide incorrect medical data. Conspicuous information might attract
attention of staff in the medical center and they are able to delete illegitimate data and
invalidate corrupted authentication information.

A future functionality for the mobile app worthwhile for patients would be the possibility
to exercise their data subject rights (see Section 6.1.5) in the app. Due to the increased
severity of these actions (for example, the option to get a full copy of all collected data)
more security measures should be considered in this case.

6.4 Privacy-Preserving Data Interface

The platform provides an interface to grant researchers access to the medical data in a
privacy-preserving way. The goal is to provide first insights at a low barrier with small
privacy risks, not to provide a fully functional data analysis platform. For this purpose,
the interface employs syntactic privacy models like k-anonymity (see Section 2.6) for
exporting transformed datasets, differentially private statistics with respect to certain
aspects of medical data, as well as an interactive query-based approach dependent on DP
(see Section 2.7). While further users could potentially benefit from such an interface,
we explicitly provide it for accounts with the researcher role to be able to establish a
strict privacy model. Researchers can use the interface to get access to medical data
tailored to their research needs without the necessity of full medical data disclosure.
We further designate the survey admin as responsible for providing scenario-specific
properties, such as the classification of attributes for syntactic privacy models or the
parameter values for DP.

Generally, the interface can be used in different ways:

• Survey admins provide global datasets transformed by syntactic privacy models.
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Figure 6.3: The privacy-preserving data interface architecture with an abstract plugin.

• Survey admins provide differentially private global statistics, for example, demo-
graphical data distributions of all patients in the platform.

• Researchers request specific datasets transformed by syntactic privacy models.

• Researchers ask the platform for specific computation results tailored to their
research needs in a differentially private manner.

Further methods, such as using simple de-identification techniques (see Section 2.5), are
possible but not covered in this section. While the other sections of this chapter describe
mechanisms deployed into practice, the privacy-preserving data interface has not been
utilized in the medical studies the platform has been used for. Therefore, the ideas are
not practically evaluated by regular users of the platform at the time of writing. The
following sections provide details on the general plugin-based interface architecture as
well as implemented plugins based on syntactic privacy models and DP.

6.4.1 Interface Architecture

In the platform, the medical data is available in the form of a relational database: there
exist multiple tables connected by primary keys and potentially multiple records and
subrecords per patient. The first step in the process is to map this relational data into
a flat table usable for further processing steps. For this purpose, the querying party,
that is, researcher or survey admin depending on the scenario, chooses data fields
relevant to the query. This table comprises exactly one row for each patient to avoid
ambiguity regarding the influence of a single person to the data. If there are varying
numbers of data records for patients5, the flattened table contains as many columns for
these records as are required for the patient with most data records. Afterwards this
flattened table serves as basis for the privacy-preserving transformation covered in the
next sections. These transformations are implemented in a plugin-ready architecture
style so that extensions for other privacy mechanisms are easy to achieve. Each plugin

5. Examples include varying numbers of required operations or situations in which data records are
entered for each day spent in the hospital after a treatment.
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Figure 6.4: Privacy-preserving data interface using a syntactic privacy model and
global (that is, survey admin controlled) data export.

takes the flattened table and a plugin-specific set of variables and produces some output
depending on the mechanism. The abstract architecture is depicted in Figure 6.3.

6.4.2 Syntactic plugin

As stated in Section 2.6.9 syntactic privacy mechanisms suffer from several weaknesses.
However they might serve the purpose of keeping honest people honest, as Narayanan
and Shmatikov [NS19] mention for the case of de-identification techniques, if researchers
are trusted to some extent. For this reason, we implement an instantiation of our plugin
using k-anonymity (see Section 2.6.2) as syntactic privacy mechanism.

Different Modes

The syntactic privacy mechanism can be used in two ways. First, the survey admin
can prepare global syntactically transformed tables accessible for all researchers. This
approach is depicted in Figure 6.4. The survey admin selects the relevant fields for each
table and classifies the fields according to their sensitivity into identifying, sensitive,
QID, or nonsensitive attributes (see Section 2.6.1 for comments). Generally, we don’t
expect any attributes classified as identifying due to the separation of medical and
personal data covered in Section 6.2.1. For a syntactic algorithm based on generalization
(see Section 2.5.1) the survey admin provides adequate generalization hierarchies for
QID fields. Afterwards the plugin computes the syntactic privacy algorithm result.
Special care has to be taken when creating multiple tables containing data of the same
patients or when tables are updated over time since these can lead to vulnerabilities
(see Section 2.6.8).

In the second usage scenario, individual researchers can prepare their own local data
exports according to their research needs as shown in Figure 6.5. This idea can have
some advantages in comparison to the global approach. Researchers can tailor the
resulting table to their needs by only choosing fields relevant to their research. This
follows the idea of data minimization: Unnecessary data is not processed and released
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Figure 6.5: Privacy-preserving data interface using a syntactic privacy model and local
(that is, researcher controlled) data export.

preventing the negative privacy impact this data might entail. Additionally, fields
classified as QID can potentially require less distortion, such as generalization, to fulfill
the syntactic privacy model if other QID attributes are not requested by the researcher.
As an additional advantage, researchers can provide their own generalization hierarchies
suiting their research needs better than global hierarchies. For example, some research
might require ages in 5 year bins, while for others only the distinction between underage
persons and adults might be relevant. In this scenario, the survey admin still has to
classify the attributes just like in the global case.

