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1. Introduction 

Faces provide some of the richest information sources in social communication. For 

example, identifying familiar faces (e.g., family, friends) and inferring a person’s demographics 

(e.g., age, gender, ethnicity) are essential for social interaction (for a review, see Bruce, 2002). 

Face identification is an automatic skill (Yan et al., 2017) that we develop as we become older  

and refers to the within-class differentiation of individuals sharing an overall configuration of 

facial features (i.e., eyes, nose, mouth; Carey et al., 1997; Mondloch et al., 2006). However, 

this automatism can be impeded depending on the context you encounter a person in. For 

example, you might be familiar with the situation that you see a colleague every day at work, 

but while being on vacation at the beach, you get a surprising text message: “Did you not see 

me just now?” In fact, you have just walked past your colleague, although you know their face 

and should be able to automatically recognize them. However, the unusual context and the 

low probability of meeting them have altered your perception, meaning that expectations 

derived from the context you were in influenced the processing of incoming sensory 

information.  

This exemplifies the widely accepted phenomenon that perception is a combination of 

bottom-up as well as top-down information (Clark, 2013; Friston, 2005; Von Helmholtz & Nagel, 

1909). In the research field of face perception, it has been shown that expectations accelerate 

identification of familiar faces, for example, if expectations are evoked by the prior presentation 

of the name of a person (Amado et al., 2018; Ambrus et al., 2019). Conversely, incongruent 

expectations can lead to an interference of face identification, measurable by a slower reaction 

time (RT; Todorova & Neville, 2020). Furthermore, the noisier or more ambiguous the sensory 

face information is, the stronger the influence of expectations on disambiguating the identity 

(Walther, Schweinberger, Kaiser, et al., 2013; Walther, Schweinberger, & Kovács, 2013).  

A prominent framework connecting how expectations might influence perception is 

Predictive Coding (Friston, 2005, 2009). This framework postulates that the brain predicts 

upcoming sensory information by applying different priors (i.e., expectations) about what is 
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likely to be encountered during a certain situation. The ultimate goal of an organism is to reduce 

surprise by making predictions as accurately as possible. This is achieved by computing 

whether the incoming information deviates from the expected information (i.e., the prediction 

error, PE) and subsequently updating the internal predictive models for upcoming situations 

by integrating the PE. This process is likely performed based on Bayesian principles that 

consider the uncertainty (or inverse: the precision) of both the prediction and the sensory input 

for weighing their contribution to the posterior that will be used for future model predictions 

(Aitchison & Lengyel, 2017; Clark, 2013; Friston, 2005; Knill & Pouget, 2004). The Bayesian 

brain constantly learns the statistical regularities of the environment, making the inference 

about the probable causes of sensory observations as accurate as possible. In our example 

with the colleague, based on previous experiences, our brain would predict with a high certainty 

to meet the colleague in the office, resulting in a low (or effectively no) PE when we meet them 

there. However, when we unexpectedly meet them on vacation, we are surprised and might 

adjust our internal model by increasing the probability of meeting them in that context. This 

results in less surprise and higher recognition probability the next time we encounter them on 

vacation. 

One aspect of the Predictive Coding framework is that it suggests humans to be active 

agents in their environment, constantly testing their prior beliefs by performing experiments to 

gather information whether their predictions are accurate (Friston et al., 2012). For this 

purpose, humans perform eye movements, i.e., saccades and fixations, to actively sample the 

environment for confirmation of the predictions, hence precluding surprises (PE). This has 

been supported by experiments showing that context information about the emotional state or 

ethnicity of a person influence how we sample ambiguous faces in line with expectations 

(Aviezer et al., 2008; Wang et al., 2015). Similar guidance of eye movements by context has 

been demonstrated in the scene-object congruency literature, showing that participants are 

faster at locating a cooking pot than a printer in a kitchen due to the typical occurrences of 

these objects in a scene (Võ & Henderson, 2011). However, there have been studies 

challenging this guidance of eye movements towards expected context information (Bonitz & 
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Gordon, 2008; Brockmole & Henderson, 2008). For example, Brockmole and Henderson 

(2008) report a faster fixation of semantically inconsistent compared to consistent objects in a 

scene (e.g., eggs compared to a book in a fridge). These studies on context effects on face 

and scene-object perception suggest that different visual information drive eye movement: on 

the one hand, context information influences the sampling of ambiguous faces and scenes 

towards expected information; on the other hand, there have been reports of unexpected 

information being fixated earlier than expected information, suggesting eye movements may 

be driven by PEs instead of confirmative sensory information. 

To resolve this question whether expected information or PEs drive our eye movements, 

we conducted two pre-registered eye-tracking experiments for our first study. In our paradigm, 

participants learned to associate names with four faces. Each face had one distinct facial 

feature, e.g., a high forehead or a wide chin. In each trial, a name cue served as context 

information for which face would likely appear next, thereby allowing predictions. The 

upcoming face could either be the expected identity, an unexpected identity, or an ambiguous 

face morph between the expected and an unexpected face. In our first experiment, we limited 

sensory information by presenting the face for a short duration (100 ms), hence manipulating 

the precision of the sensory input. We allowed for predictive saccades towards the respective 

facial features by providing a time interval with a face outline for reference between the name 

cue and the face presentation. In the second experiment, the face was presented for a longer 

duration (4500 ms or until button press). This allowed us to investigate for the ambiguous face 

morphs whether participants preferentially sample expectation-confirming or -deviating face 

information. In these two experiment, we aimed at answering the following questions:   

1) Do participants perform predictive saccades towards expected facial features (e.g., 

the forehead), in line with an active sampling of expected information? 

2) Do participants show an earlier fixation of expected or unexpected facial features in 

face morphs, either in line with an active sampling of expected information or PEs? 

3) Do participants show a preferred sampling of expected or unexpected facial features 

in face morphs in terms of number of fixations and dwell time? 
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4) Is there a link between eye movements and behaviour (e.g., a last-sampling bias 

(Zhu, 2022), making it more likely to choose the identity in a face morph that matches 

the facial feature which was fixated last)? 

Our study revealed that participants predictively performed saccades towards locations of 

expected facial features. Furthermore, participants fixated expected facial features earlier than 

unexpected ones in face morphs, which is in line with an active sampling of the environment 

for expected information (Friston et al., 2012). Interestingly, the initial preferred sampling of 

expected features reversed over time into an increased sampling of unexpected information. 

This could indicate a shift towards the PE after evaluating the initial prediction, possibly for 

model updates. Furthermore, in trials with completely unexpected faces, the initial guidance of 

fixations by expectation was reduced: expected features were still fixated earlier than regions 

containing no information of the two faces contained in a face morph, but there was no 

difference in initially fixating the expected or unexpected facial feature anymore. This indicates 

that highly deviating bottom-up information can weaken guidance by expectation, equally 

leading to an early fixation of either expected or unexpected face information. We also found 

a direct connection between eye movements and perceived identity in a face morph, linking 

the observed assimilation effect (i.e., the perception of the expected face in a face morph) to 

the fixation of the expected facial feature at face onset (Experiment 1) and the last fixation 

during face presentation (Experiment 2). In conclusion, our first study’s results are in line with 

the Predictive Coding framework by showing a preferred sampling as well as predictive 

saccades before face onset towards expected information. Also, we showed that highly 

expectation-deviating information can partially counteract the guidance by expectations. These 

findings highlight the supportive role of expectations for perception, while the detection of 

unexpected information (PE) is preserved and could be highly relevant for revising predictive 

models. 

While our first study provided insights into how expectations directly influence which 

information we sample in our world, it remained unclear how expectations and sensory 

information are computationally combined on a neural level. In order to gain more insights into 
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the computational processes of the brain, we conducted a second study using functional 

magnetic resonance imaging (fMRI). On the neural level, the effect of expectations on face 

perception has been extensively studied using fMRI (de Gardelle et al., 2013; Egner et al., 

2010; Grotheer & Kovács, 2015; Summerfield et al., 2008), electroencephalography (EEG; 

Summerfield et al., 2011), magnetoencephalography (MEG; Johnston et al., 2017), 

transcranial direct current stimulation (tDCS; Kongthong et al., 2013), and transcranial 

magnetic stimulation (TMS; Mattavelli et al., 2011). Most of these studies report a so-called 

expectation suppression effect, i.e., a reduced neural response to expected compared to 

unexpected faces. One prominent explanation for this effect stems from  the Predictive Coding 

framework which suggests a hierarchical processing of information: while expectations about 

an upcoming face are forwarded from higher to lower (sub-)cortical areas which are closer to 

the direct processing of the visual input, these lower areas compute and send back the PE 

between expectation and sensory input to higher areas, which update the predictive models 

for upcoming scenarios (Friston, 2005, 2008; Mumford, 1992; Rao & Ballard, 1999). This 

framework would explain the observed expectation suppression effect as a reduced PE for 

expected faces, resulting in reduced neural activation in face-sensitive regions. However, 

previous literature on the neural mechanisms of the expectation suppression effect fell short 

in testing alternative models. One alternative explanation for the reduced activation for 

expected face is proposed by the Sharpening account (e.g., Alink & Blank, 2021; Kok et al., 

2012; Lee & Mumford, 2003; for reviews, see Clark, 2013; de Lange et al., 2018; Walsh & 

McGovern, 2018). According to Sharpening, neurons tuned to expected face information get 

enhanced, suppressing irrelevant information of nearby neurons. This would lead to an overall 

reduced but less noisy activation for expected compared to unexpected faces. Therefore, both 

explanations, PE and Sharpening, would explain the expectation suppression effect based on 

two contrary computational mechanisms.  

In our second pre-registered study, a multivariate fMRI study combined with deep 

convolutional neural networks (DCNN), participants learned to associate scene images with 

four faces. In each trial, a scene was followed either by the expected face, an unexpected face, 
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or a face morph containing the expected as well as an unexpected face. While the expected 

and unexpected faces allowed us to investigate the univariate expectation suppression effect, 

the face morphs enabled us to differentiate how expectations and sensory information are 

combined on the neural level, i.e., whether the expected identity (Sharpening) or the 

unexpected identity (PE) is represented more strongly. We focused on the analysis of face-

sensitive regions along the ventral face-processing hierarchy, namely the occipital face area 

(OFA), the fusiform face area (FFA), and the anterior temporal lobe (aTL; Blank et al., 2015; 

Goesaert & Beeck, 2013; Guntupalli et al., 2017; Haxby et al., 2000). We performed analyses 

within these regions of interest (ROI) as well as whole-brain analyses to answer the following 

questions: 

1) Can PE or Sharpening better explain how expectations and sensory information are 

computationally combined along the ventral face-processing hierarchy and in the 

whole brain?  

2) Which account more likely explains the univariate expectation suppression effect in 

regions along the ventral face-processing hierarchy? 

Our fMRI study revealed evidence for PE processing along the whole face-processing 

hierarchy, with additional Sharpening of expected information in early OFA and frontal regions. 

Simultaneously, the posterior part of the FFA (pFFA) as well as a more lateral area in inferior 

and medial temporal gyrus (ITG/MTG) showed an expectation suppression effect, suggesting 

PE processing as the underlying computational mechanism for the expectation suppression 

effect in these areas. Thereby, our results support the notion of a hierarchical processing 

proposed by the Predictive Coding framework, by showing PEs related to higher-level 

expectations in lower face-sensitive regions, similar to previous studies in the macaque brain 

(Nigam & Schwiedrzik, 2024; Schwiedrzik & Freiwald, 2017). In addition, we extended previous 

research by testing Sharpening as an alternative explanation for the univariate expectation 

suppression effect. We revealed a complex interplay between the representations of expected 

and unexpected face information, as shown by their co-occurrence in OFA and the whole brain 

results, and their importance for the representation of faces. 



10 

 

In conclusion, we investigated with our two studies how expectations induced by context 

information influence face processing on the behavioural and neural level by using eye-

tracking and multivariate fMRI analyses. In our first study, we showed that expectations actively 

drive eye movements towards expected information, in line with an active sampling of our 

environment (Friston et al., 2012), which changes over time towards unexpected information. 

Furthermore, the initial guidance by expectations can be reduced if the sensory information 

deviates too strongly from the expectation. In our second study, we were able to provide 

evidence for the prominent view that the univariate expectation suppression effect could be 

linked to PE processing and revealed that face representation involves a combination of 

expected (Sharpening) and unexpected (PE) face information. These results support two 

aspects of the Predictive Coding framework: firstly, reinforcing the human as an active agent 

sampling expectation-confirming information in the world, and secondly showing the neural 

representation of PEs alongside sharpened expected face information, in line with the 

suggested hierarchical processing in the brain. These results offer new insights into the 

complex interplay of expectations and sensory information and how they both shape the 

perception of our world. 

 

2. Context Effects on Behavioural Face Perception 

Why is it easier to recognize a colleague’s face in the office compared to in an unexpected 

context, for example, on vacation at the beach? In both contexts, the sensory information, i.e., 

the colleague’s face, is identical. Still, the context in which we encounter them is different and 

seemingly influences how we process the incoming sensory information. A context can 

influence face perception by two different mechanisms: on the one hand, context can facilitate 

face processing to enable a faster and more correct identification, a process called priming. 

