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Abstract

This thesis deals with real and irreducible spinors on an oriented and spin Lorentzian four-
manifold with a view toward applications in globally hyperbolic supersymmetry and its associated
Cauchy evolution �ow in four dimensions.

Zusammenfassung

Diese Arbeit befasst sich mit reelle und irreduziblen Spinoren auf einer orientierten und
spin-Lorentzschen Viermannigfaltigkeit mit Blick auf Anwendungen in der global hyperbolischen
Supersymmetrie und dem damit verbundenen Cauchy-Evolutions�uss in vier Dimensionen.
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CHAPTER 1

Introduction

This thesis is devoted to studying real and irreducible spinors on an oriented and spin
Lorentzian four-manifold with a view toward applications in globally hyperbolic supersymmetry
and its associated Cauchy evolution �ow. More speci�cally, let C be an abelian bundle gerbe on
an oriented and spin four-dimensional manifold M . The main purpose of this dissertation is to
investigate the following coupled spinorial di�erential system on (C;M):

rg;b" = 0 ; Hb �g " = '� �g " (1)

with variables (g; b; �; ") consisting of a Lorentzian metric g on M , a curving b on C, a function
� 2 C1(Y ) on Y !M satisfying a speci�c integrality condition on a certain submersion Y !M ,
and a section " 2 �(S) of a bundle of irreducible real Cli�ord modules on (M; g). Here '� 2 
1(M)
andHb 2 
3(M) respectively denote the curvatures of � and b, andrg;b denotes the unique metric
connection with completely skew-symmetric torsion Hb. This spinorial di�erential system exhibits
multiple compelling features, of which we remark the following:

� It de�nes a natural geometric system in Lorentzian geometry with torsion and spin geometry.
If both � and b are �at, then the system reduces to the parallelity of an irreducible real spinor
under the Levi-Civita connection of the underlying Lorentzian manifold, which is a classical
problem in Lorentzian geometry and mathematical general relativity [26, 68, 131, 161].

� It involves choosing an underlying abelian bundle gerbe [186]. Abelian bundle gerbes provide
a natural categori�cation of the notion of principal U(1) bundle and de�ne a geometric real-
ization of H3(M;Z), similarly to principal U(1) bundles determining a geometric realization of
H2(M;Z). Consequently, it follows that the di�erential system (1) gives an example in higher
gauge theory [14].

� It gives a natural gauge theoretic interpretation of pseudo-Riemannian skew-symmetric torsion
as the curvature of a curving on a bundle gerbe. That is, in the system (1) the three-form
torsion of rg;b is not a variable in itself. Instead, it is a given as the curvature of a curving b,
a gauge-theoretic object that admits an interesting groupoid of automorphisms [64, 187, 228].

� It couples gauge �elds to spinors naturally through the canonical action of the curvature of the
former on the latter via Cli�ord multiplication [157, 174].

The spinorial di�erential system (1) has its origins in the mathematical physics literature of
supergravity and string theory [87, 192]: it encodes the supersymmetry conditions of NS-NS
supergravity evaluated on a four-dimensional bosonic con�guration and are typically called, as we
will explain in more detail below, the NS-NS Killing spinor equations of the given supergravity
theory. As with any supergravity theory, the bosonic sector of NS-NS supergravity can be de�ned
through its equations of motion, to which we will refer as the four-dimensional NS-NS system.
This system is de�ned by the following second-order partial di�erential equations [192, 221]:

Ricg;b +rg;b'� = 0 ; rg�'� + j'�j2g = jHbj2g
for triples (g; b; �), where Ricg;b is the Ricci tensor of rg;b and rg is the Levi-Civita connection
of g. A solution (g; b; �) of the NS-NS system is supersymmetric if and only if there exists
an irreducible spinor bundle S on (M; g) and a spinor section " 2 �(S) such that (g; b; �; ") is
a solution of the NS-NS Killing spinor equations (1). One of the most remarkable properties
that makes the interaction between the NS-NS system and the NS-NS Killing spinor equations so
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8 Introduction

mathematically rich is that the latter provides almost complete integrability to the former and
therefore de�nes a natural subclass of solutions which, based on extensive previous experience, can
be expected to have remarkable mathematical properties regarding their stability, topology, moduli
and applications to di�erential geometry and topology, see for instance [180] for an outstanding
example of this phenomena.

This dissertation initiates the systematic mathematical study of the supersymmetric NS-NS
system. We begin by developing �rst a general geometric framework for investigating spinors that
are parallel with respect to a general connection on the spinor bundle. We refer to these spinors
as di�erential spinors. Subsequently, we apply this framework to the study of Equation (1). In
more detail:

� We begin in Chapter 2 by establishing a geometric setup to study spinorial di�erential equations
of the form:

D" = 0 ; Q(") = 0 (2)

where " 2 �(S) is a section of the bundle of irreducible Cli�ord modules de�ned on a pseudo-
Riemannian manifold (M; g) of signature (p; q) such that (p� q) � 0; 2 mod (8). For lack of a
better term, we will refer to such spinors as di�erential spinors. Another possibility would be
to refer to them simply as parallel spinors, but that is usually reserved for spinors parallel for
the Levi-Civita connection.

� In Chapter 3 we apply the general framework developed in Chapter 2 to the case of di�erential
spinors on four-dimensional Lorentzian four-manifolds. This covers in particular the case of
every real and irreducible spinor parallel under the lift to the spinor bundle of any metric
connection with torsion.

� We continue in Chapter 4 by applying the geometric framework developed in Chapter 3 to the
particular case of real and irreducible spinors on Lorentzian four-manifolds equipped with a
spinor parallel under a general metric connection with torsion, to which we refer as torsion
parallel spinors. Solutions to Equation (1) are particular instances of torsion parallel spinors.

� We proceed then with Chapter 5, in which we initiate the proper study of four-dimensional
supersymmetric con�gurations and solutions, namely solutions of (1). For this, we use the
results and framework developed in the previous chapters.

� We culminate this dissertation in Chapter 6, which is devoted to the study of globally hyperbolic
supersymmetric con�gurations and solutions building on all the results obtained in previous
chapters.

A detailed account of the contents and original results of each chapter can be found below in
Section 5 of this introduction. The notion of di�erential spinor introduced in (2) contains as
particular cases most of the various types of special parallel spinors that have been considered
in the literature, as well as some that are yet to appear or be discovered. This includes parallel
spinors, Killing spinors, Codazzi spinors, Cauchy spinors, skew-torsion parallel spinors, skew-
Killing spinors or generalized Killing spinors, just to name a few, see for instance [17, 18, 59, 60,
85, 89, 91�94, 99, 132, 133, 138, 164, 181�183] as well as their references and citations.

NS-NS supergravity is a basic building block of ten-dimensional supergravity and super-
string theory, and as such, it has been extensively studied in the physics and mathematical physics
literature, specially coupled within more involved supergravities, such as Type IIA and Type IIB
supergravity or Heterotic supergravity [19, 77�80, 87, 101�104, 114, 116�118, 158, 192, 200, 219�
221]. In particular, the supersymmetric solutions of the various supergravities that include NS-NS
supergravity as a subsector have been widely studied in the theoretical physics and mathematical
physics literature from diverse points of view, ranging from the very phenomenological [69, 137]
to the very geometric [51, 192, 221]. However, and interestingly enough, the study of super-
symmetric solutions in Lorentzian signature has not transpired into the mathematics literature
and, to the best of my knowledge, this dissertation is the �rst systematic study of the class of
Lorentzian supersymmetric con�gurations de�ned by Equation (1) from a mathematical point of
view. Still more, spinorial geometry with torsion in Lorentzian signature is yet to be developed
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systematically in the mathematics literature, with some pioneering exceptions [70]. In striking
contrast, equations (1) in Riemannian signature constitute one of the building blocks of the cel-
ebrated Hull-Strominger system [100, 129, 214], which was originally proposed by S. T. Yau
[96, 168, 169, 231] as a natural generalization of the Calabi problem to non-Kähler complex ge-
ometry and has ever since evolved into a rapidly expanding area within complex geometry and
geometric analysis. The main purpose of this thesis is to initiate the systematic mathematical
study of this system in Lorentzian signature, which is the signature in which it was originally con-
ceived as a supergravity theory, focusing on the geometry of its supersymmetric solutions and the
evolution problem that they de�ne in their globally hyperbolic regime. In the upcoming sections
of this introductory chapter we will proceed to discuss the context and motivation of the math-
ematical study of Equation (1) as well as more general supersymmetric systems that we plan to
explore in the future. We hope that Lorentzian supergravity can become too a mathematical area
of study in geometry and analysis, similarly to the well-established area of mathematical general
relativity within mathematics, as exempli�ed in the seminal references [9, 130] on the stability of
supersymmetric compacti�cations and Kaluza-Klein reductions in supergravity.

1. The di�erential geometry of supergravity

Supergravity theories are, by de�nition, gravitational theories invariant under a remarkable
type of �eld-theoretic symmetry called supersymmetry, which is characterized by the fact that it
relates or maps �elds with integer spin to �elds with fractional spin, and vice-versa. Supergravity
theories were discovered in the mid-seventies [62, 86] and were consequently intensively investi-
gated and developed in the physics literature, �rst as candidates for theories of everything and
afterwards because of the prominent role they were discovered to play as the low-energy limits of
superstring theory. This gave rise to a �urry of scienti�c activity that expanded and rami�ed into
many di�erent scienti�c areas in an ever-growing e�ort to understand and develop supergravity
together with its applications to string theory and mathematics [51, 87, 192, 221].

Supergravity theories have been traditionally studied in the physics literature as local La-
grangian theories that are de�ned on a contractible open subset of Rn in terms of an explicit
local Lagrangian function and its associated local equations of motion. Denote by L[�] a generic
local supergravity Lagrangian function evaluated on a generic con�guration element �. That is,
the symbol � represents the set of all variables of the given supergravity theory. In supergrav-
ity, and in contrast to other supersymmetric �eld theories, this set of variables always includes
a Lorentzian metric. Other common types of variables in � typically include connections on a
principal bundle or sections of speci�c �brations. A general phenomenon in supergravity is that
each set of variables � can be divided into two disjoint subsets � = f�b;�fg, de�ned as follows:

� �f consists of those variables in � that take values on a non-trivial spinor bundle de�ned on
(M; g) with g 2 �.

� �b is the complement of �f in �, namely �b consists of all those elements in � that do not
take values in any non-trivial spinor bundle.

Elements in �f are called fermions, fermionic �elds or variables, whereas elements in �b are
called bosons, bosonic �elds or bosonic variables. Of course, this description is far away from
the de�nition that a physicist would give for bosonic and fermionic �elds in a given physical
theory, but it is very convenient from a mathematical geometric perspective. An example of
a bosonic variable that every supergravity contains is a Lorentzian metric, and an example of
a fermionic variable that again every supergravity contains is a gravitino, namely a one-form
taking values on an appropriately chosen non-trivial spinor bundle. In fact, these are the variables
of the simplest supergravity theory in four dimensions, sometimes called minimal supergravity
[192]. The de�ning property of a supergravity theory is that there exists a spinor bundle S whose
sections " 2 �(S) generate in�nitesimal transformations �"�b and �"�f of f�b;�fg that map the
subsets �b and �f into each other (in an appropriate in�nitesimal sense) and map solutions of
the equations of motion to (in�nitesimal) solutions. Schematically, we can write:

�"�b = Fb(";�f ) ; �"�f = Ff (";�b)
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where Fb(�;�) and Ff (�;�) are adequately chosen functions of the given entries that may contain
derivatives of � and are always linear in the �rst entry. These are the in�nitesimal supersym-
metry transformations of the given supergravity theory. Since they are generated by a spinorial
parameter, they can be understood as the spinorial analog of the classical in�nitesimal symme-
tries generated by vector �elds, such as the in�nitesimal transformation of a metric generated by
a vector �eld, which is given by the Lie derivative of the former along the latter. As it happens
for every theory de�ned via a di�erential system of equations that admits non-trivial symmetry
transformations, particular solutions of the theory need not be preserved by the symmetries of
the equations of motion of the theory. When this is the case for the aforementioned supersym-
metry transformations then we talk about supersymmetric con�gurations and supersymmetric
solutions. That is, a supersymmetric con�guration is a con�guration element � for which there
exists a spinor " such that:

�"�b = Fb(";�f ) = 0 ; �"�f = Ff (";�b) = 0

If in addition, � is a solution to the equations of motion of the theory then it is by de�nition a
supersymmetric solution of the given supergravity. The supersymmetric solutions of a supergravity
theory de�ne a remarkable class of solutions that are expected to enjoy special properties regarding
their stability, regularity, and topological behavior, and the extensive expertise gained by physicists
in the last decades certainly provides strong evidence for this. There is however no proper and well-
established mathematical theory of supergravity that can be used to investigate supersymmetric
solutions in supergravity and their potential applications in mathematics. In fact, such a complete
mathematical theory of supergravity is probably currently out of reach. A mathematical theory
of supergravity would require at least implementing the following two points:

� It should be developed in the appropriate framework of superspace or supergeometry [226],
in terms of which all the mathematical structures of a given supergravity, in particular its
supersymmetry transformations, should occur naturally.

� It needs to be formulated on manifold/supermanifolds of general enough topology, certainly not
necessarily contractible or parallelizable, equipped with appropriate bundles and their categori-
�cations that allow describing supergravity in terms of globally de�ned di�erential operators
de�ned on intrinsically de�ned in�nite-dimensional spaces. This is the way mathematicians
have successfully formalized other physical theories such as Yang-Mills theory or the Seiberg-
Witten equations, leading to spectacular mathematical new results through a careful study of
their moduli spaces [142].

Both these requirements seem to be very far from being completely established in supergravity.
Whereas supergeometry is being actively developed as a mathematical discipline with a very
algebraic-geometric �avor [49, 199], its applications to the mathematical theory of Lorentzian
supergravity beyond two dimensions seem to be for the moment limited, with some pioneering
exceptions [165�167]. This does not prevent physicists from constantly using superspace methods
to study various aspects of supergravity or construct new supersymmetric actions [87, 128]. In fact,
these superspace methods are of the utmost importance to develop supergravity and understand it
properly as full theory coupling bosons to fermions through supersymmetry. On the other hand,
as a result of supergravity theories having been traditionally studied only locally, there is little
emphasis on understanding the global topological and geometric structure of supergravity, and
many supergravity theories are typically constructed in terms of mathematical structures that
are in general only well-de�ned locally, such as Kähler potentials, moduli-space coframes or coset
representatives. When necessary, physicists usually perform case-by-case gluing procedures, some
of them remarkably sophisticated, to understand the global geometric and topological structure
of speci�c classes of supergravity solutions, see for instance the seminal references [75, 76].

These remarks may point to supergravity being not mature enough to be studied as a
mathematical discipline in the same sense as General Relativity, Yang-Mills theory or Seiberg-
Witten theory have all become exceptionally successful mathematical disciplines and areas of
study by themselves. However, we shall not despair: the physical purpose and motivation of
supergravity point to a proper way of studying it mathematically. For this, we have to re�ect on
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what is the ultimate purpose of supergravity and how it is used in the theoretical physics literature.
In this context, supergravity is considered a fundamental theory of gravity that describes the
macroscopic gravitational interaction of fundamental string theoretic objects [192]. That is,
supergravity is understood as a gravitational theory that describes the gravitational interaction of
fundamental objects, such as black branes, black holes or gravitational waves. In other words,
supergravity describes, as a general relativistic theory, the macroscopic gravitational interaction
in string theory. This has two immediate consequences:

� Supergravity should be considered as a very speci�c class of general relativistic models, deter-
mined by supersymmetry, and therefore its mathematical study should be approached analo-
gously to the mathematical study of general relativity, that is, from the point of view of global
Lorentzian geometry and geometric analysis.

� Since no fermionic degrees of freedom are observed macroscopically, we can safely truncate
the fermionic sector of supergravity and study instead its bosonic sector together with the
supersymmetry conditions that remain after this truncation.

From this perspective, and since the fermionic sector is truncated from the onset, we need to only
develop the mathematical theory of bosonic supergravity together with the remnant supersym-
metry conditions. This is a task that does not require supergeometry and can be accomplished
within standard global di�erential geometry and geometric analysis in terms of manifolds, bun-
dles, metrics, connections, and possibly their categori�cations. Following standard usage in the
literature, we will refer to the bosonic truncation of a supergravity theory simply as a bosonic
supergravity. This is the perspective adopted in [149, 152, 153, 155, 156]. Although bosonic
supergravity can have energy momentum tensors involving remarkable mathematical structures,
ultimately they are nothing but very speci�c matter models in general relativity and are therefore
formulated in terms of highly coupled second-order di�erential equations. The key point and the
source of many of the mathematical wonders of supersymmetry and supergravity is that, even
after truncating the fermionic sector, the supersymmetry transformations of a bosonic con�gura-
tion remain non-trivial and de�ne gauge theoretic �rst-order systems of equations of remarkable
mathematical depth and applications. To see this more explicitly, let (�b;�f = 0) be a bosonic
con�guration, namely a con�guration � with its fermionic sector truncated to theory. We can still
apply to it a supersymmetry transformation, obtaining:

�"�b = Fb("; 0) ; �"0 = Ff (";�b)

Since Fb("; 0) = 0 identically, it follows that �"�b = 0 automatically. However, even though
the fermionic variables have been set to zero, their in�nitesimal variation by a supersymmetry
transformation may be non-vanishing. Hence, since the value zero of the fermions needs to
be preserved by supersymmetry in order for (�b; 0) to be a supersymmetric solution, (�b; 0) is
supersymmetric if and only if:

Ff (";�b) = 0

This equation becomes a �rst-order di�erential equation for �b and " which is linear in " but typ-
ically highly non-linear in �. These are the supersymmetry Killing spinor equations, or Killing
spinor equations for short, of supergravity and the source of a myriad of applications in physics and
mathematics. Indeed, particular cases of this equation include the pseudo-holomorphicity equa-
tions of Gromov [120], the G2 and Spin(7) instanton equations [65], of several Seiberg-Witten-like
di�erential systems [84], just to name a few. This is arguably one of the deepest contributions of
supersymmetry and supergravity to mathematics and has led to a �urry of mathematical activity
since it provides a plethora of techniques to deal with classes of solutions to coupled second-order
di�erential equations whose moduli spaces have had extensive applications in di�erential geometry
and topology. At the source of these many applications lies the fact that the Killing spinor equa-
tions of a supergravity theory provide partial �rst-order integrability of the full second-order
equations of the theory. Indeed, solving the Killing spinor equations on general con�guration
elements solves automatically most of the second-order equations of motion of the theory, and
in some cases all of them. The framework of supersymmetric con�gurations that we have just
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described has been exploited masterfully in [222�224] and [71�74], see [195, 196] for a review,
to develop, among other applications, new cohomology theories and evolution �ows in Hermitian
complex geometry, especially in complex non-Kähler geometry. In this dissertation we will discuss
the mathematical structure of supersymmetric solutions and con�gurations in the context of the
NS-NS supergravity, that is, the NS-NS system as we have de�ned it in Equation (2). By the
previous discussion, we will only need to present the mathematical formulation of the bosonic
sector of NS-NS supergravity together with its Killing spinor equations.

2. Categori�ed geometry and supersymmetry

Mathematical gauge theory [142] is a mathematical discipline that grew out of the careful
investigation of the Yang-Mills equations and instanton equations on a principal bundle, and has
ever since evolved into a mathematical area that is concerned with the mathematical applications
of the study of di�erential equations of gauge theoretic type, namely equations that are formu-
lated in terms of globally de�ned di�erential operators on principal bundles, spinor bundles and
various �brations and have as variables, sections, connections and spinors that enjoy a gauge prin-
ciple. In mathematical gauge theory, there is typically an underlying rich in�nite dimensional
automorphism group that maps solutions to solutions and plays a fundamental role in the study
of the corresponding moduli space of solutions, since it is used to identify gauge-equivalent so-
lutions. The di�erential geometric study of bosonic supergravity together with its Killing spinor
equations, which we have outlined and motivated in the previous section, �ts perfectly within this
framework with only two caveats:

(1) Some supergravity theories, especially those de�ned in higher dimensions, require the use of
categori�ed notions of principal bundles and connections. The occurrence of higher category
theory in mathematical gauge theory is not new, see for instance [20, 21], although the way
it occurs because of supersymmetry is very speci�c and not fully understood yet.

(2) Whereas mathematical gauge theory usually deals with systems of equations of elliptic type,
supergravity theories are Lorentzian gravitational theories and therefore are governed by dif-
ferential systems of hyperbolic type. As we discuss in Section 4 below, there is however an
elegant canonical procedure to reduce supergravity to a system of Riemannian equations
that we conjecture is of elliptic type. The celebrated Hull-Strominger [129, 214] system as
well as other �avors of Heterotic systems [175, 179, 196] would be particular instances of this
procedure.

The need of higher or categori�ed geometry in supergravity has an arguably very innocent
origin. As mentioned in the previous sections, physicists typically study supergravity theories
locally in terms of locally de�ned �elds. The type of �elds that can occur as part of a given
supergravity theory is highly constrained by supersymmetry, sometimes to the point of being
uniquely determined by supersymmetry at the local level, as it happens for instance with the
maximally supersymmetric supergravities. Physicists quickly realized that some supergravity
theories required for their consistency gauge �elds that did not correspond to local one-forms
taking values on a Lie algebra, which were the type of gauge �elds that physicists had studied up
to that point in the context of Yang-Mills theories. Instead, imposing supersymmetry required
the existence of �elds that were locally represented by higher-order forms. These forms enjoyed
a gauge principle and admitted a notion of curvature, similar to that of the traditional one-form
gauge �elds, albeit being of higher order. At the local level, it is possible to work with these
higher gauge �elds by keeping track of the hierarchy of gauge transformations that they involve
and the higher curvatures they de�ne, which are sometimes coupled to each other, giving rise to
deep algebraic structures [31, 33, 46, 63, 109, 110, 124, 201, 225]. A completely di�erent story is
trying to elucidate the global mathematical structure behind these higher gauge �elds. By this,
we refer to constructing the type of geometric objects on which these higher gauge �elds can
be de�ned as connections involving the correct notion of curvature and gauge transformations.
Doing this turns out to be a surprisingly sophisticated mathematical problem that requires some
of the latest developments in the categori�cation of principal bundles, that is, in higher geometry
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and is currently being intensively investigated [10, 41�44, 189, 190, 215]. Therefore, from this
simple minded point of view we can summarize the situation as follows:

� Certain supergravity theories require to be formulated on the categori�cation of traditional
principal bundles and connections because, as a consequence of supersymmetry, they involve
gauge �elds that are locally represented as a k-forms with k > 1.

The study of gauge theories on various versions of categori�ed principal bundles has a rich history
in the mathematical physics literature in various developments a priori unrelated to supergravity,
see for instance [14, 206] and its references and citations. In this dissertation we will be dealing with
the simplest type of higher gauge �eld that occurs in supergravity, namely the so-called b-�eld.
This is a gauge �eld that is locally represented by a local two-form on the underlying manifold
and consequently has a three-form as curvature. The geometric objects on which the b-�eld lives
are bundle gerbes with a connective structure [186], which de�ne a natural geometric model for
the categori�cation of a principal bundle. Consequently, we can think of the b-�eld as the higher
analog of the Maxwell �eld, which is mathematically modelled by a connection one-form on a
principal U(1) bundle. Bundle gerbes were originally conceived in 1971 by Giraud [122] as certain
presheaves of groupoids that, modulo the appropriate notion of isomorphism provide a geometric
realization of H3(M;Z) akin to the geometric realization of H2(M;Z) given by principal U(1)
bundles on M modulo isomorphism. The original notion of gerbe as introduced by Giraud was
relatively abstract and not particularly apt to do di�erential Riemannian or Lorentzian geometry
on it. Subsequently, more geometrically palatable models for the notion of abelian gerbes, all
essentially equivalent, were proposed in the literature [40], culminating in the very geometric
notion of abelian bundle gerbe [186], which is a model constructed out of standard U(1) bundles
and smooth �brations. This makes Abelian bundle gerbs especially convenient for the supergravity
applications we have in mind. One of the key properties of gerbes and other categori�ed geometric
structures is that their natural symmetries do not assemble a group but rather a categori�ed
version of a group [186, 187, 228], which re�ects in turn the gauge symmetries of the underlying
supergravity. This is particularly important to study moduli spaces of supergravity solutions since
such spaces are de�ned by identifying solutions via the higher symmetries of the theory.

In this dissertation, we will propose a completely rigorous formulation of bosonic NS-NS
supergravity on a bundle gerbe. This is a very natural formulation that o�ers no di�culties,
in contrast to more complicated supergravity theories that involve non-abelian higher geometry
[190, 229]. Nevertheless, it is important to keep track of the fact that the underlying variable
of the theory is a curving b on an abelian bundle gerbe and not a generic closed three-form H.
Omitting this fact would be as erroneous as taking a Lie-algebra valued two-form as the variable
in Yang-Mills theory, instead of the corresponding connection on a principal bundle. This is
even experimentally incorrect [4]. Although the equations of motion of NS-NS supergravity only
contain the b-�eld through its curvature, the importance of H being a derived object becomes
apparent as soon as one studies more subtle problems, such as the Cauchy and evolution problems
or the supersymmetric moduli problem. Indeed, it is in this context where the fact that the
variable is a gauge theoretic object with a rich groupoid of symmetries is apparent. We will
encounter such a scenario in Chapter 6, where we will decompose a curving in order to obtain
the evolution �ow de�ned by the NS-NS system.

3. Spinorial exterior forms and the bilinear method

The most important geometric tool in this dissertation is the theory of spinorial exterior
forms, developed originally in [61] for irreducible real spinors of simple type and extended to the
non-simple case in [205]. We will abundantly apply the results of [61] to study irreducible di�eren-
tial spinors in four dimensions. This formalism covers as a particular case the spinorial di�erential
system presented in (1). The theory of spinorial exterior forms originated in the early supergravity
literature, as physicists tried to understand the geometric structure of supersymmetric con�gu-
rations and solutions, and hence were led to study highly coupled spinorial systems of the form
(2). The systematic investigation of supersymmetric solutions in supergravity was initiated in the
seminal work of Gibbons, Hull, and Tod [106, 216]. These pioneering e�orts culminated in the
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early two thousand in what is nowadays called the spinorial bilinear method [24, 101, 103, 104],
which was consequently broadly applied to the study of the local structure of the supersymmetric
solutions of many supergravity theories of increasing complexity, see [114, 192] for general reviews
on supersymmetric supergravity solutions from a physics but very geometric perspective. This
bilinear method gives a systematic procedure to study the local geometric structure of supersym-
metric supergravity solutions and more generally of di�erential spinors, by means of an equivalent
associated di�erential system for a certain number of algebraically constrained di�erential forms.
In essence, the bilinear method constructs a series of local di�erential forms by sandwiching
spinors with gamma matrices, and then derives a number of di�erential and algebraic relations
satis�ed by these forms by applying the Fierz identities [192, Appendix D] on the one hand
and the di�erential equations satis�ed originally by the spinors on the other. These sandwiches
of spinors and gamma matrices are called the bilinears of the spinors, whence the name of the
formalism. Hence, given a di�erential spinor, the bilinear method produces a set of forms that
satis�es a system of algebraic relations derived by means of the Fierz identities and a system of
di�erential conditions derived from the di�erential conditions satis�ed by the di�erential spinor.
The main advantage of this method is that it provides an algebraic procedure that does not de-
pend on any representation theory, which for spinors on a pseudo-Riemannian signature can be
remarkably non-trivial, and that it associates to every di�erential spinor a number of equivalent
special di�erential forms that are in principle much more transparent to interpret and understand.
This method connects with our program to develop the mathematical theory of supersymmetric
solutions in supergravity, because of the two a priori challenges we encountered, namely:

(1) Identify mathematically the type of spinors that occur as supersymmetry generators of super-
symmetric solutions in supergravity.

(2) Elucidate a geometric framework general enough to study systematically the type of spinorial
equations that occur as supersymmetry conditions in Lorentzian supergravity.

Point (1) above leads to the notion of di�erential spinor introduced earlier together with the
notion of spinorial Lipschitz structure [95, 149, 150], which we shall not discuss here. Point
(2) above led us to develop a general geometric framework to study equations of the type (2).
The bilinear method stands as the perfect starting point for this since it has extensively proved
its power in the literature and, as mentioned below, it addressed a fundamental problem in spin
geometry, namely the relation between spinors and exterior forms 1, in a manner that could be
implemented globally with no reference to preferred choices of coordinates or coframes. In order
to promote the remarkable method of bilinears into a proper mathematical theory, two challenges
need to be addressed, that is:

� We need to identify how the individual bilinears occur or assemble into a natural geometric
object associated to a section of a spinor bundle equipped with a bilinear pairing [5, 6]. This
natural geometric object is the spinorial exterior form associated to the given spinor.

� We need to obtain a precise correspondence between the di�erential system of type (2) satis�ed
by a given spinor, and an equivalent di�erential system satis�ed by its associated bilinears.

The aforementioned theory of spinorial exterior forms precisely solves these two points. First, it
identi�es the set of bilinears associated with a given spinor with its algebraic square, appropriately
de�ned via the choice of an admissible bilinear pairing [5, 6] on the spinor space. Second, it
establishes a correspondence between di�erential spinors, namely solutions to systems of the form
(2), and their algebraic squares as solutions to a prescribed exterior di�erential system. In other
words, this formalism reduces the original spinorial system to an exterior di�erential system for the
square of a spinor, appropriately de�ned. Hence, in order to obtain a proper equivalence, we need
to characterize which exterior forms can be constructed as the square of a spinor, that is, we need
to characterize the image of the spinor square map, which associates to every spinor its square
with respect to a chosen admissible bilinear pairing. In signature (p�q) �8 0; 1; 2, which crucially
includes the case of signature (3; 1), this characterization is one of the main results of [61, 205].
In Op. Cit. the image of the spinor square map is characterized as a certain semi-algebraic body

1Spinors as the Square Root of Geometry, conference given by Michael Atiyah at the IHES in 2013.
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given as the solution set to a natural system of algebraic equations and inequalities elegantly
written in terms of the geometric product. The latter is the metric-dependent deformation of the
wedge product that makes the exterior algebra bundle canonically isomorphic with the bundle of
Cli�ord algebras. We note that the theory of spinorial exterior forms for irreducible real spinors
in signatures di�erent than (p � q) �8 0; 1; 2 is yet to be developed. In Lorentzian signature,
the square of a spinor always contains the Dirac current of the spinor, which is the rank-one
component of its square and is therefore a one-form that is canonically associated with every
irreducible spinor. In dimension larger than three the square of the spinor also contains forms of
higher degree and therefore the Dirac current of the spinor does not encode all the information
contained in the spinor.

In this dissertation we will apply the theory of spinorial exterior forms to study di�erential
spinors in four dimensions. For this particular case, the square of an irreducible real spinor can
be solved explicitly, giving rise to the notion of parabolic pair and isotropic parallelism, see
Section 1 in Chapter 3 for more details. These fundamental objects give a very e�cient way
to deal with irreducible spinors in four Lorentzian dimensions. We will use them to study the
four-dimensional supersymmetric solutions of NS-NS supergravity. The most basic property of
nowhere vanishing irreducible spinors in four Lorentzian dimensions is that their Dirac current
is necessarily isotropic, that is, of vanishing pointwise pseudo-norm. Hence, Lorentzian four-
manifolds equipped with a di�erential spinor are necessarily equipped with a nowhere-vanishing
isotropic vector satisfying a given di�erential equation. For irreducible real spinors parallel with
respect the Levi-Civita connection this isotropic vector �eld is also parallel, and therefore the
underlying Lorentzian manifold is Brinkmann [36, 212]. The Brinkmann class of Lorentzian
manifolds has generated ample interest in the mathematics literature since it is home to a manifold
of interesting mathematical problems of topological and dynamical type [123, 161, 163, 172].
Parallel spinors occurred relatively early in the mathematical general relativity literature [68].
In modern terminology, in Op. Cit. it was shown that a Lorentzian four-manifold equipped
with an irreducible real spinor parallel with respect to Levi-Civita is necessarily a particular type
of Brinkmann space-time called pp-wave, which stands for plane-fronted wave with parallel
propagation. This name steams from the fact that they carry an isotropic vector �eld parallel
with respect to the Levi-Civita connection and there is a local transverse Riemannian submanifold,
enconding the local geometry of the front-wave of the wave, which is necessarily �at and thus
"plane-fronted". This vector �eld is precisely the Dirac current of the parallel spinor and its dual
belongs to the square of the latter. Such pp-waves de�ne, from the physical point of view, idealized
mathematical models for gravitational waves. This fact together with spectacular observation
of gravitational waves in the LIGO experiment makes this class of space-times of the utmost
relevance in modern theoretical physics. From the mathematical point of view, generic Brinkmann
space-times de�ne Lorentzian manifolds of reducible but non-decomposable holonomy [159�161,
163]. That is, the distribution spanned by the parallel vector �eld is preserved by the Levi-
Civita connection, yet the underlying Lorentzian metric does not split as a local product. This
is a fascinating possibility that cannot occur in Riemannian signature by the de Rahm theorem.
From the spinorial point of view, as soon as a di�erential spinor is isotropic with respect to the
natural pseudo-norm on the spinor space then its Dirac current is automatically isotropic, nowhere
vanishing, and satis�es a given di�erential equation. Hence, the relation between isotropic spinors
in Lorentzian signature and isotropic vector �elds runs deep in Lorentzian spinorial geometry.
Beyond spinors parallel with respect to the Levi-Civita connection, previous experience [7, 35, 205],
shows that supersymmetric solutions are in particular Kundt space-times [34, 58, 173], at least
in dimensions three and four, giving rise to various notions of supersymmetric Kundt manifolds.
The Kundt class of Lorentzian manifolds is a remarkable extension of the class of Brinkmann
manifolds and is being actively investigated in the mathematics community [173]. We hope the
methods and techniques developed in the aforementioned references can be applied in the future
to study in detail the mathematical structure of the supersymmetric classes of Kundt manifolds
occurring in supergravity.
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4. Supersymmetric evolution �ows and initial data sets

The mathematical study of supergravity theories has been thus far mostly limited to Eu-
clidean signature, with some pioneering exceptions [9, 77, 78]. In the most celebrated supergravity
system in the mathematics literature, namely, the supersymmetric Killing spinor equations of Het-
erotic supergravity, also known as the Hull-Strominger system, this mathematical study is almost
entirely done not only in Euclidean signature but also on compact manifolds. This is justi�ed
by the fact that solutions to the Hull-Strominger correspond to compacti�cation backgrounds of
Heterotic supergravity [19]. A more general but equally natural class of manifolds on which study-
ing the Hull-Strominger system as well as other gauge-theoretic equations in Euclidean signature
are complete Riemannian manifolds. When addressing the mathematical study of supergravity
in Lorentzian signature, it is convenient to consider the theory as de�ned on a particular class of
manifolds akin to the complete or compact manifolds in Euclidean signature. Studying compact
Lorentzian manifolds is usually avoided in the physics literature since these seem to be necessarily
non-realistic, in the sense that they contain closed time-like curves giving rise to all sorts of phys-
ical paradoxes. On the other hand, imposing Lorentzian manifolds to be complete, for instance,
geodesically complete, is in general too strict, since many classes of remarkable gravitational space-
times are known to be non-complete. In fact, there are singularity theorems that, under certain
conditions, predict the generic occurrence of singularities in the form of geodesic incompleteness
with respect to the underlying Lorentzian metric [209, 210]. There is however, a natural class of
Lorentzian manifolds that constitute the analog of complete Riemannian manifolds in Euclidean
signature: these are the globally hyperbolic Lorentzian manifolds with complete Cauchy hyper-
surface. Similarly, the analog of compact Riemannian manifolds in Euclidean signature would
be from this point of view the globally hyperbolic Lorentzian manifolds with compact Cauchy
hypersurface.

Globally hyperbolic Lorentzian manifolds can be de�ned in a number of di�erent ways.
From a practical point of view, globally hyperbolic Lorentzian manifolds conform the class of
Lorentzian manifolds on which the Cauchy problem for hyperbolic systems of equations can be
well posed. In particular, a globally hyperbolic Lorentzian manifold admits a space-like sub-
manifold on which we can de�ne the initial data associated to any given hyperbolic system on
(M; g), and copies of this space-like submanifold foliate the entire space-time. Hence, globally
hyperbolic Lorentzian manifolds are especially well-adapted to study analytic aspects of hyper-
bolic systems as well as to understand hyperbolic systems as evolution systems in Riemannian
signature. The celebrated results of Choquet-Bruhat [54, 55] show that the vacuum equations of
General Relativity de�ne a well-posed Cauchy problem for globally hyperbolic Lorentzian met-
rics. This allowed, for the �rst time in the literature, for a precise understanding of the evolution
problem de�ned by General Relativity: in contrast to elliptic systems in Riemannian signature,
hyperbolic-type systems in Lorentzian signatures admit a time-direction with respect to which
they can be understood as dynamical systems for certain quantities, typically tensors but not
necessarily, that evolve in time. This brought the understanding of General Relativity on par
with the common understanding of all the other theories in physics that are determined in terms
of evolution equations for an explicit time parameter. In particular, Choquet-Bruhat established
the modern paradigm to understand the evolution and Cauchy problem of certain second-order
hyperbolic systems that de�ne gravitational theories. These are systems of equations that are
obtained from di�eomorphism-invariant local Lagrangians depending on a Lorentzian metric and
possibly other �elds and giving rise to second-order equations of motion. Within this paradigm,
these gravitational theories can be understood, in their globally hyperbolic regime, in terms of a
system of evolution equations in Euclidean signature for certain constrained initial data that
satis�es a Riemannian system of equations. In a sense, gravitational theories on globally hyper-
bolic Lorentzian metrics e�ectively reduce to a system of evolution �ow equations in Riemannian
signature with constrained initial data. Given these remarks and the fact that supergravity is
a landmark of a gravitational theory, it is natural to study the supergravity initial value or
Cauchy problem on globally hyperbolic Lorentzian con�gurations, namely con�gurations whose
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associated metric is globally hyperbolic. However, it seems that this problem has not been consid-
ered systematically in the supergravity literature, with the remarkable exception of [56], in which
Choquet-Bruhat herself proved well-posedness of the complete, second-order, eleven-dimensional
supergravity. It should be noted that reference [56] deals with the local Cauchy problem, local
both in space and time at the second-order derivative level. This, which may seem a minor
restriction, is remarkably non-trivial for eleven-dimensional supergravity for two main reasons:

� The proper formulation of eleven-dimensional supergravity unavoidably involves higher-order
curvature corrections that are expected to completely spoil the nice analytic properties of
second-order equations of motion of eleven-dimensional supergravity [19].

� The global geometric and topological structure of the eleven-dimensional supergravity requires
a quite sophisticated notion of bundle 2-gerbe [213] whose higher groupoid of automorphisms
needs to be properly understood in order to glue the local well-posedness result into a global
one. This is related to a subtle gauge quantization condition in M-theory, whose mathemat-
ical foundations [111, 203, 204] are still under development and require sophisticated tools in
algebraic topology.

The previous two bullet points are of common occurrence in many other supergravity theories,
in the sense that they involve, as mentioned in Section 2 non-trivial topological and geometric
structures in delicate equilibrium as dictated by supersymmetry together with categori�ed notions
of automorphisms that need to be properly taken into account in order to obtain global results.
Notably, it seems that the constraint equations of many supergravity theories have not even been
written explicitly in the literature. We �ll this gap in the particular case of NS-NS supergravity
in Chapter 6, as we explain in more detail in Section 5. It should be noted that the Cauchy
problem in supergravity is richer than in other more standard gravitational theories since a
given supergravity involves two di�erent systems of equations. As we have discussed earlier, a
supergravity theory, by which we mean a bosonic supergravity theory, consists of its equations of
motion, which follow from a local Lagrangian principle, together with its Killing spinor equations,
which consist of a spinorial di�erential system, typically of �rst order. The equations of motion
determine their own Cauchy problem, de�ning the corresponding supergravity evolution �ow and
constraint equations, whereas the supersymmetric Killing spinor equations de�ne in turn their
own Cauchy problem, giving rise to their �rst-order supersymmetric evolution �ow and constraint
equations. Hence, we obtain two di�erent systems of evolution and constraint equations that
are intimately related since the Killing spinor equations provide partial �rst-order integrability
of the supergravity equations of motion. Hence, the well-posedness of the Cauchy problem in
supergravity has several facets: we �rst have the standard Cauchy problem for the second-order
equations of motion, which for the case of NS-NS supergravity has been proven to be well-posed in
the upcoming doctoral dissertation of Oskar Schiller at Hamburg University. On the other hand,
we have the Cauchy problem for the supersymmetric Killing spinor equations, which is yet to be
studied in the literature. It is important to remark that the initial data for the supersymmetric
Killing spinor equations is in general di�erent from the initial data for the supergravity equations
of motion. However, experience [176, 177, 179] shows that there is a natural map from the former
to the latter that is at the basis of the rich interaction between these two Cauchy problems.
Using this map it makes sense to talk about data that satis�es the constraint equations to both
Cauchy problems, and hence it is natural to compare the supersymmetric and supergravity, not
necessarily supersymmetric, evolution �ows starting on initial data admissible to both problems.
In Theorem 5.18 we prove a compatibility result for these �ows in NS-NS supergravity, which
to the best of our knowledge is the �rst of its type in the supergravity literature. Many natural
mathematical questions arise in this interacting framework of evolution �ows. For instance, it
is known that the solution space modulo isomorphism of the initial data equations of vacuum
General Relativity is in general an in�nite-dimensional space. Similarly, we can expect that the
initial data space modulo isomorphism of the supersymmetric Cauchy problem is also an in�nite-
dimensional space. However, based on previous experience of moduli spaces in supergravity, it is
tempting to conjecture the following:
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� The moduli space of admissible initial data modulo isomorphism to both the supergravity and
supersymmetric Cauchy problems is locally �nite-dimensional.

If true, the previous statement should already hold for the case of parallel irreducible spinors
on Ricci �at space-times, which we are currently studying in the speci�c case of four Lorentzian
dimensions using the formalism of parabolic pairs and isotropic parallelism introduced in this
dissertation. Contrary to more general supergravity systems, the Cauchy problem for parallel
spinors in Lorentzian has been already studied in the mathematical literature. In the seminal work
of Baum, Leistner and Lischewski [16, 162, 170], the authors proved the well-posedness of the initial
value problem of an irreducible complex spinor. The case of Killing spinor equations, of interest
also in supergravity, was studied in in arbitrary signature in [59]. On the other hand, the initial
data set of the Cauchy problem de�ned by a parallel spinor has been considered in [8, 112, 113]
in connection to the topology of the space of initial data conditions satisfying the dominant
energy condition in General Relativity. For the speci�c case of four Lorentzian dimensions, the
interaction between the evolution �ow de�ned by a parallel spinor and the evolution �ow de�ned
by the Ricci-�atness equations has been investigated in [176�178], where it was proven that the
former preserves the momentum and Hamiltonian constraints of the latter and therefore both
�ows coincide on common initial data. It would be very interesting to continue studying these
problems in the parallel case and also extend them to more general supergravity systems. It
should be noted that, even if a given supergravity satis�es the strict dominant energy condition,
the results of [8, 112, 113] may not directly apply, since the initial data is larger in the supergravity
case and, as the NS-NS supergravity case considered in Chapter 6 shows, initial data sets contain
more variables than a Riemannian metric and a symmetric tensor. To the best of our knowledge,
the topology of initial data sets in supergravity has not been considered in the literature, and it
would be very interesting to generalize the results and techniques of [8, 112, 113] to supergravity.
It seems that the Cauchy problem of bosonic supergravity and its supersymmetric Killing spinor
equations has a very rich mathematical content that remains to be explored. We believe that
their study is going to lead to many interesting mathematical problems and conjectures that will
require the development of new tools in spin geometry, Riemannian geometry and analysis.

5. Main results

In this section, we describe the main results of this dissertation. Generally speaking, all the
results contained in the manuscript, except for Chapter 2, subsection 3.1 of Chapter 3, Section 3
of Chapter 6, and Appendix A, are novel and have not been published elsewhere.

� In Chapter 2 we introduce in detail the theory of spinorial exterior forms associated to irreducible
and real di�erential spinors in signature (p�q) = 0; 2 mod (8) closely following [61]. The main
algebraic result of this chapter is Theorem 2.19, which establishes a two-to-one correspondence
between irreducible real spinors and those exterior forms satisfying the system of algebraic
equations and inequalities given in the statement of the theorem. In Section 3 of this chapter,
which is extracted from [154], we apply Theorem 2.19 to the case of irreducible chiral spinors
in eight Euclidean dimensions. Despite the fact that this is a very classical case that has
been amply studied in the literature [157], Theorem 2.19 can be successfully applied to obtain a
new result, namely an algebraic function whose self-dual critical points are precisely the Spin(7)
structures of the underlying vector space. This result is presented in Theorems 3.12 and 3.23. In
Theorem 3.12 we compute the explicit algebraic square of an irreducible and chiral real spinor in
eight Euclidean dimensions, whereas in Theorem 3.23 we ellaborate on this result to construct
the aforementioned potential. Although the main focus of the dissertation is on spinors in
Lorentzian signature, we thought it was instructive to present an application in a very classical
Riemannian geometry context, in order to illustrate the versatility of the methods employed. We
hope this new potential can be of applicability in the study of Spin(7) structures via evolution
�ows and variational techniques. We continue in Section 4 with the main di�erential result
of this chapter, which is given in Theorem 4.22 and provides an equivalence between real and
irreducible di�erential spinors in signature (p� q) = 0; 2 mod (8) and spinorial exterior forms



5. Main results 19

satisfying the di�erential system given in the statement of the theorem. This result will be used
extensively in the remaining of the dissertation. For applications to other signatures, see [108].

� In Chapter 3 we apply the general framework developed in Chapter 2 to the case of di�erential
spinors on Lorentzian four-manifolds. In Section 1 we compute the square of an irreducible
real spinor in four Lorentzian dimensions, and we associate to this construction a parabolic
pair and an isotropic parallelism. These are the fundamental variables in terms of which we
can rephrase every problem involving the aforementioned type of spinors into a problem in-
volving exclusively equivalence classes of global coframes de�ned on the underlying manifold.
The notion of isotropic parallelism seems to be new in the literature, and as exempli�ed in this
dissertation, seems to be particularly well adapted to study the global geometric and topological
structure of manifolds equipped with di�erential spinors. Choosing a representative in a given
isotropic parallelism, we can naturally construct a complex tetrad used in the Newman-Penrose
formalism [188], making thus contact with a classical object in four-dimensional General Rel-
ativity. Using these tools, we obtain in Theorem 2.11 a characterization of the most general
di�erential spinor on a strongly spin Lorentzian four-manifold M in terms of a global coframe
satisfying a system of partial di�erential equations that we give in its full generality in the
statement of the theorem. We then use this result to study natural classes of di�erential spinors
in four Lorentzian dimensions, focusing on the case of real Killing spinors, which de�ne a very
natural class of di�erential spinors that occurs as the supersymmetric Killing spinor equations
in minimal four-dimensional supergravity [192]. In particular, in Theorem 3.19 we characterize
the global geometry and topology of real Killing spinors on standard conformally Brinkmann
space-times. We end this chapter with Section 4, in which we brie�y discuss the notion of
Lorentzian instanton in four dimensions. This section illustrates the applicability of the the-
ory of spinorial exterior forms to study spinors that are algebraically constrained to belong to
the kernel of a given endomorphism. In this case the endomorphism is the curvature of a con-
nection on a principal bundle, acting by Cli�ord multiplication on spinors, and the condition
that it preserves a real and irreducible nowhere vanishing spinor reduces to a �rst-order di�er-
ential equation for the connection which is the Lorentzian analog of the self-duality condition
for connections in four Euclidean dimensions. These types of conditions appear extensively
in supergravity but are yet to be considered in the mathematics literature. It would be very
interesting to study them in more detail, developing their moduli space theory analogously to
the Riemannian case [142].

� In Chapter 4 we apply the geometric framework developed in Chapter 3 to torsion parallel
spinors, namely to real and irreducible spinors parallel under a general metric connection with
torsion. This is a very natural condition to impose on a spinor and, whereas its Riemannian
counterpart has been studied in the mathematics literature [1�3, 91], the Lorentzian case seems
to not have been systematically investigated, with the notable exceptions of [59, 70, 99]. In
Theorem 1.9 we obtain a correspondence between torsion parallel spinors and solutions to an
explicit exterior di�erential system [38, 39] for isotropic parallelisms. This exterior di�erential
system does not depend on any metric, hence realizing, at least to some extent, the motivation
and ideology explained in [220]. This opens up the possibility of applying the well-developed
machinery of exterior di�erential systems to study torsion parallel spinors. It would certainly
be very interesting to study aspects like Cartan's involutive test, possible prolongations, and
associated Spencer cohomology [38, 39]. Elaborating on this result, we extract, from the exterior
di�erential system satis�ed by the isotropic parallelism associated to every torsion parallel
spinor, a pair of invariants. These invariants descend to cohomological invariants in de-Rham
cohomology for Lorentzian four-manifolds equipped with an irreducible real spinor parallel
with respect to a �at metric connection with torsion. It would be very interesting to elucidate a
geometric interpretation of these invariants and clarify their role in the study of torsion parallel
spinors with respect to a �at connection on a non-simply-connected Lorentzian four-manifold.

� In Chapter 5 we initiate the proper study of four-dimensional NS-NS supersymmetric con�g-
urations and solutions. For this, we will extensively use the framework and associated results
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developed in the previous chapters. We proceed by �rst introducing in Section 1 the mathemat-
ical model of bosonic supergravity together with its supersymmetric Killing spinor equations,
which is based on a choice of bundle gerbe with connective structure [186] and principal Z-
bundle. In Section 2 of this chapter, as preparation for the study of Equation (1), we investigate
general skew-torsion parallel spinors, namely spinors parallel with respect to a connection with
totally skew-symmetric torsion. In Section 3 we consider the supersymmetric con�gurations of
NS-NS supergravity, obtaining a general characterization in terms of a special class of isotropic
parallelisms. In Theorem 4.15 of Section 4 we elaborate on the structure of supersymmetric
con�gurations to obtain a characterization of supersymmetric NS-NS solution in the particular
case in which the pseudo-norm of the curvature of the b-�eld of the solutions is nowhere van-
ishing. The general case is remarkably more complicated since the solution degenerates as the
aforementioned norm tends to zero. We plan to study the general case in the future. In general
terms, there is a lot to be learned about supersymmetric NS-NS solutions in four dimensions,
and a general classi�cation result seems out of reach, at least in the near future. We end this
chapter with Section 5, in which we apply Theorem 4.15 to study the local structure of a canon-
ical foliation that every NS-NS solution carries naturally. This foliation is generally singular,
but for supersymmetric solutions with nowhere vanishing b-�eld curvature norm, it turns out
to be regular. In particular, we obtain the general local form of the dual curvature of the b-�eld
around a point in its pseudo-norm does not vanish.

� Chapter 6 is devoted to the study of globally hyperbolic four-dimensional supersymmetric
con�gurations and solutions in NS-NS supergravity. For this, we �rst consider the globally
hyperbolic reduction of an isotropic parallelism, namely the decomposition and canonical rep-
resentative that exists for isotropic parallelisms whose associated Lorentzian metric is globally
hyperbolic. This framework provides a very e�cient and transparent framework to deal with
spinors on globally hyperbolic Lorentzian four-manifolds. We do this in Section 1 of this chap-
ter. In Section 2 we study the evolution problem posed by a general skew-torsion parallel spinor
on a globally hyperbolic Lorentzian four-manifold using the aforementioned notion of globally
hyperbolic reduction of an isotropic parallelism. This allows to study the problem exclusively
in terms of globally de�ned coframes on the underlying Cauchy hypersurface. Our �rst main
result of this chapter is Theorem 2.15, in which we give simple criteria for a globally hyperbolic
Lorentzian four-manifold to admit an irreducible real spinor parallel under a �at metric con-
nection with skew-symmetric torsion. In Section 3, we demonstrate the e�cacy of the isotropic
parallelism formalism by explicitly solving the evolution �ow determined by a parallel spinor on
a globally hyperbolic Lorentzian four-manifold. This section is extracted from [177], to which
the reader is referred for more details. In Section 4 we embark on the globally hyperbolic re-
duction of abelian bundle gerbes with a connective structure of globally hyperbolic Lorentzian
four-manifolds which, to the best of our knowledge, has not been considered elsewhere. This is a
crucial step to study globally hyperbolic NS-NS solutions, as these are based on bundle gerbes.
Finally, in Section 5 we consider the supersymmetric NS-NS evolution �ow, namely the evolu-
tion �ow de�ned by the globally hyperbolic supersymmetric con�gurations of four-dimensional
NS-NS supergravity. Along the way we obtain in detail the evolution and constraint equations
of the bosonic NS-NS system together with the evolution and constraint equations of its Killing
spinor equations. As discussed above, these de�ne di�erent but intimately related constrained
evolution �ows. Our main �nal result is Theorem 5.18, in which we obtain the �rst compatibility
criteria between these �ows. Interestingly enough, this implies that both �ows are compatible
only if the Hamiltonian constraint of vacuum General Relativity is satis�ed, illustrating the
rigidity of globally hyperbolic supersymmetric NS-NS solutions.
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Spinorial exterior forms and bundles of irreducible Cli�ord

modules

In this chapter, we follow [61] to develop the theory of spinorial exterior forms associated
with sections of bundles of real irreducible Cli�ord modules in signature (p � q) �8 0; 2, which
includes the main case of interest in this dissertation, namely that of Lorentzian signature (3; 1)
in four dimensions. The goal is to give a precise characterization of the square of a spinor as an
element in a given semi-algebraic real set and apply this description to the study of di�erential
spinors, to be introduced in Section 4, see De�nition 4.12. We �rst introduce the algebraic theory,
which we then proceed to extend to a di�erentiable theory on pseudo-Riemannian manifolds of
signature (p � q) �8 0; 2 equipped with a bundle of irreducible real Cli�ord modules. We begin
with some algebraic preliminaries that will be of use in later sections.

1. Real vectors as endomorphisms

Let � be a real vector space of positive even dimension N equipped with a non-degenerate
bilinear pairing B : �� �! R, which we assume to be either symmetric or skew-symmetric. In
this situation, the pair (�;B) is called a paired vector space. We say that B has symmetry type
s 2 Z2 if:

B(�1; �2) = sB(�2; �1) 8 �1; �2 2 � :

Hence B is symmetric if it has symmetry type s = +1 and skew-symmetric if it has symmetry
type s = �1. Let (End(�); �) be the unital associative real algebra of linear endomorphisms of �,
where � denotes composition of linear maps. Given E 2 End(�), we denote by Et 2 End(�) the
adjoint of E taken with respect to B, which is uniquely determined by the condition:

B(�1; E(�2)) = B(Et(�1); �2) 8 �1; �2 2 � :

The map E ! Et is a unital anti-automorphism of the real algebra (End(�); �).
Definition 1.1. An endomorphism E 2 End(�) is called tame if its rank satis�es rk(E) � 1.

Thus E is tame if and only if it vanishes or is of rank one. Let:

T := fE 2 End(�) j rk(E) � 1g � End(�)

be the real determinantal variety of tame endomorphisms of � and:

_T := T n f0g = fE 2 End(�) j rk(E) = 1g
be its open subset consisting of endomorphisms of rank one. We understand T as a real a�ne
variety of dimension 2N � 1 in the vector space End(�) ' RN2

and _T as a semi-algebraic variety.
Elements of T can be written as:

E = � 
 �
for some � 2 � and � 2 ��, where �� = Hom(�;R) denotes the real vector space dual to �.
Notice that tr(E) = �(�). When E 2 T is non-zero, the vector � and the linear functional �
appearing in the relation above are non-zero and determined by E up to transformations of the
form:

(�; �)! (��; ��1�)

21
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with � 2 R�. In particular, _T is a manifold di�eomorphic with the quotient (RN n f0g)� (RN n
f0g)=R�, where R� acts with weights +1 and �1 on the two copies of RN n f0g.
Definition 1.2. Let � 2 f�1; 1g be a sign factor. The � square map of a paired vector space
(�;B) is the following quadratic map:

E� : �! T ; � 7! E�(�) = � � 
 ��

where �� := B(�; �) 2 �� is the linear map dual to � relative to B.

Let � 2 Z2 be a sign factor and consider the open set _� := �n f0g. Recall that E�(�) = 0 if and
only if � = 0, hence E�( _�) � _T . Let _E� : _�! _T be the restriction of E� to _�.

Lemma 1.3. For each � 2 Z2, the restricted quadratic map _E� : _�! _T is two-to-one, namely:

_E�1� (f� � 
 ��g) = f��; �g 8� 2 _� :

Moreover, E� is a real branched double cover of its image, which is rami�ed at the origin.

Proof. Follows from the presentation of _T as a manifold di�eomorphic to the quotient (RN n
f0g)� (RN n f0g)=R�, where R� acts with weights +1 and �1 on the two copies of RN n f0g. □

The map E� need not be surjective. To characterize its image, we introduce the notion of admis-
sible endomorphism. Let (�;B) be a paired vector space of symmetry type s.

Definition 1.4. An endomorphism E of � is called B-admissible if it satis�es the conditions:

E � E = tr(E)E and Et = sE :

Let:

C := �E 2 End(�) j E � E = tr(E)E ; Et = sE
	

denote the real cone of B-admissible endomorphisms of �.

Remark 1.5. Tame endomorphisms are not related to admissible endomorphisms in any simple
way. A tame endomorphism need not be admissible, since for instance it need not have a symmetry
type with respect to B. On the other hand, an admissible endomorphism need not be tame, since
it can have rank larger than one, as a quick inspection of explicit examples in four dimensions
shows.

Let Z := T \ C denote the real cone of those endomorphisms of � which are both tame and
admissible with respect to B and consider the open set _Z := Znf0g.
Lemma 1.6. We have:

Z = Im(E+) [ Im(E�) and Im(E+) \ Im(E�) = f0g :

Hence an endomorphism E 2 End(�) belongs to _Z if and only if there exists a non-zero

vector � 2 _� and a sign factor � 2 Z2 such that:

E = E�(�) :
Moreover, � is uniquely determined by E through this equation while � is determined up to
sign.

Proof. Let E 2 _Z. Since E has unit rank, there exists a non-zero vector � 2 � and a
non-zero linear functional � 2 �� such that E = � 
 �. Since B is non-degenerate, there exists a
unique non-zero �0 2 � such that � = B(�; �0) = ��0 . The condition E

t = sE amounts to:

B(�; �0)� = B(�; �)�0 :
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Since B is non-degenerate, there exists an element � 2 � such that B(�; �) 6= 0, which by the
previous equations also satis�es B(�; �0) 6= 0. Hence:

�0 =
B(�; �0)

B(�; �)
� =

B(�0; �)

B(�; �)
�

and:

E =
B(�0; �)

B(�; �)
� 
 �� :

Using the rescaling:

� 7! �0 :=
����B(�0; �)

B(�; �)

����
1
2

�

the previous relation gives E = � �0 
 (�0)� 2 Im(E�), where:

� := sign

�
B(�0; �)

B(�; �)

�
:

This implies the inclusion Z � Im(E+) [ Im(E�). Lemma 1.3 now shows that �0 is unique up to
sign. The inclusion Im(E+) [ Im(E�) � Z follows by direct computation using the explicit form
E = � � 
 �� of an endomorphism E 2 Im(E�), which implies:

E � E = B(�; �)E ; Et = sE ; tr(E) = B(�; �) :

Combining the two inclusions above gives Z = Im(E+) [ Im(E�). Relation Im(E+) \ Im(E�) = f0g
follows immediately from Lemma 1.3. □

Definition 1.7. The signature � 2 Z2 of an element E 2 _Z with respect to B is the sign factor
� determined as in Lemma 1.6.

In view of the above, given � 2 Z2 we de�ne Z� := Im(E�). Then:
Z� = �Z+ ; Z = Z+ [ Z� ; and Z+ \ Z� = f0g :

Remark 1.8. Let Z2 act on � and on Z � End(E) by sign multiplication. Then E+ and E�
induce the same map between the quotients �=Z2 and Z=Z2 and this map is a bijection by virtue
of Lemma 1.6.

Given any endomorphism A 2 End(�), de�ne a possibly degenerate bilinear pairing BA on � as
follows:

BA(�1; �2) := B(�1; A(�2)) 8�1; �2 2 � : (3)

Notice that BA is symmetric if and only if At = sA and skew-symmetric if and only if At = �sA.
Proposition 1.9. The open set _Z has two connected components, which are given by:

_Z+ := Im( _E+) = Im(E+) n f0g ; _Z� := Im( _E�) = Im(E�) n f0g
and satisfy:

_Z+ = fE 2 Zj�E = +1g � fE 2 Z j BE � 0g ; _Z� = fE 2 Zj�E = �1g � fE 2 Z j BE � 0g :
Moreover, the map _E� : _�! _Z� de�nes a principal Z2-bundle over _Z�.

Proof. By Lemma 1.6, we know that _Z = _Z+ [ _Z� and _Z+ \ _Z� = ;. The open set _� is
connected because N = dim� � 2. Fix � 2 Z2. Since the continuous map E� surjects onto _Z�,
it follows that _Z� is connected. Let E 2 _Z�. The pairing BE is symmetric since Et = sE. By
Lemma 1.6, we have E = �B(�; �0)�0 for some non-zero �0 2 � and hence:

BE(�; �) = B(�; E(�)) = �jB(�; �0)j2 8 � 2 � :

Since �0 6= 0 and B is non-degenerate, this shows that BE is nontrivial and that it is positive semi-
de�nite when restricted to _Z+ and negative semide�nite when restricted to _Z�. The remaining
statement follows from Lemma 1.3 and Lemma 1.6. □
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Proposition 1.10. _Z is a manifold di�eomorphic to R� � RPN�1, where N = dim�.