But this scenario requires additional assumptions. We assume that researchers eligible
to receive the transformed datasets do not have access to unaltered medical data,
for example, by being member (study nurse, doctor, or medical center admin) of a
participating medical center in addition to their role as a researcher. Furthermore,
we assume that researchers do not share the transformed datasets with each other.
Otherwise the mentioned vulnerabilities with respect to publishing multiple tables apply
as well.

Plugin implementation

We have implemented one variant of a plugin targeting k-anonymity as syntactic privacy
model. The plugin is based on an existing implementation6 of the Mondrian algorithm
covered in Section 2.6.5.

6. The implementation of the Mondrian algorithm is based on https://github.com/kaylode/k-
anonymity which updated the implementation of https://github.com/qiyuangong/Basic_Mondrian
to be compatible with Python 3.
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Figure 6.6: Privacy-preserving data interface using a differentially private privacy
model and global (that is, survey admin controlled) data export.

Depending on the scenario, required parameters are prepared by the survey admin and
researchers. In both scenarios, the survey admin classifies the attributes – in the global
case when preparing the data export, in the local case when setting up the system. For
the global case, they also provide generalization hierarchies for fields classified as QID.
For the local case, they can prepare default generalization hierarchies during systems
setup. These hierarchies can be used by researchers, but they have the opportunity to
provide their own hierarchies when requesting a data export as well.

6.4.3 Differential Privacy Plugin

As detailed in Section 2.7.7, DP provides several useful properties as a privacy model.
Especially the composability properties (see Section 2.7.2) allow the execution of
multiple queries by multiple users while preserving privacy guarantees. This is a useful
property in our scenario in which a set of researchers are allowed to query the platform
interactively and according to their research needs (local approach). Additionally, the
plugin can be used in a global fashion, in other words, the survey admin prepares the
exported universal statistics for all researchers.

For the implementation of this plugin, a number of potentially usable DP frameworks
was developed in recent years. Therefore, this section also contains a review of relevant
DP frameworks before presenting the plugin implementation based on the chosen
framework.

Different Modes

As already mentioned in the beginning of this section, DP can be applied in two different
ways in our scenario.

First, DP can be used to provide global statistics about the patients and medical data in
the database. This approach is depicted in Figure 6.6. These statistics are not dependent
on specific research queries and can be accessed by all researchers. They can provide
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Figure 6.7: Privacy-preserving data interface using a differentially private privacy
model and local (that is, researcher controlled) data export.

general insights about the medical data, for example, demographical distributions like
the patient age distribution, and might prove useful as a starting point for further, more
specific research. The survey admin chooses relevant data fields, relevant statistical
queries, such as simple counts, histograms, or percentiles, and adequate DP parameters,
for example, ε and δ in the case of (ε, δ)-DP. They split the global privacy budget between
the queries according to utility requirements of respective queries. This action requires
a good understanding of DP and the influence of parameter choices on query results. A
helpful technique, currently not implemented in the platform, to support regular users
in choosing suitable parameters might be to provide the accuracy implications in the
form of confidence intervals [Gab+18]. If regularly updated statistics are desired, the
budget splitting must take this requirement into account.

The second usage scenario, visualized in Figure 6.7, focuses on interactive queries by
researchers. The platform provides a query interface and researchers choose relevant
data fields, query mechanisms and DP parameters according to their research needs.
In this scenario, there potentially are multiple researchers and each of them might
have multiple queries asked in an iterative fashion, in other words, the next query
depends on the answer of the former query (also referred to as online setting [Puj+21]).
This can pose a major challenge for allocating the privacy budget among researchers
and queries. Questions to consider here include amongst others [ico22]: How many
queries are expected in total and per researcher? Which budget do these queries need
to achieve necessary utility requirements? Are researchers expected to (maliciously or
unintentionally) share results of their queries?

In our solution, we mostly follow the ideas of Gaboardi et al. [Gab+18] with respect to
budget splitting. The survey admin, just like in the case of global statistics, chooses an
adequate global DP privacy budget, for example, ε for ε-DP. Researchers are classified
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according to two trust models. Semi-trusted researchers are assumed to be trustworthy
in not sharing their query results with other parties. This might be based on personal
trust, contractual agreements, or other trust-building measures. This model allows the
platform to assign them the full privacy budget (ε in the example). The other model
assumes untrusted researchers, for which the non-sharing cannot be guaranteed. In
this model each researcher only gets a share of the global privacy budget for their
queries, for example, each of the n researchers receives a privacy budget εi = ε

n
. In this

setting it is also possible to publish all query results publicly for all researchers. The
two models are not mutually exclusive. It is possible to reserve a part of the privacy
budget for semi-trusted researchers and to split the remaining budget among untrusted
researchers.

There are results for splitting the privacy budget among multiple parties to achieve better
utility in comparison to the simple split considered above [Puj+21], but to the best
of our knowledge they only consider the offline setting, in other words, non-iterative
queries.

Existing Differential Privacy Frameworks

In recent years, a variety of DP programming frameworks has been developed. These
frameworks aim to simplify developers’ access to DP methods while hiding the com-
plexities of DP mechanisms through user-friendly interfaces. This section offers a
comprehensive overview of these frameworks. To collect relevant frameworks we have
used a web search with startpage as well as several more and less formal surveys [Far23;
Woo+23; Dif23; Gar+23] and reviewed the union of resulting frameworks.

In this work our focus is on general-purpose frameworks usable for arbitrary queries.
Several frameworks are tailored towards specific goals and are therefore considered
out-of-scope in this section. This involves a class of frameworks specifically developed
for ML applications. These frameworks include RAPPOR7 [EPK14], PyTorch Opacus8,
TensorFlow Privacy9 [Aba+16], and PySyft10. Another class of frameworks focus more
on specific aspects, such as the verifiability of DP properties. These frameworks in-
clude εktelo11 [Zha+18], Chorus12 [Joh+20], Duet13 [Nea+19], Fuzzi14 [Zha+19], and
LightDP15 [ZK17]. Other tools provide visual support for the application of DP and the
selection of required parameters. These tools were already covered in Section 2.7.5.

