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Abstract

The primary goal of JUNO is to resolve the neutrino mass hierarchy using precision
spectral measurements of reactor antineutrino oscillations. To achieve this goal a
precise knowledge of the reactor spectrum is required. Since the existing reference
spectra show a deficit in measured reactor fluxes, TAO, a ton-level, liquid scintillator
detector with a baseline of 44m, is set up as a reference detector to JUNO. With
a set of 4024 Silicon Photomultipliers (SiPM) and an operating temperature at -
50∘C, TAO is expected to record about 2000 antineutrino events per day and aims to
achieve a resolution of less than 2% at 1MeV. For that, a precise reconstruction of
the reactor antineutrino events is necessary. These events occur through the Inverse
Beta Decay (IBD), producing a prompt positron and delayed neutron signal. Since
positron events carry most of the energy, this thesis focuses on the vertex and energy
reconstruction of positron events generated by the official TAO offline software. The
reconstruction was carried out through Graph Convolutional Networks (GCNs). A
graph, resembling the detector with 4024 nodes representing SiPMs with features,
first hit time and hit counts was modeled. The model was trained and validated on
5 million events covering energies from 1-10MeV. The final evaluation on the 1MeV
subset resulted in a vertex resolution of 8mm and energy resolution of 1.8%. Notably,
both vertex and energy resolutions even increased for higher energies.

The ESSnuSB+ aims to precisely measure neutrino interaction cross sections below
600MeV. The 2GeV proton beam from the ESS hits the titanium target, resulting in
a secondary hadron beam predominantly consisting of pions. The focusing of charged
pions is done by the magnetic horns and is critical for generating intense neutrino
beams. In this study, the horn is simulated using FLUKA and its configuration is
optimized utilizing a Genetic Algorithm (GA). Dimensions of the horn like the lengths,
radii, heights, and current were optimized for 50 generations, after which no significant
improvement was observed. The fitness score, a measure of detection efficiency,
improved from 0.725 to 0.860, resulting in a 20% increase in pion concentration,
with the optimized horn configuration. This enhanced focusing will improve neutrino
flux and precision in measurements of neutrino cross sections.
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Zusammenfassung

Das Hauptziel von JUNO ist die Auflösung der Neutrinomassenhierarchie durch präzise
Messung des Oszillationspektrums von Reaktor-Antineutrinos. Um dieses Ziel zu er-
reichen, ist allerdings eine genaue Kenntnis des unoszillierten Reaktorspektrums er-
forderlich. Da das vorhandene Referenzspektrum ein Defizit in den gemessenen Reak-
torflüssen aufweist, wird das TAO-Experiment als Referenzdetektor für JUNO einge-
setzt. TAO ist ein Flüssigszintillatordetektor im Tonnenbereich mit einem Abstand
von 44m zu einem Reaktor. Mit einer Anordnung aus 4024 Silizium-Photomultiplier
(SiPMs) und einer Betriebstemperatur von−50∘C wird erwartet, dass TAO etwa 2000
Antineutrino-Ereignisse pro Tag messen wird mit einer gewünschten Energieauflösung
von weniger als 2% bei einem MeV Energie. Dafür ist eine präzise Rekonstruktion
der Reaktor-Antineutrino-Ereignisse notwendig. Diese Ereignisse finden als Inverser
Betazerfall statt, der ein promptes Positron- und ein verzögertes Neutronsignal zur
Folge hat. Da die meiste Energie von den Positronen weggetragen wird, ist der Fokus
dieser Arbeit die Energie- und Vertexrekonstruktion von Positronenereignssen, die
von der offiziellen TAO offline Software generiert werden. Die Rekonstruktion wurde
mithilfe von Graph Convolutional Networks (GCNs) durchgeführt. Der Graph besteht
dabei aus 4024 Knoten, die die SiPMs repräsentieren, wobei jeder Knoten die Zeit
des ersten Photontreffers und die Anzahl der Photontreffer als Eigenschaften hat.
Das Modell wurde auf fünf Millionen Ereignisse mit Energien zwischen einem und
zehn MeV trainiert und validiert. Die finale Evaluation auf dem 1MeV-Datensatz
resultierte in einer Vertexauflösung von 8mm und einer Energieauflösung von 1, 8%,
wobei sich beide Auflösungen für höhere Energien weiter verbesserten.

Das Experiment ESSnuSB+ zielt darauf ab, die Neutrino-Wechselwirkungsquerschnitte
für unter 600MeV zu messen. Dafür wird ein Strahl aus Protonen mit einer Energie
von 2GeV aus dem ESS auf ein Titaniumtarget gelenkt, wodurch ein sekundärer
Strahl aus Hadronen, hauptsächlich Pionen, entsteht. Das Fokussieren dieser Pionen
via Magnete (sogenannter magnetic horns) ist essentiell für einen intensiven Neutri-
nostrahl. In dieser Studie wird ein solcher Magnet mit FLUKA simuliert und seine
Spezifikationen mithilfe von einem genetischen Algorithmus optimiert. Dabei wur-
den Größen wie Längen, Radien, Höhen und der elektrische Strom in 50 Generationen
optimiert, nach denen keine weitere signifikante Verbesserung festgestellt werden kon-
nte. Die Kenngröße für die Höhe der Detektionseffizienz konnte dabei von 0, 725 auf
0, 860 verbessert werden. Das entspricht einer Zunahme der Pionenkonzentration von
20% mit der optimierten Magnetkonfiguration. Mit der verbesserten Fokussierung
verbessert sich auch der Neutrinofluss und damit die Präzision für die Vermessung
der Neutrino-Wechselwirkungsquerschnitte.





Contents I

Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Neutrino Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Neutrinos in Standard Model . . . . . . . . . . . . . . . . . . . . . 3
2.2 Neutrino Oscillation Theory . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Neutrino Oscillations in Vacuum . . . . . . . . . . . . . . . . 5
2.2.2 Neutrino Oscillations in Matter . . . . . . . . . . . . . . . . 7

2.3 Mixing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Neutrino Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Solar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Atmospheric . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Nature of Neutrinos . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Mass Ordering . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 CP Violating Phase . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 Sterile Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Liquid Scintillator Experiments: JUNO & TAO . . . . . . . . . . . . . . . 21
3.1 Physics of Liquid Scintillator Detectors . . . . . . . . . . . . . . . . 21

3.1.1 Primary Interaction . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Emission, Propagation & Detection of Light . . . . . . . . . 22

3.2 JUNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Experimental Framework of TAO . . . . . . . . . . . . . . . . . . . 27

3.3.1 Detector Layout . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Signal & Background . . . . . . . . . . . . . . . . . . . . . 31

3.4 Physics Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Fine Structure Measurement . . . . . . . . . . . . . . . . . . 33
3.4.2 Reference Spectrum for JUNO . . . . . . . . . . . . . . . . 34
3.4.3 Other Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Deep Learning and Genetic Algorithm . . . . . . . . . . . . . . . . . . . . 37
4.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Structure of Neural Networks . . . . . . . . . . . . . . . . . 37
4.1.2 Key steps in Building Neural Networks . . . . . . . . . . . . 39
4.1.3 Layers in the Architecture . . . . . . . . . . . . . . . . . . . 44
4.1.4 Role of GCN in Neutrino Event Reconstruction . . . . . . . . 48

4.2 Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Basic Structure of GA . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Role of GA in Optimizing Horn Geometry . . . . . . . . . . . 52



II Contents

5 Event Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Vertex Reconstruction . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 Energy Reconstruction . . . . . . . . . . . . . . . . . . . . . 70

6 Optimization of Horn Geometry in ESSnuSB+ . . . . . . . . . . . . . . . 75
6.1 Physics Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Experimental Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Motivation to Optimize Horn Geometry . . . . . . . . . . . . . . . . 82
6.4 Implementation of GA . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.1 Work Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4.2 Definition of Individuals . . . . . . . . . . . . . . . . . . . . 84
6.4.3 Evaluation & Propagation of Individuals . . . . . . . . . . . 86
6.4.4 Optimization results . . . . . . . . . . . . . . . . . . . . . . 87

7 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Declaration on oath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



1 Introduction 1

1 Introduction

Neutrinos are the elusive and light elementary particles that interact via weak force.
Since their first proposal in 1930 [1] to explain the continuous energy spectrum and
the conservation of angular momentum in 𝛽-decays, neutrinos have fascinated re-
searchers. They were experimentally confirmed in 1956 by the Cowan-Reines Neutrino
Experiment [2]. The confirmation later led to thre discovery the Solar Neutrino prob-
lem in the 1960s as a discrepancy was noticed between the measured and predicted
solar neutrino flux. The discrepancy was later settled by the experimental evidence
of neutrinos oscillations as observed by the Sudbury Neutrino Observatory (SNO) [3]
and the Super-Kamiokande [4]. It was discovered that neutrinos oscillate between
their three detected flavors—electron, muon, and tau—a discovery which won the
Nobel Prize in 2015 [5].

Following the confirmation of neutrino oscillations, numerous experiments have
been conducted to precisely measure them with great success. However, many ques-
tions in the field of neutrino physics remain unanswered, such as nature of neutrinos,
Neutrino Mass Ordering (NMO) and Charge Parity Violation (CPV). The main ob-
jective of the Jiangmen Underground Neutrino Observatory (JUNO) [6] experiment is
to determine the NMO with 3𝜎 significance over six years, focusing primarily on mea-
suring vacuum neutrino oscillations [7]. To achieve this goal, JUNO uses a 20 kton
liquid scintillator detector to measure the electron anti-neutrino flux from two nuclear
power plants, located at 53 km baseline. Monitored by 17,612 large 20” and 25,600
small 3”-Photomultiplier Tubes (PMTs), it aims for an energy resolution of about 3%
at 1MeV. For this level of precision, a precise knowledge of the reactor neutrino flux
is crucial. A reference spectrum can be provided by the existing reactor antineutrino
experiments like Daya Bay [7], RENO [8] and Double CHOOZ [9]. However, the
obtained reactor neutrino spectrum reveal an approximate 3% deficit in measured
reactor fluxes. Additionally, data from experiments demonstrate an unexplained ex-
cess in the neutrino flux from 5MeV to 6MeV. This unreliable nature of the model
predictions for the reactor neutrino flux demands an additional detector for JUNO
to measure the flux near the source. Hence a reference detector, Taishan Antineu-
trino Observatory (TAO) [10] is set up at 44 m from the reactor core (4.6 GW) to
provide the benchmark spectrum for JUNO. TAO uses 2.8 tons of gadolinium-doped
liquid scintillator, and a set of 4024 SiPM resulting in a photoelectron yield of about
4500/MeV. The detector operates at -50∘C to minimize the dark noise of the SiPMs
and is expected to record roughly 2000 antineutrino emissions per day. The TAO
experiment should surpass JUNO’s resolution to serve as an effective reference de-
tector. With a resolution of less than 2% at 1MeV, TAO will be able to resolve the
fine spectral structures and reduce the dependence on theoretical models in JUNO’s
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analysis. To achieve this resolution a precise reconstruction of the neutrino events is
essential. Such an event consists of a neutrino interacting with the detector via IBD
resulting in a prompt signal from the positron and a delayed signal from the neutron.
Since the positron carries most of the energy and is well-suited to find the event’s
vertex, this thesis focuses solely on positron events. The position and energy of these
positron events are reconstructed via GCNs resembling the detector topography. A
graph containing 4024 nodes with each node having information of first hit time and
number of hits was developed. The network was trained and evaluated on five million
events generated from the TAO offline software. The results were compared with the
center of charge method as mentioned in [10].

The other experiment that is studied in this thesis is the European Spallation Source
neutrino Super Beam+ (ESSnuSB+) which aims to precisely measure neutrino inter-
action cross sections below 600MeV, to aid the European Spallation Source neutrino
Super Beam (ESSnuSB) to measure the leptonic CPV at the second oscillation max-
imum. It utilizes the European Spallation Source (ESS), a powerful neutron facility,
designed to operate at 5MW and is under construction in Lund, Sweden[11]. The
high-energy proton beam from the ESS hits the titanium target, resulting in a sec-
ondary hadron beam predominantly consisting of pions. The focusing of charged pions
is done by the magnetic horns and is critical for generating intense neutrino beams,
that is essential for measuring neutrino interaction cross sections. In this study, the
horn is simulated using FLUKA [12] to provide the pion profile corresponding to each
horn configuration. The configuration is optimized over fifty generation utilizing a
genetic algorithm. The optimization process was terminated as no further improve-
ment was observed. The final horn configuration produced a denser pion profile as
compared to the initial configuration.

The thesis is structured as follows. Chapter 2 introduces the fundamentals of
neutrino physics, highlighting the key discoveries made and addressing open questions
that currently exist in the field. Chapter 3 follows, and introduces the JUNO and TAO
experiments. It highlights the benefits of having TAO as JUNO’s reference detector
and discusses the experimental setup and the potential physics goals of the TAO
experiment. Chapter 4 is the introduction to deep learning and the genetic algorithm.
It covers the basics and specific techniques utilized in this study. The implementation
of deep learning methods to reconstruct events in the TAO detector is explained in
Chapter 5. It describes the simulation involved, the data generated and the analysis
using deep learning tools. Following this is chapter 6 giving a concise introduction
to the ESSnuSB+ experiment and its physics goals. The chapter then shows the
implementation of genetic algorithm to optimize the horn geometry of the ESSnuSB+
experiment. The obtained results of both studies are discussed in chapter 7, drawing
conclusions and outlining future research directions.
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2 Neutrino Physics

Neutrinos are the second most abundant particles in the universe after photons
but detecting them is challenging due to their weak interactions with matter. From
the building of the neutrino hypothesis to its experimental confirmation, and to the
discovery of the phenomenon of neutrino oscillations, much has been learned about
neutrinos. This chapter provides a brief overview of the current understanding of neu-
trinos. In section 2.1, a brief overview of the Neutrinos in the Standard Model (SM)
is presented, and in section 2.2, the theoretical description of neutrino oscillations. In
section 2.3 the experimental observations of neutrino oscillation, other key historical
development and current state are discussed. Lastly, section 2.5 provides a brief re-
view of some open questions in the neutrino sector and discusses ongoing and future
experimental activities.

2.1 Neutrinos in Standard Model

Neutrinos are matter particles within SM [13] of particle physics, and come in three
generations. The SM is a gauge theory with local symmetry group 𝑆𝑈(3)𝑆𝑈(2)× 𝑈(1)
[14]. This gauge group determines how particles interact and the number of gauge
bosons representing the carriers of the interactions. It is built of three components,
𝑆𝑈(3) describes Quantum Chromodynamics (QCD), the theory of strong interac-
tions, exchanged by eight gluons, 𝑆𝑈(2)× 𝑈(1) describes electroweak interactions
with 𝑆𝑈(2) responsible for 𝑊1,𝑊2,𝑊3 bosons and 𝑈(1) for B boson. The 𝑊1 and
𝑊2 mix to form the charges bosons 𝑊+ and 𝑊− bosons. 𝑊3 and B mix to form 𝑍0

boson and 𝛾. Figure 1 shows the fundamental particles in the SM that are comprised
of quarks, leptons and bosons. Quarks and leptons are grouped in three generations,
and classified as fermions having a spin 1/2. Quarks appear in six flavors and take
part in all three interactions described in the SM. Charged leptons, electrons, muons
and taus interact via electromagnetic and weak forces. There are also three flavors of
neutrinos corresponding to charged leptons: electron, muon and tau neutrinos. Neu-
trinos interact through weak force. The gauge bosons are fundamental particles that
act as force carriers for fermions. They are photons (for electromagnetism), gluons
(for the strong force) and 𝑊 and 𝑍 bosons (for the weak force). All gauge bosons
have spin 1. The SM has also a scalar boson, the so-called Higgs boson, that is
responsible for giving masses to weak bosons and to fermions through the well-known
Higgs mechanism [15] [16].

Neutrinos in the SM are electrically neutral, spin−1
2

Dirac fermions with zero mass
and no color charge, therefore, they only interact through the Charged Current (CC)
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Figure 1: A schematic view of the Standard model that illustrates elementary particles
and their interactions [17].

and the Neutral Current (NC) of the weak force, which are mediated by the massive
bosons 𝑊± (𝑚𝑊 = 80.4GeV) and 𝑍0 (𝑚𝑍= 91.2GeV), respectively [18]. The three
neutrinos are the counterparts of the three charged leptons 𝑒, 𝜇 and 𝜏 , which define
the so-called flavor of a neutrino (𝜈) and its antiparticle (𝜈): 𝜈𝑒 (𝜈𝑒), 𝜈𝜇 (𝜈𝜇) and
𝜈𝜏 (𝜈𝜏 ). A neutrino 𝜈𝑙 being of the Lorentz invariant flavor associated with the
charged lepton 𝑙 = 𝑒, 𝜇, 𝜏 is produced from 𝑙− or together with 𝑙+ in a CC weak
interaction. The opposite holds for the antineutrino 𝜈𝑙. According to the chiral V-A
theory, only the left-handed component of a neutrino or the right-handed component
of an antineutrino interact weakly [19]. Because the chirality of neutrinos matches
their helicity, the SM includes only left-handed neutrinos with negative helicity and
right-handed antineutrinos with positive helicity. This means that the standard Higgs
mechanism, which needs a change in handedness to generate masses, doesn’t apply
to neutrinos within the SM.

In contrast to the previously mentioned characteristics of neutrinos in the SM, ex-
perimentally observed neutrino flavour transformation indicate that neutrinos possess
mass. These oscillations arise from the non-zero masses of neutrinos and the mixing
between different mass and flavor eigenstates. To account for neutrino masses, ex-
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tensions to the SM are being explored. Even after discovering neutrino oscillations,
many aspects of neutrinos remain mysteries. Key questions include their absolute
mass scale, mass ordering, whether they are Dirac or Majorana particles, and the
extent of CP-violation in their mixing. These topics are subsequently discussed in
section 2.5.

2.2 Neutrino Oscillation Theory

Although it was long thought that neutrinos were massless, early theoretical work
attempted to describe massive neutrinos and study neutrino mixing and oscillation.
The idea of masses, mixing, and oscillations for neutrinos was proposed by Bruno
Pontecorvo in 1957 with analogies of leptons and hadrons, suggesting oscillations
similar to the 𝐾0 ⇌ 𝐾0 system [20]. The similarity between the𝐾0 ⇌ 𝐾0 system
and neutrino oscillations is that they involve flavor transformation of particles, known
as flavor mixing. Initially, with only one type of neutrino, oscillations were limited to
neutrinos and antineutrinos. After the discovery of the muon-neutrino, Pontecorvo
developed this concept into two neutrinos [21]. This groundbreaking idea predated
the phenomenon of solar neutrino oscillations, which was subsequently confirmed
through the Homestake experiment at the end of 1960 [22]. Pontecorvo together
with V. Gribov later introduced the first phenomenological theory of two-neutrino
mixing in 1969. Apart from that, in 1962, Z. Maki, M. Nakagawa, and S. Sakata
introduced the theory of two neutrino mixing by defining "true neutrinos" 𝜈1 and 𝜈2
as combinations of 𝜈𝑒 and 𝜈𝜇. This led to the Pontecorvo, Maki, Nakagawa, and
Sakata (PMNS) Pontecorvo, Maki, Nakagawa, and Sakata (PMNS) [23]. So far, the
theory of three neutrino oscillation has been both experimentally and theoretically well
explored and confirmed [24]–[30]. However, some aspects are still to be understood.

2.2.1 Neutrino Oscillations in Vacuum

Under the assumption [31], [32] of two mass eigenstates, 𝜈1 and 𝜈2, having masses
𝑚1 and 𝑚2 and flavour states 𝜈𝑒 and 𝜈𝜇, the connection between flavor and mass
eigenstates can be described by

[︂
𝜈𝑒
𝜈𝜇

]︂
=

[︂
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]︂ [︂
𝜈1
𝜈2

]︂
. (2.1)

The evolved neutrino state at a certain time 𝑡 can be expressed as

|𝜈(𝑡)⟩ = cos 𝜃|𝜈1(0)⟩𝑒−𝑖𝐸1𝑡 + sin 𝜃|𝜈2(0)⟩𝑒−𝑖𝐸2𝑡 (2.2)

where |𝜈1(0)⟩ and |𝜈2(0)⟩ are the neutrino states at time 𝑡 = 0 and 𝐸1 and 𝐸2 are
the energy of the mass eigenstates. Therefore the time-evolved state projected onto
𝜈𝑒 and 𝜈𝜇 can be derived as follows
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⟨𝜈𝑒|𝜈(𝑡)⟩ = cos 𝜃⟨𝜈𝑒|𝜈1(0)⟩𝑒−𝑖𝐸1𝑡 + sin 𝜃⟨𝜈𝑒|𝜈2(0)⟩𝑒−𝑖𝐸2𝑡

= cos2 𝜃𝑒−𝑖𝐸1𝑡 + sin2 𝜃𝑒−𝑖𝐸2𝑡
(2.3)

⟨𝜈𝜇|𝜈(𝑡)⟩ = cos 𝜃⟨𝜈𝜇|𝜈1(0)⟩𝑒−𝑖𝐸1𝑡 + sin 𝜃⟨𝜈𝜇|𝜈2(0)⟩𝑒−𝑖𝐸2𝑡

= cos 𝜃 sin 𝜃(𝑒−𝑖𝐸2𝑡 − 𝑒−𝑖𝐸1𝑡).
(2.4)

Hence the probability of observing 𝜈𝜇 after time 𝑡 is

|⟨𝜈𝜇|𝜈(𝑡)⟩|2 = sin2 2𝜃 sin2

(︂
(𝐸2 − 𝐸1)𝑡

2

)︂
. (2.5)

The energy mass eigenstate of neutrinos can be approximated as 𝐸𝑖 = 𝑝2𝑖 +
𝑚2

𝑖

2𝑝𝑖
where

𝑝𝑖 and 𝑚𝑖 are the momentum and mass of the 𝑖-th eigenstate respectively. The two
mass eigenstates may have differing momenta, but approximating their momenta as
equal yields a qualitatively similar expression for the probability. Thus, it can be
assumed that the neutrino momentum is 𝑝 = 𝑝1 = 𝑝2. Neglecting neutrino mass rel-
ative to momentum implies 𝐸 = 𝑝. Hence, (𝐸2 − 𝐸1) =

𝑚2
2−𝑚2

1

2𝐸
= Δ

2𝐸
. Given the

ultra-relativistic nature of neutrinos, 𝑡 = 𝐿/𝑐 ∼ 𝐿, where ′𝐿′ is the source-detector
distance and ′𝑐′ is the neutrino velocity close to the speed of light in vacuum. Conse-
quently, the probability of detecting 𝜈𝜇 after time 𝑡, starting from an initial state of
𝜈𝑒, can be expressed as

𝑃𝑒𝜇 = sin2 2𝜃 sin2

(︂
∆𝐿

4𝐸

)︂
. (2.6)

Hence from equation (2.6) to observe a neutrino oscillation the masses of the eigen-
states have to be different, and the probability of oscillation heavily depends on the
factor Δ𝐿

4𝐸
.

