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Abstract

This thesis focuses on reconstruction of dynamic magnetic particle images. Magnetic
particle imaging (MPI) is a tracer based imaging method with applications, e.g., in car-
diovascular imaging, stroke detection and instrument tracking during interventions. It is
characterized by a high spatial and temporal resolution, more particularly 3D measure-
ments with a spatial resolution of 1mm or less can be acquired with a temporal resolution
of 46 frames per second. Thus, image reconstruction poses a highly dynamic problem.
Mathematically, the MPI reconstruction problem is severely ill-posed already in a static
setting and yields even more challenges for dynamic problems.
In this work, we propose the usage of a joint image reconstruction and motion estimation
approach in order to improve reconstructed images by the additional motion informa-
tion and improve computed displacement fields by enhanced image sequences. We use a
variational problem formulation integrating a motion model that links image sequences
and motion estimates. The problem is solved via an alternating minimization scheme,
i.e., an image reconstruction subproblem and a motion estimation subproblem are solved
alternately.
This thesis comprises a theoretical and a numerical part. From the theoretical perspective,
we consider the forward operator of MPI and show a regularity property. Moreover, we
show existence of a solution to the joint problem given this regularity assumption. Our
theoretical results hold for a model incorporating the PDE describing the motion model
as a hard constraint. However, numerically we consider a model incorporating the motion
model as an additional penalty term. We observe that solutions of the unconstrained
problems converge to a solution of the constrained problem.
From the numerical perspective, we derive and implement primal-dual algorithms to solve
both the image reconstruction and the motion estimation subproblem. We perform extens-
ive tests on simulated as well as measured data showing the applicability of the proposed
approach. We observe superior performance compared to standard static methods that
are not tailored to the dynamic reconstruction problem. Furthermore, the joint approach
allows for subframe reconstruction, i.e., reconstruction of image sequences with a higher
temporal resolution than the repetition time of the MPI scanner.
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Kurzfassung

Diese Arbeit befasst sich mit der Rekonstruktion dynamischer Bildsequenzen aus der Ma-
gnetpartikelbildgebung. Die Magnetpartikelbildgebung (engl. magnetic particle imaging,
MPI) ist ein tracer-basiertes Verfahren und wird zum Beispiel für kardiovaskuläre Bildge-
bung, das Aufspüren eines Schlaganfalls und Instrumententracking während Interventio-
nen benutzt. MPI zeichnet sich durch eine hohe räumliche und zeitliche Auflösung aus.
Insbesondere können 3D Messungen mit einer räumlichen Auflösung von weniger als 1mm

mit einer zeitlichen Auflösung von 46 Bildern pro Sekunde aufgenommen werden. Damit
beschreibt die Bildrekonstruktion ein stark dynamisches Problem. Aus mathematischer
Sicht ist bereits die Rekonstruktion statischer MPI Bilder ein stark schlecht gestelltes Pro-
blem, das durch die zusätzliche Zeitabhängigkeit im dynamischen Fall eine noch größere
Herausforderung darstellt.
Hier wird ein gemeinsamer Bildrekonstruktions- und Bewegungsschätzungsansatz (engl.
joint approach) betrachtet, um so die Bildrekonstruktion mithilfe zusätzlicher Bewegungs-
informationen zu verbessern und die Qualität der berechneten Bewegungsfelder mittels
verbesserter Bildsequenzen zu erhöhen. Dazu wird eine variationelle Problemformulierung
genutzt, die ein Bewegungsmodell beinhaltet, um die Bildsequenzen und Bewegungsfelder
zu verbinden. Das Problem wird mithilfe eines alternierenden Minimierungsalgorithmus
gelöst, wobei abwechselnd das Bildrekonstruktionsproblem und das Bewegungsschätzungs-
problem gelöst werden.
Diese Arbeit besteht aus einem theoretischen und einem numerischen Anteil. Auf der theo-
retischen Seite wird der MPI Vorwärtsoperator betrachtet und eine Regularitätsbedingung
gezeigt. Damit ist es im Folgenden möglich, die Existenz einer Lösung des gemeinsamen
Bildrekonstruktions- und Bewegungsproblems unter Annahme dieser Regularitätsbedin-
gung zu zeigen. Außerdem wird bewiesen, dass Lösungen der unrestringierten Probleme,
bei denen das Bewegungsmodell als zusätzlicher Strafterm eingefügt wird gegen eine Lö-
sung des restringierten Problems konvergieren. Bei diesem ist das Bewegungsmodell als
Nebenbedingung fast überall gefordert.
Im numerischen Teil der Arbeit werden primal-duale Algorithmen entwickelt und imple-
mentiert, um beide Teilprobleme zu lösen. Es folgen ausgiebige Tests sowohl auf simu-
lierten Daten als auch auf Messdaten, um die Anwendbarkeit des betrachteten Ansatzes
zu validieren. Im Vergleich zu statischen Algorithmen bringt der vorgeschlagene Ansatz
bessere Ergebnisse hervor und erhöht sowohl die Qualität der rekonstruierten Bilder als
auch die Genauigkeit der Bewegungsfelder. Mit dem betrachteten Ansatz ist es außerdem
möglich, Subframe Rekonstruktionen zu berechnen, die sich durch eine höhere zeitliche
Auflösung als die eigentlichen MPI Messungen auszeichnen.
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1. Introduction

Nowadays, various medical imaging methods support diagnosis and treatment of illnesses
and diseases. They allow for non-invasive imaging of the interior of the body, revealing
hidden structures and pathological tissue. Having access to highly resolved multidimen-
sional images of complex organs has brought a better understanding of critical diseases
and revolutionized healthcare.
Some of the methods and applications thereof are well known to the public, as for ex-
ample imaging bone fractures via X-ray, ligament injuries via Magnetic Resonance Ima-
ging (MRI) or brain structures via Computed Tomography (CT). Among the less well
known techniques we could name for example Positron Emission Tomography (PET)
and Single Photon Emission Computed Tomography (SPECT). Whereas the first three
mentioned approaches measure a property that is directly linked to the tissue under ex-
amination (native imaging), the last two named schemes apply a tracer to the human
body and image its spatial distribution (tracer-based imaging). Tracer-based imaging is
put to use especially in functional imaging and in cancer detection. These images do not
provide any morphological insights. Here, only the tracer agent and not the tissue itself is
imaged. Thus, they are often combined with native imaging methods in order to enhance
interpretability of the resulting images.
Each technique is applied for specific tasks and they all have their pros and cons. For
example in MRI, the patient experiences tissue heating as well as long scan times, during
which he is exposed to an extremely noisy environment and might suffer from claustro-
phobia. In case of CT, there is exposure to ionizing radiation by X-rays and in case of
PET and SPECT, the patient is exposed to gamma rays. There are several characteristics
determining when and with which purpose a certain method is applied. Among these are
the spatial and temporal resolution, the sensitivity and quantifiability, the cost and the
amount of radiation applied.

In this thesis, we consider a rather new medical imaging technique called Magnetic Particle
Imaging (MPI). In 2001, it was invented by Bernhard Gleich in the Philips Research
Laboratories in Hamburg. MPI is a tomographic approach that can quantitatively map
magnetic nanoparticle distributions in-vivo. It is characterized by high sensitivity, high
spatial resolution and high imaging speed. In contrast to several clinically used schemes,
MPI does not use any ionizing radiation. It is thus not harmful to the human body even
under long-term considerations.
The research interest on MPI grew fast after the method was made public in 2005 [66].
First, the foci lay on optimizing the magnetic nanoparticles which are used as tracer mater-
ial and investigating the particles’ physics. Moreover, the scanner itself was up-scaled from
a proof-of-concept device to a preclinical scanner with improved hardware. For a detailed
historical perspective on achieved milestones, we refer to [91]. For an extensive review
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1. Introduction

on recent developments and major theoretical results, we refer to the surveys [87, 135].
MPI is tailored for applications requiring fast dynamic imaging such as, e.g., blood flow
visualization in the case of coronary artery diseases. Other future applications include
cancer detection [143], detection of stroke and other neurological pathologies like hem-
orrhage, tumors and inflammatory processes [108, 109], stem cell monitoring [137, 147],
localization of medical instruments during vascular interventions [70] or any application
where tracers are used. To date, MPI is still in the preclinical phase.

Let us now consider image reconstruction in medical imaging applications. Image recon-
struction refers to the task of recovering the full dimensionality of an object from the
raw measured signal. It thus plays an important role for obtaining interpretable image
data, which can then be handed to the physicians. In a first step, we have to find and
understand the forward model A of the considered imaging device. This model summar-
izes the physical principles behind an imaging method. Measured data u (also called our
observation) occur when this forward model is applied to some cause, e.g., human tissue
denoted by c. We have to understand and describe the generation of data u from known
forward model and cause. This task is referred to as the direct problem. Then, in a second
step, we consider the reconstruction of images, i.e., the reconstruction of the cause c from
known forward model A and data u by

Ac = u.

Recovering c poses an inverse problem. Inverse problems in imaging are often ill-posed,
meaning that either a solution does not exist, is not unique or, and this is the most
problematic case, has a solution that does not depend continuously on the data. In this
case, small changes of the data lead to huge differences of the solution. A wealth of
theoretical results and numerical methods are available for inverse problems in a static
setting and can be found in textbooks, see, e.g., [55].
Often, cause and observation show a time-dependent behavior such that dynamic inverse
problems occur naturally in medical imaging applications. Imagine for example a CT
scan of the torso, where the source of x-rays is rotated around the patient inside in order
to obtain data from different directions. Thus, the observation shows a time-dependent
behavior. Moreover, the patient inside the scanner breathes such that also the cause is
time-dependent.
The research field of dynamic inverse problems has been strongly driven by tomographic
modalities in the past. Applying static reconstruction algorithms often yields severe mo-
tion artifacts caused by the dynamic nature of the object. Including time simply as
another dimension changes the characteristics of the respective inverse problem. Thus,
we need tailored reconstruction approaches taking into account the dynamic nature of
observation and cause. However, while there is extensive generalized theory on static
inverse problems, no general regularization framework for dynamic inverse problems has
been established so far. Various different approaches are proposed, based on, e.g., tem-
poral smoothness assumptions for a fairly general setting not requiring any additional
information about the motion itself [126, 127]. Other approaches include dynamic pro-
gramming techniques [85], explicit deformation models [71] or operator inexactness [22].
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An extensive survey on variational approaches based on parametrised temporal models
can be found in [74]. In [81], a collection of works in dynamic inverse problems in imaging
and parameter identification was published providing an overview on recent developments.
Works focusing on modelling, analysis and regularization of dynamic inverse problems are
collected in the special issue [129].
Depending on the characteristic features and challenges of specific imaging devices, dif-
ferent algorithmic approaches have been proposed having in mind particularly those situ-
ations. We name a few such approaches, although the list is not intended to be exhaust-
ive. Exact analytic methods have been proposed, e.g., for compensation of respiratory
motion during CT scans [45] and for compensation of more general deformations dur-
ing CT [49, 121]. For dynamic CT, approximate inversion formulas are also obtainable
[6, 72, 82, 83]. Another option are iterative methods [23, 78, 80]. Further, machine-
learning based algorithms applied to, e.g., artifact reduction in MRI [73, 96] and joint
image reconstruction and motion estimation on PET data [100] have also been pro-
posed. Furthermore, variational approaches are also popular, they can be divided into
the class exploiting a motion model, the ones exploiting a deformable template and oth-
ers, which rely on none of those. In [104], an alternating variational approach is used
to solve a model incorporating the so-called 5D respiratory motion model in order to
reconstruct 4D lung CT image sequences. When acquiring motion parameters prior to
or within the image reconstruction scheme, motion models can be incorporated expli-
citly [34, 35, 72, 74, 105, 107, 117]. The authors of [43] propose a joint model for image
reconstruction and motion estimation applicable to spatiotemporal imaging by sequen-
tial indirect image registration. Other approaches based on deformable templates are
proposed in [42, 99].
In this thesis, we consider a variational method incorporating a motion model explicitly.
More particularly, we consider a joint image reconstruction and motion estimation ap-
proach, i.e., an image sequence and a displacement field, i.e., the motion in between the
images, are obtained simultaneously. The idea behind this scheme is that both tasks en-
dorse each other, i.e., incorporating motion estimates improves the resulting image quality,
and incorporating better images then again improves the quality of the motion estimates.
Instead of formulating one optimization problem for the image reconstruction task and
then another one for motion estimation, we formulate one single optimization problem
incorporating prior information from the imaging device as well as a motion model. The
optimization problem is then solved for both unknowns, i.e., image sequence and motion.
As we will see, the optimization problem has a complex structure. It is non-differentiable
and convex only with respect to one variable, but not biconvex with respect to both. We
make use of concepts from convex optimization in order to solve the problem. Tomasi
and Kanade introduced the idea of joint motion estimation and image reconstruction in
[138]. A joint model for gated cardiac CT solved by the conjugate gradient method was
proposed in [65]. A closely related topic is joint motion estimation and image deblurring,
a topic which is covered by a variational approach in [12]. The approach used in this thesis
was proposed in [35, 50] for two dimensional image sequences and applied to temporal
inpainting and cell tracking.
Coming back to the special case of MPI reconstruction, we note that the image recon-
struction task is already severely ill-posed in the static case [56, 90]. It becomes even more
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1. Introduction

ill-posed in the dynamic case. However, as indicated by the potential applications listed
above, reconstructing dynamic image sequences is of high interest. Few works on dynamic
MPI reconstruction exist so far. From a modeling point of view, the setting was analyzed
in [28]. A reconstruction approach designed for periodic motion using data binning into
virtual frames was considered in the single and multi-patch setting in [63, 64]. This ap-
proach is limited to very specific classes of motion, whereas in [29] temporal splines are
applied in order to compensate non-periodic motion and allow for a high temporal resol-
ution. In [114], the authors suggest to take into account dynamics as model inexactness
and apply the Regularized Sequential Subspace Optimization algorithm (RESESOP) to
solve the problem numerically. Motion estimation algorithms have been proposed for ex-
tracting flow information in a second step from previously reconstructed image sequences
in [60].
As mentioned before, we aim at obtaining image sequences and motion estimates simul-
taneously in this thesis. A first step in this direction was taken in [88], which can be seen
as a proof of concept for this approach applied to MPI reconstruction. The authors apply
a joint scheme to two dimensional MPI image sequences. In contrast to this motivational
work, we particularly consider the three dimensional case and focus on the theoretical
justification of applying the approach to MPI.

1.1. Outline of the thesis

We start with a recapitulation of some concepts and results from functional analysis,
convex optimization and inverse problems, which are relevant for this thesis in Chapter 2.
Thereby, we pay special attention to function spaces and function space embeddings as
well as the concept of duality, in particular Fenchel-Rockafellar duality.
Afterwards, we consider MPI in detail in Chapter 3. We introduce this novel imaging
method and derive the static forward model in Section 3.1. Thereby, we observe com-
pactness of the forward operator, showing the ill-posedness of the image reconstruction
task. Our main achievement in this section is the proof of Theorem 3.1, which states that
the MPI forward model is non-vanishing. This property is crucial for the main proof of
Theorem 5.1. Furthermore, we extend the forward model from static to dynamic particle
distributions and consider different timescales in MPI in Section 3.2. Finally, we con-
clude this chapter by introducing different approaches to static image reconstruction and
compare them on synthetic data in Section 3.3.
Chapter 4 deals with the motion estimation task. We give a brief introduction into the
general topic and obtain two different motion models, namely the Optical Flow and Mass
Conservation motion model in Section 4.1. Afterwards, we introduce the main classes of
motion estimation algorithms and derive primal-dual algorithms for both aforementioned
motion models in Section 4.2. Further, we address the well-known challenge of large
displacements by deriving a multiscale approach, partially combined with image warping.
The algorithmic solutions are tested extensively on academic test cases showing a solid
performance at reasonable costs in Section 4.3.
Chapter 5 is dedicated to the joint image reconstruction and motion estimation task
applied to three dimensional MPI. In Section 5.1, we show the well-definedness of the
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1.2. Contribution

joint problem formulation by proving existence of a minimizer in Theorem 5.1. Based
on [35, 50], we extend the proof to three dimensional image sequences, allow for a time-
dependent forward operator and consider more general regularization terms. Theorem 5.1
shows existence of a solution to a problem constrained by the motion model. Moreover,
we show convergence of solutions of the unconstrained minimization problem, where the
constraint is included in the minimization problem as an additional regularization term.
In Section 5.2, we briefly analyze how our approach defines a regularization method to
a nonlinear problem. Section 5.3 considers numerical treatment of the joint optimization
problem by an alternating minimization approach.
In Chapter 6, we present numerical examples of the joint approach discussed in the pre-
vious chapter. In Section 6.1, we consider experiments on simulated data, showing the
applicability to MPI data and the advantages compared to a two-step reconstruction
scheme, i.e., reconstruction of image sequences first followed by the computation of mo-
tion. In Section 6.2 and Section 6.3 we treat real measurements of an in-vitro rotation
phantom and in-vivo data of the cardiovascular system of a mouse, respectively, under-
lining the applicability in practice. Section 6.4 is dedicated to the topic of subframe
reconstruction in order to further improve the temporal resolution of MPI images.
We conclude this thesis and discuss the results in Chapter 7. Moreover, we provide an
outlook to possible future research directions.

1.2. Contribution

We now summarize the main contributions of this thesis. A more detailed presentation
of the contributions can be found in the introductions of the corresponding chapters.
In this work, we develop a method for joint motion estimation and image reconstruction
for a general 3D plus time setting for time-dependent linear forward operators and fairly
general regularization terms in Chapter 5. We thus extend the work of [35, 50] to this
more general setting. We show well-definedness of the joint problem formulation and
prove convergence of solutions of the unconstrained optimization problems to a solution
of the constrained problem. The theoretical aspect of this work is complemented by nu-
merical experiments in Chapter 6. We perform extensive studies on simulated as well
as measured data sets analyzing the enhancement of the image quality and the motion
estimate accuracy by the proposed joint algorithm. The implementation of the corres-
ponding algorithms in Matlab was performed while working on this thesis. Preceding
the joint approach, we consider MPI reconstruction and the motion estimation task separ-
ately. Doing this, we perform analytical investigations of the static MPI forward operator
ensuring a necessary regularity property in Chapter 3. More particularly, we show that
the forward operator is non-vanishing over a compact time interval, if this time interval
includes a non-stationary point of the field-free point trajectory. This enables us to apply
the developed theory on joint image reconstruction and motion estimation to a large class
of MPI scanners. In order to obtain a motion estimation algorithm applicable to the joint
setting, we formalize multiscale primal-dual algorithms and include a warping procedure
in Chapter 4. Moreover, we propose different approaches to improve the robustness to
noise of those algorithms to make them applicable to potentially noisy MPI data.
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2. Preliminaries

This chapter summarizes mathematical concepts used throughout this thesis. Although
the topics of the different sections are highly connected, we split the chapter into several
sections for readability. We start with some fundamental definitions about function spaces
and theory about embeddings of function spaces in Section 2.1. The section also introduces
the weak and weak-∗ topologies as additional topologies. The most essential statements for
the analysis in later chapters are the Lemma of Aubin-Lions and the Theorem of Banach-
Alaoglu. In Section 2.2, we give an overview on tools and ideas from convex optimization.
We define convexity, introduce subdifferentiability in order to weaken the assumption of
differentiable functionals and derive the setting of Fenchel-Rockafellar duality. Proximal
operators are introduced and computed for specific functions that are used in following
chapters. Combining results of the first two sections will enable us to prove existence
of a minimizer for the joint approach in Chapter 5. Section 2.3 completes the chapter.
In this section, we briefly introduce inverse problems and their challenges and define
regularization methods for such problems.

2.1. Functional analysis

The main theoretical result of Chapter 5 is given by the existence of solutions for the
joint problem formulation. In order to prove the corresponding theorem, we need some
definitions, embedding theorems and other fundamental results from functional analysis
that are stated in the following. This section is mostly based on [3, 31], to which we also
refer for a more comprehensive introduction to the main topics. Definitions are taken
from [3, 31] if not mentioned explicitly.
We start by introducing the very basic concept of the space of linear operators and the
dual space.

Definition 2.1: Linear operators and the dual space

Let X be a normed space. The space of linear operators mapping from X to a
space Y is denoted by L (X,Y ), i.e.,

L (X,Y ) = {A : X → Y |A linear and continuous} .

The space L (X,R) of all linear functionals mapping to R is called the dual space
of X and denoted by X∗.

Considering two spaces, we will often be interested in their relation in terms of embeddings
as defined in the following, see [30].

7



2. Preliminaries

Definition 2.2: Embeddings

Let X and Y be Banach spaces with associated norms ∥·∥X and ∥·∥Y and let X ⊂ Y .
We call X

• continuously embedded in Y if the inclusion map X → Y ,u 7→ u is con-
tinuous, i.e.,

∥u∥Y ≤ c ∥u∥X
for all u ∈ X and a constant c > 0. We denote this by X ↪→ Y .

• compactly embedded in Y if the inclusion is a compact operator, i.e., any
bounded sequence has a subsequence that is Cauchy in Y . We denote this by
X ⋐ Y .

We now derive first basic and then more complex function spaces and state some prop-
erties, including main embedding theorems and the dual spaces, for each of them. In the
following, Ω ⊂ Rn denotes an open and bounded domain. Additional assumptions are
mentioned explicitly.

Definition 2.3: Lebesgue spaces

Let F be a measurable function and 1 ≤ p < ∞. The space

Lp(Ω) =

{
F : Ω → R

∣∣∣∣
∫

Ω

|F (u)|p du < ∞
}

is called Lebesgue space and equipped with the norm

∥F∥Lp(Ω) =

(∫

Ω

|F (u)|p du
) 1

p

.

Note that, in order to obtain a norm and not only a semi-norm, we identify all
functions with each other that coincide almost everywhere. That is, we define the
space with the equivalence relation

F = G in Lp(Ω) :⇔ F = G almost everywhere.

The Lebesgue space for p = ∞ contains essentially bounded functions, i.e.,

L∞(Ω) =

{
F : Ω → R

∣∣∣∣∣ supu∈Ω\N
|F (u)| < ∞

}
,

for N a set of zero measure.

Lebesgue spaces are Banach spaces, see the Fischer-Riesz theorem with proof for example
in [31, Theorem 4.8]. The dual space of Lp(Ω) for 1 < p < ∞ is given by Lq(Ω) with

1

p
+

1

q
= 1,
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2.1. Functional analysis

and Lp spaces are reflexive for 1 < p < ∞ [31, Theorem 4.10]. The dual space to L1(Ω)

is given by L∞(Ω), whereas the dual space to L∞(Ω) contains L1(Ω) but is strictly bigger
[31, pp. 99-102]. When considering norm estimates in Lebesgue spaces, there are some
important inequalities that have to be mentioned and are thus stated in the following for
completeness.

Lemma 2.1: Hölder inequality

Let 1 ≤ p, q ≤ ∞ with 1
p
+ 1

q
= 1 and f ∈ Lp(Ω), g ∈ Lq(Ω). For the product fg it

holds that fg ∈ L1(Ω) and

∥fg∥L1(Ω) ≤ ∥f∥Lp(Ω) ∥g∥Lq(Ω) .

More generally, for m ∈ N and fi ∈ Lpi(Ω) for i = 1, ...,m with pi ∈ [1,∞] and
q ∈ [1,∞] such that

m∑

i=1

1

pi
=

1

q
,

it holds that
∏m

i=1 fi ∈ Lq(Ω) and
∥∥∥∥∥

m∏

i=1

fi

∥∥∥∥∥
Lq(Ω)

≤
m∏

i=1

∥fi∥Lpi (Ω) .

For a proof see for example [3, Lemma 3.18].

Lemma 2.2: Minkowksi inequality

Let 1 ≤ p ≤ ∞ and f , g ∈ Lp(Ω). Then f + g ∈ Lp(Ω) and

∥f + g∥Lp(Ω) ≤ ∥f∥Lp(Ω) + ∥g∥Lp(Ω) .

A proof can be found in [3, Lemma 3.20].

Lemma 2.3: Lebesgue embedding

Let Ω ⊂ Rn be bounded and 1 ≤ p < q ≤ ∞. Then

Lq(Ω) ↪→ Lp(Ω).

Proof. Let F ∈ Lq(Ω). Then

∥F∥Lp(Ω) = ∥χΩF∥Lp(Ω) ≤ ∥χΩ∥Lr(Ω) ∥F∥Lq(Ω) = |Ω| ∥F∥Lq(Ω) < ∞

for 1
p
= 1

r
+ 1

q
by using the Hölder inequality. The function χΩ denotes the characteristic

function of the set Ω.

9



2. Preliminaries

Definition 2.4: Sobolev spaces

Let F : Ω → R be measurable and k ∈ N, 1 ≤ p ≤ ∞. The space

W k,p (Ω) = {F ∈ Lp(Ω) |∂αF ∈ Lp(Ω) ∀ |α| ≤ k}

is called Sobolev space and contains functions whose weak derivatives up to order
k are again in Lp(Ω). The space is a Banach space equipped with the norm

∥F∥Wk,p(Ω) =


∑

|α|≤k

∥∂αF∥pLp(Ω)




1
p

.

The space W k,p (Ω) is reflexive for 1 < p < ∞ and Ω bounded [31, Proposition 8.1.]. By
W 1,p

0 (Ω) we denote the closure of C1
0(Ω) in W 1,p (Ω). This space is reflexive for 1 < p < ∞.

The dual of W 1,p
0 (Ω) is denoted by W−1,q (Ω).

By H1(Ω) we denote the (Hilbert) space W 1,2 (Ω). The following dimension dependent
embedding theorem is crucial for the proof in Chapter 5.

Theorem 2.1: Sobolev embedding theorem

Let Ω ⊂ Rn with Lipschitz boundary, m ≥ 1 and 1 ≤ p < ∞. The following
continuous embeddings hold:

• If mp ≥ n, then

Wm,p(Ω) ↪→ Lq(Ω) for p ≤ q ≤ ∞.

• If mp < n, then

Wm,p(Ω) ↪→ Lq(Ω) for p ≤ q ≤ np

n−mp
.

Different conditions on Ω as well as more details, references and the proof can be found
in [1, Theorem 4.12].

We now introduce a function space popular in imaging for two reasons: first, the space has
desirable properties (and therefore appears in many results in the following chapters) and
second, the space contains image functions naturally. The following definition is based on
the representation in [3, Theorem 6.26].

Definition 2.5: Functions of bounded variation

Let F : Ω → R be measurable. The space of functions with bounded variation
BV (Ω) is defined by

BV (Ω) =
{
F ∈ L1(Ω)

∣∣∣|F |BV (Ω) < ∞
}

10



2.1. Functional analysis

for
|F |BV (Ω) = sup

ϕ∈C∞
0 (Ω,Rn),∥ϕ∥L∞(Ω)≤1

∫

Ω

F∇ · ϕdx

where |F |BV (Ω) is called the Total Variation (TV) of F . The TV does not denote
a norm but only a semi-norm, such that the space BV (Ω) is equipped with the
following norm in order to obtain a Banach space

∥F∥BV (Ω) = |F |BV (Ω) + ∥F∥L1(Ω)

Remark. For a function F ∈ W 1,1(Ω), the total variation reduces to

|F |BV (Ω) =

∫

Ω

|∇F | dx.

Another property, that will be of interest for us, is the lower semicontinuity of the total
variation. A proof, as well as more interesting properties can be found for example in [5,
Remark 3.5].

The following characterization is needed to apply the theorem of Banach-Alaoglu.

Lemma 2.4: BV as a dual space

The space BV (Ω) is the dual space of a separable Banach space Y .

The construction of the space and more details can be found in [5, Remark 3.12]. While
we now know that BV (Ω) defines a dual space, very little can be said on the dual space
of BV (Ω). We now consider how the space of bounded variation embeds into Lebesgue
spaces.

Theorem 2.2: Embedding of BV

Let Ω ⊂ Rn with Lipschitz boundary. Then,

BV (Ω) ↪→ Ll(Ω) for 1 ≤ l ≤ n

n− 1
,

BV (Ω) ⋐ Ll(Ω) for 1 ≤ l <
n

n− 1
.

A proof can be found in [5, Theorem 3.49]. As we consider time and space dependent
functions in this work, we introduce another family of function spaces, see [131] for more
details on the spaces.

Definition 2.6: Bochner spaces

Let Y be a Banach space with norm ∥·∥Y , 1 ≤ p ≤ ∞ and F continuous. Then

Lp (0,T ;Y ) =
{
F : [0,T ] → Y

∣∣∣∥F∥Lp(0,T ;Y ) < ∞
}

11



2. Preliminaries

is called a Bochner space. The associated norm is defined by

∥F∥Lp(0,T ;Y ) =

(∫ T

0

∥F (t)∥pY dt

) 1
p

(
= ess sup

0<t<T
∥F (t)∥Y if p = ∞

)
.

The dual space of Lp(0,T ;Y ) for 1 < p < ∞ is given by Lq(0,T ;Y ∗) with Y ∗ being the
dual of Y and

1

p
+

1

q
= 1.

The dual space to L1(0,T ;Y ) is given by L∞(0,T ;Y ∗). A proof and more details on
duality for Bochner spaces can be found in [39]. For a reflexive Banach space Y , the
Bochner space Lp(0,T ;Y ) is reflexive for 1 < p < ∞.

Lemma 2.5: Bochner space embeddings

• Let 1 ≤ p ≤ ∞ and X ↪→ Y . Then

Lp(0,T ;X) ↪→ Lp(0,T ;Y ).

• Let 1 ≤ p < q ≤ ∞. Then

Lq(0,T ;X) ↪→ Lp(0,T ;X).

For a proof, see [50, Lemma 2.1.23.].
Unlike for Lebesgue spaces, where the compact embedding Lq(Ω) ⋐ Lp(Ω) for 1 ≤ p ≤ q

and Ω bounded exists naturally, there is no compact embedding Lq(0,T ;X) ⋐ Lp(0,T ;Y )

in general for X ⋐ Y . Instead, we utilize the relative compactness, i.e., the compactness
of the closure of such embeddings as proven in the Lemma of Aubin-Lions.

Theorem 2.3: Lemma of Aubin-Lions

Let X, Y and Z be Banach spaces with X ⊆ Y ⊆ Z and X ⋐ Y and Y ↪→ Z. Let
either q = 1 and 1 ≤ p < ∞ or q > 1 and 1 ≤ p ≤ ∞. Moreover, let fn be a sequence
of bounded functions in Lp(0,T ;X) and let ∂

∂t
fn be bounded in Lq(0,T ;Z).

Then fn is relatively compact in Lp(0,T ;Y ).

The original proof by Aubin [11] assumes reflexive Banach spaces, the version without this
additional assumption was proved by Simon in [131]. At this point, we have introduced
all function spaces needed throughout this work and stated their main properties. We
now turn our attention to different topologies on such spaces. The standard convergence
property with respect to the norm of a Banach space can be too restrictive in many cases.
The main difficulty is to choose a convergent subsequence from a minimizing sequence, as
unit balls are in general not pre-compact with respect to the norm in infinite dimensional
spaces. Therefore, other topologies are considered.
There are different topologies on dual spaces Y ∗. First, there is the usual strong topology
associated to the norm of Y ∗. In addition, we have the weak topology.
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2.2. Convex optimization

Definition 2.7: Weak convergence

Let Y be a Banach space with dual space Y ∗. A sequence un ∈ Y converges
weakly to u ∈ Y if

⟨un, v⟩ → ⟨u, v⟩ for n → ∞
for all v in Y ∗, where ⟨·, ·⟩ denotes a dual product here. We denote weak convergence
by un ⇀ u.

For reflexive Banach spaces, it can be shown that the unit ball is weakly compact (e.g.,
[3, Theorem 6.10]). For non-reflexive spaces however, this does not hold.
The third topology we define is the weak-∗ topology. This topology has more compact
sets compared to the previously mentioned ones, which makes it important to consider.

Definition 2.8: Weak-∗ convergence

Let Y be a Banach space with dual space Y ∗. We say a sequence vn ∈ Y ∗ weak-∗-
converges to v ∈ Y ∗ if

⟨u, vn⟩ → ⟨u, v⟩ for n → ∞

for all u in Y . Again, ⟨·, ·⟩ denotes a dual product in this setting. We denote weak-∗

convergence by vn
∗
⇀ v.

The most essential property regarding the weak-∗ topology is stated in the following
theorem.

Theorem 2.4: Banach-Alaoglu

Let Y be a Banach space and Y ∗ its dual space. The closed ball Bε

Bε = {v ∈ Y ∗ : ∥v∥Y ∗ ≤ ε}

is compact with respect to the weak-∗ topology.

A proof for ε = 1 can be found in [31, Theorem 3.16].

2.2. Convex optimization

This section gives an overview of the main tools and ideas of convex optimization. These
will be used in succeeding chapters to prove existence and uniqueness of minimizers, but
also to derive algorithms to compute those. The results mentioned in this section, as
well as further material can be found in standard references such as [19, 25, 54, 120], the
seminal work of Rockafellar [119] or the more recently published textbooks [17, 30, 44]. We
present extensive examples in this section, computing many specific functionals needed
in succeeding applied chapters. Thereby, we can simply refer to those examples later on.
We start by giving some basic definitions that will be needed throughout this thesis. In
the following, we denote R∞ := R ∪ {+∞}.

13



2. Preliminaries

Definition 2.9: Convexity

A functional F : X → R∞ on a normed space X is called convex if for all u, v ∈ X

and λ ∈ [0, 1] it holds that

F (λu+ (1− λ) v) ≤ λF (u) + (1− λ)F (v) .

It is called strictly convex if that inequality holds strictly for λ ∈ (0, 1) and u ̸= v.

There are some simple examples for convex functionals, which play an important role in
the context of inverse problems and regularization theory.

Example 2.1: Convex functionals

1. Norm functionals.
The norm ∥·∥X on a normed space X is convex due to the absolute homogen-
eity and triangle inequality, i.e., for u, v ∈ X we have

∥λu+ (1− λ) v∥X ≤ ∥λu∥X + ∥(1− λ) v∥X = λ ∥u∥X + (1− λ) ∥v∥X .

For a simple illustration, cf. Figure 2.1a, which depicts the absolute value
function.

2. Indicator functionals on convex sets.
Let K ⊂ X be a convex set. Then the corresponding indicator functional is
defined by

IK (u) =

{
0, u ∈ K

∞, else
.

As K is a convex set, λu+(1− λ) v ∈ K for u, v ∈ K and thus the functional is
convex. For illustration, cf. Figure 2.1b, which depicts the indicator function
over a closed interval.

3. Composition with a linear map.
Let F : X → R∞ be a convex functional and A : dom (A) → X be a linear
operator. The composition

F ◦ A : dom (A) → R∞

is then convex as

(F ◦ A) (λu+ (1− λ) v) = F (λAu+ (1− λ)Av)

≤ λF (Au) + (1− λ)F (Av) .

4. Linear combinations of convex functionals.
Let F and G be convex functionals on a normed space X and α, β ≥ 0. Then
the functional αF + βG is also convex.

Convex functionals have several nice properties. This makes them useful in the context
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2.2. Convex optimization

of optimization problems. We name the main results, which are helpful in the following
chapters.

Theorem 2.5: Minima of convex functionals

Let F : X → R∞ be a convex functional on a reflexive Banach space X. Then each
local minimum is a global one.
If F is even strictly convex, then F has at most one minimizer.

A proof can be found for example in [19, Proposition 3.1.1.].

Definition 2.10: Lower semicontinuity

A functional F : X → R∞ on a normed space X is called (sequentially) lower
semicontinuous in u ∈ X if for all sequences un with limn→∞ un = u, it holds that

F (u) ≤ lim inf
n→∞

F (un) .

It is called weakly lower semicontinuous if that inequality holds for all sequences
un converging weakly to u.

Definition 2.11: Coercivity

A functional F : X → R∞ on a Banach space X is called coercive if for sequences
un with ∥un∥X → ∞ for n → ∞, it holds that

F (un) → ∞ for n → ∞.

The following Theorem 2.6 states what is also known as the direct method of calculus of
variations and is typically used to show existence of minimizers for functionals. The idea
is as follows. Consider the minimization problem

min
u∈X

F (u) .

After establishing a bound from below, one constructs a minimizing sequence un ∈ X.
We then show that this sequence lies in a sequentially compact set such that there is a
convergent subsequence with respect to a certain topology. We thus have a candidate for
a minimizer. Proving lower-semicontinuity with respect to the same topology shows that
the candidate indeed is a minimizer. The choice of topology is crucial. The weaker the
topology, the easier it is to obtain a sequentially compact set. By contrast, it is more
difficult to obtain lower semicontinuity for weaker topologies. Choosing the weak topology
on a space X enables the following line of argumentation. If F is coercive, we obtain a
uniform bound on the minimizing sequence un. If moreover, X is reflexive, the sequence
lies in a ball of finite radius which is weakly compact. Thus, there exists a subsequence
weakly convergent to an element u0. If F is weakly lower semicontinuous, then u0 is a
minimum point of F .
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2. Preliminaries

Theorem 2.6: Existence of solutions

Let X be a reflexive Banach space and F : X → R∞. If F is bounded from below,
weakly lower semicontinuous and coercive, then there exists a solution u∗ to the
minimization problem

min
u∈X

F (u) .

A detailed proof can be found for example in [30, Theorem 6.17/ Section 6.2.1].

Remark. A similar result holds for dual spaces X∗ of separable normed spaces under the
assumption that F is weak-∗ lower semicontinuous [30]. The weak-∗ compactness is then
realized by Banach-Alaoglu (Theorem 2.4).

Remark. If F is convex, F is lower semicontinuous if and only if F is weakly lower
semicontinuous such that the assumptions reduce to F being convex, lower semicontinous
and coercive. If F : X → R∞ is strictly convex, lower semicontinuous and coercive, this
guarantees existence of a unique minimizer.

In the case of differentiable functionals, convexity can also be expressed as a condition to
the derivative of the functional. Moreover, necessary and sufficient conditions for solutions
to the corresponding minimization problems can be formulated in terms of the derivative
of first and second order. However, we do not want to limit ourselves to differentiable
functions in the following and directly introduce a more general idea of differentiability.