7. The code repository is available at https://github.com/google/rappor (visited on 14.11.2023).
8. The code repository is available at https://github.com/pytorch/opacus, the website at https:

//opacus.ai/ (visited on 14.11.2023).
9. The code repository is available at https://github.com/tensorflow/privacy, the website at

https://www.tensorflow.org/responsible_ai/privacy/guide (visited on 14.11.2023).
10. The code repository is available at https://github.com/OpenMined/PySyft, the website at https:

//openmined.github.io/PySyft/ (visited on 14.11.2023).
11. The code repository is available at https://github.com/ektelo/ektelo (visited on 14.11.2023).
12. The code repositories are available at https://github.com/uber-archive/sql-differential-

privacy and https://github.com/uvm-plaid/chorus (visited on 14.11.2023).
13. The code repository is available at https://github.com/uvm-plaid/duet (visited on 14.11.2023).
14. The code repository is available at https://github.com/hengchu/fuzzi-impl (visited on

14.11.2023).
15. The code repository is available at https://github.com/yxwangcs/lightdp (visited on 14.11.2023).
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6.4 Privacy-Preserving Data Interface

In contrast, several other frameworks have no special focus but target general appli-
cability: PipelineDP, Tumult Analytics, Google DP, PyDP, OpenDP, IBM Diffprivlib, and
PinQ. We describe these frameworks shortly in the following. Table 6.1 summarizes the
covered frameworks, respective online resources, and relevant properties.

PipelineDP is developed in collaboration between Google and OpenMined. It is specifically
targeted at large-scale data analytics engines like Apache Spark16. For this purpose
PipelineDP provides interfaces encapsulating DP functionality specific for different data
analytic frameworks. At the time of writing PipelineDP is still considered experimental
and not recommended for production use17.

Tumult Analytics [Ber+22] by Tumult Labs, just like PipelineDP, targets Apache Spark
and can be used to analyze large datasets. It supports several aggregation functions and
DP variants. Tumult Analytics is ready to be used in production and is already employed
by the Census Bureau in the USA18.

Differential Privacy [Wil+19] by Google is a collection of libraries related to DP. In
addition to the DP building block library, which is relevant for our scenario, other
libraries – amongst others one for large-scale data analytics on Apache Beam19 and
another one for differentially private database queries – are also present.

PyDP is a wrapper library by OpenMined to use the Google DP building block library
with the Python programming language. PyDP offers a subset of all the functionality of
Google’s libraries.

The OpenDP Library [Tea20; GHV20] is part of the OpenDP Project originally founded at
Harvard University. At the time of writing, the library still undergoes large development
efforts and interfaces are likely to change20.

Diffprivlib [Hol+19] developed by IBM. It provides several low-level mechanisms, func-
tions for higher-level queries, as well as prepared differentially private ML models. At
the time of writing, the library is still not present in a major version 1 and therefore
likely to change.

Privacy Integrated Queries (PinQ) [McS09] developed by Frank McSherry at Microsoft
is a framework providing basic DP functionality with a LINQ21-like interface. PinQ is
based on an early research effort to develop usable DP frameworks and has not been
updated for several years.

Plugin implementation

Based on the framework review we have decided to use Tumult Analytics for our DP
plugin due to several reasons. In comparison to most other frameworks, this framework
already has a stable version and is used in production. Since we have implemented

16. https://spark.apache.org/ (visited on 21.11.2023)
17. https://pipelinedp.io/overview/ (visited on 21.11.2023)
18. https://www.tmlt.io/ (visited on 21.11.2023)
19. https://beam.apache.org/ (visited on 21.11.2023)
20. https://docs.opendp.org/en/stable/user/limitations.html (visited on 21.11.2023)
21. LINQ (Language Integrated Query) is part of Microsoft’s .NET framework and serves the purpose of data

querying.
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6.4 Privacy-Preserving Data Interface

1 def histogram_average_query(df: pd.DataFrame ,
2 field_name: str ,
3 group_by_keyset: KeySet ,
4 lower_bound: int ,
5 upper_bound: int ,
6 epsilon: float) -> pd.DataFrame:
7 session = Session.from_dataframe(
8 privacy_budget=PureDPBudget(epsilon),
9 source_id="patients",

10 dataframe=df , # dataframe contains flattened table of
medical data

11 protected_change=AddOneRow (),
12 )
13 query = (
14 QueryBuilder("patients")
15 .groupby(group_by_keyset)
16 .average(field_name , low=lower_bound , high=upper_bound)
17 )
18 result = session.evaluate(
19 query ,
20 privacy_budget=PureDPBudget(epsilon), # consume full

privacy budget
21 )
22 return result

Listing 6.1: An example function for the differentially private computation of averages
for patients grouped by some criterion.

our platform based on python (see Section 6.5), using a framework directly supporting
python allowed for easy integration. Finally, the framework provides several query types
in an easy-to-use fashion.