With the discovery of 𝜈𝜏 the two flavour oscillation was extended to a three flavour
formalism with three mass eigenstates 𝜈1, 𝜈2, 𝜈3 having masses 𝑚1, 𝑚2, 𝑚3 and
flavour eigenstates 𝜈𝑒, 𝜈𝜇 and 𝜈𝜏 respectively. This results in a 3 × 3 unitary matrix
which is a linear superposition between the mass and flavour eigenstates represented
as

⎡
⎣
𝜈𝑒
𝜈𝜇
𝜈𝜏

⎤
⎦ = 𝑈

⎡
⎣
𝜈1
𝜈2
𝜈3

⎤
⎦ , (2.7)

where U is the PMNS matrix that is parameterized as
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𝑈 =

⎡
⎣
1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

⎤
⎦

⏟  ⏞  
atmospheric

⎡
⎣

𝑐13 0 𝑠13𝑒
−𝑖𝛿𝐶𝑃

0 1 0
−𝑠13𝑒𝑖𝛿𝐶𝑃 0 𝑐13

⎤
⎦

⏟  ⏞  
reactor

⎡
⎣

𝑐12 𝑠12 0
−𝑠12 𝑐12 0
0 0 1

⎤
⎦

⏟  ⏞  
solar

(2.8)

where 𝛿𝐶𝑃 represents the CP violating phase. The three regimes in the matrix are
named after the primary neutrino sources used to determine the mixing angles within
each regime. The 3 × 3 unitary matrix requires nine parameters. Within these pa-
rameters, three represent mixing angles (𝜃12, 𝜃13, 𝜃23), while the remaining six are
phases. Among these phases, five phases can be absorbed into the neutrino flavor
eigenstates (𝜈𝑒, 𝜈𝜇, 𝜈𝜏 ) through a process called ’rephasing’, leaving one as the Dirac
CP-violating phase, 𝛿𝐶𝑃 . In the scenario where neutrinos behave as Dirac particles,
experimental measurements can solely access the Dirac CP-violating phase 𝛿𝐶𝑃 . How-
ever, if neutrinos exhibit Majorana properties, along with 𝛿𝐶𝑃 , two additional phases
can be observed. This is explained in section 2.5.1.

The oscillation probability from 𝜈𝛼 to 𝜈𝛽 can be written as

𝑃𝛼𝛽 = 𝛿𝛼𝛽 − 4
∑︁

𝑖>𝑗

𝑅𝑒(𝑈*
𝛼𝑖𝑈𝛽𝑖𝑈𝛼𝑗𝑈

*
𝛽𝑗) sin

2

(︂
∆𝑖𝑗𝐿

4𝐸

)︂

+2
∑︁

𝑖>𝑗

𝐼𝑚(𝑈*
𝛼𝑖𝑈𝛽𝑖𝑈𝛼𝑗𝑈

*
𝛽𝑗) sin

2

(︂
∆𝑖𝑗𝐿

2𝐸

)︂
.

(2.9)

If 𝛼 = 𝛽 then 𝑃𝛼𝛽 denotes survival probability. For antineutrinos, all 𝑈𝛼𝑖 are replaced
by their complex conjugate. With the knowledge of the energy and path length, one
can find the oscillation or the survival probability using equation (2.9).

2.2.2 Neutrino Oscillations in Matter

When neutrinos traverse through dense mediums such as the sun or the earth’s core,
they undergo coherent forward scattering with particles they encounter on the way.
Consequently, the likelihood of oscillation can deviate from what is observed in a
vacuum. This interaction gives rise to an additional potential term in the neutrino
Hamiltonian which was identified by Mikhaev, Smirnov, and Wolfenstein (MSW) [33].
The MSW effect arises from the distinct interactions 𝜈𝑒 (and 𝜈𝑒) in comparison to
other neutrino flavors within matter as it propagates through it. While 𝜈𝑒 can engage
in both CC and NC elastic scattering with electrons, 𝜈𝜇 or 𝜈𝜏 solely undergo NC
interactions with electrons. For two flavor oscillations, the potential in flavor basis
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can be written as following

𝑉 =

[︂
𝑉𝐶𝐶+𝑁𝐶 0

0 𝑉𝑁𝐶

]︂

= 𝑉𝑁𝐶𝐼 +

[︂
𝑉𝐶𝐶 0
0 0

]︂ (2.10)

where 𝐼 is a 2 × 2 identity matrix. The diagonal terms in the matrix represent the
matter potential experienced by the neutrino, where 𝑉𝑁𝐶 represents the NC potential,
which is the same for all neutrinos and 𝑉𝐶𝐶 represents the CC potential experienced
only by 𝜈𝑒. The potential term 𝑉𝑁𝐶 is proportional to the identity matrix and is
the same for both flavours because the NC interaction for 𝜈𝑒 and 𝜈𝜇 is the same,
hence it is neglected in oscillation probability expressions. In vacuum, the two flavour
propagation can be expressed as

𝑖
𝑑

𝑑𝑡

[︂
𝜈1
𝜈2

]︂
=

(︂
𝑝+

(𝑚2
1 +𝑚2

2)

4𝐸

)︂
𝐼 +

1

4𝐸

[︂
−∆ 0
0 ∆

]︂ [︂
𝜈1
𝜈2

]︂
(2.11)

where ∆ = 𝑚2
2 −𝑚2

1. The terms related to the identity matrix represents the common
phase factor. It affects both the mass eigenstates equally therefore does not contribute
to the phase difference between the mass eigenstates, which is basically the driving
force of neutrino flavor oscillations [34]. Hence this term is dropped. Following
equation (2.1)

𝑖
𝑑

𝑑𝑡

[︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]︂ [︂
𝜈𝑒
𝜈𝜇

]︂
=

1

4𝐸

[︂
−∆ 0
0 ∆

]︂ [︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]︂ [︂
𝜈𝑒
𝜈𝜇

]︂

𝑖
𝑑

𝑑𝑡

[︂
𝜈𝑒
𝜈𝜇

]︂
=

1

4𝐸

[︂
−∆cos 2𝜃 ∆sin 2𝜃
∆sin 2𝜃 ∆cos 2𝜃

]︂ [︂
𝜈𝑒
𝜈𝜇

]︂
.

(2.12)

Adding the potential term to equation (2.8) results in

𝑖
𝑑

𝑑𝑡

[︂
𝜈𝑒
𝜈𝜇

]︂
=

1

4𝐸

[︂
−∆𝑐𝑜𝑠2𝜃 + 𝐴 ∆𝑠𝑖𝑛2𝜃

∆𝑠𝑖𝑛2𝜃 ∆𝑐𝑜𝑠2𝜃 − 𝐴

]︂ [︂
𝜈𝑒
𝜈𝜇

]︂
(2.13)

where 𝐴 = 2𝐸𝑉𝐶𝐶 is the Wolfenstein matter term. For an electroweak model [35]

𝐴 = 2
√
2𝐺𝐹𝑁𝑒𝐸 = 0.76× 104𝜌𝐸(GeVg/cm3) (2.14)

where 𝐺𝐹 is Fermi constant for weak interaction and 𝑁𝑒 is the electron density in mat-
ter. The vacuum mass (∆) is replaced by the mass eigenstates of the effective mass
matrix in a medium (∆𝑚 =

√︀
(∆𝑐𝑜𝑠2𝜃 − 𝐴)2 + (∆𝑠𝑖𝑛2𝜃)) and the vacuum mixing

angle (𝜃) is replaced by the effective mixing angle in matter (𝜃𝑚 = 1
2
tan−1 Δ𝑠𝑖𝑛2𝜃

Δ𝑐𝑜𝑠2𝜃−𝐴
)

[36]. Therefore, the oscillation probability of neutrinos in a medium is given by

𝑃𝑚
𝑒𝜇 = 𝑠𝑖𝑛22𝜃𝑚𝑠𝑖𝑛2

(︂
∆𝑚𝐿

2𝐸

)︂
(2.15)

.
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This can be extended to a three flavour oscillation scenario. The Hamiltonian in
mass eingenbasis in vacuum ignoring the momentum term is

𝐻𝑚𝑎𝑠𝑠
𝑣𝑎𝑐𝑢𝑢𝑚 =

1

2𝐸

⎡
⎣
𝑚2

1 0 0
0 𝑚2

2 0
0 0 𝑚2

3

⎤
⎦ (2.16)

and the corresponding in flavour basis is

𝐻𝑓𝑙𝑎𝑣𝑜𝑢𝑟
𝑣𝑎𝑐𝑢𝑢𝑚 = 𝑈𝐻𝑚𝑎𝑠𝑠

𝑣𝑎𝑐𝑢𝑢𝑚𝑈
† = 𝑈𝑀2𝑈 † (2.17)

The Hamiltonian in the presence of a matter is

𝐻𝑓𝑙𝑎𝑣𝑜𝑢𝑟
𝑚𝑎𝑡𝑡𝑒𝑟 = 𝐻𝑓𝑙𝑎𝑣𝑜𝑢𝑟

𝑣𝑎𝑐𝑢𝑢𝑚 + 𝑉 𝑓𝑙𝑎𝑣𝑜𝑢𝑟
𝑚𝑎𝑡𝑡𝑒𝑟 =

1

2𝐸
(𝑈𝑀2𝑈 † + 𝐴) (2.18)

𝐴 =

⎡
⎣
2
√
2𝐺𝐹𝑁𝑒𝐸 0 0
0 0 0
0 0 0

⎤
⎦ . (2.19)

For antineutrinos the potential term is negative. The modified PMNS matrix is as
follows

𝑈 =

⎡
⎣

cos 𝜃𝑚13 0 sin 𝜃𝑚13
− sin 𝜃23 sin 𝜃

𝑚
13𝑒

𝑖𝛿𝐶𝑃 cos 𝜃23 sin 𝜃23 cos 𝜃
𝑚
13𝑒

𝑖𝛿𝐶𝑃

− cos 𝜃23 sin 𝜃
𝑚
13𝑒

𝑖𝛿𝐶𝑃 − sin 𝜃23 cos 𝜃23 cos 𝜃
𝑚
13𝑒

𝑖𝛿𝐶𝑃

⎤
⎦ (2.20)

where
𝑡𝑎𝑛2𝜃𝑚13 =

∆31𝑠𝑖𝑛2𝜃13
∆31𝑐𝑜𝑠2𝜃13 − 𝐴

(2.21)

Therefore the oscillation probability is

𝑃𝑚
𝜇𝑒 = 𝑠𝑖𝑛22𝜃23𝑠𝑖𝑛

22𝜃𝑚13𝑠𝑖𝑛
2

(︂
1.27∆𝑚

31𝐿

𝐸

)︂
(2.22)

where
∆𝑚

31 =
√︀
(∆31𝑐𝑜𝑠2𝜃13 − 𝐴)2 + (∆31𝑠𝑖𝑛2𝜃13)2 (2.23)

Where 𝑚3 ≫ 𝑚1, it is termed as Normal Hierarchy (NH). Conversely, if 𝑚1 ≫ 𝑚3, it
is Inverted Hierarchy (IH). Therefore matter effects can help in determining neutrino
mass ordering. Depending on the matter density and the neutrino energy, the MSW
potential can enhance the conversion between neutrino flavors, leading to a much
larger oscillation probability in matter than in vacuum.

The neutrino mixing parameters, mixing angles and mass squared differences affect
the oscillation probabilities. Hence, it is crucial to measure these parameters in or-
der to understand neutrinos. Numerous neutrino experiments have been conducted,
playing a significant role in enhancing our comprehension of mixing parameters. The
following section has detailed explanations on this.
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2.3 Mixing Parameters

The PMNS matrix as shown in equation (2.8) is the central component that de-
scribes the neutrino mixing and oscillations. The PMNS parameters are measured
in different neutrino experiments targeting the solar, reactor, atmospheric, and ac-
celerator neutrino sectors [37]. Solar neutrino experiments are sensitive to 𝜃12 and
∆𝑚2

21. Atmospheric neutrino experiments are sensitive to 𝜃23 and ∆𝑚2
32 or ∆𝑚2

31.
Reactor neutrino experiments are sensitive to 𝜃13 and ∆𝑚2

32 or ∆𝑚2
31. Accelerator

(beam) neutrino experiments can also measure 𝜃23, 𝜃13, and the CP-violating phase
𝛿CP. The sections that follow go over each sector’s contribution to the current global
best-fit values shown in table 1 as described in [38]. Global fits have been able to
constrain neutrino mixing angles 𝜃12, 𝜃23, 𝜃13, and the mass squared difference ∆𝑚2

21

for both Normal Ordering (NO) and Inverted Ordering (IO), with very similar values.
However, a positive ∆𝑚2

3𝑙 points towards Normal Ordering, while a negative ∆𝑚2
3𝑙

indicates Inverted Ordering. The uncertainties on these values hinder in a definite
determination about the mass hierarchy. Also, there is a large uncertainty in the CP-
violating phase, 𝛿CP, spanning almost 100°–360° range. These uncertainties outline
the precision required from future measurements to determine both mass hierarchy
and 𝛿CP.

2.4 Neutrino Sources

2.4.1 Solar

An important field of neutrino physics that has been thoroughly investigated through
several experiments is the solar neutrino sector. Solar neutrinos travel from the sun’s
core to the earth, covering a distance of approximately 1 AU (150 million km). The
energy spectrum of solar neutrinos spans from a few hundred keV to roughly 15 MeV
[40].

Solar neutrinos originate from the nuclear fusion reactions that fuel the sun. The
fusion of hydrogen to helium occurs through two distinct sets of nuclear reactions:
the prevalent proton-proton (pp) chain and the CNO cycle. Since hydrogen has only
protons while helium has both protons and neutrons, pp chain involves conversion
of protons into neutrons and hence emitting neutrinos. As illustrated in figure 2 the
majority of solar neutrinos originate from the initial production of deuterium through
the reaction, 𝑝+ 𝑝→ 2𝐻 + 𝑒+ + 𝜈 (pp neutrinos), which have very low energy, less
than 0.42MeV [41]. Since many neutrino detection methods cannot detect such
low-energy neutrinos, most experiments focus on the higher energy Be-7 and B-8
neutrinos produced in the pp-II and pp-III side chains. Although the pep and hep
neutrinos also have high energies, they are very rare.
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Normal Ordering (best fit) Inverted Odering (∆𝜒2 = 9.1)

± 1𝜎 3𝜎 range bfp ± 1𝜎 3𝜎 range

𝑠𝑖𝑛2𝜃12 0.308+0.012
−0.011 0.275→ 0.345 0.308+0.012

−0.011 0.275→ 0.345

𝜃12/
∘ 33.68+0.73

−0.70 31.63→ 35.95 33.68+0.73
−0.70 31.63→ 35.95

𝑠𝑖𝑛2𝜃23 0.470+0.017
−0.013 0.435→ 0.585 0.550+0.012

−0.015 0.440→ 0.584

𝜃23/
∘ 43.3+1.0

−0.8 41.3→ 49.9 47.9+0.7
−0.9 41.5→ 49.8

𝑠𝑖𝑛2𝜃13 0.02215+0.00056
−0.00058 0.02030→ 0.0238 0.02231+0.00056

−0.00056 0.02060→ 0.0240

𝜃13/
∘ 8.56+0.11

−0.11 8.19→ 8.89 8.59+0.11
−0.11 8.25→ 8.93

𝛿𝐶𝑃/
∘ 212+26

−41 124→ 364 274+22
−25 201→ 335

Δ𝑚2
21

10−5𝑒𝑉 2 7.49+0.19
−0.19 6.92→ 8.05 7.49+0.19

−0.19 6.92→ 8.05

Δ𝑚2
3𝑙

10−3𝑒𝑉 2 +2.513+0.021
−0.019 +2.451→ +2.578 +2.484+0.020

−0.020 −2.547→ −2.421

Table 1: Oscillation parameters obtained via nu-fit in September 2024 using Super
Kamiokande atmospheric data for three flavor neutrino mixing. The best fit
point (bfp) is the parameter value of those providing the best fit of models
to data and the 𝑠𝜎 range is the range about this where we expect true
parameter values will lie with around 99.7% confidence. It should be noted
that for NO, ∆𝑚2

3𝑙 ≡ ∆𝑚2
31 > 0, while for IO, ∆𝑚2

3𝑙 ≡ ∆𝑚2
32 < 0 [39].

One of the first experiments in solar neutrinos was the Homestake experiment,
which was performed by Ray Davis [42] through the chlorine capture reaction 37Cl+
𝜈𝑒 →37 Ar + 𝑒−. The reaction sensitive to electron-neutrinos with energies higher
than 0.814MeV, detected primarily Be-7 and B-8 neutrinos. However, the experiment
famously observed only about one-third of the expected number of neutrinos, giving
rise to the Solar Neutrino Problem in the 1970s. Later the Kamiokande Experiment
[43], headed by Masatoshi Koshiba, utilized a water Cherenkov detector in Japan to
achieve the successful observation of solar neutrinos in 1989. However, the observed
flux was approximately half of the predicted value, thereby confirming the existence of
the solar neutrino problem. Experiments using gallium in a radiochemical setup such
as SAGE [44] in the Caucasus mountains and GALLEX[45] in the Gran Sasso tunnel
were active in the 1990s. They published their first results, revealing a deficit in the
detection of lower energy pp neutrinos compared to predictions from the standard
solar model. During the 1990s and 2000s, the Super-Kamiokande [24], a sizable wa-
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Figure 2: The pp chain is illustrated, outlining the primary branches and their respec-
tive distribution ratios. Neutrinos released in this sequence of reactions are
identified as pp (stemming from the reaction at the upper left), Be-7 (in
the pp II branch), B-8 (pp III), pep (upper right), and hep (center right).
[41]

ter Cherenkov detector, conducted the initial model-independent assessment of solar
neutrino fluxes, thereby affirming the solar neutrino discrepancy. In 2001, researchers
uncovered that the solar neutrino anomaly stemmed from neutrino oscillations, re-
solving the longstanding puzzle. From the 2000s to 2020s, the Sudbury Neutrino
Observatory (SNO) [46] directly detected the full solar neutrino flux, comprising non-
electron neutrinos, thus verifying neutrino oscillations. Moreover, Borexino [47] was
able to detect neutrinos generated in both the pp-chain reaction, as well as, the CNO
cycle, providing a comprehensive view of solar neutrino production.

Neutrino experiments like Super-Kamiokande, SNO, and Borexino measured the
survival probability of electron neutrinos produced in the core of the Sun all the way
to Earth. The survival probability depends on mixing parameters - mixing angle,𝜃12,
and neutrino mass squared difference ∆𝑚2

21. Figure 3 shows the survival probability
(light blue band) of solar 𝜈𝑒 as a function of neutrino energy as explained in [37].
The plot shows the data points (in black), from left to right, represent the Borex-
ino measurements for pp, 7Be, pep, and 8B neutrinos (shown in red), along with
the SNO+Super-Kamiokande (SNO+SK) measurement for 8B neutrinos (shown in
black). Within the Borexino 8B data, the three points correspond to the low-energy
(LE) range, the combination of low-energy and high-energy (LE+HE) range, and the
high-energy (HE) range.

Numerical methods were to calculate the survival probability of solar neutrinos as
they interact with matter via the MSW mechanism [49]. This computation considers
the full three-flavor neutrino mixing. It helps extract the neutrino mixing parameters



2 Neutrino Physics 13

Figure 3: The light blue band represents the electron neutrino survival probability, as
predicted by MSW-LMA effect [48]. The flux is based on Standard solar
model with black point indicating the Borexino neutrino data and the red
point ins the combined SNO+Super-Kamiokande data.

from the observed survival probabilities of solar neutrinos. Additionally, the Kam-
LAND [50] experiment, which detects electron antineutrinos from nuclear reactors at
medium baseline, has played a role in accurately measuring the solar neutrino oscilla-
tion parameters 𝜃12 and ∆𝑚2

21. KamLAND’s results suggest a slightly larger preferred
value of ∆𝑚2

21 compared to analyses based solely on solar neutrino data. Also it has
been observed that the solar mixing angle 𝜃12 tends to rise slightly with an increase
in the value of the reactor mixing angle 𝜃13. This suggests a subtle link between the
measurement of solar 𝜃12 and the specific value of 𝜃13, which is mainly determined by
reactor neutrino experiments. The upcoming DUNE [51] and JUNO [6] experiments
are expected to significantly enhance the precision of measurements for solar neutrino
mixing parameters, surpassing current global fit results.

2.4.2 Atmospheric

Atmospheric neutrinos have been essential in finding neutrino oscillations and re-
main vital for studying neutrino properties and exploring new physics in the neutrino
field. Atmospheric neutrinos have baselines ranging from tens of kilometers to the
diameter of the Earth (around 12,700 km) and have energies ranging from hundreds
of MeV to tens of GeV.

Atmospheric neutrinos arise due to the interactions of cosmic rays-mostly protons-
with atoms in the Earth’s atmosphere. In such an interaction, a shower of particles
is produced which contains the short-lived mesons like pions, decaying to muons and
muon neutrinos/antineutrinos (𝜋− → 𝜇− + 𝜈𝜇). Muons further decay into electron
neutrinos / antineutrinos along with muon neutrinos(𝜇− → 𝑒− + 𝜈𝜇 + 𝜈𝑒) as shown
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Figure 4: Illustration of cosmic rays producing atmospheric neutrinos after colliding
with an air nucleus in the atmosphere [52].

in figure 4. Thus, about two-thirds of the atmospheric neutrinos are muon neutrinos
and antineutrinos, while one-third are electron neutrinos and antineutrinos.

In 1965, the initial detection of atmospheric neutrinos was accomplished by two
separate teams. They installed detectors deep underground, one in the Kolar Gold
Mines of South India and the other in a South African gold mine, to observe upward-
going muon events. During the 1980s and 1990s, the Kamiokande [53] and IMB [54]
experi- recorded a deviation in the ratio between muon and electron neutrinos-the
"atmospheric neutrino anomaly". These observations provided a strong indication
that muon neutrinos might oscillate into other flavors of neutrinos like tau neutrinos
while passing through the atmosphere. In 1998, the Super-Kamiokande experiment
provided the first solid evidence of neutrino oscillations using atmospheric neutrino
data. They observed a shortage in the count of upward-going muon-like events than
predicted while the electron-like events aligned with the predictions. This was taken as
proof that muon neutrinos change into tau neutrinos as they travel through the Earth.
Experiments like Super-Kamiokande [53], IceCube [55], and ANTARES [56] have
made more accurate measurements of the three-flavor neutrino oscillation parameters,
including mass ordering and CP violation, using atmospheric neutrinos.

The NOvA [57] and T2K [58] experiments, conducted from the 2010s onward, have
accurately measured neutrino oscillation parameters such as 𝜃23, and ∆𝑚2

32. Pooling
data from these long-baseline neutrino oscillation experiments, employing neutrino
beams, has effectively resolved ambiguities in the neutrino oscillation parameter space
and improved the precision of constraints. The upcoming DUNE [59] experiment
aims to gather tens of thousands of atmospheric neutrino interactions, enabling the
investigation of neutrino oscillations and the potential measurement of the Earth’s
matter profile. By merging DUNE’s atmospheric neutrino data with its long-baseline
neutrino beam data, it can determine if observed neutrino oscillations align with
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the standard three-flavor model or if they point to the need for new physics. The
upcoming JUNO experiment also aims to precisely measure the atmospheric neutrinos
to study neutrino oscillations and to measure NMO.