On the other hand, context can shift perception away from the expected input (i.e., from the 

expected face identity), a process called adaptation (for reviews, see Mueller et al., 2020; 

Snyder et al., 2015). In our experimental designs, we used priming paradigms by facilitating 

the processing of a target stimulus (i.e., a face) due to preceding information (i.e., a cue). 
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Facilitation is usually evaluated by a reduction in reaction time (RT) and higher recognition 

accuracy (= lower error rate) for expected compared to unexpected faces. One type of priming 

is repetition or identity priming in which the same face is repeatedly presented (Bruce & 

Valentine, 1985; Brunas et al., 1990; Ellis et al., 1990; Martin et al., 2010). A more subtle 

method is associative or semantic priming in which subsequent face processing is facilitated 

by inducing face expectations via semantically associated information, for example, by first 

presenting an associated face (e.g., Angela Merkel prior to Barack Obama; Bruce & Valentine, 

1986; Schweinberger et al., 1995; Vitkovitch et al., 2006; Vladeanu et al., 2006; Young et al., 

1994), a name of an associated person (Wiese & Schweinberger, 2008), an associated word 

(e.g., ‘brother’; Todorova & Neville, 2020), a name (or the initials) of a person (Amado et al., 

2018; Ambrus et al., 2019; Jemel et al., 2005; Schweinberger et al., 2001; Shehzad & 

McCarthy, 2019), or cross-modally via a corresponding voice (Blank et al., 2015; Bülthoff & 

Newell, 2017; Stevenage et al., 2014). EEG studies suggest that repetition priming affects 

early event-related potential (ERP) components, possibly reflecting the early pre-activation of 

a mental face representation (Schweinberger et al., 1995). Associative priming rather affects 

later ERP components and does not operate on the perceptual level, influencing a post-

perceptual process by a facilitated access to semantic identity information (Bentin & Deouell, 

2000; Schweinberger et al., 1995; for a review, see Schweinberger & Neumann, 2016). The 

typical facilitation effect can be reduced and reversed with prolonged cue presentation 

duration, leading to an inhibitory negative priming effect with longer RTs for expected 

compared to unexpected faces (Barbot & Kouider, 2012, Rieth & Huber, 2010; for a review, 

see Mueller et al., 2020). Priming paradigms are usually characterized by a short presentation 

duration of the cue and could lead to an assimilation effect, i.e., the perception of ambiguous 

face morphs as the expected identity. In contrast, in paradigms with prolonged cue 

presentation (usually the same face), the adaptation to the cue leads to the perception of the 

unexpected face in a face morph (contrastive effect) due to neural or representational 

habituation (Carbon & Ditye, 2011; Leopold et al., 2001; Rieth & Huber, 2010; for reviews, see 

Mueller et al., 2020; Snyder et al., 2015).  
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In our two studies, we used associative priming paradigms, a more naturalistic approach 

to our everyday life in which the context serves as an information source about people we are 

most likely to encounter (e.g., the office for our colleague). In our first study, we operationalized 

context information by presenting name cues to induce expectations about specific facial 

features of upcoming faces. In our second study, we employed scene images of indoor scenes 

to evoke expectations about upcoming faces. Thereby, we investigated two versions of 

associative priming to understand how expectations influence behaviour, eye movements, and 

neural responses to expected compared to unexpected faces. 

 

3. Predictive Coding, Prediction Errors, and the Bayesian Brain 

A widely accepted viewpoint is that perception is not solely a bottom-up by sensory 

information driven process, but a combination of bottom-up and top-down information 

(Aitchison & Lengyel, 2017; Clark, 2013; Friston, 2005; Von Helmholtz & Nagel, 1909). How 

our brain combines incoming sensory information with expectations, however, is not fully 

understood yet. The Predictive Coding framework suggests that instead of representing 

everything our sensory system encounters in the world, it is more efficient to only encode the 

information deviating from the expectation, i.e., the PE (Aitchison & Lengyel, 2017; Friston, 

2005; Mumford, 1992; Rao & Ballard, 1999). This approach is similarly used in data 

compression for image and video processing to reduce redundancy (e.g., in .jpg-formats of 

images): usually, the value of a pixel is highly correlated with neighbouring pixel values, while 

important features like boundaries between objects are marked by higher differences in pixel 

value (Clark, 2013; Mead, 1990; Posch et al., 2014; for reviews, see Huang & Rao, 2011; Shi 

& Sun, 2019). This implies that images can be efficiently encoded or compressed by only 

encoding the highly different pixels, or in other terms, the unexpected information or PE (Clark, 

2013; Zhaoping, 2006). As events in the real world are similarly highly structured, a reduction 

to processing only unexpected information may constitute a beneficial mechanism for the brain 

to reduce processing effort. 
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Neurobiological evidence for PE processing comes from the human visual system: sensory 

information from the retina needs to pass several ‘bottlenecks’ to the primary visual cortex 

(V1), with limited cell numbers only allowing for a certain amount of information to be processed 

(for reviews, see Aitchison & Lengyel, 2017; Zhaoping, 2006). Furthermore, paradigms of 

expectation suppression, i.e., reduced neural activity for expected compared to unexpected 

information (e.g., de Gardelle et al., 2013; Egner et al., 2010; Johnston et al., 2017; 

Summerfield et al., 2008, 2011), have often been seen as evidence for PE processing. While 

this assumption can hold true to a certain extent, we will further discuss this for our second 

study in which we tested an alternative explanation for the reduced activation for expected face 

(Garlichs & Blank, 2024). 

Sensory information as well as predictions inherently involve uncertainty. For example, a 

face can be partially occluded by a hat, leading to noisy and less reliable sensory input. 

Similarly, there are reoccurring situations and the brain develops expectations about how likely 

certain sensory input is under similar future circumstances (for example, your colleague is 

usually in home office on Mondays and Thursdays). However, nature and people do not stick 

to regularities perfectly, therefore, making predictions about upcoming sensory information not 

100% correct (e.g., if the colleague unexpectedly comes into the office on a Monday). The 

brain tries to make predictions by inferring the most likely cause for a sensory sensation. One 

way how this inference could be achieved is by using hierarchical generative models. The brain 

has built these by learning statistical regularities in the environment about which causes are 

likely for the observed sensation (Clark, 2013; Friston, 2005; Von Helmholtz & Nagel, 1909). 

For example, a rustling of leaves could be either the wind or a dangerous predator depending 

on whether you are walking in a park or in a jungle (Aitchison & Lengyel, 2017). The underlying 

cause of the rustling can therefore be concluded with a high probability from the context 

information.  

It has been proposed that the brain incorporates the inherent uncertainties in our 

predictions and sensory information within the Predictive Coding framework according to 

Bayesian principles, leading to the term of the Bayesian brain (Aitchison & Lengyel, 2017; 
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Friston, 2005, 2009; Knill & Pouget, 2004). While we make predictions based on generative 

models about possible causes of sensory events, following PEs can then be used to update 

these models to enhance future predictions. This might operate based on Bayesian principles 

by computing a posterior based on the prior probability of the expected sensory input and the 

actual sensory input, while considering both of their uncertainties (or inverse: their precision; 

Aitchison & Lengyel, 2017; Friston, 2005, 2009; Knill & Pouget, 2004). This posterior can then 

be used as the new prior for upcoming situations to achieve more accurate predictions. In this 

context, the term Hierarchical Predictive Coding refers to the principles of Predictive Coding 

via bidirectional connections across multiple layers of cortex (Clark, 2013). It is assumed that 

higher-level cortical regions send predictions via backward connections to lower cortical 

regions which in turn compute the PE and send it back via feedforward connections to enhance 

future predictions and eventually lead to the final percept (Clark, 2013; Friston, 2005, 2008; 

Lee & Mumford, 2003; Mumford, 1992; Rao & Ballard, 1999; Summerfield & Koechlin, 2008). 

Recent literature suggests that we even might be able to differentiate within a cortical region 

that deeper layers contain the expected information and superficial layers contain bottom-up 

(PE) information (Felleman & Van Essen, 1991; Friston, 2008; Thomas et al., 2024). 

 

4. Expectation Effects and Eye Movements 

The idea of Predictive Coding led to several conclusions for human behaviour. Considering 

that the brain’s goal is to reduce surprise (i.e., the PE) in the environment, it has been 

suggested that actions are used to change the sensory input accordingly (Friston, 2009). 

Concretely, this could be achieved by using eye movements to sample highly expected 

sensory information, constantly testing sensory predictions to reduce surprise (Friston et al., 

2012). For example, imagine you are sitting in the cafeteria waiting for your colleague to arrive. 

Through the buzzling of different people talking, you are now hearing a very low voice (similar 

to your colleague’s) behind you. Your brain will form the hypothesis that the voice was caused 

by your colleague based on your expectation of meeting him there. Firstly, this will reduce the 

general surprise of suddenly hearing a very low voice close to you in that context. Secondly, 
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you will turn your head and direct your gaze towards the anticipated head location of your 

colleague (judging from the voice source and your knowledge of his height). This gaze direction 

should minimize the uncertainty about your perceptual hypothesis. If it is your colleague, your 

hypothesis was correct and your saccade confirms your hypothesis with high certainty. This 

everyday example shows that humans do not only constantly predict their surroundings, but 

also actively use eye movements to test perceptual hypotheses to reduce possible surprise 

(Friston et al., 2012). 

 

4.1 Expectation Effects on Eye Movements in Face Perception 

Expectations thereby do not only influence behaviour in terms of RT, accuracy, and 

perceived identity, they can also influence how eyes are moved to gather information in the 

world. In general, when perceiving faces, humans typically first look at a point slightly below 

the eyes on the nose (Han et al., 2021). They usually show a left-bias, i.e., not fixating the 

centre between the eyes but shifting the gaze slightly towards the left eye (Chakravarthula et 

al., 2021; Hsiao & Cottrell, 2008; Or et al., 2015; Peterson & Eckstein, 2012). The location 

slightly below the eye region is a highly informative region for facial identity, allowing to 

simultaneously perceive the eyes with high resolution and also integrate information across 

facial features (Han et al., 2021). Furthermore, the eyes as well as the mouth region contain 

important information for emotion processing, with the eye region being fixated more for fearful, 

sad, or neutral faces, and the mouth region for positive emotions (Scheller et al., 2012; 

Schurgin et al., 2014). Importantly, context can influence this automatic face viewing 

behaviour: usually, viewing of angry faces involves a high focus on the eyes region while 

viewing of disgusted faces is shown by a symmetrical scanning pattern between the mouth 

and the eyes region (Wong et al., 2005). This can be reversed by presenting an angry face in 

a disgust context (i.e., a man holding a trash bag) versus a disgust face in an angry context 

(i.e., a man showing a fist; Aviezer et al., 2008). This demonstrates how higher-level context 

information can not only change what we perceive, but also how we perceive it in terms of eye 

movements.  
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Other context factors that can induce expectations and influence face sampling include 

familiarity and ethnicity. Familiarity can influence how we sample face information, as shown 

by a more distributed and less eye-focused scanning for personally familiar and famous 

compared to unfamiliar faces (Barton et al., 2006; Van Belle et al., 2010). This scanning pattern 

can be altered by the type of task applied: if participants are required to recall a person’s name 

or judge their fame instead of evaluating their familiarity, fixation of the eyes region increases 

for familiar or famous faces compared to unfamiliar faces (Althoff & Cohen, 1999; Heisz & 

Shore, 2008). Another possible influence on face viewing behaviour involves ethnicity. 

Research has shown that viewing faces of other ethnicities includes increased sampling of the 

eyes region while the focus for one’s own ethnicity shifts to other diagnostic features (e.g., the 

nose or mouth; Fu et al., 2012; Wang et al., 2015). Importantly, when participants were 

presented with ethnically ambiguous faces, morphed between Caucasian and Asian faces, 

viewing patterns could be reversed depending on the expectation they had about the ethnicity 

of the presented face: if Asian participants expected the presented face to be Caucasian, they 

focused on the eyes region, while shifting their gaze towards the nose region for expected 

Asian faces (Wang et al., 2015). Thereby, it has been shown that context information, such as 

emotional context, familiarity, and ethnicity, introduce high-level expectations about a face and 

can alter typical viewing behaviour for faces, mainly shifting the visual focus towards expected 

information in line with an active sampling of predicted sensory information (Friston et al., 

2012). 

 

4.2 Expectation Effects on Eye Movements in Object-Scene 

Recognition 

Eye-tracking literature from the scene-object recognition domain suggests diverging 

influences of expectations on eye movements: on the one hand, there is evidence that humans 

locate expected items more quickly than unexpected items in a familiar scene. For example, 

experiences with situations and semantic and episodic knowledge about where objects are 

typically located within a scene can lead to an earlier and increased sampling of context-
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expected (e.g., a pot in a kitchen) compared to context-unexpected objects (e.g., a printer in a 

kitchen; Bornstein et al., 2011; Castelhano & Henderson, 2007; Hwang et al., 2011; Spotorno 

& Tatler, 2017; Võ & Henderson, 2011; for reviews, see Wolfe, 2020; Wolfe et al., 2011). 

Further examples from the sports domain show how increasing expertise can lead to 

anticipatory saccades towards the expected location of a ball, e.g., towards the location where 

it will most likely hit the ground (Hayhoe et al., 2012; Land & McLeod, 2000; Mann et al., 2019; 

Vater & Mann, 2023). Also, on an everyday basis, humans perform predictive saccades 

towards the next steps while walking up and down the stairs (Zietz & Hollands, 2009). On the 

other hand, some studies show a preferred sampling of unexpected information, measured as 

earlier, more, and/or longer fixations of unexpected objects (Bonitz & Gordon, 2008; Coco et 

al., 2020; Cornelissen & Võ, 2017; Underwood et al., 2008; Võ & Henderson, 2009). For 

example, as opposed to the above-mentioned example of the earlier fixation of the pot in the 

kitchen (Võ & Henderson, 2011), there have been reports of an earlier fixation of semantically 

inconsistent objects (e.g., of eggs compared to a book in a fridge; Brockmole & Henderson, 

2008). Similarly, Bonitz & Gordon (2008) showed that scene-inconsistent objects (e.g., a 

wrench compared to a fork on a dinner plate) were fixated more often and longer than scene-

consistent objects. This highlights how fast our visual system can be at accessing semantic 

knowledge and accordingly guiding our eye movement towards unexpected information (Coco 

et al., 2020). 