Definition 2.12: Subdifferential

Let F : X → R∞ be a convex functional on a normed space X. The subgradient
at a point u ∈ X is defined as an element x∗ ∈ X∗ that fulfills

F (u) + ⟨x∗, v − u⟩ ≤ F (v) ∀ v ∈ X.

The subdifferential ∂F (u) at the point u ∈ X contains all subgradients at u.

Remark. If the functional F is Gâteaux-differentiable at a point u, then the subdifferential
at this point contains only the Gâteaux-derivative of F at u.

Example 2.2: Subdifferentials of convex functionals

1. The absolute value function.
Let f(u) = |u|. Then f is differentiable for u ̸= 0. For u = 0, the inequality
describing the subdifferential reads

⟨x∗, y⟩ ≤ |y| ∀y ∈ R,

which yields ∂f(0) =
{
x∗
∣∣x∗ ∈ [−1, 1]

}
. The subdifferential is depicted in

Figure 2.1a.
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2.2. Convex optimization

2. Indicator functional on the interval [−1, 1].
The indicator functional is defined by

I[−1,1] (u) =

{
0, u ∈ [−1, 1]

∞, else
.

The function is differentiable for u ∈ (−1, 1) with ∂(I[−1,1])(u) = {0}. For
u = −1, a subgradient x∗ has to fulfill the inequality

0 + ⟨x∗, y⟩ ≤ I[−1,1] (y) =

{
0, y ∈ [−1, 1]

∞, else
,

for all y ∈ R. This leads to −∞ < x∗ ≤ 0.
Similarly, ∂(I[−1,1])(1) =

{
x∗
∣∣x∗ ∈ (0,∞)

}
. The subdifferential is illustrated

in Figure 2.1b.

−2 −1 1 2

−2

−1

1

2

f (x) = |x|
∂f (x)

(a) The absolute value function.

−2 −1 1 2

−2

−1

1

2

f (x) = I[−1,1]

∂f (x)

(b) The indicator function.

Figure 2.1.: Examples for convex functions and their subdifferentials.

A necessary and sufficient condition for minimizers is defined in the following theorem.

Theorem 2.7: Fermats theorem

Let F : X → R∞ be a convex functional on a normed space X. Then u∗ ∈ X is a
(global) minimizer of F if and only if 0 ∈ ∂F (u∗).

Proof. Let u∗ be a minimizer of F . This holds if and only if, F (u∗) ≤ F (u) for all u ∈ X.
This is equivalent to

F (u∗) + ⟨0,u− u∗⟩ ≤ F (u) ∀u ∈ X,

which describes the subdifferential inequality with 0 plugged in as a subgradient.

2.2.1. Fenchel-Rockafellar duality

In some cases, a minimization problem might be difficult to handle but can be reformulated
into an equivalent problem that is easier to solve. This section summarizes the main tools
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and ideas needed to derive the dual problem as well as saddle point formulations. Our
examples mainly consist of functionals that are often used in imaging applications and
will be needed in succeeding chapters. We refer to [30] for a rather applied introduction
to the topic.

Definition 2.13: Fenchel conjugate

Let F : X → R∞ be a proper functional on a real Banach space X, u ∈ X and
v ∈ X∗. The Fenchel conjugate F ∗ is defined by

F ∗ : X∗ → R∞, F ∗ (v) = sup
u∈X

{⟨v,u⟩ − F (u)} .

Remark. For F proper and u ∈ X, v ∈ X∗ it holds that

⟨v,u⟩ ≤ F (u) + F ∗(v).

This inequality is called Fenchel inequality. With the help of this equality, one can
state the fundamental relation between subdifferential and Fenchel conjugate by

v ∈ ∂F (u) ⇔ ⟨v,u⟩ = F (u) + F ∗(v).

This relation can be used to replace the subdifferential of a possibly complicated functional
by the one of a simpler conjugate functional.

Example 2.3: Fenchel conjugates

1. Norm functionals.
Let F (u) = φ(∥u∥X) with φ : R → R∞ proper and even. Then for v ∈ X∗,
we have

F ∗(v) = sup
u∈X

{
⟨v,u⟩ − φ(∥u∥X)

}
= sup

α≥0

[
sup

∥u∥X=α

{
⟨v,u⟩ − φ(α)

}]

= sup
α≥0

{
α ∥v∥X∗ − φ(α)

}
= sup

α∈R

{
α ∥v∥X∗ − φ(α)

}
= φ∗(∥v∥X∗).

Consider φ(u) = |u|. Then

φ∗(y) = sup
α∈R

{
αy − |α|

}
=

{
0, |y| ≤ 1

∞, else

}
= I{|y|≤1}.

Consider φ(x) = 1
2
x2. Then

φ∗(y) = sup
α∈R

{
αy − 1

2
α2
}
= y2 − y2

2
=

1

2
y2.

So in particular, the following correspondences hold for some domain Ω ⊂ Rn.
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Functional Fenchel conjugate

F (u) = ∥u∥L1(Ω) F ∗(v) = I{∥v∥L∞(Ω)≤1}
F (u) = 1

2
∥u∥2L2(Ω) F ∗(v) = 1

2
∥v∥2L2(Ω)

2. Indicator function of closed α-balls.
Let α > 0 and F (u) = I{∥u∥X≤α}. Then for v ∈ X∗, it holds

F ∗(v) = sup
u∈X

{
⟨v,u⟩ − I{∥u∥X≤α}

}
= sup

u∈X, ∥u∥X≤α

⟨v,u⟩

= α sup
u∈X, ∥u∥X≤1

⟨v,u⟩ = α ∥v∥X∗ .

3. Multiplication by positive constants.
Let λ > 0 and F̃ = λF . Then

F̃ ∗(v) = sup
u∈X

{
⟨v,u⟩ − λF (u)

}
= sup

u∈X

{
λ
〈
λ−1v,u

〉
− λF (u)

}

= λ

(
sup
u∈X

{〈
λ−1v,u

〉
− F (u)

})
= λF ∗(λ−1v).

4. Translation.
Let ũ ∈ X, ṽ ∈ X∗ and F̃ (u) = F (u+ ũ) + ⟨ṽ,u⟩. The Fenchel conjugate can
be computed by

F̃ ∗(v) = sup
u∈X

{
⟨v,u⟩ − F (u+ ũ)− ⟨ṽ,u⟩

}
= sup

u∈X

{
⟨v − ṽ,u− ũ⟩ − F (u)

}

= sup
u∈X

{
⟨v − ṽ,u⟩ − F (u)− ⟨v − ṽ, ũ⟩

}
= F ∗(v − ṽ)− ⟨v − ṽ, ũ⟩ .

5. Composition with an invertible linear operator K ∈ L(X,Y ).
Let Y be a real Banach space, v ∈ Y ∗ and F̃ (u) = F (Ku). Then

F̃ ∗(v) = sup
u∈X

{
⟨u, v⟩ − F (Ku)

}
= sup

u∈X

{〈
K−1Ku, v

〉
− F (Ku)

}

= sup
w=Ku

{〈
w,
(
K−1

)∗
v
〉
− F (w)

}
= sup

w∈Y

{〈
w,
(
K−1

)∗
v
〉
− F (w)

}

= F ∗ ((K−1
)∗

v
)
.

Definition 2.14: Biconjugate

The biconjugate F ∗∗ : X → R∞ of a functional F is defined by

F ∗∗(u) = sup
v∈X∗

{
⟨v,u⟩ − F ∗(v)

}
= sup

v∈X∗

[
⟨v,u⟩ −

(
sup
w∈X

{
⟨v,w⟩ − F (w)

})]
.
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For reflexive spaces X we have F ∗∗ = (F ∗)∗. The biconjugate coincides with the
functional F , if and only if F is convex and lower semicontinuous. A proof can be
found, e.g., in [44, Theorem 5.1].

We now introduce the concept of Fenchel-Rockafellar duality for a specific class of prob-
lems. In particular, we now consider functionals which are defined as a sum of a (in a
certain sense that will be explained shortly) simple functional and one functional that
comprises a linear operator. We aim at exploiting the specific structure of the problem
in order to simplify its solution. In the following, we consider the (primal) problem

inf
u∈X

{
f1(u) + f2(Cu)

}
, (2.1)

for f1 : X → R∞, f2 : Y → R∞, both proper, convex and lower semicontinuous and
C ∈ L (X,Y ). Replacing then f2 by f ∗∗

2 yields

inf
u∈X

sup
y∗∈Y ∗

{
f1(u) + ⟨y∗,Cu⟩ − f ∗

2 (y
∗)
}
. (2.2)

This formulation is called the saddlepoint problem. Under mild conditions the infimum
and supremum can be swapped. Exemplary conditions can be found in [54, Chapter VI].
This yields

inf
u∈X

sup
y∗∈Y ∗

{
f1(u) + ⟨y∗,Cu⟩ − f ∗

2 (y
∗)
}

= sup
y∗∈Y ∗

[
− sup

u∈X

{
−f1(u) + ⟨−C∗y∗,u⟩ − f ∗

2 (y
∗)
}]

= sup
y∗∈Y ∗

{
−f ∗

1 (−C∗y∗)− f ∗
2 (y

∗)
}
, (2.3)

where we used the definition of f ∗
1 and inf F = − sup (−F ). The maximization problem in

(2.3) is called the dual problem. One specific sufficient condition for this exchangeability
is given in the following theorem.

Theorem 2.8: Fenchel-Rockafellar duality

Let f1 : X → R∞ and f2 : Y → R∞ be proper, convex and lower semicontinuous
and C ∈ L (X,Y ). Suppose the minimization problem (2.1) has a solution u∗ and
it exists u0 such that f1(u

0) < ∞, f2(Cu0) < ∞ and f2 is continuous at Cu0. It
then holds

inf
u∈X

{
f1(u) + f2(Cu)

}
= sup

w∈Y ∗

{
−f ∗

1 (−C∗w)− f ∗
2 (w)

}
.

In particular, a maximizer w∗ ∈ Y ∗ exists.

For a proof, see for example [30, Theorem 6.68].

If u∗ is a solution of the primal problem and y∗ is a solution of the dual problem, then
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(u∗, y∗) is a saddle point of the Lagrangian L, i.e.,

L (u∗, y) ≤ L (u∗, y∗) ≤ L (u, y∗)

for all u ∈ X and y ∈ Y ∗ with

L (u, y) := f1(u) + ⟨y,Cu⟩ − f ∗
2 (y).

Conversely, every saddle point (u∗, y∗) of L defines per definition one solution u∗ of the
primal and one solution y∗ of the dual problem. From the saddle point formulation (2.2)
we can derive a popular algorithm, the so-called Primal-Dual Hybrid Gradient method
(PDHG), proposed by Pock, Cremers, Bischof and Chambolle in 2009 as a method for
minimizing a convex relaxation of the Mumford-Shah functional [115] and by Esser et. al
in 2010 [57]. By Fermats theorem (Theorem 2.7), we know that a saddle point (u∗, y∗)

fulfills

0 ∈ ∂ (f1) (u
∗) + C∗y∗,

0 ∈ ∂ (f ∗
2 ) (y

∗)− Cu∗.

Simple rearrangements, multiplying by σ > 0 and adding the identity on each side leads
to

u∗ − σC∗y∗ ∈ (id + σ∂f1) (u
∗) , (2.4)

y∗ + σC u∗ ∈ (id + σ∂f ∗
2 ) (y

∗) (2.5)

The mapping (id + σ∂f)−1 is called the resolvent or proximal mapping of f . For f proper,
convex and lower semicontinuous, the mapping is single-valued and maps to the solution
of a minimization problem as stated in Definition 2.15. A proof of the coincidence can be
found for example in [30, Lemma 6.134].

Definition 2.15: Proximal mapping

For a proper, convex and lower semicontinuous functional F : X → R∞, the prox-
imal mapping proxτF : X → X is defined by

proxτF (u) = argmin
v∈X

{ 1

2τ
∥v − u∥2X + F (v)

}
.

A functional F is called prox-tractable if the associated proximal mapping is easy
to compute and has a closed form.

The proximal mapping is well-defined as the functional minimized is proper, strictly con-
vex and lower semicontinuous and thus a minimizer exists and is unique. From Equa-
tions (2.4) and (2.5), we can thus derive the fix-point scheme

uk+1 = proxσf1
(
uk − σC∗yk

)
,

yk+1 = proxσf∗
2

(
yk + σCuk+1

)
,
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which constitutes a proximal descent in the variable u and a proximal ascent in the
variable y. It is not clear that such iterations converge, but by introducing an additional
over-relaxation step, we can obtain a convergent algorithm. The algorithm (given in
Algorithm 1) is generally known as PDHG and was introduced by [57, 115].

Algorithm 1 Primal-dual hybrid gradient method (PDHG)

1: Input: initial pair of primal and dual value u0, y0, step size parameters σ, τ , operators
C, C∗

2: for k=0,1,2,... do
3: uk+1 = proxσf1

(
uk − σC∗yk

)

4: yk+1 = proxτf∗
2

(
yk + τC

(
2uk+1 − uk

) )

5: end for

This algorithm is popular in imaging applications as many functionals used in the field are
prox-tractable and thus lead to computationally easy schemes for the PDHG algorithm.
Some functionals that appear frequently and also in later chapters of this work are listed
and their proximal operators are computed in the following Example 2.4, associated cal-
culus rules are stated in Lemma 2.6 (from [30, Lemma 6.136]). Exemplary functions and
corresponding proximal operators are depicted in Figure 2.2 to illustrate the concept.

Lemma 2.6: Calculus for resolvents

Let F1 and F2 be proper, convex and lower semicontinuous functionals on Hilbert
spaces mapping to R∞ and let σ > 0.

1. For α, β > 0, γ ∈ R and F2(u) = αF1(βu) + γ, it follows that

proxτF2
(u) = β−1proxταβ2F1

(βu) .

2. For ū and w with F2(u) = F1(u+ ū) + ⟨u,w⟩, it follows that

proxτF2
(u) = proxτF1

(u+ ū− τw)− ū.

3. For F3(u, v) = F1(u) + F2(v), it holds that

proxτF3
(u, v) =

(
proxτF1

(u)

proxτF2
(v)

)
.

A proof can be found in [30, Lemma 6.136].
Note that the third rule (a similar statement holds for integrands instead of summands, see
the following example, statement 1) can be used to simplify computations for Lp norms.
It then suffices to consider the absolute value function and its exponentials.

Example 2.4: Proximal mappings

1. Convex integrands.
Let X = L2(Ω) and φ : RN → R be proper, convex and lower semicontinuous
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with φ ≥ 0 and either φ(0) = 0 if Ω has infinite measure or φ bounded from
below if Ω has finite measure. Let F (u) =

∫
Ω
φ (u(x)) dx. The minimization

problem defining the proximal mapping then reads

min
v∈L2(Ω)

∫

Ω

1

2τ
|v(x)− u(x)|2 + τφ (v(x)) dx.

The subdifferential of F is given by (see [30, Example 6.50] for a derivation)

∂F (u) =
{
w ∈ L2(Ω) |w(x) ∈ ∂φ (u(x)) for almost all x ∈ Ω

}
.

We can thus define the proximal mapping pointwise by

0 ∈ v∗ (x)− u(x) + τ∂φ (v∗(x)) for almost all x ∈ Ω

such that
proxτF (u) = proxτφ ◦ u.

2. Absolute value function.
Let F : R → R, F (u) = |u|. Then

proxτF (u) = argmin
v∈R

1

2τ
|v − u|2 + |v| .

With ∂F (v∗) =

{
sign(v∗), v∗ ̸= 0

[−1, 1] , v∗ = 0
, the optimality condition for the min-

imizer v∗ of the right side is given by

0 =
1

τ
(v∗ − u) + ∂F (v∗)

which yields

proxτF (u) =





u+ τ , u < −τ

0, u ∈ [−τ , τ ]

u− τ , u > τ .

This mapping is known as soft-thresholding operator.

3. Absolute value plus non-negativity constraint.
Let F : R → R, F (u) = |u|+ I{u≥0}. Then

proxτF (u) = argmin
v≥0

1

2τ
|v − u|2 + |v|

yields

proxτF (u) =

{
0, u ∈ (−∞ , τ ]

u− τ , u > τ .
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4. Absolute value squared.
Let F : R → R, F (u) = 1

2
|u|2. Then

proxτF (u) = argmin
v∈R

1

2τ
|v − u|2 + 1

2τ
|v|2 .

F is differentiable with ∂F (v∗) = v∗. The optimality condition for the min-
imizer v∗ of the right side is given by

0 =
1

τ
(v∗ − u) + v∗,

which yields
proxτF (u) =

u

1 + τ
.

5. Indicator functional.
Let us first consider closed intervals I = [a, b].
Let F : R → R, F (u) = I{[a,b]}(u) for a, b ∈ R. Then

proxτF (u) = argmin
v∈R

1

2τ
|v − u|2 + I{[a,b]}(v) = arg min

v∈[a,b]

1

2τ
|v − u|2 .

The minimization problem defines the projection operator onto the interval
[a, b] such that

proxτF (u) = max
(
a, min (b,u)

)
.

Now consider intervals of type I = ( −∞, b ], the projection operator is then
defined by

proxτF (u) = min (u, b) .

For intervals of type I = [a, ∞), the projection operator is then defined by

proxτF (u) = max (a,u) .

Note that computing the proximal mapping of indicator functionals as
I{∥·∥∞≤1} simplifies to pointwise projections in each component.

6. Norm functionals.
Let F (u) = φ (∥u∥X) for φ : R+ → R∞ proper, convex, lower semicontinuous
and increasing. Then

proxτF (u) = argmin
v∈X

1

2τ
∥v − u∥2X + φ (∥v∥X) .

For u = 0 we see directly proxτF (u) = 0. In general, for a minimizer v∗ of the
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right hand side, it holds that

0 ∈ ∂

(
1

2τ
∥· − u∥2X + φ (∥·∥X)

)
(v∗)

⇔ 0 ∈
((

1

2
|·|2 + τφ(·)

)
◦ ∥·∥X

)
(v∗).

We thus arrive at
proxτF (u) = proxτφ(∥u∥X).

−2 −1 1 2

−2

−1

1

2

f (x) = |x|
prox0.5f (x)

(a) The absolute value function.

−2 −1 1 2

−2

−1

1

2

f (x) = 1
2 |x|

2

prox0.5f (x)

(b) The absolute value function squared.

−2 −1 1 2

−2

−1

1

2

f (x) = |x|+ I[0 ,∞)

prox0.5f (x)

(c) The absolute value plus non-negativity
constraint.

−2 −1 1 2

−2

−1

1

2

f (x) = I[−1,1]

prox0.5f (x)

(d) An indicator function.

Figure 2.2.: Examples for convex functions and their proximal operators.

2.2.2. Gamma convergence

Later on, we consider a constrained minimization problem that is not solved directly but
instead we solve problems incorporating the constraint as a penalty term. We then have
to show that the solutions of the unconstrained problems converge to the solution of the
constrained problem. In this setting, we need the concept of Γ-convergence as briefly
outlined in the following.
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Definition 2.16: Equicoercivity

A family Fn : X → R∞ of functionals on a metric space X is called equicoercive
if and only if it exists a lower semicontinuous and coercive functional Ψ : X → R∞

such that Ψ ≤ Fn for all n ∈ N.

Definition 2.17: Γ-convergence

Let X be a metric space. A functional F : X → R∞ is called the Γ-limit of
Fn : X → R∞ with respect to the topology of X if

1. For every u ∈ X and for every sequence un ∈ X with limn→∞ un = u, it holds
that

F (u) ≤ lim inf
n→∞

Fn (un) .

2. For every u ∈ X there exists a sequence un ∈ X such that

lim
n→∞

Fn (un) = F (u) .

Remark. There exists a more general definition of Γ-convergence for arbitrary topological
spaces that coincides with this definition for this specific case.

Theorem 2.9: Fundamental theorem of Γ-convergence

Let X be a metric space and Fn an equicoercive family of functionals. If Fn
Γ→ F ,

i.e., Fn Γ-converges to F in X, then

1. F is coercive.

2. The minimum of Fn converges to the minimum of F , i.e.,
limn→∞ infu∈X Fn(u) = minu∈X F (u).

3. The minimizers of Fn converge to a minimizer of F , i.e., if u∗
n ∈ X denotes

minimizers of Fn for each n, then a cluster point u∗ of u∗
n is a minimizer of F

in X.

4. If F has a unique minimum u∗, then u∗
n converges to u∗.

A proof of this theorem can be found in [46, Chapter 7]. More precisely, the first two claims
stem from [46, Theorem 7.8.], the third one from [46, Corollary 7.20.] and the fourth one
from [46, Corollary 7.24.]. For more details about the concept of Γ-convergence we refer
to [26, 46].

2.3. (Dynamic) Inverse problems

The term inverse problem refers to a task where one deduces the cause of an observed
outcome. It complements a forward problem where the outcome is observed for a given
input. Inverse problems arise naturally in many applications. Examples include image
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deblurring, where one aims at finding the unpolluted image knowing only a blurry version
of it, computed tomography, where one observes the intensity loss of X-rays and recon-
structs the tissue of the specimen and magnetic particle imaging, where we measure a
change of magnetization and image a tracer distribution. Considering the application of
magnetic particle imaging in the following chapters, we need some basic understanding
and concepts from inverse problems as stated in this section. For a more comprehensive
study, we refer to [55, 86] in English and [118] in German.
Mathematically speaking, for an operator A, and a model

Ac = u, (2.6)

the forward problem consists of computing the result u for given c, whereas the inverse
problem aims at finding c for given u.
Hadamard introduced the notion of an ill-posed problem [69].

Definition 2.18: Well-posedness according to Hadamard

Let A : X → Y be an operator between two Banach spaces X and Y . The problem
(A,X,Y ) is called well-posed if the following conditions are fulfilled:

1. The equation Ac = u has a solution for every u ∈ Y (existence),

2. This solution is unique (uniqueness),

3. The inverse operator A−1 : Y → X is continuous (stability).

The problem is called ill-posed if any of these conditions is violated.

From a mathematical perspective, the existence condition can be enforced by enlarging
the solution space. Uniqueness can be ensured by adding enough additional information
to the model, until only one solution exists. The stability condition is most often violated
in applications, i.e., the solution does not depend continuously on the data. Thus, small
deviations of the input data can lead to large differences in the solution. Even if the data
are exact, the numerical solution is most likely unstable as any numerical method has
internal errors. Therefore, so-called regularization methods are applied to obtain a stable
approximation of the solution. These methods do not minimize the norm discrepancy
between Ac and u as this leads to highly oscillating solutions but balance the norm
discrepancy and the noise level of the data.
Before we turn to regularization methods, we mention an important family of ill-posed
operators, namely compact linear operators.

Definition 2.19: Compact operators

Let X and Y be Banach spaces. The linear operator A is called compact if every
bounded subset X ⊂ X has a pre-compact image A(X ) ⊂ Y , i.e., the closure of the
image A(X ) is compact.
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Theorem 2.10: Ill-posedness of compact operators

Let A : X → Y be a compact linear operator between infinite dimensional Hilbert
spaces X and Y , such that the range of A is infinite. Then problem (2.6) is ill-posed.

See [86] for a proof.
For solving an inverse problem with a compact operator, one could consider a generalized
inverse, mapping to an approximate solution. A natural idea to ensure uniqueness is to
map to a least-squares solution, i.e., to map to c̄ ∈ X such that ∥Ac− u∥ is minimum
for c = c̄. Such an operator mapping u to c̄ is called the Moore-Penrose inverse and
denoted by A†. Unfortunately, for a compact operator A with infinite dimensional range,
the Moore-Penrose inverse A† defines an unbounded linear operator (e.g., [55, Proposition
2.7.]).
The generalized inverse can, however, be used for classification of the inverse problem. By
considering the singular-value decomposition of A†, problems can be categorized mildly
ill-posed (if singular values decay with polynomial speed) or severely ill-posed (if singular
values decay exponentially). The forward operator in magnetic particle imaging poses a
severely ill-posed problem, impeding image reconstruction.
The idea of regularization is the following. To solve (2.6), we try to approximate the
generalized inverse solution c† = A†u from knowledge of a noisy version uδ of the data
u where

∥∥uδ − u
∥∥ ≤ δ, i.e., we have noise level δ. We look for an approximation that

depends continuously on the data uδ to obtain stability.

Definition 2.20: Regularization

Let A : X → Y be a bounded linear operator between Banach spaces X and Y ,
α0 ∈ R+. For every α ∈ (0,α0), let Rα : Y → X be a continuous operator with
Rα0 = 0. The family {Rα} is called a regularization for A† if there exists a
parameter choice rule α = α(δ,uδ) for all u ∈ Y such that

lim sup
δ→0

{∥∥Rα(δ,uδ)u
δ − A†u

∥∥ ∣∣uδ ∈ Y ,
∥∥uδ − u

∥∥ ≤ δ
}
= 0.

For the parameter choice rule α it holds that

lim sup
δ→0

{
α
(
δ,uδ

) ∣∣uδ ∈ Y ,
∥∥uδ − u

∥∥ ≤ δ
}
= 0.

For a specific α, the pair (Rα,α) is called a regularization method.

There are many different possibilities how to define regularization methods, e.g., by ap-
plying a filter to the singular value decomposition, by projection and by early stopping
of iterative methods. We limit ourselves to Tikhonov regularization which, among oth-
ers, has a variational characterization. The Tikhonov - regularized solution cδα obtained
from uδ and for parameter choice α is given by the unique minimizer of the Tikhonov
functional

c 7→
∥∥Ac− uδ

∥∥2
Y
+ α ∥c∥2X . (2.7)

A derivation of different characterizations and the proof for Tikhonov regularization being
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a regularization method can be seen, e.g., in [55]. We will refer to the Tikhonov functional
in (2.7) as classical Tikhonov or standard Tikhonov functional later. However, Tikhonov
also considered functionals as

c 7→
∥∥Ac− uδ

∥∥2
Y
+ α ∥Bc∥2Z ,

for an operator B : X → Z with potentially non-trivial null-space, e.g., a differential
operator (see [55, Chapter 8] for details on this setting). Moreover, it is possible to alter
the norm used in (2.7) to formally include a-priori knowledge about the solution.
In a static setting as above, there exist numerous theoretical results and numerical meth-
ods to solve linear inverse problems. However, there are various applications where the
inverse problem is not static but dynamic, e.g., computed tomography imaging suffering
from respiratory and cardiac motion, positron emission tomography or functional ima-
ging. Further applications and a general survey on dynamic inverse problems in imaging
can be found in [74].
In the dynamic setting, the data as well as the searched-for object are time-dependent,
even the forward operator can depend on time, leading to

A (t) c (·, t) = u (·, t) for t ∈ [0,T ] . (2.8)

We now consider A(t) : X → Y , c(·, t) ∈ X and u(·, t) ∈ Y for each t. Including the
temporal scale simply as another dimension into existing schemes changes the character-
istics of the inverse problem, thus time has to be appropriately incorporated. Still, simply
including an additional temporal smoothness prior can be a promising way depending
on the specific application, see e.g., [126, 127]. Certainly, it makes the approach more
generally applicable compared to more specific schemes. Using a variational framework,
reconstruction methods can specifically incorporate motion either by a motion model, see
e.g., [34, 35, 50, 61] or as a deformable template [42, 99]. Different classes of ill-posedness
for dynamic inverse problems with respect to the Lebesgue-Bochner setting were invest-
igated in [37].
Another large class of inverse problems that we briefly mention is defined by nonlinear
inverse problems. In this case, the problem is defined by

F (x) = u, x ∈ dom(F ) ⊆ X,u ∈ Y ,

where F : dom(F ) ⊆ X → Y is a nonlinear operator with domain dom(F ). Later on,
we consider a nonlinear problem numerically by splitting it into two linear subproblems.
However, there also exists theory on theoretical treatment of nonlinear inverse problems.
As this is not within the focus of this work, we refer to [55, 75, 112, 124, 130] for a
comprehensive study of different aspects of nonlinear inverse problems.
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MPI was invented by Bernhard Gleich and Jürgen Weizenecker at Philips Research in
Hamburg in the early 2000s. It is thus a relatively new medical imaging method based
on the nonlinear magnetization response of magnetic nanoparticles. MPI is a tracer-
based method, meaning a contrast agent consisting of Super-Paramagnetic Iron-Oxide
Nanoparticles (SPION) is injected into the body prior to MPI measurements and the
distribution of the tracer material is reconstructed in the following. There are numerous
potential applications like stroke detection [108], cardiovascular imaging [142], instrument
tracking during interventions [70] or stem cell monitoring [137, 147]; but to date MPI is
still in the preclinical stage.
The main advantages of MPI are its fast 3D acquisition speed and the high spatial resol-
ution. Acquisition times of less than 0.1 s compared to 1 s for CT and 10 s to 30min for
MRI allow for a significantly higher temporal resolution [38]. It has a higher sensitivity
in detection of tracers compared to standard methods as MRI or CT [38]. Moreover, no
background image of the tissue is obtained such that anatomical background structures
do not interfere with the structures of interest. The contrast agent and the magnetic fields
used in MPI are not harmful to the human body, whereas other standard methods as CT
use ionizing radiation. Another advantage is the proportionality of the generated signal
to the amount of SPIONs within the Field-Of-View (FOV).
This chapter is organized as follows. First, we describe the working principle of MPI and
derive several properties of the static forward operator in Section 3.1. More particularly,
we show compactness and positive definiteness and then derive the main result of this
chapter. We show that the static forward operator is non-vanishing over a compact time
interval that includes a nonstationary point of the field-free point trajectory. We need
this regularity later to apply the proposed joint approach for image reconstruction and
simultaneous motion estimation. In Section 3.2, we derive the dynamic MPI forward
model and consider the different time scales occurring in the problem. These first two
sections are based on [27] and results have first been published therein. We conclude this
chapter by Section 3.3, where the image reconstruction process for static MPI is described.
We start by deriving the discretization of the continuous problem and then introduce two
different reconstruction schemes, one based on the Kaczmarz method and one based on
primal-dual splitting. Both algorithmic approaches are applied to synthetic MPI data for
a comparison.

3.1. The static forward model

We now briefly introduce MPI and its functionality, for a comprehensive introduction
from mathematical as well as engineering perspective, we refer to [91]. An MPI scanner
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makes use of a time-independent magnetic field (selection field) HS : R3 → R3, which
has a Field-Free Point (FFP) in the center of the imaging device (see Figure 3.1a). An
FFP is the most common geometry, however, a scanner using a field-free line is also
considered in the literature [141]. We restrict ourselves to an FFP scanner in this work.
The magnetization of magnetic material is saturated by this field everywhere but close
to the FFP. This selection field is superimposed by a time-dependent magnetic field
(called Drive-Field (DF)) HD : [0,T ] → R3, which shifts the FFP in space through the
FOV denoted by Ω ⊂ R3. Typically, by the use of sinusoidal excitation functions, the

(a) Selection field.

Object

FFP

(b) Lissajous curve.

Figure 3.1.: The selection field HS has a field-free point (FFP) in the middle (dark blue) and
increasing field strength towards the boundaries enabling spatial encoding (a). The FFP is
shifted through the region of interest by a time-dependent drive-field. For sinusoidal excitation
functions, it follows a Lissajous curve (b).

movement of the FFP follows Lissajous curves (Figure 3.1b) and has highest speed at
the center and lowest speed at the edges of the FOV. One cycle of the FFP along that
curve is performed within the repetition time TR. When superimposing the DF, particles
in magnetic saturation will not react. Particles in the vicinity of the FFP, however, will
experience a strong magnetization and their magnetic moments align with the applied
magnetic field. The change of magnetization caused by the FFP movement thus induces
a voltage signal by law of induction [91]. This signal is measured by the receive coils of
the scanner. As the signal stems only from particles in close vicinity to the FFP, a direct
relation between signal and FFP location is established. This spatial encoding can be
used for image reconstruction. To mathematically model the signal generation in MPI,
we first describe the effective magnetic field H : R3× [0,T ] → R3 built by an MPI scanner
by the superposition of selection field and drive-field, i.e.,

H (x, t) = HD (t) +HS (x) .

We assume that the selection field is a linear gradient field in good approximation. This
means there exists a full-rank matrix G ∈ R3×3 such that

HS (x) = Gx.
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3.1. The static forward model

A rank two matrix would produce a field-free line, a geometry that we omit in this work.
Note that, in order to keep the area around the FFP contributing to the signal small, the
gradient strength has to be sufficiently high. However, the strength applicable in a human
scanner is limited due to physiological constraints and must not exceed about 3T/(mµ0),
limiting the spatial resolution. We can compute the trajectory xs : [0,T ] → R3 of the
FFP by

0 = HD (t) +HS (x)

= HD (t) +Gxs (t)

⇔ xs (t) = −G−1HD (t) .

The time derivative of the effective magnetic field is given by

Ḣ (x, t) = −Gẋs (t) ,

as H (x, t) = HD (t) +HS (x) = −Gxs (t) +Gx = G (x− xs (t)). The static MPI forward
operator A : X × [0,T ] → Y L for L ∈ N receive coil units is defined by

Ai (cs, t) =−
∫

Ω

cs (x)µ0m0R
T
i

[(
L′

β (∥H (x, t)∥2)
∥H (x, t)∥22

− Lβ (∥H (x, t)∥2)
∥H (x, t)∥32

)

H (x, t)H (x, t)T +
Lβ (∥H (x, t)∥2)

∥H (x, t)∥2
I3

]
Ḣ (x, t) dx,

(3.1)

for i = 1, ...,L and A = (Ai)i. Here, Ω ⊂ Rn denotes the FOV, cs : Ω → R+ denotes the
static particle concentration of tracer material, µ0 describes the permeability constant,
m0 is the absolute of a particle’s magnetic moment, R ∈ R3×L denotes the spatially homo-
geneous receive coil sensitivities (Ri being the i-th column of R), I3 denotes the identity
matrix in R3 and Lβ describes the dilated Langevin function, which is part of the used
equilibrium model assumed as the particle magnetization model. Concerning the spaces
X and Y , we imagine X = Lp̂

(
0,T ;Ll (Ω)

)
for appropriate p̂ and Y =

(
L2
(
0,T ; Ȳ

))L for
a reflexive Banach space Ȳ . This choice will arise naturally to ensure existence of a min-
imizer in the joint approach for motion estimation and image reconstruction in Chapter 5.
Coming back to the equilibrium model, the model assumes a thermal equilibrium of the
particles as well as a static magnetic field to be applied and is the most extensively studied
magnetization model in MPI. The (dilated) Langevin function Lβ : R → R is defined by

Lβ (z) =

{
coth (βz)− 1

βz
, for z ̸= 0

0, else,

for a given positive parameter β. The function is illustrated in Figure 3.2a. The mag-
netization modeled by the Langevin function is saturated for strong applied fields and
reacts sensitive to small changes of the applied field within the dynamic region close to
zero. The exact value of the dilation parameter models the physics behind the scanner
and depends inversely on the Boltzmann constant and the temperature. The derivative

33



3. Magnetic Particle Imaging
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(a) The Langevin function.
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Figure 3.2.: The Langevin function is used in the particle magnetization model. Its nonlinear
behavior as well as the saturation property are illustrated by (a). The derivative of the function
and its non-negativity is shown in (b).

of the Langevin function, depicted in Figure 3.2b, is given by

L′
β (z) =

{
−β 1

sinh2 (βz)
+ 1

βz2
, for z ̸= 0

1
3
β, else.

Remark. In Figure 3.2, we observe visually continuity of the Langevin function and its
derivative and positivity for positive input arguments, in particular for the input argu-
ments in (3.1) for a non-vanishing magnetic field. These properties are needed later and
can also be proven analytically. The proof consists of a simple calculation and is left out
for brevity.

The forward model for static MPI in n spatial dimensions in the time domain can be
similarly expressed by

u (t) =

∫

Ω

cs(x)s(x, t)dx, (3.2)

where u : [0,T ] → RL denotes the induced signal.
The system function s : Ω× [0,T ] → RL is described by

si (x, t) = −µ0R
T
i

∂m̄(x, t)

∂t
, (3.3)

for i = 1, ...,L and m̄ : Ω × [0,T ] → R3 denotes the mean magnetic moment of the
magnetic nanoparticles, i.e.,

m̄ (x, t) = m0Lβ (∥H (x, t)∥2)
H (x, t)

∥H (x, t)∥2
.

This shortened notation is introduced to limit the notational burden in the following.

Remark. The MPI signal is TR-periodic, enabling averaging over several temporal frames
to achieve a signal with higher Signal-to-Noise Ratio (SNR). This is a common procedure

34



3.1. The static forward model

in MPI as the measured signal usually has a very low SNR caused by the ill-posedness
of the forward operator (cf. Lemma 3.1). Note that measurements from at least one
full cycle of length TR are needed to reconstruct an image of the full FOV. Otherwise,
the trajectories of the FFP are not closed and some regions might not be scanned at all,
whereas in other regions there might be large gaps in the mesh defined by the trajectory.
Therefore, a loss of spatial resolution and severe artifacts might occur.

In the following, we denote by Its ⊂ [0,T ] a compact interval with nonzero measure that
includes the time point ts ∈ [0,T ]. We will specify the interval more precisely when
describing the different time scales in MPI. We now analyze the MPI forward operator,
starting with a compactness property.

Lemma 3.1: Compactness

Let Its ⊂ [0,T ] be compact and with nonzero measure for arbitrary time point
ts ∈ [0,T ]. Further, let Ω ⊂ R3 be simply connected and bounded. Moreover, let
∥Ri∥2 ̸= 0 for i = 1, ..., 3, xs ∈ C1 (Its), and ẋs ∈ Cb (Its). Assume that G ∈ R3×3 is
regular and c ∈ Ll (Ω) for arbitrary l > 1.
Then the operators Ai,ts : L

l (Ω) → L2 (Its) for i = 1, . . . , 3 with

c 7→
∫

Ω

c(x)si(x, t)dx,

for t ∈ Its are compact.

