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Abstract

Wireless communication can be divided into three stages: Device discovery, con-
nection establishment and data transfer. In the first stage, device discovery, the
communicating parties have to be made aware of each other’s presence. In the
subsequent initialisation of the connection, the parties exchange communication pa-
rameters, for instance to provide data encryption or authentication. Upon finalisation
of this stage, data can be exchanged.

From a security research perspective, each of these stages exhibit their own specific
pitfalls: In device discovery, maintaining the anonymity and privacy of the device
bearer is crucial. This ensures that albeit devices are mobile and capable of commu-
nication, they are not misused for tracking or tracing of their users. This is explored
by using probe requests as an exemplary technology: Probe requests are packets
transmitted by Wi-Fi capable devices to identify known Wi-Fi networks within
proximity. When probe requests were first implemented as a means of device dis-
covery, they typically contained the Universally Administered Address (UAA) – the
hardcoded Media Access Control (MAC) address – of the sender, and additionally
often a whole list of known Service Set Identifiers (SSIDs). Both attributes allow for
trivial device fingerprinting, and therefore both tracking and tracing of their users.
While privacy preserving techniques subsequently introduced safeguarded their
user’s privacy more efficiently, probe requests still contain enough information to
enable attackers to track their user’s devices. This dissertation discusses four means
of protecting user privacy in the phase of device discovery, the latter three of which
were newly devised in the context of this dissertation: The first suggests to cease the
use of active discovery, relying on improved passive discovery instead. The latter
concern firstly, the reduction of probe requests content, in order to unify them in
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their appearance and inhibit tracking. Secondly, the use of a generic MAC address
for probing instead of inadequately implemented randomisation schemes to prevent
information inference via the MAC address. And thirdly, a hash-based scheme for
covert SSID transmission that would enable the privacy-friendly probing for hidden
networks.

The second stage, connection establishment, is a particularly vulnerable stage from a
security perspective, since key material is exchanged for the subsequent data transfer.
If the keys are compromised, all subsequent communication can be decrypted by
the attacker, and possibly even forged. This is explored using the example of public
Wi-Fi networks and their susceptibility to passive and active attacks, and the use
of a Virtual Private Network (VPN) to protect users in such insecure environments.
With the help of a VPN, both metadata as well as the content of the communication
can be protected from eavesdropping and modifications. But during connection
establishment, particularly in public Wi-Fi networks, VPNs can exhibit undesired
behaviour: One is the leakage of data during VPN tunnel establishment. The other
is the possible inability to use a VPN in a public network containing a captive
portal, resulting in a captive deadlock: A VPN application attempting to connect
to its dedicated servers, but not programmed to allow for captive portal detection
can leave their users caught in a captive portal, in which neither captive portal
remediation is possible, nor connection establishment with the VPN servers. For
this problem, this dissertation provides a solution that enables privacy-friendly
and leakage-free use of VPNs in public Wi-Fi networks by proposing a scheme for
selective VPN bypassing to mitigate captive deadlocks.

In the stage of data transfer, the authenticity and integrity of the transmitted mes-
sages is of particular importance. This is explored using the Automatic Dependant
Surveillance-Broadcast (ADS-B) protocol as an example, a broadcasting system
for aircraft, featuring neither encryption nor integrity protection or authentication.
Therefore, ADS-B messages are neither protected from eavesdroppers nor from at-
tackers injecting own messages into the system. To mitigate this, various approaches
can be used, ranging from retrofitted cryptographic protection to radiometric finger-
printing or origin verification. This thesis explores the applicability of the distinct
approaches and introduces an additional one: LoVe, a Location Verification scheme
using distributed public sensors.

Using the three protocols as case studies, this dissertation explores the challenges
and pitfalls wireless protocols can present, and mitigations and countermeasures
that can enhance the security and privacy of their users.
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Zusammenfassung

Drahtlose Kommunikation kann in drei Phasen eingeteilt werden: Geräteerken-
nung, Verbindungsaufbau und Datenübertragung. In der ersten Phase müssen die
kommunizierenden Parteien einander finden. Im anschließenden Verbindungsauf-
bau tauschen die Parteien Kommunikationsparameter aus, um beispielsweise Ver-
schlüsselung, Authentifizierung oder Integritätsüberprüfung zu ermöglichen. Nach
Abschluss dieser Phase können Daten übertragen werden.

Aus der Perspektive der Sicherheitsforschung weist jede dieser Phasen ihre eigenen
Fallstricke auf: Während der Geräteerkennung ist die Wahrung der Anonymität und
Privatsphäre entscheidend, um sicherzugehen, dass die mobilen Geräte nicht zum
Tracking ihrer Nutzer:innen verwendet werden. Dies wird anhand von Probe Re-
quests untersucht: Probe Requests sind Pakete, die WLAN-fähige Geräte übermitteln,
um bekannte WLAN-Netzwerke in Reichweite zu identifizieren. Die erste Gener-
ation von Probe Requests propagierte oftmals die Universally Administered Ad-
dress (UAA) – die hardgecodete Media Access Control (MAC)-Adresse des WLAN-
Harewaremoduls des mobilen Gerätes – und oft auch eine Liste bekannter Service
Set Identifier (SSID). Beide Attribute ermöglichen ein einfaches Fingerprinting von
Geräten und somit auch das Tracking und Tracing ihrer Nutzer:innen. Obwohl
später eingeführte Techniken die Privatsphäre weniger stark kompromittieren, en-
thalten Probe Requests nach wie vor ausreichend Informationen, um Angreifer:innen
das Tracking zu ermöglichen. Diese Dissertation diskutiert vier Möglichkeiten zum
Schutz der Privatsphäre der Nutzer:innen in der Phase der Geräteerkennung, von de-
nen die letzten drei im Rahmen dieser Dissertation neu entwickelt wurden: Die erste
betrifft die Nutzung von Passive Discovery anstelle von Active Discovery, dabei wird
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auf die Übertragung von Probe Requests verzichtet und stattdessen Geräteerken-
nung ausgehend vom Access Point (AP) betrieben. Die anderen drei betreffen erstens
die Reduzierung des Inhalts von Probe Requests, um sie zu vereinheitlichen und das
Tracking zu erschweren. Zweitens wird die Verwendung einer generischen MAC-
Adresse während der Geräteerkennung anstelle von ungenügend implementierten
Randomisierungsschemata erforscht, um die Möglichkeit des Informationsgewinns
über die MAC-Adresse zu reduzieren. Der dritte Ansatz führt ein hashbasiertes
Schema für die verdeckte Übertragung von SSIDs ein. Dies ermöglicht die daten-
schutzfreundliche Erkennung versteckter Netzwerke.

Die zweite Phase, der Verbindungsaufbau, ist aus der Sicherheitsperspektive eine
besonders vulnerable Phase, da in dieser Phase das Schlüsselmaterial für die an-
schließende Datenübertragung ausgetauscht wird. Im Fall der Schlüsselkompro-
mittierung kann die gesamte nachfolgende Kommunikation von Angreifenden
entschlüsselt und möglicherweise sogar gefälscht werden. Dies wird am Beispiel
von öffentlichen WLAN-Netzen und deren Anfälligkeit für passive und aktive An-
griffe und der Verwendung eines Virtual Private Network (VPN) zum Schutz der
Nutzer:innen untersucht. Mit Hilfe eines VPNs können sowohl Metadaten als auch
der Inhalt der Kommunikation vor dem Abhören und der Modifikation geschützt
werden. Speziell in öffentlichen WLAN-Netzen kann während des Verbindungsauf-
baus unerwünschtes Verhalten auftreten. Einerseits existiert die Möglichkeit von
Datenlecks während des VPN-Tunnelaufbaus. Andererseits verfügen viele VPN-
Applikationen nicht über Erkennungsmöglichkeiten von Captive Portals, welche
häufig in öffentlichen Netzen anzutreffen sind. Das kann zu einem Captive Dead-
lock führen: Eine VPN-Anwendung, die versucht, eine Verbindung zu ihren dedi-
zierten Servern herzustellen, aber nicht über Captive Portal-Erkennung verfügt,
kann ihre Benutzer:innen im Captive Portal gefangen halten, in dem weder die
Bedingungen des Captive Portal erfüllt werden, noch ein Verbindungsaufbau mit
den VPN-Servern möglich ist. Diese Dissertation löst dieses Problem, indem sie
eine datenschutzfreundliche und datenleckfreie Nutzung von VPNs in öffentlichen
WLAN-Netzen vorschlägt, bei der selektiv nur die für die Captive Portal-Auflösung
relevante Datenübertragung erlaubt wird.

In der dritten Phase, der Datenübertragung, sind die Integrität und Authentizität der
übermittelten Nachrichten besonders relevant. Dies wird am Beispiel des Automatic
Dependant Surveillance-Broadcast (ADS-B)-Protokolls untersucht, einem Nachricht-
enübermittlungssystem für Flugzeuge, das weder Verschlüsselung noch Integritätss-
chutz oder Authentifizierung bietet. Die unverschlüsselten ADS-B-Nachrichten
können deswegen mitgeschnitten werden, und der mangelnde Schutz der Integrität
und Authentizität ermöglicht es Angreifer:innen zusätzlich, eigene Nachrichten in
das System einzufügen. Um dies zu verhindern, können verschiedene Ansätze ver-
wendet werden: Auf der einen Seite können kryptographische Schutzmaßnahmen
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nachgerüstet werden, auf der anderen Seite Fingerabdrücke des Funksignals genom-
men oder der Signalursprung verifiziert werden. Diese Dissertation untersucht die
Anwendbarkeit der verschiedenen existierenden Ansätze. Zusätzlich führt sie einen
weiteren Ansatz ein: LoVe (Location Verification), ein Protokoll zur Verifikation
des Signalursprungs, das mithilfe von crowdsourced Sensoren eine Datenbasis zum
Abgleich neu eingepflegter Daten erstellt.

Anhand dieser drei Beispiele untersucht diese Dissertation typische Herausforderun-
gen und Probleme drahtloser Kommunikation. Diese werden als Grundlage genom-
men, um Maßnahmen zur Verbesserung der Sicherheit und Privatsphäre zu präsen-
tieren, zu implementieren und zu evaluieren.

7





Acknowledgements

This dissertation is the result of my employment at the working group for Security
in Distributed Systems (Sicherheit in verteilten Systemen, SVS) at the University
of Hamburg between 2019 and 2024. The journey has been very educational and
rewarding, and also fun, emotional, exciting, lovely, and an enrichment to my life. I
would like to take this opportunity to thank express my gratitude to a few people
who have accompanied and supported me throughout this journey.

Firstly, I would like to thank Hannes Federrath for giving me the opportunity to
write my doctor thesis under his supervision and supporting me in my endeavours.
Thanks also to Mathias Fischer for his encouraging ways, and fascinating insights
into all sorts of topics. Also, I’d like to extend my gratitude to Janik Edinger. I hope
our paths will cross again!

A gigantic hug and a THANK YOU! to Joshua Stock, Matthias Marx, Christian
Burkert, Anne Kunstmann, Monina Schwarz and Tom Petersen who made work so
much nicer and always had time for tea (or coffee, or Mate, or Tschunk, or beer). It is
wonderful to have you as friends. And it’s also thanks to you that the difficult parts
of this journey were manageable.

I had the chance to work on publications with fantastic people while writing this
thesis, all of whom I’d like to express my gratitude to. First, there is Christian Burkert,
who took me along on paper-journeys and gave me the confidence to do the same.
Alessandro Brighente, who was always ready for the next paper and had brilliant
ideas on how to improve it. Whoever said that spending time on the playground
is not productive was proven wrong: A big thank you to Willi Großmann for the
inspiring conversations, exciting insights and great results in between building

9



sandcastles. To Monina Schwarz for endless brainstorming sessions on entirely
different topics. And a big thanks also to Anne Kunstmann, Joshua Stock, Niklas
Zapatka and Daniel Demmler who were always willing to spend the extra hour. And
to Ida Bruhns: Our paper never made it out there, but working on it with you was
truly a pleasure. I hope our friendship lasts forever.

All the other colleagues at SVS and NET, whom I’ve met over the years include Stefan
Bavendiek (whose WLAN is very trackable ;-) ), Max Blochberger (yay martial arts!),
Heiko Bornholdt, Cornelia Brülhart (with whom I could discuss tattoo ideas forever),
Eleftherios Eleftheriadis, Doganalp Ergenç (of whose jokes I never tire), Jeetesh
Gupta, Steffen Haas, Malte Hamann, Dominik Herrmann, Maya Herrscher, David
Jost (I still can’t believe we can not agree on a single song), Liliana Kistenmacher,
Kevin Köster, Majd Latah, Jens Lindemann, Sadaf Momeni, Tobias Mueller (one
day I’ll make it to one of your legendary parties!), Henning Pridöhl, Kevin Röbert,
Janik Noel Schug, August See (best travel buddy when you go to Edinburgh, would
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1
Introduction

Ever since wireless communication technologies have emerged, more and more
additional protocols enabled connections for mobile devices. The protocols are
manifold and all serve different purposes, and the applications and necessities per
protocol and device vary. Wireless communication can be grouped into the following
key phases:

• Device Discovery

• Connection Establishment

• Data Transfer

• Connection Termination

A secure protocol design for each of these phases bears different challenges and
pitfalls, with the exception of connection termination, which is considerably less
security relevant and will therefore be omitted in this dissertation. Device discovery,
connection establishment and data transfer, on the other hand, are particularly
interesting with respect to their security and privacy guarantees. The focus of this
dissertation is therefore a technical examination of each phase, illustrated using
specific use cases: Device discovery in Wi-Fi networks, connection establishment
during the use of a Virtual Private Network (VPN) and data transfer in the Automatic
Dependant Surveillance-Broadcast (ADS-B) protocol.

Device discovery is the process of two wirelessly communicating parties identifying
each other. In mobile communication, this entails announcements from either of
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the parties. If the announcements are made via a stationary party, in the case of
Wi-Fi communication an Access Point (AP), only the existence of the AP is revealed,
which typically does not entail significant privacy implications. However, if the
announcing party is the mobile device, its movements – and consequently its user’s
movements – might be disclosed due to the announcements. In Wi-Fi communication,
the two possible sending parties define whether the protocol is denounced active
or passive: Passive discovery is the act of APs transmitting beacons, which serve to
announce a network’s presence and Service Set Identifier (SSID). Mobile devices
capturing these beacons to detect nearby known networks compare the announced
SSIDs with their list of known networks, the Preferred Network List (PNL). In case
they identify a matching SSID, they can initiate connection establishment. Active
discovery, on the other hand, entails the mobile device transmitting probe requests
to discover known networks. APs receiving a probe request respond with a probe
response, containing their SSID. The first generations of mobile devices performing
active discovery transmitted probe requests using their hardware Media Access
Control (MAC) address, an unchanging identifier permanently tied to their wireless
network interface card. Additionally, they often contained a list of known networks,
with each successive probe request transmitted querying for a different SSID. The
transmission of SSIDs is not only a poor policy in terms of data protection, but also
serves as a fingerprint of the device transmitting it. In conjunction with the hardware
MAC address, these first probe requests contained ideal unchanging identifiers that
facilitated device tracking and tracing [PS07; Fre15; Van+16]. Once manufacturers
became aware of the privacy implications of active discovery via probe requests,
they started omitting the SSID unless querying for a hidden network, and employed
MAC address randomisation to remove the unchanging identifier [Aar14; And23].
But nevertheless, tracking devices via the information contained within the probe
request, namely the field called Information Element (IE), remains possible [Rob+17;
Zha+19; DPČ19; Gu+20; Ura+20; TC21; PA22; HTC23]. Chapter 3 therefore explores
ways to improve device discovery in Wi-Fi networks, introducing and discussing
methods to increase user privacy while maintaining functionality.

The second stage of communication, connection establishment, exhibits other chal-
lenges: Here, encryption keys are exchanged and the communicating parties authen-
ticated. If an attacker succeeds in compromising this phase, all security guarantees
regarding the subsequent data exchange are void. The challenges and pitfalls arising
during connection establishment are illustrated using the example of VPNs in public
Wi-Fi networks: Public Wi-Fi networks are a convenient means of obtaining internet
connectivity on the go. However, it is possible for the Wi-Fi operators to monitor all
traffic. Depending on the protection scheme used, the monitored traffic can even be
unencrypted, or the key exchange or encryption scheme one such that it is possible
to retrieve the key and decrypt all subsequent communication [TB09; VP17; Dar]. To
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introduce their own layer of security, users can employ a VPN client, which encrypts
all traffic and transmits it via VPN servers. This way, both the metadata as well as the
content of the traffic is protected from eavesdropping. But the use of a VPN can also
lead to a false sense of security. Particularly during connection establishment, traffic
leakage is likely to occur [Kha+18; Ikr+16]. Additionally, when used in conjunction
with public Wi-Fi networks, VPNs can interfere with the detection of captive portals,
as will be shown in Chapter 4. In such a case, the VPN can prohibit access to a
captive portal, which is necessary to gain internet access. Simultaneously, the captive
portal continues to block internet access, preventing the VPN from establishing a
connection. In such a deadlock situation, applications on the mobile device might
already attempt to transmit data, expecting the established Wi-Fi connection to work,
causing traffic leakage outside the not-yet-established VPN tunnel. This is unaccept-
able since the use case of privacy-friendly surfing relies on all traffic being tunnelled
via the VPN servers. As this dissertation will show, leakage occurring during the use
of VPNs often has its root in the phase of connection establishment. Designing VPNs
in a way that they fulfil their full functionality and are able to provide all privacy
guarantees is therefore fundamental.

Subsequent to connection establishment, data can be transferred. As was previously
stated, data leakage during connection establishment has implications on the whole
subsequent connection. This dissertation regards a special case of data transfer,
which does not rely on successful connection establishment or prior key exchange:
Unencrypted and unsigned broadcast communication, using the example of the ADS-
B protocol. ADS-B is a messaging system in which aircraft transmit their positional
data and identifier, among other things, every 0.5 seconds [SLM15a]. There are two
positioning systems for aircraft surveillance: The Primary Surveillance Radar (PSR)
and the Secondary Surveillance Radar (SSR). The main positioning system is the PSR,
which uses conventional radar technology. ADS-B is part of the SSR, and therefore
used as a secondary source of information for real-time air monitoring. However, its
air-to-ground range, covering up to 370 km [Sca02], makes it the ideal protocol and
often the only source of positioning data in remote, sparsely populated areas, over
oceans, and in difficult terrain. The ADS-B protocol contains no means of content or
integrity protection, making it possible to eavesdrop on the communication even
with Commercial Off-The-Shelf (COTS) equipment. The lack of confidentiality allows
for public data collection, enabling providers like the OpenSkyNetwork [Sch+14]
to collect ADS-B data via distributed public sensors and provide it for personal or
scientific research. The lack of integrity, on the other hand, allows attackers to inject
their own messages into the system, to modify copies of messages transmitted by
other aircraft, delete messages and attack the system via GPS attacks (cf. Section 5.1).
Since this can have real-life implications, from disruptions in the surveillance system
to potential collisions [CF12; Gre12; RK17], it is crucial to identify means of verifying
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the authenticity of these messages. In Chapter 5, existing strategies to verify signal
integrity and authenticity are discussed, and a new one – LoVe, Location Verification
using distributed sensors – is introduced.

The subsequent chapters of this dissertation will explore the three main stages of
wireless communication from two perspectives – that of the attacker attempting to
glean information from each protocol, abusing existing vulnerabilities, and that of
the defender striving to protect the content and user privacy.

The remainder of this chapter is structured as follows: In the subsequent Section 1.1,
the problem statement is summarised. Section 1.2 presents the research questions
that this dissertation strives to answer, and the methodology employed to answer
them. Thereafter, the contributions of this dissertation are summarised in Section 1.3.
Lastly, the structure of the dissertation is explained in Section 1.4.

1.1 Problem Statement

When considering wireless communication protocols, one would assume that in
their initial design, the question of how to implement the protocol in the most
privacy-preserving and secure way would be addressed at a very early stage and
treated with utmost importance. In reality, however, security and privacy are often
not considered in the initial protocol design. Probe requests and the ADS-B protocol
are the perfect examples for this: In their initial design, probe requests were trans-
mitted containing the real MAC address of the sender device and often also a list
of known SSIDs. The privacy implications of this protocol design were such that
mobile devices could be trivially tracked via their probe requests. Mobile devices
have a comparatively short lifecycle, and changes to the protocol would intuitively
have a rapid impact in the real world. On the other hand, the installation of the
transponders transmitting ADS-B signals is mandatory for a significant number of
aircraft, and modifications on such a mandated installation are significantly more
difficult to execute. The ADS-B protocol can therefore not easily change over time.
Instead, such a long-lived protocol has to be designed to be usable over a long
period of time and can not be easily modified in case of problems. Therefore, the
realisation that the ADS-B protocol does not contain any mechanisms for encryption
or authentication did not result in protocol changes. Instead, it remains easy for
attackers to inject their own messages into the system.

The example of the use of VPNs for encrypted data transfer showcases another
problem: Even if the protocol design, and sometimes even the documentation, state
that the security measures implemented in the application are sufficient to protect
user data and privacy, flaws in the implementation can cause leakage. In such a case,
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the theoretical security guarantees provided by the use of a VPN are not met in
practice. If additionally used to safeguard against eavesdroppers in a public Wi-Fi
network, leaking VPN implementations can have significant privacy implications
for their users.

The questions this dissertation strives to answer are:

• Which are the pitfalls of each communication phase?

• How can security considerations be taken into account from the very begin-
ning?

• And in case protocol modifications are impossible, how can security measures
be retrofitted nevertheless?

The use cases for each stage are carefully chosen to be representative and wide-
spread: Most mobile devices nowadays are Wi-Fi capable, making Wi-Fi networks
and their secure use a relevant focus. Active discovery (cf. Section 2.1.4) is the
predominantly used mechanism for device discovery in Wi-Fi networks, which
underscores its importance. An examination of probe requests as a representative
protocol for the stage of device discovery therefore reflects the practical realities of
network environments.

The same applies to the use of VPNs in public Wi-Fi networks: As will be shown in
Section 4.2, connection establishment in public Wi-Fi networks can be compromised
in many ways, and VPNs are advertised to protect all user traffic, even in poorly
protected networks. This is a strong promise, and failure to comply can have serious
ramifications. Connection establishment in VPNs in public Wi-Fi networks is there-
fore a representative example of the importance of hardened implementations that
prevent data leaks and secure the communication process.

ADS-B is a protocol used worldwide, mandated by European and US-American air
regulation agencies, and current deployment around 97 % (cf. Section 2.4). However,
it is used in an entirely different context: as part of the SSR, it transmits the loca-
tion, altitude and direction the aircraft is heading to at regular intervals. While the
PSR using conventional radar technology remains the primary source of location
information near ground towers, ADS-B is often the only source of information in
sparsely populated areas and in difficult terrain. It’s reliability is, therefore, crucial.
Despite its critical role, ADS-B was developed without any means of integrity pro-
tection or authentication. This makes it a prime example of an insecure protocol in
widespread use, and to demonstrate how security mechanisms can be retrofitted
retroactively.

In the following, the research questions specifying these topics in more detail are
introduced.
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1.2 Research Questions and Research Methodology

This dissertation addresses four guiding research questions which are particularly
interesting in the context of the problems previously discussed. Questions 1 con-
cerns the security challenges in the stage of device discovery, focusing on privacy-
preserving active discovery. Question 2 addresses pitfalls arising in the stage of
connection establishment. While the main focus of question 3 is retrofitting security
mechanisms in the stage of data transfer, it is additionally extended to regard the
two other communication phases as well. Question 4 attempts to emphasise the
broad picture of all wireless connections and strives to investigate the effectiveness
of knowledge transfer from previous protocol versions to current ones.

1.2.1 Research Question 1: Privacy-Friendly Device Discovery

How can device discovery be performed in a privacy-friendly manner? What modifications
have to be employed in current protocols to improve the state of the art?

The first protocols to implement active discovery in mobile devices constructed a
discovery mechanism that could not only be used to discover access points, but also
to trivially track devices via unchanging identifiers such as the real hardware MAC
address or known SSIDs. While latter protocol versions contain less unchanging
identifiers, probe requests still contain plenty of information to facilitate tracking.
Chapter 3 of this dissertation therefore attempts to answer the question of how to
approach the topic of device discovery differently, and how a privacy-preserving
way of performing active discovery can be implemented.

To answer this research question, a systematic analysis of existing threats and
mitigations is performed. Both scientific literature as well as standardisation docu-
mentation are analysed and evaluated in detail. A field study provides an overview
over the state of active discovery in a real-world scenario. Its evaluation shows a
significant amount of sensitive data in the transmitted SSIDs. Both these findings, as
well as a comprehensive review of existing attacks result in several proposals for
protocol modification and improvement to provide more privacy friendly active
discovery.
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1.2.2 Research Question 2: Challenges of Connection
Establishment

What pitfalls can endanger the phase of connection establishment? How can they be overcome
while preserving the functionality?

Using public Wi-Fi networks is dangerous from a data security and privacy perspec-
tive, since attackers residing within an unprotected network can trivially monitor
traffic. Chapter 4 first explores the attacks that are possible particularly during con-
nection establishment to differently protected networks. To nevertheless use public
Wi-Fi networks, but simultaneously preserve data security and privacy, users can
introduce an additional layer of security by using a VPN. In this context, Chapter 4
explores the pitfalls this entails, particularly when used in conjunction with the use
of public Wi-Fi networks. The chapter additionally provides mitigations for the safer
use of VPNs in public Wi-Fi networks.

This research question is answered by first performing a systematic review on the
threats to the use of public Wi-Fi networks. Subsequently, a documentation analysis
on the status quo of native VPN APIs is performed. An experimental analysis then
verifies or disproves the documented capabilities and provides an overview over
the capabilities of commercial VPN clients. A protocol proposal then introduces an
improved technique for captive deadlock mitigation and reduced leakage during
VPN bootstrapping.

1.2.3 Research Question 3: Retrofitted Security

How can security measures be retrofitted into protocols, and secondly, if protocol changes
are impossible, what other means of securing the communication and its authenticity can be
made? What means can be used to protect unencrypted and unauthenticated data transfer
from modifications? How can modifications be detected in a protocol lacking integrity
protection?

On one hand, this thesis regards protocols that are in use on rather short-lived
devices: Probe requests, for example, are continuously transmitted by mobile devices
like smart phones. These typically have a support span of a maximum of six years,
but are often already replaced after less than six years. Protocol changes on such short-
lived devices tend to have a visible effect within a short period of time, particularly
if the protocol features the use of non-standardised elements. Aircraft, on the other
hand, contain transponders to transmit ADS-B messages, and, unless they fail to
work, these are unlikely to be exchanged. The messages they transmit are highly
standardised since they have to be evaluated automatically by receiving devices, e.g.
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ground towers or ADS-B-In capable devices. While all main chapters focus on the
improvements that can be made within protocols and implementations, Chapter 5
regards amendments that can increase security and signal trust without requiring
protocol changes.

To answer this research question, a literature review of the techniques proposed
to increase and retrofit security in the absence of security mechanisms as in the
ADS-B protocol is performed. The approaches are systematised and evaluated with
respect to their applicability and effectiveness. Subsequently, an additional approach
is proposed, implemented and evaluated. Additionally, the security measures that
can be used to retrofit guarantees into the ADS-B protocol are compared to those
applicable in other contexts, like probe requests, the Wi-Fi standard in general and
VPN client implementations.

1.2.4 Research Question 4: Knowledge Transfer

Are the “lessons learned” from older protocols transferred to newer versions of the protocol,
and which elements are particularly critical?

The focus of this dissertation is to provide an overview of the security challenges
present in select protocols and the solutions used to reduce or mitigate their im-
pact. This question strives to answer whether and to what extent the knowledge
concerning problems detected in prior protocol versions is transferred to newer ver-
sions, and which problems are most likely to receive imminent notice and provoke
protocol changes. It is a question that recurs throughout the main chapters of this
dissertation.

With respect to probe requests, this research question is answered using a systematic
review of the privacy enhancing techniques employed within probe requests over the
years. A literature analysis on existing attacks and an analysis of the documentation
on the protection schemes of (public) Wi-Fi networks showcases the development
of both over time. With respect to ADS-B, a literature analysis reveals a significant
number of ideas for improved protection schemes, and that protocol modifications
are unlikely to occur. Instead, defence mechanisms not requiring protocol changes
are analysed and evaluated.

1.3 Contributions of this Dissertation

The contributions of this dissertation can be summarised as follows:
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C1. Analysis of privacy implications of SSIDs in probe requests and proposi-
tion of hash-based SSID transmission to increase user privacy during the
discovery of hidden networks. Scientific research on probe requests has so
far focussed on means of tracking users via elements contained within the
probe requests. This contribution, presented in Chapter 3, places a focus on
the privacy implications the transmitted SSIDs entail for their users: In a field
study presented in [McD+22], probe requests transmitted by mobile devices
were recorded over a period of three hours. The ensuing analysis revealed
that the SSIDs collected thereby contained a wealth of personal data, among
them first and last names of the device users and passwords. Additionally,
various spelling variations of the same string could be observed, increasing
the individual fingerprints. To propose a real-world solution, a hash-based
approach for covert SSID transmission was devised, in which the hash of the
SSID, with a salt consisting of the current randomised MAC address and the
sequence number of the packet, would be transmitted instead of the plaintext
SSID. Upon receiving such a covertly transmitted SSID, routers configured
to provide a hidden network could then hash their own SSID with the MAC
address and sequence number of the received packet, and compare it to the
received hash. The feasibility of this scheme was verified in terms of computa-
tional and bandwidth overhead. As many of the SSID transmissions are likely
to be caused by misconfiguration, this contribution additionally proposes user
interface modifications. These enhance device safety by safeguarding SSID
and hidden network entries, and introduce user controls to actively prevent
tracking via probe requests.

C2. Proposition of content reduced, generic probe requests. The general problem
of active discovery is its susceptibility to tracking: The Information Element
(IE) of probe requests often contains a unique combination of values which
enables device fingerprinting, and thereby user tracking and tracing. While
several scientific publications had so far suggested to reduce the IE content,
the implications of such a reduction on functionality, privacy and security
had never been analysed in depth. Such an analysis was therefore published
in [McD+24b], which is presented in Chapter 3: First, the minimum number
of fields required to maintain functionality was determined. Subsequently, it
could be shown that a reducing the content to the bare minimum has no adverse
impact on functionality, as the security parameters required for connection
establishment are actually transmitted in the subsequent probe responses
and association requests. Additionally, the pre-transmission of parameters
via probe request was shown to have no positive effect on the time required
for connection establishment, either. A subsequent analysis on the privacy
impact discovered that 82.55 % of the devices emitting probe request would
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share the same anonymity group, and would therefore be indistinguishable
from one another, if the content was reduced to the bare minimum. Lastly, it
could be shown that a content reduction to the bare minimum would render
all previously published attacks using IE fingerprinting infeasible.

C3. Proposition of the use of a generic MAC address. The absence of a stan-
dardised scheme for MAC address randomisation allows manufacturers to
implement it without guidelines to reduce information leakage. Therefore, mul-
tiple schemes emerged, among them 24-bit randomisation (cf. Section 2.1.3),
which leaks information on the manufacturer of the device. To propose an
alternative to the current standard of using a randomised MAC address for
probe requests, [McD+24a] explores the use of one generic MAC address over
all devices, which is herein presented in Chapter 3. The use of just one generic
MAC address over all devices would increase the anonymity set the probe
requests are contained within, and thereby allow single devices to be less distin-
guishable, and bursts of probe requests considerably more difficult to pinpoint
to individual devices. Additionally, it would impede information inference and
tracking via the Organisationally Unique Identifier (OUI) of the MAC address
when employing 24-bit randomisation, and would inhibit tracking devices
using other insufficient MAC address randomisation implementations. The
idea was implemented as a proof-of-concept and analysed both in terms of
scalability and in terms of comparability with MAC address randomisation.
The tests showed that its performance is comparable to MAC address randomi-
sation, and that it scales well in tests with up to five real-world devices running
the scheme.

C4. Analysis of leakage during VPN establishment in public Wi-Fi networks.
When using public Wi-Fi networks, security-conscious users employ a VPN
to introduce an additional layer of security, and protect both their meta data
as well as their content from being monitored from within the network. In
[Bur+21], which is presented in Chapter 4, data leakage occurring during the
connection establishment of a VPN client with its VPN servers is examined.
An analysis of various clients, both native and commercial, on different plat-
forms showed that all VPN providers exhibited some form of data leakage
during the VPN tunnel establishment. The publication additionally explored
the capability of VPN clients to establish a connection in networks employing
a captive portal, which is commonly used in public Wi-Fi networks to enforce
user consent with the terms of service. Most VPN applications tested in this ex-
periment exhibited insufficient captive portal detection, resulting in a deadlock,
where neither the captive portal could be remediated, nor the VPN connection
established: Out of 25 VPN applications tested in a captive network, only 9
successfully remediated the captive portal and established a VPN connection.
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To additionally provide guidelines for successful and leakage-free VPN connec-
tion establishment in captive networks, a selective VPN bypass was proposed:
Here, all data transfer during VPN connection establishment is reduced to the
bare minimum required for VPN establishment and captive portal remediation.
All traffic exceeding this bare minimum is blocked, and failure to connect at
any stage leads to a complete traffic block until the issue is manually resolved
by the user. Using this selective VPN bypass, both the traffic leakage typically
observed after unsuccessful VPN establishment, as well as the occurrence of a
deadlock situation can be circumvented.

C5. Proposition of a location verification scheme of ADS-B signals using dis-
tributed public sensors. ADS-B is a data transmission protocol that allows
aircraft to inform both ground towers as well as other aircraft of their ve-
locity, altitude, destination and current location. The protocol was, however,
designed without mechanisms to ensure signal integrity, authenticity or en-
cryption. Previous scientific attempts to verify signal integrity concentrated
on cryptographic protection mechanisms, signal fingerprinting or signal ori-
gin verification. LoVe, published in [McD+23] and presented in this thesis in
Chapter 5, extends the latter approach by exploring the possibility to verify the
accuracy of a transmitted location using previously recorded signals. Using a
geospacial hexagonal indexing system, a mask of legitimate sensor transmis-
sions was constructed. With this mask, subsequently received signals could
be verified with respect to their proclaimed location data. The approach can
make use of any distributed ADS-B sensor network, and was tested on data
stemming from Flightradar24 and the OpenSky network. Since it is neither de-
pendent on sensor density nor duplicate signals from multiple receivers, both
of which are a typical hindrance to previously published location verification
approaches, it is a ubiquitously usable, lightweight location verification tool.

In summary, the stages of device discovery, connection establishment and data
transfer are explored with respect to the challenges they present. The distinct stages
are analysed using different protocols as case studies to illustrate existing flaws. The
previously suggested approaches for mitigation are systematised and new solutions
proposed.

1.4 Structure of this Dissertation

This dissertation is structured as follows, as can also be observed in Fig. 1.1: Chap-
ter 2 provides a background on Wi-Fi networks and their inherent capabilities and
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Figure 1.1: An overview over the structure of this dissertation. The light green
boxes indicate the relevant publications per chapter.

requirements, VPNs, Captive Portals and the ADS-B protocol. Subsequently, Chap-
ter 3 showcases challenges and mitigations surrounding the use of probe requests for
active discovery in Wi-Fi networks. This chapter contains the results of contributions
C1, C2 and C3, and answers research questions 1 and 4. Chapter 4 then illustrates
the pitfalls arising during the connection establishment of VPN applications, partic-
ularly those arising during the use of public Wi-Fi networks. This chapter is based
on the results published in contribution C4, which addresses research questions 2
and 4. Afterwards, Chapter 5 uses the example of the ADS-B protocol to illustrate
security challenges when attempting to verify the authenticity of unencrypted and
unsigned broadcast messages. This chapter presents and enhances the results of
contribution C5 and addresses research questions 3 and 4. Afterwards, Chapter 6
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first discusses the results, presents an outlook on future work and concludes this
dissertation.
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2
Background

The main technologies considered in this thesis concern Wi-Fi networks and the
Automatic Dependant Surveillance-Broadcast (ADS-B) protocol. The following sec-
tions provide a background on both, with Wi-Fi introduced in Section 2.1, where
an overview is given of Media Access Control (MAC) addresses and MAC address
randomisation, as well as network discovery and connection establishment in Wi-
Fi networks. Section 2.2 then introduces the functionality of captive portals and
Section 2.3 provides a background on Virtual Private Network (VPN)s and their
use. Finally, the ADS-B protocol and its inherent privacy and security features are
introduced in Section 2.4.

2.1 Wi-Fi

This section presents the background required for Chapters 3 and 4. First, Sec-
tion 2.1.1 introduces specifics on MAC addresses. Active and passive methods of
network discovery are introduced in Section 2.1.2. Subsequently, MAC address ran-
domisation is covered in Section 2.1.3. Finally, Section 2.1.4 provides a background
on connection establishment in Wi-Fi networks.
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Figure 2.1: MAC Address format as specified in IEEE 802.11. Adapted from
[ZBA24].

2.1.1 MAC Addresses

A MAC address, as outlined in the IEEE 802.11 specification [IEE20], is a 48-bit
long network interface card identifier, required to differ between devices in wired
or wireless networks. Its primary function is to identify the senders and receivers
of frames transmitted on the data link layer. When two or more nodes within a
network share the same MAC address, it results in a MAC address collision. This
collision leads to an inability to distinguish affected nodes on the data link layer. A
frame intended for a specific destination may then be received by any node with the
colliding address.

The use of a Universally Administered Address (UAA) serves to prevent MAC
address collisions: Each device is assigned a globally unique and fixed UAA by its
manufacturer, the structure of which is also visualised in Fig. 2.1. The first three bytes
of the MAC address contain the Organisationally Unique Identifier (OUI), identifying
the manufacturer. The remaining three bytes, the Network Interface Controller (NIC)
specific identifier, is assigned by the device manufacturer. Whether a MAC address is
a globally unique UAA or a Locally Administered Address (LAA), is distinguished
by the U/L bit, the second-least significant bit of the most significant byte. The least
significant bit of the most significant byte of a MAC address contains the I/G bit. This
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(a) In passive discovery, access
points transmit beacons. Mo-
bile devices receiving a beacon
can initiate association.

(b) In active discovery, mobile devices transmit probe
requests, awaiting probe responses. These probe
requests are typically undirected, which means the
Service Set Identifier (SSID) field is empty.

Figure 2.2: A comparison of passive discovery and active discovery using undi-
rected probe requests.

bit differentiates between Individual (or unicast) and Group messages (multicast)
[IEE14].

The use of an LAA provides an alternative to the UAA in transmitted frames. How-
ever, when employing an LAA, manual enforcement of network-wide uniqueness
becomes necessary to avoid MAC address collisions. A widely-used example of the
use of an LAA is MAC address randomisation: Here, parts of the MAC address
or the whole address are randomised to inhibit tracking via an unchanging MAC
address. This is covered in more detail in Section 2.1.3.

2.1.2 Network Discovery

To establish a connection between an Access Point (AP) and a mobile device, two
different methods can be used: passive and active network discovery, as sketched
in Fig. 2.2. In passive discovery, shown in Fig. 2.2a, a router transmits beacons,
advertising its SSID, MAC address and other elements, e.g. supported cipher suites.
Beacons are transmitted every 102.4 ms [Goo+19], and upon recording a beacon,
devices can respond with a Wi-Fi association frame. Relying on passive discovery is
particularly privacy friendly, as only the AP is required to transmit information.
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Figure 2.3: A sketch of active discovery using directed probe requests: the SSID of
the known network is contained within the probe request, making it a directed
request. Only the network with the SSID responds with a probe response.

Active discovery, on the other hand, requires devices to actively transmit requests
for information on nearby APs, as can be observed in Fig. 2.2b. These requests are
called probe requests. A probe request containing the SSID of a known network is
called a directed probe request, and can also be observed in Fig. 2.3. The SSIDs of
known networks are stored within the so-called Preferred Network List (PNL) of
the device [WK18]. An undirected probe request instead contains an empty SSID
field.