We provide a fixed set of functions usable for the survey admin or researchers (depend-
ing on the scenario). Listing 6.1 shows an example plugin function for computing a
differentially private histogram average query, that is, the average value for a specific
field for patients grouped by another field value. This function can be used for queries
like computing the average patient age for different cancer types in a cancer registry.
In the displayed function we do not rely on the privacy budget accounting provided by
Tumult Analytics, since we keep track of the budget accounting outside of the individual
query functions. Some values have to be provided by the user performing a query. This
includes the keys according to which the patient set is partitioned as well as upper and
lower bounds for the required value clamping (see Section 2.7.3). In some cases the
keys are provided automatically by the platform (for single-choice fields with a fixed
value set), in other cases the user has to provide them (for example, adequate age bins).
Similar functions are implemented for further query types, like count, sum, variance, or
quantiles. Tumult Analytics provides further functionality like the option to filter data
based on arbitrary criteria, which is not used in the platform at the time of writing but
might be included in the future.
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6.5 Platform Implementation and Lessons Learned

We have developed our platform in the form of a client (software component in the
medical centers) and server (central component) architecture.

The server is implemented in python using the web framework django22 and django
rest-framework23 for a REST-based API. This interface provides functionality for, amongst
others, user authentication and management, storing and reading encrypted medical and
personal patient data, as well as monitoring and benchmarking purposes. Connections
to the interface are secured via Transport Layer Security (TLS) [Res18] allowing state-
of-the-art CipherSpecs only.

For the client we implemented a browser-based solution (web application) in elm24 – a
functional programming language which is transpiled into JavaScript before execution.
The web application JavaScript code is made available by the server API. After receiving
this code, all medical center specific application logic, including security relevant opera-
tions like the encryption or decryption of medical or personal data, are performed by the
medical center staff’s web browser. The server has no access to locally processed data.

The decision to develop the client as a web application and not as a local application
directly running on a machine in the medical center was a result of the application
scenario. Computer systems in the medical sector are strictly administered and the
installation or updating of software is often prevented or accompanied by a complex
verification process. Since there were multiple medical centers participating in the
medical studies, the client software would have to be installed and updated in each
of these centers individually (if possible at all). This would have the potential to
delay the inclusion of new centers as well as the deployment of functional and also
potentially critical security patches significantly. The downside of this approach is
that the platform code is always received from the central server each time a client
uses the platform. Should an adversary gain access to the server, whether through
being an authorized server admin or through an attack, they could potentially inject
malicious client-side JavaScript code. This code could execute arbitrary actions, such as
transmitting cryptographic keys or plaintexts of personal data to the adversary. Local
applications are more secure in this regard. After they have been installed locally, an
adversary, to perform a similar attack, has to target the local machine, which generally
offers less attack surface than a semi-public server.

The cryptographic functionality used in the client and server is provided by libSodium25.
This library uses state-of-the-art cryptographic algorithms and key lengths [Ber09].
It employs symmetric authenticated encryption based on the stream cipher XSalsa20
and Poly1305 for the MAC creation. For asymmetric encryption, the library utilizes a
construction using ECC-based Diffie-Hellmann key agreement over Curve25519.

22. https://www.djangoproject.com/ (visited on 20.02.2024)
23. https://www.django-rest-framework.org/ (visited on 20.02.2024)
24. https://elm-lang.org/ (visited on 20.02.2024)
25. libSodium (https://doc.libsodium.org/) is a fork of NaCl (https://nacl.cr.yp.to/) focusing on

usability for software developers. Precisely, we use PyNaCl (https://github.com/pyca/pynacl) in
server-side code and libsodium.js (https://github.com/jedisct1/libsodium.js) in client-side code.
(visited on 20.02.2024)
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6.5 Platform Implementation and Lessons Learned

The platform has been deployed and used in two real-world medical studies. In these
studies the server component was deployed in a particularly secured area of a hospital
data center. To reduce the attack surface, access to the API was protected based on
internet protocol (IP) address filtering. Clients, that is, other medical centers collecting
patient data for the study, initially had to provide IP address ranges for their institution.
However, the extensive security and privacy measures employed in the platform and its
deployment posed minor and major challenges for us. In the following we provide some
anecdotal insights into these challenges.

As presented in Section 6.2.6, we provided a way to export backups of important
cryptographic keys in the form of QR codes. The platform user interface notifies users
explicitly about this function and the importance of being able to restore these keys.
Despite these measures, we had to intervene during several occasions to help medical
centers when their medical center admins had forgotten their passwords, had not
created backups of their cryptographic keys, and therefore lost access to these keys. Our
resolution involved temporarily elevating a regular user to a medical center admin to
create a new admin account for the actual admin and revoke the rights afterwards. This
solved the issue, given that at least one user account within the medical center had
access to the necessary personal and medical data keys kP and kM (see Section 6.2.3).
However, in one case where both existing users managed to forget their passwords,
we were forced to create a new medical center and empty dummy data records for all
patients’ personal data. Then we could migrate all medical data records by decrypting
the medical record keys kmi

with the server key ks and encrypting them again with the
new medical data key kM (in an automated fashion without us being able to learn the
server key). Finally, the medical center user had to enter the personal data again after
re-identifying the patients by their medical data.

The employed cryptographically enforced client separation (see Section 6.2.3) allows
only medical center users to access the personal data of their patients. While this
mechanism is crucial for the privacy guarantees of our platform, it poses challenges
when necessary updates to the data model during iterative system development require
modifications to the stored data. To address these challenges, we had to develop complex
client-side migration processes to align the stored data with the updated data model.
These migrations had to be executed in the user’s browser after they logged in, since
only then the personal data had been decrypted and was available for editing. A lot of
thought was devoted to a robust design of the migration logic, so that even inadvertent
user actions, such as closing the browser during the execution of a migration, do not
result in data integrity issues or leave the data in an inconsistent state.