Proof. Let the operator inside the square brackets in (3.1) be denoted by F (x, t) to reduce
the notational complexity. The MPI forward operator for the i-th receive coil unit is
defined by a linear Fredholm integral equation of first kind with the kernel si : Ω×Its → R
given by

si (x, t) = µ0m0R
T
i F (x, t)Gẋs (t) for t ∈ Its .

For a comprehensive introduction to integral equations, we refer to [97]. We now apply
[90, Theorem 4.1.] (see Section B.1), to deduce si ∈ H0 (Its ;L

∞ (Ω)). The assumptions re-
quired for the theorem are fulfilled in our setting, as we shortly outline in the following. By
xs ∈ C1 (Its) and xs(t) = −G−1HD(t), we know that the DF HD (t) ∈ C1 (Its) and there-
fore HD (t) ∈ H1 (Its). Moreover, the selection field HS (x) = Gx for a full rank matrix G

fulfills HS ∈ L∞ (Ω)n and the receive coil sensitivity R also fulfills R ∈ L∞ (Ω)n. Thus [90,
Equation (4.3)] yields si ∈ H0 (Its ;L

∞ (Ω)) = L2 (Its ;L
∞ (Ω)), i.e., si ∈ L2

(
Its ;L

l∗ (Ω)
)

for any 1 ≤ l∗ ≤ ∞.
We now consider si as a Hilbert-Schmidt integral operator (see [3] for details) with

∥si∥ :=

(∫

Its

(∫

Ω

|si (x, t)|l
∗
dx

) 2
l∗

dt

) 1
2

= ∥si∥L2(Its ;Ll∗ (Ω)) < ∞,

with 1
l
+ 1

l∗
= 1 and 1 < l < ∞. Then by standard results from functional analysis (cf.
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3. Magnetic Particle Imaging

[3, Section 5.12]) it follows that the operator

(Ai,tsc) (t) =

∫

Ω

c (x) si (x, t) dx

defines a compact operator from Ll (Ω) to L2 (Its).

Remark. In an experimental setup, sinusoidal trajectories are common. As such traject-
ories are smooth, the assumptions xs ∈ C1 (Its) and ẋs ∈ Cb (Its) are not restrictive.

Remark. By Theorem 2.10 we know that compact operators define ill-posed problems.
The degree of ill-posedness of the MPI forward operator in terms of decay of the singular
values was analyzed in [90]. In a standard setting using the equilibrium magnetization
model, trigonometric FFP trajectories and a linear selection field, the singular values
decay exponentially yielding a severely ill-posed problem.

Remark. Lemma 3.1 is formulated for n = 3 spatial dimensions reflecting the intrinsic 3D
nature of MPI. The number of receive coils L = 3 is standard for MPI scanners. The
result can be transferred to n = 1 and n = 2 spatial dimensions as follows. We assume
that the field-free point −G−1HD(t) is contained in Ω for all time points t ∈ [0,T ]. It
is then feasible to restrict to lower dimensional vectors and matrices. We assume that
the concentration is Dirac δ-distributed with respect to the orthogonal complement of
the lower dimensional affine subspace of R3. The lower dimensional domain can then be
parametrized allowing for a reformulation of the integral [90].

We now prove the regularity assumption on the forward operator needed for Theorem 5.1,
i.e., AtsχΩ ̸= 0 for a compact interval Its with nonzero measure and arbitrary inner time
point ts ∈ Its . In order to do so, we first analyze the positive definiteness on a shifted
domain. For fixed t, we define the diffeomorphism Φt : Ω → Φt(Ω) ⊆ R3 by

Φt (ξ) := G−1ξ + xs (t) .

Applying the change of variables formula for x 7→ Φt(ξ) to the forward operator leads to

(AtsχΩ) (t) =

∫

Ω

µ0m0R
TF (x, t)Gẋs (t) dx

=

∫

Φ−1
t (Ω)

µ0m0R
TF (Φt (ξ) , t) |det∇Φt (ξ)|Gẋs (t) dξ

=

∫

Ωt

µ0m0R
T F̃ (ξ)

∣∣det G−1
∣∣Gẋs (t) dξ,

with Ωt := Φ−1
t (Ω) = G (Ω− xs (t)) and

F̃ (ξ) :=

(
L′

β (∥ξ∥2)
∥ξ∥22

− Lβ (∥ξ∥2)
∥ξ∥32

)
ξξT +

Lβ (∥ξ∥2)
∥ξ∥2

I3.

For this matrix we can verify the following auxiliary lemma.
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3.1. The static forward model

Lemma 3.2: Positive definiteness

Let ξ ∈ R3\ {0} be arbitrary. Then F̃ (ξ) ∈ R3×3 is positive definite.

Proof. We consider F̃ (ξ). Let ξ ∈ R3\ {0} and x ∈ R3 arbitrary. Consider first

xT

(
L′

β (∥ξ∥2)
∥ξ∥22

−Lβ (∥ξ∥2)
∥ξ∥32

)
ξξTx =

(
L′

β (∥ξ∥2)−
Lβ (∥ξ∥2)

∥ξ∥2

) (
xT ξ

)2

∥ξ∥22
.

Moreover,

xT Lβ (∥ξ∥2)
∥ξ∥2

I3x =
Lβ (∥ξ∥2)

∥ξ∥2
xTx,

yields

xT F̃ (ξ)x =

(
L′

β (∥ξ∥2)−
Lβ (∥ξ∥2)

∥ξ∥2

) (
xT ξ

)2

∥ξ∥22
+

Lβ (∥ξ∥2)
∥ξ∥2

∥x∥22

= L′
β (∥ξ∥2)︸ ︷︷ ︸

>0

(
xT ξ

)2

∥ξ∥22︸ ︷︷ ︸
≥0

+
Lβ (∥ξ∥2)

∥ξ∥2︸ ︷︷ ︸
>0

(
∥x∥22 −

(
xT ξ

)2

∥ξ∥22

)

︸ ︷︷ ︸
≥0, as (xT ξ)2≤∥ξ∥22∥x∥

2
2

≥ 0,

where we used the positivity of the Langevin function for positive input arguments, the
positivity of the derivative of the Langevin function and the Cauchy-Schwarz inequality.
To show positive definiteness, it remains to show that for x ̸= 0 at least one of the addends
is strictly larger than zero. We observe the following.

If (xT ξ)
2

∥ξ∥22
= 0, it follows that

(
xT ξ

)2
= 0 and thus

(
∥x∥22 −

(xT ξ)
2

∥ξ∥22

)
= ∥x∥22 ̸= 0 for x ̸= 0.

If
(
∥x∥22 −

(xT ξ)
2

∥ξ∥22

)
= 0, then (xT ξ)

2

∥ξ∥22
= ∥x∥22 ̸= 0 for x ̸= 0.

We have thus shown
xT F̃ (ξ)x > 0 for x ̸= 0.

This allows us now to verify the desired regularity property of the forward operator.

Theorem 3.1: Regularity of the MPI forward operator

Let Its ⊂ [0,T ] be compact and with nonzero measure for arbitrary inner time point
ts. Assume that the coil sensitivities Ri ∈ R3, i = 1, ..., 3, fulfill

span {Ri, i = 1, ..., 3} = R3.

Moreover, let xs ∈ C1 (Its) and assume there exists an inner point t∗ ∈ Its such
that ∥ẋs (t

∗)∥2 ̸= 0. Let the operator Ats : Ll (Ω) → L2 (Its)
3 be given by

c 7→
(∫

Ω
c(x)si(x, t)dx

)
i=1,...,3

, t ∈ Its , with si defined according to (3.3).
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3. Magnetic Particle Imaging

Then it holds that
∥AtsχΩ∥L2(Its )

3 > 0

and thus AtsχΩ ̸= 0.

Proof. In the following, we denote ys(t) := Gxs(t). As {Ri, i = 1, ..., 3} forms a basis
of R3, it holds that

∀t ∈ Its : ∃qi ∈ R, i = 1, ..., 3 :
3∑

i=1

qiRi = ẏs (t) .

Therefore, it exists q̃i ∈ C (Its) , i = 1, ..., 3 :
∑3

i=1 q̃i(t)Ri = ẏs(t). Continuity of those
functions q̃i follows from

[R1 R2 R3]︸ ︷︷ ︸
=:T̄R

q̃ = ẏs ⇒ q̃ = T̄−1
R ẏs,

as
∥∥T̄−1

R

∥∥ < ∞ and ẏs ∈ C(Its). For all t with ẏs (t) ̸= 0, it holds that

3∑

i=1

∫

Ωt

q̃i (t)R
T
i F̃ (ξ) ẏs (t) dξ =

∫

Ωt

ẏs (t)
T F̃ (ξ) ẏs (t)︸ ︷︷ ︸
>0 ∀ξ ̸=0

dξ > 0.

For t∗ ∈ Its with ẏs (t
∗) ̸= 0 there exists, by the continuity of ẋs, ε > 0 such that

0 <

∫

(t∗−ε,t∗+ε)




3∑

i=1

q̃i (t)

∫

Ωt

RT
i F̃ (ξ) ẏs (t) dξ

︸ ︷︷ ︸
=:ũi(t)




2

dt

=

∥∥∥∥∥
3∑

i=1

q̃iũi

∥∥∥∥∥

2

L2(t∗−ε, t∗+ε)

≤ 3
3∑

i=1

∥q̃iũi∥2L2(t∗−ε, t∗+ε)

≤ 3
3∑

i=1

∥q̃iũi∥2L2(Its )

≤ 3Cq̃

3∑

i=1

∥ũi∥2L2(Its )

= 3Cq̃ ∥ũ∥2L2(Its )
,

where Cq̃ > 0 denotes an upper bound on ∥q̃i∥L2(Its )
for i = 1, .., 3, which exists as

q̃i ∈ C (Its). Denoting now

(AtsχΩ) (t) =

∫

Ωt

µ0m0R
T F̃ (ξ)

∣∣det G−1
∣∣Gẋs (t) dξ
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3.2. The dynamic forward model

= µ0m0

∣∣det G−1
∣∣ ũ (t)

yields the result
∥AtsχΩ∥L2(Its )

> 0

and thus
AtsχΩ ̸= 0.

Remark. The assumption span {Ri, i = 1, ..., 3} = R3 is not restrictive. In practice,
a standard MPI scanner consists of orthogonal receive coils such that {Ri, i = 1, ..., 3}
forms even an orthogonal basis of R3.

Remark. By assuming ∥ẋs (t)∥2 ̸= 0 for all t ∈ [0,T ], it can also be shown by the same
arguments that for the particular choice of Its = {ts} the operator Ats : L

l(Ω) → R3 with
c 7→

(∫
Ω
c(x)si(x, ts)dx

)
i=1,...,3

fulfills (AtsχΩ) ̸= 0 for all ts ∈ [0,T ]. For our application,
this stronger assumption can be fulfilled by choosing an MPI scanner with sinusoidal
excitation frequencies for the DF. This choice results in cosine functions for ẋs (t), which
do not share zeros within the timespan [0,T ] if the excitation frequencies are chosen
accordingly. However, cosine excitation functions lead to sinusoidal derivatives, which
share a zero at t = 0 and thus do not fulfill the stronger assumption in general.

For the static MPI forward operator we showed the regularity assumption (AtsχΩ) ̸= 0

as well as boundedness of the operators Ats for desired ts, which is necessary to prove
existence of a minimizer in a joint motion estimation and image reconstruction problem.

3.2. The dynamic forward model

We now extend the MPI forward model to a dynamic tracer distribution
c : Ω× [0,T ] → R+, which yields

ui (t) = −µ0R
T
i

d

dt

∫

Ω

c(x, t)m̄(x, t)dx

= −µ0R
T
i

∫

Ω

c(x, t)
∂

∂t
m̄(x, t) + m̄(x, t)

∂

∂t
c(x, t)dx, (3.4)

for i = 1, ..,L assuming again a homogeneous receive coil sensitivity R. The extended
model was first mentioned in [63]. The full model can be used for reconstruction, but
existing algorithms based on spline interpolation and reconstructing at the temporal res-
olution of the Analog-to-Digital Converter (ADC) are computationally too expensive to
be implemented in practice [28]. The authors of [63] incorporate restrictions to periodic
motion in order to reduce the model to the static one.
Moreover, in case of a fully calibrated system function it is still an unsolved problem how
to obtain the full dynamic model. We limit ourselves to dynamic distributions whose
temporal change provides negligible contributions to the signal such that

ui (t) ≈ −µ0R
T
i

∫

Ω

c(x, t)
∂

∂t
m̄(x, t)dx =

∫

Ω

c(x, t)si(x, t)dx. (3.5)
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Considering dynamics in a discrete setting, the interplay of different temporal scales of
the measurement process and the dynamics, i.e., of the motion, is an important aspect to
take into account. For our application, the important scales are:

1. The scale defined by the ADC. This is the finest temporal scale and defined by
the frequency at which measurements are taken (cf. Figure 3.3, ADC sampling). A
standard MPI scanner as the Bruker Biospin used for acquisition of the OpenMPIdata

[94] delivers 53856 measurements per frame. It is not possible to reconstruct full
volumes from just one measurement on this scale.

2. The static reconstruction scale defined by the length of one DF cycle (cf. Figure 3.3,
Static reconstruction). This time is called repetition time TR or frame and for a
standard 3D Lissajous trajectory it amounts to 21.54ms, translating to 46 frames
per second. Reconstruction of volumes on this scale is possible although averaging
over multiple frames is often used in practice.

3. The scale of motion. This scale depends highly on the exact application. Consider-
ing cardiovascular imaging, the blood flow velocities differ depending on the type of
blood vessels. Maximum velocities inside veins are approximately 10 cm/s, whereas
in the aorta it is 12 cm/s and up to 45 cm/s are reached in the arteries [58]. This
translates to 2.2mm/frame, 2.6mm/frame and 9.7mm/frame, respectively. To de-
scribe the temporal scale corresponding to the motion, we define by ∆t the longest
duration, for which the tracer distribution remains approximately static, i.e.,

c(x, t) ≈ c(x, ts) ∀t ∈ [ts −∆t, ts] ,∀x ∈ Ω.

Note that if ts < ∆t, we take advantage of a previous measurement if possible.

MPI is no instantaneous measurement and c (x, ts) depends on u(t) for t ∈ [ts − TR, ts]

(cf. Figure 3.3, Quasi-static reconstruction).
If ∆t ≥ TR, the motion is called quasi-static and can be handled as static data in good
approximation. However, motion artifacts might occur as soon as the motion exceeds one
voxel per frame or even earlier, if the spatial grid does not fit the motion very well.
If ∆t < TR, various problems occur. First, movements during the measurement induce
smearing and ghosting artifacts. Second, the FFP trajectory is not closed for a specific
state of the tracer such that a loss of spatial resolution is expected. Third, the usual
data pre-processing cannot be applied as no frequency selection is possible in order to be
able to group and reconstruct data in the time domain. Applying a frequency selection
in the Fourier domain would impede application of the Fourier transform to switch to
the time domain. This results in a potentially lower SNR. Considering the velocities for
cardiovascular imaging mentioned above, this case is of practical relevance as the velocities
can easily exceed one voxel per frame.
We restrict ourselves mainly to the assumption ∆t = TR in the following, i.e., we assume a
quasi-static tracer distribution. This ensures full spatial resolution for each reconstructed
image frame but we expect motion artifacts as velocities will exceed one voxel per frame
in most settings. The case ∆t < TR is considered in Section 6.4, where we use data from
subintervals of a frame in order to respect the shorter quasi-static interval.
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3.3. Static image reconstruction

(a) ADC sampling. (b) Static reconstruction. (c) Quasi-static reconstruc-
tion.

Figure 3.3.: The measurement and data sampling process in MPI. The finest time scale in MPI
reconstruction is defined by the sampling rate of the Analog-to-Digital Converter (ADC) sampling
measurements at a frequency fS , see (a). For static reconstruction, we pool all measurements
obtained during one drive-field cycle and average over the cycles to gain data with high signal-to-
noise ratio (b). For reconstruction of dynamic sequences, we often consider the case of quasi-static
reconstruction (c). In this setting, the quasi-static interval ∆t (indicated in red) can be smaller
than the repetition time TR (indicated in blue). Still, data from a full drive-field cycle is used to
reconstruct the concentration within the field-of-view (cf. (3.6)).

For now, we consider

(Atsc) (t) =

∫

Ω

s (x, t) c (x, ts) dx, t ∈ Its := [ts − TR, ts] , (3.6)

for timepoint ts ≥ TR to reconstruct c(x, ts) from u obtained on Its . In order to reduce
the effects of this approximation in our reconstruction, we jointly reconstruct images and
the motion in between time frames such that both tasks will endorse each other.

3.3. Static image reconstruction

For numerical reconstruction of MPI images, we need discretization in space and time.
The discretization is derived for the static forward operator. We later on use the same
discrete operator as we simplified the dynamic model to the static one. Obviously, we
accept an error in the reconstruction by this simplification.
For the time discretization, the finest time scale we can use is defined by the ADC which
converts the analog measured signal to a digital one. Remember that reconstructing on
this time scale is not possible from one measurement alone, as this would imply recon-
structing image information on a 3D volume from a single vector in R3. However, group-
ing all information from one DF cycle (see Static reconstruction in Figure 3.3) allows for
reconstruction of the concentration within the 3D volume. For static concentrations, re-
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3. Magnetic Particle Imaging

construction is usually not performed on this time scale but on data obtained by averaging
over several DF cycles.

In MPI, image reconstruction methods can be divided into two groups: model-based
approaches and measurement-based approaches. The basic difference is given by the
forward operator used for reconstruction. In the model-based approach the particles’
physics as well as the measurement process are modeled by physical laws. This aims
at being able to obtain a forward operator for different experimental setups rapidly. To
achieve this, a magnetization model like the Langevin model presented above is applied
to describe the particles’ behavior. However, it is very challenging to balance simplicity
of the model and its accuracy, and therefore this is an ongoing direction of research. We
refer to [87] for an extensive review of existing model-based approaches. Currently, best
results are obtained by using measured system matrices, i.e., by using a measurement-
based approach. For these approaches, the forward operator is determined prior to the
measurements via a time-consuming calibration scan for a given combination of scanner
configuration, FFP trajectory and particle type. This is done by moving a delta probe
through the FOV and measuring the response signal at each sampling position. The
discretization in space is automatically obtained by this calibration.

Typically, we do not consider the forward model in the time domain as in (3.2), but in
the Fourier domain, leading to

û(k) =

∫

Ω

ŝk(x)c(x)dx, k ∈ {1, ...,K} ,

where K denotes the maximum frequency, û(k) denotes the Fourier coefficients of the
measured voltage u and ŝk(x) denotes the k-th component of the system function in the
Fourier domain. Theoretically, the integration domain is discretized using a regular grid
of N points and midpoint rule, yielding the approximate imaging equation

û(k) =
N∑

n=1

ŝk,ncn, k ∈ {1, ...,K} ,

or in matrix-vector form
Ac = u, (3.7)

where A ∈ CK×N denotes the discrete complex forward operator, u ∈ CK denotes the
measured signal and c ∈ RN denotes the discrete concentration. From this approximate
equation and the measured signal, we aim at obtaining the spatial distribution of the
tracer concentration within the FOV.

The forward operator in MPI is compact and thus ill-posed. Further, the system (3.7) is
highly underdetermined such that we need regularization for stable reconstruction.

Numerous different algorithms have been proposed in the context of MPI. Direct solvers as
QR decomposition are computationally too expensive [98]. Alternating Direction Method
of Multipliers (ADMM) [15, 77, 148], a row-action based method based on sparsity in
the wavelet domain [102], a combination of the Kaczmarz method with proximal steps
to include a sparsity prior [101], a combination of ADMM and the Kaczmarz method
[110] as well as a method based on a deep image prior [52] are, among others, studied
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in the literature. Recently, the focus lay on learning-based methods. A physics-driven
method based on a deep equilibrium model with learned data consistency was proposed
in [68]. In constrast to purely data-driven methods, physical constraints embodied in
the system matrix can be obeyed by the learned data consistency. In [7] the authors
propose a task agnostic prior trained on an MPI-like data set and integrate it into an
ADMM scheme. This prior is combined with the Kaczmarz method in [139], resulting
in a significantly shorter run time and high quality results on the considered phantom.
Integrating a deep-learning based approach into the post-processing scheme in order to
combine several Kaczmarz reconstructed images into one was proposed in [92], obviating
the need for manual parameter tuning.
The main challenge is to design a fast and efficient algorithm that can perform online
reconstruction but at the same time obtains images with high spatial resolution. The
current state-of-the-art reconstruction scheme builds on classical Tikhonov regularization
in combination with an L2-data fidelity term [93, 95, 116, 142] and solves the problem by
Kaczmarz iterations. However, an L1-data fidelity term was shown to have advantages
in [89]. A promising technique is the Stochastic Primal-Dual Hybrid Gradient method
(SPDHG), the algorithm we use for the image reconstruction subtask later on in this
work.
The remainder of the section is organized as follows. We introduce the Kaczmarz al-
gorithm as the most popular reconstruction method used in MPI in Section 3.3.1. Af-
terwards, we derive the SPDHG algorithm in order to be able to solve a more flexible
variational formulation of the problem in Section 3.3.2. Both algorithmic approaches are
compared on simulated data in Section 3.3.3.

3.3.1. The Kaczmarz method

The Kaczmarz algorithm solves an optimization problem based on classical Tikhonov
regularization in combination with an L2-data fidelity term [93, 95, 116, 142], i.e., the
optimization problem considered is given by

min
c

∥Ac− u∥22 + λ ∥c∥22 , (3.8)

for λ > 0. The iterative algorithm was proposed by Kaczmarz in 1937 [79]. Starting from
an initial guess c0, the problem (3.8) is solved by iterating

cn+1 = cn + λ
ui − ⟨ai, cn⟩

∥ai∥22
ai, n = 0, 1, ..., and i = n mod K + 1,

where ai denotes the i-th row of the matrix A and K denotes the number of rows of
A. The algorithm represents a row-action method, meaning that only one row of the
system is used and thus has to be held in memory per iteration. Each iteration performs
a projection of the current iterate onto the hyperplane defined by the next row of the
equation. The algorithm sweeps through all rows sequentially and then starts over. We
consider one full sweep through the rows as one iteration. The number of iterations can be
used as an additional regularization parameter. This procedure is called early stopping.
In case of Lissajous trajectories of the FFP, the rows of the measured MPI system mat-
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rix are almost orthogonal leading to fast convergence of the Kaczmarz method [93, 98].
Moreover, the algorithm can easily handle a non-negativity constraint [134]. However,
Tikhonov regularization is suboptimal for imaging applications as MPI. In the form used
in the MPI literature, the Kaczmarz method does not consider any neighborhood inform-
ation, i.e., neighbored pixels are assumed to be uncorrelated. Penalizing, e.g., the total
variation of the image would more naturally promote image features.
In summary, it can be said that Kaczmarz method is a simple algorithm with fast conver-
gence and low memory consumption, but it solves a problem that is not ideal with respect
to the imaging task in MPI reconstruction. More flexibility regarding the regularization
term would be beneficial, such that we proposed to use a primal-dual method to solve a
fairly general variational formulation in [146].

3.3.2. Stochastic primal-dual hybrid gradient method

This section is based on the just mentioned [146] and summarizes the approach and some
main results therein. The paper is joint work with Christina Brandt. We refer to [146]
for details. We consider a more general imaging equation, namely

min
c

1

p
∥Ac− u∥pp + αR (Bc) + βT (c) ,

where p ∈ {1, 2}, B ∈ L(X,Y ) and R as well as T proper, convex and lower semicon-
tinuous. Moreover, we assume T and the Fenchel conjugate R∗ to be prox-tractable. The
regularization term T enables integrating prior knowledge of c as for example sparsity
or non-negativity but also more complicated prior knowledge that concerns c directly.
The term R is mostly used for integrating smoothness assumptions by choosing B as a
differential operator. The assumptions on R and T allow for example for L1- and L2-
norms and also include the Tikhonov regularized formulation in (3.8) with p = 2, α = 0,
β = 2λ and T = ∥·∥2. More particularly, it allows for a TV prior, which is known to
accurately estimate discontinuities in images and thus promotes sparsity on the edge set
[36, 122, 134]. These characteristics match the features of images in general, and MPI
images in particular, very well. For illustration, we consider a specific formulation that
was shown to fit MPI images, namely non-negative fused lasso regularization in
combination with an L2-data fitting term [134], i.e.,

min
c≥0

1

2
∥Ac− u∥22 + α ∥∇c∥1 + β ∥c∥1 . (3.9)

This formulation can be solved by PDHG (see Section 2.2.1 and especially Algorithm 1).
In order to do so, the objective function is split into one part containing all functions work-
ing directly on c, i.e., f1(c) = I{c≥0}+β ∥c∥1 and one part containing all functions working
on linear operators applied to c, i.e., f2(c) = 1

2
∥Ac− u∥22 + α ∥∇c∥1. The corresponding

saddle point problem is derived and solved by a fix point scheme.
In this section, we consider SPDHG, a stochastic version of PDHG, proposed by Cham-
bolle et. al. in 2018 [41]. For this version of the algorithm, only a proper random
subset S of the dual variables is updated in each iteration. Proper in this context means
that every dual variable is updated with a positive probability. This approach reduces
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3.3. Static image reconstruction

the computational costs of evaluating the forward operator and its adjoint per iteration.
As a comparable amount of iterations is needed for convergence, this yields faster con-
vergence compared to PDHG. SPDHG has become widely applied in large-scale convex
optimization due to its scalability.
When applying SPDHG, the main procedure is the same as for PDHG, but we consider
the dual variable split into several variables. For the problem (3.9), the simplest splitting
is by defining one dual variable, namely y1, corresponding to the data term and the
system matrix A and one dual variable, namely y2, corresponding to the total variation
prior and the differential operator. The stochastic algorithm for this setting is stated in
Algorithm 2.

Algorithm 2 SPDHG for fused lasso regularization and L2-data fitting
1: Input: S = [A;∇], initial values c0, y0 = [y01, y

0
2]

T , step sizes τ , σ > 0, regularization
parameters α, β > 0, probability distribution p̃

2: for k=0,1,2,... do
3: choose data term or TV term update randomly according to probability vector p̃
4: if data term update then
5: yk+1

1 = proxσ( 1
2
∥·∥22)

(
yk1 + σAck

)

6: yk+1
2 = yk2

7: else
8: yk+1

2 = prox
σ
(
I{∥·∥∞≤α}(·)

) (yk2 + σ∇ck
)

9: yk+1
1 = yk1

10: end if
11: ck+1 = proxτ(I{·≥0}(·)+β∥·∥1)

(
ck − τp−1S∗ (2yk+1 − yk

))

12: end for

The closed form solutions for the proximal operators can be found in Example 2.4. The
extrapolation step in line 11 can be implemented in such a way that only an iterative
update is necessary in each iteration, taking into account the dual variable which was
updated in that specific iteration [41] and thereby reducing the computational complexity
further.
In the following, we give a brief summary of options to adapt SPDHG to MPI reconstruc-
tion as outlined in [146].
Using the separability of the MPI forward operator, we can split the dual variable cor-
responding to the forward operator row-wise into smaller blocks. In this manner, the
algorithm can even be transformed into a row-action method. However, it is sufficient to
split into data batches small enough to be easily handled in terms of memory limitations.
An intuitive idea is to split into three parts corresponding to the three different receive
coils of an MPI scanner. This was shown to fasten up convergence of the algorithm. The
probability distribution, according to which the updates in the dual step are chosen, can
be set freely. We thus choose them data adapted. Therefore, we proposed to link the
update probability to the frequency mixing order of the rows. Each row corresponds to a
certain frequency component

k∆f = |mxfx +myfy +mzfz| ,
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where mx,my,mz ∈ Z are called mixing factors and fx, fy, fz are the drive frequencies.
The mixing order corresponding to a certain row is then given by

mf = |mx|+ |my|+ |mz| .

For a realistic particle magnetization curve, we can expect a dropping signal with in-
creasing mixing order and thus a low data SNR for high mixing orders. Moreover, the
spatial pattern corresponding to certain rows, i.e., the spatial regions which contribute
to the signal, can be described by tensor products of Tschebyscheff polynomials. The
degrees of the Tschebyscheff polynomials are linked to the mixing orders, a low mixing
order is observed in combination with simple spatial patterns. Higher mixing orders are
combined with higher polynomial degrees and thus represent rather details than basic
information. This relation is illustrated by exemplary spatial patterns corresponding to
frequency component k and mixing order mf in Figure 3.4.

(a) k = 1633, mf = 5. (b) k = 2160, mf = 6. (c) k = 3842, mf = 9. (d) k = 4337, mf = 10.

Figure 3.4.: The spatial pattern of a certain row k of the MPI system matrix (corresponding
to a specific frequency) depends on the mixing order mf . The spatial patterns resemble tensor
products of Tschebycheff polynomials. This figure includes exemplary patterns observed for the
3D system matrix provided by the OpenMPIData initiative [94]. We depict one slice in the
x-y-plane per pattern. Lower mixing orders correspond to more basic patterns, whereas higher
mixing orders occur associated with more complex patterns.

Coming back to the probability vector for updates in the dual step in our algorithm,
we observed that higher update probabilities for lower mixing orders increase the quality
of reconstructed images after a smaller number of iterations. Moreover, it is beneficial
to stack real and imaginary parts of the same matrix row into different data batches.
Considering the linear operator ∇ used for discretization of the total variation, we found
that operator splitting is not needed.
Regarding the convergence properties, convergence in Bregman distance is proven for
constant step sizes and under no additional conditions on the functionals in [41]. Under
strong convexity assumptions and for very specific step size updates even quadratic con-
vergence rates are shown [41]. In general, appropriate step size rules are the bottleneck
for fast convergence. This is already known from deterministic PDHG and also holds for
SPDHG. We compared different step size rules empirically, including constant step sizes
and adaptive ones based on the variation of gradient directions or the current value of
the primal residual in [146]. We found that adaptive step sizes in general perform better
than constant ones. This again is a fact known already from PDHG. In [40] a broad
class of adaptive step size strategies (including primal-dual balancing step sizes) was in-
troduced and almost-sure convergence of the algorithm was proven. However, for the sake
of simplicity we stick to constant step sizes in this work.
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Figure 3.5.: Phantoms for static MPI simulations. The three phantoms are constructed in high
resolution and then used for simulation in a slightly lower resolution. Reconstruction is performed
on a coarser grid. The "Lemon" phantom features large homogeneous regions, whereas the "Dots"
phantom is very sparse and characterized by different concentration levels. The "Pi" phantom
is designed in order to resembles a fine vascular structure.

3.3.3. A numerical example on simulated data

In this section, we briefly demonstrate the applicability and strengths and weaknesses
of the aforementioned algorithms numerically. In order to be able to compute quality
measures of the reconstructed images, we use simulated data for these experiments. The
MPI scanner is modeled based on the Bruker Biospin scanner at the University Medical
Center Hamburg-Eppendorf. The complete scanner setup can be found in Section A.1.1.
We perform simulations under the assumption of static data, i.e., the forward model of
MPI is described by (3.1). Three spatial grids are involved to have realistic phantoms and
avoid inverse crime. The phantoms are designed on a high resolution grid (500×500×500

voxels), simulations are performed on a medium resolution grid (40 × 40 × 40 voxels)
and reconstruction is performed on a low resolution grid (20 × 20 × 20 voxels). We
consider three different phantoms, one consisting of large homogeneous regions (we call
this one "Lemon"), one very sparse phantom ("Dots") and one with fine continuous
structures resembling fine blood vessels ("Pi"). Each of the phantoms is thus designed
having a different potential application of MPI in mind. All three phantoms on the
different resolution levels are depicted in Figure 3.5.
Prior to reconstruction, we apply a standard data pre-processing procedure as is also
common for measured data. First, we perform a frequency selection. On measured data,
one would consider the SNR to select frequencies. For the simulated data, we select in
dependence on the maximum mixing order of frequency components and the maximum
mixing factor. For this example, we apply a threshold of 10 on the mixing factors and
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a threshold of 15 on the mixing orders. Afterwards, we apply row normalization and
remove outliers in the data. The removal of outliers can be omitted for algorithms using
an L1-data term as the proximal operator corresponding to the data step then includes
shrinkage and thus works as an outlier removal.
In order to find the best reconstruction parameters for each algorithm, we fix applicable
constant step sizes and test for each regularization parameter up to differences of order 10,
the early stopping parameter for Kaczmarz method is tested on the scale of full iterations.
Best parameters are determined based on the Structural Similarity Index Measure (SSIM)
of the reconstructed images with respect to the ground truth on the reconstruction scale.
An overview on different algorithms, their abbreviations and the used discrepancy and
penalty terms is given in Table 3.1. Note that SPDHG can be implemented for L1- and
L2-data discrepancy terms and we could additionally implement a standard L2-Tikhonov
penalty term, but decided for L1-, TV- and L2-norms on the gradient instead.

Table 3.1.: An overview on image reconstruction algorithms as well as discrepancy terms and
penalty terms used for each of them. The corresponding abbreviation is of the form Penalty-
Discrepancy for all SPDHG schemes and used throughout this chapter for readability. Moreover,
we state the number of parameters to tune for each algorithm and list the symbols describing
these parameters. A non-negativity term is implemented for each algorithm.

Algorithm Abbreviation Discrepancy Penalty Number
Kaczmarz Kac L2 L2 2 λ, stopping index
SPDHG FL-L1D L1 L1, TV 2 α,β
SPDHG FL-L2D L2 L1, TV 2 α,β
SPDHG L1-L1D L1 L1 1 β
SPDHG L2Grad-L2D L2 L2(∇) 1 α

In Figure 3.6 we show reconstructed images obtained by the algorithms stated in Table 3.1
and state the associated SSIM values compared to the ground truth. Each phantom profits
from different regularization approaches, which underlines the usefulness of a flexible ap-
proach enabling incorporating prior knowledge on the image structure. In a noise-free
scenario, all algorithms acquire high-quality results. Only L2Grad-L2D smooths out the
concentration too much, we thus consider L2-regularization on the image gradient as too
strong. When reconstructing from noisy data, the images obtained by the Kaczmarz
method suffer from lower quality. Moreover, using an L2-data term in general is prob-
lematic. Fused Lasso, i.e., total variation plus L1-norm (FL) regularization as well as
L1-regularization perform good, but although L1-L1D reaches higher SSIM values, FL-
L1D is able to reconstruct homogeneous regions within the image much better.
There is one setting in MPI reconstruction, where using an algorithm with neighborhood
respecting regularization is especially useful. As mentioned before, the FOV in MPI is
limited due to physiological constraints. More precisely the DF amplitude is limited due
to power loss, tissue heating [24] and peripheral nerve stimulation [123, 125]. Therefore,
to image larger volumes, it is necessary to combine multiple measurements of smaller
regions [2]. This procedure is called multi-patch measurement. Applying SPDHG
to reconstruct multi-patch MPI data was investigated in [145], which is joint work with
M. Boberg and C. Brandt. We showed that the quality of the reconstructed images in
a multi-patch scenario is significantly improved by using a regularization that takes into
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account neighborhood structures within the images and across the patches’ boundaries.
In particular, using a TV prior outperforms Kaczmarz reconstructed images in terms of
SSIM, Peak-Signal-to-Noise-Ratio (PSNR) and visual inspection on simulated as well as
measured data.

3.4. Summary and discussion

In this chapter, we introduced MPI. It is a preclinical imaging method with numerous
potential applications. We are interested in reconstruction of dynamic image sequences in
order to investigate, e.g., cardiovascular flow inside the human body. After deriving the
static forward model of MPI, we showed compactness of the static forward operator and
thus saw the ill-posedness of the image reconstruction task. With the help of an auxili-
ary lemma showing positive definiteness of the forward operator on a shifted domain, we
proved Theorem 3.1, the main contribution of this chapter. The theorem claims that on
a compact interval with nonzero measure, the forward operator has a positive operator
norm on the spatial domain Ω and is thus non-vanishing for non-empty Ω. In the next
step, we extended the forward model from static to dynamic tracer distributions. How-
ever, using the full dynamic model for image reconstruction is a challenging task on which
we do not focus in this work. Therefore, we used the full dynamic model only in order
to underline the expectable error in the reconstruction when disregarding the additional
part arising from the dynamics. After a comparison of the different time scales in MPI,
we decided to limit ourselves to quasi-static reconstruction, i.e., the temporal resolution
is limited to one DF cycle. Moreover, we use the static forward operator, although the
quasi-static time of the tracer agent might be shorter, for most of the following analysis.
However, the topic of subframe reconstruction will be considered in Section 6.4. Having
fixed the setting, we addressed the image reconstruction task itself. We briefly introduced
the state-of-the-art reconstruction method using the Kaczmarz algorithm. Afterwards,
we introduced SPDHG, a stochastic primal-dual splitting approach that yields great flex-
ibility in the reconstruction scheme, as it allows for various different data discrepancy and
regularization terms. A comprehensive study on the use of the algorithm in the context
of MPI image reconstruction was published in [146]. We summarized the main results,
fixed our standard regularization term, namely Fused Lasso regularization and discussed
the connection between frequency components in the forward operator and mixing orders
as well as Tschebyscheff polynomials. This is particularly interesting, as we use mixing
orders in our data pre-processing on simulated data in order to replace the standard SNR
thresholding. Applicability of the algorithms was shown on synthetic data for exemplary
phantoms.
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Figure 3.6.: Reconstructed images of simulated static MPI data. The upper three rows depict
reconstructions from noise-free data. For the bottom rows gaussian noise with a standard de-
viation of 40% of the maximum absolute induced voltage was added to the signal in the time
domain. This yields noise with a standard deviation of 90% - 130% in the Fourier domain.
Each column represents reconstructions by one specific algorithm, the SSIM value is indicated
in the bottom right corner for each image. Images reconstructed by Kaczmarz method, the
current state-of-the-art method, have high SSIM values in the noise-free setting. However, the
phantoms are not recognizable when reconstructed from noisy measurements. In general, the L2-
data discrepancy term struggles differentiating between signal and background noise as we can
also observe when considering FL-L2D and L2Grad-L2D algorithms. Reconstructions using an
L1-data fidelity term have significantly higher SSIM values for both Fused-Lasso and L1-penalty
term.
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Motion estimation, i.e., estimating the displacement field between two consecutive images
is a key problem in computer vision. There are numerous applications, e.g., studying
turbulences in meteorological images, analysis of flows in fluid dynamics and stabilization
of videos. In the context of medical imaging, possible applications include correction of,
e.g., respiratory motion in lung CT images or cardiac motion in PET images, acquisition
of flow patterns in the blood stream or instrument tracking during interventions. In this
chapter, our goal is to derive an algorithm to perform motion estimation on MPI image
sequences.
Those images are typically very sparse and have an empty background, which poses a very
specific task, having other challenges than for example motion estimation on real-world
video sequences. Let us consider motion estimation in general.
Two different approaches to motion estimation are distinguished. One can either use the
assignment approach, where we search directly for an optimal vector field v such that
every voxel xj at time point t+ 1 can be identified as

xj (t+ 1) = xi (t) + v(xi, t).