Proof. Let j � j20 denotes the norm induced by any scalar product on �. The map:

_Z ��! R� � RPN�1 ; � � 
 �� 7! (� j�j20; [�])
is a di�eomorphism. □

The maps _E+ : _�! End(�) n f0g and _E� : _�! End(�) n f0g induce the same map:

PE : P(�)! P(End(�)) ; [�] 7! [� 
 ��]
between the projectivizations P(�) and P(End(�)) of the real vector spaces � and End(�). Setting
PZ := _Z=R� � PEnd(�), Proposition 1.10 gives the following result.

Proposition 1.11. The map PE : P(�)! PZ is a di�eomorphism.

We will refer to PE : P(�) �! PZ as the projective square map of (�;B). The following result
characterizes an open subset of the cone C of admissible endomorphisms which consists of rank
one elements.

Proposition 1.12. Let E 2 C(�;B) be a B-admissible endomorphism of �. If tr(E) 6= 0,
then E is of rank one.

Proof. De�ne P := E
tr(E) . Then P

2 = P , which implies rk(P ) = tr(P ) and tr(P ) = 1. Hence
rk(E) = rk(P ) = tr(P ) = 1. □

De�ne:

K0 := f� 2 � j B(�; �) = 0g ; K� := f� 2 � j B(�; �) = �g
where � 2 Z2. When B is symmetric, the set K0 � � is the isotropic cone of B and K� are the
positive and negative unit pseudo-spheres de�ned by B. When B is skew-symmetric, we have
K0 = � and K� = ;. Lemma 1.6 and Proposition 1.12 imply:

Corollary 1.13. Assume that B is symmetric, that is, s = +1. For any � 2 Z2, the set
E+(K�) [ E�(K�) is the real algebraic submanifold of End(�) given by:

E+(K�) [ E�(K�) =
�
E 2 End(�) j E � E = �E ; Et = E ; tr(E) = �

	
Proposition 1.14. If B is de�nite, then every non-zero B-admissible endomorphism E 2
C n f0g is tame, whence Z = C. In this case, the signature of E with respect to B is given
by � = sign(tr(E)).

Proof. Let E 2 C. By Proposition 1.12, the �rst statement follows if we can show that
tr(E) 6= 0 when E 6= 0. Since E is admissible, it is symmetric with respect to the scalar product
B and hence diagonalizable with eigenvalues �1; : : : ; �N 2 R. Taking the trace of equation E2 =
tr(E)E gives:

tr(E)2 =

NX
i=1

�2i :

Since the right-hand side is a sum of squares, it vanishes if and only if �1 = : : : = �N = 0, that
is, if and only if E = 0. This proves the �rst statement. To prove the second statement, recall
from Lemma 1.6 that any non-zero tame admissible endomorphism E has the form E = � � 
 ��
for some � 2 _� and � 2 Z2. Taking the trace of this relation gives:

tr(E) = � ��(�) = �B(�; �)

which implies � = sign(tr(E))sign(B) since either B(�; �) > 0 or B(�; �) < 0 for every � 2 _�. □
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A quick inspection of examples shows that there exist non-trivial admissible endomorphisms which
are not tame, and thus satisfy tr(E) = 0, as soon as there exists a totally isotropic subspace of �
of dimension at least two. In these cases we need to impose further conditions on the elements
of C in order to guarantee tameness. To describe such conditions, we consider the more general
equation:

E � A � E = tr(A � E)E 8 A 2 End(�)

which is automatically satis�ed by every E 2 Im(E) = Im(E+) [ Im(E�).
Proposition 1.15. The following statements are equivalent:

(1) E is B-admissible and rk(E) = 1, that is, E 2 Im( _E).
(2) E is B-admissible and there exists an endomorphism A 2 End(�) satisfying:

E � A � E = tr(E � A)E and tr(E � A) 6= 0 : (4)

(3) E 6= 0 and relations:

E � A � E = tr(E � A)E ; Et = sE (5)

hold for every endomorphism A 2 End(�).

Proof. We �rst prove the implication (2)) (1). By Proposition 1.12, it su�ces to consider
the case tr(E) = 0. Assume A 2 End(�) satis�es (4). De�ne:

A� = Id+
�

tr(E � A)A

where � 2 R>0 is a positive constant. For � > 0 small enough, A� is invertible and the endo-
morphism E� := E � A� has non-vanishing trace given by tr(E�) = �. The �rst relation in (4)
gives:

E� � E� = �E� :

Hence P := 1
�E� satis�es P 2 = P and tr(P ) = 1, whence rk(E�) = rk(P ) = 1. Since A� is

invertible, this implies rk(E) = 1 and hence (1) holds.

The implication (1)) (3) follows directly from Lemma 1.6, which shows that E 2 Im(E�)
for some sign factor �. For the implication (3)) (2), notice �rst that setting A = Id in (5) gives
E2 = tr(E). Non-degeneracy of the bilinear form induced by the trace on the space End(�) now
shows that we can choose A in equation (5) such that tr(E � A) 6= 0. □

Two-dimensional examples. Let � be a two-dimensional real vector space with basis fe1; e2g.
Any vector � 2 � expands as:

� = �1e1 + �2e2 with �1; �2 2 R :

Let E� := E�(�) := �� 
 �� 2 End(�), where � 2 Z2. For any S 2 End(�), we denote by Ŝ the
matrix of S in the basis fe1; e2g.
Example 1.16. Let B be a scalar product on � having fe1; e2g as an orthonormal basis. Then:

Ê� = �

�
�21 �1�2
�1�2 �22

�

and the relations E2
� = tr(E�)E� and Et

� = E� follow from this form. Conversely, let E 2 End(�)

satisfy E2 = tr(E)E and Et = E. The second of these conditions implies:

Ê =

�
k1 b
b k2

�
(with b; k1; k2 2 R) :

Condition E2 = tr(E)E amounts to b2 = k1k2, implying that k1 and k2 have the same sign unless
at least one of them vanishes (in which case b must also vanish). Since E is B-symmetric (and
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hence diagonalizable), its trace tr(E) = k1 + k2 vanishes if and only if E = 0. Assume E 6= 0 and
set:

� := sign(tr(E)) = sign(k1 + k2) ; �1 :=
p
jk1j ; �2 := sign(b)�

p
jk2j :

Then k1 = ��21 , k2 = ��22 and b = ��1�2, showing that E = E� for some � 2 � n f0g. Hence
conditions E2 = tr(E)E and E = Et characterize endomorphisms of the form E�.

Example 1.17. Let B be a split signature inner product on � having fe1; e2g as an orthonormal
basis:

B(e1; e1) = 1 ; B(e2; e2) = �1 ; B(e1; e2) = B(e2; e1) = 0 :

We have:

E� = �

�
�21 ��1�2
�1�2 ��22

�

and the relations E2
� = tr(E�)E� and Et

� = E� follow directly from this form, where t denotes the
adjoint taken with respect to B. Conversely, let E 2 End(�) satisfy Et = E. Then:

E =

�
k1 �b
b k2

�
and EA =

�
k1 b
b �k2

�
with b; k1; k2 2 R

where A = diag(+1;�1). A direct computation shows that the conditions E2 = tr(E)E and
E �A �E = tr(E �A)E are equivalent to each other in this two-dimensional example and amount
to the relation b2 = �k1k2, which implies that E vanishes if and only if k1 = k2. Let us assume
that E 6= 0 and set:

� := tr(E � A) = sign(k1 � k2) ; �1 :=
p
jk1j ; �2 := sign(b)�

p
jk2j

where sign(b) := 0 if b = 0. Then it is easy to see that k1 = ��21 , k2 = ���22 and b = ��1�2,
which implies E = E�. In this example endomorphisms E that can be written in the form E�

are characterized by the condition Et = E, together with either of the two equivalent conditions
E2 = tr(E)E or E � A � E = tr(E � A)E. Notice that tr(E) = k1 + k2 can vanish in this
case. However, and in contrast to higher dimensional cases, in this two-dimensional example, the
conditions E � E = tr(E)E and Et = E su�ce to characterize the endomorphisms of the form
E = E�, including those which satisfy tr(E) = 0.

Example 1.18. Let B a symplectic pairing on � having fe1; e2g as a Darboux basis:

B(e1; e1) = B(e2; e2) = 0 ; B(e1; e2) = �B(e2; e1) = 1 :

The complex structure A of � with matrix given by:

A =

�
0 1
�1 0

�

tames B to the scalar product (�;�) de�ned through:

(e1; e1) = (e2; e2) = 1 ; (e1; e2) = (e2; e1) = 0 :

We have:

E� = �

�
�1�2 ��21
�22 ��1�2

�
(6)

which implies E2
� = 0 and Et

� = �E�, where t denotes transposition with respect to B. Conversely,
let E 2 End(�) be an endomorphism satisfying Et = �E. This condition implies:

E =

�
k �b
c �k

�
; EA =

�
b k
k c

�
(with k; b; c 2 R) :

Notice that tr(E) = 0. Direct computation shows that the conditions E2 = 0 and E � A � E =
tr(E�A)E are equivalent to each other in this two-dimensional example and amount to the relation
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k2 = bc, which in particular shows that E vanishes if and only if b = �c. Assume that E 6= 0 and
set:

� := tr(E � A) = sign(b+ c) ; �1 :=
p
jbj ; �2 := sign(k)�

p
jcj

where sign(k) := 0 if k = 0. Then it is easy to see that b = ��21 , c = ��22 and k = ��1�2, which
shows that E = E�. Hence endomorphism which can be written in this form are characterized by
the condition Et = �E together with either of the conditions E2 = 0 or E �A �E = tr(E �A)E,
which, in this low-dimensional example, are equivalent to each other.

Linear constraints. The following result will be used in later sections.

Proposition 1.19. Let Q 2 End(�) and � 2 Z2 be a �xed sign factor. A real spinor � 2 �
satis�es Q(�) = 0 if and only if Q � E�(�) = 0 or, equivalently, E�(�) �Qt = 0, where Qt is the
adjoint of Q with respect to B.

Proof. Take � 2 � and assume Q(�) = 0. Then:

(Q � E�(�))(�) = �Q(�) ��(�) = 0 8� 2 �

and hence Q � E�(�) = 0. Conversely, assume that Q � E�(�) = 0 and pick � 2 � such that
��(�) 6= 0 (which is possible since B is non-degenerate). Then the same calculation as before
gives:

Q(�) ��(�) = 0

implying Q(�) = 0. The statement for Qt follows from the fact that B-transposition is an anti-
automorphism of the real algebra (End(�); �), upon noticing that the relation E�(�)t = �E�(�)
implies (Q � E�(�))t = �E�(�) �Qt. □

Example 1.20. Let (�;B) be a two-dimensional Euclidean vector space with orthonormal basis
fe1; e2g as in Example 1.16. Let Q 2 End(�) have the following matrix expression:

Q =

�
q 0
0 0

�
with q 2 R�

in this basis. Given � 2 �, Example 1.16 gives:

E� = �

�
�21 �1�2
�1�2 �22

�
; QE� = �

�
�21q q�1�2
0 0

�
:

Thus Q � E� vanishes if and only if �1 = 0, that is if and only if Q(�) = 0.

2. Algebraic spinorial exterior forms

In this section we develop the theory of spinorial exterior forms associated to irreducible
spinors in signature (p � q) �8 0; 2. As we explain below, these are the polyforms that can be
constructed as squares of spinors.

2.1. Irreducible real Cli�ord modules. Let V be an oriented d-dimensional real vector space
equipped with a non-degenerate metric h of signature p � q �8 0; 2, which implies that the
dimension d = p + q of V is even, and let (V �; h�) be the quadratic space dual to (V; h), where
h� denotes the metric dual to h. Let Cl(V �; h�) be the real Cli�ord algebra of this dual quadratic
space, viewed as a Z2-graded associative algebra with decomposition:

Cl(V �; h�) = Clev(V �; h�)� Clodd(V �; h�) :

In our conventions, the Cli�ord algebra satis�es:

�2 = h�(�; �) 8 � 2 V � : (7)

Let � denote the standard automorphism of Cl(V �; h�), which acts as minus the identity on
V � � Cl(V �; h�), and let � denote its standard anti-automorphism, which acts as the identity on
V � � Cl(V �; h�). These two commute and their composition is an anti-automorphism denoted
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by �̂ = � � � = � � �. Let Cl�(V �; h�) denote the group of units Cl(V �; h�). Its twisted adjoint

representation is the morphism of groups cAd: Cl�(V �; h�)! Aut(Cl(V �; h�)) de�ned through:

cAdx(y) = �(x) y x�1 8 x; y 2 Cl�(V �; h�) :

We denote by �(V �; h�) � Cl(V �; h�) the Cli�ord group of Cl(V �; h�), which is de�ned as the
subgroup of Cl�(V �; h�) that preserves V � via cAd, that is:

�(V �; h�) :=
n
x 2 Cl�(V �; h�) j cAdx(V �) = V �

o
The Cli�ord group �ts into the short exact sequence:

1! R� ,! �(V �; h�)
cAd��! O(V �; h�)! 1 (8)

where O(V �; h�) is the orthogonal group de�ned by the the quadratic space (V �; h�). The special
orthogonal group and its connected component of the identity will be denoted by SO(V �; h�) and
SOo(V

�; h�), respectively. Recall that the pin and spin groups of (V �; h�) are the subgroups of
�(V �; h�) de�ned as follows:

Pin(V �; h�) :=
�
x 2 �(V �; h�) j N(x)2 = 1

	
; Spin(V �; h�) := Pin(V �; h�) \ Clev(V �; h�)

where N : �(V �; h�)! R� is the Cli�ord norm morphism, given by:

N(x) := �̂ (x)x 8 x 2 �(V �; h�) :

We have N(x)2 = N(�(x))2 for all x 2 �(V �; h�). For pq 6= 0, the groups SO(V �; h�), Spin(V �; h�)
and Pin(V �; h�) are disconnected; the �rst have two connected components while the last has four.
The connected components of the identity in Spin(V �; h�) and Pin(V �; h�) coincide, being given
by:

Spino(V
�; h�) = fx 2 �(V �; h�) j N(x) = 1g

and we have Spin(V �; h�)=Spino(V
�; h�) ' Z2 and Pin(V �; h�)=Spino(V

�; h�) ' Z2 � Z2.
Let � be a �nite-dimensional R-vector space and 
 : Cl(V �; h�)! End(�) a Cli�ord repre-

sentation. Then Spin(V �; h�) acts on � through the restriction of 
 and (8) induces the following
short exact sequence:

1! Z2 ! Spin(V �; h�)
cAd��! SO(V �; h�)! 1 (9)

which in turn gives the exact sequence:

1! Z2 ! Spino(V
�; h�)

cAd��! SOo(V
�; h�)! 1

where SOo(V
�; h�) denotes the identity component of the special orthogonal group SO(V �; h�). In

signature p� q �8 0; 2, the Cli�ord algebra Cl(V �; h�) is simple and admits a unique irreducible
representation 
 : Cl(V �; h�) '�! End(�) on the endomorphisms End(�) of a real vector space �
of dimension 2

d
2 . In particular, 
 de�nes an isomorphism of unital and associative real algebras.

We would like to equip � with a non-degenerate bilinear pairing compatible with the
representation 
 : Cl(V �; h�) '�! End(�). Ideally, such compatibility condition should translate
into the invariance of the bilinear pairing at least under the natural action of the pin group induced
by 
. However, when pq 6= 0 it may not be possible to satisfy this condition. Instead, we consider
the weaker notion of admissible bilinear pairing introduced in [5, 6], which encodes the best
compatibility condition with Cli�ord multiplication that can be generally imposed on a bilinear
pairing on � in arbitrary dimension and signature. The following result, which can also be found
in [125, Theorem 13.17], summarizes the main properties of admissible bilinear pairings.

Theorem 2.1. Suppose that h has signature p� q �8 0; 2. Then the irreducible real Cli�ord
module � admits two non-degenerate bilinear pairings B+ : ���! R and B� : ���! R
(each determined up to multiplication by a non-zero real number) such that:

B+(
(x)(�1); �2) = B+(�1; 
(� (x))(�2)) ; B�(
(x)(�1); �2) = B�(�1; 
(�̂ (x))(�2)) (10)
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for all x 2 Cl(V �; h�) and �1; �2 2 �. The symmetry properties of B+ and B� are as follows
in terms of the modulo 4 reduction of k := d

2 :

kmod 4 0 1 2 3
B+ Symmetric Symmetric Skew-symmetric Skew-symmetric
B� Symmetric Skew-symmetric Skew-symmetric Symmetric

In addition, if B�, with � 2 Z2, is symmetric, then it is of split signature unless pq = 0, in
which case B� is de�nite.

Proof. We pick an h�-orthonormal basis
�
ei
	
i=1;:::;d

of V � and let:

K(
�
ei
	
) := f1g [ ��ei1 � : : : � eik j 1 � i1 < : : : < ik � d ; 1 � k � d

	
be the �nite multiplicative subgroup of Cl(V �; h�) generated by the elements �ei. Averaging over
K(
�
ei
	
), we construct an auxiliary positive-de�nite inner product (�;�) on � which is invariant

under the action of this group. This product satis�es:

(
(x)(�1); 
(x)(�2)) = (�1; �2) 8 x 2 K(
�
ei
	
) 8 �1; �2 2 � :

Write V � = V �+� V ��, where V �+ is a p-dimensional subspace of V � on which h� is positive de�nite
and V �� is a q-dimensional subspace of V � on which h� is negative-de�nite. Fix an orientation
on V �+, which induces a unique orientation on V �� compatible with the orientation of V � induced
from that of V , and denote by �+ and �� the corresponding pseudo-Riemannian volume forms.
We have � = �+ ^ ��. For p (and hence q) odd, de�ne:

B�(�1; �2) = (
(��)(�1); �2) 8 �1; �2 2 � (11)

whereas for p (and hence q) even, set:

B�(�1; �2) = (
(��)(�1); �2) 8 �1; �2 2 � : (12)

Then B� are the desired admissible pairings. □

Definition 2.2. The sign factor � appearing in the previous theorem is called the adjoint type
of B�, hence B+ is of positive adjoint type whereas B� is of negative adjoint type.

The relations appearing in (10) can be equivalently written as:


(x)t = 
((�
1��
2 � � )(x)) 8x 2 Cl(V �; h�) ; (13)

where the superscript (�)t denotes the adjoint with respect to B�. The symmetry type of an
admissible bilinear form B� will be denoted by s 2 Z2. If s = +1 then B is symmetric whereas
if s = �1 then B is skew-symmetric. Notice that s depends both on � and on the modulo 4
reduction of d

2 .

Definition 2.3. A real paired irreducible Cli�ord module for (V �; h�) is a triplet (�; 
;B),
where (�; 
) is a irreducible Cl(V �; h�)-module and B is an admissible pairing on (�; 
). We say
that (�; 
;B) has adjoint type � 2 Z2 and symmetry type s 2 Z2 if B has these adjoint and
symmetry types, respectively.

Remark 2.4. Admissible bilinear pairings of positive and negative adjoint types are related
through the pseudo-Riemannian volume form � of (V �; h�):

B+ = CB� � (
(�)
 Id) ; (14)

for an appropriate non-zero real constant C. In applications, we will choose to work with B+

or with B� depending on which admissible pairing yields the computationally simplest polyform
associated to a given spinor � 2 �. When pq = 0, we will take B� to be positive-de�nite, which can
always be achieved by rescaling it with a non-zero constant of appropriate sign. We refer to [145]
for a useful discussion of properties of admissible pairings in various dimensions and signatures.
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Remark 2.5. Directly from their de�nition, the pairings B+ and B� satisfy:

B�(
(�
1+�
2 (x))(�1); 
(x)(�2)) = N(x)B�(�1; �2) 8 x 2 Cl(V �; h�) ; 8 �1; �2 2 � :

This relation yields:

B�(
(x)(�1); �2) +B�(�1; 
(x)(�2)) = 0 8 �1; �2 2 �

for all x = �1 � �2 for orthonormal �1; �2 2 V �. This implies that B� is invariant under the action
of Spino(V

�; h�). If h is positive-de�nite, then B+ is Pin(V �; h�)-invariant, since it satis�es:

B+(
(�)(�1); 
(�)(�2)) = B+(�1; �2) 8�1; �2 2 �

for all � 2 V � of unit norm. On the other hand, if h is negative-de�nite, then B� is Pin(V �; h�)-
invariant.

A direct computation using equations (11) and (12) gives the following result, which �xes the
constant C appearing in Remark 2.4.

Proposition 2.6. The admissible pairings B+ and B� constructed above are related as
follows:

B+ = (�1)[ q2 ]B�(
(�)
 Id) : (15)

Thus we can normalize B� such that the constant in (14) is given by C = (�1)[ q2 ].
2.2. The Kähler-Atiyah model of Cl(V �; h�). To identify spinors with polyforms, we will use
an explicit realization of Cl(V �; h�) as a deformation of the exterior algebra ^V �. This model,
which can be traced back to the work of Chevalley and Riesz [52, 53, 198], has an interpretation
as a deformation quantization of the odd symplectic vector space obtained by parity change from
the quadratic space (V; h) [25, 227]. It can be constructed using the symbol map and its inverse,
the quantization map. Consider �rst the linear map �f : V � ! End(^V �) given by:

�f(�)(�) = � ^ �+ ��]� 8 � 2 V � 8 � 2 ^V � :
We have:

�f(�) � �f(�) = h�(�; �) 8 � 2 V � :
By the universal property of Cli�ord algebras, it follows that �f extends to a unique morphism
f : Cl(V �; h�) ! End(^V �) of unital associative algebras such that f � � = �f , where � : V � ,!
Cl(V �; h�) is the canonical inclusion of V � in Cl(V �; h�).

Definition 2.7. The symbol map is the linear map l : Cl(V �; h�)! ^V � de�ned by:

l(x) = �f(x)(1) 8 x 2 Cl(V �; h�) ;

where 1 2 R is viewed as an element of ^0(V �) = R.

The symbol map is an isomorphism of �ltered vector spaces. We have:

l(1) = 1 ; l(�) = � ; l(�1 � �2) = �1 ^ �2 + h�(�1; �2) 8 �; �1; �2 2 V � :
As expected, l is not a morphism of algebras. The inverse:

	 := l�1 : ^ V � ! Cl(V �; h�) :

of l, called the quantization map of ^V �, allows one to view Cl(V �; h�) as a deformation of the
exterior algebra (^V �;^), see [25, 227] for more details. Using l and 	, we transport the algebra
product of Cl(V �; h�) to an h-dependent unital associative product de�ned on ^V �, which deforms
the wedge product.

Definition 2.8. The geometric product �h : ^V � � ^V � ! ^V � is de�ned through:

�1 �h �2 := l(	(�1) �	(�2)) 8 �1; �2 2 ^V �

where � denotes multiplication in Cl(V �; h�).
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By de�nition, the map 	 is an isomorphism of unital associative real algebras from (^V �; �) to
Cl(V �; h�). Through this isomorphism, the inclusion V � ,! Cl(V �; h�) corresponds to the natural
inclusion V � ,! ^V �. We shall refer to (^V �; �) as the Kähler-Atiyah algebra of the quadratic
space (V; h) [115, 136]. It is easy to see that the geometric product satis�es:

� � � = � ^ �+ ��]� 8 � 2 V � 8 � 2 ^V � :
Also notice the relation:

� � � = h�(�; �) 8 � 2 V � :
The maps � and � transfer through 	 to the Kähler-Atiyah algebra, producing unital (anti)-
automorphisms of the latter which we denote by the same symbols. With this notation, we have:

� �	 = 	 � � ; � �	 = 	 � � : (16)

For any orthonormal basis
�
ei
	
i=1;:::;d

of V � and any k 2 f1; : : : ; dg, we have e1 � � � � � ek =

e1 ^ � � � ^ ek and:

�(e1 ^ � � � ^ ek) = (�1)ke1 ^ � � � ^ ek ; � (e1 ^ � � � ^ ek) = ek ^ � � � ^ e1 :
Let T (V �) denote the tensor algebra of the parity change of V �, viewed as a Z-graded associative
super-algebra whose Z2-grading is the reduction of the natural Z-grading; thus elements of V have
integer degree one and they are odd. Let:

Der(T (V �)) :=
M
k2Z

Derk(T (V �))

denote the Z-graded Lie superalgebra of all superderivations. The minus one integer degree compo-
nent Der�1(T (V �)) is linearly isomorphic with the space Hom(V �;R) = V acting by contractions:

�v(�1 
 � � � 
 �k) =
kX
i=1

(�1)i�1�1 
 � � � 
 �v�i 
 � � � 
 �k 8 v 2 V 8 �1; : : : ; �k 2 V �

while the zero integer degree component Der0(T (V �)) = End(V �) = gl(V �) acts through:

LA(�1 
 � � � 
 �k) =
kX
i=1

�1 
 � � � 
 A(�i)
 � � � 
 �k 8A 2 gl(V �) :

We have an isomorphism of super-Lie algebras:

Der�1(T (V �))�Der0(T (V �)) ' V ⋊ gl(V �) :

The action of this super Lie algebra preserves the ideal used to de�ne the exterior algebra as a
quotient of T (V �) and hence descends to a morphism of super Lie algebras L� : V ⋊ gl(V �) !
Der(^V �;^). Contractions also preserve the ideal used to de�ne the Cli�ord algebra as a quotient
of T (V �). On the other hand, endomorphisms A of V � preserve that ideal if and only if A 2
so(V �; h�). Together with contractions, they induce a morphism of super Lie algebras LCl : V ⋊
so(V �; h�)! Der(Cl(V �; h�)). The following result states that L� and LCl are compatible with l
and 	.

Proposition 2.9. [174, Proposition 2.11] The quantization and symbol maps intertwine the
natural action of V ⋊ so(V �; h�) on Cl(V �; h�) and ^V �, that is, the following holds:

	(L�(')(�)) = LCl(')(	(�)) ; l(LCl(')(x)) = L�(')(l(x)) ;
for all ' 2 V ⋊ so(V �; h�), � 2 ^V � and x 2 Cl(V �; h�).

This proposition shows that quantization is equivariant with respect to a�ne orthogonal transfor-
mations of (V �; h�). In signatures p� q �8 0; 2, composing 	 with the irreducible representation

 : Cl(V �; h�) ! End(�) (which in such signatures is a unital isomorphism of algebras) gives an
isomorphism of unital associative real algebras:

	
 := 
 �	: (^V �; �h) �! (End(�); �) : (17)
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�tting into the following commutative diagram:

Cl(V �; h�) (End(�); �)

(^V �; �h)




	
	


Since 	
 is an isomorphism of algebras and (^V �; �h) is generated by V �, the identity together
with the elements 	
(e

i1^ : : :^eik) = 
(ei1)� : : :�
(eik) for 1 � i1 < : : : < ik � d and k = 1; : : : ; d
form a basis of End(�). Accordingly with the terminology that refers to 	: ^ V � ! Cl(V �; h�)
as the quantization map, we introduce the following de�nition.

Definition 2.10. The dequantization of an endomorphism A 2 End(�) is the polyform deter-
mined by a := 	�1
 (A) 2 ^V �.
Remark 2.11. For ease of notation we will sometimes denote the action of a polyform � 2 ^V �
as an endomorphism on � thorugh 	
 simply by a dot, namely:

� � � := 	
(�)(�) 8 � 2 ^V � 8 � 2 � :

The trace on End(�) transfers to the Kähler-Atiyah algebra through the isomorphism 	
 :

Definition 2.12. The Kähler-Atiyah trace is the linear functional:

T r : ^ V � ! R ; � 7! Tr(	
(�))

where Tr(�) denotes the trace in End(�).

We will see in a moment that T r does not depend on 
 or h. Since 	
 is a unital morphism of
algebras, we have:

T r(1) = dim(�) = 2
d
2 and T r(�1 � �2) = T r(�2 � �1) 8 �1; �2 2 ^V �

where 1 2 R = ^0V � is the unit element of the �eld R of real numbers.

Lemma 2.13. For any 0 < k � d, we have T rj^kV � = 0.

Proof. Let (e1; : : : ; en) be an orthonormal basis of (V �; h�). For i 6= j we have ei � ej =
�ej � ei and hence (ei)�1 � ej � ei = �ej . Let 0 < k � d and 1 � i1 < � � � < ik � d. If k is even,
then:

T r(ei1 � � � � � eik) = T r(eik � ei1 � � � � � eik�1) = (�1)k�1T r(ei1 � � � � � eik) ;
and hence T r(ei1 �� � ��eik) = 0. Here we used cyclicity of the Kähler-Atiyah trace and the fact that
eik anticommutes with ei1 ; : : : ; eik�1 . If k is odd, let j 2 f1; : : : ; dg be such that j 62 fi1; : : : ; ikg
(such a j exists since k < d). We have:

T r(ei1 � � � � � eik) = T r((ej)�1 � ei1 � � � � � eik � ej) = �T r(ei1 � � � � � eik) = 0

and we conclude. □

Let �(k) 2 ^kV � denote the degree k component of � 2 ^V �. Lemma 2.13 immediately implies
the following result.

Proposition 2.14. The Kähler-Atiyah trace is given by:

T r(�) = dim(�)�(0) = 2
d
2�(0) 8 � 2 ^V � :

In particular, T r does not depend on the irreducible representation 
 of Cl(V �; h�) or on h.

Lemma 2.15. Let � 2 ^V � and B be an admissible bilinear pairing of (�; 
) of adjoint type
� 2 Z2. Then the following equation holds:

	
(�)
t = 	
((�

1��
2 � � )(�)) ; (18)

where 	
(�)
t is the B-adjoint of 	
(�).

Proof. Follows directly from (13) and relations (16). □
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2.3. Spinor square maps. In this subsection we introduce one of the most important concepts
of this dissertation, namely that of the algebraic square of a spinor, which is obtained in terms
of the spinor square maps, which we proceed to introduce.

Definition 2.16. Let (�; 
;B) be a paired irreducible Cli�ord module for (V �; h�). The signed
spinor square maps of � are the quadratic maps:

E
� := 	�1
 � E� : �! ^V � ; � 2 Z2

where E� : � ! End(�) is the signed square maps of the paired vector space (�;B), which was
introduced in De�nition 1.2.

Given a spinor � 2 �, the polyforms E
+(�) and E
�(�) are respectively called the positive and
negative squares of � relative to the admissible pairing B. A polyform � 2 ^V � is called a signed
square of � 2 � if either � = E
+(�) or � = E
�(�). The spinor square maps �t into the following
commutative diagram.

Cl(V �; h�) (End(�); �) �

(^V �; �)




	�1



E�
	

Since 	
 is a linear isomorphism, the results of Section 1 imply that E� is two-to-one except at
0 2 �. Furthermore:

Im(E
�)� = �Im(E
+) ; Im(E
+) \ Im(E
�) = f0g :
We de�ne:

Im(E
) := Im(E
+) [ Im(E
�) :
Moreover, both E
� and E
+ induce the same bijective map on the Z2 quotients:

E
 : �=Z2 �! Im(E
)=Z2 : (19)

Notice that Im(E
) is a cone in ^V �, which is the union of the opposite half cones Im(E
+) and
Im(E
�). For simplicity in the exposition we will sometimes denote by �� := E
+(�) the positive
polyform square of � 2 �. Polyforms in the image of of the spinor square map E
 will be generically
called spinorial exterior forms.

Remark 2.17. The representation map 
 is an isomorphism when p � q �8 0; 2. This does not
hold in other signatures, for which the construction of spinor square maps is more delicate, see
[145] for more details.

The following result is a direct consequence of Proposition 2.9.

Proposition 2.18. The quadratic map E
� : �! ^V � is Spino(V �; h�) equivariant, that is:
E
� (u �) = Adu(E
� (�)) 8 u 2 Spino(V

�; h�) 8 � 2 �

where the right hand side denotes the natural action of Adu 2 SO(V �; h�) on ^V �.
We are ready to give the algebraic characterization of spinors in terms of polyforms.

Theorem 2.19. Let (V �; h�) be a quadratic vector space of signature (p � q) �8 0; 2, and let
(�; 
;B) be an associated paired irreducible Cli�ord module of symmetry type s and adjoint
type �. Then the following statements are equivalent for a polyform � 2 ^V �:
(1) � is a signed square of some spinor � 2 �, that is, it lies in the set Im(E
).
(2) � satis�es the following relations:

� � � = 2
d
2�(0)� ; (�

1��
2 � � )(�) = s� ; � � � � � = 2

d
2 (� � �)(0)� (20)

for a �xed polyform � 2 ^V � satisfying T r(� � �) 6= 0.
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(3) The following relations hold:

(�
1��
2 � � )(�) = s� ; � � � � � = T r(� � �)� (21)

for every polyform � 2 ^V �.
In particular, the set Im(E
) depends only on �, s and (V �; h�).

Remark 2.20. In view of this result, we will occasionally denote Im(E
) by Z�;s(V �; h�), and
Im(E
� ) by Z�

�;s(V
�; h�).

Proof. Since 	: Cl(V �; h�) ! End(�) is a unital isomorphism of associative algebras, �
satis�es (21) if and only if:

Et = � E ; E � A � E = tr(E � A)E 8A 2 End(�) (22)

where E := 	
(�), A := 	
(�) and we have used Lemma 2.15 together with the de�nition and
properties of the Kähler-Atiyah trace. The conclusion now follows from Proposition 1.15. □

The second equation in (21) implies the following result.

Corollary 2.21. Let � 2 Z�;s(V �; h�). If k 2 f1; : : : ; dg satis�es:

(�1)k 1�s
2 (�1) k(k�1)2 = �� ;

then �(k) = 0.

Polyforms � 2 Z�;s(V �; h�) admit an explicit presentation, see for instance [143�145].

Proposition 2.22. Let (e1; : : : ; en) be an orthonormal basis of (V �; h�) and let � 2 Z2. Then
every polyform � 2 Z�;s(V �; h�) can be written as:

� =
�

2
d
2

dX
k=0

X
i1<���<ik

B((
(eik)�1 � � � � � 
(ei1)�1)(�); �) ei1 ^ : : : ^ eik ; (23)

where the spinor � 2 � is determined by � up to sign.

Remark 2.23. We have:


(ei)�1 = h�(ei; ei)
(ei) = h(ei; ei)
(e
i) ;

where (e1; : : : ; en) is the contragradient orthonormal basis of (V; h). For simplicity, set:


i := 
(ei) and 
i := h(ei; ei)
(e
i) ;

so that (
i)�1 = 
i. Then the degree one component in (23) reads:

�(1) =
�

2
d
2

B(
i(�); �)e
i

and its dual vector �eld (�(1))] = �

2
d
2
B(
i(�); �)ei is called the signed Dirac vector of � relative

to B.

Proof. It is easy to see that the set:

P := fIdg [ �
1 � � � � � 
i1 � � � � 
ik � � � � � 
d j 1 � i1 < � � � < ik � d; k = 1; : : : ; d
	

is an orthogonal basis of End(�) with respect to the nondegenerate and symmetric bilinear pairing
induced by the trace:

End(�)� End(�)! R ; (A1; A2) 7! tr(A1A2) :
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In particular, the endomorphism E = 	
(�) 2 Im(E) expands as:

E =
1

2
d
2

dX
k=0

X
i1<���<ik

tr((
i1 � � � � � 
ik)�1 � E) 
i1 � � � � � 
ik

=
�

2
d
2

dX
k=0

X
i1<���<ik

B((
i1 � � � � � 
ik)�1(�); �) 
i1 � � � � � 
ik ;

where � 2 � is a spinor such that E = E�(�) and we have used that:

tr(B � E�(�)) = � tr(B(�)
 ��) = � ��(B(�)) = �B(B�; �)

for all B 2 End(�). The conclusion follows now by applying the isomorphism algebras 	�1
 :
(End(�); �)! (^V �; �) to the previous equation. □

Lemma 2.24. The following identities hold for all � 2 ^V �:
� � � = � � (�) ; � � � = � (� � � )(�) : (24)

Proof. Since multiplication by � is R-linear, it su�ces to prove the statement for homoge-
neous elements � = ei1 ^ � � �^eik with 1 � i1 < � � � < ik � d, where (e1; : : : ; en) is an orthonormal
basis of (V �; h�). We have:

ei1 ^ � � � ^ eik � � = ei1 � � � � � eik � e1 � � � � � ed
= (�1)i1+���+ik(�1)ke1 � � � � � (ei1)2 � ei1+1 � � � � � (eik)2 � eik+1 � � � � � ed

= h�(ei1 ; ei1) � � �h�(eik ; eik) (�1)i1+���+ik(�1)ke1 � � � � � ei1�1 � ei1+1 � � � � eik�1 � eik+1 � � � � � ed
= (�1) k(k�1)2 (�1)2(i1+���+ik)(�1)2k � (ei1 ^ � � � ^ eik) = �� (�) ;

which implies � � � = � � (�). Using the relation � � � = (� � �)(�), we conclude. □

The following shows that the choice of admissible pairing used to construct the spinor square map
is a matter of taste, see also Remark 2.4.

Proposition 2.25. Let � 2 � and denote by ��� 2 Z+ the positive polyform squares of �

relative to the admissible pairings B+ and B� of (�; 
), which we assume to be normalized
such that they are related through (15). Then the following relation holds:

��+� = (�1)[ q+1
2 ]+p(q+1)(�1)dc(��� ) :

where c : ^V � ! ^V � is the linear map which acts as multiplication by k!
(d�k)! in each degree

k.

Proof. We compute:

�(�+� )(k) = 1

2
d
2
B+((
ik � : : : � 
i1)(�); �) � (ei1 ^ : : : ^ eik)

= (�1)[ q+1
2 ]+pq(�1) k(k�1)2

p
jhj

2
d
2 (d�k)!

B�((
(�) � 
i1 � : : : � 
ik)(�); �)�ii1 :::ikak+1:::adeak+1
^ : : : ^ ead

= (�1)[ q+1
2 ]+pq(�1) k(k�1)2 (�1)k(d�k) k!

2
d
2 (d�k)!

B�(
(�)
(�(eak+1 ^ : : : ^ ed))(�); �)eak+1
^ : : : ^ ed

= (�1)[ q+1
2 ]+pq(�1) k(k�1)2 (�1) (d�k)(d+k+1)

2
k!

2
d
2 (d�k)!

B�((
(�)2 � 
ak+1 � : : : � 
ad)(�); �)eak+1
^ : : : ^ ed

= (�1)[ q+1
2 ]+p(q+1)(�1)k k!

(d�k)! (�
�
� )

(d�k) = (�1)[ q+1
2 ]+p(q+1)(�1)d k!

(d�k)!�(�
�
� )

(d�k) ;

where we used the identity � � � = �(� � � )(�) proved in Lemma 2.24. □
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2.4. Linear constraints. Let (�; 
;B) be a paired irreducible Cli�ord module for (V �; h�).
Given any endomorphism Q 2 End(�) we will refer to:

q 2 	�1
 (Q) 2 ^V �

as the symbol of Q 2 End(�).

Proposition 2.26. A spinor � 2 � lies in the kernel of an endomorphism Q 2 End(�) if and
only if:

q � �� = 0 ;

where �� := E
+(�) is the positive polyform square of �.

Remark 2.27. Equation q � �� = 0 is equivalent to

�� � (�
1��
2 � � )(q) = 0

by taking the transpose of equation Q(�) with respect to B.

Proof. Follows as a consequence of Proposition 1.19, using the fact that 	
 : (^V �; �) !
End(�) is an isomorphism of unital associative algebras. □

2.5. Real chiral spinors. Theorem 2.19 can be re�ned for chiral spinors of real type, which
exist in signature p� q �8 0. In this case, the Cli�ord volume form �h 2 Cl(V �; h�) squares to the
identity in Cl(V �; h�) and lies in the center of Clev(V �; h�), giving the following decomposition of
the latter as a direct sum of simple associative algebras:

Clev(V �; h�) = Clev+ (V �; h�)� Clev� (V �; h�)

where we have de�ned:

Clev� (V �; h�) :=
1

2
(1� �h) Cl(V �; h�) :

We decompose � accordingly:

� = �(+) � �(�) ; where �(�) :=
1

2
(Id�
(�h))(�) :

The subspaces �(�) � � are preserved by the restriction of 
 to Clev(V �; h�), which therefore
decomposes as a sum of two irreducible representations:


(+) : Clev(V; h)! End(�(+)) and 
(�) : Clev(V; h)! End(�(�))

distinguished by the value which they take on the volume form �h 2 Clev(V �; h�):


(+)(�h) = Id ; 
(�)(�h) = � Id :

A spinor � 2 � is called chiral of chirality � 2 Z2 if it belongs to �(�). Setting �� := E
+(�),
Proposition 2.26 shows that this amounts to the condition:

�h � �� = ��� :

Given �; � 2 Z2, we de�ne:
E
�� : �� ! ^V �

as the restriction of E
� : �! ^V � to �� � �. We have:

Im(E
�+ ) = �Im(E
�� ) ; Im(E
�+ ) \ Im(E
�� ) = f0g
Theorem 2.19, Proposition 2.26 and Lemma 2.24 all together give:

Corollary 2.28. Let � be a paired irreducible Cl(V �; h�)-module of symmetry type s and
adjoint type �. The following statements are equivalent for � 2 ^V �, where � 2 Z2 is a �xed
chirality type:

(1) � belongs to Im(E
�� ), that is, it is a signed square of a chiral spinor of chirality �.
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(2) The following conditions are satis�ed:

(�
1��
2 � � )(�) = s� ; � (� � � )(�) = �� ; � � � = T r(�)� ; � � � � � = T r(� � �)� (25)

for a �xed polyform � 2 ^V � which satis�es T r(� � �) 6= 0.

(3) The following conditions are satis�ed:

(�
1��
2 � � )(�) = s� ; � (� � � )(�) = �� ; � � � � � = T r(� � �)� (26)

for every polyform � 2 ^V �.
In this case, the real chiral spinor of chirality � which corresponds to � through the either
of the maps E
�+ or E
�� is unique up to sign and vanishes if and only if � = 0.

In particular, Z�
�;s(V �; h�) := Im(E
�+ ) [ Im(E
�� ) depends only on �; �; s 2 Z2 and (V �; h�). The

following corollary is useful to simplify computations.

Corollary 2.29. Let � 2 Z+
�;s(V

�; h�) [ Z��;s(V �; h�). If k 2 f1; : : : ; dg satis�es:
s = �(�1)k ��1

2 (�1) k(k�1)2

then we have �(k) = 0 and �(d�k) = 0.

Proof. Follows from Corollary 2.21 and the second relation in (25). □

2.6. Low-dimensional examples. We describe now Z�;s(V �; h�) and Z
�
�;s(V �; h�) for some low-

dimensional cases.
2.6.1. Signature (2; 0). Let (V �; h�) be a two-dimensional real vector space with a scalar

product h�. Its irreducible Cli�ord module (�; 
) is two-dimensional with an admissible pairing
B which is symmetric and positive de�nite. Theorem 2.19 with � = 1 shows that � 2 ^V � is a
signed square of � 2 � if and only if:

� � � = 2�(0) � ; � (�) = � : (27)

Writing � = �(0) � �(1) � �(2), the second of these relations reads:

�(0) + �(1) � �(2) = �(0) + �(1) + �(2) :

This gives �(2) = 0, whence the �rst equation in (27) becomes (�(0))2 = h�(�(1); �(1)) and we
conclude that � is a signed square of a spinor if and only if:

� = �h�(�(1); �(1)) 12 � �(1) with �(1) 2 V � :
Let (e1; e2) be an orthonormal basis of (V �; h�) and � = E+� (�) for some � 2 �. Then:

2� = B(�; �) +B(
i(�); �) e
i :

Therefore:
4h�(�(1); �(1)) = B(�; �)2

and hence the norm of � determines the norm of one-form �(1) 2 V �.
2.6.2. Signature (1; 1). Let (V �; h�) be a two-dimensional vector space V � equipped with a

Lorentzian metric h�. Its irreducible Cli�ord module (�; 
) is two-dimensional and equipped with
a symmetric admissible bilinear pairing B of split signature and positive adjoint type (see Theorem
2.1). To guarantee that � 2 ^V � belongs to Z+;+(V �; h�), we should in principle consider the �rst
equation in (21) of Theorem 2.19 for all � 2 ^V �. However, V � is two-dimensional and Example
1.17 shows that it su�ces to take � = 1. Thus � belongs to the set Z+;+(V �; h�) if and only if:

� � � = 2�(0) � ; � (�) = � : (28)

Writing � = �(0) + �(1) + �(2), the second condition gives �(2) = 0, while the �rst condition
becomes:

(�(0))2 = h�(�(1); �(1)) :
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In particular, �(1) is space-like or null. Hence � is the signed square of a spinor if and only if:

� = �h�(�(1); �(1)) 12 + �(1) (29)

for a one-form �(1) 2 V �. As in the Euclidean case, we have:

2� = B(�; �) +B(
i(�); �) e
i

whence:
4h�(�(1); �(1)) = B(�; �)2 :

Thus �(1) is null if and only if B(�; �) = 0. In this signature the volume form squares to the
identity and therefore we have a well-de�ned notion of chirality. Fix � 2 Z2. By Corollary 2.28,
� lies in the set Z�

+;+(V
�; h�) if and only if it has the form (29) and satis�es the supplementary

condition:
� (� � � )(�) = �� :

This amounts to the following system, where �h is the volume form of (V �; h�):

�h�(�(1); �(1)) 12 �h � ��(1) = ��h�(�(1); �(1)) 12 + ��(1) :

Thus h�(�(1); �(1)) = 0 and ��(1) = ���(1). Hence a signed polyform square of a chiral spinor
of chirality � is a null one-form which is anti-self-dual when � = +1 and self-dual when � = �1.
Notice that the nullity condition on �(1) is equivalent with (anti-)selfduality.

2.6.3. Signature (2; 2). Let (V �; h�) be four-dimensional and equipped with a metric h� of
split signature. Its irreducible real Cli�ord module (�; 
) is four-dimensional and is equipped
with a skew-symmetric admissible pairing B of positive adjoint type (see Theorem 2.1). This
dimension and signature admits chiral spinors. Let:

� =

4X
k=0

�(k) 2 ^V � with �(k) 2 ^kV � 8 k = 1; : : : 4 :

Fixing an orthonormal basis (e1; e2; e3; e4) of (V �; h�) with e1; e2 timelike, de�ne timelike and
spacelike volume forms through �� = e1 ^ e2 and �+ = e3 ^ e4. By Corollary 2.28, we have

� 2 Z(�)
�;+(V �; h�) if and only if:

� �h � = 0 ; � (�) = �� ; ��(� (�)) = �� ; � �h � � � = 4 (� � �)(0) � (30)

for a polyform � 2 ^V � such that (� � �)(0) 6= 0. Here we used skew-symmetry of B, which
implies �(0) = 0. The condition � (�) = �� amounts to:

�(0) = �(1) = �(4) = 0

whereas the condition ��(� (�)) = �� is equivalent with:

��(2) = ���(2) ; �(3) = 0 :

Thus it su�ces to consider � = !, where ! is selfdual if � = �1 and anti-selfdual if � = 1. In
signature (2; 2), the Hodge star operator squares to the identity and yields a decomposition:

^2V � = ^2+V � � ^2�V �

into self-dual and anti-selfdual two-forms. This corresponds to the decomposition so(2; 2) =
sl(2)� sl(2) of the Lie algebra so(2; 2) = ^2V �. Expanding the geometric product shows that the
�rst equation in (30) reduces to the following condition for a self-dual or anti-selfdual two-form
� = !:

h!; !ih = 0 :

For simplicity of exposition we set � = �1 in what follows, in which case ! is self-dual (analogous
results hold for � = 1). Consider the basis fuaga=1;2;3 of ^2+V � given by:

u1 := e1 ^ e2 + e3 ^ e4 ; u2 := e1 ^ e3 + e2 ^ e4 ; u3 := e1 ^ e4 � e2 ^ e3
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and expand:

! =
X

kaua :

We have:

�� � u1 = u1 � �� = �1 + �h ; �� � u2 = �u2 � �� = �u3 ; �� � u3 = �u3 � �� = u2

which gives:

(�� � !)(0) = �k1 :
Furthermore, we compute:

u1 � u3 = �u3 � u1 = 2u2 ; u1 � u2 = �u2 � u1 = �2u3 ; u2 � u3 = �u3 � u2 = 2u1 ;

u1 � u1 = �u2 � u2 = �u3 � u2 = �2 + 2 �h :

These products realize the Lie algebra sl(2;R) upon de�ning a Lie bracket by the commutator:

[u1; u2] = u1�u2�u2�u1 = �4u3 ; [u1; u3] = u1�u3�u3�u1 = 4u2 ; [u2; u3] = u2�u3�u3�u2 = 4u1 :

Since ^2+V � = sl(2;R), the Killing form B of sl(2;R) gives a symmetric non-degenerate pairing
of signature (1; 2) on ^2+V �, which can be rescaled to coincide with that induced induced by h.
Then:

B(!; !) = h!; !i2h = 2
�
(k1)2 � (k2)2 � (k3)2

� 8! 2 ^2+V � :
Proposition 2.30. A polyform � 2 ^V � is a signed square of a real chiral spinor � 2 �(�)

of negative chirality if and only if � is a self-dual two-form of zero norm.

Proof. It su�ces to consider the case � 6= 0. By the discussion above, a non-zero polyform
� 6= 0 belongs to the set Z��;+(V �; h�) only if � = ! is self-dual and of zero norm (which is
equivalent to the �rst three equations in (30)). Once these conditions are satis�ed, the only
equation that remains to be solved is the fourth equation in (30). To solve it, we take � = ��.
Since (�� � !)(0) = �4 k1 (as remarked above), we conclude that (�� � !)(0) 6= 0 if and only
if ! 6= 0, whence taking � = �� is a valid choice. A computation shows that this equation is
automatically satis�ed and thus we conclude. □

Remark 2.31. Subsection 2.6.2 together with Proposition 2.30 show that the square of a chiral
spinor in signatures (1; 1) and (2; 2) is given by an (anti-)self-dual form of zero norm in middle de-
gree. The reader can verify, through a computation similar to the one presented in this subsection,
that the same statement holds in signature (3; 3). It is tempting to conjecture that the square
of a chiral spinor in general split signature (p; p) corresponds to an (anti-)self-dual p-form of zero
norm, the latter condition being automatically implied when p is odd. Verifying this conjecture
would be useful in the study of manifolds of split signature which admit parallel chiral spinors
[66].

2.6.4. Signature (0; 6). Let (V �; h�) be six-dimensional with negative metric h�. Its irre-
ducible real Cli�ord module (�; 
) is eight-dimensional and has a skew-symmetric admissible
pairing B of positive adjoint type, see Theorem 2.1. The stabilizer of any non-zero element in �
is isomorphic to SU(3), and consequently in this case the square of a spinor should recover the
well-known conditions for a polyform in six dimensions to be stabilized precisely by SU(3).

3. Algebraic Spin(7) structures

The spinorial exterior forms associated to chiral irreducible real spinors in eight Euclidean
dimensions deserve a separate study because of their applications to the theory of Spin(7) struc-
tures. In this section we apply Corollary 2.28 in eight euclidean dimensions to construct an
algebraic function whose critical points describe algebraic Spin(7) structures.
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3.1. Spin(7) structures on an eight-dimensional vector space. By de�nition, a Spin(7)
structure on V is a Spin(7) subgroup of the group GL+(V ). A well-known way to describe such
a structure is to give a non-zero four-form on V , called the Cayley form of the structure, with
certain properties. We start by recalling this description. Consider �rst the real vector space
R8 and denote by (e1; : : : ; e8) its standard basis, with dual basis (e1; : : : ; e8). Let h0 be the
usual Euclidean metric on R8 and endow this space with its canonical orientation, for which the
Euclidean volume form reads:

�o = e1 ^ e2 ^ e3 ^ e4 ^ e5 ^ e6 ^ e7 ^ e8 :
The standard Spin(7)+ structure on R8 is described by the canonical Cayley form �0 2 ^4(R8)�,
which is de�ned as follows [32, 125, 135, 202]:

�0 := e1 ^ e2 ^ e3 ^ e4 + e1 ^ e2 ^ e5 ^ e6 + e1 ^ e2 ^ e7 ^ e8 + e1 ^ e3 ^ e5 ^ e7 (31)

�e1 ^ e3 ^ e6 ^ e8 � e1 ^ e4 ^ e5 ^ e8 � e1 ^ e4 ^ e6 ^ e7 + e5 ^ e6 ^ e7 ^ e8 + e3 ^ e4 ^ e7 ^ e8
+e3 ^ e4 ^ e5 ^ e6 + e2 ^ e4 ^ e6 ^ e8 � e2 ^ e4 ^ e5 ^ e7 � e2 ^ e3 ^ e5 ^ e8 � e2 ^ e3 ^ e6 ^ e7

This four-form is self-dual with respect to the Euclidean metric h0 and the canonical orientation
of R8. Furthermore, we have �0^�0 = 14�0 and hence the square norm of �0 with respect to h0 is
j�0j2h0 = 14. The general linear group Gl(8;R) acts naturally on ^4(R8)� and consequently on �0.
The stabilizer of �0 under this action is isomorphic to the Lie group Spin(7) [32, 125, 135, 202].
The stabilizer preserves h0 and �0 and hence is a subgroup of the special orthogonal group SO(8) �
GL(8;R) determined by h0 and �0.

Definition 3.1. A Spin(7)+ form on V is a four-form � 2 ^4V � for which there exists an
orientation-preserving linear isomorphism f : V ! R8 satisfying � = f��0, where f� : ^ (R8)� !
^V � denotes the pull-back of forms by f . A Spin(7)� form is de�ned similarly but using an
orientation-reversing linear isomorphism f . A Spin(7) form on V is either a Spin(7)+ or a
Spin(7)� form de�ned on V .

In particular, pulling back the canonical Cayley form by any orientation-reversing linear automor-
phism of R8 produces a Spin(7)� form. A four-form � 2 ^4V is a Spin(7)+ form on V if and
only if there exists a positively-oriented basis (�1; : : : ; �8) of V in which � is given by the relation
obtained from (31) by replacing ei with �i = f�1(ei) for all i = 1; : : : ; 8. Every Spin(7)+ form �
comes together with an Euclidean metric on V given by:

h� = f�h0 =
8X

i=1

�i 
 �i

which makes �1; : : : ; �8 into an orthonormal basis. Similar statements hold for Spin(7)� forms,
except that the relevant bases of V are negatively oriented. If � 2 ^4V is a Spin(7) form, then
�� is also a Spin(7) form for any positive � 2 R>0.

A Spin(7) form � determines its associated metric h� algebraically as explained in [139,
Section 4.3]; we say that h� is induced by �. Let �h� = f��0 be the corresponding volume
form. A Spin(7)+ form � is self-dual with respect to h� in the given orientation of V and satis�es
� ^ � = 14�h� (as can be veri�ed for �0 on R8 and pulling back by f), a condition which
amounts to j�jh� =

p
14. On the other hand, a Spin(7)� form � is anti-self-dual and satis�es

� ^ � = �14�h� , which again amounts to j�jh� =
p
14. Notice that a Spin(7) form can induce

any Euclidean metric on V . The stabilizer of a four-form � 2 ^4V � inside GL+(V ) is isomorphic
with the group Spin(7) if and only if there exists a sign factor � such that �� is a Spin(7) form.
There are exactly two conjugacy classes of Spin(7) subgroups in Gl+(V ) [226]. The subgroups
belonging to one of these stabilize Spin(7)+ forms, while those belonging to the other stabilize
Spin(7)� forms de�ned on (V; h). Moreover, two Spin(7) forms have the same stabilizer if and only
if they di�er by multiplication with a positive real number. This establishes a bijection between
the conjugacy class of Spin(7) subgroups of GL+(V ) and the set of positive homothety classes
of Spin(7) forms. The conjugacy classes of Spin(7)+ and Spin(7)� forms inside GL(V ) combine
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into a single conjugacy class within Gl(V ); for example, the re�ection of V in any hyperplane
contained in V conjugates Spin(7)+ forms to Spin(7)� forms inside GL(V ).

Remark 3.2. If � is a Spin(7)+ form on V , then � and �� have the same stabilizer, which is a
Spin(7)+ subgroup of GL+(V ). However, �� is not a Spin(7)+ form although it can be written as
f�(��0) for some orientation-preserving isomorphism f : V ! R8. A simple continuity argument
shows that the overall sign of the canonical Cayley form cannot be changed by acting with an
element of GL+(8;R) on R8. It is traditional to �x the overall sign of the canonical Cayley form
in order to avoid double counting of Spin(7) subgroups of GL+(V ).

3.2. Spin(7) structures on an eight-dimensional Euclidean space. Let (V; h) be an oriented
Euclidean vector space of dimension eight. Let O(V; h) � GL(V ) be the disconnected group of all
orthogonal transformations of (V; h) and let SO(V; h) � O(V; h) be its identity component. These
groups act naturally on ^V �. The Hodge operator �h of h squares to the identity on four-forms
and hence gives a decomposition:

^4V � = ^4+V � � ^4�V �

where ^4+V � and ^4�V � are the eigenspaces of self-dual and anti-self-dual four forms. We denote
by h�; �ih the scalar product induced by h on the exterior algebra:

^V � := �8
k=0 ^k V �

and by j � jh the corresponding norm. For later convenience, we will often work with the dual
oriented Euclidean space (V �; h�) instead of (V; h). By de�nition, a metric Spin(7) structure on
(V; h) is a Spin(7) subgroup of SO(V; h) � GL+(V ). There exist two conjugacy classes of such
subgroups in SO(V; h), which correspond to the two conjugacy classes in GL+(V ). They combine
into a single conjugacy class of O(V; h).

Definition 3.3. A metric Spin(7) form on (V; h) is a Spin(7) form � on V which satis�es h� = h.
A conformal Spin(7) form on (V; h) is a Spin(7) form � on V which satis�es h� = c�h for some
constant c� > 0.

The positive number c� is uniquely determined by the conformal Spin(7) structure �; we call it
the conformal constant of � relative to h. The stabilizer of a Spin(7) form � on V is a metric
Spin(7) structure on (V; h) if and only if � is a conformal Spin(7) form on (V; h). The conformal
constant c� of a conformal Spin(7) form on (V; h) can be expressed through the norm of � as
follows.

Lemma 3.4. Let � 2 ^4V � be a conformal Spin(7) form on (V; h). Then we have:

c� = 14�
1
4 j�j

1
2

h

Thus � is a metric Spin(7) form on the oriented Euclidean space (V; h�), where:

h� = 14�
1
4 j�j

1
2

hh (32)

is the metric induced by �. In particular, a conformal Spin(7) form on (V; h) is a metric

Spin(7) form if and only if j�jh =
p
14.

Proof. Let � 2 ^4V � be a conformal Spin(7) form on (V; h) and let f : V ! R8 be a linear
isomorphism such that � = f�(�0). We have h� = f�(h0) = c�h, which implies:

p
14 = j�jh� = j�jc�h = (c�)

�2j�jh
This gives:

c� = 14�
1
4 j�j

1
2

h

Hence h� equals (32). □
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Corollary 3.5. Let � 2 ^4V � be a four-form on V . Then � is a conformal Spin(7) form
on (V; h) if and only if: p

14

j�jh� 2 ^
4
+V

�

is a metric Spin(7) form on (V; h).

Corollary 3.6. The set of conformal Spin(7)� forms on (V; h) is in bijection with the set
of positive homothety classes of metric Spin(7)� structures on (V; h).

Each Spin(7)� subgroup of SO(V; h) corresponds to the positive homothety class of a metric
Spin(7)� form, which consists of conformal Spin(7)� forms. In particular, two conformal Spin(7)�
forms on (V; h) have the same stabilizer inside SO(V; h) if and only if they di�er through mul-
tiplication by a constant. Two metric Spin(7)� forms on (V; h) have the same stabilizer inside
SO(V; h) if and only if they coincide. The following endomorphism of ^4V � will be used later on.

Definition 3.7. For any � 2 ^4V �, de�ne �h� 2 End(^4V �) by:
�h�(!) := 2��h

2! 8 ! 2 ^4V � (33)

Remark 3.8. In an arbitrary basis (e1; : : : ; e8) of ^4V �, we have:

��h
2! =

1

8
�ijmn!

mn
kle

i ^ ej ^ ek ^ el 8�; ! 2 ^4V � (34)

where:
!mn

kl = hmphnq!pqkl

and we expanded � and ! as:

� =
1

4!
�ijkle

i ^ ej ^ ek ^ ek ; ! =
1

4!
!ijkle

i ^ ej ^ ek ^ ek

Here use the so-called determinant convention for the wedge product of forms. Using (34), it is
easy to check that the operator �h� de�ned in (33) coincides with the operator denoted by �� in
[140, De�nition 2.7] and [67, De�nition 2.5].

3.3. The algebraic characterization of conformal Spin(7) forms. In this section, we present
an algebraic characterization of conformal Spin(7)� forms which follows from the description of
the signed square of a real irreducible chiral spinor given in Corollary 2.28. Since in eight euclidean
dimensions �h squares to the identity in the Kähler-Atiyah algebra, we have 	
(�h)

2 = id� and
the vector space � splits as a B-orthogonal direct sum � = �+���, where �� are the eigenspaces
of 	
(�h) corresponding to the eigenvalues �1. The subspaces de�ne the chiral irreducible repre-
sentations of the even Cli�ord subalgebra Cle(V �; h�) of chirality �1, respectively. The spin group
Spin(V �; h�) � Cle(V �; h�) naturally acts on �� through the representation induced by 
. The
stabilizer of any nonzero chiral spinor is a Spin(7) of subgroup of Spin(V �; h�) ' Spin(8). There
exists two conjugacy orbits of such subgroups, which correspond respectively to the stabilizers of
nonzero chiral spinors of positive and negative chirality and are the Spin(7)� conjugacy orbits of
Spin(V �; h�). The later project onto the Spin(7)� conjugacy classes of SO(V �; h�) ' SO(V; h)
through the double covering morphism � : Spin(V; h)! SO(V; h). Since the stabilizer of a chiral
spinor depends only on its homothety class, this gives a bijection between the Spin(7)� subgroups
of Spin(V �; h�) and the real projective space P(��). Let (e1; : : : ; e8) be an orthonormal basis of
(V �; h�). It is well-known that a nonzero four-form � 2 ^4V � is a conformal Spin(7)� form on
(V; h) if and only if there exists a nonzero chiral spinor � 2 �� n f0g such that:

� =
X

1�i1<���<i4�8
B(
h(e

i1) � � � 
h(ei4)� ; �) ei1 ^ � � � ^ ei4 (35)

The Spin(7)� stabilizer of this form in SO(V; h) coincides with the image of the Spin(7)� stabilizer
of � through the double covering morphism of Spin(8) ! SO(8). The chiral spinor � with this
property is determined by � up to sign.
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Lemma 3.9. Let � 2 f�1; 1g be a sign factor. A non-zero polyform � 2 ^V � is the �-signed
square of a non-zero chiral spinor � 2 �� of chirality � 2 f�1; 1g if and only if it has the
form:

� =
�

16

�
1p
14
j�jh +�+

�p
14
j�jh�h

�
; (36)

where � 2 ^4V � is a uniquely determined four-form which satis�es the condition �h� = ��
as well as the algebraic equation:p

14��h
2�+ 12j�jh� = 0 (37)

In this case, we have:

B(�; �) =
j�jhp
14

(38)

and hence � has unit B-norm if and only if j�jh =
p
14. The nonzero chiral spinor � 2 ��

is determined by the polyform � up sign.