Another challenge arose from the constraint that we as developers were not allowed
to examine the medical data, which was implemented in the maintenance mode (see
Section 6.2.7). At one point in time we received a bug report relating to a specific
medical data record. Even with extensive support of respective user, we were not able
to reconstruct the problem in our test environment. Therefore, we had to perform
cumbersome live debugging in collaboration with the user involving multiple tedious
deployments of new platform versions before catching the bug.

A final challenge consisted in the high security requirements of the server environment
our platform was deployed to in the hospital data center. To connect to the platform
server we had to tunnel our network traffic through a reverse proxy, access to which was
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only enabled after contacting the data center employees via telephone. Unfortunately,
the availability of employees has not always met our demands. This not only postponed
several regular updates, but it also caused one major downtime of the platform when a
bug fix could not be applied in time.

In conclusion, it is necessary to thoroughly evaluate the real-world implications of
security and privacy measures, especially in unforeseen scenarios that may deviate from
regular operations.

6.6 Related platforms

There is a large number of medical registries which target specific diseases26 and a
large share of these registries use self-developed software tools. Some companies offer
commercial registry software, including BQS27, RAYLYTIC28, and IT-Choice Software29.
Unfortunately, none of these companies provide technical details about security and
privacy features of their solutions. But there are also some open-source platforms
which, similar to our platform, are developed in a generic way to be used in a variety of
scenarios.

The Collaborative Health Outcomes Information Registry (CHOIR) [Med24] developed
by the Stanford Pain Management Center in partnership with the National Institutes of
Health (NIH) is a platform which collects patient data to support clinical care as well
as research. It additionally provides capabilities for further functionality like patient
scheduling. Originally, it was developed in the field of chronic pain treatment. It is said
to be open-source, but a code repository has not been made public at the time of writing.
Also, there are only few details about the architecture of CHOIR given, so that we are
not able to compare details to our platform.

The software Polymorphic encryption and pseudonymisation for personalised healthcare
(PEP) [Ver+16; Uni24] developed30 by the Radboud University which puts the data
subject at control of their own data. Their data is encrypted in a way that they can later
decide about which party is allowed to access and decrypt the data in an end-to-end
fashion. PEP separates the responsibilities between three components (an encrypted data
storage server and two complementary cryptographic key storage server) so that a single
successfully attacked server still prevents unauthorized data access. Additionally, PEP
provides a pseudonymization infrastructure to assign different pseudonyms to the same
data subject for different parties. In comparison to our platform, PEP allows the patient
more control about their data at the cost of requiring patients to approve each and
every data export for researchers and potential further functionality like monitoring (see

26. For example, the registry database of medical registries in Germany (german Registerdatenbank der
medizinischen Register in Deutschland) [BQS24] contains 415 entries as of November 22th, 2023.
About one third of the present registries use a self-developed platform solution and another third uses
“standardized products” – details about these products are unfortunately not provided.

27. https://www.bqs.de/bqs-register/02-bqs-register.php (visited on 16.02.2024)
28. https://www.raylytic.com/loesungen/medizinische-register/ (visited on 16.02.2024)
29. https://www.it-choice.de/produkte/starkit/ (visited on 16.02.2024)
30. The PEP repository containing the documentation and deployable docker containers can be found

at https://gitlab.pep.cs.ru.nl/pep-public (visited on 08.02.2024). PEP is announced as
open-source in he future, but the source code is not published at the time of writing.
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6.7 Conclusion

Section 6.1.3). This might reduce the amount of available research data, for example, in
scenarios where patients have a high risk of deceasing due to their disease. Additionally,
it is by no means obvious if protection measures like the DP-based data export described
in Section 6.4 are even possible in PEP or if data users always would have access to the
original data potentially putting patient’s privacy at more danger.

The Open Source Registry System for Rare Diseases (german Open-Source-Registersystem
für Seltene Erkrankungen (OSSE)) developed31 by the Goethe University Frankfurt [Fra24]
is an open-source registry software with a focus on rare diseases. Similar to our platform,
OSSE allows to create scenario-dependent forms with various field types. In addition, the
software includes a metadata repository allowing for interoperability between registries.
To protect patient identities OSSE uses pseudonymization. For this purpose it relies on
two distinct components, one to host the registry itself and one to host the pseudonymi-
zation service Mainzelliste (see Section 3.6). In comparison to our platform, in OSSE a
component outside of the medical center – the pseudonymization service – gets access
to unaltered personal patient data. A successful attack against this component (or a
malicious insider) can put all patients at danger of connecting their medical data and
their identity.

6.7 Conclusion

In this chapter we have provided a platform concept for privacy-preserving medical
registries supporting longitudinal studies. The platform offers functionality for, amongst
others, data quality validation through monitoring, performance comparisons between
different medical providers, the execution of data subject rights, and the option to
include patient-provided data. Personal patient data is protected by cryptographically
enforced client separation so that this data is only ever accessible by the originating
medical center, while medical data is stored in a pseudonymized form allowing to link
patient’s data records over time. The platform architecture is designed in a way so that
even users with more access rights, like developers or the survey admin, cannot access
the personal data. Further measures with respect to user authentication, password
choices, 2FA, key safety, and re-identification risks support the privacy and security
guarantees of the platform. To facilitate privacy-preserving access to collected medical
data for researchers, a data interface was developed that ensures protected access using
various privacy models, implemented in an extensible plugin-based manner.

One limitation of our platform was covered in Section 6.5. Since the client application
was implemented as a web application being executed by a medical center’s web browser,
the application JavaScript code is always requested from the central server. An adversary
with access to the server can always inject malicious code to leak cryptographic keys
or plaintext personal data. A client application executed locally could prevent this
weakness but would encounter practical difficulties (also mentioned in Section 6.5),
especially in the medical domain.