This approach conforms to the fact that image sequences are basically image frames
sampled along the time axis. It requires identification of feature sets that are to be
localized in each frame prior to the assignment task, in order to map the voxels of each
feature. Difficulties are caused, e.g., by occlusion and disocclusion of features. Moreover,
coping with ambiguity of locally optimal feature matches poses a problem.
The second approach is defined by differential methods, which are based on the assumption
that values of a feature mapping g are conserved during motion. This yields a PDE
constraint derived from

∂

∂t
g (x, t) = 0.

Deviations from that constraint are then penalized in a distance functional that could
be, e.g., a norm. Displacement fields are obtained by minimizing energy functionals
containing such a distance functional. We consider differential methods in this work and
discuss different conservation assumptions in Section 4.1.
In the literature, we can again find two different approaches to motion estimation by
energy functional minimization. One possibility is using a global energy functional going
back to the seminal work [76] proposing the popular Horn-Schunck method, and deriving
dense flow fields. On the downside, one has to accept severe fill-in effects in empty image
regions and a high sensitivity to noise [13, 62]. Particularly the noise sensitivity might
limit the applicability to medical imaging applications, as those images typically suffer
from noise artifacts.
The second idea is based on local energy functionals, which are defined in certain regions
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that might correspond to important features in the images. A seminal work on this branch
is [106], introducing the Lucas-Kanade method. Another popular method is the structure
tensor approach of Bigün and Granlund [20, 21]. Those methods are typically more robust
to noise but, as for the assignment approach, one has to identify important features in
a pre-processing step. More recently, a combined local-global method was proposed by
[33], which tries to make the best of both approaches. We apply some of their ideas to
our motion estimation algorithm in order to improve the sensitivity to noise.
Generally speaking, identifying important features in MPI images should not pose a prob-
lem. The images have large empty background regions. Thus, it poses no challenge to
distinguish reconstructed tracer material from that background. However, mapping those
features by a local method is expected to be a difficult task. The injected tracer agent
in MPI might either spread out over time or congregate at certain positions. Matching
feature sets from different images might not be possible. We thus consider global methods
hoping that the general direction and magnitude of flow can be recovered. The sparse
images in MPI pose a challenge to motion estimation in general, as the edge set on which
motion estimation algorithms work is extremely sparse.
Comprehensive surveys on optical flow methods and recent developments can be found in
[18, 59]. Main challenges in motion estimation are handling motion discontinuities, large
displacements and illumination changes and constraining the computational costs. Hand-
ling these issues in a unique method still remains an open problem. For our application
it is important to especially have a solid performance when facing large displacements as
well as illumination changes at a reasonable cost.

This chapter is organized as follows. We start by deriving the two motion models which
are used throughout this work, i.e., Optical Flow (OF) and Mass Conservation (MC),
from the corresponding conservation laws in Section 4.1. The models are briefly analyzed
and compared. Subsequently, we give a brief introduction to algorithmic approaches to
motion estimation in Section 4.2 and consider primal-dual schemes to solve the motion
estimation problem. We then address some general algorithmic challenges related to mo-
tion estimation, more particularly we address multiscale approaches and image warping.
Our main contribution in this chapter is the presentation of a multiscale and warping
approach for optical flow constrained motion estimation and a multiscale approach for
mass conservation constrained motion estimation. Finally, we present some simple nu-
merical examples serving as a test of functionality for the algorithms and discovering the
limits of applicability in Section 4.3. Further, we present a new structural prior based on
background images in order to improve the stability under noise. Moreover, we briefly
analyze the main cost factors and bottlenecks of the algorithms.

4.1. Motion models

A motion model links the image sequence c to the motion field v by defining a conservation
assumption. Classical assumptions are conservation of pixel brightness under motion [76]
or conservation of mass under motion [47]. Depending on the considered image sequences,
one can also assume, e.g., conservation of the pixel gradient magnitude or discontinuities
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a
b

c

t = 0 t = 1

⟲
Figure 4.1.: The aperture problem in 2D: only the normal flow, i.e., movement aligned with
the image gradient, can be observed but the correct direction cannot be observed (adapted from
[10]). The motion component b in direction of the image edges cannot be observed, instead we
only observe the component c. Thus, it is not possible to compute the correct value a.

[113]. In this section, we first derive the OF equation from the assumption of constant pixel
brightness under motion. Afterwards, we obtain the MC constraint from the assumption
of constant mass within the region of interest.
The OF constraint is the most common motion model linking image sequences c over a
space time domain (Ω× [0,T ]) ⊂ (R3 × R+) and motion v : Ω × [0,T ] → R3 in between
the image frames. It assumes that voxel intensities stay constant during the motion, i.e.,

c (x, t) = c (x+ δtv(x, t), t+ δt) (4.1)

for δt small. By Taylor expansion, one can derive

c (x+ δtv (x, t) , t+ δt) = c (x, t) + δtv (x, t)∇c+ δt
∂

∂t
c+O

(
δ2t
)
. (4.2)

The OF constraint is derived from (4.1) and (4.2) by subtracting c (x, t) and dividing by
δt ̸= 0. Moreover, we can neglect O (δ2t ) for δt small enough, resulting in

∂

∂t
c+ v · ∇c = 0.

There are several problems and limitations coming along with the OF constraint. First,
the assumption of voxel brightness constancy is violated in many practically relevant
applications due to changes in illumination or, in case of MPI images, due to dissemination
of tracer agent. As a result, OF cannot be used in case of, e.g., expansion or contraction
of an object. Moreover, the model cannot handle occlusion. We also have to assume a
high temporal resolution of our image sequence to be able to choose δt small enough for
the Taylor expansion to hold.
Another main issue is known as the aperture problem in 2D imaging. It means that only
movement aligned with the image gradient, i.e., perpendicular to edges, can be observed,
c.f. Figure 4.1. Displacement perpendicular to the gradient cannot be observed, as the
solution to the OF equation in 2D describes a line and not a single point in space.
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In n = 3 dimensions, the solution of the OF equation describes not only a line but a
plane [14, 132, 133]. The motion estimation problem based on the OF estimation is thus
ill-posed in the sense of Hadamard due to the non-uniqueness of the solution and requires
regularization for stable computation. While the OF equation is the most common motion
model, it has the main drawback that it cannot be used in case of deforming objects.
Having in mind our application, this means that nanoparticles are not allowed to gather
in one point or scatter over time, but have to stay in the same distribution and are only
allowed to move as a whole throughout the measurement.
An alternative motion model overcoming this main drawback is the MC constraint. In-
stead of assuming constancy of the voxels’ brightness, we now assume the mass to remain
constant under motion meaning the particles can gather or scatter as long as the total
amount of particles stays constant, i.e.,

∫

Ω

c (x, t) dx = K ∀t ∈ [0,T ]

for a constant K ≥ 0. We furthermore assume that mass cannot be created, annihilated
or teleported and thus for a subset S ⊆ Ω, we assume

d

dt

∫

S
c (x, t) dx =

∫

S

∂

∂t
c (x, t) dx,

i.e., the increase of mass inside S must equal the mass which is flowing into the subset
through its bounding surface S.
Note that the flow in a point x ∈ Ω at time t is given by c(x, t)v(x, t). We can thus
determine the flow towards the boundary of S by

∫

∂S
c (x, t) v (x, t) · n dS,

where n represents a normal vector to the boundary ∂S of S. We conclude that

d

dt

∫

S
c (x, t) dx+

∫

∂S
c (x, t) v (x, t) · n dS = 0.

Applying the divergence theorem yields
∫

∂S
c (x, t) v (x, t) · n dS =

∫

S
∇ ·
(
c (x, t) v (x, t)

)
dx,

and combining those results leads to

0 = d
dt

∫

S
c (x, t) dx+

∫

∂S
c (x, t) v (x, t) · n dS

=

∫

S

∂

∂t
c (x, t) dx+

∫

S
∇ ·
(
c (x, t) v (x, t)

)
dx.

Since this holds for arbitrary subsets S ⊆ Ω, we derive the MC constraint

∂

∂t
c+∇ · (cv) = 0.
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The relation between the OF constraint and the MC constraint is shown by

∂

∂t
c+∇ · (cv) = ∂

∂t
c+ c∇ · (v) + v · ∇c = 0.

For an incompressible flow v, the MC constraint coincides with the OF constraint. Ap-
plying motion estimation to dynamic MPI, we cannot assume incompressability as the
magnetic nanoparticles are expected to gather or scatter over time. A main drawback of
the MC motion model is, again, its disability to cope with occlusion. However, consider-
ing MPI images we do not expect occlusion and thus expect the MC motion model to fit
the images better than the OF motion model. One important aspect when deciding for a
motion model is the complexity of integrating it into numerical schemes. In Section 4.2.3,
we derive different schemes for the OF and MC constraint.

4.2. Algorithmic approaches

This section shortly derives classical motion estimation algorithms. We use some of
the ideas and concepts to improve the motion estimation algorithm used in succeeding
chapters. We first describe the method of Horn and Schunck, then shortly introduce the
Lucas-Kanade method and the combined local-global method.
The first method described in the following was proposed by Horn and Schunck in [76]
in 1981 for 2D image sequences, but can be easily adapted for 3D image sequences. The
method is based on minimizing the global energy functional

EHS (c, v) =

∫ T

0

∫

Ω

(
∂

∂t
c+ v · ∇c

)2

+ α
(
|∇v1|2 + |∇v2|2 + |∇v3|2

)
dxdt

for an image sequence c : Ω × [0,T ] → R+ and a motion field v : Ω × [0,T ] → R3. The
method thus considers the motion estimation problem for the OF constraint embedded
into an L2-norm and with a smooth spatial L2-regularization on the gradient of the flow
field. The corresponding Euler-Lagrange equations are solved by the Jacobi method.
The solution of these equations is unique [128]. Moreover, the solution benefits from
the penalty term α

(
|∇v1|2 + |∇v2|2 + |∇v3|2

)
as information is filled in in regions where

|∇c| ≈ 0. However, that penalty term reveals also a main drawback of the method: the
resulting flow fields are very smooth. The method thus faces problems at discontinuities
leading to sub-optimal results in many applications. Therefore, numerous variants of the
algorithm, which preserve discontinuities, have been proposed [4, 32, 33]. Brox et. al [32]
propose the modified L1-regularization

P
(
|∇v|2

)
=

√
|∇v|2 + ε, (4.3)

where ε is a parameter for numerical reasons only and set to ε = 10−3. An additional
weighting parameter was introduced by Bruhn et. al [33], who use the penalty term

P
(
|∇v|2

)
= 2β2

√
1 + |∇v|2 /β2, (4.4)
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which yields a similar problem for β ≈ 1.
An image-driven regularization approach which suppresses smoothing at or across image
boundaries was proposed by Alvarez [4]. As the authors are interested particularly in
large displacements, they do not use the linearized OF equation and instead solve the
Partial Differential Equation (PDE) system by calculating the asymptotic state via Gauss-
Seidel iterations. Although their goal resembles ours when having background information
available, their method is computationally too expensive for our application having in
mind online motion estimation.
In 1999, the authors of [9] analyzed the L1-norm for the optical flow constraint and showed
advantages compared to a quadratic L2-norm. An efficient duality-based algorithm for an
L1-norm on the optical flow constraint and additional TV regularization was proposed in
[144].
Coming back to the Horn-Schunck algorithm, in summary it can be said that it yields
dense (global) flow fields and a smooth flow, which is advantageous in many applications.
Drawbacks of the Horn-Schunck algorithm include it being relatively slow and its lim-
itations to small displacements. This is a general issue of algorithms based on the OF
equation and will be addressed in Section 4.2.3. As a global method, Horn-Schunck is
relatively sensitive to noise.
The Lucas-Kanade method proposed first in [106] assumes spatial constancy of the un-
known flow field within some neighborhood. Let Jρ (∇c) = Kρ ∗

(
∇c∇cT

)
, where Kρ is a

Gaussian kernel with standard deviation ρ. Then Lucas-Kanade solves the minimization
problem

min
v

vTJρ (∇c) v (4.5)

for v : Ω × [0,T ] → R3 constant in a small neighborhood. This local method requires
definition of features and neighborhoods beforehand and does not yield dense flow fields.
In 2005, the authors of [33] proposed the Combined Local-Global method (CLG) for OF
estimation. The scheme combines the Lucas-Kanade and the Horn-Schunck method to
accomplish a method that is both: robust to noise and yielding dense flow fields. It is
defined by the minimization problem

min
v

∫

Ω

vTJρ (∇c) v + α |∇v|2 dx. (4.6)

This problem now takes into account neighborhood information in the data term by
smoothing within a small neighborhood and is thus more robust under noise [140]. How-
ever, the underlying assumption of locally constant flow fields is not necessarily valid and
it certainly does not hold at discontinuities in the flow field.
As we are working on medical images which are typically polluted by noise, we expect
the smoothing of the input images to help in obtaining more robust motion estimates.
However, local constancy of the flow might or might not hold depending on, e.g., the
resolution of the underlying medical images.
The methods presented above solve a PDE system via the corresponding Euler-Lagrange
equations. The fixed-point algorithms to solve those equations tend to be computationally
expensive. However, they usually achieve high quality motion estimates. In practical
applications, we are often more interested in fast methods enabling, at the best of times,
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online motion estimation.

There are some key features which we expect from our motion estimation algorithm. We
aim at a global method yielding dense flow fields, robustness to noise, a low computation
time, flexibility regarding the regularization term enabling smooth and discontinuous flow
estimation and flexibility regarding the motion model enabling estimation of compressible
and incompressible flows. Therefore, a motion estimation algorithm that is expected to
meet those criteria is presented in the following. We consider another class of algorithms
to solve energy functionals arising from the differential approach to motion estimation.
Instead of using fixed-point schemes on the Euler-Lagrange equations, we now derive the
saddle point formulation of the minimization problems related to the energy functionals
and solve them by a primal-dual algorithm.

4.2.1. PDHG for the optical flow constraint

Consider now the problem

min
v

∫ T

0

βS (v(·, t)) + γ

∥∥∥∥
∂

∂t
c(·, t) +∇c(·, t) · v(·, t)

∥∥∥∥
1

L1(Ω)

dt, (4.7)

in order to determine v : Ω× [0,T ] → Rn, v ∈ Lq(0,T ;BV (Ω)n), q > 1 for a regularization
term S : BV (Ω)n → R. The input image sequence c is given and fixed, as well as the
regularization parameter β > 0 and the weighting term γ. Note that γ = 1 is a standard
choice when considering the motion estimation problem on its own. However, we need
the option to adapt the parameter in the joint approach later on. The L1-norm in the
data discrepancy term in (4.7) can be easily replaced by an L2-norm. Using the L2-norm
yields an optimization problem that is closer to the one considered by Horn-Schunck and
Lucas-Kanade, but aims at satisfying the motion model in an averaged sense. The L1-
norm on the other hand accepts outliers that do not fulfill the motion model as long as
it is fulfilled in most points and is thus more robust. The regularization functional S is
assumed to be proper, lower semicontinuous and convex as well as prox-tractable. For
our application, we usually consider, e.g., TV or L2-regularization of the gradient, i.e.,

S1

(
v (·, t)

)
= ∥∇v (·, t)∥L1(Ω)n or (4.8)

S2

(
v (·, t)

)
=

1

2
∥∇v (·, t)∥2L2(Ω)n .

However, it is also possible to choose standard Tikhonov regularization on v if the flow
field is not assumed to be very smooth, i.e.,

S3

(
v (·, t)

)
=

1

2
∥v (·, t)∥2L2(Ω)n .

We restrict ourselves to the exemplary case of an L1-data discrepancy term and penalty
term S1 in order to derive the update steps for our algorithm. We apply primal-dual
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splitting with primal functional f1 and f2 to be dualized defined by

f1 (v) =

∫ T

0

γ

∥∥∥∥
∂

∂t
c(·, t) +∇c(·, t) · v(·, t)

∥∥∥∥
1

L1(Ω)

dt,

f2
(
Cv
)
=

∫ T

0

β ∥∇v(·, t)∥L1(Ω)n dt.

The linear operator C is defined by

C =




∇ 0 0

0 ∇ 0

0 0 ∇


 ,

leading to the adjoint operator

C∗ =




−div 0 0

0 −div 0

0 0 −div


 ,

such that we can formulate the primal problem as

min
v

f1 (v) + f2 (Cv) .

The dual functional corresponding to f2 is given by

f ∗
2 (y1, y2, y3) =

∫ T

0

β
(
I{∥y1∥∞≤β} + I{∥y2∥∞≤β} + I{∥y3∥∞≤β}

)
dt,

as derived in Example 2.3. The saddle point formulation (see (2.2)) of the motion estim-
ation problem reads

min
v

max
y

∫ T

0

γ

∥∥∥∥
∂

∂t
c(·, t) +∇c(·, t) · v(·, t)

∥∥∥∥
1

L1(Ω)

+ ⟨y,Cv (·, t)⟩

− β
(
I{∥y1∥∞≤β} + I{∥y2∥∞≤β} + I{∥y3∥∞≤β}

)
dt.

Remark. Let us briefly consider existence of solutions to the motion estimation problem.
By Theorem 2.6, solutions exist for reflexive Banach spaces and a functional that is
bounded from below, weakly lower semicontinuous and coercive. The energy functional
fulfills these assumptions as it is convex and lower semicontinuous, which is equivalent to it
being weakly lower semicontinuous, such that a minimizer exists, e.g., on Lp(0,T ;Ls(Ω))

for 1 < p, s < ∞. A similar result holds for the dual of a separable normed space if
we assume a weak-∗ lower semicontinuous functional. We can consider Lq(0,T ;BV (Ω))

for 1 < q < ∞ as the dual of a separable Banach space. By the additional constraint
∥v(·, t)∥L∞(Ω) ≤ k∞ for each t ∈ [0,T ] for a constant k∞ we can enforce boundedness
of sublevel sets with respect to the weak-∗ topology. More particularly, the sublevel
sets are closed (w.r.t. the weak-∗ topology) as the energy functional is continuous and
bounded in norm due to the additional constraint. Therefore, the functional is weak-∗

58



4.2. Algorithmic approaches

lower semicontinuous and minimizers exist. Moreover, the assumptions for Theorem 2.8
are fulfilled such that Fenchel-Rockafellar duality holds and the saddle point problem is
equivalent to the primal problem.

4.2.2. PDHG for the mass conservation constraint

Consider now the motion estimation problem given by

min
v

∫ T

0

β

2
∥∇v(·, t)∥2L2(Ω)n + γ

∥∥∥∥
∂

∂t
c(·, t) +∇ ·

(
c(·, t) · v(·, t)

)∥∥∥∥
L1(Ω)

dt. (4.9)

The algorithm can again also handle an L2-norm as data discrepancy term and penalty
terms S1, S2 and S3, respectively. We confine ourselves to the specific case in (4.9) in order
to show how to derive the corresponding algorithmic updates by this example. Fenchel
conjugates and proximal operators needed for different choices are stated in Example 2.3
and Example 2.4. The problem is solved by primal-dual splitting with

f1 (v) = 0,

f2 (Cv) =

∫ T

0

β

2
∥∇v(·, t)∥2L2(Ω)n + γ

∥∥∥∥
∂

∂t
c(·, t) +∇ ·

(
c(·, t) · v(·, t)

)∥∥∥∥
L1(Ω)

dt

with the linear operator

C =




∇ 0 0

0 ∇ 0

0 0 ∇
∂xc ∂yc ∂zc




and its corresponding adjoint operator

C∗ =




−div 0 0 −c∂x
0 −div 0 −c∂y
0 0 −div −c∂z


 .

The primal problem
min
v

f1 (v) + f2 (Cv)

can thus be transferred to the saddle point problem

min
v

max
y

∫ T

0

⟨y,Cv (·, t)⟩ − 1

2β

(
∥y1∥22 + ∥y2∥22 + ∥y3∥22

)

− γ
(
I{∥y4∥∞≤γ} − ⟨ct, y4⟩

)
dt,

using the Fenchel conjugate f ∗
2 of f2 defined by

f ∗
2 (y) =

∫ T

0

1

2β

(
∥y1∥22 + ∥y2∥22 + ∥y3∥22

)
+ γ

(
I{∥y4∥∞≤γ} − ⟨ct, y4⟩

)
dt.
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Remark. Existence of solutions as well as applicability of Fenchel-Rockafellar duality can
be seen analogously to the OF case.

Using the above notations, the motion estimation algorithm with extrapolation in the dual
variable is given by Algorithm 3. The proximal operators corresponding to the functionals
f1 and f ∗

2 have been derived in Example 2.4.

Algorithm 3 PDHG algorithm for motion estimation
1: Input: initial values v0, y0, θ, stepsize parameters σ, τ , operators C, C∗

2: for k=0,1,2,... do
3: vk+1 = proxτf1

(
vk − τC∗ỹk

)

4: yk+1 = proxσf∗
2

(
yk + σCvk+1

)

5: ỹk+1 = yk+1 + θ
(
yk+1 − yk

)

6: end for

4.2.3. Algorithmic details: Operator discretization, multiscale
and warping

As proposed by [35], we use forward and backward differences for discretization of the
differential operator and its adjoint, respectively, for the spatial regularization terms.
Within the motion constraint, we use central differences, which are self-adjoint, for the
spatial derivatives and forward differences for the time derivatives to obtain a stable
scheme.

Multiscale plus warping for the optical flow constraint

As the linearized OF constraint is derived by a Taylor approximation, we note that it will
hold only for motion of small absolute value. Moreover, the maximum absolute value of
motion estimates is limited by the discretization of the differential operators which also
limit the detection range in which pixels can be compared. This extends the problem to
handle large displacements to the case of the MC constraint. To deal with larger displace-
ments between two consecutive frames, a coarse-to-fine strategy is algorithmically used.
There are two different basic approaches to the multiscale strategy. One either computes
only motion increments on each scale and warps images in between the different scales [32]
or one uses the results from coarser scales for initialization but then updates the whole
value in each iteration [111]. The choice also depends on the motion model used as we
will see, such that we combine motion increments and warping with the OF motion model
and initialization by coarser results with the MC constraint. The author of [51] proposed
a multiscale and warping scheme for variational large scale motion estimation based on
the OF constraint. They use an upscaled result from coarser scales as initial value on the
next finer scale and perform several refinements on each scale applying warping in between.

We now consider the approach used in this thesis. A coarse-to-fine strategy is a multi-
resolution approach to the motion estimation. The input image sequence is iteratively
down-sampled in the spatial dimensions in order to obtain a coarser version. On the
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coarsest scale, the motion considered is potentially small enough to be accurately estim-
ated and moreover, the computational burden on coarser grids is lower. The result from
a coarse scale is then prolongated to the next finer scale and either used for warping the
images of the next scale or as initial value for the motion estimate on the next scale.
Let z = 0, ...,Z, Z ∈ N denote the different scales in the coarse-to-fine scheme. By c0 we
denote the image on the coarsest scale and cZ ≡ c denotes the image on the finest scale,
i.e., on the original grid. The coarser images are obtained by applying a down-sampling
factor ηZ−z to the original image. If c ≡ c2 is for example of size 2m in each spatial
dimension, then for a down-sampling factor of η = 2, the image c1 on scale 1 is of size
2m/2 = 2m−1 in each direction and c0 on scale 0 is of size 2m/22 = 2m−2.
In case of the OF motion model, the coarse-to-fine strategy can be combined with warping.
Remark. Note that image warping can be implemented by a forward mapping or a reverse
mapping. When using a forward mapping, we iterate over the pixels of the source image
and compute the new position of each pixel in the destination image. The result is then
a floating point and we use either nearest neighbor or linear interpolation (or any other)
to re-grid the image. However, many source pixels can map to the same destination
and some pixels in the destination image might not be covered at all. For this reason,
warping is usually defined as a reverse mapping. We then iterate over the pixels of
the destination image and find the origin in the source image. The gray value to be
transported to the destination image is then again determined by bilinear interpolation
(or any other method). The comparison of warping methods is illustrated in Figure 4.2.
Reverse warping thus in a sense fulfills the gray value constancy assumption and can be
combined with the OF constraint, as that constraint will lead to invertible flow fields.
However, in case of MC as motion model, there might exist sources and sinks and the
flow field is then not invertible. We thus cannot perform reverse warping in general.

v

Image at t = 0 Image at t = 1

(a) Forward warping.

v−1

Image at t = 0 Image at t = 1

(b) Reverse warping.

Figure 4.2.: Forward warping versus reverse warping. Forward warping iterates over the input
image at t = 0 and computes the pixels position in the next image frame at t = 1. Pixels
can be uncovered (e.g., the gray pixels) or hit by more than one source pixel. Reverse warping
iterates over the pixels of the destination image at t = 1 and finds the corresponding position
in the source image at t = 0. The associated gray value is determined by means of bilinear
interpolation.

It was shown that the warping technique implements the nonlinearized OF equation [32].
Combining multiscale and warping means that a motion estimation algorithm is applied
on each scale, beginning from the coarsest one. The estimate from the previous scale
is prolongated to the next finer one and then used to warp the images accordingly. Af-
terwards, a motion estimation algorithm is applied on the next scale. The process is
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illustrated for the case of an input image sequence consisting of two time steps in Fig-
ure 4.3. Algorithmically, one has to consider that on each scale only optimal increments
are searched-for, whereas an initial value is already given. Moreover, we have to consider
the additional warping operator. The multiscale and warping algorithm is presented in
Algorithm 4.

Algorithm 4 Motion estimation with multiscale and warping
1: Input: image c = cZ , initial motion field guess v = vZ , number of scales Z, down-

sampling factor η
2: for z=Z-1,...,0 do
3: cz = imresize (η, cz+1) % build image pyramid
4: end for
5: for z=0,..,Z do
6: vz = imresize

(
ηZ−z, vZ

)
−∑k<z imresize

(
ηk−z, vk

)
% initial increments

7: end for
8: for z=0,...,Z-1 do
9: vz = detect motion(cz, initial value vz, priors vk for k < z)

10: vz = imresize (η−1, vz)
11: cz+1 = warp images(cz+1, vz)
12: end for
13: vZ = detect motion(cZ , initial value vZ , priors vk for k < Z)
14: v = vZ +

∑Z−1
z=0 imresize

(
ηZ−z−1, vz

)

The PDHG algorithm (for OF motion estimation) now applied on each scale is only
slightly affected by the transition to a multiscale plus warping scheme. In this case, the
formulation to be solved on scale z is given by

min
vz

∫ T

0

βS

(
vz(·, t) +

∑

k<z

vk(·, t)
)

+ γ

∥∥∥∥
∂

∂t

(
Wzcz(·, t), cz(·, t)

)
+∇

(
Wzcz(·, t)

)
· vz(·, t)

∥∥∥∥
1

L1(Ω)

dt,

where the operator Wz denotes a warping operator with respect to the previous (prolong-
ated) motion estimate vz−1 and ∂

∂t

(
Wzcz(·, t), cz(·, t)

)
describes the difference between the

warped images at the second time step and the original images at the first time step.
However, we do not consider Wz as part of the linear operator in the Fenchel-Rockafellar
setting, but consider Wzcz as input argument to our algorithm on each scale. Thus, we
have a change only in f2, in particular the previously applied motion has to be taken into
account when applying regularization such that

f̃2(Cvz) =

∫ T

0

β

2

∥∥∇
(
vz(·, t) + vprev

)∥∥2
L2(Ω)n

dt = f2(Cvz + Cvprev),

where vprev denotes all previously applied motion estimates prolongated to scale z. This
leads to

f̃ ∗
2 (y) = f ∗

2 (y)− ⟨y,Cvprev⟩ ,
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Figure 4.3.: Schematic diagram of the coarse-to-fine strategy with warping. First, image pyr-
amids are derived for both time steps from the finest to the coarsest scale by applying the
subsampling factor η. Afterwards, the motion estimation itself starts. Beginning on the coarsest
scale, a motion estimate is computed. After prolongation of the estimate v0 to the next finer
scale, the result from the coarser scale is used for (reverse) warping of the input image at the
corresponding scale in the image pyramid of the second time step. Next, a motion increment is
computed between the input image at time step zero and the warped image at time step one.
This process of prolongation, warping and increment computation is iterated over all scales. The
output is defined as the sum of motion estimates over all scales.
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such that
proxσf̃∗

2
(u) = proxσf∗

2
(u+ σCvprev) ,

i.e., we have a slightly shifted argument making sure that smoothness is enforced through-
out the added-up motion estimate and not only on one scale.

Multiscale for the mass conservation constraint

Remember that, in case of the MC constraint, we cannot use warping. First, the dis-
placement fields might not be invertible if sources and sinks exist and moreover, the
process of image warping itself assumes the pixels’ brightness constancy. However, we
need a multiscale strategy in order to deal with large displacements. We thus implement
a coarse-to-fine strategy, where the motion estimate on each scale is initialized by the pro-
longated result of the last scale [111] and then updated after the increment is computed.
The algorithm is given in Algorithm 5 and the process is illustrated in Figure 4.4.
We now briefly show that the implementation of PDHG for computation of increments is
again straightforward. Consider the saddle point formulation on scale z

min
δz

max
yz

f1 (vz−1 + δz) +
〈
yz,C (vz−1 + δz)

〉
− f ∗

2 (yz) ,

where vz−1 is known and fixed and δz is the searched-for increment. The steps for PDHG
algorithm are then as follows (we omit the scale indices to reduce the notational complex-
ity):

v + δk+1 = proxτf1
(
v + δk − τC∗ỹk

)
, (4.10)

yk+1 = proxσf∗
2

(
yk + σC

(
v + δk+1

) )
, (4.11)

ỹk+1 = yk+1 + θ
(
yk+1 − yk

)
.

The extrapolation step is not affected by the fact that we compute increments only. Also
in the dual update step (4.11), the summand σCv is used in every iteration but has to be
computed only once in advance. If C contains, e.g., a differential operator, the extended
argument of the proximal mapping ensures smoothness of the whole iterate v + δ instead
of the increment only. For the primal update step (4.10), we observe a correction by v

after the proximal step with shifted argument. For the formulation (4.9), we have f1 = 0

such that the proximal operator is the identity. In this case, v cancels out in (4.10).

4.3. Numerical validation on academic test cases

This section tests the motion estimation algorithms derived in the previous sections on
some synthetic academic test cases that are inspired by medical applications. We choose
phantoms that resemble images obtained by an MPI scanner, i.e., we use background-free
images and compare the algorithms in terms of accuracy of obtained motion fields, run
time and sensitivity to noise. Note that background-free images pose a special challenge
in motion estimation, as the edge information is very limited.
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Figure 4.4.: Schematic diagram of the coarse-to-fine strategy without warping. First, image
pyramids are derived for both time steps from the finest to the coarsest scale by applying the
subsampling factor η. Afterwards, the motion estimation itself starts. Beginning on the coarsest
scale, a motion estimate is computed. The motion estimate is prolongated to the next finer
scale and used as fixed part of the motion estimate on that scale. Next, the motion increment
is computed between the input image at time step zero and the image at time step one, given
the fixed part of the motion from the previous scale. This process of prolongation and increment
computation is iterated over all scales. The output is defined as the sum of motion estimates
over all scales.
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Algorithm 5 Motion estimation with multiscale
1: Input: image c = cZ , initial motion field guess v = vZ , number of scales Z, down-

sampling factor η, ṽ−1 = 0
2: for z=Z-1,...,0 do
3: cz = imresize (η, cz+1) % build image pyramid
4: end for
5: for z=0,..,Z do
6: vz = imresize

(
ηZ−z, vZ

)
−∑k<z imresize

(
ηk−z, vk

)
% initial increments

7: end for
8: for z=0,...,Z-1 do
9: vz = detect motion(cz, initial value vz, prior ṽz−1)

10: ṽz = imresize (η−1, vz + ṽz−1)
11: end for
12: vZ = detect motion(cZ , initial value vZ , prior ṽZ−1)

More particularly, we first comment on quality measures for displacement fields in Sec-
tion 4.3.1. In Section 4.3.2 we then compare the PDHG algorithm for OF constrained
motion estimation (PDHG-OF) and the PDHG algorithm for MC constrained motion es-
timation (PDHG-MC) for small displacements. Afterwards, we consider larger displace-
ments and compare the application of PDHG-OF and PDHG-MC directly on a single
resolution scale to application within multiscale schemes. In the succeeding Section 4.3.3,
we analyze the effect of gaussian smoothing in order to limit the influence of noise on the
input data. Furthermore, we introduce a structural prior for motion estimation in Sec-
tion 4.3.4. We conclude this section by analyzing the difficulty of parameter choices and
the run time as well as computational costs of the algorithmic approach in Section 4.3.5.

4.3.1. Quality measures for displacement fields

We compare the flow fields obtained by the different algorithms by two means. First, we
consider the euclidian distance between the ground truth vector field and the computed
displacement field relative to the norm of the ground truth. This value gives an indication
if the magnitude of the displacement is correctly computed. Second, we consider the
Averaged Angular Error (AAE) between the ground truth and the computed displacement
field. That is, we compute the angle between (normalized) ground truth and (normalized)
computed motion in every voxel and then average over all values. This measure indicates
the correctness of the direction of the computed displacements. Thus, the AAE also
helps in interpreting the euclidian distance. If we observe a high euclidian distance in
combination with a low AAE, the magnitude of motion is not accurately computed.
There are several difficulties with the quality assessment for displacement fields. First,
we assume by the choice of our motion estimation algorithms, that the displacement
between the image frames is linear as this is the only displacement we can compute. This
assumption is reasonable as long as the time steps are sufficiently small.
The second and more important problem arises from the nature of the ground truth.
Remember that we consider MPI images that typically have large empty background
regions. In these areas, no information on the motion is available. As a consequence,
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4.3. Numerical validation on academic test cases

different displacement fields might describe the correct displacement and the exact output
of motion estimation algorithms is mainly determined by the choice of regularization
terms. Moreover, what we conceive as the best result might be highly subjective. The
problem of different underlying motion fields is illustrated by Figure 4.5, where either of
the three displacement fields might be the ground truth for the motion in the input image
sequence.
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Figure 4.5.: Motion estimation without regularization does not result in unique solutions. Dif-
ferent displacement fields may correctly describe the displacement of the phantom in the input
images sequence (left column). The phantom at the first time step is indicated by the green
rectangle, the displacement between first and second time step might be caused by either of the
three displacement fields.

By the choice of TV regularization, we accept severe fill-in artifacts in empty regions
leading to spatially homogeneous motion estimates. Both AAE and L2-norm error are
computed on the full displacement field and not only in certain regions. This is due to the
fact that defining a region-of-interest is a highly complex task if not impossible for some
phantoms and again poses a subjective assumption on the correct displacement field. We
have to keep in mind that error estimates on displacement fields might not accurately
describe the quality of the fields.

4.3.2. Basic phantom - coarse-to-fine strategy

We start by considering a very simple phantom that consists of a square moving down-
wards with a velocity of one voxel per frame. We compute the displacement field by
PDHG-OF and PDHG-MC. As can be seen in Figure 4.6, both algorithms yield good
displacement fields even without applying a multiscale approach for this small displace-
ment (top row). The relative euclidian distances between the displacement fields and the
ground truth displacement are 0.08 and 0.05 for PDHG-OF and PDHG-MC, respectively.
However, even for a slightly larger displacement of two voxels per frame instead of one,
both algorithms can only accurately estimate the direction of the displacement, see Fig-
ure 4.6 (middle row), but not the absolute value. Both methods tend to underestimate
the displacement, such that best achievable relative euclidian distances are now 0.42 and
0.09 for PDHG-OF and PDHG-MC. This means a five times higher error for PDHG-OF
and a twice as high error for PDHG-MC.
By applying a multiscale and warping scheme (in case of PDHG-OF) or a multiscale
scheme (in case of PDHG-MC), the euclidian distance can be reduced to 1.2 · 10−4 and
1.4 · 10−3, respectively, i.e., the displacement field is accurately estimated. This is also
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Figure 4.6.: Computed motion estimates for the basic phantom show the necessity of applying
a multiscale scheme in combination with the primal-dual reconstruction algorithms. The input
images of the basic phantom are shown in the left column. The ground truth displacement is
one voxel in x-direction for the upper row (small displacement) and two voxels for the middle
and bottom row (large displacement). Both algorithms, i.e., PDHG-OF and PDHG-MC, are
able to recover the displacement field quite accurately without applying a multiscale approach
for the small displacement (upper row). However, for the large displacement, the quality of the
estimates decays without multiscale scheme applied (middle row). If a coarse-to-fine strategy is
applied, the displacement fields have significantly lower L2 and AAE error (bottom row).

confirmed by the results shown in Figure 4.6 (bottom row). We note that for the larger
displacement of two voxels, we obtain results with significantly higher precision than
PDHG without multiscale can obtain even for the small displacement.

The minimization of the objective value in a multiscale scheme compared to a single
scale scheme is depicted in Figure 4.7. The minimum value reached by the algorithm
using only one scale is significantly higher than the one reached by the multiscale scheme.
We conclude that using a multiscale approach can also avoid being trapped in a local
minimum (although the result obtained by the multiscale scheme might also be a local
minimum only, however, it is a significantly better one).