Remark 3.10. Notice that we can replace � by �� in (36) provided that we also do so in (37).
This changes the sign of the middle term in (36) and of the second term in the left hand side of
(37). Which of the signs we choose is a matter of convention, provided that the signs of these
terms in (36) and (37) are changed simultaneously.

Proof. By Corollary 2.28, a polyform � 2 ^V � is the �-signed square of a chiral spinor � of
chirality � if and only if ��(0) > 0 and equations (25) or (26) are satis�ed. For the present case
they reduce to:

� �h � = 16�(0) � ; � (�) = � ; �h �h � = �� (39)

The general solution of the second and third equations in (39) can be written as:

� =
�

16
(c+�+ �c�h) ; (40)

where � is a four-form which satis�es �h� = �� and c 2 R is a constant. This constant must be
positive since �(0) = �c

16 . Plugging (40) into the �rst equation of (39) gives:

� �h � = 12 c�+ 14 c2(1 + ��h) ; (41)

where we used the last equation in (39) and the fact that �h squares to 1 in the Kähler-Atiyah al-
gebra. Expanding the geometric product �h gives:

� �h � = j�j2h � ��h
2�+ � ^ � 2 R� ^4V � � ^8V � (42)

Separating degrees, this shows that (41) is equivalent with the conditions:

j�j2h = 14c2 ; ��h
2�+ 12c� = 0 ; � ^ � = 14 c2��h (43)

The �rst and last of these conditions are equivalent since �h� = �� , and give:

c =
j�jhp
14

(44)

Substituting this into the middle equation of (43) gives (37). Relation (40) gives T r(�) = �c,
which implies B(�; �) = c = j�jhp

14
. Substituting the value of c into (40) gives (36). □

Lemma 3.11. Let � 2 �� be a nonzero chiral spinor of chirality � 2 f�1; 1g and let � be
the self-dual four-form given in (35), where (e1; : : : ; e8) is any orthonormal basis of (V �; h�).
Then the following statements hold:

(1) We have:

B(�; �) =
j�jhp
14

(45)

(2) The �-signed square of � is given by:

E�
 (�) =
�

16

�
1p
14
j�jh +�+

�p
14
j�jh�h

�
(46)
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Proof. The quantity B(�; 
i1 � � � 
ik�) with i1 < : : : < i4 vanishes by B-symmetry of 
i

unless k(k�1)
2 is even, which requires k 2 f0; 1; 4; 5; 8g. On the other had, this quantity vanishes

when k is odd since in that case 
i1 � � � 
ik� has di�erent chirality from � and since the spaces �+

and �� are B-orthogonal. Hence we obtain:

B(�; �)2 =
1

16
(2B(�; �)2 + j�j2h) ;

which gives (45). On the other hand, the expansion:

E�
 (�) =
�

16

8X
k=0

X
1�i1<���<ik�8

B(
h(e
ik) � � � 
h(ei1)�; �) ei1 ^ � � � ^ eik (47)

reduces to:
E�
 (�) =

�

16
[B(�; �) + � + �B(�; �)�h] ;

where we used the relation 
h(�h)� = ��. Combing this with (45) gives (46). □

Theorem 3.12. The following statements are equivalent for a nonzero self-dual four-form
� 2 ^4+V �:
(1) � is a conformal Spin(7)+ form on (V; h).

(2) The polyform:

� =
1

16

�
1p
14
j�jh +�+

1p
14
j�jh�h

�
(48)

is the positive square of a nonzero positive chirality spinor.

(3) � satis�es the following algebraic equation:
p
14��h

2�+ 12j�jh� = 0 (49)

In particular, there is a one-to-one correspondence between the set of conformal Spin(7)+
forms on (V; h) and the set of nonzero self-dual solutions of equation (49).

Proof. Suppose that (1) holds. Then � is given by (35) for some non-zero positive chirality
spinor �. Lemma 3.11 implies that the polyform � := E+
 (�) is given by (48) with � = 1 and hence
(b) holds. Thus (1) implies (2). Lemma 3.9 shows that (2) implies (3). Finally, let us assume that
(3) holds. Then Lemma 3.9 shows the polyform � de�ned in terms of � by formula (48) is the
positive square of a positive chirality spinor �, and hence is given by (47) with � = 1, so that (a)
holds. This shows that (c) implies (a) and we conclude. □

Theorem 3.12 and Lemma 3.4 imply the following algebraic characterization of metric Spin(7)+
forms.

Corollary 3.13. A self-dual four-form � is a metric Spin(7)+ form on (V; h) if and only if

j�jh =
p
14 and � satis�es the equation:

��h
2�+ 12� = 0 (50)

Verifying that a self-dual four-form is a conformal Spin(7)+ form by traditional methods involves
dealing with the cumbersome task of checking if there exists a basis of V � in which � is proportional
to the expression given in equation (31). Theorem 3.12 provides a di�erent criterion which can be
used to verify if such a four-form is a conformal Spin(7)+ form: we only need to check if equation
(49) is satis�ed. This gives an intrinsic characterization of conformal Spin(7)+ forms that do not
require the use of any privileged basis of V � and that we hope it can be useful for applications,
see for instance [11, 12] for early applications of this framework.

Remark 3.14. By Lemma 3.9, a conformal Spin(7)+ form on (V; h) is metric if and only if the
corresponding positive chirality spinor � 2 �+ (which is determined up to sign) has unit B-norm.
Notice that equation (50) for metric Spin(7)+ forms is quadratic but inhomogeneous in �, unlike
equation (49) for conformal Spin(7)+ forms, which is not quadratic in � but is homogeneous of
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order two under rescaling � by a positive constant. Also notice that � = 0 is a special solution of
(49), as expected.

3.4. An algebraic potential for conformal Spin(7) forms. To describe the set of conformal
Spin(7)+ forms on (V; h), consider the following cubic function de�ned on the vector space of
self-dual four-forms:

Wh : ^4+V � ! R ; � 7!Wh(�) := �
p
14

3
h� �h �;�ih + 4h�;�i

3
2

h =

p
14

3
h��h

2�;�ih + 4h�;�i
3
2

h

(51)
The second equality above follows from (42), which implies:

h� �h �;�ih = �h��h
2�;�ih (52)

since h ; ih is block-diagonal with respect to the rank decomposition of ^V �. Note that we can
equivalently write Wh as:

Wh(�) = �
p
14

48
T r(� �h � �h �) + 1

16
T r(� �h �) 32 ; (53)

where we noticed that � (�) = � since � is a four-form. Using the rotational invariance of the
Kähler-Atiyah trace and the rotational equivariance of the generalized products, relation (53)
implies that the potential Wh : ^4+V � ! R is invariant under the natural action of SO(V; h)
on ^4+V �. Moreover, notice that Wh is homogeneous of degree three under positive rescalings
�! �� (� > 0) of its argument and that we have Wh(0) = 0. In particular, the restriction of Wh

to ^4+V � descends to a section of the real line bundle O(3)! P(^4+V �).
Remark 3.15. Direct computation gives:

h��h
2�;�ih =

1

8
�ijkl�

ij
mn�

mnkl and h�;�ih = 1

24
�ijkl�

ijkl : (54)

Thus:

Wh(�) =

p
14

24
�ijkl�

ij
mn�

mnkl + 4

�
1

24
�ijkl�

ijkl

�3=2

; (55)

in any basis (e1; : : : ; e8) of (V; h). Notice that we use the determinant inner product of forms,
with respect to which the volume form of (V; h) has norm one. Also notice that Wh is of class C2

on ^4+V �, since the 3-rd power of the norm function jj � jj : ^4+V � ! R is of class C2 (and its �rst
two di�erentials vanish at the origin). See [193, Theorem 3.1].

Proposition 3.16. Let � 2 ^4+V � be a self-dual four-form on (V; h). For any q 2 ^4+V �, we
have:

Wh(� + q) =Wh(�)�
p
14
�h� �h �; qi+ hq �h q;�ih + 1

3 hq �h q; qih
�

+4
h�j�j2h + jqj2h + 2h�; qih

� 3
2 � j�j3h

i
(56)

When � 6= 0 and jqjh � 1, the Taylor expansion of Wh(�) around � is:

Wh(�+q) =Wh(�)+ h�
p
14��h�+12j�jh�; qih+6j�jhjqj2h�

p
14hq �h q;�ih+6

hq;�i2h
j�jh +O(�3)

(57)
for � := jqjh

j�jh � 1

Consider a nonzero self-dual four-form � 2 ^4+V � n f0g. We denote by:

d�Wh : ^4+ V � ! R ; q 7! (d�Wh)(q)

the di�erential of Wh computed at � and by:

d2�Wh : ^4+ V � � ^4+V � ! R
the second di�erential of Wh at �. The latter coincides with the Euclidean Hessian of Wh at �
computed relative to the scalar product h ; ih.
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Corollary 3.17. For any nonzero self-dual four-form � 2 ^4+V � n f0g, we have:
(d�Wh)(q) = h

p
14��h

2�+ 12j�jh�; qih 8q 2 ^4+V � (58)

and:

(d2�Wh)(q1; q2) =
p
14 hq1�h

2q2 + q2�
h
2q1;�ih + 12j�jhhq1; q2ih + 12

j�jh hq1;�ihh�; q2ih (59)

for every q1; q2 2 ^4+V �.
Proof. Follows immediately from (57) by polarization. □

Remark 3.18. Using [193, Theorem 3.1], one easily checks that (d2Wh)(0) = 0. This also follows
from the fact that Wh is of class C2. The Cauchy�Schwarz inequality gives:

1

j�jh jhq1;�ihh�; q2ihj � j�jhjq1jhjq2jh
and hence the lim�!0 d

2
�Wh exists and equals zero.

Theorem 3.19. A self-dual four-form � 2 ^4+V � nf0g is a conformal Spin(7)+ form on (V; h)
if and only if it is a critical point of the function Wh. In this case, we have Wh(�) = 0.

Proof. Since h ; ih restricts to a scalar product on ^4+V �, Corollary (3.17) implies that
d�Wh vanishes if and only if � satis�es equation (49), which by Theorem 3.12 happens if and
only if � is a conformal Spin(7)+ form on (V; h). In this case, we have:

Wh(�) =

p
14

3
h��h

2�;�ih + 4j�j3h = �4j�j3h + 4j�j3h = 0

and hence we conclude. □

Let � 2 ^4+V � be a conformal Spin(7)+ form on (V; h). We denote the induced metric of �
by h�. Recall that � is a metric Spin(7)+ form with respect to h�. Consider the orthogonal
decomposition of ^4+V � into irreducible representations under the linear action of the Spin(7)
stabilizer of � which is obtained by restricting the action of SO(V; h) on ^4+V � (see, for example,
[140]):

^4+V � = ^41V � � ^47V � � ^427V � (60)

The subscript in this decomposition denotes the real dimension of the corresponding irreducible
representation of Spin(7). Notice that � 2 ^41V �. Since this subspace is one-dimensional, we have:

^41V � = R�

Thus any q 2 ^41V � is of the form q = �(q)� with �(q) 2 R. Taking norms gives j�(q)j = jqjh
j�jh and

hence:

q = �(q)
jqjh
j�jh� 8q 2 ^41V � ; (61)

where �(q) := sign(�(q)). As shown in [140, Proposition 2.8] (see also [67, Proposition 2.6]), the
invariant subspaces appearing in the right-hand side of (60) can be written as eigenspaces of the
operator �h� of De�nition 3.7 (see Remark 3.8):

^41V � =
n
q 2 ^4+V � j ��h�

2 q = �12q
o
; ^47V � =

n
q 2 ^4+V � j ��h�

2 q = �6q
o

^427V � =
n
q 2 ^4+V � j ��h�

2 q = 2q
o

We also have ^4�V � = ^435V � = ker�h�. Using Lemma 3.4, we write the relations above in terms
of h:

^41V � =
n
q 2 ^4+V � j ��h

2q = � 12p
14
j�jhq

o
; ^47V � =

n
q 2 ^4+V � j ��h

2q = � 6p
14
j�jhq

o
(62)

^427V � =
n
q 2 ^4+V � j ��h

2q =
2p
14
j�jhq

o
(63)
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Proposition 3.20. Let � 2 ^4+V � be a conformal Spin(7)+ form on (V; h). Then d2�Wh is
block-diagonal with respect to the decomposition (60). Moreover, the restrictions of d2�Wh

to the subspaces appearing in this decomposition are given by:

(d2�Wh)(q1; q2) =

8<
:

0 q1; q2 2 ^41V �
0 q1; q2 2 ^47V �
16j�jhhq1; q2ih q1; q2 2 ^427V �

(64)

3.5. Metric deformations of the potential. In this section, we study the expression in the
right hand side of (51) as a function of pairs (h;�), where h is an Euclidean metric on V and
� 2 ^4V � is a four-form that need not be self-dual with respect to h. We thus consider the
function:

W : Met(V )� ^4V � ! R ; (h;�) 7!W (h;�) :=

p
14

3
h��h

2�;�ih + 4h�;�i
3
2

h ; (65)

where Met(V ) denotes the cone of Euclidean metrics on V .

Definition 3.21. A pair (h;�) 2 Met(V ) � ^4V � is called self-dual if � is self-dual relative to
h. A pair (h;�) 2 Met(V ) � ^4V � is called a conformal Spin(7)+ pair on the oriented eight-
dimensional space V if � is conformal Spin(7)+ form on the oriented Euclidean vector space
(V; h).

We denote by:
d(h;�)W : V � � V � � ^4V � ! R

the di�erential of W at the point (h;�) 2 Met(V )� ^4V �.
Lemma 3.22. Let (h;�) 2 Met(V )� ^4V � be a conformal Spin(7) structure on V . Then:

(d(h;�)W )(k; 0) = 0

for every k 2 V � � V �.

Proof. First, recall that by Equation (34) we have:

��h
2� =

1

8
�ijmn�

mn
kle

i ^ ej ^ ek ^ el

for every � 2 ^4V � and any basis (e1; : : : ; e8). Hence:

h��h
2�;�ih =

1

8
�ijmn�

mn
kl�

ijkl =
1

8
�i1i2i3i4�j1j2j3j4�k1k2k3k4h

i1k1hi2k2hi3j1hi4j2hj3k3hj4k4

as well as:

j�j2h =
1

4!
�ijkl�

ijkl =
1

4!
�i1i2i3i4�j1j2j3j4h

i1j1hi2j2hi3j3hi4j4

Therefore:

W (h;�) =
p
14
24 �i1i2i3i4�j1j2j3j4�k1k2k3k4h

i1k1hi2k2hi3j1hi4j2hj3k3hj4k4

+ 4

(4!)
3
2
(�i1i2i3i4�j1j2j3j4h

i1j1hi2j2hi3j3hi4j4)
3
2

Using this expression for W (h;�), which we have written explicitly in terms of all the metric
contractions for clarity in the exposition, a direct computation gives:

(d(h;�)W )(k; 0) = �
p
14
4 �i1i2i3i4�j1j2j3j4�k1k2k3k4k

i1k1hi2k2hi3j1hi4j2hj3k3hj4k4

�j�jh�i1i2i3i4�j1j2j3j4k
i1j1hi2j2hi3j3hi4j4

= �4�114� 3
4 j�j

5
2

h�i1i2i3i4�j1j2j3j4�k1k2k3k4k
i1k1hi2k2� h

i3j1
� h

i4j2
� h

j3k3
� h

j4k4
�

�14� 3
4 j�j

5
2

h�i1i2i3i4�j1j2j3j4k
i1j1h

i2j2
� h

i3j3
� h

i4j4
�
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where we have used Equation (32) to relate h and the metric h� induced by �. Since h� is induced
by � and the latter is a Spin(7) structure, the following well-known identities hold [139, 140]:

�i1i2i3i4�j1j2j3j4h
i3j3
� h

i4j4
� = 6(h�)i1j1(h�)i2j2 � 6(h�)i1j2(h�)i2j1 � 4�i1i2j1j2

�i1i2i3i4�j1j2j3j4h
i2j2
� h

i3j3
� h

i4j4
� = 42(h�)i1j1

Using these identities, we obtain:

(d(h;�)W )(k; 0) = 14�
3
4 42j�j

5
2

hk
i1k1(h�)i1j1 � 14�

3
4 42j�j

5
2

hk
i1k1(h�)i1j1 = 0

and thus we conclude. □

Using this lemma we adapt Theorem 3.19 to the case of the function W : Met(V )� ^4V � ! R.

Theorem 3.23. A pair (h;�) 2 Met(V )�^4V � is a conformal Spin(7) structure on V if and
only if it is a self-dual critical point of the function W : Met(V )� ^4V � ! R.

Proof. Let (h;�) 2 Met(V )� ^4V � be a self-dual pair. Then, by Corollary 3.17 we have:

(d(h;�)W )(0; q) = h
p
14��h

2�+ 12j�jh�; qih 8q 2 ^4+V �

Hence, condition (d(h;�)W )(0; q) = 0 holds for all q 2 ^4+V � if and only if hp14��h
2� +

12j�jh�; qih = 0, which by Theorem 3.12 is equivalent to � being a conformal Spin(7) structure on
(V; h). Since (g;�) is a conformal Spin(7) structure, Lemma 3.22 implies that (d(h;�)W )(k; 0) = 0
for every k 2 V � � V � and thus we conclude. □

Hence by considering the variations of W : Met(V ) � ^4V � ! R with respect to pairs (h;�) we
can describe all Spin(7)+ structures on V , as opposed to those that are conformal relative to a
�xed Euclidean metric. It would be interesting to investigate the geometric signi�cance of those
critical points of W which are not self-dual.

4. Bundles of Cli�ord modules and di�erential spinors

To study di�erential spinors of real type, we will extend the theory developed in Section 2 to
bundles of real irreducible Cli�ord modules equipped with an arbitrary connection. Throughout
this section, let (M; g) denote a connected pseudo-Riemannian manifold of signature (p; q) and
even dimension d = p + q � 2, where p � q �8 0; 2. Since M is connected, the pseudo-Euclidean
vector bundle (TM; g) is modeled on a �xed quadratic vector space denoted by (V; h). For any
pointm 2M , we thus have an isomorphism of quadratic spaces (TmM; gm) ' (V; h). Accordingly,
the cotangent bundle T �M (endowed with the dual metric g�) is modeled on the dual quadratic
space (V �; h�). We denote by Cl(M; g) the bundle of real Cli�ord algebras of the cotangent bundle
(T �M; g�), which is modeled on the real Cli�ord algebra Cl(V �; h�). Let � and � be the canonical
automorphism and anti-automorphism of the Cli�ord bundle, given by �berwise extension of the
corresponding objects de�ned in Section 2 and set �̂ = � � � . We denote by (^M; �) the exterior
bundle ^M = �d

j=0 ^j T �M , equipped with the point-wise extension � of the geometric product
of Section 2, which depends on the metric g. This bundle of unital associative algebras is called
the Kähler-Atiyah bundle of (M; g) (see [143, 145]). The map 	 of Section 2 extends to a unital
isomorphism of bundles of algebras:

	: (^M; �g) �! Cl(M; g)

which allows us to view the Kähler-Atiyah bundle as a model for the Cli�ord bundle. We again
denote by �, � and �̂ = � � � the (anti-)automorphisms of the Kähler-Atiyah bundle obtained
by transporting the corresponding objects from the Cli�ord bundle through 	. The Kähler-
Atiyah trace introduced in Section 2 pointwise extends to a morphism of vector bundles:

T r : ^M !M � R

whose induced map on smooth sections satis�es:

T r(1M ) = 2
d
2 1M and T r(!1 �g !2) = T r(!2 �g !1) 8 !1; !2 2 
�(M)
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where 1M 2 C1(M) is the unit function de�ned on M . By Proposition 2.14, we have:

T r(!) = 2
d
2!(0) 8 ! 2 
(M) :

In particular, T r does not depend on the metric g. The following result encodes a well-know
property of the Cli�ord bundle, which also follows from the de�nition of �g.
Proposition 4.1. The canonical extension to ^M of the Levi-Civita connection rg of (M; g),
which we again denote by rg, acts by derivations of the geometric product, namely:

rg(� �g �) = (rg�) �g � + � �g (rg�)

for every �; � 2 
(M).

4.1. Bundles of irreducible real Cli�ord modules. In this section we introduce the type of
bundle of spinors that we will consider throughout this dissertation.

Definition 4.2. A bundle of real Cli�ord modules, or a real spinor bundle for short, on (M; g)
is a pair (S;�), where S is a real vector bundle on M and � : Cl(M; g) ! End(S) is a unital
morphism of bundles of algebras.

Since M is connected, any bundle of Cli�ord modules (S;�) on (M; g) is modelled on a Clif-
ford module (�; 
) called its type. That is, for every point m 2 M , the Cli�ord module
�m : Cl(T �mM; g

�
m)! (End(Sm); �) is isomorphic to the Cli�ord module 
 : Cl(V �; h�)! End(�)

via an unbased isomorphism of Cli�ord modules, see [151] for more details.

Definition 4.3. A bundle of irreducible real Cli�ord modules (S;�), or an irreducible real
spinor bundle for short, is a bundle of real Cli�ord modules whose type (� gamma) is irreducible.
In this case, global sections � 2 �(S) of S are irreducible spinors on (M; g).

In the signatures p� q �8 0; 2 considered in this dissertation, the rank of a bundle of irreducible
real Cli�ord modules is rkS = dim� = 2

d
2 , where d is the dimension of M . In this situation,

Reference [151] proves that (M; g) admits a bundle of irreducible spinor bundle if and only if it
admits a real Lipschitz structure of type 
. In signatures p�q �8 0; 2, the latter corresponds to an
adjoint-equivariant, also known as untwisted, Pin(V �; h�)-structure Q on (M; g) and furthermore
(S;�) is isomorphic to the bundle of real Cli�ord modules associated to Q through the natural
representation of Pin(V �; h�) induced by 
 on �. The obstructions to existence of such structures
were given in [151]; when p � q �8 0; 2, they are a slight modi�cation of those given in [141] for
ordinary twisted adjoint-equivariant Pin(V �; h�)-structures.

Proposition 4.4. Let (S;�) be a bundle of real Cli�ord modules on (M; g), L a real line
bundle on M and set SL := S 
 L. Then there exists a natural unital morphism of bundles
of algebras �L : Cl(M; g)! End(S
L) such that (SL;�L) is a bundle of real Cli�ord modules.
In particular, the set of isomorphism classes of bundles of irreducible real Cli�ord modules
de�ned over (M; g) is a torsor over the real Picard group Pic(M) of M .

Proof. Let  L : End(L) ! M � R be the canonical trivialization of the real line bundle
End(L). This induces a unital isomorphism of bundles of algebras 'L : End(S
L) �! End(S) given
by composing the natural isomorphism of bundles of real algebras End(S
L) �! End(S)
End(L)
with IdEnd(S)
 L. The conclusion follows by setting �L := '�1L � �. □

The map 	
 of Section 2 extends to a unital isomorphism of bundles of algebras which we denote
by:

	� := � �	: (^M; �) �! (End(S); �) :
This map allows us to identify bundles (S;�) of modules over Cl(T �M; g�) with bundles of modules
(S;	�) over the Kähler-Atiyah algebra. For ease of notation we again denote by a dot the Cli�ord
multiplication of (S;	�), whose action on global sections is:

� � � := 	�(�)(�) 8 � 2 
(M) := �(^M) 8 � 2 �(S) :
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Definition 4.5. Let (S;�) be a real spinor bundle on (M; g) and W be any vector bundle on M .
The symbol of a section Q 2 �(End(S)
W ) is the section q 2 �(^M 
W ) de�ned through:

q := (	� 
 IdW )�1(Q) 2 �(^T �M 
W )

where IdW is the identity endomorphism of W .

Remark 4.6. In particular, the symbol of an endomorphism Q 2 �(End(S)) is a polyform q 2

(M), while the symbol of an End(S)-valued one-form A 2 �(T �M 
 End(S)) is an element
a 2 �(M;T �M 
 ^T �M) = 
1(M;^M) = 
�(M;T �M), which can be viewed as a T �M -valued
polyform or as a ^M -valued one-form.

4.2. Paired spinor bundles.

Definition 4.7. Let (S;�) be a real spinor bundle on (M; g). A �berwise-bilinear pairing B on
S is called admissible if Bm : Sm � Sm ! R is an admissible pairing on the simple Cli�ord
module (Sm;�m) for all m 2 M . A real paired spinor bundle on (M; g) is a triplet (S;�;B),
where (S;�) is a real spinor bundle on (M; g) and B is an admissible pairing on S.

Since M is connected, the symmetry and adjoint type s; � 2 Z2 of the admissible pairings Bm,
which are non-degenerate by de�nition, are constant onM ; they are called the symmetry type and
adjoint type of B and of (S;�;B) respectively. Since M is paracompact, the de�ning algebraic
properties of an admissible pairing can be formulated equivalently as follows using global sections
when viewing (S;�) as a bundle (S;	�) of modules over the Kähler-Atiyah algebra of (M; g):

(1) B(�1; �2) = sB(�2; �2)

(2) B(	�(!)(�1); �2) = B(�1;	�((�
1��
2 � � )(!))(�2)) 8 ! 2 
(M) 8 �1; �2 2 �(S)

for every �1; �2 2 �(S) and every ! 2 
(M).

Definition 4.8. Let (M; g) be a pseudo-Riemannian manifold. We say that (M; g) is strongly
orientable if its orthonormal coframe bundle admits a reduction to an SOo(V

�; h�)-bundle. We
say that (M; g) is strongly spin if it admits a Spino(V

�; h�)-structure � which we call a strong
spin structure.

Remark 4.9. When pq = 0, the special orthogonal and spin groups are connected while the
pin group has two connected components. In this case, orientability and strong orientability are
equivalent, as are the properties of being spin and strongly spin. When pq 6= 0, the groups
SO(V �; h�) and Spin(V �; h�) have two connected components, while Pin(V �; h�) has four and we
have Pin(V �; h�)=Spino(V

�; h�) ' Z2�Z2. In this case, (M; g) is strongly orientable if and only if
it is orientable and in addition the principal Z2-bundle associated to its bundle of oriented coframes
through the group morphism SO(V �; h�)! SO(V �; h�)=SOo(V

�; h�) is trivial, while an untwisted
Pin(V �; h�)-structure Q reduces to a Spino(V

�; h�)-structure if and only if the principal Z2 �Z2-
bundle associated to Q through the group morphism Pin(V �; h�)! Pin(V �; h�)=Spino(V

�; h�) is
trivial. When (M; g) is strongly spin, the short exact sequence:

1! Z2 ,! Spino(V
�; h�)! SOo(V

�; h�)! 1

induces a sequence in �Cech cohomology which implies that Spino(V
�; h�)-structures form a torsor

over H1(M;Z2). A particularly simple case arises when H1(M;Z2) = 0 (for example, when M
is simply-connected). In this situation, M is strongly orientable and any untwisted Pin(V �; h�)-
structure on (M; g) reduces to a Spino(V

�; h�)-structure since H1(M;Z2 � Z2) = H1(M;Z2 �
Z2) = 0. Similarly, any Spin(V �; h�)-structure on (M; g) reduces to a Spino(V

�; h�)-structure.
Up to isomorphism, in this special case there exists at most one Spin(V �; h�)-structure, one
Spino(V

�; h�)-structure and one real spinor bundle on (M; g), which is automatically strong.

By the results of [151], a strongly orientable pseudo-Riemannian manifold (M; g) of signature
(p; q) satisfying (p� q) �8 0; 2 admits an irreducible real spinor bundle if and only if it is strongly
spin, in which case every irreducible spinor bundle is associated to a strong spin structure via the
tautological representation of Spino(V

�; h�) induced by an irreducible real Cli�ord module.
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Proposition 4.10. Suppose that (S;�) be an irreducible real spinor bundle of type (�; 
) on a
strongly orientable pseudo-Riemannian manifold (M; g) of signature (p�q) �8 0; 2. Then ev-
ery admissible pairing on (�; 
) extends to an admissible pairing B on (S;�). Moreover, the
Levi-Civita connection rg of (M; g) lifts to a unique connection on S, denoted for simplicity
by the same symbol, which acts on �(S) via module derivations:

rg
v(� � �) = (rg

v�) � �+ � � (rg
v�) 8 � 2 
(M) 8 � 2 �(S) 8 v 2 X(M)

and is compatible with B:

v(B(�1; �2)) = B(rg
v�1; �2) +B(�1;rg

v�2) 8 �1; �2 2 �(S) 8 v 2 X(M) :

Proof. The �rst statement follows from the associated bundle construction since admissible
pairings are invariant under Spino(V

�; h�) transformations. The second and third statements are
standard, see for instance [90, Chapter 3]. The last statement holds since the holonomy of rg as
a connection on S is contained in Spino(V

�; h�), whose action on � preserves B. □

The spinorial connection rg induces a linear connection, which we denote by the same symbol
for ease of notation, on the bundle of endomorphisms End(S) = S� 
 S. Given v 2 X(M), by
de�nition we have:

(rg
vA)(�) = rg

v(A(�))� A(rg
v�) 8 A 2 �(End(S)) 8 � 2 �(S) 8 v 2 X(M)

for every A 2 �(End(S)) and � 2 �(S).

Proposition 4.11. Let (S;�;B) be a paired irreducible real spinor bundle. Then rg : �(End(S))!
�(T �M 
 End(S)) acts by derivations:

rg
v(A1 � A2) = rg

v(A1) � A2 + A1 � rg
v(A2) 8 A1; A2 2 �(End(S)) 8 v 2 X(M) :

Moreover, 	� induces a unital isomorphism of algebras (
(M); �g) ' �(End(S)) which is
compatible with rg. In other words, the following equation holds:

rg
v(	�(�)) = 	�(rg

v�)

for every � 2 
(M) and v 2 X(M).

Proof. The fact that rg acts by algebra derivations of �(End(S)) is standard. Proposition
4.10 gives:

(rg
vA)(�) = rg

vA(�)� A(rg
v�) = rg

v(	�(�)(�))�	�(�)(rg
v�) = 	�(rg

v�)(�)

for all A 2 �(End(S)), � 2 �(S) and v 2 X(M), where � := 	�1� (A) 2 
(M). □

4.3. Constrained di�erential spinors. In this section we introduce the notion of constrained
di�erential spinor, which constitute the main object of study in this dissertation.

Definition 4.12. Let (S;�) be a real spinor bundle on (M; g) equipped with a connection D and
let Q 2 �(End(S) 
W) be an endomorphism of S taking values in W. A section � 2 �(S) is a
constrained di�erential spinor with respect to (D;Q) if:

D� = 0 ; Q(�) = 0 : (66)

Remark 4.13. Supersymmetric solutions of supergravity theories can often be characterized in
terms of manifolds admitting certain systems of constrained di�erential spinors, see for instance
[143, 144]. This extends the notion of generalized Killing spinors considered [17, 93, 94, 181].

Suppose that (S;�) is an irreducible real spinor bundle. Then we can write D = rg � A with
A 2 
1(End(S)). In this case, the equations satis�ed by a constrained di�erential spinor can be
written as:

rg� = A(�) ; Q(�) = 0

and their solutions are called constrained di�erential spinors relative to (A;Q). Using connect-
edness of M and the parallel transport of D, equation (66) implies that the space of constrained
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di�erential spinors relative to (A;Q) is �nite-dimensional and that a constrained di�erential spinor
which is not zero at some point of M is automatically nowhere-vanishing on M ; in this case, we
say that such � is nontrivial.

4.4. Spinor square maps. Let (S;�;B) be a paired irreducible real spinor bundle on (M; g).
The admissible pairing B allows us to construct point-wise extensions to M of the spinor square
maps E
� : �! ^V �. � 2 Z2, of Section 2. We denote these by:

E�� : S ! ^M
which �t in the following commutative diagram:

Cl(M; g) (End(S); �) S

(^M; �g)




	�1
�

E�
	

which extends to maps of sections that we denote by the same symbol for ease of notation.
Although E�� preserves �bers, it is not a morphism of vector bundles since it is �berwise quadratic.
By the results of Section 2, this map is two to one away from the zero section of S, where it
branches, and its image is a subset of the total space of ^M which �bers over M . We have
Im(E��) = �Im(E�+) and Im(E�+)\ Im(E��) = 0. The �berwise sign action of Z2 on S permutes the
sheets of these covers (�xing the zero section), hence E�� gives a bijection from S=Z2 to its image
as well as a single bijection:

E� : S=Z2 �! (Im(E�+) [ Im(E��))=Z2
The sets Im( _E�� ) := Im(E�� ) n 0, � 2 Z2, are connected submanifolds of the total space of ^M and
the restrictions:

E�� : _S ! Im( _E�� ) (67)

of E�� away from the zero section are surjective morphisms of �ber bundles which are two to one.

Definition 4.14. The signed spinor square maps of the paired irreducible real spinor bundle
(S;�;B) are the maps E�� : �(S)! 
(M), � 2 Z2, induced by E�� on sections.

Definition 4.15. A spinorial polyform is a a polyform � 2 �(^M) that belongs to the image of
either E�+ or E��.

By the results of Section 2, E�� are quadratic maps of C1(M)-modules and satisfy:

supp(E�� (�)) = supp(�) 8 � 2 �(S) :

In the following denote by E�� (�(S)) the image of E�� : �(S)! 
(M) as a map of sections. Likewise
we set E�(�(S)) := E�+(�(S)) [ E��(�(S)).
Proposition 4.16. Let (S;�;B) be a paired real irreducible spinor bundle associated to a
Spino(V

�; h�)-structure Q on (M; g). Then every nowhere-vanishing polyform in Im(E�) de-
termines a cohomology class cQ(�) 2 H1(M;Z2) encoding the obstruction to existence of a
globally-de�ned spinor � 2 �(S), necessarily nowhere-vanishing, such that � 2 fE�+(�); E��(�)g.
In particular, such � 2 �(S) exists if and only if cQ(�) = 0.

Proof. We have � 2 Im(E�� ) for some � 2 Z2. Let L� be the real line sub-bundle of ^M
determined as the span of �. Since the projective spinor square map PES : P(S) ! P(^(M)) is
bijective, L� determines a real line sub-bundle LQ(�) := (PES)�1(L�) of S. A section � of S such
that E�S (�) = � is a section of LQ(�). Since such � must be nowhere-vanishing (because � is), it
exists if and only if LQ(�) is trivial, which happens if and only if its �rst Stiefel-Whitney class
vanishes. The conclusion follows by setting cQ(�) := w1(LQ(�)) 2 H1(M;Z2). Notice that cQ(�)
depends only on � and Q, since the Cli�ord bundle (S;�) is associated to Q while all admissible
pairings of (S;�) are related to each other by automorphisms of S, see Remark 2.4. □
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We will refer to the cohomology class cQ(�) 2 H1(M;Z2) occurring the previous proposition
as the spinor class of the nowhere-vanishing polyform � 2 Im(E�� ). Note that cQ(�) is not a
characteristic class of S, since it depends on �.

Lemma 4.17. Let (S;�;B) be a paired real spinor bundle on (M; g), (SL;�L) be the mod-
i�cation of (S;�) by a real line bundle L on M . For every vector bundle trivialization
q : L 
 L ! M � R, B extends naturally an admissible bilinear pairing BL on (SL;�L),
making (SL;�L;BL) into a paired real spinor bundle.

Proof. Recall from Proposition 4.4 that �L = '�1L � �. A simple computation gives:

BL(�1 
 l1; �2 
 l2) = q(l1 
 l2)B(�1; �2) 8 �1; �2 2 �(S) 8 l1; l2 2 �(L)

which immediately implies the conclusion. □

The following proposition shows that cQ(�) can be made to vanish by changing Q.

Proposition 4.18. Let (S;�;B) be a paired real spinor bundle associated to a Spino(V
�; h�)-

structure Q on (M; g). For every nowhere-vanishing polyform � 2 Im(E�), there exists a
unique Spino(V

�; h�)-structure Q0 on (M; g), possibly distinct from Q, such that cQ0(�) = 0.

Proof. Suppose for de�niteness that � 2 Im(E�+). Let (S;�) be the irreducible real spinor
bundle associated to Q and set L := L+Q(�) � S. By Remark 4.9, isomorphism classes of
Spino(V

�; h�)-structures on (M; g) form a torsor over H1(M;Z2). Let Q0 = cQ(�) � Q be the
spin structure obtained from Q by acting in this torsor with cQ(�). Then the irreducible real
spinor bundle associated to Q0 coincides with (SL;�L). Pick an isomorphism q : L
2 ' M � R
and equip SL with the admissible pairing BL constructed as in Lemma 4.17. Since	�L = '�1L �	�,
it follows E�+ = 	�1� � (�
 IdS) and the positive spinor square maps of (SL;�L;BL) and (S;�;B)
are related through:

E�L+ = E�+ � IdS
S 
q :
Since (IdS
S 
q)(L
2 
 L
2) = L
2 (where L
2 is viewed as a sub-bundle of SL = S 
 L),
this gives E�L+ (L
2 
 L
2) = E�+(L 
 L), which implies E�L+ (L
2) = E�+(L) = L� Hence the
line sub-bundle of SL determined by � is the trivializable real line bundle L
2 ' RM . Thus
cQ0(�) = 0. □

4.5. Di�erential spinors and spinorial exterior forms. Let (S;�;B) be a paired spinor
bundle. Let q := (	� 
 IdW) 2 
�(M;W) be the symbol of Q 2 �(End(S) 
W) (see De�nition
4.5). Proposition 2.26 implies:

Lemma 4.19. A spinor � 2 �(S) satis�es:

Q(�) = 0

if and only if one of the following mutually-equivalent relations holds:

q �g � = 0 ; � �g (�
1��
2 � � )(q) = 0

where � := E�+ 2 
(M) is the positive polyform square of �.

Now assume that (S;�;B) is an irreducible real spinor bundle on (M; g). Set A := rS � D 2

1(M;End(S)) and let a := (	� 
 IdT �M )�1(A) 2 
1(M;^M) be the symbol of A, viewed as a
^M -valued one-form. We have:

Lemma 4.20. A spinor � 2 �(S) satis�es D� = 0 if and only if:

rg� = a � �+ � � (� 1��
2 � � )(a) (68)

where � := E�+(") is the positive polyform square of �.
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Proof. Assume that � satis�es rg� = A(�). We have E" := E+(") 2 �(End(S)) and:

(rgE")(�) = rg(E"(�))� E"(rg�) = rg(B(�; �) �)�B(rg�; �) �

= B(�;rg�) �+B(�; �)rg� = B(�;A(�)) �+B(�; �)A(�) = E"(At(�)) +A(E"(�))

for all � 2 �(S), where At denotes the adjoint of A with respect to B. The previous equation
implies:

rgE" = A � E" + E" � At : (69)

Applying 	�1� and using Lemma 2.15 and Proposition 4.1 gives (68). Conversely, assume that �
satis�es (68). Applying 	� gives equation (69), which in turn can be rewritten as follows:

B(�;Dv�) �+B(�; �)Dv� = 0 (70)

for every � 2 �(S) and every v 2 X(M). Hence Dv� = �(v)� for some � 2 
1(M). Using this in
(70) gives:

B(�; �)� 
 � = 0 8 � 2 �(S) :

This implies � = 0, since B is non-degenerate and � is nowhere-vanishing. Hence D� = 0. □

Remark 4.21. If A is skew-symmetric with respect to B, then (68) simpli�es to:

rg� = a � �� � � a : (71)

For the type of di�erential spinors occurring in the supersymmetric con�gurations of supergravity
A need not be skew-symmetric relative to B.

We arrive to the �nal characterization of di�erential spinors in terms of their associated spinorial
polyform that we will use throughout this dissertation.

Theorem 4.22. Let (S;�;B) be a paired spinor bundle associated to a Spino(V
�; h�)-structure

Q and whose admissible form B has adjoint type � 2 Z2 and symmetry type s 2 Z2. Let
A 2 
1(M;End(S)) and Q 2 �(End(S)
W). Then the following statements are equivalent:

(1) There exists a nontrivial constrained di�erential spinor � 2 �(S) with respect to (A;Q).
(2) There exists a nowhere-vanishing polyform � 2 
(M) with vanishing cohomology class

cQ(�) which satis�es the following algebraic and di�erential equations for every polyform
� 2 
(M):

� �g � �g � = 2
d
2 (� �g �)(0)� ; (�

1��
2 � � )(�) = s� (72)

rg� = a �g �+ � �g (�
1��
2 � � )(a) ; q �g � = 0 (73)

or, equivalently, satis�es the equations:

� �g � = 2
d
2�(0)� ; (�

1��
2 � � )(�) = s� ; � �g � �g � = 2

d
2 (� � �)(0)� (74)

rg� = a �g �+ � �g (�
1��
2 � � )(a) ; q �g � = 0 (75)

for some �xed polyform � 2 
(M) such that (� � �)(0) 6= 0.

If � 2 �(S) has chirality � 2 Z2, then we have to add the condition:

�g(� � � )(�) = �� :

The polyform � as above is determined by � through the relation:

� = E�� (�)
for some � 2 Z2. Moreover, � satisfying the conditions above determines a nowhere-
vanishing real spinor � satisfying this relation, which is unique up to sign.
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Remark 4.23. Suppose that � 2 
(M) is nowhere-vanishing and satis�es (72) and (73) but
we have cQ(�) 6= 0. Then Proposition 4.18 implies that there exists a unique Spino(V

�; h�)-
structure Q0 such that cQ0(�) = 0. Thus � is the square of a global section of a paired spinor
bundle (S0;�0;B0) associated to Q0. Hence a nowhere-vanishing polyform � satisfying (72) and
(73) corresponds to the square of a di�erential spinor with respect to a uniquely-determined
Spino(V

�; h�)-structure.

Proof. The algebraic conditions in the Theorem follow from the pointwise extension of
Theorem 2.19 and Corollary 2.28. The di�erential condition follows from Lemma 4.20, which
implies that rg� = A(�) holds if and only if (73) does upon noticing that � 2 �(S) vanishes at a
point m 2M if and only if its positive polyform square � satis�es �jm = 0. Condition cQ(�) = 0
follows from Proposition 4.16. □

In practical applications, such as in the study of supersymmetric con�gurations of supergravity
theories, the speci�c form of A and Q as vector-valued endomorphisms of S is usually not relevant.
Instead, only their symbols are relevant. This is because usually the supersymmetry conditions
are directly expressed in terms of polyforms acting via Cli�ord multiplication on locally de�ned
spinors. If this type of situations we would be interested in studying di�erential spinors with
respect to any pair (A;Q) that has a given �xed symbol (a; q) (which does not depend on the
choice of paired spinor bundle but only on the underlying pseudo-Riemannian structure). In fact,
if H1(M;Z2) = 0 then there is a unique paired spinor bundle modulo isomorphism and in this
case (A;Q) and (a; q) are equivalent via a canonical isomorphism.

Corollary 4.24. Let (M; g) be a strongly spin pseudo-Riemmanian manifold of signature
(p � q) �8 0; 2 and let a 2 
1(M;^M) and q 2 �(^M 
 W) given. Then, (M; g) admits a
constrained di�erential spinor with respect to any pair (A;Q) whose symbol is (a; q) if and
only if there exists a polyform � 2 
(M) satisfying the following algebraic and di�erential
equations:

� �g � = 2
d
2�(0)� ; (�

1��
2 � � )(�) = s� ; � �g � �g � = 2

d
2 (� � �)(0)�

rg� = a �g �+ � �g (� 1��
2 � � )(a) ; q �g � = 0

for a �xed polyform � 2 
(M) such that (� �g �)(0) 6= 0.

The previous corollary is especially well-adapted to study the geometric and topological conse-
quences of the existence of constrained di�erential spinors when the speci�c expression for the
spinors themselves is not in itself relevant. We will make extensive use of it throughout this
dissertation.





CHAPTER 3

Irreducible spinor bundles and parabolic pairs

In this chapter we specialize the theory of di�erential spinors and spinorial polyforms de-
veloped in the previous chapter to the speci�c case of Lorentzian four-manifolds, which will be the
case of interest for the remaining of this dissertation. We begin with the study of the algebraic
theory of irreducible real spinors in four Lorentzian dimensions to then proceed to investigate the
most general type of di�erential spinor in this dimension and signature.

1. Algebraic spinorial polyforms

1.1. Parabolic pairs on Minkowski space. Let (V; h) be a Minkowski space of mostly plus
signature (� + ++) which we consider to be oriented and time-oriented. That is, we �x a time-
like element in V and a volume form �h 2 ^4V , which is necessarily of negative unit norm and
therefore also time-like. The quadratic vector space dual of (V; h) and endowed with the induced
orientation will be denoted by (V �; h�). The unique, modulo isomorphism, irreducible real Cli�ord
module (�; 
) of Cl(V �; h�) is four-dimensional and its admissible pairings B+ and B� are both
skew-symmetric, see the table provided in Theorem 2.1. In the following we choose to work with
the admissible pairing B = B� of negative adjoint type since we �nd it yields a spinorial polyform
that is more convenient for computations, although we could have equivalently chosen to work
with B+. For every non-zero isotropic vector u 2 V � we de�ne the following equivalence relation
�u on V �:

l1 �u l2 if and only if l1 = l2 + c u ; c 2 R :

We will refer to transformations of the form V � 3 l 7! l + cu 2 V � as gauge transformations
generated by u, and we will denote by [l]u the equivalence class determined by any element l 2 V �.
Definition 1.1. A parabolic pair is a pair (u; [l]u) 2 V � � (V �= �u) satisfying:

u 6= 0 ; h�(u; u) = 0 ; h�(l; l) = 1 ; h�(u; l) = 0 (76)

for any, and hence for all, representatives l 2 [l]u.

Non-zero elements in V � or V of zero norm will be called isotropic in the following. We denote by
P(V ) the category whose objects Ob(P(V )) are tuples (h; u; [l]u) consisting of a Lorentzian metric
h on V and a parabolic pair (u; [l]u) on (V; h), and whose morphisms are invertible isometries
that preserve the corresponding parabolic pairs. That is, if (h1; u1; [l1]u1) and (h2; u2; [l2]u2) are
elements in Ob(P(V )), then a morphism:

T : (h1; u1; [l1]u1)! (h2; u2; [l2]u2)

in the category P(V ) is a linear map:

T : V ! V

such that:

T �h1 = h2 ; T �u1 = u2 ; T �([l1]u1) := [T �(l1)]T �(u1) = [l2]u2

The last equation above is consistent since T is an isometry that preserves u. Hence, for any c 2 R
we have:

T �(l1 + cu1) = T �(l1) + cu2

57
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showing that the action of T : V ! V on [l1]u1 does not depend on the representative chosen.
The main theorem of this section is the following characterization of irreducible real spinors on
four-dimensional Minkowski space, which justi�es the notion of parabolic pair introduced above.

Theorem 1.2. A polyform � 2 ^V � is the square of a nonzero spinor, that is, it belongs to
the set Z�;�(V �; h�), if and only if there exists a parabolic pair (u; [l]u) 2 Ob(P(V )) such that

� = u+ u ^ l (77)

where l 2 V � is any representative of [l]u 2 V �= �u . If this is the case, the parabolic pair
(u; [l]u) is uniquely determined by �.

Proof. Let:

� =

4X
k=0

�(k) 2 ^V � ; �(k) 2 ^kV � 8 k = 0; : : : ; 4 :

By Theorem 2.19, � lies in Z�;�(V �; h�) if and only if the following relations hold for � = 1 and
for a polyform � such that (� � �)(0) 6= 0:

� � � � � = 4 (� � �)(0) � ; (� � � )(�) = �� : (78)

Condition (��� )(�) = �� implies �(0) = �(3) = �(4) = 0. Thus � = u+!, where u := �(1) 2 ^1V �
and ! := �(2) 2 ^2V �. For � = 1, the �rst condition in (78) gives (u + !) � (u + !) = 0, which
reduces to the following relations upon expanding the geometric product:

h�(u; u) = h!; !ih ; ! ^ u = 0 : (79)

Here h�; �ih is the determinant metric induced by h on ^V �. The second condition in (79) amounts
to ! = u^ l for some l 2 V � determined up to gauge transformations generated by u 2 V �. Using
this in (79) gives the condition:

(h�(l; l)� 1)h�(u; u) = h�(u; l)2 (80)

which is invariant under gauge transformations generated by u. For � = u, the �rst equation in
(78) amounts to h�(u; u) = 0, whence h�(u; l) = 0 by (80). It remains to show that h�(l; l) = 1.
Since u is non-zero and null, there exists a non-zero null one-form v 2 V � such that h�(v; u) = 1.
We have (v � v)(0) = (v � (u + u ^ l))(0) = h�(v; u) = 1 and therefore (v � �)(0) 6= 0, as required
in Theorem 2.19 for v to be an appropriate choice of �. Taking � = v, the �rst condition in (78)
reduces to:

(u+ u ^ l) � v � (u+ u ^ l) = 4 (u+ u ^ l) :

A direct computation shows that this equation amounts to h�(l; l) = 1 and thus we conclude. □

Remark 1.3. Given the time-like orientation t 2 V � of V �, denote by Pt : V
� ! R t the orthogonal

projection onto the line spanned by t. It follows that for every parabolic pair (u; [l]u) on (V; h) a
canonical choice of representative l 2 [l]u is obtained by imposing the condition:

Pt(l) = 0 :

Indeed, given l 2 V � of unit norm and orthogonal to u, there exists a unique c 2 R such that
Pt(l+c u) = 0. As we will see in Chapter 6 this gauge choice is useful to study spinors on globally
hyperbolic Lorentzian four-manifolds.

Remark 1.4. As a consistency check we can informally count the degrees of freedom encoded in
� = u + u ^ l. A priori, the null one-form u has three degrees of freedom while the space-like
one-form l has four, which are reduced to two by the requirements that l be of unit norm and
orthogonal to u. Since l is de�ned only up to gauge transformations l 7! l + c u, c 2 R, its
number of degrees of freedom further reduces from two to one. This gives a total of four degrees
of freedom, matching those of an irreducible real spinor in four-dimensional Lorentzian signature.
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1.2. Null basis and parabolic pairs. Let (u; [l]u) be a parabolic pair on (V; h). The orthogonal
complement u?h � V � of u 2 V � in (V �; h�) is a three-dimensional vector subspace of V � that
contains again u 2 u?h . Hence, the quotient:

Su =
u?h

u

is well-de�ned and determines a two-dimensional vector space on which the metric h� restricts to
a Riemannian metric that we denote by qu. Since V is oriented and time-oriented, Su inherits a
canonical orientation which, together with the metric qu de�nes a Hodge operator that we denote
by �qu : ^Gu ! ^Gu. Applying this Hodge operator to [l]u we obtain a canonical element:

[n]u = �qu [l]u
for a unit one-form n 2 V � orthogonal to u and unique modulo gauge transformations of the form
n 7! n + cu with c 2 R. In particular, we can think of (u; [n]u) as a parabolic pair canonically
associated to (u; [l]u). This implies, in particular, that parabolic pairs occur always in canonical
pairs. Given (u; [l]u), when necessary we will refer to (u; [n]u) as its associated parabolic pair.
We obtain a short exact sequence:

0! hRui ! (u?h ; h�ju?h )! (Su; h
�
u)! 0 (81)

where hRui denotes the line spanned by u in V �. Given an isotropic vector u 2 V �, we say that
an element v 2 V � is conjugate to u if v is also isotropic and h�(u; v) = 1. Similarly, given a
parabolic pair (u; [l]u), we say that an element v 2 V � is conjugate to (u; [l]u) if v is conjugate
to u. Conjugate vectors to a given isotropic vector u 2 V � are not unique. Instead, a direct
computation gives the following result.

Proposition 1.5. Let v 2 V � be conjugate to an isotropic vector u 2 V �. Any other vector
v0 2 V � conjugate to u is given by:

v0 = v � 1

2
jwj2hu+w (82)

for a unique element w 2 (hRui� hR vi)?h , where (hRui� hR vi)?h � V � denotes the orthog-
onal complement of the span on u and v in V �.

Remark 1.6. Vectors conjugate to a given isotropic vector u 2 V � are in one-to-one correspon-
dence with splittings of the short exact sequence (81). Such splittings are in turn an a�ne space
of R2, as expected from the previous proposition.

Proposition 1.7. Let (u; [l]u) be a parabolic pair. Every choice of isotropic vector v 2 V �

conjugate to (u; [l]u) canonically determines a positively oriented basis (u; v; l; n) of V
�, where

l 2 [l]u and n 2 [n]u are unit vectors uniquely determined by:

l; n 2 (hRui � hR vi)?h

that is, uniquely determined by the condition of being orthogonal to the span of u and v.

Proof. Let (u; [l]u) be a parabolic pair and let v 2 V � be conjugate to (u; [l]u). Let l 2 [l]u
be the unique representative in [l]u that is orthogonal to v. Such l is orthogonal to both u and
v, and thus the three-dimensional real span of (u; v; l) is a non-degenerate vector subspace of
(V �; h�). Therefore, there exists a unique element n 2 V � such that:

h(u; n) = h(v; n) = h(l; n) = 0 ; jnj2h = 1

and such that the basis (u; v; l; n) of V � is positively oriented. Equivalently, n can be explicitly
de�ned by the equation n = � �h (u ^ v ^ l). □

Therefore, a choice of isotropic vector v 2 V � conjugate to a parabolic pair (u; [l]u) determines a
canonical basis (u; v; l; n) of V � to which we will refer as the null basis determined by (u; [l]u)
and v. Given (u; v; l; n), we denote again by qu the restriction of h to (hRui � hR vi)?h since the
abstract vector bundle Gu is isomorphic to (hRui � hR vi)?h . Note that qu = l
 l+ n
 n.
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Proposition 1.8. Let (u; [l]u) be a parabolic pair on (V; h). Given null basis (u; v; l; n) and
(u; v0; l0; n0) associated to (h; u; [l]u), there exists a unique vector w 2 (hRui � hR vi)?h such
that:

(u; v0; l0; n0) = (u; v � 1

2
jwj2hu+w; l�w(l)u; n�w(n)u) (83)

In particular, the set of null basis associated to (h; u; [l]u) is a torsor over the vector space
(hRui � hR vi)?h .

Proof. By Proposition 1.5 we have:

v0 = v � 1

2
jwj2hu+w

for a unique element w 2 (hRui � hR vi)?h . Since (u; v0; l0; n0) is a positively oriented null basis
of V � associated to the same parabolic pair (u; [l]u) and (u; v; l; n) is in particular a basis of V �,
we can write:

l0 = l+ auu ; n0 = buu+ bvv + bll+ bnn

for constants au; bu; bv; bl; bn 2 R. Imposing that:

h�(u; l0) = h�(u; n0) = h�(v0; l0) = h�(v0; n0) = h�(l0; n0) = 0 ; h�(l0; l0) = h�(n0; n0) = 1

we obtain:
bv = bl = 0 ; au = �h�(w; l) ; bu = �h�(w; n) ; bn = 1

and hence we conclude. □

Identifying (hRui � hR vi)?h = R2 we conclude that set of null basis associated to (h; u; [l]u) is a
R2 torsor precisely with respect to the action de�ned by (83).

Remark 1.9. By the previous discussion, a null basis associated to the parabolic pair correspond-
ing to a real irreducible spinor in four Lorentzian dimensions determines a real version of the
notion of complex tetrad used in the Newman-Penrose formalism [188]. More precisely, given a
null basis (u; v; l; n) 2 P(u; [l]u) as introduced above, we obtain a complex null tetrad as follows:

(u; v;	 = l+ in; �	 = l� in)
When necessary, we will refer to the previous tuple as the complex null tetrad associated to the
null basis (u; v; l; n).

We introduce the category F(V ) whose objects are equivalence classes [u; v; l; n] of oriented basis
(u; v; l; n) of V � with equivalence relation given by:

(u0; v0; l0; n0) 2 [u; v; l; n]

if and only if u0 = u and there exists an element w 2 (hRui � hR vi)?h such that Equation (83)
holds. Here the metric h is given by:

h = u� v + l
 l+ n
 n = u0 � v0 + l0 
 l0 + n0 
 n0

Morphisms in F(V ) are linear automorphisms of V that map equivalence classes to equivalence
classes in the natural way. That is, if [u; v; l; n]; [u0; v0; l0; n0] 2 Ob(F(V )), then a morphism:

T : [u; v; l; n]! [u0; v0; l0; n0]

in the category F(V ) is a linear map T : V ! V such that:

T ([u0; v0; l0; n0]) := [T �u0; T �v0; T �l0; T �n0] = [u; v; l; n]

This is well de�ned, since, for any other representative in [u0; v0; l0; n0] we have:

T �(v0 � 1

2
jw0j2h0u0 + w0) = v � 1

2
jw0j2h0u+ T �w0 = v � 1

2
jT �w0j2hu+ T �w0
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where w0 2 (hRu0i � hR v0i)?h0 . Note that we have T �w0 2 (hRui � hR vi)?h . Similarly:

T �(l0 � hw0; l0ih0u0) = l� hT �w0; T �l0ihu ; T �(l0 � hw0; l0ih0u0) = l� hT �w0; T �l0ihu

Hence, the equivalence class of [u; v; l; n] is preserved. All together previous discussion yields the
following result.

Proposition 1.10. There exists a natural equivalence of categories:

E : F(V )! P(V )

that maps (u; v; n; l) 2 Ob(F(V )) to (h; u; [l]u) 2 Ob(P(V )), where h = u� v + l
 l+ n
 n.
Remark 1.11. We recall that two categories are considered to be equivalent if there exists a fully
faithful and essentially surjective functor between them.

Proposition 1.10 allows us to equivalently use parabolic pairs or equivalence families of coframes
to study geometric problems involving di�erential spinors in four Lorentzian dimensions. This
will be especially crucial in Chapter 4 to describe skew-torsion parallel spinors in terms of an
exterior di�erential system. To end this subsection we recall the identities:

�hu = �u ^ l ^ n ; �hv = v ^ l ^ n ; �hl = u ^ v ^ n ; �hn = �u ^ v ^ l
�h(u ^ v) = �l ^ n ; �h(u ^ l) = u ^ n ; �h(v ^ l) = �v ^ n ;

�h�g = �1 ; �2hj^1V � = 1 ; �2hj^2V � = �1 ; �w �h � = �h(� ^ w)

for every w 2 V � and every � 2 ^V �. This formulae will be extensively used throughout the
dissertation.

1.3. The stabilizer of a parabolic pair. Since the spinor square map is equivariant with
respect to the natural action of Spino(V

�; h�) on both its source and target spaces, we can study
the stabilizer I" � Spino(V

�; h�) in Spino(V
�; h�) of a spinor " 2 � through the stabilizer I�" �

SOo(V
�; h�) of its associated spinorial polyform �" 2 ^V �. More precisely, if � : Spino(V

�; h�)!
SOo(V

�; h�) is the double cover of SOo(V
�; h�), then:

�(I") = I�"
implying that either I" is a double cover of I�" or are otherwise isomorphic. The latter case occurs
in particular if I�" is simply connected. As proven in Theorem 1.2, the square of an irreducible
real spinor in four Lorentzian dimensions is a spinorial polyform of the following type:

�" = u+ u ^ l

for a uniquely determined null one-form u 2 V � and a unit one-form l 2 V � that is uniquely
determined modulo gauge transformations generated by u. The pair (u; l) uniquely determines
the parabolic pair (u; [l]u) associated to " that we use to characterize the stabilizer of the latter.

Lemma 1.12. Let T 2 SOo(V
�; h�) and " 2 � with associated spinorial polyform �" 2 ^V �.

Then, T (�") = �" if and only if T (u) = u and T (l) = l+ cu for a certain constant c 2 R, that
is, if and only if T preserves the parabolic pair associated to " 2 �.

Remark 1.13. The natural action of the special orthogonal group SOo(V
�; h�) on any element

� 2 ^V � is denoted simply by the symbol T (�) for every T 2 SOo(V
�; h�)

Proof. The result follows from the standard formula:

T (�") = T (u+ u ^ l) = T (u) + T (u) ^ T (l)

Imposing T (�") = �" gives T (u) = u as well as u ^ (l� T (l)) = 0 and hence we conclude. □
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Hence, we can study the stabilizer of a spinorial polyform in terms of the stabilizer of the corre-
sponding parabolic pair. In particular:

I�" = AutP(V )(h; u; [l]u)

that is, I�" is the automorphim group of (h; u; [l]u) in the category P(V ). This allows for an alter-
native and immediate characterization of I" using the theory of parabolic pairs developed in the
previos subsection. Since Proposition 1.10 is an equivalence of categories, T 2 AutP(V )(h; u; [l]u)
if and only if T 2 AutF(V )([u; v; l; n]), where E([u; v; l; n]) = (h; u; [l]u). However:

T 2 AutF(V )([u; v; l; n]) , T ([u; v; n; l]) = [u; v; l; n]

and therefore there exists a unique w 2 (hRui � hR vi)?h such that:

(T �u; T �v; T �l; T �n) = (u; v � 1

2
jwj2hu+ w; l� h�(w; l)u; n� h�(w;n)u)

and therefore we obtain a natural group isomorphism R2 = AutP(V )(h; u; [l]u). Elaborating on
this result, we obtain the following characterization of the stabilizer of I".
Proposition 1.14. The stabilizer I" of an irreducible real spinor " 2 �n f0g is isomorphic
to R2 and projects via the spin double cover map to the following subgroup of SOo(3; 1):

Io =

0
BB@

1 � 1
2 (c

2
1 + c22) �c1 �c2

0 1 0 0
0 c1 1 0
0 c2 0 1

1
CCA

where c1; c2 2 R.