Probe Requests are typically sent in bursts: A burst of packets denotes a number
of packets sent within a short period of time, and typically via multiple or all 14
channels that the 2.4 GHz spectrum comprises. Waltari et al. performed an analysis
of probing behaviour within a burst, the results of which can be observed in Fig. 2.4:
While the probing behaviour of a specific device exhibits certain characteristics,
no generalisation on the duration of a burst or the order in which the channels
are queried can be made. Depending on the device, bursts of probe requests are
additionally sent via the 5 GHz spectrum. When MAC address randomisation is used
(cf. Section 2.1.3), the address is typically randomised with each burst of packets and
changed before the next burst. Many devices additionally randomise the sequence
number with each burst. This behaviour can also be observed in Fig. 2.5. Directed
probe requests typically transmit one probe request per SSID per channel.

Once a device recognises a known network from the SSID contained in its probe
response, it often transmits another few probe requests, using its LAA. These are
typically first undirected, and then directed.

Probe requests contain several tags, also called fields, the Information Element (IE)
being the most identifying one, often used to single out and track devices (cf. Sec-
tion 3.2.4). The IE contains information on the capabilities of the transmitting device.
These capabilities include the Supported Rates and Extended Supported Rates, as
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Figure 2.4: Probing behaviour of different devices as recorded by Waltari et al.
Both the duration of a single burst as well as the channel selection is different
per manufacturer and device type. Image source: [WK16].

well as the DS Parameter, which specifies the transmission channel. High Through-
put (HT) and Very High Throughput (VHT) Capabilities declare the support for
the IEEE 802.11n and IEEE 802.11ac standards, and Extended Capabilities that of
additional features extending the HT and VHT Capabilities. Support for the IEEE
802.11ax standard is declared via the High Efficiency (HE) capabilities. Seamless
connectivity within heterogeneous networks as defined in IEEE 802.11u is advertised
via the Interworking tag. Probe requests also often contain a Vendor Specific tag,
containing information inserted by the device’s vendors. [IEE20]

An example of a directed probe request can be seen in Fig. 2.6. It contains an exten-
sive IE, which is transmitted via the Wireless Management field. The observations
described in Section 3.3.6.2 show that directed probe requests can contain consid-
erably more information in their IE than undirected ones. Additionally, the newer
the probing device’s Operating System (OS) is, the less identifying information
is contained in probe requests: Instead of transmitting their UAA, they employ
MAC address randomisation and use a different MAC address and initial sequence
number in every burst. [Van+16]

The newer the OS, the more privacy features are included. The older the OS, in
turn, the weaker the privacy measures, e.g. devices running Android 8 and older
automatically assume that manually added networks are hidden networks, whereas
in newer devices, the hidden status has to be explicitly selected (cf. Table 3.1 and
Section 3.2.3).
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Figure 2.5: A screenshot of a capture of probe requests originating from the same
device and probing for three different networks. The first burst is marked in
blue, spanning request number 2284 to 2288. The second burst is marked in
purple, spanning packets 2296 to 2306, and the third in green concerning pack-
ets 2313 to 2323. The bursts can be distinguished by their timestamp, with all
packets being sent within less than 0.1 seconds. MAC address randomisation
and sequence number randomisation per burst can also be observed in the
screenshot. As the device is running an Android 8 OS, the manually inserted
SSIDs are assumed to be hidden networks (cf. Section 3.2.1), and it therefore
probes for the networks continuously using directed probe requests.

2.1.3 MAC Address Randomisation

To reduce the attack vector introduced via unchanging MAC addresses, MAC ad-
dress randomization was introduced and discussed in 2014 [ZBA24], followed by
testing and publication [BZO15]. With respect to mobile device OSs, Apple first
implemented it in iOS 8 in 2014 [Aar14], and Android followed in 2015 with Android
6.0 [And23]. The way randomisation should be implemented is not standardised.
However, its use in different circumstances, e.g. newly generated randomised ad-
dresses during each device boot, distinct per-network generated MAC addresses
and others are summarised in a Request for Comments (RFC) draft [ZBA24].

The most common strategies are 46-bit randomisation, 40-bit randomisation and
24-bit randomisation. In 46-bit randomisation, all bits except for the U/L-bit and the
I/G-bit (cf. Section 2.1.1) are randomised, resulting in the devices using randomised
OUIs and therefore identifiers which are not assigned to their actual manufacturer.
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Figure 2.6: A directed probe request from a Raspberry Pi. The content of the IE can
be seen in the Wireless Management tag. Apart from the SSID, it concerns Sup-
ported Rates, Extended Supported Rates, the DS Parameter Set, HT Capabilities
and three vendor specific tags.

This behaviour is common in all Apple devices running modern OS, and in most de-
vices running Android 10 and 11, and some of those running Android 9. [Fen+21]

In 40-bit randomisation, the first byte of the MAC address is fixed to 02, and the
remaining MAC address randomised. This behaviour is common in many Samsung
devices running Android 8 and 9 [Fen+21]. 24-bit randomisation uses a fixed OUI
(e.g. 92:68:C3 or DA:A1:19) and randomises only the NIC of the MAC address.
This behaviour leaves devices particularly vulnerable to tracking since such a fixed
prefix allows attackers to infer information on the device, e.g. the manufacturer
or device type: While the OUI 92:68:C3 is typically used by Motorola Nexus 6
devices, DA:A1:19 is commonly used by manufacturers other than Google producing
Android devices. [Fen+21]

The term 46-bit randomisation is used by Martin et al. [Fen+21] to describe randomi-
sation of the whole address except for the U/L-bit and the I/G-bit. While they
describe the behaviour of devices using 40-bit and 24-bit randomisation, they do
not introduce a name for this behaviour. Both terms are therefore introduced by this
thesis.

2.1.4 Connection Establishment in Wi-Fi Networks

The IEEE 802.11 standard defines Wireless Local Area Networks (WLANs) as wire-
less networks identified by an SSID and detectable via network discovery as ex-
plained in Section 2.1.2 [IEE20]. The term Wi-Fi was initially introduced by the
branding firm InterBrand, which was hired by the founding companies of what later
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Client Access Point
Probe Request
Probe Request

Probe Response

Authentication

Association

Robust Security Network Association

Encrypted Data

Figure 2.7: IEEE 802.11 connection establishment. The authentication and asso-
ciation phases are part of the 802.11 authentication and association, required
for backwards compatibility with Wired Equivalent Privacy (WEP). The key
material required for encryption using state of the art encryption schemes is
exchanged in Robust Security Network Association (RSNA). Adapted from
[McD+24a].

became the Wi-Fi Alliance. InterBrand was tasked to “develop a consumer-friendly
name”, which could be used to refer to the IEEE 802.11b High Rate Wireless Local
Area Network standard [Enn]. Nowadays, the Wi-Fi Alliance still certifies devices
with respect to their Wi-Fi interoperability, and the term Wi-Fi is typically used
interchangeably with the term WLAN, but while WLAN describes the standard the
devices adhere to, anglophone publications typically use Wi-Fi when referring to
WLAN networks.

The association between a client and an AP, which enables the device to access the Wi-
Fi network, encompasses the steps also shown in Fig. 2.7: Network discovery, either
via active scanning using probe requests and probe responses as shown in the figure,
or via passive discovery using beacons, allows Wi-Fi capable devices to discover
nearby known networks. The subsequent IEEE 802.11 authentication and association
allow backwards compatibility with the obsolete WEP standard and enable devices
to transfer frames on higher layers. Subsequently, Wi-Fi Protected Access (WPA),
WPA2 and WPA3 networks negotiate and exchange security parameters in the
Robust Security Network Association (RSNA). Successful completion of RSNA
enables devices to then exchange encrypted data frames. [IEE20]
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Figure 2.8: A client attempting to connect to the internet via a public Wi-Fi net-
work, blocked by a captive portal. The Captive Portal Detection (CPD) of the
respective platform attempts to connect the user to the captive portal, so captive
portal remediation can commence.

2.2 Captive Portals

A captive portal is a means of intercepting a user’s Wi-Fi connection to enforce
credential submission or user agreement with policies inherent to the Wi-Fi provider
[KK20]. As can be seen in Fig. 2.8, a captive portal typically blocks all internet
access except for that necessary for the provisioning of the captive portal. Once the
terms of the captive portal are fulfilled, the network block is lifted. This process is
called remediation [Bur+21]. A network containing a captive portal is in the following
referred to as a Captive Network (CN) [Bur+21].

In Chapter 4 of this thesis, the use of VPNs (cf. Section 2.3) in networks utilising a
captive portal is discussed. Empirical evidence suggests that when using a captive
network, captive portal detection is not always reliable and can constitute a problem
on various platforms. The following sections therefore provide a background on
both the Captive Portal Detection (CPD) implemented in Wi-Fi capable devices
(cf. Section 2.2.1), as well as the implementation of captive portals within captive
networks (cf. Section 2.2.2) to explain the implementation challenges many VPN
providers experience according to the results presented in Chapter 4.

2.2.1 Captive Portal Detection (CPD)

There are multiple ways of announcing the presence of a captive portal within a
network: On one hand, the two options of using the Dynamic Host Configuration
Protocol (DHCP) or a router advertisement (RA) can be used. Both were proposed
as a standard in RFC 8910 [KK20]. In both cases, the URI of the captive portal is
transmitted within DHCP and RA options, advertising their existence to clients.

49



Chapter 2: Background

Figure 2.9: A client connected to the internet via a public Wi-Fi network, with the
blockage by a captive portal remediated. The connection between the Captive
Portal Detection (CPD) and the captive portal is reinitiated in case the internet
connection fails.

Another method, which is predominantly used by devices initially connecting to a
network, is the transmission of a HTTP request to captive portal detection URLs,
with the expectation of a standardised response, as defined in [PT20]. For Apple
devices, an HTTP request to the URL http://captive.apple.com/hotspot-detect.
html is expected to return the plain text response Success. For devices running
Android or ChromeOS, an HTTP status code 204 is expected as a result of an HTTP
request to the URL http://connectivitycheck.gstatic.com/generate_204. Similar
URLs and expected responses exist for Windows devices and Linux devices running
NetworkManager. If the response to either of these requests differs from the expected
result, the connecting device assumes the network is a captive network and can
trigger the login process with the captive portal. [Wip16; Wik24a]

2.2.2 Implementation

The announcement of a captive portal within a network can be done using various
methods, including an ICMP redirect and DNS redirection. Additionally, it is possible
to perform HTTP redirection, particularly in response to requests to the above
mentioned captive portal detection URLs: Since the captive network providers have
full control over the network, they can modify the responses to HTTP requests. Upon
receiving a HTTP request to the captive portal detection URLs, the captive network
performs a variation of a Man-in-the-Middle-attack in which it issues a HTTP 302
status code as a response, which is a redirect to another page, forwarding the user to
the login form for the captive portal.

Upon successfully remediating the terms of the captive portal, a user can gain access
to the network as shown in Fig. 2.9.
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Header Packet B
Destination and Protocol

Header Packet A
Destination and Protocol

Payload A

Payload B

Figure 2.10: Encapsulation of a packet A within another packet B. Packet A is the
original packet transmitted from a client device. The VPN client application
running on the client device then encrypts the whole packet, and encapsulates
it as the payload in packet B. Packet B is then transmitted to the VPN server,
which decapsulates and decrypts it, and then forwards it to its original des-
tination. This way, both meta data as well as the content are concealed from
eavesdroppers. Adapted from [Lin23].

2.3 Virtual Private Networks (VPNs)

A widely used method for ensuring safer use of potentially unencrypted public
Wi-Fi networks is the utilisation of a Virtual Private Network (VPN). While their
original purpose was to enable remote access to services in a private network, VPNs
are now mainly advertised as a means of ensuring data confidentiality and privacy
in untrusted Wi-Fi networks. [Bur+21]

While VPNs also ensure sender authentication and message integrity, their relevant
features in the context of this thesis are the privacy and confidentiality guarantees:
The VPN client on the client device uses encryption to ensure that the content
of the transmitted packages remains undecipherable to attackers. The encrypted
packets are additionally encapsulated into new packets with the VPN server’s IP
address as the destination, as depicted in Fig. 2.10. Both measures in combination
ensure that attackers sniffing traffic within a public Wi-Fi network are unable to
infer information on either metadata or data content. The receiving VPN server
processes the packets received from a client, decapsulates them and forwards them
to the original destination address. Since it replaces the source address with its own
address, it receives the responses and can then encrypt and re-encapsulate them to
forward them to the client. The process is also depicted in Fig. 2.11.

Common VPN protocols include, but are not limited to the following:
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Figure 2.11: A VPN tunnel used within a public Wi-Fi network. The VPN client
encrypts the packets received by the client and encapsulates them in packets
with the VPN server as the destination to disguise the original recipient. The
VPN server then decapsulates and forwards the original packets, additionally
setting itself as the source address. It therefore receives the responses and can,
again, encrypt and encapsulate them to forward them to the VPN client.

IPsec The Internet Protocol Security (IPsec) is a network protocol suite for packet
authentication and encryption. Here, IP packets are encapsulated within IPsec
packets, and tunnels established using the Internet Key Exchange (IKE) pro-
tocol, of which two different versions exist, Internet Key Exchange version 1
(IKEv1) and Internet Key Exchange version 2 (IKEv2). Even though IKEv1 can
still be used for the implementation of VPNs, it was superseded by IKEv2 in
2005 and suffers from specification weaknesses, potentially leading to differing
protocol implementations being unable to create a security association de-
spite correctly appearing configuration [Kau05]. IKEv2 additionally introduces
improvements over IKEv1 to mitigate cryptographic weaknesses, enabling
state-of-the-art key exchange [Kau+14].

WireGuard WireGuard1 is a lightweight, open-source VPN software. It encapsu-
lates IP packets via UDP to evade potential transmission loss, e.g. induced by
tunnelling TCP via TCP.

OpenVPN OpenVPN2 is another open-source VPN tool. It utilises Transport Layer
Security (TLS) for authentication and key negotiation [Ope]. In contrast to
WireGuard, OpenVPN encapsulates packets via TCP, which can cause catas-
trophic loss in connectivity in case of insufficient bandwidth, resulting in a
TCP meltdown [Hon+05].

PPTP The Point-to-Point Tunnelling Protocol (PPTP) is now obsolete, but was one
of the first tunnelling protocols and widely used on Microsoft machines, since

1. https://www.wireguard.com/
2. https://github.com/OpenVPN/
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it was natively included in the Windows OS. PPTP contains severe weaknesses
[SMW99], but is still occasionally used for compatibility with legacy systems,
and the possibility to set up a VPN connection using PPTP is still implemented
in current Windows OS.

SSTP The Secure Socket Tunnelling Protocol (SSTP) is Microsoft’s replacement for
PPTP and enhances it by using SSL/TLS for transport encryption [Lin23]. It
encapsulates packets via TCP, and therefore faces the same risks of a TCP
meltdown in case of reduced bandwidth as OpenVPN does.

L2TP The Layer 2 Tunnelling Protocol (L2TP) provides an unencrypted layer 2
tunnel. To enhance it with encryption features, it is commonly combined with
IPsec [Boo+01], the combination of which is referred to as L2TP/IPsec.

In the context of the use of VPNs, the term VPN Bootstrapping denotes the blocking
of all traffic unnecessary for the establishment of the VPN tunnel. Once the VPN
tunnel is successfully established, the blockage is lifted and traffic unrelated to
VPN establishment, which is referred to as third-party traffic in Chapter 4, can be
transmitted.

While it is possible to set up an own VPN using a dedicated server, many users
instead resort to employing commercial VPN providers for ease of use. In this case,
full trust is placed in the VPN provider, since they are able to access all packets
tunnelled via their servers. To access VPN services, most OS platform providers
implement native VPN clients. These typically support a number of VPN protocols,
and connection settings have to be modified by the users. Third-party clients, on the
other hand, are typically preconfigured to connect to specific services, requiring less
user modifications.

While the main focus in this thesis is the use of VPNs to protect from eavesdropping
on the traffic within the same public network, VPNs are also popular to circumvent
censorship in authoritarian countries and to spoof location information to circumvent
geographic restrictions, e.g. for streaming services that restrict access to content based
on the country it is streamed to.

2.4 Automatic Dependant Surveillance-Broadcast
(ADS-B)

The previous sections introduced different aspects of the Wi-Fi standard, and addi-
tionally captive portals and VPNs to provide a background for the stages of device
discovery (Chapter 3) and connection establishment (Chapter 4). This section, on
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the other hand, is required as background for Chapter 5, in which the ADS-B protocol
is used as an example for unencrypted and unsigned data transfer, and different
means of protecting the integrity and ensuring authenticity are explored.

The ADS-B system is a broadcast system in which aircraft transmit their identi-
fier, location, velocity and altitude among other data regularly, every 0.5 seconds
[SLM15a], via a specific transmitter on the plane. There are two competing ADS-B
link standards, the Universal Access Transceiver (UAT) and the 1090 MHz Extended
Squitter (1090ES). UAT was created specifically for the transmission of protocols
such as ADS-B on the 978 MHz frequency [SLM13b]. Its has great uplink capacity
and lower cost, and was therefore chosen as the protocol for use in general aviation
[Sca02], meaning civil flights that are not part of scheduled avionic transportation
[SLM13a]. UAT requires dedicated hardware, which the 1090ES does not depend on:
Here, the ADS-B signals can be received and sent via the Mode S transponder that is
part of the Secondary Surveillance Radar (SSR). Commercial airlines are typically
equipped with a Mode S transponder already, and the ADS-B functionality can be
retroactively integrated into it [SLM15b].

To enhance air surveillance via ADS-B, the Federal Aviation Administration (FAA),
a U.S. agency regulating civil aviation, mandates the use of the 1090ES [Bab10] for
ADS-B transmissions for commercial aircraft flying above 5.5 km. For general flights
flying below 5.5 km, the transmission of ADS-B signals via UAT is recommended,
since the commercial airlines flying at higher altitude cause a significant congestion
of the 1090 MHz spectrum already. Nevertheless, the use of 1090ES is also allowed
for general aviation flying below 5.5 km. [Bab10].

Particularly Europe and the USA, with their air regulation agencies EUROCON-
TROL and FAA, strive to increase air safety by (1) mandating the use of ADS-B by
all aircraft and (2) supporting the implementation of ground stations with ADS-B
functionality. The requirement to install ADS-B transmitters in Europe applies to all
aircraft built after the 8th of January 2015, and for all other aircraft by the 7th of De-
cember 2017. Several additional transition periods and exemptions later moved the
deadline to 2020, then 2023 and lastly 2025. By 2021, around 97 % of the commercial
airliners were observed to be ADS-B compliant. With respect to all aircraft, including
general aviation aircraft and helicopters, the pervasiveness of the compliance and
capability of transmitting ADS-B messages, is at 81.4 %. [Sun+21]

The other previously mentioned task both agencies fulfil with respect to ADS-B is
the support of the deployment of ground stations to receive ADS-B signals and
thereby increase aircraft visibility across the whole continent. The current operational
coverage of ground stations in 2024 is around 64.3 % of the area that is operated by
European Air Navigation Service Providers (ANSPs) [EUR24], as can also be seen in
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Figure 2.12: Distribution of deployed and operational ground stations for ADS-B
signal reception by European Air Navigation Service Providers (ANSPs). Image
source: [EUR24].

Fig. 2.12. The area of deployment is slowly, but steadily rising, with 65.6 % coverage
expected by 2027.

ADS-B is, in contrast to other protocols used via the Mode S transponder, a broad-
cast technology that regularly transmits information without prompting. Other
protocols used on the same frequency and via Mode S transponders are Elementary
Surveillance (ES) and Enhanced Surveillance (EHS), both of which operate under an
interrogatory environment: While ADS-B is regularly transmitted without prompting,
ES and EHS are transmitted on request by ground stations.

2.4.1 ADS-B Packet Structure

ADS-B packets have a length of 112 bits for 1090ES, and 272 bits for UAT messages
[RK17]. Since 1090ES is the protocol used for commercial aviation and also the one
predominantly discussed in scientific research, the focus of the subsequent packet
structure introduction are 1090ES ADS-B packets.

Before an ADS-B packet is sent, a preamble consisting of two synchronisation pulses
is transmitted, as can be seen in Fig. 2.13. The preamble is transmitted over a dura-
tion of 8 µs, and the following ADS-B packet is then transferred using pulse position
modulation (PPM), in which one bit can be transmitted every microsecond [SLM15b].
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Figure 2.13: ADS-B Preamble. Adapted from: [SLM15b].

Downlink Format Capability Aircraft Addr. ADS-B Data Parity Check
(DF) (CA) (AA) (ME) (PI)

5 bit 3 bit 24 bit 56 bit 24 bit

Table 2.1: Packet structure of 1090ES ADS-B packets.

ADS-B packets consist of the five distinct fields Downlink Format, Capability, Air-
craft Address, ADS-B Data and the Parity Check, the length of each of which can
be observed in Table 2.1. The Downlink Format (DF) field indicates the type of
message being transmitted and helps receivers to determine how to interpret the
message. Different DF values correspond to different message types. The Capability
field specifies the equipment capabilities of the transmitting aircraft, such as its abil-
ity to use various surveillance technologies or features. The unique 24-bit Aircraft
Address identifies the aircraft transmitting the ADS-B message. It is assigned by the
aviation authority International Civil Aviation Organization (ICAO), and serves as a
globally unique identifier for the aircraft. The ADS-B Data frame contains the spe-
cific information corresponding to the message type. This can include the airborne
position, surface position, identification, the airborne velocity, the aircraft status and
and aircraft operational status [Sun+21], as well as event driven information, e.g.
concerning an emergency or priority information [Org14, p. 197]. The positional
information are acquired via Global Navigation Satellite System (GNSS) satellites (cf.
Section 2.4.3) and provided as latitudinal and longitudinal coordinates. The length
of the data field is 56 bits. The subsequently transmitted 24 parity bits provide error-
checking and redundancy. They are used to verify the integrity of the transmitted
data [SLM13b] via a cyclic redundancy check (CRC) [SLM15b]. Additionally, up to
5 bit-errors can be corrected using the parity bits via a degree 24 fixed generator
polynomial [SLM15b]. A message containing more than 5 bit-errors will be discarded
[WSG20].
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2.4.2 ADS-B Security and Privacy

ADS-B is a protocol build as an unauthenticated broadcast system with no encryption
in place. A paper on the ADS-B link decision published by the Federal Aviation
Administration (FAA) [Sca02] concerns only the frequency and link technologies
taken into consideration during the design of ADS-B, and completely omits any
security considerations. The focus seems to have been to construct a system that
can support short range air-to-air communications of less than 40 nautical miles
(74 km), as well as longer range air-to-ground surveillance up to 200 nautical miles
(370 km), and possible attacks seem not to have been taken into consideration. The
lack of security measures facilitates several attacks to disrupt the communication.
This includes jamming, spoofing, bit-flipping and message injection; attacks on the
protocol remain undetected as no mechanisms for attack detection exist [WSG20]. A
comprehensive list of possible attacks can be found in Section 5.1.

While ADS-B messages are neither encrypted nor authenticated, the system contains
two privacy features: One is Limiting Aircraft Data Displayed (LADD), by which the
amount of aircraft data displayed in flight tracking services can be reduced. The
other is Privacy ICAO Aircraft (PIA), through which a temporary identifier can be
requested to increase the privacy of a specific aircraft [Ass22].

2.4.3 Global Navigation Satellite System and GPS-Spoofing

The locational information contained within ADS-B messages is acquired via the
geopositioning system Global Navigation Satellite System (GNSS). It is a satellite
navigation system in which a receiver can calculate its own position by using satellite
signals. Satellites contain an atomic clock and are thereby synchronised with all other
satellites. A receiver obtains the exact position of the satellite and then measures the
time it takes a signal to be sent from the satellite to the receiver and from this can
infer the distance between satellite and receiver. Using multiple signals, the receiver
can then calculate its own coordinates [Tip+11]. While water-based localisation
requires only 3 signals, for land-based localisation, the signals of at least 4 satellites
are required to deliver an altitude estimate as well. GPS, Galileo, GLONASS and
BeiDou are examples of GNSS systems deployed by the USA, Europe, Russia and
China respective.

GNSS satellites broadcast both on the 1575.42 MHz and 1227.6 MHz frequencies.
They transmit the data via two encodings: the Coarse/Acquisition (C/A), an unen-
crypted code used by civilian receivers and the precision (P(Y)) encoding [Eur21],
which can be encrypted and can then only be used by military equipment containing
an appropriate decryption key. The coordinates received using the C/A code have
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a precision of more than 3 metres, and those of the P(Y) code have one of up to 0.3
metres. [GIS13]

Civilian GNSS signals can be spoofed, which has been explored both in academia
[Tip+11], as well as in practice [Ebi15]: Using a Software Defined Radio (SDR) and
the GPS Signal simulator GPS-SDR-SIM3, it is possible to spoof a complete satellite
constellation, and virtually transmit the signals of up to 12 satellites spoofing the
time and positional information received in the vicinity of the signal [Ebi15; Wik19].
Albeit all GNSS systems are vulnerable to signal overlay attacks spoofing GNSS
signals, the commonly used term is not GNSS spoofing but GPS spoofing.

As the ADS-B transmitter has no capability of verifying the accuracy of GNSS
coordinates received by the aircraft’s GNSS receiver, GPS spoofing attacks would
result in the ADS-B messages containing the spoofed coordinates.

3. https://giters.com/pistoletpierre/gps-sdr-sim
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3
Device Discovery - A Case Study on
Probe Requests in Wi-Fi Networks

The two parties required to establish a wireless connection in a Wi-Fi network are a
client and an Access Point (AP). The client could, for example, be a mobile device
like a laptop or smartphone, and the AP is typically a router. In order for a client to
discover known networks, it has to perform network discovery (cf. Section 2.1.2). In
Wi-Fi networks, this can be done via two different approaches: On one hand, a client
can perform active discovery, which is an active search for available access points.
On the other hand, the AP can advertise itself, which is considered passive discovery.
Passive discovery is the more privacy friendly approach, as it doesn’t require for
clients to disclose any information. But because passive discovery is slower and
more energy consuming [Fre15], modern devices instead use active discovery. This
chapter first focuses on the privacy implications when using active discovery of Wi-
Fi networks by means of probe requests, and the pitfalls this can entail with respect
to security and privacy in Section 3.2. An example given is the accidental disclosure
of private information observed in the Service Set Identifier (SSID) field during a
field study (cf. Section 3.2.3). But even without such unintentional information leaks,
probe requests are a source of information that can be used for device fingerprinting
and tracking (cf. Section 3.2.4). To counter this, four different approaches to prevent
tracking are introduced in Section 3.3: The first dynamically hashes the SSID to
allow for the use of hidden networks in a privacy friendly way (cf. Section 3.3.2),
the second completely relies on passive scanning instead (cf. Section 3.3.4). The
third and fourth approach introduce the use of a generic address (cf. Section 3.3.5)
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and generic probe requests (cf. Section 3.3.6), to make active probing more privacy
friendly and allow single users to disappear in a large anonymity set, thus making
them as indistinguishable from one another as possible.

Relevant Publications The evaluation of the content of probe requests and the
resulting privacy implications described in Section 3.2.3 have previously been pub-
lished in [McD+22]. Generic probe requests are described in [McD+24b], while the
proposal of the use of a generic address was published in [McD+24a].

3.1 Preliminary Studies and Related Work

The preliminary work on probe requests and their privacy implications is closely
tied to the countermeasures that were implemented to mitigate them. The focus of
the first published attacks were the transmission of SSIDs:

In 2007, Pang et al. [Pan+07] conducted a study on user tracking in Wi-Fi networks.
They demonstrated that the combination of the Media Access Control (MAC) address
used in probe requests, along with the transmitted SSID, contains sufficient infor-
mation for tracking. In another publication, Pang et al. [PS07] analyse the privacy
risks associated with both APs transmitting SSIDs and mobile devices transmitting
probe requests. In an evaluation of the geoinformation contained on SSIDs collected
in a data set in 2004, they discover that approximately a quarter of the devices
transmit probe requests containing SSIDs unique to a single city. To mitigate this in-
formation leak, they propose the Tryst architecture, designed to conceal confidential
information during network discovery. Tryst employs access control primitives with
symmetric encryption to reveal information solely to the intended access point while
concealing all other information. This, like all the following publications proposing
to use cryptographic means to protect probe requests, did not end up being imple-
mented in the standard. In fact, even though the IEEE 802.11w-2009 amendment
included cryptographic protection of management frames, probe requests are not
protected since they are transmitted before the key exchange in Robust Security
Network Association (RSNA) (cf. Section 2.1.4) [IEE20].

In 2014, Cunche et al. presented a method for associating devices based on their
transmitted SSIDs, inferring relationships between users [CKB14]. This was docu-
mented prior to the deployment of MAC address randomization, when the active
discovery using directed probe requests was the prevalent method for network dis-
covery. To enable mobile devices to locate known networks without having to resort
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to active discovery, Cunche et al. instead suggest to replace the active approach by
geolocation-based service discovery.

Since the transmission of SSIDs in probe requests was shown to be both a trivial
identifier for tracking, as well as a source of information on the device’s owner,
it remains a concern even in newer publications: In 2019, Dagelić et al. [DPČ19]
published the results of field studies conducted at music festivals between 2014 and
2018, and analysed the occurrence of SSIDs contained in the recorded probe requests.
They highlight the ease with which devices are trackable via probe requests in case
the device transmits a unique fingerprint. In a comparison of the data sets recorded
over a period of four years, they observed that the number of MAC addresses
increased over the years, while the amount of SSIDs decreased. The authors conclude
that both the use of undirected probe requests as well as MAC address randomisation
increase. Despite its decreasing use, Zhao et al. [Zha+19] were able to use transmitted
SSIDs to localise criminal groups via probe requests, constructing a database of SSIDs
similar to WiGLE1 (cf. Section 3.2.3.3). They monitored probe requests in various
locations to identify specific SSIDs, enabling the identification and tracking of devices
belonging to a specific target group.

The susceptibility to tracking via an unchanging MAC address during wireless
connections was discussed in the early stages of wireless communication: Gruteser
et al. [GG03] warned in 2003 that long-lived interface identifiers can be used to
triangulate and track users. To mitigate this, they suggest the use of disposable MAC
addresses, essentially an early version of MAC address randomisation. They suggest
to concatenate a legitimate Organisationally Unique Identifier (OUI), randomly
chosen from an official assignment list, to a 24-bit long String that is part of a chain of
MD5 hashes. As the focus of their work was not on probe requests, but on an ongoing
wireless connection in an environment with multiple access points providing access
to the same network, they suggested to use the next rotation of the MD5 hash chain,
and thereby a new MAC address, for every new association.

Another early MAC address obfuscation strategy was proposed by Franklin et al.
[Fra+06] in 2006: They detect driver-specific patterns in the transmission of probe
requests, which they can pinpoint to a specific device by additionally taking the MAC
address into account. To circumvent their fingerprinting technique, they suggest
MAC address masquerading: This entails for one device to use the MAC address of
another nearby device for sending probe requests. Two devices probing with the
same MAC address, but exhibiting different driver fingerprints, would circumvent
their fingerprinting technique.

1. https://wigle.net/
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To impede tracking a device via an unchanging MAC address contained in its probe
requests, large device manufacturers and Operating System (OS) designers intro-
duced MAC address randomisation (cf. Section 2.1.3) starting in 2014. Although
intended for privacy enhancement, the lack of standardisation rendered all imple-
mentations susceptible to attacks [Van+16]. Ever since, extensive research has been
conducted on probe requests, MAC address randomization, and device fingerprint-
ing: In 2015, Freudiger et al. [Fre15] provided insights into the amount of probe
requests transmitted by different devices, assessing the effectiveness of MAC address
randomization in various devices. Their analysis suggests that both Android and
iOS devices transmit probe requests very frequently, up to 2000 per hour, and that if
randomisation was used at all, it could be trivially circumvented.

Martin et al. [Mar+17] studied the use of MAC address randomisation in 2017 across
a broad variety of devices. With respect to Android devices, they identified a sig-
nificant amount of manufacturers that implemented MAC address randomisation
in a way that persisted parts of the OUI, allowing inferences on the devices via
the non-randomised identifiers. This was likely done to circumvent the illegitimate,
temporary use of OUIs identifying other manufacturers when utilising 46-bit ran-
domisation (cf. Section 2.1.3), but allowed attackers to identify Google, Motorola,
Huawei, Sony, BlackBerry, HTC and LG devices via the OUI of the MAC address,
and in some cases using additional information within the probe request. Martin et
al. also found out that Samsung devices, at the time, never utilised MAC address
randomisation, irrespective of the OS versions used. While the first tests they con-
ducted on Apple devices revealed that it was difficult to infer information from their
probe requests as they utilise 46-bit randomisation, an update to iOS 10 introduced
vendor tags explicitly identifying their manufacturer. Providing best-practices for
the implementation of MAC address randomisation, Martin et al. suggest for man-
ufacturers to use 46-bit randomisation and to re-randomise the MAC address for
every transmitted frame.

Three years later, Fenske et al. [Fen+21] reconstructed the study published by Martin
et al. to observe the changes in MAC address randomisation and its implementations
over time. They note that while in 2016, approximately 82 % of the tested devices
were utilising their hardware address when transmitting probe requests, this number
was significantly reduced to 56 % in 2020. While a certain OUI identified a large
number of Google devices in 2017, Fenske et al. find in 2020 that this OUI was still
in use, but only by non-Google Android manufacturers. Google-produced devices
instead turned out to consistently use 46-bit randomisation. While they could show
that the pervasiveness of MAC address randomisation had increased during the
three years between the studies, it was, as of 2021, by no means consistently deployed
yet. Gomez et al [GGP22] reached the same conclusion in 2022: After analysing data
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recorded in public Wi-Fi networks across Latin America between 2016 and 2021,
they demonstrated that its wide-spread use only began in 2020.

Supplemental to the previously mentioned findings, Freudiger et al. [Fre15] identi-
fied an additional vulnerability of probe requests: the possibility to track users via
their unrandomised, sequential sequence numbers. While this introduces another
attack vector, its mitigation is simple: to randomise the initial sequence number
with every burst. In addition to these findings, Freudiger et al. also observed that
recent mobile operating systems probe only for SSIDs of hidden networks. In theory,
this development, in combination with randomised MAC addresses and sequence
numbers, signified a large step towards privacy-friendly active discovery.

In practice, however, neither were implemented in a way that reliably protected user
privacy: In 2016, Vanhoef et al. [Van+16] presented two attacks capable of revealing
a device’s real MAC address: A new version of the Karma Attack, and the Hotspot 2.0
Honeypot. In the original Karma Attack [DM05] presented in 2005, an attacker would
record SSIDs transmitted within probe requests and dynamically open a fake AP
transmitting these SSIDs to coax clients into connecting to such an AP. During the
time of the experiment of Vanhoef et al., the omission of SSIDs to reduce tracking
was already establishing among manufacturers as a privacy-preserving technique.
The new revision of the Karma Attack therefore relied on a large number of users
connecting to the same known public APs: By providing a fake AP transmitting 5
popular SSIDs, they were able to record connection attempts and therefore the real,
or at least a per-network MAC address, of more than 17 % of the observed devices.
Note that at this time, per-network MAC addresses were not overly common yet,
with only Windows devices making use of it.

The other attack Vanhoef et al. devised to reveal a device’s real MAC address was
the Hotspot 2.0 Honeypot: Here, a service discovery mechanism contained within
the 802.11u standard, which is commonly called Hotspot 2.0 (HS2.0), is utilised: To
receive information on HS2.0 capabilities of APs, clients have to explicitly query
for them using an ANQP query. Apart from Apple devices, all devices with at least
one HS2.0 network configured transmitted ANQP requests using their real MAC
address, amounting to up to 16 % of the devices. Given that the technology was very
new at the time, the authors expected a steadily rising number of devices exhibiting
this data leak, if not patched adequately.

In the aforementioned publication, Vanhoef et al. additionally revealed the possibility
to track devices by constructing a device fingerprint over all Information Element
(IE) fields (cf. Section 2.1.2) contained in probe requests. They conclude that MAC
address randomisation alone is inadequate for thwarting tracking attempts. This
publication also started the research into fingerprinting techniques using the IE, with
the subsequent publications improving on association methods, choosing unique
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IE fields and including emerging technologies into the association process: Gu et
al. [Gu+20] demonstrated that elements in the frame body of probe requests can be
utilised for device fingerprinting. They implement their frame association using deep
learning methods. To protect from such an attack, they propose the encryption of
probe requests via the symmetric stream cipher ChaCha20 as a means of protection
against attackers. Tan et al. [TC21] model the association of probe request frames in
a flow network and utilise minimum-cost flow optimization, thereby tracking users
via their mobile devices in a shopping mall. They achieve an accuracy of over 80 %.
[HTC23] extend the work of Tan et al., and improve the association in such a way so
it does not require offline pre-calibration and is approximately 270 times faster, while
reaching comparable discrimination accuracy and V-measure scores. By combining
fingerprinting techniques with clustering approaches, Uras et al. [Ura+20] and Pintor
et al. [PA22] successfully circumvent anti-tracking techniques. Their approaches at
defeating MAC address randomisation reach an accuracy between 65.2 % and 91.3 %,
respective up to 92 %. Since all of these attacks commonly use the IE content of the
probe requests to track devices, the most straightforward means of reducing this
attack surface is to minimise the IE content [Van+16; Mar+17; Fen+21], as will be
later explored and analysed in depth in Section 3.3.6.

3.2 Extended Privacy Risks

The related work regarding active discovery shows that while privacy features are
emerging, various identifiers contained within probe requests continue to be used
to track devices. This section contextualises these privacy risks: First, a structured
analysis of privacy risks and features in mobile operating systems for active discov-
ery highlights which devices are prone to information disclosure in Section 3.2.1.
Subsequently, an evaluation of the information leakage in the shape of transmit-
ted SSIDs is presented in Section 3.2.3. Both are based on the results of the paper
[McD+22], which are presented here in the context of this thesis. Then, Section 3.2.4
provides an evaluation of the risks of device tracking via additional features con-
tained within probe requests through an analysis of the attacks presented in related
work, a condensed version of which was also published in [McD+24b].

3.2.1 Active Discovery Privacy Features in Mobile Operating
Systems

While the first implementations of probe requests were easily trackable due to
persistent identifiers like the MAC address and SSID(s), the privacy risks entailing
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Apple iOS Android
8 10 14 15 8 9 10 11 12

Release year 2014 2016 2020 2021 2017 2018 2019 2020 2021
Market Share in % in 2021 < 0.1 1.0 35.9 53.4 10.2 13.5 27.0 35.4 1.9

Randomised MAC . . .
- while probing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
- per connected SSID - - ✓ ✓ - (-)* ✓ ✓ ✓
- after resetting settings - - ✓ ✓ - - (-)* (-)* (-)*

New random MAC after . . . - - - 6w - - - (-)† (✓)‡
Private Address by default - - ✓ ✓ - - ✓ ✓ ✓
Modify distant Network - - - - ✓ ✓ ✓ ✓ ✓
Manually added == hidden Automatic detection of hidden ✓ - - - -

Probe with SSID Only if hidden detected if man.
added If explicitly declared hidden

*: Only choosable via Developer Options
†: If use of non-persistent MAC is chosen via Developer Options, a new MAC is set (a) for every
new connection establishment (b) every 24 hours, unless a connection is still established or (c) if
both the DHCP lease has expired and the device has been disconnected for 4 hours
‡: Non-persistent randomisation used in case a network suggestion app specifies this via the API
or in case of a connection to an open network without a captive portal. Otherwise, persistent
randomisation is used.