 

5. Study 1: Expectation Influence on Eye Movements Prior to and During 

Face Perception 

Garlichs, A., Lustig, M., Gamer, M., & Blank, H. (2024). Expectations guide predictive eye 

movements and information sampling during face recognition. iScience, 27(10), 110920. 

https://doi.org/ 10.1016/j.isci.2024.110920 

 



18 

 

5.1 Introduction 

There has been diverging evidence from the face perception literature and the object-scene 

congruency literature whether expected or unexpected information drive eye movements. On 

the one hand, there have been studies reporting that context information guides information 

sampling towards expected facial features or objects (e.g., Aviezer et al., 2008; Barton et al., 

2006; Bornstein et al., 2011; Hwang et al., 2011; Wang et al., 2015). Correspondingly, it has 

been shown that participants perform predictive saccades towards expected locations of 

interest, for example, towards the expected ball location during sports (Hayhoe et al., 2012; 

Land & McLeod, 2000; Mann et al., 2019; Vater & Mann, 2023) or the next steps while walking 

the stairs (Zietz & Hollands, 2009). This would be in line with the notion of the Predictive Coding 

framework, describing humans as active agents sampling expected information in their 

environment to reduce surprise (Friston et al., 2012). On the other hand, there is literature 

showing a preferred sampling and fast detection of unexpected information, which would be in 

line with PEs driving eye movements (e.g., Coco et al., 2020; Cornelissen & Võ, 2017; 

Underwood et al., 2008). In our first study, we investigated in two pre-registered experiments 

how expectations about a face with a distinct facial feature influence eye movements during 

the anticipation and presentation of a face, either hinting towards an active sampling of 

expected features or an increased sampling of unexpected (PE) information. 

 

5.2 Methods 

We conducted two eye-tracking experiment (N = 34, each). In both experiments, 

participants learned to associate four names with four faces, each having one distinct facial 

feature (high forehead, wide chin, large ears, large nose; see Figure 1A). In the main 

experiments, the upcoming face image was cued by presenting the corresponding name (Ari, 

Bob, Cid, Dan) in one of the four monitor corners (see Figure 1B, D-E). Afterwards, either the 

expected face (match condition), an unexpected face (mismatch condition), or an ambiguous 

face morph between the expected and an unexpected face (partial condition) was presented.  
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In Experiment 1, we investigated whether context information, i.e., a name cue, would lead 

to anticipatory eye movements towards expected facial features. We tested this by presenting 

a prolonged face outline (‘base face’ outline without any special features) during an anticipation 

phase (inter-stimulus interval, ISI) before the face was shortly presented for 100 ms (see Figure 

1D). The short presentation duration would require participants to make predictive saccades 

towards the expected feature during the face outline to be able to answer which face they 

perceived. In Experiment 2, the face was presented for a longer duration (4500 ms or until 

button press; see Figure 1E). We investigated whether context information would influence the 

order and the number of fixations and dwell time spent on facial features in ambiguous face 

morphs containing expectation-confirming and -deviating information. 

We conducted analyses on three levels: firstly, on the behavioural level, we tested in both 

experiments whether there was a facilitation effect, i.e., a faster processing of expected 

compared to unexpected faces, as well as an assimilative or contrastive effect, i.e., the 

identification of ambiguous face morphs as the expected or unexpected face. Secondly, on the 

eye-tracking level, we investigated in Experiment 1 whether expectations led to predictive 

saccades towards the expected facial feature during the presentation of the face outline. In 

Experiment 2, we tested whether expectations influenced the order in which the different facial 

features in faces were sampled. Specifically in ambiguous face morphs, we tested whether the 

number of fixations and dwell time spent on expected and unexpected features differed. 

Thirdly, we tested behaviour and eye movements combined: in Experiment 1, in trials with 

‘clear’ faces (match and mismatch conditions), we investigated whether fixations on the 

expected facial feature at face onset (which should occur after predictive saccades towards 

the expected feature during the ISI) would result in higher accuracies classifying a face as 

expected or unexpected compared to when it was not fixated. Further, in trials with face morphs 

(partial condition), we tested whether fixating the expected facial feature at face onset would 

increase the chance to classify a face morph as the expected identity. In Experiment 2, we 

investigated a last-sampling bias (Zhu, 2022), i.e., whether participants perceived the expected 

identity in a face morph more often if they fixated the corresponding facial feature last. 
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Figure 1. Stimuli, experimental conditions, regions of interest (ROI), and exemplary trials of both 

eye-tracking experiments. A) Stimuli: Each of the four faces had one distinct facial feature, highlighted 

by red circles for visualization. Faces were created using FaceMaker (Schwind et al., 2017). B) 

Experimental conditions: In each trial, the upcoming face was cued by presenting one of the four 

names (Ari, Bob, Cid, Bob) in one of the four monitor corners. Afterwards, the expected face (match 

condition), an unexpected face (mismatch condition), or a face morph between the expected and an 

unexpected face (partial condition) was presented. C) ROIs: For the eye-tracking analyses, the four 

distinct facial features were analysed using ROIs with the same area. D) Exemplary trial of Experiment 

1: After a jittered inter-trial-interval (ITI), a name cue was presented in one of the four monitor corners. 

Afterwards, a face outline of the ‘base face’ without any of the four distinct facial features was presented. 

Next, a face was briefly shown (clear or morphed), followed by a response window in which the 

participant had to indicate whether the face had been ‘expected’ or ‘unexpected’ based on the preceding 
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name cue. Auditory feedback whether the response was correct, incorrect, or too slow was provided. 

For face morphs, both responses were counted as correct. The black frame indicates the time of window 

of interest for our eye-tracking analyses. E) Exemplary trial of Experiment 2: In contrast to Experiment 

1, the face was presented for up to 4500 ms (or until button press). If participants responded 

‘unexpected’, they were prompted with a question mark randomly allocated to one of the four monitor 

corners to indicate which of the four identities they saw in the presented face. Auditory feedback for too 

slow responses was provided. Our paper Garlichs et al. (2024) was published under a Creative 

Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). This 

figure equals Figure 1 of the original paper. 

 

5.3 Results 

Both experiments revealed a behavioural facilitation effect, i.e., a faster classification of 

expected faces compared to unexpected faces and face morphs (see Figure 2A). Furthermore, 

we found an assimilation effect, i.e., participants were more likely to perceive the expected 

identity in ambiguous face morphs (see Figure 2B). 

 

Figure 2. Facilitation and assimilation effect in Experiment 1. A) Facilitation effect: Expectations 

led to faster recognition of expected faces (match condition) compared to unexpected faces (mismatch 

condition) and face morphs (partial condition). Dots represent single participants, the white dot the 

mean, the grey box the 95% confidence interval, and the whiskers the Q1/3 −/+ 1.5*interquartile range. 
Lines and asterisks symbolize p < .001. B) Assimilation effect: Participants perceived the expected 

identity in a face morph. The dashed line represents the chance level of perceiving the expected and 

unexpected face identity equally often (50%). Our paper Garlichs et al. (2024) was published under a 

Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). 

This figure is based on Figure 2, excluding panels C-D containing similar results for Experiment 2, for 

conciseness of this dissertation. 

 



22 

 

Our eye-tracking analyses revealed that expectations led to predictive saccades towards 

the expected facial feature during the anticipation phase (ISI) with the ‘face outline’ (see Figure 

3). Participants were more likely to perform saccades to an ROI if it had been expected 

compared to when it had not been expected.  

 

Figure 3. Predictive saccades towards expected facial features in Experiment 1. A) Predictive 

saccades: Expectations about an upcoming face and its distinct facial feature led to more saccades 

towards an ROI during the anticipatory time window (face outline) compared to when the respective face 

had not been expected. Dots represent single participants, the white dot the mean, the grey box the 

95% confidence interval, and the whiskers the Q1/3 −/+ 1.5*interquartile range. The asterisks symbolize 
p < .001. B) Visualization of predictive saccades: During the face outline, the end points of the first 

and second saccades are plotted across participants in green and yellow, respectively. Saccades are 

grouped by trials in which the distinctive features were expected (forehead, chin, ears, nose). Our paper 

Garlichs et al. (2024) was published under a Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/). This figure equals Figure 3 of the published paper. 

 

In Experiment 2, in all trials (match, mismatch, partial), the expected feature was fixated 

early, as the first or second out of all four ROIs, reflecting an initial guidance of eye movements 

by expectations (see Figure 4A). In partial trials, this initial guidance by expectation was 

confirmed by showing earlier fixations of the expected feature compared to the unexpected 

and the other two features in a morph (see Figure 4B). Interestingly, the unexpected feature 

was also fixated earlier than the other two ROIs, hinting towards a guidance of fixations by top-

down expectations as well as bottom-up salient deviations. In mismatch trials, initial guidance 

by expectations was reduced by unexpected sensory information: while the expected feature 
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was still fixated earlier than the other two ROIs, there was no difference in fixating the expected 

or unexpected ROI first, suggesting that the initial guidance of fixations by expectations can 

be counteracted if the bottom-up sensory information deviates strongly enough.  

 

Figure 4. Fixation order towards the regions of interest (ROI) in Experiment 2. A) Expectation-

induced fixation order: In all trials (match, mismatch, partial), participants were most likely to fixate the 

expected ROI first or second out of all four ROIs. Error bars represent 95% confidence intervals (CI), 

the dotted line the chance level (π = 25%), and the solid lines p < .001. B) Fixation order in face 

morphs: Participants were more likely to fixate the expected ROI prior to the unexpected ROI as well 

as the other two ROIs. The unexpected ROI was also fixated earlier than the other two ROIs. Error bars 

represent 95% CIs, dotted lines represent chance levels (π = 50% and π = 33.33%). Our paper Garlichs 

et al. (2024) was published under a Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/). This figure equals Figure 4 of the published paper. 

 

Furthermore, we investigated sampling behaviour during the presentation of face morphs 

in Experiment 2. Our analyses of number of fixations and dwell on the expected and 

unexpected facial features revealed an increased sampling of expected information. 

Interestingly, further exploratory analyses revealed that this increased sampling was mainly 

driven by an initial sampling of the expected features in the first 1000 ms which reversed 

towards the unexpected features in later time windows (1500-2000 ms; see Figure 5). 
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Figure 5. Relative number of fixations per time window in Experiment 2. After an initial preferred 

sampling of the expected facial feature in face morphs in the first two time windows of 500 ms, the 

sampling switched towards the unexpected facial feature in the fourth time window (1500-2000 ms). 

Dots represent single participants, the white dot the mean, the grey box the 95% confidence interval, 

and the whiskers the Q1/3 −/+ 1.5*interquartile range. The lines indicate p < .05 (solid: comparisons 

across all conditions within a time window; dashed: comparisons within the expected condition across 

time windows; dotted: comparisons within the unexpected condition across time windows). Our paper 

Garlichs et al. (2024) was published under a Creative Commons Attribution 4.0 

(https://creativecommons.org/licenses/by/4.0/). This figure is based on Figure S1, excluding panel B 

containing similar results for relative dwell time per time window, for conciseness of this dissertation. 

 

Lastly, we investigated whether there was a link between behavioural performance and 

eye movements. In Experiment 1, in match and mismatch trials, we found a higher accuracy 

in identifying a face as expected or unexpected if the expected facial feature was fixated at 

face onset (see Figure 6A). In partial trials, participants were more likely to perceive the 

expected identity in a face morph if they fixated on an ROI with the expected feature at face 

onset compared to if they did not fixate it, possibly connecting the assimilation effect to an 

accumulation of expected information (see Figure 6B). In Experiment 2, we found a last-

sampling bias, i.e., fixating an ROI last made it more likely than chance to also perceive that 

identity in a face morph (see Figure 6C). 
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Figure 6. Results of combined behavioural and eye-tracking analyses of both experiments. A) 

Expectation effect on accuracy: In Experiment 1, participants were more accurate in correctly 

identifying a clear face (match and mismatch conditions) as expected or unexpected if they fixated the 

expected region of interest (ROI) at face onset compared to when they did not fixate it. Dots represent 

single participants, the white dot the mean, the grey box the 95% confidence interval (CI), and the 

whiskers the Q1/3 −/+ 1.5*interquartile range. The asterisks symbolize p < .001. B) Expectation effect 

on chosen identity in face morphs: In Experiment 1, participants were more likely to perceive the 

expected identity in a face morph if they fixated the expected ROI at face onset compared to when they 

did not fixate it. Only trials in which either the expected or unexpected ROI were fixated at face onset 

were considered (dotted line: chance level of π = .50). The white dot represents the median. 

Corresponding percentages of how often the expected ROI was not fixated if the expected face was 

chosen can be inferred as follows: in 75% of the trials in which the expected face was chosen, the 

expected ROI was fixated; accordingly, in 25% of the trials in which the expected face was chosen, the 

ROI was not fixated. C) Last-sampling bias: In Experiment 2, participants were more likely than chance 

level to perceive the expected face in a morph if they fixated the corresponding ROI last. Trials in which 

one of the four ROIs was fixated last were considered (π = .25). The error bars represent the 95% CI. 

For (C), a bar plot was chosen to illustrate the underlying subject-level proportional test as opposed to 

Wilcoxon tests in A and B. Our paper Garlichs et al. (2024) was published under a Creative Commons 

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). This figure is based 

on the data of the original paper, but was only created for this dissertation. 
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5.4 Discussion 

In two experiments, we tested how expectations about an upcoming face alter anticipatory 

eye movements towards expected facial features as well as sampling behaviour during face 

presentation. Expectations were induced by name cues for four faces which each had one 

distinct facial feature. Sensory information was limited by a short presentation duration 

(Experiment 1) and ambiguous due to morphing between the expected and an unexpected 

identity (both experiments). 