One area for future research involves the enhancement of the data interface through
the integration of additional privacy models. Moreover, the capabilities of the DP

31. The code repository can be found at https://bitbucket.org/medicalinformatics/mig.samply.ed
c.osse/src/master/ (visited on 01.02.2024).
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plugin could be extended to provide more comprehensive functionalities. Specifically
for researchers, an advanced query interface with extensive features could broaden the
scope for investigating a wide range of research questions. Additionally, it would be
essential to address issues related to the interface’s usability for non-experts, for example
supporting adequate privacy budget allocation.
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7 Conclusion

The use of data-driven statistical research methods in the healthcare domain becomes
increasingly prevalent and insights gained from personal health data allow for large
advancements in the field. On the other hand, privacy concerns arise from the presence
of this highly sensitive data. Data privacy techniques such as pseudonymization and
anonymization are crucial for balancing the conflicting interests of data utility and
privacy. Another dimension added to this problem is the distributed nature of potential
research data, with various parties, such as hospitals, general practitioners, and insurance
companies, being responsible for its collection and storage.

In this thesis we investigated the problem of implementing pseudonymization and
anonymization methods in distributed environments in the healthcare domain. We
started with a comprehensive overview of the field of privacy-preserving data publishing
covering fundamental principles as well as different classes of techniques and also
provided divergent positions of practitioners, legal scholars, and computer scientists.
The remainder of the thesis was concerned with specific usage scenarios for pseudony-
mization or anonymization related methods in distributed environments. Based on the
constraints of the scenarios, we designed and implemented several solutions to highlight
the challenges and opportunities of distributed data privacy methods in the healthcare
domain.

In this concluding chapter, we provide a summary of our contributions in Section 7.1,
look at potential areas of future research in Section 7.2, and give a short outlook in
Section 7.3.

7.1 Summary of Contributions

Five research contributions originated from this thesis. In the following we present the
main results. We forgo reiterating limitations and future research possibilities, as they
are discussed in the conclusion sections of respective chapters (Sections 3.7, 4.8, 5.5
and 6.7).

C.1: Technical and Legal Literature Review

Various risks for individuals arise from the exposure of personal data, ranging from
stigmatization to direct physical harm. We have developed a taxonomy of disclosure
risks emerging for individuals, whether included in a published dataset or not. This
taxonomy unifies differing perspectives and terminologies found in the existing literature.
Diverging terminologies are also evident for central terms such as personal data, de-
identification, pseudonymization, and anonymization. We analyzed these terms from the
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perspectives of computer science as well as European and United States law and find
significant regional and discipline-specific variations.

Furthermore, we investigated the central classes of privacy-preserving data publish-
ing methods, namely pseudonymization, de-identification techniques, syntactic privacy
models, and semantic privacy models. We presented detailed information on each
method, encompassing fundamentals, basic techniques, advantages, and disadvantages.
It becomes apparent that there is no one-size-fits-all solution in data privacy. Pseudo-
nymization enables the linking of data records and re-identification, yet it does not
prevent re-identification risks from data attributes that are not pseudonymized. De-
identification techniques may offer some level of protection, but it is hard to evaluate
their privacy impact. While syntactic privacy models offer quantifiable guarantees,
the underlying principles such as the classification of attributes or assumptions about
potential background knowledge cannot necessarily be maintained in practice. Semantic
privacy models, particularly DP, achieve quantifiable and composable privacy guarantees
without relying on assumptions about potential adversaries. However, these models
are not suitable for analyzing small datasets and using them in practice entails several
challenges, such as adequately choosing and distributing privacy budgets.

The varying perspectives on even fundamental terms and the absence of a universal
solution for data privacy have raised emotional discussions on the correct way to
handle data privacy among computer scientists, legal scholars, and practitioners. We
summarized the debate, linked it to existing methods, and discussed potential policy
changes to enhance the current legal status regarding data privacy.

C.2: Distributed Pseudonym Generation

We presented a solution for achieving pseudonymization in a distributed setting where
data records about individuals are collected from multiple data sources. Our solution
ensures that an individual is assigned the same pseudonym, regardless of the data
source, a property we call globally consistent pseudonyms. Rather than relying on a
trusted third party to maintain a global pseudonym mapping table in plaintext, our goal
was to achieve this functionality without revealing the identity-pseudonym relationship
to any party other than the data source. To achieve this, we employ a multi-reader multi-
writer SE scheme to hide the identity data from a third party (the pseudonymization
service), while still allowing searches for existing pseudonyms related to the identity
data. Our work improves on related work by Zimmer et al. [Zim+20] in that it allows the
management (enrollment and revocation) of data sources. Additionally, our work offers
fuzzy search capabilities to link identities to pseudonyms in case of typos or variations in
the spelling of identity data. Similar to the work of Zimmer et al., our solution enables
the restriction of data record linkability with respect to time or budget restrictions to
mitigate privacy implications to individuals when necessary. In our evaluation, we
compared our scheme to several solutions proposed in related work regarding privacy-
related properties as well as practical considerations. Our analysis revealed that no
single solution fulfilled all the properties we defined. Therefore, users are required to
select a solution based on the specific requirements dictated by their unique scenario. A
performance evaluation demonstrated the practicality of the core scheme, with searches
for 50,000 pseudonyms completed in under 0.3 seconds. However, the fuzzy search
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extension may be too resource-intensive in scenarios with even moderate pseudonym
quantities, taking over 2 seconds for a database containing 1,000 entries.