Proof. By the previous discussion, the stabilizer of a parabolic pair is isomorphic to R2.
Since R2 is connected and simply connected, Spino(V

�; h�) is connected and the spinor square
map is equivariant with respect to the double cover Spino(V

�; h�) ! SOo(V
�; h�) we conclude

that the connected component of the stabilizer of an irreducible real spinor in Spino(V
�; h�) is

also isomorphic to R2. Its image in SOo(3; 1) is computed from Equation (1.3) after identifying
SOo(3; 1) = SOo(V

�; h�) using the given basis (u; v; l; n). □

This result is of course well-known in the literature. Here we have highlighted how it easily follows
as a natural consequence the theory of parabolic pairs.

2. Di�erential spinors

Let (M; g) be a strongly spin Lorentzian four-manifold of mostly plus signature with time-
like orientation t 2 X(M). By strongly spin we mean that (M; g) admit spin structures that reduce
to the identity component Spino(3; 1) � Spin(3; 1) of the spin grupo Spin(3; 1). This condition
guarantees the existence of admissible bilinear pairings on the irreducible real spinor bundles
associated to such spin structures. In this section we extend the algebraic notion of parabolic pair
introduced in the previous section to (M; g) and we apply it to the study of di�erential spinors on
(M; g). For ease of notation we will always consider vector �elds to be identi�ed with one-forms
by means of g.

Definition 2.1. A one-form on (M; g) is isotropic if it is nowhere vanishing and g(u; u) = 0.

For every isotropic one-form u 2 
1(M) we de�ne the following equivalence relation �u on 
1(M):

l1 �u l2 if and only if l1 = l2 + fu ; f 2 C1(M) :

Transformations of the form 
1(M) 3 l 7! l + fu 2 
1(M) will be again referred to as gauge
transformations generated by u. We will denote by [l]u the equivalence class determined by an
element l 2 
1(M).



2. Di�erential spinors 63

Definition 2.2. A parabolic pair on (M; g) is an element (u; [l]u) 2 
1(M) � (
1(M)= �u)
consisting of an isotropic one-form u 2 
1(M) and an equivalence class [l]u satisfying:

h�(l; l) = 1 ; h�(u; l) = 0 (84)

for any, and hence for all, representative l 2 [l]u.

The point behind the previous de�nition is of course the following characterization of non-
vanishing spinors on (M; g), which follows directly from Theorem 1.2.

Proposition 2.3. A strongly spin Lorentzian four-manifold (M; g) admits a nowhere van-
ishing irreducible real spinor if and only if it admits a parabolic pair.

Note that a parabolic pair (u; [l]u) determines the corresponding spinor " uniquely modulo a global
sign. Let " be a di�erential spinor on (M; g) with associated parabolic pair (u; [l]u). Since u is
isotropic, we can consider its associated screen bundle Su, de�ned as the following vector bundle
quotient:

Su = u?g=hRui
where u?g � TM is the regular distribution orthogonal to the line bundle hRui � T �M de�ned
as the distribution spanned by u. Hence, Su is a rank-two vector bundle over (M; g) �tting into
the following short exact sequence of vector bundles:

0! hRui ! u?g ! Su ! 0 (85)

which gives the global analog of (81). We will refer to Su as the screen bundle associated to either
the di�erential spinor " or its parabolic pair (u; [l]u). Since u is isotropic, the Lorentzian metric
descends to Su, where it de�nes a Riemannian metric qu as follows:

qu([v1]u; [v2]u) = g(v1; v2)

where [v1]u; [v2]u 2 Su denote the equivalence classes determined by v1; v2 2 u?g . In contrast
to the screen bundle associated to a general isotropic vector, the screen bundle associated to a
di�erential spinor is always trivial, as the following result shows.

Proposition 2.4. The screen bundle associated to the parabolic pair (u; [l]u) is canonically
trivialized by [l]u and its Hodge dual �qu [l]u with respect to qu.

Proof. Since (M; g) is oriented and time-oriented by assumption, Su inherits a canonical
orientation and hence a Hodge operator associated to the metric qu. The equivalence class [l]u is
a section of Su and its Hodge dual with respect to qu and the canonical orientation determines
an orthogonal section [n]u 2 Su. The pair ([l]u; [n]u) de�nes a canonical trivialization of Su. □

Given a isotropic one-form u 2 
1(M) on (M; g), we say that a one-form v 2 
1(M) is conjugate
to u if v is also isotropic and g(u; v) = 1. The fact that (M; g) is oriented and time-oriented
implies, via decomposition of u and a direct construction of v, that every isotropic one-form on
(M; g) admits conjugates. Furthermore, Proposition 1.5 immediately implies that if v; v0 2 
1(M)
are both conjugate to u, then:

v0 = v � 1

2
jwj2gu+w

for a unique one-form w 2 
1(M) orthogonal to both u and v. Proposition 1.7 gives the following
analog result globally on (M; g).

Proposition 2.5. Let (u; [l]u) be a parabolic pair on (M; g). Every choice of isotropic one-
form v 2 
(M) conjugate to (u; [l]u) canonically determines a positively oriented coframe
(u; v; l; n) on M , where l 2 [l]u and n 2 [n]u are unit vectors uniquely determined by the
condition l; n 2 (hRui � hR vi)?h .

We will refer to the global coframes (u; v; l; n) occurring in the previous proposition as isotropic
coframes associated to (u; [l]u). Similarly to the previous result, Proposition 1.8 gives the follow-
ing analog result globally on (M; g).
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Proposition 2.6. Let (u; [l]u) be a parabolic pair on (M; g). Given isotropic coframes (u; v; l; n)
and (u; v0; l0; n0) associated to (u; [l]u), there exists a unique vector �eld w 2 �(hRui�hR vi)?h

such that:

(u; v0; l0; n0) = (u; v � 1

2
jwj2gu+w; l�w(l)u; n�w(n)u) (86)

In particular, the set of isotropic coframes associated to (u; [l]u) is a torsor over the in�nite-
dimensional vector space �(hRui � hR vi)?h .

Remark 2.7. Any isotropic coframe (u; v; l; n) de�nes a smooth trivialization of TM . In par-
ticular, every strongly spin Lorentzian four-manifold admitting a nowhere vanishing irreducible
real spinor is parallelizable. Indeed, since the stabilizer of a nowhere vanishing spinor is the
non-compact Lie group R2 � Spino(3; 1) the frame bundle reduces to the identity and conse-
quently a strongly spin Lorentzian four-manifold admits a nowhere vanishin spinor �eld if and
only if it is parallelizable. This will pose no topological obstruction for the study of di�erential
spinors on globally hyperbolic Lorentzian four-manifolds in later chapters, since every orientable
three-manifold is parallelizable.

A choice of one-form v 2 
1(M) conjugate to a given parabolic pair (u; [l]u) de�nes a realization
of the abstract screen bundle Gu as the codimension-two distribution in T �M spanned by l and
n. That is:

Gu
'�! (hRui � hR vi)?g

Given an isotropic coframe on (u; v; l; n) on M we will denote by q the Euclidean metric de�ned
by g on the distribution (hRui � hR vi)?g and by �q the corresponding Hodge dual associated to
q and the induced natural orientation.

We denote by P(M) the category whose objects are tuples (g; u; [l]u) consisting of a
Lorentzian metric g on M and a parabolic pair (u; [l]u) on (M; g), and whose morphisms are
invertible isometries that preserve the corresponding parabolic pairs, in complete analogy to the
category P(V ) introduced in the previous section. In addition, and similarly to the category F(V )
de�ned in the previous section, we also introduce the category F(M) whose objects are equiva-
lence classes [u; v; l; n] of oriented coframes (u; v; l; n) on M with respect to the same pointwise
equivalence relation as in the de�nition of F(V ). Given their importance in this dissertation, we
introduce the following terminology to refer to the objects of F(M).

Definition 2.8. An isotropic parallelism is an element [u; v; l; n] 2 Ob(F(M)), that is, it is an
equivalence class of isotropic coframes on M with respect to the equivalence relation de�ned by
Equation (86).

The equivalence of categories of Proposition 1.10 extends naturally to P(M) and F(M) and
therefore we have a fully faithful essentially surjective functor:

E : F(M)! P(M)

de�ned in complete analogy to Proposition 1.10. The main goal of this section is to characterize
di�erential spinors relative to A 2 
1(M;End(S)) and Q 2 �(End(S))) with symbol given by
a �xed pair (a 2 
(M;^M); q 2 �(^M)) in terms of solutions to a di�erential system for the
associated parabolic pairs or isotropic parallelisms. As remarked earlier, we are not interested
per se on the speci�c form of the di�erential spinor " 2 �(S) but on the precise geometric and
topological consequences of its existence. For simplicity in the exposition, we will sometimes refer
to the parabolic pair associated to a di�erential spinor as a di�erential parabolic pair.

Proposition 2.9. A strongly spin Lorentzian four-manifold (M; g) admits a di�erential
spinor relative to a 2 
1(M;^M) if and only if it admits a parabolic pair (u; [l]u) satis-
fying the following di�erential system:

1
2rg

wu = a
(0)
w u� u ^ l⌟ga(1)w + l ^ u⌟ga(1)w � u⌟ga(2)w + u⌟gl⌟ga

(3)
w (87)

1
2u ^ (rg

wl+ 2P
?g

l (a
(1)
w ) + 2l⌟ga

(2)
w ) = l ^ u⌟gl⌟ga(3)w + u⌟ga

(3)
w + u⌟gl⌟ga

(4)
w (88)
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for every vector �eld w 2 X(M) and for any, and hence for all, representatives (u; l) 2
(u; [l]u), where P

?g

l : T �M ! T �M denotes projection to the orthogonal complement of l in
the cotangent bundle T �M .

Proof. By Theorem 4.22, the statement is equivalent to (M; g) admitting a parabolic pair
(u; [l]u) satisfying:

rg
w(u+ u ^ l) = aw �g (u+ u ^ l) + (u+ u ^ l) �g (� � � )(aw) (89)

for every vector �eld w 2 X(M) and for any representative (u; l) 2 (u; [l]u). Writing:

a =

4X
k=0

a(k) ; a(k) 2 
1(M;^kM) (90)

we have:

(� � � )(a) = a(0) � a(1) � a(2) + a(3) + a(4) :

We compute:

a �g u = u �g �(a)� 2u⌟g�(a)

a �g (u ^ l) = a �g u �g l = u �g l �g a� 2u ^ l⌟ga+ 2 l ^ u⌟ga

Hence:

rg
w(u+ u ^ l) = 2u �g (a(0)w � a

(1)
w + a

(4)
w ) + 2 (u ^ l) �g (a(0)w + a

(3)
w + a

(4)
w )

�2u⌟g�(aw)� 2u ^ l⌟gaw + 2l ^ u⌟gaw
for every vector �eld w 2 X(M). Isolating terms in the previous equation by degree, we obtain
non-trivial conditions only in �rst and second degree:

1
2rg

wu = u a
(0)
w � u ^ l⌟ga(1)w + l ^ u⌟ga(1)w � u⌟ga(2)w + u⌟gl⌟ga

(3)
w

1
2rg

w(u ^ l) = u ^ l a(0)w � u ^ a
(1)
w + l ^ u⌟ga(2)w � u ^ l⌟ga(2)w + u⌟ga

(3)
w + u⌟gl⌟ga

(4)
w

The �rst equation above gives the �rst equation in the statement of the proposition. Together
with the second equation, we obtain:

1

2
u ^ (rg

wl+ 2P
?g

l (a(1)w ) + 2l⌟ga
(2)
w ) = l ^ u⌟gl⌟ga(3)w + u⌟ga

(3)
w + u⌟gl⌟ga

(4)
w

where P
?g

l (a
(1)
w ) denotes the projection of a(1)w to the orthogonal complement of l in T �M . □

We can reformulate Proposition 2.9 in simpler terms as follows.

Corollary 2.10. A strongly spin Lorentzian four-manifold (M; g) admits a di�erential
spinor if and only if it admits a parabolic pair (u; [l]u) satisfying Equations (87) and (88)
for some one-form valued polyform a 2 
1(M;^M).

Let (S;�;B) be a paired spinor bundle and let A 2 
1(M;End(S)) with symbol a 2 
1(M;^M).
In the previous proposition we have expanded A as prescribed in Equation (90). Exploiting the
fact that M is oriented and four-dimensional, it is sometimes convenient to instead expand a as
follows:

a = a(0) + a(1) + a(2) + �gc(1) + c(0) 
 �g
where c(0) 2 
1(M), c(1) 2 
1(M;^1M) are respectively uniquely determined by a(4) and a(3),
and the Hodge dual acts only on the ^1M factor of c(1).
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Theorem 2.11. A strongly spin Lorentzian four-manifold (M; g) admits a di�erential spinor
relative to a 2 
1(M;^M) if and only if it admits an isotropic parallelism [u; v; l; n] 2
Ob(F(M)), satisfying the following di�erential system:

1
2rg

wu = (a
(0)
w + c

(1)
w (n)� a

(1)
w (l))u+ a

(1)
w (u) l� a

(2)
w (u)� c

(1)
w (u)n (91)

1
2rg

wv = (a
(1)
w (l) + a

(2)
w (u; v)� a

(0)
w � c

(1)
w (n)) v

�(a(2)w (v; n) + �(w))n+ (a
(1)
w (v) + a

(2)
w (l; v)� �(w)) l (92)

1
2rg

wl = �(w)u� a
(1)
w (u)v � a

(1)
w (v)u� a

(2)
w (l)� (a

(1)
w (n) + c

(1)
w (l) + c

(0)
w )n (93)

1
2rg

wn = �(w)u+ (a
(1)
w (n) + c

(1)
w (l) + c

(0)
w ) l+ c

(1)
w (u) v � a

(2)
w (n) (94)

for any, and hence all representatives (u; v; l; n) 2 [u; v; l; n], and for any given one-forms
�; � 2 
1(M).

Proof. By Proposition 2.9, (M; g) admits a di�erential spinor " relative to a if and only
the parabolic pair associated to " satis�es equations (87) and (88). Assume then that (M; g)
admits a di�erential spinor whose associated parabolic pair satis�es (87) and (88). Equation (91)
corresponds to Equation (87) in Proposition 2.9 after noticing that:

u⌟gl⌟ga
(3)
w = u⌟gl⌟g �g c(1)w = �g(c(1)w ^ l ^ u) = c(1)w (n)u� c(1)w (u)n

where w 2 X(M). To obtain Equation (93), we consider Equation (88) and we compute:

l ^ u⌟gl⌟ga(3)w = c
(1)
w (n) l ^ u� c

(1)
w (u) l ^ n

u⌟ga
(3)
w = �g(c(1)w ^ u) = c

(1)
w (u) l ^ n� c

(1)
w (l)u ^ n+ c

(1)
w (n)u ^ l

u⌟gl⌟ga
(4)
w = c

(0)
w �g (l ^ u) = �c(0)w u ^ n

Hence:
l ^ u⌟gl⌟ga(3)w + u⌟ga

(3)
w + u⌟gl⌟ga

(4)
w = �c(1)w (l)u ^ n� c(0)w u ^ n

Plugging the previous relations into Equation (88) we obtain:

1

2
u ^ (rg

wl+ 2P
?g

l (a(1)w ) + 2l⌟ga
(2)
w + 2(c(1)w (l) + c(0)w )n) = 0

whence:
rg
wl+ 2P

?g

l (a(1)w ) + 2l⌟ga
(2)
w + 2(c(1)w (l) + c(0)w )n = 2�(w)u

for a one-form � 2 
1(M). This recovers Equation (93). To compute the covariant derivative of
n we apply rg

w to �g(u ^ l) = u ^ n, obtaining:
u ^rg

wn = �grg
w(u ^ l) + n ^rg

wu = �g((rg
wu) ^ l) + �g(u ^rg

wl) + n ^rg
wu

Using equations (91) and (93), we compute:

1
2n ^rg

wu = (a
(0)
w � a

(1)
w (l) + c

(1)
w (n))n ^ u+ a

(1)
w (u)n ^ l� n ^ a

(2)
w (u)

1
2 (rg

wu) ^ l = (a
(0)
w � a

(1)
w (l) + c

(1)
w (n))u ^ l� a

(2)
w (u) ^ l� c

(1)
w (u)n ^ l

1
2u ^rg

wl = �u ^ P?g

l (a
(1)
w )� u ^ a

(2)
w (l)� (c

(1)
w (l) + c

(0)
w )u ^ n

From this expressions it follows that:

1
2 �g ((rg

wu) ^ l) = (a
(0)
w � a

(1)
w (l) + c

(1)
w (n))u ^ n� �g(a(2)w (u) ^ l) + c

(1)
w (u)u ^ v

1
2 �g (u ^rg

wl) = � �g (u ^ P?g

l (a
(1)
w ))� �g(u ^ a

(2)
w (l)) + (c

(1)
w (l) + c

(0)
w )u ^ l

Adding the corresponding contributions and simplifying we obtain:

1

2
u ^rg

wn = (a(1)w (n) + c(1)w (l) + c(0)w )u ^ l+ c(1)w (u)u ^ v � u ^ a(2)w (n)
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and therefore:
1

2
rg
wn = �(w)u+ (a(1)w (n) + c(1)w (l) + c(0)w ) l+ c(1)w (u) v � a(2)w (n)

for a one-form � 2 
1(M). This gives Equation (94). Finally, to compute the covariant derivative
of v we apply rg

w to �g(l ^ n) = u ^ v, obtaining:
u ^rg

wv = �grg
w(l ^ n) + v ^rg

wu = �g((rg
wl) ^ n) + �g(l ^rg

wn) + v ^rg
wu

Using equations (91), (93) and (94), we compute:

1
2v ^rg

wu = (a
(0)
w + c

(1)
w (n)� a

(1)
w (l)� a

(2)
w (u; v)) v ^ u

+(a
(1)
w (u) + a

(2)
w (l; u)) v ^ l� (c

(1)
w (u) + a

(2)
w (u; n)) v ^ n

1
2 (rg

wl) ^ n = (�(w)� a
(1)
w (v)� a

(2)
w (l; v))u ^ n� (a

(1)
w (u) + a

(2)
w (l; u))v ^ n

1
2 l ^rg

wn = (�(w) + a
(2)
w (v; n))l ^ u+ (c

(1)
w (u) + a

(2)
w (u; n))l ^ v

from which it follows that:
1
2 �g ((rg

wu) ^ l) = (a
(1)
w (v) + a

(2)
w (l; v)� �(w))u ^ l� (a

(1)
w (u) + a

(2)
w (l; u))v ^ l

1
2 �g (u ^rg

wl) = �(a(2)w (v; n) + �(w))u ^ n+ (c
(1)
w (u) + a

(2)
w (u; n))v ^ n

Summing the corresponding contributions and simplifying:

1
2u ^rg

wv = (a
(0)
w + c

(1)
w (n)� a

(1)
w (l)� a

(2)
w (u; v)) v ^ u

�(a(2)w (v; n) + �(w))u ^ n+ (a
(1)
w (v) + a

(2)
w (l; v)� �(w))u ^ l

and therefore there exists a one-form � 2 
1(M) such that:

1
2rg

wv = �(w)u+ (a
(1)
w (l) + a

(2)
w (u; v)� a

(0)
w � c

(1)
w (n))v

�(a(2)w (v; n) + �(w))n+ (a
(1)
w (v) + a

(2)
w (l; v)� �(w))l

for a one-form � 2 
1(M). On the other hand, taking the covariant derivative of g(v; v) = 0 we
have:

0 =
1

2
rg
wg(v; v) = g(rg

wv; v) = 2�(w) = 0

for every w 2 X(M). Hence, we obtain Equation (92). The converse follows from Proposition 2.9
together with the observation that rg as prescribed in Equations (92) has vanishing torsion and
preserves:

g = u� v + l
 l+ n
 n
and thus is the Levi-Civita connection of this metric. □

Remark 2.12. If, in the situation of the previous theorem, we impose the condition Q(") = 0 for a
given endomorphism Q 2 �(End(S)), then by Lemma 4.19 we have to supplement the di�erential
system (91), (92), (93) and (94) with the algebraic equation:

(u+ u ^ l) �g q = u ^ q+ q(u) + u ^ l ^ q� l ^ q(u) + u ^ q(l) + q(l; u) = 0

where (u; [l]u) is the parabolic pair associated to " and q 2 
�(M) is the symbol of Q.
Remark 2.13. We will refer to g = u� v + l
 l+ n
 n as the associated metric of (u; v; l; n).
Note that if we consider the isotropic parallelism [u; v; l; n] 2 F(M) determined by (u; v; l; n), then
the associated metric does not depend on the representative in [u; v; l; n]. Therefore, we can talk
about g as the metric associated to the isotropic parallelism [u; v; l; n], and we obtain a natural
functor:

F(M)! Lor(M) ; [u; v; l; n] 7! g = u� v + l
 l+ n
 n
Here Lor(M) is understood as the groupoid of Lorentzian metrics and invertible isometries on M .
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We can think of Theorem 2.11 as giving the master formula for the existence of di�erential
spinors on Lorentzian four-manifolds. Despite its full generality, it can already be used to obtain
several direct corollaries, of which we mention a pair which are particularly transparent.

Corollary 2.14. Let " be a di�erential spinor relative to a 2 
1(M;^M) and with associated
Dirac current u 2 
1(M). Then, the Levi-Civita connection rg preserves the distribution
u?g � TM if and only if:

a(2)w (u)ju?g = 0

for every w 2 X(M).

Corollary 2.15. Let " be a di�erential spinor relative to a 2 
1(M;^M) with associated
Dirac current u 2 
1(M). Then, the Levi-Civita connection rg descends to the rank-two
vector bundle Gu if and only if:

a(1)w (u) = 0 ; c(1)w (u) = 0 ; a(2)w (u)ju?g = 0

for every w 2 X(M).

More generally, Theorem 2.11 is especially well-adapted to characterize geometric properties of
Lorentzian four-manifolds equipped with di�erential spinors " in terms of conditions satis�ed by
the data a 2 
1(M;^M) relative to which " is a di�erential spinor.

3. Natural classes of di�erential parabolic pairs

We have allowed for general endomorphism-valued one-forms A 2 
1(M;End(S)) to occur
in the de�nition of di�erential spinors as well as in Theorem 2.11. Given a paired spinor bundle
(S;�;B), it is natural to consider di�erential spinors relative endomorphism-valued one-forms
A 2 
1(M;End(S)) that are compatible with B in the sense that:

B(Aw("1); "2) +B("1;Aw("2)) = 0 ; 8 "1; "2 2 �(S)

for every w 2 X(M) and "1; "2 2 �(S). Equivalently, A is compatible with B if and only if the
connection D = (rg �A) on S preserves B, that is:

DB("1; "2) = B(D"1; "2) +B("1;D"2) ; 8 "1; "2 2 �(S)

Note that if A is compatible with B then D is a symplectic connection on (S; !) and therefore
has holonomy in the symplectic real group Sp(4;R).

Proposition 3.1. Let (S;�;B) be a paired spinor bundle on (M; g). An endomorphism-valued
one-form A 2 
1(M;End(S)) is compatible with B if and only if:

a = a(1) + a(2)

where a denotes the symbol of A.
Proof. A is compatible with B if and only if At

w = �Aw for every w 2 X(M). Since
	� : (^M; �g)! End(S) is an isomorphism of bundles of unital associative algebras, this condition
is equivalent to:

aw = �(� � � )(aw) ; 8 w 2 X(M)

where we have used that 	�1� (At
v) = (� � � )(av). Hence, the previous equation is equivalent to:

a(0) + a(1) + a(2) + a(3) + a(4) = �a(0) + a(1) + a(2) � a(3) � a(4)

from which the statement follows. □

Interestingly enough, supersymmetric solutions in supergravity may require considering di�eren-
tial spinors relative to data A that is not compatible with the given admissible pairing, although
we will not encounter such cases in this dissertation. Another natural class of di�erential spinors
" 2 �(S), inspired by the type of spinors that occur as supersymmetry parameters in supergravity
and string theory, is given by the following two conditions:
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� The Dirac current u 2 
1(M) of " 2 �(S) de�nes a Killing vector �eld for g.

� The distribution Ker(u) � TM determined by the kernel of the Dirac current u 2 
1(M) of
" 2 �(S) is integrable.

Indeed, experience shows that these two properties hold for all the known supersymmetric con-
�gurations in Lorentzian supergravity that have an isotropic supersymmetry parameter, or equiv-
alently, an isotropic Dirac current [114, 192]. The fact that the Dirac current associated to the
supersymmetry parameters of supersymmetric con�gurations in supergravity are Killing is one of
the reasons why the supersymmetry conditions are sometimes called the Killing spinor equations
of the corresponding supergravity theory.

Remark 3.2. Di�erential spinors whose Dirac current is Killing are especially interesting since
they give rise to exact idealized gravitational waves. These are, by de�nition, Lorentzian mani-
folds equipped with an isotropic Killing �eld that is sometimes required to satisfy further curvature
conditions. From this point of view, the study of di�erential spinors whose associated Dirac cur-
rent is Killing can be understood as the study of a particular class of spinorial exact gravitational
waves.

Let (S;�;B) be a paired spinor bundle on (M; g) and let " 2 �(S) be a di�erential spinor relative
to A with associated parabolic pair (u; [l]u). The standard formula for the Lie derivative of a g in
terms of rg immediately implies that " is Killing if and only if the symmetrization of Equation
(87) vanishes. This yields a complicated condition that explicitly involves the parabolic pair
(u; [l]u) associated to the given di�erential spinor. Instead of working with this general solution
to the Killing condition, we will extract natural geometric conditions that do not depend on the
given di�erential spinor and that at the same time guarantee that the corresponding Dirac current
is Killing. A simple veri�cation using Equation (87) proves the following result.

Proposition 3.3. Let (S;�;B) be a paired spinor bundle on (M; g). The Dirac current of a
di�erential spinor " 2 �(S) relative to A 2 
1(M;End(S)) is Killing if:

a(0) = 0 ; a(1) = �g ; a(2) 2 
3(M) � 
1(M;^2M) ; a(3) 2 
4(M) � 
1(M;^3M) (95)

where a is the symbol of A and � 2 C1(M) is a function.

By Proposition 3.3, if a satis�es Equation (95) then we can write:

a = �g + �g�+ (� + �)
 �g
for uniquely determined functions �; � 2 C1(M) and one-forms �; � 2 
1(M). The previous
remarks together with Theorem 2.11 imply the following characterization of di�erential spinors
relative to data satisfying Equation (95).

Proposition 3.4. A strongly spin Lorentzian four-manifold (M; g) admits a di�erential
spinor relative to a 2 
1(M;^M) satisfying Equation (95) if and only if it admits a parabolic
pair (u; [l]u) satisfying the following di�erential system:

1
2rgu = � u ^ l+ �g(� ^ u) + � �g (l ^ u) (96)

1
2u ^ (rg

wl+ 2�(w � w(l)l) + 2 �g (� ^ w ^ l)) =
= � l ^ �g(w ^ l ^ u) + � �g (w ^ u) + �(w) �g (l ^ u) (97)

for every vector �eld w 2 X(M) and for any, and hence for all, representatives (u; l) 2
(u; [l]u).

Proposition 3.4 allows us to easily characterize a class of di�erential spinors whose Dirac current
is guaranteed to be Killing and de�nes an integrable distribution.

Proposition 3.5. The distribution u]g � TM de�ned by the Dirac current u 2 
1(M) of a
di�erential spinor " relative to data satisfying (95) is integrable if and only if �(u) = 0.
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Proof. Frobenius theorem implies that the kernel of u is integrable if and only if u^du = 0.
By equation (96) we have:

1

4
du = � u ^ l+ �g(� ^ u) + � �g (l ^ u)

Wedging the previous equation with u we obtain:

u ^ du = u ^ �g(� ^ u) = �(u)u ^ l ^ n
and hence we conclude since u; l; n 2 
1(M) are all nowhere vanishing. □

Remark 3.6. Proposition 3.3 immediately implies that A is compatible with B and in addition
sastis�es Equation (95) if and only if a(1) is proportional to g and a(2) is totally skew-symmetric.

We collect in the following several well-known types of di�erential spinors on (M; g), all �tting as
particular cases of Theorem 2.11, most of which have been already considered in the literature,
especially in the Riemannian case.

� If A = 0 vanishes identically then " is parallel with respect to the Levi-Civita connection of g
and we conclude that (M; g) admits a parallel irreducible real spinor if and only if it admits
an isotropic vector �eld parallel with respect to the Levi-Civita connection as well as a unit
one-form l 2 
1(M) orthogonal to u and satisfying rgl = �
 u for a one-form � 2 
1(M).

� If a(k) = 0 for k = 0; 2; 3; 4 and 2a(1) = cg for a non-zero real constant c then " is a standard
Killing spinor and from Proposition 3.5 we conclude that (M; g) admits an irreducible real
Killing spinor if and only if it admits a parabolic pair (u; [l]u) satisfying:

rgu = c u ^ l ; rgl = �
 u+ c (l
 l� g) (98)

These real Killing spinors are precisely the supersymmetry parameters of the supersymmetric
con�gurations of AdS minimal supergravity in four dimensions.

� If a(k) = 0 for k = 0; 2; 3; 4 and a(1) 2 End(TM) is an endomorphism of TM symmetric with
respect to g then " is formally an irreducible Lorentzian generalized Killing spinor, namely a
type of Lorentzian analog of the notion of generalized Killing spinor introduced in [181�183] for
Riemannian manifolds.

� If a(k) = 0 for k = 0; 1; 3; 4 and a(2) 2 
3(M) is totally skew-symmetric, then " is a skew-torsion
parallel spinor, namely a spinor parallel under a connection with totally skew-symmetric torsion
2a(2). The remaining chapters of this dissertation will be devoted to the study of this type of
parallel spinors.

� If a(k) = 0 for k = 1; 2; 3; 4 then A 2 
1(M;End(S)) takes values in the line spanned by the
identity isomorphism, that is, a parallel " 2 �(S) relative to such A satis�es:

rg" = � 
 "
for a one-form � 2 
1(M). Hence, Theorem 2.11 implies in this case that (M; g) admits such a
di�erential spinor if and only if it admits a parabolic pair (u; [l]u) satisfying:

1

2
rg
wu = � 
 u ; 1

2
rg
wl = �
 u

for a one-form � 2 
1(M). In particular, (M; g) admits a recurrent isotropic line, namely a
bundle of isotropic lines preserved by the Levi-Civita connection of (M; g). Manifolds equipped
with such a recurrent isotropic line, called Walker manifolds in [45] and weakly abelian in
[172], have been already considered in the literature, see for instance [97, 98] and their references
and citations.

We end this section by considering two examples of di�erential spinors. We proceed by �rst
considering real Killing spinors, which have been extensively considered in the literature [59],
to then study parallel spinors relative to data of the form a = a(4) = � 
 �h, which is a type of
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di�erential spinor that to the best of our knowledge has not been investigated before. Interestingly
enough, these parallel spinors de�ne a particular class of Brinkmann spacetimes.

3.1. A class of real Killing spinors. In this subsection we consider a class of di�erential spinors
called real Killing spinors on a particular class of Lorentzian four-manifolds that is adapted to the
geometric structure that they induce. We follow [178].

Definition 3.7. Let (M; g) be a strongly spin Lorentzian four-manifold (M; g) equipped with a
paired irreducible spinor bundle (S;�;B). A real Killing spinor on (M; g) is a spinor " 2 �(S)
satisfying:

rg
w" =

c

2
w �g " ; 8 w 2 X(M)

where c 2 R� is a non-zero real constant.

By Theorem 4.22, a spinor " on (M; g) is Killing if and only if its associated parabolic pair (u; [l]u)
satis�es Equation (98), which is in turn equivalent to:

Lu]g g = 0 ; du = 2c u ^ l ; dl = � ^ u ; Ll]g g = �� u+ 2c (l
 l� g) (99)

Instead of considering general real Killing spinors we consider in the following a particular class
of Lorentzian four-manifolds equipped with a real Killing spinor whose associated parabolic pair
is of a special form.

Definition 3.8. A four-dimensional space-time (M; g) is standard conformally Brinkmann if
(M; g) has the following isometry type:

(M; g) = (R2 �X;Hxudxu 
 dxu + eFxudxu � dxv + dxu � �xu + qxu) ; (100)

where (xu; xv) are the Cartesian coordinates of R2, and where:

fHxu ;Fxugxu2R ; f�xugxu2R ; fqxugxu2R ;
respectively denote a family of pairs of functions Hxu and Fxu , a family of one-forms �xu and a
family of complete Riemannian metrics qxu on X parametrized by xu 2 R.

Definition 3.9. A spinor " on a standard conformally Brinkmann space-time (M; g) is adapted
if the parabolic pair (u; [l]u) associated to " satis�es u]g = @xv , in which case we will refer to
(u; [l]u) as an adapted parabolic pair on (M; g).

By [61, Lemma 5.10] every Lorentzian four-manifold equipped with an irreducible real Killing
spinor is locally isomorphic to a standard conformally Brinkmann space-time equipped with an
adapted Killing spinor.

Definition 3.10. A standard real Killing spinor triple is a triple (M; g; ") consisting of a
standard conformally Brinkmann space-time (M; g) and an adapted real Killing spinor " on (M; g).

In particular, the parabolic pair associated to a standard real Killing spinor is adapted. We will
characterize standard real Killing spinors (M; g; ") in the following. Let " be an adapted spinor
with associated Killing pair (u; [l]u) on a standard conformally Brinkmann space-time (M; g).
Since u]g = @xv by de�nition, the �rst equation in (99) is automatically satis�ed. Using that
u = eFxudxu, the second equation in (99) reduces to:

(c l+
1

2
dXFxu) ^ u = 0 ; (101)

for any representative l 2 [l]. Here dX : 
�(X) ! 
�(X) denotes the exterior derivative on X.
The general solution to this equation reads:

l = `xu + �lu ; `xu = � 1

2c
dXFxu ;
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for a function �l 2 C1(M) and a family of functions Fxu in X parametrized by xu. Since l is
de�ned modulo gauge transformations generated by u, we assume, without loss of generality, the
following expression for l:

l = `xu = � 1

2c
dXFxu : (102)

With this choice, the third equation in (99) reduces to:

dl = dxu ^ @xu`xu + dX`xu = dxu ^ @xu`xu = eFxu� ^ dxu :
where we have used that dX`xu = 0 by Equation (102). The previous equation is solved by
isolating � as follows:

� = �e�Fxu@xu`xu + ��dxu ; (103)

for a function �� 2 C1(M). Recalling that we must have jlj2g = 1, the previous discussion implies
the following result.

Proposition 3.11. Let (u; [l]u) be an adapted Killing parabolic pair on a standard conformally
Brinkmann space-time. Then, there exists a representative l 2 [l] such that (u; l) is of the
form:

u = eFxudxu ; l = � 1

2c
dXFxu

where the family of functions fFxugxu2R satis�es the di�erential equation:

jdXFxu j2qxu = 4c2

Here j � j2qxu denotes the norm de�ned by fqxugxu2R on X.

It only remains to solve the fourth equation in (99). For this, we need �rst the following lemma.

Lemma 3.12. The Lie derivative of g with respect to l]g = `
]g
xu is given by:

Ll]g g = (dXHxu(`
]q
xu) + 2�xu(@xu`

]q
xu) + 2eFxu@xukxu)dxu 
 dxu + dXe

Fxu (`]qxu)dxu � dxv

+eFxudXkxu � dxu + LX
`
]q
xu

�xu � dxu + LX
`
]q
xu

qxu + @xu`xu � dxu � (@xuqxu)(`
]q
xu)� dxu ;

where the symbol LX denotes the Lie derivative operator on X and fkxugxu2R is the family
of functions on X determined by:

kxu =
e�Fxu

2c
dXFxu(�]qxu)

for every xu 2 R. The symbol ]q denotes the musical isomorphism on X determined by
fqxugxu2R.

Proof. We �rst compute the metric dual of `xu with respect to g, which is given by:

l]g = `
]q
xu � e�Fxu�xu(`]qxu)@xv (104)

Using the previous expression for l]g compute:

Ll]g dxu = 0 ; Ll]g dxv = dXkxu + @xukxudxu ; Ll]g�xu = LX
`
]q
xu

�xu + �xu

�
@xu`

]q
xu

�
dxu

Ll]g qxu = LX
`
]q
xu

qxu + qxu(@xu`
]q
xu)� dxu = LX

`
]q
xu

qxu + @xu`xu � dxu � (@xuqxu)(`
]q
xu)� dxu

from which the Lie derivative of g as given in Equation (100) follows directly. □

Lemma 3.13. A standard conformally Brinkmann space-time admits an adapted Killing
spinor if and only if the tuple fFxu ; �xu ; qxugxu2R satis�es the following di�erential system
on X:

jdXFxu j2qxu = 4c2 ; rqxudXFxu + 1
2dXFxu 
 dXFxu = 2c2qxu (105)

4c2dX�xu = h@xu �qxu dXFxu + �qxu@xudXFxu � 4c2 �qxu �xu ;dXFxuiqxu �qxu (106)
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where h�; �iqxu denotes the norm de�ned by qxu and �qxu denotes the Riemannian volume
form of (X; qxu).

Proof. By the previous discussion we only need to consider the fourth equation in (99)
evaluated on a parabolic pair (u; [l]) of the form:

u = eFxudxu ; l = `xu = � 1

2c
dXFxu ; (107)

and with respect to a one-form � 2 
1(R2 �X) given by:

� = �e�Fxu@xu`xu + ��dxu ;

where fFxugxu2R satis�es jdXFxu j2qxu = 4c2. Plugging Lemma 3.12 into the fourth equation in
(99) and isolating we obtain the following system of equivalent equations:

2��e
Fxu = 2cHxu + dXHxu(`

]q
xu) + 2eFxu@xukxu + 2�xu(@xu`

]q
xu) (108)

dXFxu(`]qxu) = �2c ; LX
`
]q
xu

qxu = 2c(`xu 
 `xu � qxu) (109)

eFxudXkxu = (@xuqxu)(`
]q
xu)� 2c�xu � LX`]qxu�xu � 2@xu`xu (110)

Equation (108) is solved by isolating ��, which determines it unambiguously. The �rst equation
in (109) follows from the �rst equation in (105) together with equation (102) whereas the second
equation in (109) is equivalent to the second equation in (105) upon use of Equation (102). On
the other hand, Equation (110) can be shown to be equivalent to:

2c �xu + �
`
]q
xu

dX�xu �
1

2c
dXFxu(�]qxu)dXFxu + 2@xu`xu � (@xuqxu)(`

]q
xu) = 0 : (111)

Projecting the previous equation along `
]q
xu we obtain an identity. On the other hand, projecting

along (�qxu `xu)]q we obtain, after some manipulations, Equation in (106) and hence we conclude.
□

Remark 3.14. Recall that equations (105) and (106) do not involve Hxu , which hence can be
chosen at will while preserving the existence of an adapted Killing spinor.

Proposition 3.15. Let (M; g; ") be a standard real Killing spinor triple. Then, there exists
a di�eomorphism identifying either X = R2 or X = R � S1 and a smooth family of closed
one-forms !xu on X such that:

qxu =
1

4c2
dXFxu 
 dXFxu + eFxu!xu 
 !xu : (112)

In particular, for every xu 2 R the Riemann surface (X; qxu) is a hyperbolic Riemann surface
of constant scalar curvature sqxu = �2c2.

Proof. For any �xed xu 2 R, the function Fxu on (X; qxu) has unit-norm gradient. Hence,
since (X; qxu) is complete, Fxu(X) = R and we have a di�eomorphism:

X = R�F�1xu (0)

Since X is assumed to be connected, either F�1xu (0) is di�eomorphic to R or S1. On the other
hand, the family of one-forms f`xugxu2R has unit norm with respect to fqxugxu2R. Therefore,
de�ning:

nxu = �qxu `xu ; xu 2 R

we obtain a family f`xu ; nxugxu2R of orthonormal coframes on X. The second equation in (105)
implies the following equations for f`xu ; nxugxu2R:

rqxu `xu = �c nxu 
 nxu ; rqxunxu = cnxu 
 `xu
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which in turn implies, since f`xu ; nxugxu2R is orthonormal, that for every �xed xu 2 R, the scalar
curvature of the Riemannian metric qxu satis�es sqxu = �2c2 and hence (X; qxu) is a hyperbolic
Riemann surface. Furthermore, by the previous equation we have:

dXnxu = c nxu ^ `xu
Since 2c`xu = �dXFxu , the previous equation is equivalent to:

dX(e
� 1

2Fxunxu) = 0

whence there exists a family f!xugxu2R of closed one-forms such that:

!xu = e�
1
2Fxunxu ; 8 xu 2 R

Therefore:

qxu = `xu 
 `xu + nxu 
 nxu = qxu =
1

4c2
dXFxu 
 dXFxu + eFxu!xu 
 !xu

and hence we conclude. □

Remark 3.16. If X = R2 then there exists a family of functions Gxu such that:

e�
1
2Fxunxu = dXGxu ;

which immediately implies that:

qxu =
1

4c2
dXFxu 
 dXFxu + eFxudXGxu 
 dXGxu :

On the other hand, if X = R� S1 then H1(X;Z) = Z and there exists a family of constants cxu
and a family of functions Gxu such that:

e�
1
2Fxunxu = cxu ! + dXGxu ;

where ! is a volume form on S1. This parametrizes qxu in terms of families of functions Fxu and
Gxu , and a family of constants cxu .

Since X is either di�eomorphic to R2 or R�S1, the uniformization theorem for Riemann surfaces
yields the following result.

Corollary 3.17. Let (M; g; ") be a standard real Killing spinor triple. For every �xed xu 2 R
the pair (X; qxu) is isometric to an elementary hyperbolic surface, namely it is isometric to
either the Poincaré upper space, to a hyperbolic cylinder or to a parabolic cylinder, in all
cases of scalar curvature �2c2.
More explicitly, for every xu 2 R the Riemann surface (X; qxu) is locally isometric to the model:

(R2; q =
d�
 d�

4c2
+ e�dw 
 dw) ;

which in turn is isometric to the Poincaré upper space of scalar curvature �2c2. The hyperbolic
cylinder is obtained from (R2; q) via quotient by the cyclic group generated by (�;w) 7! (� �
2l; elw), l > 0. The parabolic cylinder is on the other hand obtained instead via taking the
quotient by the cyclic group generated by (�;w) 7! (�;w+ 1). In both cases, the globally de�ned
one-form d� 2 
1(R2) is invariant and therefore descends to the quotient and de�nes the constant-
norm gradient that Lemma 3.13 requires for an adapted Killing spinor to exist on R2 �X.

Lemma 3.18. Let (M; g; ") be a standard real Killing spinor triple. Then the family of one-
forms �xu can be written as follows:

�xu = eFxu�xu ; (113)

where �xu is a family of one-forms satisfying the following di�erential equation:

dX�xu =
e�Fxu

4c2
h@xu �qxu dXFxu + �qxu@xudXFxu ;dXFxuiqxu �qxu : (114)
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Since H2(X;Z) = 0, this equation has always an in�nite-dimensional vector space of solu-
tions.

Proof. Let (M; g; ") be a standard real Killing spinor triple. Then, the family of one-forms
�xu satis�es Equation (106). Plugging �xu = eFxu�xu into Equation (106) and isolating �xu we
obtain Equation (114). The fact that H2(X;Z) = 0 follows from Proposition 3.15, which proves
the that either X = R2 or X = R� S1. □

We can explicitly solve Equation (114) in terms of local coordinates (y; z), which can be taken to
be global if X = R2. Using these coordinates, the most general solution can be found to be:

�xu =

�

xu(y) +

Z z

0

[@y�xu(y; z
0)��xu(y; z

0)] dz0
�
dy + �xu(y; z) dz

for families of functions f�xu(y; z); 
xu(y)gxu2R depending on the indicated variables, and where
we have de�ned:

�xu :=
e�Fxu

4c2
h@xu �qxu dXFxu + �qxu@xudXFxu ;dXFxuiqxu q

1
2
xu ;

with the understanding that the square root q
1
2
xu of the determinant of qxu is to be taken in the

coordinates (y; z). This provides an explicit parametrization of the in�nite-dimensional space of
local solutions.

Theorem 3.19. A triple (R2 �X; g; ") is a standard real Killing spinor triple if and only if
there exist a family !xu of closed one-forms on X in terms of which the metric g reads:

g = Hxudxu 
 dxu + eFxudxu � (dxv + �xu) +
1

4c2
dXFxu 
 dXFxu + eFxu!xu 
 !xu (115)

where �xu is a family of one-forms on X satisfying the following equation:

dX�xu =
e�Fxu

4c2
h@xu �qxu dXFxu + �qxu@xudXFxu ;dXFxuiqxu �qxu : (116)

In particular, for every xu 2 R the pair:

(X; qxu =
1

4c2
dXFxu 
 dXFxu + eFxu!xu 
 !xu)

is an elementary hyperbolic surface of scalar curvature �2c2, and therefore di�eomorphic to
either R2 or R� S1.

Proof. The only if direction follows from Proposition 3.15 and Lemma 3.18. For the if
direction, consider a standard conformally Brinkmann space-time (M = R2 �X; g) whose metric
g is as prescribed in Equation (115) for a family of one-forms �xu satisfying Equation (116). To
prove that such Lorentzian four-manifold admits an adapted Killing spinor it is enough to prove
that the necessary and su�cient conditions of Lemma 3.13 are satis�ed. For each �xed xu 2 R,
the functions Fxu and Gxu have linearly independent di�erentials at every point in X (otherwise
g would be degenerate) and therefore provide local coordinates (�;w) on X in terms of which the
metric qxu reads:

qxu =
1

4c2
d�
 d�+ e�dw 
 dw ;

which is isometric to the Poincaré metric of Ricci curvature �c2. In these coordinates, we have
dXFxu = d� and a quick computation shows that:

jdFxu j2qxu = 4c2 8 xu 2 R

whence the �rst equation in (105) is satis�ed. Furthermore, we have:

rqxudXFxu = rqxud� = 2c2e�dw 
 dw ;
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whence the second equation in (105) also follows. Finally, Equation (116) is equivalent to Equation
(106) by Lemma 3.18 and hence we conclude. □

Using the fact that if M is simply connected then X = R2 and hence contractible, we obtain the
following re�nement of Equation (115) in Theorem 3.19.

Corollary 3.20. Every choice of families of functions Fxu and Gxu on R2 with everywhere
linearly independent di�erentials determines a standard real Killing spinor triple on R4 with
metric:

g = Hxudxu 
 dxu + e
Fxudxu � (dxv + �xu) +

1

4c2
dXFxu 
 dXFxu + eFxudXGxu 
 dXGxu (117)

for a choice of �xu as prescribed in Equation (116). Conversely, every simply connected
standard real Killing spinor triple can be constructed in this way.

Theorem 3.19 characterizes as well the local isometry type of every standard real Killing spinor
triple.

Corollary 3.21. Every four-dimensional space-time (M; g) admitting a real Killing spinor
is locally isometric to an open set of R4 equipped with the metric:

g = Hxudxu 
 dxu + eFxudxu � (dxv + �xu) +
1

4c2
dXFxu 
 dXFxu + eFxudXGxu 
 dXGxu

for a choice of families of functions Fxu and Gxu , and of one-forms �xu as prescribed in
Equation (116).

Example 3.22. Assume that X = R2 with Cartesian coordinates (y1; y2), take c = 1
2 and write

qxu as follows:
qxu = dXFxu 
 dXFxu + eFxudXGxu 
 dXGxu

in terms of families of functions Fxu and Gxu on X. Equation (116) can be equivalently written
as follows:

dX�xu = (@xudXGxu + e�Fxu=2 �qxu @xudXFxu) ^ dXGxu (118)

where we have used that �qxudXFxu = eFxu=2dXGxu . Assume that Fxu and Gxu are such that:

dXFxu = axudy1 ; dXGxu = fxudy1 + bxudy2 ; xu 2 R

where axu ; bxu and fxu are families of constant functions on X = R2. In particular:

qxu = (a2xu + f2xue
axuy1+kxu )dy1 
 dy1 + eaxuy1+kxu (bxufxudy1 � dy2 + b2xudy2 
 dy2)

where kxu is a family of constants. A quick computation shows that:

e�Fxu=2 �qxu @xudXFxu = @xu log(axu)dXGxu
where we assume that the family of constants axu are strictly positive. Hence:

dX�xu = @xudXGxu ^ dXGxu = (bxu@xufxu � fxu@xubxu)dy1 ^ dy2 :
Solutions to the previous equation can be easily found by direct inspection. For instance:

�xu =
1

2
(bxu@xufxu � fxu@xubxu)(y1dy2 � y2dy1)

which yields the following four-dimensional metric g on R4:

g = Hxudxu 
 dxu +
1
2e

axuy1+kxudxu � (dxv + (bxu@xufxu � fxu@xubxu)(y1dy2 � y2dy1))
+(a2xu + f2xue

axuy1+kxu )dy1 
 dy1 + eaxuy1+kxu (bxufxudy1 � dy2 + b2xudy2 
 dy2)

This provides an example of standard real Killing spinor triple for which the crossed term �xu is
not trivial and, in particular, not closed.
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It is instructive to present the metric g occurring in Equation (115) of Theorem 3.19 in an alter-
native equivalent form. Using the notation of Theorem 3.19, de�ne:

Yxu = e�Fxu=2 ; xu 2 R :

This de�nes a family fYxugxu2R of strictly positive functions on X. Substituting this expres-
sion into Equation (115) and relabeling some of the symbols adequately we obtain the following
equivalent expression for g:

g =
1

c2Y2
xu

(Kxudxu 
 dxu + dxu � (dxv + c2�xu) + dXYxu 
 dXYxu + !xu 
 !xu) (119)

In this form it becomes apparent that standard real Killing spinor triple provide a vast generaliza-
tion of Siklos space-times, which in turn can be interpreted as a deformation of the AdS4 space-
time. Indeed, assume that (M; g; ") is a standard real Killing spinor triple for which fFxugxu2R
and fGxugxu2R are both independent of the coordinate xu. Then, by Equation (119) it is clear
that there exists local coordinates in which the metric g reads:

g =
1

c2y2
(Kxudxu 
 dxu + dxu � (dxv + c2�xu) + dy 
 dy + dw 
 dw)

In addition Equation (116) implies in this case that �xu is closed on X, whence locally exact, a
fact that can be used to rede�ne Kxu as well as the coordinate xv in order to absorb the one-form
�xu in such a way that g locally reads:

g =
1

c2y2
(Kxudxu 
 dxu + dxu � dxv + dy 
 dy + dw 
 dw) :

This is precisely the local four-dimensional metric constructed by Siklos in [211], which de�nes
what are nowadays called Siklos space-times or Siklos gravitational waves. The latter describe
exact idealized gravitational waves moving through anti-de Sitter space-time [107, 197]. The fact
that every Siklos space-time admits real Killing spinors was explicitly noticed in [107]. Therefore,
standard real Killing spinor triples provide a broad generalization of the Siklos class of space-times
that also admits Killing spinors and reduces to the latter in certain special cases.

3.2. Axionic parallel spinors. In this subsection we brie�y consider a natural class of di�er-
ential spinors that are parallel relative to data a 2 
1(M;^M) satisfying:

a = a(4) = � 
 �g 2 
1(M;^4M) (120)

where � 2 
1(M) is a given one-form. In other words, we consider spinors � 2 �(S) on a strongly
spin Lorentzian four-manifold (M; g) that satisfy the following equation:

rg
w� = �(w) �g �g � ; w 2 X(M)

We will refer to these spinors as axionic parallel spinors, since an element of the form (120)
acts on the corresponding spinor as a volume form, or using physics jargon, as an axionic scalar
�eld. Note that these spinors are parallel with respect to a connection that does not preserve
the admissible bilinear pairing B, which to the best of my knowledge is a case that has not been
studied in the literature. Theorem 2.11 immediately implies the following existence result.

Proposition 3.23. A strongly spin Lorentzian four-manifold (M; g) admits a axionic parallel
spinor relative to a = � 
 �g 2 
1(M;^4M) if and only if it admits an isotropic parallelism
[u; v; l; n] 2 Ob(F(M)), satisfying the following di�erential system:

rgu = 0 ;
1

2
rgv = ��
 n� �
 l ; 1

2
rgl = �
 u� � 
 n ; 1

2
rgn = �
 u+ � 
 l (121)

for one-forms �; � 2 
1(M).
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In particular, every Lorentzian manifold equipped with an axionic parallel spinor is Brinkmann,
a fact that leads us to de�ne the notion of axionic Brinkmann four-manifolds as Lorentzian
four-manifolds equipped with an axionic parallel spinor. Consequently, we will refer to isotropic
parallelisms satisfying Equation (121) as axionic.

Proposition 3.24. An isotropic parallelism [u; v; l; n] is axionic relative to a = a(4) = �
�h if
and only if any of its representatives (u; v; l; n) 2 [u; v; l; n] satis�es the following di�erential
system:

du = 0 ;
1

2
dv = �� ^ n� � ^ l ; 1

2
dl = � ^ u� � ^ n ; 1

2
dn = � ^ u+ � ^ l (122)

for one-forms �; � 2 
1(M).

The fact that if a representative (u; v; l; n) 2 [u; v; l; n] satis�es (122) then any other representative
in (u; v0; l0; n0) 2 [u; v; l; n] also satis�es the same system (122) for possibly di�erent one-forms
�0; �0 2 
1(M) can be veri�ed explicitly. Write:

(u; v0; l0; n0) = (u; v � 1

2
jwj2gu+w; l�w(l)u; n�w(n)u)

for a unique element w 2 �(hRui � hR vi)?h . We compute:

dl0 = d(l�w(l)u) = �0 ^ u� � ^ n0 = �0 ^ u� � ^ (n�w(n)u)

dn0 = d(n�w(n)u) = �0 ^ u+ � ^ l0 = �0 ^ u+ � ^ (l�w(l)u)

and thus:
� = �0 + d(w(l)) +w(n)� ; � = �0 + d(w(n))�w(l)�

Using these relations a computation shows that dv0 = ��0 ^ n0 � �0 ^ l0 holds if and only if
dv = �� ^ n � � ^ l holds and thus (u; v0; l0; n0) is axionic if and only if (u; v; l; n) is. Axionic
spinors seem to de�ne an interesting class of Brinkmann four-manifolds which we plan to study
in more detail in the future.

4. Four-dimensional Lorentzian instantons

Thus far we have focused on the study of parallel spinors with respect to a given, possibly
completely general, connection. It is however important to also consider algebraic constraints
on such spinors. These constraints can become, in fact, important coupled di�erential equations
when they are adequately constructed in terms of variables of a given di�erential system. We
illustrate this possibility in the following by considering a particular constraint that occurs in the
supersymmetry conditions of several supergravity equations, and whose Euclidean analog in four
dimensions corresponds to the celebrated self-duality condition for the curvature of a connection
on a principal bundle. We plan to study these supersymmetric constraints in more detail in the
future, in particular in higher dimensions, where they relate to the notion of higher-dimensional
instantons [65].

Let P ! M be a principal bundle with structure group G de�ned over the oriented four-
manifold M , which we consider to be equipped with a Riemannian metric that we denote mo-
mentarily by gr. The a�ne space of connections on P will be denoted by AP . Since M is four-
dimensional, the Hodge dual operator associated to gr and the given orientation maps two-forms
to two-forms and squares to the identity:

�gr : 
2(M)! 
2(M) ; �2gr = Id

Hence, the bundle of two-forms ^2M = ^2+M � ^2�M on M splits as a direct sum of the eigen-
bundles of �gr with positive and negative eigenvalue, respectively, and consequently we obtain an
analogous decomposition at the level of sections:


2(M) = 
2
+(M)� 
2

�(M)
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Elements in 
2
+(M) are called self-dual, whereas elements in 
2

�(M) are called anti-self-dual.
Given a connection A 2 
1(P; g), where g denotes the Lie algebra of G, its curvature de�nes a
two-form with values in the adjoint bundle gP of P , namely:

FA 2 
2(M; gP )

The Hodge dual operation can be applied to the two-form part of 
2(M; gP ), where it again
induces a splitting in eigenspaces:


2(M; gP ) = 
2
+(M; gP )� 
2

�(M; gP )

Connections A 2 AP whose curvature FA belongs to 
2
+(M; gP ) are called self-dual instantons,

whereas connections A 2 AP whose curvature FA belongs to 
2
�(M; gP ) are called anti-self-dual

instantons. By virtue of the Bianchi identity, both self-dual and anti-self-dual instantons satisfy
the Yang-Mills equation:

dA �gr FA = 0

which can be obtained via a variational problem of the Yang-Mills functional. IfM is compact then
the instantons on P , if any, are absolute minima of the Yang-Mills functional. Their study has led
to outstanding results in the topology of compact low-dimensional manifolds and has evolved into
a mathematical area of its own, sometimes called mathematical gauge theory [65]. Now, if we
try to reproduce the previous discussion on a Lorentzian four-manifold (M; g), we immediately
run into a wall: in four Lorentzian dimensions the Hodge operator on two-forms squares to minus
the identity, and hence the concept of self-dual or anti-self dual instanton cannot be de�ned in
terms of the Hodge operator within the framework described above. Instead, we can consider the
following equation:

FA � " = 0 (123)

which in four Euclidean dimensions is equivalent to self-duality condition for A but which, in
contrast to the self-dualtiy condition, also makes sense in four-dimensional Lorentzian signature
and thus can be interpreted as the Lorentzian analog of a Euclidean instanton. Note that the dot
symbol in Equation (123) denotes the Cli�ord multiplication of the two-form part of FA on ".

Definition 4.1. A Lorentzian instanton on (P;M; g; ") is a connection A 2 AP that satis�es
Equation (123).

Here " 2 �(S) is an irreducible real spinor on (M; g), and therefore the notion of Lorentzian in-
stanton in four dimensions depends not only on the choice of a Riemannian metric and orientation,
as it happens in the Riemannian case, but also on the choice of such spinor. By Remark 2.12, a
connection A 2 AP satis�es Equation (123) if and only if:

(u+ u ^ l) �g FA = u ^ FA + FA(u) + u ^ l ^ FA � l ^ FA(u) + u ^ FA(l) + FA(l; u) = 0

Isolating by degree this equation reduces, we conclude that A is a Lorentzian instanton on
(P;M; g; ") if and only if the following equations hold:

FA(u) = 0 ; u ^ FA = 0

where u is the Dirac current of " 2 �(S). Hence, we could consistently de�ne the notion of
Lorentzian instanton on a tuple (P;M; g; u), where u is an isotropic one-form on M , instead of
on (P;M; g; "). Using the notion of isotropic parallelism we can obtain the following equivalent
characterization of a Lorentzian instanton.

Proposition 4.2. Let [u; v; l; n] be the isotropic parallelism canonically associated to " 2 �(S).
Then, A 2 AP is a Lorentzian instanton on (P;M; g; ") if and only if for any representative
(u; v; l; n) 2 [u; v; l; n] there exists a section:

!A 2 �((hRui � hR vi)?g 
 gP )

such that FA = u ^ !A.
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Proof. The curvature FA of A satis�es u ^ FA = 0 if and only if there exists a one-form
!A 2 
1(M; gP ) taking values on the adjoint bundle gP of P such that FA = u^!A. This bundle
valued one-form is unique modulo modi�cations of the form

!A 7! !A + u
 � (124)

where � 2 �(gP ). Let (u; v; l; n) 2 [u; v; l; n]. We can choose !A such that !A(v) = 0 and expand:

!A = v 
 !A(u) + l
 !A(l) + n
 !A(n)
Using this expansion, it follows that FA(u) = 0 if and only if !A(u) = 0, that is, if and only if
!A 2 �((hRui � hR vi)?g 
 gP ). In particular:

FA = u ^ (l
 !A(l) + n
 !A(n))
The converse follows by construction and hence we conclude. □

Changing the isotropic parallelism (u; v; l; n) within its class [u; v; l; n] changes !A by a trans-
formation of the form (124). Hence, every Lorentzian instanton A 2 AP de�nes a canonical
element:

[!A] 2 �(Gu 
 gP )

where Gu is the screen bundle de�ned by u 2 
1(M). Hence, we obtain the following characteri-
zation of Lorentzian instantons.

Corollary 4.3. A connection A 2 AP is an instanton on (P;M; g; ") if and only if there
exists a section [!A] 2 �(Gu
gP ) such that FA = u^!A, where !A 2 [!A] is any representative
and u is the Dirac current of ".

The previous corollary shows that the Lorentzian instanton condition depends only on the Dirac
current associated to " and not on the full information encoded in the latter. Hence, we can
speak of a Lorentzian instanton on a tuple (P;M; g; u) instead of (P;M; g; "). Given a Lorentzian
instanton A on (P;M; g; u), a direct computation gives:

�gFA = u ^ �qu [!A]
where �qu is the induced Hodge dual on Gu. Hence, a priori we cannot expect that a Lorentzian
instanton in four dimensions is automatically a solution to the Yang-Mills equations, in sharp
contrast with the Euclidean case. Note that A being a Lorentzian instanton is a condition that
will depend in general not only on the underlying orientation and Lorentzian metric g, but also
on the choice of isotropic one-form u.