Participants showed the hypothesized facilitation effect, i.e., faster RTs for expected 

compared to unexpected faces, like it has been reported by other studies (e.g., Amado et al., 

2018; Blank et al., 2015; Schweinberger et al., 1995; Todorova & Neville, 2020). They also 

showed an assimilation effect, i.e., the identification of face morphs as the expected identity. 

Furthermore, participants performed anticipatory eye movements towards the expected facial 

feature in the preceding time window in which a face outline was presented. This finding is in 

line with previous literature about predictive saccades towards expected locations of interest, 

in sports (Hayhoe et al., 2012; Land & McLeod, 2000; Mann et al., 2019; Vater & Mann, 2023) 

and during walking the stairs (Zietz & Hollands, 2009). This supports the idea of an active 

sampling of our environment, i.e., the investigation of expected locations of interest to test 

perceptual hypotheses (Friston et al., 2012). 

In Experiment 2, we focused our analyses on the ambiguous face morph trials in which 

faces with the expected and an unexpected facial feature were presented. Participants showed 

an initial sampling of the expected facial feature, earlier than the unexpected and other two 

ROIs, as well as an earlier fixation of the unexpected ROI compared to the other two ROIs. 

These findings are in line with studies of context information guiding eye movements in face 

perception (Aviezer et al., 2008; Van Belle et al., 2010; Wang et al., 2015) as well as the initial 

sampling of scene-congruent objects (Spotorno & Tatler, 2017; Võ & Henderson, 2011). On 

the other hand, our mismatch trials, in which an unexpected face was shown, hinted towards 

an additional bottom-up factor driving eye movements. In these trials, the expected ROI was 

still fixated earlier than the other two ROIs, but not fixated earlier than the unexpected ROI 
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anymore. This shows that the guidance of expectations for eye movements can be reduced if 

sensory information differs strongly from the expectation. 

In accordance with the initial sampling preference for expected facial features, our results 

showed a congruency effect, i.e., an increased fixation number and dwell time on expected 

compared to unexpected facial features (Bornstein et al., 2011), which is in disagreement with 

previous studies showing an incongruency effect (Coco et al., 2020; Cornelissen & Võ, 2017). 

More valuable insights about the interplay of bottom-up and top-down information were gained 

by our number of fixation and dwell time analyses over time, revealing information about the 

temporal domain. We found that the initial sampling of expected face information reversed 

towards an increased sampling of unexpected information the longer the face was presented. 

This finding is partially in line with Coco et al. (2020) who showed that the probability to look 

at inconsistent objects increased over time, hinting towards the additional high importance of 

unexpected information for sensory information processing. 

Our results show that expectations drive anticipatory saccades and initial fixations which 

can be reduced by strong deviating sensory information or reversed towards an increased 

sampling of unexpected information over time in ambiguous face morphs. Our findings support 

the Predictive Coding idea of an active sampling of the environment, leading to an initial fixation 

of expected facial information. After information gathering at the expected location, bottom-up 

deviations drive eye movements towards the unexpected feature in a face morph, possibly 

reflecting a processing of the PE. Taken together, our results hint towards a more complex 

interplay of top-down and bottom-up information guiding face perception. 
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6. Context Effects on Face Processing in the Brain 

While our first study gave insight into how expectations can guide anticipatory and 

sampling eye movements, it did not directly show how the brain represents and combines the 

sampled visual information with expectations. The behavioural results do not necessarily mean 

that the expected information is highly represented in the brain – rather, the Predictive Coding 

framework would suggest that for an efficient processing of the world mainly the unexpected 

information is relevant (Friston, 2005; Mumford, 1992; Rao & Ballard, 1999). In our second 

study, we used fMRI to investigate whether and where expected or unexpected face 

information is represented in the brain and provide further insights into how expectations and 

sensory information are computationally combined. 

 

6.1 The Ventral Face-Processing Hierarchy 

Regarding brain regions that represent information about faces and facial identity, there 

have been descriptions of the core face-processing hierarchy encompassing regions in the 

inferior occipital gyrus (IOG), i.e., the OFA, in the lateral fusiform gyrus, i.e., the FFA, and in 

the superior temporal sulcus (STS; for a review, see Haxby et al., 2000). This core network 

has been functionally segregated into a ventral pathway including the FFA and a dorsal 

pathway including the STS, processing rather static facial information (such as identity) and 

changeable aspects (such as emotions), respectively (for reviews, see Bernstein & Yovel, 

2015; Calder & Young, 2005; Grill-Spector et al., 2017; Haxby et al., 2000). Since we were 

interested in the processing of face identities, we focused on the ventral pathway (i.e., OFA 

and FFA) and another higher region along the ventral temporal face-processing hierarchy 

involved in identity processing, namely the anterior temporal lobe (aTL; Blank et al., 2015; 

Goesaert & Beeck, 2013; Guntupalli et al., 2017; Nestor et al., 2011). 

Importantly, information about faces that is processed along the ventral face-processing 

hierarchy increases in complexity from lower to higher areas: OFA is the start point for both 

the ventral and dorsal pathways (Fox et al., 2009) and sensitive to low-level image properties 

such as image pixel value (Tsantani et al., 2021). It represents single features such as the 
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eyes, nose, and mouth (Pitcher et al., 2011), and head view but not identity, as shown by 

representational geometry grouping images by view but not identity (Guntupalli et al., 2017). 

At an intermediate processing stage, the FFA shows representations of face symmetry 

(Caldara et al., 2006; Caldara & Seghier, 2009), while head view and identity representations 

are both present, but entangled (Guntupalli et al., 2017). It further processes social higher-

level information such as traits and gender (Tsantani et al., 2021). Lastly, a region in the aTL, 

which has been differently named the anterior inferotemporal cortex (aIT; Kriegeskorte et al., 

2007), the anterior temporal face area (ATFA; Guntupalli et al., 2017), or the anterior temporal 

face patch (ATFP; Rajimehr et al., 2009; Tsao et al., 2008), is the highest ventral region 

involved in the processing of individual face information (Kriegeskorte et al., 2007), irrespective 

of view (Guntupalli et al., 2017; Yang et al., 2016). 

Regarding lateralization, i.e., the question whether faces are rather processed and 

represented in the left or the right brain hemisphere, neuroimaging results have been mixed. 

Although face-processing is a bilateral process, there has been extensive research showing a 

right hemispheric dominance for faces (Ishai et al., 2005; Jonas et al., 2016; Kriegeskorte et 

al., 2007; Nestor et al., 2011; Rangarajan et al., 2014; Tsantani et al., 2019; Volfart et al., 2022; 

for a review, see Rossion & Lochy, 2021). Importantly, there have been studies challenging 

this view by showing bilateral face processing without a right-hemispheric preference (Lee et 

al., 2022; Meng et al., 2012; Thome et al., 2022). In addition, Wu et al. (2021) showed with 

high-definition transcranial direct current stimulation (HD-tDCS) that only stimulation of the left 

FFA decreased performance in a face view discrimination task for subjects with good baseline 

performance and increased performance for subjects with worse baseline performance. 

Considering that there has been evidence for face processing being a bilateral neural process 

with specific left-hemispheric relevance, despite its mainly right-hemispheric dominance, we 

investigated both hemispheres in our second study. 
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6.2 The Expectation Suppression Effect 

There has been extensive research about the effect of expectations on the neural 

responses for faces. One effect related to face processing is the repetition suppression effect 

which describes the reduced neural activation for faces that are repeated after each other 

(fMRI: Henson et al., 2000; Henson et al., 2002; Hermann et al., 2017; Ishai et al., 2004; EEG: 

Cao et al., 2015; Eimer et al., 2010; Kovács et al., 2006; MEG: Ishai et al., 2006; single-cell 

recordings in macaques: Li et al., 1993; Miller et al., 1991; for reviews, see Grill-Spector et al., 

2006; Henson, 2016). This effect could be interpreted to be in line with the Predictive Coding 

framework (Friston, 2005), arguing that the high predictability of the upcoming face leads to a 

reduced PE and, hence, a reduced activation for repeated faces. However, alternative 

explanations such as neural fatigue, i.e., neurons being less responsive due to constant 

stimulation, have been discussed (for reviews, see Auksztulewicz & Friston, 2016; Grill-

Spector et al., 2006; Grotheer & Kovács, 2016; Summerfield & de Lange, 2014). In order to be 

able to differentiate whether the reduced activation for repeated faces is really due to 

expectations influencing sensory processing, additional experimental manipulations are 

required.  

Paradigms involving the direct manipulation of expectations about an upcoming face report 

a so-called expectation suppression effect, which means the reduced neural activation for 

expected compared to unexpected faces. Similarly to the repetition suppression effect, it has 

been measured across methodologies (fMRI: de Gardelle et al., 2013; Egner et al., 2010; 

Grotheer & Kovács, 2015; den Ouden et al., 2010; Pajani et al., 2017; Summerfield et al., 2008; 

EEG: Summerfield et al., 2011; MEG: Johnston et al., 2017). The expectation suppression 

effect has been observed in OFA (Grotheer & Kovács, 2015) as well as FFA (Egner et al., 

2010; Grotheer & Kovács, 2015; Larsson & Smith, 2012; den Ouden et al., 2010; Pajani et al., 

2017; Summerfield et al., 2008). These studies showed, for example, that repeated face stimuli 

had a more pronounced repetition suppression than alternating face stimuli in a context in 

which repetitions were more likely (e.g., 80%) compared to a context in which they were rare 

(e.g., 20%; de Gardelle et al., 2013; Pajani et al., 2017; Summerfield et al., 2008). It has been 
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further shown that repetition suppression and expectation suppression effects are additive 

mechanisms that lead to an even more pronounced reduced activation for expected, repeated 

faces in OFA and FFA (Grotheer & Kovács, 2015), which had previously also been found using 

simple tones in the auditory domain (Todorovic & de Lange, 2012). 

However, the underlying computational mechanism how expectations are combined with 

sensory information leading to this expectation suppression effect is still unclear. The 

hierarchical Predictive Coding framework suggests that expectations are sent by higher-level 

regions to lower-level regions along the hierarchy, which enables them to test predictions by 

comparing the expected to the actual sensory input by computing the PE. This PE is in turn 

sent back to higher regions via feedforward connections for internal model updates to improve 

predictions for the future (Friston, 2008; for a review, see Summerfield & de Lange, 2014). In 

line with this framework is that in the macaque brain, which has a similar face-processing 

hierarchy as humans, the lowest level (middle lateral (ML) face patch, analogous to the human 

OFA) contained PE information about face identity which should be limited to a higher region 

(Nigam & Schwiedrzik, 2024; Schwiedrzik & Freiwald, 2017). This would fit into the suggested 

interpretation that OFA and FFA represent PEs, i.e., the difference of face expectations and 

presented faces (Egner et al., 2010; den Ouden et al., 2010; Summerfield et al., 2008). 

Therefore, it is intuitive to conclude that expectation suppression effects in OFA and FFA 

could reflect PE processing. However, previous studies did not sufficiently test alternative 

models that are also in line with Predictive Coding, but assume a different computational 

mechanism of how expectations and sensory information are combined. For example, Egner 

et al. (2010) showed that a Predictive Coding model involving the computation of PEs could 

explain the expectation suppression effect in FFA better than a contrasting feature detection 

model which was solely input-driven, but did not consider expectations in their alternative 

model. Stefanics et al. (2019) used a computational model simulating an ideal Bayesian 

observer to show that in FFA, both precision-weighted PEs regarding colour as well as 

predictions about facial emotions were present, but did also not test differing models about 

how expectations and sensory information could be computationally combined. This led us to 
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our second study in which we contrasted the prominent PE account to an alternative model 

that also takes expectations into account, namely a Sharpening model (Blank et al., 2018; 

Blank & Davis, 2016). 

 

7. Sharpening 

One of the most prominent Predictive Coding explanations for the expectation suppression 

effect is that expected faces elicit a reduced activation compared to unexpected faces in face-

sensitive region due to a lower PE (Friston, 2005). Alternatively, the reduced univariate 

activation could be explained by a Sharpening of expected information (Aitchison & Lengyel, 

2017; Blank et al., 2018; Blank & Davis, 2016; González-García & He, 2021; Grill-Spector et 

al., 2006; Kok et al., 2012; Lee & Mumford, 2003; for reviews, see Clark, 2013; de Lange et 

al., 2018; Walsh & McGovern, 2018). Sharpening describes the process of single neurons 

tuned or specialized for the expected sensory input becoming more active while neurons 

specialized for unexpected sensory input become suppressed. Sharpening of expected 

information along the ventral face-processing hierarchy has previously been shown by Blank 

et al. (2023) who revealed two effects of expectations on face representations: firstly, face 

representations during prior presentation scaled with the strength of expectation (low, middle, 

high) in higher level area aTL. This indicates that the precision of the expectation influenced 

pre-activated face representations. Secondly, presented faces similarly scaled with 

expectation levels in lower region OFA. This is interesting because it indicates in line with 

Predictive Coding that expectations can influence representations of actual sensory incoming 

information in lower sensory areas. In a different study investigating visual representations, 

prior expectations sharpened neural representations of Mooney images, i.e., ambiguous black-

and-white images, after exposure to their ‘clear’ version, starting from V1 across the ventral 

stream to the fusiform gyrus (González-García & He, 2021).  

Although these findings showed that Sharpening is a process involved in the representation 

of visual information along the ventral face-processing hierarchy, its involvement in the 

univariate expectation suppression effect remains unclear. Univariate fMRI analyses contrast 
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the neural activation of two experimental conditions (e.g., ‘unexpected faces vs. expected 

faces’) in voxels encompassing hundreds of thousands to millions of single neurons, reflecting 

an accumulated response of millions of neurons (Ip & Bridge, 2021; Smith et al., 2001). The 

expectation suppression effect could either be explained by a high activation of neurons 

encoding the unexpected information (PE), leading to reduced activation for expected faces. 