2.4.3 Reactor

Nuclear reactors are intense, isotropic sources of electron antineutrinos (𝜈𝑒). They
can be observed at short baselines of 1-2 km from the source and have energy rang-
ing from 1-10MeV. The main detection response for reactor neutrinos in scintillator
experiments is the IBD reaction: 𝜈𝑒 + 𝑝 → 𝑒+ + 𝑛. The resulting positron deposits
energy and annihilates into two 511 keV gamma rays. The neutron generated in the
IBD process is usually trapped ∼ 200𝜇𝑠 later by a hydrogen atom, resulting in a
signal that coincides with the positron in time. The IBD reaction and the interaction
cross-section is illustrated in figure 5. The IBD detection process as outlined in the
top of the figure shows neutrino interacting with a proton, produces a positron and
electron. The positron promptly emits energy and the neutron continues to scatter
before being captured by a proton emitting a gamma ray. The blue curve repre-
sents the IBD reaction cross-section and the interaction spectrum is indicated by the
red curve. Reconstructing the energy spectrum of the incident reactor antineutrinos
involves examining the temporal coincidence and energy spectrum of the detected
positron and neutron signals.

Figure 5: Detection of the coincidence signal of prompt positron and delayed neutron
signal confirms a neutrino candidate. The bottom part shows the reactor
neutrino flux for different isotopes. The inverse beta decay reaction’s cross-
section is the blue curve and the outcome (interaction spectrum) detected
by the detectors is indicated by the red curve [60].

The Cowan-Reines experiment was the first direct detection of reactor antineutri-
nos in the 1950s. These first studies not only confirmed the basic features of reactor
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neutrinos but also laid the foundation for further investigation into neutrino oscilla-
tions. In the 1990s and 2000s, experiments such as Chooz and Double Chooz [61]
studied neutrino oscillations at short distances of about 1-2 km away from the reactor
cores. By observing neutrino disappearance, Double Chooz gave the first indication
for a non-zero value of the neutrino mixing angle 𝜃13 in 2011, subsequently confirmed
by Daya Bay [62] and RENO [63]. RENO’s investigations was important in probing
the "reactor antineutrino anomaly," an observed difference between measured reactor
antineutrino fluxes and the corresponding predicted fluxes [30]. The observed devia-
tion is investigated to find potential new physics phenomena, among them could also
be the possibility of sterile neutrinos.

2.4.4 Accelerator

Accelerator neutrinos result from collisions of high-energy protons directed to a fixed
target, creating in a shower many pions and kaons. They decay into muon neutrinos
(𝜈𝜇) and antineutrinos (𝜈𝜇) along with smaller proportions of electron neutrinos (𝜈𝑒)
and antineutrinos (𝜈𝑒) [64]. Accelerator neutrino experiments have a configuration for
short baseline (kilometer-scale), long baseline of (over 100 kilometers), with neutrino
energies ranging from hundreds of MeV to a few GeV-all tailored to their respective
experiment goals. The detectors in short-baseline experiments are set up close to the
neutrino source, within a few kilometers, while for long-baseline experiments, they
are tens to hundreds of kilometers away. The short-baseline experiments, including
ND280 [65], MicroBooNE [66], MINERvA [67] and the Short-Baseline Near Detector
at Fermilab [68], study neutrino interactions before the significant oscillation processes
take place. The longbaseline experiments like T2K [69], NOvA [70], and the upcoming
DUNE [71] will explore oscillations over large distances through the Earth.

In accelerator neutrino experiments, that oscillation probabilities, including 𝑃𝜈𝜇𝜈𝑒

and 𝑃𝜈𝜇𝜈𝜏 , are linked to these neutrino mixing parameters. The key parameters
include the three neutrino mixing angles (𝜃12, 𝜃23, 𝜃13), and two independent mass
squared differences (∆𝑚2

21, ∆𝑚2
32), that govern the probabilities of neutrino flavor

oscillations observed in long-baseline accelerator experiments. Experiments, like T2K
[69], DUNE [72], and ESSnuSB+ [73] also target measuring the CP-violating phase
(𝛿𝐶𝑃 ) to probe for leptonic CP violation. A small portion of this study focuses
on designing the horn parameters or the ESSnuSB+ and is explained in chapter 6.
The current and future accelerator neutrino experiments prioritize precisely measuring
these parameters, potentially incorporating energy dependence considerations.

To sum up, the various neutrino sectors offer complementary data regarding the
neutrino mixing parameters. As of now, measurements have been made for three
mixing angles and two squared mass differences. However, more data is required
regarding whether CP violation occurs in the lepton sector. Additionally, the pattern
of mass hierarchy remains undisclosed. The upcoming section will elaborate on the
unresolved areas in neutrino physics.
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2.5 Open Questions

Neutrino physics is a rapidly evolving field of research with many open questions
that continue to puzzle scientists. Scientists are continuing to conduct experiments
to gather more information about these particles. There are still some fundamental
questions that need answers. Are neutrinos Dirac or Majorana particles? Is the
neutrino mass hierarchy normal (𝑚3 > 𝑚1 > 𝑚2) or inverted (𝑚2 > 𝑚1 > 𝑚3)? Is
there a violation of CP symmetry in the lepton sector? Do sterile neutrinos exist?
The present understanding of the answers to these questions are briefly described in
the following sections.

2.5.1 Nature of Neutrinos

Neutrinos may be Majorana particles, meaning that they are their own antiparticles,
but it is uncertain. If a neutrino is Dirac particle, it differs from its own antiparticle. A
massive Majorana neutrino violates lepton number conservation, due to being its own
antiparticle. The tiny masses of the neutrinos makes it challenging to determine if
they are Dirac or Majorana particles. One of the most practical methods to investigate
the Majorana nature of massive neutrinos is through observing neutrinoless double
beta decays (0𝜈𝛽𝛽) as this process can only occur with Majorana neutrinos. This is
expressed as 𝑁(𝐴,𝑍)→ 𝑁(𝐴,𝑍 + 2) + 2𝑒−. The experimental observable of neutri-
noless double beta decay is its half-life, denoted as ( 𝑇 0𝜈

1/2). The current best limit on
the half-life of 0𝜈𝛽𝛽 decay comes from the KamLAND-Zen liquid scintillator experi-
ment [74], utilizing the 136𝑋𝑒 isotope, which has set a bound of (𝑇 0𝜈

1/2 > 3.8× 1026)
years (at 90% confidence level). Several current and future experiments are exploring
this topic using various isotopes and experimental approaches. Further insights are
available in the review article [75].

2.5.2 Mass Ordering

Neutrinos have three flavors and can change between them, but their mass hierarchy
remains unclear. Two possible scenarios are normal hierarchy (𝑚1 < 𝑚2 < 𝑚3), or
inverse hierarchy (𝑚3 < 𝑚1 < 𝑚2). The two cases are illustrated in figure 6 the left
(NO) and right (IO). Here, violet, red and yellow mark the admixtures of 𝜈𝑒, 𝜈𝜇, and
𝜈𝜏 to the mass states, respectively. Also the sign of ∆𝑚2

31 is crucial as it affects
vital processes, including 0𝜈𝛽𝛽-decay. In atmospheric, long baseline accelerator and
supernova neutrino experiments, flavor oscillations depend on the sign of ∆𝑚2

31 [76],
[77]. Also, the interference effects of the two atmospheric mass-squared differences
in the reactor neutrino vacuum oscillations depend on the sign of∆𝑚2

31 [78].

Various future efforts are underway to determine the mass ordering of neutrinos,
employing primarily three approaches. The first approach involves medium baseline
reactor neutrino experiments, exemplified by JUNO [7] which is expected to start
data taking in 2025. The second approach focuses on long baseline neutrino beam
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Figure 6: This illustration shows the neutrino mass ordering and the unknown absolute
mass scale. On the left, it displays the squared neutrino masses for the
Normal Mass Ordering , while on the right, it shows them for the Inverted
Mass Ordering. Violet, red, and yellow mark the admixtures of 𝜈𝑒, 𝜈𝜇, and
𝜈𝜏 to the mass states, respectively [79].

experiments, which include NOvA with increased statistics and DUNE [71]. While
JUNO focuses on quasi-vacuum oscillations, the long baseline experiments use the
MSW effect. Finally, the third approach revolves around atmospheric neutrino-based
experiments, such as JUNO, ORCA [80], PINGU [81], and Hyper-Kamiokande [82].
By precision measurement of neutrino energies and directions, JUNO can identify
these atomspheric oscillation patterns and would distinguish between the two mass
orderings on the basis of how oscillations would evolve under Earth’s matter effects.

2.5.3 CP Violating Phase

Neutrino CPV is defined as the combined violation of charge conjugation (C) and
parity (P). The CP symmetry, relates particles and antiparticles of mirrored spatial
coordinates and defines whether they behave identically. Though CP violation has
been observed in the baryon sector [83], its status in lepton sector remains undeter-
mined. Under the assumption of CPT conservation, which is fundamental for theory
construction, CP violation can also be explored through the complementary channel
of T symmetry violation, although this approach currently lacks precision. Long base-
line neutrino beam experiments, such as T2K [69] and NOvA [84] , are well-suited
to investigate lepton CP violation by measuring the 𝛿𝐶𝑃 phase through muon neu-
trino to electron neutrino appearance. Additionally, future long-baseline experiments
like DUNE [72], Hyper-K [82]and ESSnuSB+ [73] with improved 𝛿𝐶𝑃 resolution, are
poised to potentially resolve leptonic CP violation.
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2.5.4 Sterile Neutrinos

In addition to the three flavor of neutrino, a fourth flavor might exist. These are
called sterile neutrinos as they do not interact via weak force. Sterile neutrino have
been suggested as a possible explanation for experimental anomalies like those ob-
served in the LSND [85] and MiniBooNE [86] experiments, indicating the presence
of more neutrino states whose masses are below 1 eV [87], [88]. These anomalies
have led to an increase in experimental activity in searching for a more categorical
indication of sterile neutrinos. Utilizing the globally best-fit parameters from the
initial anomalies, researchers are looking to investigate the shape of short-baseline
oscillations. The sterile neutrinos are predicted to exhibit a distinctive pattern at a
particular L/E ratio corresponding to ∆𝑚2

41 ≥ 1 eV2. The above experiments such
have reported anomalies that might be attributable to light sterile neutrinos. On the
other hand, contrary results from other experiments such as MicroBooNE failed to
confirm their existence of light sterile neutrinos. In contrast, heavy sterile neutrinos
in the range of 105 to 1012GeV are predicted by numerous extensions to the Stan-
dard Model such as Grand Unified Theory (GUT) and left-right symmetric models.
These predictions arise as part of the seesaw mechanism [89], which is proposed to
account for the small observed neutrino masses. Regardless of their mass they are
only detectable when they mix with active neutrinos. This mixing can affect the uni-
tary of the PMNS matrix, adding more generations of neutrinos. Current and future
long-baseline neutrino experiments aim to search for anomalies in oscillation that may
prove the existence of sterile neutrinos and their subsequent role in neutrino sector
[90].
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3 Liquid Scintillator Experiments: JUNO & TAO

This chapter first introduces to the working mechanism of Liquid Scintillator (Liquid
Scintillator (LS)) detector, including its major components and the basic physics from
light generation to detection. With this established theoretical foundation, the chapter
then introduces JUNO and its subdetector TAO both of which are LS experiments.
With a brief overview on the JUNO experiment, the chapter explains in detail the TAO
experiment and its vital role in aiding JUNO to achieve its prime goal. The chapter
then describes the detector design and the physics goals of the TAO experiment.

3.1 Physics of Liquid Scintillator Detectors

Liquid Scintillators LS are target materials that emits light flashes when particles
interact with them. The light flashes produced are detected by specialized sensors
that convert them to electrical signals for analysis. It therefore enables the detection
of various particles. LS is typically a mixture of an organic solvent, fluor (primary
scintillator), wavelength shifter (secondary scintillator), and other optional additives.
It is enclosed in a tank which is either cylindrical or spherical. LS utilizes large volume
of dense materials often tens of meters and hundreds to multi-kiloton scale to increase
the probability of neutrino interaction. These are popularly known for their low energy
threshold (keV range) making them effective for detecting low energy neutrinos. LS
also has the ability to determine the event energy with great precision (in comparison
to Cherenkov detectors) due to its nearly perfect linear response in the low energy
range. This section goes into the details of the physics that happens in the LS
highlighting the above features.

3.1.1 Primary Interaction

Neutrinos interact via weak forces and cannot be measured directly hence the
charged particles that are produced during their interactions are detected instead.
For particles with mass lighter than the mass of electron 𝑚𝑒, the mean loss of energy
𝐸, per unit length 𝑥, is described by the Bethe-Bloch formula [14]

⟨
− 𝑑𝐸

𝑚𝑑𝑥

⟩
= 𝐾𝑧2

𝑍
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1
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2
ln
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𝐼2
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2

]︂
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The constant 𝐾 is defined as 𝐾 = 4𝜋𝑁𝐴𝑟
2
𝑒𝑚𝑒𝑐

2 (where 𝑁𝐴 refers to Avogadro’s
number, the classical electron radius is given by 𝑟𝑒 =

𝑒2

4𝜋𝜀0𝑚𝑒𝑐2
, 𝜀0 is the vacuum

permittivity), 𝑧 is the charge number of the incident particle, the atomic mass and
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atomic number of the absorber is denoted by 𝑚𝐴, and 𝑍, the parameter 𝛽 is defined
as the ratio of the particle’s velocity 𝑣 to the speed of light 𝑐, the density correction
is denoted by 𝛽𝛾, 𝑊 indicates the energy transfer to an electron in a single collision
and 𝑚𝐼 is the mean excitation energy. The factors in the equation like particle
velocity, charge and material properties of the scintillator influence the energy loss
and therefore the subsequent light production, which is crucial for analyzing neutrino
events. The gammas resulting from the IBD in LS are neutral but can be measured
indirectly. They interact with the LS through several process: photoelectric effect,
Compton scattering and pair production which releases charged particles that can
be measured. According to the gamma interactions in Carbon [14], the photoelectric
effect dominates for gamma rays with energies between 10-50 keV, the Compton effect
dominated between 100 keV to 10MeV and pair production occurs for gamma rays
that have energies exceeding 1.022MeV.

3.1.2 Emission, Propagation & Detection of Light

Emission: Light serves as a vital source of information required for event re-
construction. Two primary mechanism of light emission in LS are scintillation and
Cherenkov radiation.
Scintillation: When charged particles pass through the organic solvent, they deposit
energy, exciting the delocalized 𝜋-electrons in the carbon to higher energy state cre-
ating excited solvent molecules. The unstable solvent molecules transfer their energy
to flour (fluorescent solutes) and excite them as well. The excited electrons return
to their ground state, resulting in the emission of photons in a process known as
fluorescence (if the radiative lifetime is a few nanoseconds) or phosphorescence (if
the radiative lifetime is a few microseconds). The emitted light is in the UV range
but if the scintillator is composed of only one type of molecule, light would be self
absorbed. To minimize self absorption, wavelength shifters are added to the scintilla-
tion mixture. Wavelength shifters absorb the emitted UV light and re-emit in longer
wavelengths typically in visible range or range appropriate for the light sensors. This
would improve the overall light collection efficiency. The light yield as described by
Birks Theory [91]

𝑑𝐿

𝑑𝑥
= 𝐿0

𝑑𝐸

𝑑𝑥
· 1

1 + 𝑘𝐵
𝑑𝐸
𝑑𝑥

, (3.2)

where 𝑑𝐿
𝑑𝑥

is luminesce per unit length, 𝑑𝐸
𝑑𝑥

is the energy loss per unit length and 𝑘𝐵
the Birks parameter which depends on the LS material. The above equation implies
the light yield depends on the particle and its energy.
Cherenkov radiation: When charge particles pass through dielectric medium with
velocity greater than the local phase velocity of light, they produce Cherenkov ra-
diation. The electromagnetic field due to polarization becomes asymmetric because
the medium cannot respond quickly enough to return to its equilibrium state. This
results in overlapping wavefront that constructively interfere to produce light (near
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UV range) forming a Cherenkov cone having an angle

𝜃𝐶 = acos
(︂

1

𝑛𝛽

)︂
, (3.3)

where 𝑛 denotes refractive index and 𝛽 = 𝑣/𝑐. The directional information provided
from the cone can help in studying particle direction. The amount of photons emitted
per unit length per unit wavelength [14] is

𝑑2𝑁

𝑑𝑥𝑑𝜆
=

2𝜋𝛼𝑧2

𝜆2

(︂
1− 1

𝛽2𝑛2(𝜆)

)︂
(3.4)

where, 𝛼 is the fine structure constant, 𝑧 is the charge number of the particle.
Cherenkov radiation is emitted instantaneously on the picoseconds scale.

Propagation: Light propagation in the liquid scintillator is dictated by a few key
processes, namely: absorption, Rayleigh scattering, and Mie scattering. Absorption
of light is one of the key processes involved in light propagation in liquid scintillators,
which occurs for photons with energy that matches an excitation level of scintillator
molecules. This process is described in context of the Beer-Lambert law

𝐼(𝑥) = 𝐼0𝑒
−𝑥/𝐿 (3.5)

where, 𝐼(𝑥) is the intensity of light at distance 𝑥, 𝐼0 is the intensity at distance 0, and
𝐿 is the propagation length. The Stokes shift accounts for the difference between
absorption and emission spectra, emission is generally red-shifted from absorption
due to relaxation into a lower vibrational state by a photon. The absorbed energy
will be re-emitted as fluorescence or converted to heat through non-radiative process.
Fluorescence re-emission is isotropic and delayed due to the molecule decay time,
changing the trajectory of the original photon. This cycle of absorption and emission
can repeat, greatly influencing the overall light propagation and detection efficiency
in LS detectors. Energy transfer facilitated by overlap of the emission and absorp-
tion spectra of the different scintillator components is a key part of the scintillation
mechanism in large-volume detectors. Another way for the photons to propagate is
through Rayleigh scattering. The elastic scattering mechanism takes place when the
corresponding photons interact with the molecules or the density fluctuations of the
scintillator which correspond to an intrinsic limit of the transparency of the material.
It is highly wavelength dependent, following a cross-section of typically 𝜆−4. The
differential cross-section for Rayleigh scattering obeys

(︂
𝑑𝜎

𝑑Ω

)︂

ray
∝ 1 + cos2 𝜃

2
(3.6)

where 𝜃 is the scattering angle. As indicated by cos2 𝜃, the scattering will be more
intense in the forward and backward direction when 𝜃 = 0 and 𝜃 = 180. Mie
scattering is relatively less wavelength dependent as compared to Rayleigh scattering.
Mie scattering in the liquid scintillator takes place through scattering of light by
particles or impurities whose size is in similar scale to the scattered light’s wavelength.



24 3 Liquid Scintillator Experiments: JUNO & TAO

Mie scattering can result from suspended particles or other inhomogeneities in the
scintillator medium. None of these processes can be reliably detected, the information
that could be received gets diminished by the number of photons that have been
scattered or absorbed and can be explained using equation (3.5). The propagation
length in equation (3.5) is a combination of the above effects and can be updated
as

1

𝐿
=

1

𝐿abs
+

1

𝐿ar
+

1

𝐿ray
+

1

𝐿mie
(3.7)

where, 𝐿abs for absorption, 𝐿ar for absorption and remission, 𝐿ray for Rayleigh scat-
tering and 𝐿mie for Mie scatting.

Detection: The effective detection of photons requires an array of photon detectors
covering the target area, balancing excellent energy resolution and spatial coverage
with a possible budget restriction. The principle of detection by these devices is based
on the photoelectric effect, the conversion of optical photons into electrons. Different
types of detectors are chosen based on the specific detection requirement and the
target area requirement. Few of the common choices include Silicon Photomultipliers
(SiPM), Photomultipler Tubes (PMTs), Single Photon Avalanche Diodes (SPAD)
and Large Area Picosecond Photodetectors (LAPPD). The key characteristics of
theses detectors include Photon Detection Efficiency (PDE), Transit Time Spread
(TTS) and dark count rate. PDE is the detector’s ability to convert the incoming
photons to signal and hence it is defined as the ratio the detected photons over the
incident photons. TTS is the variation of the signal information time within the
detector and can be roughly translated into the time resolution of the photodetector.
Dark count rate is the false count that were registered in the absence of the incident
light. These characteristics are important to know the overall performance and the
precision of the detectors.

JUNO utilizes PMTs while TAO utilizes SiPMs in their respective LS. The working
principle of a PMT is based on the photoelectric effect and the emission of secondary
electron. Photons incident from outside the PMT enter the PMT through the input
window, and hit the photocathode that is coated with the photosensitive material.
This causes photoelectrons to be emitted from the photocathode into the vacuum
of the tube. The emitted electrons are then focused by electrodes onto a series
of dynodes, where secondary emission occurs – each electron impacting a dynode
contacts a few more, causing an avalanche of emission – and so considerably amplify
the signal. When this electron avalanche is amplified and driven to the anode, this
creates a signal or electrical pulse which can be measured and corresponds to the
original detection of the photon.

SiPMs are detectors that function according to the principles of SPADs to detect
low levels of light from an event with high sensitivity. SAPDs are high-sensitivity
photon detectors with capabilities of detecting very weak optical signals, even as
weak as single photons. Once reverse-biased above breakdown voltage, it operates in
the so-called Geiger mode, whereby a single incident photon initiates an avalanche of
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charge carriers that creates an electrical signal. A SiPM is an array of SAPDs working
in independent microcells. A microcell can absorb a photon, causing an avalanche
breakdown and a large current pulse resulting from charge carrier multiplication. A
series resistor helps to extinguish this avalanche in such way that the voltage drop
across the diode falls below its breakdown potential, which allows it to reset to detect
the next photon. Each time the SiPM detects a photon, it responds with a pulse, and
a series of these pulses provide a measurement of the amount of detected light.

Finally, after photon detection, signal processing, and data acquisition are per-
formed in such a way that amplified signals from photon detectors are routed through
electronics with discriminators to filter out noise. Depending on the storage, the the
signal maybe fully digitized or only the key information are stored. Due to storage
limitations, it is often not possible to save every digitized sample, leading to strategic
implementations such as data compression, real time spectrum analysis, selective sam-
pling, etc. However, in critical events, selective information may need to be recorded
at a higher rate, with full waveform storing the most information useful for com-
plete signal reconstruction and even digitized pulse shape yielding useful, recoverable
data.

3.2 JUNO

The Jiangmen Underground Neutrino Observatory (JUNO) [6] is a large LS experi-
ment that is located in Jiangmen, with a baseline of about 53 km from the Yangjiang
and Taishan nuclear power plants. This medium-baseline reactor neutrino experiment
is located 600 meters underground with a rock overburden of about 1800 m.w.e. to
shield against cosmic rays. As shown in figure 7, the detector components include a
Central Detector (CD), a water Cherenkov detector, the Top Tracker (TT) and the
calibration house. The CD is a 35.4m diameter acrylic sphere containing 20 kton of
liquid scintillator. Roughly 17,612 20-inch PMTs and 25,600 3-inch PMTs surround
this sphere enabling it to electron antineutrinos via IBD interactions. The acrylic ves-
sel is supported by 40.1m diameter stainless steel structure. The central component
is surrounded by 35 kilotons of ultrapure water in an enormous 43.5m diameter tank,
which acts as both a buffer and a Cherenkov detector. About 2,400 20-inch veto
PMTs are installed in the water tank for identification and tagging of the atmospheric
cosmic muons. The Top Tracker is an additional muon tracking system. An energy
calibration of the detector is performed with a calibration house that is integrated
into the system. With its large LS, JUNO aims to have an energy resolution of about
3%/

√︀
E(MeV)[6].
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Figure 7: Schematic representation of the JUNO detector. The central acrylic sphere
contains 20 kt of liquid scintillator, surrounded by PMTs. This is supported
by a stainless steel structure, immersed in water tank with veto PMTs. A
Top Tracker and calibration house complete the setup that is designed for
precise neutrino measurements [92].