CHAPTER 4

Parallel spinors with torsion

In this chapter we apply the theory of parabolic pairs and isotropic parallelisms to study
irreducible real spinors parallel with respect to a metric connection with possibly non-parallel
torsion on a Lorentzian four-manifold (M; g). These spinors, to which we refer as torsion parallel
spinors, de�ne a natural class of di�erential spinors and constitute the main object of study in
this dissertation, especially in the case in which the torsion is totally skew-symmetric. The latter
is the case of interest for applications to supergravity and will be considered in Chapter 5.

1. Torsion parallel spinors

Let (M; g) be an oriented and time-oriented Lorentzian four-manifold. Denote by rg the
Levi-Civita connection on (M; g). Every other metric connection r on (M; g) can be written as
follows:

rw1
w2 = rg

w1
w2 +A(w1; w2) ; w1; w2 2 X(M)

in terms of a uniquely de�ned tensor A 2 �(T �M 
 T �M 
 TM) that satis�es:

g(A(w1; w2); w3) + g(w2;A(w1; w3)) = 0 ; 8 w1; w2; w3 2 X(M)

for every w1; w2; w3 2 X(M). Hence A 2 �(T �M 
 Endg(TM)), where Endg(TM) denotes the
endomorphisms of TM that preserve g. We will refer to A as the contorsion tensor of the
given metric connection with torsion on (M; g), which we will consequently denote by rg;A.
The vector space of all metric contorsion tensors on (M; g) identi�es with the space of sections
�(T �M 
 Endg(TM)). We introduce the notation:

Aw := A(w) 2 �(Endg(TM)) ; w 2 X(M) :

which we will use occasionally in the following. For simplicity in the exposition we will identify
A 2 �(T �M 
 Endg(TM)) with A 2 
1(M;^2M) by means of the musical isomorphism de�ned
by the underlying Lorentzian metric.

Remark 1.1. We have described the space of connections compatible with a given Lorentzian
metric using the notion of contorsion. Equivalently, we could have used the notion of torsion,
which for a metric connection contains the same information as the contorsion. Given a metric
connection rg;A with contorsion A, its torsion read:

T(w1; w2) = A(w1; w2)� A(w2; w1) :

Hence, T 2 �(^2M 
 TM) and the previous formula identi�es the space of contorsion tensors
with the space of torsion tensors.

Let (M; g) be strongly spin and let (S;�;B) a paired irreducible spinor bundle on (M; g). Since
rg;A is metric and (M; g) is spin, rg;A lifts canonically to the spinor bundle S and de�nes a
connection on S, which for simplicity we denote by the same symbol. Note that this connection
is compatible with both Cli�ord multiplication and the admissible pairing B, see Proposition 3.1.
More explicitly, we have:

rg;A
w " = rg

w"�
1

2
	�(Aw)(") = rg

w"�
1

2
Aw � "

where, using the Lorentzian metric g, we have identi�ed Aw 2 �(Endg(TM)) with Aw 2 
2(M)
for every w 2 X(M).

81
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Definition 1.2. Let (M; g) be a strongly spin Lorentzian four-manifold. A torsion parallel
spinor on (M; g) with contorsion A 2 �(T �M 
 Endg(TM)) is a section " 2 �(S) of a paired
spinor bundle (S;�;B) over (M; g) that is parallel with respect to rg;A.

Torsion parallel spinors clearly de�ne a particular class of di�erential spinors. More precisely, a
parallel spinor with contorsion A 2 
3(M) is a di�erential spinor relative to an endomorphism
valued one-form A 2 
1(M;End(S)) whose symbol is given by:

aw =
1

2
Aw 2 
2(M) ; w 2 X(M) (125)

Hence, a direct application of Theorem 2.11 gives the following result.

Proposition 1.3. A strongly spin Lorentzian four-manifold (M; g) admits a torsion parallel
spinor with contorsion A 2 �(T �M 
 Endg(TM)) if and only if it admits a parabolic pair
(u; [l]u) satisfying:

rg;Au = 0 ; rg;Al = �
 u (126)

for any, and hence for all, representatives l 2 [l]u.

In the previous proposition rg;A denotes the metric connection with contorsion A induced on the
contangent bundle by rg;A, which for simplicity is denoted by the same symbol.

Remark 1.4. Let (u; l) be a pair satisfying equations (126). Any other representative l0 2 [l]u
can be written as l0 = l+ fu for a function f 2 C1(M). Then:

rg;Al0 = rg;A(l+ fu) = �
 u+ df 
 u = �0 
 u
where �0 = �+ df . Hence, if a representative of (u; l 2 [l]u) satis�es the di�erential system (126)
then any other representative also satis�es the same di�erential system.

In the following will refer to the parabolic pair associated to a spinor parallel with respect to a
metric connection with contorsion simply as a torsion parabolic pair.

Definition 1.5. A torsion parabolic structure on M is a tuple (g; (u; [l]u);A) consisting of a
Lorentzian metric g on M and torsion parabolic pair (u; [l]u) on (M; g) with contorsion A 2
�(^1M 
 ^2M). A parabolic torsion four-manifold is a four-manifold equipped with a torsion
parabolic structure.

Equivalently, a parabolic torsion Lorentzian four-manifold (M; g; (u; [l]u);A) can be considered as
a tuple (M; g;A; "), where " 2 �(S) is a torsion spinor relative to A. Three-dimensional torsion
Lorentzian manifolds have been already considered in [205] and, di�erently to the four-dimensional
case considered in this dissertation, they can be equivalently studied exclusively in terms of their
associated Dirac current. We rephrase now the result of Proposition 1.3 in the language of isotropic
parallelisms.

Proposition 1.6. An oriented and strongly spin four-manifold M admits a torsion parallel
spinor with respect to a Lorentzian metric g and a contorsion tensor A if and only if it there
exists an isotropic parallelism [u; v; l; n] on M satisfying the following di�erential system:

rg;Au = 0 ; rg;Av = ��
 l� �
 n ; rg;Al = �
 u ; rg;An = �
 u (127)

for a given pair of one-forms �; � 2 
1(M), where (u; v; l; n) 2 [u; v; l; n] is any representative
in [u; v; l; n].

Proof. By Proposition 1.3, an oriented Lorentzian four-manifold (M; g) admits a torsion
parallel spinor if and only if its associated parabolic pair (u; [l]u) satis�es equations (126). Assume
then that there exists a torsion parabolic structure (g; u; [l]u). We proceed by taking the covariant
derivative of the identity u^n = �g(u^l) and expanding the result, obtaining, for every w 2 X(M):

u ^rg;A
w n = n ^rg;A

w u+ �g(rg;A
w u ^ l) + �g(u ^rg;A

w l) = 0



1. Torsion parallel spinors 83

where we have used the expressions for rg;A
w u and rg;A

w l given in (126). Hence rg;A
w n = �
u for

a uniquely determined one-form � 2 
1(M). This gives the last equation in (127). Then, we take
the covariant derivative of the identity u ^ v = �g(l ^ n), obtaining, for every w 2 X(M):

u ^rg;A
w v = �g(rg;A

w l ^ n) + �g(l ^rg;A
w n) + v ^rg;A

w u = �u ^ (�(w)l+ �(w)n)

and thus:
rg;Av = ! 
 u� �
 l� �
 n

for a certain one-form ! 2 
1(M). However, since g(v; v) = 0, we must have:

0 = g(rg;A
w v; v) = !(w) = 0 ; 8 w 2 X(M)

and thus we obtain the second equation in (127). For the converse, we note that the di�erential
system (127) implies equations (126) in Proposition 1.3 for a torsion parabolic pair. Hence, we
only need to verify that the di�erential system (127) gives a consistent prescription for a metric
connection with contorsion A compatible with the Lorentzian metric:

g = u� v + l
 l+ n
 n
when applied to (u; v; l; n). We compute:

rg;A
w g = u�rg;A

w v + l�rg;A
w l+ n�rg;A

w n

= �u� (�(w)l+ �(w)n) + �(w)u� l+ �(w)u� n = 0

and therefore the prescription given by (127) preserves g. A direct computation shows that it
also preserves the orthogonality properties of (u; v; l; n). Thus, we only need to check that the
prescription given by (127) de�nes a connection with precisely contorsion tensor given by A 2
�(T �M
Endg(TM)). For this, we need to compute the Lie brackets of the frame (u]g ; v]g ; l]g ; n]g ).
A tedious computation gives:�

u]g ; v]g
�
= ��(u)l]g � �(u)n]g � T(u]g ; v]g ) ;

�
u]g ; l]g

�
= �(u)u]g � T(u]g ; l]g )�

u]g ; n]g
�
= �(u)u]g � T(u]g ; n]g ) ;

�
v]g ; l]g

�
= �(v)u]g + �(l)l]g + �(l)n]g � T(v]g ; l]g )�

v]g ; n]g
�
= �(v)u]g + �(n)l]g + �(n)n]g � T(v]g ; n]g ) ;

�
l]g ; n]g

�
= (�(l)� �(n))u]g � T(l]g ; n]g )

where T(w1; w2) = A(w1; w2) � A(w2; w1). Using these Lie brackets it can be checked that the
contorsion is indeed A and thus we conclude. □

Let (u; [l]u) be a torsion parabolic pair on (M; g) and let (u; v; l; n) 2 E�1(g; u; [l]u) be an asso-
ciated isotropic coframe satisfying the di�erential system (127). Recall that E : P(M) ! F(M)
denotes the natural equivalence between the category of parabolic structures on M and the cat-
egory of isotropic parallelisms on M introduced in Proposition 1.10. By Proposition 2.6, for any
other isotropic coframe (u; v0; l0; n0) 2 E�1(g; u; [l]u) we can write:

(u; v0; l0; n0) = w � (u; v; l; n) = (u; v � 1

2
jwj2gu+w; l�w(l)u; n�w(n)u)

for a unique vector �eld w 2 �(hRui� hR vi)?g in the orthogonal complement of the distribution
spanned by u and v. In particular, [u; v; l; n] = E�1(g; u; [l]u) is a torsor over �(hRui � hR vi)?g

with respect to the action given above. Then, by Remark 1.4 we know that:

rg;Al0 = �0 
 u
for �0 = �� d(w(l)). Similarly, we obtain:

rg;An0 = �0 
 u
for �0 = � � d(w(n)). A very satisfying computations shows now that the remaining equation in
(127) holds automatically, that is, we have:

rg;Av0 = ��0 
 l0 � �0 
 n0

and hence we con�rm the following crucial result.
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Lemma 1.7. If an isotropic coframe (u; v; l; n) 2 E�1(g; u; [l]u) satis�es the di�erential system
(127) with respect to �; � 2 
1(M), then any other global isotropic coframe:

(u; v0; l0; n0) = w � (u; v; l; n) 2 E�1(g; u; [l]u)

in the same isotropic parallelism E�1(g; u; [l]u) also satis�es it with respect to �0 = � �
d(w(l)); �0 = �� d(w(n)) 2 
1(M).

As mentioned earlier, the contorsion of a metric connection is a section of T �M 
 Endg(TM) or,
alternatively, a section of T �M 
 ^2M . As a �ber-wise representation of the Lorentz algebra,
T �M 
 ^2M is reducible and splits in terms of three irreducible representations:

T �M 
 ^2M = T �M � TM � ^3M
where:

TM =
�
� 2 T �M 
 ^2M j �w1

(w2; w3) + �w3
(w1; w2) + �w2

(w3; w1) = 0 j ����e�(e�) = 0
	

where ��� = g(e�; e�) in terms of any orthonormal coframe (e0; : : : ; e3) with dual frame (e0; : : : ; e3)
and summation over repeated indices is assumed. In particular, for every contorsion tensor A 2
�(T �M 
 ^2M) there exists a unique one-form � 2 
1(M), a unique three-form H 2 
3(M) and
a tensor � 2 TM such that:

Aw1
(w2) := A(w1; w2) = g(w1; w2)� � �(w2)w1 + � (w1; w2) +

1

2
H(w1; w2)

and consequently:

rg;A
w � = rg

w� + �(w)� � �(�)w + � (w; �) +
1

2
H(w; �)

where as usual we are using the same symbol to denote a vector or one-form and its metric
dual. Skew-symmetrization of the previous formula together with the cyclic property satis�ed by
� 2 �(TM) gives the following result.

Lemma 1.8. The following formulae holds:

(rg;A
w1
�)(w2)� (rg;A

w2
�)(w1) = d�(w1; w2) + (� ^ �)(w1; w2) + � (�;w1; w2) +H(w1; �; w2)

for every w1; w2 2 X(M).

Using this result together with Proposition 1.6, we can describe torsion parallel spinors in terms of
an exterior di�erential system for global coframes onM that does not use explicitly any Lorentzian
metric. As we will see in the following chapters, this reformulation is particularly convenient to
study moduli spaces of solutions and initial data in applications of skew-torsion parallel spinors
to supergravity.

Theorem 1.9. A strongly spin four-manifold M admits a torsion parallel spinor with con-
torsion A = � � � �H if and only if it there exists a global coframe (u; v; l; n) and a pair of
one-forms �; � 2 
1(M) satisfying the following exterior di�erential system:

du = Hu + � ^ u� �u ; dv = Hv + � ^ v � �v � � ^ l� � ^ n (128)

dl = Hl + � ^ l� �l + � ^ u ; dn = Hn + � ^ n� �n + � ^ u (129)

where g = u� v + l
 l+ n
 n is the Lorentzian metric associated to [u; v; l; n].

Proof. The only if direction follows by skew-symmetrization of equations (127) in Propo-
sition 1.6 upon use of Lemma 1.8. This immediately gives equations (128) and (129). For the
converse, we observe that the symmetrization of (127) gives the following system of equations:

Lug = 2�(u)g � u� � � � su ; Lvg = 2�(v)g � v � � � � sv � �� l� �� n
Llg = 2�(l)g � l� � � � sl + �� u ; Lng = 2�(n)g � n� � � � sn + �� u
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where � s�(w1; w2) = � (w1; �; w2) + � (w2; �; w1), w1; w2 2 X(M). To obtain this symmetrization
we have used the following identity:

(rg;A
w1 �)(w2) + (rg;A

w2 �)(w1) = L�g(w1; w2) + (� � �)(w1; w2)

�2�(�)g(w1; w2) + � (w1; �; w2) + � (w2; �; w1)

applied to each of the elements in (u; v; l; n). Explicitly computing using equations (128) and
(129), we obtain:

Lug = du(u)� dv + du� dv(u) + l� dl(u) + n� dn(u)

= (�(u)u� � (u; u))� v + u� (H(v; u) + �(u)v � � � � (v; u)� �(u)l� �(u)n)
+l� (H(l; u) + �(u)l� � (l; u) + �(u)u) + n� (H(n; u) + �(u)n� � (n; u) + �(u)u)

= 2�(u)g � u� � � � su :
This gives the symmetrization of the �rst equation in (127). Computing similarly for Lvg, Llg and
Lng, we obtain the symmetrization of the remaining equations in (127) and thus we conclude. □

By Lemma 1.7 we have the following alternative version of Proposition 2.9 to characterize strongly
spin Lorentzian four-manifolds that admit torsion parallel spinors.

Corollary 1.10. A strongly spin four-manifold M admits a torsion parallel spinor if and
only if it there exists an isotropic parallelism satisfying (128) and (129) for some contorsion
tensor A = � � � � 1

2H.

We will refer to the isotropic parallelisms that satisfy the di�erential system (128) and (129)
as torsion isotropic parallelisms when needed. There is a canonical equivalence of categories
between the category of torsion parabolic pairs and the category of torsion isotropic parallelisms
given by the restriction of E : P(M) ! F(M) to the corresponding full subcategories. Hence,
we can study torsion parallel spinors in terms of either torsion parabolic structures or torsion
isotropic parallelisms. Theorem 1.9 establishes that a Lorentzian four-manifold equipped with
a torsion parallel spinor is naturally equipped with a nowhere vanishing isotropic vector �eld
satisfying a di�erential equations (128) and (129). Nowhere vanishing isotropic vector �elds are
vital in Lorentzian geometry and mathematical general relativity, since when they are Killing they
determine idealized models for gravitational waves such as the class of Brinkmann space-times or
more generally the class of Kundt space-times.

Definition 1.11. A Kundt four-manifold is a triple (M; g; u) consisting of a Lorentzian four-
manifold (M; g) equipped with an isotropic one-form u 2 
1(M) such that:

rg�u = 0 ; jduj2g = 0 ; jLu]g gj2g = 0

Kundt space-times de�ne a remarkable class of space-times that has been intensively studied in
the general relativity literature, see [34] for a geometric characterization of this class of Lorentzian
manifolds. Equivalently, using general relativity jargon, u 2 
1(M) de�nes a non-expanding,
non-twisting and non-shear geodesic null congruence on (M; g).

The di�erential system (128) and (129) can be immediately applied to obtain conditions on a
torsion parallel spinor that imply the underlying Lorentzian manifold is Kundt with respect to
the Dirac current of the torsion parallel spinor.

Proposition 1.12. Let " be a torsion parallel spinor on a Lorentzian four-manifold (M; g)
with associated parabolic pair (u; [l]u). Then, (M; g; u) is a Kundt four-manifold if and only
if:

rg�u = 3u(�) ; Lu]g g + u� � � 2u(�)g + � s(u) = 0

jHuj2g � 2hHu; �uig + 2�u(u; �)� u(�)2 + j�uj2g = 0

where � s(u) 2 �(T �M � T �M) is the symmetrization of � (u).
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Proof. By Theorem 1.9 we have:

rg;A
w u = rg

wu+ u(w)� � u(�)w + �w(u) +
1

2
H(w;u) = 0

Taking the trace of this equation we obtain:

rg�u = 3u(�)

whereas taking the symmetrization we obtain:

Lu]g g + u� � � 2u(�)g + � s(u) = 0

Again by Theorem 1.9, we have:

jduj2g = jHuj2g � 2hHu; �uig + 2�u(u; �)� u(�)2 + j�uj2g = 0

and hence we conclude. □

By Lemma 1.7, every torsion parallel spinor de�nes two invariants that are determined in terms
of the pair (�; �) associated to any torsion isotropic parallelization. More precisely, we have a
natural map:

M(M)! 
1(M)

dC1(M)
� 
1(M)

dC1(M)
; (g; u; [l]u) 7! ([�]; [�])

whereM(M) is the set of equivalence classes inP(M), that is the set of torsion parabolic structures
modulo di�eomorphisms isotopic to the identity.

Definition 1.13. Let (u; [l]u) be a torsion parabolic pair. Using the notation introduced above,
the pair ([�]; [�]) are the rank-one invariants of (u; [l]u).

It would be interesting to further elucidate the basic properties of this map, which we plan to study
in more detail in the future. We end this section with a corollary that follows immediately by our
earlier computation given in the proof of Proposition 1.6 of the Lie brackets of any representative
(u; v; l; n) 2 [u; v; l; n] of a torsion isotropic parallelism. As explained in Chapter 3, every torsion
isotropic parallelism [u; v; l; n] de�nes a screen bundle Gu associated to its Dirac current u 2

1(M). A choice of one-form conjugate to u de�nes a representative (u; v; l; n) 2 [u; v; l; n] and
a rank-two distribution in TM that is isomorphic to Gu and is spanned by (l]g ; n]g ). It is then
natural to ask if there exists a choice of conjugate vector �eld v to u such that the rank-two
distribution that it de�nes is integrable. This leads us to the following result.

Corollary 1.14. Let [u; v; l; n] be a torsion isotropic parallelism on M with contorsion A.
There exists an integrable realization of the screen bundle determined by u if and only if
there exists an isotropic coframe (u; v; l; n) 2 [u; l; v; n] satisfying:

�⌟g(l ^ n) + � (l; n)� � (n; l) +H(l; n) = (�(l)� �(n))u
where A = � � � � 1

2H is split in its irreducible components. If that is the case, then the
corresponding foliation has �at leaves when endowed with the metric induced by g.

Proof. By the proof of Proposition 1.6 we know that:�
l]g ; n]g

�
= (�(l)� �(n))u]g � T(l]g ; n]g )

and thus the span of l]g and n]g is integrable if and only if:

T(l]g ; n]g ) = (�(l)� �(n))u]g

On the other hand, we have:

T(l]g ; n]g ) = A(l]g ; n]g )� A(n]g ; l]g ) = �(l)n� �(n)l+ � (l; n)� � (n; l) +H(l; n)

and thus the span of l]g and n]g is integrable if and only if:

�⌟g(l ^ n) + � (l; n)� � (n; l) +H(l; n) = (�(l)� �(n))u
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Using the previous equation together with the di�erential system given in (128) and (129), we
compute:

dl(l; n) = ��(n)� �l(l; n) = 0 ; dn(l; n) = �(l)� �l(l; n) = 0 ;

and therefore every leaf of the distribution determined by the span of l]g and n]g admits an
orthonormal �at frame given by the pull-back of (l; n) and thus we conclude. □

The foliation determined by an integrable screen bundle corresponds to the wave front of (M; g)
when the latter is interpreted as a gravitational wave. Hence, and interestingly enough, the
previous corollary implies that the gravitational waves de�ned by torsion parallel spinors have all
�at wave fronts.

2. Lorentzian curvature and cohomological invariants

The goal of this section is to compute the curvature of a Lorentzian four-manifold equipped
with a torsion parallel spinor. We will �nd that it is highly constrained in a quite elegant way. In
our conventions the curvature tensor of rg;A, which we denote by Rg;A, is given by:

Rg;A
w1;w2

w3 = rg;A
w1
rg;A
w2
w3 �rg;A

w2
rg;A
w1
w3 �rg;A

[w1;w2]
w3 ; 8 w1; w2; w3 2 X(M)

which expands as follows in terms of the torsion A and its covariant derivative:

Rg;A
w1;w2w3 = Rg

w1;w2w3 + (rg
w1A)(w2; w3)� (rg

w2A)(w1; w3)

+A(w1;A(w2; w3))� A(w2;A(w1; w3)) ; 8 w1; w2; w3 2 X(M)

where Rg denotes the Riemann tensor of g. For any representative (u; l; v; n) 2 [u; v; l; n] of a
torsion isotropic parallelism [u; v; l; n] and every pair of vector �elds w1; w2 2 X(M), a computation
using (127) gives:

Rg;A
w1w2u = 0 ; Rg;A

w1w2v = �d�(w1; w2)l� d�(w1; w2)n

Rg;A
w1w2 l = d�(w1; w2)u ; Rg;A

w1w2n = d�(w1; w2)u

and therefore, we obtain the following result.

Proposition 2.1. Let (M; g) be a strongly spin Lorentzian four-manifold equipped with a
torsion parallel spinor with associated torsion isotropic parallelism [u; v; l; n]. Then:

Rg;A
w1w2

= �d�(w1; w2)u ^ l� d�(w1; w2)u ^ n ; 8 w1; w2 2 X(M) (130)

where (u; v; l; n) 2 [u; v; l; n] satis�es the di�erential system (127) relative to �; � 2 
1(M).

Note that Equation (130) is clearly invariant we respect to the choice of isotropic coframe repre-
sentative (u; v; l; n) 2 [u; v; l; n].

Definition 2.2. A torsion isotropic parallelism [u; l; v; n] on M is torsion-�at if Rg;A = 0, where
g = u� v + l
 l+ n
 n.

We de�ne similarly the notion of torsion-�at torsion parabolic pairs. Remarkably enough, by
Equation (130) it follows that the rank-one invariants of torsion-�at isotropic parallelisms descend
to de Rham cohomology, that is:

Mo(M)! H1(M;R)�H1(M;R) ; [u; v; l; n] 7! ([�]; [�])

where Mo(M) denotes the moduli space of torsion-�at parabolic pairs modulo di�eomorphisms
isotopic to the identity. In other words, we have the following result.

Corollary 2.3. A torsion parallel spinor is torsion-�at if and only if its rank-one invariants
descend to de Rham cohomology.



88 Chapter 4. Parallel spinors with skew-symmetric torsion

Interestingly enough, the torsion-�atness condition on a torsion parallel spinor does not involve
explicitly de torsion A 2 �(T �M 
 ^2M). In particular, the study of torsion-�at torsion parallel
spinors reduces to the study of the di�erential system (137) and (138) with �; � 2 
1(M) closed.
Appropriately tracing Equation (130), we obtain the Ricci and scalar curvatures of a Lorentzian
manifold admitting a torsion parallel spinor as a corollary of Proposition 2.1.

Corollary 2.4. Let (M; g) be a strongly spin Lorentzian four-manifold equipped with a
torsion parallel spinor with associated torsion isotropic parallelism [u; v; l; n]. Then:

Ricg;A(w) = (d�(w; l) + d�(w;n))u� d�(w;u)l� d�(w;u)n

sg;A = 2(d�(u; l) + d�(u; n))

where w 2 X(M) and (u; v; l; n) 2 [u; v; l; n] satis�es the di�erential system (127) relative to
�; � 2 
1(M).

Interestingly enough, by the previous corollary the scalar curvature sg;A does not depend explicitly
on the conjugate vector v 2 
1(M). In particular, we obtain the following obstruction for a
Lorentzian four-manifolds equipped with torsion parallel spinor to be torsion Ricci �at.

Proposition 2.5. Let (M; g) be a strongly spin Lorentzian four-manifold equipped with a

torsion isotropic parallelism [u; v; l; n] with contorsion A. Then, Ricg;A = 0 only if:

d�jKer(u) = 0 ; d�jKer(u) = 0

where (u; v; l; n) 2 [u; v; l; n] satis�es the di�erential system (127) relative to �; � 2 
1(M).

The previous result can be interpreted more clearly in terms of invariants in foliated cohomology
associated to every Lorentzian four-manifold equipped with torsion parallel spinors with respect
to a Ricci-�at metric connection with torsion. All the results obtained so far hint at torsion
parallel spinors on Lorentzian four-manifolds having a remarkably rich geometry which has not
been systematically studied in the mathematical literature, modulo some pioneering exceptions
[97, 98]. In later chapters of this dissertation we will focus on supersymmetric NS-NS solutions,
which involve a very special class of torsion parallel spinors on Lorentzian four-manifolds. It would
be however very interesting to further develop the theory of torsion parallel spinors as an exterior
di�erential system, which is the perspective given by Theorem 1.9. In particular, it would natural
to apply Cartan's involutive test to the di�erential system de�ned by (128) and (129) and study
its prolongations and associated Spencer cohomology [38, 39].



CHAPTER 5

Supersymmetric Kundt four-manifolds

In this chapter we consider the particular type of torsion parallel spinors that occurs in
the supersymmetric con�gurations and solutions of four-dimensional NS-NS supergravity. This
requires introducing the notion of a abelian gerbe, which we review in Appendix A, together with
other geometric preliminaries needed to establish the mathematical foundations of the bosonic
sector of NS-NS supergravity and its four-dimensional Killing spinor equations. The title if this
chapter is justi�ed by the fact that, as stated in Corollary 3.4, every supersymmetric con�guration
in NS-NS supergravity is in particular a Kundt Lorentzian four-manifold of special type.

1. The NS-NS system on a bundle gerbe

In the following C will denote a bundle gerbe C := (P;A; Y ) [22, 186], with underly-
ing submersion Y ! M , equipped with a �xed connective structure A de�ned on a �xed four-
dimensional manifold M , and X will denote a principal Z bundle de�ned on M . Given a curving
b 2 
2(Y �M Y ) on C we denote its curvature by Hb 2 
3(M). We recall also that an equivariant
function � 2 C1(X ) de�ned on X does not necessarily descend to M but its exterior derivative
does descend and de�nes a closed one-form '� 2 
1(M) on M . Given an equivariant function
� 2 C1(X ), we will refer to '� 2 
1(M) as its curvature. More precisely, we can understand Z-
bundles X onM as (�1)-gerbes, and we can consider equivariant functions on X with equivariance
rule:

�(xn) = �(x) + 2�n ; 8 x 2 X ; 8 n 2 Z

as connections on the (�1)-gerbe X ! M . Every such equivariant function � descends to a
S1-valued function �� : M ! S1 = R=Z. Pulling back the standard volume form on R=Z to M
gives a closed one-form which coincides with '� and which, when a appropriately normalized,
de�nes an integer class in de Rham cohomology. Hence, our notion of curvature of � can be truly
understood as the curvature of a connection on a (�1)-gerbe.
1.1. The equations of motion. A pair (C;X ) determines a unique bosonic NS-NS supergravity
on M , as prescribed in the following de�nition. For clarity of exposition, we will omit the term
bosonic in the following.

Definition 1.1. The NS-NS supergravity system, or NS-NS system for short determined by
(C;X ) on M is the following di�erential system [192, 221]:

Ricg +rg'� � 1

2
Hb �g Hb = 0 ; rg�Hb + '�⌟gHb = 0 ; rg�'� + j'�j2g = jHbj2g (131)

for triples (g; b; �) consisting of a Lorentzian metric g on M , a curving b 2 
2(Y ) on C, and an
equivariant function � 2 C1(X ), where Hb 2 
3(M) and '� 2 
1(M) are the curvatures of b and
�, respectively.

By the previous de�nition we can consider the NS-NS system as a natural gauge theoretic system
that couples a Lorentzian metric to connections b and � respectively on a 1-gerbe, namely a
bundle gerbe, and a (�1)-gerbe.
Remark 1.2. Solutions (g; b; �) to equations (131) are NS-NS solutions. The �rst equation
in (131) is the so-called Einstein equation, whereas the second equation in (131) is called the
Maxwell equation and the third equation in (131) is referred to as the dilaton equation in the
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literature. In this context, an equivariant function on X corresponds to the dilaton of the theory,
and therefore we will refer to equivariant functions on X as dilatons, whereas curvings on C are
usually called b-�elds, a terminology that we will use occasionally.

Given a NS-NS solution (g; b; �), we will refer to the cohomology class � = ['�] 2 H1(M;R)
determined by � 2 C1(X ) as the Lee class of (g; b; �). Clearly, di�erent dilatons on X de�ne
the same Lee class through their curvature. Given (C;X ), we will denote by Conf(C;X ) the
con�guration space of the NS-NS system on (C;X ), namely the set of triples (g; b; �) consisting
of a Lorentzian metric g on M , a curving b on C and an equivariant function � on X . Similarly,
we will denote by Sol(C;X ) � Conf(C;X ) the solution set of NS-NS supergravity on (C;X ). The
notion of NS-NS system that we have introduced in De�nition 1.1 is valid in any dimension. Since
in our caseM is four-dimensional, we can simplify the NS-NS system accordingly. Given a curving
b 2 
2(Y �M Y ) with curvature Hb 2 
3(M) we set Hb = �g�b for a uniquely determine one-form.
A quick computation gives the following formulae:

Hb �g Hb = �b 
 �b � j�bj2gg ; jHbj2g = �j�bj2g ; '�⌟gHb = �g(�b ^ '�) ; rg�Hb = �gd�b
Hence, the four-dimensional NS-NS system is equivalent to the following system of equations:

Ricg+rg'�� 1

2
�b
�b+ 1

2
j�bj2gg = 0 ; d�b = '� ^�b ; rg�'�+ j'�j2g+ j�bj2g = 0 (132)

for triples (g; b; �) 2 Conf(C;X ). Note that, since Hb = �g� is the curvature of a curving on an
abelian gerbe it follows that we always have rg�� = 0. In the following, when referring to the
NS-NS system we will always refer to the di�erential system (132).

Definition 1.3. A triple (g; b; �) 2 Conf(C;X ) is �ux-less if b is �at, namely if �b = 0 identically
on M , and is �ux otherwise. A triple (g; b; �) 2 Conf(C;X ) is trivial if its �ux-less and g is �at.
For a trivial triple (g; b; �) 2 Sol(C;X ) the NS-NS system reduces to:

rg'� = 0 ; j'�j2g = 0

and thus it follows that '� is a parallel light-like one-form onM and consequently (M; g; ') de�nes
a four-dimensional �at Brinkmann space-time [172]. Note that this class of space-times can be
very non-trivial as Lorentzian manifolds [50]. The study of NS-NS solutions can be separated
into the study of �ux-less NS-NS solutions, namely solutions with �at b-�eld, and �ux NS-NS
solutions, namely solutions for which �b 6= 0 at a point. For �ux-less triples (g; b; �) 2 Conf(C;M)
the NS-NS system reduces to:

Ricg +rg'� = 0 ; rg�'� + j'�j2g = 0

and thus it e�ectively reduces to di�erential system for pairs (g; '), where g is a Lorentzian metric
on M and ' is a closed one-form.

Remark 1.4. Solutions to the �rst equation above correspond to a mild generalization of steady
Lorentzian Ricci solitons [105] for which the gradient of the function is taken to be the metric
dual of a closed, not necessarily exact, one-form.

1.2. The supersymmetry conditions. We have introduced the NS-NS system as the equations
of motion of the bosonic sector of NS-NS supergravity in four dimensions. If that was the end
of the story, then the NS-NS system would simply be a very particular general relativity model,
with a very particular matter content and energy momentum tensor. However, and thanks to
underlying supersymmetry of the theory, the NS-NS system comes equipped with a �rst-order
spinorial di�erential system that provides partial integrability to the full second order NS-NS
system and de�nes the notion of supersymmetric solution or BPS state.

Given an element (g; b; �) 2 Conf(C;X ) we denote by rg;b the unique metric connection
on (M; g) with totally skew-symmetric torsion given by Hb 2 
3(M), namely the curvature of
b 2 
2(Y �M Y ). This is the natural way in which supersymmetry realizes geometrically the
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notion of torsion for a metric connection. For ease of notation we denote by the same symbol rg;b

its lift to any irreducible spinor bundle de�ned on (M; g).

Definition 1.5. A supersymmetric con�guration on (C;X ) is triple (g; b; �) consisting of a
Lorentzian metric g onM , an equivariant function � 2 C1(X ), and a curving b 2 
2(Y ) satisfying
the following di�erential system:

rg;b" = 0 ; '� � " = Hb � " (133)

for a nowhere vanishing section " 2 �(S) of an irreducible paired spinor bundle (S;�;B) on
(M; g). Such spinor " 2 �(S) is a supersymmetry parameter or supersymmetry generator for
the supersymmetric con�guration (g; '; b).

Remark 1.6. Note that, using the rigorous notation introduced in Chapter 2 the second equation
in (133) would read as follows:

	�('�)(") = 	�(Hb)(")

It is however standard to denote Cli�ord multiplication with just a dot.

Therefore, the supersymmetry parameter of a supersymmetric con�guration is in particular a
torsion parallel spinor with fully skew-symmetric torsion. We denote by Confs(C;X ) the set of
supersymmetric con�gurations on (C;X ), whose elements consist by de�nition of tuples (g; b; �; ")
satisfying the di�erential system (133). Because of their physical origin in the supergravity liter-
ature, the �rst equation in (133) is called the gravitino equation, whereas the second equation
in (133) is called the dilatino equation. We will occasionally use this terminology in the follow-
ing. Since supersymmetric NS-NS con�gurations involve torsion parallel spinors with completely
skew-symmetric torsion, we consider the latter separately in the following subsection.

2. Skew-symmetric torsion parallel spinors

We say that a metric connection r = rg + A on (M; g) has completely skew-symmetric
torsion, or that is skew for short, if A 2 
3(M) � �(T �M 
 ^2T �M) is a three-form, namely, it
is skew-symmetric in all of its entries. Introducing the three-form H 2 
3(M) as:

H = 2A 2 
3(M)

we write rg;H := r. It follows that rg;H has torsion precisely H:

rg;H
w1

w2 �rg;H
w2

w1 � [w1; w2] = H(w1; w2) ; 8 w1; w2 2 X(M) :

In our conventions the curvature tensor of rg;H , which we denote by Rg;H , is given by:

Rg;H
w1;w2

w3 = rg;H
w1
rg;H
w2

w3 �rg;H
w2
rg;H
w1

w3 �rg;H
[w1;w2]

w3 ; 8 w1; w2; w3 2 X(M)

and expands as follows in terms of the torsion H and its covariant derivative:

Rg;H
w1;w2w3 = Rg

w1;w2w3 +
1
2 (rg

w1H)(w2; w3)� 1
2 (rg

w2H)(w1; w3)

+ 1
4H(w1; H(w2; w3))� 1

4H(w2; H(w1; w3)) ; 8 w1; w2; w3 2 X(M)

where Rg denotes the Riemann tensor of g. The associated Ricci and scalar curvatures, which we
denote by Ricg;H and sg;H respectively, are given by:

Ricg;H = Ricg � 1

2
rg�H � 1

2
H �g H ; sg;H = sg � 3

2
jHj2g

Since we consider M to be oriented and four-dimensional, we can replace H by its Hodge dual
� = �gH, in which case we will sometimes write rg;� for unique metric connection with totally
skew torsion H. This is convenient for computations as well as for the geometric understanding
of torsion in four Lorentzian dimensions, and allows for introducing the notion of the causal
character of H, which will be useful in the following.
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Definition 2.1. Let rg;H be a metric connection with torsion and O � M a subset of M . The
torsion of rg;H is time-like, null, or space-like on O if j�j2gjO < 0, j�j2gjO = 0 and j�j2gjO > 0,
respectively.

Remark 2.2. The curvature tensors Rg;H , Ricg;H and sg;H can be written as follows in terms of
the skew-torsion � = �gH:

Rg;�
w1;w2 = Rg;H

w1;w2 = Rg
w1;w2 +

1
2 �g (rg

w1� ^ w2 �rg
w2� ^ w1)

+ 1
4 (�(w1)� ^ w2 � �(w2)� ^ w1 � j�j2gw1 ^ w2) ; 8 w1; w2 2 X(M)

Ricg;H = Ricg � 1
2 �g d�+ 1

2 j�j2gg � 1
2�
 � ; sg;� = sg + 3

2 j�j2g
We will use this formulae later in this section to compute the curvature of a supersymmetric
NS-NS con�guration.

Definition 2.3. Let (M; g) be a strongly spin Lorentzian four-manifold. A skew-torsion parallel
spinor on (M; g) with torsion H 2 
3(M) is a section " 2 �(S) of a paired spinor bundle (S;�;B)
over (M; g) that is parallel with respect to rg;H .

Proposition 2.9 immediately implies the following characterization of skew-torsion parallel spinors
on Lorentzian four-manifolds.

Proposition 2.4. A strongly spin Lorentzian four-manifold (M; g) admits a skew-torsion
parallel spinor with torsion H 2 
3(M) if and only if it admits a parabolic pair (u; [l]u)
satisfying:

rgu =
1

2
�g (� ^ u) ; rgl = �
 u+ 1

2
�g (� ^ l) (134)

for any, and hence for all, representatives l 2 [l]u.

In the following will refer to the parabolic pair associated to a spinor parallel with respect to a
metric connection with skew torsion simply as a skew-torsion parabolic pair. The torsion H
of the connection that preserves the spinor will be referred to as the torsion of the associated
skew-torsion parabolic pair.

Definition 2.5. A skew-torsion parabolic structure on M is a tuple (g; (u; [l]u); �) consisting of
a Lorentzian metric g on M and skew-torsion parabolic pair (u; [l]u) on M with torsion H = �g�.
A skew-torsion parabolic four-manifold consists of a four-manifold equipped with a skew-torsion
parabolic structure.

By Proposition 2.4 a skew-torsion Lorentzian four-manifold (M; g; (u; [l]u); �) can be equivalently
considered as a tuple (M; g; "; �), where " 2 �(S) is a skew-torsion spinor with respect to H = �g�.
Three-dimensional skew-torsion Lorentzian manifolds have been already considered in [205] and,
in contrast to the four-dimensional case considered in this dissertation, in three dimensions they
can be equivalently studied exclusively in terms of their associated Dirac current.

Remark 2.6. For further reference, we denote by Psk(M) the full subcategory of P(M) whose
objects are skew-torsion parabolic structures (g; u; [l]u; �), and we denote by P�

sk(M), where
� 2 
1(M) the full subcategory of Psk(M) whose objects all have torsion H = �g�.

From Equations (134) it immediately follows that if (u; [u]l) 2 P
g
sk(M) then u]g 2 X(M) is Killing

and its integral curves are geodesics, that is:

rg
uu = 0

Hence, every Lorentzian four-manifold (M; g) admitting a parallel spinor with torsion comes
equipped with a geodesic null congruence generated by the Dirac current of the latter. In partic-
ular, the optical invariants associated to this congruence read as follows:

� :=
1

2
Trg(rgu) = 0 ; 4!2 := jduj2g = ��(u)2 ; �2 :=

1

8
jLugj2g � �2 = 0



2. Skew-symmetric torsion parallel spinors 93

In the terminology of mathematical general relativity, � is the expansion, ! the twist and �
the shear of the given null congruence. The previous expression for the expansion of the null
congruence de�ned by u together with Proposition 3.5 yields the following result.

Corollary 2.7. Let (M; g; (u; [l]u); �) be a skew-torsion Lorentzian four-manifold. Then the
twist of u is zero if and only if �(u) = 0, if and only if u?g � TM is integrable, if and only
if (M; g; u) is Kundt.

The previous corollary suggests that skew-torsion Lorentzian four-manifolds are not necessarily
Kundt, in contrast to the three-dimensional case considered in [205]. As a direct application of
Proposition 1.6 we obtain the following characterization of skew-torsion parabolic structures.

Proposition 2.8. An oriented Lorentzian four-manifold (M; g) admits a skew-torsion para-
bolic pair (u; [l]u) if and only if it there exists null coframe (u; v; l; n) 2 E�1(g; u; [l]u) satisfying
the following di�erential system:

rgu = 1
2 �g (� ^ u) ; rgv = ��
 l� �
 n+ 1

2 �g (� ^ v) (135)

rgl = �
 u+ 1
2 �g (� ^ l) ; rgn = �
 u+ 1

2 �g (� ^ n) (136)

for a given pair of one-forms �; � 2 
1(M).

Similarly, as a direct application of Theorem 1.9 we obtain the following equivalent characterization
of Lorentzian four-manifolds equipped with skew-torsion parallel spinors.

Proposition 2.9. A strongly spin four-manifold M admits a skew-torsion parallel spinor if
and only if it there exists a global coframe (u; v; l; n) and a pair of one-forms �; � 2 
1(M)
satisfying the following exterior di�erential system:

du = �g(� ^ u) ; dv = �� ^ l� � ^ n+ �g(� ^ v) (137)

dl = � ^ u+ �g(� ^ l) ; dn = � ^ u+ �g(� ^ n) (138)

where g = u� v + l
 l+ n
 n is the Lorentzian metric associated to [u; v; l; n].

Corollary 2.10. A strongly spin four-manifold M admits a skew-torsion parallel spinor if
and only if it there exists a null coframe satisfying (137) and (138).

We denote by Fsk(M) the full subcategory of F(M) whose objects [u; v; l; n] satisfy the di�erential
system (137) and (138) for any and hence all representatives (u; v; l; n) 2 [u; v; l; n]. We will
refer to such [u; v; l; n] as skew-torsion isotropic parallelisms, and to any of the representatives
(u; v; l; n) 2 [u; v; l; n] as skew-torsion isotropic coframes when needed. The full subcategory
F�sk(M) is de�ned analogously to P�

sk(M).

Remark 2.11. We recall below the Lie brackets of the dual of a skew-torsion isotropic coframe.

�
u]g ; v]g

�
= �(�(n) + �(u)) l]g + (�(l)� �(u))n]g�

u]g ; l]g
�
= (�(u) + �(n))�]g � �(u)n]g�

u]g ; n]g
�
= (�(u)� �(l))�]g + �(u) l]g�

v]g ; l]g
�
= �(v)u� �(n)v + �(l)l+ (�(l) + �(v))n�

v]g ; n]g
�
= �(l)v + �(v)u+ (�(n)� �(v))l+ �(n)n�

l]g ; n]g
�
= (�(l)� �(n) + �(v))u� �(u)v

We will use these expressions occasionally in the following.

Proposition 2.9 allows to give an equivalent point of view on skew-torsion parabolic pairs which
is very convenient both conceptually and computationally.

Proposition 2.12. There is a canonical equivalence of categories between Psk(M) and Fsk(M)
given by the restriction of E : P(M)! F(M).
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Another direct consequence of Proposition 2.8 is the following uniqueness result with respect to
the torsion of a skew-torsion parabolic pair.

Corollary 2.13. Let (u; [l]u) be a skew-torsion parabolic pair such that (g; u; [l]u) 2 P�1
sk (M)

and (g; u; [l]u) 2 P�2
sk (M), where �1; �2 2 
1(M). Then �1 = �2.

Proof. Suppose that (g; u; [l]u) 2 P�1
sk (M) and (g; u; [l]u) 2 P�2

sk (M). Then, there exist
(u; v; l; n) 2 E�1(g; u; [l]u) satisfying equations (137) and (138) with respect to both torsions �1
and �2 and relative to pairs of one-forms (�1; �1) and (�2; �2), respectively. Combining these
systems of equations, we obtain

u ^ (�1 � �2) = 0 ; �(�1 � �2) ^ l� (�1 � �2) ^ n+ �g(v ^ (�1 � �2)) = 0

(�1 � �2) ^ u+ �g(l ^ (�1 � �2)) = 0 ; (�1 � �2) ^ u+ �g(n ^ (�1 � �2)) = 0

Hence �1 = �2 + f1u for a function f1 2 C1(M). Plugging this equation into the remaining
equations above, we obtain:

(�1 � �2) ^ l+ (�1 � �2) ^ n = f1l ^ n
(�1 � �2) ^ u+ f1n ^ u = 0 ; (�1 � �2) ^ u� f1l ^ u = 0

Therefore, from the second line we obtain:

�1 = �2 � f1n+ f2u ; �1 = �2 + f1l+ f3u

in terms of functions f2; f3 2 C1(M). Plugging these expressions into the �rst line above, we
obtain:

(f2u� f1 n) ^ l+ (f1l+ f3u) ^ n = f1l ^ n
Hence f1 = f2 = f3 = 0 and thus �1 = �2. □

Hence, a skew-torsion parabolic structure, equivalentely, a skew-torsion isotropic parallelism on
a given four-manifold can only be so with respect to a unique completely skew-torsion tensor
H = �g� 2 
1(M). In particular, we can refer to skew-torsion parabolic pairs without explicit
mention of their torsion. Hence, we obtain a disjoint partition into full subcategories:

Psk(M) =
[

�2
1(M)

P�
sk(M) ; Fsk(M) =

[
�2
1(M)

F�sk(M)

and a natural map:
Psk(M)! 
1(M) ; (u; [l]u) 7! �

and similarly for Fsk(M). This maps descends to the moduli space Msk(M):

Msk(M)! 
1(M)

Di�(M)
; [(u; [l]u)] 7! [�]

It would be interesting to further elucidate the basic properties of this map, which gives a �bration
onto its image with �ber given by the set of skew-torsion parabolic pairs with �xed torsion. We
end this section with a nice corollary that follows immediately from Remark 2.11 or, alternatively,
Proposition 2.9. As explained in Chapter 3, every skew-torsion parabolic structure (g; u; [l]u)
de�nes a screen bundle Gu associated to its Dirac current u 2 
1(M). A choice of conjugate
vector �eld to u de�nes a rank-two distribution in TM that is isomorphic to Gu. It is then natural
to ask if there exists a choice of conjugate vector �eld to u such that the rank-two distribution
that it de�nes is integrable. This leads us to the following result.

Corollary 2.14. Let [u; v; l; n] be a skew-torsion isotropic parallelism on M . There exists
an integrable realization of the screen bundle determined by u if and only if there exists a
null coframe (u; v; l; n) 2 [u; l; v; n] satisfying:

�(u) = 0 ; �(v) = �(n)� �(l)
In particular Ker(u) � TM is integrable and dl = dn = 0.
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The foliation determined by an integrable screen bundle corresponds to the wave front of (M; g)
when the latter is interpreted as a gravitational wave. Hence, and interestingly enough, the
previous corollary implies that the gravitational waves de�ned by skew-torsion parallel spinors
have �at wave fronts when the latter assemble into a codimension-two foliation.

2.1. Natural reduction to a Riemann surface. In this section we will use the theory of
isotropic parallelisms to study a class of skew-torsion parallel spinors that re�ects naturally the
local structure determined by the existence of an isotropic isometry, which by Proposition 2.8
always exists on Lorentzian four-manifolds equipped with a skew-torsion parallel spinor and is
given by its Dirac current u]g 2 X(M). Throughout this section X will denote a two-dimensional
oriented manifold.

Definition 2.15. An isotropic parallelism [u; v; l; n] de�ned on M = R2 �X is adapted if u]g =
@xv , where (xu; xv) are the Cartesian coordinates of the R2 factor.

Definition 2.16. A nowhere vanishing spinor " on (R2�X; g) is adapted if its associated isotropic
parallelism is adapted.

By construction, every skew-torsion Lorentzian four-manifold is locally isomorphic to an adapted
skew-torsion parabolic pair on M = R2 �X.

Lemma 2.17. Let [u; v; l; n] be an adapted isotropic parallelism. Then, there exists a repre-
sentative (u; v; l; n) 2 [u; v; l; n] given by:

(u; v; l; n) = (eFdxu + �;dxv + eKdxu + !; l?; n?)

where F ;K 2 C1(R2 � �) are functions on R2 � X and �; !; l? and n? are sections of the
pull-back of T �X along the canonical projection R2 � �! �.

Proof. Given any representative (u; v; l; n) 2 [u; v; l; n], we expand each of its elements in
a basis given by dxu, dxv and its projection to T �X using the fact that T �M = T �R2 � T �X.
Since u]g = @xv and u(u]g ) = u(@xv ) = 0, the expansion of u in the aforementioned basis cannot
have any dxv term, and similarly for l and n. On the other hand, since v(u]g ) = v(@xv ) = 1
the coe�cient of the dxv term in the expansion of v needs to be 1. Then, performing a gauge
transformation generated by w = l(@xu)l+n(@xu)n we obtain the expression in the statement of
the lemma. □

We will refer to such a (u; v; l; n) 2 [u; v; l; n] as the natural representative of the adapted isotropic
parallelism [u; v; l; n]. Given a natural representative (u; v; l; n) 2 [u; v; l; n] as in Lemma 2.17, we
denote by:

q = l? 
 l? + n? 
 n?
the induced Riemannian metric on X. Note that this is well-de�ned since l; n 2 
1(X) are linearly
independent for every xu 2 R and xv 2 R. Using this induced metric on X, we can neatly express
the metric dual (u]g ; v]g ; l]g ; n]g ) of a natural representative (u; v; l; n) in terms of the metric dual
with respect to qxu on X, which will be useful in later computations. We obtain:

u]g = @xv ; v]g = e�F@xu � eK�F@xv
l]g = �e�F�(l?)@xu + (eK�F�(l?)� !(l?))@xv + (l?)]q

n]g = �e�F�(n?)@xu + (eK�F�(n?)� !(n?))@xv + (n?)]q

In particular, note that a priori [l]g ; n]g ] 6= 0 and the span of l]g ; n]g � X(R2 � �) is a rank-two
distribution in TM that in general has non-trivial intersection with both factors TR2 and TX in
the splitting TM = TR2 � TX. On the other hand, the span of u]g ; v]g � X(R2 � �) is precisely
the tangent bundle factor TR2, although again in general we will have [u]g ; v]g ] 6= 0. Evaluated at
an adapted isotropic coframe, the di�erential system (137) and (138) can be equivalently written
as follows:

du = �(u)�q � u ^ �q�? ; dv = ��(v)�q + v ^ �q�? � � ^ l� � ^ n (139)

dl = � ^ u� (�(u)v � �(v)u) ^ n� �(n)u ^ v ; dn = � ^ u+ (�(u)v � �(v)u) ^ l+ �(l)u ^ v
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where �? 2 
1(X) is the natural projection of � to T �X, �q = l?^n? is the induced Riemannian
volume form and �q : 
�(X) ! 
�(X) is the Hodge operator de�ned by q on X. On the other
hand, the exterior derivative of an adapted isotropic coframe is readily found to be:

du = eFdXF ^ dxu + eF@xvF dxv ^ dxu + dX� + dxu ^ @xu� + dxv ^ @xv�
dv = eKdXK ^ dxu + eK@xvK dxv ^ dxu + dX! + dxu ^ @xu! + dxv ^ @xv! (140)

dl = dX l
? + dxu ^ @xu l? + dxv ^ @xv l? ; dn = dXn

? + dxu ^ @xun? + dxv ^ @xvn?

where dX : 
�(X)! 
�(X) denotes the exterior derivative on X.

Lemma 2.18. Let (u; v; l; n) be adapted isotropic coframe with skew-torsion relative to one-
forms �; � 2 
1(R2 �X). Then:

@xvF = @xvK = 0 ; @xv� = @xv! = 0 ; �v = ��?(n?) ; �v = �?(l?)

@xv l
? = ��vn? ; @xvn

? = �vl
?

where we have set � = �udxu + �vdxv + �?, and similarly for � and � in the splitting given
by T �M = T �R2 � T �X.

Proof. Plugging equations (140) into the di�erential system (139) and evaluating it on the
vector �eld @xv we obtain:

@xve
Fdxu + @xv� = 0 ; @xve

Kdxu + @xv! = �q�? � �vl? � �vn?
@xv l

? = �vu� �vn? + �(n)u ; @xvn
? = �vu+ �vl

? � �(l)u
Hence, we readily conclude that:

@xvF = 0 ; @xvK = 0 ; @xv� = 0 ; �v = ��?(n?) ; �v = �?(l?)

which in turn implies the following conditions:

@xv! = �q�? � �vl? � �vn? = 0 ; @xv l
? = ��vn? ; @xvn

? = �vl
?

and hence we conclude. □

By the previous lemma it follows that an adapted isotropic coframe (u; v; l; n) only depends on
the Cartesian coordinate xv through (l?; n?). Nonetheless, the transverse metric q constructed
in terms of (l?; n?) does not depend on xv, that is:

L@xv q = @xvq = l? � @xv l? + n? � @xvn? = ��vn? � @xv l? + �vn
? � l? = 0

which immediately implies that @xv is an isometry of g = u � v + q, as expected. Hence, the
evolution of (l?; n?) in xv preserves the isometry type of (X; q). For the remainder of this
subsection we will assume that @xv l

? = @xvn
? = 0 whence the adapted isotropic coframe (u; v; l; n)

is independent of xv. We will refer to such adapted isotropic coframes as invariant. By Lemma
2.18 this occurs if and only if �v = 0, which we will assume from now on. We will encounter
this condition again in Section 3 when we consider supersymmetric con�gurations and solutions.
Below we write �? = �?l l+ �?nn for ease of notation.

Lemma 2.19. An invariant adapted isotropic coframe (u; v; l; n) is skew-torsion if and only
if the following di�erential system is satis�ed:

@xu� = dXe
F � eF �q �? ; @xu! = dXe

K + eK �q �? � �ul? � �un?
@xu l = �un

? � eF�? + (�u + �?n e
K)� � �?n eF!

@xun = ��ul? + �?l e
F! � eF�? + (�u � �?l eK)�

dX� = �� ^ �q�? ; dX! = ��ue�F�q + ! ^ �q�? � �? ^ l? � �? ^ n?
dX l = �ue

�F� ^ n� �?n � ^ ! � � ^ �?
dXn = ��ue�F� ^ l+ �?l � ^ ! � � ^ �?

together with the conditions contained in Lemma 2.18.
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Proof. Follows by expanding and combining equations (139) and (140). □

The way to proceed with the seemingly daunting di�erential system given in the previous lemma
is to �rst identically solve some of the equations by isolating for � and �, which are not variables
of the system, as composite in terms of the underlying adapted isotropic coframe and torsion.

Proposition 2.20. Let (u; v; l; n) be an invariant adapted isotropic coframe (u; v; l; n). Then:

�u = (dXe
K)(l?)� �?n eK � (@xu!)(l

?) ; �v = ��?n
�u = (dXe

K)(n?) + �?l e
K � (@xu!)(n

?) ; �v = �?l
eF�? = ��?n eF! + �un

? + ((dXe
K)(l?)� (@xu!)(l

?))� � @xu l
eF�? = �?l e

F! � �ul? + ((dXe
K)(n?)� (@xu!)(n

?))� � @xun
where �; � 2 
1(M) are the one-forms relative to which (u; v; l; n) satis�es the di�erential
system (137) and (138).

Proof. We begin with the second equation in the �rst line of Lemma 2.19, which we imme-
diately solve by isolating for �u and �u via evaluation on l? and n?. This gives:

�u = (dXe
K)(l?)� �?n eK � (@xu!)(l

?)

�u = (dXe
K)(n?) + �?l e

K � (@xu!)(n
?)

which correspond to the equations for �u and �u in the statement of the lemma. Plugging these
expressions into the second and third lines of Lemma 2.19 and solving for �? and �? we obtain
the third and fourth equations in the statement of the lemma. This, together with Lemma 2.18
gives the desired result. □

Once we have identically solved the equations that determine � and � for a given adapted isotropic
coframe (u; v; l; n), we identify the reduced system in which both � and � have been substituted
in terms of (u; v; l; n) and the underlying torsion �.

Proposition 2.21. An invariant adapted isotropic coframe (u; v; l; n) is skew-torsion if and
only if the following di�erential system is satis�ed:

@xu� = dXe
F � eF �q �? ; dX� = �q�? ^ �

eFdX! = �u�q + (dXe
K � @xu!) ^ � � l ^ @xu l� n ^ @xun

eFdX l = � ^ @xu l ; eFdXn = � ^ @xun

Proof. Follows by plugging Proposition 2.21 into Lemma 2.19. □

We arrive at a di�erential system, equivalent to the original di�erential system in (137) and (138)
under the given assumptions, that becomes a system of constrained evolution equations in the
Cartesian coordinate xu on a two-dimensional oriented manifoldX. The �rst line in the di�erential
system of Proposition 2.21, namely:

@xu� = dXe
F � eF �q �? ; dX� = �q�? ^ � (141)

can be considered as a constrained evolution problem for �, that determines the latter in terms
of given data (F ; �?; q). Once � has been determined by this constrained evolution problem, it
can be plugged into the remaining equations, which now conform a separate independent system.

Proposition 2.22. A solution � to the constrained evolution problem (141) with initial data
�o 2 
1(X) exists if and only if:

dX�o = �qo�?o ^ �o ; eFdX �q �? = � ^ @xu �q �? (142)

in which case, � is uniquely given by:

� =

Z xu

0

(dXe
F � eF �q �?) dxu + �o (143)
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where �o := �jxu=0 and qo = qjxu=0.

Proof. Suppose that � is a solution of (141) for given data (F ; �?; q). Integrating the �rst
equation in (141) with initial data �o 2 
1(X) we immediately obtain (143). The �rst equation
in (142) is recovered by evaluating the second equation in (141) at xu = 0. On the other hand,
taking the derivative of the second equation in (141) with respect to xu we obtain:

@xudX� = dX@xu� = �dX(eF �q �?) = @xu(�q�?) ^ � + �q�? ^ @xu� =
= @xu(�q�?) ^ � + �q�? ^ dXeF

Simplifying this expression we obtain the second equation in (142). For the converse, assume that
(�;F ; �?; q) satis�es Equation (142) and take � to be given as in (143). Since the �rst equation in
(141) is clearly satis�ed, we only need to prove that the second equation in (141) holds. Taking
the exterior derivative of � we obtain:

dX� = � R xu
0

dX(e
F �q �?)dxu + dX�o = � R xu

0
@xu� ^ �q�?dxu �

R xu
0
eFdX �q �?dxu + dX�o

=
R xu
0

(� ^ @xu �q �? � eFdX �q �?)dxu � � ^ �q�? + �o ^ �q�?o + dX�o

and therefore by Equation (142) this gives the second equation in (141). □

By the previous proposition, after substituting for � the condition satis�ed by � becomes an
integro-di�erential equation given by:

eFdX �q �? = (

Z xu

0

(dXe
F � eF �q �?) dxu + �o) ^ @xu �q �?

Once we solve (141) for � and � we can consider them as given data for the remaining equations,
which need to be solved for !, l and n. Note that within this approach, F is considered as given
data, otherwise we should take into account that in general � depends on F as stated in formula
(143). Combining propositions 2.21 and 2.22 we obtain the following reduced characterization of
invariant adapted isotropic coframes.

Corollary 2.23. An invariant adapted isotropic coframe (u; v; l; n) is skew-torsion if and
only if (!; l; n) satis�es the following di�erential system:

eFdX l = � ^ @xu l ; eFdXn = � ^ @xun ; eFdX �q �? = � ^ @xu �q �?
eFdX! = �u�q + (dXe

K � @xu!) ^ � � l ^ @xu l� n ^ @xun

where:

� =

Z xu

0

(dXe
F � eF �q �?) dxu + �o

with dX�o = �qo�?o ^ �o.

Note that by a standard application of the existence and uniqueness of solutions for �rst-order
symmetric hyperbolic systems it follows that all equations in the previous corollary except for the
equation for �? can be solved locally in xu. Hence, the existence of adapted isotropic coframes
reduces to proving existence of a solution �? to the following integro-di�erential equation:

eFdX �q �? = (

Z xu

0

(dXe
F � eF �q �?) dxu + �o) ^ @xu �q �?

for given (l; n;F) satisfying dX�o = �qo�?o ^ �o as initial data condition.
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3. Supersymmetric con�gurations

In this section we study the supersymmetric con�gurations or BPS states of four-
dimensional NS-NS supergravity. This is precisely the supergravity theory whose supersymmetry
conditions involve skew-torsion parallel spinors.

Lemma 3.1. A NS-NS con�guration (g; b; �) 2 Conf(C;X ) satis�es the dilatino equation in
(133) with respect to " 2 �(S) if and only if:

'� ^ u = �g(�b ^ u) ; '� ^ l ^ u = �b(l) �g u ; '�(l)u = �g(u ^ l ^ �b) ; '�(u) = �b(u) = 0

where (u; [l]u) is the parabolic pair associated to ".