Or it could be explained by a high activation of specialized neurons for the expected input, 

leading to an overall reduced but less noisy activation for expected faces. To overcome this 

limitation of univariate analyses, we used Representational Similarity Analysis (RSA; 

Kriegeskorte, 2008; Nili et al., 2014) to differentiate the two computational mechanisms (PE 

and Sharpening) on the multivariate level (Alink & Blank, 2021; Blank et al., 2018; Blank & 

Davis, 2016; Ufer & Blank, 2023; see Figure 7).  

In RSA (Kriegeskorte et al., 2008; Nili et al., 2014), different hypothesis representational 

dissimilarity matrices (i.e., hypothesis RDMs) are formulated. These hypothesis RDMs pose 

different assumptions about the correlational structure of experimental conditions. In our 

second study (Garlichs & Blank, 2024), we showed experimental trials in which the face of Bob 

was expected due to the preceding presentation of his associated scene image, but a face 

morph between Bob and Cid was presented. According to PE calculations, the representation 

of the face morph should reflect the unexpected face part in the face morph (Cid). In our PE 

hypothesis RDM, this led to an assumed high similarity of the face morph to the ‘pure’ face 

representation of Cid measured in neutral trials (in which all faces were equally probable, 

resulting in representations independent of face-specific expectations). Correspondingly, we 

assumed a high dissimilarity of the face morph to the representation of Bob. In contrast, our 

hypothesis RDM based on Sharpening computations suggested, after the scene indicative for 

Bob, a high similarity of the face morph between Bob and Cid to the expected face (Bob) and 

a high dissimilarity to the representation of the unexpected face (Cid). These hypothesis RDMs 

could then be correlated with the neural RDM, i.e., the correlational structure of the neural 

activation for the experimental conditions (Kriegeskorte et al., 2008; Nili et al., 2014). Direct 

comparison of the correlation values for the different hypothesis RDMs with the neural RDM 
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allowed to decide which hypothesis model reflects the neural representational similarity 

structure better. By using multivariate RSA, we thereby overcame the limitation of univariate 

contrasts and were able to differentiate both computational mechanisms, PE and Sharpening, 

on a neural level (Blank et al., 2023; Blank & Davis, 2016; Garlichs & Blank, 2024).  

 

Figure 7. Visualization of how prior expectations could be combined with sensory information 

during face perception in Garlichs & Blank (2024). In a training outside of the scanner, participants 

learned to associate four indoor scenes with four faces. Each scene was predictive of one upcoming 

face. During the main experiment in the scanner, expectations about the upcoming face in each trial 

were evoked by a scene image. Afterwards, ambiguous face morphs containing the expected as well 

as an unexpected face were shown. Using multivariate Representational Similarity Analysis 

(Kriegeskorte et al., 2008; Nili et al., 2014), we investigated whether the representation for the face 

morph was more similar to the unexpected face, indicative for a neural PE processing, or more similar 

to the expected face, indicative of a Sharpening of expected face information. The face images were 

created with FaceGen Modeller Core 3.22. Our paper Garlichs & Blank (2024) was published under a 

Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). 

This figure was created based on Figure 1c and reduced to the face morph trials to emphasize our 

research question. For visualization, a training image for Cid was added. The shown scene images are 

in public domain and available at https://commons.wikimedia.org, but not part of the original study 

material due to copyright reasons. For the original stimulus set, please refer to Garlichs & Blank (2024) 

and the corresponding Open Science Framework repository (https://osf.io/765jx/).  
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8. Deep Convolutional Neural Networks (DCNN) 

In our second study, we combined multivariate RSA (Kriegeskorte et al., 2008; Nili et al., 

2014) with DCNNs to fine-tune our hypothesis RDMs for PE and Sharpening processing. Over 

the past decades, there has been growing research using DCNNs as artificial neural networks 

to answer questions about neural processing (for reviews, see Aloysius & Geetha, 2017; Farsal 

et al., 2018; Gu et al., 2018; LeCun et al., 2015; Minar & Naher, 2018; O’Toole et al., 2018). It 

started by imitating simple neurons with artificial perceptrons (Farsal et al., 2018; Rosenblatt, 

1958) and evolved by taking the organization of the visual cortex of cats into consideration 

(Hubel & Wiesel, 1962, 1965). Different layers of simple and complex cells were combined in 

neural networks called Neocognitrons to copy the human ability of pattern recognition, e.g., of 

handwritten Arabic letters (Fukushima, 1980; Fukushima et al., 1983).  

In neural networks, the term ‘convolutional’ refers to the first layer in a network which is 

comparable to a receptive field: it performs a feature extraction on the input by running a filter 

or kernel over the input image, combining multiple pixel values (e.g., by multiplication), and 

passing the bundled information to the next layer (Databricks, 2019; O’Toole et al., 2018). 

Following pooling layers reduce the computational complexity by decreasing the spatial 

dimension of the activation maps without information loss (Aloysius & Geetha, 2017). Fully-

connected layers that have connections to all neurons finally lead to a classification layer that 

usually identifies the input image as one of the learned objects. 

For a long time, the limitation of convolutional networks has been the lack of large training 

data sets and computing power (Gu et al., 2018). In 2012, the ‘deep’ CNN AlexNet was 

developed, an enhanced version of LeNet-5 (LeCun et al., 1989, 1998), winning the annual 

ImageNet Large Scale Visual Recognition Challenge, showing a low error rate in classifying 

1.3 million images into 1000 different classes (Krizhevsky et al., 2012). The term ‘deep’ refers 

to the increasing complexity of neural networks (i.e., the number of layers and transforming 

input information via multiple non-linear transformations; Minar & Naher, 2018). The increase 

in depth helps in getting better feature representations and classification performance at the 

cost of higher complexity and a risk of overfitting (Gu et al., 2018). 
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8.1 Face-Trained DCNNs and Face Processing 

While neural networks initially started to target problems like object localization and 

recognition (e.g., of hand-written digits of U.S. postal codes; LeCun et al., 1989, 1998), 

advances to use convolutional networks also for face localization in images followed (Vaillant 

et al., 1994). For example, Lawrence et al. (1997) trained neural networks on 400 images of 

40 individuals for face identification. The high number of different images per individual, 

showing different expression and poses, show first attempts at image-variant face 

identification, closer to face encounters in our daily lives.  

The ultimate goal of training DCNNs on face images is to achieve automatic face 

recognition in images and videos with a preferably high accuracy. One of those networks, 

which we used in our second study, is VGG-Face which was trained on 2.6 million images of 

2.622 celebrities (Parkhi et al., 2015). Compared to other state-of-the-art face recognition 

DCNNs, such as DeepFace (Facebook; Taigman et al., 2014) and FaceNet (Google; Schroff 

et al., 2015), it achieves comparable face recognition accuracy of over 98% on the Labeled 

Face in the Wild dataset by having a simpler network architecture and using way less data 

(Parkhi et al., 2015).  

DCNNs trained on face images show high similarities to human face processing, making 

them an attractive methodology of choice to answer why and how questions of neural face 

processing (Dobs et al., 2023; Kanwisher, Khosla, et al., 2023; for a review, see van Dyck & 

Gruber, 2023). For example, they exhibit typical psychological phenomena like the face 

inversion effect, i.e., a disproportional decline in recognition/neural activation for inversed 

compared to upright faces (Dobs et al., 2023; Yin, 1969; Yovel & Kanwisher, 2005; for a review, 

see van Dyck & Gruber, 2023). DCNNs can also be used for age estimation, e.g., the VGG-

Face network showed a higher accuracy (59.90%) compared to GoogLeNet (45.07%) in 

correctly estimating images into one out of eight age ranges, even under challenging sensory 

circumstances with images differing in resolution quality, blurring amount, lighting, pose, and 

facial expression (Qawaqneh et al., 2017). Similarly, modified DCNNs trained on face images 

can be used for highly accurate emotion recognition with 92.10% accuracy on average 
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(Jaquetti et al., 2022). Interestingly, if ambiguous sensory information concerns the facial 

identity more strongly, e.g.., by evasion disguise (change of one’s appearance to look unlike 

one’s self) or impersonation disguise (change of one’s appearance to look like someone else), 

DCNNs show a drop in performance similar to humans (Noyes et al., 2021; Noyes & Jenkins, 

2019). This further highlights the parallel processing mechanisms between face-trained 

DCNNs and human neural face processing.  

While these similarities and relatively high accuracies already show the highly promising 

nature of drawing parallels between DCNNs and neural face processing, using DCNNs also 

has several advantages over classical (non-)invasive neurocognitive methodologies. Firstly, 

some knowledge and insights about the face-processing hierarchy and specificity across brain 

regions have only been possible due to lesions in face-sensitive regions like the fusiform gyrus, 

leading to acquired prosopagnosia, i.e., the inability to recognize faces (Barton et al., 2002; 

Roberts et al., 2015; for a review, see Rossion, 2009), or developmental prosopagnosia with 

a deficit in face recognition from birth (Li et al., 2020; Wegrzyn et al., 2019; Zhao et al., 2018). 

Alternatively, temporal defunctioning of brain regions (e.g., using tDCS) needed to be 

performed (Kho et al., 2023; Wu et al., 2021). In contrast, DCNNs have the major advantage 

of providing an in silico way to investigate the face processing hierarchy without long-lasting 

deprivations, extensive exposure, or creation of lesions (for a review, see van Dyck & Gruber, 

2023). 

Secondly, while traditional neuroscientific studies are highly controlled by contrasting, for 

example, faces with house images, allowing high interpretability and clear taxonomies of 

neural selectivity, they are also limited by the human ability to provide interpretable labels for 

the measured neural activity (for a review, see Doerig et al., 2023). What our brain does and 

how it represents information is not necessarily restricted by how humans can interpret the 

neural signal, but it is likely more complex, which in turn needs new models to find more 

complex non-interpretable features. Although people call DCNNs a ‘black box’, they are way 

more accessible and controllable than the brain and more of a modelled ‘transparent box’ that 

is easier to study (Doerig et al., 2023; van Dyck & Gruber, 2023). 
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Thirdly, similarities between the neural face-processing hierarchy and DCNN architectures 

have been drawn, highlighting their potential power to investigate unanswered questions about 

face processing (for a review, see van Dyck & Gruber, 2023). Early layers of VGG-Face, for 

example, the second convolutional layer, capture low-level image features and have been 

used to exclude the influence of low-level image properties on face representations measured 

with RSA (Dobs et al., 2019). Middle layers of VGG-Face, like pool4 and pool5, are rather 

stable for low-level changes in luminance, background, and grey-scaling, but prone to identity-

violating manipulations (Grossman et al., 2019). Their image transformations from layers pool4 

and pool5 correlated with the neural representational space extracted from OFA and FFA, 

respectively, making VGG-Face a suitable DCNN for usage in our second study. Furthermore, 

the last fully-connected layer is robust to identity-preserving face manipulations, e.g., across 

viewpoints (Grossman et al., 2019). It also differentially correlates higher with age information 

of familiar compared to unfamiliar faces, but higher with identify information for unfamiliar 

compared to familiar faces (Dobs et al., 2019). 

 

8.2 Object-Trained DCNNs and Face Processing 

While it is intuitive to assume that DCNNs specifically and solely trained on faces should 

be ‘experts’ in face recognition and representation, humans are not only confronted with faces 

throughout their lives, but also with objects. The question arises whether DCNNs trained on 

face images are ‘special’ in comparison to networks trained, additionally or solely, on objects. 

This directly touches upon the neural question of how ‘special’ face processing in 

corresponding neural areas is: early neurocognitive research has suggested that the FFA is 

specifically activated for faces (Sergent et al., 1992; Haxby et al., 1994; Puce et al., 1995; 

Kanwisher et al., 1997; for a review, see Iidaka, 2014). However, the expertise hypothesis 

suggests that the FFA is rather process-specific for differentiating exemplars of highly 

overlearned categories, for example, birds (Gauthier et al., 2000), cars (Gauthier et al., 2000; 

McCugin et al., 2012) or Greebles – novel objects resembling aliens, with subjects learning to 
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individualize them on the ‘familiy’ and ‘individual’ level (Gauthier et al., 1999; for a meta-

analysis, see Burns et al., 2019).  

Research on object-trained networks has provided mixed results concerning the 

specificity of face processing. On the one hand, as expected, networks trained for object 

recognition showed poor performance for face recognition, while networks trained on face 

recognition showed poor performance for object recognition (Dobs et al., 2022; Kanwisher, 

Gupta, et al., 2023). If a network was trained on both faces and objects, however, the network 

was able to perform both tasks with high accuracy due to a spontaneous segregation into 

processing systems for faces and objects in mid-level network stages, similar to a probable 

neural segregation in the brain (Dobs et al., 2022). On the other hand, there have been studies 

showing that networks trained on object recognition can differentiate objects from faces. While 

this could be limited to an ability to classify images into objects and non-objects, they are also 

prone to typical psychological phenomenons such as the face inversion effect and face 

pareidolia (Zhao et al., 2024), i.e., recognizing facial features in objects even though there is 

no real face (for example, in a power socket; e.g., Liu et al., 2014; Wardle et al., 2020). This 

shows that even though the network has been trained on object images, its representations 

became tuned to upright face configurations, showing a natural evolvement of face sensitivity 

(Zhao et al., 2024). In contrast, other studies report the absence of a face inversion effect in 

object-trained networks, arguing that face-trained networks learn something specific about 

faces beyond a general differentiability of complex visual stimuli (Dobs et al., 2023). This 

highlights the still unresolved ambiguity in this relatively new research field, similar to the 

discussion about the specificity of face-sensitive areas. Face recognition may require more 

domain-general processing mechanisms, while face identification is a highly domain-specific 

mechanism (for a review, see van Dyck & Gruber, 2023). 