While the NMO can also be determined with long-baseline accelerator or atmo-
spheric neutrino experiments, JUNO stands out due to its primary sensitivity to vac-
uum oscillations, whereas accelerator and atmospheric experiments primarily rely on
the NMO dependence of matter effects. JUNO aims to determine the NMO using
precise spectral measurements of the reactor antineutrino oscillations. The expected
reactor antineutrino spectra for the different mass orderings are shown in figure 8.
The plot shows different shapes for unoscillated spectra (black line), normal ordering
(blue), inverted ordering (red) and with only solar term (grey). The small oscillation
peaks in the oscillated antineutrino spectrum contain the NMO information. With
high resolution measurement of the oscillation spectra, a detailed information of the
oscillation parameters (∆𝑚2

31, ∆𝑚2
21, sin

2 2𝜃12, and sin2 2𝜃13) that govern the spec-
tra can be obtained. The oscillation curves are obtained by applying the survival
probability of electron neutrinos on their original energy spectra as shown below

𝑃 (𝜈𝑒 → 𝜈𝑒) = 1− sin2 2𝜃13(cos
2 𝜃12 sin

2∆31 + sin2 𝜃12 sin
2∆32)

− cos4 𝜃13 sin
2 2𝜃12 sin

2∆21

(3.8)

where ∆𝑖𝑗 ≡ Δ𝑚2
𝑖𝑗𝐿

4𝐸
and 𝐸 is energy. To able to extract the information on the mass

ordering a resolution as or better than the size of Δm2
21

|Δm2
31|

is required ( 2.6%/
√︀

E(MeV))
[7]. Therefore, the existing energy resolution may not be sufficient to accurately
measure the oscillation probabilities of reactor antineutrinos. These probabilities are
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sensitive to the reactor antineutrino flux and spectrum, which can be subject to
significant uncertainties. Some of these uncertainties stem from differences in the
nuclear processes that lead to the production of antineutrinos, and others are due to
the current model limitations that predict the antineutrino spectrum from reactors as
explained in section 3.4. To address these

Figure 8: The expected antineutrino energy spectrum for NO, IO, and no oscillation
for 6 years of data taking. The curves that correspond to oscillation are
obtained by applying survival probability of electron antineutrinos on their
original energy spectrum.[93]

challenges, the Taishan Antineutrino Observatory TAO is designed to perform
high-precision measurements of the reactor antineutrino spectrum, from the direct
measurements from the Taishan Nuclear Power Plant. TAO will provide a model-
independent reference spectrum with an energy resolution better than 2% at 1MeV.
The accurate understanding of the antineutrino spectrum allows for better character-
ization of oscillation effects thereby improving the sensitivity of JUNO in determining
NMO. The other goals of TAO are explained in detail in section 3.4.

3.3 Experimental Framework of TAO

3.3.1 Detector Layout

The TAO experiment independently assess the antineutrino energy spectrum emit-
ted from the nearby Taishan nuclear reactor with unmatched precision. This critical
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capability aids in probing the reactor antineutrino anomaly and the bump in the 5-
6MeV neutrino flux detected by other experiments. This is explained in section 3.4.1.
The three main components of the TAO detector are the CD that is surrounded by a
cryostat to maintain low temperatures, a water Cherenkov detector that detects

Figure 9: Schematic view of the TAO detector, indicating the liquid scintillator target
located in the middle of the spherical copper shell and the stainless steel
tank, with the external water tank surrounding it. It consists of a top veto
tracker for cosmic ray muon detection an ACU for precise calibration.

Cherenkov light by cosmic muons, and a passive shield layer that shields against neu-
trons generated by cosmic muons and external radioactivity [10]. Figure 9 shows a
sketch of the TAO detector, the central detector houses the LS (doped with Gadolin-
ium) with SiPMs for detecting antineutrinos. The surrounding copper shell provides
mechanical support and also thermal stability for the SiPMs. The copper shell is
installed within the stainless steel tank that is filled with buffer liquid and maintained
at -50°C to reduce dark noise. The water tank surrounding it acts as a Cherenkov
detector and the Automated Calibration Unit (ACU) at the top is used for calibration.
The following text provides a comprehensive explanation of the assembly details.

Central detector: The CD comprises of two layers. The inner layer is the LS
housed within a spherical acrylic vessel. The 2.8 tons Gadolinium-doped liquid scin-
tillator (GdLS) will serve as the neutrino target facilitating the detection of a distinct
delayed signal of IBD resulting from neutron capture on Gd hence reducing accidental
background. The LS will be curated to have a good transparency and light yield even
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at low temperatures. TAO’s baseline LS option considers 2 g/L 2,5-Diphenyloxazole,
PPO (primary fluor), 1 mg/L 1,4-Bis(2-methylstyryl)benzene (secondary wavelength
shifter), 0.43 g/L ethanol (co-solvent to improve solubility at low temperatures), 0.1%
Gadolinium by weight (for neutron capture). This composition is engineered to have
exceptional optical properties and high radiopurity to achieve a target energy resolu-
tion of less than 2% at 1 MeV. Surrounding it is the acrylic vessel that has an inner
diameter of 1800 mm and a thickness of 20 mm. A copper sphere surrounds the
acrylic vessel, offering mechanical support to ensure the SiPM tiles are directed to-
wards the center of the detector. The external surface of the copper sphere is utilized
for the readout electronics and accommodating the cooling pipes.

The outer layer contains the buffer liquid, Liquid Alkyl Benzene (LAB) held in a
Stainless Steel Tank (SST). LAB will serve as the liquid scintillator solvent. LAB’s
high flash point (>130°C) and low volatility make it ideal for proximity to a nuclear
reactor. However, LAB’s water content can precipitate at low temperatures, reducing
LS transparency, necessitating extensive drying. Adding Dipropylenglykol-n-butylethe
(DPnB) as a freezing inhibitor and antioxidant addresses this. The stainless steel
tank supports all components within the SST, including the ACU and overflow tank
on the lid. It ensures an air-tight environment for the liquid scintillator, maintaining
a temperature of -50°C inside the SST while requiring insulation to regulate room
temperature outside.

TAO uses large-area SiPM tiles produced by Hamamatsu with each tile integrated
with thirty two chips of dimension 12mm x 6mm [94]. These SiPM tiles has a photon
detection efficiency (PDE) exceeding 50%. To keep the dark noise rate within accept-
able bounds, the SiPMs must function at cryogenic temperatures of approximately
-50°C. SiPM photosensors will be mounted on a spherical copper shell surrounding
the acrylic vessel, with a distance of 18 mm between the SiPM surface and the acrylic
vessel. Each SiPM tile connects to a Front-End Board (FEB) for readout. A total of
4024 FEBs will cover the 10m2 detector area. These FEBs are linked to Front-End
Controllers using Vertex Ultrascale Field Programmable Gate Arrays (FPGAs) for data
collection. A specialized trigger and (DAQ) system will filter and capture events as
they happen, rejecting dark count occurrences.

Water Chrenkov detectors: Surrounding the CD, are three irregular water tanks
that form dodecagon shape with 1.2m thickness serving as both passive shielding
(from environmental radioactivity from rock and air) and active Cherenkov muon
detectors (effectively serving as a veto detector). They’re equipped with 3 inch PMTs
to detect Cherenkov light from muons. Approximately 300 PMTs will be evenly
spread, averaging 1 PMT per 0.5 m2, providing about 0.8% surface coverage. These
3-inch PMTs, along with their bases, potting, and electronic readout, will use the
same technology as the JUNO small PMT system [6]. The PMTs require a time
resolution of approximately 2 nanoseconds to accurately establish the veto window
timing. The dodecagon shape, chosen for TAO, accommodates space constraints and
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contains approximately 70 tons of water in total. The tanks are lined with reflective
Tyvek film and hold PMTs in place with stainless steel frames. A purification system
maintains water clarity and reduces radioactivity. Circulation ensures water turnover
in a day.

Calibration: TAO is designed to precisely install radioactive sources for detector
calibration using Automated Calibration Unit (ACU) based on a similar system used
in the Daya Bay experiment [95]. The ACU, which is featured in TAO, is a complex
apparatus that uses radioactive sources for the purpose of detector calibration. The
ACU is a system that can mount a variety of radioactive sources, including the 68Ge
source, combined gamma-emitting isotopes (137Cs, 54Mn, 40K, 60Co), and a neutron
source (241Am–13C). The sources are wound around pen sheathed RT with the PTFE
truss, preventing contamination of the gadolinium-loaded liquid scintillator. Using
two stepper motors, the ACU is able to move these sources inside the detector with
sub-millimeter precision based on glued anchors on the inner wall of the acrylic vessel.
The ACU is an integral element in TAO’s overall calibration strategy — which also
includes an ultraviolet LED calibration system and Cable Loop System (CLS). The
ultraviolet LED is used to monitor SiPMS and for precise timing calibration. The CLS
facilitates the use of radioactive sources at varying detector positions and enables the
accurate mapping of energy-response distributions across various geometries of the
detector.

Shielding layer: Simulations show that most fast neutrons come from the top,
so a 10 cm layer of lead bricks will be placed below the CD, while about 1 m of
High Density Polyethylene (HDPE) will be added above to slow down fast neutrons.
Additional HDPE layers may be installed above the steel beam frame for improved top
shielding. An HDPE "hat" will be made for the ACU to aid in top shielding, which is
expected to slightly increase the fast neutron background by less than 10%. Above
the CD, a few layers of plastic scintillator strips will serve as a muon detector, using
multilayer coincidence to reduce false detections from natural radioactivity. These
strips, coated with TiO2-doped PVC, will be read out by 1-inch PMTs on each end,
using electronics from the JUNO 3-inch PMT system. Detailed investigation into the
plastic scintillator muon detector’s design and assembly is ongoing.

Facility & Installation: A neutrino lab is established at the Taishan Nuclear
power plant at a distance of 44 metres from the reactor core. The vertical standing is
estimated at approximately 5 meters-water-equivalent. The layout includes space for
the TAO detector and it’s related facilities constrained by height of 3.85m. The CD
assembly includes liquid filling (loading the solvent follows Daya Bay’s procedure using
Gd-complex with ligand 3,5,5-trimethylhexanoic acid (TMHA)), integrating SiPM
tiles and Frontend Electronics (FEE) with the copper shell, bonding acrylic pieces
and building the stainless steel tank. A final mass concentration of 0.1% Gd in the
LS. Once the assembled copper shell is clamped to the acrylic vessel, it is rotated from
vertical to horizontal position and then installed to the stainless steel tank and then
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rotated to vertical position. Following the CD installation, the ACU will be mounted
on the SST. The ACU is vital for TAO as it will contribute to the control of energy
resolution degradation and energy bias within 0.05% and 0.3%, respectively [96].
It will be operating at −50∘𝐶 and therefore is protected by a thermal insultion hat
made up of HDPE. The veto and shielding setup comprise of a lead bottom shield
for the CD, three water tanks encircling the CD, HDPE shielding material positioned
above the CD, and plastic scintillator detectors situated atop the HDPE shielding.

3.3.2 Signal & Background

Reactor antineutrinos (𝜈e) result from the fission products of key isotopes like 235U,
238U, 239Pu, and 241Pu. The (𝜈e) undergo IBD reaction, 𝜈e + p→ e+ + n, in the
gadolinium-doped liquid scintillator. The positron promptly deposits it’s energy in
the scintillator and annihilates with an electron creating two 0.511MeV gamma rays.
Neutrons from IBD are primarily captured by hydrogen or gadolinium, producing
gammas with energies of 2.2MeV and about 8MeV, respectively. The coincidence of
the prompt scintillation from the positron with delayed neutron capture on Gd, marks
the distinctive (𝜈𝑒) signature. TAO will be able to detect 2000 IBD events everyday.
The energy of the antineutrino 𝐸𝜈𝑒 is linked to the measured prompt energy (kinetic
energy of positron + two 511 keV gamma rays) 𝐸𝑒+ by

𝐸𝜈𝑒 ≈ 𝐸𝑒+ + (𝑚𝑛 −𝑚𝑝 −𝑚𝑒). (3.9)

The kinetic energy of the outgoing neutron is negligible, so it can be ignored in a basic
calculation. The positron’s energy in the scintillator converts into light, and the energy
resolution is primarily determined by photon counting statistics. The combination of
the excellent optical coverage of 95 %, the high photon detection efficiency of 50%
for the SiPMs and the high light yield of the LS, 12,000 photons per MeV deposited
energy yields a total of 4,500 photoelectrons per MeV of deposited energy. This
enables TAO to aim for an energy resolution better than 2%/

√︀
E(MeV).

The primary sources of background for IBD events include prompt (from positron
annihilation) and delayed (from neutron capture) events, which can either be corre-
lated or uncorrelated in time. The uncorrelated events that pass the energy cuts are
accidental backgrounds that typically arise due to natural radioactivity. The proposed
solution to this will be doping gadolinium in the buffer liquid and optimizing veto
methods. These methods aim to reduce the neutron background-to-signal ratio from
an initial estimate of about 10% to approximately 2 %. Additionally, pulse shape
discrimination may offer further suppression of the neutron background. The most
significant component of the background of fast neutrons arises from the spallation of
cosmic muons within the materials that encase the detector due to the comparatively
shallow overburden present in the TAO experiment. A muon veto system will be
established to diminish the fast neutron background to fewer than 200 events daily.
Furthermore, cosmic muons that engage with carbon present in the liquid scintillator
may generate isotopes such as 9Li and 8He, thereby adding to correlated background
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signals. Table 2 summarizes some important results of the singles and background
simulation.

IBD signal 2000 events/day
Muon rate 70 Hz/m2

Fast neutron background after veto < 40 events/day
Singles from radioactivity < 100 Hz

Accidental background rate < 190 events/day
9Li /8He background rate ∼ 54 events/day

Table 2: Summary of the IBD signal and background simulation results [97] [10].

TAO’s extensive photosensor coverage, substantial light yield, and operation at cryo-
genic temperatures will enable precise measurement of the reactor antineutrino energy
spectrum, achieving resolution of 1.5 % at 1MeV. This accurate spectrum will serve
as a valuable reference for JUNO and upcoming reactor neutrino experiments and
nuclear database evaluations.

3.4 Physics Goals

As discussed in the previous chapter, the unknown CP-violating phase and neutrino
mass ordering remain major objectives for next-generation experiments. JUNO aims
to resolve the neutrino mass ordering and improve oscillation parameter uncertainties
below 1% via precise energy spectrum measurement. As explained in section 2.4.3
antineutrino yield per fission exhibits a deficit compared to model predictions, known
as the reactor antineutrino anomaly as illustrated in figure 10. The plot shows a
comparison of measured and predicted prompt energy spectra of fission indicating the
observed deficits. The obtained spectrum and its prediction by the Huber-Mueller
model together with uncertainties are displayed in the left panel. The ratio of the
measured to predicted spectra and the deviation from the local mean are pointed
out, respectively, in the middle and the bottom regions of the left panel. The right
panel of the figure shows the obtained 235U and 239Pu spectra compared to Huber-
Mueller model predictions, with the best normalization factors, to match shapes. The
lower and middle panels of the right panel show the extracted-to-predicted ratio of
spectra and local deviations for each isotope respectively. The figure shows deficit
of the observed fluxes, particularly around 5MeV where an excess of antineutrinos is
observed and this has been confirmed by the recent experiments. To address this issue
the reactor antineutrino experiments use near detectors that can provide a reference
spectrum. However, the current resolutions obtained from them are insufficient to
address the fine structure. This is one of the prime goal of TAO, to provide a
precise antineutrino energy spectrum with sub-percent energy resolution that can
aid in understanding reactor anomalies and neutrino physics. The following sections
explains various physics goals of TAO.
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Figure 10: The figure compares the observed reactor antineutrino spectrum to Huber
Mueller model predictions. The Left panel shows the predicted and mea-
sured prompt energy spectra. On the right panel the extracted spectra of
235U and 239Pu is compared to model predictions (using best-fit normal-
ization factors (0.92 and 0.99)) [98].

3.4.1 Fine Structure Measurement

In a reactor, the energy spectrum of antineutrinos arise from multiple beta decay
branches, each exhibiting a sharp edge due to Coulomb correction. These corrections
create sharp edges in the spectra as they distort the beta decay branches due to
electromagnetic interaction between the emitted beta particle and their daughter nu-
cleus’s charge, modifying the particle’s energy distribution. This creates fine structure
in the spectrum. Figure 11 illustrates this with clear cutoffs at decay branch edges of
the listed fission products calculated using summation method. However, the exact
shape and amplitude of this fine structure remains challenging due to limited data ow-
ing to the low event rates and the fluctuations introduced from the reactor operations.
TAO and JUNO are capable of reproducing the summation spectrum, including fine
structure, with an accuracy of better than 1%, as demonstrated in the calculations
presented in [99]. TAO’s precise measurement aims to validate summation spectrum
calculation, with anticipated statistical uncertainty <1% in the 2.5–6MeV range,
constraining fine structure to <1% and offering a reference spectrum for JUNO.

The fine structure of the spectrum hold significant insights into nuclear databases
and models utilized for forecasting reactor antineutrino fluxes. Variances observed
between TAO’s fine structure measurements and model forecasts might offer clues to
understanding the ∼ 3% shortfall in recorded reactor antineutrino fluxes compared to
predictions.
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Figure 11: Calculated antineutrino energy spectra from many fission products in a
commercial reactor [100].

3.4.2 Reference Spectrum for JUNO

TAO will offer a precise reference spectrum for JUNO as its event rate will surpass
JUNO’s by 33 times because of the short baseline of about 44 m. TAO has the
capability to accurately map its measured spectrum onto the expected unoscillated
spectrum in JUNO, considering detector effects such as energy resolution and recoil.
This mapping enables the direct application of TAO’s reference spectrum to JUNO
without requiring prior knowledge of the underlying neutrino spectrum [101]. Utilizing
TAO’s spectrum as input, JUNO’s predicted antineutrino energy spectrum can be
expressed as the sum of TAO’s reference spectrum and adjustments for potential
differences in fission fractions for major isotopes:

𝑆𝐽𝑈𝑁𝑂(𝐸𝜈) = 𝑆𝑇𝐴𝑂(𝐸𝜈) + Σ𝑖∆𝑓𝑖𝑆𝑖(𝐸𝜈) (3.10)

where 𝑆𝑇𝐴𝑂(𝐸𝜈) is the reference antineutrino energy spectrum from TAO, ∆𝑓𝑖 is the
difference of fission fractions for four major isotopes, and 𝑆𝑖(𝐸𝜈) is the antineutrino
spectrum for each isotope. TAO detects antineutrinos only from one of the Taishan
reactors but JUNO detects antineutrinos from two Taishan reactors (4.6 GW) and six
Yangjiang reactors (2.9 GW) therefore there would be variations in the antineutrino
flux due to different reactor types and operational periods.

TAO’s statistical uncertainty will influence JUNO’s bin-to-bin spectral shape uncer-
tainty (which refers to the differences in the measured values from one energy bin to
another due to statistical fluctuations). Figure 12 illustrates the statistical uncertainty
of TAO, obtained from three years of data, in contrast to JUNO’s uncertainty derived
from six years of data. TAO maintains a statistical uncertainty below 1% across most
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energy regions of interest. Assuming a 10% difference in fission fractions between
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Figure 12: The statistical uncertainty of TAO & JUNO with three & six year’s of data
taking respectively [10].

TAO and JUNO, the bin-to-bin uncertainty from the reference spectrum is around
1%. Also a study on the sensitivity of the mass ordering of JUNO vs inputs bin-bin
shape [7] as illustrated in figure 13, clearly shows by incorporating TAO’s data (black
marker), the mass ordering sensitivity (𝜒2) improves by approximately 1.5 compared
to using the Daya Bay reference spectrum (blue marker).

By offering a high-precision and model-independent reference spectrum, TAO will
significantly contribute to JUNO’s objective of precisely determining neutrino oscil-
lation parameters, including the neutrino mass ordering and the mixing angles 𝜃12
and ∆𝑚2

21. TAO’s reference spectrum plays a crucial role in minimizing systematic
uncertainties in JUNO’s oscillation analysis.

3.4.3 Other Goals

Search for sterile neutrinos: As mentioned in section 2.5.4, anomalous neutrino
behavior in MiniBooNE and LSND experiments, and a deficit of neutrino yields in
gallium experiments hint at the possibility of a fourth neutrino generation, called a
sterile neutrino, whose mass splitting is roughly around 1 eV2. TAO’s sensitivity to
sterile neutrinos within a 3+1 model, considering its short oscillation baseline was
examined. The 𝜈𝑒 survival probability can be approximated as

𝑃𝜈𝑒→𝜈𝑒(𝐿,𝐸) = 1− 4
3∑︁

𝑖=1

|𝑈𝑒𝑖|2|𝑈𝑒4|2 sin2(
∆𝑚2

4𝑖𝐿

4𝐸
). (3.11)
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Figure 13: The plot shows mass ordering sensitivity for different reference spectra
(represented by different markers) for JUNO. The 𝜒2 value quantifies the
sensitivity where higher values indicate better discrimination between nor-
mal and inverted orderings [7].

Here, ∆𝑖𝑗 represents the mass splittings, defined as 𝑚2
𝑖 −𝑚2

𝑗 where 𝑚𝑖 is the mass
of the i-th neutrino state, and |𝑈𝑒𝑖| are elements of the extended 4 × 4 unitary
mixing matrix. TAO’s setup involves a cylindrical reactor emitting antineutrinos,
detected by its nearby spherical detector. By accounting for background noise and
systematic uncertainties, the discrepancy between observed and expected spectra are
evaluated statistically. Using the Confidence Level with a signal hypothesis (CLs)
statistical method [102]–[104], TAO’s sensitivity to sterile neutrinos is gauged by
comparing standard and sterile neutrino scenarios. The sensitivity improves with
increased statistics and reduced uncertainties. Leveraging its unique features, like its
short baseline and segmented detector, TAO complements existing experiments and
holds promise for setting new limits on sterile neutrinos.

Reactor Monitoring : Antineutrino detectors provide real-time monitoring of nu-
clear reactor power and fuel mixture, complementing standard methods and providing
a safeguard against unauthorized nuclear activities. The reactor activity is monitored
by TAO using the overall antineutrino energy spectrum which varies for different iso-
topes based on their fission fraction. Changes in fuel composition affect flux and
spectrum evolution. Precise measurement of these parameters is critical, especially
given recent antineutrino experiments that have highlighted discrepancies from the-
oretical predictions [105]. The safeguard measures aim to detect and potentially
remove plutonium quantity in reactors through fuel reprocessing. TAO aims to bring
precision in the spectral measurements that can serve as input for reactor monitoring
and safeguard studies.
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4 Deep Learning and Genetic Algorithm

Deep learning is a subdomain of machine learning concerned with the use of ar-
tificial neural networks [106] comprising multiple layers, also known as deep neural
networks. They can extract features automatically from the raw data and learn them
without the requirement of explicit feature engineering. Every layer builds on the
features extracted from the previous layers, and a complex representation is formed.
This hierarchical approach goes a long way in understanding complex patterns within
massive datasets, hence proving very useful in particle physics. It could be used in
distinguishing types of particles from each other or identifying rare events, or it could
be applied in speeding up simulations and optimizing detectors by analyzing large
datasets. Of the several deep learning techniques, Graph Convolutional Networks
GCNs are used in this study. GCNs model the relations between particles excellently;
thus, they are appropriate for problems in particle physics, particularly in complex par-
ticle interactions such as predicting the decay of composite particles. On the other
hand, Genetic Algorithms GA are optimization techniques that use the process of nat-
ural selection to get to the optimal solution within a defined parameter space. In this
line, GAs may be applied to design new detector configurations for specific physics
searches. A detailed introduction and the principle working of these techniques are
discussed in this chapter.