After this brief proof of concept for using a multiscale strategy, we denote the multiscale
and warping scheme using PDHG with the OF constraint on every scale by PDHG-OF and
the multiscale approach using PDHG for the MC constraint on every scale by PDHG-MC.
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Figure 4.7.: Decrease of the objective value for the basic phantom for a single scale scheme (a)
and a multiscale scheme (b). When applying PDHG-OF on the finest scale only, the algorithm
converges fast but the minimum objective value is at approx. 0.33. This is a local minimum,
as we can see by applying a multiscale algorithm. The minimum objective value reached by the
multiscale scheme is approx. 0.0005. Convergence on coarse scales needs more iterations, but
the iterations on these scales are not costly. On finer scales, only few iterations are needed for
the refinement and only small improvements in terms of the objective value are achieved.

4.3.3. Rotation phantom - gaussian smoothing

We now consider a phantom that meets the OF constraint. The phantom consists of a
ball that moves along a spiral, i.e., we have movement along a circular path and a slow
displacement along the z-direction. We consider four discrete time steps, projections onto
the x-y-domain are shown in Figure 4.8 (left column). The absolute displacements in
voxels are 3/2/1 in x-direction and −1/− 2/− 3 in y-direction and thus exceed one voxel
per frame.
Applying the coarse-to-fine algorithms to noise-free input images yields good results, as
is shown in Figure 4.8. The direction as well as magnitude of the displacements is well
recovered. For PDHG-OF, the AAE is below one degree, for PDHG-MC it is below six
degrees, as can be seen in Table 4.1. We notice that PDHG-OF performs better than
PDHG-MC. For the basic phantom, the opposite was true. Having in mind medical
imaging applications, in a realistic setting noise on the input images will be present. We
consider four different noise levels.
For noise level one, we add gaussian noise with standard deviation of 2.5% of the maximum
intensity in the images, for noise level two we consider a standard deviation of 5%, for
noise level three 10% and for noise level four, we have a standard deviation of 20%.
Let us first consider PDHG-OF. For noise level one, the results seem similar to the noise-
free case visually. Although errors in angle and magnitude are approximately three times
higher (see the errors in Table 4.1), the true displacement is almost recovered. For noise
level two, we now also observe larger angular inaccuracies, cf. Figure 4.9. This visual
impression is confirmed by the AAE and L2-discrepancy between the estimated flow fields
and the ground truth in Table 4.1. For noise level three, PDHG-OF still yields reasonable
estimates, whereas the motion estimates for images at noise level four are not resembling
the ground truth anymore.
Considering PDHG-MC, the algorithm faces severe problems under noise. While the

69



4. Motion Estimation

y

x

L2: 0.013, AAE: 0.63 L2: 0.110, AAE: 5.69

0

1

C
on
ce
nt
ra
ti
on

/
a.
u
.

y

x

L2: 0.014,AAE: 0.13 L2: 0.175, AAE: 1.40

y

x

L2: 0.005, AAE: 0.20 L2: 0.087, AAE: 4.30

0

1

2

A
b
so
lu
te

d
is
p
la
ce
m
en
t
in

vo
xe
ls
/
ti
m
es
te
p

Input images Ground truth displacement PDHG-OF PDHG-MC

Figure 4.8.: Computed motion estimates for the rotation phantom show significantly lower angu-
lar error for PDHG-OF compared to PDHG-MC. The rotation phantom (noise-free) is displayed
as projections onto the x-y-domain in the left column. The second column depicts the ground
truth displacement fields whereas the flow fields in columns three and four are computed by
PDHG-OF and PDHG-MC, respectively. Both algorithms yield results with comparable L2 er-
ror, but PDHG-OF has significantly lower angular error.

direction of the flow is still perceptible (but already has an angular error of more than ten
degrees), the magnitude of the computed displacement fields does not match the ground
truth already for noise level one. The quality of the resulting flow fields is comparable for
noise levels one to three and degrades more for noise level four.

The resulting displacement fields for levels two and three are depicted in Figure 4.9 and
Figure 4.10, respectively.

We emphasize that the visually perceived noise level in the input images is low compared
to standard medical images. For all noise levels, the main phantom can be clearly dis-
tinguished from the background. Up to a certain (algorithm dependent) point, the error
of the computed displacement field grows almost linearly with the noise on the input
image. However, at a certain noise level the algorithm is not able to produce meaning-
ful results. Having almost noise-free background significantly improves the results of the
motion estimation task. Thus, we expect motion estimates on MPI image sequences re-
constructed by primal-dual methods with FL regularization to achieve significantly higher
quality compared to motion estimates based on image sequences reconstructed by stand-
ard Kaczmarz method (cf. Section 3.3 for a comparison of different MPI reconstruction
techniques).
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Figure 4.9.: The displacement fields for the rotation phantom under noise are significantly better
when using PDHG-OF instead of PDHG-MC for the 5% noise level. The phantom (noise level
two, i.e., 5% noise) is displayed as projections onto the x-y-domain in the left column. PDHG-OF
(column three) recovers the true displacement (ground truth in second column) well, the impact
of the gaussian smoothing (column four) is minor. The estimates by PDHG-MC (column five)
are significantly worse with respect to L2-error and AAE. Without applying gaussian smoothing,
the magnitude of motion is not recovered at all. The angular errors are high compared to the
ones by PDHG-OF and even higher when applying gaussian smoothing (column six).
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Figure 4.10.: The displacement fields for the rotation phantom under noise suffer from severe
artifacts for the 10% noise level. The phantom (noise level three, i.e., 10% noise) is displayed as
projections onto the x-y-domain in the left column. PDHG-OF (column three) recovers the true
displacement (ground truth in second column) better than the other schemes for time steps one
and three, the impact of the gaussian smoothing (column four) is minor. For time step two, the
estimates by PDHG-OF and PDHG-OF-GS are worse than the results by PDHG-MC (column
five) and PDHG-MC-GS (column six). PDHG-MC underestimates the magnitude of motion,
whereas PDHG-MC-GS overestimates it.
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Table 4.1.: The mean AAE and the relative euclidian distance between estimated displacement
fields and the ground truth displacement for the synthetic rotation phantom (averaged over three
time steps, i.e., three different displacements, and 100 runs of each algorithm) for different noise
levels and algorithms.

Noise-free Level 1 Level 2 Level 3 Level 4
0% 2.5% 5% 10% 20%

Algorithm L2 AAE L2 AAE L2 AAE L2 AAE L2 AAE
PDHG-OF 0.01 0.32 0.03 0.66 0.09 2.43 0.24 8.52 0.73 41.34
PDHG-OF-GS 0.01 0.28 0.04 0.85 0.06 1.57 0.23 7.63 0.68 36.52
PDHG-MC 0.13 3.80 0.56 10.93 0.60 12.03 0.67 13.49 0.79 19.44
PDHG-MC-GS 0.14 4.74 0.42 10.65 0.65 15.77 1.27 24.34 0.76 19.55

Moreover, the quality of the resulting motion estimates varies strongly for different re-
presentations of noise. The AAE and L2-error values in Table 4.1 are mean values over
100 runs and have high standard deviation. The standard deviations relative to the mean
errors are presented in Table 4.2.
In order to obtain more stable results, we apply gaussian smoothing as proposed for the
CLG method [33] (see Section 4.2). For PDHG-OF the implementation is straightforward.
We apply gaussian smoothing with a kernel with standard deviation 0.5 to the spatial
image derivatives and denote the algorithm by PDHG-OF-GS. For PDHG-MC, the image
derivatives are not used directly in the computational scheme. Due to the form of the MC
constraint, the derivative of cv is used within the algorithm. Smoothing the differential
of the product allows undesired deviations of v. Instead, we apply gaussian smoothing
already to the input images c. This has the advantage of not smoothing v within the
algorithm but by smoothing the image instead of the derivatives, we do not only cancel
noise but also smooth edges and thus impede motion estimation.
PDHG-OF-GS improves the motion estimation under noise compared to PDHG-OF. The
AAE is significantly lower compared to the one achieved by PDHG-OF for noise levels
two to four (see Table 4.1). As expected, the differences are minor for the noise-free case
as well as for noise level one.
PDHG-MC has even worse results if combined with gaussian smoothing, see PDHG-MC-
GS in Table 4.1 and Table 4.2. As explained above, we relate this to smoothing at the
wrong end. Resulting displacement fields for levels two and three are depicted again in
Figure 4.9 and Figure 4.10.
We conclude that gaussian smoothing is useful when applying PDHG-OF to potentially
noisy data, but cannot be applied when using PDHG-MC.

Table 4.2.: The mean L2-error and AAE as well as their standard deviations relative to the
mean value between estimated displacement fields and the ground truth displacement for the
synthetic rotation phantom for different noise levels and algorithms.

Level 1 Level 2
2.5% 5%

Algorithm L2 σ AAE σ L2 σ AAE σ
PDHG-OF 0.03 21% 0.66 70% 0.09 41% 2.43 72%
PDHG-OF-GS 0.04 44% 0.85 72% 0.06 26% 1.57 60%
PDHG-MC 0.56 2% 10.93 27% 0.60 3% 12.03 37%
PDHG-MC-GS 0.42 65% 10.65 62% 0.65 111% 15.77 46%
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The experiments on the rotation phantom show the importance of having clean input
images not corrupted by noise. Therefore, when considering MPI image sequences, we
choose a regularization method that cancels noise effectively. Moreover, it is important to
preserve edges in the input images. Trading noise for edges was done by using gaussian
smoothing and did not yield the desired outcome. In the next section, we propose a
regularization method incorporating edge information explicitly. That method is derived
for the PDHG-MC scheme, where the gaussian smoothing is not applicable.

4.3.4. A structural prior for motion estimation

MPI data is often combined with MRI images to obtain background information on the
considered tissue in order to enhance interpretability of images and to observe function-
ality of organs. Those images can be laid underneath the MPI images in a last processing
step, but we can also use this prior knowledge to improve image reconstruction and motion
estimation. In [15], it was shown that a structural prior based on information provided
by MRI significantly improves the image reconstruction in MPI. A structural prior based
on MRI images for PET reconstruction was proposed in [53]. Therein, the authors pro-
pose a convex prior, which reduces locally to TV if no a-priori knowledge is available. In
this work, we consider a structural prior not for the image reconstruction task but for
the motion estimation task in order to obtain a more robust algorithm with respect to
noisy input data. The remainder of the section is structured as follows. We first derive
the prior theoretically and comment on its integration into the existing PDHG scheme for
motion estimation. We then present a brief numerical proof of concept based on academic
examples.

Let B : Ω → R describe a background image obtained by, e. g., an MRI scan. The edges of
such a background image can then be described by the gradient of the image, in particular
the gradient ∇B is orthogonal to the edges of the background image B. Let us imagine
the application of blood flow imaging and a background image which depicts the patients
vascular system. Physically, a blood flow is likely to occur in direction of the blood vessels,
i.e., aligned with the vessels’ walls. A flow orthogonal to the walls or through the walls
of the vessels is unlikely. More precisely, a flow of small magnitude might occur in that
direction, however, a strong flow in that direction is very unlikely. Let us now incorporate
this idea into a penalty term. We propose a penalty term P : BV(Ω)n → R given by

P
(
v(·, t)

)
= P

(
v(·, t)

)
∥v(·, t)∥ ,

where P : BV(Ω)n → R accounts for the directional penalization. The magnitude of the
flow is taken into account by the multiplication with the norm of the displacement v.
We now define the term P based on the following considerations. A flow v, which is
orthogonal to ∇B is parallel to the edges of the background image and thus parallel to,
e.g., walls of blood vessels. This flow is highly plausible and should not be penalized. In
contrast, a flow v, which is parallel to the gradient of B is orthogonal to edges of the
background image. This is the unlikely case of a flow through an edge, which marks, e.g.,
the vessel walls. We thus want to penalize such a flow.
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We define
P
(
v(x, t)

)
=
∣∣cos

(
∇B(x), v(x, t)

)∣∣ ,
and obtain

∣∣cos
(
∇B(x), v(x, t)

)∣∣ =
∣∣∣∣
〈 ∇B(x)

∥∇B(x)∥ ,
v(x, t)

∥v(x, t)∥

〉∣∣∣∣ =
1

∥v(x, t)∥

∣∣∣∣
〈 ∇B(x)

∥∇B(x)∥ , v(x, t)
〉∣∣∣∣ ,

which yields

P
(
v(x, t)

)
=

∣∣∣∣
〈 ∇B(x)

∥∇B(x)∥ , v(x, t)
〉∣∣∣∣ .

This penalty term is proper, convex and lower semicontinuous. Moreover, it reduces
locally to zero if no background information is available, i.e., if no edges are present in the
background image. As we combine it with a TV prior in our setting, the overall penalty
term then reduces to TV locally. It can be easily integrated into the PDHG scheme for
motion estimation with the MC constraint as follows. In this setting, we note that (using
the same notation as in Section 4.2)

f1(v) =

∫ T

0

∣∣∣∣
〈 ∇B

∥∇B∥ , v (·, t)
〉∣∣∣∣ dt.

Simple calculations yield the proximal operator

proxτf1 (u) =





u+ τ ∇B
∥∇B∥ , if

〈
∇B

∥∇B∥ ,u
〉
< −τ

u, if − τ ≤
〈

∇B
∥∇B∥ ,u

〉
≤ τ

u− τ ∇B
∥∇B∥ , if

〈
∇B

∥∇B∥ ,u
〉
> τ

defined pointwise in time. For illustration of the operator, let us consider the following
example. Assuming u to be normalized, the first case,

〈
∇B

∥∇B∥ ,u
〉
< −τ corresponds to an

obtuse angle between the normalized gradient of the background image and the motion
estimate u. In this case, shifting the motion estimate into the direction of −∇B leads to a
more acute angle and thus aligns the direction of motion with the edges in the background
image. The opposite holds for the third case. This behavior is illustrated by Figure 4.11.
The parameter τ defines a region where we accept the angle between motion estimate and
image gradient.
Unfortunately, it is not straightforward to integrate a similar penalty into the PDHG-OF
scheme. The prior cannot be integrated into the primal part of the functional, as the
resulting functional is then not prox-tractable, i.e., the proximal operator is not easy to
compute. Thus, we need to consider another algorithmic scheme. As this short section
serves as a first proof of concept for integration of a structural prior into a motion es-
timation scheme, we decide to limit ourselves to the PDHG-MC scheme and leave the
generalization to other motion models for future work.

Numerical evaluation

To evaluate the angular penalization based on background images, we first consider a
simple toy example. The phantom consists of two time frames. In each frame, a cuboid
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∇B

background image edge

v

v − τ∇B

(a) Acute angle:
〈

∇B
∥∇B∥ ,

v
∥v∥

〉
> 0.

∇B

background image edge

v

v + τ∇B

(b) Obtuse angle:
〈

∇B
∥∇B∥ ,

v
∥v∥

〉
< 0.

Figure 4.11.: The proximal operator of the directional penalty term for motion estimation for
acute and obtuse angles. For acute angles in (a), the proximal operator enlarges the angle
between the background gradient ∇B (blue) and the motion estimate v (red). For obtuse angles
in (b) the angle is reduced for τ sufficiently small.

based on a square of size 3 × 3 voxels is depicted. The square is placed randomly on a
domain of 21×21 voxels within the image domain of 30×30 voxels for the first time step.
For the second time step, it is placed randomly within a 9×9 neighborhood of the center of
the first frames’ position. This yields 32 different possible directions of the displacement
with a magnitude varying from 0 to 5.66, in total we have 81 different displacements.
In the following, we compute motion estimates for 80 different displacements (leaving
out the case of no displacement) for three different background versions and compare
the effect. When computing motion estimates without any structural prior, PDHG-MC
yields a mean AAE of 8.5 degrees. Note that we have a noise-free setting for this first
experiment.
First, we use optimal background information for the searched-for displacement. More
particularly, the background images consist of a path connecting the two squares. An
illustrative background image for a specific phantom is depicted in Figure 4.12b.

(a) An exemplary
phantom.

(b) The optimal back-
ground image.

(c) Background with
slightly altered slope.

(d) Background with
distraction.

Figure 4.12.: An exemplary phantom and background options for evaluation of the structural
penalty term for motion estimation based on a background image and its edges.

In this setting, the mean AAE over the 80 different ground truth displacement mappings
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(leaving out the case of no displacement) is reduced from 8.5 to 4.37, i.e., by 49% by incor-
porating the background information. The L2-norm error thereby stays constant. Next,
we slightly change the background information by using a different slope of the tunnel in
which the phantom squares move, see Figure 4.12c. The slope is altered by increasing or
decreasing it randomly by 1. In this case, the mean AAE can be reduced to 7.15, which
translates to a reduction by 16%. Further, we add two balls as distraction elements to
the background, where one of them might coincide with the tunnel, see Figure 4.12d.
In this setting, the AAE can be reduced to 5.14, i.e., by 40%. This experiment serves
as a proof of concept and shows the applicability of the penalty term. We observe that
our structural prior works as expected, edges in the background image that are parallel
to the flow significantly increase the angular accuracy of the flow estimates. However,
also non-optimal background information in terms of edge direction compared to the flow
direction yield an improvement.

Next, we consider a slightly more complex phantom, i.e., the rotation phantom from
Section 4.3.3. We use this phantom in order to analyze the effect of a more complex
background image as well as the effect of noise on the input images. The ball phantom
moves along a circular path which we use as background information. The background
image is depicted in Figure 4.13a. We observe edges in all different directions in the

(a) Full background, high
resolution.

(b) Full background, re-
construction resolution.

(c) Framewise background.

Figure 4.13.: A background image for the rotation phantom. The full fine resolution background
from (a) is downsampled to match the resolution of the phantom in (b). The position of the
phantom during the first four frames is indicated by the circles. A partial background based on
the position of the phantom during the first two frames (indicated by the circles) is depicted in
(c).

background image depending on the spatial position of the edge. This poses a problem
in combination with the TV prior which assumes a homogeneous direction of the motion
estimates through space. The two priors thus pull the algorithmic solution to opposed
states, leading to a solution where the direction of the motion estimates is influenced
strongly by edges being far apart from the considered phantom position. In a noise-free
scenario, application of the full background image as in Figure 4.13a does not lead to a
significant change of the AAE if the parameter is small, for larger parameters the AAE
even increases. In the low noise scenario, i.e., when considering 2.5% noise on the input
images, the AAE even increases by a factor 7 from 10.93 to 75.50. Similar increases are
observed for higher noise levels.
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One possibility to deal with the background versus TV prior problem is to consider
framewise background images instead of the full background. In this case, we define
the region-of-interest as the neighborhood of the phantoms position in a certain frame
and its succeeding frame. This neighborhood is then extended by gaussian smoothing to
a slightly larger area. The original background image is only considered in this region and
set to zero everywhere else. An exemplary framewise background image is depicted in
Figure 4.13c. In this setting, we can still assume the motion fields to be spatially homo-
geneous without posing a contradiction to the background prior. In a noise-free scenario,
the influence of the background penalty term is again negligible for small parameters.
However, the mean AAE can be reduced from 10.93 to 7.75, i.e., by 29% in the low noise
scenario (2.5%). With 5% noise on the input images the mean AAE decreases from 12.03
to 7.9, i.e., again by more than 30%. In the high noise scenario, i.e., with 10% noise
added on the input images, the AAE with framewise background priors applied is only
8.6 instead of 13.49 previously. The decreases in terms of the AAE are summarized in
Table 4.3. Consulting Table 4.1 we see that PDHG-MC now achieves results of similar
quality compared to PDHG-OF for the higher noise levels.

Table 4.3.: Decrease of the mean AAE when incorporating framewise background images into
the reconstruction scheme for the synthetic rotation phantom for different noise levels.

Noise level Noise-free (0%) Level 1 (2.5%) Level 2 (5%) Level 3 (10%)
AAE Reduction 0% 29.1% 34.3% 36.2%

Another possibility to deal with the oppositeness of the TV prior and the structural prior
is to abandon the idea of spatially homogeneous flow fields and use another prior. A
reasonable option would be a classical L2-Tikhonov term on the motion fields. With
this choice, we allow for spatially inhomogeneous motion fields. Practically, a drawback
is the more difficult qualitative evaluation of the resulting fields as no ground truth is
available in this case. We thus have to visually inspect the motion fields in general and
can combine this with a local AAE criterion within the region-of-interest, e.g., the spatial
position of the phantom. For our example above the background image consists of large
homogeneous regions. In these regions, we do not have edges to incorporate into our
penalty term. If combined with regularization of the gradient of the displacement fields,
i.e., TV regularization, this is not restrictive as the fill-in effect transports knowledge
about edge directions through the spatial region. If, however, combined with L2-Tikhonov
regularization, we do not have such a transport property. Thus, in each spatial position,
only local edge information from that position exactly is available. Applying this idea
to the synthetic data experiment above does not yield good results. The resulting flow
fields have a local AAE of approximately 40 degrees both with and without background
information incorporated. However, this might be due to the very sparse input images
and background image in this example.
In summary, we note that incorporating background information for angular penalization
of flow fields can increase the directional accuracy. If the temporal resolution is high
enough such that we expect piecewise linear displacements and if we expect only one
relevant direction of displacement per frame, we suggest using a framewise background
image and a TV prior. This stabilizes the resulting flow fields in case of noisy input data.

77



4. Motion Estimation

If we expect a more complex flow, we should not use a TV prior. In this case, we can
incorporate a full background image.

4.3.5. Parameter tuning, run time and cost

In this section, we briefly comment on the applicability of the motion estimation approach
in practice, focusing on run time and computational bottlenecks.
However, we first consider the parameter tuning. Parameter tuning is a major challenge
for variational optimization problems in general. A stable parameter choice is important
for the applicability in practice, as the costs of permanently tuning a parameter are
high and parameter tuning is a difficult task if no ground truth solution is available.
Our algorithmic scheme has two main parameters, in particular we have the smoothness
parameter β and the data fidelity parameter γ. In standard motion estimation schemes
the parameter γ is set to one and fixed. In our case, we need γ explicitly when using the
motion estimation scheme inside the joint optimization scheme and therefore, we tune
both parameters jointly already in this section.
For the results in the previous sections, a parameter search on a grid with factor 10 was
performed. The algorithm PDHG-OF has similar (difference up to factor 10) paramet-
ers for each noise level. For PDHG-MC, the optimal parameters differ by a factor up
to 103, but only by a factor of 10 if gaussian smoothing is applied. For experiments on
measured data, no ground truth motion field will be available in order to find the best
parameters. Thus, we have to visually inspect each result in order to define the best
one. A relatively stable parameter choice thus enables transfer of good parameters for
one measurement to other measurements by the same scanner or in a similar environment.

Finally, we briefly analyze the computational costs related to the different motion estim-
ation algorithms. Note that we did not focus on efficiency of the implemented algorithms
yet. The main cost factor when applying PDHG algorithms for motion estimation are
the differential operators used as is illustrated in Figure 4.14. They account for 48.4 %
and 65.1% of the total cost of PDHG-OF and PDHG-MC, respectively. By porting the
motion estimation task from Matlab to C ++ the author of [50] was able to produce a
speed-up of factor approximately 50. We thus expect potential for huge savings in this
area.
Considering now the multiscale and warping and multiscale only scheme with 103 itera-
tions on each scale, the costs on coarser scales are significantly lower than on finer scales.
Figure 4.15 illustrates that more than 80% of computation time are spent on the finest
scales for both schemes. The overall run time is approximately 30 s for both algorithmic
solutions. Ideally, we implement a low-cost stopping criterion enabling early stopping on
finer scales. In order to investigate this option, we consider the decay of the objective
value for both schemes.
Figure 4.16 illustrates typical behavior of the objective value during the iterations on
different scales for PDHG-OF and PDHG-MC. The values are scaled to the unit interval.
The solutions on the different scales might jump between different solutions as illustrated
by Figure 4.16a such that many stopping criteria will not be fulfilled. This jumping might
occur for the OF constrained algorithm as well as for the MC constrained algorithm. In
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35.3%
13.1%

9.2%

42.4%

div3D

diffxfw3D
prox

self

(a) PDHG-OF.

33.8%

22.9%

8.4% 34.9%

diffxc3D

div3D

diffxfw3D

self

(b) PDHG-MC.

Figure 4.14.: Main sources of computational costs for motion estimation PDHG algorithms. The
OF algorithm computes a spatial forward derivative (diffxfw3D) and a divergence (div3D), each
of those functions is called 12.000 times and together they use 48.4% of the computation time.
The proximal operator corresponding to the data term is also an important cost factor with
approximately 10% of computational cost. The MC algorithm calls three differential functions,
which in total make 65.1% of the run time.

83.3%

11.2%

3%
1.8%

Scale 3

Scale 2

Scale 1

Scale 0

(a) Multiscale and warping.

87.6%

8.3%

2.4%
1.5%

Scale 3

Scale 2

Scale 1

Scale 0

(b) Multiscale.

Figure 4.15.: Allocation of computation time to the different scales in multiscale motion estim-
ation algorithms when applying a fixed number of iterations on each scale. More than 80% of
run time are spent on computations on the finest scales, whereas computation on the coarsest
scales take less than 2% of the overall cost.

order to obtain smoother convergence, we have to use smaller step sizes, which then again
result in significantly more iterations needed. Moreover, they might trap us in worse
local minima. However, depending on the exact problem to solve, a smooth decay of the
objective value as in Figure 4.16b is also possible.
We test a stopping criterion based on evaluations of the objective value. For PDHG-MC,
we stop the iterations on a certain scale, if either the maximum number of iterations is
reached or if the standard deviation of the last 15 evaluations of the objective value is
smaller than 0.01% of the mean objective value. For an illustrative run, this reduces the
number of iterations needed on each scale from coarse to fine for PDHG-MC to 103, 690,
750 and 310 instead of previously 103 on each scale, respectively. However, the overall cost
is only reduced by 16.7% as evaluations of the objective value are again quite costly. The
allocation of run time to the different scales is more uniform, now only 61% are allotted
to the finest scale (instead of 88%) and 28% are allotted to the second finest scale instead
of previously only 8%.
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Figure 4.16.: Exemplary behavior of the objective value during the iterations on the different
scales on multiscale (and warping) schemes. The values are scaled to the unit interval.

For PDHG-OF, the standard deviation of the objective value does not reach that bound
of 0.01%, as can also be guessed from the stronger jumping behavior in Figure 4.16a.
Instead, we set the bound to 0.7% allowing for similar results compared to the setting
with 103 iterations fixed per scale. The run time savings and allocation of run time change
in a similar manner than above. Again, the run time saving is not as high as the evaluation
of the objective value is costly.
Moreover, we frequently observe a different behavior: less iterations are used on coarser
scales and thus more iterations are needed on finer scales. Fitting an optimal stopping
criterion is beyond the scope of this work and should be done when a more efficient
implementation can be used as basis.

4.4. Summary and discussion

This chapter focused on the problem of motion estimation from MPI image sequences.
After deriving two different motion models, namely OF and MC, we derived a primal-
dual splitting scheme for each motion model. Our main contribution in this chapter is
contained in Section 4.2.3, where we derived a multiscale and warping scheme for the
OF motion model and a multiscale scheme for the MC motion model. Both schemes
include the aforementioned primal-dual algorithm for computation of increments on each
scale. We extensively validated the algorithmic approaches and minor extensions thereof
on synthetic data. The PDHG-OF yields better results with respect to the L2-error and
the AAE on our examples. However, the quality varies strongly depending on the exact
input images and the direction and magnitude of the ground truth displacement. Both
schemes reveal weaknesses under noise which cannot be overcome by gaussian smooth-
ing. More precisely, we observe that PDHG-OF is slightly more robust with respect to
noise on the input images, if gaussian smoothing is applied. For PDHG-MC it is not
possible to integrate the gaussian smoothing efficiently. We thus proposed a structural
prior using background information that could be obtained, e.g., by an MRI scan. This
prior was incorporated into the PDHG-MC scheme and significantly improved the AAE
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on noisy synthetic data. We observed difficulties when combining the structural prior
with a TV prior for complex background images. Therefore, we proposed to use a region-
of-interest background image for each frame, which results in enhanced angular accuracy.
Finally, we investigated the computational costs of the algorithmic schemes. We found
that differential operators constitute the main cost. Furthermore, we observed that the
computational burden on the finest scales within the multiscale schemes are extremely
high and a stopping criterion limiting those iterations to the bare minimum is needed.
Different directions for future research are of interest with respect to the motion estimation
task. Incorporating prior knowledge from background information also for more complex
flows, in combination with different priors and in case of the OF motion model is of
interest. It might further stabilize the results. Application of temporal smoothing should
also yield more robust motion estimates, but might result in additional artifacts if the
direction of the displacement changes fast. For a sufficiently high temporal resolution
it is however a promising direction. Multiscale schemes that exchange information more
often between the different scales instead of the used coarse-to-fine-only scheme might
avoid being trapped in local minima. And, from a practical point of view, a more efficient
implementation of differential operators combined with a tailored stopping criterion for
the different scales within the multiscale scheme should be investigated.
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5. Joint Motion Estimation and Image
Reconstruction

In this chapter, we present a joint image reconstruction and motion estimation scheme.
The idea of combining both tasks was first introduced by [138] and recently used in
combination with variational schemes by [35, 50, 51]. In comparison to a two-step scheme,
i.e., reconstructing images first and then estimating the motion afterwards, we expect
higher quality of the reconstructed image sequences and the motion estimates by a joint
scheme, as both tasks may endorse each other. In particular, the image reconstruction
task and the motion estimation task are solved alternately in our joint approach. This
chapter provides the theoretical background for the numerical analysis in Chapter 6. The
results were first published in [27]. In [35], the existence of a minimizer in a suitable
function space is proven for a 2D setting using the Optical Flow constraint as a motion
model. A similar 2D proof for the mass conservation motion model is contained in [50].
In Section 5.1, we extend the setting to the three dimensional case and consider both OF
and MC as motion models. Moreover, we extend the analysis to time-dependent forward
operators. We propose an unconstrained formulation for an originally constrained problem
and prove convergence of the solutions in terms of Γ-convergence. In Section 5.2, we
consider the proposed joint approach as a regularization method for a nonlinear ill-posed
problem. We state sufficient but restrictive conditions under which the joint approach
defines a regularization. Afterwards, we conclude the chapter by describing the numerical
scheme used for solving the problem in Section 5.3. We briefly consider the convergence
properties of the alternating approach and state algorithmic solutions for both occurring
subproblems.

5.1. Existence of a minimizer

We consider a measurable time-dependent image function c on a bounded space-time
domain Ω × [0,T ] ⊂ Rn × R+, n ∈ {1, 2, 3}, c ∈ Lp

(
0,T ;BV (Ω)

)
, p > 1. Functions

with bounded variations are a natural choice when describing images, as those functions
allow for discontinuities which correspond to edges in the images and they are well-
suited to describe homogeneous regions. Having in mind MPI images, both the large
homogeneous regions (having in mind the empty background) as well as edges are of
importance. The time-dependent image function c has to be reconstructed from measured
data u : [0,T ] → Y , u ∈ L2 (0,T ;Y ) for a reflexive Banach space Y . The data u

is obtained by inserting c as an argument into the first component of a linear operator
A : Lp̂

(
0,T ;Ll (Ω)

)
×[0,T ] → L2 (0,T ;Y ) with p̂ = min(2, p) and l ≤ n

n−1
, and corrupting
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the results with random noise δ ∈ L2 (0,T ;Y ), i.e.,

A (c, t) + δ (t) = u (t) , t ∈ [0,T ] . (5.1)

Here, we consider A(·, t) =: At(·) to be a linear and bounded operator for any t ∈ [0,T ].
The considered inverse problem is a dynamic inverse problem for two reasons. First, the
image function depends on time. Imagine for example an MPI sequence for tracer agent
injected into the bloodstream and propagating through the vascular system. Second,
the forward operator is time-dependent, e.g., blurring of dynamic image sequences with
time-dependent blur kernels, dynamic CT, or MPI.

In this setting, we want to jointly reconstruct the image function and a velocity field
v : Ω× [0,T ] → Rn, v ∈ Lq

(
0,T ;BV (Ω)n

)
, q > 1, describing the motion in the data.

In order to handle and stably solve an ill-posed image reconstruction problem, we add a
spatial regularizer R : BV (Ω) → R, which is assumed to be proper, convex and lower
semicontinuous. Moreover, the regularizer on the image function fulfills

R (x) ≥ |x|pBV for any x ∈ BV (Ω) . (5.2)

As discussed in the previous chapter, the motion estimation task also poses an ill-posed
problem. Thus, we add a proper, convex and lower semicontinuous spatial regularizer
S : BV (Ω)n → R working on the motion field. The regularizer is assumed to fulfill the
equation

S (y) ≥ |y|qBV for any y ∈ BV (Ω)n . (5.3)

To link the image function c and the motion field v, we introduce a motion model m (c, v)

as an additional constraint. The joint image reconstruction and motion estimation prob-
lem can then be described by

min
c,v

∫ T

0

D
(
A (c, t) ,u (t)

)
+ αR

(
c(·, t)

)
+ βS

(
v(·, t)

)
dt, (5.4)

s.t. m (c, v) = 0 in D′(Ω× [0,T ]), (5.5)

where D : Y × Y → R denotes the data discrepancy term. We assume D to be proper,
convex and lower semicontinuous. Usually, we consider L1- and L2-norm differences.
As motion models, we consider the optical flow constraint and the mass conservation
constraint, i.e.,

m1 (c, v) =
∂

∂t
c+∇c · v = 0, (5.6)

m2 (c, v) =
∂

∂t
c+∇ · (cv) = 0. (5.7)

The following theorem shows well-definedness of the problem (5.4), (5.5) for both motion
models as solutions exist in suitable function spaces.

84



5.1. Existence of a minimizer

Theorem 5.1: Existence of minimizers

Consider the minimization problem (5.4)-(5.5):

min
c,v

J (c, v) :=

∫ T

0

D
(
A (c, t) ,u (t)

)
+ αR

(
c(·, t)

)
+ βS

(
v(·, t)

)
dt,

s.t. m (c, v) = 0 in D′(Ω× [0,T ]),

in n ∈ {2, 3} dimensions.
Let c ∈ Lp

(
0,T ;BV (Ω)

)
, v ∈ Lq

(
0,T ;BV (Ω)n

)
and u ∈ L2 (0,T ;Y ) for a reflexive

Banach space Y over the bounded space-time domain Ω × [0,T ] and Ω ⊂ Rn.
Moreover, let 1 < p, q < ∞ and p̂ = min (2, p). We assume the operator

A : Lp̂
(
0,T ;Ll (Ω)

)
× [0,T ] → L2 (0,T ;Y )

be generated by bounded operators At : L
l (Ω) → Y , t ∈ [0,T ], l ≤ n

n−1
, such that

At (c(t)) = A (c, t). Further, let At1Ω ̸= 0 ∀t ∈ [0,T ].
Let R and S fulfill (5.2) and (5.3), i.e.,

R (x) ≥ |x|pBV for any x ∈ BV (Ω) ,

S (y) ≥ |y|qBV for any y ∈ BV (Ω)n .

Moreover, let D (u1,u2) =
1
2
∥u1 − u2∥2Y be the squared norm distance in Y and m be

either m1 or m2 as defined in (5.6) and (5.7), respectively. Moreover, assume there
exist constants k∞, kθ < ∞ such that ∥v∥L∞(0,T ,L∞(Ω)n) ≤ k∞ and ∥∇ · v∥θ ≤ kθ,
where θ = Lp∗s

(
0,T ;Ll∗k (Ω)

)
with 1 < s, k < ∞ and 1

p
+ 1

p∗
= 1.

Then there exists a minimizer of the problem in the set of admissible solutions

{
(c, v) ∈ Lp̂

(
0,T ;BV (Ω)

)
× Lq

(
0,T ;BV (Ω)n

)∣∣∣ ∥v∥L∞(0,T ;L∞(Ω)n) ≤ k∞,

∥∇ · v∥θ ≤ kθ, m (c, v) = 0 in D′(Ω× [0,T ])

}
. (5.8)

Proof. We extend the proof of [35, 50] by several means. First, our image sequence is in
up to 3+time dimensions instead of 2+time. The extension of the proof is not completely
straightforward as dimension dependent embeddings are used at crucial points and have
to be adapted. Second, our regularizers are of a more general form allowing for additional
flexibility when applying the theorem. And third, the linear forward operator we consider
is time-dependent and has a more general range.
We follow the technique of the direct method in the calculus of variations. The line of
argumentation is as follows:

1. The functional J : Lp̂
(
0,T ;BV (Ω)

)
× Lq

(
0,T ;BV (Ω)n

)
→ R is bounded from

below as all summands under the integral are non-negative. We thus have
inf J (c, v) > −∞. This implies existence of a minimizing sequence of admissible
(cm, vm) ∈ Lp̂

(
0,T ;BV (Ω)

)
× Lq

(
0,T ;BV (Ω)n

)
for m ∈ N. Admissible means

cm ∈ Lp
(
0,T ;BV (Ω)

)
, ∥vm∥L∞(0,T ;L∞(Ω)n) ≤ k∞, ∥∇ · vm∥θ ≤ kθ and
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mi (cm, vm) = 0 in D′(Ω × [0,T ]). We thus have a sequence (cm, vm) such that
limm→∞ J (cm, vm) = inf J (c, v).

2. We then show that the sublevel sets of J are weak-∗ compact as follows. As J

is continuous, the sublevel sets are closed. It remains to show for this step in
the argumentation that the sublevel sets are bounded in norm. This then implies
existence of a subsequence (cmk

, vmk
)

∗
⇀ (c∗, v∗), which then identifies the candidate

(c∗, v∗) for the minimizer.

3. The functional J is lower semi-continuous with respect to the weak-∗ topology (as
a sum of such functionals), which yields

inf J (c, v) ≤ J (c∗, v∗) ≤ lim inf
m→∞

J (cmk
, vmk

) = inf J (c, v) .

4. In order to obtain the weak-∗ closedness of the admissible set, we prove convergence
of the constraint in a distributional sense, i.e., we verify that (c∗, v∗) is admissible.
We consider both optical flow and mass conservation constraint and complete the
proofs in 3D.