Most important for our research have been findings concerning the representational 

similarity of object-trained networks with neural representations along the ventral face-

processing hierarchy. Although there have been significant correlations between image 

transformations derived from low- and mid-level layers pool4 and pool5 of the face-trained 
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network VGG-Face and OFA and FFA, respectively, similar correlations have been found 

using VGG-16 layer activations (Grossman et al., 2019). Additionally, Ratan Murty et al. (2021) 

showed in a large-scale comparison of face- and object-trained networks that multiple of the 

latter had a higher predictability of neural responses to faces compared to VGG-Face, with 

ResNet50 showing the highest predictability. Therefore, considering the mixed results 

regarding the face sensitivity of object-trained DCNNs and some clear indices for their ability 

to achieve equal performance to or surpass face-trained DCNNs (Grossman et al., 2019; Ratan 

Murty et al., 2021), we additionally investigated VGG-16 (Simonyan & Zisserman, 2015), a 

network with the same architecture as VGG-Face but trained on the ImageNet dataset (Deng 

et al., 2009), as well as ResNet50 (He et al., 2016) in our second study. 

 

9. Study 2: Expectation Influence on Face Representations in the Brain 

Garlichs, A., & Blank, H. (2024). Prediction error processing and sharpening of expected 

information across the face-processing hierarchy. Nature Communications, 15(1), 3407. 

 

9.1 Introduction 

In our second study, we aimed at answering the research question how expectations and 

sensory information are computationally combined on a neural level. Our first eye-tracking 

study (Garlichs et al., 2024) revealed an initial sampling of expected facial features in line with 

an active sampling of predicted information (Friston et al., 2012). However, this behaviour 

measured by eye movements does not reveal how top-down expectations and bottom-up 

information are combined and represented on a neural level. 

We specifically investigated the ventral face-processing hierarchy including areas OFA, 

FFA, and aTL, as these provide clearly defined face-sensitive regions increasing in their 

complexity of represented face information (Blank et al., 2015; Goesaert & Beeck, 2013; 

Guntupalli et al., 2017; Haxby et al., 2000; Nestor et al., 2011). Previous research had shown 

an expectation suppression effect in these regions, i.e., a reduced activation for expected 

compared to unexpected faces (e.g., Egner et al., 2010; den Ouden et al., 2010; Summerfield 
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et al., 2008). This finding could be interpreted as evidence for the computation of PEs in line 

with the Predictive Coding framework (Friston, 2005), i.e., a reduced PE for expected faces. 

In the macaque face-processing hierarchy, there has been evidence for the computation of 

PEs in a lower area similar to OFA reflecting higher-level identity information (Nigam & 

Schwiedrzik, 2024; Schwiedrzik & Freiwald, 2017). This information should be limited to higher 

face-sensitive regions, arguing in favour of the hierarchical information processing structure 

proposed by the Predictive Coding framework. However, an alternative explanation for the 

expectation suppression effect could be Sharpening, the tuning of specialized neurons towards 

the expected face information. This would result in a reduced overall, but less noisy and 

therefore sharper signal for expected faces (Aitchison & Lengyel, 2017; Blank et al., 2018; 

Blank & Davis, 2016; González-García & He, 2021; Grill-Spector et al., 2006; Kok et al., 2012; 

de Lange et al., 2018; Lee & Mumford, 2003). As these two mechanisms, PE and Sharpening, 

are not differentiable on the univariate analysis level as they both result in a main effect of 

supressed signal for expected inputs, we conducted multivariate analyses (Alink & Blank, 

2021; Blank et al., 2018; Blank & Davis, 2016; Ufer & Blank, 2023). We combined RSA 

(Kriegeskorte et al., 2008; Nili et al., 2014) with DCNNs to investigate how expectations and 

sensory information are computationally combined in the ventral face-processing hierarchy 

and in the whole brain. 

 

9.2 Methods 

Participants (N = 43) learned to associate images of indoor scenes with four male face 

images (see Figure 8a). In each trial, participants first saw a scene image followed by a face 

image (see Figure 8c). Their task was to indicate which of the four learned identities they 

(mostly) saw in a face. Crucially, in addition to showing the expected face (match condition) or 

an unexpected face (mismatch condition), we used face morphs between two face images 

(partial condition), always containing the expected as well as an unexpected identity. In a prior 

face morph calibration, we determined each participant’s perceptual 50/50% threshold for each 

of the six morph combinations, i.e., the morph level at which they were equally likely to perceive 
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either identity in a face morph. Importantly, our approach of using face morphs allowed us to 

have the same sensory information but with different expectations (e.g., the face morph 

between Bob and Cid, either shown after the scene predictive for Bob or for Cid). Thus, any 

differences in neural activation for the face morphs could be related to top-down expectations 

induced by the scene cues. 

 

Figure 8. Face stimuli, procedure, and exemplary trial of the experiment. a) Multidimensional 

scaling of the four face images: The face stimuli were created using FaceGen Modeller Core 3.22. 

To ensure that the four faces were equally distinct from each other, a classical MDS based on layer 

pool4 activations of the neural network VGG-Face (Parkhi et al., 2015) was calculated. Their distance 

was measured using ‘1 – Pearson correlation’ and the dissimilarities rescaled to numbers between 0 
and 1. Their dissimilarity structure is presented based on two dimensions and shows that the faces were 

equally dissimilar to each other. b) Overall procedure: The experiment took place on two consecutive 

days. On the first day, participants completed a morph calibration experiment to determine their 

individual perceptual threshold for each face morph combination at which they classify each morph in 

50% of the cases as the expected and in 50% of the cases as the unexpected identity. They also 

completed a training to learn the scene-face associations and the task. On the second day, a shortened 

training was performed, followed by the main experiment in the fMRI scanner. Afterwards, a functional 

localizer to define our regions of interest (occipital face area, OFA; fusiform face area, FFA; anterior 

temporal lobe, aTL) was run. c) Exemplary trial: In each trial, a scene was presented. If a face was 

presented afterwards, the task was to indicate with the right hand which face they (mostly) saw. In case 

of a question mark, the task was to indicate which face they anticipated based on the preceding scene. 

If the fifth, neutral scene was presented, all faces had an equal probability of appearing. Responses for 

faces or question marks after the neutral scene had to be performed with the left hand. Our paper 

Garlichs & Blank (2024) was published under a Creative Commons Attribution 4.0 International License  

(https://creativecommons.org/licenses/by/4.0/). This figure was created based on Supplementary Figure 
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6 and Figure 1 of the original paper. The shown scene image in c) is in public domain and available at 

https://commons.wikimedia.org, but not part of the original study material due to copyright reasons. For 

the original stimulus set, please refer to the original paper and the corresponding Open Science 

Framework repository (https://osf.io/765jx/).  

 

We used multivariate RSA (Kriegeskorte et al., 2008; Nili et al., 2014) which involved 

defining hypothesis RDMs for PE processing and Sharpening and correlating them with the 

neural RDM based on T-images of different experimental conditions (Blank et al., 2023; Blank 

& Davis, 2016). In our study, we investigated whether the neural representation for a face 

morph was more similar to the expected identity, which would be in line with a Sharpening 

account, or more similar to the unexpected identity, indicative for PE processing (see Figure 

9). For this, we compared the neural activation patterns for face morphs with the ‘pure’ face 

representations for the identities measured in ‘neutral’ trials in which the neural representations 

were based on the sensory input independent of expectations. For example, our PE hypothesis 

RDM predicted that the representation of the face morph between Bob and Cid, presented 

after the scene predictive for Bob, should be more similar to the Cid representation (see Figure 

9b). In contrast, our Sharpening hypothesis RDM predicted that the representation would be 

more similar to the Cid representation due to a Sharpening of expected face information. 

Moreover, we combined our hypothesis RDMs with activations derived from the DCNN 

VGG-Face (Parkhi et al., 2015; see Figure 9). Grossman et al. (2019) had shown, using single-

cell recordings in patients, that the neural representational dissimilarity space for face images 

significantly correlates with the representational space of layer activations for face images. 

Specifically, the representational space derived from lower-level layer pool4 activations 

corresponded to the representational activation space measured in OFA, while higher-level 

pool5 activations corresponded to region FFA. As pool5 is the highest pooling layer in VGG-

Face, we also used pool5 activations for the computation of the hypothesis RDMs for highest 

area aTL. As it has been shown that representational spaces derived from object-trained 

DCNNs can outperform or are as equally good at capturing the neural representational space 

for face images (Grossman et al., 2019; Ratan Murty et al., 2021), we also performed our 
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multivariate RSA using hypothesis RDMs based on VGG-16 (Simonyan & Zisserman, 2015) 

and ResNet50 (He et al., 2016) activations. Furthermore, because humans can differ in the 

amount they use prior information, we weighted our hypothesis RDMs with individual prior 

weights derived from behavioural measurements how often they perceived the expected or 

unexpected identity in a face morph (Blank et al., 2018; Lee & Geng, 2017; Levine & 

Schwarzbach, 2021). 

 

Figure 9. Architecture of the deep convolutional neural network VGG-Face and our hypothesis 

RDMs used for the Representational Dissimilarity Analysis (RSA). a) Network architecture of 

VGG-Face (Parkhi et al., 2015): For our hypothesis RDMs, we exported vector activations from layers 

pool4 and pool5. The shown face image was created with FaceGen Modeller Core 3.22. b) Hypothesis 

RDMs: In our RSA (Kriegeskorte et al., 2008; Nili et al., 2014), we tested three hypothesis models: a 

Prediction Error (PE) model, a Sharpening model, and a pure Sensory Input model in which expectations 

did not influence neural representations. Hypothesis RDMs based on pool4 and pool5 activations were 

used for OFA and FFA/aTL, respectively. The PE and Sharpening models were additionally weighted 

by individual behaviour to consider differences in prior usage. Our paper Garlichs & Blank (2024) was 

published under a Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/). This figure equals Figure 2 of the published paper. 
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9.3 Results 

On the behavioural level, we observed an assimilation effect, i.e., participants were more 

likely to perceive the expected than the unexpected identity in a face morph (see Figure 10a). 

Furthermore, expectations led to a facilitation effect, i.e., participants were faster in identifying 

an expected face compared to an unexpected face or a face morph (see Figure 10b). 

Additionally, we split up the face morph trials by response, i.e., whether participants perceived 

the expected or the unexpected face in a face morph. RT analyses revealed that participants 

were faster in giving prior-confirming responses compared to contrastive responses (see 

Figure 10c), although the prior-confirming responses were still slower compared to match trials 

in which the face completely matched their expectation. 

 

Figure 10. Behavioural effects of expectations during face perception. a) Assimilation effect: 

Participants were more likely to perceive the expected identity in a face morph. Single participants are 

represented by dots, the white dot symbolizes the median, the grey rectangle represents the interquartile 

range (IQR; Q1, Q3), and the whiskers represent Q1 − 1.5*IQR and Q3 + 1.5 * IQR. The asterisk indicates 

p < .001. b) Facilitation effect: Participants identified expected faces (match condition) faster than 

completely unexpected faces (mismatch condition) and face morphs (partial condition). c) Face morphs 

split up by response: Participants classified face morphs faster as the expected identity compared to 

when they perceived them as the unexpected identity. Black lines in (b) and (c) indicate p < .001. Our 

paper Garlichs & Blank (2024) was published under a Creative Commons Attribution 4.0 International 

License (https://creativecommons.org/licenses/by/4.0/). This figure equals Figure 3 of the published 

paper. 
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We used our functional localizer contrast ‘faces > scenes’ to define our ROIs (OFA, FFA, 

aTL; see Figure 11a). Previous research has suggested a segregation of FFA into an anterior 

and posterior part (Grill-Spector et al., 2017; Pinsk et al., 2009; Weiner & Grill-Spector, 2010). 

Because our activation cluster only showed an overlay with the latter (Zhen et al., 2015), we 

report results for the posterior FFA (pFFA). 

On the univariate fMRI analyses level, we observed reduced activation for expected 

comparted to unexpected faces (contrast ‘mismatch > match’) in the ventral face-processing 

hierarchy in the left pFFA as well as in a cluster more lateral than our pFFA cluster, located in 

the ITG and MTG; see Figure 11b). We extracted that ITG/MTG cluster for further multivariate 

analyses to investigate whether the observed expectation suppression effect might result from 

PE or Sharpening computations. Furthermore, whole-brain analyses revealed expectation 

suppression effects in the bilateral anterior insula, superior parietal lobule, left thalamus, and 

right caudate, areas classically involved in surprise (Blank et al., 2023; Fouragnan et al., 2018) 

and error processing (Ham et al., 2013).  