Table 3.1: A comparison of privacy features when using probe requests in Android
and iOS. Adapted from [McD+22].

the use of probe requests have been reduced over time. To quantify this reduction,
this section compares privacy features of selected OS versions and the risks still
inherent to their use. Table 3.1 shows a comparison of the privacy features introduced
with different Android and Apple OS versions, which was previously published
in [McD+22], and reflects the state of active discovery privacy features of devices
running the mobile OS Android 12 and lower or iOS 15 and lower. The comparison
was compiled in the context of the work for [McD+22] in 2021, and is required for
the evaluation presented in Section 3.2.3.

iOS 8 was the first Apple OS that introduced MAC address randomisation in 2014,
while Android introduced it in Android 6 in 2015. After this, the privacy features
were continuously improved and new features implemented: While iOS 8 to 10 and
Android 8 and 9 only used randomised MAC addresses while probing, Android 9
already allowed setting a randomised Locally Administered Address (LAA) per
network in Developer Options, and starting with iOS 14 and Android 10, randomised
LAA per network were used by default. And while Apple devices starting with iOS
14 additionally used new randomised MAC addresses after resetting the settings
by default, Android devices starting with Android 10 persist the MAC address even
after forgetting and re-adding a network, as the MAC address is dependant on
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the network profile parameters. However, if explicitly directed via the Developer
Options, devices running Android 10 and higher can employ this feature. As such
features in Developer Options are difficult to find, they are typically only activated by
technically sophisticated individuals explicitly interested in privacy enhancing tech-
nologies, and likely not widely adopted. This also applies to the periodic renewal of
randomised LAA: While iOS 15 distributes new randomised MAC addresses per
network every 6 weeks, this feature is only available in Android 11 and 12 when the
use of a non-persistent MAC address is enabled via Developer Options. Starting with
Android 12 and higher, non-persistent randomisation is used by default “for some
networks” [Doc24], meaning either in case a network suggestion app specified its use
via the WifiNetworkSuggestion.Builder#setMacRandomizationSetting API, or in
case the network is an open network without a captive portal. In such cases, the
LAA is randomised periodically, either if

(a) the DHCP lease expired and the last disconnect happened more than 4 hours
ago, or

(b) the randomised MAC address is older than 24 hours.

If either case does not apply upon reconnection, the previous randomised MAC
address is used.

A feature that is inherently useful to modify probing behaviour in case of added
hidden networks is the possibility to modify distant networks. In Android, it is
possible to modify all entries of the Preferred Network List (PNL) at any time. Since
this allows to remove unused networks, and particularly hidden networks that the
mobile device might be probing for using its SSID, this is immensely useful from
a privacy perspective. Apple devices running iOS 15 and lower only allow modifi-
cations of networks in reach. In order to modify networks out of reach, a MacBook
can be used to alter the iCloud Keychain that the networks are stored in. Without
access to a MacBook, the modification without physical proximity is impossible,
which means that a mobile device might still probe for hidden networks contained
in the PNL, which are actually not in use anymore. This, in fact, changed with iOS
16, from which OS version onwards the modification of out-of-reach networks is
possible [Myr22].

Another privacy feature of all tested iOS OS, as well as Android devices starting
with Android 9 concerns hidden networks. While Android 8 devices still assumed
that manually added networks should be treated like hidden networks, Android 9
and higher assumes they are not hidden networks, unless explicitly chosen in the
network settings. When manually adding a network to iOS devices, the devices test
whether the network is currently in reach, and whether it is set as a hidden network.
If it is not in reach, it can not be added to the PNL. This directly influences whether
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Figure 3.1: The market share of the OS distributions sorted by descending release
year. The OSs released in 2023, Android 14 and iOS 17, are installed on 16.28 %,
respective 64.66 % of the corresponding devices as of March 2024. The graph
was accumulated using data published in [sta24a] and [sta24c].

or not devices probe for networks using their SSIDs: iOS devices running iOS 8
to 15 only do so if the network was detected to be a hidden one. Android 8 devices
assumed that a manually added network was a hidden one and therefore probed for
it using the SSID, but devices running iOS 9 and higher only send probe requests
containing the network SSID when the network is explicitly declared to be a hidden
network in network settings.

3.2.2 OS Support Lifespans

One contributor to the pervasiveness of OS that do not implement privacy-preserving
techniques, and therefore a likely contributor to the transmission of the SSID content
evaluated in the subsequent section, is the support span of mobile device OS. Fig. 3.1
shows the market shares of iOS and Android OS versions as of March 2024, accu-
mulated from [sta24a] and [sta24c]. The figure underlines that while Apple devices
tend to be used running the latest OS versions, the Android OS version distribution
exhibits a flat curve, with Android 14, released in 2023, only reaching a market share
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of 16.28 %, and the previous OS, Android 13, released in 2022, reaching a market
share of 26.26 % as of March 2024 [sta24a].

The primary reason for this divergence in the use of latest operating systems is
the willingness of device manufacturers to provide long-term support for their
hardware. Apple strives to provide their devices with both security updates and
general updates for as long as the hardware supports it: iOS 16 was released in
September 2022, and iOS 17 in September 2023, and Fig. 3.1 shows that in March
2024, more than 85 % of the Apple devices were using these latest OS, with 64.66 % of
the devices running iOS 17. All Apple iPhones produced between 2015 and 2018 were
able to get at least 6 major version updates, and their support is only discontinued
once the hardware fails to be able to sustain the latest update: The iPhone 8, for
example, first released in 2017, received continuous major updates until iOS 16 in
2022, and while it does not receive the major update to iOS 17 anymore, iOS 16 is still
supported and patched in case of vulnerabilities today [Wik24c]. A support span of
seven years and more explain the very large market share of the latest iOS version
in Fig. 3.1, and the guaranteed security updates during the whole time ensure a
relatively safe use and considerably better privacy guarantees than the prominent
Android manufacturers, which make up 71.54 % of the market share (see Fig. 3.2).

The very limited support span was a common point of criticism towards Android
manufacturers: Devices like the Google-produced Pixel 4a and Pixel 5a had a support
span of 3 years [Wik24d; Wik23]. However, the European Union recently adopted
regulation C(2023)3538 “Designing mobile phones and tablets to be sustainable –
ecodesign” [Eur23a], because of which manufacturers will be required to provide
their devices with at least five years of security and functionality updates, starting
on May 9th 2025 [Eur23b]. In reaction, several manufacturers of Android devices
recently started to introduce longer support periods, with Samsung, the manufac-
turer with the biggest market share in Android devices of 23.85 %, guaranteeing
four years of major updates [New22] and the latest Pixel 8 Pro, manufactured by
Google with its market share of only 1.04 %, with a guaranteed support span of seven
years [Gib23]. While this is a positive trend for new devices, devices produced and
bought before these self-imposed commitments by manufacturers remain vulnerable
to attacks once the support span ends. Additionally, the commitment is voluntary
and not upheld by all manufacturers.

Except in the case of Apple, which has maintained considerably longer support spans
of five years or more since 2013 [Wik24c], commitments by companies to uphold
long support spans are a relatively new development. As a result, the majority of
Android devices currently in use are running outdated OS: As can be seen in Fig. 3.1,
57.46 % of the Android devices run either the 2021 Android 12 or older OS. Only
42.54 % of the devices run either the latest Android 14 or the 2022 version Android
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Figure 3.2: Market share of mobile device manufacturers in 2024. The data was
accumulated from [sta24d].

13. This is a dangerous tendency, since older devices without security updates are
open to attacks and prone to contain vulnerabilities. They are also very likely to
leak more data than devices running recent OS, since many privacy features were
only introduced in newer OS, as can also be observed in Table 3.1. Such data leaks,
resulting from insufficient privacy guarantees, are examined in more detail in the
subsequent section.

3.2.3 Evaluation of SSIDs transmitted in Probe Requests

Several publications have previously evaluated SSID content in probe requests:
Some emphasise the potential for device tracking via the fingerprint that unchanging
identifiers entail [Pan+07; DPČ19; Zha+19]. Others infer relationships between device
users via their PNL [CKB14]. Still others quantify the information leakage caused
by SSIDs in probe request [WK18]. The research is extended by [McD+22], in which
a qualitative analysis on the SSID content was presented: This section is based on
the field study performed during the aforementioned paper, and contextualises its
results for this thesis. To gain insight into the propagation of SSIDs, probe requests
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Figure 3.3: The channels of the 2.4 GHz spectrum, with the non-overlapping
channels 1, 6 and 11 emphasised in bold. Image source: [Jonb].

were recorded in a field study, over the period of three hours on three different
days. This was done using six off-the-shelf antennae, to monitor both channels 1,
6 and 11 of the 2.4 GHz spectrum, as well as channels 36, 40 and 48 of the 5 GHz
spectrum. The first were chosen as they are the non-overlapping channels of the
2.4 GHz spectrum, as also illustrated in Fig. 3.3. The latter three were chosen as
representatives of the 5 GHz spectrum, in which the non-overlapping channels are
36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157 and 161 [Jona]. The capture of the 5 GHz
spectrum was limited to channels 36, 40 and 48, as surveilling more channels would
have increased the complexity considerably.

To ensure ethical data collection and refute privacy concerns, the field study was
performed in close consultation with the ethics committee of the University of
Hamburg Informatics department. It received a vote of approval under case number
002/2021, with conditions and recommendation including the following:

• The data collection had to be restricted to allow for people to opt out, both in
terms of content regulation as well as proximal limitation.

• The area of study had to be outfitted with warning signs so as to inform
passersby of the data collection.

• The resulting data had to be additionally saved in encrypted form.

After the research was conducted, the resulting paper was resubmitted to the ethics
commission for final approval. This resubmission received the confirmation of
satisfying the commission’s requirements.

3.2.3.1 General Evaluation and Contextualisation of the Data Set

The data set recorded in the field study contains 252 242 probe request, 23.2 % of
which contain SSIDs. Fig. 3.4 puts this amount into perspective with other recordings
of probe requests. It shows a comparison of probe request data sets recorded in
various years, and the percentage of probe requests contained in it that transmitted
an SSID: Barbera et al., who collected the Sapienza data set [Bar+22], published their
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Figure 3.4: The amount of SSIDs recorded per year across various publications.
The x-axis shows year and publication that the value was published in, and the
y-axis the percentage of probe requests containing an SSID.

data analysis on the data set in [Bar+13], and found that while the probe requests
contained an SSID in 34.1 % up to 55.5 % of the cases in the individual data sets, the
overall amount of probe requests containing an SSID was 48 % in this collection.
Dagelić et al. [DPČ19] recorded probe requests at music festivals between 2014 and
2018 and observed a steady decrease, with the 2014 data set containing 46.7 % of
probe requests with an SSID, and the 2018 data set only 12.9 %. As they did not
give exact values for 2015 and 2017, but only illustrated them in comparison to the
2014 and 2018 values, the numbers used in Fig. 3.4 had to be approximated from
[DPČ19, Figure 4]. Vanhoef et al. also analysed two data sets they recorded, with
one of them containing 36.4 % of directed probe requests, and the other 29.9 %. In
direct comparison, the amount of 23.2 % of probe requests containing SSIDs recorded
in [McD+22] stands out, since it is considerably higher than both values for 2017
and 2018 measured by Dagelić et al. On the other hand, their measurements were
taken at a music festival. It is likely that most attendants were rather young and
might therefore either have been tech-savvy enough to maintain an up-to-date OS,
or a rather new mobile device. The recordings from the field study introduced in
[McD+22] on the other hand, were taken around noon, in the touristic city centre
of Lübeck, Germany. Since the study participants therefore differ immensely, their
habits in maintaining a patched and recent OS might differ, too. The numbers
recorded in [McD+22] also correlate with the market share of Android devices
of the time [sta21a]: In December 2021, 10.2 % of the Android devices were still
running Android 8, and 12 % were using OS older than Android 8. As mentioned in
Section 3.2.1, such devices employed insufficient privacy enhancing technologies
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Figure 3.5: The distribution of specific amounts of SSIDs recorded per cluster.

if any, e.g. they still considered manually networks to be hidden networks, and
therefore tended to probe using an SSID considerably more liberally than devices
running newer OS. While the market share of Android devices was around 70 %
at the time and iOS devices around 29 % [sta21b], the percentage of probe requests
containing SSIDs was only slightly higher than expected based on these market
shares and the privacy enhancing technologies deployed.

During the measurement of the 252 242 probes recorded in total, 46.4 % were recorded
in the 2.4 GHz spectrum, 24.7 % of which contained an SSID. The captures of the
5 GHz spectrum encompassed 53.6 % of the probe requests, 21.9 % of which con-
tained an SSID. The probe requests were first grouped into bursts, with one burst
containing all requests transmitted within 4 seconds via the same MAC address.
They were then partitioned into clusters: A cluster contains all requests with an
exactly overlapping PNL. While this approach ensures that misclassification of two
devices containing a slightly overlapping PNL can not occur, it simultaneously
groups all devices transmitting just one overlapping SSID into the same cluster.
As this publication makes no attempt to reassociate devices despite MAC address
randomisation, this is irrelevant; grouping devices into clusters via their PNL was
only a useful step for the following analysis, since it allowed to evaluate unique
PNLs. Fig. 3.5 shows the distribution of the number of SSIDs contained in probe
requests. Most devices transmitted only one SSID. However, 32.2 % of the devices
transmitted two or more SSIDs, making their fingerprint unique enough for tracking:
The more SSIDs a device transmits, the more unique its fingerprint becomes. This is
a considerable decline in comparison to the 2016 findings of Vanhoef et al. [Van+16]:
In their analysis, they identified that between 53 % and 64.8 % of the bursts entailed
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a unique fingerprint due to containing two or more SSIDs. Barbera et al. [Bar+13]
on the other hand, evaluated in their 2013 publication that of the directed probe
requests, 50 % transmitted only one SSID, 30 % transmitted two to ten SSIDs and the
remaining 20 % of the devices transmitted more than 10 SSIDs.
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[DPČ19]

2021
[McD+22]

36.15

43.8

9.15

3.9
4.8

67.6

24.1
29.2 25.4 28.4

6.1 2.6

Pr
ob

e
re

qu
es

ts
pe

r
M

A
C

Figure 3.6: Visualisation of the decreasing number of probe requests transmitted
per unique MAC address over the years 2013 to 2021, showing privacy mech-
anisms implemented after 2013 slowly taking effect. The green bars show the
measurements from Barbera et al. [Bar+13], Martin et al. [Mar+17], Waltari et al.
[WK18] and Dagelić et al. [DPČ19]: In 2013, Barbera et al. recorded 67.6 probe
requests per MAC address in their Sapienza data set. Martin et al. recorded an
average of 25.4 probe requests per MAC address in a long-term study spanning
the beginning of 2015 to the end of 2016. Waltari et al. performed measurements
across various locations and events. The event represented in the graph was
the 2017 EuroSys conference, where 28.4 probe requests were recorded per
MAC address. Dagelić et al. recorded between 29.3 and 2.6 probe requests per
MAC address at music festivals between 2014 and 2018. As they only used one
interface to record probe requests, their entries are additionally normalised
with the light green stroke to reflect the probe requests that were likely missed
in their capture. The purple bar shows that an average of 4.8 probe requests
were captured per MAC address in the field study presented in [McD+22].

By dividing the total number of captured probe requests by the number of unique
MAC addresses, one can determine the average ratio of probe requests sent from
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each MAC address. This provides an overview of the distribution of MAC address
randomisation: the more devices that use unchanging MAC addresses, i.e. their
Universally Administered Address (UAA) instead of a randomised LAA, the lower
the number of devices employing MAC address randomisation. The average amount
of probe requests transmitted per MAC address in the field study published in
[McD+22] was 4.8. This is also visualised in Fig. 3.6, where it is additionally compared
to the results of Barbera et al. [Bar+13], Martin et al. [Mar+17], Waltari et al. [WK18]
and Dagelić et al. [DPČ19]: As Barbera et al. captured a total amount of 11 136 711
probe requests transmitted via 164 740 MAC addresses in their 2013 data set, the
ratio of probe requests sent per MAC address is 67.6. Martin et al. captured probe
requests over a course of two years, from the beginning of 2015 to the end of 2016.
Their data set contains a total of around 66 million probe requests, originating from
2.6 million different source MAC addresses. Each MAC address was therefore used
on average to send 24.5 probe requests. Waltari et al. conducted a study capturing
probe requests across six distinct events: the EuroSys 2017 conference, a pop concert,
a workers’ day celebration, a movie, a shopping mall, and a university campus. Since
only the conference capture contained a remark concerning its year of origin, it’s
value of 28.4 probe requests per MAC address was the only one taken into account
for Fig. 3.6. The other captures had a distribution of 24.8, 9.4, 18.5, 12.6 respective 30.1
recorded probe requests per MAC address, but since the Waltari et al. conference
paper was published in 2018, it is safe to assume that all other values were also
recorded in or prior to 2018. All values are considerably higher than those recorded
by Dagelić et al. after 2015: The analysis Dagelić et al. performed between 2014
and 2018 shows a rapid decline of probe requests sent per MAC address. But since
they only used one Wi-Fi interface to capture probe requests, they likely also only
monitored one channel. Since devices typically cycle through a number of channels
when transmitting a burst of probe requests from one randomised MAC address,
they likely lost a significant amount of probe requests, possibly up to two thirds, as
can be gleaned from Fig. 2.4, which was published in [WK16]. In this 2016 publication,
Waltari et al. compared probing patterns of different devices and identified that most
devices use nearly all channels within a burst, with the exception of channels 12
and 13, which are not used in North America. Since the channels are overlapping,
monitoring one channel, e.g. channel 6, additionally provides the probes transmitted
on the two channels below (4 and 5), and above (7 and 8), encompassing up to
five channels. Multiplying the amount Dagelić et al. recorded by 2.5 can therefore
provide an approximate estimate what a recording on all non-overlapping channels
would have shown. This normalisation is reflected in the light-green overlapping
bar stacked behind the entries of Dagelić et al. shown in Fig. 3.6.

Altogether, the graph shows a steady increase of the use of MAC address randomisa-
tion: Put into context, the amount recorded in the field study reflects the increasing
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use of privacy enhancing technologies employed in active discovery. While the 2013
recording likely did not record the use of any privacy preserving techniques, the
captures between 2014 and 2017 reflect a general increase in MAC address randomi-
sation, while the remaining values recorded after 2017 indicate the almost-ubiquitous
use of MAC address randomisation. An inspection of the directed probe requests
reveals that the average number of probe requests transmitted from a single MAC
address is 11.2. This finding supports the hypothesis that devices transmitting a
PNL are likely running older OS which are less likely to employ MAC address
randomisation.

In the following, the content of the clusters extracted as previously detailed are
analysed as to their SSIDs.

3.2.3.2 Evaluation of SSID Content

Upon closer inspection of the SSID contents within the captured probe requests,
it became evident that several patterns indicated the presence of passwords, typo-
graphical variations, and personal information within the PNL. The reason can likely
be found in the behaviour of Android devices summarised in Section 3.2.1: Devices
running Android 8 and below treat manually added networks as hidden networks.
The assumption established in [McD+22] was that users trying to manually set up a
network connection via the advanced network settings mistakenly entered wrong
strings in the place of the SSID. Since the devices consider these manually added
networks as part of the legitimate PNL and continue to probe for them using directed
probe requests, their device’s fingerprint is easily recognisable. In the following, the
methodology to differ between the various types of entries and the resulting privacy
implications are explained in more detail.

Password Leaks A significant portion – 11.8 % of the probe requests – contained
numeric strings of 16 digits or longer, which are commonly used as initial passwords
for home routers in Germany (e.g. Telekom home router or FritzBox). Some were
entered in one consecutive string, while others were separated by spaces, dots
or commas every four digits, e.g. 1234567812345678, 1234 5678 1234 5678 and
1234.5678.1234.5678. This is a typical typeset chosen to improve readability of
initial passwords, and the “SSIDs” inserted like this were often not the only entry
of the PNL, but rather one of several insertions containing the same numbers but
various delimiters. Some of the entries were even prepended by strings like PW:, WPA:
or (WPA/WPA2:). Leaking passwords are not only critical because the users are likely
oblivious to the fact, but also because the leaked passwords were, in most cases, part
of a bigger PNL: only 2.8 % of the passwords were the only entry of the PNL, whereas

75



Chapter 3: Device Discovery

the rest contained other entries, and potentially even the SSID of the network the
password belonged to. Such leaks are particularly critical since they could be easily
exploited: If an attacker were to use the captured probe requests to set up a rogue
access point using the SSIDs contained within the requests, and additionally the
transmitted the password, the mobile device would be tricked into connecting to
this network. This would grant the attacker full control over the device’s network
traffic. Since this constitutes an active attack that undermines user privacy and data
security, its implementation was omitted and only its workings described.

Another way such password leaks could be exploited is by using the Wi-Fi mapping
service WiGLE (cf. Section 3.2.3.3): An attacker with enough criminal energy could
monitor probe requests to discover content reminiscent of passwords. They could
then query WiGLE as to the whereabouts of other networks contained within the
particular PNL or follow the victim around, as tracking them via their probe request
fingerprint is trivial in case of such unique PNL entries. The attacker can then
manually try out the potential passwords, either in the places the victim visits or in
those they could identify via WiGLE.

Typographical Variations of SSIDs Another unexpected finding in the data set
collected during the field study were multiple entries of the same SSID in various
spelling variations. Such typographical variations to an SSID were likely entered
manually in order to identify the correct spelling of a known SSID. Examples for such
variations are groups of SSIDs such like HomeNetwork, home network, HOME_NETWORK,
all contained in the same PNL. To extract all such occurrences, the edit distance
over all SSIDs of a burst was calculated: The edit distance is defined by the amount
of operations required to transform a string into another. The operations can be
deletions, insertions or substitutions of characters. To account for variable string
lengths, the result is normalised with respect to the string length of the longer
string; the resulting edit distance is therefore divided by the length of the longer
of the two SSIDs. A higher normalised edit distance indicates more differences
between the strings, with a maximum possible value of 1 (completely different
strings) and a minimum of 0 (identical strings). Additionally, as a comparison of a
lower-case letter and the same upper-case letter would result in an incrementation of
the edit distance and result in an edit distance of 1 between the two strings network
and NETWORK, all strings are transformed to lowercase prior to comparison. The
threshold is then set to 0.3: This way, two strings whose letters differ in less than
30 % are considered typographical variations of one another. The high threshold is
required to accommodate for short SSIDs: While multiples of long SSIDs that differ
in two or three positions can easily be recognised via their edit distance, a threshold
of 0.3 would not consider the SSIDs LOL and LEL to be variations of one another.
Simultaneously, setting the edit distance higher could result in very dissimilar SSIDs
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still being considered multiples of one another, e.g. NETWORK and WORKART has an
edit distance of 0.43. Setting the threshold to 0.3 allows for a compromise between
false positive and false negative classification. To still ensure that distinct network
names that likely belong to two different networks despite their low edit distance
are not misclassified as variations of one another, a manual inspection additionally
verified the findings. This could happen, for example in the case of manufacturer-set
SSIDs like Fritz!Box 7490 and Fritz!Box 7590, but was, however, not found in
the dataset.

Using this evaluation technique, it was possible to identify that 19.9 % of the trans-
mitted SSIDs can be considered a typographical variation of an SSID contained
within the same PNL. While such variations might not pose an imminent security
risk like exposed passwords do, they still increase the fingerprint of the transmitting
device drastically and thereby facilitate tracking it.

Further (Personal) Data Contained in Probe Requests In addition to the po-
tential passwords and typos, 106 unique names were identified - some first names,
others last, some even a combination of both - transmitted 3339 times over the course
of the three hour captures. Three e-mail addresses were altogether transmitted 36
times, and the names of 92 holiday homes or locations, which were transmitted 1257
times. A surprising find was a string that was likely the internal Wi-Fi password
of a local store, as it was prepended by the string PW: and then contained the (very
unique) store name. Additionally, the name of a local hospital in various typographi-
cal variations was transmitted 15 times. Particularly the names, e-mail addresses and
the hospital name can reveal personal information on the device owners, ranging
from their name and contact information to health-related sensitive information like
a hospital stay. All of these findings can be considered at least confidential if not
personal data, and are most likely transmitted without the device user’s knowledge
or explicit consent.

3.2.3.3 Verification via Geolocalisation

Devices that transmit probe requests containing SSIDs not only facilitate tracking by
providing a fingerprint of the device, but also potentially violate the location privacy
of their owners: using a wireless network map like WiGLE2, users can input SSIDs
into a web interface and receive coordinates of locations of these SSIDs in return.
An example is visualised in Fig. 3.7: Here, a manual search via the web interface
returns all locations of the network eduroam in a partial map of Hamburg. WiGLE

2. https://wigle.net/
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Figure 3.7: A partial map of Hamburg returned in a search using WiGLE, with
purple marks highlighting all locations of the network eduroam. Image source:
https://wigle.net.

also allows large-scale automated searches via an advanced search interface, which
was the approach taken to verify the results of the previously introduced findings
via geolocalisation. The attempt to localise all recorded SSIDs using WiGLE yielded
the results visible in Fig. 3.8: Out of 1478 unique SSIDs, 38 were unresolvable as
they contained special characters, 334 could be pinpointed to a unique location and
377 to multiple locations. 729 or 49.3 % were not localisable, which means that they
are either hidden networks that hadn’t been mapped in WiGLE or didn’t exist. To
verify the hypothesis that some of the recorded SSIDs were typos or passwords, their
existence was additionally evaluated separately, as shown in the following.

Password Evaluation The strings taken into account to investigate the resolv-
ability of potential passwords were selected from the set of SSIDs according to the
following criteria:
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Figure 3.8: Resolving SSIDs in WiGLE: Out of the 1478 SSIDs captured during the
field study, 729 were unresolvable, 334 resolved to one unique location and
377 to multiple locations. 38 were completely unresolvable as they contained
special characters.

(a) They had to consist of 16 or more numeric digits, or

(b) contain trigger strings like pass, pw, wpa or kennwort (the German translation for
password).

The hypothesis regarding the resolvability of the SSIDs contained in this subset is
the following:

Hypothesis: Most SSIDs contained in this data set are unresolvable because they
are accidentally inserted passwords rather than legitimate network names.

The results of this evaluation largely support the hypothesis: As visualised in Fig. 3.9,
out of the 78 strings identified as potential passwords, only one was resolvable to
a unique location, while the rest could not be mapped to existing networks. This
reinforces the idea that most were incorrectly inserted passwords and leads to the
following conclusion:

Result: Since most strings identified as potential passwords can not be mapped
to actual networks, they are highly likely to be incorrectly inserted passwords.

Evaluation of Typographical Variations of SSIDs The same evaluation applied
to the subset of SSIDs containing potential passwords was also conducted on identi-
fied SSID multiples, which may represent typographical variations of one another.
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Figure 3.9: Resolving passwords in WiGLE: Out of the 78 SSIDs identified as
potential passwords, only one could be resolved to a location using WiGLE.

All SSIDs within a PNL that had a normalised edit distance of 0.3 or lower (cf. the
paragraph Typographical Variations of SSIDs of Section 3.2.3.2) were considered typo-
graphical variations of one another. In this context, the hypothesis as to the amount
of resolvable SSIDs was the following:

Hypothesis: More than 50 % of the SSIDs identified as typographical varia-
tions of one another are unresolvable, suggesting that many PNLs contain one
legitimate SSID and one or more typographical variation.

The results are shown in Fig. 3.10: Out of the 296 strings identified as typographical
variations, 38.2 % were resolvable, which supports the hypothesis. 47 of those could
be pinpointed to one unique location, and 66 resolved to multiple locations. The
remaining 183 SSIDs could not be localised using WiGLE. These results lead to the
following conclusion:

Result: While a number of the SSIDs correspond to real networks, the remainder
can not be located as the networks likely do not exist. The unresolvable SSIDs
are likely to be typos of the resolvable SSIDs.

Limitations While the verification via geolocalisation is a legitimate approach to
ascertain the location of existing networks, the inability to localise a network via
WiGLE does not automatically mean that the network does not exist: WiGLE does
not map hidden networks, as these do not broadcast their SSID. As the main reason
for using directed probe requests is to identify hidden networks, conversely, if the
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Figure 3.10: Resolving multiples of SSIDs using WiGLE: The potential typos identi-
fied in the evaluation were not localisable in 61.8 % of the cases. In 15.9 % of the
cases, one location was resolved, and in 22.3 % of the cases, multiple locations
were returned.

network is indeed an existing hidden network, WiGLE cannot localise it even though
it exists. Nevertheless, a large percentage of the SSIDs recorded in the field study
could be mapped to existing networks. One explanation might be that they do, in fact,
exist, and that the real networks corresponding to the SSIDs in the recorded probe
requests have been identified. However, other explanations are also possible:

i) While the SSID the device is probing for is, in fact, a hidden network not mapped
by WiGLE, there might be one or multiple other networks with the identical
SSID.

ii) The network has only been modified to be a hidden network recently, and the
SSID shown in the map reflects the former existence of the non-hidden network
and has not yet been updated.

iii) The network was added manually to WiGLE.

3.2.4 Device Tracking via Probe Requests

The privacy risks inherent to active discovery entail not only the transmission of
SSIDs, and thereby possible disclosure of sensitive data: Over the years, various
publications highlighted the possibility to track devices via probe requests. While
the first attacks used the MAC address and SSIDs contained within probe requests,
the introduction of MAC address randomisation also introduced the need for new
attack vectors. This section compares the attack vectors employed over time, with
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Authors MAC Address

SSID Supported Rates

Ext. Supported Rates

DS Parameter Set

HT Capabiliti
es

VHT Capabiliti
es

Extended Capabiliti
es

Vendor Specific

all other fields

IE Field Sequence

BSS Membersh
ip

Transm
issi

on Frequency

Sequence Number

RSS

Pang et al. [Pan+07] ✓ ✓ - - - - - - - - - - - - -
Cunche et al. [CKB14] ✓ ✓ - - - - - - - - - - - - -
Freudiger et al. [Fre15] ✓ - - - - - - - - - - - - ✓ -
Vanhoef et al. [Van+16] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - -
Robyns et al. [Rob+17] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ - -
Zhao et al. [Zha+19] ✓ ✓ - - - - - - - - - - - - -
Dagelić et al. [DPČ19] ✓ ✓ - - - - - - - - - - - - -
Gu et al [Gu+20] - - ✓ ✓ ✓ ✓ ✓ ✓ - ✓ - - - - -
Uras et al. [Ura+20] - - - ✓ ✓ ✓ ✓ ✓ - - - ✓ - - -
Tan et al. [TC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
Pintor et al. [PA22] - - - - - ✓ - ✓ ✓ - - - - - -
He et al. [HTC23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓

Table 3.2: Comparison of the elements used for fingerprinting attacks across
various publications. Adapted from [McD+24b].

particular regard for the separate fields of the IE that were considered distinguish-
ing attributes. Parts of this section have previously been published in [McD+24b],
and were extended for this thesis. An additional visual comparison is provided in
Table 3.2, in which the elements used for fingerprinting throughout 12 influential
publications are compared.

One of the first publications attempting to perform user tracking in 802.11 networks
was published by Pang et al. [Pan+07]. They attempted to fingerprint devices using
both probe requests as well as other wireless traffic. With respect to probe requests,
they focussed on the MAC address and SSID contained in the request.

Cunche et al. [CKB14] used the same set of identifiers for fingerprinting, but ad-
ditionally attempted to infer information on relationships between device owners
by comparing the PNLs. The practical use of probe request tracking, particularly
via the MAC address and SSID, was also demonstrated by Zhao et al. [Zha+19],
who used probe requests to localise and track gang member via the MAC addresses
and SSIDs their mobile devices transmit. Dagelić et al. [DPČ19] also demonstrated
the possibility of tracking devices via MAC address and SSID, focussing less on
localisation and more on analysing device behaviour during active discovery over a
four-year period.

With the introduction of MAC address randomisation starting in 2014 (cf. Sec-
tion 2.1.3) and the omission of the SSID field, other sources of information came
into the focus of researchers analysing tracking via probe requests. Freudiger [Fre15]
demonstrated that the sequence number can be used to track devices despite MAC
address randomisation, as many devices randomise only their MAC address, but
not the packet’s sequence number. Alternative means of information were also used
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by Vanhoef et al. [Van+16] to track devices via probe requests: they showed that the
MAC address randomisation strategies were insufficient to inhibit tracking. For their
attack, they used all fields transmitted in the probe request, and additionally the
sequence in which they were transmitted: Vanhoef et al. found that the order of tags
had a high entropy and therefore used it as an additional source of information.

For their fingerprinting technique, Robyns et al. [Rob+17] combined the IE with
the transmission frequency. With respect to the content of the IE, they included
all fields, but used a threshold λ that determines the part of the IE that is to be
included. They determined that some fields have greater stability than others, and
that even within fields, stability can vary on bit-level. By varying the threshold, they
accommodated the variability with respect to the group size considered.

The attacks following in the subsequent years combined fingerprinting with other
techniques: Gu et al. [Gu+20] used deep learning methods on all fields except for
the MAC address, the SSID, and vendor-specific values. Tan et al. [TC21] model the
probe requests in a flow network and use minimum-cost flow optimisation to track
devices. Their approach entails all fields, and additionally the sequence number
and the received signal strength (RSS) field. He et al. [HTC23] extend the work of
Tan et al., and additionally employ even more identifiers like the transmission order
and the transmission time. Uras et al. [Ura+20] and Pintor et al. [PA22] combine
their device fingerprinting with clustering approaches, but while Pintor et al. chose
only a select few fields, including the HT Capabilities, the Extended Capabilities
and Vendor Specific fields, Uras et al. selected a considerably larger amount of
fields, including Extended Supported Rates, BSS Membership, HT Capabilities,
Extended Capabilities, DS Parameters, VHT Capabilities and two additional
reserved tags.

While the introduction of MAC address randomisation and the omission of the SSID
field has thwarted a lot of the early attacks, more recent publications introduce at-
tacks that are still possible today: These mainly focus on other fields, and particularly
the combination of fields and additional information that can be gleaned from probe
requests. The following section introduces mitigations that aim to reduce the risk for
individuals to be tracked.

3.3 Mitigations

The use of active discovery causes privacy risks to users: As described in the previous
section, the SSIDs contained in probe requests can contain personal data. In case of
misconfiguration, they might even contain passwords. To allow the use of hidden
networks while simultaneously protecting the users from tracking via the PNL, a
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hash-based scheme for covert SSID transmission is introduced in Section 3.3.2.
While this scheme can protect users in case an AP is configured as a hidden network,
the use of hidden networks is discouraged as they mainly pose a privacy risk via the
required directed probe requests. It is therefore important to consider the current
state of active discovery and question whether probe requests as they are today are
in fact required.

In Section 3.3.3, modified user settings for extended control are proposed to enhance
both Security-by-Design and Privacy-by-Design guarantees, while also providing
users with greater control over their device’s probing behaviour.

Section 3.3.4 concerns the question whether active discovery is in fact needed at all,
or whether the use of passive discovery only would be sufficient. Subsequently,
the use of a generic MAC address is introduced in Section 3.3.5. A generic MAC
address defends against specific attacks targeting the MAC address: The lack of
standardisation of MAC address randomisation drives manufacturers to implement
randomisation as they see fit. This, in turn, can cause certain identifiers to still
be contained in the MAC address, which then allows tracking despite the use of
MAC address randomisation. A generic MAC address can help counter such attacks.
Section 3.3.6 then introduces generic probe requests, in which the IE is reduced to
the bare minimum. This way, probe requests lose their identifying features, allowing
single devices to disappear in a large anonymity set.

3.3.1 Attacker Model

The considered attacker passively monitors the 2.4 and 5 GHz spectrum to record
probe requests. They have an unspecified amount of sensors monitoring probe
requests at their disposal, e.g. in a large area like a store, shopping mall or university
campus. Since off-the-shelf equipment is sufficient for monitoring probe requests,
the attacker is not required to possess great financial means. To perform real-time
analysis, the sensors transmit the recorded probe requests to a server with standard
computational efficiency, where all calculations are performed. By combining differ-
ent fingerprinting techniques, the attacker is capable of tracking devices either using
permanent identifiers such as the UAA or by calculating a fingerprint over elements
contained in the IE tag. Simultaneously, the attacker has bounded computational
power, and therefore a limited ability to find preimages of the SSIDs that the hashes
introduced in Section 3.3.2 belong to.
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3.3.2 Hash-Based Scheme for Covert SSID Transmission

The Wi-Fi Protected Access 3 (WPA3) standard (cf. Section 4.2.4) introduced the en-
cryption of management frames through the 802.11w standard [Ebb20]. While probe
requests are management frames, the encryption of management frames only applies
to those exchanged after a 4-way handshake. Since probe request are transmitted
before the 4-way handshake, the protection does not extend to them. Therefore, other
means of protecting the content of probe requests, and particularly the SSID-field, are
required: One such means is the omission of SSIDs in probe requests, as it reduces the
attack surface probe requests provide. While some publications recommend to cease
the use of probe requests altogether [Goo+19; Fra+06; WK18], a 2021 study [SRV21]
revealed that the use of hidden networks is still prevalent, with up to 44 % of the
networks found in certain areas being hidden networks. Discovering such hidden
networks without active discovery is impossible, as they do not transmit beacons
(cf. Section 2.1.2), and probe requests, and in particular directed probe requests, are
therefore still required.

Given that the transmission of SSIDs in probe requests poses both a significant
privacy leak of user data, and is crucial for connecting to hidden networks, a method
for transmitting SSIDs in a non-trackable manner is needed. A hash-based scheme to
conceal the transmitted SSIDs from attackers was therefore proposed in [McD+22],
and is again presented here in the context of this thesis. The scheme preserves user
privacy in a non-trackable way while simultaneously ensuring that a connection to
hidden networks remains possible. The hash-based scheme is applied to the SSID
contained within the probe request and concatenated ( || ) to the MAC address and
the sequence number (SN) as a salt like so:

send(hash(MAC || SN || SSID))

An AP receiving the probe request can then apply the sequence number and MAC
address of the probe request to its own SSID and then compare the resulting hash
to the hash stored in the probe request. If a salt were omitted, the mobile device
could easily be tracked by its hashed SSID. The salt thus renders the resulting output
less deterministic and, consequently, less trackable. Furthermore, by using the MAC
address and sequence number, no additional salt has to be transmitted. The entropy
introduced by this salt depends on the type of MAC address randomisation (cf.
Section 2.1.3): Of the 48 bits used to construct a MAC address, two are typically
fixed, as they contain the U/L bit and the I/G bit. For the remaining 46 bits, there are
various randomisation strategies, some keeping the first 24 bits stable to denote the
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OUI and only randomising the last 24 bits, while 46-bit randomisation randomises
the whole address apart from the two aforementioned bits. By using the randomised
MAC address as a salt for the SSID, the additional entropy is at least 24 bits, and at
most 46 bits. The sequence number introduces an entropy of 12 bits. Together, both
components of the salt introduce an entropy of a lower estimate of 36 bits, and a
maximum entropy of 58 bits. To estimate the practical feasibility of the scheme, both
the computational cost as well as the bandwidth requirements introduced by the
scheme are evaluated in the following.

Computational Overhead To estimate the overhead the use of a hash function
introduces to the comparison of two strings, a script was implemented. It uses the
SHA-256 hash function from the hashlib library that Python provides. For baseline
reference, a string comparison of two SSIDs is implemented in one function, and a
hash-then-compare-function is implemented in another.

Both functions are tested in three test runs each, with each run calling the respective
function a million times. On a Raspberry Pi, a device likely comparable in power
to a home router but without cryptographic hardware acceleration, the hash-then-
compare implementation increased the time required per comparison by 153.7 %,
increasing the average time required for a single comparison from 4.6 microseconds
to 11.7 microseconds. As the Raspberry Pi does not possess cryptographic hardware
acceleration, which professional Wi-Fi routers on the other hand might have, the
experiment was additionally run on a laptop that uses an Intel i5 processor. This
reduced the overhead introduced by the hash-then-compare function to 53 %.

To put this into perspective, the amount of probe request captured in the field study
performed in Section 3.2.3 can show the impact of hashed SSIDs on a real-world
scenario: Over the course of the field study taking place in a busy pedestrian zone,
around 23 probe requests were captured per second, 23.2 % of which contained
an SSID, which is around 5.2 per second. A Raspberry Pi is capable of performing
around 85 200 hashing operations every second. The overhead introduced by hashing
the SSID before comparing it is therefore tolerable and well within the allocatable
resources, also in even more frequented areas.

Bandwidth Overhead In terms of bandwidth overhead, an average probe request
captured in the field study had a length of 133.3 bytes. A probe requests containing an
SSID on the other hand, had an average length of 147 bytes, and the average length of
the SSID was 11.4 bytes. Using the SHA-256 hashing algorithm, this average length
would be increased to a fixed length of 32 byte, which corresponds to the maximum
length of the SSID field. The SSID field length would therefore be increased by
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20.6 bytes, and the length of packets containing SSIDs would be increased to 167.6
bytes, which amounts to an increase of 14.07 %. Seeing that only 23.2 % of the probe
requests captured contained an SSID, this trade-off can be considered acceptable
with respect to the increase in privacy and the reduction of the ability to fingerprint
individual devices via unchanging SSIDs.