Proof. By Proposition 2.26, the dilatino equation holds if and only if:

'� �g �" = Hb �g �" (144)

where �" = u+u^ l is the square of �, see De�nition 2.16, that determines its associated parabolic
pair (u; [l]u). We compute:

'� �g �" = '�(u) + '� ^ u+ '� ^ u ^ l+ '�(u) l� '�(l)u
Hb �g �" = �b �g �g �g �" = �g(�b ^ u)� �(u)�h � �g(u ^ l ^ �b) + �b(u) �g l� �b(l) �g u

where in the second equation we have used Equation (24) to rewrite the geometric product in
terms of �b = �gHb. Plugging these expressions in (144) and separating by degree in (144) gives
the conclusion. □

Recall that given a parabolic pair (u; [l]u), we denote by u?g � T �M the distribution spanned by
the orthogonal of u 2 
1(M) in T �M , and we denote by:

Gu =
u?g

u

the corresponding dual screen bundle. In particular, any section w 2 �(u?g ) de�nes a section of
Gu which we denote by [w] 2 �(Gu)

Proposition 3.2. A NS-NS con�guration (g; b; �) 2 Conf(C;X ) satis�es the dilatino equation
in (133) with respect to " 2 �(S) with associated parabolic pair (u; [l]u) if and only if '�; �b 2
�(u?g ) and there exists a section [m] 2 �(Gu) such that:

['�] = �q[m] ; [�b] = [m]

where q is the Riemannian metric induced by g on Gu and �q : ^Gu ! ^Gu is the associated
Hodge dual.

Proof. Conditions '�(u) = �b(u) = 0 in Lemma 3.1 are equivalent to ��; �b 2 �(u?g ).
Furthermore:

u ^ '� = u ^ ['�] ; u ^ �b = u ^ [�b]
which, plugged into the �rst equation in Lemma 3.1, gives:

u ^ ['�] = �g(u ^ �b) = �g(u ^ [�b]) = u ^ �q[�b]
and therefore we obtain ['�] = �q[�b]. With this condition the remaining equations in Lemma 3.1
are automatically satis�ed and thus we conclude. □

By the previous proposition, if (g; b; �) 2 Conf(C;X ) satis�es the dilatino equation in (133) with
respect to an isotropic parallelism [u; v; l; n], then for every representative (u; v; l; n) there exists
a unique section m 2 �(hRui � hRvi)?g such that:

'� = c�u+ �qm ; �b = fbu+m
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for functions c�; fb 2 C1(M) depending not only on � and b respectively, but also on the choice of
representative (u; v; l; n) 2 [u; v; l; n]. If (u; v0; l0; n0) 2 [u; v; l; n] is any other representative, then
with respect to this choice of representative we have:

'� = c0�u+ �q0m0b ; �0b = c0bu+m0b

where:
c0� = c� + '�(w) ; f0b = fb + �b(w)

in terms of the unique w 2 �(hRui � hRvi)?g for which:

(u; v0; l0; n0) = w � (u; v; l; n) = (u; v � 1

2
jwj2gu+w; l�w(l)u; n�w(n)u)

Based on the previous formulae, it may seem possible to choose the representative (u; v; l; n) 2
[u; v; l; n] wisely so as to have c� = fb = 0. However, this may not be possible in general
since we cannot guarantee that the supports of fb; c� 2 C1(M) are contained in the supports
of �(w); '�(w) 2 C1(M), respectively. Proposition 3.2 together with the characterization of
skew-torsion parallel spinors in terms of isotropic parallelisms given in Proposition 2.9 gives the
following characterization of supersymmetric con�gurations.

Proposition 3.3. A con�guration (g; b; �) 2 Conf(C;X ) is supersymmetric if and only if there
exists a skew-torsion isotropic parallelism [u; v; l; n] such that:

'�(u) = 0 ; �b(u) = 0 ; ['�] = �q[�b]
where ['�]; [�b] 2 �(G�u) are sections of the screen bundle associated to u 2 
1(M).

As an immediate consequence of the previous proposition we obtain the following result, which
justi�es the title of this chapter.

Corollary 3.4. Let (g; b; �; ") 2 Conf(C;X ) be a supersymmetric con�guration. Then, (M; g)
is a Kundt Lorentzian four-manifold.

Furthermore, again as a consequence of Proposition 3.3, we obtain the following causal character
for the dilaton and torsion of a supersymmetric con�guration.

Corollary 3.5. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration. Then, '�,
respectively �b, is nowhere time-like and is isotropic at a point m 2 M if and only if
['�]jm = 0, respectively [�b]jm = 0.

Given a supersymmetric con�guration (g; b; �; ") 2 Confs(C;X ), we canonically obtain an skew-
torsion isotropic parallelism [u; l; v; n] on M given by the unique isotropic parallelism associated
to ", which by Corollary 2.13 determines the torsion uniquely. This de�nes a natural functor:

Confs(C;X )! Fsk(M)

This functor is not be essentially surjective in general, since by Lemma 3.1 the isotropic parallelism
associated to a supersymmetric con�guration necessarily satis�es �(u) = 0, which may not be the
case for general skew-torsion isotropic parallelisms. Instead, we have the following result.

Proposition 3.6. A skew-torsion isotropic parallelism [u; v; l; n] 2 Fsk(M) de�nes a super-
symmetric con�guration if and only if:

�(u) = 0 ;
1

2�
[�g�] 2 H3(M;Z)

and in addition there exists a function c 2 C1(M) such that:

1

2�
[cu+ �q(�� �(v))] 2 H1(M;Z)

for any, and hence all, representatives (u; v; l; n) 2 [u; v; l; n].
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Remark 3.7. In the previous proposition we are implicitly using that by Corollary 2.13 a skew-
torsion isotropic parallelism determines uniquely its torsion.

Proof. The only if direction follows directly from Proposition 3.3. To prove the converse,
we observe that if:

1

2�
[�g�] 2 H3(M;Z)

then there exists a gerbe with connective structure and curving b 2 
2(Y ) such that � = �b.
Furthermore if [cu + �q(� � �(v))] 2 2�H1(M;Z), then there exists a Z-covering and a function
� on the total space of this covering such that:

'� := cu+ �q(�� �(v)) 2 
1(M)

In particular, '� is closed and satis�es '�(u) = 0 and thus by Proposition 3.3 we conclude. □

If, in the situation of the previous proposition, we write:

� = fu+m

in terms of a function f 2 C1(M), then cu + �q(� � �(v)) = cu + �qm as required by the
characterization of supersymmetric con�gurations given in Proposition 3.3.

Remark 3.8. The function c 2 C1(M) occurring in the expression [cu+�q(���(v))] 2 H1(M;Z)
de�nitely depends on the choice of representative (u; v; l; n) 2 [u; v; l; n]. If (u; v0; l0; n0) 2 [u; v; l; n]
is another representative, then a calculation gives:

c0 = c+ �q(w ^ (�� �(v)))

in terms of the unique w 2 �(hRui � hRvi)?g for which (u; v0; l0; n0) = w � (u; v; l; n).

By Proposition 3.3, the di�erential system satis�ed by the skew-torsion isotropic parallelism
[u; v; l; n] of a supersymmetric con�guration reduces to:

du = u ^ (�nl� �ln) ; dv = �� ^ l� � ^ n+ v ^ (�ln� �nl)� fbl ^ n (145)

dl = u ^ (fbn� �nv � �) ; dn = u ^ (�lv � fbl� �) (146)

Consequently, the integrability conditions satis�ed by the skew-torsion isotropic parallelism
[u; v; l; n] of a supersymmetric con�guration also simplify.

Lemma 3.9. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with associated
isotropic parallelism [u; v; l; n] 2 Fsk(M). Then, the following formulas hold:

u]g (�l) = u]g (�n) = 0 ; l]g (�l) + n]g (�n) = 0

u ^ (d�+ d�n ^ v � dfb ^ n+ n ^ (�l�+ �n�)) = 0

u ^ (d�+ dfb ^ l� d�l ^ v � l ^ (�l�+ �n�)) = 0

d� ^ l+ d� ^ n+ (�l�+ �n�) ^ l ^ n+ v ^ (d�l ^ n� d�n ^ l) + dfb ^ l ^ n = 0

In particular, d�(u; l) = 0 and d�(u; n) = 0

Proof. The �rst line in the statement of lemma is equivalent to the exterior derivative of
the �rst equation in (145). The second line is equivalent to the exterior derivative of the �rst
equation in (146), whereas the third line is equivalent to the exterior derivative of the second
equation in (146). Finally, the fourth line in the statement of the lemma is equivalent to the
exterior derivative of the second equation in (145). □
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Proposition 3.10. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with as-
sociated isotropic parallelism [u; v; l; n] 2 Fsk(M). Then, the following formulas hold:

d�(l; n) = l(fb) + �l�(l) + �n�(l) ; d�(u; n) = n(�n) ; d�(u; l) = l(�n)

d�(l; n) = n(fb) + �l�(n) + �n�(n) ; d�(u; n) = �n(�l) ; d�(u; l) = �l(�l)
�l�(u) + �n�(u) + u(fb) = 0 ; d�(u; v) = v(�n) ; d�(u; v) = �v(�l)

d�(v; l)� d�(v; n) + v(fb) + �l�(v) + �n�(v) = 0

Together with conditions u]g (�l) = u]g (�n) = 0 and l]g (�l) + n]g (�n) = 0.

Proof. The result follows from Lemma 3.9 after expanding all equations in the given isotropic
coframe (u; v; l; n) 2 [u; v; l; n] and combining them appropriately. □

By the previous proposition, if (u; v; l; n) 2 [u; v; l; n] is a skew-torsion isotropic coframe associated
to a supersymmetric con�guration, then have:

d� = d�(v; l)u ^ l+ d�(v; n)u ^ n+ v(�n)v ^ u
+l(�n)v ^ l+ n(�n)v ^ n+ (l(fb) + �l�(l) + �n�(l))l ^ n

d� = d�(v; l)u ^ l+ d�(v; n)u ^ n� v(�l)v ^ u
�l(�l)v ^ l� n(�l)v ^ n+ (n(fb) + �l�(n) + �n�(n))l ^ n

for the characteristic one-forms � and � of (u; v; l; n).

Lemma 3.11. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with isotropic
parallelism [u; v; l; n] 2 Fsk(M). Then:

u(c�) = �n�(u)� �l�(u) + �2l + �2n

l(c�) = c��n � v(�n)� fb�l � �l�(l) + �n�(l) (147)

n(c�) = v(�l)� fb�n � c��l + �n�(n)� �l�(n)
where '� = c�u+ �qm = c�u+ �ln� �nl.
Remark 3.12. The previous system of equations can be understood as a di�erential system for
c� 2 C1(M), which is a function not occurring as a variable in the di�erential system satis�ed
by the isotropic parallelism associated to a supersymmetric con�guration.

Proof. By Proposition 3.3 we have '� = c�u + �qw for a unique w 2 �(hRui � hRvi)?g in
any given conjugate parallelism (u; v; l; n) 2 [u; v; l; n]. Since '� is necessarily closed, we must
have:

0 = d'� = dc� ^ u+ c�du+ d �q w = dc� ^ u+ c�u ^ (�nl� �ln) + d(�ln� �nl) = dc� ^ u
+c�u ^ (�nl� �ln)� d�n ^ l+ d�l ^ n� �nu ^ (fn� �nv � �) + �lu ^ (�lv � f l� �)

Further expanding the previous equation and using the integrability conditions of Lemma 3.9, we
obtain the relations given in (147). □

We compute below the covariant derivative of both the curvature '� of the dilaton � and (the
dual of) the curvature �b of the b-�eld of a supersymmetric con�guration. This formulae will be
used extensively in the following.

Lemma 3.13. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with isotropic
parallelism [u; v; l; n] 2 Fsk(M). Then:

rg�b = (v(fb) + �l�(v) + �n�(v))u
 u+ l(�l)l
 l+ n(�l)n
 n+ v(�l)u
 l
+d�(l; n)l
 u+ v(�n)u
 n+ d�(l; n)n
 u+ l(�n)l
 n+ n(�l)n
 l

rg'� = (v(c�)� �n�(v) + �l�(v))u
 u� l(�n)l
 l+ n(�l)n
 n+ 1
2 (�

2
l + �2n)u� v

+( 12�nc� � v(�n)� 1
2�lfb)u� l+ (v(�l)� 1

2�nfb � 1
2�lc�)u� n+ l(�l)l
 n� n(�n)n
 l

where �b = fbu+mb and '� = cbu+ �qmb.
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Proof. By Proposition 2.8 adapted to the case of the skew-torsion isotropic parallelism of a
supersymmetric con�gurations, we have:

rgu = 1
2u ^ (�nl� �ln) ; rgv = ��
 l� �
 n+ 1

2v ^ (�ln� �nl)� 1
2 f l ^ n

rgl = �
 u+ 1
2u ^ (fn� �nv) ; rgn = �
 u+ 1

2u ^ (�lv � f l)

Using this formulae together with Proposition 3.10, we compute:

rg
u�b = 0 ; rg

v�b = (v(fb) + �l�(v) + �n�(v))u+ v(�l)l+ v(�n)n

rg
l �b = l(�l)l+ l(�n)n+ d�(l; n)u ; rg

n�b = n(�l)l+ n(�n)n+ d�(l; n)u

Plugging these relations into the following expansion for rg�b:

rg�b = u
rg
v�b + l
rg

l �b + n
rg
n�b

we obtain the desired result. To obtain the expression for rg'� we proceed analogously by using
that '� = c�u+ �qm = c�u+ �ln� �nl:

rg
u'� = (u(c�)� 1

2�
2
l � 1

2�
2
n � �n�(u) + �l�(u))u =

1
2 (�

2
l + �2n)u

rg
v'� = (v(c�)� �n�(v) + �l�(v))u+

1
2 (�

2
l + �2n)v + ( 12�nc� � v(�n)� 1

2�lfb)l

+(v(�l)� 1
2�nfb � 1

2�lc�)n

rg
l '� = (l(c�) + �l�(l)� �n�(l)� 1

2 c��n +
1
2 fb�l)u+ l(�l)n� l(�n)l

= ( 12 c��n � 1
2 fb�l � v(�n))u+ l(�l)n� l(�n)l

rg
n'� = (n(c�) + �l�(n)� �n�(n) + 1

2 c��l +
1
2 fb�n)u+ n(�l)n� n(�n)l

= (v(�l)� 1
2 fb�n � 1

2 c��l)u+ n(�l)n� n(�n)l

where we have used the di�erential system (147). Plugging these relations into the following
expansion for rg'�:

rg'� = v 
rg
u'� + u
rg

v'� + l
rg
l '� + n
rg

n'�

we obtain the desired result and hence we conclude. □

Note that the expression given for rg'� in the previous lemma is manifestly symmetric after
using the identity l(�l) + n(�n) = 0 obtained in Lemma 3.9.

Proposition 3.14. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with as-
sociated isotropic parallelism [u; v; l; n] 2 Fsk(M). Then:

rg�'� = l(�n)� n(�l)� �2l � �2n ; rg��b = 0 ; Lu'� = 0 ; Lu�b = 0 (148)

where Lu denotes the Lie derivative with respect to u]g 2 X(M).

Proof. Recall that, by de�nition:

rg�'� = �Trg(rg'�) ; rg��b = �Trg(rg�b)

and thus computing the trace of the expressions given for rg'� and rg�b in Lemma 3.13 we
obtain the �rst two equations in (148). Equation Lu'� = 0 follows directly from '�(u) = 0 by
Proposition 3.3 together with the fact that '� is a closed one-form. To compute the Lie derivative
of �b we obtain �rst its exterior derivative by skew-symmetrization of the rg�b in Lemma 3.13.
We obtain:

d� = (l(�n)� n(�l))l ^ n+ (v(�l)� d�(l; n))u ^ l+ (v(�n)� d�(l; n))u ^ n

and thus u⌟gd�b = 0. We conclude since by Proposition 3.3 we have �(u) = 0. □
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Note that by the previous proposition we also have Lu �g �b = LuHb = 0, since by Proposition
2.8 the vector �eld u]g 2 X(M) is Killing. Hence, we have:

Lug = 0 ; Lu'� = 0 ; Lu�b = 0

for every supersymmetric con�guration (g; b; �; ") 2 Confs(C;X ). However, we cannot yet say that
the supersymmetric con�guration is itself invariant under the action of R induced by u]g 2 X(M),
since this would require lifting this action to an action on curvings on C and connections on
X . We will deal with this type of questions in the future when we study the moduli space of
supersymmetric con�gurations and solutions in NS-NS supergravity.

In Section 2 we computed the curvature tensors of the Lorentzian metric associated to a
skew-torsion isotropic parallelism, which are all highly constrained. In the case of the skew-torsion
parallelism of a supersymmetric con�guration these curvature tensors are further constrained. We
compute them in the following to end this section. First, as a direct application of Corollary 2.4,
for every w;w1; w2 2 X(M) we obtain:

Rg;b
w1w2 = �d�(w1; w2)u ^ l� d�(w1; w2)u ^ n

Ricg;b(w) = (d�(w; l) + d�(w;n))u� d�(w; u)l� d�(w;u)n

sg;b = 2(d�(u; l) + d�(u; n))

for the curvature tensors of the connection with skew-torsion Hb = �g�b. Expanding as prescribed
in Remark 2.2 and using Lemma (3.13), we obtain the following explicit expressions for the
curvature of the Lorentzian metric of a supersymmetric con�guration. Alternatively, they can be
directly obtained by computing using the di�erential system given in (145) and (146).

Proposition 3.15. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with as-
sociated isotropic parallelism [u; v; l; n] 2 Fsk(M). The Ricci and scalar curvatures of g are
given by:

2Ricg(u) = (l(�n)� n(�l)� �2l � �2n)u
2Ricg(v) = (l(�n)� n(�l)� �2l � �2n)v + (d�(l; n) + �lfb + v(�n))l

+(�nfb � v(�l)� d�(l; n))n+ (2d�(v; l) + 2d�(v; n) + f2b)u

Ricg(l) = 1
2 (v(�n) + d�(l; n) + �lfb)u+ (l(�n)� 1

2�
2
n)l+ ( 12�l�n � l(�l))n

Ricg(n) = 1
2 (�nfb � v(�l)� d�(l; n))u+ (n(�n) +

1
2�l�n)l� (n(�l) +

1
2�

2
l )n

where (u; v; l; n) 2 [u; l; v; n] is any representative.

We will apply this proposition extensively in the following section. We remind the reader that for
simplicity in the exposition we are using the notation � = fbu+ mb with mb = �ll + �nn, where
m 2 �(hRui � hRvi)?g .

4. Supersymmetric NS-NS solutions

In this section we �nally arrive to the study of the supersymmetric solutions of the four-
dimensional NS-NS system on a bundle gerbe C = (P; Y;A) and a principal Z-bundle X using the
results obtained in previous sections of this chapter.

Definition 4.1. A supersymmetric NS-NS solution is a supersymmetric NS-NS con�guration:

(g; b; �; ") 2 Confs(C;X )
such that (g; b; �) satis�es the NS-NS system (131) on (C;X ).
By Corollary 3.4, supersymmetric NS-NS solutions de�ne a special class of four-dimensional Kundt
manifolds. We denote by Sols(C;X ) the category of supersymmetric solutions on (C;X ). The
starting point in our study of supersymmetric solutions is the characterization of supersymmetric
con�gurations obtained in the previous section, see Proposition 3.6 and Proposition 3.14 as well
as Lemma 3.11 and Lemma 3.13. Building on this characterization of supersymmetric NS-NS
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con�gurations we have to impose the equations of the NS-NS system (131), namely the Einstein,
Maxwell, and dilaton equations in (131). We begin with the dilaton equation.

Lemma 4.2. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with associated
isotropic parallelism [u; v; l; n] 2 Fsk(M). Then, (g; b; �) satis�es the dilaton equation in (131)
if and only if:

l(�n)� n(�l) + �2l + �2n = 0 (149)

where (u; v; l; n) 2 [u; l; v; n] is any representative.

Proof. Using Proposition 3.14 we compute:

rg�'� + j'�j2g + j�bj2g = l(�n)� n(�l) + �2l + �2n = 0

since j'�j2g = j�bj2g = �2l + �2n. □

Equation (149) can be understood as a di�erential equation for the b-�eld, although it originates
from the dilaton equation. This is because by Proposition 3.2, the space-like part of '� is
determined entirely by b through �b.

Lemma 4.3. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with associated
isotropic parallelism [u; v; l; n] 2 Fsk(M). Then, (g; b; �) satis�es the Maxwell equation in
(131) if and only if:

l(�n)� n(�l) + �2l + �2n = 0

v(�l) = l(fb) + �l�(l) + �n�(l) + c��l + fb�n

v(�n) = n(fb) + �l�(n) + �n�(n) + c��n � fb�l

where (u; v; l; n) 2 [u; l; v; n] is any representative. In particular, if (g; b; �; ") satis�es the
Maxwell equation then it necessarily satis�es the dilaton equation.

Proof. We impose the Maxwell equation in (131) using the expression for the exterior de-
rivative of �b obtained in the proof of Proposition 3.14. We have:

d� = (l(�n)� n(�l))l ^ n+ (v(�l)� d�(l; n))u ^ l+ (v(�n)� d�(l; n))u ^ n
= (c�u+ �ln� �nl) ^ (fbu+ �ll+ �nn)

Expanding this equation and isolating terms by type we obtain:

l(�n)� n(�l) + �2l + �2n = 0

v(�l)� d�(l; n) = c��l + fb�n ; v(�n)� d�(l; n) = c��n � fb�l

On the other hand, by Proposition 3.10, we know that:

d�(l; n) = l(fb) + �l�(l) + �n�(l) ; d�(l; n) = n(fb) + �l�(n) + �n�(n)

which plugged back into the previous equation gives the desired result. □

Lemma 4.4. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with associated
isotropic parallelism [u; v; l; n] 2 Fsk(M). Then, (g; b; �) satis�es the Einstein equation in
(131) if and only if:

l(�n)� n(�l) + �2l + �2n = 0

d�(v; l) + d�(v; n) + v(c�)� �n�(v) + �l�(v) = 0

v(�l) = l(fb) + �l�(l) + �n�(l) + c��l + fb�n

v(�n) = n(fb) + �l�(n) + �n�(n) + c��n � fb�l

where (u; v; l; n) 2 [u; l; v; n] is any representative. In particular, if (g; b; �; ") satis�es the
Maxwell equation then it necessarily satis�es the dilaton equation.
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Proof. We expand the Einstein equation in (131) into four separate equations by evaluating
it on a given istropic coframe (u; l; v; n) 2 [u; l; v; n]. This gives:

Ricg(u) +rg
u'� +

1
2 j�bj2gu = 0

Ricg(v) +rg
v'� � 1

2 fb�b +
1
2 j�bj2gv = 0

Ricg(l) +rg
l '� � 1

2�l�b +
1
2 j�bj2gl = 0

Ricg(n) +rg
n'� � 1

2�n�b +
1
2 j�bj2gn = 0

To proceed further, we write '� = c� + �ln � �nl, '� = c� + �n � �nl and we use Lemma 3.13
together with Proposition 3.15 to analyze each of the previous for equations separately. For the
�rst equation, we simply have:

Ricg(u) +rg
u'� +

1

2
j�bj2gu =

1

2
(l(�n)� n(�l) + �2l + �2n)u

which gives the �rst equation of the lemma. For the second equation, we further split it in four
components by evaluating on (u; v; l; n). We have:

Ricg(v; u) + (rg
v'�)(u) +

1
2 j�bj2g = 1

2 (l(�n)� n(�l) + �2l + �2n)

Ricg(v; v) + (rg
v'�)(v)� 1

2 f
2
b = d�(v; l) + d�(v; n) + v(c�)� �n�(v) + �l�(v)

Ricg(v; l) + (rg
v'�)(l)� 1

2 fb�l =
1
2 (d�(l; n)� v(�n)� �lfb + �nc�)

Ricg(v; n) + (rg
v'�)(n)� 1

2 fb�n = 1
2 (v(�l)� d�(l; n)� �nfb � �lc�)

The remaining components of the Einstein equation do not yield any new conditions, since:

Ricg(l) +rg
l '� � 1

2�l�b +
1
2 j�bj2gl = 1

2 (d�(l; n)� v(�n)� �lfb + �nc�)u

Ricg(n) +rg
n'� � 1

2�n�b +
1
2 j�bj2gn = 1

2 (v(�l)� d�(l; n)� �nfb � �lc�)u
Substituting now:

d�(l; n) = l(fb) + �l�(l) + �n�(l) ; d�(l; n) = n(fb) + �l�(n) + �n�(n)

into the previous expressions we conclude. □

From the previous lemmata, it easily follows that the Einstein, Maxwell, and dilaton equations of
the NS-NS system (131) are not fully independent when evaluated on supersymmetric con�gura-
tions. More precisely, we have the following result.

Corollary 4.5. If a supersymmetric NS-NS con�guration satis�es the Einstein equation,
then it also satis�es the Maxwell and dilaton equations. If a supersymmetric NS-NS con-
�guration satis�es the Maxwell equation then it satis�es the dilaton equation.

Schematically:

Einstein equation ) Maxwell equation ) Dilaton equation

Lemma 4.4 contains all the equations that a supersymmetric NS-NS con�guration needs to satisfy
in order to be a supersymmetric NS-NS solution. The �rst equation in Lemma 4.4 can be inter-
preted as a second-order equation for the b-�eld. The second equation in Lemma 4.4 is the genuine
di�erential equation that comes from imposing the Einstein equation of the NS-NS system (the
remaining equations are equivalent to the Maxwell and dilaton equations).

Remark 4.6. We can conclude that the genuine Einstein equation of the NS-NS system evaluated
on a supersymmetric con�guration is the second equation in Lemma 4.4, since the other equations
are implied by the Maxwell and dilaton equations of the NS-NS system.

Using Lemma 3.11, the third and fourth equations in Lemma 4.4 can be better analyzed by writing
them in the following, equivalent, matrix form:

�
�l �n
�n ��l

��
�(l)� �(n)
�(n) + �(l)

�
=

�
n(c�)� l(fb)
n(fb) + l(c�)

�
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where we have set �l := �(l) and �n := �(n) for ease of notation. The di�erential system of
Lemma 4.4 needs to be solved for appropriately chosen �; � 2 
1(M). Hence, at every point
m 2M such that:

det

�
�l �n
�n ��l

��
�(l)� �(n)
�(n) + �(l)

�
jm = �(�2l + �2n)jm 6= 0

the previous equations is solved algebraically by:�
�(l)� �(n)
�(n) + �(l)

�
jm =

1

�2l + �2n

�
�l �n
�n ��l

��
n(c�)� l(fb)
n(fb) + l(c�)

�
jm

This condition turns out to be crucial for the NS-NS system, as the following result shows.

Lemma 4.7. Let (g; b; �; ") 2 Confs(C;X ) be a supersymmetric con�guration with associated
isotropic parallelism [u; v; l; n] 2 Fsk(M) relative to �; � 2 
1(M). Then:

(�2l + �2n)(�(u) + �n) + �lu(fb)� �nu(c�) = 0

(�2l + �2n)(�(u)� �l) + �nu(fb) + �lu(c�) = 0

(�2l + �2n)(�(l) + c�)� 1
2v(�

2
l + �2n) + �ll(fb)� �nl(c�) = 0

(�2l + �2n)(�(l) + fb) + �lv(�n)� �nv(�l) + �nl(fb) + �ll(c�) = 0

(�2l + �2n)(�(n)� fb)� �lv(�n) + �nv(�l) + �ln(fb)� �nn(c�) = 0

(�2l + �2n)(�(n) + c�)� 1
2v(�

2
l + �2n) + �nn(fb) + �ln(c�) = 0

where we have set �l := �(l) and �n := �(n).

Proof. The result follows by appropriately combining Proposition 3.10 together with Lem-
mas 3.11 and 4.4. More precisely, multiplying equation:

�l�(u) + �n�(u) + u(fb) = 0

of Proposition 3.10 by �l and adding the result to the multiplication of the �rst equation in (147)
by �n we obtain the �rst equation in the statement. Multiplying the previous equation by �n
and combining the result with the multiplication of the �rst equation in (147) by �l we obtain the
second equation in the statement. Multiplying the second equation in (147) by �n and combining
the result with the the third equation in Lemma 4.4 multiplied by �l we obtain the third equation
in the statement. Similarly, multiplying the second equation in (147) by �l and combining the
result with the the third equation in Lemma 4.4 multiplied by �n we obtain the fourth equation
in the statement. The remaining equations are obtained analogously and hence we conclude. □

At every point m 2 M such that jmbj2q jm 6= 0, the relations of the previous lemma conform an
algebraic system for all the components of � and � except for �(v) and �(v), which is solved by
isolating for them. The key question now is what is the structure of the set of points m 2M such
that jwbj2q jm = 0 or, equivalently, the set of points m 2 M such that �ljm = 0 and �njm = 0.
De�ne:

N = fm 2M j �ljm = 0 & �njm = 0g �M

Alternatively, we have N := m�1b (0). To proceed further we need to study more closely the
Einstein equation onMnN . It is convenient to de�ne, associated to every supersymmetric solution
(g; b; �; ") 2 Sols(C;X ), the following smooth complex function:

F : M ! C ; m 7! �l(m) + i�n(m)

where i 2 C denotes the imaginary unit. Note that F : M ! C does not depend on the repre-
sentative chosen (u; v; l; n) 2 [u; v; l; n] in the isotropic parallelism determined by ". The map
F : M ! C is fundamental to understand the geometric and topological structure of supersym-
metric solutions and is reminiscent of the triholomorphic moment map underlying a complete
hyper-Kähler four-manifold equipped with a local tri-hamiltonian S1-action [29]. This analogy
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becomes more transparent after noticing that F : M ! C descends to the quotient of M by the
action R�M !M generated by u]g 2 X(M):

Fu : M=R! C

where we are assuming that u]g 2 X(M) is complete. This de�nes a continuous function on the
topological spaceM=R equipped with the quotient topology. Further assumptions on this quotient
give rise to a casuistry that can be used to develop a partial classi�cation of supersymmetric
solutions. We plan to explore this perspective in the future. Similarly, it is also convenient to
introduce the complex function:

G : M ! C ; m 7! c�(m) + ifb(m)

In contrast to F 2 C1(M;C), as de�ned above G 2 C1(M;C) does depend on the representative
(u; v; l; n) 2 [u; v; l; n] chosen in the isotropic parallelism [u; v; l; n] of the corresponding super-
symmetric solution. To deal with this dependence, consider the following equivalence relation in
the complex functions C1(M;C):

f1 � f2 i� f1 = f2 � �FF

for a complex function F 2 C1(M;C). We denote by:

C1F (M;C) := C1(M;C)=F

the corresponding quotient, which inherits the structure of a ring and a multiplicative module over
C1(M;C). Then, a supersymmetric solution determines a class [G]F 2 C1F (M;C). Evidently, if
F is nowhere vanishing, then C1F (M;C) = f0g is the trivial ring. In practice, this means that
we can choose a representative (u; v; l; n) 2 [u; v; l; n] in terms of which fb = c� = 0. Whereas
this is always possible locally around every point m 2 M at which j�bj2gjm 6= 0, it might be
globally obstructed. This obstruction is measured by both [G]F 2 C1F (M;C) and C1F (M;C),
which becomes an invariant of the given supersymmetric solution.

Remark 4.8. By the previous discussion, we obtain a new invariant associated to a supersym-
metric NS-NS solution, namely the ring C1F (M;C). This complements the rank-one invariants
de�ned by � and � as described in Section 2 in Chapter 4.

Before studying the geometry and topology of general supersymmetric NS-NS solutions, we �rst
need to consider separately the case �l = �n = 0, to which we will refer as null.

Definition 4.9. A supersymmetric solution (g; b; �; ") 2 Sols(C;X ) is null if both '� and �b are
collinear with the Dirac current u 2 
1(M) associated to ".

We will refer to a supersymmetric solution (g; b; �; ") 2 Sols(C;X ) as having everywhere space-like
�ux if j�bj2g 2 C1(M) is a nowhere vanishing function on M , which is then necessarily positive.
The null case is therefore complementary to the nowhere vanishing �ux case, and both constitute
the building blocks of NS-NS supersymmetric solutions. Note that if (g; b; �; ") 2 Sols(C;X )
is a null solution with associated isotropic parallelism [u; v; l; n], then Proposition 2.9 implies
that (M; g; u) is a Brinkmann four-manifold, that is, (M; g) is a Lorentzian four-manifold and
u 2 
1(M) is a parallel with respect to the Levi-Civita connection on (M; g).

Theorem 4.10. An oriented and strongly spin four-manifold M admits a null supersym-
metric NS-NS solution for a certian pair (C;X ) if and only if it admits a global coframe
(u; v; l; n) satisfying the following di�erential system:

du = 0 ; dv = �� ^ l� � ^ n� f l ^ n ; dl = u ^ (fn� �) ; dn = �u ^ (f l+ �) (150)

for a pair of closed one-forms �; � 2 
1(M) and constants f; c 2 R satisfying the following
cohomological conditions:

1

2�
[cu] 2 H1(M;Z) ;

1

2�
[f �g u] 2 H3(M;Z)

In particular, (M; g) is a Brinkmann four-manifold with isotropic Ricci curvature.
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Proof. By Proposition 3.6 and Lemma 4.4, M admits a null supersymmetric solution for
some pair (C;X ) consisting of a bundle gerbe C and a principal Z-bundle X if and only if there
exists an isotropic parallelism [u; v; l; n], a pair of functions c; f 2 C1(M), and a pair of one-forms
�; � 2 
1(M) satisfying the di�erential system (150):

du = 0 ; dv = �� ^ l� � ^ n� f l ^ n ; dl = u ^ (fn� �) ; dn = �u ^ (f l+ �)

which corresponds to the condition that [u; v; l; n] is skew-torsion with torsion H = f�gu, together
with the di�erential system:

d�(v; l) + d�(v; n) + v(c�) = 0 ; l(fb) = 0 ; n(fb) = 0

and the condition that the following de�ne integral classes:

1

2�
[cu] 2 H1(M;Z) ;

1

2�
[f �g u] 2 H3(M;Z)

This gives the if condition. For the only if condition, suppose that (g; b; �; ") 2 Sols(C;X ) is a
null supersymmetric solution with associated skew-torsion isotropic parallelism [u; v; l; n]. Then,
by Proposition 3.14, Lemma 3.11 and Lemma 4.3 we have:

u(c) = 0 ; l(c) = 0 ; n(c) = 0 ; u(f) = 0 ; l(f) = 0 ; n(f) = 0

so the non-vanishing derivatives of c and f can only happen along v. The previous relations
together with Lemma 3.9 give the following integrability conditions :

u ^ (d�� dfb ^ n) = 0 ; u ^ (d�+ dfb ^ l) = 0 ; d� ^ l+ d� ^ n+ dfb ^ l ^ n = 0 (151)

which in turn imply:

d�(l; n) = 0 ; d�(u; n) = 0 ; d�(u; l) = 0 ; d�(u; v) = 0

d�(l; n) = 0 ; d�(u; n) = 0 ; d�(u; l) = 0 ; d�(u; v) = 0 (152)

d�(v; l)� d�(v; n) + v(fb) = 0

From Equation (151) we obtain that:

d� = dfb ^ n+ u ^ !� ; d� = �dfb ^ l+ u ^ !�
for certain one-forms !�; !� 2 
1(M). Imposing the �rst two lines in (152) we conclude that:

!� = !�(v)u� v(f)n ; !� = !�(v)u+ v(f) l

and therefore d� = 0 and d� = 0. This, together with the third line in (152) implies that v(f) = 0
and thus f is constant. On the other hand, Lemma 4.4 implies:

d�(v; l) + d�(v; n) + v(c) = v(c) = 0

and consequently c is also constant. Since satisfying all equations in Lemma 4.4 is equivalent
to satisfying the Einstein equation on an supersymmetric con�guration we conclude that Ricg +
f2

2 u
 u = 0 and therefore Ricg is isotropic, namely it satis�es jRicgj2g = 0. □

The previous theorem together with Proposition 2.1 implies the following corollary, which can be
understood as a characterization of the universal cover of supersymmetric null solutions.

Corollary 4.11. A simply connected Lorentzian four-manifold (M; g) admits a compatible
null supersymmetric solution (g; b; �) if and only if it admits a parallel isotropic one-form
u 2 
1(M) and there exists a constant f 2 R such that rg;� is �at with � = fu.

Similarly, we have the following result as an immediate consequence of Theorem 4.10.

Corollary 4.12. A Brinkmann four-manifold (M; g; u) locally admits a compatible null su-
persymmetric solution if and only if there exists a constant f 2 R such that the metric
connection rg;� with torsion � = fu is �at.
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Remark 4.13. By (M; g; u) locally admitting a compatible null supersymmetric solution we mean
that around every point in M there exists an open set admitting a null supersymmetric solution
with metric g and Dirac current u.

These corollaries motivate introducing the following notion of Brinkmann four-manifold.

Definition 4.14. A torsion-�at Brinkmann four-manifold is a Brinkmann manifold (M; g; u) for
which there exists a constant f such that rg;H is �at with H = f �g u.
This seems like an intrinsically interesting class of Brinkmann four-manifolds to study, with the
added bonus that they are locally supersymmetric. To the best of our knowledge, these have not
been systematically considered yet in the literature. We will consider the local structure of null
supersymmetric solutions in Section 5. Having dealt with the null case, we consider now the �ux
supersymmetric solutions with everywhere space-like �ux.

Theorem 4.15. An oriented and strongly spin four-manifold M admits a supersymmetric
NS-NS solution (g; b; �; ") 2 Sols(C;X ) with everywhere space-like �ux on a certain pair
(C;X ) if and only if it admits a global coframe (u; v; l; n) and a pair of complex functions
F;K 2 C1(M;C) satisfying the following di�erential system:

du = u ^ Im(F�	) ; dv + u ^ Re(K�	) + 2F�FIm(v(�F)F)�q = 0 ; �Fd	 + v(�F)u ^	 = 0 (153)
�	(F) + F�F = 0 ; 2v((�FF)�1Re(v(�F)F)) = Re(	(�K)) + Im(F�K) (154)

together with the following cohomological conditions:

1

2�
[Im(�F	)] 2 H1(M;Z) ;

1

2�
[�gRe(�F	)] 2 H3(M;Z)

where g = u � v + l 
 l + n 
 n is the Lorentzian metric associated to (u; v; l; n) and 	 :=
l + in 2 
1(M;C). If that is the case, the supersymmetric solutions (g; b; �) associated to
such (u; v; l; n) and (F;K) are determined by:

g = u� v + l
 l+ n
 n ; �b = �gRe(�F	) ; '� = Im(�F	)

where '� is the curvature of � and �b is the Hodge dual of the curvature of �.

Proof. Let (g; b; �; ") 2 Sols(C;X ) be a NS-NS supersymmetric solution with nowhere van-
ishing �ux and let [u; v; l; n] be its associated skew-torsion isotropic parallelism with torsion
�b 2 
1(M), which by Proposition 3.6 satis�es the di�erential system (145) and (146) for certain
characteristic one-forms �; � 2 
1(M). Since by assumption jmbj2q 2 C1(M) is nowhere vanishing,
there exists a unique isotropic coframe (u; v; l; n) 2 [u; v; l; n] such that:

�b = �ll+ �nn ; '� = �ln� �nl
that is, such that c� = fb = 0. By Lemma 4.7 the characteristic one-forms �; � 2 
1(M) satisfy
the following relations:

�(u) = ��n ; �(u) = �l

�(l) = 1
2 jmbj�2q v(jmbj2q) ; �(l) = jmbj�2q (�nv(�l)� �lv(�n))

�(n) = jmbj�2q (�lv(�n)� �nv(�l)) ; �(n) = 1
2 jmbj�2q v(jmbj2q)

where we have used that jmbj2q 2 C1(M) is nowhere vanishing. Using the previous relations we
can solve for all components of � and � except for �(v) and �(v). Plugging these relations into
the di�erential system given in equations (145) and (146), we obtain:

du = u ^ (�nl� �ln)
dv = ��vu ^ l� �vu ^ n+ 2(�2l + �2n)(�lv(�n)� �nv(�l))l ^ n
(�2l + �2n)dl = �u ^ ( 12v(�2l + �2n)l+ (�lv(�n)� �nv(�l))n)
(�2l + �2n)dn = �u ^ ((�nv(�l)� �lv(�n))l+ 1

2v(�
2
l + �2n)n)
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Using the complex function F = �l + i�n introduced earlier, the previous system can be written
as follows:

du = u ^ (�nl� �ln)
dv = ��vu ^ l� �vu ^ n� 2F�FIm(v(�F)F)l ^ n

F �Fdl = �u ^ (Re(v(�F)F)l� Im(v(�F)F)n)

F �Fdn = �u ^ (Im(v(�F)F)l+Re(v(�F)F)n)

or, equivalently using the complex tetrad (u; v;	 = l+ in; �	 = l� in) associated to (u; v; l; n), as
follows:

du = u ^ Im(F	�) ; dv + u ^ Re(K	�) + 2F�FIm(v(�F)F)�q = 0 ; �Fd	 + v(�F)u ^	 = 0

where we have introduced the complex function:

K := �(v) + i�(v)

and �q = l ^ n denotes the transverse Riemannian volume form associated to (u; v; l; n). Since
(g; b; �; ") 2 Sols(C;X ) is supersymmetric, it satis�es the NS-NS system, which by Lemma 4.4 in
our current situation is equivalent to:

l(�n)� n(�l) + �2l + �2n = 0

d�(v; l) + d�(v; n)� �n�(v) + �l�(v) = 0 (155)

v(�l) = �l�(l) + �n�(l) ; v(�n) = �l�(n) + �n�(n)

The �rst line in (155) can be written as follows:

l(�n)� n(�l) + �2l + �2n = 	�(F) + F�F = 0

where we are implicitly using that l(�l) + n(�n) = 0 by Lemma 3.9. Furthermore, the third line
in (155) can be written in the following form:

v(�l) = �l�(l) + �n�(l) = (F�F)�1(�lRe(v(�F)F) + �nIm(v(�F)F))

v(�n) = �l�(n) + �n�(n) = (F�F)�1(�nRe(v(�F)F)� �lIm(v(�F)F))
from which we obtain:

F�F v(F) = F�F v(�l + i�n) = �lRe(v(�F)F) + �nIm(v(�F)F) + i(�nRe(v(�F)F)� �lIm(v(�F)F))
= �l(Re(v(�F)F)� iIm(v(�F)F)) + �n(iRe(v(�F)F) + Im(v(�F)F))

= �l(Re(v(�F)F)� iIm(v(�F)F)) + i�n(Re(v(�F)F)� iIm(v(�F)F)) = v(F)�FF

and therefore we conclude that the third line in (155) holds automatically if the the �rst line is
satis�ed. It remains to consider the second line in Equation (155). We have:

d�(v; l) + d�(v; n) + v(c�)� �n�(v) + �l�(v)

= v(�(l))� l(�(v))� �([v; l]) + v(�(l))� l(�(v))� �([v; l]) + v(c�)� �n�(v) + �l�(v) = 0

which implies:

0 = d�(v; l) + d�(v; n)� �n�(v) + �l�(v) =

= v(�(l))� l(Re(K)) + v(�(n))� n(Im(K))� �nRe(K) + �lIm(K)

= 2v((�FF)�1Re(v(�F)F))� Re(	(�K))� Im(F�K)

Here we have used that the Lie brackets of (u; v; l; n) 2 [u; v; l; n] are given by:�
u]g ; v]g

�
= �(�n + �(u)) l]g + (�l � �(u))n]g = 0�

u]g ; l]g
�
= (�(u) + �n)�

]g = 0 ;
�
u]g ; n]g

�
= (�(u)� �l)�]g = 0�

v]g ; l]g
�
= ��nv + �(v)u+ �(l)l+ �(l)n�

v]g ; n]g
�
= �lv + �(v)u+ �(n)l+ �(n)n�
l]g ; n]g

�
= (�(l)� �(n))u
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These relations follow from Remark 2.11 after setting �(u) = 0. This gives all the equations
and conditions in the stating of the theorem. For the converse, suppose that we have a solution
(u; v; l; n;F;K) to all the equations in the statement of the theorem. Then, (u; v; l; n) satis�es
equations (145) and (146) relative to the one-forms:

�+ i� = Ku+ �F v + �F�1v(�F)	

Hence, (u; v; l; n) de�nes a skew-torsion isotropic parallelism [u; v; l; n] with torsion � = Re(�F	),
and therefore the underlying Lorentzian metric g = u�v+l
l+n
n admits a skew-torsion parallel
spinor with torsion � = Re(�F	). Since the normalized Hodge dual of the latter is by assumption
an integral closed three-form it follows that there exists a bundle gerbe C = (P; Y;A) and a
curving b on C such that � = �b. Similarly, since by assumption (2�)�1Im(�F	) 2 
1(M) is closed
integral one-form onM , there exists a principal Z-bundle X onM and an equivariant real function
� 2 C1(M) such that '� = Im(�F	). With this choices, all the conditions stated in Proposition
3.3 are automatically satis�ed and therefore (g; b; �) de�nes a supersymmetric con�guration on
(C;X ) with respect to the the spinor determined (modulo a global sign) by [u; v; l; n]. Finally, the
following equations:

�	(F) + F�F = 0 ; 2v((�FF)�1Re(v(�F)F)) = Re(	(�K)) + Im(F�K)

that hold by assumption are equivalent to the NS-NS system evaluated on the given supersym-
metric con�guration, and therefore we conclude. □

Remark 4.16. In a supergravity context, the supersymmetry parameter ", that is, the underlying
skew-torsion parallel spinor for the case of supersymmetric NS-NS solutions, is usually irrelevant
in itself; only the geometric and topological consequences of its existence being important. Within
this mindset, the previous corollary captures the if and only if conditions for a supersymmetry
solution to exist with no mention of the underlying Lorentzian metric or supersymmetry param-
eter. This seems to realize, at least for the class of supersymmetric solutions considered here, the
motivation and ideology explained in [220], where the complete Type-II theory, of which NS-NS
supergravity is a subsector, is considered in ten dimensions.

By Proposition 3.3, for every supersymmetric con�guration (g; b; �; ") we have �b(u) = 0 and
therefore by the �rst equation in (145) the Dirac current u 2 
1(M) satis�es the Frobenius
integrability and the kernel Ker(u) � TM integrates to a codimension-one transversely orientable
foliation Fu �M . The Godbillon-Vey class of this foliation is given by:

�u := [(�nl� �ln) ^ d(�nl� �ln)] 2 H3(M;R)

Hence, as an immediate consequence of the cohomological conditions contained in Theorem 4.15
we obtain the following result.

Corollary 4.17. The Godbillon-Vey invariant of a supersymmetric NS-NS solution with
everywhere space-like �ux vanishes.

5. The dilaton-�ux foliation

Every NS-NS solution (g; b; �) 2 Sol(C;X ) de�nes three natural distributions in TM , gen-
erally singular and possibly trivial, namely:

� The dilaton distribution Ker('�) � TM , given by the kernel the one-form '� 2 
1(M). This
distribution is singular at the zeroes of '� and is trivial for constant-dilaton NS-NS solutions.

� The �ux distribution Ker(�b) � TM , given by the kernel the one-form �b 2 
1(M). This
distribution is singular at the zeroes of �b and it is trivial for constant-dilaton NS-NS solutions.

� The dilaton-�ux distribution Ker('�) \ Ker(�b), given by the intersection of Ker('�) and
Ker(�b). This is therefore a codimension-two distribution at those points, if any, where both
'� and �b are non-zero and linearly independent.
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The main interesting point about these singular distributions is that all of them are integrable,
since '� is closed and � satis�es the Cartan criteria d�b = '� ^ �b precisely with respect
to '�. In particular, assuming that the �ux distribution is regular, then its Godbillon-Vey
class vanishes since '� is closed. For nontrivial null supersymmetric solutions the dilaton-�ux
distribution degenerates into the �ux or dilaton distributions, or both if both �b and '� are
nowhere vanishing, and therefore becomes the standard distribution and associated foliation that
every Brinkmann manifold carries. For supersymmetric NS-NS solutions with everywhere space-
like �ux the dilaton-�ux distribution is regular and therefore de�nes a regular codimension-two
transversely orientable foliation. We consider both these cases in this section.

5.1. Everywhere isotropic �ux. Let (g; b; �) be a null supersymmetric NS-NS solution with
associated skew-torsion isotropic parallelism [u; v; l; n]. Then, every representative (u; v; l; n) 2
[u; v; l; n] satis�es the exterior di�erential system (150) for a non-zero real constant f 2 R� and
a pair of closed one-forms �; � 2 
1(M). Around every point in M , there exists an open set
isomorphic to U�X, where U � R2 with Cartesian coordinates (xu; xv), and X is an oriented two-
dimensional manifold and through this isomorphism there exists a representative of (u; v; l; n) 2
[u; v; l; n] of the form:

(u; v; l; n) = (dxu;dxv +Hxudxu + !xu ; lxu ; nxu) (156)

to which we will refer as being adapted, similarly to the notion of adapted representative intro-
duced in Section 2. Here Hxu is a family of functions on X parametrized by xu and independent
of xv whereas !xu ; lxu ; nxu 2 
1(X) are families of one-forms on X parametrized by xu and again
independent of xv. Note that u]g = @xv . Plugging (156) into (150) we obtain:

dXHxu ^ dxu + dxu ^ @xu!xu + dX!xu = �� ^ lxu � � ^ nxu � f lxu ^ nxu
dxu ^ @xu lxu + dX lxu = dxu ^ (fnxu � �?)
dxu ^ @xunxu + dnxu = �dxu ^ (f lxu + �?)

as well as �v = �v = 0. Isolating by tensor type, the previous system is equivalent to:

�? = fnxu � @xu lxu ; �? = �f lxu � @xunxu ; dX lxu = dxnxu = 0

@xu!xu � dXHxu = @xu lxu ^ lxu + @xunxu ^ nxu ; dX!xu = f lxu ^ nxu
Assuming for simplicity that @xu lxu = clxu lxu and @xunxu = cnxunxu for families of functions clxu
and cnxu on X, the previous equations are equivalent to:

!xu =

Z xu

0

dXHzdz + ! ; dX

Z xu

0

dXHzdz + dX! = f lxu ^ nxu

where ! is a one-form on X and (lxu ; nxu) is a family of closed one-forms, everywhere linearly
independent.

5.2. Everywhere space-like �ux. Let (g; b; �) be a supersymmetric NS-NS solutions with ev-
erywhere space-like �ux and associated skew-torsion isotropic parallelism [u; v; l; n]. We choose
the representive (u; v; l; n) 2 [u; v; l; n] such that:

'� = �qmb ; �b = mb

for a unique mb 2 �(hRui � hRvi)?g . We have:

dmb = �qmb ^mb ; d �q mb = 0

Therefore, for supersymmetric NS-NS solutions with everywhere space-like �ux the �ux-dilaton
distribution can be identi�ed with:

Ker(�qmb) \Ker(mb) � TM

and since mb 2 �(hRui � hRvi)?g is nowhere vanishing we conclude that it is regular and given
by the span of u]g and v]g . Furthermore, we have the following vanishing Lie brackets:�

u]g ; v]g
�
= 0 ;

�
u]g ; l]g

�
= 0 ;

�
u]g ; n]g

�
= 0



114 Chapter 5. Supersymmetric Kundt four-manifolds

From this together with the �rst equation in (153) it follows that there exists local coordinates
(xu; xv; x1; x2) such that:

e�x2u = dxu ; e�x2mb = dx1 ; �qmb = dx2

On the other hand, by construction we have:�
�b
'�

�
=

�
mb

�qmb

�
=

�
�l �n
��n �l

��
l
n

�

and thus: �
l
n

�
=

1

�2l + �2n

�
�l ��n
�n �l

��
mb

�qmb

�

From this we obtain:

l =
1

�2l + �2n
(�le

x2dx1 � �ndx2) ; n =
1

�2l + �2n
(�ne

x2dx1 + �ldx2)

Furthermore, the coordinate xv can be rearranged so as to u]g = @xv , implying that all the local
coe�cients of the metric g = u�v+ l
 l+n
n in the coordinates (xu; xv; x1; x2) are independent
of xv. A quick computation gives:

g = ex2dxu � (Hxudxu + dxv + !xu) +
1

�2l + �2n
(e2x2dx1 
 dx1 + dx2 
 dx2)

where we have written v = Hxudxu + dxv + !xu in terms a local family of functions Hxu

parametrized by xu and depending on (x1; x2) and a local family of one-forms !xu along the
coordinates (x1; x2) and parametrized by xu. Imposing Equation (153) on the representation
(u; v; l; n) that we have constructed we obtain:

e�x2d(ex2v) = �� ^ (��lex2dx1 � ��ndx2)� � ^ (��nex2dx1 + ��ldx2) (157)

dl = �ex2dxu ^ (�n!xu + �?) ; dn = ex2dxu ^ (�l!xu � �?) (158)

where for simplicity we have set:

��l =
�l

�2l + �2n
; ��n =

�n
�2l + �2n

Equations (158) are equivalent to:

�? = �e�x2@xu l� �n!xu ; �? = �e�x2@xun+ �l!xu

@x1 ��n + @x2(e
x2 ��l) = 0 ; @x1 ��l � @x2(ex2 ��n) = 0

In particular, the Riemannian metric qxu = l
 l+n
n is a family of �at two-dimensional metrics
parametrized by xu. Plugging these relations into Equation (157), we obtain:

dxu ^ (@xu!xu � e�x2dX(ex2Hxu)) + dx2 ^ dxv + e�x2dX(ex2!xu)

= �dxv ^ (�vl+ �vn) + dxu ^ (�nl� �ln) + (e�x2@xu l+ �n!xu) ^ l+ (e�x2@xun� �l!xu) ^ n

which is equivalent to:

@xu!xu � e�x2dX(ex2Hxu) = �nl� �ln ; dx2 = �vl+ �vn

e�x2dX(ex2!xu) = (e�x2@xu l+ �n!xu) ^ l+ (e�x2@xun� �l!xu) ^ n

Hence:

@xu!xu � e�x2dX(ex2Hxu) + dx2 = 0 ; �v�l + �v�n = 0 ; �v ��l � �v ��n = 1

dX!xu = 2 (��l@xu ��n � ��n@xu ��l)dx1 ^ dx2
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These equations are solved by:

!xu = e�x2dX(ex2
Z xu

0

(Hz � 1)dz) + ! ; �v = ��n ; �v = �lZ xu

0

dXHzdz ^ dx2 + dX! = 2 (��l@xu ��n � ��n@xu ��l)dx1 ^ dx2

where ! is a one-form along (x1; x2).





CHAPTER 6

The NS-NS supergravity evolution �ow

In this chapter we investigate the supersymmetric solutions of four-dimensional NS-NS su-
pergravity whose associated Lorentzian metric is globally hyperbolic, to which we will refer simply
as globally hyperbolic supersymmetric NS-NS solutions. When restricted to con�gurations with
globally hyperbolic metric, the NS-NS system de�nes a second-order Riemannian evolution �ow
on any given Cauchy hypersurface, called the NS-NS evolution �ow, whereas the supersymmetry
conditions of NS-NS supergravity de�ne a �rst-order evolution �ow, called the supersymmetric
NS-NS evolution �ow. The main purpose of this section is to initiate the study of the interac-
tion between these two �ows, which can be expected to be closely related, and set up a geometric
framework to investigate in the future the moduli of initial data sets of both of these �ows.

1. Globally hyperbolic isotropic parallelisms

Let M be an oriented four-manifold and let F(M) denote the category of isotropic paral-
lelisms on M . As explained in Chapter 3, there is a natural functor:

F(M)! Lor(M) ; [u; v; l; n] 7! g = u� v + l
 l+ n
 n
where Lor(M) is considered as a the category of Lorentzian metrics and isometries on M .

Definition 1.1. An isotropic parallelism [u; v; l; n] 2 F(M) is globally hyperbolic if its associated
metric:

g = u� v + l
 l+ n
 n
is a globally hyperbolic metric on I � � with Cauchy hypersurface �.

We denote by Fo(M) the full subcategory of globally hyperbolic isotropic parallelism F(M). Let
[u; v; l; n] be a globally hyperbolic isotropic parallelism on M with associated globally hyperbolic
metric g. Then, a celebrated theorem of Bernal and Sánchez [27, 28] states that in this case (M; g)
has the following isometry type:

(M; g) = (I � �;��2tdt
 dt+ ht) (159)

where t is the canonical coordinate of the interval I � R containing the origin, �t is a smooth
family of nowhere vanishing functions on � parametrized by t 2 I and ht is a family of complete
Riemannian metrics on �, again parametrized by t 2 I. From now on we consider the identi�cation
(159) to be �xed for each [u; v; l; n] 2 Fo(M). We set:

�t := ftg � � ,!M ; � := f0g � � ,!M

and de�ne:
tt = �t dt

to be the outward-pointing unit time-like one-form orthogonal to T ��t for every t 2 I. We will
consider � ,!M , endowed with the induced Riemannian metric:

h := h0jT��T�
to be the Cauchy hypersurface of (M; g). The shape operator or scalar second fundamental form
�t 2 �(T ��t � T ��t) of the embedded manifold �t ,!M is de�ned in the usual way as follows:

�t := rgttjT�t�T�t
(160)

117
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Using standard theory of immersed Riemannian manifolds, this de�nition can be shown to be
equivalent to:

�t = � 1

2�t
@tht 2 �(T ��t � T ��t)

Moreover, it can be seen that:

rg�jT�t�TM = rht�+�t(�)
 tt ; 8 � 2 
1(�t)

whererht denotes the Levi-Civita connection on (�t; ht) and�t(�) := �t(�
]ht ) is by de�nition the

evaluation of �t on the metric dual of �. For every representative (u; v; l; n) 2 [u; v; l; n] 2 Fo(M)
we write:

u = uot tt + u?t ; v = vot tt + v?t ; l = lot tt + l?t ; n = not tt + n?t (161)

where the superscript ? denotes orthogonal projection to T ��t with respect to ht and where we
have de�ned:

uot = �g(u; tt) ; vot = �g(v; tt) ; lot = �g(l; tt) ; not = �g(n; tt)
This splitting is not preserved within the equivalence class [u; v; l; n]. Instead, we have:

�vot = v0t � 1
2 jwj2guot +wo

t ; �v?t = v?t � 1
2 jwj2gu?t +w?t

�lot = lot �w(l)uot ; �l?t = l?t �w(l)u?t ; �not = not �w(n)uot ; �n?t = n?t �w(n)u?t

where we have set:

(u; �v; �l; �n) = w � (u; v; l; n) = (u; v � 1

2
jwj2gu+w; l�w(l)u; n�w(n)u) ; w 2 �(u; v)?g

and where we have split (u; �v; �l; �n) analogously to the splitting of (u; v; l; n) in Equation (161).
Hence, every isotropic parallelism [u; v; l; n] de�nes an equivalence class of functions and frames on
� through its globally hyperbolic reduction. Rather than considering this equivalence class in the
following, we are interested in obtaining the privileged representative that is most convenient for
the study of globally hyperbolic supersymmetric solutions and more generally di�erential spinors
on globally hyperbolic Lorentzian four-manifolds.

Lemma 1.2. Let [u; v; l; n] be a globally hyperbolic isotropic parallelism on M . Then, there
exists a unique representative (u; v; l; n) 2 [u; v; l; n] such that:

u = uot tt + u?t ; v =
1

2(uot )
2
(�uot tt + u?t ) ; l = l?t ; n = n?t (162)

in the splitting (161).

Proof. We choose w 2 �(u; v)?g such that:

0 = �lot = lot �w(l)uot ; 0 = �not = not �w(n)uot

This already determines w uniquely as follows:

w =
1

uot
(lot l+ notn)

Hence (uot )
2jwj2g = (lot )

2 + (not )
2. Plugging these equations into the previous expression for �v in

terms of w and u, we obtain:

�vot = vot +
1

2uot
((lot )

2 + (not )
2) ; �v?t = v?t �

1

2(uot )
2
((lot )

2 + (not )
2)u?t +

1

uot
(lot l

?
t + notn

?
t ) (163)

On the other hand, by assumption we must have:

g = u� �v + �l
 �l+ �n
 �n = (2uotv
o
t + (lot )

2 + (not )
2)tt 
 tt + tt � (votu

?
t + uotv

?
t + lot l

?
t + notn

?
t )

+u?t � v?t + l?t 
 l?t + n?t 
 n?t = tt 
 tt + ht
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and thus:
2uotv

o
t + (lot )

2 + (not )
2 = �1 ; votu

?
t + uotv

?
t + lot l

?
t + notn

?
t = 0

Plugging this equations back into (163), we obtain:

�vot = � 1

2uot
; �v?t =

1

2(uot )
2
u?t

and thus we conclude. □

We will refer to the representative (u; v; l; n) 2 [u; v; l; n] of the previous lemma as the adapted
representative in [u; v; l; n]. Hence, every globally hyperbolic isotropic parallelism [u; v; l; n] nat-
urally de�nes a family of tuples:

(�t; u
o
t ; u

?
t ; l

?
t ; n

?
t )

as explained in the previous discussion. Note that metric coe�cient �t, or alternatively the
unit time-like one-form tt, needs to be considered as part of the globally hyperbolic reduction of
[u; v; l; n] in order to be able to recover the globally hyperbolic metric associated to [u; v; l; n] from
its globally hyperbolic reduction. By direct substitution, we obtain:

g = u� v + l
 l+ n
 n = �tt 
 tt +
1

(uot )
2
u?t 
 u?t + l?t 
 l?t + n?t 
 n?t

Note that u?t is not necessarily of unit norm, whereas (uot )
�1u?t is because of u being isotropic.

Since l?t and n?t are already unit-norm one-forms on (�; ht), it is convenient to introduce the
following notation:

etu :=
1

uot
u?t ; el := l?t ; en := n?t

in terms of which the metric g associated to [u; v; l; n] adopts the standard form:

g = �tt 
 tt + etu 
 etu + etl 
 etl + etn 
 etn
In particular, (etu; e

t
l ; e

t
n) is a global orthonormal coframe on �. For ease of notation, in the

following we will set et = (etu; e
t
l ; e

t
n). Furthermore, it will be convenient for future computations

to introduce a family of functions at on � as follows:

uot = eat ; 8 t 2 I
Note that uot is nowhere vanishing for every t 2 I and furthermore without lost of generality we
can take it to be strictly positive.

Definition 1.3. The tuple (�t; at; et) is the globally hyperbolic reduction of [u; v; l; n] on the
three-manifold �.