Step 2, i.e., weak-∗ compactness of the sublevel sets of J :
Denote the sublevel set to ν ∈ R by

Sν :=
{
(c, v) ∈ Lp̂

(
0,T ;BV (Ω)

)
× Lq

(
0,T ;BV (Ω)n

)
: J (c, v) ≤ ν,

∥v∥L∞(0,T ;L∞(Ω)n) ≤ k∞
}
. (5.9)

We will use that Sν ⊂ Lp̂
(
0,T ;BV (Ω)

)
×Lq

(
0,T ;BV (Ω)n

) ∼= X∗ for X∗ being the dual
space of a Banach space X. Therefore Sν is weak-∗ compact if and only if Sν is closed in
weak-∗ topology and bounded in norm (cf. Theorem 2.4). The closedness of the sublevel
set holds as J is continuous. It remains to show the boundedness in norm, i.e., it remains
to show that

∥c∥Lp̂(0,T ;BV (Ω)) =

(∫ T

0

(
∥c∥L1(Ω) + |c|BV (Ω)

)p̂
dt

)1/p̂

≤ k,

∥v∥Lq(0,T ;BV (Ω)n) ≤ k for a k < ∞.

Let (c, v) ∈ Sν (i.e, it holds additionally ∥v∥L∞(0,T ;L∞(Ω)n) ≤ k∞).
We start with the bound on the norm of c: From (c, v) ∈ Sν it follows that

∫ T

0

1

2
∥(Atc) (t)− u (t)∥2Y dt =

1

2
∥Atc− u∥2Y ≤ ν

⇒ (Atc− u) ∈ Y a. e. in [0,T ] .

Define kA (t) := ∥(Atc) (t)− u (t)∥Y , then

∫ T

0

kp̂
Adt =

∫ T

0

∥Atc− u∥p̂Y dt
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is bounded for 1 ≤ p̂ ≤ 2 due to the continuous embedding L2 (0,T ;Y ) ↪→ Lp̂ (0,T ;Y )

(see Lemma 2.3).
To bound ∥c∥Lp̂(0,T ;L1(Ω)), we start by an upper bound for arbitrary but fixed t ∈ [0,T ].
Defining the average c̄ = 1

|Ω|

∫
Ω
c (x, t) dx and c0 = c (·, t)− c̄, we note that

∫

Ω

c0dx = 0.

Moreover,

|c0|BV (Ω) = |c (·, t)|BV (Ω) ≤ k

∫ T

0

|c (·, τ)|pBV (Ω) dτ ≤ kν

α
,

for a constant k ∈ R. With Poincaré-Wirtinger, it follows that there exists a constant
k1 > 0 such that

∥c0∥Ll(Ω) ≤ k1 |c|BV (Ω) ≤ k1
kν

α
=: k̃1 (5.10)

for l ≤ n
n−1

. We derive the following estimate:

∥Atc̄∥2Y − 2 ∥Atc̄∥Y
(
∥At∥ ∥c0∥Ll(Ω) + ∥u∥Y

)

≤ ∥Atc̄∥2Y − 2 ∥Atc0 − u∥Y ∥Atc̄∥Y
≤ ∥Atc0 − u∥2Y + ∥Atc̄∥2Y − 2 ∥Atc0 − u∥L2(Y ) ∥Atc̄∥Y
=
(
∥Atc0 − u∥Y − ∥Atc̄∥Y

)2

≤ ∥Atc0 − u+ Atc̄∥2Y
= ∥At (c0 + c̄)− u∥2Y = k2

A(t)

Using the estimate of (5.10) and u ∈ L2 (0,T ;Y ) yields

0 ≤ ∥At∥ ∥c0∥Ll(Ω) + ∥u∥Y ≤ ∥At∥ k̃1 + ∥u∥Y := k2 (t) .

Note that, as ∥At∥ is bounded for all t ∈ [0,T ], we also have a bound on the time integral∫ T

0
k2(t)dt. We can now combine the estimates above to obtain a bound on ∥Atc̄∥Y :

∥Atc̄∥2Y − 2 ∥Atc̄∥Y
(
∥At∥ ∥c0∥Ll(Ω) + ∥u∥Y

)

+
(
∥At∥ ∥c0∥Ll(Ω) + ∥u∥Y

)2
≤ k2

A (t) + k2
2 (t)

⇔
(
∥Atc̄∥Y − ∥At∥ ∥c0∥Ll(Ω) + ∥u∥Y

)2
≤ k2

A (t) + k2
2 (t)

⇒ ∥Atc̄∥Y ≤
(
k2
A (t) + k2

2 (t)
)1/2

+ ∥At∥ ∥c0∥Ll(Ω) + ∥u∥Y
≤
(
k2
A (t) + k2

2 (t)
)1/2

+ k2 (t) := k3 (t)

Finally, we deduce a bound on ∥c (·, t)∥L1(Ω) by

0 ≤ ∥c (·, t)∥L1(Ω) ≤ k4 ∥c (·, t)∥Ll(Ω) = k4 ∥c0 + c̄∥Ll(Ω)

≤ k4

(
∥c0∥Ll(Ω) + |c̄| ∥χΩ∥Ll(Ω)

)
≤ k4

(
k̃1 +

k3 (t) ∥χΩ∥Ll(Ω)

∥AtχΩ∥Y

)
,
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where we used that by assuming ∥AtχΩ∥Y ̸= 0 it holds that

|c̄| ∥AtχΩ∥Y = ∥Atc̄∥Y ≤ k3 (t)

and thus
|c̄| ≤ k3 (t)

∥AtχΩ∥Y
.

We now have

∫ T

0

∥c (·, t)∥p̂L1(Ω) dt ≤
∫ T

0

(
k4

(
k̃1 +

k3 (t) ∥χΩ∥Ll(Ω)

∥AtχΩ∥Y

))p̂

dt ≤: kM < ∞,

for 1 ≤ p̂ ≤ 2, where kM exists as the expression is bounded for all t and thus the
supremum is also bounded. Putting it all together, we arrive with j := p/p̂ at

∥c∥p̂
Lp̂(0,T ;BV (Ω))

=

∫ T

0

∥c∥p̂BV (Ω) dt

≤ 2p̂−1

(∫ T

0

|c|p̂BV (Ω) dt+

∫ T

0

∥c∥p̂L1(Ω) dt

)

≤ 2p̂−1

∫ T

0

|c|p̂BV (Ω) dt+ 2p̂−1kM

≤ 2p̂−1

(∫ T

0

∣∣χ[0,T ]

∣∣j∗ dt
) 1

j∗
(∫ T

0

|c|p̂jBV (Ω) dt

) 1
j

+ 2p̂−1kM

= 2p̂−1kM + 2p̂−1
∥∥χ[0,T ]

∥∥
Lj∗ (0,T )

(∫ T

0

|c|pBV (Ω) dt

) 1
j

≤ 2p̂−1

(
kM +

∥∥χ[0,T ]

∥∥
Lj∗ (0,T )

(ν
α

) 1
j

)
< ∞,

where 1/j + 1/j∗ = 1.
Consider now the norm of v: By assumption, we know that there exists k∞ such that
∥v∥L∞(Ω)n ≤ k∞ almost everywhere on [0,T ]. We proceed by the following estimate:

∥v∥qLq(0,T ;BV (Ω)n) =

∫ T

0

(
∥v∥L1(Ω)n + |v|BV (Ω)n

)q
dt

≤ 2q−1

(∫ T

0

∥v∥qL1(Ω)n dt+

∫ T

0

|v|qBV (Ω)n dt

)

≤ 2q−1

(∫ T

0

(
k∞ |Ω|

)q
dt+

ν

β

)

= 2q−1

(
T
(
k∞ |Ω|

)q
+

ν

β

)
< ∞.

For the second inequality, we used that v ∈ Sν and thus
∫ T

0
β |v|qBV (Ω)n dt ≤ ν by assump-

tion.
We conclude that the sublevel sets Sν are bounded in norm for fixed ν ∈ R, as both
∥v∥Lq(0,T ;BV (Ω)n) and ∥c∥Lp̂(0,T ;BV (Ω)) are bounded and the bounds depend on ν only.
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Moreover, we know that BV (Ω) is isometrically isomorphic to the dual space of some
Banach space Z (cf. Lemma 2.4) and thus

Lp̂
(
0,T ;BV (Ω)

) ∼=
(
Lp∗ (0,T ;Z)

)∗
with

1

p̂
+

1

p∗
= 1,

Lq
(
0,T ;BV (Ω)n

) ∼=
(
Lq∗ (0,T ;Zn)

)∗
with

1

q
+

1

q∗
= 1.

Consequently, both spaces are dual spaces and thus

Sν ⊂ Lp̂
(
0,T ;BV (Ω)

)
× Lq

(
0,T ;BV (Ω)n

) ∼= X∗

for X∗ being the dual of a Banach space X (here X = Lp∗ (0,T ;Z) × Lq∗ (0,T ;Zn)).
Moreover, Sν is closed in weak-∗ topology as J is continuous and the sublevel sets are
bounded in norm. It follows that Sν is weak-∗ compact by Banach-Alaoglu (cf. The-
orem 2.4). This implies existence of a subsequence (cmk

, vmk
)

∗
⇀ (c∗, v∗), which then

identifies the candidate (c∗, v∗) for the minimizer.

Step 3, i.e., lower semicontinuity of J with respect to the weak-∗ topology:
As a sum of weak-∗ lower semicontinuous functionals, J itself is weak-∗ lower semicon-
tinuous, cf. [50].

Step 4a, i.e., convergence of the constraint for the optical flow constraint :
Let (cm, vm) ∈ Lp̂

(
0,T ;BV (Ω)

)
×Lq

(
0,T ;BV

(
Ω
)n)

,m ∈ N, be an admissible sequence
(i.e., cm ∈ Lp

(
0,T ,BV (Ω)

)
, ∥vm∥L∞(0,T ;L∞(Ω)n) ≤ k∞, ∥∇ · vm∥θ ≤ kθ and m1 (c, v) = 0

in D′(Ω × [0,T ])), which also fulfills (cm, vm) ∈ Sν for some ν ∈ R. Then cm and vm are
bounded and it exist c and v such that by passing over to a subsequence (again denoted
by cm and vm) we have

cm
∗
⇀ c, vm

∗
⇀ v.

We want to show that

∂

∂t
cm +∇cm · vm −→ ∂

∂t
c+∇c · v in D′(Ω× [0,T ]),

i.e., we have convergence of the constraint in a distributional sense. Therefore we need
strong convergence of at least one factor of ∇cm · vm in a certain sense. In order to use
the Lemma of Aubin-Lions, we need boundedness of the time derivative of the sequence
cm as well as some specific embeddings. We start with the bound for ∂

∂t
c:

∣∣∣∣
∫ T

0

∫

Ω

∂

∂t
cφ dxdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫

Ω

c∇ · (vφ) dxdt
∣∣∣∣ ∀φ ∈ C∞

C

(
Ω× (0,T )

)

≤
∫ T

0

∥c∇ · (vφ)∥L1(Ω) dt,

≤
∫ T

0

∥c∥Ll(Ω) ∥∇ · (vφ)∥Ll∗ (Ω) dt,
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≤
∫ T

0

∥c∥Ll(Ω)

(
∥φ∇ · v∥Ll∗ (Ω) + ∥v · ∇φ∥Ll∗ (Ω)

)
dt,

=

∫ T

0

∥c∥Ll(Ω) ∥φ∇ · v∥Ll∗ (Ω) dt

︸ ︷︷ ︸
(I)

+

∫ T

0

∥c∥Ll(Ω) ∥v · ∇φ∥Ll∗ (Ω) dt

︸ ︷︷ ︸
(II)

,

where the second inequality results from applying Hölders inequality with 1/l + 1/l
∗
= 1

for l ≤ n/(n− 1) and for the third inequality, we applied the Minkowksi inequality. The
first term (I) can be estimated by

∫ T

0

∥c∥Ll(Ω) ∥φ∇ · v∥Ll∗ (Ω) dt =
∥∥∥∥c∥Ll(Ω) ∥φ∇ · v∥Ll∗ (Ω)

∥∥∥
L1(0,T )

≤ ∥c∥Lp(0,T ;Ll(Ω)) ∥φ∇ · v∥Lp∗ (0,T ;Ll∗ (Ω)) ,

= ∥c∥Lp(0,T ;Ll(Ω))

∥∥∥∥φ∇ · v∥Ll∗ (Ω)

∥∥∥
Lp∗ (0,T )

≤ kc

∥∥∥∥φ∥Ll∗k∗ (Ω) ∥∇ · v∥Ll∗k(Ω)

∥∥∥
Lp∗ (0,T )

,

≤ kc ∥φ∥Lp∗s∗ (0,T ;Ll∗k∗ (Ω)) ∥∇ · v∥Lp∗s(0,T ;Ll∗k(Ω)) ,

≤ kc ∥φ∥Lp∗s∗ (0,T ;Ll∗k∗ (Ω)) kθ,

using Hölder with 1/p + 1/p∗ = 1 for 1 < p ≤ 2 for the first inequality, Hölder with
1/(l∗k) + 1/(l∗k∗) = 1/l∗ for 1 ≤ k ≤ ∞ for the second inequality, and Hölder with
1/(p∗s) + 1/(p∗s∗) = 1/p∗ for 1 ≤ s < ∞ for the third inequality. Additionally, we
used that c is bounded in Lp

(
0,T ;BV (Ω)

)
by assumption and as BV (Ω) ↪→ Ll(Ω) for

l ≤ n/(n− 1) (cf. Theorem 2.2) there exists a constant kc such that ∥c∥Lp(0,T ;Ll(Ω)) ≤ kc.
For the second term, namely (II), we derive a bound by

∫ T

0

∥c∥Ll(Ω) ∥v · ∇φ∥Ll∗ (Ω) dt (5.11)

≤
∫ T

0

∥c∥Ll(Ω) ∥|v| · |∇φ|∥Ll∗ (Ω) dt,

≤
∫ T

0

∥c∥Ll(Ω) ∥v∥L∞(Ω)n ∥∇φ∥Ll∗ (Ω)n dt

≤
∫ T

0

∥c∥Ll(Ω) k∞ ∥φ∥W 1,l∗ (Ω) dt

≤ k∞ ∥c∥Lp(0,T ;Ll(Ω)) ∥φ∥Lp∗ (0,T ;W 1,l∗ (Ω)) ,

≤ k∞kc ∥φ∥Lp∗ (0,T ;W 1,l∗ (Ω)) , (5.12)

using Hölder with 1/p + 1/p∗ = 1 for 1 < p ≤ 2 for the fourth inequality and Cauchy-
Schwarz for the first inequality. Combining the results for (I) and (II) yields

∣∣∣∣
∫ T

0

∫

Ω

∂

∂t
cφ dxdt

∣∣∣∣ ≤ kckθ ∥φ∥Lp∗s∗ (0,T ;Ll∗k∗ (Ω)) + k∞kc ∥φ∥Lp∗ (0,T ;W 1,l∗ (Ω))

≤ kc

(
kθ ∥φ∥Lp∗s∗ (0,T ;Ll∗k∗ (Ω)) + k∞k6 ∥φ∥Lp∗s∗ (0,T ;W 1,l∗ (Ω))

)
.
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The last estimate was obtained by using s∗ > 1 and thus Lp∗s∗(Ω) ↪→ Lp∗(Ω) (see
Lemma 2.3), which defines the constant k6. We now use the dimension dependent Sobolev
embedding (cf. Theorem 2.1)

W 1,l∗ (Ω) ↪→ Ll∗k∗ (Ω) ,

which exists for all 1 ≤ k∗ < ∞, as l∗ ≥ n and then l∗ ≤ l∗k∗ < ∞.
This yields

∣∣∣∣
∫ T

0

∫

Ω

∂

∂t
cφ dxdt

∣∣∣∣ ≤ kc

(
kθ ∥φ∥Lp∗s∗ (0,T ;W 1,l∗ (Ω)) + k∞k6 ∥φ∥Lp∗s∗ (0,T ;W 1,l∗ (Ω))

)

= ∥φ∥Lp∗s∗ (0,T ;W 1,l∗ (Ω)) (kckθ + kck∞k6) .

We conclude that the temporal derivative ∂
∂t
c acts as a bounded linear functional on

Lp∗s∗
(
0,T ;W 1,l∗

0 (Ω)
)

and thus

∂

∂t
c ∈

(
Lp∗s∗

(
0,T ;W 1,l∗

0 (Ω)
))∗

= L
ps

p+s−1
(
0,T ;W−1,l(Ω)

)
.

We now use the Lemma of Aubin-Lions [11, 103], cf. Theorem 2.3, identifying the Banach
spaces as X = BV (Ω), Y = Lr(Ω) and Z = W−1,l(Ω) such that X ⋐ Y , Y ↪→ Z, ci
a sequence of bounded functions in Lp (0,T ;X) and ∂

∂t
cci bounded in Lq (0,T ;Z) with

either q = 1 and 1 ≤ p < ∞ or q > 1 and 1 ≤ p ≤ ∞. Then ci is relatively compact in
Lp (0,T ;Y ). The embedding BV (Ω) ⋐ Lr(Ω) holds for r < n

n−1
[5], i.e.

{
r < 2, n = 2

r < 1.5, n = 3.
.

It remains to identify for which r the continuous embedding Lr(Ω) ↪→ W−1,l(Ω) exists.
The embedding holds if W 1,l∗(Ω) ↪→ Lr∗(Ω), which by the Sobolev embedding theorem
for the different dimensions and l∗ ≥ n translates to

W 1,l∗(Ω) ↪→ Lr∗(Ω) for l∗ ≤ r∗ < ∞. (5.13)

In terms of r, this results in 1 < r ≤ l.
Applying Aubin-Lions yields

{
c ∈ Lp

(
0,T ;BV (Ω)

)∣∣∃k > 0 s.t. ∥c∥Lp(0,T ;BV (Ω)) ≤ k,
∂
∂t
c+ v ·∇c = 0 in D′(Ω× [0,T ])

}
is relatively compact in Lp

(
0,T ;Lr(Ω)

)
for r satisfying

{
1 ≤ r < 2, n = 2

1 ≤ r < 3
2
, n = 3

. (5.14)

The sequence cm thus converges even strongly to c in Lp
(
0,T ;Lr(Ω)

)
.

We are now settled to prove convergence of the constraint.
In the following, let φ ∈ C∞

0

(
Ω× [0,T ]

)
. We start with the time derivative:

∫ T

0

∫

Ω

((
∂

∂t
c

)

m

− ∂

∂t
c

)
φ dxdt = −

∫ T

0

∫

Ω

(cm − c)
∂

∂t
φ dxdt,
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by integration by parts.
We know that cm

∗
⇀ c in Lp

(
0,T ;BV (Ω)

) ∼=
(
Lp∗(0,T ;Z)

)∗ for BV (Ω) being isomet-
rically isomorphic to the dual space of Z. As φ ∈ C∞

0

(
Ω × [0,T ]

)
, it follows that

∂
∂t
φ ∈ Lp∗(0,T ;Z) and this yields

−
∫ T

0

∫

Ω

(cm − c)
∂

∂t
φ dxdt −→ 0 for m −→ ∞.

For the product term, it holds that

−
∫ T

0

∫

Ω

(∇cm · vm −∇c · v)φ dx dt =

∫ T

0

∫

Ω

cm∇ · (vmφ)− c∇ · (vφ) dx dt

=

∫ T

0

∫

Ω

(cm − c)∇ · (vmφ) dx dt
︸ ︷︷ ︸

(I)

+

∫ T

0

∫

Ω

c∇ · (φvm − φv) dx dt

︸ ︷︷ ︸
(II)

.

For (I) we obtain

∫ T

0

∫

Ω

(cm − c)∇ · (vmφ) dxdt

≤
∫ T

0

∥cm − c∥Lr(Ω) ∥∇ · (vmφ)∥Lr∗ (Ω) dt

≤ ∥cm − c∥Lp(0,T ;Lr(Ω)) ∥∇ · (vmφ)∥Lp∗ (0,T ;Lr∗ (Ω))

≤ ∥cm − c∥Lp(0,T ;Lr(Ω))

(
∥∇φ · vm∥Lp∗ (0,T ;Lr∗ (Ω)) + ∥φ∇ · (vm)∥Lp∗ (0,T ;Lr∗ (Ω))

)
(5.15)

≤ ∥cm − c∥Lp(0,T ;Lr(Ω))

(
∥∇φ · vm∥Lp∗ (0,T ;Lr∗ (Ω))︸ ︷︷ ︸

(a)

+ ∥φ∥Lp∗s∗ (0,T ;Lr∗ (Ω))︸ ︷︷ ︸
(b)

∥∇ · (vm)∥Lp∗s(0,T ;Lr∗ (Ω))︸ ︷︷ ︸
(c)

)
, (5.16)

using Hölder with 1/r + 1/r∗ = 1 for 1 < r < ∞, 1/p + 1/p∗ = 1 for 1 < p ≤ 2 and
1/(p∗s) + 1/(p∗s∗) = 1/p∗ for 1 < s < ∞.
We first note that (b) is bounded as φ is a test function. Consider now (c):
∥∇ · (vm)∥Lp∗s(0,T ;Ll∗k(Ω)) is bounded by kθ by assumption. We thus need an embedding

Lp∗s
(
0,T ;Ll∗k(Ω)

)
↪→ Lp∗s

(
0,T ;Lr∗(Ω)

)

and therefore r∗ ≤ l∗k, which is equivalent to r ≥ l∗k
l∗k−1

. We need to adjust the bounds
on k as follows.

• Case n = 2: We have 1 ≤ r < 2 and l∗ ≥ 2. We note that 1 ≤ l∗k
l∗k−1

is always fulfilled,
but in order to guarantee l∗k

l∗k−1
< 2, we have to restrict k such that

[
l∗k

l∗k−1
, 2
)
̸= ∅.

This is ensured by l∗k > 2, which is equivalent to k > 1, as l∗ ≥ 2.

• Case n = 3: We have 1 ≤ r < 3
2

and l∗ ≥ 3. We note that 1 ≤ l∗k
l∗k−1

is al-
ways fulfilled, but in order to guarantee l∗k

l∗k−1
< 3

2
, we have to restrict k such that[

l∗k
l∗k−1

, 3
2

)
̸= ∅. This is ensured by l∗k > 3, which is equivalent to k > 1, as l∗ ≥ 3.
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It remains to show that (a) is bounded. This holds as φ is a test function and thus ∇φ

is bounded and ∥v∥L∞(Ω)n ≤ k∞. We showed that (I) −→ 0 as m −→ ∞. Now consider
(II), i.e.

∫ T

0

∫

Ω

c∇ · (φvm − φv) dx dt (5.17)

=

∫ T

0

∫

Ω

cφ∇ · (vm − v) dx dt

︸ ︷︷ ︸
(a)

+

∫ T

0

∫

Ω

c (vm − v) · ∇φ dxdt

︸ ︷︷ ︸
(b)

. (5.18)

Consider (a) first. By assumption, ∇ · (vm − v) ∈ Lp∗s
(
0,T ;Ll∗k(Ω)

)
. We need to show

cφ ∈
(
Lp∗s

(
0,T ;Ll∗k(Ω)

))∗. Starting from c ∈ Lp
(
0,T ;BV (Ω)

)
, the first embedding

needed is BV (Ω) ↪→ L
l∗k

l∗k−1 (Ω) = L(l∗k)∗(Ω).

• Case n = 2: BV (Ω) ↪→ L
l∗k

l∗k−1 (Ω) exists continuously for 1 ≤ l∗k
l∗k−1

≤ 2. This is
fulfilled for l∗k ≥ 2, which is ensured by l∗ ≥ 2 and k > 1.

• Case n = 3: BV (Ω) ↪→ L
l∗k

l∗k−1 (Ω) exists for 1 ≤ l∗k
l∗k−1

≤ 1.5. Again, this holds for
l∗k ≥ 3, which is ensured by l∗ ≥ 3 and k > 1.

Note that (p∗s)∗ = ps
ps−p+1

and ps
ps−p+1

< p if 1 < p, which again holds by assumption. In
summary, we have

Lp
(
0,T ;BV (Ω)

)
↪→ Lp

(
0,T ;L(l∗k)∗(Ω)

)
↪→ L(p∗s)∗

(
0,T ;L(l∗k)∗(Ω)

)
.

As φ and its derivatives are bounded, cφ ∈ L(p∗s)∗
(
0,T ;L(l∗k)∗(Ω)

)
. Moreover, from

vm
∗
⇀ v it follows that ∇ · vm ∗

⇀ ∇ · v and thus altogether
∫ T

0

∫

Ω

cφ∇ · (vm − v) dxdt −→ 0 for m −→ ∞.

Considering (b), we denote first that

BV (Ω) ↪→ L1 (Ω)

and thus
Lp
(
0,T ;BV (Ω)

)
↪→ Lp

(
0,T ;L1(Ω)

)
↪→ L1

(
0,T ;L1(Ω)

)
.

Therefore, we have c ∈ L1
(
0,T ;L1(Ω)

)
and by the boundedness of φ and its derivatives,

we obtain c∇φ ∈ L1
(
0,T ;L1(Ω)n

)
. Moreover, by the bound ∥v∥L∞(Ω)n ≤ k∞ we see that

(vm − v) ∈ L∞(0,T ;L∞(Ω)n
)
. Now by

L∞(0,T ;L∞(Ω)n
) ∼=

(
L1
(
0,T ;L1(Ω)n

))∗

and the weak-∗ convergence of vm to v, we reach
∫ T

0

∫

Ω

c∇φ · (vm − v) dxdt → 0 for m → ∞.
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Combining all the results yields the convergence of the constraint
∫ T

0

∫

Ω

(((
∂

∂t
c

)

m

−∇cm · vm
)
−
(

∂

∂t
c−∇c · v

))
φ dxdt → 0 for m → ∞.

Step 4b, i.e., convergence of the constraint for the mass conservation constraint :
Let (cm, vm) ∈ Lp̂

(
0,T ;BV (Ω)

)
× Lq

(
0,T ;BV (Ω)n

)
,m ∈ N, be an admissible sequence

(i.e., cm ∈ Lp
(
0,T ,BV (Ω)

)
, ∥vm∥L∞(0,T ;L∞(Ω)n) ≤ k∞, ∥∇ · vm∥θ ≤ kθ and m2 (c, v) = 0

in D′(Ω × [0,T ])), which also fulfills (cm, vm) ∈ Sν for some ν ∈ R. Then cm and vm are
bounded and it exist c and v such that by passing over to a subsequence (again denoted
by cm and vm) we have

cm
∗
⇀ c, vm

∗
⇀ v.

We want to show that
(

∂

∂t
c

)

m

+∇ · (cmvm) −→
∂

∂t
c+∇ · (cv) in D′(Ω× [0,T ]),

i.e., we have convergence of the constraint in a distributional sense. We start again with
a bound on ∂

∂t
c:

∣∣∣∣
∫ T

0

∫

Ω

∂

∂t
cφ dxdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫

Ω

−∇ · (cv)φ dxdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫

Ω

(cv) · ∇φ dxdt

∣∣∣∣

≤
∫ T

0

∫

Ω

|(cv) · ∇φ| dxdt

≤
∫ T

0

∥c∥Ll(Ω) ∥v · ∇φ∥Ll∗ (Ω) dt,

≤ k∞kc ∥φ∥Lp∗ (0,T ;W 1,l∗ (Ω)) , (c.f. (5.11)− (5.12)) , (5.19)

using Hölder with 1/l + 1/l∗ = 1 for l ≤ n/(n− 1). We thus know that ∂
∂t
c acts as a

bounded linear functional on Lp∗
(
0,T ;W 1,l∗(Ω)

)
and thus ∂

∂t
c ∈ Lp

(
0,T ;W−1,l(Ω)

)
. The

Lemma of Aubin-Lions can be applied similarly to the optical flow case and yields strong
convergence of cm −→ c in Lp(0,T ;Lr

(
Ω)
)

with the same constraints on r. Also, the
arguments for the convergence of the time derivative

−
∫ T

0

∫

Ω

(cm − c)
∂

∂t
φ dxdt −→ 0 for m −→ ∞.

are the same as in the optical flow case. We now come to the product term. It remains
to show that

∇ · (cmvm) ⇀ ∇ · (cv) .

−
∫ T

0

∫

Ω

(∇ · (cmvm)−∇ · (cv))φ dxdt =

∫ T

0

∫

Ω

(cmvm − cv ± cvm) · ∇φ dxdt

=

∫ T

0

∫

Ω

((cm − c) vm + c (vm − v)) · ∇φ dx dt
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≤
∫ T

0

∥cm − c∥Lr(Ω) ∥vm · ∇φ∥Lr∗ (Ω) +

∫

Ω

c (vm − v) · ∇φ dx dt,

≤ ∥cm − c∥Lp(0,T ;Lr(Ω)) ∥vm · ∇φ∥Lp∗ (0,T ;Lr∗ (Ω))︸ ︷︷ ︸
−→0 for m−→∞ (cf. (5.16)(a))

+

∫ T

0

∫

Ω

c (vm − v) · ∇φ dxdt

︸ ︷︷ ︸
−→0 for m−→∞ (cf. (5.18)(b))

,

using Hölder with 1/r + 1/r∗ = 1.

Remark. In practice, existence of the constants k∞ and kθ is no restrictive assumption.
Bounding ∥v∥L∞(0,T ;L∞(Ω)n) is basically assuming a finite maximum speed, which is a
physically necessary assumption. Moreover, assuming a bound on ∥∇ · v∥θ in an applied
sense is bounding the compressibility of the flow, which is again a reasonable assumption.

Remark. The operator At is defined on Ll (Ω) for l ≤ n
n−1

. This limitation of topologies
compatible with the operator is necessary in order to ensure the continuous embedding of
BV (Ω), which is the spatial domain in which we are searching for a minimizer, into the
definition space of the operator.

For computational purposes, either model constraint is incorporated into the variational
problem (5.4) by adding an additional proper, convex and lower semicontinuous penalty
term T defined by

T
(
c (·, t) , v (·, t)

)
= ∥mi (c, v) (·, t)∥sLr(Ω) , r, s ≥ 1, t ∈ [0,T ] (5.20)

for i ∈ {1, 2}, such that we arrive at the unconstrained minimization problem

min
c,v

∫ T

0

D
(
A (c, t) ,u (t)

)
+ αR

(
c(·, t)

)
+ βS

(
v(·, t)

)

+ γT
(
c (·, t) , v (·, t)

)
dt, (5.21)

which can be solved by means of alternating minimization. The following lemma shows
that solutions of the unconstrained problem (5.21) converge to solutions of the constrained
problem (5.4) - (5.5) if the weighting parameter γ → ∞.

Lemma 5.1: Convergence of solutions of the unconstrained minimization
problems

Let

Jγ (c, v) :=

∫ T

0

D
(
A (c, t) ,u (t)

)
+ αR

(
c(·, t)

)
+ βS

(
v(·, t)

)

+ γT
(
c (·, t) , v (·, t)

)
dt

95



5. Joint Motion Estimation and Image Reconstruction

for γ > 0 and

J∞ (c, v) :=





∫ T

0

D
(
A (c, t) ,u (t)

)
+ αR

(
c(·, t)

)

+βS
(
v(·, t)

)
dt, if mi (c, v) = 0

∞, else.

It then holds that

1. The functionals Jγ are equicoercive in Lp̂
(
0,T ;BV (Ω)

)
×{

v ∈ Lq
(
0,T ;BV (Ω)n

)∣∣∣ ∥v∥L∞(0,T ;L∞(Ω)n) ≤ k∞, ∥∇ · v∥θ ≤ kθ

}
.

We denote this space by Ξ in the following.

2. On bounded sets in the weak-∗ topology of the space
Lp̂
(
0,T ;BV (Ω)

)
× Lq

(
0,T ;BV (Ω)n

)
:= Υ, it holds that

J∞ = Γ− lim
γ→∞

Jγ.

By Theorem 2.9, this is sufficient for convergence of the minima, i.e.,

lim
γ→∞

inf
(c,v)∈Υ

Jγ(c, v) = inf
(c,v)∈Υ

J∞(c, v).

By the strict convexity of J∞ it follows that the sequence of minimizers (c∗γ, v
∗
γ) of

Jγ converges to the minimizer (c∗, v∗) of J∞.

Proof. The proof follows the argumentation of [35, Lemma 3.7], but is generalized to both
motion models (instead of considering optical flow only).
Existence of minimizers of J∞ is shown in the proof of Theorem 5.1. By the same argu-
ments one can show existence of minimizers of Jγ for γ ≥ 0.
Jγ are equicoercive if and only if there exists lower semicontinuous and coercive Ψ such
that Jγ ≥ Ψ. This holds as Jγ ≥ J0 and J0 is coercive in Ξ for α, β > 0 by the choice of
the regularizers. To show Γ-convergence, we have to consider both conditions.

Let (c, v) ∈ Ξ and (cγ, vγ) be a sequence converging to (c, v) in the weak-∗ topology. If
(c, v) is admissable, i.e., mi(c, v) = 0, then J∞(c, v) = J0(c, v). It then holds that

J∞(c, v) = J0(c, v) ≤ lim inf
γ→∞

J0(cγ, vγ) ≤ lim inf
γ→∞

Jγ(cγ, vγ),

by the lower semicontinuity of J0. If (c, v) is not admissable, i.e., mi(c, v) ̸= 0, it follows
by the lower semicontinuity of T that

0 < T (c, v) ≤ lim inf
γ→∞

T (cγ, vγ) ,

which yields
J∞(c, v) = ∞ = lim inf

γ→∞
Jγ(cγ, vγ).
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5.2. Regularization properties of the joint approach

The first condition for Γ-convergence is thus fulfilled in both cases.
For the second condition, we choose the recovering sequence (cγ, vγ) = (c, v). This results
in

lim
γ→∞

Jγ (cγ, vγ) = lim
γ→∞

Jγ (c, v) =

{ ∞, if mi(c, v) ̸= 0

J0(c, v), if mi(c, v) = 0

}
= J∞(c, v).

5.2. Regularization properties of the joint approach

Consider the unconstrained formulation (5.21) with D and T norm discrepancies, i.e.,

min
c,v

∫ T

0

∥A (c, t)− u (t)∥pLp(Ω) + αR
(
c(·, t)

)
+ βS

(
v(·, t)

)

+ γ
∥∥mi

(
c (·, t) , v (·, t)

)∥∥
L1(Ω)

dt,

for p ∈ {1, 2} and i ∈ {1, 2}. This describes a nonlinear inverse problem with forward
operator F : dom(F ) ⊂ U → Y1 × Y2 with

(
c(·, t), v(·, t)

)
7→
(
A
(
c(·, t), t

)
,mi

(
c(·, t), v(·, t)

))
. (5.22)

Throughout this chapter, we considered U = Lp̂
(
0,T ;BV (Ω)

)
× Lq

(
0,T ;BV (Ω)n

)
for

p̂ = min(2, p), p > 1 and q > 1. A general analysis of the regularization properties of
this approach might be carried out based on the theory for Tikhonov-type regularization
of nonlinear problems in Banach spaces [55, 130]. In this section, we briefly state the
requirements which have to be fulfilled in general in order to obtain a regularization of a
nonlinear problem. In a second step, we restrict our setting to a special case, where those
assumptions are met.
We follow the formulation in [124] to analyze the setting. To ensure existence and stability
of regularized solutions as well as convergence to a penalty-minimizing solution (for ap-
propriate regularization parameters), the following assumptions have to be fulfilled [124,
Theorem 3.22, Theorem 3.23 and Theorem 3.26].

1. The Banach spaces U and Y1 × Y2 are associated with topologies weaker than the
norm topology.

2. The norm functionals are sequentially lower semicontinuous with respect to the
considered topologies on Y1 and Y2.

3. The functionals R and S are convex and sequentially lower semicontinuous with
respect to the considered topology on U .

4. The regularization functional is proper on the domain of F .

5. The sublevel sets are pre-compact with respect to the topology on U .

6. The sublevel sets are sequentially closed with respect to the topology on U and the
restriction of F to the sublevel sets is sequentially continuous with respect to the
topologies on U and Y1 × Y2.
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5. Joint Motion Estimation and Image Reconstruction

Consider now our specific problem formulation. The first item can be fulfilled easily by
equipping the Banach spaces U and Y1 × Y2 with the weak-∗ and the weak topology, re-
spectively. Consider U = Lp̂

(
0,T ;BV (Ω)

)
× Lq

(
0,T ;BV (Ω)n

)
for p̂ = min(2, p), p > 1

and q > 1. Therefore, U describes a reflexive Banach space and the weak and weak-∗

topology coincide on U .
The second item follows directly as the norm functional is convex and (lower semi-) con-
tinuous and thus weakly lower semicontinuous.
We assume the penalty functionals R and S to be proper, convex and weak-∗ lower semi-
continuous in order to fulfill items three and four. As U is a reflexive space, it suffices if
R and S are proper, convex and lower semicontinuous, which is our standard assumption
throughout the chapter.
The fifth item demands weak-∗ pre-compact sublevel sets. If the sublevel sets are bounded
in the weak-∗ topology, they are pre-compact if and only if every sequence has a weak-∗

convergent subsequence. Now in our case, we showed boundedness of the sublevel sets
in the proof of Theorem 5.1. It followed from the constraint ∥v∥L∞(0,T ;L∞(Ω)n) ≤ k∞.
Moreover, on a reflexive space every bounded sequence has a weakly convergent sub-
sequence and thus a weak-∗ convergent subsequence.
For item six, we first note that weak-∗ closedness of the sublevel sets was also shown in
the proof of Theorem 5.1. The crucial part for showing the regularization properties of
our approach is thus to show that the restriction of F to the sublevel sets is sequentially
continuous with respect to the topologies on U and Y1 × Y2. We thus have to show that
F is weak-∗-to-weak continuous. In the first component of F , we have a bounded linear
operator mapping to Y1 = L2(0,T ;Y ) for a reflexive Banach space Y . Bounded linear
operators are weak-to-weak continuous, which is sufficient in this case as we map between
reflexive spaces. For the second component however, we need weak-∗-to-weak continuity
with respect to the tuple (c, v), i.e., for cn

∗
⇀ c and vn

∗
⇀ v, we need that

mi (cn, vn) ⇀ mi (c, v) for n → ∞.