A slight modification could result in a reduced bandwidth overhead: Instead of
transmitting the whole 32 bytes of the hash, the string could be truncated to 16
bytes prior to submission. This way, directed probe requests would instead have an
average packet length of 151.6 bytes, which is an increase of only 3.2 % compared
to non-hashed SSID transmission. This increases the likelihood of hash collisions,
with the consequence that there is a slightly higher likelihood to receive a probe
response from a device whose hashed SSID resulted in hash with an overlapping
first 16 bytes.

An additional reduction of overhead could be achieved by limiting the devices that
respond to directed probe requests containing hashed SSIDs to hidden networks
only.

Limitations This scheme holds against an attacker capable of monitoring all probe
requests, but with bounded computational power, which makes the computation
of the observed preimages of the hashes, namely the SSIDs, impractical. This holds
provided that both MAC addresses and sequence numbers are randomly chosen
and, together, provide a lower estimate of 36 bits of entropy. The scheme can defend
users from attackers that want to learn the SSIDs contained in a user’s PNL, possibly
to locate them via WiGLE, and it also protects users from being tracked via an SSID
unknown to the attacker. However, it does not hold against an attacker with an
a priori list of known SSIDs who computes the hashes on the fly, made up of the
current MAC address, sequence number and the known SSID(s), and compare said
hashes with the hashes monitored in the vicinity.

This section showcased the hash-based SSID scheme as a privacy enhancing tech-
nique to reduce individual device fingerprints while simultaneously allowing pri-
vacy friendly reconnaissance with hidden networks. The subsequent section intro-
duces additional control mechanisms that could be implemented to improve device
privacy and provide users with more control over the probing behaviour of their
mobile device.
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(a) Screenshots of an attempt to connect to a hidden net-
work on iOS 15. While Android devices allow to insert
entries into the PNL even when the corresponding
network is out of reach, iPhones only allow a manual
extension of the PNL when a connection to the network
can be established.

(b) A warning message
displayed on devices run-
ning Android 9 or newer
upon manually inserting
a hidden network.

Figure 3.11: Examples of user dialogues to mitigate unwanted SSID entry.

3.3.3 User Interface Improvements to Reduce Privacy Risks

While the previously introduced approach permits privacy friendly directed probe
requests, it is a solely protocol-based approach. Introducing it requires for both
the manufacturers of routers as well as mobile device manufacturers to implement
the protocol. Since the problematic SSIDs discovered in probe requests in the field
study introduced in Section 3.2.3.2 are hypothesised to be primarily caused by users
accidentally inserting SSIDs or passwords and not deleting them subsequently, mod-
ifications in the user interface (UI) design of mobile devices, including approaches
like Privacy-by-Design and Security-by-Design, could improve device privacy even
more, while simultaneously increasing user control. The herein introduced sugges-
tions were published in [McD+22]. They encompass safeguards for manual SSID
entry, the removal of known SSIDs, default expiry dates for PNL entries, manually
adjustable auto-join functions and the possibility to silence probe requests and in-
stead rely on passive discovery only. Since some of these suggestions are part of
Android or iOS devices, the following paragraphs first outline the existing safe-
guards and then formalise the improvements that should be considered for Android,
respective iOS devices.

SSID Entry Safeguards Both the recent iOS and Android OSs feature safeguards
to prevent users from accidentally inserting hidden networks into their PNL, and
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therefore introducing a network that would be used for subsequent directed prob-
ing: As can be seen in Fig. 3.11a, iOS devices only allow the insertion of existing
networks within range, to which a connection can be established at the time of
insertion. In case the entered password was incorrect or the network can not be
discovered in the vicinity despite the use of directed probe requests, an acknowl-
edgement of the warning message will lead users back to the general Wi-Fi setup
page, and will not result in the network being added to the PNL. Whether a device
is a hidden network, and will therefore be probed for using directed probe requests,
or a non-hidden network, is determined automatically by iOS devices when first
establishing a connection to the network. On Android devices, on the other hand, it
is possible to insert networks that are out of range. Fig. 3.11b shows that an attempt
to set the network status as hidden upon adding it displays a warning message. In it,
the user is provided with explanations about the use of hidden networks, and is cau-
tioned about the privacy risks introduced by the regular broadcast of directed probe
requests. While manually setting a network to hidden could be considered unnec-
essary considering that iOS devices are capable of detecting their hidden status, it is
required in case the added network is not within reach, and its hidden status can not
be determined on the fly. To improve the security of Android devices to match that
of iOS devices with respect to the manual insertion of (unwanted) hidden networks,
the recommendation is for Android devices to adapt the iOS strategy of adding only
networks within reach, and determining the hidden status automatically instead of
requiring users their users to do so.

Known SSID Removal In the beginning of 2022, at the time of the publication
of [McD+22], only Android allowed the modification of the PNL via the network
settings, while iOS solely allowed the modification of networks within range of the
mobile device (cf. Section 3.2.1). This changed in iOS 16: Starting with its release in
September 2022, the modification of all PNL entries both within and not within reach
was possible [Wik24b]. Albeit both Android as well as iOS devices now fulfil the
recommendation published in [McD+22] to modify iOS to allow for the modification
of distant networks, this safeguard is still mentioned here, for the sake of completion.
It is unclear whether or not [McD+22] had any influence on the decision to include
the feature in iOS, since despite a thorough search, it was impossible to obtain
information or release notes introducing the feature from the official Apple website;
only a manual on how to use it, published in October 2023 [Sup23].

PNL Entry Expiry An additional recommendation encompasses expiry dates for
entries of the PNL: Whether a user visits a café in a different city once, stays in a
holiday home for a week, attends a regular weekly event or streams series at home,
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(a) The auto-join setting in iOS 17. (b) The auto-join setting in Android 11,
here called auto-connect. Image source:
[Dav20].

Figure 3.12: Comparison of the auto-join functions in Android and iOS. Both OS
allow to select the auto-join function on a per-network basis.

their needs to connect to the available networks vary. While the option to modify
the PNL after use allows purging unused networks, a switch to set an expiry date
directly when connecting to a network would alleviate the PNL sanitisation: A user
connecting to a café network in a place they are unlikely to visit again could set for
the network to be forgotten on the next day. A visitor of a holiday home could set
the expiration date to a week, and the default expiration date that would also apply
to the home network of a person or a regular event they’re attending would be never.
This reduces the likelihood of attack using fake APs, where attackers set up APs
with common SSIDs to trick devices into connecting to them. The goal of such an
attack could be to identify devices via their MAC address, since either the LAA or
the UAA is disclosed upon connection establishment, or to capture their traffic. A
strategy such as a predefined PNL entry expiry would assist in PNL sanitisation
with minimal additional effort required from the user. Neither Android nor iOS
devices allow users to set an expiration date for added networks.

Auto-Join Prompt While users would likely not remove irregularly used networks
from their PNL to forgo the effort of adding them again, they might instead profit
from an adjustable auto-join function. Especially for well-used public networks, the
risk of falling victim to a fake AP attack is significantly reduced if users are prompted
to decide whether they want to automatically join the network or instead manually
choose the connection whenever they in physical proximity of the legitimate network.
While both Android and iOS devices allow to disable auto-join per network, as can
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also be seen in Figures 3.12, a prompt upon first connection establishment would
increase the visibility of the option and thereby increase its privacy gain.

Probe Request Silencing The primary reason for the transmission of probe re-
quests is to identify nearby known networks. As information on nearby networks not
only serves to improve network connectivity, but also allows for coarse localisation
of devices via network maps, turning off the Wi-Fi does not necessarily mean that
no probe requests are used, as localisation processes can transmit probe requests
even with Wi-Fi deactivated [MCT17]. While additional settings can allow users
to prevent devices from using probe requests to localise the device, these are dif-
ficult to find. This could be remedied via a reduced visibility mode: To provide
increased user controls and offer the possibility to remain undetectable via probe
request, regardless of their content, the possibility to rely on passive discovery only
would meet increased privacy demands that some users might have. This comes
with several trade-offs that users have to be aware of:

• Connection establishment via passive discovery is slightly slower than active
discovery [WK18].

• Passive discovery increases the battery usage [Fre15].

• Connecting to hidden networks is impossible via passive discovery, as hidden
networks do not transmit beacons.

Nevertheless, some users might choose to accept those trade-offs knowing that the
privacy gain is very large. Albeit the sole reliance on passive discovery is only a
legitimate option to improve user privacy when using non-hidden networks, this
option, as well as improvements to passive discovery discussed in the literature are
investigated in more detail in the following section.

3.3.4 Beacons Only

While active discovery allows mobile devices to efficiently and quickly locate nearby
known APs, it also entails inherent privacy risks, as shown in Section 3.2. Instead of
trying to improve such an insecure scheme, another idea is to completely eliminate it.
While probe requests are actually necessary to connect to hidden networks, all non-
hidden networks could just be discovered using passive scanning. This approach has
previously been suggested by Franklin et al. [Fra+06] in 2006, Waltari et al. [WK18] in
2018 and Goovaerts et al. [Goo+19] in 2019. The latter two go beyond just suggesting
the idea: They analyse the temporal gain achieved by the use of active scanning
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Figure 3.13: A screenshot of probe requests and their responses captured in Wire-
shark to illustrate the response times in active discovery.

versus passive scanning, and develop methods to improve passive scanning even
more.

During active discovery, a probe response is expected to be received immediately
after the probe request was sent. Fig. 3.13, for example, shows two probe requests
and their probe responses in packets 3 to 6. In these two instances, the probe response
is received 1.73 and 1.76 ms after the probe request is transmitted. It is trivial to see
that passive discovery, where every channel has to be monitored for beacons which
are only sent every 100 to 120 ms [WK18], is slower than active discovery.

Waltari et al. [WK18] quantify this timing difference: They discover that when the
beacon interval is set to 100 ms, passive network discovery is around 0.6 seconds
slower than active discovery in 98 % of the cases. This behaviour can also be observed
in Fig. 3.14.

In order to enhance passive network discovery and reduce the time difference
between active and passive discovery, Goovaerts et al. [Goo+19] suggest several
techniques to improve passive scanning: Their solution combines the following
approaches:

(a) a prolonged dwell time while monitoring for beacons,

(b) prioritised scans and

(c) APs advertising their neighbouring SSIDs.

The dwell time denotes the time a device listens for beacons on a specific channel.
A high dwell time ensures that devices can receive beacons from all surrounding
APs on the first scan. The authors found out that a dwell time of 100 ms discovers
around 90 % of the nearby APs, while a dwell time of 120 ms or more returns 100 %.
In addition, instead of scanning every single channel, they propose to prioritise
the scans to first monitor the channels 1, 6 and 11 in the 2.4 GHz spectrum, and in
the next round channels 36, 40 and 44 in the 5 GHz spectrum. Additionally, they
dynamically enhance this prioritised search by always starting with the channel the
last connection had been established on, assuming this is the default channel for the
network. These techniques deliver considerably improved results when measuring

92



3.3. Mitigations

Figure 3.14: Network discovery using active and passive scanning, with discovery
times measured with respect to beacon intervals. The right-most axis addition-
ally shows the beacon interval distribution, which shows that around 90 % of
the APs send beacons every 100 ms, while a few use slightly longer intervals.
Image source: [WK18].

the time between the initial scan to the discovery of a known network: When the
same dynamic priority scan is performed in both active, as well as passive discovery,
active discovery is sped up from around 3.8 seconds to 0.049 seconds. Using a dwell
time of 100 and 120 ms, dynamic prioritised passive scanning ranges around 0.91,
respective 0.13 seconds.

Goovaerts et al. additionally propose that APs should advertise neighbouring APs.
This reduces the amount of channels that have to be scanned before a known AP
is discovered, and thereby accelerates connection establishment even more: In a
typical search, an average of 16 channels is scanned; however, as the percentage of
access points advertising neighbouring APs approaches 50 %, the number of scanned
channels decreases to around 5. If in densely populated areas, around 12 % of the
APs advertise their neighbours, mobile devices only have to scan 6 channels to
discover a known network. In less densely populated areas, the same amount of
channels is reached around 35 % of APs advertising neighbours. This behaviour can
also be observed in Fig. 3.15.

While the last improvement requires changes in the implementation of routers,
and is therefore less likely to be implemented, the first experiments on passive
scanning showed that particularly a combination of a dwell time of 120 ms and
prioritised dynamic scanning can improve passive network discovery to be faster,
more efficient and more privacy friendly than the currently used implementations
of active discovery. In summary, the results are as follows:
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Figure 3.15: The average amount of channels that has to be scanned to discover
a known network. The dashed blue line describes normal scanning, while
the solid orange line denotes neighbour advertising. Figure (a) represents a
densely populated area, and Figure (b) a sparsely populated one. Image source:
[Goo+19].

Result: Passive discovery is more privacy friendly than active discovery, and by
using prioritised dynamic scanning, it can be improved to be more efficient than
currently used implementations of active discovery. However, active discovery
remains the only option of discovering hidden networks.

3.3.5 Constant and Globally Equal MAC Address for Probe
Requests

The problems of MAC address randomisation have been described in various publi-
cations. They range from lacking standardisation [ZBA24] to insufficient randomisa-
tion resulting in the possibility to associate frames [Van+16; Mar+17; Fen+21]. While
it appears like a random string of bytes, the MAC address can still contain a variety
of information: As described in Section 2.1.1, the first three bytes of the MAC address
contain the OUI, as well as the U/L bit and the I/G bit. Martin et al. [Mar+17] and
Fenske et al. [Fen+21] show that some implementations of MAC address randomisa-
tion are flawed, since they omit randomising the OUI, and can therefore still leak
information on the devices. This way, devices can be identified and tracked despite
the use of MAC address randomisation. This knowledge also characterises the at-
tacker model: The use of a generic MAC address can protect users from an attacker
who infers information on devices only by observing the MAC address. The trivial
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1 from scapy.all import *
2
3 ssid = ""
4 interface = "wlan0"
5 sender = "22:22:22:22:22:22"
6 dest = "ff:ff:ff:ff:ff:ff"
7
8
9 def send_probe_req(senderaddr , destaddr , ssid , interface):

10 radiotap = RadioTap ()
11 dot11 = Dot11(type=0,
12 subtype =0x04 ,
13 addr1=destaddr ,
14 addr2=senderaddr ,
15 addr3=destaddr)
16
17 rates_content = b’\x82\x84\x8b\x96’
18 ratestag = Dot11Elt(ID=’Rates’, info=rates_content)
19 ssidtag = Dot11Elt(ID="SSID", info=ssid)
20
21 frame = radiotap / dot11 / Dot11ProbeReq () / ssidtag /

ratestag
22
23 sendp(frame , iface=interface)
24
25 send_probe_req(sender , dest , ssid , interface)

Listing 3.1: The scapy script used to transmit probe requests via a USB antenna.
The only IE tags contained are Supported Rates and the SSID, defined in lines 3
and 17 - 19. Adapted from [McD+24b].

case is a device using its UAA when sending probe requests; the more common
case nowadays, with most modern devices using MAC address randomisation (cf.
Section 3.2.1) are devices that utilize flawed randomisation schemes (cf. Section 2.1.3).
The information on the device, which can be obtained using low-cost receivers like
Wi-Fi-USB-antennae or an ESP32, can be used by the attacker as a device fingerprint
with which they can track the device over time.

A solution that inhibits correlating frames due to flawed randomisation implemen-
tations was published in [McD+24a], the results of which are presented here in
the context of this thesis. The paper proposed the use of a generic address during
network discovery: Here, one generic address is used for all probing devices, and the
device-specific MAC address is only used once the connection establishment with
an AP is initiated. The subsequent switch back to the UAA/LAA is indispensable to
avoid MAC address collisions during connection establishment and data transfer.
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1 [device -wlan0]
2 wifi.scan -generate -mac -address -mask = FF:FF:FF:FF:FF:FF

22:22:22:22:22:22

Listing 3.2: NetworkManager configuration to enable probing via the generic
address 22:22:22:22:22:22. Listing Source: [McD+24b].

To first answer the question whether the use of a generic address still allows the
transmitting devices to receive probe responses, the script shown in Listing 3.1
is used to transmit probe requests and record the resulting probe responses. It
uses Scapy3, an interactive packet manipulation program for Python. As can be
seen in line 5, the sender MAC address is set to 22:22:22:22:22:22. This is both
a universally available and unreserved MAC address, and therefore suitable for
the task [Aut23]. Lines 18 and 19 of the script define the IE content, namely the
Supported Rates and the SSID tag. Line 21 combines the parts necessary to form a
probe request to construct the packet in the Scapy synthax. Line 23 calls the send
function that initiates frame transmission. In line 25, the function is called using the
parameters set in the preamble, in lines 3-6. The probe requests are transmitted via
a USB antenna, and the traffic simultaneously monitored using two USB antennae
on channels 1 and 6, the primarily used channels in the vicinity of the experimental
setup. The results are encouraging: Regardless of how many requests are sent from
one MAC address, they always receive responses. It appears therefore that there is
no mechanism to store previously seen MAC addresses. Hence, the proposed idea
to use a generic address can subsequently be implemented and tested to verify its
usability.

3.3.5.1 Implementation

The generic address is implemented on a Raspberry Pi running the linux-based op-
erating system Raspberry Pi OS4. Using NetworkManager5, a network configuration
tool suite that also facilitates the use of MAC address randomisation, modifications
to the address during network discovery can be implemented. The modifications
are applied in the file /etc/NetworkManager/conf.d/generate-mac-address.conf,
in which the setting wifi.scan-generate-mac-address-mask has to be included, as
can be seen in line 2 of Listing 3.2. The setting modifies the MAC address only while
probing, and switches to the individual MAC address for connection establishment.
It determines a mask of bits to be replaced by a second value. The mask is set to

3. https://scapy.net/
4. https://www.raspberrypi.com/software/
5. https://networkmanager.dev/
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Figure 3.16: IEEE 802.11 connection establishment including the AP-Time-to-
Traffic used in Section 3.3.5. Adapted from [McD+24a].

FF:FF:FF:FF:FF:FF, because of which every single bit is switched. The value used
instead is the MAC address 22:22:22:22:22:22, as in the previous example. MAC
address randomisation, on the other hand, can be switched on in NetworkManager
via the wifi.scan-rand-mac-address-mask configuration.

3.3.5.2 AP-Time-to-Traffic Metric

To measure the duration of connection establishment with respect to the use of a
generic address, the AP-Time-to-Traffic (AP-TtT) metric is introduced. It measures
the responsiveness of the AP with respect to the use of covert MAC addresses, or
lack thereof. The establishment of a connection begins with the first transmission of
probe requests by the client, and concludes with data transfer between the client and
the access point (cf. Fig. 3.16). For the sake of reproducibility, instead of choosing the
initial probe request as the starting point, the first probe response from the access
point serves as the starting point to ensure server availability; otherwise, the waiting
time would be included in the connection establishment time, which is undesirable.
The AP-TtT concludes with the transmission of the first data frame.

3.3.5.3 Scalability Analysis

The above mentioned configuration of NetworkManager is tested using five Rasp-
berry Pis. This is necessary to analyse the behaviour upon intentionally introducing
MAC address collisions: Normally, nodes affected by MAC address collisions can
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Figure 3.17: A test run produces two data points: The Raspberry Pis are pow-
ered on initially after 4 minutes, marking the recording of the first connection
attempt with the AP. The AP is subsequently powered off after 6 minutes
and switched on again after 7 minutes, where a second connection attempt is
recorded. Adapted from [McD+24b].

no longer be distinguished on the data link layer; consequently, a frame intended
for a single destination will also be received by nodes with colliding addresses.
MAC address collisions are therefore undesirable within a network and during a
connection; during network discovery, on the other hand, it is unnecessary for the
AP to be able to differentiate between two devices sending probe requests, since it
responds to every probe request with a probe response, regardless of the MAC ad-
dress it was sent from. The test setup therefore includes five Raspberry Pis with the
same modifications implemented in NetworkManager. To test whether connection
establishment is impeded in case of more than one AP responding to the generic
probe requests, two APs with distinct SSIDs are used: The APs are implemented
via a Wi-Fi antenna connected to a laptop. The interface is split via hostapd6, a user
space daemon to set up access points, and a network bridge to provide two access
points.

Three of the Raspberry Pis are equipped with the credentials for the first access point,
and the other two have those of the second access point. The generic address is then
tested in several test runs according to Fig. 3.17: The access points are switched on at
minute zero, and the Raspberry Pis at minute four. A reconnection is recorded after
the access points are switched off at minute six and turned on again at minute seven.
With every connection attempt, the AP-TtT (cf. Section 3.3.5.2) is measured, resulting
in two data points per test run.

Fig. 3.18 shows the results of these tests: The average AP-TtT with two devices is 9.31
seconds across 14 test runs, encompassing 53 data points. Three devices averaged
an AP-TtT of 9.61 seconds across 12 test runs, encompassing 72 data points. Four
devices had an average client-TtT of 9.63 across 5 test runs, encompassing 38 data
points, and five devices an average of 9.77 across 5 test runs, encompassing 50 data

6. https://w1.fi/hostapd/
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Figure 3.18: Comparative measurements of two to five devices employing
a generic address and the respective AP-Time-to-Traffic. Image source:
[McD+24b].

points. In a small number of instances, the obtained captures lacked specific essential
measurement points for AP-TtT. In these cases, the required measurement points
were either not recorded or not sent, which is why the number of data points is
not necessarily a multiple of the possible number of connection establishments.
Nevertheless, in every test run, the specified number of devices included in this
comparison successfully established a connection.

While a slightly detectable increase of the AP-TtT can be recorded, the AP-TtT is
rather comparable for two to five devices. Since this experiment serves to show
that the use of a generic address is possible for multiple devices at the same time,
it requires a large-scale simulation to establish whether the AP-TtT remains stable
with a higher amount of devices, and whether the slight increase reflects a varying
number of data points or an actual deceleration. While this would be required before
actually implementing the scheme in devices, such a large-scale experiment is out of
scope for this thesis.

3.3.5.4 Comparative Evaluation

To classify the use of a generic address in comparison to other conventional schemes,
the AP-TtT is measured in four different settings:

(i) A Raspberry Pi using a generic address while probing,

(ii) one using MAC address randomisation,
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Figure 3.19: The AP-Time-to-Traffic required for connection establishment in four
settings: without the use of NetworkManager (no-NM), using NetworkMan-
ager (NM-only), using a generic address (NM-generic) and using MAC address
randomisation (NM-random). Image source: [McD+24b].

(iii) one connecting while using its built-in network configurator and

(iv) one connecting while using NetworkManager without additional configura-
tions.

The results can also be observed in Fig. 3.19 and are clarified in the following:

Connection establishment using a generic address: The average AP-TtT re-
quired when using a generic address was 9.31 seconds. The time required for an
increasing amount of connecting devices remains fairly stable (cf. Section 3.3.5.3).

Connection establishment using MAC address randomisation: To compare
the use of a generic address to a scheme offering similar privacy protection, connec-
tion establishment while using MAC address randomisation is measured. Devices
probing while using randomised MAC addresses require 9.27 seconds AP-TtT when
establishing a connection.

Connection establishment without NetworkManager: To determine how long a
connection attempt without the use of privacy enhancing tools takes, the connection
establishment without the use of NetworkManager is measured. In this setting, the
average AP-TtT is 5.36 seconds.
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Connection establishment using NetworkManager without additional configura-
tion: As the previous experiments showed that the use of privacy enhancing tools
takes significantly longer than that without, this experiment determines whether
the increased time is due to the use of NetworkManager or due to the additional
configurations. Therefore, connection establishment while using NetworkManager
without additional configuration is measured. The AP-TtT in this setting is 5.59
seconds on average.

The test results show that while the use of privacy enhancing techniques signifi-
cantly slows down connection establishment, both privacy enhancing schemes cause
a comparable AP-TtT of 9.27 vs. 9.31 seconds. The third experiment showed that con-
necting without privacy enhancing schemes and without NetworkManager caused
an AP-TtT of 5.36 seconds. The last experiment revealed that the overhead is not
caused by NetworkManager, as connection establishment using NetworkManager
without additional configurations is comparable to that without NetworkManager
at 5.59 seconds.

While both the use of MAC address randomisation as well as the use of a generic
address cause a significant but comparable deceleration of connection establishment,
they provide a significant improvement in privacy. Optimised implementations can
likely reduce this overhead, and while MAC address randomisation is an already-
established and pervasive scheme, the use of a generic address enhances privacy
more, since no information can be inferred from inadequately implemented ran-
domisation schemes. It additionally allows devices to disappear in a very large
anonymity set, and should therefore be considered a replacement for MAC address
randomisation.

3.3.5.5 Discussion

The proof-of-concepts introduced in this section demonstrated that it is possible
for multiple devices to share the same MAC address while probing. A generic ad-
dress does not create a major overhead in comparison to an established scheme like
MAC address randomisation. Additionally, a scalability analysis showed that the
connection establishment took comparably long between 2 and 5 devices. Simulta-
neously, the tests conducted in this experiment still leave some open-end questions,
e.g. whether the AP-TtT is stable in a large-scale simulation or real-world scenario,
and whether the minute tendencies observed in Section 3.3.5.3 were caused by the
varying amount of data points.

Since the generic MAC address is only used while probing and the UAA/LAA used
for subsequent connection establishment, there should be no obstacles in using it
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on a larger scale. If implemented in the device driver, the overhead measured in
Section 3.3.5.4 could be reduced, too.

With respect to the security properties the use of a generic MAC would introduce,
it would ensure firstly that no information on the manufacturer of the device
could be leaked via a persistent OUI in case of the use of 24-bit randomisation (cf.
Section 2.1.3). It would additionally hinder the distinction of bursts transmitted
from two different devices using the same MAC address for probing. The less
distinguishing information is additionally contained within the IE (cf. Section 3.3.6),
the harder it is to differentiate between all transmissions, both from different devices
as well as within bursts. In summary, a generic MAC address would distinctly
improve the security in comparison to 24-bit randomisation, and since the privacy
protecting properties exceed those of MAC address randomisation, it should be
considered a suitable replacement.

3.3.6 Generic Probe Requests

The use of a generic MAC address, as introduced in the previous section, can defend
against attackers inferring information via the OUI given 24-bit randomisation, or
flawed implementations of MAC address randomisation. This is not the only vantage
from which probe requests are attacked: A much discussed and implemented attack
vector is to fingerprint the IE tags. The particular fields often contained within the IE
are introduced in Section 2.1.2, as well as the additional discriminating attributes
used for tracking compared in Section 3.2.4 and visualised in Table 3.2. The latter also
shows that the most distinguishing features used for attacks are contained within
the IE of the probe requests: Some publications additionally use the sequence in
which the tags are transmitted, the transmission frequency, sequence number or the
received signal strength (RSS), but all recent research focusses on the IE as the main
element, with the additional features only serving as a secondary distinguishing
attribute. The logical consequence to reduce this attack surface is to propose a
minimisation of IE content.

This has previously been proposed in various publications [Van+16; Mar+17; Fen+21],
but its implications have never been scientifically analysed in detail. At least one
manufacturer, Google, has started to implement minimised IE content [Hog17]: Ac-
cording to their development blog, the IE content transmitted by Pixel, Pixel XL and
Nexus 5x devices running Android O+ is limited to transmit only the SSID and the
DS parameter set (cf. Section 2.1.2). To test such a minimised IE in the context of this
thesis, this behaviour is simulated using Scapy. The Scapy script shown in Listing 3.3
is used to transmit probe requests via an external USB antenna. Simultaneously, the
non-overlapping channels 1 and 6 are monitored via two more USB antennae; in
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1 from scapy.all import *
2
3 ssid = ""
4 interface = "wlan0"
5 sender = "22:22:22:22:22:22"
6 dest = "ff:ff:ff:ff:ff:ff"
7
8
9 def send_probe_req(senderaddr , destaddr , ssid , interface):

10 radiotap = RadioTap ()
11 dot11 = Dot11(type=0,
12 subtype =0x04 ,
13 addr1=destaddr ,
14 addr2=senderaddr ,
15 addr3=destaddr)
16
17 dsset = Dot11Elt(ID=’DSset’,info=’\x01’)
18 ssidtag = Dot11Elt(ID="SSID", info=ssid)
19
20 frame = radiotap / dot11 / Dot11ProbeReq () / ssidtag /

dsset
21
22 sendp(frame , iface=interface)
23
24 send_probe_req(sender , dest , ssid , interface)

Listing 3.3: The Scapy script used to emulate probe requests transmitted by
Google devices running Android O+ and higher. Note the content of the IE to
be transmitted: In line 17 and 18, the DS parameter set and the empty SSID tag
are defined. They are subsequently joined to construct a packet in the Scapy
synthax in line 20.

the vicinity of the experimental setup, channel 11 is used only infrequently, and
therefore omitted in the setup.

The result of this experiment showed, that while several routers in the vicinity of the
experimental setup responded with probe responses, a very commonly used router
in Germany, the FRITZ!Box 7490, failed to respond to probe requests containing
only the SSID and the DS parameter set. Despite using the standard configuration
of this widely-spread router, it appeared to discard probe requests containing only
the SSID and DS parameter set tags and failed to respond to them. Reducing the
content to SSID and DS parameter set therefore seems to be a solution that is not
universally applicable.

In the next test, the goal is to estimate how far the content of probe requests can
be reduced to produce a smaller attack surface, while still receiving probe requests
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1 rates_content = b’\x82\x84\x8b\x96’
2 ratestag = Dot11Elt(ID=’Rates’, info=rates_content)
3 ssidtag = Dot11Elt(ID="SSID", info=ssid)
4
5 frame = radiotap / dot11 / Dot11ProbeReq () / ssidtag /

ratestag

Listing 3.4: The part of the Scapy script required to set Supported Rates and SSID
as the content of the IE. Line 1 defines the content of the Supported Rates, lines
2 and 3 convert them to the format required to construct a package in the Scapy
synthax. The packet itself is constructed in Line 5.

from all routers in the vicinity of the experiment. Therefore, captured probe requests
are re-transmitted and gradually reduced in content. The results of this experiment
are introduced in the following, and were also published in [McD+24b].

This experimental setup provides the following observation:

Observation: By retransmitting captured probe requests and reducing their IE
content step by step, it can be deduced that the only fields required for probe
requests to receive probe responses are the SSID field and Supported Rates (cf.
Section 2.1.2). Both fields can be empty, but have to be included in the request.

From the gradually reduced content of the re-transmitted probe requests, another
python script is created. The structure is the same as can be seen in Listing 3.3, but
with lines 17-20 replaced by the the content shown in Listing 3.4. The resulting script
is used to robustly determine and illustrate the necessary frame content: The bare
minimum required to receive probe responses of all surrounding networks is to
include the SSID and Supported Rates tag into the IE.

3.3.6.1 Proposition: IE Minimisation

The previously introduced results form the basis of the proposal of this section: the
reduction of the IE content to the bare minimum. This can be done by the use of
undirected generic probe requests, containing a reduced IE field with only the
SSID and Supported Rates tags. This way, user privacy can be increased while
simultaneously ensuring that the functionality of active discovery is maintained.
The proposal additionally includes a limitation to undirected probe requests: These
encompass the majority of the transmitted requests. Undirected probe requests are
also the main focus of the general research on probe request deanonymisation,
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and their protection should therefore be prioritised to ensure user privacy. This focus
on undirected probe requests can also be explained by highlighting the scenarios in
which directed probe requests are used:

(i) Directly preceding the connection establishment,

(ii) during a connection, to maintain connectivity with the AP providing the
strongest signal and

(iii) in search for hidden networks.

All three cases facilitate trivial device tracking via the identifiers contained in the
probe requests: In the first two instances, the LAA is used as the source address,
and is either an unchanging identifier or one that is stable for a predefined but
typically extended amount of time (cf. Section 3.2.1). In the latter case, the SSID
contained in the probe request serves as a trivial fingerprint. Extending the IE
content minimisation to the protection of directed probe requests therefore does not
improve privacy. Since neither connection establishment nor the connection itself
require the use of active discovery, and can also be established by the use of passive
discovery, the reduction of IE content has neither influence on the robustness of the
connection or the data transfer, nor on the connection speed or the reliability.

To assess whether the proposal negatively impacts the time required for connection
establishment, overall information exchange in network discovery, as well as security
and privacy, the proposal is analysed from various perspectives in the following:
Section 3.3.6.2 shows an evaluation of probe requests sent by five different devices
to identify whether a complex IE field enables faster connection establishment. In
Section 3.3.6.3, the impact of a reduced IE on the functionality of active discovery is
evaluated. Section 3.3.6.4 then calculates the anonymity sets devices are contained
within with respect to the IE content and thereby provides a quantification of the
privacy gain achieved with a minimised IE content. Subsequently, Section 3.3.6.5
evaluates the resistance to IE-Concerned Attacks a reduced IE set induces.

3.3.6.2 Impact on Connection Establishment: IE Content Analysis

In theory, probe requests incorporate IEs to enable clients to convey their network
discovery requirements, capabilities, and preferences to nearby APs. This exchange
of information aids APs in delivering suitable and efficient responses, ensuring that
clients can establish a connection in alignment with their specific needs and the
network’s capabilities. To find out whether the content of probe requests has an
actual impact on connection establishment, the probe requests sent by five different
devices are compared.
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Figure 3.20: The client-TtT-metric measures connection establishment commencing
with the first probe response to the last probe request sent via a randomised
address (packet 6). The end point of the metric is the begin of data transmission
in packet 19. Image source: [McD+24b].

The devices used for testing purposes represent common household appliances,
including a Wi-Fi dongle, a laptop, a mobile phone, a tablet, and a single-board
computer often utilized in IoT devices: They encompass a D-Link DWA-171 Nano
Wi-Fi USB Adaptor, a laptop running an Intel AC 8265 wireless card, iPhone SE
2020 running iOS 17, an iPad Pro running iPadOS 15 and a Raspberry Pi Model 3B+.
The experimental setup requires for the device to establish a connection with an
access point, which is turned on at irregular intervals. Per device, each connection
establishment is performed 7 times. The time required for connection establishment
is measured using the client-TtT metric, introduced in the following.

Client-Time-to-Traffic Metric This experiment serves to measure the time it takes
a device to switch from its temporary address used during probing to the LAA
used in an established connection. To reduce the time required for transmission to
include only this short interval, the client-Time-to-Traffic (client-TtT) is introduced:
The starting point is the last probe response received before the MAC address is
changed to the LAA. In Fig. 3.20, packet 6, marked in blue, shows this starting point.
This last probe response before the MAC address change is chosen as the starting
point, since its reception initiates the MAC address change to the locally used MAC
address of the device, and thereby the connection establishment. The end point of
the measurement is marked by the first transmitted data frame, which is visible in
packet 19.

IE Content Evaluation Table 3.3 shows the results of the tests:
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Supported Rates (in
Bytes)

Ext. Supported Rates (in
Bytes)

DS Parameter Set (in
Bytes)

HT Capabiliti
es (in

Bytes)

Vendor Specific (in
Bytes)

Extended Capabiliti
es (in

Bytes)

HE Capabiliti
es (in

Bytes)

Interw
orking (in

Bytes)

Frame Size undirected (in
Bytes)

Frame Size directed (in
Bytes)

client-T
tT (in

seconds)

Median
Standard

Deviation

DWA-171 8 4 - - - - - - 68 79 3.71 3.69 0.16
Intel 8265 8 4 1 26 7 - - - 108 277 1.92 1.67 0.73
iPhone SE 4 8 1 26 - 8 27 - 139 184 2.77 2.41 0.98
iPad Pro 4 8 1 26 28 8 - 7 152 163 2.54 2.8 1.17
Raspberry Pi 4 8 1 26 131 - - - 236 247 2.73 1.86 2.26

Table 3.3: Information Element tags of the undirected probe requests sent by
five different devices, including frame sizes and client-Time-to-Traffic. Source:
[McD+24b].

DWA-171 Undirected probe requests broadcast by the DWA-171 adaptor were lim-
ited in content and had a frame size of only 68 bytes. 12 of these construct the
IE, containing 8 bytes of Supported Rates and 4 bytes for Extended Supported
Rates. The DWA-171 adaptor required 3.71 seconds client-TtT on average.

Intel8265 The Intel 8265 transmitted undirected probe requests with a frame size
of 108 bytes, with a client-TtT of 1.92 seconds on average and a median of
1.67. The IE contained Supported Rates, Extended Supported Rates, the DS
Parameter Set, HT Capabilities, and vendor-specific information.

iPhone Undirected probe requests transmitted by the iPhone had a frame body size
of 139 bytes and a client-TtT of 2.77 seconds. The IE tags included Supported
Rates, Extended Supported Rates, the DS Parameter Set, HT Capabilities, Ex-
tended Capabilities and HE Capabilities.

iPad Pro The iPad Pro sent probe requests with a frame body size of 152 bytes
and a client-TtT of 2.54 seconds. Its IE contained Supported Rates, Extended
Supported Rates, the DS Parameter Set, HT Capabilities, Vendor Specific tags
concerning Apple, Microsoft, and Broadcom, Extended Capabilities and the
Interworking tag.

Raspberry Pi The Raspberry Pi transmitted undirected probe requests with the
largest frame size of 236 bytes. Its client-TtT was 2.73 seconds and it contained
the same IE tags as the Intel wireless card with the difference that its Vendor
Specific tags concerned Broadcom, P2P and WPS, the last of which was 105
bytes long.

These results show that a complex IE body does not necessarily imply fast con-
nection establishment. The largest frame body was transmitted by the Raspberry
Pi, whose client-TtT of 2.73 seconds made it the third fastest. The fastest client-TtT
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was achieved by the Intel 8265 wireless card, which had the second-smallest frame
size. Hence, a correlation between IE size and connection establishment could
not be confirmed. And while the DWA-171 Wi-Fi dongle had both the smallest
IE and required the longest time for connection establishment, it is also the only
device connected via a USB 2.0 Type A connector, while the other devices contained
built-in Wi-Fi chips. Other possible explanations might therefore include optimised
implementations and hardware.

Another interesting fact that could be explored in the future lies in the frame size of
directed probe requests: directly before establishing a connection with a network,
devices sometimes send additional directed probe requests using their own LAA to
the network, including its SSID. The frame sizes of these directed probe requests are
also compared in Table 3.3. The DWA-171 antenna, the iPad Pro and the Raspberry Pi
only send an additional 11 bytes containing the SSID tag length and the cleartext SSID
required for direct probing. In addition to the SSID, the iPhone sends three Vendor
Specific tags, amounting to 184 instead of 139 bytes. The Intel 8265 with the fastest
connection establishment sends the largest directed probe requests, with the extra
information specifying Extended Capabilities, the Mesh ID, FILS request parameters,
and additionally three Vendor Specific tags on WPS, P2P, and multi-band operation.
While the larger frame body size of directed probe requests does not automatically
imply correlation with faster connection establishment, it could still be interesting
to investigate whether a very slim undirected probe request in combination with
an extensive directed probe request during connection establishment would satisfy
both the need for fast connection establishment while preserving the privacy of users
in general probing.

In conclusion, the experiment shows that there does not seem to be a direct correla-
tion between extensive IE tags and fast connection establishment. The proposed
consequence to improve the privacy of users during active discovery remains to
reduce the IE content to the bare minimum. This proposal is subsequently evaluated
with respect to maintaining functionality of active discovery despite IE minimisa-
tion.

3.3.6.3 Impact on Functionality

As described in Section 2.1.4, connection establishment in Wi-Fi networks is done in
four stages:

1) Active or passive device discovery

2) Authentication
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IEEE Std. 802.11 open system authentication request

IEEE Std. 802.11 open system authentication response

IEEE Std. 802.11 probe request

IEEE Std. 802.11 probe response (security parameters)

APSTA

IEEE Std. 802.11 association request (security parameters)

IEEE Std. 802.11 association response

IEEE Std. 802.1X controlled port blocked

Figure 3.21: Association Establishment of IEEE 802.11 according to the standard.
Adapted from [IEE20, Fig. 4-30].

3) Association

4) Robust Security Network Association (RSNA)

The IEEE Wi-Fi standard contains the depiction of association establishment shown
in Fig. 3.21. In it, both the probe response sent from the AP, as well as the association
request sent from the mobile device, are marked to transmit “security parameter”.
The fields contained in association requests are defined in [IEE20, Table 9-34] and
those of probe requests in [IEE20, Table 9-38]. These findings suggests the following
hypothesis:

Hypothesis: The content of the probe requests is, also according to Fig. 3.21,
irrelevant to the exchange of security parameters between AP and the mobile
device.

To prove or disprove this hypothesis, and therefore establish whether a reduction
of IE content of probe requests impacts the functionality of active discovery, an
in-depth analysis of the fields of probe requests, probe responses and association
requests is therefore presented in the following.