4.1 Deep Learning

4.1.1 Structure of Neural Networks

The fundamental unit of a neural network is the node/neuron, which is grouped
into successive layers to process information. A neural network basically includes an
input layer, one or more hidden layers, and an output layer [107]. The input layer
contains information regarding the initial data. Between the input and the output
layers, there are hidden layers in which the information is extracted. Finally, the
output layers are those that predict the final result. As illustrated in figure 14, a
neuron receives input 𝑋𝑖 from the previous layer and processes them with weights
𝑊𝑖, bias 𝑏 and an activation function 𝑓 to produce an output 𝑍. A neuron can be
mathematically represented as

𝑍 = 𝑓(
𝑛∑︁

𝑖=1

W𝑖 · X𝑖 + b) (4.1)
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Figure 14: A representation of a neuron that sums up weighted inputs 𝑥𝑖, applies an
activation function to modulate the weighted sum to yield the output of
the neuron. [108].

In equation (4.1) n represents the total number of input features and the summation
starts from i = 1 to iterate over each input, calculating the weighted sum of all
inputs. The activation function determines the neuron’s output by simulating the
(non)firing state of a biological neuron [109]. Weights determine how strong are
the connections between the neurons and the biases tune the output by applying
an offset to the weighted sum of inputs. By introducing non-linear relationships
between the input and the output, the activation function allows the network to learn
complex connections [109]. The nonlinearity is incorporated using several functions
like Rectified Linear Unit (ReLU), Scaled Exponential Linear Unit (SELU), sigmoid,
and tanh [110]. The activation functions used in this study are ReLU [111] and SELU
[112] which can be mathematically represented as:

ReLU : 𝑓(𝑥) = max(0, 𝑥) (4.2a)

SELU : 𝑓(𝑥) =

{︃
𝜆𝑥 if 𝑥 > 0

𝜆𝛼(𝑒𝑥 − 1) if 𝑥 ≤ 0
(4.2b)

The ReLU function is a popular activation function that introduces nonlinearity by
returning zero for inputs less than zero while leaving positive inputs unchanged. One
problem with this method is that the neurons might get stuck in returning zeros
for continuous negative inputs (also called "dying ReLU"). Despite the drawback,
ReLU remains a popular choice because it is quick to compute as it requires only
a simple max operation (as shown in equation (4.2a)). Also, it doesn’t have any
upper limit for the positive inputs thereby allowing free gradient flow preventing
vanishing gradient problems. The SELU function although not so popular is uti-
lized for its self-normalizing properties. The predefined constants in equation (4.2b)
𝜆 ≈ 1.0507 and 𝛼 ≈ 1.6733 help in maintaining the mean and variance of the
activation across the layers close to zero and one respectively. Unlike ReLU the posi-
tive inputs are multiplied with 𝜆, this scaling amplifies the variance of the activations
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for larger positive inputs. On the other hand, the negative inputs and inputs that
have a value zero are subjected to exponential transformation scaled by 𝜆𝛼 producing
negative output, addressing the issue of dying ReLU. The counterbalancing effect
of amplifying positive values and dampening negative values is what makes SELU a
self-normalized activation function. This helps in creating a balanced distribution of
activations leading to improved training of the network.

4.1.2 Key steps in Building Neural Networks

The building of the neural network involves several key processes: preparing the
data, designing the model architecture, initializing training parameters, training the
model, evaluating the model and tuning the hyperparameters for better performance.
The data preparation begins by defining features (the inputs used by the model)
that are extracted from the raw data. Additionally, the dataset is split into training,
validation and test sets. The next step is designing the model by the number of layers
and the activation functions that it uses. Once the model is designed it undergoes
training. Neural networks train in an iterative process by changing weights and biases
so that the prediction is quite close to the true output. This is usually done by running
the data in batches through several epochs (iterations). The learning/training takes
place in three steps: forward propagation, error calculation using loss function and
backpropagation. In forward propagation, as the name suggests, the data travels
forward through the network, where weighted sums and biases are applied at each
layer to produce an output. The second step is the calculation of the error using
the loss function. The final step is backpropagation where the error gradients are
propagated backwards through the network to update the model parameters: weights
and biases at every layer to enhance the model performance. Following training, the
model is evaluated using the validation set where tuning the hyperparameters such as
learning rate, batch size and other regularization techniques will aid in optimizing the
model performance. Finally it is assessed by the test set. This subsection provides a
detailed explanation of these processes.

1. Data Preparation: The suitability of the data to be processed by the network has
to be ensured before the actual training begins. If the ranges of the input data differ
by several orders of magnitudes, then adjusting the parameters could be a difficult
task. Certain preprocessing is done on the data to eliminate such complications.
One of the methods to do this is to normalize the data, so all features are at a
common range, say (0,1) or (-1,1). Feature selection is another important step in
preprocessing. Only relevant features are selected for training a model as it impacts
the model’s prediction. The dataset is also split into training, validation and test
data. For this study, a dataset split ratio of 70% for training and 30% for validation
is used. A separate test dataset (typically comprising 10-20%) of the total available
data is generated independently to provide an unbiased final evaluation of the model’s
performance. The details of which can be seen in section 5.2.

2. Defining the model: The model is defined by the number of layers and the
activation functions it uses. The number and type of layers are designed based on
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the problem statement (classification, regression or clustering). As this study focuses
on the reconstruction of events in a detector, the task is regression. To cater to this
requirement the model is designed with a combination of specialized layers: graph
convolutions (for processing spatial relationships of SiPMs), partition pooling (for
hierarchical feature extraction), ResNet blocks (for improved gradient flow and feature
earning) and fully connected layers (for final output generation). The details of these
layers are explained in section 4.1.3 and the implementation of the architecture is
explained in detail in section 5.3.1.

3. Parameter Initialization: When initializing the network parameters, the diversity
in the weights and biases are to be maintained. This breaks the symmetry and
prevents the network from learning identical mappings. This is achieved by randomly
initializing the weights and biases. Bias is generally initialized with small constant
values or zeros. The weights are usually initialized randomly within a selected range.
Proper initialization should prevent a model from suffering from vanishing/exploding
gradients and allow convergence during training to occur quickly. Transfer learning
can also be applied, in which the weights of a pre-trained model are used in order to
initialize the network to provide a head start.

4. Training the model: After initialization, the data is propagated with the help of
equation (4.1) to the next layers to generate an output. In the forward, every neuron
receives input from the previous layer, applies weights and biases, and processes the
result through activation functions. This process produces initial predictions which
are compared to the true values using the loss functions. The loss functions are used
to gauge the quality of network prediction using a scalar measure at the end of every
epoch, depending on the input data and on the parameters of the neural network.
The the loss function is chose based on the problem statement, like regression or
classification. In case of regression, the commonly used function is Mean Squared
Error (MSE):

𝐿MSE =
1

𝑁sample

𝑁𝑠𝑎𝑚𝑝𝑙𝑒∑︁

𝑖

⃒⃒
⃒𝑌𝑖 − 𝑌𝑖

⃒⃒
⃒
2

(4.3)

where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 is the dataset size and 𝑌 and 𝑌 are the predicted and true output
respectively. The loss value becomes the bias for the final step backpropagation
where the biases and weights are updated to minimize the error in the subsequent
iterations. The model uses iterative gradient descent, in which the partial derivatives
— computed by the chain rule across nested NN — update the initially random
parameters towards optimal values. Backpropagation involves calculating errors and
partial derivatives of weights and biases. The error term of the output layer 𝛿 is derived
as the derivative of the loss function 𝐿 with respect to 𝑍 as in equation (4.1):

𝛿 =
𝜕L

𝜕Ŷ
· f ′(Z) (4.4)
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where 𝑓 ′(𝑍) is the derivative of the activation function 𝑓 to it’s input 𝑍, 𝛿 repre-
sents the sensitivity of the loss with respect to the pre-activation output 𝑍. This
helps in distributing the error across the network during the backward pass. The
partial derivatives of loss function with respect to weights 𝑊 , biases 𝑏 and activation
𝐴(= 𝑓(𝑍))A are as follows:

𝜕𝐿

𝜕𝑊
= 𝛿 · 𝐴𝑇

prev (4.5)

𝜕𝐿

𝜕𝑏
= 𝛿 (4.6)

𝜕𝐿

𝜕𝐴prev
= 𝑊 𝑇 · 𝛿 (4.7)

These derivatives are crucial in updating the weights and biases, to minimize the loss,
the primary goal of optimization.

5. Model Evaluation: After training the model it is first evaluated with the validation
dataset. While more parameters often increase performance, at some point additional
network depth and width can lead to overfitting and underfitting. This can be ex-
plained using figure 15 which shows how training and validation losses vary for a data
that is run over 80 epochs. As seen in the plot, below 10 epochs, the validation
loss is constantly less than the training loss, which means early underfitting. In the
range between epochs 10 through 60, validation loss has tends to fluctuate around the
training loss. This indicates how the model adjusts to the training data. After epoch
60, validation loss starts to increase while the training loss is still decreasing. This is
a sign for the start of overfitting. To address overfitting two regularization methods
dropout layers [113] and early stopping [109] were used in this work. Dropout is a
technique that shuts off a portion of neurons and all of their connections randomly.
Early stopping tracks the validation loss after each epoch and stops training id no
further improvement is noticed. Once the model is updated and finalized its perfor-
mance is assessed on a separate test set which it has never seen before. Here, only
the inputs are fed to the model and it is expected to predict based on the training
and evaluation it previously underwent.
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Figure 15: The plot shows the the learning progression of the model across 80 epochs.
The first ten epochs indicates a clear case of underfitting. From epochs 10
to 60 the training and validation loss tend to converge, indicating learn-
ing. After 60 epochs the increasing validations loss signals the onset of
overfitting.

The algorithm 1 explains in detail a neural network’s training and evaluation pro-
cesses. The algorithm begins by initializing weights W, and biases b, along with
hyperparameters like learning rate 𝜂, epochs E, and batch size B. A neural network
NN is designed with a total of L layers, where each layer l has 𝑑𝑙 neurons and uses the
activation function 𝑓 𝑙. The dataset is split into three subsets. The training 𝐷𝑡𝑟𝑎𝑖𝑛,
and validation datasets 𝐷𝑣𝑎𝑙 include the inputs 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙 and true outputs 𝑌𝑡𝑟𝑎𝑖𝑛,
𝑌𝑣𝑎𝑙 respectively. However, the test dataset 𝐷𝑡𝑒𝑠𝑡 includes only inputs 𝑋𝑡𝑒𝑠𝑡 as it is
used to predict outputs 𝑌test from unseen data using the trained and updated model
𝑁𝑁 . In the training phase, the data is batched and processed over several epochs.
For every batch, the forward propagation is conducted whereby linear combination
𝑍 𝑙 and activation 𝐴𝑙 are computed. Then the batch-wise loss 𝐿𝑏𝑎𝑡𝑐ℎ is computed by
comparing the target value 𝐴𝑙 with output 𝑌𝑡𝑟𝑎𝑖𝑛, and this is updated in total training
loss, 𝐿𝑡𝑟𝑎𝑖𝑛. Following it is the backpropagation that begins from the output layer
and moves backwards, layer by layer in the network. It computes the error in the
output layer 𝛿output, as the element-wise product of the batch loss gradient ∇𝐿batch,
and the derivative of the activation function 𝑓 ′(·), evaluated at 𝑍output. Weights and
biases get updated in this process to minimize the prediction errors. The next step
is validation where the forward propagation is performed in a similar fashion to the
training phase however the weights and biases are not updated and the model uses
their current values to compute the validation loss 𝐿𝑣𝑎𝑙. The obtained training loss,
𝐿𝑡𝑟𝑎𝑖𝑛, and validation loss, 𝐿𝑣𝑎𝑙, can be useful to give information on how well the
data has been trained and can trigger the saving of the model if the performance im-
proves. The saved model contains information about the best configuration (weights
𝑊 𝑙, biases 𝑏𝑙, learning rate 𝜂, activation functions 𝑓 𝑙, and layer dimensions 𝑑𝑙 for
each layer 𝑙) that achieved the lowest validation loss. Finally, for testing the saved
model NN is loaded and the test input 𝑋test is fed into the model to generate the
predictions 𝑌test without access to the true outputs of the test dataset.
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Algorithm 1 Training, Validation, and Testing of a Neural Network
Require: • Initialized weights 𝑊 , biases 𝑏, learning rate 𝜂, number of epochs 𝐸,

batch size 𝐵

• Neural Network 𝑁𝑁 : Number of layers 𝐿, Activation functions 𝑓 𝑙 for each
layer 𝑙,Dimensions of each layer 𝑑𝑙

• Model save location 𝑀save: file to store the neural network.

• Training data 𝐷train = {(𝑋train, 𝑌train)}: inputs 𝑋train and true outputs 𝑌train

• Validation data 𝐷val = {(𝑋val, 𝑌val)}: inputs 𝑋val and true outputs 𝑌val

• Test data 𝐷test = {𝑋test}: inputs 𝑋test

Ensure: 𝑒𝑝𝑜𝑐ℎ = 1 to 𝐸 ◁ Training begins here
Training:
𝐿train = 0 ◁ Initialize training loss for this epoch
for each batch (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) in 𝐷train do

Forward Propagation:
for each layer 𝑙 in 𝑁𝑁 do

𝑍 𝑙 = 𝑊 𝑙𝐴𝑙−1 + 𝑏𝑙 ◁ Linear combination
𝐴𝑙 = 𝑓 𝑙(𝑍 𝑙) ◁ Apply activation function

end for
Loss Calculation:
𝐿batch = loss(𝐴output, 𝑌𝑡𝑟𝑎𝑖𝑛) ◁ Compute batch loss
𝐿train = 𝐿train + 𝐿batch ◁ Accumulate batch loss
Backpropagation:
𝛿output = ∇𝐿batch · 𝑓 ′(𝑍output) ◁ Compute error at output layer
for each layer 𝑙 from output to input do

𝛿𝑙−1 = (𝑊 𝑙)𝑇 𝛿𝑙 · 𝑓 ′(𝑍 𝑙−1) ◁ Backpropagate error
𝑊 𝑙 = 𝑊 𝑙 − 𝜂 · 𝛿𝑙(𝐴𝑙−1)𝑇 ◁ Update weights
𝑏𝑙 = 𝑏𝑙 − 𝜂 · 𝛿𝑙 ◁ Update biases

end for
end for
𝐿train = 𝐿train/(number of batches) ◁ Average training loss for the epoch
Validation:
𝐿val = 0 ◁ Initialize validation loss
Forward Propagation on Validation Data:
for each layer 𝑙 in 𝑁𝑁 do

𝑍 𝑙
val = 𝑊 𝑙𝐴𝑙−1

val + 𝑏𝑙 ◁ Linear combination
𝐴𝑙

val = 𝑓 𝑙(𝑍 𝑙
val) ◁ Apply activation function

end for
𝐿val = loss(𝐴output

val , 𝑌val) ◁ Compute validation loss
Log 𝐿train and 𝐿val for monitoring ◁ Track progress
Save the model 𝑁𝑁 : store 𝑊 𝑙, 𝑏𝑙, 𝜂, 𝑓 𝑙, 𝑑𝑙 to 𝑀save if 𝐿val improves.
Testing:
Load Model: 𝑁𝑁 ←𝑀save ◁ Load the best saved model
𝑌test = 0 ◁ Initialize predictions
𝑌test = 𝑁𝑁(X𝑡𝑒𝑠𝑡) for all X𝑡𝑒𝑠𝑡 ∈ 𝒟𝑡𝑒𝑠𝑡 ◁ compute predictions from the model
Output: Predicted outputs 𝑌test
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4.1.3 Layers in the Architecture

This subsection provides a theoretical overview of the selected layers in the archi-
tecture specifically designed for the reconstruction task. The layers include GCNs,
partition pooling layers, residual blocks and finally a fully connected layer. The de-
tailed implementation is presented in chapter 5.
Graph Convolutional Networks (GCNs)

GCNs perform convolution directly on a graph, a structure that contains a set of
nodes (or vertices) and edges that connect the nodes. It can be represented as G = (V,
E, W), in which V denotes nodes, E signifies edges, and their corresponding weighted
adjacency matrix W. A node vj ∈ V is said to be in the neighbourhood of vi if there
exists an edge in E between them, and these connections are weighted and encoded
in W. In graph theory [114], an undirected graph has no directed edges; hence, the
connection is bidirectional, from node vi to node vj or vice versa. Their adjacency
matrix is symmetric. Whereas in the case of a directed graph with directed edges,
traversal is one way. Their adjacency matrix is not symmetric. A basic structure
of graph is illustrated in figure 16. The directionality of the graph matter a lot in
facilitating information transfer or message passing [115].

Figure 16: A representation of graph with it’s nodes and edges. Each node represents
a variable or operations and the edges represent the connection between
the nodes [116].

Message passing is one of the fundamental principles underlying graph neural net-
works, especially Graph Convolutional Networks. It performs an iterative propagation
by aggregating information from neighboring nodes and updating the features of every
node. It can be mathematically expressed as

ℎ[𝑖]𝑘+1 = UPDATE(ℎ[𝑖]𝑘,AGGREGATE({ℎ[𝑗]𝑘 : 𝑗 ∈ 𝑁(𝑖)})) (4.8)

where ℎ[𝑖]𝑘 is the feature vector of node 𝑖 at iteration 𝑘, and 𝑁(𝑖) denotes its neigh-
bors. The aggregate functions typically include sum (adding neighboring features),
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mean (averaging neighboring features), max (selecting the highest feature value) or
a combination of these [117]. The update function usually consists of a linear trans-
formation followed by a non linear activation [118]. This combination of aggregation
and update allows GCNs to learn the local topology of the graph. Message passing is
mathematically implemented in GCNs using graph convolutional filters. It aids GCNs
to capture complex patterns and higher-order dependencies across graphs.

Convolutional filters can be categorized into two main categories: spatial and spec-
tral. The spatial domain methods act directly on the graph structure, so information is
aggregated from the neighboring nodes. These are usually implemented by message-
passing schemes, where nodes exchange information and perform some aggregate
operation with their immediate neighbors. Each node performs a kind of filtering op-
eration over its neighbors and extracts the relevant information. A general equation
for the convolution on a graph is of the form:

ℎ𝑙+1
𝑣 = 𝑓(Σ𝑢𝜖𝑁(𝑣)𝑊

𝑙 · ℎ𝑙
𝑢 + 𝑏𝑙) (4.9)

where ℎ𝑙+1
𝑣 is the output feature vector of a node 𝑣 in the (𝑙 + 1)-th layer, ℎ𝑙

𝑢 is the
feature vector of a neighboring node 𝑢 in the 𝑙-th layer, 𝑁(𝑣) is a set where 𝑊 𝑙

is learnable weight matrix (filter) for layer 𝑙, 𝑏𝑙 is the learnable bias term for layer 𝑙
and 𝑓 is an activation function. This expression collects input from the neighbors of
the node, applies a learnable transformation, and then pushes the computed value
through an activation function. Spatial methods have localized operations much like
in traditional CNNs but with the advantage of dealing with graphs of various sizes
and structures. Few approaches include: Graph Convolutional Networks by Kipf &
Welling [118] , GraphSAGE [119], and Edge Convolutions [120].

The other approach is using spectral filters. Spectral convolutions conduct convo-
lution operations on graph-structured data through spectral graph theory [121] based
on the eigendecomposition of the graph Laplacian matrix. The normalized graph
Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝐴𝐷−1/2 (4.10)

where 𝐴 is the adjacency matrix, 𝐷 is the degree matrix, and 𝐼 is the identity matrix,
then decomposed as 𝐿 = 𝑈Λ𝑈𝑇 where 𝑈 contains the eigenvectors and Λ the eigen-
values, for the graph Fourier transform. The spectral convolution operation may be
mathematically summarized as mapping a signal 𝑥 into the spectral domain— that
is, �̂� = 𝑈𝑇𝑥— and then applying a filter in the spectral domain 𝑔𝜃(Λ), followed by
returning it back to the node domain: 𝑦 = 𝑈𝑔𝜃(Λ)𝑈

𝑇𝑥. A few spectral methods
include: ChebNet [122], CayleyNet [123] and ARMA Graph Neural Networks [124].
All of these methods have trade-offs between computational cost, involving a small
neighborhood, and their ability to localize the graph signal and capture complicated
graph patterns, respectively. While patial filters are highly localized, spectral filters
exhibit global support. Having said that, the preference between spatial and spectral
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filters is mainly a matter of current application, available computational resources,
and desired properties toward graph convolution.

Partition pooling

This technique adapts image recognition architectures-CNN to graph neural net-
works by defining pooling kernels for graphs [125]. A graph 𝐺 has nodes and edges.
The corresponding node matrix is denoted by ℎ wherein every row ℎ𝑖 represents the
feature vector of the node 𝑖. The graphs can be segmented into clusters using the
K-means algorithm [126] where nodes are grouped based on their proximity to the
centroids of each cluster. The resulting clusters/partitions 𝑃𝑖 max-pooled using max-
aggregation function 𝑄 [127] as shown below:

𝑦𝑖 = 𝑄(ℎ𝑗|𝑗𝜖𝑃𝑖) (4.11)

where 𝑦𝑖 indicates the pooled representation of Partition 𝑃𝑖. The aggregation is
applied across all feature space resulting in a new graph 𝐺′ with a new node matrix
ℎ′. This pooling can be repeatedly used as shown in section 4.1.3 to reduce the graph
size while capturing essential feature information.

𝐺
Q-pool−−−→ 𝐺′ Q’-pool−−−−→ 𝐺”

Q"-pool−−−−→ .... (4.12)

Figure 17 is a schematic representation of partition pooling in graphs. This technique
allows for extensive hyperparameter tuning concurrently with less computational de-
mands. In practical applications, for example, simulating the interaction vertices in
neutrino detectors, partition pooling enhances the performance of a network while
reducing over-fitting with respect to models without pooling mechanisms.

Figure 17: The graph is partitioned using K-Means algorithm and is subjected to max-
aggregation. Nodes that belong to the same partition have similar color
and their size is proportional to the signal strength [125].

Residual Blocks
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These are building blocks of ResNET which is a normalizing method designed to
combat the problem of vanishing gradients [128]. As illustrated in figure 18, a unit
comprises of several stacked convolutional layers, which form a residual function 𝐹 (𝑥),
where 𝑥 is the input that is passed on to the unit. The extra connection between the
input of a particular layer to it’s corresponding output through an identity operator is
the key feature of the residual block. The input is added to the interim result before
the activation function is applied. The identity operator allows the gradients to be
propagated directly, thereby mitigating vanishing gradients problem especially in deep
networks. In case of a difference in dimension between 𝐹 (𝑥) and 𝑥, zero padding can
be applied or 1× 1 convolution can be applied on 𝑥 as mentioned in [128].

Figure 18: The residual unit is composed of the residual function 𝐹 (𝑥) and the identity
operator. The output at every layer adds up the input 𝑥 passed through
the identity operator [128].