We start by considering well-definedness of the motion model. We need to ensure existence
of temporal and spatial derivatives of c and spatial derivatives of v by the choice of the
space U . We thus have to restrict ourselves to a reflexive space ensuring existence of the
mentioned derivatives.
Possible choices are, e.g., U = W 1,p̂

(
0,T ;W 1,s(Ω)

)
× L2

(
0,T ;W 1,q(Ω)n

)
or even more

specific the Hilbert space U = H1
(
0,T ;H1(Ω)

)
× L2

(
0,T ;H1(Ω)n

)
.

Considering the weak-∗-to-weak continuity, we first note that from weak-∗ convergence
of (cn, vn) it follows convergence of the motion models in a distributional sense (see the
proof of Theorem 5.1), i.e.,

∫ T

0

∫

Ω

[mi(cn, vn)−mi(c, v)]φ dxdt −→ 0 for n → ∞ and φ ∈ C∞
0 ([0,T ]× Ω) .

Now, for Y ∗
2 = C∞

0 ([0,T ]× Ω) this coincides with weak convergence, but this is a too
restrictive assumption. However, the space of test functions C∞

0 ([0,T ] × Ω) is dense in
Lp([0,T ] × Ω) for p < ∞. For r̂ = t̂, it holds that Lr̂([0,T ] × Ω) = Lr̂(0,T ;Lt̂(Ω)). We
thus consider Y ∗

2 = Lr̂(0,T ;Lt̂(Ω)) for 1 < r̂, t̂ < ∞. Then, for arbitrary f ∈ Y ∗
2 there
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5.3. Alternating minimization

exists a sequence φk ∈ C∞
0 ([0,T ]× Ω) such that φk → f for k → ∞ with respect to the

norm in Y ∗
2 . It then holds that

lim
n→∞

∫ T

0

∫

Ω

[mi(cn, vn)−mi(c, v)] fdxdt

= lim
n→∞

∫ T

0

∫

Ω

[mi(cn, vn)−mi(c, v)] (f − φk) dxdt

+

∫ T

0

∫

Ω

[mi(cn, vn)−mi(c, v)]φk dxdt,

where the second term converges to zero as φk is a test function. For the first term, we
observe

lim
n→∞

∣∣∣∣
∫ T

0

∫

Ω

[mi(cn, vn)−mi(c, v)] (f − φk) dxdt

∣∣∣∣
≤ lim

n→∞
∥mi(cn, vn)−mi(c, v)∥Y2

∥f − φk∥Y ∗
2
.

The norm of the first term is uniformly bounded if we assume a bound on the spatial
derivative of c, i.e., ∥∇c∥L∞(0,T ;L∞(Ω)n) ≤ k′

∞ additionally to ∥v∥L∞(0,T ;L∞(Ω)n) ≤ k∞.
Moreover, for each ε > 0 there exists a k ∈ N such that ∥f − φk∥Y ∗

2
< ε.

We thus conclude that the operator F : dom(F ) → L2(0,T ;Y )× Lr
(
0,T ;Lr(Ω)

)
for

dom(F ) =H1
(
0,T ;H1(Ω)

)
× L2

(
0,T ;H1(Ω)n

)
∩

{
(c, v)| ∥∇c∥L∞(0,T ;L∞(Ω)n) ≤ k′

∞ ∧ ∥v∥L∞(0,T ;L∞(Ω)n) ≤ k∞

}
,

describes a weak-∗-to-weak continuous operator. A more general investigation is left for
future work.

5.3. Alternating minimization

In this section, we consider the unconstrained minimization problem

min
c,v

J(c, v) =

∫ T

0

D
(
A (c, t) ,u (t)

)
+ αR

(
c(·, t)

)
+ βS

(
v(·, t)

)

+ γT
(
c (·, t) , v (·, t)

)
dt.

The problem is solved by means of alternating minimization. This means that instead of
solving for the tuple (c, v) directly, one solves for c and v alternately, i.e.,

min
c

∫ T

0

D
(
A (c, t) ,u (t)

)
+ αR

(
c(·, t)

)
+ γT

(
c (·, t) , v (·, t)

)
dt, (5.23)

and

min
v

∫ T

0

βS
(
v(·, t)

)
+ γT

(
c (·, t) , v (·, t)

)
dt, (5.24)
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5. Joint Motion Estimation and Image Reconstruction

are solved alternately holding the other variable fix. We call (5.23) the image reconstruc-
tion subproblem and (5.24) the motion estimation subproblem.
We thus solve two convex problems which are formulated with help of linear operators.
The alternative of solving the joint problem directly is difficult as the problem has a
nonlinearity due to the nonlinear motion model and is non-convex, which might lead to
local minima. Standard methods as ADMM or split Bregman cannot be applied due to
the nonlinear term.

Remark. Convergence (to a global minimizer) of the alternating minimization scheme can-
not be shown in general. Denoting the solutions of the subproblems in the n-th iteration
by cn and vn, we see that J(cn, vn) ≥ J(cn+1, vn) ≥ J(cn+1, vn+1), i.e., the sequence is
decreasing and bounded from below for admissable initial values (c0, v0). Therefore, the
sequence converges to some b ≥ inf(c,v) J(c, v). In practice, this convergence is usually
very fast. For a strongly bi-convex functional J , it is clear that we converge to a global
minimum. Under less restrictive assumptions, this is not the case in general. Convergence
to a first order stationary point can be shown, e.g., under the assumption that J satisfies
the Kurdyka-Łojasiewicz property, is bi-convex, has a Lipschitz continuous gradient on
any bounded subsets of the domain and moreover, the sequence (cn, vn) is bounded [8].
In [16], convergence properties are analyzed for a functional with the part depending on
both variables being differentiable.
In our case, we can only expect convergence to a local minimum and thus our result
depends largely on the initial guess. However, in practice the algorithm yields convincing
results.

In the remainder of this section, we consider the algorithmic solutions to the subproblems.
We can see directly, that the motion estimation subproblem coincides with the problems
formulated in Chapter 4. We thus solve the problem with PDHG for either optical flow
or mass conservation, using a multi-scale and warping or a multi-scale only approach.
For the image reconstruction subproblem, the formulation is slightly more complex as the
ones we have encountered in Section 3.3. We thus briefly derive the scheme here, limiting
ourselves to non-negative fused lasso regularization and an L1 data fitting term in the
following. As we have seen in Chapter 4, warping can be applied in the optical flow case.
We therefore implement the nonlinearized version of the gray-value constancy assumption
according to (4.1), i.e., in the semi-discretized setting with respect to time step ht we use

T
(
c (·, t) , v (·, t)

)
=
∥∥c
(
·+htv (·, t) , t+ ht

)
− c(·, t)

∥∥
L1(Ω)

= ∥Wc (t)∥L1(Ω) .

with
(Wc) (t) := −c (·, t) +W t,htc (·, t+ ht) ,

where W t,ht maps a space-dependent image to a space-dependent image performing the
reverse warping of the input image with respect to the displacement field estimate v(·, t)
and the time step ht. Similar to the motion estimation subproblem, reverse warping
(iterating over the destination image) is performed in order to cover all pixels of the
destination image. Applying primal-dual splitting to this setting and using the same
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notations as in the motion estimation subproblem leads to

f1 (c) =

∫ T

0

α1 ∥c (·, t)∥L1(Ω) + I{c(·,t)≥0} dt

f2 (Cc) =

∫ T

0

∥A (c, t)− u (t)∥L1(Rd) + α2 ∥∇c (·, t)∥L1(Ω)n + γ ∥(Wc) (t)∥L1(Ω) dt

with the linear operator C =
(
A,∇,W

)T
and the corresponding adjoint operator

C∗ =
(
A∗, −div, W∗

)
. The corresponding Fenchel-conjugate is given by

f ∗
2 (y1, y2, y3) =

∫ T

0

I{∥y1∥∞≤1} + ⟨y1,u⟩+ I{∥y2∥3,∞≤α2} + I{∥y3∥∞≤γ}dt. (5.25)

The mass conservation constraint

m2 (c, v) =
∂

∂t
c+∇ · (cv) = 0.

is not linearized. We therefore use the constraint directly inside our penalty term, i.e.

T
(
c (·, t) , v (·, t)

)
=

∥∥∥∥
∂

∂t
c (·, t) +∇ ·

(
c (·, t) v (·, t)

)∥∥∥∥
L1(Ω)

=

∥∥∥∥
∂

∂t
c (·, t) + c (·, t)∇ ·

(
v (·, t)

)
+ v (·, t) · ∇c (·, t)

∥∥∥∥
L1(Ω)

.

Applying again the notation from the motion estimation subproblem leads to

f1 (c) =

∫ T

0

α1 ∥c (·, t)∥L1(Ω) + I{c(·,t)≥0} dt

f2 (Cc) =

∫ T

0

∥A (c, t)− u (t)∥L1(Rd) + α2 ∥∇c (·, t)∥L1(Ω)n

+ γ

∥∥∥∥
∂

∂t
c (·, t) + c (·, t)∇ ·

(
v (·, t)

)
+ v (·, t) · ∇c (·, t)

∥∥∥∥
L1(Ω)

dt,

where

C =




A

∇
∂
∂t
+ v1

∂
∂x

+ v2
∂
∂y

+ v3
∂
∂z

+ (∇ · v) I


 ,

and
C∗ =

(
A∗, −div, −

(
∂
∂t
+ v1

∂
∂x

+ v2
∂
∂y

+ v3
∂
∂z

− (∇ · v) I
) )

.

The Fenchel-conjugate corresponding to f2 is the same as in (5.25).
Inserting the functions f1 and f ∗

2 into the primal-dual framework in Algorithm 1 yields
the PDHG algorithm for the image reconstruction subproblem. It is further possible to
apply splitting of the dual variable corresponding to the data term and apply SPDHG
algorithm. The alternating scheme for joint image reconstruction and motion estimation
is illustrated by Algorithm 6.
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Algorithm 6 Alternating image reconstruction and motion estimation
1: Input: forward operator A, data u, parameters α, β > 0, initial image sequence c0,

parameters γ, δ > 0, initial motion field guess v = v0, number of scales Z, motion
model mi

2: for k=1,2,3,... do {% outer iterations = joint iterations}
3: ck = PDHG for image reconstruction subproblem

(
A,u, ck−1,α, β, γ, vk−1,mi

)

4: vk = PDHG for motion estimation
(
ck, γ, δ, vk−1,Z,mi

)

5: end for

5.4. Summary and discussion

Joint motion estimation and image reconstruction is expected to increase the quality of
both motion estimates and reconstructed image sequences. In this chapter, we fixed the
problem setting and formulated Theorem 5.1. This result forms the main contribution of
this chapter and has been published before in [27]. The theorem follows the idea of [35, 50]
but extends the setting from 2D plus time to 3D plus time image sequences and considers
time-dependent linear forward operators. The existence of a minimizer to the joint image
reconstruction and motion estimation task is proven. Therefore, the motion model is
incorporated into the variational problem formulation as a hard constraint that holds
almost everywhere. Afterwards, we incorporated the motion model into the variational
scheme as an additional penalty term and showed convergence of such unconstrained
solutions to solutions of the originally constrained problem. We solved the corresponding
optimization problem by alternating minimization using the algorithms derived in the
previous chapters for image reconstruction and motion estimation, respectively. Moreover,
we briefly considered under which additional assumptions the proposed joint approach can
be seen as a regularization of a nonlinear inverse problem. However, we only considered
quite restrictive assumptions in order to guarantee the weak-∗-to-weak continuity of the
nonlinear forward operator. A more general discussion in a more complex and less limiting
framework is an open question left for future work.
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6. Experiments on Synthetic and
Measured Data

This chapter is dedicated to extensive numerical tests of the proposed joint approach,
in particular in comparison to standard static reconstruction methods. Our goal is to
show the applicability of the proposed joint approach to reconstruction of dynamic MPI
images. All implementations are coded in Matlab. This chapter is structured as follows.
We start with experiments on simulated data for which we have a ground truth solution
available in Section 6.1. This ground truth solution exists not only for the reconstructed
images but also for the displacement fields. We can thus compare our results to the
ground truth in terms of different quality measures. Afterwards, we consider two different
sets of measured data. First, we use in-vitro data measuring a rotation phantom which
fulfills the OF constraint in Section 6.2. As this phantom fulfills the OF constraint, it also
fulfills the MC constraint. Second, we reconstruct in-vivo data covering the cardiovascular
system of a mouse in Section 6.3. Images from this dataset fulfill the MC constraint but
not the OF constraint. The experiments of these three section have mainly been carried
out in preparation of [27] and most results have been first published therein. We extend
our considerations on simulated data by taking into account quality measures for the
motion estimates, whereas in [27] we considered quality measures for the reconstructed
images only. Moreover, we analyze the evolution of results of the joint approach over joint
(outer) iterations and add an investigation of runtime and bottlenecks of the implemented
algorithms. Considering the rotation phantom data, we additionally present coefficients of
variation for the 1Hz and 7Hz dataset and we state the radii of reconstructed trajectories
as further quality measure. We conclude this chapter by Section 6.4, where we consider
subframe reconstruction. In this setting, we do not use data from a complete frame for
image reconstruction, but only parts of it in order to enhance the temporal resolution of
the resulting image sequences. We show that the proposed joint approach provides this
option on simulated and measured data.

6.1. Joint reconstruction versus a two-step scheme -
experiments on 3D simulated data

In this section, we reconstruct from synthetic data in order to have a ground truth avail-
able. The MPI scanner is modeled based on the pre-clinical MPI scanner (Bruker Biospin,
Ettlingen) at the University Medical Center Hamburg-Eppendorf, and a detailed list of
parameter choices can be found in Section A.1.1. Our phantom resembles the rotation
phantom presented in [64] and has a temporal resolution of 26928 states per frame. It
consists of a ball moving along a circular trajectory, thus fulfilling the OF constraint. We
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6. Experiments on Synthetic and Measured Data

simulate data on a grid consisting of 40×40×40 voxels and reconstruct on a smaller grid
of 20× 20× 20 voxels. Further, we consider three different noise levels: a noise-free scen-
ario, a medium noise scenario and a high noise scenario. Noisy data is obtained by adding
Gaussian noise with mean value zero and standard deviation 0%, 50% and 100% of the
maximum absolute signal to the data in the time domain. Afterwards, the data is Four-
ier transformed and pre-processed in the frequency domain. The pre-processing includes
limiting the maximum mixing order to 15, the maximum mixing factors to 10 and concat-
enating real and imaginary part of the data. The obtained data is as a result corrupted
by random noise with standard deviation of 0%, 2.7% and 5.3% of the maximum absolute
signal. The noise-free scenario is contained in order to analyze the influence of noisy data
on the algorithm but is not relevant in practice. Depending on the experimental setup,
both the medium and high noise scenario might resemble a realistic scenario. However,
our simulation setup uses a simple forward model based on the Langevin magnetization
model and neglects further noise sources as for example background signals. Moreover,
in contrast to a forward operator in practice, which is typically measured and thus noisy,
the simulated forward operator is not corrupted by noise. The reconstruction task is thus
performed under ideal conditions compared to the reconstruction of measured data even
in the case of noisy simulated data.

In the proposed joint reconstruction setting, we consider four different algorithms. All of
them apply non-negative fused lasso regularization on the tracer concentration (cf. (3.9))
and total variation regularization on the motion estimates (cf. (4.8)). As data discrepancy
terms, we use L1- and L2-norms and the motion model is either the OF constraint or the
MC constraint. The resulting algorithms are listed in Table 6.1 and denoted by L1OF,
L2OF, L1MC and L2MC.

Table 6.1.: Overview of joint reconstruction schemes consisting of an image reconstruction al-
gorithm and a motion estimation algorithm. We state the incorporated data discrepancy term
as well as the motion model used.

Abbr. Data disc. term Image rec. alg. Motion model Motion estimation alg.
L1OF L1-norm PDHG Optical flow Multiscale & warping PDHG
L2OF L2-norm PDHG Optical flow Multiscale & warping PDHG
L1MC L1-norm PDHG Mass conservation Multiscale PDHG
L2MC L2-norm PDHG Mass conservation Multiscale PDHG

All approaches are tested on 10 frames simultaneously. The quality of the reconstructed
image sequences is assessed by SSIM, PSNR and Mean Squared Error (MSE). The dis-
placement fields are compared to the ground truth in terms of L2-norm difference and
AAE.
First of all, we compare a joint reconstruction approach to a two-step scheme, where
image reconstruction is performed first and motion estimation second. This also allows
us to investigate how many joint iterations are needed and serves as a proof of concept
for the joint approach.
In Figure 6.1, we illustrate the evolution of the reconstructed image frames during the
joint iterations. The visual perception confirms the increase of the SSIM during the first
three iterations. The effect of applying more iterations is negligible. These results allow
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6.1. Joint reconstruction versus a two-step scheme

F
ra
m
e
2

F
ra
m
e
3

Joint iteration

0

1

C
on
ce
nt
ra
ti
on

/
a.
u
.

Figure 6.1.: Reconstructed images of the second and third frame are depicted in the upper
and bottom row, respectively. The columns show the intermediate results after one to ten joint
iterations. An increase in the visually perceived quality of the reconstructed images is obtained
for the first three to four iterations, for a higher number of iterations the differences are visually
imperceptible.
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Figure 6.2.: Applying the L1OF algorithm for image reconstruction and motion estimation to
the first four frames yields four consecutive images and motion estimates for the three intervals
in between. The image sequence yields the SSIM value in (a) and motion estimates obtain the
AAE in (b).

for early stopping of the joint algorithm after three iterations in order to obtain the highest
possible image quality.
In Figure 6.2, we depict the SSIM and AAE values for the first ten joint iterations for
the Joint reconstruction algorithm using an L1-data discrepancy term and the optical
flow motion model (L1OF) algorithm. The SSIM increases first, but starts decreasing
after three iterations. The AAE indicates that the motion estimation is not accurate,
the decrease in the SSIM might thus be caused by overfitting to a non-accurate motion
estimate. Clearly, early-stopping is a reasonable regularization method to avoid this
behavior.
Let us now consider two-step schemes in comparison. A two-step scheme can be based
on frame-by-frame image reconstruction by the Kaczmarz algorithm using standard Tik-
honov L2- regularization combined with a positivity constraint [48], which corresponds
to one of the most popular MPI reconstruction techniques [135]. Additionally, we con-
sider a two-step scheme based on reconstructed images by SPDHG algorithm solving a
formulation with non-negative FL regularization. Both algorithms were introduced and
tested comprehensively in Section 3.3. We combine both schemes with the multiscale and
warping PDHG-OF, which is the natural choice as the phantom fulfills the OF constraint.

105



6. Experiments on Synthetic and Measured Data

Using the Kaczmarz algorithm for image reconstruction yields image sequences with sig-
nificantly lower SSIM, reaching a maximum value of approximately 0.66. The maximum
concentration value is strongly underestimated, better results in terms of that value reach
a SSIM of only approximately 0.3. The motion estimation task is then performed on
that image sequence as input data and reaches an AAE of 4/44/80 degrees for the first
three frames, respectively. Although this value is very good for the first frame, the other
frames are worse than results by the joint approach. Moreover, the L2-error is significantly
higher (0.88 compared to 0.77 after three joint iterations). When reconstructing images
by SPDHG, the image quality resembles the joint approach. The motion estimation task
reaches an AAE of 39/40/58 for the first three frames and an L2-error of 0.93, resulting
in an overall slightly worse performance compared to the joint algorithm.

We now consider the quality of the image sequences obtained by the different approaches in
more detail. We perform an extensive parameter search and choose the ones obtaining the
highest SSIM values. The resulting reconstruction parameters are given in Section A.1.2.
Table 6.2 states the mean SSIM, PSNR and MSE values for all algorithmic approaches and
the three different noise scenarios. For illustration, reconstructed images for the second
time step and the medium noise level are depicted in Figure 6.3. For all three noise
scenarios, the Kaczmarz method yields by far the worst quality images. This is clear
from the visual impression but also underlined by all three quality measures. The images
reconstructed by the Kaczmarz algorithm suffer from severe motion and noise artifacts.
The SPDHG reconstructed images benefit from the FL regularization, which handles the
noise much better due to the sparsity enforcing L1-norm and the TV term. It reaches
higher SSIM and PSNR values than the joint approaches using an L2-data discrepancy
term for the noise-free and medium noise scenario. For the high noise scenario, all joint
algorithms outperform the two static image reconstruction algorithms. Best results are
obtained using an L1-data discrepancy term, that is able to handle outliers in the data
more robustly.

Table 6.2.: Comparison of the different algorithms in terms of SSIM, PSNR and MSE of the
reconstructed image sequences for three different noise levels and simulated data. The table was
first published in [27].

Noise level Noise-free Medium High
SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR MSE

·10−4 ·10−4 ·10−4

Kaczmarz 0.657 25.31 30 0.654 23.18 48 0.651 22.14 61
SPDHG 0.955 27.12 19 0.953 26.93 20 0.946 26.52 23
L1OF 0.962 27.79 17 0.960 27.56 18 0.955 27.62 18
L2OF 0.947 26.61 22 0.946 26.51 22 0.950 27.02 20
L1MC 0.963 27.85 17 0.961 27.60 18 0.956 27.57 18
L2MC 0.947 26.60 22 0.946 26.49 23 0.950 27.00 20

From these experiments, we could question the fact that Kaczmarz method defines the
state-of-the-art reconstruction method in MPI. However, in a standard static setting
measurements over multiple frames can be averaged in order to increase the SNR of the
data. As MPI has a fast acquisition time, it does not pose a problem to measure, e.g.,
100 DF cycles in order to average the obtained signal. Having a reconstruction algorithm
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Figure 6.3.: Reconstructed images of the simulated data for the second time step and the me-
dium noise level. The upper row depicts averaged intensity projections onto the x-y-plane, the
middle row projects onto the y-z-plane and the bottom row onto the x-z-plane. Each column
corresponds to one reconstruction algorithm. All images are plotted with the same colorbar
viridis and windowed based on the full dynamic range of the phantom. The joint approaches as
well as SPDHG yield noise-free image sequences which slightly underestimate the maximum con-
centration values, but recover the phantom well. The image sequence reconstructed by Kaczmarz
method underestimates the concentration stronger and suffers from background artifacts which
make it difficult to distinguish between phantom and artifacts especially in the y-z- and x-z-
planes. The figure was first published in [27].

that handles noise effectively is then not as important as having a fast reconstruction
algorithm, at the best of times allowing for online reconstruction. However, if we apply
frame averaging in the dynamic case, this results in severe motion artifacts as can be seen
in Figure 6.4. For averaging of very few frames (five in this example) the SNR in the data
is barely improved and motion artifacts occur already, but for averaging of 200 frames the
motion artifacts make it impossible to locate the object. This behavior was observed by
[64] as well.

Still, a great advantage of the Kaczmarz method is its fast reconstruction time. SPDHG
can challenge its runtime in a static setting, as we explored extensively in [146]. However,
it is necessary to tune the step size parameters accurately and find a reasonable early
stopping time in order to be competitive. Most computational costs (about 94%) arise
from the matrix-vector product involving the forward operator when performing a data
step update. The joint approaches, however, are by far slower than the Kaczmarz method.
Let us first consider the OF constrained case. As currently implemented, one joint iter-
ation of L1OF consisting of 102 iterations within the image reconstruction task and 103

iterations within the motion estimation task, needs approximately seven times as much
computation time compared to Kacmarz method (three iterations). Thereby, the image
reconstruction task covers more than 95% of the run time. Within the image reconstruc-
tion algorithm, 30% of the computational cost is allotted to the matrix-vector products
again. The main cost is attributed to inversion of the displacement mapping, which makes
use of a scattered interpolant. A computationally more efficient implementation of this
step would imply huge savings. As the joint algorithms based on the MC constraint do
not perform the inversion and thus do not use a scattered interpolant, they are signific-
antly faster. Still, one joint iteration has almost double the cost of the Kaczmarz method.
Within one joint iteration, about 80% of the run time are allotted to the image reconstruc-
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Figure 6.4.: Averaged intensity projections of the reconstructed images of the rotation phantom
for the medium noise level. The reconstructions are obtained via Kaczmarz method using single
frame measurements (left column) as well as averaged measurements over multiple frames (middle
and right column). The best regularization parameter (obtaining the highest SSIM value) λsingle

weighting the Tikhonov regularization term was determined for the single frame reconstruction
and then adjusted to the amount of averaging (using λsingle/

√
#frames) in order to stay propor-

tional to the expected noise level. The amount of frame averaging is increased from the left to
the right column. Note that the reconstructions are windowed differently, the maximum con-
centration is 5/3/1.5 from left to right in absolute numbers. Although averaged measurements
obtain a higher signal-to-noise ratio, the quality of the reconstructed images does not increase
from left to right due to the dynamic nature of the phantom. The figure was first published in
[27] but is slighty altered.

tion task, whereas the motion estimation task is again comparably cheap. The main cost
factor during the image reconstruction task is again the matrix-vector product involving
the forward operator. The bottleneck in the motion estimation algorithm PDHG-OF is
given by the differential operators. By porting the motion estimation task from Matlab
to C ++ the author of [50] was able to produce a speed-up of factor approximately 50.

6.2. In-vitro rotation phantom fulfilling the optical flow
constraint

The rotation phantom data used in this section were first published in [64] in 2017. We
thank the group of Prof. Dr. Tobias Knopp of the University Medical Center Hamburg
Eppendorf and the Technological University of Hamburg for providing it.
The measurements were taken by a pre-clinical MPI scanner (Bruker Biospin, Ettlingen)
using sinusoidal excitation frequencies creating 3D Lissajous trajectories. The drive-field
excitation frequencies are fx = 2.5MHz/102, fy = 2.5MHz/96 and fz = 2.5MHz/99

with an amplitude of 14mT/µ0, resulting in a repetition time of 21.54ms. The selection
field gradient strength is 0.75T/m/µ0 in x- and y-direction and 1.5T/(mµ0) in z-direction.
The delta sample used for system matrix acquisition was of size 2× 2× 1 mm3 and covers
25× 25× 25 positions.
For construction of the phantom, two round disks of the scanning bores’ diameter are
connected by three rods. An additional rod is placed in the center. On this rod, a glass
capillary with an inner diameter of 1.3mm, an outer diameter of 1.7mm and filled with
20 µL diluted ferucarbotran with factor 1/10 is fixed. The sample itself thus has a size
of approximately 1.3mm2 × 9.8mm. The central rod with a diameter of 10mm can be
attached to a screwdriver and rotated during measurements. Rotation of the central rod

108



6.2. In-vitro rotation phantom fulfilling the optical flow constraint

thus results in a circular path of the tracer material with a diameter of approximately
11.7mm. Measurements are available for the different rotation speeds, the respective
motion frequencies are 1Hz, 3Hz and 7Hz. A schematic illustration of the phantom is
depicted in Figure 6.5. A more detailed description of the phantom as well as reconstruc-
tions for comparison can be found in [64].

(a) Setup of the rotation
phantom.

(b) Distances of capillary and rods.

Figure 6.5.: Schematic illustration of the rotation phantom.

We use a standard procedure for data pre-processing, applying an SNR threshold of five,
and cutting off frequencies lower than 80 kHz. As for the simulated data, we concatenate
real and imaginary parts in order to have a convenient format for the primal-dual image
reconstruction algorithm. Moreover, we apply row normalization as introduced in [93] as
a weighting approach.
Both motion models are applicable such that we compare all four joint approaches on
the data. In Figure 6.6, we depict exemplary reconstructed images of the 3Hz dataset
for the four joint approaches as well as for the static approaches by Kaczmarz method
and SPDHG. Each row shows projections onto the y-z-plane for one frame in time.
Projections onto the y-x- and z-x-plane are depicted in Figure 6.7.
Figure 6.6 shows that variational approaches applying FL regularization yield image
sequences that are significantly less noisy than images reconstructed by the Kaczmarz
method. In the y-z-plane, we would ideally have reconstructed phantoms of size one to
two voxels in each direction. The variational approaches are close to this, whereas the dot
shape phantom is blurry when reconstructed by the Kaczmarz method. The differences
between L1- and L2-data term are negligible, but reconstructed images by an L1-data
term are slightly sparser. Frame-by-frame SPDHG performs well in terms of size of the
object and background noise, however, the algorithm faces severe problems in achiev-
ing comparable mass in each frame. This impression is confirmed by the coefficient of
variation, i.e., standard deviation divided by mean value, of the reconstructed mass in
each frame over the first 30 frames for each reconstruction approach in Table 6.3. Where
SPDHG faces severe issues, the other approaches perform well.
Considering Figure 6.7 and projections onto the y-x- and z-x-plane, we aim at a phantom
of length five to seven voxels in x direction. The proposed joint schemes reconstruct a
phantom of reasonable size, more particularly of approximately seven voxels in length
and two voxels in width. For the Kaczmarz method and SPDHG, the phantom seems to
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Figure 6.6.: Reconstructed image sequences for the 3Hz rotation dataset. Each column corres-
ponds to one algorithm, each row represents one frame in time. We display projections onto
the y-z-plane in this figure. The joint approaches yield sparser reconstructed image sequences
compared to the Kaczmarz method. Moreover, they feature an empty background whereas the
images reconstructed by Kaczmarz method suffer from background noise. The figure was first
published in [27].

Table 6.3.: Coefficients of variation of the total reconstructed mass in each frame over the first
30 frames of the image sequences for the different rotation phantom datasets.

Speed Kaczmarz SPDHG L1OF L2OF L1MC L2MC
1Hz 0.110 0.645 0.140 0.096 0.070 0.128
3Hz 0.149 0.556 0.116 0.141 0.110 0.129
7Hz 0.096 0.159 0.173 0.172 0.175 0.243

vary strongly in size. In time frames four to six, it appears significantly shorter than in
other frames. Moreover, the reconstructions suffer from noise artifacts and varying mass,
respectively.
All reconstruction parameters are given in Table 6.4. They were chosen based on visual
inspection out of a wide range of tested parameters. The joint algorithm proposed here is
used in combination with early stopping in order to limit the computation time. However,
the reconstructed image sequences are close to convergence at that point at least based
on visual perception we cannot observe any changes. More precisely, the early stopping
iteration is given for the image reconstruction subtask in the inner loop of the alternating
algorithm, cf. Section 5.3 and Algorithm 6. The alternations are performed three times.
Having assessed the image quality, we now investigate the impact of the proposed joint
approach to the motion estimation task. Knowing that the particles follow a circular
trajectory with known width and approximately known position, we decide to analyze
the trajectories for comparison of the motion estimates. In a first step, we obtain the best
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Figure 6.7.: Reconstructed image sequence of the 3Hz rotation phantom for the Kaczmarz
method, SPDHG and the L2OF algorithm. This figure displays projections onto the y-x- and
z-x-planes for the first eight time frames. The Kaczmarz method yields noise-corrupted recon-
structed images, whereas variational approaches result in clean image sequences. The phantom
reconstructed by SPDHG varies strongly in size and underestimates the phantom. The joint
L2OF algorithm captures the correct size of the phantom. The figure was first published in [27].

Table 6.4.: The parameters λ, α, β and the early stopping iteration index k used for the recon-
struction of the 3Hz rotation phantom data. The parameters γ = 100 (motion model penalty)
and δ = 10−1 (TV regularization on the motion field) are the same for all joint approaches.

Algorithm Early stopping λ α (L1 on image) β (TV on image)
Kaczmarz k = 10 5.62
SPDHG k = 103 3.0 · 10−1 5.0 · 10−1

L1OF k = 102 1.0 · 10−1 6.0 · 10−1

L2OF k = 102 1.0 · 10+2 2.5 · 10−1

L1MC k = 102 5.0 · 10−1 7.0 · 10−1

L2MC k = 102 2.5 · 10−1 2.5 · 10−1
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possible trajectories from the corresponding reconstructed image sequences manually by
following the maximum concentration along the time frames. The resulting trajectories
are smoothed by a fourth order polynomial approximation. Those optimal trajectories
are depicted in the left column of Figure 6.8. They are very similar for all algorithmic
approaches, the joint ones as well as the two-step schemes. For guidance, we fitted a
circular path with the correct radius of approximately 5.85mm as approximate ground
truth to the plot (depicted in yellow). Note that the circular path is indicated by an
ellipsoidal shape as the resolution is 1mm and 2mm in z- and y-direction, respectively.
In a second step, we find the points of interest, i.e., the spatial positions where high
concentrations are present in the first time frame. Then, we follow the motion estimates
from those points on and add up motion estimates for each time step, yielding a piecewise
linear trajectory depicted in the middle column of Figure 6.8. Here, several differences are
already visible. Motion estimates based on images reconstructed by Kaczmarz method are
too small in magnitude probably due to the severe noise artifacts in the image sequence,
resulting in too narrow trajectories. The joint approaches in general perform better with
visually most convincing results achieved by L1OF and Joint reconstruction algorithm
using an L2-data discrepancy term and the mass conservation motion model (L2MC).
In a third step, we smooth the results from the middle column by a fourth order polynomial
again. In Table 6.5, we state the computed centers (y, z) and radii r of the best-fit circles
fitted to the coordinates obtained by the piecewise linear trajectories in the middle column
of Figure 6.8. The computed values confirm the visual impression, i.e., motion fields based
on the Kaczmarz method severely underestimate the magnitude of motion. The reference
position for the yellow circles is given by (yref , zref) = (12.5, 13). Please note that the
position of the reference is not exact but only a guess based on the reconstructed images.
The reference circle center is closest to the values obtained for the L2MC algorithm. The
Joint reconstruction algorithm using an L2-data discrepancy term and the optical flow
motion model (L2OF) center is also reasonably close. For the L1-constrained algorithms,
we observe a shift to the right. This can be explained by different means. First, the
resulting image sequences are sparser, such that no averaging over different coordinates
occurs which could shift the mean value. Second, several of the latter motion estimates are
quite small. As the phantom moves to the right first and then to the left, this mainly affects
the position of the phantom at later time steps. We obtain the best results for L1OF,
slightly underestimating the magnitude of motion, and L2MC, slightly overestimating the
magnitude of motion.

Table 6.5.: Centers (y, z) and radii r of the best-fit circles fitted to the coordinates obtained
by following the motion estimates on each time step for the 3Hz rotation phantom dataset.
The reference value is an approximate value based on visual inspection of the image sequences
combined with knowledge from the experimental setup.

Reference Kaczmarz SPDHG L1OF L2OF L1MC L2MC
y 12.5 13.92 13.36 14.04 12.70 14.10 12.44
z 13 12.48 14.76 13.09 13.82 12.75 13.19
r 5.75 3.39 4.96 5.36 5.28 4.80 6.49

In Section A.2.2 in the appendix, we obtain similar results for the 7Hz dataset in Fig-
ure A.1 and Table A.7. The more challenging image reconstruction task leads to severe
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Figure 6.8.: Trajectories of dynamic particle concentration based on motion estimates by various
algorithmic approaches for the 3Hz rotation phantom dataset. The left column displays the
optimal particle trajectory as observed in the reconstructed image sequence for the 3Hz dataset
by following the maximum concentration value along the frames and smoothing the result by a
4th order polynomial approximation in white. For guidance, we fit a circle with correct diameter
to the curve in yellow. The middle column shows the piecewise linear trajectories, which are
obtained by adding up the computed motion of every time step. The right column displays a
4th order polynomial approximation to the curve in the middle. L1OF and L2MC yield the
best results, whereas the motion estimates based on the Kaczmarz-reconstructed images severely
underestimates the magnitude of the displacement.
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problems in the motion estimation task based on the images reconstructed by Kaczmarz
method. All joint approaches yield more reasonable guesses for the trajectory, best results
are obtained for the L1OF and L2MC algorithm.
The reconstruction of the rotation phantom datasets for different speeds shows that the
image reconstruction task significantly benefits from the joint approach. The more appro-
priate priors (in comparison to the Tikhonov regularization used by Kaczmarz method)
minimize noise artifacts in the reconstruction. Moreover, the reconstructed mass over
the time frames is more constant due to the additional conservation prior. The motion
estimates are also improved by the joint approach. The enhanced image sequences lead
to significantly more accurate motion estimates.

6.3. In-vivo mouse data fulfilling the mass conservation
constraint

The in-vivo mouse data were first published in the context of presenting a highly sensitive
gradiometric receive coil, see [67]. Similar to the rotation phantom data, the data were
measured by the Bruker Biospin scanner at the University Medical Center Hamburg-
Eppendorf. In order to capture the fine structures of the cardiovascular system of the
mouse, the system matrix has been calibrated with a small capillary of size 0.7mm. This
significantly higher spatial resolution is obtained by a considerably smaller delta probe
compared to the previous experiments, such that we expect stronger noise on the meas-
ured signal and the measured system matrix. The system matrix captures a volume of
32.2 × 25.2 × 13.3 mm3 by 46 × 36 × 19 voxels. The measurement sequence is collected
by the above-mentioned gradiometric receive coil for an injected bolus of volume 10 µL.
The temporal resolution is given by 21.54ms per frame, as no time averaging was applied.
The expected flow during the inflow of the bolus is about 5 cm s−1, see [84], which is equi-
valent to a movement of about 1mm per frame. Thus, we already expect motion-related
inconsistencies such that applying a motion model is beneficial. Here, we use the same
data pre-processing as for the rotation phantom data with an additional correction for
background signal. Therefore, we take empty measurements at the beginning of the meas-
urement process and when calibrating the system matrix. These empty measurements are
then subtracted from the phantom measurements and system matrix, respectively [136].
MRI scans provide us with background information on the structures of the inner tis-
sue. We fit those as grayscale background images behind the reconstructed MPI image
sequences.
For the motion estimation task in this section, we do not apply TV regularization as before
as this yields too smooth motion estimates. The blood flow through the cardiovascular
system cannot be assumed to fulfill such strong smoothness assumptions. Instead we apply
L2-Tikhonov regularization on the flow fields, which yields the optimization problem

min
v

∫ T

0

β ∥v (·, t)∥2L2(Ω)n + γ

∥∥∥∥
∂

∂t
c (·, t) +∇ ·

(
c (·, t) · v (·, t)

)∥∥∥∥
L1(Ω)

dt.