A comparison shows that both probe requests and association requests have a
large overlap of fields: While association requests are comprised of a maximum
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Field AP-CSN
Change Sequence

Channel Usage

Cluste
r Probe

DSSS Parameters

Estim
ated Service Parameter Inbound

Estim
ated Service Parameter Outbound

Extended Request

FILS Request Parameters

Mesh
ID
PV1 Probe Response Option

Request

S1G Relay Discovery

Vendor Specific Request

SSID
List

In Probe Requests ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
In Probe Responses ✓ ✓ ✓ || ✓ ✓ ✓ ‡ ✓ § ✓ **
In Association Requests ‡‡ § * **

||: Extended Cluster Report
‡: FILS Indication
‡‡: FILS Session, FILS Public Key, FILS Key Confirmation, FILS, FILS HLP Container, FILS IP Address Assignment
§: Substituted by a multitude of different fields
*: S1G Capabilities, S1G Relay, S1G Relay Activation
**: In practice, this is transmitted via several consecutive probe requests containing one SSID field each

Table 3.4: The fields that can be found in probe requests, but which are not in exis-
tence in association requests. Additional markers underline their existence or
their substitution by different fields in both association requests and in probe re-
sponses. The fields Extended Request, Request and Vendor Specific Request are
highlighted in red since they are the only fields not substituted or in existence
in either probe responses or association request. Adapted from [McD+24b].

of 46 fields, probe request contain 34, 19 of which are overlapping with those of
association requests. The remaining 15 fields, which are only contained in probe
requests but not in association requests include the following:

• Request
• SSID List
• DSSS Parameters
• Channel Usage
• Extended Request
• Mesh ID
• Change Sequence
• AP-CSN

• Estimated Service Parameters Inbound
• Estimated Service Parameters Outbound
• FILS Request Parameters
• S1G Relay Discovery
• Vendor Specific Request
• PV1 Probe Response Option
• Cluster Probe

They can also be seen in Table 3.4.

The table also allows for an analysis of the fields contained in association requests: A
closer inspection reveals that while association requests contain neither FILS Request
Parameters nor S1G Relay Discovery (which are present in probe requests), instead
they contain fields to negotiate FILS session activation and S1G Relays. In the case of
passive discovery via beacons, their use must hence have been negotiated elsewhere:
In inspection of the 84 possible fields contained in probe responses shown in [IEE20,
Table 9-39] reveals that out of the 15 remaining elements that are present in probe
requests, but not in association requests, eight are present in probe responses:

110



3.3. Mitigations

• DSSS Parameters
• Channel Usage
• Mesh ID
• AP-CSN

• Estimated Service Parameters Inbound
• Estimated Service Parameters Outbound
• Change Sequence
• S1G Relay Discovery

Additionally, both probe responses as well as beacons can contain a FILS Indication
field; this explains why connections that were established using passive discovery
can have exchanged FILS capabilities without the use of the FILS Request Parameters
in probe requests.

The remaining seven fields that can be contained in probe requests but neither in
association requests nor probe responses are:

• Request
• Extended Request
• Vendor Specific Request
• FILS Request Parameters

• SSID List
• Cluster Probe
• PV1 Probe Response Option

The lack of both Cluster probe and FILS Request parameters is substituted by the
Extended Cluster Report field, respective the FILS indication contained in probe
responses, and the subsequent exchange of FILS parameters contained in the associ-
ation frame. The SSID List groups several known SSIDs from the PNL; in practice,
separate probe requests are transmitted per SSID instead. The PV1 Probe Response
Option [IEE20, Tables 9-305 - 9-310] element is a collection of capabilities and compat-
ibility, bundled in several bitmaps. With it, a device can request to receive responses
regarding the capabilities of the AP. Most of the fields whose inclusion can be re-
quested via the bitmaps are already optionally present both in association requests
and in probe responses. Additionally, connection establishment via passive discov-
ery is possible without the PV1 Probe Response Option, just like the omission of the
Request, Extended Request and Vendor Specific Request fields is tolerable in passive
discovery. They therefore appear to be unnecessary when exchanging capabilities. In
summary, the only fields of probe requests which are not in existence or substituted
by another field in probe responses or association requests are Extended Request,
Request and Vendor Specific Request, as can be seen in Table 3.4. Since they are
neither contained in the beacons used in passive discovery, they are likely irrelevant
for connection establishment, since passive discovery is possible without them as
well. Altogether, these findings support the previously stated hypothesis, and lead
to the following conclusion:

Result: The content of the probe requests is irrelevant to the exchange of security
parameters between the AP and the mobile device.

111



Chapter 3: Device Discovery

Another test that can help to further support the hypothesis is a comparison of the
probe responses transmitted in response to different probe requests. To do this, three
different probe requests are transmitted, and the responses of nearby AP compared.
The probe requests vary greatly in content: The first one is a scripted, minimised
probe request containing only Supported Rates and the empty SSID field, as shown
in Listing 3.1. The second and third are the Intel 8265 and the Raspberry Pi used in
previous section. With this selection, the responses to both a bare-minimum probe
request containing 64 bytes, a medium-sized one at 108 bytes as well as the most
verbose probe request recorded in Section 3.3.6.2 with 236 bytes can be compared.
The comparison reveals the following:

Result: Irrespective of the contents of the IE transmitted via probe requests, the
AP always responds with one universal probe response.

An additional comparison of probe responses transmitted by 10 different APs within
the transmission range of the experimental setup, collected over an extended period
of time, further confirms this observation: Regardless of the content of the probe
requests, an AP always responds with the same probe response. In conclusion, the
hypothesis that the content of the probe requests is irrelevant to the exchange of
security parameters between AP and the mobile device could be proven due to the
following observations:

• All relevant information required for connection establishment are exchanged
via the combination of probe response and association request.

• The content of the IE of probe requests is irrelevant with respect to the probe
responses of the AP, since the probe responses always contain the same infor-
mation.

This shows that a general reduction of IE content to contain only the bare min-
imum of information is technically feasible, would aid in reducing complexity
and redundancy in active discovery, and would increase user privacy in wireless
communication. In the next section, this impact on privacy is further evaluated with
respect to quantifying the privacy gain achieved by the IE minimisation.

3.3.6.4 Impact on Privacy: Anonymity Set Determination

In order to gauge the impact a reduction of the IE content has on device privacy,
a good estimator is the calculation of the anonymity sets that result from the re-
duction. An anonymity set defines how many users share the same identifiers and
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are therefore indistinguishable from each other. Vanhoef et al. [Van+16] conducted
an evaluation of the anonymity set size of probe requests in 2016, comparing the
anonymity sets that devices that share the same IE fingerprint. It can be seen in
Fig. 3.22a. Their data encompasses two self-recorded data sets from their lab and
a train station, which contain 120 000, respective 110 000 probe requests, and addi-
tionally the complete Sapienza data set [Bar+22], a large data set encompassing
8 000 000 anonymised probe requests recorded in various scenarios, e.g. during large
gatherings of people or in highly frequented areas like malls or train stations. The
Sapienza data set is particularly useful for mapping MAC addresses to devices, since
it was recorded in 2013, before the introduction of MAC address randomisation:
iOS 8 was the first to introduce MAC address randomisation in 2014, and Android
incorporated it in 2015, in Android 6.0 (cf. Section 2.1.3). It can therefore be assumed
that the amount of MAC addresses in the data set corresponds to the number of
devices present, which is necessary for assessing anonymity sets. To use a more
recent data set with a large amount of devices using randomised MAC addresses
the addresses would first need to be de-randomised to accurately determine the
actual number of participating devices and map their probe requests. This requires
to define an attack to correlate randomised MAC addresses to real devices, which
is out of scope of both [McD+24b] as well as this thesis, but has been performed in
several publications (cf. Section 3.1 and Section 3.2.4).

While the whole Sapienza data set contains a variety of subsets, encompassing
political meetings, a pope’s audience, a mall and a university campus, only the
train station subset likely contains a large variety of probe requests from passersby
and only a small amount of "lingering" devices. While one of the data sets Vanhoef
et al. used in their analysis, which is also going to be presented in the following,
encompassed the complete Sapienza data set, only the train station subset of the
Sapienza data set was analysed in [McD+24b], as it is most likely to contain the
largest variety of probe requests.

To estimate the usefulness of IEs for device identification, Vanhoef et al. calculated
the anonymity sets across the devices within the previously described data sets.
The device fingerprint they take into account spans the whole IE, including all
transmitted tags. In all three data sets shown in Fig. 3.22a, it can be observed that
one high spike on the right encompasses a large number of devices sharing the same
anonymity set. Simultaneously, a large amount of devices are distributed over the
left sides of the graphs, making up very small anonymity groups, which allow for
easy fingerprinting of the devices contained within. In the lab data set shown in
Fig. 3.22aa, it appears that around 105 share the same anonymity set, which amounts
to 21 % of the devices. This dataset consists of a large amount of probe requests, and
simultaneously a small amount of distinct MAC addresses, which points at only a
small number of devices actually emitting the probe requests. For the train-station
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data set shown in Fig. 3.22ab, the largest anonymity set encompasses 1.6 % of the
devices, and in the Sapienza data set shown in Fig. 3.22ac, the largest anonymity set
encompasses 0.75 % of the devices.

(a) The results of the analysis Vanhoef et al. presented on anonymity set size calculations
on three different dats sets. The largest anonymity sets encompass 21 % of the devices
in the lab data set (a), 1.6 % of the devices in the train station data set (b) and 0.75 % in
the Sapienza data set (c). Image source: [Van+16].
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(b) Sapienza data set re-
duced to only Sup-
ported Rates. The largest
anonymity set encom-
passes 82.55 % of the
devices.
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(c) Sapienza data set re-
duced to Supported Rates
and the DS Parameter Set.
The largest anonymity set
encompasses 40.49 % of
the devices.
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(d) Sapienza data set re-
duced to Supported
Rates, the DS Parameter
Set and HT Capabilities.
The largest anonymity set
encompasses 25.78 % of
the devices.

Figure 3.22: Anonymity set size comparison and calculation with reduced IE
content on a subset of the Sapienza data set. The IE content is constrained to
include (b) Supported Rates only, (c) Supported Rates and the DS Parameter Set,
and (d) Supported Rates, the DS Parameter Set, and HT Capabilities. Adapted
from [McD+24b].

To evaluate the anonymity set sizes with reduced IE content, a subset of the Sapienza
data set is used, the trainstation record. Since in 2013, only few devices used LAAs
and most used their UAAs, the data set can be pruned to only contain devices
transmitting their UAAs using the Wireshark filter !(wlan.sa[0] & 0x02). This
filter excludes all locally assigned addresses by displaying only packets in which
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in the first byte of the source address, accessed via wlan.sa[0], the second least
significant bit (0x02) is not (!) set (cf. Section 2.1.1 for a background on the U/L bit).
The thereby acquired subset encompasses 374 736 probe requests sent from 14622
distinct MAC addresses.

The results of this evaluation can be seen in Fig. 3.22. If only Supported Rates are
included in the IEs (cf. Fig. 3.22b), the 14622 devices are divided into 19 anonymity
sets. The largest anonymity set encompasses 82.55 % of the devices. These all share
the same Supported Rates of 2, 4, 11, and 22.

Fig. 3.22c shows the results of including Supported Rates and the DS Parameter
Set. Here, the largest of the resulting 61 anonymity sets encompasses 40.49 % or
5920 devices. 60.18 % of the devices did not include the DS Parameter Set, the others
transmitted either channels 1, 2, 11, or 12.

In Fig. 3.22d, a reduction of the IE content to include Supported Rates and the DS
Parameter Set is shown. In comparison to previous evaluations, the distribution is
spread out significantly, encompassing 276 sets, the largest of which contains 25.78 %
of the devices. In its HT Capabilities, it contains the information 0c 18 1b ff, which
constitutes disabled SM Power Save, maximum A-MSDU length of 7935 bytes, the
use of DSSS/CCK in 40 MHz, A-MPDU Parameters, and supported RX Modulation
and Coding Scheme Set.

The anonymity set sizes calculated in the previous paragraphs, particularly that with
the IE content reduced to encompass only Supported Rates, places 82.55 % of the
devices in the same anonymity set. Particularly in comparison with the evaluation
of anonymity sets calculated by Vanhoef et al., which shows that a real-world data
set places 0.75 to 1.6 % of the devices in the largest anonymity set, a reduction of IE
content has a tremendous effect: The less content an IE has, the larger the anonymity
group single devices disappear in. The analysis of IE content previously presented
in this section additionally showed that the amount of information contained within
the IE does not correlate with fast connection establishment. The calculation of
anonymity sets additionally underlined that a reduced IE content is vital to preserve
the privacy of users as well as possible. The next section emphasizes the importance
of the IE for fingerprinting devices and thereby highlights how a reduced IE content
can mitigate most attacks targetting probe requests.

3.3.6.5 Impact on Security: Resistance to IE-Concerned Attacks

In the previous sections, the requirements for the IE content of probe requests
were analysed from several perspectives: The impact that the IE has on connection
establishment was tested, and a subsequent analysis determined that probe request
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Authors MAC Address

SSID Supported Rates

Ext. Supported Rates

DS Parameter Set

HT Capabiliti
es

VHT Capabiliti
es

Extended Capabiliti
es

Vendor Specific

all other fields

IE Field Sequence

BSS Membersh
ip

Transm
issi

on Frequency

Sequence Number

RSS

Pang et al. [Pan+07] ✓ ✓ - - - - - - - - - - - - -
Cunche et al. [CKB14] ✓ ✓ - - - - - - - - - - - - -
Freudiger et al. [Fre15] ✓ - - - - - - - - - - - - ✓ -
Vanhoef et al. [Van+16] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - -
Robyns et al. [Rob+17] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ - -
Zhao et al. [Zha+19] ✓ ✓ - - - - - - - - - - - - -
Dagelić et al. [DPČ19] ✓ ✓ - - - - - - - - - - - - -
Gu et al [Gu+20] - - ✓ ✓ ✓ ✓ ✓ ✓ - ✓ - - - - -
Uras et al. [Ura+20] - - - ✓ ✓ ✓ ✓ ✓ - - - ✓ - - -
Tan et al. [TC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
Pintor et al. [PA22] - - - - - ✓ - ✓ ✓ - - - - - -
He et al. [HTC23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓

Table 3.5: Comparison of the elements used for fingerprinting attacks across vari-
ous publications as listed in Section 3.2.4, with blue highlighting for Supported
Rates, purple for DS Parameter Set and green for HT Capabilities. Publications
that selected certain fields due to their distinguishing and unique features are
marked in grey. Adapted from [McD+24b].

content is irrelevant for functionality, as all required parameters are exchanged via
the combination of probe response and association request. Subsequently, the impact
on privacy was determined via the calculation of anonymity sets, which showed
that a reduction of IE content has a great positive impact on privacy. In this section,
the impact of a reduced IE content on security is determined: It strives to answer the
question how resistant to IE-concerned attacks devices are when their IE is limited
to the maximum.

The basis of this comparative section is Table 3.2 constructed in Section 3.2.4, a
coloured-in version of which can also be seen in Table 3.5. Section 3.2.4 showed that
many publications have introduced attacks that can be used to track devices via
identifiers contained in the probe request, and circumvent anonymisation strate-
gies like MAC address randomisation, sequence number randomisation and SSID
omission. The first few publications that showed the possibility to track devices via
their probe requests commonly concentrated on the MAC address and SSID, e.g.
Pang et al. [Pan+07], Cunche et al. [CKB14], Freudiger et al. [Fre15], and later Zhao
et al. [Zha+19] and Dagelić et al. [DPČ19]. They chose selective fields with high
entropy (at the time of their studies) to discriminate between devices, and their rows
are shaded in gray. Two other publications subsequently concentrated on selective
fields, with Uras et al. [Ura+20] concentrating on Extended Supported Rates, BSS
Membership, HT Capabilities, Extended Capabilities, DS Parameters, VHT Capa-
bilities and two reserved tags, and Pintor et al. [PA22] focussing only on Extended
Capabilities, HT Capabilities, and vendor-specific values. All of these publications
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that chose selective fields due to their discriminatory values have in common that
the Supported Rates have no relevance for their fingerprinting technique. With
respect to the DS Parameter Set, out of all of the publications mentioned, only Uras
et al. decided to include it in their device fingerprint, while the HT Capabilities were
included by both Uras et al. and Pintor et al.

On the other hand, many publications resorted to using the whole IE as a fingerprint,
these are shown as unmarked (white) rows in the table. Of these, some, e.g. Gu et al.
[Gu+20], exclude certain fields that they deem user-modifiable and therefore unfit as
device identifier, others used even more identifiers in addition to the whole IE, like
Vanhoef et al.[Van+16] and He et al. [HTC23], who additionally used the field se-
quence, Robyns et al. [Rob+17] who additionally focus on the transmission frequency
or Tan et al. [TC21] and He et al. [HTC23], who additionally focus on the sequence
number and the received signal strength (RSS). While all of these publications do
include both Supported Rates, DS Parameter Set and the HT Capabilities, in their
attacks, these fields are only one attribute among many. These results demonstrate
that by using the (empty) SSID field in combination with Supported Rates, all
attacks targetting fields with high entropy can be thwarted. While the other attacks
include the Supported Rates for completeness, their content does not play a major
role in distinguishing between individual devices. This also becomes apparent when
observing the anonymity set determination previously presented: Here, it could be
shown that the Supported Rates discriminate only 19 possible values. Altogether,
this shows that the minimisation of IE content reduces the attack surface drastically
and prevents existing attacks.

3.4 Conclusion

This chapter focuses on the process of device discovery in Wi-Fi networks, the privacy
risks arising from it, and their mitigations. A means of active network discovery
features the use of probe requests. Albeit their use is to discover nearby networks,
they provide attackers with several attack vectors:

• The SSIDs contained in directed probe requests that are necessary to establish
a connection with a hidden network are an easy means of fingerprinting and
tracking a device.

• The transmission of SSIDs also renders devices susceptible to fake AP attacks.

• Transmitted SSIDs can disclose potentially sensitive information on users as
shown in the evaluation of SSID content in Section 3.2.3.2.
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• Using the SSIDs, attackers can localise visited places via network maps like
WiGLE, as Section 3.2.3.3 demonstrates by verifying the existence and location
of networks using the network map WiGLE.

Even if the device fingerprint is reduced by not including known SSIDs into the
probe requests, their IE field still serves as an excellent means of tracking devices, as
Section 3.2.4 shows. And albeit Section 3.2.1 shows a positive development in mobile
OS to introduce privacy preserving techniques, it also displays their non-existence
in older OS which are still widespread, particularly with respect to Android devices,
as Section 3.2.2 underlines. Since the use of probe requests is the prevalent means of
network discovery, the remaining sections strive to introduce means of improving
the privacy friendliness of network discovery:

A proposed circumvention of the use of cleartext SSIDs is introduced in Section 3.3.2:
A hash-based scheme that includes the SSID and, as a source of randomness, the
currently used MAC address and the sequence number of the packet to hide the
true SSID. To identify whether a directed probe request was directed at them, access
points can then hash their own SSID, the MAC address and the sequence number of
the received packet and compare it to the received hash. This way, the use of hidden
networks is still possible while the possibility to track users via an unchanging
identifier is mitigated.

To additionally provide users with more control over their PNL and probe requests,
UI improvements were suggested in Section 3.3.3: These encompass SSID entry safe-
guards to protect users from accidentally storing non-existent networks in the PNL
and thereby extending the attack surface via probe request tracking. Additionally,
PNL entry expiration dates would allow for direct removal of one-time-use SSIDs
after a set amount of time, and an auto-join prompt would ensure that users have
better control over whether they want to automatically connect to a newly added
network or not. Both controls, implemented as user prompts, would improve user
security by rendering them less prone to fake AP attacks. While the suggestion to
provide users of Apple devices with the same means of modifying their PNL at all
times such as Android devices facilitate was still a necessary proposition in 2022
when [McD+22] was published, it was implemented in Apple devices later in 2022,
with the introduction of iOS 16. Whether this was a reaction to the publication or not
could not be established. The last suggestion proposed for increased user controls
was probe request silencing: This would introduce users with means to turn off
active discovery and rely on passive discovery only. While this solution contains
certain draw-backs, as is renders connections with hidden networks impossible and
might slow down connection establishment while increasing battery usage, it is an
excellent approach to disable tracking via probe requests in general.
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The possibility to instead rely on beacons only is subsequently explored in more
technical detail in Section 3.3.4: In case of the connection with a non-hidden network,
a privacy friendly device discovery can be performed using beacons only. Several
publications suggested and tested this approach. They found that passive discovery
is only marginally slower than active discovery. Additionally, they developed a
scheme that improves passive discovery tremendously, introducing dynamic priority
passive scanning as a privacy-friendly alternative to the currently prevalent active
discovery. While it is unlikely that the current State-of-the-Art of using probe requests
for network discovery is going to be completely discontinued presently, smaller
system changes to improve user privacy are more likely to be implemented.

Such changes are introduced with generic probe requests and a generic address
for probing: While the use of MAC address randomisation has been established in
mobile devices starting with iOS in 2014 [Aar14] and Android in 2015 [And23], ran-
domisation is, as of today, not standardised yet [ZBA24]. Manufacturers implement
it using their own randomisation schemes; some of them use persistent OUIs and
randomise only part of the MAC address. This can be used to infer information on
the device by attackers [Mar+17; Van+16]. Such an attack can be countered with a
generic MAC address as introduced in Section 3.3.5: One generic address used by all
devices during active discovery. The approach is tested and evaluated, both to assess
its scalability as well as compare it to established schemes. The results show that it
performs comparable to MAC address randomisation while enhancing privacy even
more.

A means of tracking devices despite the use of MAC address randomisation is by
fingerprinting the IE element contained in the probe request. Various publications use
either a subset or the full IE content to fingerprint devices, as shown in Section 3.2.4.
An evaluation of the fields necessary for probe requests to receive probe responses
shows that only Supported Rates and the SSID fields have to be included in the
probe request, both of which can be empty. These results are then used to propose
an efficient defence against fingerprinting attacks via the IE content in Section 3.3.6:
reducing the IE content to the bare minimum, meaning including only the SSID
and Supported Rates fields. Subsequently, the impact a reduced IE has on device
functionality, privacy and security is analysed: First, the time required for connection
establishment with respect to the IE content was determined, which showed that
no correlation could be established. The device with the fastest client-TtT had the
second-smallest frame size in undirected probe requests. The reason for the varying
times required for connection establishment therefore most likely lies in other areas,
e.g. optimised hardware or software. Subsequently, the impact of a reduced IE
on the functionality was established by analysing all possible fields contained in
the IE of probe requests, and determining whether their existence is required for
connection establishment. The results showed, that the content of probe requests

119



Chapter 3: Device Discovery

is not required for connection establishment, since (a) all fields contained in the
probe request are communicated also via the combination of probe response and
association request and (b) probe requests can not even be used to request connection-
specific parameters, since all recorded probe responses always contained the same
content, independent of the request they responded to. The impact a reduced IE field
has on the functionality was therefore determined to be negligible.

To analyse the benefits of this approach with respect to user privacy, the anonymity
set sizes with reduced IE content were evaluated using the Sapienza train station data
set. This evaluation showed that when including only Supported Rates, the probe
requests can be grouped into 19 anonymity sets, the largest of which contains 82.55 %
of the requests. This is a tremendous improvement compared to the calculations of
the anonymity sets of unmodified probe requests done by Vanhoef et al. [Van+16],
where the largest anonymity group on comparable data sets contained 0.75 % to
1.6 % of the probe requests.

Lastly, the impact on security with respect to resistance to IE-concerned attacks is
evaluated by analysing which fields play a role in fingerprinting IE content: None
of the publications that determined field entropy and selected only fields with high
entropy included the Supported Rates in their analysis. The other publications either
chose to use all fields and included or excluded certain tags, but none of them
placed a focus on the discriminatory value of the Supported Rates field in the face
of fingerprinting IE content: As shown in the anonymity set evaluation, a data set
containing 374 736 probe requests only exhibits 19 different entries in Supported
Rates. The significance for fingerprinting is therefore likely negligible.

In summary, this chapter compared and evaluated several schemes to protect the
privacy of users while using probe requests. Probing for hidden networks can be
implemented in a privacy-friendly way using hash-based SSID transmissions. A
generic address protects the users in case of lacking MAC address randomisation
implementations, and generic undirected probe requests containing only Supported
Rates and the SSID tags in the IE field greatly improve user privacy during active
discovery.
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4
Connection Establishment - Using a
VPN in a Captive Network

The use of Wi-Fi networks can be dangerous with respect to data confidentiality and
privacy, as a multitude of attacks have previously shown [TB09; VP17; VR20]. In
public Wi-Fi networks, this attack surface is widened even more, since they are often
unencrypted or easily attackable, as Section 4.2 will show.

A common mitigation of these privacy risks arising from surfing in public Wi-Fi
networks is the use of a Virtual Private Network (VPN): This way, all traffic is
encrypted and tunnelled via a VPN server, and attackers attempting to attack and
decrypt Wi-Fi traffic can neither infer information on the content of the transmitted
packets, nor on the destination addresses. This chapter focuses on the use of VPNs in
public Wi-Fi networks and their fulfilment of requirements for privacy-friendly and
secure implementations, as well as their functioning in the face of captive portals
contained within public Wi-Fi networks.

As this chapter shows, the use of a VPN does not automatically guarantee privacy,
security and the desired functionality – their use can entail certain pitfalls with
respect to connection establishment, which are highlighted via two examples: On
one hand, when using VPNs, users have to trust the VPN provider to ensure that
all packets are tunnelled via the VPN server. Packets transmitted outside the tunnel
are denoted as leaks or leakage, and such leakage can expose potentially sensitive
information on a user and reduces the trust placed in the VPN provider. Apart from
the information required to establish the VPN connection, no traffic should be leaked
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Figure 4.1: A captive deadlock: The VPN is active before the captive portal was
remediated to reduce leakage that could occur via the network without the
use of the VPN. Since the VPN blocks all traffic except for that necessary to
establish the VPN, captive portal detection (CPD) is also blocked. In this situa-
tion, neither can the captive portal be remediated nor, due to the network block
caused by the captive network, the VPN tunnel be established.

outside the VPN tunnel. The documented security features to ensure data security
inherent to native VPN clients of Android, iOS, macOS, Windows and Ubuntu are
summarised in Section 4.5. As Section 4.6 shows, however, data leakage does occur
across all tested VPN applications and platforms.

Another problem arising with the use of VPNs in public Wi-Fi networks is the poten-
tial for captive deadlocks, which is also illustrated in Fig. 4.1: Public Wi-Fi networks
often contain captive portals (cf. Section 2.2), which suspend the connection to the
internet until the terms of the captive portal have been fulfilled. This can, for ex-
ample, entail the agreement to policies inherent to the Wi-Fi provider or credential
submission. To ensure that no leakage of data occurs surrounding the connection
establishment and connection with a public Wi-Fi network, users can enable the
VPN service before connecting to the Wi-Fi network, under the assumption that the
VPN client withholds all traffic until the VPN tunnel is successfully established. In a
captive network, a public Wi-Fi network containing a captive portal, this can cause a
captive deadlock, in which the VPN blocks all traffic required to remediate the captive
portal, and the captive portal simultaneously blocks the traffic required for VPN
tunnel establishment. Therefore, requirements for secure bootstapping of VPNs as
introduced in Section 4.4 have to be fulfilled to ensure functionality and privacy.
Bearing these requirements in mind, both the susceptibility to captive deadlocks as
well as the privacy-preserving techniques used in different VPN clients are tested
and presented in Section 4.6. A proposed mitigation to avoid captive deadlocks
discussed in Section 4.7 concerns a selective VPN bypass. Here, the VPN is extended
to implement captive portal detection and remediation before VPN activation.
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4.1. Preliminary Studies and Related Work

Relevant Publications Sections 4.4, 4.5, 4.6 and 4.7, are largely based on [Bur+21],
to which I contributed as a co-author.

4.1 Preliminary Studies and Related Work

In their 2013 publication, Cheng et al. [Che+13] analyse the privacy leakage users of
public Wi-Fi hotspots are exposed to. They differ between DNS queries, web brows-
ing, online advertising and search engine queries. Bear in mind that, in 2013, the use
of Transport Layer Security (TLS) encryption was considerably less common than it
is nowadays, with Let’s Encrypt1, now being a major distributor of TLS certificates
for both commercial and non-commercial use, commencing their certificate issuance
in 2015 [Gro23]. Additionally, even though Wi-Fi Protected Access 2 (WPA2) had
been introduced in 2004, it was, by no means, in ubiquitous use yet in 2013. This is be
shown in Section 4.2 and particularly Fig. 4.3, which shows the types of protection
used in public Wi-Fi networks in 2016, where technologies preceding WPA2 were
used to provide almost 32 % of the hotspots. It is hence unsurprising that Cheng et al.
discovered a significant information leakage, with up to 68 % of the packets captured
from a device being traceable to a user name. Albeit TLS is now very widespread to
secure communication with websites and online services, and insecure protection
mechanisms contained in Wired Equivalent Privacy (WEP) and WPA are in consid-
erably less use, privacy issues arising during the use of public Wi-Fi networks are
still discussed now: In 2021, Lotfy et al. [Lot+21] published a meta data analysis of
traffic captured at a university campus. They classify the internet activity into the
categories search engine queries, web browsing and the use of social networks, the
predominantly visited one being social networks. Among the recorded packages, the
authors also discovered several user names, email addresses and phone numbers.
Sangeen et al. [San+23] performed a similar analysis on packets captured via a public
hotspot in 2023. Like in the analysis Lotfy et al. presented, most of the traffic captured
was related to social networking and the use of search engines. Their experiment
entails the provisioning of a publicly usable unencrypted access point which allows
the users to surf for 15 minutes, and afterwards presents them with a screen showing
their captured credentials. The experiment was continued on several consecutive
days. The authors exhibited a considerable reduction of users on days following
the presentation of credentials, which they attribute to the Protection Motivation
Theory (PMT), according to which users take protective action to safeguard against
a threat in case the threat is perceived as significant. From the reduced use of the
hotspot on days following the presentation of sniffed credentials, the authors derive
that users did in fact initiate protective action against credential leakage, meaning to

1. https://letsencrypt.org/
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cease the use of unknown hotspots. Another examination of the use of public Wi-Fi
networks was performed by Sombatruang et al. [Som+19] in 2019, but from a very
different perspective: They convinced a number of 71 participants to install an app
designed to monitor the connection to Wi-Fi networks, mobile data allowance and
the battery power. Whenever a participant of the study would connect to an open
and unsecured network, the app would record both battery power and the remaining
data allowance. The study concludes that the participants were particularly driven to
connect to unsecured hotspots whenever their allowance reached a stage of around
30 %. They also ascertained that the knowledge of risks inherent to the use of open
Wi-Fi networks does not decrease the likelihood for participants to connect to an
open network if the data allowance is below the threshold.

In their 2018 publication, Li et al. [LZM18] use leaked Wi-Fi traffic to conduct a
demographics study. They describe various sources of traffic and related meta-data
leakage, monitor the traffic and apply machine learning techniques to categorise
users by gender and education. Their model classifies users’ genders with an ac-
curacy of up to 82 %, their education level with up to 78 % in unencrypted traffic,
which makes up around 10 % of the surveilled data. In encrypted traffic, the gender
can be predicted with a precision of up to 69 %, and the education level with up to
76 %. The authors suggest that the use of VPNs or the TOR network can mitigate the
leakage and reduce the possibility for attackers to evaluate the meta data.

The problems arising from the use of public Wi-Fi networks not only extends to
attackers sniffing traffic within the network but also to the parties provisioning the
Wi-Fi network: Ali et al. [Ali+19] performed an analysis of captive portals located
within public Wi-Fi networks in 2019 and found that most hotspots analysed utilise
persistent third-party tracking via cookies stored during the interaction with the
captive portal. This leads to users being trackable beyond the imminent reach of the
access point; in fact, some of the cookies could be used to follow browsing behaviour
for 20 years and longer.

While mechanisms like third-party tracking can not be circumvented by the use of a
VPN, studies like those presented by Cheng et al., Lotfy et al. and Sangeen et al. are
also partially possible, since within a network, both the metadata of the packets, as
well as the destination address are visible to anyone sniffing the traffic. This can be
mitigated by the use of a VPN, which disguises the destination address as its own
address by encapsulating the packet, and, upon receiving a response, re-encapsulates
it into a packet with the VPN server as the source address (cf. Section 2.3).

VPNs additionally encrypt the content of the packets, because of which their use
enables privacy friendly and confidential internet use even in unsecured networks.
Nevertheless, they also exhibit certain flaws, that have been investigated and re-
ported on in much detail during the recent years:
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In 2018, Khan et al. [Kha+18] performed an analysis of the security of 62 commercial
VPNs. They found that several of the VPN clients they analysed leaked user data,
particularly when the VPN tunnel fails to establish: Instead of blocking traffic while
re-attempting to establish the tunnel, 58 % of the tested VPN services allowed traffic
to leak outside the tunnel. Additionally, 19 % of the services failed to tunnel IPv6
traffic, transmitting it outside the tunnel instead. Two of the tested VPN clients
also leaked DNS traffic, as they failed to modify the DNS servers the system was
using. They also found that 10 % of the VPN providers hosted their VPN servers in
countries other than those advertised.

Ikram et al. [Ikr+16] analysed Android apps with VPN permissions. They crawled
the app store for apps containing keywords related to VPN services and decompiled
around 1.5 Million apps to examine their AndroidManifest file for requests to access
VPN permissions. This way, they identified 283 apps that utilise the VPN permissions
of the Android OS. The VPN permissions allow the app to redirect all network traffic
via a virtual interface, and thereby possibly intercept or manipulate it, or forward it
to additional parties. Ikram et al. discovered that not all apps with VPN permissions
are in fact VPN apps: among others, traffic optimisation and antivirus apps also
require access to all network traffic to optimise routing, respective scan for malicious
activity. While a lot of the use cases seem legitimate, the authors found that 72 % of
free VPN apps and 35 % of premium services included third party trackers – some as
many as 14 different tracking libraries – thereby delivering targeted advertisements
to users. Ikram et al. additionally scanned the APKs for potential malware presence,
and discovered that 38 % generate one or more positive malware reports from the
categories adware, trojan, malicious advertising, riskware and spyware. The analysis
shows that the Android VPN permissions are in fact maliciously misused by a
surprisingly large percentage of app vendors, and that using VPN apps can, in itself,
be an inherent risk to privacy and security, while appearing to be the exact opposite.
Ikram et al. support the notion uttered by Khan et al. [Kha+18], that a lot of the
VPN providers disregard IPv6 traffic and DNS requests. They found that 8 % of the
analysed apps didn’t tunnel IPv6 traffic and 55 % of the free apps and 60 % of the
premium apps used Google to resolve DNS requests, and only 7 % respective 10 %
used their own DNS resolvers.

A similar analysis was performed by Wilson et al. [WMB20] in 2020, but with a focus
on iOS apps: They downloaded 57 VPN applications from the iOS store, encompass-
ing either free VPN apps or ones offering a free trial. They found that 70 % of the
VPN apps they tested used HTTP instead of HTTPS for package transmission, and
39 % leaked personally identifiable information (PII), such as usernames, passwords,
email addresses, source IP addresses or GPS coordinates. Additionally, while only
44 of the applications could successfully connect to the VPN server and enable
encrypted communication, 32 of them leaked DNS queries, primarily by forwarding
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these queries to Google’s DNS servers. Regarding IPv6 traffic leakage, Wilson et al.
note that on iOS, using a tunnelling protocol that does not support IPv6 leads to
IPv6 being disabled system-wide. Furthermore, the only means of implementing a
VPN protocol supporting IPv6 on iOS is by the use of Internet Key Exchange version
2 (IKEv2): IKEv2 is a key exchange protocol that is part of the IPSec suite, which
secures IP communication by providing encryption, integrity verification and au-
thentication (cf. Section 2.3). It is a commonly used building block that supplies the
key exchange for authentication within the IPSec suite. The authors found that 17 of
the 57 VPN applications that were tested used IPSec with IKEv2, and 15 additionally
employed Encapsulating Security Payload (ESP), a state-of-the-art component of
the IPSec protocol suite used in conjunction with IKEv2, supplying encryption and
authentication of the packets. While this shows that more than half of the VPNs
had theoretical support of the IPv6 protocol, the authors did not explicitly mention
testing for IPv6 traffic leakage. Nevertheless, they emphasise that only 15 of the
tested VPN clients follow the best practice of using IPSec in conjunction with IKEv2
and ESP. They recommend that the other applications update their implementations
to adhere to these best practices.

While many publications have highlighted insecure VPN applications, few have suc-
ceeded in offering users a secure alternative. However, Karlsson et al. [Kar17] present
an implementation attempting to allow secure use of public Wi-Fi networks: They
implemented a prototypical device capable of logging into public Wi-Fi networks
and subsequently opening a VPN tunnel. The device then allows its user to connect
to it via an encrypted hotspot, thereby ensuring that all user traffic is forwarded via
the VPN tunnel established on the additional device. On one hand, startup leaks
are avoided since the device presumably exposes only its own traffic, which is less
sensitive than that of the user device. However, most people are unlikely to carry
an additional device for VPN capability with them instead of using a VPN client
directly on their mobile device.

4.2 Public Wi-Fi Networks and their Attack Surfaces

A public Wi-Fi network, also called hotspot, denotes an 802.11 Wi-Fi network that
is usable by anyone and accepting connections from all clients, as can be seen in
Fig. 4.2. A distinction can be made between the underlying technologies used to
provide protection mechanisms for the hotspot, namely using WEP, WPA, WPA2 or
WPA3. WEP and WPA, introduced in 1997 respective 2003, contain vulnerabilities
[TB09] that make their use insecure, exploitable and inadvisable, and are therefore
not taken into further consideration in this thesis. Even though WEP and WPA
were superseded by WPA2 in 2004, almost 10 % of the networks observed in a 2016
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Figure 4.2: Normal operation in a Wi-Fi network: The traffic generated by vari-
ous applications the client is using are sent via the public Wi-Fi network, each
upholding a separate connection visible within the network.

study, covering almost 32 million networks and shown in Fig. 4.3, still used these
insecure technologies [Leg16], and they are likely, if less, still in use today. The same
2016 study also exhibited that around 22 % of the networks were open networks,
meaning that accessing them was possible without entering passwords, and in turn
also without the exchange of key material used for subsequent encryption. In such
open networks, attackers monitoring the traffic can read the content of unencrypted
data packets and the metadata on traffic using transport layer encryption via TLS.
As this section will show, most public Wi-Fi networks can be attacked due to their
inherent attributes. This also underlines the need to protect oneself further when
using a public Wi-Fi network, for example by the use of a VPN. In the following, the
different types of public Wi-Fi networks and their attack surfaces are discussed in
further detail.

4.2.1 Wi-Fi Protected Access 2 (WPA2)

A popular way of providing a public hotspot is to make a WPA2-protected net-
work accessible via a publicly announced password. Connection establishment in
WPA2-protected networks works as shown in Fig. 2.7, with the legacy steps of au-
thentication and association, which are still maintained to allow for compatibility
with WEP networks, performed first, and Robust Security Network Association
(RSNA) performed subsequently to exchange the key material in a 4-way handshake.
Each client connected to the network exchanges a different Pairwise Transient Key
(PTK) during RSNA, which is subsequently used to encrypt the traffic. However,
WPA2-protected connections can still be monitored by attackers, e.g. if an attacker
within the network manages to capture the exchange of the 4-way handshake used to
exchange the PTK, they can use the airdecap-ng tool2 contained within the aircrack-

2. https://www.aircrack-ng.org/doku.php?id=airdecap-ng

127

https://www.aircrack-ng.org/doku.php?id=airdecap-ng


Chapter 4: Connection Establishment

WPA2

68.02%

Open

21.96%
WPA

7.37%
WEP

2.66%

Figure 4.3: Encryption types utilised in public Wi-Fi networks according to a
2016 study [Leg16]. Newer data would include a significant amount of WPA3-
protected networks and ones using Opportunistic Wireless Encryption (Op-
portunistic Wireless Encryption (OWE)), both of which were introduced in
2018.

ng suite3, a suite of programs usable for attacks on Wi-Fi networks. Airdecap-ng
requires at either the packets 2 and 3 or packets 3 and 4 of the 4-way-handshake to
derive the PTK, using which the encrypted traffic can be decrypted.