On the multivariate fMRI level, we aimed at differentiating whether the observed univariate 

reduced activation for expected compared to unexpected faces might be due to a reduced PE 

processing or a Sharpening of expected information. We found evidence for PE in areas 

involved in the univariate expectation suppression effect, namely pFFA and ITG, as well as in 

the lower and higher areas of the hierarchy, OFA and aTL (see Figure 11c-f). Interestingly, 

evidence for PE was found for both face- and object-trained DCNNs. However, VGG-Face only 

revealed PE processing in OFA, pFFA, and MTG, while VGG-16 showed PE along the whole 

face-processing hierarchy and outperformed VGG-Face in middle to higher areas pFFA and 

aTL. Furthermore, there were indications for additional Sharpening in OFA with VGG-Face, 

signifying a co-occurrence of both computational mechanisms, i.e., PE processing and 

Sharpening, in this lower area. 
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Figure 11. Regions of interest (ROI), univariate expectation suppression effect, and multivariate 

Representational Dissimilarity Analysis (RSA) results of our ROI analyses. a) Face-selective 

ROIs: We defined our ROIs (occipital face area, OFA; posterior fusiform face area, pFFA; anterior 

temporal lobe, aTL) based on the functional localizer contrast ‘faces > scenes’. b) Expectation 

suppression effect: Univariate analyses revealed a network of temporal, parietal, and frontal regions 

which showed higher activations for ‘mismatch’ versus ‘match’ faces (p(unc.) < .001). Similar activations 

were found when contrasting trials in which participants perceived the ‘unexpected’ compared to the 

‘expected’ identity in a face morph. In addition to our OFA, pFFA, and aTL ROIs, we extracted a cluster 

in the inferior/middle temporal gyrus (I/MTG), more lateral to our pFFA ROI, for further multivariate 

analyses. c-f) Bilateral multivariate RSA results: We correlated our hypothesis models (Prediction 

Error, PE; Sharpening; Sensory Input) with our neural representational dissimilarity matrices (RDM; 

Kriegeskorte, 2008; Nili et al., 2014). Single dots represent participants, blue and green bars the mean 

correlations of the hypothesis models based on VGG-Face and VGG-16, respectively. Grey error bars 

indicate the between-subject standard error of the mean (SEM), black error bars the within-subject SEM 

(Morey, 2008). The grey shaded areas represent the upper and lower noise ceiling, i.e., how well any 

model could perform given the noise in the data (Nili et al., 2014). Significances: asterisks (black: 

p(Bonf.) < .05; grey: p(unc.) < .05); lines: p(FDR) < .05 (blue: model comparisons within VGG-Face; 

green: model comparisons within VGG-16; black: model comparisons VGG-Face vs. VGG-16). Our 

paper Garlichs & Blank (2024) was published under a Creative Commons Attribution 4.0 International 

License (https://creativecommons.org/licenses/by/4.0/). This figure is based on Figure 4 of the original 

paper, excluding panels g-j that contain the unilateral RSA results, for conciseness of this dissertation. 
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Whole-brain searchlight analyses revealed PE processing in line with the ROI analyses, 

with additional PE in temporo-parietal as well as frontal regions (see Figure 12; similar to 

Muukkonen et al., 2020; Summerfield et al., 2006; Visconti di Oleggio Castello et al., 2017). 

Only Sharpening searchlight analyses based on the face-trained DCNN VGG-Face revealed 

sharpened face representations in a frontal cluster as well as in the anterior hippocampus (see 

Figure 12c). When contrasting PE and Sharpening searchlight analyses based on individual 

difference correlation maps, there were higher correlations of the PE compared to the 

Sharpening hypothesis RDM (pool4) with the neural RDM in the right angular gyrus (AnG), 

middle frontal gyrus (MFG), and putamen (see Figure 12b). 

 

Figure 12. Multivariate searchlight analyses results for our hypothesis models based on VGG-

Face (Parkhi et al., 2015). a) Prediction Error (PE) searchlight analyses: We found correlations in 

the angular gyrus (AnG), inferior occipital gyrus (IOG), inferior frontal gyrus (IFG), middle frontal gyrus 

(MFG), temporal pole (TP), middle temporal gyrus (MTG), inferior occipital gyrus (IOG), lateral occipital 

cortex (LOC), precentral gyrus (PrG), anterior insula (aIns), posterior insula (pIns), and hippocampus 

(HC). b) PE minus Sharpening searchlight analyses: We found higher correlations for the PE 

compared to the Sharpening hypothesis model in right AnG, bilateral SMG, PrG, and MTG. c) 

Sharpening searchlight analyses: We found correlations in the frontal pole (FP) and hippocampus. 

All maps in (a)–(c) are shown at p(FWE) < .05 (peak-corrected), except for Sharpening pool4 in (c), 

shown at p(FWE) < .05 (cluster-corrected), with a cluster-inducing threshold of p(unc.) < .001. Our paper 

Garlichs & Blank (2024) was published under a Creative Commons Attribution 4.0 International License 

(https://creativecommons.org/licenses/by/4.0/). This figure equals Figure 5 of the published paper. 
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9.4 Discussion 

In our second study, we investigated the neural computational mechanisms of how 

expectations are combined with sensory information along the ventral face-processing 

hierarchy by using multivariate RSA (Kriegeskorte et al., 2008; Nili et al., 2014) combined with 

DCNNs. We induced expectations by presenting scene images associated with one of four 

faces or presented a neutral scene after which each face was equally likely to appear. Similar 

paradigms usually showed an expectation suppression effect, i.e., a reduced activation for 

expected compared to unexpected faces (e.g., Egner et al., 2010; den Ouden et al., 2010; 

Summerfield et al., 2008). Our aim was to disentangle whether this known univariate 

expectation suppression effect could be either explained by a reduced PE processing for 

expected faces, as suggested by the Predictive Coding framework (Friston, 2005), or a 

sharpened representation of expected face information (e.g., Aitchison & Lengyel, 2017; Blank 

et al., 2018; Blank & Davis, 2016). 

We replicated behavioural findings of a facilitation and assimilation effect, i.e., an 

accelerated identification of expected compared to unexpected faces, as well as a perceptual 

shift for ambiguous face morphs towards the expected identity (e.g., Amado et al., 2018; Blank 

et al., 2015; Schweinberger et al., 1995; Todorova & Neville, 2020). Furthermore, we replicated 

the univariate expectation suppression effect in parts of the ventral face-processing hierarchy, 

specifically in pFFA and in a more lateral area in the ITG/MTG. We showed in both regions 

that the neural representations of face morphs after scene-induced expectations were more 

similar to the unexpected face identity, arguing in favour of the PE calculation as the 

computational mechanism behind the univariate effect. This finding corroborates previous 

research that showed PE processing in FFA, but did not investigate sharpened representations 

as an alternative computational model (Apps & Tsakiris, 2013; Egner et al., 2010; Zaragoza-

Jimenez et al., 2023). Further searchlight analyses revealed a distributed network of PE 

processing in parietal, temporal, occipital, and frontal regions that have been previously linked 

to surprise processing and face recognition (e.g., Blank et al., 2014, 2023; Fouragnan et al., 

2018; Ham et al., 2013; Lee & Geng, 2017).  
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In addition, we showed a co-existence of unexpected and sharpened expected face 

information in OFA, suggesting a simultaneous computation of the PE as well as the 

confirmation of expected information. This should only be possible if expectations of higher-

level regions got transmitted in a hierarchical fashion to lower-level area OFA, as suggested 

by the Predictive Coding framework (Friston, 2008; Nigam & Schwiedrzik, 2024; Schwiedrzik 

& Freiwald, 2017). We further found sharpened representations in the frontal pole, in line with 

previous research showing predictive face information in frontal regions (Summerfield et al., 

2006). Taken together, these results suggest a complex interplay of both mechanisms enabling 

the neural representation and combination of expectations as well as sensory information. 

Furthermore, we used the face-trained DCNN VGG-Face (Parkhi et al., 2015) and the 

object-trained DCNNs VGG-16 (Simonyan & Zisserman, 2015) and ResNet50 (He et al., 2016) 

to fine-tune our hypothesis RDMs. These networks revealed overlapping as well as diverging 

representations of face information: while all networks showed PE processing along the face-

processing hierarchy, sharpened face representations in OFA were only evident by the DCNN 

VGG-Face. Furthermore, when directly comparing VGG-Face and VGG-16 – which have the 

same network architecture but were trained on different datasets – the evidence for PE 

processing along the face-processing hierarchy (OFA, pFFA, aTL) for VGG-Face was limited 

to OFA and pFFA, while VGG-16 showed correlations in all regions and outperformed VGG-

Face in pFFA and aTL. These diverging findings highlight two important factors: on the one 

hand, in line with previous studies (Grossman et al., 2019; Ratan Murty et al., 2021), taking 

object-trained DCNNs to investigate neural face processing can reveal face-related 

representations that are (less) picked up by face-trained DCNNs. This could relate to the 

natural evolvement of object-trained networks towards upright face configurations (Zhao et al., 

2024) or, in our study, might also be related to higher-level contextual information induced by 

the scene information that are rather picked up by object-trained networks. On the other hand, 

the finding of Sharpening in OFA only with VGG-Face suggests a specificity of face-trained 

networks (Dobs et al., 2023), for example, they might be able to pick up more fine-grained 

facial features, revealing sharpened face representations in OFA and frontal regions. 
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Importantly, our findings highlight the advantages of using both types of DCNNs for face 

recognition and sensitize for careful model selection as these might lead to different 

interpretations of results. Further research is necessary to disentangle in more detail which 

information about faces is captured by face-trained compared to object-trained networks (e.g., 

Dobs et al., 2022; Kanwisher, Gupta, et al., 2023). It would be interesting to see whether other 

datasets would also reveal a Sharpening of expected face information only with face-trained 

DCNNs and a more pronounced PE processing with object-trained DCNNs, giving more 

insights into their facial feature specialization. 

 

10. Discussion 

This cumulative dissertation is based on two studies which investigated context-induced 

expectation effects on the perception and processing of face images. We discovered a 

complex interplay of bottom-up and top-down processes, evident as an initial guidance and 

preferred sampling of expected facial features which reversed into an increased sampling of 

unexpected information over time, as well as a predominant PE processing along the ventral 

face-processing hierarchy which was complemented by a Sharpening of expected information 

in lower-level face-specific area OFA and frontal areas. 

Our two studies addressed different hypotheses suggested by the overarching framework 

of Predictive Coding and Bayesian principles (Aitchison & Lengyel, 2017; Clark, 2013; Friston, 

2005, 2009; Knill & Pouget, 2004). Our first eye-tracking study was based on the assumption 

that our brain is constantly trying to reduce the surprise of incoming sensory information 

(Friston, 2005, 2009; Friston et al., 2012). This can be achieved not only by having accurate 

predictions about upcoming sensory events, but also actively sampling our environment at 

locations where we predict the most probable cause of a sensory event with the highest 

probability (Friston et al., 2012). If the sensory input matches our prediction, this leads to a 

minimization of the PE and a confirmation and reduction of the uncertainty of our prediction. In 

line with this, our eye-tracking study showed a preferred sampling of expected face information 

and predictive saccades to assumed locations of information prior to the actual face. Our study 
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revealed that this shifts towards an increased sampling of unexpected face information (PE) 

that might be additionally used to the expected information for model/prediction updates 

(Aitchison & Lengyel, 2017; Clark, 2013; Friston, 2005, 2008; Summerfield & Koechlin, 2008). 

Furthermore, our mismatch trials highlighted that, if sensory information strongly deviates from 

our expectation, it can attract eye movements similarly to expected sensory input (Anderson 

et al., 2016; Elazary & Itti, 2008). In a more naturalistic setting, it might be relevant for survival 

to keep our sensory system open to large deviations from our predictions, as danger (e.g., an 

escaped tiger from a zoo) is not expected, but highly important to notice. One future study 

could investigate the ‘sweet spot’ of when predictive power is outbalanced by sensory saliency. 

An important variable that comes into play here is precision, i.e., the inverse of variance, which 

can vary for the sensory input as well as for the prediction. Precision of the sensory input 

depends on its ambiguity and noise level and can be operationalized, for example, by blurring 

the presented face (e.g., Bruce & Valentine, 1986; Dunovan & Wheeler, 2018; Garlichs & 

Blank, 2024), providing different durations of face presentation (Leopold et al., 2005; Rieth & 

Huber, 2010), or varying the percentage of two identities in a face morph, making them clear 

or more ambiguous (e.g., Blank et al., 2015; de Gardelle et al., 2011; Gao & Wang, 2020; Lee 

& Geng, 2017; Walther, Schweinberger, & Kovács, 2013). The precision of predictions can be 

operationalized, for example, by manipulating the transition probabilities between priors and 

upcoming stimuli (Becker et al., 2024; Blank et al., 2023). The Predictive Coding framework 

suggests that PEs with high precision will have a greater effect on model updating and 

perceptual hypotheses by modulating the synaptic gain of PE units (Feldman & Friston, 2010; 

Friston, 2009, 2010; for reviews, see den Ouden et al., 2012; Hohwy, 2012; Walsh et al., 2020). 

In a follow-up study, it would be interesting to manipulate the precision of the prior (e.g., 

transition probabilities) as well as the sensory information (e.g., by different morph levels 

and/or additional noise on the face images) to pinpoint the interplay when the prediction 

dominates our perception and when the sensory input deviates too much from our expectation 

so that our prediction gets discarded (for related reviews for assimilative and contrastive 

effects, see Mueller et al., 2020; Snyder et al., 2015).  