C.3: Distributed Pseudonym Disclosure

In addition to the distribution of pseudonym generation we provide an approach for
the distribution of pseudonym disclosure, that is, the re-identification of the individual
related to the pseudonym. Since this re-identification can reveal highly sensitive infor-
mation about an individual, safeguarding the disclosure process against unauthorized
access is of high importance. To achieve this we enforce the so-called multi-eye principle,
which requires the sensitive process to be approved by multiple parties. This principle is
accomplished by utilizing threshold decryption, a class of cryptographic schemes which
distribute the decryption process of a public-key scheme. By encrypting an individual’s
identifying attributes and storing the resulting ciphertext alongside the individual’s
assigned pseudonym, identity disclosure can only take place with the collaboration of
a minimum of parties possessing shares of the respective private key. However, the
management of keys in such schemes poses unique challenges compared to traditional
public-key schemes. To address these challenges, we proposed a novel scheme for
managing authorized parties in threshold decryption schemes employing PRE. This
new scheme improves on related work in that its security guarantees do not rely on
single parties deleting old key material or ciphertexts. We successfully implemented the
scheme and validated its practical efficiency, achieving running times within the range
of single-digit milliseconds for recurring operations.

C.4: Distributed Syntactic Anonymization

Shifting the focus from pseudonymization to anonymization, we investigated a protocol
for distributed syntactic anonymization proposed by Mohammed et al. [Moh+10]. We
identified vulnerabilities in the protocol stemming from the utilization of a basic secure-
sum protocol. First, the protocol is vulnerable to colluding parties surrounding a victim
within the communication ring structure it operates in. Second, a severe flaw allows
the orchestrating party to deduce information about attribute distributions in the data
– deductions which are not possible from the final protocol result, the table providing
syntactic privacy guarantees. This leakage arises from the protocol’s collection of sizes of
potential equivalence classes, which would come into existence if further specializations
of the data were carried out, under the condition that these equivalence classes meet
the syntactic privacy requirements. Essentially, the protocol has to look one step into
the future. In response, we provide an updated subprotocol based on SMPC which
prevents the information leakage to mitigate the vulnerabilities. The basic idea of the
subprotocol is to only compute if a potential equivalence class size exceeds a threshold,
without disclosing the exact size. This protocol might be of independent interest for
other researchers tackling related problems. We implemented the updated protocol and
measured its performance. Due to the inherent computational and communication costs
associated with SMPC, the updated protocol comes with a heavy performance penalty,
ranging from 10 to 1000 times depending on the dataset and the number of parties.
Despite the significant performance impact associated with the countermeasure, this
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should not generally prevent its implementation, as the protocol is typically intended for
a one-time execution.

C.5: Privacy-Preserving Medical Registry

While the initial four contributions are more theoretical in nature, the final contribution
deals with practical considerations around the practical implementation of privacy-
preserving measures. Our objective was to provide a concept for a medical registry – a
system to prospectively collect data on patients meeting specific criteria over a longer
period. This registry should support longitudinal studies, which involve collecting data
on individual patients at multiple points in time. Apart from this core feature, the registry
should offer further functionalities such as monitoring the validity of collected data
and comparing the performance of healthcare providers. We proposed an architecture
incorporating various privacy and security measures to safeguard personal and medical
patient data. These measures include pseudonymization, cryptographically enforced
client separation, and additional techniques focusing on the security and safety of
cryptographic keys. Additionally, we offered an extensible data interface that grants
researchers access to medical data with syntactic or semantic privacy protections in
place. The platform has been successfully implemented and utilized in two real-world
medical studies involving over 5000 patients. We provide some insights gained from our
experience with using the platform in these studies.

7.2 Future Research

Sections 3.7, 4.8, 5.5 and 6.7 mentioned various ideas for future research within the
scope of this thesis. But the field of secure and privacy-friendly research data utilization
presents large research opportunities that extend far beyond the scope of this thesis. In
this section we want to provide an outlook on further areas that could be worthwhile
exploring.

Methodological Work on Data Privacy

This potential research work involves the development of advanced techniques to
enhance data privacy while preserving data utility. One can inspect existing approaches
to improve factors such as performance, scalability, re-identification risks, or data quality.
Additionally, investigating novel approaches such as DP and related semantic privacy
models and their application in ML or synthetic data generation (see Section 2.7.6) can
offer new insights into data protection strategies. Furthermore, focusing on domain-
specific challenges and the customization of anonymization techniques for diverse data
types, such as unstructured or multimedia data, can lead to custom solutions that
address the requirements of different scenarios. By advancing research in data privacy
techniques, researchers can contribute to the development of robust privacy-preserving
tools that balance data privacy and data utility effectively in various contexts and
applications.
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Distributed Architectures

The application of data privacy techniques in distributed environments becomes more
and more important with an increasing number of potentially collected data sources.
While some architectures with a specific focus on anonymization and pseudonymization
methods have been explored in this thesis, there is much room for future research.
Researchers can investigate the design and implementation of distributed systems that
incorporate privacy-preserving mechanisms to protect sensitive data across multiple
parties. In addition to the application of basic techniques in distributed environments
one can also look into advanced and novel methods such as SMPC, FL, or homomorphic
encryption (HE) and their application to privacy-preserving data analysis. The intersec-
tion of privacy-preserving techniques and distributed architectures offers a wide range of
research opportunities that can prove beneficial in a society where an increasing volume
of personal data is stored across distributed databases.