This globally hyperbolic reduction of a globally hyperbolic isotropic parallelisms [u; v; l; n] will
play a fundamental role in our study of globally hyperbolic solutions of NS-NS supergravity.

2. The evolution problem of skew-torsion parallel spinors

In this section we consider the evolution problem de�ned by a globally hyperbolic skew-
torsion parallel spinor, namely a skew-torsion parallel spinor whose associated isotropic parallelism
is globally hyperbolic in the sense of De�nition 1.1. This evolution �ow yields the general frame-
work to study the evolution problem de�ned by globally hyperbolic supersymmetric NS-NS solu-
tions, which is our main object of study and involves, as explained in Chapter 5, a particular class
of skew-torsion parallel spinors as their main ingredient. By the results of Section 2, a globally
hyperbolic Lorentzian four-manifold admits a skew-torsion parallel spinor if and only if its asso-
ciated isotropic parallelism is skew-torsion. Hence, we can study globally hyperbolic Lorentzian
four-manifolds equipped with skew-torsion parallel spinors equivalently in terms of globally hy-
perbolic skew-torsion isotropic parallelisms. We remind the reader that, by virtue of Theorem 1.9,
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a four-manifold M admits a skew-torsion isotropic parallelism with torsion H = �g� 2 
3(M) if
and only if it admits an isotropic parallelism satisfying the following di�erential system:

du = �g(� ^ u) ; dv = �g(� ^ v)� � ^ l� � ^ n (164)

dl = �g(� ^ l) + � ^ u ; dn = �g(� ^ n) + � ^ u (165)

where � = �gH. Our goal now is to reduce the di�erential system (164) and (165) when evaluated
on the adapted representative (u; v; l; n) 2 [u; v; l; n] of a globally hyperbolic isotropic parallelism
[u; v; l; n]. Recall that by Lemma 1.2 we can write:

u = eat(tt + etu) ; v =
e�at

2
(�tt + etu) ; l = etl ; n = etn

Using these equations, we compute now the exterior derivative of adapted representative (u; v; l; n) 2
[u; v; l; n] of a skew-torsion globally hyperbolic isotropic parallelism [u; v; l; n] in terms of its
globally hyperbolic reduction, namely in terms of objects and di�erentials de�ned on the three-
manifold �.

Lemma 2.1. Let (u; v; l; n) 2 [u; v; l; n] be the adapted representative of a globally hyperbolic
parallelism. The following formulas hold:

du = eat(tt ^ (��1t @tate
t
u � d�at � ��1t d��t + ��1t @te

t
u) + d�e

t
u + d�at ^ etu)

dv = 1
2e
�at(tt ^ (��1t @te

t
u � ��1t @tate

t
u � d�at + ��1t d��t) + d�e

t
u � d�at ^ etu)

detl = tt ^ ��1t @te
t
l + d�e

t
l ; detn = tt ^ ��1t @te

t
n + d�e

t
n

where (�t; at; et) is the globally hyperbolic reduction of [u; v; l; n].

Proof. We compute:

du = eatdat ^ (tt + etu) + eat(dtt + detu) = eat(d�at ^ tt + @tatdt ^ etu + d�at ^ etu)
+eat(d��t ^ dt+ d�e

t
u + dt ^ @tetu)

After isolating for type of tensor we obtain the �rst equation in the lemma. Similarly, we have:

dv = 1
2e
�atdat ^ (tt � etu) + e�at

2 (�dtt + detu) =
e�at

2 (d�at ^ tt � d�at ^ etu � @tatdt ^ etu)
+ e�at

2 (d�e
t
u + dt ^ @tetu � ��1t d��t ^ tt)

which gives the second equation in the lemma. The third and fourth equations are proven similarly
and thus we conclude. □

Let (�t; at; et) be the globally hyperbolic reduction of a skew-torsion globally hyperbolic parallelism
[u; v; l; n] with torsion H = �g�. We split � as expected:

� = �ot tt + �?t (166)

in terms of uniquely determined families of functions �ot and one-forms �?t on �. For further
reference in upcoming calculations, we recall the following identities:

�g(tt ^ �) = � �ht � ; �g� = (�1)j�jtt ^ �ht� ; � 2 �(^M) (167)

relating the Hodge dual �g associated with g to the Hodge dual �ht associated with ht. Using
these relations the following lemma follows by a direct computation.

Lemma 2.2. Let (u; v; l; n) the globally hyperbolic reduction of a globally hyperbolic isotropic
parallelism [u; v; l; n] on �. Then:

�g(� ^ u) = eat(tt ^ �ht(�?t ^ etu)� �ot �ht etu + �ht�?t )
�g(� ^ v) = 1

2e
�at(tt ^ �ht(�?t ^ etu)� �ot �ht etu � �ht�?t )

�g(� ^ etl) = tt ^ �ht(�?t ^ etl)� �ot �ht etl
�g(� ^ etn) = tt ^ �ht(�?t ^ etn)� �ot �ht etn



2. The evolution problem of skew-torsion parallel spinors 121

where � = �ot tt + �?t 2 
1(I � �).

The following lemma is the �rst step in our characterization of skew torsion globally hyperbolic
parallelisms.

Lemma 2.3. A globally hyperbolic parallelism [u; v; l; n] on I �� is skew-torsion with torsion
H = �g� if and only if there exists a family of functions (�ot ; �

o
t ) and a family of one-forms

(�?t ; �
?
t ) on � such that the globally hyperbolic reduction (�t; at; et) of [u; v; l; n] satis�es the

following di�erential equations on �:

��1t @te
t
u = �ht(�?t ^ etu)� ��1t @tate

t
u + d�at + ��1t d��t

��1t @te
t
l = �ht(�?t ^ etl) + eat(�ote

t
u � �?t ) ; ��1t @te

t
n = �ht(�?t ^ etn) + eat(�ote

t
u � �?t )

d�e
t
u = etu ^ d�at + �ht(�?t � �otetu)

d�e
t
l = eat�?t ^ etu � �ot �ht etl ; d�e

t
n = eat�?t ^ etu � �ot �ht etn

together with the equations:

eat(�ote
t
l + �ote

t
n) = ��1t @tate

t
u � ��1t d��t ; d�at ^ etu = �ht�?t + eat(�?t ^ etl + �?t ^ etn)

further restricting the evolution of (�t; at; et) and (�ot ; �
o
t ; �

?
t ; �

?
t ).

Proof. Let [u; v; l; n] be a globally hyperbolic parallelism on I�� relative to �; � 2 
1(I��)
and with torsion H = �g�. We split � as prescribed in Equation (166). We split � and � similarly
to �, namely, we set:

� = �ot tt + �?t ; � = �ot tt + �?t
where (�ot ; �

o
t ) are families of functions on � and (�?t ; �

?
t ) are families of one-forms on �. By

Theorem 1.9 it follows that [u; v; l; n] is a globally hyperbolic skew-torsion parallelism if and only
if its adapted representative (u; v; l; n) 2 [u; v; l; n] on I � � satis�es (164) and (165). Using
Lemmas 2.1 and 2.2 we obtain that the �rst equation in (164) is equivalent to:

tt^(��1t @tate
t
u�d�at���1t d��t+�

�1
t @te

t
u)+d�e

t
u+d�at^etu = tt^�ht(�?t ^etu)+�ht(�?t ��otetu)

Isolating by tensor type, this equation becomes equivalent to:

��1t @te
t
u = �ht(�?t ^ etu)� ��1t @tate

t
u + d�at + ��1t d��t ; e

�atd�(e
atetu) = �ht(�?t � �otetu) (168)

Proceeding similarly for both equations in (165), we obtain that they are equivalent to the following
equations:

tt ^ ��1t @te
t
l + d�e

t
l = tt ^ (�ht(�?t ^ etl) + eat(�ote

t
u � �?t )) + eat�?t ^ etu � �ot �ht etl

tt ^ ��1t @te
t
n + d�e

t
n = tt ^ (�ht(�?t ^ etn) + eat(�ote

t
u � �?t )) + eat�?t ^ etu � �ot �ht etn

Isolating by tensor type, we obtain the following equivalent system:

��1t @te
t
l = �ht(�?t ^ etl) + eat(�ote

t
u � �?t ) ; ��1t @te

t
n = �ht(�?t ^ etn) + eat(�ote

t
u � �?t )

d�e
t
l = eat�?t ^ etu � �ot �ht etl ; d�e

t
n = eat�?t ^ etu � �ot �ht etn

We consider now the second equation in (164), which is the last that remains to be considered.
Using Lemmas 2.1 and 2.2 it follows that it is equivalent to:

1
2e
�at tt ^ (��1t @te

t
u � ��1t @tate

t
u � d�at + ��1t d��t) +

1
2e
�atd�e

t
u � 1

2e
�atd�at ^ etu

= tt ^ ( 12e�at �ht (�?t ^ etu)� �otetl � �otetn)� 1
2e
�at �ht (�?t + �ote

t
u)� �?t ^ etl � �?t ^ etn

Isolating by tensor type, we obtain:

��1t @te
t
u = ��1t @tate

t
u + d�at � ��1t d��t + �ht(�?t ^ etu)� 2eat�ote

t
l � 2eat�ote

t
n (169)

d�e
t
u = d�at ^ etu � �ht(�?t + �ote

t
u) + 2eat(etl ^ �?t + etn ^ �?t ) (170)

The �rst equation prescribes the time-derivative of etu, and therefore needs to be compared with
the �rst equation in (168). Similarly, the second equation prescribes the exterior derivative of
etu and therefore needs to be compared with the second equation in (168). This results, together
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with the previous equations, in the constraints appearing in the statement of the lemma. The
converse follows by tracing back the previous steps and hence we conclude. □

The previous lemma can be conveniently re�ned as follows.

Proposition 2.4. A globally hyperbolic parallelism [u; v; l; n] on I � � is skew-torsion with
torsion H = �g� if and only if there exists a family of one-forms (�?t ; �

?
t ) on � such that the

globally hyperbolic reduction (�t; at; et) of [u; v; l; n] satis�es the following system of evolution
equations on �:

@tat = d��t(e
t
u)

��1t @te
t
u = �ht(�?t ^ etu) + d�at + ��1t d��t(e

t
l)e

t
l + ��1t d��t(e

t
n)e

t
n

��1t @te
t
l = �ht(�?t ^ etl)� (��1t d��t(e

t
l)e

t
u + eat�?t ) (171)

��1t @te
t
n = �ht(�?t ^ etn)� (��1t d��t(e

t
n)e

t
u + eat�?t )

together with the following time-dependent constraint equations:

d�at ^ etu = �ht�?t + eat�?t ^ etl + eat�?t ^ etn
d�e

t
u = �eat�?t ^ etl � eat�?t ^ etn � �ot �ht etu

d�e
t
l = eat�?t ^ etu � �ot �ht etl (172)

d�e
t
n = eat�?t ^ etu � �ot �ht etn

where � = �ot tt + �?t .

Remark 2.5. From the di�erential system (171) and (172) it can be easily recovered that the
exterior derivative of etu can be equivalently written as follows:

d�e
t
u = etu ^ d�at + �ht(�?t � �otetu)

as it can be veri�ed via a simple combination with the equation for exterior derivative of at.

Proof. We consider the following equation:

eat�ote
t
l + eat�ote

t
n = ��1t @tate

t
u � ��1t d��t

in Lemma 2.3. Evaluating this equation on the family of vector �elds (etu)
]ht gives equation

@tat = d��t(e
t
u), whereas evaluating it on (etl)

]ht and (etn)
]ht and solving for �ot and �

o
t we obtain

the remaining equations after an educated manipulation. □

As already indicated in the statement of the previous proposition, the di�erential system char-
acterizing skew-torsion parallel spinors splits, when transformed into the equivalent system for
skew-torsion globally hyperbolic parallelisms, into two natural blocks, namely block (171) con-
sisting on the evolution equations for (at; et) together with block (172) which contains the natural
time-dependent constraint equations for the aforementioned evolution equations. This is there-
fore an evolution problem for (at; et) for which we can consider �t as given data. We elaborate on
the previous lemma in the following in order to obtain a geometric interpretation of the globally
hyperbolic skew-torsion isotropic parallelisms in terms of the second fundamental form of the
underlying Cauchy hypersurface.

Lemma 2.6. Let (�t; at; et) be the globally hyperbolic reduction of a skew-torsion globally
hyperbolic parallelism [u; v; l; n] relative to (�?t ; �

?
t ). Then, the second fundamental form

�t 2 �(T ��� T ��) of (�; ht) is given by:

�2�t = d�at � etu � eat(�?t � etl + �?t � etn) (173)

for every t 2 I.
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Proof. Using equation (171) we compute:

�2�t =
1
�t
(etu � @tetu + etl � @tetl + etn � @tetn)

= (�ht(�?t ^ etu) + d�at + ��1t d��t(e
t
l)e

t
l + ��1t d��t(e

t
n)e

t
n)� etu

(�ht(�?t ^ etl)� (��1t d��t(e
t
l)e

t
u + eat�?t ))� etl

+(�ht(�?t ^ etn)� (��1t d��t(e
t
n)e

t
u + eat�?t ))� etn

= d�at � etu � eat(�?t � etl + �?t � etn)

and thus we conclude. □

Proposition 2.7. Let (�t; at; et) be the globally hyperbolic reduction of a skew-torsion globally
hyperbolic parallelism [u; v; l; n] relative to (�?t ; �

?
t ). Then:

�t(e
t
u) = �d�at � 1

2 �ht (�?t ^ etu)
�t(e

t
l) = eat�?t � 1

2 �ht (�?t ^ etl) (174)

�t(e
t
n) = eat�?t � 1

2 �ht (�?t ^ etn)

for every t 2 I, where �t is the second fundamental form of (�; ht).

Proof. Evaluating Equation (173) on (etu)
]ht we obtain:

�t(e
t
u) = d�at + d�at(e

t
u)e

t
u � eat(�?t (etu)etl + �?t (e

t
u)e

t
n)

Combining this equation with the evaluation of the �rst equation in (172) on (etu)
]ht , we obtain

the �rst equation in (174). Evaluating Equation (173) on (etl)
]ht we obtain:

�t(e
t
l) = d�at(e

t
l)e

t
u � eat(�?t (etl)etl + �?t (e

t
l)e

t
n + �?t )

Combining this equation with the evaluation of the �rst equation in (172) on (etl)
]ht , we obtain

the second equation in (174). The third equation in (174) is obtained similarly by evaluating
Equation (173) on (etn)

]ht and then combining the result with the evaluation of the �rst equation
in (172) on (etn)

]ht . □

The previous proposition allows to obtain an equivalent expression for the evolution problem
de�ned by the di�erential system (171) and (172) which is obtained by isolating �?t and �?t in
(174) and plugging the result back into (171) and (172).

Corollary 2.8. A globally hyperbolic parallelism [u; v; l; n] on I�� is skew-torsion with tor-
sion H = �g� if and only if its globally hyperbolic reduction (�t; at; et) satis�es the following
system of evolution equations on �:

@tat = d��t(e
t
u)

��1t @te
t
u +�t(e

t
u) =

1
2 �ht (�?t ^ etu) + ��1t d��t(e

t
l)e

t
l + ��1t d��t(e

t
n)e

t
n

��1t @te
t
l +�t(e

t
l) =

1
2 �ht (�?t ^ etl)� ��1t d��t(e

t
l)e

t
u (175)

��1t @te
t
n +�t(e

t
n) =

1
2 �ht (�?t ^ etn)� ��1t d��t(e

t
n)e

t
u

together with the following time-dependent constraint equations:

d�at ^ etu = ��t(e
t
u) ^ etu + 1

2e
t
u ^ �ht(�?t ^ etu)

d�e
t
u = �t(e

t
u) ^ etu + �ht(�?t � �otetu)� 1

2e
t
u ^ �ht(�?t ^ etu)

d�e
t
l = �t(e

t
l) ^ etu + ( 12�

?
t (e

t
u)� �ot ) �ht etl (176)

d�e
t
n = �t(e

t
n) ^ etu + ( 12�

?
t (e

t
u)� �ot ) �ht etn

where �t is the second fundamental form of (�; ht) and � = �ot tt + �?t .
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Remark 2.9. The �rst equation in (176) can be equivalently written as follows:

e�atd�(e
atetu) = �ht(�?t � �otetu)

which will be useful in the following.

The previous reformulation of the evolution problem posed by a globally hyperbolic skew-torsion
spinor is particularly convenient to de�ne the associated initial data and constraint equations.
Still, it can be re�ned as to eliminate the family of functions at in terms of a cohomological
condition in de Rahm cohomology.

Proposition 2.10. A globally hyperbolic parallelism [u; v; l; n] on I � � is skew-torsion with
torsion H = �g� if and only if its globally hyperbolic reduction (�t; at; et) satis�es the follow-
ing system of evolution equations on �:

��1t @te
t
u +�t(e

t
u) =

1
2 �ht (�?t ^ etu) + ��1t d��t(e

t
l)e

t
l + ��1t d��t(e

t
n)e

t
n

��1t @te
t
l +�t(e

t
l) =

1
2 �ht (�?t ^ etl)� ��1t d��t(e

t
l)e

t
u (177)

��1t @te
t
n +�t(e

t
n) =

1
2 �ht (�?t ^ etn)� ��1t d��t(e

t
n)e

t
u

together with the following time-dependent constraint equations:

d�e
t
u = �t(e

t
u) ^ etu + �ht(�?t � �otetu)� 1

2e
t
u ^ �ht(�?t ^ etu)

d�e
t
l = �t(e

t
l) ^ etu + ( 12�

?
t (e

t
u)� �ot ) �ht etl (178)

d�e
t
n = �t(e

t
n) ^ etu + ( 12�

?
t (e

t
u)� �ot ) �ht etn

and the following conditions:

0 = [�t(e
t
u)+

1

2
�ht (�?t ^ etu)] 2 H1(�;R) ; d�(d��t(e

t
u)) = @t(�t(e

t
u)+

1

2
�ht (�?t ^ etu)) (179)

where �t is the second fundamental form of (�; ht) and � = �ot tt + �?t .

Remark 2.11. The �rst equation in (178) can be equivalently written as follows:

d�e
t
u = �t(e

t
u) ^ etu + (�?t (e

t
u)� �ot ) �ht etu +

1

2
(�?t (e

t
l) �ht etl + �?t (e

t
n) �ht etn)

which is sometimes useful in computations.

Proof. Let (�t; at; et) be a solution to the di�erential system (175) and (176). Then, (�t; et)
automatically satis�es equations (177) and (178) and thus we only need to deal with the conditions
contained in Equation (179). By the �rst equation in (174) the �rst equation in (179) follows.
Taking the exterior derivative of the �rst equation in (174) and combining the result with the �rst
equation in (175) we obtain the second equation in (179). For the converse, suppose that (�t; et)
satis�es equations (177), (178) and (179). We only need to prove that the �rst equation (175)
and the �rst equation in (176) both hold. By the �rst equation in (179), there exist a family of
functions �at such that:

d��at +�t(e
t
u) +

1

2
�ht (�?t ^ etu) = 0

Wedging this equation with etu yields the �rst equation in (176). On the other hand, taking its
time derivative and using the second equation in (179) we obtain:

d�@t�at = d�(d��t(e
t
u))

and thus:
@t�at = d��t(e

t
u) + ct

where ct is a family of constants on �. De�ning at = �at �
R
ct dt we recover the �rst equations in

(175) and (176) and thus we conclude. □
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Therefore, we can consider the evolution problem de�ned by a globally hyperbolic isotropic par-
allelism as being given either by the di�erential system (171) and (172), the di�erential system
(175) and (176) or the di�erential system given by (177), (178) and (179). In the �rst two cases
the data that is being evolved are pairs of the form (at; et) for �xed data (�t; �ot ; �

?
t ), whereas in

the latter case are families (et) again for �xed data (�t; �ot ; �
?
t ). The evolution problem as given

in (171) and (172) or (175) and (176) is more convenient from the analytic point of view, whereas
the equivalent evolution problem given in (177), (178) and (179) is arguably more convenient from
a geometric point of view, especially to study the corresponding constraint equations.

Definition 2.12. Given data (�t; �
o
t ; �

?
t ), the di�erential system (171) and (172), equivalently,

the di�erential system (175) and (176), for pairs (at; et) is the skew-torsion Cauchy �ow.

We will also refer to the evolution problem de�ned by equations (177), (178) and (179) for (et)
as the skew-torsion Cauchy �ow. In Proposition 2.4 we have expressed the evolution problem
associated to skew-torsion globally hyperbolic parallelisms in terms of the existence of families of
one-forms (�?t ; �

?
t ) for which the evolution and constraint equations respectively given in (171)

and (172) are satis�ed. This family of one-forms can be considered as auxiliary, in the sense that
they can be completely eliminated from (171) and (172), as the following result shows, without
involving the second fundamental form �t as we did in Corollary 2.8 and Proposition 2.10.

Proposition 2.13. A globally hyperbolic parallelism [u; v; l; n] on I � � is skew-torsion with
torsion H = �g� if and only if its globally hyperbolic reduction (�t; at; et) satis�es the follow-
ing evolution equations on �:

��1t @te
t
u = �ht(��t ^ etu) + d�at + ��1t (d��t(e

t
l)e

t
l + d��t(e

t
n)e

t
n) ; d�e

t
u = etu ^ d�at + �ht ��t

d�e
t
l = etu ^ (��1t @te

t
l � ��t(e

t
u)e

t
n) ; d�e

t
n = etu ^ (��1t @te

t
n + ��t(e

t
u)e

t
l)

@tat = (d��t)(e
t
u) ; ��1t (etl ^ @tetl + etn ^ @tetn) = d�at ^ etu + �?t (e

t
u) �ht etu � ��1t d��t ^ etu

where we have set ��t := �?t � �otetu for every t 2 I.
Proof. A globally hyperbolic parallelism [u; v; l; n] on I � � is skew-torsion with torsion

H = �g� if and only if its globally hyperbolic reduction (�t; at; et) satis�es (171) and (172).
Isolating for �?t and �?t in (172), we obtain:

eat�?t = �ht(�?t ^ etl)� ��1t @te
t
l � ��1t d��t(e

t
l)e

t
u

eat�?t = �ht(�?t ^ etn)� ��1t @te
t
n � ��1t d��t(e

t
n)e

t
u

which solve the third and fourth equations in (171). This implies:

eatetl ^ �?t + eatetn ^ �?t = �?t (e
t
u) �ht etu + �ht�?t � ��1t (etl ^ @tetl + etn ^ @tetn)� ��1t d��t ^ etu

which plugged into the remaining equations in (171) and (172) together with the explicit expression
for �?t and �?t above, gives the equations in the statement of the proposition. □

As a corollary of the proof of the previous proposition we obtain the following explicit expressions
for the one forms �; � 2 
1(I ��) relative to which a globally hyperbolic parallelism is isotropic.

Corollary 2.14. Let [u; v; l; n] be a skew-torsion globally hyperbolic parallelism with hyper-
bolic reduction (�t; at; et) relative to �; � 2 
1(I � �). Then:

�ot = �e�at��1t d�t(e
t
l) ; �?t = e�at(�ht(�?t ^ etl)� ��1t @te

t
l � ��1t d��t(e

t
l)e

t
u)

�ot = �e�at��1t d�t(e
t
n) ; �?t = e�at(�ht(�?t ^ etn)� ��1t @te

t
n � ��1t d��t(e

t
n)e

t
u)

where � = �ot tt + �?t and � = �ot tt + �?t .

On a tubular neighborhood around the Cauchy hypersurface � we can choose coordinates such
that �t = 1, which is a condition that can be assumed without loss of generality to study the
skew-torsion Cauchy �ow locally in time. With this assumption the previous corollary gives:

� = �?t = e�at(�ht(�?t ^ etl)� @tetl) ; � = �?t = e�at(�ht(�?t ^ etn)� @tetn)
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Similarly, the skew-torsion Cauchy �ow reduces to the following evolution equations:

@te
t
u = �ht(�?t ^ etu) + d�a ; @te

t
l = �ht(�?t ^ etl)� ea�?t ; @te

t
n = �ht(�?t ^ etn)� ea�?t (180)

together with the following time-dependent constraints:

d�at ^ etu = �ht�?t + eat�?t ^ etl + eat�?t ^ etn
d�e

t
u = �eat�?t ^ etl � eat�?t ^ etn � �ot �ht etu

d�e
t
l = eat�?t ^ etu � �ot �ht etl (181)

d�e
t
n = eat�?t ^ etu � �ot �ht etn

or, equivalently, to the following evolution equations:

@te
t
a +�t(e

t
a) =

1

2
�ht (�?t ^ eta) ; a = u; l; n (182)

together with the following time-dependent constraints:

d�e
t
u = �t(e

t
u) ^ etu + �ht(�?t � �otetu)� etu ^ 1

2 �ht (�?t ^ etu)
d�e

t
l = �t(e

t
l) ^ etu + ( 12�

?
t (e

t
u)� �ot ) �ht etl (183)

d�e
t
n = �t(e

t
n) ^ etu + ( 12�

?
t (e

t
u)� �ot ) �ht etn

0 = [�t(e
t
u) +

1
2 �ht (�?t ^ etu)] 2 H1(�;R) ; @t(�t(e

t
u) +

1
2 �ht (�?t ^ etu)) = 0

We will refer to this evolution �ow as the normal skew-torsion Cauchy �ow. As expected, the
constraint equations are not a�ected by the choice �t = 1 since they do not depend on the latter.

Theorem 2.15. An oriented three-manifold � admits an embedding as a Cauchy hypersurface
into a skew-torsion �at globally hyperbolic Lorentzian four-manifold equipped with a skew-
torsion �at parallel spinor if and ony if � admits a normal skew-torsion Cauchy �ow et
with torsion (�ot ; �

?
t ) satisfying:

�l = �ht(�?t ^ etl)� @tetl ; �n = �ht(�?t ^ etn)� @tetn
for a pair of closed one-forms �l; �n 2 
1(�).

Proof. Follows from Equation (2) together with Corollary 2.3. □

Interestingly enough, the skew-torsion �at condition on the globally hyperbolic metric g, which
is a second order partial di�erential equation, is guaranteed in the previous theorem by a �rst-
order time condition in terms of representatives of the rank-one cohomological invariants of the
underlying skew-torsion parallel spinor.

Corollary 2.16. Let (M; g) be a skew-torsion globally hyperbolic Lorentzian four-manifold
whose rank-one invariants do not admit any time-independent representative on a normal
tubular neighborhood of � �M . Then (M; g) is not skew-torsion �at.

We end this section with a brief discussion of the constraint equations of the skew-torsion Cauchy
�ow. Assume momentarily that � is compact to avoid any analytic issues in the discussion below.
Due to the fact that the skew-torsion Cauchy �ow evolves pairs of the form (at; et), the associated
Cauchy problem can be expected to require prescribing both (at; et) and its derivative at t = 0.
However, since the time-dependent constraint equations (176) do not contain any term involving
@tat, we do not need to specify its value at t = 0. Instead, it is prescribed by @tetu and the given
data �t at t = 0 through the expression:

@tatjt=0 = d��0(e
0
u)

which corresponds to the evaluation of the �rst equation in (175) at t = 0. Therefore, we only
need to worry about the time derivative of et at t = 0, which we denote by e. Let F (�) be the
bundle of oriented coframes on M , which is a trivializable principal bundle over M with structure
group given by the identity component Glo(3;R) of the general linear group Gl(3;R) in three
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dimensions. We denote by �(F (�)) the space of sections of F (�). Families (et) de�ne curves
(et) : I ! �(F (�)) which are smooth in the sense that they are de�ned by smooth sections of the
pull-back bundle e 2 �(pr�F (�)), where pr: I � � ! � is the canonical projection on �. Every
element e 2 �(F (�)) determines a canonical trivialization:

F (�) = ��Glo(3;R)

which extends to a natural identi�cation at the level of sections:

�(F (�)) = C1(�;Glo(3;R))

where C1(�;Glo(3;R)) denotes the space of smooth maps from � to Glo(3;R). In particular, if
e 2 �(F (�)) is used to determine the previous identi�cations, then it is mapped to the constant
map from � to the identity in Glo(3;R). If (et) : I ! �(F (�)) is a smooth curve such that e := e0,
then the tangent space of �(F (�)) at e can be identi�ed as follows:

Te�(F (�)) = C1(�; g(3;R)) = �(T ��
 R3)

where g(3;R) denotes the Lie algebra of Gl(3;R). Hence, the tangent space of �(F (�)) at a given
point is canonically identi�ed with triples of one-forms on M , which we will denote generically
by v 2 �(T �M 
 R3). The components of such a triplet of one-forms will be denoted by v =
(vu; vl; vn). Alternatively, if we consider (et) : I ! �(F (�)) as a section of pr�F (�), then @tet =
L@tet and its restriction to t = 0 clearly de�ne a triplet of one-forms on M given by the time Lie
derivatives of each of one-forms that conform the coframe e on I. Given an element (e; v) 2 TF (�),
we obtain a naturally symmetric two-form on � given by:

�ev := vu � eu + vl � el + vn � en

In this way we obtain a natural map �: TF (M)! �(T ��� T ��) given by (e; v) 7! �ev. Fixing
e 2 �(F (M)), we obtain by restriction:

�e : Te�(F (M))! �(T ��� T ��) ; v 7! �ev

Hence, and by the previous discussion, evaluating at t = 0 2 I the time-dependent constraints
given in (176) we obtain the constraint equations of the skew-torsion spinor Cauchy �ow, which
are explicitly given by:

d�eu = �ev(eu) ^ eu + �h(�? � �oeu) + 1
2 �h (�? ^ eu) ^ eu

d�ei = �ev(ei) ^ eu + ( 12�
?
t (eu)� �o) �h ei ; i = l; n (184)

0 = [�ev(eu) +
1
2 �h (�? ^ eu)] 2 H1(�;R)

for elements (e; v) 2 TF (�). Hence, TF (�) is the con�guration space for the initial data of the
skew-torsion spinor Cauchy �ow.

3. Left-invariant parallel spinor �ows

The general theory of di�erential spinors and globally hyperbolic istropic parallelisms that
we have developed in previous sections is especially well-adapted to study spinors parallel under
very general connections. However, it already o�ers a clear and transparent framework in the
simplest case of spinors parallel under the Levi-Civita connection on a Lorentzian four-manifold.
The study of such irreducible isotropic parallel spinors is classical in the literature [68]. In partic-
ular, for parallel isotropic spinors on globally hyperbolic Lorentzian manifolds, the seminal work
of Baum, Leistner and Lischewski [16, 162, 170] proved the well-posedness of the corresponding
Cauchy problem via a careful analysis of suitable hyperbolic evolution equations given in terms
of the Ricci tensor and other geometric objects. Despite these fundamental results, producing
explicit parallel spinor �ows, namely the evolution �ows determined by isotropic parallel spinors
on globally hyperbolic Lorentzian four-manifolds, is a di�cult task. The framework of globally hy-
perbolic isotropic parallelisms that we have developed in the previous subsections allows to attack
this problem directly. We will do so in this section in the left-invariant case, classifying as a result
all left-invariant parallel spinor �ows on a Cauchy hypersurface given by a �xed simply connected
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three-dimensional manifold. The simply-connected condition is not arbitrary since Proposition
2.10, which characterizes parallel spinor �ows by taking �?t = �ot = 0, involves a cohomological
condition that needs to be preserved when taking discrete quotients.

3.1. Left-invariant parallel Cauchy pairs. Let � = G be a simply connected three-dimensional
Lie group. Denote by Conf(G) the set of pairs (e;�) consisting of a coframe e and a symmetric
(2; 0) tensor � on G. A pair (e;�) 2 Conf(G) is said to be left-invariant if both e and � are
left-invariant. We will refer to pairs (e;�) satisfying the constraint equations (183) with vanishing
torsion as left-invariant Cauchy pairs. Given a left-invariant pair (e;�) 2 Conf(G) we write:

� = �ab ea 
 eb ; a; b = u; l; n ;

where summation over repeated indices is understood. For further reference we introduce the
following notation:

� :=
q
�2
ul +�2

un ; � :=

�
�ll �ln

�ln �nn

�
; T := Tr(�) ; � := Det(�) = �ll�nn ��2

ln :

These will play an important role in the classi�cation of left-invariant Cauchy pairs, which was
completed in [176] and which we proceed to summarize.

Theorem 3.1. [176, Theorem 4.9] A connected and simply-connected Lie group G admits
left-invariant parallel Cauchy pairs (respectively constrained Ricci �at parallel Cauchy pairs)
if and only if G is isomorphic to one of the Lie groups listed in the table below. If that is
the case, a left-invariant shape operator � belongs to a Cauchy pair (e;�) for certain left-
invariant coframe e if and only if � is of the form listed below when written in terms of
e = (eu; el; en):

G Cauchy parallel pair Constrained Ricci �at

R3 � = �uueu 
 eu � = �uueu 
 eu

E(1; 1)
� = �uueu 
 eu +�ijei 
 ej

Not allowed
i; j = l; n; �ll = ��nn

�2 � R

� = (�ulel +�unen)� eu
Not allowed

�2
ul +�2

un 6= 0

� = �uueu 
 eu +�ijei 
 ej � = Teu
eu+�ijei
ej
i; j = l; n;

T 6= 0 ;� = 0

i; j = l; n;

T 6= 0 ;� = 0

� = �Teu 
 eu +�uleu � el +�llel 
 el ; �ul;�ll 6= 0 Not allowed

� = �Teu
eu+�uneu�en+�nnen
en ; �un;�nn 6= 0 Not allowed

� = �Teu 
 eu +�uleu � el +�uneu � en +�ijei 
 ej
Not allowedi; j = l; n; �ln�ul�un 6= 0 ;

�nn =
�un

�ul
�ln ;�ll =

�ul

�un
�ln

�3;�
� = �uueu 
 eu +�ijei 
 ej � =

�
T 2�2�

T

�
eu 
 eu +

�ijei 
 ej
i; j = l; n; T;� 6= 0 i; j = l; n; T;� 6= 0

Regarding the case G = �3;�:
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� If �ln 6= 0, then

� =
T � sign(T )

p
T 2 � 4�

T + sign(T )
p
T 2 � 4�

:

� If �ln = 0 and j�llj � j�nnj, then
� =

�nn

�ll
:

� If �ln = 0 and j�nnj � j�llj, then
� =

�ll

�nn
:

The previous theorem will be used extensively in the next section. We have the following corollary.

Corollary 3.2. Let G be a connected and simply connected Lie group equipped with a left-
invariant Cauchy pair. Then the isomorphism type of G is prescribed by T , � and � as
follows:

� If T = � = � = 0, then G ' R3.

� If T = � = 0 but � 6= 0, then G ' E(1; 1).

� If � = 0 but �2 + T 2 6= 0, then G ' �2 � R.
� If T;� 6= 0 and � = 0, then G ' �3;�.

Observe that the case � 6= 0 and � 6= 0 is not allowed.

We are using standard notation for the groups G as explained for example in [88, Appendix A].

3.2. Left-invariant parallel spinor �ows. Let G be a simply connected three-dimensional
Lie-group. We say that a parallel spinor �ow

�
�t; e

t
	
t2I de�ned on G is left-invariant if both

�t and et are left-invariant for every t 2 I. The latter condition immediately implies that het is
a left-invariant Riemannian metric and �t is constant for every t 2 I. Let

�
et
	
t2I be a family

of left-invariant coframes on G. Any square matrix A 2 Mat(3;R) acts naturally on
�
et
	
t2I as

follows:

A(et) :=
0
@
P

bAube
t
bP

bAlbe
t
bP

bAnbe
t
b

1
A

where we label the entries Aab of A by the indices a; b = u; l; n. As a direct consequence of
Proposition 2.10 we have the following result.

Proposition 3.3. A simply connected three-dimensional Lie group G admits a left-invariant
parallel spinor �ow if and only if there exists a smooth family of non-zero constants f�tgt2I
and a family

�
et
	
t2I of left-invariant coframes on G satisfying the following di�erential

system:

@te
t + �t�t(e

t) = 0 ; det = �t(e
t) ^ etu ; @t(�t(e

t
u)) = 0 ; d�t(e

t
u) = 0 ; (185)

to which we will refer as the left-invariant (real) parallel spinor �ow equations.

We will refer to solutions
�
�t; e

t
	
t2I of the left-invariant parallel spinor �ow equations as left-

invariant parallel spinor �ows. Given a parallel spinor �ow
�
�t; e

t
	
t2I , we write:

�t =
X
a;b

�t
abe

t
a 
 etn ; a; b = u; l; n ;

in terms of uniquely de�ned functions (�t
ab) on I.
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Lemma 3.4. Let f�t; etgt2I be a left-invariant parallel spinor �ow. The following equations
hold:

@t�
t
uu = �t((�

t
uu)

2 + (�t
ul)

2 + (�t
un)

2) ; @t�
t
ul = @t�

t
un = 0 ; @t�

t
ll = �t�

t
ll�

t
uu � �t(�t

ul)
2

@t�
t
ln = �t�

t
ln�

t
uu � �t�t

un�
t
ul ; @t�

t
nn = �t�

t
nn�

t
uu � �t(�t

un)
2 ;

�t
ln�

t
ul = �t

ll�
t
un ; �t

ln�
t
un = �t

nn�
t
ul ;

�t
ll�

t
ul +�t

ln�
t
un +�t

ul�
t
uu = 0 ; �t

ln�
t
ul +�t

nn�
t
un +�t

un�
t
uu = 0 :

In particular, �t
ul = �ul and �t

un = �un for some constants �ul;�un 2 R.

Proof. A direct computation shows that equation @t(�t(e
t
u)) = 0 is equivalent to:

@t�
t
ub = �t�

t
ua�

t
ab :

On the other hand, equation d�t(e
t
u) = 0 is equivalent to:

�t
ua�

t
al = 0 ; �t

ua�
t
an = 0 :

The previous equations can be combined into the following equivalent conditions:

@t�
t
uu = �t((�

t
uu)

2 + (�t
ul)

2 + (�t
un)

2) ; @t�
t
ul = @t�

t
un = 0 ;

�t
ll�

t
ul +�t

ln�
t
un +�t

ul�
t
uu = 0 ; �t

ln�
t
ul +�t

nn�
t
un +�t

un�
t
uu = 0 ;

which recover �ve of the equations in the statement. Similarly, equation d(�t(e
t) ^ etu) = 0 is

equivalent to:
�t
ln�

t
ul = �t

ll�
t
un ; �t

ln�
t
un = �t

nn�
t
ul ;

which yields the third line of equations in the statement. We take now the exterior derivative of
the �rst equation in (185) and combine the result with the second equation in (185):

d(@te
t
a + �t�t(e

t
a)) = @t(�

t
abe

t
b ^ etu) + �t�

t
ab�

t
bce

t
c ^ etu = (@t�

t
ab�uc � �t�t

ab�
t
uc)e

t
b ^ etc = 0 :

Expanding the previous equation we obtain the remaining three equations in the statement and
we conclude. □

Remark 3.5. We will refer to the equations of Lemma 3.4 as the integrability conditions of the
left-invariant parallel spinor �ow.

The following observation is crucial in order to decouple the left-invariant parallel spinor �ow
equations.

Lemma 3.6. A pair
�
�t; e

t
	
t2I is a left-invariant parallel spinor �ow if and only if there

exists a family of left-invariant two-tensors fKtgt2I such that the following equations are
satis�ed:

@te
t + �tKt(e

t) = 0 ; det = Kt(e
t) ^ etu ; @t(Kt(e

t
u)) = 0 ; d(Kt(e

t
u)) = 0 :

Proof. The only if direction follows immediately from the de�nition of left-invariant parallel
Cauchy pair by taking fKtgt2I = f�tgt2I . For the if direction we simply compute:

�t = � 1

2�t
@thet = � 1

2�t
((@te

t
a)
 eta + eta 
 (@te

t
a)) = Kt ;

hence equations (185) are satis�ed and
�
�t; e

t
	
t2I is a left-invariant parallel spinor �ow. □

By the previous Lemma we promote the components of f�tgt2I with respect to the basis
�
et
	
t2I

to be independent variables of the left-invariant parallel spinor �ow equations (185). Within
this interpretation, the variables of left-invariant parallel spinor �ow equations consist of triples�
�t; e

t;�t
ab

	
t2I , where

�
�t
ab

	
t2I is a family of symmetric matrices. On the other hand, the inte-

grability conditions of Lemma 3.4 are interpreted as a system of equations for a pair
�
�t;�

t
ab

	
t2I .
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In particular, the �rst equation in (185) is linear in the variable et and can be conveniently rewrit-
ten as follows. For any family of coframes

�
et
	
t2I , set e = e0 and consider the unique smooth

path:
Ut : I ! Gl+(3;R) ; t 7! Ut ;

such that et = Ut(e), where Gl+(3;R) denotes the identity component in the general linear group
Gl(3;R). More explicitly:

eta =
X
b

Ut
abeb ; a; b = u; l; n ;

where Ut
ab 2 C1(G) are the components of Ut. Plugging et = Ut(e) in the �rst equation in (185)

we obtain the following equivalent equation:

@tU
t
ac + �t�

t
abU

t
bc = 0 ; a; b; c = u; l; n ; (186)

with initial condition U0 = Id.

A necessary condition for a solution
�
�t;�

t
ab

	
t2I of the integrability conditions to arise from an

honest left-invariant parallel spinor pair is the existence of a left-invariant coframe e on � such that
(e;�) is a Cauchy pair, where � = �0

abea
 eb. Consequently we de�ne the set I(�) of admissible
solutions to the integrability equations as the set of pairs (

�
�t;�

t
ab

	
t2I ; e) such that

�
�t;�

t
ab

	
t2I

is a solution to the integrability equations and (e;�) is a left-invariant parallel Cauchy pair.

Proposition 3.7. There exists a natural bijection ' : I(�)! P(�) which maps every pair:

(
�
�t;�

t
ab

	
t2I ; e) 2 I(�) ;

to the pair
�
�t; e

t = Ut(e)
	
t2I 2 P(�), where �Ut

	
t2I is the unique solution of (186) with

initial condition U0 = Id.

Remark 3.8. The inverse of ' maps every left-invariant parallel spinor �ow
�
�t; e

t
	
t2I to the

pair (
�
�t;�

t
ab

	
; e), where �t

ab are the components of the shape operator associated to
�
�t; e

t
	
t2I

in the basis
�
et
	
t2I and e = e0.

Proof. Let (
�
�t;�

t
ab

	
; e) 2 I(�) and let

�
Ut
	
t2I be the solution of (186) with initial condi-

tion U0 = Id, which exists and is unique on I by standard ODE theory [57, Theorem 5.2]. We need
to prove that

�
�t; e

t = Ut(e)
	
t2I is a left-invariant parallel spinor �ow. Since

�
Ut
	
t2I satis�es

(186) for the given
�
�t;�

t
ab

	
, it follows that �t = �t

abe
t
a 
 etb is the shape operator associated to�

�t; e
t
	
t2I whence the �rst equation in (185) is satis�ed. On the other hand, the third and fourth

equations in (185) are immediately implied by the integrability conditions satis�ed by
�
�t;�

t
ab

	
.

Regarding the second equation in (185), we observe that the integrability conditions contain the
equation d(�t(e

t) ^ etu) = 0 and thus:

det = �t(et) ^ etu +wt ; (187)

where fwtgt2I is a family of triplets of closed two-forms on �. Taking the time derivative of the
previous equations, plugging the exterior derivative of the �rst equation in (185) and using again
the integrability conditions, we obtain that wt satis�es the following di�erential equation:

@tw
t
a = ��t�t

adw
t
d ; (188)

with initial condition w0 = w. Restricting equation (187) to t = 0 it follows that w satis�es:

de = �(e) ^ eu +w ;

Since by assumption (e;�) is left-invariant Cauchy pair, the previous equation is satis�ed if and
only if w = 0 whence wt = 0 by uniqueness of solutions of the linear di�erential equation (188).
Therefore, the second equation in (185) follows and ' is well-de�ned. The fact that ' is in addition
a bijection follows directly by Remark 3.8 and hence we conclude. □
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Corollary 3.9. A pair
�
�t; e

t
	
t2I is a parallel spinor �ow if and only if (

�
�t;�

t
ab

	
; e) is an

admissible solution to the integrability equations.

Therefore, solving the left-invariant parallel spinor �ow is equivalent to solving the integrability
conditions with initial condition �ab being part of a left-invariant parallel Cauchy pair (e;�). We
remark that f�tgt2I is of no relevance locally since it can be eliminated through a reparametriza-
tion of time after possibly shrinking I. However, regarding the long time existence of the �ow as
well as for applications to the construction of four-dimensional Lorentzian metrics it is convenient
to keep track of I, whence we maintain f�tgt2I in the equations.

For further reference we de�ne a quasi-diagonal left-invariant parallel spinor �ow as one for
which � =

p
�2
ul +�2

un = 0. Since the function t! R t
0
��d� is going to be a common occurrence

in the following, we de�ne:

Bt :=

Z t

0

��d� :

We distinguish now between the cases � = 0 and � 6= 0.

Lemma 3.10. Let f�t; etgt2I be a quasi-diagonal left-invariant parallel spinor �ow. Then, the
only non-zero components of �t are:

�t
uu =

�uu

1��uuBt
; �t

ll =
�ll

1��uuBt
; �t

ln =
�ln

1��uuBt
; �t

nn =
�nn

1��uuBt
;

where �t is the shape operator associated to f�t; etgt2I and � = �0. Furthermore, every
such �t satis�es the integrability equations with quasi-diagonal initial data.

Proof. Setting �ul = �un = 0 in the integrability conditions we obtain the following equa-
tions:

@t�
t
uu = �t(�

t
uu)

2 ; @t�
t
ll = �t�

t
ll�

t
uu ; @t�

t
ln = �t�

t
ln�

t
uu ; @t�

t
nn = �t�

t
nn�

t
uu :

whose general solution is given in the statement of the lemma. □

Remark 3.11. Let �uu 6= 0 and de�ne t0 to be the real number (in case it exists) with the
smallest absolute value such that: Z t0

0

��d� = ��1uu :

Then the maximal interval on which �t is de�ned is I = (�1; t0) if �uu > 0 and I = (t0;1) if
�uu < 0. This is also the maximal interval on which the left-invariant parallel spinor �ow in the
quasi-diagonal case can be de�ned. If such t0 does not exist, then I = R.

We consider now the non-quasi-diagonal case � 6= 0. Given a pair
�
�t;�

t
ab

	
t2I , we introduce for

convenience the following function:

I 3 t 7! yt = �Bt +Arctan

�
�uu

�

�
;

where �ab are the components of � in the basis e.

Lemma 3.12. A pair
�
�t;�

t
ab

	
t2I satis�es the integrability equations with non-quasi-diagonal

initial value �ab if and only if:

�t
uu = �Tan [yt] ; �t

ul = �ul ; �t
un = �un ; �t

ll = cll Sec [yt]� �2
ul

� Tan [yt] ;

�t
nn = cnn Sec [yt]� �2

un

� Tan [yt] ; �t
ln = cln Sec [yt]� �ul�un

� Tan [yt] ;

where cll; cnn; cln 2 R are real constants given by:

cll =
�ll�

2 +�2
ul�uu

�
p
�2 +�2

uu

; cnn =
�nn�

2 +�2
un�uu

�
p
�2 +�2

uu

; cln =
�ln�

2 +�ul�un�uu

�
p
�2 +�2

uu

;
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such that the following algebraic equations are satis�ed:

�ln�ul = �ll�un ; �nn�ul = �ln�un ;

�ln�un +�ul(�ll +�uu) = 0 ; �ln�ul +�un(�nn +�uu) = 0 ; (189)

where �ab, a; b = u; l; n, denote the entries of �t
ab at t = 0.

Remark 3.13. Note that equations (189) form an algebraic system for the entries of the initial
condition �, therefore restricting the allowed initial data that can be used to solve the integrability
conditions. This is a manifestation of the fact that the initial data of the parallel spinor �ow is
constrained by the parallel Cauchy equations. The latter were solved in the left-invariant case in
[176], as summarized in Theorem 3.1, and its solutions can be easily veri�ed to satisfy equations
(189) automatically.

Proof. By Lemma 3.4 we have @t�t
ul = @t�

t
un = 0 whence �t

ul = �ul;�
t
un = �un for some

real constants �ul;�un 2 R. Plugging these constants into the �rst equation of Lemma 3.4 it
becomes immediately integrable with solution:

�t
uu = �Tan [�(Bt + k1)] ;

for a certain constant k1 2 R. Imposing �0
uu = �uu we obtain:

k1 =
1

�
(Arctan

�
�uu

�

�
+ n�) ; n 2 Z ;

and the expression for �t
uu follows. Plugging now �t

uu = �Tan [yt] in the remaining di�erential
equations of Lemma 3.4 they can be directly integrated, yielding the expressions in the statement
after imposing �0

ab = �ab. Plugging the explicit expressions for �t
ab in the algebraic equations of

Lemma 3.4, these can be equivalently reformulated as the algebraic system (189) for �t
ab at t = 0

and we conclude. □

Remark 3.14. Let t� < 0 denote the largest value for which �Bt� +Arctan
�
�uu

�

�
= ��

2 and let
t+ > 0 denote the smallest value for which �Bt+ + Arctan

�
�uu

�

�
= �

2 (if t�, t+ or both do not
exist, we take by convention t� = �1). Then, the maximal interval of de�nition on which �t is
de�ned is I = (t�; t+).

3.3. Classi�cation of left-invariant spinor �ows. Proposition 3.4 states that �t
ul = �ul and

�t
un = �un for constants �ul;�un 2 R. Therefore, we proceed to classify left-invariant parallel

spinor �ows in terms of the possible values of �ul and �un. We begin with the classi�cation of
quasi-diagonal left-invariant parallel spinor �ows, de�ned by the condition �ul = �un = 0, that
is, � = 0.

Proposition 3.15. Let f�t; etgt2I be a quasi-diagonal left-invariant parallel spinor �ow with
initial data (e;�) satisfying �uu 6= 0. De�ne Q to be the orthogonal two by two matrix
diagonalizing �=�uu as follows:

�

�uu
= Q

�
�+ 0
0 ��

�
Q�

with eigenvalues �+ and �� and where Q� denotes the matrix transpose of Q. Then:

etu = (1��uuBt)eu ;

�
etl
etn

�
= Q

�
[1��uuBt]

�+ 0
0 [1��uuBt]

��

�
Q�
�
el
en

�

Conversely, for every family of functions f�tgt2I the previous expression de�nes a parallel
spinor �ow on G. The case �uu = 0 is recovered by taking the formal limit �uu ! 0.

Proof. De�ne the function I 3 t! xt := Log [1��uuBt]. By Proposition 3.7 and Corollary
3.9 it su�ces to use the explicit expression for �t obtained in Lemma 3.10 to solve Equation (186)
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with initial condition U0 = Id on a simply connected Lie group admitting quasi-diagonal parallel
Cauchy pairs. Plugging the explicit expression of �t in (186) we obtain:0
@@tUt

uu @tU
t
ul @tU

t
un

@tU
t
lu @tU

t
ll @tU

t
ln

@tU
t
nu @tU

t
nl @tU

t
nn

1
A =

@txt
�uu

0
@ Ut

uu�uu Ut
ul�uu Ut

un�uu

Ut
lu�ll +Ut

nu�ln Ut
ll�ll +Ut

nl�ln Ut
ln�ll +Ut

nn�ln

Ut
lu�ln +Ut

nu�nn Ut
ll�ln +Ut

nl�nn Ut
ln�ln +Ut

nn�nn

1
A

(190)

in terms of the initial data �ab. The previous di�erential system can be equivalently written as
follows:

@tU
t
uc = @txtU

t
uc ;

�
@tU

t
lc

@tU
t
nc

�
=
@txt
�uu

�
�ll �ln

�ln �nn

��
Ut
lc

Ut
nc

�
; c = u; l; n :

The general solution to the equations for Ut
uc with initial condition U0 = Id is given by:

Ut
uu = 1��uuBt ; Ut

ul = Ut
un = 0 :

Consider now the diagonalization of the constant matrix occurring in the di�erential equations
for Ut

ic:
1

�uu

�
�ll �ln

�ln �nn

�
= Q

�
�+ 0
0 ��

�
Q� ;

where Q is a two by two orthogonal matrix and Q� is its transpose. The eigenvalues are explicitly
given by:

�� =
T �pT 2 � 4�

2�uu
:

We obtain:

Q�
�
@tU

t
lc

@tU
t
nc

�
= @txt

�
�+ 0
0 ��

�
Q�
�
Ut
lc

Ut
nc

�
; c = u; l; n ;

whose general solution is given by:�
Ut
lc

Ut
nc

�
= Q

�
k+c e

�+xt

k�c e
��xt

�
= Q

�
k+c [1��uuBt]

�+

k�c [1��uuBt]
��

�
; c = u; l; n ;

for constants k+c ; k
�
c 2 R. Imposing the initial condition U0 = Id we obtain the following expres-

sion for k+c and k�c : �
k+c
k�c

�
= Q�

�
�lc
�nc

�
; c = u; l; n ;

whence: �
k+u
k�u

�
= 0 ;

�
k+l
k�l

�
= Q�

�
1
0

�
=

�
Q�ll
Q�nl

�
;

�
k+n
k�n

�
= Q�

�
0
1

�
=

�
Q�ln
Q�nn

�
:

We conclude that:�
Ut
ll Ut

ln

Ut
nl Ut

nn

�
= Q

�
e�+xt 0
0 e��xt

�
Q� = Q

�
[1��uuBt]

�+ 0
0 [1��uuBt]

��

�
Q�

and the statement is proven. The converse follows by construction upon use of Lemma 3.6 and
Proposition 3.7. It can be easily seen that the case �uu = 0 is obtained by taking the formal limit
�uu ! 0 and we conclude. □

Remark 3.16. The Ricci tensor of the family of Riemannian metrics fhetgt2I associated to a
left-invariant quasi-diagonal parallel spinor �ow

�
�t; e

t
	
t2I is given by:

Richet = �T t�t +
Ht

2
etu 
 etu ; (191)
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where T t = �t
ll + �t

nn. If Ht = 0 for every t 2 I, that is, if the parallel Cauchy pair de�ned by�
�t; e

t
	
t2I is constrained Ricci �at, then:

Richet =
T t

2�t
@thet ; (192)

which, after a reparametrization of the time coordinate can be brought into the form Riche� =
�2@�he� after possibly shrinking I. Hence, this gives a particular example of a left-invariant Ricci
�ow on G.

We consider now �ul�un = 0 but �2
ul+�2

un 6= 0. This case necessarily corresponds to G = �2�R.

Proposition 3.17. Let f�t; etgt2I be a left-invariant parallel spinor �ow with initial parallel
Cauchy pair (e;�) satisfying �ul�un = 0 and � 6= 0. Then:

� If �ul = 0 the following holds:

etu = (1��uuBt) eu ��unBt en ; etl = el ;

etn =
�
�uu

�un
� �

�un
(1��uuBt)Tan [yt]

�
eu + (1 + �BtTan [yt]) en :

� If �un = 0 the following holds:

etu = (1��uuBt) eu ��ulBt el ; etn = en ;

etl =
�
�uu

�ul
� �

�ul
(1��uuBt)Tan [yt]

�
eu + (1 + �BtTan [yt]) el :

Conversely, every such family f�t; etgt2I is a left-invariant parallel spinor �ow for every
f�tgt2I.

Proof. We prove the case �ul = 0 and �un 6= 0 since the case �un = 0 and �ul 6= 0 follows
similarly. Setting �ul = 0 and assuming �un 6= 0 in Lemma 3.12 we immediately obtain:

�t
uu = ��t

nn = �Tan [yt] ; �t
ll = �t

ln = 0 :

where we have also used that, in this case, �ln = �ll = 0 and �uu = ��nn as summarized in
Theorem 3.1. Hence:

�t = �un

0
@0 0 1
0 0 0
1 0 0

1
A+ �Tan [yt]

0
@1 0 0
0 0 0
0 0 �1

1
A ;

and Equation (186) reduces to:

@tU
t + �t�un

0
@Ut

nu Ut
nl Ut

nn

0 0 0
Ut
uu Ut

ul Ut
un

1
A+ ��tTan [yt]

0
@ Ut

uu Ut
ul Ut

un

0 0 0
�Ut

nu �Ut
nl �Ut

nn

1
A = 0 ;

or, equivalently:

@tU
t
uc + �t�Tan [yt] U

t
uc + �t�unU

t
nc = 0 ; @tU

t
lc = 0 ; @tU

t
nc � �t�Tan [yt] Unc + �t�unU

t
uc = 0 :

The general solution to this system with initial condition U0 = Id is given by:

Ut
uu = 1��uuBt ; Ut

un = ��unBt ; Ut
ul = Ut

lu = Ut
ln = Ut

nl = 0 ; Ut
ll = 1 ;

Ut
nn = 1 + �BtTan [yt] ; Ut

nu =
�uu

�un
� �

�un
(1��uuBt)Tan [yt] ;

which implies the statement. The converse follows by construction upon use of Lemma 3.6 and
Proposition 3.7. □

Remark 3.18. The Ricci tensor of the family of metrics fhetgt2I associated to a left-invariant
parallel spinor with if �ul = 0 but �un 6= 0 reads:

Richet = ��t ��t =
Ht

4
(het � etn 
 etn) :
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Recall thatrhet etn = 0 and thus
�
het ; e

t
n

	
t2I de�nes a family of � -Einstein cosymplectic structures

[48, 191]. On the other hand, if �un = 0 but �ul 6= 0 the curvature of fhetgt2I is given by:

Richet = ��t ��t =
Ht

4
(het � etl 
 etl) :

whence fhet ; etlgt2I de�nes as well a family of � -Einstein cosymplectic structures on G.

Finally we consider �ul�un 6= 0, a case that again corresponds to G = �2 � R.

Proposition 3.19. Let f�t; etgt2I be a left-invariant parallel spinor �ow with initial parallel
Cauchy pair (e;�) satisfying �ul�un 6= 0. Then:

etu = eu + Bt(Teu ��ulel ��unen) ;

etl = ��ul

�

�
T
� + (1 + TBt) Tan[yt]

�
eu +

�
1 +

�2
ulBt
� Tan[yt]

�
el +

�ul�unBt
� Tan[yt] en ;

etn = ��un

�

�
T
� + (1 + TBt) Tan[yt]

�
eu +

�ul�unBt
� Tan[yt] el +

�
1 +

�2
unBt
� Tan[yt]

�
en ;

Conversely, every such family f�t; etgt2I is a left-invariant parallel spinor �ow for every
f�tgt2I.

Proof. Assuming �ul;�un 6= 0 in Lemma 3.12 we obtain:

�t
uu = �Tan [yt] ; �t

ll =
�ul

�un
�t
ln ; �t

nn =
�un

�ul
�t
ln ; �t

ln = � �ul�un

�2
ul +�2

un

�t
uu :

Note that �t
uu = ��t

ll ��t
nn. Hence:

�t =

0
@ 0 �ul �un

�ul 0 0
�un 0 0

1
A� Tan [yt]

�

0
@��2 0 0

0 �2
ul �ul�un

0 �ul�un �2
un

1
A ;

and Equation (186) reduces to:
1
�t
@tU

t
uc +Ut

lc�ul +Ut
nc�un +Ut

uc�
t
uu = 0 ;

1
�t
@tU

t
lc +�ul

�
Ut
uc � ��1(�ulU

t
lc +�unU

t
nc)Tan [yt]

�
= 0 ;

1
�t
@tU

t
nc +�un

�
Ut
uc � ��1(�ulU

t
lc +�unU

t
nc)Tan [yt]

�
= 0 :

The general solution to this system with initial condition U0 = Id is given by:

Ut
uu = 1��uuBt ; Ut

ul = ��ulBt ; Ut
un = ��unBt ;

Ut
lu =

�ul

�

�
�uu

� � (1��uuBt) Tan[yt]
�
; Ut

ll = 1 +
�2
ulBt
� Tan[yt] ; Ut

ln = �ul�unBt
� Tan[yt] ;

Ut
nu =

�un

�

�
�uu

� � (1��uuBt) Tan[yt]
�
; Ut

nl =
�ul�unBt

� Tan[yt] ; Ut
nn = 1 +

�2
unBt
� Tan[yt] ;

and we conclude. □

Remark 3.20. The three-dimensional Ricci tensor of the family of Riemannian metrics fhetgt2I
associated to a left invariant parallel spinor �ow with �ul�un 6= 0 reads:

Richet = ��t ��t =
Ht

4
(het � �t 
 �t) ; �t =

1p
�2
ul +�2

un

(�une
t
l ��ule

t
n) ;

Note that rhet�t = 0, so fhet ; �tgt2I de�nes a family of � -Einstein cosymplectic Riemannian
structures on G.

As a corollary to the classi�cation of left-invariant parallel spinor �ows presented in Propositions
3.15, 3.17 and 3.19 we can explicitly obtain the evolution of the Hamiltonian constraint in each
case.

Corollary 3.21. Let
�
�t; e

t
	
t2I be a left-invariant parallel spinor in (M; g).
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� If �ul = �un = 0, then Ht =
H0

(1��uuBt)2
.

� If �ul = 0 but �un 6= 0 then Ht =
�2
unH0

�2
uu+�

2
un

sec2
�
�Bt +Arctan

�
�uu

�

��
.

� If �un = 0 but �ul 6= 0 then Ht =
�2
ulH0

�2
uu+�

2
ul

sec2
�
�Bt +Arctan

�
�uu

�

��
.

� If �ul;�un 6= 0 then Ht =
�2H0

�2+�2
uu

sec2
�
�Bt +Arctan

�
�uu

�

��
.

where H0 is the Hamiltonian constraint at time t = 0.

Since the secant function has no zeroes, the Hamiltonian constraint vanishes for a given t 2 I,
and hence for every t 2 I, if and only if it vanish at t = 0. Theorem 3.1 implies that only quasi-
diagonal left-invariant parallel spinor �ows admit constrained Ricci �at initial data. Therefore
the Hamiltonian constraint of left-invariant parallel spinor �ows with � 6= 0 is non-vanishing for
every t 2 I and such left-invariant parallel spinor �ows cannot produce four-dimensional Ricci
�at Lorentzian metrics.