Fully Connected Layer

Figure 19: Fully connected dense network where each each neuron in a particular layer
is connected to every other neurons in the next layer. This architecture
was generated using [129]
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This type of network has every neuron in a layer connected to every other neuron
in the subsequent layers as illustrated in figure 19. This inter connectivity of the
network enables it to process and accumulate information from all previous neurons.
These layers are usually are used at the end layers of model to predict the output.
After convolutional and pooling layers process features, fully connected layers uses
the dense connectivity to transform feature maps to output predictions. Every layer
multiplies the inputs by weights and adds biasses followed by an activation function.
But in the final layer the activation function is mostly omitted to produce continuous
output values.

4.1.4 Role of GCN in Neutrino Event Reconstruction

The typical geometry of a neutrino detector and the data produced from it can
be complex. In contrast to traditional neural networks that require a regular grid-
like structure for the data, GCNs work by defining convolution operations based on
graph topologies and leveraging data structure according to graphs. By representing
neutrino detector as graph with the SiPMs (that record the hits) as nodes and their
relationships as edges, GCNs can capture the spatial and temporal dynamics of the
particles. The addition of partition pooling layers aids in improving the computational
efficiency of the model without compromising on the vital data. This makes them a
better choice over traditional methods that may not handle large-scale graph data as
efficiently, especially in terms of memory usage and processing speed.

4.2 Genetic Algorithm (GA)

GAs are optimization algorithms [130] that use natural evolutionary mechanisms
to search for optimal or near-optimal solutions of complex problems [131]. They
are based on the concept of biological evolution, which involves the processes of
inheritance, mutation, selection, and crossover [132]. GAs are versatile and efficient,
requiring no extraneous information like derivatives or continuity, and thus turn out
to be applicable to very complicated problems which have discontinuities or non-
linearities [133]. By definition, GAs operate on a parallel population and consider many
candidate solutions at the same time, which inherently makes them more efficient than
the traditional optimization methods like gradient descent that operate sequentially
on single candidate solution at a time [134]. They have turned out to be effective in
very diverse domains like, medical specialties[135], pattern recognition [136], financial
analysis [137], industrial optimization [138] etc. This section will introduce in detail
about GA, dwelling on the concepts and basic ideas. The details of the implementation
will be given in chapter 6. The following subsections are based on [139] and [140].

4.2.1 Basic Structure of GA

GA operates with a population of individuals, each represented with chromosomes,
usually in the form of a string of particular genes (bit, number, or character se-
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quence). Chromosomes describe candidate solutions to the solution space for a given
problem.

Figure 20: Components of a genetic population. Each individual is identified by their
chromosome which is a unique combination of their genes.

The two common representations: binary strings (10101,10001,10010) and contin-
uous variables (45,57,96) with both form encoding the same solution. For this work,
continuous variable representations have been chosen due to their appropriateness for
the problem.Figure 20 depicts a population and each of its distinct chromosomes,
which are made out of genes. The population resides within the search space, which
is limited by the domain of the objective function to guarantee that every individual
is a valid solution (fitness). The value of each potential solution is established by
the particular problem specification. Algorithm 2 describes the working of GA which
can be explained in five steps: initialization, evaluation, selection, propagation and
termination. The first step is initialization where individuals form an initial population
𝑃 0 followed by evaluation where the fitness of the individuals are calculated by the
objective function. The third step is selection where the most fit individuals 𝑁𝑓𝑖𝑡 are
selected 𝑃 ′ for propagating the population. The fourth step is propagation where the
selected individuals are propagated using crossover 𝑃 ′′, and mutation 𝑃 ′′′ operators.
This process is continued for several generations (iterations) and the population has
always the same number of individuals within each generation (iteration). The final
step is the termination of the iteration when a stopping criterion is satisfied (which
in this case is k=10).

Initialization: The initial population is generated in respect with the requirement
of the problem (heuristic initialization). The size of population is one of the most
important parameters of the GA, which influences the overall performance. Diversity
of the initial population should be ensured to prevent the premature convergence to
local optima.
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Algorithm 2 GA Workflow

Require: Generate a random population of individuals, 𝑃 0, with dimension 𝑁𝑝𝑜𝑝

Ensure: k = 0
while k < 10 do ◁ For 10 generations
𝑃 ′ = Apply selection procedure on 𝑁𝑝𝑜𝑝 individuals.
𝑃 ′′ = Apply crossover procedure on 𝑁𝑓𝑖𝑡 individuals.
𝑃 ′′′ = Apply mutation procedure on 𝑁𝑓𝑖𝑡 individuals.
𝑃 𝑘+1 = 𝑁𝑝𝑜𝑝 best individuals of 𝑃 𝑘 ∪ 𝑃 ′′ ∪ 𝑃 ′′′

Set 𝑘 = 𝑘 + 1
end while

Evaluation of the individuals: The objective function is the mediator between the
GA and the optimization problem. By evaluating the fitness of the chromosomes, at
every generation, it ranks these individuals for their relativity towards the optimization
problem. The complexity of computing the value of the objective function varies from
one problem to another. Suppose, for example, that the fitness function is taken to
be Σ𝑥2

𝑖 , where 𝑥𝑖 is a gene in an individual. Then, the fitness will be calculated by
summing up squares of the values of genes as illustrated in figure 21. In some cases,
when the mathematical equation is not viable, one can then make use of a rule-based
procedure as a fitness function, or a combination of both may be implemented.

Figure 21: Fitness Evaluation and Selection of Individuals.

Selection: Selection procedure is designed to select individuals from the existing
population to propagate and produce offspring. The selection depends on the survival
probability, decided by the objective function value of an individual. Again, many
selection methods are there, such as ranking-based selection, tournament selection,
and elitist selection; the most common one is roulette wheel selection. In the roulette
wheel game each chromosome receives a wheel sector proportioned by its value of
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fitness; the higher the evaluated chromosome, the larger the sectors. The problem
taken for this study is a maximization problem; therefore, individuals with higher
fitness are more likely to survive and reproduce, while those with lower fitness are
eliminated. From a population of 𝑁𝑝𝑜𝑝 individuals, the number of individuals retained,
forming the subset 𝑁𝑓𝑖𝑡, is based on their fitness value. Based on the example depicted
in figure 21, three individuals make up the initial population. Their fitness is evaluated
using the fitness function: Σ𝑥2

𝑖 and those with higher fitness values (Parent 1, Parent
2) are selected to continue the propagation.

Figure 22: Illustration of one-point, two-point and uniform crossover operators.

Propagation through Crossover : This main operator 𝑃 ′′ recombines the parental
traits from the parents chosen from the subset 𝑁𝑓𝑖𝑡 and transmits them to the new
generation (offspring). The most common modes of crossovers are represented in
figure 22, and details are given below:
1. One-point Crossover: A particular point in the chromosome of both the parents
are chosen. They are sliced at this point and the corresponding segments are swapped
to generate the new offspring.
2. Two-point Crossover: Two points are selected randomly and sliced. This would
divide the parents into three sections. The segment between the points are inter-
changed to form two new offsprings.
3. Uniform Crossover: In this type a binary mask will decide the segments that are to
be interchanged. If the mask contains 1, then the gene from the first parent is copied
and when it is zero the gene from the second parent is copied to the offspring. This
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is how the first offspring is bred. The mask is swapped to produce the second offspring.

Propagation through Mutation: The mutation procedure, 𝑃 ′′′, is a rare phenomenon
in natural processes but can help diversify the existing population. Not all individuals
undergo mutation. A fixed number of individuals from the 𝑁𝑓𝑖𝑡 subset that will
undergo mutation based on the mutation probability rate. These individuals are
chosen randomly, and their values are then replaced with new random values. For
example if a second gene in an individual is chosen to undergo mutation, as shown
in figure 23 then it’s replaced with a random new value. This approach assists the
algorithm to alter the search and introduce new genetic structures. In this way
it prevents premature convergence to a local minima. However, the probability of
mutation should be maintained relatively lower than the crossover probability else it
would turn the algorithm into a random search.

Figure 23: Illustration of mutation of an individual. A random gene position is selected
and altered to produce the offspring.

Termination: The termination can happen when a specified number of generations
have been completed with no improvements in the fitness value after a certain gener-
ation or if all individuals in the population narrow down to the same solution. When
the stopping criterion is met and the new generation is evolved, the old generation
can be discarded.

4.2.2 Role of GA in Optimizing Horn Geometry

GAs operate with a population of solutions simultaneously, therefore it effectively
finds the global optimum contrary to methods that find single solutions. By fine-
tuning parameters such as population size, crossover and mutation rates and by se-
lecting the more fittest individuals for propagation, GA ensures a balance where there
is sufficient diversity to thoroughly explore the search space, yet also to converge
towards optimal solutions. Furthermore, as the population progresses, the algorithm
automatically assess and propagates new individuals. However, their convergence
rates are slow as compared to traditional optimization methods like gradient based
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methods [141]. Despite this, they have an advantage of scaling up or down the popu-
lation size and the generations to fit to the problem statement. They are hence good
at dealing with high dimensional problems that are hard to optimize by hand. All of
the above mentioned reasons justify the fitness of GAs in analyzing complex profiles
with multiple parameters like those of horn geometry. Details of implementation is in
chapter 6.
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5 Event Reconstruction

An event is a single interaction or group of related interactions detected within
the detector. These events have properties like particle types, energies, momenta,
and vertices (interaction points). But detectors are not measuring these properties
directly; they capture signals from various components as particles interact with the
detector material. The raw detector signal is reconstructed to recreate, as accurately
as possible, the original event properties that were collected in the detector data. This
process uses complex algorithms to determine the vertex and energy of the events or
even identify the particles. This chapter explains in detail from the particle interac-
tions to the reconstructed parameters, focusing on the key aspects: simulation, data
generation, vertex and energy reconstruction. It starts with a simulation phase where
the Monte Carlo (MC) techniques are used to simulate the particle reactions inside
the detector. This is then followed by the generation of data, that is, the conversion
of these simulated particle interactions into realistic detector signals reflecting the
interaction of particles with detector elements. The final step is the event reconstruc-
tion: the algorithms and methodology required to determine the vertex and evaluate
the energy of the primary particle interactions. The ultimate goal is to reconstruct the
spatial coordinates and deposited energy of neutrino interaction events from SiPM
hit times and counts. This study, however, mainly concerns the reconstruction of
positron events. The positron reconstruction lays the groundwork for understanding
the response of the detector and developing subsequent algorithms which will be ap-
plied to the full neutrino event reconstruction in the future. The vertex reconstruction
aims to find the vertex resolution that is crucial in applying fiducial volume cuts in the
detector. The Energy reconstruction aims for a resolution of less than 2 % at 1MeV
helping to accurately measure the antineutrino spectra of the reactor.

5.1 Simulation

The TAO offline software is conceptually designed to use the Software for Non-
collider Physics Experiments (SNiPER) framework [142] and is built upon on the
existing JUNO software [143]. It handles software units (Geant4, ROOT, I/O), job
profiles, and events and offers extensible data schemes and concurrent processing
capabilities. The core utilities such as Geant4 [144] and ROOT [145] facilitate the
simulation and analysis of data, respectively. It handles software units, job profiles,
and events and offers extensible data schemes and concurrent processing capabilities.
The existing framework of the JUNO software provides a significant advantage in
constructing TAO offline software, as both are LS detectors, the existing modules can
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be adapted and tailored to meet TAO’s dimensions and other needs. The complete
layout of the TAO offline software with the above details is shown in figure 24 and it
contains some modules from the JUNO offline software, newly added modules from
the TAO offline software, the SNiPER framework and a few External Libraries. The
modules in the JUNO software include:

1. Generators like GENIE [146], which handles the neutrino interaction with the
target matter and simulates the corresponding secondary particles.

2. Simulation uses Geant4 for modeling detector geometry, physics processes like
electromagnetic, decay physics, hadronic, optical, and special processes tailored
for accurate neutrino interaction and background event modeling and photon
propagation. In short, Geant4 handles the propagation and interaction of the
neutrino"s secondaries and the subsequent emission, propagation and detection
of optical photons.

3. Calibration handles the energy scale calibration and detector response correc-
tions by processing data from multiple radiactive sources using the ACU and
CLS.

4. Reconstruction processes the data to reconstruct energy, vertex, waveform,
charge distribution, particle tracks, and directional information.

5. Analysis handles the event selection and statistical analysis of the data to iden-
tify IBD candidate and assess the reactor antineutrino spectrum.

The JUNO Offline Software is a framework developed for a wide variety of non-collider
physics analysis problems, supporting complex analyses in solar and atmospheric neu-
trinos, while utilizing general reconstruction algorithms and flexible data processing
workflows. TAO is focused explicitly on reactor antineutrino detection and as such
employs specialized reconstruction algorithms, dedicated calibration methods specific
to liquid scintillator response, and statistical analysis tools aimed at precision mea-
surements of the flux. The TAO software uses the same modules with the following
key adaptations: simulation of a smaller liquid scintillator detector (diameter = 1.8m)
with higher resolution (< 2% @ 1MeV), reconstruction algorithms altered to SiPM
readouts and calibration procedures at an operating temperature of −50∘C.

The simulation module in the TAO offline software consists of three essential com-
ponents: the physics generator, the detector simulation (Detsim), and the electronics
simulation (Elecsim). The physics generator produces wide variety of event types
including signal and background processes. It produces antineutrinos from the reac-
tor core and gives initial conditions and particles required for interactions with the
detector by providing random first particles with respective properties and generates
first events according to physics models. Simultaneously, it also produces background
events like atmospheric neutrinos, natural radioactivities, cosmic muons and their in-
duced backgrounds as shown in table 2. DetSim utilizes Geant4 to model the overall
detector response to the generated particles. It includes the overall structural partic-
ulars of the TAO detector such as the geometric specifications of the detector (inner
diameter of 1.8m, volume of about 2.8 tons, 10 m2 coverage of SiPMs) and the
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Figure 24: Components of the TAO offline software [10]. The JUNO Offline Software
is a data processing environment with components of physics generators,
detector simulation, and event reconstruction. The TAO Offline Software
that has been tailored specifically for reactor antineutrino detection utiliz-
ing similar structures to JUNO Offline Software but focusing on the unique
requirements of the TAO experiment. The SNiPER Framework serves as
the backbone for the software of both JUNO and TAO providing an ex-
tensible architecture for efficient event data management and the External
Libraries that consist of mainly Geant4 for simulating interactions of par-
ticles and ROOT for data handling and visualization.

main material properties (GdLS) as well as the optical parameters (absorption and
re-emission probabilities of GdLS, 50% PDE) that are essential for accurate simula-
tion. It also incorporates the basic physics process that controls particle interactions,
follows the motion of particles throughout the detector volume, and energy deposition
as well as scintillation light generation. Moreover, DetSim simulates the optical pho-
tons, their propagation and detection with SiPMs. ElecSim is mainly concerned with
mimicking the response of the TAO readout electronics. It contains several important
components, such as SiPM photon counting, signal amplification and shaping as well
as the analog to digital conversion. However, for this study Elecsim was not utilized
since it was still in the development stage. This choice will lead to better results than
expected due to absence of the electromagnetic response of the detector.

The events are initiated by an injection of positrons with energies from 0 to 10MeV.
After creating the primary particles, the simulation next tracks their energy loss in
matter, taking into account of various process including ionization and excitation that
leads to the production of scintillation photons. Alongside scintillation, Cherenkov
photons are produced when the charged particle travel faster than the speed of light.
In the process, when a positron deposits its kinetic energy 𝐸kin, it annihilates with
an electron to produce two 511 keV gamma-rays. These gammas in principle interact
with matter over photo effect, compton effect and pair production and hence produce



58 5 Event Reconstruction

additional scintillation light. The photons are then propagated through the detector,
incorporating the key optical processes like Rayleigh and Mie scattering. The scatter-
ing along with the absorption and re-emission has an impact in the overall light yield in
the LS. When the photon reaches an SiPM tile it can generate a photoelectron. Every
photoelectron that is detected is accounted as a hit. Around 4500 photoelectrons are
detected for 1MeV of deposited energy at the center of the detector. Although, this
number can vary with statistical and systematical effects, like non-linearity of liquid
scintillator, variation of detector response, etc. Hits on SiPMs are used to integrate
the total charge and save it together with the time of the first hit as a SiPM signal.
The time of the first hit on each SiPM is registered, with the time starting from when
the event was generated in the simulation. The charge from all subsequent hits are
aggregated to provide a detailed measure of the light detected during an event. The
information regarding the events are stored as Event Data Model (EDM) [10] which
provides a solid structure for processing and analyzing the data.

The TAO EDM is used to store all the information on the event data in the form of
ROOT-based persistent data objects. These data objects are processed and passed
through various stages and applications of the TAO offline software. The key types
of event data includes: SimEvent (from detector simulation), ElecEvent (from elec-
tronics), CalibEvent (from calibration), and RecEvent (from reconstruction). For this
study, only SimEvent is utilized. It contains initial particle information, interaction
vertex, deposited energy, hit information, time stamps, and track information of the
fired SiPMs and the MC truth information of each particle. In addition to organizing
complex data, the model also has the ability to display the event in 3D mode shown
in figure 25, as well as 2D projection mode. As shown in the figure, the event’s
graphical output consists of the interaction of gamma rays in the detector itself, with
fired SiPMs and hit patterns shown on the left. The right part of the panel contains
functional buttons for users to control parts of the visualization, like whether or not
to display detector geometry, how to adjust the views of the events and which param-
eters to analyses. This interaction interface promotes the exploration of a wider range
of physics, as users can adjust events as they are being visualized in the event dis-
play in real-time, leading to an increased understanding of both physics and detector
performance.
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Figure 25: The TAO event display software displaying a gamma event. The visual-
ization effects of the event and detector components can be controlled on
the right panel through the functional buttons available [147].

5.2 Data Generation

In an IBD event, an electron antineutrino interacts with a proton, producing a
positron and a neutron. The positron produces an immediate signal, while the neu-
tron undergoes delayed capture. In this study the focus is on positron events which
makes the analysis simpler by demonstrating on the immediate visible signals that are
relevant to the IBD interaction. Neutrons will be incorporated in a future analysis.
This two step approach enables a comprehensive understanding of reactor antineu-
trino interactions by first establishing a framework on the prompt positron events
followed by deeper understanding of the neutron’s role in improving event characteri-
zation. The event data for training, validation and testing of the neural network were
generated from Monte Carlo samples, produced with the official TAO offline software.
The data is structured as:

1. Training and Validation Dataset: A dataset containing 5 million positron events
with kinetic energies ranging from 0 to 10 MeV was generated with the events uni-
formly distributed across the central detector volume. For this study, 70% of the
data is used for training while the other 30% is used for validation. The model
learns the correlations between the event variables and the prediction during training.
The performance of the model is evaluated during validation and with the obtained
information the hyperparameters are fine-tuned.

2. Testing Dataset: Subsets of discrete kinetic energies with each subset, contain-
ing 10,000 events were generated. The energies include 0MeV, 0.1MeV, 0.3MeV,
0.6MeV, 1MeV, 2MeV, up to 10MeV. This independent dataset is used for the final
evaluation of the model performance after completion of training and validation. The
discrete energy subsets enable precise benchmarking of the performance of the model
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at specific energy points. This allows to detect possible biases or limitations of the
model predictions.

The aim of the reconstruction task is to determine the total energy deposited by
each positron and associated gamma rays, Edep and the interaction point of this
energy deposition xdep, ydep and zdep using the information about first hit timings
and the number of hits. An event display of a positron event with deposited energy
of 1.512MeV is shown in figure 26. The grey sphere represents the primary vertex or
the initial interaction point of the event. The left plot with is a depiction of the fired
SiPMs giving the details of the number of hits. The right plot depicts the first hit
time with lighter blue shades indicating first hit arrivals. The timing information is
important to build the time profile of the event and for tracing interaction sequences
within the detector. These visualizations provides an understanding of the event
properties.

Figure 26: A positron event with deposited energy of 1.512MeV. Only fired SiPMs
are shown. (Left) Distribution of the number of hits with yellow points
representing more hits and red points representing fewer hits. (Right) The
first hit time (FHT) is represented where the lighter blue represents earlier
first hit arrivals. The grey sphere represents the primary vertex.

5.3 Reconstruction

This sections explains in detail the vertex and energy reconstruction process, includ-
ing the architecture, the optimizations done to train the data and the obtained results.
The vertex and energy reconstruction were carried out independently, however both
utilized the same underlying architecture and a nearly identical set of hyperparameters.
This approach produced better results over their combined reconstruction.
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5.3.1 Vertex Reconstruction

Motivation: The goal of vertex reconstruction is to determine the spatial coor-
dinates of the interaction point of an event using its first hit time information and
hit counts from SiPMs. These coordinates provide only one single point where the
interaction occurred and not a track. The reliability of these reconstructed vertices
is quantized using the vertex resolution – an attribute that shows the proximity of
the reconstructed positions to the true interaction points. Precise localization of the
interaction points within the detector volume is important for applying fiducial volume
cuts that can help to reject background events occurring at the edges while maximiz-
ing the usable detector volume. Given that TAO will serve as a reference detector
for JUNO, accurate vertex reconstruction is an important aspect in the delivery of a
high-quality model-independent reactor antineutrino spectrum.

Architecture: The architecture uses GCNs and is implemented using the Pytorch
[148] environment and contains several specialized layers like graph convolutional
layers, pooling layers, and residual blocks as shown in figure 27. The spherical graph
in the figure is designed with dimensions as that of the detector, with 4024 nodes that
represent the SiMPs. Each of these nodes has two features: the first hit time and the
number of hits, which are the input to the network, hence the shape of the input (2D
tensor) is 4024x2. The graph is passed through graph a convolutional layer. Here,
the dimension of the features is increased say for example, from 2 to 8 in the first
step and the modified shape is 4024x8. This allows each nodes to learn eight features
based on the aggregated information from the neighbouring nodes instead of two
initial parameter. Following the convolution are the residual blocks that contain skip
connections and maintains the shape as it is. They also have dropouts implemented
that help in regularizing the network from overfitting. Next is the partition pooling
layer that clusters the graph by grouping the nodes. In this way, the number of
nodes are reduced but the feature dimension remains the same. Hence the shape
results to 804x8 after first pooling as per figure 27. This layer helps in reducing
the dimensionality while enabling deeper networks and fewer uses of computational
resources. The graph passes through four stages of convolutions and three poolings
with residual blocks in between. After fourth convolution the graph is flattened to
a fully connected layer, it’s converted from a 2D tensor to 1D (this reduction in
dimensionality reduces the computational complexity). This linear layer yields the
output: x, y and z coordinates.

Optimization: To improve the performance of the architecture several hyperpa-
rameters are tuned during training. These parameters together decide the training
process: they specify how long to train, learning speed, how much to regularize and
what kind of optimization would work. One has to find the best tuned configurations
that optimizes the model and provides most accurate predictions. For the vertex re-
construction, the model was trained over 39 epochs. Early stopping was introduced
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Figure 27: Architecture used for reconstruction. The graph with its features (SiPM
data) is fed as input into the NN. The first layer is a single graph convolu-
tion layer where the feature dimension is indicated using filters. Following
all convolutional layers are residual blocks that vary across the network.
After every residual unit is a partition pooling layer that reduces the num-
ber of nodes. After the fourth convolution the graph is flattened to a
fully connected layer with linear activation that outputs the three vertex
coordinates x,y,z.

during the training with a patience of six. This halts the training if the model’s
performance doesn’t improve for six consecutive epochs. The entire training data
was processed in batches of hundred events so that model can update the parameters
frequently in these mini batches instead of the entire data. The model uses Adam
optimizer and the initial learning rate is set to 0.005, with a dropout of 25%. This
means in every training iteration 25% of neurons are randomly deactivated aiding the
model to learn more robust features. The parameters are summarized in table 3.