Usable Privacy Technologies

Another line of potential research lies in exploring usability aspects of data privacy
techniques. Investigating the user experience and interaction design of technical frame-
works for these measures can enhance user acceptance and drive the adaptation of novel
approaches. As an example, some problems hindering the practical implementation of
privacy data techniques, in particular DP, are given in Section 2.7.7. Researchers can
develop intuitive interfaces and educational tools that empower individuals to make
informed decisions about adequate data privacy measures for their application in their
specific usage context. Additionally, the provisioning of more automated solutions,
in which, for example, privacy parameters are derived automatically or at least tool-
supported, can prove beneficial for easier as well as more secure implementations. It is
essential to support users in working with complex privacy techniques to increase the
prevalence and correct use of these techniques.

Awareness and Education

Future research opportunities also exist in enhancing user awareness and education
regarding the importance of privacy-preserving techniques such as anonymization and
pseudonymization. By demonstrating practical examples of privacy breaches and po-
tential risks associated with inadequate data protection measures (see Sections 2.6.8
and 2.8), non-experts can gain a better understanding of the importance of safeguarding
personal information. Additionally, developing educational resources, such as tutorials
or best practice recommendations, can empower individuals to make informed decisions
about data privacy. By combining real-world examples with educational content, re-
searchers can offer non-experts an accessible way to navigate technical complexities to
increase privacy awareness and promote responsible data handling practices.
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Interdisciplinary Collaboration

Another promising area of future research lies in the interdisciplinary collaboration
between computer scientists, researchers in data privacy, legal scholars, data protection
authorities, and policymakers to advance the field of data privacy techniques in accor-
dance with privacy laws. By convening technical experts and legal professionals, studies
can explore the intersection of privacy measures and regulatory frameworks to ensure
compliance with privacy laws. One example for such studies is the deduction of formal
requirements from laws covered in Section 2.9.3. However, it is just as important to
investigate the implications of technical developments, such as improved data privacy
techniques as well as new forms of attacks, to drive advancements in future privacy laws.
Collaborative efforts can play an important role in addressing privacy challenges in a
legally compliant fashion as well as driving the progression of regulatory frameworks
respecting technical developments.

Real-World Applications

Finally, future research can look into the practical implementation of data privacy
techniques in real-world applications across various domains. We have provided one
example for a practical solution in the healthcare domain in Chapter 6. Exploring the
integration of privacy-preserving techniques in other healthcare applications or further
sensitive domains like finance can offer insights into the field-specific challenges and
benefits of ensuring data privacy while maintaining data utility. This allows researchers
to improve data privacy practices in real-world settings and to address the increasing
data protection needs in our data-rich society.

7.3 Final Outlook

In this thesis we have have investigated the challenges and opportunities distributed
environments pose to the application of data privacy methods, in particular pseudony-
mization and anonymization techniques. While our focus has been on medical research,
it should not go unmentioned that the same or similar considerations apply to other
fields of research based on personal data as well. As we have elaborated in Section 7.2,
there a lot of further research opportunities focusing on various aspects of data privacy.
The intersection of data science, regulatory frameworks, and technical privacy measures
has significant consequences for the evolution of medical research. It is essential to
balance the safeguarding of personal medical data with the growing data needs in
the medical research domain. Interdisciplinary research and research-based regulatory
efforts can help to achieve this balance. This final outlook encourages stakeholders to
face the challenges and opportunities ahead, so that we can create a future in which
research benefits from personal health data while simultaneously respecting the privacy
of individuals.
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A Appendix

A.1 Publications Related to the Thesis

The following publications are related to parts of this thesis.

[Pet+19] Tom Petersen, Maximilian Blochberger, Tobias Mueller, Hannes Federrath,
and Christian-Alexander Behrendt. Sichere und datenschutzgerechte Um-
setzung medizinischer Register. In: Datenschutz und Datensicherheit - DuD
43.8 (2019). DOI: 10.1007/s11623-019-1153-z.

[Pet20] Tom Petersen. Datenschutzgerechte und mehrseitig sichere IT-Plattformen
für die medizinische Forschung. In: SICHERHEIT 2020. Gesellschaft für
Informatik e.V., 2020. DOI: 10.18420/sicherheit2020_13.

[Zim+20] Ephraim Zimmer, Christian Burkert, Tom Petersen, and Hannes Federrath.
PEEPLL: Privacy-Enhanced Event Pseudonymisation with Limited Linkability.
In: Proceedings of the 35th Annual ACM Symposium on Applied Computing.
2020. DOI: 10.1145/3341105.3375781.

A.2 Additional Publications

The following publications were created during the doctoral phase but are not directly
related to the thesis.

[Beh+20] Christian-Alexander Behrendt, Thea Schwaneberg, Sandra Hischke, To-
bias Müller, Tom Petersen, Ursula Marschall, Sebastian Debus, and Lev-
ente Kriston. Data Privacy Compliant Validation of Health Insurance Claims
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DOI: 10.1055/a-0883-5098.

[BPF19] Maximilian Blochberger, Tom Petersen, and Hannes Federrath. Mitigating
Cryptographic Mistakes by Design. In: Mensch und Computer 2019. 2019.
DOI: 10.18420/muc2019-ws-302-02.

[PSF23] Tom Petersen, Joshua Stock, and Hannes Federrath. Bedrohungsszenarien
für Energieinfrastrukturen. Working paper written as part of the project
Norddeutsches Reallabor. 2023. URL: https://svs.informatik.uni-ha
mburg.de/publications/2023/2023-07-28-NRL-Whitepaper-UHH.pdf
(visited on 10.5.2024).
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rath, and Thea Kreutzburg. Privatsphärefreundliches maschinelles Lernen –
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DOI: 10.1007/s00287-022-01438-3.
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