4. Globally hyperbolic reduction of abelian bundle gerbes

In Section 2 we have obtained the globally hyperbolic reduction of a skew-torsion isotropic
parallelism, since it plays a fundamental role in the reduction of globally hyperbolic supersym-
metric NS-NS solutions. In this section we take care of the globally hyperbolic reduction of
another fundamental ingredient of NS-NS supergravity and its supersymmetric solutions and con-
�gurations, namely an abelian bundle gerbe equipped with a connection and a curving [186]. The
reader is referred to Appendix A for the basic details on bundle gerbes. Let [u; v; l; n] be a globally
hyperbolic parallelism on M = I � � with associated metric:

g = u� v + l
+n
 n = ��2tdt
 dt+ ht :

Let �C := ( �P; �A; �Y ) be a bundle gerbe on M = I � �. Since the goal is to apply this reduction to
the evolution problem de�ned by NS-NS supergravity, we will assume that the topological data
contained in C, namely ( �P; �Y ), is given by the pull-back of a bundle gerbe (P; Y ) de�ned over �,
while we will allow for the connective structure �A to be de�ned on ( �P; �Y ) and not be necessarily
given by the pull-back of a connective structure on (P; Y ). We will refer to such bundle gerbes
as reducible bundle gerbes on I � �. This set-up captures the time-dependence of the evolution
problem on a bundle gerbe in its full generality. Since the submersion �Y ! M of a reducible
bundle gerbe on I �� is by assumption a pull-back submersion it follows that it is isomorphic to:

�Y = I � Y ! I � �

where the projection on the �rst factor is the identity map and Y ! � is the submersion underlying
the bundle gerbe (P; Y ). Similarly:

�Y �M
�Y = I � Y �� Y ! I � �

with the identity map I ! I acting on the �rst factor. Since �P is the pull-back of P ! Y �� Y
to I � Y �� Y , we have:

�P = I � P ! I � Y �� Y

again with the identity map I ! I acting on the �rst factor. The principal U(1) action of
�P = I � P is the one induced by the principal U(1) action of P an the trivial action on the I
factor. Let �A 2 
1(R� P;R) be a connective structure on �P. Then we can write:

�A = 	tdt+At

where 	t is a family of functions on P and At is a family of connections on P. Recall that t denotes
the Cartesian coordinate on I. Since �A is a connection on �P, it is in particular invariant under
the U(1) action of the principal bundle �P, and since this action is ine�ective on I we conclude
that f	tg is in fact a family of invariant functions on P whence it descends to a family of invariant
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functions on Y �� Y that we denote by the same symbol for ease of notation. Since ( �P; �A; �Y ) is
a bundle gerbe, it comes equipped with an isomorphism:

(���12 �P 
 ���23 �P; ���12 �A
 ���23 �A) '�! (���13 �P; ���13 �A)
where �� : �Y !M and the notation �ij : �Y �M

�Y �M
�Y ! �Y �M

�Y forgets the entry not labelled
neither by i nor j. This implies ��	t = 0, where, as explained in Appendix A, �� is the di�erential
of the simplicial manifold determined by �� : �Y ! M . Since this di�erential is exact, it follows
that 	t descends through �� to a family of functions on Y that we denote again by 	t. Therefore
the previous discussion can be elaborated into the following correspondence.

Proposition 4.1. There is a natural one-to-one correspondence between reducible bundle
gerbes ( �P; �Y ; �A) on M = I � � and tuples (P; Y;At;	t), where (P; Y ) is a bundle gerbe on
�, 	t is a family of functions on Y , and At is a family of connective structures on (P; Y ).
We will refer to (P; Y;At;	t) as the reduction of ( �P; �Y ; �A). A direct computation gives the
following result.

Lemma 4.2. The curvature F �A 2 
2(R � Y �� Y ) of �A = 	tdt + At satis�es the following
equation:

F �A = dY [2]	t ^ dt+ dt ^ @tAt + FAt

where dY [2] : 
�(Y �� Y )! 
�(Y �� Y ) is the exterior derivative on 
�(Y �� Y ) and FAt
is

the family of curvatures of At.

A curving on ( �P; �Y ; �A) is by de�nition a two-form �b 2 
2( �Y �M
�Y ) satisfying:

���b = F �A

Since �Y �M
�Y = I � Y �� Y , we can write every curving �b on ( �P; �Y ; �A) as follows:

�b = dt ^ at + bt (193)

for uniquely determined families of one forms at and two-forms bt on Y .

Lemma 4.3. Let ( �P; �Y ; �A) be a reducible bundle gerbe with connective structure on M = I��
and let (P; Y;At;	t) be its reduction on �. A two-form �b 2 
2( �Y �M

�Y ) is a curving on
( �P; �Y ; �A) if and only if, in the decomposition given in (193), fbtg is a family of curvings on
(P; Y;A) and at is a family of one-forms on Y satisfying:

�at = @tAt � dY [2]	t (194)

for every t 2 I, where � is the simplicial di�erential of the simplicial manifold determined
by submersion � : Y !M .

Proof. Plugging equation (193) in ���b = F �A we have:
���b = ��(dt ^ at + bt) = dt ^ �at + �bt = F �A = dY [2]	t ^ dt+ dt ^ @tAt + FAt

where we have used Lemma 4.2. Isolating by tensor type this gives:

�bt = FAt
; �at = @tAt � dY [2]	t

and thus we conclude. □

Corollary 4.4. There is a natural one-to-one correspondence between curvings on a re-
ducible bundle gerbe ( �P; �Y ; �A) with reduction (P; Y;At;	t) and pairs (at; bt) consisting of a
family bt of curvings on (P; Y;At) and a family of one-forms at on Y satisfying Equation
(194).

Let �b = dt ^ at + bt be a curving on a reducible bundle gerbe over I � �. Then:

d�Y �b = dt ^ (@tbt � dY at) + dY bt

where d�Y is the exterior derivative on �Y and dY is the exterior derivative on Y .
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Lemma 4.5. The family of two-forms (@tbt � dY at) 2 
2(Y ) satis�es �(@tbt � dY at) = 0 for
every t 2 I, where � denotes the simplicial di�erential of the simplicial manifold determined
by � : Y !M .

Proof. We compute:

�(@tbt � dY at) = @t�bt � dY [2]�at = @tFAt
� dY [2](@tAt � dY [2]	t) = 0

where we have used Lemma 4.3. □

Since � is exact, by the previous lemma it follows that there exists a unique family of two-forms
ct 2 
2(�) on � such that:

���ct = @tbt � dY at

Since d�Y �b = ���H�b for a uniquely determined three-form �H�b 2 
3(M), it follows that:

H�b = dt ^ ct +Hbt

where Hbt is the curvature of the family of curvings bt. Therefore, every curving �b on a reducible
bundle gerbe is equivalent to a pair (at; bt) as introduced in Lemma 4.3, and this pair de�nes in
turn a family of two-forms ct on � as described above.

Definition 4.6. The family of two-forms ct is the derived family of two-forms of the curving �b
on the reducible bundle gerbe ( �P; �A; �Y ).

The fact that H�b 2 
3(I � �) is closed translates into:

@tHbt = d�ct ; d�Hbt = 0

Since bt is a family of curvings on (P; Y;A), the second condition holds automatically. We have:

Hbt =

Z t

0

d�c�d� + !

for a time-independent integral closed three-form !=2� 2 
3(M). For dimensional reasons it is
convenient to introduce a family of functions fbt and a family of one-forms �t associated to every
family of curvings bt and metrics ht through:

fbt = �htHbt ; �t = �ht
Z t

0

d�c�d�

Hence:

fbt = �htd� �ht �t + �ht! = �dht�� �t + �ht!
where dht�� : 
1(�) ! C1(�) is the formal adjoint of the exterior derivative on � with respect
to ht. We will also refer to �t as the derived family of one-forms associated to �b and the given
family of metrics ht.

5. The supersymmetric NS-NS evolution �ow on a bundle gerbe

In this section we consider the evolution problem posed by the globally hyperbolic super-
symmetric solutions of four-dimensional NS-NS supergravity on a �xed pair ( �C; �X ). For this, we
�x an oriented three-dimensional manifold � and we take �C = ( �P; �Y ; �A) to be a reducible bundle
gerbe with connective structure on I ��, whose reduction is denoted by (P; Y;At;	t). Similarly,
we consider �X to be the pull-black of a principal Z-bundle de�ned on � to I�� via the canonical
projection I � �! �.
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5.1. Globally hyperbolic NS-NS solutions. Our �rst task is to characterize the globally
hyperbolic NS-NS solutions on ( �C; �X ) in terms of families of solutions on (P; Y;At;	t;X ).
Definition 5.1. A NS-NS con�guration (g;�b; ��) 2 Conf( �C; �X ) is globally hyperbolic if g is a
globally hyperbolic metric on I � � of the form g = ��2tdt
 dt+ ht for a family of functions �t
and a family of Riemannian metrics ht on �.

Remark 5.2. By the seminal work of Bernal and Sánchez [27, 28], every globally hyperbolic
Lorentzian manifold is globally isometric to a Lorentzian manifold of the form (R � �;��2tdt 

dt+ ht). Hence, there is no loss of generality in our previous de�nition.

Since �X is the pull-back of a Z-bundle X on �, it follows that �X = I � C, which immediately
implies that every equivariant function �� : �C ! R is equivalent to a family of equivariant functions
�t on X . Therefore, globally hyperbolic con�gurations (g;�b; ��) 2 Conf( �C; �X ) are in one-to-one
correspondence with tuples (ht; at; bt; �t; �t) as described above. We will refer to the latter as the
reduction of the former.

Definition 5.3. A NS-NS con�guration (g;�b; ��) 2 Conf( �C; �X ) is normal globally hyperbolic if
it is globally hyperbolic with Lorentzian metric g of the form g = �dt 
 dt + ht for a family of
Riemannian metrics ht on �.

Every reduced globally hyperbolic NS-NS con�guratioon is equivalent to a normal one on a tubular
neighborhood of the Cauchy hypersurface in M = I � �. Since for this dissertation we are
interested in the local behaviour of reduced globally hyperbolic con�gurations, in the following
we will only consider normal ones. A direct calculation proves the following lemma.

Lemma 5.4. Let g = �dt
 dt+ ht be a globally hyperbolic metric on M = I � �. Then, for
every family of one-forms �t 2 
1(�) we have:

rgdt = �t ; rg�t = dt
 @t�t + dt��t(�
]ht
t ) +rht�t

drg�t = drht�t + dt ^ @t�t + dt ^�t �ht �t

where �t;�t �ht �t 2 �(T �� � T ��) are considered as one-forms taking values on T �� and
we have set:

�t �ht �t(v1; v2) = h�t(v1);�t(v2)iht
for every v1; v2 2 T�.
Using the previous lemma we compute the Ricci and scalar curvatures of the evolving metric ht
on � in terms of families of objects on �.

Lemma 5.5. Let g = �dt
 dt+ ht be a globally hyperbolic metric on M = I � �. The Ricci
and scalar curvatures of g are given by:

Ricg = (Trht(@t�t) + j�tj2ht)dt
 dt+Richt +Trht(�t)�t � 2�t �ht �t

�@t�t + dt� (d�Trht(�t) +rht��t)

sg = sht +Trht(�t)
2 � 2Trht(@t�t)� 3j�tj2ht

where �t 2 �(T ��� T ��) is understood as a one-form taking values on T ��.

We decompose now each of the equations of the NS-NS system (131) evaluated on globally hyper-
bolic con�gurations in terms of �ow equations on �.

Lemma 5.6. Let (g;�b; ��) 2 Conf( �C; �X ) be a normal globally hyperbolic NS-NS con�guration
with reduction (ht; at; bt; �t). Then:

'�� = @t�tdt+ '�t

where '�t is the curvature of �t. Furthermore:

'�t = d��t + �
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in terms of a time-independent integral closed one-form � 2 
1(�).

Proof. The exterior derivative dC �� of �� as a function on �C expands as follows:

d �C �� = @t�tdt+ dC�t 2 
1(I � C)
This implies that:

'�� = @t�tdt+ '�t

where '�t is the family of curvatures of �t. Furthermore, since '�� is closed, we have:

0 = d'�� = @td��t ^ dt+ dt ^ @t'�t + d�'�t

and hence we conclude. □

Lemma 5.7. A normal globally hyperbolic NS-NS con�guration (g;�b; ��) 2 Conf( �C; �X ) satis�es
the Einstein equation of the NS-NS system (131) if and only if its reduction (ht; at; bt; �t)
satis�es the following di�erential system:

@2t �t +Trht(@t�t) + j�tj2ht � 1
2 j�tj2ht = 0

d�Trht(�t) +rht��t + @t'�t +�t('
]ht
�t
)� 1

2fbt�t = 0

Richt + (Trht(�t) + @t�t)�t � 2�t �ht �t � @t�t +rht'�t � 1
2�t 
 �t + 1

2 (j�tj2ht � f2bt)ht = 0

where �t is the fundamental form of (ftg��; ht), fbt 2 C1(�) is the Hodge dual of Hbt and
�t is the derived family of one-forms of (ht; at; bt; �t).

Remark 5.8. Note that equations:

'�t = d��t + � ; fbt = �dht�� �t + �ht!
need not be included in the previous lemma since they are a consequence of (ht; at; bt; �t) being
the reduction of (g;�b; ��) 2 Conf( �C; �X ).

Proof. Let (g;�b; ��) be a globally hyperbolic con�guration with reduction (ht; at; bt; �t). We
evaluate the Einstein equation of the NS-NS system, namely the �rst equation in (131), on the
following con�guration:

g = �dt
 dt+ ht 2 �(T �M � T �M) ; �b = dt ^ at + bt 2 
2(I � Y )
��(t; p) = �t(p) 2 C1(�)

for every (t; p) 2 I � �. By Lemma 5.5, the Ricci tensor of g is given by:

Ricg(@t; @t) = Trht(@t�t) + j�tj2ht ; Ricg(@t)jT� = d�Trht(�t) +rht��t

RicgjT��T� = Richt +Trht(�t)�t � 2�t �ht �t � @t�t

where �t is the second fundamental form of the embedding ftg�� ,! I�� as de�ned in Equation
(160) with respect to the metric g. By the discussion of Section 4 we have:

H�b = dt ^ ct +Hbt = dt ^ �ht�t +Hbt

from which we compute:

(H�b �g H�b)(@t; @t) = j�tj2g = j�tj2ht
(H�b �g H�b)(@t; v) = h�ht�t;�dt ^ �ht(�t ^ v) + fbt �ht vig = fbt�t(v) ; v 2 T�

where we have de�ned the function fbt 2 C1(�) associated to every family of curvings bt and
Riemannian metrics ht by Hbt := fbt�ht . Furthermore:

(H�b �g H�b)(v1; v2) = h�dt ^ v1⌟ht �ht � + fbt �ht v1;�dt ^ v2⌟ht �ht � + fbt �ht v2iht
= �h�ht(�t ^ v1); �ht(�t ^ v2)iht + f2btht(v1; v2) = �j�tj2htht(v1; v2) + �t(v1)�t(v2) + f2btht(v1; v2)
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for every v1; v2 2 T�. On the other hand, using Lemma 5.4 we obtain:

rg
@t
'�� = @2t �tdt+ @t'�t +�t('

]ht
�t
)

rg
v'�� = (v(@t'�t) + �t('

]ht
�t
; v))dt+�t(v)@t�t +rht

v '�t

for every v 2 T�. With these provisos in mind, we compute:

Ricg(@t; @t) + (rg
@t
'��)(@t)�

1

2
(H�b �g H�b)(@t; @t) = @2t �t +Trht(@t�t) + j�tj2ht �

1

2
j�tj2ht = 0

for the time-time component of the Einstein equation in (131). For the mixed time-space com-
ponents we have:

(Ricg(@t) + (rg
@t
'��)� 1

2 (H�b �g H�b)(@t))jT� =

= d�Trht(�t) +rht��t + @t'�t +�t('
]ht
�t
)� 1

2fbt�t = 0

Finally, for the space-space components of the Einstein equation we have:

0 = (Ricg + (rg'��)� 1
2H�b �g H�b)jT��T� =

= Richt + (Trht(�t) + @t�t)�t � 2�t �ht �t � @t�t +rht'�t � 1
2�t 
 �t + 1

2 (j�tj2ht � f2bt)ht
and hence we conclude. □

Lemma 5.9. A normal globally hyperbolic NS-NS con�guration (g;�b; ��) 2 Conf( �C; �X ) satis�es
the Maxwell equation of the NS-NS system (131) if and only if its reduction (ht; at; bt; �t)
satis�es the following di�erential system:

d�fbt � @t�t + @t�t�t � fbt'�t = 0 ; d��t = '�t ^ �t
where fbt 2 C1(�) is the Hodge dual of Hbt and �t is the derived family of one-forms of
(ht; at; bt; �t).

Proof. We consider the Maxwell equation as written in (132), namely:

d��b = '�� ^ ��b
We have:

��b = �g(dt ^ �ht�t + fbt�ht) = �(�t + fbtdt)

where we have used equations (167). Hence, we have:

d��b + ��b ^ '�� = �d(�t + fbtdt)� (�t + fbtdt) ^ (@t�tdt+ '�t)

= dt ^ (d�fbt � @t�t)� d��t + dt ^ (@t�t�t � fbt'�t)� �t ^ '�t = 0

Isolating by tensor type we conclude. □

Lemma 5.10. A normal globally hyperbolic NS-NS con�guration (g;�b; ��) 2 Conf( �C; �X ) satis�es
the dilaton equation of the NS-NS system (131) if and only if its reduction (ht; at; bt; �t)
satis�es the following di�erential system:

@2t �t +rht�'�t � (Trht(�t) + @t�t)@t�t � f2bt + j�tj2ht + j'�t j2ht = 0

where �t is the fundamental form of (ftg��; ht), fbt 2 C1(�) is the Hodge dual of Hbt and
�t is the derived family of one-forms of (ht; at; bt; �t).

Proof. We compute:

j'�j2g + j�bj2g = j�tj2ht + j'�t j2ht � (@t�t)
2 � f2bt

On the other hand we have:

rg�'�� = rg�(@t�t + '�t) = @2t �t � Trht(�t)@t�t +rht�'�t

and hence we conclude. □
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The previous lemmata allows to characterize globally hyperbolic NS-NS solutions on a reducible
pair ( �P; �A; �Y ) in terms of constrained evolution �ows for tuples (ht; at; bt; �t) on the reduction
(P; Y;At;	t;X ) of ( �P; �A; �Y ).
Proposition 5.11. A normal globally hyperbolic NS-NS con�guration (g;�b; ��) 2 Conf( �C; �X )
satis�es the NS-NS system (131) if and only if its reduction (ht; at; bt; �t) satis�es the fol-
lowing system of evolution equations:

@t�t = Richt + (Trht(�t) + @t�t)�t � 2�t �ht �t +rht'�t � 1
2�t 
 �t + 1

2 (j�tj2ht � f2bt)ht
@t�t = d�fbt + @t�t�t � fbt'�t

@2t �t +rht�'�t = (Trht(�t) + @t�t)@t�t + f2bt � j�tj2ht � j'�t j2ht
together with the following system of time-dependent constraints:

sht + (Trht(�t) + @t�t)
2 � j�tj2ht � j'�t j2ht � 1

2 (f
2
bt
+ j�tj2ht)� 2rht�'�t = 0

d��t = '�t ^ �t ; d�Trht(�t) +rht��t + @t'�t +�t('
]ht
�t
)� 1

2 fbt�t = 0

where �t is the fundamental form of (ftg��; ht), fbt 2 C1(�) is the Hodge dual of Hbt and
�t is the derived family of one-forms of (ht; at; bt; �t).

Proof. Lemmas (5.7), (5.9) and (5.10) immediately imply that a normal globally hyperbolic
NS-NS con�guration (g;�b; ��) 2 Conf( �C; �X ) satis�es the NS-NS system (131) if and only if its
reduction (ht; at; bt; �t) on (P; Y;At;	t;X ) satis�es the following system of evolution equations:

@t�t = Richt + (Trht(�t) + @t�t)�t � 2�t �ht �t +rht'�t � 1
2�t 
 �t + 1

2 (j�tj2ht � f2bt)ht
@t�t = d�fbt + @t�t�t � fbt'�t

@2t �t +rht�'�t = (Trht(�t) + @t�t)@t�t + f2bt � j�tj2ht � j'�t j2ht
together with the following system of time-dependent constraints:

sht + (Trht(�t)
2 + @t�t)

2 � j�tj2ht � j'�t j2ht � 1
2 (f

2
bt
+ j�tj2ht)� 2rht�'�t = 0

d�Trht(�t) +rht��t + @t'�t +�t('
]ht
�t
)� 1

2fbt�t = 0

Taking the trace of the �rst evolution equation above and combining it with the third evolution
equation we obtain:

@2t �t +Trht(@t�t) = sht � 2rht�'�t + (Trht(�t)
2 + @t�t)

2 � 2j�tj2ht � j'�t j2ht �
1

2
f2bt

Together with the �rst time-dependent constraint above, this implies:

sht + (Trht(�t)
2 + @t�t)

2 � j�tj2ht � j'�t j2ht �
1

2
(f2bt + j�tj2ht)� 2rht�'�t = 0

and hence we conclude. □

The previous proposition presents the evolution and constraint equations of the NS-NS system in
the string frame and form the starting point for the study of the evolution problem posed by NS-
NS supergravity. To the best of our knowledge we have not even seen this constrained evolution
system written explicitly in the literature, especially not in the global geometric context we are
considering. By the seminal results of Oskar Schiller, to be presented in his upcoming doctoral
dissertation at Hamburg University, the Cauchy problem for the NS-NS system is well-posed.

5.2. The supersymmetric NS-NS evolution �ow. In this section we consider the evolu-
tion �ow de�ned by the globally hyperbolic supersymmetric con�gurations on a reducible triple
( �P; �C; �A) with reduction C = (P; Y;At;	t). Our �rst result builds on the theory developed so far
for skew-torsion parallelisms and supersymmetric NS-NS solutions and characterizes normal glob-
ally hyperbolic supersymmetric solutions in terms of solutions of a constrained evolution system,
as explained in the following.
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Proposition 5.12. A normal globally hyperbolic NS-NS con�guration (g;�b; ��) 2 Conf( �C; �X ) is
supersymmetric if and only if there exists a family of functions at and a family of coframes
et on � such that the following di�erential system:

@tat = 0 ; @te
t
i +�t(e

t
i) +

1
2ct(e

t
i) = 0 ; i = u; l; n

d�e
t
i = �t(e

t
i) ^ etu + 1

2fbt �ht eti � 1
2�uict ; i = u; l; n (195)

e�atd�(e
atetu) = fbt �ht etu � ct ; '�t = @t�te

t
u + ct(e

t
u) ; fbt = �ht(ct ^ etu)

is satis�ed, where (ht; at; bt; �t) is the reduction of (g;�b; ��).

Remark 5.13. In the previous proposition we are using the Kronecker delta �ui for the indices
i = u; l; n. Hence, �uu = 1 and �ul = �un = 0.

Proof. By Proposition 2.10 together with the discussion in Section 1, a given globally hyper-
bolic con�guration (g;�b; ��) 2 Conf( �C; �X ) is supersymmetric if and only if there exists a globally
hyperbolic skew-torsion parallelism [u; v; l; n] such that Lemma 3.1 holds. By Proposition 2.10,
[u; v; l; n] is globally hyperbolic and skew-torsion if and only if its globally hyperbolic reduction
(at; et) satis�es equations (182) and (183) with:

'�� = @t�tdt+ '�t ; ��b = �(�t + fbtdt)

By Lemma 3.1, we impose:

'��(u) = eat(@t�tdt+ '�t)(�@t + (etu)
]ht ) = eat('�t(e

t
u)� @t�t) = 0

��b(u) = �eat(fbtdt+ �t)(�@t + (etu)
]ht ) = eat(fbt � �t(etu)) = 0

which is equivalent to:
@t�t = '�t(e

t
u) ; fbt = �t(e

t
u)

Furthermore:

'�� ^ u� �g(��b ^ u) = eat(@t�tdt+ '�t) ^ (dt+ etu) + eat �g ((fbtdt+ �t) ^ (dt+ etu))

= eat(dt ^ (@t�te
t
u � '�t + �ht(�t ^ etu)) + '�t ^ etu � fbt �ht etu + �ht�t)

This implies:

@t�te
t
u � '�t + �ht(�t ^ etu) = 0 ; '�t ^ etu � fbt �ht etu + �ht�t = 0

or, equivalently:

'�t = @t�te
t
u + �ht(�t ^ etu) ; �t = fbte

t
u + �t(e

t
l)e

t
l + �t(e

t
n)e

t
n

Hence, there exists a family of one-forms wbt 2 �(etu)
?ht orthogonal to etu such that:

'�t = @t�te
t
u + �qtwbt ; �t = fbte

t
u + wbt (196)

where �qt is the Hodge dual determined on the distribution (etu)
?ht � T �� by the metric qt =

etl 
 etl + etn 
 etn. Similarly, we compute:

��b(l) �g u� '�� ^ l ^ u = eat(�t(e
t
l)�ht � '�t ^ etl ^ etu)

+eatdt ^ (�t(etl)etl ^ etn � @t�tetl ^ etu � '�t ^ etl) = 0

which is thus automatically satis�ed by (196). Analogously, equation '�(l) = �g(u ^ l ^ ��b) is
automatically solved by (196). Furthermore, we notice that:

�ht(�?t � �otetu)� 1
2e

t
u ^ �ht(�?t ^ etu) = fbt �ht etu � ct + 1

2e
t
u ^ �ht(�t ^ etu)

= (fbt � �t(etu)) �ht etu � �t(etl) �ht etl � �t(etn) �ht etn + 1
2e

t
u ^ �ht(�t ^ etu)

= � 1
2 (�t(e

t
l) �ht etl + �t(e

t
n) �ht etn) = �1

2e
t
u ^ ct(etu) = 1

2 (fbt �ht etu � ct)
Substituting the previous expressions and relations into (182) and (183) and massaging the equa-
tions we obtain the di�erential system (195) in the statement of the lemma. These equations
guarantee that the globally hyperbolic reduction of [u; v; l; n] is skew-torsion with torsion given
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by the curvature of a curving on a reducible bundle gerbe. The converse follows by tracing back
the previous steps and hence we conclude. □

By the previous proposition, the family of functions at 2 C1(�) that conforms the reduced
isotropic parallelism, not to be confused with the family of one-forms at 2 
1(Y ) associated to
the globally hyperbolic reduction of a curving, is actually constant in time, namely @tat = 0, so
it reduces to a function a 2 C1(�) on �. This function can be decoupled from the evolution
system as the following result shows.

Corollary 5.14. A normal globally hyperbolic NS-NS con�guration (g;�b; ��) 2 Conf( �C; �X )
is supersymmetric if and only if there exists a family of coframes et on � such that the
following di�erential system:

@tat = 0 ; @te
t
i +�t(e

t
i) +

1
2ct(e

t
i) = 0 ; i = u; l; n

d�e
t
i = �t(e

t
i) ^ etu + 1

2fbt �ht eti � 1
2�uict ; i = u; l; n (197)

'�t = @t�te
t
u + ct(e

t
u) ; fbt = �ht(ct ^ etu)

together with the following conditions:

0 = [�t(e
t
u)�

1

2
ct(e

t
u)] 2 H1(�;R) ; @t(�t(e

t
u)) =

1

2
@t(ct(e

t
u))

are satis�ed, where (ht; at; bt; �t) is the reduction of (g;�b; ��).

In practical situations, we are interested in the existence of normal globally hyperbolic con�gura-
tions without necessarily �xing the underlying reducible bundle gerbe and principal Z bundle.

Proposition 5.15. A four-manifold of the form M = I�� admits a supersymmetric normal
globally hyperbolic NS-NS con�guration with Cauchy hypersurface � if and only if there
exists a tuple (et; ct; ft; �t) on � satisfying the following di�erential system:

@t(�t(e
t
u)) =

1
2@t(ct(e

t
u)) ; @te

t
i +�t(e

t
i) +

1
2ct(e

t
i) = 0 ; i = u; l; n

ft = �ht(ct ^ etu) ; d�e
t
i = �t(e

t
i) ^ etu + 1

2fbt �ht eti � 1
2�uict ; i = u; l; n

together with the following cohomological conditions:

[@t�te
t
u + ct(e

t
u)] 2 H1(�;Z) ; [

ft
2�
�ht ] 2 H3(�;Z) ; 0 = [�t(e

t
u)�

1

2
ct(e

t
u)] 2 H1(�;R)

for every t 2 I.
We will refer to the di�erential system (195) as occurring in Proposition 5.12, or equivalently
in Corollary 5.14 or Proposition 5.15, as the normal NS-NS supersymmetry �ow, which is an
evolution �ow for families of the form (et; bt; �t). Given such a family, we obtain a canonical can-
didate of NS-NS evolution �ow given simply by (het ; bt; �t), where het is the family of Riemannian
metrics on � given by het = etu 
 etu + etl 
 etl + etn 
 etn.
Remark 5.16. From equations (195) or (197) it immediately follows that the covariant derivative
of the family of coframes et belonging to a NS-NS supersymmetry �ow (et; bt; ct) is given by:

rhteti + �ui(�t +
1

4
ct) = �t(e

t
i)
 etu +

1

4
fbt �ht eti �

1

4
etu � ct(eti)

for i = u; l; n. The previous covariant derivatives can be equivalently written as follows:

rhtetu +�t = �t(e
t
u)
 etu � 1

2e
t
u 
 ct(etu)

rhtetl = �t(e
t
l)
 etu � 1

2fbte
t
u 
 etn + 1

2ct(e
t
u; e

t
l)e

t
u 
 etu

rhtetn = �t(e
t
n)
 etu + 1

2fbte
t
u 
 etl + 1

2ct(e
t
u; e

t
n)e

t
u 
 etu

From this we immediately obtain:

rht�eti = �Trht(rhteti) = �uiTrht(�t)��t(e
t
u; e

t
i)�

1

2
ct(e

t
u; e

t
i)
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or, equivalently:

rht�etu = Trht(�t)��t(e
t
u; e

t
u)

rht�etl = ��t(e
t
l ; e

t
u)� 1

2ct(e
t
u; e

t
l) ; rht�etn = ��t(e

t
n; e

t
u)� 1

2ct(e
t
u; e

t
n)

These equations will be useful in the following.

It is natural to compare the evolution �ow prescribed by the NS-NS supersymmetry conditions
for (et; bt; �t) with the NS-NS evolution �ow for the associated family (het ; bt; �t). For this, we
�rst need to compute the scalar curvature of het , which we denote by set .

Lemma 5.17. Let (et; bt; �t) be a normal NS-NS supersymmetry �ow. Then:

set = j�tj2ht � Trht(�t)
2 + 2(rht��t)(e

t
u) + 2Trht(rht

etu
�t)� (rht�ct)(etu)�

1

2
jct(etu)j2ht

where set denotes the scalar curvature of het at a given time t 2 I.
Proof. Using equations (195) together with Remark 5.16, we compute:

rht
et
i

rht
et
j

etu = rht
et
i

(��t(e
t
j) + �t(e

t
u; e

t
j)e

t
u � 1

2�ujct(e
t
u))

= �(rht
et
i

�t)(e
t
j)��t(rht

et
i

etj) + ((rht
et
i

�t)(e
t
u; e

t
j) + �t(rht

et
i

etu; e
t
j) + �t(e

t
u;rht

et
i

etj))e
t
u

+�t(e
t
u; e

t
j)rht

et
i

etu � 1
2�uj((rht

et
i

ct)(e
t
u) + ct(rht

et
i

etu))

On the other hand:

rht
[ei;ej ]

etu = ��t([ei; ej ]) + �t(e
t
u; [ei; ej ])e

t
u �

1

2
etu([ei; ej ])ct(e

t
u)

From this formulae we obtain, after a tedious calculation, the following expression:

(Ret
eieueu)(ei) = j�t(e

t
u)j2ht ��t(e

t
u; e

t
u)Trht(�t) + (rht��t)(e

t
u) + Trht(rht

etu
�t)

� 1
2 (rht�ct)(etu) +

1
2ct(�t(e

t
l); e

t
l) +

1
2ct(�t(e

t
n); e

t
n)� 1

2 h�t(e
t
u); ct(e

t
u)iht � 1

4 jct(etu)j2ht
where summation over repeated indices is assumed. Regarding etl we have:

rht
et
i

rht
et
j

etl = rht
et
i

(�t(e
t
l ; e

t
j)e

t
u � 1

2fbt�uje
t
n +

1
2�ujct(e

t
u; e

t
l)e

t
u)

= ((rht
et
i

�t)(e
t
l ; e

t
j) + �t(rht

et
i

etl ; e
t
j) + �t(e

t
l ;rht

et
i

etj))e
t
u +�t(e

t
l ; e

t
j)rht

et
i

etu

+ 1
2�uj((rht

et
i

ct)(e
t
u; e

t
l) + ct(rht

et
i

etu; e
t
l) + ct(e

t
u;rht

et
i

etl))e
t
u

+ 1
2�uj(ct(e

t
u; e

t
l)rht

et
i

etu � dfbt(e
t
i)e

t
n � fbtrht

et
i

etn)

as well as:

rht
[et
i
;et
j
]
etl = �t(e

t
l ; [e

t
i; e

t
j ])e

t
u �

1

2
fbte

t
u([e

t
i; e

t
j ])e

t
n +

1

2
ct(e

t
u; e

t
l)e

t
u([e

t
i; e

t
j ])e

t
u

from which we obtain:

(Ret
eielel)(ei) = (retu

�t)(e
t
l ; e

t
l)� (ret

l
�t)(e

t
l ; e

t
u)��t(e

t
l ; e

t
l)Trht�t + j�t(e

t
l)j2ht

� 1
2 (ct(e

t
u; e

t
l)�t(e

t
u; e

t
l) + (rht

et
l

ct)(e
t
u; e

t
l) + h�t(e

t
l); ct(e

t
l)iht)� 1

4ct(e
t
u; e

t
l)
2

We compute similarly for etn. We have:

rht
et
i

rht
et
j

etn = rht
et
i

(�t(e
t
n; e

t
j)e

t
u +

1
2�uj(fbte

t
l +

1
2ct(e

t
u; e

t
n)e

t
u)) =

= ((rht
et
i

�t)(e
t
n; e

t
j) + �t(rht

et
i

etn; e
t
j) + �t(e

t
n;rht

et
i

etj))e
t
u +�t(e

t
n; e

t
j)rht

et
i

etu

+ 1
2�uj((rht

et
i

ct)(e
t
u; e

t
n) + ct(rht

et
i

etu; e
t
n) + ct(e

t
u;rht

et
i

etn))e
t
u

+ 1
2�uj(ct(e

t
u; e

t
n)rht

et
i

etu + dfbt(e
t
i)e

t
l + fbtrht

et
i

etl)
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as well as:

rht
[et
i
;et
j
]
etn = �t(e

t
n; [e

t
i; e

t
j ])e

t
u +

1

2
fbte

t
u([e

t
i; e

t
j ])e

t
l +

1

2
ct(e

t
u; e

t
n)e

t
u([e

t
i; e

t
j ])e

t
u

from which we obtain:

(Ret
eienen)(ei) = (retu

�t)(e
t
n; e

t
n)� (retn

�t)(e
t
n; e

t
u)��t(e

t
n; e

t
n)Trht�t + j�t(e

t
n)j2ht

� 1
2 (ct(e

t
u; e

t
n)�t(e

t
u; e

t
n) + (rht

et
l

ct)(e
t
u; e

t
n) + h�t(e

t
n); ct(e

t
n)iht)� 1

4ct(e
t
u; e

t
n)

2

The previous formulae yields the scalar curvature sht of the family of metrics ht as follows:

set = (Ret
eieueu)(ei) + (Ret

eielel)(ei) + (Ret
eienen)(ei)

which after some manipulations gives the expression in the statement of the lemma. □

We end this subsection by proving what to the best of our knowledge seems to be the �rst
compatibility result between the NS-NS evolution �ow and its supersymmetric counterpart.

Theorem 5.18. A triple (het ; bt; �t) associated to a NS-NS supersymmetric �ow (et; bt; �t)
preserves the constraint equations of the NS-NS system if and only if:

etu(@t�t) + �t(e
t
u; e

t
u)@t�t � 1

2fbt = 0

(rg�ct)(etu) = 0 ; ct(e
t
u) = 0 ; eu ^ (d�fbt � fbt�t(e

t
u)) = 0

@2t �t + (rht�t)(e
t
u; e

t
u)� (rht

etu
�t)(e

t
u) + (Trht(rht

etu
�t) + (rht��t)(e

t
u))e

t
u

+ 1
2 �ht (etu ^ (d�fbt +�t(e

t
u))� fbtct) = 0

Proof. Let (et; bt; �t) be a normal NS-NS supersymmetric �ow and let (het ; bt; �t) be its
associated NS-NS candidate �ow het = etu
 etu+ etl 
 etl + etn
 etn. By Proposition 5.12, (et; bt; �t)
is a normal supersymmetric �ow if and only if it satis�es all equations in (195). On the other
hand, by Proposition 5.11, the time-dependent constraints of the NS-NS evolution �ow are given
by:

sht + (Trht(�t) + @t�t)
2 � j�tj2ht � j'�t j2ht � 1

2 (f
2
bt
+ j�tj2ht)� 2rht�'�t = 0 (198)

d��t = '�t ^ �t ; d�Trht(�t) +rht��t + @t'�t +�t('
]ht
�t
)� 1

2 fbt�t = 0 (199)

By the last row in (5.12) we have:

'�t = @t�te
t
u + ct(e

t
u) ; fbt = �ht(ct ^ etu)

and therefore:

ct = ct(e
t
u) ^ etu �Hbt(e

t
u) = '�t ^ etu � fbt �ht etu

Applying rht� to these expressions, we compute:

rg�'�t = �eu(@t�t) + (Trht(�t)��t(e
t
u; e

t
u))@t�t

�(rht�ct)(etu)� h�t(e
t
u); ct(e

t
u)iht � 1

2 jct(etu)j2ht
rht�c = rht�'�te

t
u +rht

etu
'�t �rht

'�t
etu �rht�etu'�t + �ht(etu ^ d�fbt)� fbt �ht d�etu

The second equation implies:

(rht�c)(etu) = rht�'�t + (rht
etu
'�t)(e

t
u)� (rht

'�t
etu)(e

t
u)�rht�etu@t�t

which substituted back into the previous expression for rg�'�t gives:

2rg�'�t = �etu(@t�t) + 2rht�etu@t�t � h�t(e
t
u);�t(e

t
u)iht � 1

2 jct(etu)j2ht
�(rht

etu
'�t)(e

t
u) + (rht

'�t
etu)(e

t
u)
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Substituting this equation back into the previous expression for (rht�c)(etu), we obtain:

2(rht�c)(etu) = (rht
etu
'�t)(e

t
u)� (rht

'�t
etu)(e

t
u)� etu(@t�t)� h�t(e

t
u); ct(e

t
u)iht � 1

2 jct(etu)j2ht
= �t('�t ; e

t
u)��t(e

t
u; e

t
u)@t�t +

1
2ct(e

t
u; '�t)� h�t(e

t
u); ct(e

t
u)iht � 1

2 jct(etu)j2ht = 0 (200)

If the triple (het ; bt; �t) associated to (et; bt; �t) is a NS-NS evolution �ow then it needs to satisfy
the �rst equation in (199), which can be equivalently written as follows:

rg�ct + ct('�t) = rg�ct + @t�tct(e
t
u) + ct(ct(e

t
u)) = 0

This implies in turn:

(rg�ct)(etu) + ct('�t ; e
t
u) = (rg�ct)(etu) + ct(ct(e

t
u); e

t
u) = (rg�ct)(etu)� jct(etu)j2ht = 0

Since by Equation (200) we have (rg�ct)(etu) = 0, we conclude that (et; bt; �t) is a supersymmet-
ric NS-NS evolution �ow that preserves the constraint equations (198) and (199) of the NS-NS
evolution �ow only if:

(rg�ct)(etu) = 0 ; ct(e
t
u) = 0

Hence, we will assume both conditions in the following. Elaborating on the expression obtained
above for rht�ct, we obtain:

rht�ct + �ht(eu ^ d�fbt) + fbt �ht d�etu = 0

and hence we conclude that the triple (het ; bt; �t) associated to (et; bt; �t) satis�es the �rst equation
in (199) if and only if:

(rg�ct)(etu) = 0 ; ct(e
t
u) = 0 ; eu ^ (d�fbt � fbt�t(e

t
u)) = 0

Note that here we have substituted d�e
t
u by its expression as given in Proposition 5.15. On the

other hand, by the �rst equation in Remark 5.16 we have:

rht�rhtetu = �rht��t +rht�(�t(e
t
u)
 etu)

We compute:

rht�(�t(e
t
u)
 etu) = ((rht��t)(e

t
u) + j�tj2ht � 2j�t(e

t
u)j2ht)etu +�t(�t(e

t
u))

Hence:

rht�rhtetu = �rht��t + ((rht��t)(e
t
u) + j�tj2ht � 2j�t(e

t
u)j2ht)etu +�t(�t(e

t
u))

The previous equation gives the rough Laplacian of etu, which by virtue of the Weitzenböck
formula we are going to compare with the Hodge Laplacian applied to etu. We compute:

d�rht�etu = d�(Trht(�t)��t(e
t
u; e

t
u)) =

= d�Trht(�t)� (rht�t)(e
t
u; e

t
u) + 2�t(�t(e

t
u))� 2�t(e

t
u; e

t
u)�t(e

t
u)

dht�� d�e
t
u = rht�d�etu = rht�(�t(e

t
u) ^ etu) = ((rht��t)(e

t
u) + j�tj2ht � 2j�t(e

t
u)j2ht)etu

+(rht
etu
�t)(e

t
u) + (2�t(e

t
u; e

t
u)� Trht(�t))�t(e

t
u)

and thus:

�hte
t
u = (dht�� d� + d�d

ht�
� )etu = ((rht��t)(e

t
u) + j�tj2ht � 2j�t(e

t
u)j2ht)etu + (rht

etu
�t)(e

t
u)

�Trht(�t)�t(e
t
u) + d�Trht(�t)� (rht�t)(e

t
u; e

t
u) + 2�t(�t(e

t
u))

The last ingredient to apply Weitzenböck formula is the evaluation of etu in the Ricci tensor Richt

of ht, namely:

Ricet(etu) = Retue
t
l
etl +Retue

t
n
etn
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We compute:

rht
etu
rht
et
l

etl = rht
etu
(�t(e

t
l ; e

t
l)e

t
u) = (rht

etu
�t)(e

t
l ; e

t
l)e

t
u + 2�t(rht

etu
etl ; e

t
l)e

t
u +�t(e

t
l ; e

t
l)rht

etu
etu

= ((rht
etu
�t)(e

t
l ; e

t
l) + 2�t(e

t
u; e

t
l)
2 � fbt�t(e

t
l ; e

t
n) + �t(e

t
u; e

t
u)�t(e

t
l ; e

t
l))e

t
u ��t(e

t
l ; e

t
l)�t(e

t
u)

rht
et
l

rht
etu
etl = ((rht

et
l

�t)(e
t
u; e

t
l)� j�t(e

t
l)j2ht +�t(e

t
u; e

t
l)
2 +�t(e

t
u; e

t
u)�t(e

t
l ; e

t
l))e

t
u

��t(e
t
u; e

t
l)(�t(e

t
l ; e

t
l)e

t
l +�t(e

t
l ; e

t
n)e

t
n)� 1

2 (e
t
l(fbt)e

t
n + fbt�t(e

t
l ; e

t
n)e

t
u)

= ((rht
et
l

�t)(e
t
u; e

t
l)� j�t(e

t
l)j2ht + 2�t(e

t
u; e

t
l)
2 +�t(e

t
u; e

t
u)�t(e

t
l ; e

t
l))e

t
u

��t(e
t
u; e

t
l)�t(e

t
l)� 1

2 (e
t
l(fbt)e

t
n + fbt�t(e

t
l ; e

t
n)e

t
u)

together with:

rht
[etu;e

t
l
]
etl = �t(e

t
l ; [e

t
u; e

t
l ])e

t
u � 1

2fbte
t
u([e

t
u; e

t
l ])e

t
n

= (j�(etl)j2ht � 1
2fbt�t(e

t
l ; e

t
n))e

t
u � 1

2fbt�t(e
t
u; e

t
l)e

t
n

Here we have used that:

[etu; e
t
l ] = rht

etu
etl �rht

et
l

etu = �t(e
t
l)�

1

2
fbte

t
n

Similarly:

rht
etu
rht
etn
etn = rht

etu
(�t(e

t
n; e

t
n)e

t
u) = (rht

etu
�t)(e

t
n; e

t
n)e

t
u + 2�t(rht

etu
etn; e

t
n)e

t
u +�t(e

t
n; e

t
n)rht

etu
etu

= ((rht
etu
�t)(e

t
n; e

t
n) + 2�t(e

t
u; e

t
n)

2 + fbt�t(e
t
l ; e

t
n) + �t(e

t
u; e

t
u)�t(e

t
n; e

t
n))e

t
u ��t(e

t
n; e

t
n)�t(e

t
u)

rht
etn
rht
etu
etn = ((rht

etn
�t)(e

t
u; e

t
n)� j�t(e

t
n)j2ht +�t(e

t
u; e

t
n)

2 +�t(e
t
u; e

t
u)�t(e

t
n; e

t
n))e

t
u

��t(e
t
u; e

t
n)(�t(e

t
n; e

t
n)e

t
n +�t(e

t
l ; e

t
n)e

t
l) +

1
2 (e

t
n(fbt)e

t
l + fbt�t(e

t
l ; e

t
n)e

t
u)

= ((rht
etn
�t)(e

t
u; e

t
n)� j�t(e

t
n)j2ht + 2�t(e

t
u; e

t
n)

2 +�t(e
t
u; e

t
u)�t(e

t
n; e

t
n))e

t
u

��t(e
t
u; e

t
n)�t(e

t
n) +

1
2 (e

t
n(fbt)e

t
l + fbt�t(e

t
l ; e

t
n)e

t
u)

together with:

rht
[etu;e

t
n]
etn = �t(e

t
n; [e

t
u; e

t
n])e

t
u +

1
2fbte

t
u([e

t
u; e

t
n])e

t
l

= (j�(etn)j2ht + 1
2fbt�t(e

t
l ; e

t
n))e

t
u +

1
2fbt�t(e

t
u; e

t
n)e

t
l

Here we have used that:

[etu; e
t
n] = rht

etu
etn �rht

etn
etu = �t(e

t
n) +

1

2
fbte

t
l

Therefore:

Ricet(etu) = (Trht(retu
�t) + (rht��t)(e

t
u))e

t
u +�t(�t(e

t
u))� Trht(�t)�t(e

t
u)

1
2 �ht (etu ^ (�t(e

t
u) + d�fbt))

and the Weitzenböck formula rht�rhtetu = �hte
t
u +Ric(etu) applied to etu gives:

d�Trht(�t) +rht��t = (rht�t)(e
t
u; e

t
u)� (rht

etu
�t)(e

t
u) + (Trht(rht

etu
�t) + (rht��t)(e

t
u))e

t
u

+ 1
2 �ht (etu ^ (d�fbt +�t(e

t
u)))

Hence we conclude that the triple (het ; bt; �t) associated to (et; bt; �t) satis�es both equations in
(199) if and only if:

(rg�ct)(etu) = 0 ; ct(e
t
u) = 0 ; etu ^ (d�fbt � fbt�t(e

t
u)) = 0

@2t �t � 1
2 fbt �ht ct + (rht�t)(e

t
u; e

t
u)� (rht

etu
�t)(e

t
u) + (Trht(rht

etu
�t) + (rht��t)(e

t
u))e

t
u

+ 1
2 �ht (etu ^ (d�fbt +�t(e

t
u))) = 0
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Comparing now Equation (198) with Lemma 5.17 using the expression for rg�'�t obtained above
we conclude. □

This is the starting point for a deeper analysis of the rich interaction between the NS-NS and the
supersymmetric NS-NS evolution �ows, which we plan to develop in the future. In the same sense
that supersymmetry provides �rst order partial integrability of the NS-NS system, we expect that
the supersymmetric NS-NS evolution �ow can provide �rst order partial integrability of the full
NS-NS evolution �ow. Our main conjecture, based on prior results for parallel spinors on globally
hyperbolic Lorentzian four-manifolds [176, 177], is that evolving initial data admissible to both
�ows by the supersymmetric NS-NS �ow will produce a NS-NS evolution �ow. An interesting
consequence of Theorem 5.18 that re�ects the rigidity of satisfying both the NS-NS evolution
�ow and its supersymmetric counterpart is given in the following corollary.

Corollary 5.19. A triple (het ; bt; �t) associated to a NS-NS supersymmetric �ow (et; bt; �t)
preserves the constraint equations of the NS-NS system only if (het ;�t) satis�es the Hamil-
tonian constraint equation of vacuum General Relativity.

By theHamiltonian constraint of vacuum General Relativity we refer to the scalar time-dependent
constraint equation associated to the Cauchy problem de�ned by the Ricci-�at condition on four-
dimensional globally hyperbolic Lorentzian manifolds.

5.3. The NS-NS constraint equations. Using the explicit form of the normal supersymmetry
NS-NS evolution system as given in (195), or equivalently in Corollary (5.14) or Proposition 5.15,
we can extract the constraint equations of the evolution system. These can be considered as
the general constraint equations of the evolution �ow determined by the NS-NS supersymmetry
conditions as they do not depend on the choice �t = 1.

Definition 5.20. Let (C;X ) respectively be a bundle gerbe C and a principal Z bundle X on �.
The NS-NS sypersymmmetry constraint equations on (C;X ) is given by:

fb = �h(c ^ etu) ; d�eu = �ev(eu) ^ eu � 1
2eu ^ c(eu)

d�el = �ev(el) ^ etu + 1
2fb �h el ; d�en = �ev(en) ^ etu + 1

2fb �h en (201)

'� =  eu + c(eu) ; 0 = [�ev(eu)� 1
2c(eu)] 2 H1(�;R)

for tuples (e; v; b; c; �;  ) consisting on a global coframe e on �, a triplet of one-forms v 2 
1(�;R3),
a curving b on C, a two-form c 2 
2(�) and a pair of functions �;  2 C1(�).

As explained in Section (2) here we have set:

�ev = eu � vu + el � vl + en � vn

and furthermore we can consider pairs (e; v) as sections of the tangent bundle to the bundle of
oriented frames F (�) of �, or equivalently, the tangent bundle of the space of sections of F (�),
which we will denote by TF (�). Similarly, a pair (b; c) can be considered as an element of the
tangent bundle of the set of curvings B(C) on C, which is an a�ne space modeled on the two-
forms 
2(�), and the pair of functions (�;  ) 2 TC1(�) can be understood as an element in the
tangent bundle of the space of smooth functions on �. Hence, the con�guration space of the
NS-NS sypersymmmetry constraint equations on C is the direct product space:

Conf(C;X ) = TF (�)� TB(C)� TC1(�) = T (F (�)�B(C)� C1(�))
which is closely related to the con�guration space of the constraint equations of the NS-NS evo-
lution �ow. Hence, the NS-NS supersymmetry constraint equations should be understood as the
conditions imposed by supersymmetry on the initial data of the NS-NS evolution �ow, rather than
being understood as the constraint equations of the NS-NS supersymmetry �ow itself, which is of
�rst order in all of its variables. Consequently, it is natural to study the NS-NS supersymmetry
constraint equations in combination with NS-NS constraint equations.
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Definition 5.21. A Cauchy NS-NS tuple (e; v; b; c; �;  ) 2 Conf(C;X ) is an element of the
con�guration space of the NS-NS supersymmetry constraint equations. A supersymmetric NS-
NS Cauchy tuple is a Cauchy tuple that satis�es the NS-NS supersymmetry constraint equations
given in (201).

We denote by:
Sol(C;X ) � Conf(C;X ) ;

the subspace of solutions of the NS-NS supersymmetry constraint equations. We have a canonical
map:

Q : Conf(C;X )! Confc(C;X ) ; (e; v; b; c; �;  ) 7! (he;�ev; b; c; �;  ) ;

where as usual:

he = eu 
 eu + el 
 el + en 
 en ; �ev = eu � vu + el � vl + en � vn

We will denote by Qs : Sol(C;X )! Confc(C;X ) the restriction of Q to the solutions of the NS-NS
supersymmetry constraint equations. These maps relate the initial data of the NS-NS equations
and the NS-NS supersymmetry conditions and lead to a rich interplay which, to the best of our
knowledge, has not been studied systematically in the literature.

Definition 5.22. An element (h;�; b; c; �;  ) 2 Confc(C;X ) is supersymmetric if it belongs to the
image of Qs : Sol(C;X ) ! Confc(C;X ). If in addition (h;�; b; c; �;  ) 2 Solc(C;X ), namely it is
also a solution of the NS-NS constraint equations then (h;�; b; c; �;  ) is aNS-NS supersymmetric
initial data.

As a direct consequence of Theorem 5.18, we obtain the following result.

Corollary 5.23. A three-manifold � is the Cauchy hypersurface of a NS-NS supersymmetric
solution only if it admits a pair (C;X ) and a Cauchy NS-NS tuple (e; v; b; c; �;  ) 2 Conf(C;X )
satisfying the following di�erential system:

eu( ) + �ev(eu; eu) � 1
2fb = 0

(rh�c)(eu) = 0 ; c(eu) = 0 ; eu ^ (d�fb � fb�ev(eu)) = 0

where e = (eu; el; en).

This corollary is only the starting point of the study of the initial conditions to both the NS-NS
evolution �ow and its supersymmetric counterpart, which we hope can lead to exciting new math-
ematical results and applications to the di�erential geometry and topology of three-dimensional
Riemannian manifolds.





APPENDIX A

Abelian bundle gerbes

Let M be an oriented manifold. The notion of abelian U(1) gerbe [186], or abelian gerbe
for short, on a manifold M appears as one of the cases in the hierarchy of geometric realiza-
tions of the singular cohomology groups of M . A geometric realization of a singular cohomology
group Hk(M;Z) is, roughly speaking, a possibly higher category whose objects, modulo one-
isomorphisms, are in natural bijection with Hk(M;Z). The interest in �nding these geometric
realizations steams, among other reasons, from the fact that a geometric realization of a class in
Hk(M;Z) generally has a rich higher groupoid of symmetries which is lost when descending to
cohomology. This higher groupoid of symmetries plays a fundamental role in mathematical gauge
theory. The �rst steps in the geometric realization of singular cohomology are well-known:

� H0(M;Z) is in bijection with the Z-valued continuous functions on M . Indeed, on every con-
nected component of M , the set of continuous functions into Z is in bijection with Z and hence
we obtain as many copies of Z as connected components of M , as expected.

� H1(M;Z) is in bijection with the U(1)-valued smooth functions on M modulo homotopy. In-
deed, by Brown's representability theorem, we haveH1(M;Z) = [M;K(1;Z)], where [M;K(1;Z)]
are the the homotopy classes of maps from M to the Eilenberg-McLane space K(1;Z) = S1.

� H2(M;Z) is in bijection with the set of U(1)-bundles on M modulo based isomorphism of
principal bundles. This is a celebrated result that is extensively used throughout mathematics
and theoretical physics.

The next step in this hierarchy, namely the geometric realization of H3(M;Z), is where we en-
counter the notion of Abelian gerbe and the �rst instance of what is usually referred to as higher
geometry [14] in the literature. There are various variations on the notion of abelian gerbe, in this
dissertation, we consider abelian gerbes as introduced by Murray in [186]. These are commonly
called bundle gerbes in the literature. Before introducing them, let's recall some basic notions of
the theory of simplicial manifolds and simplicial line bundles. First, remember that the simplex
category � is the category whose objects are �nite ordinal sets, usually denoted by [0] = f0g,
[1] = f0; 1g, [2] = f0; 1; 2g and so on, and whose morphisms are order-preserving maps.

Definition 0.1. Let C be a category. A simplicial object in C is a contravariant functor from
� to C.

A morphism between two simplicial objects is a natural transformation between their correspond-
ing functors. Let Man denote the category of smooth manifolds and smooth maps.

Definition 0.2. A simplicial manifold is a simplicial object on Man.

Unraveling the de�nition of simplicial manifold as contravariant functor X : �! Man, it follows
that a simplicial manifold X : � ! Man can be equivalently de�ned as a sequence of manifolds
X� := fXigi2N given by:

Xi := X([i]) ; [i] 2 Ob(�) ; i 2 N

together with smooth maps �(o) : Xj ! Xi for every arrow o : [i] ! [j] in � satisfying the
compatibility condition:

�(o2)�(o1) = �(o1 � o2)
153
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for every pair of composable arrows o1 and o2 in �. It is well-known that every such smooth map
�(o) : Xj ! Xi can be written as a composition of collections of smooth maps:

di : Xn ! Xn�1 ; si : Xn ! Xn+1 ; n 2 N ; i = 0; : : : ; n

satisfying, for each 0 � i � n, the following identities:

didj = dj�1di ; disj = sj�1di ; i < j

djsj = dj+1sj = Id

disj = sjdj�1 ; i > j + 1

sisj = sj+1si ; i � j

The functions di : Xn ! Xn�1 are commonly called the degeneracy maps whereas the functions
si : Xn ! Xn+1 are commonly referred to as the face maps. In this context a morphism of
simplicial manifolds X� ! Y� consists of a sequence of maps Xj ! Yj that commute with the face
and degeneracy maps. Canonically associated to any simplicial manifold X�, there is a bicomplex�

i(Xj)

	
i;j2N with di�erentials:

Di;j : 

i(Xj)! 
i+1(Xj)� 
i(Xj+1) ; � 7! (�1)jd�� ��

where d: 
i(Xj)! 
i+1(Xj) is the standard exterior derivative on Xj and:

� : 
i(Xj)! 
i(Xj+1) ; � 7! �� =

j+1X
k=0

(�1)kd�k�

These di�erentials combine into a total di�erential:

D :
M

p+q=r


p(Xq)!
M

p+q=r+1


p(Xq)

The cohomology of this complex is by de�nition the simplicial de Rham cohomology of X�. Let
fXigi2N be a simplicial manifold and let P ! Xj be a principal U(1) bundle for some �xed j � 0.
We de�ne a new principal U(1) bundle �(P)! Xj+1 on Xj+1 by:

�(P) =
jM

k=0

d�k(P)(�1)
k

It follows that �2(P) is canonically trivial for every U(1) bundle P. We will denote the canonical
trivializing section of �2(P) by 1 2 �(�2(P)).
Definition 0.3. A simplicial line bundle over X� is a pair (P; �) consisting of a U(1) bundle
P ! X1 and a section � 2 �(�P) such that �(�) = 1 2 �(�2(P)).
Definition 0.4. A bundle gerbe on M is a pair (P; Y ) consisting of a submersion Y !M and a
simplicial line bundle P on the shifted simplicial manifold Y [�+1] generated by Y !M .

Here Y [�+ 1] is the simplicial manifold given by the sequence of manifolds:

Yi = Y [i+1] ; i 2 N

where Y [i+1] is the (i+1)-fold �bered product of Y !M with itself. Hence, if (P; Y ) is a bundle
gerbe then P ! Y [2] is a U(1) bundle on Y [2]. By de�nition, we have:

�(y1; y2; y3) 2 P(y2;y3) 
 P�(y1;y3) 
 P(y1;y2)
for every y1; y2; y3 2 Y , where the subscript in P denotes restriction to the given point in Y [2].
Since P is a U(1) bundle, it follows that there exists a bundle morphism:

� : P(y1;y2) 
 P(y2;y3) ! P(y1;y3)
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such that:
�(y1; y2; y3) = z1 
 �(z1; z2)
 z2 2 P(y2;y3) 
 P�(y1;y3) 
 P(y1;y2)

for every y1; y2; y3 2 Y . The bundle morphism � : P(y1;y2) 
 P(y2;y3) ! P(y1;y3) is the gerbe

multiplication, which satis�es an associativity condition over Y [4] as a consequence of �(�) = 1.
These remarks show that bundle gerbes can be equivalently de�ned as follows.

Definition 0.5. An abelian bundle gerbe on M is a triple (P; Y; �) consisting of:

� A surjective submersion Y !M .

� A U(1) bundle P ! Y [2] de�ned over the �bered product Y [2] = Y �M Y of Y !M with itself.

� An isomorphism � : ��12P 
 ��13P ! ��13P of principal U(1) bundles over Y [3] = Y �M Y �M Y
such that the following diagram of isomorphisms:

��12P 
 ��23P 
 ��34P ��13P 
 ��34P

��12P 
 ��24P ��14P

��123�
Id

Id
��234� ��134�

��124�

is commutative over Y [4] = Y �M Y �M Y �M Y . Here, the map:

�ij : Y
[3] ! Y [2]

with 1 � i; j � 3 is the map that omits the factor in Y [3] di�erent from i and j.

The last condition in the previous de�nition ensures the associativity of the isomorphism �. In
the main text of the dissertation the symbol � in the triple (P; Y; �) is omitted for ease of notation.

Definition 0.6. A connective structure on an abelian bundle gerbe (P; Y; �) is a connection A
on P preserved by the isomorphism � : ��12P 
 ��13P ! ��13P.
That is, a connective structure A on (P; Y; �) induces connections on ��12P, ��23P and ��13P that
are preserved by �.

Definition 0.7. A curving on an abelian bundle gerbe with connective structure (P; Y; �;A) is
a two-form b 2 
2(Y ) such that:

FA = ��2b� ��1b
as an equation of two-forms de�ned on Y [2], where FA is the curvature of A.
Since FA is a closed two-form on Y [2], applying the exterior derivative to the previous equation
we obtain:

��2db = ��1db

This implies that there exists a unique three-form H 2 
3(M) on M satisfying:

db = ��H

This three-form is necessarily closed and is called the curvature of b.
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