An alternative to sniffing traffic in a public hotspot is to conduct a Man-in-the-
Middle (MitM) attack using a fake Access Point (AP) with the same credentials as the
public hotspot. If the fake AP has a stronger signal than the real hotspot, connected
devices will disconnect from the hotspot and connect instead to the fake AP, on
which the attacker can then monitor (and modify) all the traffic. This attack is not
only possible in the vicinity of the public hotspot; the attacker can set up the fake
AP anywhere, and client devices will assume it is a legitimate network and connect
to it automatically, which immensely enlarges the attack surface.

If the attacker has no knowledge of the Pre-Shared Key (PSK) of the network, e.g.
the Wi-Fi password, they can use attacks such as the Key Reinstallation AttaCKs
(KRACK) attack [VP17]: The KRACK attack forces clients to reinstall keys and reuse
previously used nonces by replaying handshake messages. Using the captured
handshakes, it is possible for attackers to decrypt and replay packets in case of
AES-CCMP encryption. AES-CCMP denotes the use of AES in Counter Mode with
the Cipher Block Chaining Message Authentication Code Protocol, which is part of
the WPA2 standard and replaces the WPA-TKIP protocol.

3. https://www.aircrack-ng.org/doku.php
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Client Access Point
Probe Request
Probe Request

Probe Response

Open System Authentication

Association

Unencrypted Data

Figure 4.4: IEEE 802.11 connection establishment for open networks. In compar-
ison to the IEEE 802.11 connection establishment for WPA/WPA2/WPA3-
protected networks (cf. Fig. 2.7), the authentication step is replaced by Open
System Authentication, a dummy step. Additionally, the exchange of key
material in the Robust Security Network Association (RSNA) is omitted.

Additionally, it is possible to decrypt, replay and forge packets when WPA-TKIP and
GCMP are used: WPA-TKIP denotes the utilisation of WPA using the Temporal Key
Integrity Protocol (TKIP), which was replaced by AES-based encryption in WPA2
and WPA3. GCMP, on the other hand, is the Galois/Counter Mode Protocol, a mode
that AES can be used in, and which is used in both WPA2 and WPA3. This shows
that the KRACK attack can be used to attack both legacy networks, as well as the
encryption used in state-of-the-art technologies.

In case an attacker does not have access to the Wi-Fi password of a public WPA2-
protected network, which might be the case, for example, if they do not have access
to the premises on which the providers of the hotspot show the credentials, they can
use tools like hashcat4 to either brute-force the password, use a dictionary attack to
retrieve it or run a rule-based attack.

4.2.2 Open Networks

An alternative to providing a WPA2/WPA3-protected access point is the setup of
an open network. Here, an unencrypted hotspot is opened and connecting to it
requires no knowledge of a password. The connection establishment is shown in
Fig. 4.4: In comparison to WPA2/WPA3-protected networks, it also consists of device
discovery via beacons or probe request and probe responses, with the subsequent

4. https://hashcat.net/wiki/doku.php?id=cracking_wpawpa2
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Client Access Point
Probe Request
Probe Request

Probe Response

Open System Authentication

Association: DH Public Key

Association: DH Public Key

Robust Security Network Association

Encrypted Data

Figure 4.5: IEEE 802.11 connection establishment for OWE networks. In com-
parison to the IEEE 802.11 connection establishment for WPA/WPA2/WPA3-
protected networks (cf. Fig. 2.7), the authentication step is replaced by Open
System Authentication, a dummy step. During the 802.11 association, DH pub-
lic keys are exchanged and then used to create the Pairwise Master Key (PMK).
The key material derived in the 4-way handshake during Robust Security
Network Association (RSNA) is based on the PMK.

authentication step being replaced by Open System Authentication, a dummy step
denoted as a null authentication algorithm in the specification [IEE20, Sec. 12.3.3.2.1].
The subsequently exchanged messages are not encrypted on the data link layer.

4.2.3 Opportunistic Wireless Encryption (OWE)

A more secure protocol than both providing an open network and using WPA2 with
a publicly advertised key, but unfortunately not yet widely spread, is the use of OWE
[All20]. OWE describes the unauthenticated but encrypted connection between two
devices, and is contained in the Wi-Fi specification under the name Wi-Fi CERTIFIED
Enhanced Open™ [Dan]. In OWE, the client sends its Diffie Hellman public key in
the 802.11 association request, to which the AP replies with its own Diffie Hellman
public key in the association response. Using the previously exchanged public keys,
the Diffie Hellman key exchange is completed and the resulting secret value used by
both parties to derive a Pairwise Master Key (PMK). This is then used in the 4-way
handshake performed in RSNA to derive encryption keys for the encryption of both
unicast and broadcast data. [HK17]
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OWE protects users from passive attacks, since the calculation of the encryption keys
is not based on the known PSK as in WPA2, which enables attackers to calculate the
PTK after capturing a handshake. Instead, the calculation of the encryption keys uses
the PMK as a basis for key derivation, which is unknown to an attacker. However,
this only ensures protection from a passive attacker trying to sniff a connection.

An active attacker, on the other hand, can perform a fake AP attack: They would
first issue a deauthenticate-command. The victim’s device would terminate it’s
connection to the OWE-protected network and attempt a reconnect, during which
the attacker can open up an AP with a stronger signal and the same SSID. The mobile
device will then connect this AP instead.

Just like with WPA2-protected public Wi-Fi networks, while not in the vicinity of
an OWE-protected access point, the attacker can still open an access point with
the same credentials (or SSID and lack of credentials) as an often-used network,
e.g. of a popular coffee place. A device that isn’t actively used would connect to it
and continue using the network in the background. Since in this case, the attacker
participates in the exchange of key material, they are subsequently able to decrypt
the encrypted content.

4.2.4 Wi-Fi Protected Access 3 (WPA3)

Just like in WPA2, it is possible to provide a public access point with a publicly
announced password, the pre-shared key. In WPA3, however, the PMK from which
the encryption keys are derived, is not based on the pre-shared key. Instead, WPA3
uses the Simultaneous Authentication of Equals (SAE): A password-authenticated
key exchange [IEE20] based on the Dragonfly handshake [VR20].

Following the 802.11 association and authentication steps required to provide back-
wards compatibility to WEP, the RSNA is performed. In WPA2, this phase consists of
a 4-way handshake to establish key material. In WPA3, RSNA additionally employs
SAE for password-authenticated key exchange. While the implementation of SAE in
WPA3 was vulnerable to attacks in its original version [VR20] using the Dragonblood
attacks5, the authors provided defence mechanisms which were subsequently incor-
porated into the standard. In its latest version, WPA3 has not yet been shown to be
vulnerable to further attacks that compromise confidentiality using passive attacks.
The feasible attacks are therefore limited to the following active attacks:

5. https://wpa3.mathyvanhoef.com/#tools
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• Downgrade attack: WPA3-protected networks can be configured to support
mixed-mode, meaning primarily WPA3 and additionally WPA2 to allow con-
nectivity for devices supporting only WPA2. In this case, an attacker can force
a device attempting to connect using WPA3 to use WPA2 instead and calculate
the PTK or use a KRACK attack to decrypt the communication.

• Fake WPA2-AP attack: In this attack, an attacker sets up a fake AP offering
WPA2 protection, in which the previously mentioned attacks in the context of
WPA2 can be used to passively monitor the encrypted content,

• Fake WPA3-AP attack: By setting up a fake WPA3 protected network, an
attacker can actively control the key exchange and therefore decrypt the content
of the subsequent encrypted communication.

The passive PTK derivation attacks which were possible in the context of WPA2 are,
however, largely infeasible due to the security guarantees SAE offers.

In summary, this section shows the susceptibility to attacks on public Wi-Fi networks
depending on the different protection mechanisms: In an open network, all traffic
is transmitted without encryption and monitoring the content is trivial. For WPA2
protected networks, passive attacks allow attackers to decrypt encrypted traffic. Both
OWE and WPA3-protected access points can be attacked via active attacks. This
shows that to maintain confidentiality and integrity while using a public access
point, an additional layer of protection is required, and the security guarantees a
VPN can provide meet those needs. But as Section 4.1 underlines, even a protective
layer like a VPN can leak confidential information outside the tunnel by failing
to forward certain protocols inside the tunnel. Another critical point regarding
the use of VPNs is the process of bootstrapping the VPN, meaning the phase of
preparation and initialisation of the tunnel until its successful establishment. In the
subsequent section, first an attacker model is introduced, and then requirements for
secure bootstrapping to guarantee a leakage-free VPN connection establishment are
described.

4.3 Attacker Model

The attacker considered in this scenario has access to a public Wi-Fi network, and,
depending on the protection in place, can read or decrypt the content. This is the
case for all protection schemes preceding and including WPA2, but due to the
attacker only having bounded computational resources infeasible for WPA3 and
OWE. Their objective is to monitor the content and metadata of the traffic and to
infer as much information on the content of encrypted traffic as possible. For the
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purposes of monitoring the traffic, the attacker employs Commercial Off-The-Shelf
(COTS) equipment, which does not require great financial means. It is possible for
the attacker to perform their analysis in real time. However, attacks on the VPN
infrastructure are out of scope for this attacker.

4.4 Requirements for Secure Bootstrapping of a VPN

The requirements introduced in this section can help to ensure that VPN connec-
tions are established in a privacy-preserving and secure way. They were previously
proposed in [Bur+21] and are presented here in the context of this thesis. They
encompass the following requirements:

R1: Always-On Functionality. The first requirement asserts that upon establishing
a network connection, a VPN tunnel is directly established. If this requirement
is not enabled by design, it must at least be possible for the user to activate
the functionality prior to establishing a network connection, so as to ensure no
traffic is leaked before the VPN tunnel is established.

R2: Captive Network Support. The requirement for captive network support
ensures that connection establishment is possible while using a VPN, even if a
captive portal is contained within the network. The VPN client must support
both captive portal detection and remediation of the block. A VPN client not
supporting captive portal detection would otherwise cause a captive deadlock
in conjunction with the use of a VPN.

R3: Minimal Startup Traffic. The third requirement for secure bootstrapping is
the minimisation of startup traffic. This requirement asserts that traffic that is
unnecessary for captive portal remediation or VPN establishment is held back
until both the captive portal is remediated and the VPN tunnel established.

R4: Blocking Fail State. In case a VPN tunnel can not be established successfully,
e.g. due to VPN server unavailability, outbound traffic remains blocked.

R5: No Tunnel Bypass. The last requirement specifies that no traffic bypasses the
tunnel. Particularly Section 4.1 showed that a significant number of VPNs
tested in prior work exhibited DNS- and IPv6 leakage. Additionally, implemen-
tation flaws can cause previously established TCP connections to be forwarded
outside the tunnel if they were in use prior to VPN establishment [Pro20].
The only traffic exempt from this requirement are periodic requests regarding
captive portal detection, since these are required to maintain the connection.

133



Chapter 4: Connection Establishment

macOS/iOS Windows Android Ubuntu

R1: Always-on ✓ ✓ ✓ ✓

R2: CPD - - - -
R3: Minimal Traffic ✓ - - -
R4: Blocking - ✓ ✓ -
R5: No Bypass (✓) ✓ ✓ -

Table 4.1: An overview over the intrinsic platform capabilities of VPNs as men-
tioned in the documentation. While all platforms provide means of implement-
ing an always-on VPN (R1), captive portal remediation (R2) is not mentioned in
the documentation of any platform. The table reflects the intrinsic capabilities
as mentioned in the documentation, but other requirements might be satis-
fied programmatically. With respect to R4 and R5, VPNs under Windows and
Android can be implemented to support fail-state blocking and to disallow
tunnel bypassing, but are not necessarily set to implement this behaviour by
default. Under macOS/iOS, requirement R5 is satisfied in case a device under
supervision utilises an always-on VPN. Since device supervision is typically
only used within companies, the feature is unlikely to be natively used within
apps for leisure use, unless implemented manually by the developers.

Together, these requirements ensure that no traffic is leaked, neither during the
establishment of the VPN connection nor during its use. Because of the requirement
to only employ minimal startup traffic, the possibility of leakage is further reduced.
Additionally, the use of captive networks remains possible and the process of their
remediation free of further leakage. Lastly, the requirement to construct a blocking
fail state ensures that an unsuccessful VPN tunnel establishment does not result in
unexpected traffic leakage.

4.5 VPN APIs: Status Quo

In order to understand the functionality of system APIs providing VPN services on
major platforms, this section provides an overview over the status quo as previously
published in [Bur+21], and presented here in the context of this dissertation. All
findings are visually summarised in Table 4.1.

4.5.1 Apple macOS and iOS

Within the framework providing network extensions, Apple provides two APIs that
allow integration of VPN functionality into apps. The first is the Personal VPN
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[Appd], using which a VPN connection on the basis of IPSec can be established. For
the key exchange, either Internet Key Exchange version 1 (IKEv1) or version 2 (IKEv2)
can be used, both of which are part of the IPSec protocol suite (cf. Section 2.3). The
Personal VPN API allows developers to make use of on-demand capabilities, which
trigger when certain conditions are met [Appe]. An example could be to commence
the VPN upon connection establishment to a Wi-Fi network and terminate it upon
the switch to mobile data.

The second VPN API Apple provides is the Packet tunnel provider [Appc]. Here,
developers can implement a custom VPN protocol. Both approaches differ with
respect to the application entitlements that are required in order to perform respec-
tive API calls. Entitlements are privileges within the system that grant apps the
rights to execute particular capabilities [Appa]. Network Extensions Entitlements in
particular are a set of APIs that can be used to customise the networking features of
an app [Appb].

With respect to the requirements for secure bootstrapping of VPNs specified in
Section 4.4, the API provides developers with the possibility to offer always-on
functionality, which satisfies the requirement R1. The always-on functionality can
be implemented via on-demand rules. These can be configured to trigger upon
certain events, for example upon establishing a Wi-Fi connection [Appe]. These
on-demand connection rules additionally satisfy requirement R3, since they block
outgoing traffic prior to successful VPN tunnel establishment. Organisations can
choose to provide devices under device supervision with Always On VPNs. These
also support separate tunnels per interface, with a distinct VPN tunnel for each
active interface capable of transmitting IP traffic. In this case, requirement R5 is
additionally satisfied, since all traffic outside the tunnel is continuously blocked
[Appf]. However, since this feature requires device supervision, it is likely not used
in many VPN implementations for leisure use.

4.5.1.1 Distribution of Entitlements in macOS apps

In their 2019 publication [Blo+19], Blochberger et al. presented an analysis of Apple’s
sandboxing mechanism and its adoption in macOS apps. By crawling the Mac App
Store daily for 11 months, they created a snapshot of all available apps and their
updates. In total, the snapshot comprises 8366 macOS applications. These served
as a basis to evaluate the distribution of use of the distinct VPN API entitlements
in macOS apps in the context of [Bur+21]: 92 of the apps used the Personal VPN
entitlement .vpn.api, and 75 used the packet tunnel provider entitlement, which
is enabled by setting the .networkextension to packet-tunnel-provider. It is addi-
tionally possible to provide per-app VPN tunnels via an app-proxy provider. Since
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the research for [Bur+21] focussed on system-wide tunnels, app-proxy providers
were out of scope of the analysed VPN APIs. Nevertheless, in the analysis mentioned
above, one single app was found to use the app-proxy provider entitlement, which
is enabled by setting the .networkextension to app-proxy-provider. This shows
that among app manufacturers, there does not seem to be a clear preference for
either the Personal VPN or the Packet tunnel provider entitlement, but rather that
both are considered valid implementation options.

4.5.2 Android

VPN apps under Android require the use of both the system API, as well as the
BIND_VPN_SERVICE permission. Permissions within the Android system are compa-
rable to entitlements in the Apple system, prompting users for explicit consent to the
use of certain execution capabilities. VPN apps under Android can be implemented
to either start upon user request, or to be started by the system, which can be done
via the always-on feature. The use of the latter satisfies requirement R1. To block
traffic forwarding outside the VPN tunnel, users can manually switch on the Block
connections without VPN option via their settings, the use of which would satisfy
requirement R4. However, since this is a user setting, app providers can not specify it
themselves. Users can additionally set per-app VPN settings via an allowed list or a
disallowed list, in which they can specify the apps whose traffic is either forwarded
via the VPN or outside the VPN tunnel. The traffic of apps that are not in the lists is
blocked by default. Developers have similar control via the per-app VPN settings.
However, the documentation states that a missing allowed or disallowed list or an
empty allowed list causes all network traffic to be sent via the VPN, and additionally,
an always-on VPN can be set to block all connections not using the VPN both of
which satisfy requirement R5 [And].

4.5.3 Windows 10

Windows 10 is an operating system developed by Microsoft and released in 2015.
It was superseded by Windows 11 in 2021 and remains in support until the end of
2025 [Kar23], with extended security update support ending in 2028 [Ste23]. During
the time of writing the publication on VPN leakage across various platforms in
2020 [Bur+21], it was the latest available Microsoft operating system, and it remains
supported during the writing of this thesis, which is why it is introduced here despite
a later release – Windows 11 – being available as of 2024. Additionally, as Fig. 4.6
shows, Windows 10 remains in considerable use as of today, with a market share
encompassing more than 68 % of the devices [sta24b].
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Windows 10
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1.08% Windows 8.1, 8, Vista, XP, 2003

Figure 4.6: Market share of Windows operating system versions as of May 2024.
The figure was created using data from [sta24b]

The native VPN client on Windows 10 can be set to support several of the require-
ments introduced in Section 4.4: Besides triggering the VPN connection establish-
ment upon opening an application or upon visiting a specific domain, a VPN can be
set to always-on, the latter satisfying requirement R1. The always-on feature can be
triggered upon sign-in to the device, upon network change or whenever the screen
is turned on. [Mata]

When using the native Windows VPN, it is possible for administrators to configure
a VPN profile that enforces the use of the VPN to the point where users are unable
to turn it off. This satisfies requirements R1, R4 and R5, since the outbound traffic
is blocked completely in case of VPN connection unavailability, the VPN is set to
always on and all traffic has to be transmitted via the tunnel [Matb]. However, this
profile setting can only be configured by administrators and can not be disabled by
non-admin users.

It is possible for Windows developers to develop VPN applications using the
IVpnProfile Interface6 contained within the Windows Runtime API. All settings
mentioned above can be integrated into those apps. Additionally, mechanisms for
mobile device management can be utilised to enable clients to remote-join to a
domain [Ser23].

6. https://learn.microsoft.com/en-us/uwp/api/windows.networking.vpn.ivpnprofile?view=
winrt-19041
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4.5.4 Ubuntu GNU/Linux

In the GNU/Linux environment, the landscape of distributions is very diverse.
Therefore, the analysis was focussed on Ubuntu, a popular desktop distribution.
Ubuntu utilises NetworkManager7, a network configuration tool suite and high-
level daemon providing networking that can also provide VPNs. NetworkManager
provides an API that can be used to offer VPN services via libnm8 and DBus9. If a
VPN service is declared persistent [Man23], it will attempt connection maintenance
across link changes and connection disruptions, in which case the VPN would
fulfil requirement R1. It is additionally possible when using NetworkManager to
implement VPNs as so-called secondaries10: In this case, a VPN is automatically
activated upon connection establishment via another connection.

In summary, the documentation of native VPN implementations provides detailed
insight into several areas. It showed, for example, that all platform providers sup-
ply the means to implement an Always-On VPN. However, the documentation is
thoroughly lacking with respect to captive portal detection, which is completely
omitted, but an important requirement for the use of VPNs in public Wi-Fi networks.
The subsequent section therefore provides insight into the captive portal detection
mechanisms of the native clients via an experimental analysis.

4.6 Captive Portal Detection in VPNs - An
Experimental Analysis

In the previous sections, the dangers of using public Wi-Fi networks were shown,
and the need for the use of VPNs in such vulnerable surroundings emphasised.
Since traffic leakage occurring despite the use of a VPN would decrease privacy
guarantees and user trust, VPNs should fulfil certain requirements as summarised in
Section 4.4: They should be set to always-on (R1), allow for captive portal detection
(R2), and reduce the traffic during connection establishment to the minimum to block
all traffic not required for VPN tunnel establishment (R3). Additionally, they should
contain a blocking fail-state, meaning that upon failed VPN tunnel establishment,
traffic continues to be blocked (R4). Additionally, all traffic should be routed via the
VPN and no traffic should bypass it (R5). The previous Section 4.5 then examined

7. https://networkmanager.dev/
8. https://networkmanager.dev/docs/libnm/latest/
9. https://networkmanager.dev/docs/api/latest/

10. https://networkmanager.dev/docs/libnm/latest/NMSettingConnection.html#nm-setting-
connection-add-secondary
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the status quo of system VPNs and VPN APIs, and summarised the findings in
Table 4.1.

The requirement R2 to fulfil captive portal detection is essential to both VPN es-
tablishment as well as captive portal remediation: VPNs attempt to block all traffic
except that required for VPN establishment, and simultaneously, a connection to
the Wi-Fi network can not be established without captive portal remediation. If the
traffic to the captive portal is therefore also blocked, captive portal remediation is
impossible, resulting in a captive deadlock.

The previous section showed that no mechanisms for captive portal detection are
documented for either of the platforms. This section therefore aspires to document
the existence of captive portal detection mechanisms both in native VPN applica-
tions as well as VPN apps. This is done by analysing the mechanisms from within
a testbed as described in Section 4.6.1. The section additionally describes leakage
classification and specifies the test procedure. Subsequently, the captive portal de-
tection mechanisms inherent to the different platforms are explored in Section 4.6.2.
Section 4.6.3 then analyses whether the native VPN clients fulfil the requirements
for secure bootstrapping. As the tests will show, albeit the Apple VPN API can
theoretically be used to provide an always-on VPN, their native VPN clients do not
provide these capabilities in practice. Therefore, to establish whether the requirement
can be met in practice, a VPN API demo is implemented and tested in Section 4.6.4.
Section 4.6.5 then shows the results of the tests of third-party (commercial) VPN
clients.

4.6.1 Testbed Setup and Test Procedure

The testbed used to analyse captive portal detection mechanisms comprises a Rasp-
berry Pi 3 Model B+, running Raspbian GNU/Linux 10. The Raspberry Pi provides
an access point via hostapd11 2.2.7, a user space daemon that implements IEEE 802.11
access point management and authentication servers. The configuration used for
hostapd can be seen in Listing 4.1: It provides an access point via its interface wlan0,
with the SSID FREEWIFI. Lines 10 and 11 show that the use of WPA protection and
a password are commented out, making it in essence an open, unencrypted access
point as often found in public places.

The captive portal is provided via Nodogsplash12 4.5.1 beta. Nodogsplash is an open
source project providing a captive portal and restricting internet access prior to
captive portal remediation. It is set to redirect plain HTTP request via a 307 status

11. https://w1.fi/hostapd/
12. https://github.com/nodogsplash/nodogsplash
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1 interface=wlan0
2 driver=nl80211
3 ssid=FREEWIFI
4 hw_mode=g
5 channel =7
6 wmm_enabled =0
7 macaddr_acl =0
8 auth_algs =1
9 ignore_broadcast_ssid =0

10 #wpa=2
11 #wpa_passphrase=insecure_password

Listing 4.1: The hostapd configuration file to set up an open access point with the
SSID FREEWIFI. Note that both variables wpa and wpa_passphrase in lines 10
and 11 are commented out, resulting in an open access point without WPA2
protection.

code, which provides a temporary redirect. The redirect forwards the user to the
captive portal page running on the Raspberry Pi. By clicking a continue-button on
the sign-in page provided, users gain internet access. The traffic is captured on the
Raspberry Pi using Wireshark/tshark.

The devices used for testing VPN behaviour encompass the following:

• Google Nexus 5X, running an Android 10.0 custom ROM (PixelExperience
ROM version 10.0-20200912-1735),

• An iPad running iOS 13.7,

• A MacBook Pro running macOS 10.15.7,

• A Dell laptop running Ubuntu 20.04 LTS and NetworkManager version 1.22.10,

• The same Dell laptop running Windows Education 10.19041.

4.6.1.1 Leakage Classification

In the experiment, all outgoing traffic not required for VPN setup is considered
leakage. However, the following protocols are exempt from this leakage classifica-
tion:

• Address Resolution Protocol (ARP),

• Dynamic Host Configuration Protocol (DHCP),

• Extensible Authentication Protocol over LANs (EAPOL),
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• Internet Control Message Protocol (ICMP),

• Link-Local Multicast Name Resolution (LLMNR),

• Internet Group Management Protocol (IGMP) and

• Multicast DNS (mDNS).

Packets sent via these protocols are typically used for control and configuration
within the local network, exchange of communication parameters or diagnostic
purposes. Requiring for them to be tunnelled via VPN would defeat their purpose
and could negatively influence the network connection.

4.6.1.2 Test Procedure

Each VPN client is tested in an unrestricted network, in the following called open
mode, and a captive network, denoted captive mode. To test the behaviour in case
of a network block, VPN clients are additionally tested in block mode, where the
network is configured to drop the traffic destined for the respective VPN endpoint.
Tests in block mode are necessary to test the requirement R4 of blocking in fail state.
This mode also increases the potential to spot race conditions during VPN startup. A
client not offering to auto-connect is instead manually activated before joining the
respective test network.

For each VPN client, at least three tests are performed per mode. The test procedure
encompasses the following steps:

1. Disconnect the Wi-Fi connection on the client device,

2. Activate the VPN client (if the VPN client does not support always-on),

3. Clear the captive portal remediation state,

4. Start the Wi-Fi capture,

5. Connect the client device to the Wi-Fi network,

6. Complete the Captive Portal sign-in in case the VPN employs Captive Portal
Detection (CPD),

7. Capture the traffic for 20 seconds.

The captured traffic is subsequently classified according to the leakage definition
presented previously.
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macOS
iOS Windows

Android

Ubuntu

System employs CPD ✓ ✓ ✓ ✓ ✓

Blocking of platform traffic ✓ ✗ ✗ ✗ ✗

Blocking of third-party traffic ✓ ✓ ✗ ✓ ✗

Table 4.2: An overview over the platform behaviour during the remediation of a
captive network. Source: [Bur+21].

4.6.2 Inherent Captive Portal Detection Mechanisms

Since captive portal remediation during the use of a VPN client can only be success-
fully performed by the system in case the device has mechanisms for captive portal
detection, a test to establish a baseline for each platform is required. The test are
conducted in two scenarios, with the first one (a) successfully completing captive
portal sign-in, and the second one (b) omitting captive portal sign-in, resulting in the
client remaining captured. The results are shown in Table 4.2: All platforms employ
captive portal detection and prompt their users to fulfil the terms for captive portal
remediation. MacOS and iOS perform captive portal detection before allowing the
rest of the system to utilise Wi-Fi connectivity. Unless the captive portal is remedi-
ated, all third-party traffic remains blocked. This applies both to scenarios (a) and
(b). In scenario (b), however, DNS queries originating from the operating system
but unrelated to captive portal remediation are leaked on iOS, followed by outgoing
traffic towards those hosts. Android, on the other hand, leaks DNS lookups and TCP
traffic to platform services unrelated to captive portal detection prior to remediation.
However, third-party traffic remains blocked on Android. On both Windows and
Ubuntu, captive portal detection blocks neither platform nor third-party traffic.

4.6.3 Analysis on Native VPN Clients

All operating systems tested in this analysis are equipped with built-in clients
for basic VPN functionality. To gauge whether the native VPN clients fulfil the
requirements summarised in Section 4.4, they were tested and analysed. However,
only the functionality exposed via the OS’s GUI, for example via the dialogue used
to enter network settings, was analysed, not additional functionality only exposed
by use of APIs (cf. Section 4.5) or special configuration files. The results of the tests
are summarised in the following and can also be observed in Table 4.3.
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Platform Client R1: Always-o
n

R2: CPD
R3: Minimal

R4: Blocking

R5: No Bypass

macOS Native ✗ – – – –
Demo ✓ ✓ ✗ ✗ ✗

EncryptMe ✓ ✓ ✗ ✗ ✗

ExpressVPN ✓ ✗ (✓) ✓ ?
Mullvad ✓ ✗ ✓ ✓ ✓

ProtonVPN ✓ ✓ ✗ ✓ ✗

iOS Native ✗ – – – –
EncryptMe ✓ ✓ ✳ ✓ ✗

ExpressVPN ✓ ✓ ✳ ? ✗

Mullvad ✓ ✓ ✓ ✓ ✓

ProtonVPN ✓ ✓ ✳ ✳ ✗

Windows Native ✗ (✗) – – –
EncryptMe ✓ ✓ ✗ ✗ ✗

ExpressVPN ✓ ✓ ✗ ✗ ✓

Mullvad ✓ ✗ ✓ ✓ ✓

ProtonVPN ✓ ✗ ✓ ✓ ✓

Android Native ✓ ✗ ✓ ✓ ✓

EncryptMe ✓ ➠ ✗ ✗ ✗

ExpressVPN ✓ ✗ ✳ ✓ ✓

Mullvad ✓ ✗ ✳ ✓ ✓

ProtonVPN ✓ ➠ ✗ ✗ ✳

ProtonVPN (always-on) ✓ ✗ ✓ ✓ –
Ubuntu Native ✓ ✗ ✗ ✗ ✓

ExpressVPN ✓ ✗ ✗ ? ✓

Mullvad ✓ ✗ ✓ ✓ ✓

Table 4.3: Overview of the analysis of various VPN clients. The symbols used
in addition to ✓and ✗ imply a race condition (➠), traffic leak caused by the
platform (✳), features that were not testable (?), and features that were inap-
plicable (–). Tests for Ubuntu could only be conducted using the native client,
ExpressVPN and Mullvad as the other providers either do not offer Linux
clients, or provide clients that did not work. Adapted from: [Bur+21].

4.6.3.1 macOS and iOS

Even though the system API provides the means of implementing VPNs with always-
on capability, the native VPN clients on macOS version 10.15.7 and iOS version
14.0.1 contain no means of using it. On both platforms, it is not possible to start a
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VPN prior to connection establishment to a Wi-Fi network; VPNs have to be started
manually. Additionally, in case of an interrupted network connection, the VPN clients
do not always automatically reconnect once the network connection is restored.
While iOS supports the remote deployment of always-on VPN provides, this is only
possible via device supervision, for example when using mobile device management
[Appf]. Since the devices used in this example did not fulfil the prerequisites required
for device supervision, an always-on VPN option could not be tested.

4.6.3.2 Windows

Windows 10 has a graphical built-in VPN configurator, which does not support
the configuration of an always-on VPN profile. Nevertheless, network interfaces
going offline do not immediately cause VPN disconnections. This has an impact
on captive portal detection, since reconnecting after a short disconnect causes for
captive portal detection to be suppressed until the VPN timeout, resulting in a
captive deadlock. VPN timeouts, in turn, result in unrestricted outbound traffic
outside the VPN tunnel. Additionally, tests in open mode and in block mode showed
that DNS lookups to Microsoft hosts bypass the VPN tunnel, querying addresses
like www.bing.com.

4.6.3.3 Android

The VPN client natively provided on Android devices [And] allows its users to set
the native VPN into always-on mode. This requires for the VPN server address to
be provided numerically and for a DNS server to be set. When using always-on, the
Android device enters a captive deadlock: Since the native VPN does not perform
captive portal detection, the captive portal can not be remediated. The issue has been
reported to Google13. In the issue tracker, it was first pronounced to be a product
feature issue and not a developer issue, and then marked a duplicate of another
issue, access to which is denied for normal users.

In the following tests, the captive portal was disabled, which resulted in the native
Android VPN client being able to establish a VPN connection. Apart from the
traffic required for CPD remediation, TLS traffic destined to www.google.com was
transmitted before tunnel establishment. Apart from this, no other traffic was
leaked.

13. https://issuetracker.google.com/issues/170461560
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4.6.3.4 Ubuntu GNU/Linux

The native VPN application provided on Ubuntu is NetworkManager, which is the
networking client with additional in-built VPN functionality. With a VPN profile
configured, Network Manager allows its users to employ always-on functionality
for specific connections, e.g in conjunction with a certain SSID. The in-built VPN
client has no support for captive portal detection, and connection establishment in
a captive network therefore results in a captive deadlock. In open mode, however,
the VPN client can be used as expected. Upon receiving ICMP notifications on
VPN destination unreachability, internet connectivity is set to offline, preventing
additional leaks. However, during the use of the auto-connect functionality that
is in place before receiving such an ICMP notification, NetworkManager employs
neither fail-state blocking nor minimisation of outbound traffic, during both VPN
establishment and in case of VPN establishment failure. Therefore, during the time
NetworkManager attempts to establish a connection, traffic is leaked outside the
VPN tunnel. In block mode, ICMP notifications are dropped in conjunction with
the remaining VPN traffic. NetworkManager therefore retains connectivity until
receiving a VPN time-out, thereby increasing the time during which other processes
leak traffic.

4.6.4 VPN API Demo

As shown in Section 4.5, dedicated APIs are provided for macOS and iOS to support
traffic blocking during VPN connection establishment. The native iOS and macOS
VPN clients do not integrate the blocking functionality. A custom API demo for
macOS was therefore implemented in [Bur+21] to assert the documented properties.
It uses the Personal VPN API introduced in Section 4.5. The service registers an
auto-connecting on-demand VPN via the NEOnDemandRuleConnect rule whenever
the device is connected to a Wi-Fi network.

Tests of the demo showed that the VPN tunnel is started reliably upon connection
establishment to the test Wi-Fi. Traffic captures recorded during the tests exhibited
platform traffic towards Apple hosts and third-party traffic occurring between
captive portal remediation and tunnel establishment, both in open and in cap-
tive mode. The NEOnDemandRuleConnect rule therefore appears to have a less strict
blocking feature than the documentation suggests.

Another finding made while monitoring the traffic with an established VPN tun-
nel was that TCP streams originating from before the establishment of the VPN
connection bypass the VPN tunnel. This behaviour has been previously reported
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[Pro20], and remained unfixed at the time of the analysis performed for the pa-
per [Bur+21], and furthermore still existed in iOS 16, which was released in 2022.
The behaviour also applies to TCP re-transmission attempts initiated before VPN
establishment. In block mode, no fail-state blocking could be observed: Both plat-
form traffic and third-party traffic commenced upon VPN connection establishment
failure.

Result: The demo testing the implementation of the on-demand connection rule
showed that it appears to be insufficient to ensure fail-state blocking.

4.6.5 Third-Party VPN Clients

In addition to the inspection of native VPN clients, several third-party clients were
analysed with respect to the fulfilment of the requirements summarised in Section 4.4:
ExpressVPN, EncryptMe, ProtonVPN and Mullvad VPN. ExpressVPN was chosen
since it is the market leader among the VPN providers, and EncryptMe since it was
the benchmark used by [Kar17]. ProtonVPN is another market leader, additionally
providing open source clients and publishing research into leak detection and pre-
vention [Pro20]. Mullvad VPN is another open source VPN provider. The results of
all tests can also be observed in Table 4.3.

4.6.5.1 ExpressVPN

When using the ExpressVPN client version 3.0.2.12 on Ubuntu, it deadlocked in
captive mode. In open mode, no leaks were observed besides local traffic. Tests
in block mode were impractical because of unpredictable address switches on the
endpoint. Furthermore, upon entering a blocking state in which the app is unable to
connect to the VPN server, re-establishing the VPN connection could only be done
with full leakage.

On iOS, version 8.3.5 of the ExpressVPN app was tested. It uses the on-demand API
described in Section 4.5 to automatically re-establish the VPN tunnel if activated. In
these tests, platform traffic not required for captive portal detection or remediation
was observed both in open and in captive mode. Just as observed in Section 4.6.4,
resets of TCP connections transmitting platform traffic, which had been established
prior to VPN tunnel establishment, could be observed. Just like on Ubuntu, block
testing had to be skipped. Additionally, the iOS client provided by ExpressVPN was
capable of captive portal detection.
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Subsequent testing of the macOS client version 7.11.6(6) showed that it was not using
Apple’s on-demand API, according to the network settings. In captive mode, the
client causes a captive deadlock since it interrupts captive portal detection. However,
no leakage could be observed during the captive deadlock. In open mode, packets for
captive portal detection could be observed, but the subsequent tunnel establishment
repeatedly failed to complete within the 20 seconds determined as capture time, but
again, without leakage. The ExpressVPN client under macOS additionally fulfilled
the requirement of fail-state blocking of traffic when tested in block mode.

A test of the Windows client version 9.1.0(258) in both open and captive mode
exhibited leakage of platform traffic unrelated to captive portal detection, as well
as third-party traffic, during both the captive portal remediation phase and during
tunnel establishment. When testing in block mode, the client exhibited fail-state
blocking, showing no additional occurrence of leakage. However, the client does not
appear to sufficiently block leaks occurring during startup.

The Android client version 9.0.40 caused a captive deadlock when tested in captive
mode. Except for platform traffic to www.google.com, no other leaks originating
from third parties could be observed. The same leaks were observed in open mode,
and captive portal detection caused no deadlocks. When tested in block mode, no
additional leaks were exhibited.

4.6.5.2 EncryptMe

EncryptMe offers VPN-activation dependent on network trustworthiness. Client
version 4.2.3 was tested with activated auto-start on macOS. EncryptMe additionally
contains a feature called OverCloak14, which provides leak protection in untrusted
networks. This includes connection lock-down prior to VPN tunnel establishment,
allowing only critical DNS, SSH and HTTPS packets to be transmitted. The client
allows packets required for captive portal detection and successful remediation to
pass. However, in both captive, open and block mode, traffic originating from
the platform and third-parties is leaked prior to connection establishment and
afterwards.

On iOS, version 4.4.4 was analysed. On this client, it is possible to enable a setting
called auto-protect, which makes use of the on-demand functionality iOS provides.
Both in open and captive mode, platform traffic unrelated to captive portal remedia-
tion could be observed. In block mode, no additional leakage occurred.

The Windows client tested was version 1.1.0. Captive mode exhibited platform and
third-party leaks but no deadlocks. Open mode allowed the client to complete VPN

14. https://blog.encrypt.me/2019/09/26/what-is-encryptme-overcloak/
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tunnel establishment faster, therefore fewer leaks were found, originating only from
platform traffic. In block mode, both platform and third-party traffic was observed
again.

The tests of the Android client version 4.2.0.1.81964 indicate a race condition oc-
curring between captive portal detection and VPN tunnel establishment: both in-
deterministic captive deadlocks and leaks of third-party traffic could be observed.
In captive mode, captive portal remediation is impossible due to the occurrence of
captive deadlocks, which are, however, leakage free. Tests in open mode exhibited
no leakage, however, block mode caused for third-party traffic to be leaked.

Tests of a Linux version could not be conducted since EncryptMe has no Linux
client.

4.6.5.3 Mullvad VPN

The Mullvad VPN client for iOS, version 2020.4, first attempts VPN connection
establishment, upon failure performs captive portal detection, and upon successful
captive portal remediation performs leak-free VPN connection establishment. Both
open mode and block mode allowed for leakage free connection establishment. An
inspection of the source code confirms that the on-demand VPN API is used by the
iOS app.

The clients available for macOS, Windows and Ubuntu, version 2020.5, caused
captive deadlocks due to blockage of packets related to captive portal detection.
Both in open mode and block mode, connection establishment was possible and no
leaks were recorded.

The Android client version 2020.6-beta2 was released in beta version. Tests in captive
mode showed that packets for captive portal detection are transmitted and redirected.
However, the request to the captive portal was lost in all tests, thereby causing a
captive deadlock.

4.6.5.4 ProtonVPN

The iOS client version 2.2.4 offered by ProtonVPN provides always-on functionality,
which can not be deactivated. DNS and IP packets originating from the platform and
unrelated to captive portal detection could be observed between the captive portal
remediation and the establishment of the VPN tunnel. Additionally, traffic addressed
to the global IP address that the testbed gateway has could be found throughout the
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capture. Tests in block mode revealed the same behaviour, with additional leakage
observed towards to Akamai servers, presumably servicing Apple.

When tested in open and captive mode, the macOS client ProtonVPN 1.7.2 exhibited
neither leaks during captive portal detection nor during remediation. However,
after successful remediation and before tunnel establishment, both platform traffic
unrelated to captive portal remediation, as well as third-party traffic encompassing
DNS and IP traffic could be observed. TCP streams encompassing platform and
third-party traffic originating from before tunnel establishment, as well as local
traffic is leaked outside the VPN tunnel. Additionally, reverse DNS lookups to the
local IP address of the test client could be observed. The same leakage as previously
stated could be observed in block mode. Here, however, no further leaks occurred
after unsuccessful tunnel establishment.