Algorithmically, the dual update step in Algorithm 3 simplifies as the new Tikhonov term
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belongs to the primal problem. The primal update step then consists of a different but
easy to compute proximal operator. The regularization parameters chosen for the L1MC
algorithm are α1 = 0.05, α2 = 100, β = 0.1 and γ = 100. We only present results for this
algorithm for the sake of brevity.
An exemplary reconstruction of the first two frames is depicted in Figure 6.9. From left
to right, the rows show different slices of the reconstructed 3D volume.
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Figure 6.9.: Exemplary reconstructed image sequences from the in-vivo mousedata. Each row
represents one frame in time and slices of the 3D volume are shown from left to right. The figure
was first published in [27].

In Figure 6.10, we depict a single slice (index 14, corresponding to a height of 9.1 to

9.8mm) of the reconstructed volume in the left column. The motion estimates are illus-
trated by the quiver plots in the middle column. We observe a turbulent flow of different
magnitude throughout the image section. The direction of the flow can be observed more
easily by the color wheel plot in the right column, where each color represents a specific
angle. Succeeding time steps are presented in the rows. The images as well as motion
estimates seem reasonable, although we cannot assess the quality in comparison to a
ground truth. The motion estimates depicted in Figure 6.10 do only display the motion
with respect to two spatial dimensions.
In order to investigate the flow through the different slices of tissue, we consider Fig-
ure 6.11. Although this figure is difficult to interpret, we can state that the flow is
reasonable to the effect that flow is visible only where concentration exists. Moreover,
regions with flow directing upwards and downwards propagate over the slices, which also
seems reasonable.

6.4. The subframe reconstruction setting

The high temporal resolution of MPI is one of its main advantages and outperforms many
medical imaging modalities. For some applications, even a temporal resolution of 46
frames/second might not be fast enough. Thinking about blood flow imaging, the mean
flow velocity in the aorta is approximately 12 cm s−1, which translates to 2.6mm/frame in
a standard 3D setup. In the arteries, even velocities up to 45 cm s−1 are possible, which
is equivalent to 9.7mm/frame, see [58]. Thus, large displacements are possible within the
repetition time of an MPI scanner.
If we then additionally consider the fact that motion estimation results in non-unique
solutions and that we favor solutions, which represent the shortest way by our standard
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Figure 6.10.: Reconstructed images and flow for the in-vivo mousedata. Reconstructed images
for eight time frames are depicted in the left column, a quiver plot of the corresponding motion
estimates in the middle column and a color wheel plot indicating the direction of motion in the
right column. The figure was first published in [27].
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Figure 6.11.: Reconstructed images and flow in z-direction for the in-vivo mousedata for one
time step. The second left column displays the current slice of the 3D volume, the first column
depicts the slice below and the third column shows the slice above. In the right column, the in-
and outflow into the current slice is depicted. Blue areas indicate flow upwards (to slice above),
red areas indicate a downward flow (to slice below). The figure was first published in [27].
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algorithmic schemes, we might not be able to investigate the exact flow and the dynamics
if we restrict ourselves to the repetition time for the temporal resolution. However, it
might be of high diagnostic relevance to observe the exact way of the blood flow and
see whether the flow goes through or around an obstacle. A natural idea to improve the
temporal resolution of the reconstructed image sequences is to derive forward operators
and measurements for shorter time intervals. This is possible due to the measurement
process of MPI, cf. Figure 3.3. Remember that we denoted the repetition time of an MPI
scanner by TR. In the following, we define the repetition time of a subframe by Tsf . The
data u used for reconstruction of one subframe is obtained during an interval of length
Tsf , i.e.,

u (t) =

∫

Ω

c(x, t)s(x, t)dx for t ∈ ( 0,Tsf ] . (6.1)

This data sampling during subintervals is illustrated by Figure 6.12. The FOV is sampled
densely during a full frame, but only partly and not as dense during subframes. The
more subframes we consider, the better is the temporal resolution but the worse is the
spatial resolution. If we use other excitation functions such that a non-Lissajous trajectory
occurs, this problem might be intensified.

Four subframes

Two subframes

Full frame

Figure 6.12.: The field-free point trajectories cover only parts of the field-of-view (FOV) for
subframe reconstruction. We depict a Lissajous trajectory that samples the 2D FOV fine-mesh
during a full frame (upper row). In the middle row, we consider the subframe reconstruction
setting with Tsf = TR/2, i.e., the repetition time of a subframe corresponds to half of the
repetition time of a full frame. In the bottom row, we illustrate the trajectories for the subframe
setting with Tsf = TR/4. Large areas are then not scanned sufficiently during a subframe.

Remark. All results regarding the existence of minimizers to the joint optimization prob-
lem still hold in the subframe reconstruction setting as long as the choice of excitation
function still ensures a point-wise non-vanishing forward operator.

Main consequences of subframe considerations are the temporally higher resolution, but
also the more limited data available for each image reconstruction problem. Moreover,
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6.4. The subframe reconstruction setting

the trajectories of the FFP are not closed anymore. As mentioned before, we expect a
spatially lower resolution, as parts of the FOV may not be covered at all by the FFP tra-
jectory. Another side-effect relates to the reconstruction space. Previously, we performed
image reconstruction in the Fourier domain. Now, we consider the data in the Fourier
domain to perform a frequency selection, but then transform it back to the time domain.
Doing this after frequency selection naturally incorporates an additional error, but we
need the frequency selection in order to achieve a reasonable SNR. However, we need to
reconstruct in the time domain in order to perform the temporally correct grouping of
the data. This describes our data pre-processing already, additionally we normalize the
system matrices and corresponding measurements.

In the following, we analyze subframe reconstruction on the simulated dataset, cf. Sec-
tion 6.1. We restrict ourselves to the L1OF algorithm for the joint approach for brevity.
This algorithm is one of the two best-performing joint schemes on the simulated data as we
showed in Section 6.1. We compare its performance to the static reconstruction schemes
based on the Kaczmarz method and SPDHG. Again, we consider the three different noise
levels noise-free, medium noise and high noise.
First, we set Tsf = TR/2, i.e., one original temporal frame consists of two subframes
such that the temporal resolution is twice as high as before. In a noise-free scenario, the
static approaches by Kaczmarz method and SPDHG perform well. In this setting, the
reconstruction of the phantom is reasonable in size and position. However, already in the
medium noise scenario, the Kaczmarz method reconstructs image sequences suffering from
severe noise artifacts. The position of the phantom is not clearly distinguishable from the
background. SPDHG now also produces image sequences with artifacts but still yields
good results. The image sequence reconstructed by the joint L1OF algorithm certainly
has the highest quality, as the phantom is in the correct position and the background
is empty. In the high noise scenario, the joint L1OF algorithm outperforms the two
static approaches. The image sequence reconstructed by the Kaczmarz method is not
recognizable anymore, the images by SPDHG suffer from severe artifacts which cannot
be distinguished from the phantom. The joint L1OF yields image sequences with the
phantom in the correct position and with only slight artifacts regarding its shape. For
illustration, all reconstructed image sequences for the first four subframes are depicted in
Figure 6.13.
Now, we are interested in achieving an even higher temporal resolution. Again, we halve
the interval length, such that Tsf = TR/4. This yields a maximum displacement of one
voxel for each time step. However, on this simulated data set, we have only 800 observa-
tions left to reconstruct the concentration values of 8.000 voxels. We reconstruct an image
sequence by L1OF. In a noise-free setting, no artifacts in the reconstruction are visible.
In the medium noise scenario, we observe slight artifacts clearly distinguishable from the
phantom. However, in the high noise scenario stronger artifacts exist. Still, the phantom
is clearly distinguishable from background and noise. Reconstructed image sequences for
all noise levels are illustrated in Figure 6.14. We increase the temporal resolution further
to Tsf = TR/8. In this case, we fulfill the assumption of a quasi-static tracer distribution
such that an even finer temporal resolution is not useful. Figure 6.15 depicts reconstruc-
ted image sequences showing the good performance of the joint algorithm even in this
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Figure 6.13.: Subframe reconstructions by different algorithmic approaches for simulated data.
One original frame corresponds to two subframes, i.e., Tsf = TR/2. On noise-free data (upper
block) the static methods as well as the joint approach reconstruct the phantom in the correct
size and position. For the medium noise level (middle block), the phantom is still recognizable
when reconstructed by static SPDHG. In the image sequence reconstructed by Kaczmarz method
the background noise cannot be distinguished from the phantom anymore. For the high noise
level (bottom block) only the joint L1OF yields convincing results. The images reconstructed by
static approaches suffer from noise and motion artifacts. The true position of the phantom for
each subframe is indicated by the yellow circle. All image sequences are depicted as projections
onto the x-y-plane.
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case. Neither the static Kaczmarz method nor the static SPDHG approach are able to
produce meaningful results in this setting.
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Figure 6.14.: Subframe reconstructions by the joint L1OF algorithm for quarter frames, i.e.,
Tsf = TR/4 for three different noise scenarios for simulated data. In the noise-free setting (top
row), the phantom is well resolved. Slight artifacts exist in the medium noise setting (middle
row) and become stronger in the high noise scenario (bottom row). The true position of the
phantom for each subframe is indicated by the yellow circle. All image sequences are depicted
as projections onto the x-y-plane.

In a next step, we consider the effect of subframe reconstruction to the motion estimation
task in the joint approach. The higher temporal resolution leads to smaller displacements
between the different image frames. This simplifies the numerical motion estimation,
as large displacements are typically more difficult to assess correctly. Moreover, lar-
ger displacements between two original frames are estimated by a linear displacement.
By applying subframe reconstruction, this displacement splits into several smaller linear
translations. As a whole, they describe a more complex shift. On the downside, small
errors on each motion estimate add up to a larger one, as a greater number of motion
estimates is computed overall.
Figure 6.16 depicts the computed displacements over the first three frames. In this ex-
ample, we use the L2MC algorithm. The ground truth positions for the first frame are
colored in blue, for the second one in red and for the third one in gray. We indicate
the path via a solid line although the phantom does not move continuously. The mean
position of the full frame is indicated by a large circular mark and the mean positions
of the four subframes are depicted by smaller circular marks. We see as a direct con-
sequence that connecting the full frame mean positions directly does not match the result
when connecting the mean positions during quarter frames. Thus, information about the
particles’ path gets lost if we perform full frame reconstruction.
The computed motion estimates for full frames (a) and quarter frames (b) are indicated
by arrows in Figure 6.16. Small inaccuracies in each subframe in (b) yield an estimated
trajectory which is slightly shifted. We observe small as well as large errors for the
subframe motion estimates, paying tribute to the input image sequences which suffer from

121



6. Experiments on Synthetic and Measured Data

Subframe 1 Subframe 2 Subframe 3 Subframe 4 Subframe 5 Subframe 6

N
oi
se
-f
re
e

M
ed
iu
m
N
oi
se

H
ig
h
N
oi
se

0

1

C
on
ce
nt
ra
ti
on

/
a.
u
.

Figure 6.15.: Subframe reconstructions by the joint L1OF algorithm for eighth frames, i.e.,
Tsf = TR/8 for three different noise scenarios for simulated data. In the noise-free setting (top
row), the phantom is well resolved. In the medium noise scenario (middle row), we can still
clearly distinguish the phantom from the background, although its shape is slightly distorted.
In the high noise scenario (bottom row), strong artifacts exist in some frames making it difficult
to spot the exact position of the phantom. The true position of the phantom for each subframe
is indicated by the yellow circle. All image sequences are depicted as projections onto the x-y-
plane.
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(b) Quarter frame displacements.

Figure 6.16.: Comparison of full frame and subframe motion estimates using the L2MC al-
gorithm. The true position of the phantom during the frames is indicated by the colored lines
(blue indicates the first frame, red the second one and gray the third one, respectively). The
mean position during the frames is indicated by the larger circular marks, the smaller ones
describe the mean positions during subframes. In (a), the motion estimates in the full frame
reconstruction setting are indicated by the arrows. In (b), we illustrate the motion estimates in
the subframe setting. The particles’ path can be tracked with a lot more detail for the subframe
case. However, the higher number of estimates comes at the cost of several small errors that add
up to a larger one.
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artifacts. Still, the direction of motion is more accurately estimated when considering the
subframe approach instead of the full frame displacements. We can well observe how
the direction changes gradually during the sequence. By using larger subframes or full
frames, information is lost due to the averaging effect occurring when considering data
from longer time spans.
The parameter γ which weights the motion model penalty term is especially important
in the subframe setting. It weights the influence of the motion model and thus links
the motion estimation task and the image reconstruction task. The image reconstruction
task is quite robust to the choice of γ, for the motion estimation task we observe the
behavior illustrated in Figure 6.17. For smaller parameters γ, the computed direction
of the displacement differs more strongly from the true direction. This behavior meets
our expectations, as by using a smaller γ we allow for larger discrepancies to the motion
model. However, we observe a maximum value that should not be exceeded in order
to gain a reasonable output. For larger γ, in this example larger than γ = 10−2, the
displacement fields point in random directions and do not match the true displacement.
In this case, the regularization within the motion estimation subproblem is not strong
enough compared to the data term, i.e., the motion model.
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γ = 10−4

γ = 10−6

Figure 6.17.: The influence of the parameter γ on the motion estimation task in a subframe
setting. The direction of motion is computed more accurately for larger but sufficiently small γ.
If γ is chosen larger than 10−2 the algorithm fails to compute a reasonable solution.

We conclude the consideration of the subframe setting by showing the applicability to
measured data. Therefore, we consider the 3Hz rotation phantom from Section 6.2. We
use the same data preprocessing, additionally splitting data and matrices into subframe
intervals. The regularization parameters are set similarly to the full frame setting, cf.
Table 6.4. These parameters are not tuned but simply adopted from the full frame
setting. Figure 6.18 illustrates the reconstructed image sequence by projections onto the
different planes. The subframe results describe the position of the phantom with high
precision and thereby achieve a higher temporal resolution compared to the fullframe
image sequence. However, the size of the phantom is distorted in x-direction. This might
be due to the non-optimal regularization parameters on the one hand and due to the
scanning trajectories which are not dense enough while applying subframe reconstruction
on the other hand. The effect amplifies if we consider quarter frames instead of half
frames.
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Figure 6.18.: Comparison of subframe (Tsf = TR/2) and full frame results for the rotation
phantom. While the position and the size of the phantom in z- and y-direction are well resolved,
the size in x-direction is too small for the subframe results. However, the spatial position is
captured with higher resolution compared to the full frame setting.

6.5. Summary and discussion

In this section, we tested the proposed joint reconstruction approach for image sequences
and motion estimates numerically. We first showed the superior results regarding the
image quality compared to standard static reconstruction approaches taking into account
different measures for the image quality on synthetic data in Section 6.1. Thereby, we
considered not only ideal conditions but also a noise-corrupted scenario. We analyzed
the main drawback of the proposed method, i.e., the high computational costs of certain
aspects of the joint algorithm, in particular of the image reconstruction task. The com-
putation of the inverse motion field for the OF constrained algorithms is costly but has
the potential for a speed-up of the algorithm by a more efficient calculation of the inverse
motion field and by cheaper computations of differential operators.
After these first proof-of-concept results on simulated data we considered measured data,
namely the rotation phantom in Section 6.2. Based on visual inspection, we again ob-
served high quality results by the proposed joint approach. By evaluating the trajectories
obtained from the motion estimates, we underlined the good performance of the approach
with respect to motion estimation task.
The third data set considered was in-vivo data imaging the cardiovascular system of a
mouse in Section 6.3. This data fulfill only the MC constraint but not the OF constraint.
Imaging blood flow in the cardiovascular system, we used a regularization term assuming
less smoothness of the flow compared to a TV regularization term. More precisely, we
implemented an L2-Tikhonov regularization on the motion fields. The results are reason-
able based on visual inspection, showing the applicability of the proposed approach also
to more complex scenarios and especially to real-world problems.
In Section 6.4, we considered a subframe reconstruction setting. In this setting, we en-
hanced the temporal resolution of the computed image sequences and motion fields. To
achieve this, we artificially reduced the length of a measurement frame to a subframe.
This leads to less data available per subframe and measurements with a lower spatial res-
olution, posing an overall more difficult image reconstruction task. However, we showed
that the proposed joint approach benefits from linking the images at different time steps
and yields superior results compared to standard static techniques. We first considered
simulated data, where we observed that static methods can solve the task for half frames
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in a noise-free setting. When introducing noise as well as when further increasing the
temporal resolution to quarter or eighth frames, only the proposed joint approach pro-
duces convincing results. We closed the section by applying the subframe approach to
the 3Hz rotation phantom data from Section 6.2, briefly showing the applicability also
on measured data.
We derive different possible directions for future research from the numerical performance
of the algorithms. In order to test the accuracy of the motion estimation task from meas-
ured data, we need to carefully design a dynamic in-vitro phantom. For this phantom, we
need simple flows in order to understand flow directions and magnitude at all spatial po-
sitions from limited measurements, e.g., measurements of the inflow speed when inserting
tracer material.
Various extensions like, e.g., allowing for consideration of in- and outflow into the FOV,
multi-patch setups and inclusion of prior knowledge from background images has to be
investigated from the theoretical as well as numerical side.
In order to make the runtime competitive and ideally enable online reconstruction, we
have to find a more efficient way to invert the motion fields. Moreover, the matrix-vector
products that are very costly in Matlab might be less costly when implemented in
other languages. Further savings in terms of runtime might be possible by porting the
differential operators, e.g., to C ++.
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7.1. Summary

In this thesis, we considered joint image reconstruction and motion estimation for three-
dimensional dynamic MPI from a theoretical as well as a numerical perspective.
In Chapter 3, we analyzed the static MPI forward operator in detail. We showed compact-
ness of the static three-dimensional forward operator on compact time intervals, yielding
the ill-posedness of the image reconstruction task. With the help of an auxiliary lemma,
we verified a regularity property of the MPI forward operator. More precisely, we con-
sidered 3D MPI with continuously differentiable trajectories of the FFP in a neighborhood
of a nonstationary time point of the FFP trajectory. We showed that the forward op-
erator is then non-vanishing in this neighborhood. We briefly studied the full dynamic
forward model instead of the static one and observed different temporal scales related
to the dynamic imaging task. However, noting that the full dynamic model is com-
putationally too complex to be incorporated as a forward operator into our scheme, we
restricted ourselves to the assumption of quasi-static tracer distributions. To conclude the
chapter, we explained different image reconstruction algorithms, namely the current state-
of-the-art Kaczmarz method and SPDHG, a primal-dual approach allowing for different
regularization terms. Comparing those approaches on synthetic data, we observed that
Kaczmarz method yields blurry and noise-corrupted reconstructions, whereas SPDHG
yields cleaner image sequences. This fact is particularly important, as having clear and
clean input images is crucial for successfully applying a motion estimation algorithm.
In Chapter 4, we dealt with the motion estimation task in general as well as an applica-
tion to MPI-like images. We gave an introduction to the motion estimation problem and
briefly considered classical methods, e.g., Horn-Schunck and Lucas-Kanade. We derived
two motion models, namely OF and MC, which we incorporated into our algorithmic
approach as data fidelity terms. We used the primal-dual PDHG algorithm in order to
solve the corresponding optimization problems and found that the different motion models
yield slightly different algorithmic schemes. A Taylor expansion and the discretization of
the differential operators limit the maximum magnitude of motion which can be detected.
We proposed a multiscale and warping scheme for the OF motion model and a multiscale
scheme for the MC motion model in order to be able to recover large displacements. The
resulting algorithms were tested on phantoms that resemble MPI images in the sense that
they are very sparse and have an empty background. This poses a very specific motion
estimation task, such that only such images are considered in this work. We showed
that the multiscale schemes significantly improved the motion estimation when applied
to displacements exceeding one voxel per frame. Moreover, it depends on the specific
setting whether the OF or the MC based algorithm yields better results. Extending our
algorithms, we also applied gaussian smoothing on the input images in order to obtain a
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higher robustness to noise. However, this did not improve the overall outcome signific-
antly and was only applicable to the OF based algorithm. We then proposed a structural
prior based on background images and their edges. This prior aims at promoting flows
which are likely to occur from a physical perspective and suppress flows which are unlikely
to occur. More precisely, flows aligning with edges in background images are promoted
whereas flows perpendicular to such edges are suppressed. This prior was only applicable
to the MC based algorithm and increased its angular accuracy under noise significantly.
Concerning the run time and cost, we saw that computation of spatial derivatives is the
main cost factor within the PDHG algorithms and iterations on finer scales are very costly
compared to lower scales. We considered a stopping criterion based on the objective value
to limit the number of iterations on the finest scales, resulting in a small save of run time.
In Chapter 5, we finally considered the joint image reconstruction and motion estimation
task. Starting from the theoretical perspective, we showed existence of a minimizer to
the joint problem incorporating the motion model as a hard constraint almost everywhere
in Theorem 5.1. We followed the proof of [35, 50], lifting the dimensionality from two
to three dimensions and including the time-dependent forward operator. Dimension de-
pendent embeddings were used at crucial points and had to be adapted which was the
main challenge of the proof. In the following Lemma 5.1, we proved convergence of solu-
tions of the unconstrained minimization problems incorporating the motion model as an
additional penalty term to a solution of the constrained minimization problem in terms of
Γ-convergence. Moreover, we briefly commented on the regularization property which the
proposed joint approach comprises. We considered an alternating minimization approach
to solve the joint problem and briefly discussed convergence of such an algorithm.
The numerical evaluation of the proposed joint image reconstruction and motion estima-
tion algorithm is contained in Chapter 6. We started by experiments on simulated data,
showing the superior performance of the joint approach compared to a two-step scheme in
terms of SSIM and PSNR for the image reconstruction task. Moreover, we observed that
only few joint iterations are needed until only negligible changes occur for the reconstruc-
ted images as well as the motion estimates. Afterwards, we considered real measured data
instead of synthetic data and showed the applicability of our approach also on the OF-like
rotation phantom data set and the MC-like in-vivo mouse data set. We obtained improved
motion estimates by the joint approach compared to a two-step scheme as well as higher
perceived image quality. We closed the numerical evaluation by an investigation of the
subframe setting. In this setting, we enhance the temporal resolution of the reconstructed
image sequences by temporally different data grouping. We introduced subframes which
are defined as partial frames and reconstructed images on this temporal scale. Therefore,
we had to reconstruct in the time domain instead of the Fourier domain which was previ-
ously used. Starting again on simulated data, we showed superior performance of the joint
approaches compared to static reconstruction methods. Especially in a noise-corrupted
setting, the proposed joint approach benefited from the temporally coupled formulation
and was able to produce high-quality results, whereas static methods did not manage to
recover the phantom.
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7.2. Discussion and outlook

Concerning the motion estimation task, we pointed out that the sparse, empty back-
ground image sequences pose a very specific challenge. We found that application of our
primal-dual motion estimation algorithm yields fast degrading quality of the displacement
fields if applied to noisy data. It is necessary to derive a more robust motion estimation
algorithm tackling this problem. The proposed structural prior is a first step in that
direction but needs to be extended to the OF based motion estimation algorithm. An-
other option might be incorporating a temporally smoothing regularization term. Instead
of applying the motion estimation task to the reconstructed image sequences, one could
also try to retrieve motion information directly from the raw measured MPI signal, i.e.,
from information in the frequency domain. Moreover, the currently used algorithm could
potentially be improved by a tailored stopping criterion on the different scales, optimized
step size strategies and more refinement steps per scale. From the implementation side,
there is room for improvement of the efficiency, potentially by porting costly parts of the
script to different languages.

Considering now the joint approach from a theoretical perspective, we see that within the
formulation of the unconstrained joint problem, the motion model defines an additional
part of the, now nonlinear, forward operator. Under strong assumptions, it was shown
straightforward that the joint problem formulation defines a regularization method. Un-
der more general assumptions, however, it is a challenging task and left for future work.
We applied the proposed joint approach to a specific MPI device, working in three di-
mensions, having linearly independent receive coil units and a field-free point geometry
fulfilling a continuously differentiable trajectory. These assumptions are not restrictive in
general, as MPI is intrinsically three dimensional and the receive coils are typically even
orthogonal. Moreover, a Lissajous trajectory fulfills the assumptions for sinusoidal excit-
ation functions. An extension of the setting of Theorem 5.1 would be necessary for cosine
excitation functions and for different scanning geometries like a field-free line scanner or
single sided scanners.
Note that we used the static forward model throughout our considerations which assumes
at least quasi-static tracer distributions. In order to limit the modeling error, we need to
extend the setting to the full dynamic forward model. To date, it is not possible to measure
the full dynamic forward model and thus a (at least partly) model-based approach for the
system matrix has to be applied. This again poses a research question on its own which
is why we do not consider it in this work. However, it would be even more interesting
to analyze the behavior of the full dynamic model and check whether it fulfills the same
regularity assumption.
In this work, we only briefly touched the topic of subframe reconstruction. Discovering
the challenges of subframe reconstruction in more detail is an interesting research question
which is left for future work. Especially the impact of the not-as-dense sampling during the
measurement process has to be studied. Our numerical results on the rotation phantom
data set showed difficulties in retrieving the original size and shape of the phantom, this
might be due to a spatially not sufficient sampling process but needs to be understood in
detail. It might be useful to consider additional temporal smoothness when applying a
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subframe approach in order to link consecutive time steps.
Moreover, we briefly introduced the multi-patch setting for MPI measurements. As the
FOV in MPI is very limited, a realistic scenario in practice will always involve multiple
patches. This does not pose huge challenges for the image reconstruction task alone.
However, when applying a joint image reconstruction and motion estimation task with a
motion model based on conservation laws, we have to carefully consider the setting. Thus,
in- and outflow into certain patches have to be modeled and the numerical implementation
of the conservation assumption has to be handled explicitly.
From a practical point of view, the applicability of the proposed approach to MPI image
sequences was shown on measured data. The resulting image sequences were visually
inspected and showed good results. However, accessing the quality of the resulting dis-
placements field is not possible without having an approximate ground truth. Therefore,
we need a carefully designed experimental setup allowing for an evaluation of the ground
truth flow. We leave this exciting task for future work.
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A. Details and Additional Results for
the Numerical Experiments

A.1. Simulated data

This section reveals detailed information about the simulation setting and the parameters
used for reconstruction of the simulated MPI data. We first describe the simulated scan-
ner in Section A.1.1 and then comment on the search areas and optimal reconstruction
parameters in Section A.1.2.

A.1.1. Properties of the modeled MPI scanner

The scanner setup used for simulations is chosen in order to match the Bruker Biospin
scanner (Ettlingen) at the University Medical Center Hamburg-Eppendorf. This simu-
lated scanner is used to produce the data used in Section 3.3, Section 6.1 and Section 6.4.
The drive-field frequencies are defined by the base frequency 2.5MHz and different fre-
quency dividers, i.e., fx = 2.5MHz/102, fy = 2.5MHz/96 and fz = 2.5MHz/99. This
yields an amplitude of 14mT/µ0 and a repetition time of 21.54ms. The selection field
gradient strength is 0.5T/m/µ0 in x- and y-direction and 1.0T/m/µ0 in z-direction. The
magnetic nanoparticles are modeled as stated in Table A.1.

Table A.1.: Physical constants and parameters for modeling the magnetic nanoparticles.
Parameter Value
Permeability constant µ0 4π · 10−7N/A2

Particle core diameter 2 · 10−8m
Core saturation magnetization 0.6T/µ0

We model ideal magnetic fields and use the Langevin magnetization model. In the for-
ward operator voltage measurements for three receive channels in respective unit vector
directions are used. To avoid inverse crime, simulations are performed on a finer grid
compared to the reconstruction, i.e., we use 403 voxels of size 1mm × 1mm × 0.5mm

for simulation and 203 voxels of size 2mm× 2mm× 1mm for reconstruction. For recon-
struction, the time-dependent signals are transformed to the Fourier domain, a frequency
selection is performed and real and imaginary part are split, i.e., concatenated. In the
subframe reconstruction setting, the data are transformed back to the time domain after
frequency selection.
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A.1.2. Parameter search region and optimal parameters

For the static image reconstruction task in Section 3.3 we summarize the parameter search
region in Table A.2 and the optimal parameters in Table A.3. Optimality is considered
with respect to the SSIM value reached by reconstructed images with the respective
parameter combination.

Table A.2.: Parameter search area for static image reconstruction for simulated data.
Algorithm Par. 1 Min Max Par. 2 Min Max
Kac λ 10−6 103 k 1 20
FL-L1D α 10−8 10+1 β 10−8 10−1

FL-L2D α 10−8 10+0 β 10−8 10+0

L1-L1D β 10−8 10+1

L2Grad-L2D α 10−8 10+1

Table A.3.: Optimal parameters with respect to the SSIM value for static image reconstruction
for simulated data.

"Lemon" "Dots" "Pi"
Algorithm Par. 1 Par. 2 Par. 1 Par. 2 Par. 1 Par. 2
Kac λ = 10−1 k = 18 λ = 10−5 k = 7 λ = 10+0 k = 9
FL-L1D α = 10−1 β = 10−2 α = 10+0 β = 10−2 α = 10+0 β = 10−3

FL-L2D α = 10−1 β = 10−1 α = 10−2 β = 10−1 α = 10−1 β = 10−3

L1-L1D β = 10−1 β = 10−3 β = 10+0

L2Grad-L2D α = 10−2 α = 10+0 α = 10−2

For the dynamic simulated data in Section 6.1, we used the search regions described by
Table A.4 for the joint approaches. Parameter tests for the joint approaches were per-
formed on 10 time steps simultaneously. The resulting image sequences for each parameter

Table A.4.: Parameter search area for the joint approaches for the simulated data.
Parameter Min. value Max. value

α1 10−3 10−1

α2 10−8 10−5

β 10−2 1
γ 10−5 1

combination was tested for the SSIM value. The best parameter combination is stated in
Table A.5.
For the Kaczmarz algorithm, we tested for the early stopping index k and the Tikhonov
regularization parameter λ. The parameter λ was tested in the range between 10−5 and
103, k in between 1 and 10.
Frame-by-frame SPDHG algorithm has two parameters, α1 corresponding to the L1-
penalty term and α2 corresponding to the TV penalty term. The testing range for α1 was
in between 10−3 and 10−1, for α2 in between 10−9 and 10−5.
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Table A.5.: Optimal parameters with respect to the SSIM value for joint image reconstruction
and motion estimation for simulated data.

Algorithm Motion model Early stopping λ α1 α2 β γ
Kaczmarz None k = 3 103

SPDHG None k = 2 · 103 10−2 10−7

L1OF Optical Flow k = 102 10−2 10−7 10−1 10−4

L2OF Optical Flow k = 102 10−2 10−7 10−1 10−4

L1MC Mass Conservation k = 102 10−2 10−8 10−1 10−4

L2MC Mass Conservation k = 102 10−2 10−5 10−1 10−4

A.2. Rotation phantom data

A.2.1. Parameter search region and optimal parameters

For the Kaczmarz algorithm, we tested for the early stopping index k and the Tikhonov
regularization parameter λ. The parameter λ was tested in the range between 10−4 and
30, k in between 1 and 100.
Frame-by-frame SPDHG algorithm has two parameters, α1 corresponding to the L1-
penalty term and α2 corresponding to the TV penalty term. The testing range for α1 was
in between 10−4 and 1, for α2 in between 10−4 and 10.
Parameter tests for the joint approaches were performed on 15 time steps simultaneously
within the ranges stated in Table A.6.

Table A.6.: Parameter search area for the joint approaches for the rotation phantom data.
Parameter Min. value Max. value

α1 10−2 10
α2 10−2 100
β 10−2 1
γ 1 200

The resulting image sequences were visually inspected and the most convincing ones were
chosen. The search area was iteratively reduced and refined until no visual differences
were observed.
The resulting parameters for the 3Hz dataset are stated in Table 6.4. Parameter tests for
the 1Hz and 7Hz datasets are performed analogously and yield similar results.

A.2.2. Additional illustrative results for the 7Hz dataset

Considering the 7Hz data set, we obtain the trajectories depicted in Figure A.1 from
the motion estimates. In the left column, we depict the optimal trajectory constructed
manually from the reconstructed image sequences. In the middle, we have the piecewise
linear trajectories obtained by adding up motion estimates at different time steps. In the
right column, we have a smoothed version of the curve in the middle. The yellow circle
with correct diameter is fitted for guidance. The trajectories obtained based on the image
sequences computed by Kaczmarz method, L2OF and Joint reconstruction algorithm
using an L1-data discrepancy term and the mass conservation motion model (L1MC)
severely underestimate the magnitude of motion.
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In Table A.7, we state the computed centers (y, z) and radii r of the best-fit circles fitted
to the coordinates obtained by the piecewise linear trajectories in the middle column of
Figure A.1. The computed values confirm the visual impression, the radii of the Kaczmarz
method, L2OF and L1MC are too small. The reference position for the center of the yellow
circles is (yref , zref) = (12.5, 13). Please note that the position of the reference is not exact
but only a guess based on the reconstructed images. The center of the L1OF is close
in z-direction but not in y-direction, the center of the L2MC is close in y- but not in
z-direction. Those two methods yield the best overall results.

Table A.7.: Centers (y, z) and radii r of the best-fit circles fitted to the coordinates obtained by
following the motion estimates on each time step for the 7Hz dataset. The reference value is an
approximate value based on visual inspection of the image sequences combined with knowledge
from the experimental setup.

Reference Kaczmarz SPDHG L1OF L2OF L1MC L2MC
y 12.5 11.81 11.16 13.91 11.88 12.50 12.22
z 13 15.11 14.23 13.23 15.93 14.00 11.35
r 5.75 2.80 3.45 5.45 4.10 4.17 5.35

A.3. Mouse data

A.3.1. Parameter search region and optimal parameters

Motivated by the specific application, we use the L1MC algorithm. The parameter search
area is indicated in Table A.8, tests were performed on 30 time steps simultaneously.

Table A.8.: Parameter search area for reconstruction of in-vivo mouse data by the L1MC al-
gorithm.

Parameter Min. value Max. value
α1 10−2 10−1

α2 10−3 200
β 10−3 10−1

γ 1 1000

The resulting reconstruction parameters are given by α1 = 0.05, α2 = 100, β = 0.1 and
γ = 100. They are chosen based on visual inspection of the resulting image sequences.
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A.3. Mouse data
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Figure A.1.: Trajectories of dynamic particle concentration based on motion estimates by various
algorithmic approaches for the 7Hz rotation phantom dataset. The left column displays the
optimal particle trajectory as observed in the reconstructed image sequence for the 7Hz dataset
by following the maximum concentration value along the frames and smoothing the result by a
4th order polynomial approximation in white. For guidance, we fit a circle with correct diameter
to the curve in yellow. The middle column shows the piecewise linear trajectories which are
obtained by adding up the computed motion of every time step. The right column displays a 4th
order polynomial approximation to the curve in the middle. The trajectories based on SPDHG,
L1OF and L2MC match the correct path best.
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B. A Result on the Decay of Singular
Values in MPI

B.1. Theorem 4.1. in [90]

In this section, we state the setting and result of [90, Theorem 4.1.] using our notation.
An offspring of the proof is given by the fact, that the system function of MPI lies in
the space H0 (I;L2(Ω)). This is used for the proof of Lemma 3.1 and we thus state the
original theorem and proof here for completeness.
The static MPI forward operator is defined by A : L2(Ω) → L2(Ω)

c 7→
∫

Ω

c(x)s(x, t)dx,

s = µ0m0R
T d

dt

[Lβ (∥H∥)
∥H∥ H

]
,

H (x, t) = HD(t) +HS(x).

Theorem B.1: Theorem 4.1. in [90]

Let 0 < β < ∞, d = 1, 2, 3, −HD ∈ (Hs(I))d with s ≥ 1, Hs ∈ (L∞(Ω))d and
R ∈ (L∞(Ω))d.
Then for the operator A : L2(Ω) → L2(Ω) defined above, the singular values σn

decay as σn ≤ Cn
1
2
−s.

Proof. Since −HD ∈
(
Hs(I)

)d and Hs ∈
(
L∞(Ω)

)d, it holds for the effective mag-

netic field and its derivative that H (x, t) = HD(t) + HS(x) ∈ Hs
(
I;
(
L∞(Ω)

)d) ⊂
L∞

(
I;
(
L∞(Ω)

)d) and Ḣ(x, t) = ḢD(t) ∈
(
Hs−1(I)

)d by Sobolev embedding. Con-

sidering R ∈ (L∞(Ω))d, we note that

RTH ∈ Hs
(
I;
(
L∞(Ω)

))
,

RT Ḣ ∈
(
Hs−1

(
I;L∞(Ω)

))
.

By [90, Lemma 2.1.], we further know that Lβ(
√
z)√

z
∈ C∞

b ([0,∞) ). This property is proven
directly in the lemma. Moreover, ∥H2∥ ∈ Hs

(
I;L∞(Ω)

)
for s ≥ 1 (cf. [90, Theorem 3.1.]).

The theorem considers pointwise multiplication on Sobolev spaces in general. With the
help of [90, Lemma 3.1.(i)], a lemma on composition operators on Sobolev spaces, it can
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be deduced that

Lβ(∥H∥)
∥H∥ ∈ Hs

(
I;L∞(Ω)

)
,

d

dt

Lβ(∥H∥)
∥H∥ ∈ Hs−1

(
I;L∞(Ω)

)
.

It thus follows that

s = µ0m0R
T d

dt

[Lβ (∥H∥)
∥H∥ H

]

= µ0m0

[
RTH

d

dt

Lβ (∥H∥)
∥H∥ +

Lβ (∥H∥)
∥H∥ RT Ḣ

]

∈ Hs−1
(
I;L∞(Ω)

)
⊂ Hs−1

(
I;L2(Ω)

)
.

The assertion about the singular value decay then follows from [90, Theorem 3.2.].
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