The model uses MSE as the loss function. It calculates the mean squared error
of 3D vertex reconstruction based on both true (𝑉 = (𝑥, 𝑦, 𝑧)) and reconstructed
(𝑉 ′ = (𝑥′, 𝑦′, 𝑧′)) vertices.

MSE =
1

3

[︀
(𝑥− 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2

]︀
(5.1)

The above formula calculates the average squared differences between true and re-
constructed coordinates across three dimensions. This scalar measure gives detailed
information on reconstruction accuracy and lower values indicate better performance.
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Training parameter Selection
Batch Size 100
Epochs 39 (33)*
Early stopping (patience) 6
Learning Rate 0.005
Dropout 0.25
Optimizer Adam lr 1.e-4.

Table 3: Tuned hyperparameters used in the training. *Is the changed parameter in
the energy reconstruction.

MSE is useful in vertex reconstruction because of the squaring; the larger errors are
penalized more, and it treats all spatial dimensions equally. In training, MSE guides
the optimization such that the cumulative difference between true and reconstructed
vertex positions is minimized while achieving highly accurate 3D reconstruction for
the vertices.

Training and evaluation: As mentioned in section 5.2, 3.5 million events were
trained and 1.5 million events were validated. The training and validation losses were
monitored to ensure better learning. As shown in figure 28 the initial 34 epochs show
decreasing loses, however the losses become nearly identical from epoch 35 onward.
The convergence of losses suggest that the model has reached an optimal point
and performs equally well on training and validation data. After 39 epochs a slight
overfitting was observed and hence the training was stopped here. The trained model
now is evaluated on test dataset, with a focus on the 1MeV subset. The evaluation
involves comparing the the model predicted vertex positions with the true positions
and evaluating the biases and resolutions. The 1MeV subset is a good checkpoint to
access the model’s ability to handle low energy signals against the background noise
and to provide an insight into model’s real-world applicability.

Results: The optimized architecture is trained and evaluated to provide the recon-
structed vertices. Initially, the predicted values are compared to the true values to
assess the model’s accuracy. As shown in figure 29 the true values of the vertices
(x,y,z) show a strong linear correlation with their corresponding predicted values. Fur-
thermore, the narrow width of the distribution indicates a high resolution, reflecting
the model’s effectiveness in capturing the underlying physics. Since the model ap-
pears to effectively predict vertices, the next step is to analyze the distribution of
these predicted vertices. The distribution, of the vertices can help in identify if there
are any biases or deviations in the predicted values that can imply areas for improve-
ment in the model. The detector response and inherent measurement uncertainties
associated with particle interactions may also be inferred from the shape and spread
of the distributions. A histogram, representing the distribution of the differences be-
tween the predicted and true coordinates are fitted with a Gaussian function that
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Figure 28: Training (green line) and validation loss (blue line) over number of epochs.
An initial drop suggests that the learning has began and with increasing
epochs the validation loss converges around the training loss.

provides two key parameters, the mean (𝜇) and the standard deviation (𝜎). The
mean represents bias in the reconstruction and the standard deviation quantifies the
resolution of the vertex. A mean close to zero represents an unbiased reconstruction
and a smaller standard deviation indicates that the model reconstructs the vertex
close to its true values. The Gaussian fit not only provides the above information
but also helps in understanding systemic effects. Any deviation from the Gaussian
could indicate non-linear effects in the reconstruction process or potential biases in
specific detector regions. With the current model, the vertex resolution obtained at
a low energy of 1MeV is shown in figure 30. The closeness of the mean in the ob-
tained results suggest the reconstruction is unbiased across the detector volume. The
resolutions of each coordinates are: x = 7.995mm; y = 8.366mm; z = 7.868mm.
The achieved resolution of approximately 8mm at 1MeV looks promising especially
considering the challenges in reconstructing low energy events.



5 Event Reconstruction 65

Figure 29: Comparision of the true and predicted values of vertices (x, y, z). The
predicted values shows a clear linear trend, suggesting that the model’s
predictions align closely with actual measurements.
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Figure 30: Difference between the predicted and true event vertices for each coordi-
nate x (top), y (middle) and z (bottom) at 1MeV. The distributions are
fitted to a gaussian and the sample mean 𝜇 and the standard deviation 𝜎
are indicated in the graphics. The fitted 𝜎 value is the resolution of the
vertex.
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Determining the radial distance R =
√︀
x2 + y2 + z2 of each vertex from the origin can

be helpful in understanding the spatial distribution of vertices throughout the detector
volume. The distribution of the differences of the true and predicted R values, fitted
to a gaussian is shown in figure 31. The distribution shows a resolution of 9.536mm
is obtained at 1MeV. This resolution is vital for applying the fiducial volume cut, a
selection criteria to eliminate events near the detector boundaries. In this case, the
cut excludes events within a range of 10mm from the detector walls. Applying the cut
would aid in reducing the background events and improve data quality for analysis.
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Figure 31: A histogram of the differences between true and reconstructed R at 1MeV,
fitted to a gaussian. The width of the gaussian determines the resolution.

Also, a visualization of how well the model’s predicted values match with the true
values across the detector volume can be useful to study the spatial performance,
highlighting areas of good or poor reconstruction. Figure 32 is a 2D heat map that
compares the differences between Rpred and Rtrue in the detector volume R3

true. The
color map to the right represents the number of events. The central yellow band
indicates that the events in this band are those whose predicted values are close to
the true values. This band is distributed almost in a similar fashion across different
detector regions, suggesting that the reconstruction algorithm worked quite well across
different detector regions. However, there are also other scattered points above and
below the yellow band that indicates a deviation of the predicted values from the true
values. In summary, the vertex reconstruction is largely unbiased across the detector
geometry.
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Figure 32: Heatmap of Rpred − Rtrue versus R3 for events at 1MeV. The cental yellow
band indicates events whose predicted values closely match the true val-
ues. The uniform distribution across the detector volume shows unbiased
reconstruction.

1 2 3 4 5 6 7 8 9 10
Energy [MeV]

6

7

8

9

Ve
rt

ex
re

s [
m

m
]

Fitted xres

Fitted yres

Fitted zres

Fitted Rres

Figure 33: The plot illustrates the relationship between energy (measured in MeV)
and vertex resolution (measured in mm) for the reconstructed coordinates
x, y, z as well as the overall radial resolution (R).The individual resolutions
for x, y, and z coordinates show a consistent improvement with increasing
energy. The radial resolution which combines the contributions from all
three dimensions, also reflects this trend.
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Vertex resolutions were studied for the different positron energies. Figure 33 shows
the resolutions of vertices x, y, z and the radial distance R across the positron en-
ergies. Here, the fitted resolutions for x, y, z, and R indicate improved precision in
locating the interaction vertices as energy rises. At higher energy, the positron ionizes
more because it interacts more with the material in the detector. This results in an
increased number of hits in the tracking detectors. This improves the signal-to-noise
ratio, allowing a more precise reconstruction of positron trajectories and, thus, vertex
positioning.
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Figure 34: Comparison of the zres obtained from center of charge method (using
neutrino events) [10] and GCN (positron events). The GCN achieved a
better resolution of 7mm as compared to center of charge method that
obtained 44mm.

In order to evaluate the obtained vertex resolution, the current method was compared
to the center of charge method as discussed in [10]. In the center of charge recon-
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struction, the amount of charge collected from ionization events is used to determine
the location of an interaction vertex. In this approach, the detected signal then be-
comes a point that contributes to the position of the vertex (weighted by charge)
with the goal of achieving an optimal weighted average of what is supposed to be the
true position of the vertex. Nonetheless, the reconstruction results obtained via GCN
method gave better results than the charge-center method. As shown in figure 34
the zres obtained from the charge center method is 44mm while the GCN shows
an improved resolution of 7mm. However the charge center method used neutrino
events and the GCN used only positron events. The obtained resolution is expected
to decrease when neutrino events are considered.

5.3.2 Energy Reconstruction

Motivation: The prime aim of energy reconstruction is to predict the energy de-
posited at the interaction point. Precise reconstruction of the deposited energy is vital
for accessing the detector’s energy resolution. By achieving an excellent resolution
below 2% at 1MeV TAO would aid in measuring the energy spectrum of the rector
antineutrinos and provide a model independent reference spectrum for JUNO.

Architecture: The same architecture as represented in figure 27 was used. The
only difference is that the model was fed with deposited energy 𝐸𝑑𝑒𝑝, obtained from
the simulation. Hence, the output of the model was the prediction of the deposited
energies 𝐸𝑝𝑟𝑒𝑑.

Optimization: The parameters used for optimization were similar to those used
in the reconstruction of the vertex, as shown in table 3 except for the number of
epochs. However, the loss function used for energy reconstruction was the Cross-
entropy loss. This was preferred over MSE loss as the former handles the nonlinear,
probabilistic nature of energy measurements in complex detectors. For continuous
energy distributions, the loss is calculated as:

𝐿 = −
∫︁

𝑝dep(𝐸) log(𝑝pred(𝐸)) 𝑑𝐸 (5.2)

where, 𝑝dep(𝐸) is the true deposited energy distribution, 𝑝pred(𝐸) is the predicted
energy distribution, 𝐸 represents the energy and the integral is taken over the entire
energy range. The goal is to minimize the loss during training so that the predictions
closely match the true distributions.

Training: The training was also carried out in similar fashion and the training and
validation losses where monitored for different epochs. The comparison of training
and validation losses are shown figure 35. The initial epochs show decreasing training
loss with validation loss fluctuating around it. However, the validation loss tend to
converge around the training loss from epoch 25 onward. The convergence of losses
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suggest that the model has reached an optimal point and performs equally well on
training and validation data. The training was terminated at 33 epochs to prevent
overfitting.

Figure 35: Training and validation loss vs. epochs for energy reconstruction. The
initial decrease in training loss is accompanied by fluctuating validation
loss. From epoch 25, both losses converge, indicating optimal model per-
formance.
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Figure 36: Distribution of energy resolution at 1 MeV, fitted to a Gaussian. A slight
positive bias is observed.
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Results: With the model prediction, the true and predicted values are compared.
The energy resolution is calculated as:

𝐸res = 𝜎

(︂
𝐸pred − 𝐸dep

𝐸dep

)︂
× 100 (5.3)

where the 𝜎 is determined from the histogram of (𝐸𝑝𝑟𝑒𝑑 − 𝐸𝑑𝑒𝑝)/𝐸𝑑𝑒𝑝 as shown in
figure 36. Since the energy at 1MeV is of the interest, the corresponding histogram is
plotted and fitted to the Gaussian. The sigma from the Gaussian fit is the resolution,
in this case it is 1.8% at 1MeV.

Figure 37: Heatmap of (Epred − Edep)/Edep at 1 MeV across detector volume. The
cental yellow band indicates events whose predicted values closely match
the true values. A slight positive bias is observed

A visualization of how well the model’s predicted values match with the true values
across the detector volume can be useful to know if there is bias at any regions
and the overall variations of energy resolutions. Figure 37 is a 2D heat map that
compares (Epred − Edep)/Edep in the detector volume R3

true. The color map to the
right represents the number of events. The line y=0, serves as a reference point,
indicating a slight bias towards the positive values.
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Figure 38: Comparison of the energy resolution of antineutrino events Eres as fore-
seen in TAO[10] with positron events reonstructed by GCN. While TAO
predicts a constant 0.3% resolution for all energies, GCN shows a gradual
improvement from 1.8% at 1MeV to 0.8% at 10MeV.

The energy resolution across various energies was calculated and compared to the
resolution predicted by TAO [10]. Since the reconstruction primarily focused on
detector simulations, the charge resolution anticipated in TAO is a suitable benchmark
for this comparison. As mentioned before the GCN used only positron events as
compared to the neutrino events used by TAO. Figure 38 illustrates a comparison of
the energy resolutions foreseen by TAO and the results produced by the GCN. The
top plot is the resolution as anticipated in TAO taking into account the LS quenching
effect, projected dark noise, cross talk, and charge resolution of the SiPMs across
energies 0-10MeV. Since GCN utilized only the charge , a relevant comparison would
be to the charge resolution. It is observed that the charge resolution appears to
remain constant at 0.3% across all energy values, whereas the GCN method shows
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a gradual improvement, from 1.8% at 1 MeV to 0.8% at 10MeV. This behavior
can arise from the way energy loss fluctuations and signal-to-noise ratio evolve with
increasing energy. At higher energies, the relative fluctuations in energy deposition
become smaller, as the total energy deposited in the detector increases, leading to a
clearer separation between signal and noise. Additionally, the increased number of hits
and a stronger signal in the detector allow for more accurate energy measurements,
resulting in progressively smaller energy resolution as energy rises.

In conclusion, the optimized models have produced good results for energy and
vertex reconstruction. A vertex resolution of about 8mm could be achieved at 1
MeV. The model could also achieve a good energy resolution. Although a resolution
of about 1.8% was achieved at 1 MeV the study utilized involved only positron events.
However, to study more realistic scenarios neutrino events should be studied also the
electronic simulation must be incorporated. The electronic simulation involves a range
of optical processes (Dark Count Rate, waveform distribution and cross talk) which
play a critical role in signal detection and can impact the reconstruction.



6 Optimization of Horn Geometry in ESSnuSB+ 75

6 Optimization of Horn Geometry in ESSnuSB+

This chapter introduces ESSnuSB [149] that works towards the primary goals of
measuring the leptonic CPV at the second oscillation maximum, precisely determining
the CP violating phase 𝛿CP and exploring physics beyond the Standard Model. The
ESS [11] is a multidisciplinary research facility under construction in Lund, Sweden,
designed to be the world’s most powerful neutron source using spallation technology.
ESSnuSB is a design study program funded by the European Commission from 2018
to study the feasibility of using ESS as an intense neutrino beam source for ESSnuSB
and ESSnuSB+ [150]. While the former aims to study CP violation in the leptonic
sector with precision, the latter complements the former’s motive by enabling pre-
cise measurements of neutrino interaction cross sections below 600 MeV, where no
previous data is available [151].

This thesis confines its focus to ESSnuSB+ with a particular emphasis on efficient
pion extraction by optimizing the horn (magnetic focusing element) geometry. Pions
are produced when the high energy proton beam from the ESS hits the titanium
target, resulting in a secondary hadron beam. The focusing of charged pions is done
by the magnetic horns which is critical for generating intense neutrino beams, which
in turn is essential for measuring the CP violation in the leptonic sector. The horn
configuration and its electromagnetic fields play an important role in focusing pions.
In this study, the horn is simulated using FLUKA [12] and its configuration is optimized
utilizing genetic algorithms (explained in section 4.2). The parameters (dimensions)
of the horn are fine tuned over several runs to produce the best parameter set that
yields the highest number offocused pions.

6.1 Physics Motivation

In the standard three-flavor oscillation scenario, substantial progress have been
made in measuring the key parameters that govern neutrino behavior: the three mixing
angles (𝜃12, 𝜃13, 𝜃23), and two mass squared differences (∆m2

21,∆m2
31) as shown in

table 1. Despite these progresses, there are still some open questions, as explained
in section 2.5. One of these questions is the precise value of the CP violating phase
𝛿CP. Measuring this key parameter with precision could help explain the asymmetry
between matter and antimatter observed in the universe. The proposed ESSnuSB
experiment (baseline of 360 km and a neutrino energy of 2.5 GeV) aims to measure
neutrino CP violation at the second oscillation maximum. The sensitivity towards
measuring CP-violation at the second oscillation maximum is enhanced by a factor
of about 2.5 to 3 compared to the first maximum [152]. Moreover, matter effects
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here are substantially smaller [150] thereby enabling improved measurement of 𝛿CP,
reduction of systematic errors and high precision. This section explains in detail, the
physics goals of ESSnuSB and its expected performance. Additionally, this section
introduces to ESSnuSB+, an extension of the original project and it’s corresponding
goals.

In context of long baseline experiments, the oscillation probability (in vacuum) of
𝜈𝜇 to 𝜈e contains three terms as presented in equation (6.1): the first term describes
atmospheric neutrinos, the second describes solar neutrino contributions and the third
term includes CP violation effects through the parameter J̃, related to the Jarlskog
invariant [153] that provides a measure of CP violation.

𝑃 (𝜈𝜇 → 𝜈𝑒) = sin2 𝜃23 sin
2 2𝜃13 sin

2

(︂
∆m31L

2

)︂

+ cos2 𝜃23 sin
2 2𝜃12 sin

2

(︂
∆m21L

2

)︂

+ J̃ cos

(︂
𝛿CP −

∆m31L

2

)︂
sin

(︂
∆m21L

2

)︂
sin

(︂
∆m31L

2

)︂
(6.1)

where, 𝜃13, 𝜃23, and 𝜃12 are the mixing angles of the PMNS matrix, and ∆ij ≡
Δm2

ij

2E𝜈
,E𝜈

is the the neutrino energy and L is the baseline, ∆m2
ij are the mass squared differences

between neutrino mass eigenstates, J̃ ≡ sin 𝜃13 cos
2 𝜃13 sin 𝜃12𝜃12 cos sin 𝜃23 cos 𝜃23 sin 𝛿CP

and 𝛿CP is the CP-violating phase. Although all mixing angles contribute to the os-
cillation probability, 𝜃13 plays an important role in evaluating the performance when
planning “future” long baseline neutrino experiments. A higher value of 𝜃13 ampli-
fies the third term in the above equation that is sensitive to 𝛿CP. When neutrinos
propagate in matter, the oscillation probabilities are affected due to forward elastic
scattering of neutrinos with matter [36]. Electron neutrinos experience additional
potential that affects their propagation in matter from charged current interactions
with electrons. These matter effects can mimic the CPV signal (the differences
in oscillation probabilities of neutrinos and antineutrinos that indicate a violation in
charge-parity symmetry) in long baseline experiments like ESSnuSB as neutrinos travel
360 km through matter. Figure 39 shows the oscillation probabilities for different val-
ues of 𝛿𝐶𝑃 with solid lines for vacuum and dotted lines for matter as a function of
neutrino energy. The first oscillation maximum occurs around 0.65-0.85MeV while
the second oscillation maximum is around 0.25-0.35MeV. The matter effects has sig-
nificantly affected the oscillation probability at the first maximum but has a minimal
impact at the second maximum. This characteristic of the second maximum could
be advantageous for long baseline experiments.
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Figure 39: The plot shows the probabilities for 𝜈e → 𝜈𝜇 and 𝜈e → 𝜈𝜏 transitions for
a fixed distance of 360 km. The solid lines represent the probabilities
in vacuum, while the dashed lines show the effect of matter on these
probabilities [150].

At the second oscillation maximum, the systematic errors are reduced and this enables
increased sensitivity in measuring the 𝛿CP. However, the event statistics at the second
oscillation maximum are reduced either due to the long baseline or lower neutrino
energies, resulting in lower neutrino interactions. This could be challenging for precise
measurements. To overcome these challenges, ESSnuSB is specially designed to
leverage the powerful 5MW ESS linear accelerator that produces proton of 2.5 GeV
to generate exceptionally intense neutrino beam to overcome the reduced event rate.
This would enable precise measurements that can provide insights into the matter-
antimatter asymmetry of the universe.

The expected physics performance of ESSnuSB is based on a total run time of 10
years with 5 years in neutrino mode and 5 years in antineutrino mode, aiming at the
second oscillation maxima. In this way the experiment’s sensitivity for leptonic CP
violation increased and therefore enables the precise measurement of 𝛿CP. The ability
to rule out CP symmetry scenarios (𝛿CP = 0, 𝜋) is what would allow the potential
discovery of CP violation. Different values of different paramters of the systematic
error have been studied and it has been noticed that the CPV is most sensitive to
uncertainties in the normalization of neutrino flux [150]. This can be seen in fig-
ure 40. The plot shows the sensitivity of the experiment to CPV as a function of 𝛿CP

for different normalizations. The observed sensitivity, shows symmetrical shape at
𝛿CP = 0∘, 180∘ with peaks 𝛿CP = ±90∘, where the CP violation is at maximum. The
sensitivity to CPV discovery reaches approximately 13𝜎 with conservative uncertain-
ties of 5%, up to 17.5𝜎 for optimistic scenarios of 1% uncertainty and about 7.5𝜎
for worst-case scenario with an uncertainty 25%. This means that even in the worst
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case scenario, ESSnuSB can detect CP violation with a significance greater than 5𝜎
for 𝛿CP = ±90∘. This remarkable sensitivity is due to the experiment’s unique design
that focuses on measurements at the second oscillation maximum.
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Figure 40: The plot illustrates the potential to discover CPV as a function of the
true value of the 𝛿𝐶𝑃 . This analysis assumes a baseline length of 360
km (Zinkgruvan mine) and a total run time of 10 years, with 5 years
of neutrino mode and 5 years of antineutrino mode. The different lines
represent different levels of uncertainty in the normalization of the neutrino
flux [149].

The physics goal of ESSnuSB is not only to measure the CPV in the neutrino sector
but also to measure it with precision. As shown in the figure 41 the sensitivity of
ESSnuSB to the the CP violating phase 𝛿CP value varies with its true values. With
1% normalization uncertainty the precision would be at its best and at 25% uncer-
tainty the errors would be significantly large. At 5% uncertainty, (which is considered
as a conservative scenario) one observe for true values of 𝛿CP around 0∘ or 180∘, a
measurement error of approximately 5∘, indicating good precision, for 𝛿CP = 90∘ the
error increases to approximately 7∘. The better precision (5∘) for 𝛿CP around 0∘ or
180∘ is due to the steeper slope of the oscillation probability curve in these regions,
enabling more sensitive measurements. The increased error (7∘) at 𝛿CP = 90∘ occurs
because the CP-violating effects are maximal at this point, making the oscillation
probability less sensitive to small changes in 𝛿CP. Nevertheless, ESSnuSB can mea-
sure 𝛿CP with an error not exceeding 8∘ making it the most promising long baseline
neutrino experiment proposed to date surpassing other experiments like DUNE [154]
and Hyper-K [155] which are expected to have a precision of about 20∘.
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Figure 41: The plot explains the precision of ESSnuSB’s measurement on 𝛿CP by
comparing its sensitivity to 𝛿CP as a function of its true value. The plot
shows 𝜒2 = 1 contour for different normalization percentages.[149].

Accurate measurements of the neutrino-nucleus interaction cross section are im-
portant as it is a major factor contributing to systematic uncertainties in ESSnuSB.
These are essential in understanding how neutrinos interact with nuclei at the low
energy regime of ESSnuSB, i.e. < 600 MeV. Several experiments like T2K, NOvA,
MicroBooNE have measured neutrino cross sections at low energies [156]. However,
the available data in this energy regime are limited and often have significant un-
certainties. To address these limitations, the ESSnuSB+ project is proposed which
would have additional detectors and facilities to measure cross section across wider
ranges. ESSnuSB+ comes with two facilities: Low Energy Neutrinos from STORed
Muons (LEnuSTORM) and Low Energy Monitored Neutrino Beam (LEMNB) to en-
hance neutrino interaction cross section measurement in the region 0.2 to 0.6 GeV.
The LEnuSTORM facility is aimed at generating beam of muon neutrinos and elec-
tron neutrinos using racetrack storage ring to study neutrino nucleus cross sections
with high precision. The LEMNB aims to produce a monitored neutrino beam that
would aid in improving the cross section measurements of muon and electron neutri-
nos by precisely tagging the corresponding leptons. The following section will explain
in detail on the experimental configurations of these facilities.