The Windows client version 1.17.3 does not feature an auto-connect setting, and has
to be started manually prior to Wi-Fi connection establishment. In a captive network,
the Windows client causes a captive deadlock, as packets required for captive portal
detection are blocked. When tested in block mode and open mode, no leakage was
observed apart from traffic to api.protonvpn.ch.

Android version 2.3.54.0 exhibited inconsistent behaviour when tested in captive
mode: Either the request to the captive portal is suppressed, causing a captive dead-
lock, or it is transmitted prior to tunnel establishment, as well as other platform
traffic. This indicates a race condition occurring between VPN handling and captive
portal detection. In block mode, the Android client exhibits increased leaks of plat-
form and third-party traffic in comparison to captive mode. In open mode, platform
traffic is leaked throughout the whole VPN connection establishment.

In addition to the VPN functionality provided by the ProtonVPN Android app, the
settings provide instruction for the activation of the Always-On functionality as
can be seen in Fig. 4.7. Since this functionality extension via the system settings
was described in the app, it was also included in the tests. By manually enabling
Always-On VPN in the android settings and additionally enabling the kill-switch
to block all communication outside the VPN tunnel, system functionality can be
used to enhance the inherent VPN properties. Tests comparing ProtonVPN with
and without Always-On enabled as shown in Table 4.3 indicate that the fulfilment
of traffic minimisation and fail-state blocking, which are not met by ProtonVPN,
are in fact met if used with Always-On turned on in the Android system. However,
while captive portal detection was faced by the race condition described above
without Always-On enabled, using Always-On results in complete blocking of
packets required for captive portal detection and therefore a captive deadlock.
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Figure 4.7: Screenshot of the steps described in the Android ProtonVPN client to
turn on Always-On functionality. While the ProtonVPN app has no features
for traffic minimisation and fail-state blocking, when setting the Always-On
features, both traffic minimisation and fail-state blocking are in place. How-
ever, without Always-On, the app exhibits a race condition during captive
portal detection, and with Always-On, the use of a captive network results in a
deadlock.

While ProtonVPN offers the use of a command-line client for Linux devices, testing
its behaviour was impossible since the credentials were continuously rejected by the
system.

4.6.6 Summary

A VPN used in a captive network should fulfil certain requirements to ensure both
functionality as well as leakage suppression. The leakage suppression requirements
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entail for the VPN functionality to be always-on (R1), for traffic prior to VPN estab-
lishment to be minimised (R3), for the application to entail fail-state blocking in case
of failed connection establishment (R4) and for the elimination of bypassing traffic
(R5). To additionally ensure functionality in captive networks, packets required for
captive portal detection have to be exempt from the traffic blockage (R2). In the
comparison of both native and third-party clients, the only application fulfilling all
requirements was the Mullvad VPN app for iOS. On Windows, Android and Ubuntu,
effective leak protection automatically caused captive deadlocks due to suppressed
captive portal detection (R2). Particularly on iOS and Android, the requirement
to minimise startup traffic (R3) was often not fulfilled, since exceptions to traffic
blocking were made by the system APIs that caused leakage of platform traffic. Both
EncryptMe and ProtonVPN exhibit race conditions appearing during the connection
to a captive network, indicating imprecisions in the prioritisation of VPN startup or
in the developers guide for secure API use.

Altogether, several bugs were found and reported, including leaks of third-party
traffic during the use of the on-demand connection handling macOS offers via it’s
API, which is meant to provide blocking functionality and VPN setup in specified
networks.

Result: While unprotected surfing in public Wi-Fi networks makes eavesdrop-
ping possible – and, in some cases, easy – the security guarantees promised by
the use of a VPN are not always met in practice.

In fact, only one of the tests conducted on clients across various platforms success-
fully met all security requirements. This highlights that the current implementation
of VPNs is less secure than advertised, and significant improvements are necessary
to enhance both their security and functionality.

4.7 Mitigation: Selective VPN Bypass to Mitigate
Captive Deadlocks

In the previous section, 25 different test configurations of VPN clients on multiple
platforms showed that in only 9 of the scenarios, captive portal detection was
successfully performed by the system. The situation is potentially exacerbated by
the fact that none of the native clients support captive portal detection. If they had
mechanisms for intrinsic captive portal detection, commercial implementations could
either employ the same mechanisms or improve on them in their applications.
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Figure 4.8: A flow diagram illustrating the stages of the selective VPN bypass.

To enhance the captive portal detection capabilities of devices during the use of a
VPN, a mechanism for selective VPN bypass is required. This section is, again, based
on the paper [Bur+21], which was co-authored within the scope of this dissertation.

A selective VPN bypass that allows access to captive portals during VPN connection
establishment consists of the following three stages, which are also illustrated in
Fig. 4.8:

Stage 1: Captive Portal Detection

Stage 2: VPN Activation

Stage 3: Open Connectivity

In the first stage, depicted in Fig. 4.9, only requests required for captive portal detec-
tion with the predefined destination of a platform’s detection server are allowed. All
other traffic, including unrelated platform services and third-party communication
should be blocked completely. This can be implemented using restricted networking
capabilities dedicated only to the process responsible for captive portal detection.
For sign-in with the captive portal, a minimal, isolated web browser is required.
An alternative means of implementing captive portal detection from within a VPN
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Figure 4.9: Stage 1 of the selective VPN bypass: Only traffic required for captive
portal detection allowed. Image source: [Bur+21].

Figure 4.10: Stage 3 of the selective VPN bypass: Traffic is only allowed to go via the
VPN provider. Image source: [Bur+21].

application is the use of dedicated firewall rules that allow only for the traffic of
services related to captive portal detection to be transmitted.

The second stage commences after successful captive portal remediation. The sys-
tem should then commence VPN connection establishment, granting all networking
capabilities required for VPN connection establishment. In case the connection estab-
lishment is unsuccessful, it should result in fail-state blocking, with all network
connections suspended until manual intervention by the user determines the sub-
sequent course of action. On the other hand, successful completion of this stage
results in the transition to stage three:

In stage three, depicted in Fig. 4.10, all networking capabilities are granted to
platform services, applications and third-parties, and all traffic is tunnelled via the
VPN provider without bypassing the VPN tunnel.

In case of a connectivity failure at any stage, connection establishment commences
again with stage one. Unsuccessful connection establishment always results in fail-
state blocking. This design results in VPN tunnel establishment that adheres to all
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the requirements set out in Section 4.4, offering stronger privacy guarantees and
more robust functionality than almost all of the applications tested in Section 4.6.

4.8 Conclusion

Ever since Wi-Fi capable devices became easily portable, the use of public access
points has made mobile communication both accessible and convenient. However,
this ease of movement comes with inherent risks as shown in Section 4.2: The
widespread use of open Wi-Fi networks makes monitoring traffic trivial, since open
networks do not employ any form of traffic encryption. However, a popular alterna-
tive is only slightly better: A WPA2-protected access point with a publicly available
password. In WPA2-protected public networks, connection establishment is a se-
curity critical process, since WPA2 requires a handshake procedure, which can, if
monitored by an attacker, be used to decrypt the following communication. Newer
protocols like WPA3 and OWE feature a better handshake protocol, which makes key
derivation attacks infeasible. In the face of these protocols, attackers would instead
have to resort to active attacks when attempting to monitor and decrypt user traffic.
However, these protocols are not in wide use yet.

Users nevertheless wanting to use public Wi-Fi networks therefore have to resort to
other means of protecting their traffic. A popular approach is the use of a VPN: In the-
ory, all traffic is encrypted and then transmitted via a VPN tunnel, ensuring that both
the content as well as the metadata of the traffic is concealed from eavesdroppers. To
effectively fulfil the privacy protection guarantees and perform as expected in public
Wi-Fi networks, VPNs must meet certain requirements, as summarised in Section 4.4:
They should be able to remain active at all times, particularly during startup, and
additionally minimise startup traffic as much as possible to reduce the risk of leakage.
In case of connection establishment failure, they should enter a blocking fail-state,
in which no traffic is transmitted at all. Also, no traffic should bypass the tunnel.
To ensure functionality in public Wi-Fi networks, they should additionally support
the detection of captive portals: Without this, the use of an always-on VPN will
otherwise result in a captive deadlock. However, tests conducted and presented in
Section 4.6 showed that these requirements are neither fulfilled by any of the native
VPN clients provided by the specific platforms, nor by most of the popular VPN
services tested. In fact, only the iOS client that Mullvad provides fulfils all criteria.
This underlines the urgent need to improve both the API provided by the platforms,
as none of them contain mechanisms for captive portal detection, as well as the
commercial implementations supplied by the VPN providers.
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To indeed fulfil all requirements, a selective VPN bypass upon connection estab-
lishment with a Wi-Fi network is proposed in Section 4.7. Here, the traffic required
for captive portal detection is allowed outside the VPN tunnel, and all other traffic
blocked. If the captive portal remediation is successful, only the traffic required to
establish the VPN tunnel is allowed, and only if the tunnel establishment is suc-
cessful can all other traffic be routed through the tunnel. This design ensures that
all requirements for privacy and functionality of VPNs are met, protecting both
connection establishment and subsequent communication from passive and active
attackers within public Wi-Fi networks.

In conclusion, the stage of connection establishment entails various security chal-
lenges. In public Wi-Fi networks, connection establishment is particularly critical,
since in this stage, key material for the subsequent encrypted communication is
exchanged. In public Wi-Fi networks, passive attacks are possible in both open and
WPA2-protected networks, and active attacks in both OWE and WPA3. A VPN
can conceal both traffic and metadata from eavesdropping, but depending on the
implementation, it might also leak sensitive data, particularly during connection es-
tablishment. However, the use of a VPN employing the selective bypass introduced
in Section 4.7, thereby meeting all the requirements summarised in Section 4.4 would
ensure a secure and privacy-friendly connection establishment even in insecure
public Wi-Fi networks.
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5
Data Transfer - Unencrypted
Broadcast Communication using the
Example of ADS-B

In the previous chapters, the stages of device discovery and connection establishment
were examined in detail, and typical pitfalls and their mitigations were analysed
using the example of probe requests for device discovery in Wi-Fi networks, and
the use of a VPN client to safeguard against eavesdropping during connection
establishment in public Wi-Fi networks. Once a connection has been successfully
established, the next stage is data transfer. This is the stage of communication where
information is exchanged between two (or more) parties. A trivial example for data
transfer is an unencrypted and unauthenticated broadcast message, which can be
received by anyone with the correct equipment in place. Here, the question is whether
and how the legitimacy of such broadcast messages can be tested and verified.
Additionally, data transfer can be disrupted due to various causes: Unintentional
causes could for example be devices leaving the radius within which a connection
can be maintained, or that the quality of service degrades due to various reasons. An
intentional cause for a disrupted connection, on the other hand, can be an attack on
the system - either via fine-grained attacks tackling single connections or by jamming
a whole frequency spectrum.

In this chapter, the focus lies on the Automatic Dependant Surveillance-Broadcast
(ADS-B) protocol, an example of broadcast communication for positional informa-
tion on aircraft. The protocol is particularly interesting from a security perspective
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as it was built without any security or authentication mechanisms. It is susceptible
to active and passive attacks that disrupt the connection or violate the integrity
or confidentiality of the content: The lack of encryption allows eavesdropping on
the content, and the lack of authentication enables attackers to inject or modify
messages. As no mechanism exists to estimate packet loss, fine-grained message
deletion attacks or all-out jamming can remain undetected in the system. Section 5.1
provides a thorough overview over the possible attacks vectors in the context of
ADS-B messages.

The lack of security is a particularly interesting research topic, and academic discus-
sions on retrofitting security mechanisms have introduced various solutions. These
are detailed in Section 5.2, where preliminary studies and related work are reviewed.
They can be classified into three fields: The first concerns the redesign of the ADS-B
protocol to include cryptographic mechanisms for message encryption, authenti-
cation and integrity protection. It is unlikely that any modifications to the ADS-B
protocol are implemented within a timely manner, as the roll-out of the protocol
itself was already extremely slow: Albeit the deployment started in 2009, it is still
not in ubiquitous use, with the deadline for mandatory implementation having been
postponed several times after the first one in 2015, with the latest deadline being
2025. Nevertheless, by 2021, 97 % of the observed commercial airlines were ADS-B
compliant already [Sun+21]. Modifying a system that has, on one hand, required
a substantial amount of time for enrolment and is still not ubiquitously used, and,
on the other hand, might require for the significant amount of already-enrolled de-
vices to be replaced in favour of a new protocol, is unlikely to happen. Nonetheless,
the approaches for a protocol redesign in favour of cryptographic protection are
discussed in more detail in Section 5.2.1.

The second commonly discussed strategy to improve the reliability of the ADS-B
protocol concern the signal: On one hand, it is possible to apply fingerprinting
techniques on the signal. This can be done via hardware- software- or channel-
based verification methods. On the other hand, modifications on the signal itself
to include techniques like spread spectrum protocols or frequency hopping can
increase the resistance to jamming and impede eavesdropping on the content. These
approaches are discussed in more detail in Section 5.2.2.

The third strategy concerns the verification of signal origin. This can be done by
multilaterating the signal and thereby verifying the signal origin stated within the
message, or by using crowd sensors and their typical overlapping reception range to
gauge the legitimacy of the content of a received ADS-B message. This is discussed in
Section 5.2.3. Additionally, this chapter introduces another technique to verify signal
legitimacy: A strategy for location verification of ADS-B messages using distributed
public sensors, introduced in Section 5.3.
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Relevant Publications The location verification scheme LoVe described in Sec-
tion 5.3 has previously been published in [McD+23].

5.1 Attacks on ADS-B

Protocols lacking encryption and authentication are vulnerable to several attacks. In
the case of ADS-B, five types of attacks [WSG20] can be distinguished:

• eavesdropping

• message injection

• message modification

• message deletion and

• jamming.

Additionally, attacks on the GNSS system have direct consequences for ADS-B mes-
sages and should therefore be considered an additional attack vector. The following
sections will elaborate on the potential attacks targeting ADS-B.

Eavesdropping Since ADS-B messages are transmitted in plaintext, it is easily
possible to perform a passive attack on the link: Attackers can eavesdrop on the
traffic using off-the-shelf equipment like a Software Defined Radio (SDR) and an
antenna for the 1090 MHz frequency band. Websites like the OpenSky network even
rely on crowdsourcing to gather their data: Thousands of independent users set
up ADS-B receivers and feed the data into the database. The data, in turn, can be
accessed by researchers and paying customers.

Message Injection The lack of authentication of messages makes it possible to
send fake ADS-B messages. The goal can be either to overpower signals sent by a
specific aircraft to modify the trajectory registered by a ground station, or to inject a
whole new non-existent aircraft, a ghost plane [WSG20]. Using a message injection
attack it is potentially possible to disrupt normal flight procedures, as the received
signals can appear on surveillance monitors. In aircraft, ADS-B-In data is used in the
Airborne Collision Avoidance System (ACAS) to map surrounding aircraft and avoid
potential collisions. The system provides advisories to pilots, who can then manually
modify the trajectory or choose not to react to potentially false alarms [ICA20].
Spoofed ADS-B messages appearing on ground tower surveillance monitors can also
cause air traffic controllers to issue instructions to alter the course. However, ground
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towers typically use additional sources of information (e.g. the Primary Surveillance
Radar (PSR)), and could therefore validate the existence of ghost planes prior to
issuing instructions. Injecting ADS-B messages is therefore a means of confusing
automated digital systems, but the ultimate decisions are still made by humans.

Particularly seeing that aggressions are welling up globally, a subform of a ghost
plane injection is thinkable: A ghost fleet injection, a DDoS-like attack using ADS-B
signals. If a very large number of ghost planes were injected using ADS-B messages,
distinguishing between real and fake aircraft would be difficult for both ground
stations and ADS-B-In-capable aircraft. Ground stations would likely have to tem-
porarily abandon air surveillance using ADS-B and instead rely on PSR only. Aircraft
would lose all capability to chart the surrounding airspace using ADS-B messages
and would have to instead rely on their line of sight.

Message Modification Using message overlay techniques, bit flipping or a combi-
nation of message deletion and injection, it is a possible – but very complex – task to
modify messages sent by a legitimate node. An overlay attack attempts to replace a
legitimate message with a high-power signal, while bit flipping can change specific
bits in a message to modify the content. The combination of both can be used to
flip bits in a message using a strong signal [WSG20]. Note that, of course, it is not
enough to just flip specific bits in the content, but that the parity has to be adjusted as
well since the message would otherwise be discarded. Such an attack again requires
impeccable synchronisation with the target node. An alternative attack can be to first
provoke message deletion by disrupting enough bits in a transmitted message, and
then insert a modified message in its stead [Pöp+11]. Since high precision is required
to modify signals, which is further hampered by the large distances the messages can
travel, message modification would need to be done either in very close proximity
to the transmitting aircraft or to a specific receiving ground station.

Message Deletion and Jamming As mentioned in Section 2.4, the ADS-B protocol
is designed in such a way to contain a 24-bit CRC error-detecting code for every
one of the 112 bit long messages. With this parity, it is possible to correct up to 5
corrupt bits per message. A message containing more than 5 bit-errors can not be
corrected and is therefore considered corrupt and discarded. An attacker can use this
by emitting a timed signal to generate bit errors in specific messages. Aircraft whose
ADS-B messages are deleted disappear from surveillance monitors, which increases
the risk of collisions [WSG20]. Since ADS-B is a broadcast protocol and reception
of a message is not acknowledged by others, the corresponding parties will remain
oblivious to the corruption of the messages. Message deletion is technically complex
since it requires very strict time synchronisation [WSG20]. Instead of targetting
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Figure 5.1: An overview of GPS-jamming attacks recorded via ADS-B signals,
provided by Flightradar24 [Fli24]. Areas coloured in green denote low interfer-
ence, while red colouring denotes high interference. Interference is particularly
pronounced in south-eastern Russia and in the Middle East. Screenshot of
[Fli24].

single messages, ADS-B message transmission and reception can be disrupted by
jamming, i.e. by sending high-power data via the whole frequency band.

GPS-Attacks Instead of attacking the ADS-B system directly, a recent surge in
attacks on Global Navigation Satellite System (GNSS) (cf. Section 2.4.3), e.g. Galileo,
GPS, GLONASS, BeiDou, has been detected. While Russian-based attacks took rise
even before its attack on Ukraine, an increase could also be noted around the time of
the attacks of the Hamas, in the last quarter of 2023, over three distinct regions in the
Middle East: Around Tel Aviv, Baghdad and Cairo [Zee23; Gau23]. Since the ADS-B
system relies on legitimate GPS signals, spoofing or jamming the GNSS system also
directly affects the ADS-B system. Vice versa, it is possible to use ADS-B sensor
data to construct a map of GNSS jamming or spoofing [Fli24], as can also be seen in
Fig. 5.1.
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5.2 Preliminary Studies and Related Work

An influential publication regarding the insecurities of the ADS-B system was pub-
lished by Costin et al. [CF12] and presented at Black Hat 2012. They constructed a
lab environment in which they simulated ADS-B transmitting and receiving devices,
but to ensure that no false information is accidentally transmitted, the messages
were exchanged via a wired connection. This way, they modelled both passive as
well as active attackers and thereby showed that it’s possible to attack the system
with Commercial Off-The-Shelf (COTS) equipment.

Strohmeier et al. [SLM15b], Manesh et al. [RK17] and Wu et al. [WSG20] provide
surveys regarding the state of ADS-B security, attacks and countermeasures. All of
them agree that the protection mechanisms previously suggested by others and then
analysed in their surveys only serve to provide a quick improvement of the security
and serve only as a partial answer to the addressed vulnerabilities. Neither of the
proposed retrofitted security measures can guarantee properly hardened system
with all-encompassing security in place. Strohmeier et al. and Wu et al. maintain that
a complete redefinition of the protocol is required. Wu et al. additionally suggest
to incorporate deep learning methods for vulnerability analysis and to incorporate
blockchain technologies for security verification. However, Manesh et al. consider a
complete replacement impractical due to the costs and time a redeployment entails.
They suggest to implement methods to address vulnerabilities while retaining the
system’s simplicity and flexibility. They additionally suggest to implement encryp-
tion and authentication via control channels, both in-band and out-of-band.

ADS-B was designed without security features to make it as lightweight and easily
usable as possible, while at the same time using existing equipment with updated
functionality for transmission, instead of requiring an additional sender to be in-
stalled on the aircraft. Ensuring authenticity of the signal retroactively can be done
in three different ways:

(1) The first is to redesign the ADS-B protocol to include encryption or message
authentication. As the deployment of ADS-B has still not been completed, and
modifications of the protocol are unlikely to be implemented any time soon, this
is the least likely approach by which the current ADS-B protocol will be secured.
Since it is possibly relevant to other broadcast systems that are to be retrofitted
with security mechanisms, it will be discussed in detail in Section 5.2.1.

(2) The second approach is to fingerprint the signal itself. Here, a hardware-,
software- or channel-based fingerprint is used to verify signal authenticity. While
such fingerprinting techniques are a passive way of verifying signal integrity,
possible active signal protection would entail techniques like frequency-hopping
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spread spectrum (FHSS) or direct sequence spread spectrum (DSSS). These ap-
proaches will be discussed in more detail in Section 5.2.2.

(3) The third verification strategy is the verification of signal origin. These are
presented in Section 5.2.3.

5.2.1 Cryptographic Protection

Wesson et al. [WHE14] focus on the feasibility of the use of cryptographic protection
mechanisms in the ADS-B protocol. They emphasise the complexity and challenges
associated with implementing cryptography for ADS-B, considering the interna-
tional, bandwidth-constrained, and interference-sensitive nature of the aviation
communication system. They examine both symmetric and asymmetric encryption
schemes, as well as digital signatures as a means to protect the integrity of ADS-B
messages.

With respect to symmetric encryption, Wesson et al. underline the problem of key
distribution: Since the same key is required for both encryption and decryption, it
has to be accessible to all ADS-B transceivers. The key distribution strategies either
utilize tamper-proof hardware to store keys, or change the keys for every flight.
The first approach is vulnerable to key disclosure, with the security of the system
reduced to the security of the tamper-proof equipment. The second approach is
inhibited by the fact that all parties that might receive the signal in question have
to be able to access the key. Additionally, a possible leak of the active key database
would completely compromise the system. [WHE14]

Since the key distribution and key management are the biggest problems that sym-
metric encryption in ADS-B messages would have to overcome, asymmetric cryptog-
raphy is suggested instead. Here, confidentiality can be ensured by the use of a key
pair consisting of a public key and a private key. While the public key of the receiver
is used to encrypt the data, the receiver can use its private key for decryption. All
parties involved in the transmission of the messages only have to maintain their own
private key and the public keys of nearby transceivers, and no additional key ex-
change has to be performed [WHE14]. One drawback of this approach is the amount
of messages required to be transmitted: While the current protocol requires for one
message to be transmitted for all nearby receivers n to receive the information, the
use of an asymmetric scheme requires for n messages to be transmitted to reach all
n neighbours. Additionally, the use of asymmetric encryption is inhibited by the
length restriction of 112 bits, as asymmetric encryption schemes enlarge the cleartext
significantly.
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The ADS-B protocol never included means to maintain confidentiality, and eaves-
dropping on ADS-B messages is neither discouraged nor prohibited. The protection
goal of confidentiality is therefore likely not considered important in this specific
protocol. The protection goals of availability and integrity, on the other hand, hold
greater significance: Availability is maintained through constant transmissions oc-
curring every 0.5 seconds. And although the protocol contains no means of integrity
protection, message injection, message modification, and ghost plane injections are
only possible due to the lack of authentication.

An approach to authenticate the sender and thereby ensure the legitimacy of the
source, and additionally ensure that they have not been tampered with during trans-
mission, can be implemented using digital signatures: When an aircraft transmits
an ADS-B message, it can sign the message with its private key, creating a digital
signature. Receivers can then verify the signature using the sender’s public key to
confirm that the message was indeed sent by the claimed aircraft and that it has not
been altered. This mechanism helps prevent impersonation or spoofing of aircraft
identities and the injection of false information into the ADS-B network. Just like
message encryption, the length restriction of 112 bits makes it difficult to apply
a signature scheme to the current protocol. The Elliptic Curve Digital Signature
Algorithm (ECDSA) generates considerably shorter digital signatures than all other
digital signature algorithms; an ECDSA signature has a length of 448 bits [WHE14].
It provides an equivalent strength to a 112 bit long Message Authentication Code
(MAC) received using a symmetric cipher, while simultaneously having the benefit
of avoiding the complicated key exchange required for MACs. While the length of
an ECDSA signature is still too large to meet the length restrictions of 112 bits, it
could, on the one hand, be overcome by modifying the ADS-B protocol to include
longer messages. Since this is unlikely to be implemented, the signed messages could
instead be split over several transmissions.

Costin et al. [CF12] propose a different scheme that does not necessarily entail a
modification of the packet size or structure, but instead the way the packet content is
sent and received: They suggest to compute a signature over each N messages, and
transmit parts of the signature over the cycle of the N messages. After each cycle,
recipients can compute the validity of the signature and thereby verify the message
integrity.

There has been no official movement to include cryptographic schemes into the
implementation of the ADS-B protocol as of today. The following sections therefore
present other vantages to verify signal and location authenticity that do not rely on
cryptographic enhancements.
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5.2.2 Radiometric Fingerprinting and Signal Protection

Radiometric fingerprinting is a technique that can be used to verify the origin of a
packet by comparing its signal fingerprint to that of previously received messages.
Signal Fingerprinting of ADS-B messages can be done via three different vantage
points:

(a) software-based,

(b) hardware-based or

(c) channel-based.

Software-based fingerprinting is done by abusing the differences in implemen-
tations and resulting behaviour. Since many airlines use identical hardware, it is
difficult to differentiate between devices using software-based criteria. Hardware-
based fingerprinting on the other hand uses radiometric techniques, making use of
modulation differences or clock skew to calculate device signatures [RK17]. Since
both hardware-based as well as software-based fingerprinting methods are more ap-
plicable in close proximity of the transmitting antenna and mainly rely on non-mobile
devices, a long-distance and highly dynamic protocol such as ADS-B exacerbates
such fingerprinting techniques [WSG20].

Channel-based fingerprinting on the other hand uses features inherent to the com-
munication channel, such as the received signal strength, the channel impulse re-
sponse or the carrier phase [RK17]. Leonardi et al. [LGF17] additionally combine
channel-based fingerprinting and artificial intelligence: Using the phase pattern gen-
erated by the transponder oscillator, they train a neural network to classify ADS-B
signals into one of seven different aircraft classes. While this does not constitute a
reliable way of fingerprinting single aircraft, it is likely applicable to verify mea-
surements found via other fingerprinting techniques, e.g. in a data fusion scenario,
where ADS-B data is combined with other sources of information, such as the PSR,
as introduced in Section 5.2.3.

An example of modifying wireless communication protocols to withstand jamming
and eavesdropping attacks is to utilise frequency-hopping spread spectrum (FHSS)
or direct sequence spread spectrum (DSSS). In these technologies, the traffic is spread
over several channels, utilising a pre-shared spreading code or a specific frequency
hopping mode [WSG20]. A secret pre-shared spreading sequence is difficult to
distribute in an ADS-B setting, and a fixed pre-shared spreading sequence still
allows attackers to perform jamming attacks by applying the sequence to their own
attack. Therefore, schemes like the Uncoordinated DSSS (UDSSS) introduced by
Pöpper et al. [PSC09] allow for jamming resistance: A message is signed with the
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sender’s private key, and an error encoding is added to allow for a small number
of bit errors. The message is then spread according to a set of spreading sequences,
which is publicly known. Neither the attacker nor the receiver know which spreading
sequence was chosen, and have to record repeated retransmissions and reassemble
the message according to a sliding window approach. While the application of
UDSSS to ADS-B message transmission would entail a protocol modification, it
would improve the protocol to entail both message authentication and jamming
resistance. While UDSSS was not designed for use in the ADS-B protocol, Wu et al.
[WSG20] suggest it as a means of combating jamming and eavesdropping in ADS-B,
but also highlight that the waste of bandwidth resources, it’s low performance in
comparison to the current system and the additional time required might impede
it’s use in the ADS-B protocol.

5.2.3 Origin Verification

Several publications have recently attempted to provide verification of ADS-B mes-
sages on distributed crowd sensors, e.g. using Multilateration (MLAT) on the signals
[DAP20]. MLAT is also typically used in telecommunication networks to provide
location assessment. Here, a minimum of four receivers are required to pick up
the same signal. Signal features like the time of transmission or time of arrival are
used to accurately track the location of the sender. Conventional MLAT is therefore
rather applicable in limited airspaces, e.g. in the vicinity of airports, where it is also
commonly used. Several publications attempt to localise signal origins using MLAT-
like approaches but typically apply modifications to reduce the required sensor set:
Two approaches published by Strohmeier et al. [SLM15a] perform either location
verification or location estimation using the measurement of the Time Difference of
Arrival (TDoA). The authors collect a data set and analyse its verifiability with re-
spect to MLAT and then compare it to their own TDoA-based approach. They adapt
their approach to work with a minimum of two sensors receiving one message and
provide an improvement to location accuracy estimation compared to conventional
MLAT by 41 %.

Another approach at origin verification was introduced by Jansen et al. [Jan+21]: They
propose a Machine Learning (ML)-based approach, in which they utilize vectorsets
to evaluate ADS-B sensor response patterns. This is done using a random-forest
model. Using a data set of ADS-B messages collected via 729 sensors distributed
over Europe in the OpenSky Network, they construct a vector containing the sensor
IDs for every single one of the messages received on a specific day. This vector
is representative of all sensors that recorded a particular message. They then ap-
ply the ML technique Decision Trees (DT) to the vectors. This way, they are also
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able to identify various attacks on the ADS-B system, including message injection,
modification, and GPS spoofing. While the approach is applicable to a sensor set
of size 729, it likely doesn’t scale, e.g., in a worldwide scenario where thousands
or hundreds of thousands of sensors are in use. In fact, to perform verification of
messages captured in European airspace, the authors had to split the training data
into several grids to facilitate separate processing. Additionally, since the approach
relies on the evaluation of vector sets, a low sensor distribution in an area could
negatively influence the verification process.

Various other approaches typically concern data fusion for verification of ADS-B
messages, combining the positioning via ADS-B with localisation via primary (PSR)
or secondary radar or other current traffic control systems [WSG20; SLM15a]. While
the combination of various localisation techniques are typically expensive to deploy,
they also defeat the original purpose of using ADS-B for surveillance in remote areas,
difficult terrain or over oceans.

In the following, the main contribution of this chapter is presented: An approach at
comparing newly received signals to a previously constructed mask of legitimate
signals.

5.3 Location Verification using Distributed Public
Sensors

The various approaches at location verification that have been published to date
use either a multitude of crowdsourced sensors to verify the position autonomously,
combine various positioning techniques or use machine learning to evaluate publicly
available information. These approaches have in common that they are rather costly,
either in terms of the number of sensors required to surveil a large area or in terms of
computational cost. In this section, a particularly lightweight alternative is presented:
Location Verification (LoVe) verifies the transmitted positions in ADS-B messages
captured by a specific sensor by comparing them to previously monitored locations
by the same sensor. LoVe was previously published in [McD+23], which was written
within the scope of this dissertation.

5.3.1 System, Attacker and Threat Model

The system model is composed of ADS-B messages which are periodically sent by
legitimate aircraft and recorded using geographically distributed ground sensors
from the OpenSky network and the Flightradar24 network. The sensors report the
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received messages to a central server, which, as assumed in this system model,
accumulates them and implements LoVe to verify the positional claims.

The attacker considered can monitor and actively transmit ADS-B messages using
COTS equipment like an SDR and additionally multiple stationary ADS-B trans-
mitters. They have both bounded computational resources, as well as bounded
financial resources, e.g. they are capable of transmitting messages from a stationary
position, and have no means of moving as fast as a legitimate aircraft would. The
bounded financial resources also include that they have no means of e.g. acquir-
ing a drone capable of imitating the movements and speed of an airplane, with
which they could transmit legitimate-seeming ADS-B messages from the correct GPS
coordinates.

The threats LoVe can defend against are message injection and ghost plane injection,
location spoofing and attacks on sensors. The first two attacks are possible since
ADS-B messages are neither encrypted nor authenticated: An attacker can inject
legitimate-looking messages, either to modify the data associated with an existing
aircraft or to inject a non-existent aircraft, a ghost plane. The injected messages
would be recorded by surveillance monitors and have the potential to disrupt flight
procedures: Since the ACAS uses ADS-B data for in-flight collision avoidance and
accordingly provides advisories to pilots to modify the trajectory if the ADS-B
messages of another aircraft are captured in the vicinity, the aircraft crew might
react to ghost plane transmissions. Additionally, air traffic controllers might issue
instructions to alter the aircraft course in reaction to fake ADS-B messages. LoVe can
also be used to detect such threats.

Another plausible attack that LoVe can defend against is location spoofing. There
are two distinct ways that this can be achieved: Either via GNSS spoofing or by
directly modifying messages. The latter attack is a subform of message modification
as described above: Instead of injecting a whole message, parts of a legitimate
ADS-B message are overshadowed using a stronger signal, or modified by flipping
single bits [SLM13b]. Needless to say, injecting modifications into existing messages
requires not only for the bits of interest to be flipped, but also for manipulation of
the parity check. When a received message can not be corrected via error correction,
it is dropped. This behaviour can be exploited by an attacker to cause message
deletion. While LoVe can not detect message deletion attacks, coordinates outside
the legitimate coordinate range can be detected and flagged.

Another threat LoVe can defend against are attacks on sensors. Again, there are two
ways this can be achieved: Either by flooding specific legitimate sensors with bogus
messages, or by forwarding illegitimate messages via an own, injected, sensor.
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Figure 5.2: A visualisation of H3 cells spanning the earth surface from three differ-
ent perspectives. With a low resolution, only 122 very large cells are required
to cover the whole surface of the earth, while a higher resolution, as e.g. seen
in Fig. 5.3, requires a far larger number of smaller cells to do the same. Image
source: [Bro18].

5.3.2 LoVe Approach

LoVe employs a mask-based approach: All previously recorded coordinates are
transformed to an index, by which a plausibility mask is constructed. This mask
contains a classification of signals received by a sensor: All previously received
coordinates are mapped using an indexing system, which is described in more detail
below, constructing a mask of legitimately received signals for each sensor. To test
a new signal, its coordinates are transformed using the indexing system and then
compared to the range of signal reception that is common for this particular sensor.
If the received coordinates are outside the range of the plausibility mask, they are
flagged.

The indexing system chosen is H31, a hexagonal geospacial indexing system. While
other projections of the world map, e.g. the mercator projection, are characterised by
variable cell size, H3 provides evenly distributed cells in 16 different resolutions. H3
attempts to map the surface of the earth using hexagons and pentagons, as shown in
Fig. 5.2, which, added together, make up the total amount of cells. Table 5.1 shows a
list of all resolutions and the respective number of cells. The lowest resolution, 0, is
made up of only 122 cells, while 15, the highest resolution, covers the earth surface
using 569 707 381 193 162 cells. Table 5.1 also depicts the average area of a hexagon in
km2: It ranges from around one square metre in resolution 15 to about four million
square kilometres in resolution 0. Seeing that ADS-B signals can typically be received
up to a range of 370 km around the transmitter [Sca02], the resolutions 2-7 are most

1. https://h3geo.org
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Reso- Avg. Hexagon Pentagon
lution Total Cells Hexagons Pentagons Area (km2) Area (km2)

0 122 110 12 4,357,449.416078381 2,562,182.162955496
1 842 830 12 609,788.441794133 328,434.586246469
2 5,882 5,870 12 86,801.780398997 44,930.898497879
3 41,162 41,150 12 12,393.434655088 6,315.472267516
4 288,122 288,110 12 1,770.347654491 896.582383141
5 2,016,842 2,016,830 12 252.903858182 127.785583023
6 14,117,882 14,117,870 12 36.129062164 18.238749548
7 98,825,162 98,825,150 12 5.161293360 2.604669397
8 691,776,122 691,776,110 12 0.737327598 0.372048038
9 4,842,432,842 4,842,432,830 12 0.105332513 0.053147195
10 33,897,029,882 33,897,029,870 12 0.015047502 0.007592318
11 237,279,209,162 237,279,209,150 12 0.002149643 0.001084609
12 1,660,954,464,122 1,660,954,464,110 12 0.000307092 0.000154944
13 11,626,681,248,842 11,626,681,248,830 12 0.000043870 0.000022135
14 81,386,768,741,882 81,386,768,741,870 12 0.000006267 0.000003162
15 569,707,381,193,162 569,707,381,193,150 12 0.000000895 0.000000452

Table 5.1: The number of cells, hexagons and pentagons, including the pentagon
and hexagon areas, at each resolution [H323].

fitting for the LoVe scheme: They cover an average area per hexagon between around
5 km2 and 86 000 km2.

Sample data to construct a database containing real-world ADS-B data could be ob-
tained from both the OpenSky Network and FlightRadar24. Both store their data in a
different format: For each message recorded, OpenSky stores which sensors obtained
the specific message. FlightRadar, in turn, separates messages into flights and then
stores CSVs with each message recorded by the specific plane during the flight. Both
data sets were recorded on July 23rd, 2021. For both data sets, the range was man-
ually limited to contain only data recorded within the European continent, with
the latitude bounded between 30 and 75, and the longitude between -25 and 45. The
OpenSky data set was recorded by only 971 sensors which collected 160 526 553 dis-
tinct ADS-B messages. This amounts to every sensor capturing around 2 141 598.77
messages. The OpenSky data set exhibits a significant overlap in messages recorded:
a particular message was on average recorded by 12.95 sensors simultaneously.
The data format used in the data set supports such overlap in message reception,
and the overlap in turn can serve to enhance trust in the data received.

The FlightRadar data set contained 14 092 420 messages recorded by 11 594 sensors,
which amounts to an average of 1208.12 messages captured per sensor. The data
format does not support the storage of overlapping messages recorded by different
sensors. The overlap was therefore calculated by taking all fields of an ADS-B
message into account and calculating a hash over it. The script can be seen in
Listing 5.1: In row 8, a hash is constructed over several items contained in the data
set: The current altitude, heading, latitude, longitude and speed. In line 9, several
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1 def read_from_file_fill_db_with_hash(myfile , db, counter):
2 with open(myfile , newline=’\n’) as csvfile:
3 allelements = csv.DictReader(csvfile , delimiter=’,’)
4 for row in allelements:
5 current_sensor = row[’radar_id ’]
6 lati = row[’latitude ’]
7 longi = row[’longitude ’]
8 myhash = hash(str(row[’altitude ’]) +

str(row[’heading ’]) + str(lati) + str(longi) +
str(row[’speed ’]))

9 sql = ’INSERT INTO COORDINATES (id , sensor_id , lat ,
long , hash) values(’ + str(counter) + ’, ’ + str(

10 current_sensor) + ’, ’ + str(lati) + ’, ’ +
str(longi) + ’, ’ + str(myhash) + ’)’

11 db.execute(sql)
12 counter = counter + 1
13 return counter

Listing 5.1: The python script used to construct a database of flightradar data,
including a hash of all attributes recorded in the ADS-B signal. The hash can
then be used to compare the received signals and estimate how many signals
were recorded by more than one sensor.

elements of the ADS-B message are then stored in a database, including the hash
previously constructed.

Using SQL queries on the database then reveals the number of overlapping messages
recorded by more than one sensor: SELECT DISTINCT hash FROM COORDINATES; re-
trieves the number of distinct hashes, and SELECT id FROM COORDINATES ORDER BY
id DESC LIMIT 1; shows the total number of entries. The results show 58 491 973
distinct rows and 58 382 552 distinct hashes: 0.18 % of the messages exhibited a hash
that had also been recorded by another sensor in the data set, and was therefore a
message received by more than one sensor. Particularly seeing that the FlightRadar
data set was recorded by 11 594 sensors, while the OpenSky network only used
971 sensors, the small number of overlapping messages is a surprise, seeing that a
message was on average recorded by 12.95 sensors simultaneously in the OpenSky
data set.