6.2 Experimental Layout

The ESS is the world’s most powerful linear accelerator facility that is under con-
struction in Lund, Sweden. It will use spallation technology to generate intense neu-
tron beams by accelerating protons to 2.0 GeV and colliding them against a tungsten
target with each pulse lasting 2.86 ms with a repetition rate of 14Hz. The high energy
neutrons that are produced are slowed and cooled and are directed to various experi-
mental stations for cutting-edge research. The layout of the ESS facility as shown in
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figure 42 houses the accelerator (Linac), the target monolith (where protons collide
on the tungsten wheel to produce spallation neutrons), the experimental hall (that
hosts sophisticated neutron instruments tailored for various scientific investigations)
and the utility building (that provides the services to support the entire operation of
the facility). The ESS’s powerful linear accelerator can additionally be an ideal ground
to produce intense neutrino beam for the ESSnuSB experiment. In order to achieve
this dual purpose several key upgrades are required in the existing facility [157].

The planned upgrades in the project has its focus on four main regions as highlighted
in figure 43. The first upgrade is in the accelerator where H− ions are introduced to
the existing proton pulse. The original proton pulse of 14Hz remains for the neutron
production and on top of it 14 additional H− pulses are interleaved, resulting in 28Hz
pulse frequency. At the injection point to the accumulator ring H− ions are stripped

Figure 42: Layout of the ESS facility accommodating the ESSnuSB. The yellow labels
represent the component of the ESS facility and to the left is the proposed
ESSnuSB facility with the accumulator ring [158].

of their electrons to produce protons that are trapped in the magnetic field, resulting
in high intensity beam. The second upgrade is to build the accumulator ring (circum-
ference = 384m). The main function of the ring it compress the 2.86ms long pulse
to appoximately 1.2𝜇s. This is done with the motive to minimize the atmospheric
neutrino background in detector and help in improving the signal to noise ratio. The
compressed signal is then directed to the neutrino target station, which is the third
upgrade. A switchyard will be developed to distribute compressed pulses from the
accumulator ring to the station. The station will have four identical horn systems
each designed to receive 1.25MW from the 5MW beam. The target will be cylin-
drical (length = 78 cm, diameter = 3 cm) with packed titanium spheres (diameter
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= 3m) cooled by pressurized helium. This configuration will allow efficient handling
the intense beam power. As the proton beam strikes the target, the horn focuses
the secondary particles (pions) into the decay tunnel. In the tunnel the pions decay
producing muons and their corresponding (anti)neutrinos. This creates the intense
beam required for the experiment. As a final upgrade, a near detector will be built to
monitor the neutrino beam and to measure its flux and energy spectra. As the focus
of the study is ESSnuSB+, a detailed explanation of ESSnuSB detectors is beyond
the scope of this thesis but for more informantion, please refer to [149].

Figure 43: The figure illustrates the modifications in the ESS layout to cater to ESS-
nuSB. The parts highlighted with yellow are the new requirements. This
include: upgrading the linac, building an accumulator ring, neutrino target
station and a near detctor [149].

ESSnuSB+ is an extension of the original ESSnuSB project, designed to enable high
precision measurements for the low energy neutrino interaction cross section. The
upgrade proposes to build an R&D target station operating at 1.25MW with only
one horn/target system and facilities for low energy (0.2-0.6 MeV) measurements:
LEnuSTORM and LEMNB. As illustrated in figure 44 the experiment begins with a
proton beam from the upgraded ESS-linac striking the Titanium target to produce
pion. Theses pions are focused by a magnetic horn that either selects positive or
negative pions based on its polarity. The desired pions are focused and passed into
the pion tunnel while the pions with the opposite sign (wrong sign) get deflected away
from the beam axis and out of the decay tunnel. This helps in maintaining beam purity
and reduces undesirable neutrino flavor contamination. Additionally, the pions with



82 6 Optimization of Horn Geometry in ESSnuSB+

the correct charge but the wrong energy/momentum (E/P) are also eliminated by a
dipole. Meanwhile, the quadrupole magnets focus the pions with the right energy and
send them to the LEnuSTORM racing track. This refinement of the pion beam is very
crucial for ESSnuSB+ to achieve its physics goals. The LEnuSTORM (muon storage
ring) is a racetrack shaped ring that allows the pions to decay into muons as they
circulate. The muons further decay to (positrons)electrons and muon (anti)neutrino
and electron (anti)neutrino depending upon the charge of the muons.

Figure 44: Schematic Overview of the ESSnuSB+ experiment. The diagram illus-
trates the flow of the experiment, from initial proton beam to the final
neutrino production in the LEnuSTORM muon storage ring and various
stages in between that involves refining the beam [159].

Parallel to the LEnuSTORM is the LEMNB facility that aims to measure neutrino flux
by tracking charged leptons produced alongside neutrinos by using an instrumented
decay tunnel. The iron scintillator calorimeters in the tunnel help reconstruct the
energy and direction of these decay products, allowing a precise determination of the
corresponding neutrino flux.

6.3 Motivation to Optimize Horn Geometry

The magnetic horn is a very vital part of the ESSnuSB+ experiment as it aims to
efficiently to focus the produced secondary pion beam. The horn is primarily com-
posed of aluminum (95.5%) with small additions of silicon, magnesium, chromium,
manganese, iron, zinc, and copper. The current horn design has a baseline length of
about 2.5m and a radius of about 60 cm and will operate at a high current of about
350 kA to generate strong magnetic fields of about 1.97 T. Figure 45 shows a 3D
time-dependent simulation of the trajectories of positive pions propagated through
the magnetic field of the horn that is resulted from applying 350 kA to the horn
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conductors. The current flows radially inward through the horn’s conductor, creat-
ing a toroidal magnetic field that focuses charged pions. Pions with low energy or
larger scattering angles are dispersed (as they are not affected by the magnetic field),
whereas the higher energy ones are concentrated into a beam. This selective focusing
effect of the horn is vital for shaping the pion beam. An optimized horn geometry and
magnetic field configuration can aid in maximizing the pion focused in the desired
direction. To optimize the horn geometry, a wide parameter range must be explored.
The genetic algorithm can be used to investigate the design space of the horn. The
goal is to identify a design that maximizes physics performance while satisfying prac-
tical constraints. The following section describes the implementation of the genetic
algorithm to optimize the horn geometry to maximize the pion flux.

Figure 45: The COMSOL simulation visualizes the pion profile at the interaction point
for a particular horn configuration. The color bars represent the magnetic
field strength in Tesla (T) and the velocity of pions in meters per second
(m/s). The increased charge concentration at the inner horn edges results
in a stronger magnetic field in these regions. The field deflects lower-
velocity pions while focusing higher-velocity pions towards the target.

6.4 Implementation of GA

As explained in chapter 4 genetic algorithms are optimization methods inspired by bi-
ological evolution and are well suited to handle multiple optimization parameters with
complex correlations. The horn geometry involves multiple interdependent parame-
ters like lengths, radii and currents that can affect the pion flux in complex nonlinear
ways. GAs are efficient in navigating complex design spaces like that of the horn
geometry without getting stuck in a local optima. It evaluates the solution candi-
date (individual) that has unique parameter values (genes) based on its fitness. The
process involves generating a random initial population , evaluating fitness, and apply-
ing section, crossover and mutations to produce several generations. The algorithm
converges when the maximum fitness ceases to improve.
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6.4.1 Work Flow

For this study, a combination of FLUktuierende KAskade (FLUKA) and Python
was used to generate the pion flux for different horn configurations and to optimize
its shape respectively. For this study, the Python toolkit DEAP library [160] is utilized
to create the framework for genetic algorithm.

Figure 46: Workflow: The initial horn configuration is generated by FLUKA simula-
tions. The simulated pion flux from FLUKA is analyzed in Python using
the genetic algorithm to identify potential improvements in the configura-
tion. The optimized configuration is then fed back into FLUKA and the
process iterates until convergence is reached.

The workflow as illustrated in figure 46 is an iterative optimization process. As
shown, a toolbox is created in Python to manage the population of individuals (horn
parameter set). The initial horn configuration comes from the FLUKA simulations
that produce pion profile (intensity of flux and its spatial distribution) corresponding to
the initial configuration. The produced profile is sent to Python where each individual
is analyzed. The individual having relatively higher pion fluxes (fitness) is selected
to propagate the individuals of the next generation. For propagation, crossover and
mutation operators that are registered in the toolbox are used. The newly formed
individuals are passed onto FLUKA to study their pion fluxes, and this iterative process
continues when significant improvement is seen over several generations. The final
configuration that yields the maximum flux is identified as optimal.

6.4.2 Definition of Individuals

The horn design has complex dimensions. These dimensions (parameters) play a
crucial role in extracting and focusing the dense pion beam for neutrino production. As
shown in figure 47 the parameters used for this study can be categorized into length
parameters (L1,L2,L3,L4,L5), height parameters (h0, h1), radius parameter (R0),
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target parameter (zoff), and current parameter (I0). The length parameters design
the longitudinal section of the horn that is most critical in optimizing the collection and
focusing of the pion beam. The height parameters design the vertical dimensions along
the geometry and may affect the electromagnetic properties that are important for
pion focusing. The radius parameter impacts the focusing strength, which determines
how well pions are directed through the system. The target position along the z-axis is
important for the optimization of proton interactions with the target, so it affects the
pion production rates. The current parameter is the peak current flowing through the
horn to generate magnetic fields that focus pions. The details of all the parameters
with their baseline value and their range are summarized in table table 4. Each
parameter is a gene, and together they contribute an individual. For this study, each
generation was populated with 10 individuals and 50 such generations were studied.
The first generation was created by picking a random value for each parameter (gene)
within the intervals shown in table 4.

Table 4: The parameter definition and range for the ESSnuSB+ horn design
Parameter (Unit) Description Baseline Value Range
L1 (cm): Length of the initial section 63.98 [31.99, 159.95]
L2 (cm): Length of the upstream section 46.8 [23.4, 117]
L3 (cm): Length of the main focusing section 60.3 [30.15, 150.75]
L4 (cm): Length of the downstream section 47.5 [23.75, 118.75]
L5 (cm): Length of the final section 1.08 1.08 (fixed)
h0 (cm): Height at the narrowest point 3.3 3.3 (fixed)
h1 (cm): Height at the widest point 22.4 [11.2, 56]
R0 (cm): Initial radius at the downstream end 27.2 [13.6, 68]
zoff(cm): Position of the target along the z-axis 6.8 [3.4, 17]
I0 (kA): Peak current flowing through the horn 350 [175, 875]

Figure 47: Transverse view of the horn with the key geometric parameters that influ-
ence its performance.
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6.4.3 Evaluation & Propagation of Individuals

The intensity of the pion flux emerging from the horn is an important factor to de-
cide on the fitness score of each individual. For this study we formulate the individual
fitness score as the detection efficiency of each configuration

𝜖 =
𝑁det

𝑁tot
, (6.2)

where {𝑁𝑑𝑒𝑡 is the pions detected in the specific region of interest, for this study
a distance, z = 10m from the horn with a cross section of x=y=2m and Ntot is
the total pion flux generated from the target. The choice of 10m is to study horn’s
focusing ability at reasonable distance. By evaluating the beam profile at this distance
one can determine the optimal location for additional beam elements such as dipole
magnets to deflect the pion beam into LEnuSTORM facility. The pion flux density
within a 10m region and the total flux density are illustrated in Figure 48 for a horn
with baseline parameters in table 4. The ratio of these distributions represents the
detection efficiency of the configuration, which in this case is 0.537, calculated as the
ratio of pions within 10 meters (333,076) to the total number of pions (619,988).
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Figure 48: Total pion flux as a function of energy measured 10 meters from the horn,
illustrating the distribution and intensity of pions produced across various
energy levels.
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Following the fitness evaluation is the selection of the individual to propagate the
next generation. This is done by choosing individuals with higher fitness score in
the current generation. The horn configurations that have higher detection efficiency
are chosen to propagate individuals for the next generation. The selected individuals
were propagated using crossover and mutation methods as explained in chapter 4.
To illustrate the evaluation and propagation process, consider the example in table 5.
Two parents are selected based on their fitness scores and undergo crossover and
mutation to produce a offspring. In crossover, the first three genes (L1,L2,L3) are
exchanged between parents to create offspring 1. In mutation, two genes (h1, zoff)
of parent 1 are randomly replaced to generate offspring 2. This is just an example,
crossover and mutation can occur randomly at any gene location. The resulting
offspring contribute to a new generation and would continue to propagate until there
is no any significant improvement in the detection efficiencies of individuals over a
few generations.

Table 5: Crossover and Mutation of horn configurations
Individual L1 L2 L3 L4 L5 R0 h0 h1 z𝑜𝑓𝑓 Fitness

Parent 1 75.49 107.63 126.63 115.89 1.08 27.2 3.3 51.07 16.86 0.6011
Parent 2 80.22 98.45 130.01 110.50 1.08 30.5 3.3 48.92 15.73 0.5895

Offspring 1 (Crossover) 75.49 107.63 126.63 110.50 1.15 30.5 3.3 48.92 15.73 0.6053

Offspring 2 (Mutation) 75.49 107.63 126.63 115.89 1.08 27.2 3.3 57.03 17.01 0.6025

6.4.4 Optimization results

To optimize the horn geometry, 50 generations were studied with each generation
having 10 individuals. Three independent runs were carried out to see how the fitness
improved with generations and the results are presented below. For a single run, the
pion profile is examined before and after optimization. This comparison improves the
understanding of the process. Figure 49 conveys the impact o the horn optimization
on the spatial distribution of pions. Both plots are fitted to a 2D Gaussian with mean
centered around (100 cm, 100 cm). The color bars represent the distance from the
mean. The distribution before optimization has a wider spread with the sigma ring
(contour in the 2D Gaussian distribution that shows the spread from mean) having a
radius of about 48 cm (x=47.98 cm, y=48.03 cm) containing about 9870 pions within
the ring. After optimization, the sigma ring shrinks significantly to a radius of about
20 cm (x=19.98 cm, y=20.05 cm) containing 11,806 pions within. The optimization
resulted in a more concentrated Gaussian peak showing the improved focusing of the
pion beam resulting an increase of about 20 % in pion concentration. Possible tuning
of the magnetic field profile (from the current running) with proper adjustments of
the horn dimensions results in an effective shaping of pion trajectories, increasing the
particle flux and reducing dispersion.
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Figure 49: Comparative analysis of the cross sectional pion distribution that falls at
distance of z=10m from the horn before (left) and after (right) optimiza-
tion of the horn configuration. The optimization process has effectively
improved the spatial confinement of the pions, leading to a more concen-
trated and focused distribution.

Also, a comparison of the optimized parameter to the baseline parameter is listed in
table 6. The comparison of optimized values presented in the table indicate strategic
adjustments made to various parameters that directly influence pion flux production.
The optimized length L1 is shorter, which may improve pion convergence toward the
detector and reduce beam divergence. An increase in L2 , L3 and decrease in L4

allows for better focusing of the pion beam, potentially capturing more pions. R0 is
significantly larger, increasing the collection area for pions and improving overall flux.
A decrease in h1 optimizes pion trajectories by reducing losses due to misalignment.
The increased z-offset helps in aligning the target along the z-axis to ensure more
pions reach the horn. Also, the increased current I0 enhances magnetic field strength,
resulting in a denser beam thereby improving the overall flux. A comparison between
the baseline values and the optimized values for all the three runs are shown in
figure 50. The optimized values are almost similar across all three runs, suggesting a
reliable optimization.

Table 6: Comparison of Optimized Parameters run1 with its Baseline Values
Parameter L1 L2 L3 L4 L5 R0 h0 h1 zoff I0

Optimized Value 47.39 73.02 96.39 42.60 1.08 63.65 3.30 12.54 15.23 473.00
Baseline Value 63.98 46.80 60.30 47.50 1.08 27.20 3.30 22.40 6.80 350.00
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Figure 50: Comparison of optimized values and baseline values for all parameters:
length dimensions (left) and current (right) across three runs.

The assessment of the fitness values across generations provides an evaluation of
the optimization process. Figure 51 illustrates the change of fitness values over 50
generations or 3 different trials. It can be seen that performance measures improve
up to about twenty generations, it is at this turning point where a lot of changes
take place during the optimization process. Once 20 generations have lapsed, the
measure rests comfortably within the bandwidth of 0.860 and 0.875 with little or no
improvement further.
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Figure 51: Fitness Progression Across Generations: This plot illustrates the fitness
values of each generation’s best individual for three distinct runs. Each
run exhibits a steep initial rise in fitness, reaching a peak of 0.860 by the
twentieth generation, followed by a sustained plateau.
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Overall, this analysis highlights how genetic algorithm can be used in optimizing
horn geometry, thereby enhancing the pion detection efficiency. Key modifications
in the horn parameters collectively resulted in a more concentrated pion beam dis-
tribution. The radius of the sigma contour (20 cm) can be important to decide the
distance between the dipoles placed after the horn geometry to deflect the pion beam
towards the nuSTORM ring. The fitness value, which is a measure of detection
efficiency, improved from approximately 0.725 to a plateau of about 0.860 by 20 gen-
erations, suggesting an improvement of approximately 20% in pion detection. The
almost constant detection efficiency until the 50 generations indicates that the algo-
rithm has converged to an optimal solution. The optimization of horn geometry in
ESSnuSB+ resulted in a focused pion beam which can significantly enhance neutrino
flux, allowing for more precise measurements of neutrino cross-sections.
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7 Results and Conclusions

The JUNO experiment is designed to resolve the neutrino mass ordering through
high precision measurements of reactor antineutrino. Nevertheless, to accomplish its
science objectives, JUNO depends on TAO for precise measurements of the reactor
antineutrino spectrum. In TAO, the reactor electron antineutrinos undergo the IBD as
they interact with the LS in TAO and produce prompt positron and delayed neutrons.
The focus of the thesis was to reconstruct the vertex and energy of positron events
using Graph Convolutional Networks. Vertex reconstruction was done with an aim
to accurately determine the interaction point’s spatial coordinates using the first hit
time and hit counts from Silicon Photomultipliers (SiPMs). The quality of this recon-
struction is evaluated by the vertex resolution, which is how well the true interaction
points match the predicted positions. Accurate vertex reconstruction is important for
the application of fiducial volume cuts, excluding background events at the detector
edges and maximizing the usable volume. This is very important for TAO, being a
reference detector for JUNO, in producing a high-quality, model-independent reactor
antineutrino spectrum.

The reconstruction uses GCNs in a PyTorch environment. The detector is modeled
as a spherical graph with 4024 nodes, each representing a SiPM, and each node has
two features: first hit time and hit counts. The graph is subjected to convolution and
pooling to predict the vertices. The model was trained using 3.5 million events and
validated using 1.5 million events. For the vertex reconstruction the model stabilized
after 39 epochs, demonstrating good generalization to both training and validation
data. Evaluating the model on a 1MeV subset showed strong linear correlation be-
tween predicted and true vertex positions, with a vertex resolution of approximately
8mm at 1MeV and improving for higher energies. The radial distance resolution
was 9.5 mm, which is crucial for applying fiducial volume cuts and improving event
selection near the detector edges. Compared to the center of chagre reconstruc-
tion method, the GCN-based method achieved a significantly better vertex resolution
of 7mm vs 44mm. However, the center of charge method was used on neutrino
events whereas GCN used only positron events, so the resolution could differ if neu-
trino events were included in future comparisons. The energy reconstruction was
performed with an objective of precise prediction of the energy at the point of inter-
action. The energy resolution was calculated with the same model and results are
compared with those predicted by TAO. At 1MeV, the GCN method had an energy
resolution of 1.8%, which increases to 0.8 % at 10MeV. This is because at higher
energies the relative fluctuations in energy deposition are smaller. Also, the increased
signal-to-noise ratio enables more precise energy measurements. However, the pre-
dicted energy resolution as foreseen in TAO seemed to be have a constant resolution
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of 0.3% across all energy values.

The event reconstruction efforts using GCN have shown promising results with ver-
tex resolution of 8mm and energy resolution of about 1.8% at 1MeV for positron
events. However, there are several important steps to enhance the realism of the anal-
ysis. Future steps will include neutrino events in the reconstruction chain. This will
require the use of classification algorithms to deal with neutrino interaction signatures,
like charged and neutral current processes, that are quite different from simple positron
events. The improved particle identification coupled with energy reconstruction tech-
niques will be essential in providing precision analyses for neutrino-induced signals.
Also, updating the vertex reconstruction algorithms for neutrino events will give a
better understanding of the spatial resolution of the detector. Besides that, including
the electronic simulation in the TAO analysis will enable considerable improvement
in realism with respect to the detector performance evaluation. This important step
will introduce the following key electronic effects inherent to SiPM and other elec-
tronic components: Dark Count Rates (DCR), cross-talk, and waveform distributions.
Simulation of these electronic effects will provide a truer representation of the detec-
tor response and allow for refined calibration of the reconstruction algorithms and a
more realistic assessment of TAO’s energy and spatial resolution capabilities. Further
studies may include improvements to the reconstruction algorithms for different event
topologies, and tuning model hyperparameters using Bayesian optimization to achieve
the best overall performance in event reconstruction. These steps will allow TAO to
exploit its full detection capabilities and hence make more significant contribution to
facilitate precise reactor antineutrino spectrum measurements.

The thesis also focuses on the ESSnuSB+ experiment, which aims to precisely
measure neutrino interaction cross sections below 600MeV, supporting the broader
ESSnuSB project’s goal of investigating leptonic CPV at the second oscillation maxi-
mum. Using the ESS in Lund, Sweden, a high-energy proton beam strikes a titanium
target, generating a secondary pion beam. These pions are focused by magnetic horns
so as to direct them effectively toward the neutrino facility.

The magnetic horn within the ESSnuSB+ experiment plays a vital role in focusing
the secondary pion beam used in neutrino production. In order to optimize its design,
a Genetic Algorithm (GA) was utilized and key parameters, such as horn lengths,
heights, radius, and current were optimized to maximize pion flux. The GA iteratively
refined the horn’s geometry using Fluka simulations, to generate the pion flux profiles,
and Python’s DEAP library to facilitate the optimization process. This resulted in a
20%, increase in the pion concentration, with the optimized horn producing a more
focused beam. The most important variations included a reduction in section lengths,
an increase in the horn radius, and a higher current to improve beam focusing. The
fitness score, as a measure of detection efficiency, increased from 0.725 to 0.860,
indicating a significant optimization. This improved focusing will enhance neutrino
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flux and precision in neutrino cross-section measurements, thus enhancing the overall
physics performance of the ESSnuSB+ experiment.

Future studies include further pursuit in the direction of alternative geometries for
horns, like parabolic or elliptical shapes, which might ensure even higher focusing
efficiency. Besides, multi-horn systems or variation in the relative spacing between
horns can be explored for optimizations in pion capture and transport. Beyond the
horn itself, consideration might be given to a design of the dipole magnets required
for the steering the secondary pion beam with minimum divergence and for maximum
alignment to the neutrino facility. Such studies may be done in state-of-the-art sim-
ulation tools, like Fluka or GEANT4, in order to model beam dynamics and study
the impact of different geometries on neutrino flux. Continued advances, such as
these, in the design of horns and beamlines will be crucial for ESSnuSB+ to realize
maximum physics potential in precision neutrino cross-section measurements.
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