5.3.2.1 Use of the H3 Geospacial Index

Each of the ADS-B messages were processed so as to transform their coordinates
to H3 cell IDs, in the following called h3id. A database table is then constructed
for the LoVe-scheme with the combination of h3id and sensor ID as primary key,
with each row filled with the combination of h3id and sensor ID, and the amount

171



Chapter 5: Data Transfer

1 import h3
2
3 def construct_h3_table(db, tablename_in , tablename_out ,

cellsize):
4 with db:
5 db.execute("CREATE TABLE " + tablename_out + "(h3id

TEXT , sensor_id INTEGER , amount INTEGER , primary key
(h3id , sensor_id));")

6 counter = 0
7 db.execute("SELECT id, sensor_set , lat , long FROM " +

tablename_in)
8 data = db.fetchall ()
9 h3dict = {}

10 for row in data:
11 counter += 1
12 sensor_set = row[1]
13 lat = row[2]
14 lng = row[3]
15 h3id = h3.latlng_to_cell(lat , lng , cellsize)
16 for sensor_id in sensor_set:
17 tmpid = h3id + "," + str(sensor_id)
18 try:
19 h3dict[tmpid] = h3dict[tmpid ]+1
20 except(KeyError):
21 h3dict[tmpid] = 1
22 if (counter % 100000) == 0:
23 print("managed", counter , "entries")
24 for e in h3dict:
25 h3id , sensor_id = e.split(",")
26 amount = h3dict[e]
27 db.execute("INSERT INTO " + tablename_out + " (h3id ,

sensor_id , amount) values (’" + h3id + "’, ’" +
sensor_id + "’, " + str(amount) + ")")

28 print("transferred all entries to", tablename_out)

Listing 5.2: Using the previously constructed database, a new table is created
containing the h3id, the sensor ID and the amount of times a message was
recorded in the specific cell by the sensor.

of times the sensor has received a signal in this cell in total, as can be seen in
Listing 5.2. The overall amounts of messages with respect to the resolution can be
seen in Table 5.2: the lower the resolution, the more area one single cell covers, and
the higher the amount of messages captured per cell is, as can also be observed
in Fig. 5.2. The higher the resolution is, the less messages were captured per cell.
This is also illustrated in Fig. 5.3. It depicts a partial map of Europe overlapped
with H3-cells in resolution 4. The colouring denotes the highest amount of messages
captured in a cell by one sensor.
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Figure 5.3: An illustration of the hexagons in resolution 4 covering Europe. The
colours illustrate the highest number of messages received by a sensor in the
cell, ranging from 1 to 155 123. Image source: [McD+23].

The processing, indexing via H3 and storage of single ADS-B messages can be
observed in Fig. 5.4: The table on the left shows an example of several messages
captured by multiple sensors of the OpenSky network. The first entry with ID 4
in this figure is the sensor with sensor ID -1408236192. The latitude and longitude
recorded in this particular message correspond to the h3id 841ec95ffffffff. The table
on the right of Fig. 5.4 shows several entries of this sensor in the amount table, the
first of which shows that this sensor recorded 26 221 messages in the cell of the h3id
mentioned above.

Another example of sample data in resolution 4 based on OpenSky network data
can be found in Fig. 5.5. In this case, the data is sorted by h3id, and it can be seen
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Figure 5.4: On the left hand side, each row shows one of the original OpenSky
messages containing a set of sensors that recorded the message and the latitude
and longitude transmitted in the message. The right hand side shows data
transferred to the amount table in resolution four: latitude and longitude were
converted to an h3-cell ID, called h3id in this scheme. The corresponding sensor
that recorded the message and the amount of times the specific sensor recorded
a message in the h3 cell are stored together.

Figure 5.5: Sample data from the amount table in resolution 4, sorted by h3id.
Image source: [McD+23].

Resolution
Number Average Sensor-location-pairs Average Number of msg. Test time (s) for

of Hexagon per data set per sensor-location-pair 200 000 entries
Hexagons Area (km²) OpenSky FlightRadar OpenSky FlightRadar OpenSky FlightRadar

2 5870 86 801.78 9963 26 133 208 721.51 535.43 0.549 0.586
3 41 150 12 393.43 32 339 65 220 64 302.93 214.54 0.602 0.678
4 288 110 1770.35 143 143 223 018 14 527.38 62.74 0.717 0.806
5 2 016 830 252.90 776 226 758 857 2678.98 18.44 1.350 1.322
6 14 117 870 36.13 4 442 948 1 948 721 468.04 7.18 5.138 2.483
7 98 825 150 5.16 25 086 048 3 741 523 82.89 3.74 29.049 4.438

Table 5.2: Number and size of hexagons for resolutions 2 to 7 in the H3 geospacial
index and the respective amounts of sensor-location pairs, average number of
messages per sensor-location-pair and the test time the LoVe scheme required
to test 200 000 entries. Adapted from [McD+23].
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that several different sensors recorded messages in the same cell, but received very
diverging numbers of messages: in the case of the second h3id, which appears three
times in the data set, the sensor 1408236197 in the second row captured only 38 mes-
sages in this cell, while the fourth row shows the sensor -1408233591 captured 15.831
messages in the same cell. This can likely be accredited to the sensors being located
in different areas, and therefore having only very limited overlapping reception.

5.3.3 Verification

The approach LoVe takes to verify the origin of an incoming message consists of
these steps:

1. Transform incoming latitudinal and longitudinal coordinates to an h3id.

2. Verify whether the sensor-location-pair exists in the amount-table.

3. If not, check whether the sensor exists at all in the data set.

If the second check fails and the received coordinates are spoofed and not within the
usual range of coordinates, the message is considered illegitimate.

To test the approach, a labelled test set for both the OpenSky and the FlightRadar
data set were required. The OpenSky network consists of a crowdsourced network
of sensors, and access to the historical database can be acquired by anyone doing
research on the data. Acquiring a test set was therefore easy, since data from another
day, in this case July 24th 2021, could be downloaded and used. From this, 100 000
random entries were retrieved and labelled true. To generate false test data, the
following approach was used: For every sensor, all maximum and minimum lati-
tudes and longitudes ever received were collected. Then, a random float, uniformly
distributed between 0.1 and 10, was added or subtracted from or to the respective
maximum or minimum latitude or longitude, depending on a random boolean. This
simple fuzzing approach ensures that only coordinates outside the expected range
can be found in the data labelled false.

FlightRadar on the other hand is a commercial website that offers live airtraffic
monitoring. While the trial data of one day was offered up for free, a sample of a
second day would have cost 1500€. So instead, 100 000 random entries were extracted,
added to a test set and labelled true, and deleted from the original data set. The false
data was created using the same approach as for the OpenSky data.

Using these test data sets, verification tests were performed for H3 resolutions 2 to
7. The results demonstrate that the LoVe approach performs reliable classification,
which will be elaborated on in the following.
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Figure 5.6: Heat map comparing the test runs with labelled test data sets of both
the OpenSky data (left) and FlightRadar data (right), using the LoVe approach
and H3 resolution 4. Image source: [McD+23].

5.3.4 Verification Evaluation

As described previously, the LoVe approach was tested using labelled data. The false
positive rates for both FlightRadar and OpenSky tests lie between 0 and 0.001 06,
while the false negative rates are between 0.000 65 and 0.003 34, as is also depicted in
Fig. 5.6. The tests yield the best results at resolution 4, since both higher and lower
resolutions result in higher false positive and false negative rates.

The time required for testing 200 000 entries depends on the resolution and spans
between 0.586 and 4.438 seconds in case of the FlightRadar data set, and between
0.549 and 29.049 seconds in case of the OpenSky data set. Exact results can be
gathered from Table 5.2. From the table, it also becomes apparent that the larger the
table size, the higher the execution time; the surprisingly high execution time that
the OpenSky data set requires in resolution 7 can be explained by the large number
of sensor-location-pairs in this resolution, which amounts to 25 million. The relative
execution time and the respective accuracy are depicted in Figure 5.7. This figure
illustrates that the relative execution time rises steeply the higher the resolution,
while the accuracy diverges towards 1 for resolutions 3 and 4, and is lower for the
resolutions below and above. These results confirm that resolution 4 yields the best
accuracy while requiring comparatively little time. When comparing the OpenSky
and FlightRadar data sets, it also becomes apparent that the solution scales very well:
A ten times higher number of sensors only marginally increases the computation
time, as the focus of the evaluation does not rely on message content, but instead on
sensor-location-pairs.
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Figure 5.7: The accuracy and relative time of the tests conducted with both the
FlightRadar (abbreviated FR and drawn in red) and OpenSky (abbreviated OS
and drawn in blue) data sets with respect to the resolutions 2 to 7 [McD+23].

5.3.5 Comparison to ML-Baseline

In order to establish a speed comparison between the LoVe implementation and a
machine learning approach we chose the k-Nearest-Neighbour (kNN) classification.
This classifier is well known, often and easily used and has been chosen as a basis
for location verification algorithms for ADS-B messages before [SLM15a]. As in the
implementation of the LoVe algorithm, we use batch learning mode, i.e. an entire set
of of training examples used offline. This training set contains one million vectors
of previously labelled entries. The labels used for the output y are {0, 1}, where 0
denotes an invalid location recorded by a sensor, whereas 1 is a coordinate within
the legitimate coordinate range of a sensor. The input vector X consists of sensor ID,
latitude and longitude. In order to have a good selection of neighbours, eight test
runs were made with the following values for k = 5, 15, 50, 75, 100, 125. The model
was created by using a data set containing 200 000 vectors that were known to be
valid sensor readings. The false negative rate varied from 4.29 %, with 8581 sensors
and k = 5 neighbours, down to 3.2 %, with 6400 sensors and k = 100 neighbours.
Due to the nature of the k-Nearest-Neighbours, slow runs were to be expected.
Times required for each execution varied from approximately 120 seconds up to 137
seconds which is more than 50 to 100 times slower than our implementation on
such a small data set, as can be seen in Figure 5.8.

The figure shows the times required per run with each different amount of neigh-
bours. As no change occurs in the LoVe implementation, a line is visible at around
two seconds. The optimal value for k, reaching the highest accuracy while simulta-
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Figure 5.8: Comparison of the time needed for KNN in comparison to LoVe.

neously requiring an acceptably low execution time would have been either k = 100

or k = 125. For clarity all executions are displayed in the figure.

To compare LoVe to another ML approach, the well known and often used ML-
classifier Support Vector Machine (SVM) was additionally chosen. An entire set
comprising training examples was used offline in batch learning mode. While the
same training data set was used as for LoVe, the discerning features sensor ID, lati-
tude and longitude were scaled from 0 to 1. The SVM was additionally parametrised
with the values obtained via a hyperparameter search, with gamma=4641 and c=10.
As the training time of an SVM grows quadratically with respect to the number
of training samples, training it required approximately 48 hours. After training
the classifier, it was tested against a subset of the FlightRadar data set, comprising
200 000 data records. 832 of the records were misclassified as false negatives. In
comparison to LoVe, this is an increase of the false negative rate of 0.004 91. Both the
false positive rate, as well as the true negative rate remain 0.0, respective 1.0.

Running the tests of 200 000 samples required 91.3 minutes, which is an increase by
more than a factor of 6000 in comparison to LoVe.

5.3.6 Attack Detection and Comparison to Other Solutions

LoVe can detect three kinds of attacks: an ADS-B message injection attack with
spoofed coordinates, a GNSS-spoofing attack and an attack on the sensor network.
Injecting ADS-B messages into a system with distributed sensors is, on the one
hand, trivial, since these message can be transmitted from any location, and the
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lack of authentication means that any message is expected to be trustworthy. A
ghost plane injected into the system, transmitting coordinates that lie within the
transmission range of the attacker’s position, will not be detected by the system,
since the coordinates would lie within the legitimate range the surrounding sensors
normally receive. As soon as the attacker attempts to “move” the ghost plane, the
coordinates transmitted by the attacker and those within the legitimate range of the
sensor will not overlap anymore, causing the ADS-B messages to be flagged. And as
an attacker is unable to move at the speed of an aircraft while staying on ground,
and dynamically switching between a large numbers of transmitters on the ground
to ensure that the sender position matches that of the transmitted coordinates is
out of scope for computationally and financially bounded attackers, LoVe is able to
identify ghost plane transmissions.

A GPS spoofing attack on the other hand is not a direct attack on the ADS-B system,
but rather an indirect attack, since spoofed GNSS coordinates cause the ADS-B
system to receive and transmit the spoofed coordinates as well: As explained in
Section 2.4.3, it is possible to inject spoofed GNSS coordinates into civilian GNSS sys-
tems using an SDR, which would in turn cause the mode S transponder to transmit
the spoofed coordinates via ADS-B messages. LoVe can detect spoofed coordinates
since a sensor receiving an ADS-B message ranging outside it’s normal receiving
window would flag the messages as improbable due to previously unobserved
coordinates.

The last attack that LoVe can detect is an attack on the sensor network itself. If a
sensor-location-pair could not be detected in the database, this could either mean
that a sensor is receiving data containing coordinates outside its range, or that a
previously unknown sensor is inserting messages into the system. In the latter case,
the sensor could be a legitimate and newly added sensor, and while it is possible to
manually add it to the database, it is considered future work in both this thesis and
the publication to develop a secure way of adding new sensors. It could, on the other
hand, also be an illegitimate message inserted by a malicious party and intended to
inject spoofed ADS-B messages into the system without actually transmitting ADS-B
messages. While an injection of messages into the system using an unknown sensor
ID would be flagged immediately due to the third step of the verification process, an
attack using an existing sensor ID would only be detected if the inserted coordinates
were outside the legitimate sensor range.

With the limitation of the coordinates of the injected messages having to be outside
the legitimate range of the sensors or the sensors having to be unknown to the system,
LoVe is able to detect message injection and modification attacks, GPS attacks and
attacks on sensors. Since it does not modify the ADS-B protocol, it can not prevent
eavesdropping or jamming. Table 5.3 shows a comparison of LoVe to the other attacks
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Cryptographic Signal Fingerprinting Origin
Protection & Protection Verification

[WHE14] [CF12] [RK17] [LGF17] [PSC09] [SLM15a] [Jan+21] LoVe

Eavesdropping ✓ ✓ - - ✓ - - -
Message Injection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓*
Message Modification ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓*
Jamming - - - - ✓ - - -
GPS Spoofing - - - - - ✓ ✓ ✓*
Attacks on Sensors - - - - - - - ✓

*: As soon as the transmitted coordinates are outside the normally received coordinate range

Table 5.3: Comparison of the attacks that previously suggested approaches can de-
fend against, including LoVe and various publications included in Section 5.2.

introduced in Section 5.2: Using cryptographic protections as suggested by Wesson
et al. [WHE14] and Costin et al. [CF12], it is possible to prevent eavesdropping and
to detect injected or modified messages, but jamming, GPS spoofing or attacks on
the sensors are impossible and out of scope for cryptographic solutions, as these just
strive to protect the ADS-B signal itself.

The signal fingerprinting solutions proposed by Riahi Manesh et al. [RK17] and
Leonardi et al. [LGF17] attempt to detect modifications by calculating device signa-
tures on the signal itself, the latter combining it with classification using a neural
network. Since this is, again, applied directly to the signal emitted by the aircraft,
these solutions can only detect message injection and modification attacks. Pöpper
et al. [PSC09] on the other hand provide the only solution that allows jamming
resistance: They suggest to use an Uncoordinated Direct Sequence Spread Spectrum
(UDSSS) approach, in which a signed message is spread according to publicly known
spreading sequences. The signature ensures authentication, and thereby thwarts
attempts at message injection or modification, while the use of uncoordinated signal
spreading impedes eavesdropping and jamming. GPS spoofing can not be detected
using this approach since the legitimacy of the GNSS signal is assumed, and attacks
on sensors are out of scope of this solution as well.

In the field of publications attempting to assess signal origin legitimacy, in which
LoVe can also be found, Strohmeier et al. [SLM15a] perform location evaluation and
location verification using MLAT. This way, it is possible to verify the position of
the aircraft in relation to the information transmitted in the ADS-B message. They
can detect message injection and modification attacks and GPS spoofing, since their
approach multilaterates the location of the aircraft. Both jamming and attacks on
sensors are out of scope of this solution. Jansen et al. [Jan+21] use an approach
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that is most like LoVe, since it also relies on the use of crowdsourced sensors. They
construct vectorsets to analyse ADS-B transmission patterns. A vector consist of
all the sensors that received a particular message, which, just like LoVe, forms a
basis of legitimately received messages. They then apply ML techniques to evaluate
for a newly received message whether the sensor reception pattern matches that
of the previously recorded vectors. While the approach can identify both message
modification and injection attacks, as well as GPS spoofing, the implementation of
sensor reputation, which could detect attacks on sensors, is declared future work.
As the modification of the ADS-B protocol is out of scope of origin verification
approaches, neither technique can protect ADS-B messages from eavesdroppers.

5.4 Conclusion

The stage of data transfer requires for transmissions to be reliable and available, but
also for the message content to be protected from eavesdropping and disclosure,
as well as tampering with. Broadcast protocols on the other hand have their own
requirements: While asymmetric cryptography works well in protocols with a large
amount of senders and receivers, as it facilitates easier key exchange than symmetric
schemes, the amount of messages that have to be transmitted is increased signifi-
cantly in comparison to plaintext transmission. In the ADS-B protocol, instead of
constructing difficult schemes to facilitate key exchange or message authentication,
security features were just omitted completely.

ADS-B is an important communication protocol that can help increase air surveil-
lance in unpopulated areas. It’s far reach makes it an excellent choice to use in
addition to conventional air traffic monitoring. Simultaneously, as it contains no
security or privacy features, the whole system is attackable via various trajectories.
To mitigate this properly, a complete redesign of the system to include cryptographic
protection mechanisms would be required. Since a redesign is costly and unlikely,
other protection mechanisms using the signal itself have been proposed in vari-
ous academic publications: These range from signal fingerprinting via radiometric
features, clock skew or software-based transmission patterns, to origin verification
using MLAT, ML-based approaches or data fusion. An additional approach is Loca-
tion Verification (LoVe) via distributed public sensors, as introduced in this chapter:
LoVe is a mask-based approach that maps previously received signals using the
H3 hexagonal indexing system and evaluates newly received signals against them
to determine their plausibility. It consists of one database table per resolution. The
evaluation shows that resolution 4 yields the best consensus between comparison
speed and low false negative rate.
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LoVe is a lightweight scheme as it omits operating on message content. Because
of this, even a large volume of messages can be represented without significant
computational overhead: only the total count per sensor-location-pair is recorded,
and a high count increases sensor trust. The scheme is also flexible, allowing for new
sensors to be easily added to the database. Adding new sensors does not require
costly retraining of models.

Various approaches using multilateration or machine learning for location verifica-
tion require a large sensor density; MLAT typically requires for at least four sensors
to receive the same signal. Some publications attempt to perform MLAT with a
reduced amount of sensors, while still achieving good results [DAP20; SLM15a].
Other publications [Jan+21] perform machine learning on a vector set constructed
using preferably large set of sensors to receive every single message. These solutions
all have in common that they require a large amount of sensors to receive the signals.
LoVe works well with both a smaller amount of sensors as well as a high sensor
density: In the case of FlightRadar with 11 594 sensors, only about 0.18 % of the
messages were received by more than one sensor. LoVe is just as applicable in case
of high sensor density: The OpenSky data set was recorded by only 971 sensors,
with each message received on average by 12.95 sensors. In fact, a large number of
sensors does not impact the computational cost of LoVe significantly. The scheme
is therefore easily usable on the sensor network as it is right now, and even well
applicable in regions with low sensor density. Additionally, since LoVe does not
require to know the position of the sensor, but only its reception area, it can maintain
location privacy of the sensor.

All these features make LoVe a flexible, lightweight tool capable of identifying
messages from illegitimate sensors and recognising location spoofing, message
modification, and message injection attacks aimed at inserting illegitimate aircraft lo-
cations into the system. This makes it an easy-to-integrate basis for other established
schemes.
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Conclusion and Future Work

The ability of mobile devices to provide wireless communication offers both benefits
and risks: On one hand, ubiquitous connectivity supports information exchange
for casual use and enhances security-critical processes. On the other hand, a wire-
less interface introduces a broader range of potential attacks compared to wired
connections, exposing a larger attack surface. The previous chapters demonstrated
that each phase of communication presents unique challenges, pitfalls and potential
vulnerabilities.

In the phase of device discovery in Wi-Fi networks, mobile devices emit probe
requests to discover nearby known networks. A particularly problematic part of this
is that probe requests can be used for device tracking, thus creating a privacy risk
for their users. The chapter first provided an overview over the inherent privacy
features of mobile operating systems. Then, device discovery was observed from
both the attacker’s as well as the defender’s perspective: A field study revealed a
wealth of private information accidentally contained within the SSID field of a large
number of probe requests, which can be used to infer information on their users, and
for tracking purposes. An evaluation of previously proposed tracking techniques
additionally showcased the need to improve device discovery. The mitigations that
were proposed in reaction to both the field study and previous attacks are manifold:
One suggestion previously proposed by other publications is to cease the use of
active discovery and instead improve passive discovery to be equivalent in terms
of speed. Even though it would be the most effective technique to prevent device
tracking via probe requests, active discovery (i) remains the favoured technique for
device discovery chosen by manufacturers, and (ii) is required when attempting

183



Chapter 6: Conclusion and Future Work

to connect to a hidden network. To accommodate the latter, a privacy-friendly and
tracking resistant means of hidden network discovery was proposed: A hash-based
scheme for covert SSID transmission. With respect to the former, three additional
approaches could help improve device privacy and reduce tracking: Both the use of
generic probe requests and that of a generic MAC address would increase the sizes of
the anonymity sets individual devices are a part of, and thereby significantly reduce
their aptitude for tracking. The third proposal suggests an enhanced user interface
featuring advanced Privacy-by-Design techniques by default, along with increased
user control to provide users with greater oversight of their device’s behaviour.

Challenges and pitfalls inherent to the second communication phase, in which
connection establishment occurs, are illustrated using the example of the use of
VPNs in public Wi-Fi networks. Here, deprecated protection mechanisms such as
WEP and WPA contain severe inherent vulnerabilities, and open networks feature no
means of encryption. In both cases, attackers can monitor the traffic and potentially
gain insight into sensitive information. Traffic protected via WPA2 can be decrypted
in case the attacker has knowledge over the pre-shared key and can capture the
4-way handshake exchanged during connection establishment, or via the KRACK
attack in case they have no knowledge over the pre-shared key. OWE is a protocol for
unauthenticated but encrypted communication, which is the new de-facto standard
for public Wi-Fi hotspots in WPA3. Here, the use of a Diffie-Hellman key exchange
makes passive attacks infeasible, but an active attack via a fake access point bearing
the same SSID is still possible. And an access point set up using WPA3 and a
publicly shared password is as of 2024 infeasible to attack via passive attacks, but the
protection mechanisms can be circumvented via a downgrade attack or fake access
point attacks. This shows that using public Wi-Fi hotspots carries the risk of packet
sniffing and decryption. While older protocols are vulnerable to passive attacks,
even current protocols can be attacked, though primarily via active attacks.

To reduce the risk of information leaks in public Wi-Fi networks, a popular approach
is to employ a VPN. It encrypts the traffic prior to transmission and tunnels all
data via the VPN servers. In theory, both the content as well as the metadata of
traffic generated on a client device employing a VPN is therefore concealed from
attackers surveilling the network the device is connected to. In practice, information
leakage can compromise the data confidentiality, and implementation deficits can
lead to captive deadlocks within public networks employing a captive portal. This
dissertation therefore proposes a mitigation strategy for the implementation of
VPN bootstrapping: A selective VPN bypass to prevent captive deadlocks. The
implementation of this strategy would ensure both usability of VPNs in public
Wi-Fi networks, as well as leakage-free VPN bootstrapping, thereby ensuring all
requirements for safe use and functionality of VPNs in public Wi-Fi networks.
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In the stage of data transfer, a particular focus of this dissertation lay in the transmis-
sion of ADS-B signals. They are used to continuously broadcast aircraft information,
allowing both surveillance towers as well as other aircraft to record and map their rel-
ative position. This protocol was devised for transmission via a Mode S transponder,
which is already present in many aircraft. Only slight modification were required
to enable it to additionally transmit ADS-B messages. The protocol was therefore
required to fit the ADS-B messages into 112-bit structures, and as the original Mode
S messages contain no means of encrypting or signing the content, neither does
ADS-B. Research conducted in the field of ADS-B security proposed several protocol
changes to include security measures into the 112-bit packet structure. However,
protocol changes are unlikely, leading to alternative approaches for signal authen-
ticity verification. By conducting signal verification, either through radiometric
fingerprinting or signal-origin verification, security assurances for ADS-B messages
can be achieved without altering the protocol. This thesis introduces an additional
technique to verify signal integrity: LoVe, a scheme for location verification using
distributed public sensors. It can recognise location spoofing, message modification
and message injection attacks and is able to identify messages transmitted by ille-
gitimate sensors. Additionally, it is usable in existing sensor networks, and even
applicable in areas with low sensor density. In summary, LoVe demonstrates that
retrofitting security measures into an unmodifiable protocol is feasible and effective,
enhancing the system’s overall security.

6.1 Revisiting the Research Questions

Using three protocols as examples, this dissertation illustrated various pitfalls and
challenges present in the separate communication phases. They serve to answer the
research questions posed in Section 1.2, addressing the following topics:

• Privacy friendly device discovery,

• Challenges encountered and overcome during connection establishment,

• Retrofitting security measures to protect the phase of data transfer and

• Knowledge transfer for increased security among different protocol versions.

In the following, the research questions first raised in the beginning of the disserta-
tion are revisited, and their answers discussed in detail.
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6.1.1 Research Question 1: Privacy-Friendly Device Discovery

How can device discovery be performed in a privacy-friendly manner? What modifications
have to be employed in current protocols to improve the state of the art?

In their current state, the widespread use of probe requests facilitates tracking of the
mobile devices that emit them. Additionally, many devices send probe requests that
contain sensitive information, which can range from personal details, like names,
previously visited locations such as vacation homes or hospitals, to passwords. As
such, they are unfit for privacy-friendly device discovery. Chapter 3 of this thesis
proposed four means of improving the state of the art:

The most privacy-friendly approach to device discovery is passive discovery. Here,
no probe requests are transmitted; instead, mobile devices monitor beacons from
nearby routers. This approach has previously been proposed [Fra+06; WK18; Goo+19]
and is reiterated and summarised here within the context of this thesis to empha-
sise its significance as a privacy-preserving technology. On the other hand, passive
discovery can not be used to discover hidden networks. This dissertation therefore
proposes a privacy-friendly alternative to transmitting the plaintext SSIDs of hidden
networks during active discovery: A hash-based SSID transmission scheme, in
which the SSID is hashed in conjunction with a salt consisting of the MAC address
and the sequence number of the packet. This way, an attacker observing the hashed
SSID will have no means of linking it to another hashed SSID, unless they gain
knowledge of the plaintext.

The reason manufacturers resort to using active discovery instead of passive dis-
covery is not only the increase in speed, but also the additional information gain:
Probe responses received during active discovery are also used to perform coarse
device localisation, since routers are typically stationary, and the knowledge of at
least three surrounding access points in conjunction with the signal strength can be
used to perform multilateration of a device. The question is therefore how active
discovery can be improved such that its use maintains user and device privacy as
best as possible, and significantly impedes tracking. An approach this dissertation
explores concerns the reduction of information contained within probe requests to
the point it becomes infeasible to distinguish probe request by their content. This can
be achieved by the use of generic probe requests, which are content reduced such
that the information element contains no more information than strictly required
to receive probe responses. This approach was explored with respect to its impact
on security and privacy and with respect to maintaining functionality. The results
indicate that it is both feasible, with no adverse impact on functionality, and an effec-
tive way to enhance privacy and security, maximising anonymity sets and making
devices less susceptible to known attacks.
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The last approach to enhance privacy in active discovery is removing potentially
identifiable information from the MAC address: Due to the lack of standardisation
of MAC address randomisation, many manufacturers’ implementations do not
sufficiently prevent device tracking or information inference. An alternative to MAC
address randomisation was explored, tested, and found to provide comparable
connection establishment times but a greater privacy benefit than inadequately
implemented, established randomisation schemes.

In summary, there are three methods for conducting privacy-friendly device dis-
covery:

• Utilising passive discovery.

• Implementing active discovery with reduced and generic content during undi-
rected probing.

• When using hidden networks, a privacy-friendly way of performing device
discovery is to use the hash-based SSID transmission scheme; hashed SSID
transmissions are not required for undirected probe requests.

The modifications required to enable the privacy enhancements on the AP and the
probing device vary: For the hash-based scheme, both the protocols implemented
on the mobile device and the routers have to be modified to support the compar-
ison of hashed SSIDs. For active discovery with reduced and generic content, the
modifications only have to be implemented on the mobile devices, and their amend-
ment does not impact the functionality of active discovery. Regarding the use of a
generic MAC address, protocol modifications have to be made on mobile devices to
utilise one generic address instead of MAC address randomisation. The proposal
was tested and shown to have no negative impact on either the probing behaviour
or the responding behaviour. In conclusion, all suggested mitigations were analysed
and found to be applicable for improving the current State-of-the-Art, providing
privacy-friendly device discovery.

6.1.2 Research Question 2: Challenges of Connection
Establishment

What pitfalls can endanger the phase of connection establishment? How can they be overcome
while preserving the functionality?

To reduce mobile data use, users tend to utilise public Wi-Fi networks with their Wi-
Fi capable mobile devices. Depending on the technology used to protect the network,
it is possible for attackers to either directly monitor unencrypted traffic or decrypt
the traffic with knowledge of the pre-shared key. While WPA3 support is mandatory
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for all devices built after July 2020 that request Wi-Fi certification from the Wi-Fi
Alliance [Ebb20], its predecessor protection schemes are still widely used, and the
flaws they exhibit during connection establishment have a continuous impact. WPA2,
for example, can be passively attacked, particularly if monitored during the 4-way
handshake exchanged during connection establishment. An attacker capturing this
handshake can decrypt the subsequent encrypted communication. Passive attacks
on WPA3 and OWE are infeasible as of today, but both protocols can be attacked
using active attacks by setting up fake APs. Hence, the use of public Wi-Fi networks
remains dangerous, regardless of the technology employed, and the connection
establishment phase is particularly vulnerable to encryption key disclosure.

In order to nevertheless utilise public Wi-Fi networks, users can protect both their
metadata as well as the content of their communication by using a VPN. Theoreti-
cally, all traffic is thereby encrypted and transmitted via a VPN tunnel. In practice,
however, traffic leaks occurring particularly surrounding the phase of connection
establishment reduce the trust placed into VPNs, and a significant number of VPNs
could be shown to be unusable in public Wi-Fi networks due to their lacking support
for captive portal detection. The dangers arising during the use of a public Wi-Fi
network are therefore manifold: Both compromised encryption keys as well as data
leakage during VPN bootstrapping and captive deadlocks endanger the safe use
of public Wi-Fi networks in conjunction with a VPN. Since the dangers inherent to
the use of public Wi-Fi networks can not be mitigated, VPN bootstrapping has to be
improved, as suggested in Chapter 4: A selective VPN bypass during bootstrapping
allows for captive portal detection and remediation, and the complete blockage of
all other traffic until successful VPN establishment ensures that no leakage occurs.
The selective VPN bypass is therefore an adequate method for securing connection
establishment while preserving privacy and functionality, allowing for secure
subsequent data transfer even in unsecured public Wi-Fi networks.

6.1.3 Research Question 3: Retrofitted Security

How can security measures be retrofitted into protocols, and secondly, if protocol changes
are impossible, what other means of securing the communication and its authenticity can be
made? What means can be used to protect unencrypted and unauthenticated data transfer
from modifications? How can modifications be detected in a protocol lacking integrity
protection?

The large number of ongoing IT security incidents demonstrates that security and
privacy features are often lacking or absent in protocol design. However, many
protocols can be modified to support security and privacy features and thereby
improve the overall system security. In the case of active discovery, for example, the
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use of generic probe requests would not, in fact, require a protocol change, but only
a reduction of content to unify and generalise the structure and content of probe
requests. Another example of retrofitted security measures could be observed in 2014
and 2015, where both Android and Apple implemented MAC address randomisation
to protect users from tracking via their hardware MAC address. Both measures, as
well as the use of a generic MAC address in probe requests, can be implemented
without protocol modifications, since they fit into the previously used protocol,
and the changes do not impact the general system functionality while having a
positive impact on security.

In general, retrofitting security measures is particularly successful and likely to occur
if the modifications can be integrated without changing the protocol. Therefore,
the adaption of the hash-based scheme for covert SSID transmission is unlikely
to be implemented: Even though the scheme does not require a modification of
probe request packets and the hashed SSID fits into the current SSID slot, both
mobile devices as well as routers would have to be modified to adapt hashing and
the comparison of hashes. While the scheme is an adequate and good means of
improving the current state, its implementation is unlikely. The best way to increase
privacy in the context of hidden networks is to avoid using them, as this eliminates
the need to transmit SSIDs.

The insecurities surrounding the use of public Wi-Fi networks can not easily be
amended with retrofitted security mechanisms: While the vulnerabilities included
in former protocol versions were mitigated with each successive protection scheme,
the protocols are in such widespread use and adhere to such strict standards, that all
modifications, even minor ones, are difficult to employ. Therefore, vulnerabilities
like the possibility to infer the PTK from the 4-way handshake in WPA2 will still be
in place for as long as WPA2 is in use. When using a public Wi-Fi network, users
must rely on their own security mechanisms, such as a VPN. Here, the absence of
strict standardisation and lack of certification result in an environment that can
adapt to vulnerabilities much more easily, but is also more prone to individual
implementation errors. This is demonstrated in the lack of support for captive portal
detection in the native VPN APIs, and much more so since traffic leakage outside
the tunnel is very widespread, as could be shown in Section 4.6.5. To mitigate both
the leakage as well as the inability of many VPN clients to support captive portal
detection, a selective VPN bypass was suggested. Since this significantly improves
both the security properties and the usability of VPN clients in public Wi-Fi networks,
both are likely to be implemented in commercial as well as native VPN clients.

The ADS-B protocol is an example for a broadcast protocol with no inherent security
features, but with the same requirements for protocol stability as Wi-Fi networks. In
fact, no protocol updates have been made since the original release, and protocol

189



Chapter 6: Conclusion and Future Work

changes are unlikely to happen: The installation of ADS-B transmitters is mandatory
for certain aircraft (cf. Section 2.4), and installing an alternative transmitter is not de-
sirable from the perspective of manufacturers, since it has no additional commercial
value. Measures to increase system security of the ADS-B protocol should not entail
either modifications of the installations nor the protocol itself. This eliminates
the introduction of cryptographic protection mechanisms, since they would entail
protocol modifications. The protection mechanisms still applicable in this scenario
therefore concern signal fingerprinting and verification approaches. This dissertation
introduces an approach for location verification using distributed public sensors. It
utilises a mask of legitimate signals, and evaluates newly received messages as to
their alignment with the mask. This way, despite the absence of integrity protection
in the ADS-B protocol, it is possible to detect illegitimate sensor transmissions as
well as location spoofing, message modification and message injection attacks. The
approach is particularly feasible for use, since it can be utilised on existing public
sensor infrastructure, does not require a high sensor density and has a very good
detection rate of illegitimate signals. It is therefore an ideal means of retrofitting
security mechanisms into the ADS-B protocol, and asserting signal legitimacy in the
face of a protocol void of both confidentiality and authenticity guarantees.

In summary, it is possible to retrofit security mechanisms into the schemes explored
in this dissertation. The modifications which are most likely to be implemented have
a large impact on security or privacy, while simultaneously having no negative
impact on the system’s functionality. And even in the case of largely unmodifi-
able protocols like ADS-B, it is possible to retroactively introduce certain security
measures; however, others, such as confidentiality, cannot be retrofitted without
modifying the protocol. The more standardised a protocol is, the more challenging
it becomes to introduce mitigations for vulnerabilities and add additional security
measures. Simultaneously, less standardised and uncertified protocols, such as the
tested VPNs, are more error-prone but are also more likely to have vulnerabilities
addressed in the short term.

6.1.4 Research Question 4: Knowledge Transfer

Are the “lessons learned” from older protocols transferred to newer versions of the protocol,
and which elements are particularly critical?

This question of how the knowledge gained from existing attacks and through
various protocol iterations has contributed to the improvement of protection schemes
can only be addressed in relation to the longevity of the protocol in question, as well
as its requirements for standardisation and certification.
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In the context of probe requests, research exposing the privacy implications in former
versions quickly provoked changes, with the previously used UAA being replaced by
a randomised MAC address, and the SSID being omitted if possible. These changes
neither concern the packet structure, nor do they impact functionality, and can
therefore be freely made by manufacturers. Changes to the packet structure however,
would have been unacceptable in the stable ecosystem of the Wi-Fi standard. This can
also be seen in the development of Wi-Fi protection schemes: Mistakes made in WEP
and WPA were mitigated in subsequent versions, but the longevity of the standard
and the requirement to provide downgrading functionality to assert the functionality
of older devices ensures that many previous vulnerabilities can still be exploited
today. An example for this is the possibility to extract the PTK by monitoring the 4-
way-handshake: This attack is infeasible in WPA3, but in the connection with routers
providing WPA3 in transition mode, an attacker can perform a downgrade attack, and
thereby force users to connect via WPA2 instead. In answer to the research question:
Yes, the “lessons learned” are transferred from older protocols, but to maintain
long-term functionality, the continuous provisioning of the previous, vulnerable
protocols typically remains an attack vector.

With respect to the ADS-B protocol, this question can be answered very quickly:
No. Despite the lack of security mechanisms in the ADS-B protocol, changes are
unlikely to occur, since modifications of this partially mandatory technology might
have to entail the installation of new equipment. While it was initially conceived
as an alternative to PSR, its lack of security guarantees makes it unfit for this task,
unless used in conjunction with other techniques to establish signal or positional
verification. Therefore, a protocol superseding ADS-B will likely utilise the positive
aspects, like the frequency spectrum allowing long-range communication and loca-
tion propagation even in remote areas, while simultaneously featuring a different
packet structure, which would include enough space to preserve integrity and ensure
authenticity, and potentially even provide confidentiality.

In summary, the lack of confidentiality and integrity protection for ADS-B messages
is not seen as critical to system functionality, and potentially even as a feature of
the system. The main attention this lack of security receives is of academic nature.
But since it simultaneously allows for various attacks, it should be taken seriously
and not discarded lightly, particularly in the design of subsequent protocols for air
surveillance. However, the stability of the protocol and the long-term use of trans-
mitting devices complicate protocol modifications. With respect to probe requests on
the other hand, the devices in question are exchanged much more frequently, with
some users replacing their mobile devices every two years or even more frequently.
Because of this, modifications on the probe request content have a large impact
within a comparably short time span. Simultaneously, the privacy implications of
the transmission of probe requests were critical and therefore required direct at-
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tention. Taking just these two examples into account, it could be conjectured that
direct privacy implications for individual users cause rapid reactions, while security
implications that can be controlled by e.g. by using additional technology, in the case
of ADS-B the PSR system, do not provoke mitigations.

6.2 Outlook on Future Work

This section provides an outlook on possible future work that could extend the
research presented in this dissertation, and could improve system security in all
covered protocols.

6.2.1 Real-World Evaluations and Regulatory Possibilities

Future research into the area of probe requests could implement the hash-based
scheme for covert SSID transmission and evaluate its feasibility in a real-world
scenario. This should also be done for generic probe requests. Exploring the feasi-
bility of regulatory measures to mandate content reduction schemes from a legal
perspective could enhance device privacy in the whole field of active discovery.

6.2.2 Improvements over Time

Concerning the chapter on VPN usage, it would be interesting to explore the modifi-
cations undertaken in response to the disclosures of data leakage and the inability
to perform captive portal detection, both in native clients as well as commercial
clients.

6.2.3 Protocol Re-Design

With respect to ADS-B messages, instead of improving the current system, future
work should design a whole new protocol for location transmission for air surveil-
lance. This system should include means of asserting message integrity and authen-
ticity. Since these are of highest priority, risk assessment would have to evaluate the
additional need to provide confidentiality. In this context, the question of key distri-
bution and key access is particularly interesting, seeing that a multitude of parties
would require access to the propagated messages, and that the protocol would have
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to include means of replacing compromised encryption keys and propagating them,
while using preferably small data frames.
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