53 

 

Importantly, although our first study revealed how expectations can guide eye movements 

(Friston et al., 2012), its methodology did not allow for a differentiation of how expectations 

and sensory information are neurally combined. One further aspect of Predictive Coding 

theories is the hierarchical transmission of predictions from higher-level areas to lower-level 

areas, which in turn compute a PE that is sent back to higher regions for model updating 

(Friston, 2005, 2008; Lee & Mumford, 2003; Mumford, 1992; Rao & Ballard, 1999; Summerfield 

& Koechlin, 2008). With our second study, we revealed the computation of face information 

PEs along the ventral face-processing hierarchy in line with previous research in the macaque 

brain (Nigam & Schwiedrzik, 2024; Schwiedrzik & Freiwald, 2017). We extended previous 

research by testing an alternative model called Sharpening (e.g., Aitchison & Lengyel, 2017; 

Blank et al., 2018; Blank & Davis, 2016; González-García & He, 2021; Kok et al., 2012; Lee & 

Mumford, 2003) and found that the univariate expectation suppression effect could rather be 

explained by PE processing, in line with previous interpretations (den Ouden et al., 2010; 

Egner et al., 2010; Summerfield et al., 2008). Simultaneously, we found an increased 

representation of the expected facial features in OFA and frontal regions. This finding expands 

the Predictive Coding framework by suggesting a simultaneous Sharpening of expected 

information. This could be interpreted as the Sharpening of prior information in lower face 

regions, or as the posterior in higher processing areas, i.e., the updated model representation 

for upcoming scenarios. While our experimental design and temporal resolution did not allow 

for a distinction between both types of sharpened expected face information (prior and 

posterior), a follow-up study using time-sensitive methodology (e.g., EEG) or an event-related 

fMRI design with a longer time period between prior and face onset (Blank et al., 2023) could 

provide further insights. A prior should be represented after cue onset but before face onset, 

possibly as a pre-activation of a mental face representation (Schweinberger et al., 1995). A 

posterior should be represented after face onset, possibly with a certain delay. Furthermore, 

in a replication study of our fMRI experiment, a higher spatial resolution (e.g., 7T) could allow 

to differentiate whether, as suggested by previous research, PEs (‘error units’) are rather 

represented in superficial layers while predictions (‘representational units’) are rather 
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represented in deeper cortical layers, which would be especially interesting in OFA in which 

we found the co-existence of PE and sharpened face information (Felleman & Van Essen, 

1991; Friston, 2008; Thomas et al., 2024; Walsh et al., 2020). 

When comparing the results of both of our studies, on the first glance, we found seemingly 

contradictory evidence showing a preferred sampling of expected information in the first study 

and a predominantly PE processing in the second study. One might intuitively wonder whether 

we did not already found evidence for a Sharpening of expected information in our first study. 

This discrepancy between eye movements and neural representations can appear puzzling 

but is not contradictory in terms of the Predictive Coding framework. Both results show a usage 

of expectations during the perception of faces, with the first targeting the active seeking for 

hypothesis confirmation using eye movements (Friston et al., 2012), and the second being 

related to the hierarchical nature of information processing between higher- and lower-level 

regions and how expectations and sensory input are computationally combined (Aitchison & 

Lengyel, 2017; Clark, 2013; Friston, 2005, 2009; Lee & Mumford, 2003; Mumford, 1992; Rao 

& Ballard, 1999; Summerfield & Koechlin, 2008). It is important to note that Sharpening 

describes a process on the neural level, i.e., the enhancement of neurons’ representations 

specifically tuned to a stimulus (Kok et al., 2012). While the fixation of expected facial features 

could theoretically be accompanied by a sharpened neural representation in face-related 

areas, these two measurements cannot be directly linked to each other given our methodology 

and experimental setup in the first study. 

Similarly, some might find the linkage of behaviour to neural representations partially 

counterintuitive. As we have shown in both studies, we found an assimilation effect for face 

morphs, in the second study with a dominance of PE representations throughout the ventral 

face-processing hierarchy. Correspondingly to the notion that sampling of expected face 

information does not have to indicate sharpened face representations, the representation of 

PEs in face morphs did not result in expectation-discarding behaviour. The behavioural 

assimilation effect could reflect a response bias towards the expected identity (Wickens, 2001) 

or indicate that the PE was not large enough to dismiss the prior of the expected identity. As 
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discussed in Garlichs & Blank (2024), participants seemed to have noticed the unexpected 

sensory information in face morphs, shown by longer RTs for ‘expected’ responses for face 

morphs compared to faster RTs in match trials with clear expected faces. It has been shown 

that using morph levels containing different amounts of the expected identity can influence 

whether contrastive effects arise and that these effects correlate with ERP components 

(Walther, Schweinberger, Kaiser, et al., 2013). In a future study, it would be interesting to 

investigate whether face morphs deviating less or more from the expected face are 

accompanied by weaker or stronger PE representations and to further examine their possible 

linkage to behaviour. 

Further insights into the effect of expectations on perception and perceptual decisions 

could be gained by re-analysing our two studies’ behavioural, eye-tracking, and neural data 

using Drift Diffusion Models (DDM; Ratcliff, 1985; Ratcliff et al., 2016; Ratcliff & Hacker, 1981; 

Ratcliff & McKoon, 2008; Wagenmakers, 2009). These models were originally designed to 

investigate questions about two-choice perceptual matching tasks. They use RTs and 

accuracies to model perceptual decisions as an evidence accumulation for either option until 

a certain threshold is reached and a choice for one option is made. One key aspect of DDMs 

is that they allow to differentiate which cognitive process expectations influence: for example, 

a starting point bias towards one perceptual option can be thought of as a mental pre-activation 

of the expected input which can lead to the respective choice threshold being reached more 

quickly (de Lange et al., 2013; Mulder et al., 2012; for a review, see Feuerriegel, Blom, et al., 

2021). Another possibility is that expectations can modify the drift rate, i.e., facilitate evidence 

accumulation for one option, thereby reaching the respective decision threshold faster (Diaz 

et al., 2024; Todorova & Neville, 2020; Yon et al., 2021), or it can be a combination of both 

biases (Dunovan et al., 2014; van Ravenzwaaij et al., 2012). A further possibility is that 

expectations lead to a shift in the perceptual threshold, e.g., reducing the accumulated 

evidence needed for the expected option to reach the respective decision threshold (De Loof 

et al., 2016; Domenech & Dreher, 2010). In our data, it would be interesting to analyse different 

aspects using DDMs: firstly, in our second study, the RTs in our partial trials split up by 
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response (‘expected’ or ‘unexpected’) could be analysed. This difference could be due a 

starting point, drift rate, threshold, or combined bias, and an additional analysis could reveal 

the underlying cognitive effect of face expectations on the perceptual decision. Additionally, it 

might be interesting to analyse our neural activations using DDMs by adding covariates (e.g., 

for the starting point) into the individual General Linear Models (GLM; Mulder et al., 2012). This 

analysis could reveal whether changes in starting points might be related to frontoparietal 

regions (Mulder et al., 2012), possibly answering the question whether our assimilation effect 

and the Sharpening in frontal regions might be related to starting point biases in the form of 

sharpened expected face information. It could also show whether we can find pre-activations 

in lower-level regions such as FFA and OFA, in line with the hierarchical viewpoint of Predictive 

Coding (Friston, 2005, 2008; Lee & Mumford, 2003; Mumford, 1992; Rao & Ballard, 1999; 

Summerfield & Koechlin, 2008). Lastly, in our eye-tracking study, we could investigate whether 

in addition to RTs and accuracies, fixations to either perceptual option (i.e., either identity in a 

face morph) contribute to perceptual decisions by using attentional DDMs (aDDM; Krajbich et 

al., 2010, 2012; Krajbich & Rangel, 2011; Tavares et al., 2017). An aDDM postulates that 

evidence accumulation is additionally dependent on where a person is looking, meaning that 

longer fixations would result in more evidence accumulation for a decision option (Krajbich et 

al., 2012). Using an aDDM could directly link our first study’s finding of a congruency effect, 

i.e., a longer and more frequent fixation of the expected identity in a face morph, to the 

observed assimilation effect, similar to studies showing that participants more likely choose an 

option that is displayed longer (Armel et al., 2008; for a review, see Ting & Gluth, 2024). 

Finally, I would like to address possible practical implications of our study findings beyond 

contributions to the basic (neuro-)psychological research field. Possible neuropsychological 

groups related to our research are people with prosopagnosia, people with autism spectrum 

disorder (ASD), or people with schizophrenia. While people with congenital and acquired 

prosopagnosia are able to recognize single features within a face, their configural processing 

ability is impaired (Barton et al., 2002; Ramon & Rossion, 2010). Although it was long thought 

to be an untreatable impairment, trainings focusing on the relations among facial features 
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improved behavioural face recognition performance in experiments as well as in real life in 

people with developmental prosopagnosia (DeGutis et al., 2014; DeGutis et al., 2007). In a 

future study, it might be interesting to track eye movements of healthy participants for a specific 

set of faces, identifying locations of major fixation that allow the correct identification of these 

faces. Afterwards, people with prosopagnosia could be trained to focus on these diagnostic 

features (e.g., by showing red circles around the features as in the training for our first study). 

In a test phase, eye-tracking could reveal whether participants with this alternate training to 

fixate diagnostic features would show a higher recognition performance increase than 

participants who completed the classical configural training by DeGutis et al. (2014), similar to 

previous trainings showing improvements after focus on facial features (Brunsdon et al., 2006; 

Schmalzl et al., 2008; for a review, see DeGutis et al., 2014). Real-life generalizability of the 

face recognition improvements could be measured by comparing face fixations of trained 

people with prosopagnosia and healthy people while wearing portable eye-tracking mounts 

(Varela et al., 2023; Vehlen et al., 2021). Further research using fMRI could be used to 

investigate whether this training would also lead to changes on the neural level. It could be 

tested whether face representations after facial feature training become more identity-specific 

and might allow for better identity decoding in people with prosopagnosia. Combining this with 

the experimental design of our second study, it would be also interesting to see whether this 

training affects neural representations related to expectation. If the training already leads to a 

clearer mental representation of the expected face after a cue, this could also result in more 

identity-specific PE and sharpened representations for face morphs. Similar training and 

subsequent eye-tracking and fMRI analyses could be performed with people with ASD that 

typically show less feature-specific scanning behaviour (Wilson et al., 2012), especially of the 

eyes region (Wang et al., 2015). 

Furthermore, it has been argued that in terms of Predictive Coding, which suggests an 

interplay between top-down and bottom-up information, people with ASD put greater weight 

on sensory information and consider contextual information less (Friston et al., 2013; Pellicano 

& Burr, 2012; for reviews, see Palmer et al., 2017; Van de Cruys et al., 2014). It has also been 



58 

 

proposed that people with ASD overweigh the perceptual PE; this could lead to an overly high 

influence of small PE on model updates, although small irregularities are natural to the variance 

in our world (Van de Cruys et al., 2014). Similarly, in interpersonal Predictive Coding designs 

in which the action performed by one person can be anticipated by the action of another person 

(e.g., waving hands for greeting), people with high-functioning ASD showed reduced usage of 

the social motion information provided by the other person for the interpretation of an action 

compared to a control group, further highlighting the different usage of context information 

when interpreting sensory information (von der Lühe et al., 2016). In people with schizophrenia, 

it has been suggested that there are deficiencies in deviance detection, with a reduced 

attention to relevant PEs. Instead, there could be an increased processing of (objectively) 

neutral or unimportant information, leading to incorrect model updating due to misleading PEs, 

which can result in delusions and hallucinations (for reviews, see Fletcher & Frith, 2009; 

Kirihara et al., 2020). This unbalanced PE computation can result from imprecise predictions, 

leading to imprecise PEs, and even further wrongly updating of predictive models (for a review, 

see Liddle & Liddle, 2022). In the context of our fMRI study, it would be interesting to investigate 

in people with ASD and people with schizophrenia whether face morphs would lead to a 

reduced or enhanced PE processing in the brain, either due to a reduced usage of context 

information or an overweighing of sensory deviations. By using an adjusted fMRI paradigm 

with different precisions of prior and sensory information, it would also be interesting to directly 

compare these groups with a control group to further disentangle the contribution of both 

information sources (expectations and sensory input) on neural representations and their effect 

on PE and sharpened representations. 

In conclusion, we have shown in two studies using different methodologies and 

experimental designs how expectations about an upcoming face shape the sampling of face 

information and how our brain computationally combines expectations with sensory 

information, differentiating between PE processing and Sharpening. We have provided 

evidence for characteristics of the Predictive Coding framework, namely an active sampling of 

expected information as well as a hierarchical organization involving PE computations along 
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the ventral face-processing hierarchy. Additionally, we found a Sharpening of expected face 

information in lower region OFA and frontal regions, arguing for a complex interplay of both 

representations – of expected and unexpected information – during face perception. We 

extended previous research by supporting the prominent view that the univariate expectation 

suppression effect could be related to PE processing and used state-of-the-art DCNNs to fine-

tune our hypothesis models for neural face representations. This cumulative thesis provides 

the basis for much further research regarding how our eye-tracking findings can be used to 

improve neuropsychological phenomena related to face recognition deficits. It further offers 

insights into Predictive Coding principles in neural face processing which could be directly 

compared to possibly altered mechanisms in clinical samples. 
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11. Zusammenfassung 

In dieser Dissertation untersuchten wir Erwartungseffekte in der Gesichterwahrnehmung 

im Kontext von Predictive Coding. Diese Theorie nimmt an, dass wir unsere Welt durch 

internale Modelle basierend auf Erfahrungen vorhersagen. Akkurate Vorhersagen reduzieren 

Überraschung, d.h. die Abweichung zwischen Erwartung und sensorischer Information 

(Prediction Error, PE). Es wird angenommen, dass Menschen aktive handelnde Personen in 

ihrer Umwelt sind. Das bedeutet, dass sie Handlungen (z.B. Augenbewegungen) ausführen, 

um erwartete sensorische Information zu untersuchen und den PE zu reduzieren. Unsere erste 

Eye-Tracking-Studie bekräftigte dies durch eine bevorzugte und frühe Fixation von erwarteter 

Gesichtsinformation und das Ausführen prädiktiver Sakkaden zu erwarteter 

Gesichtsinformation. Über die Zeit wurde vermehrt unerwartete Gesichtsinformation 

betrachtet. Außerdem wurde erwartete Gesichtsinformation weniger initial fixiert, wenn die 

sensorische Information stark von der Erwartung abwich. 

Die Predictive Coding-Theorie nimmt zudem eine hierarchische Informationsverarbeitung 

an, so dass höhere kortikale Areale Vorhersagen an niedrigere kortikale Areale senden, die 

den PE berechnen und diese für Modellupdates an höhere Areale zurücksenden. Bisher wurde 

angenommen, dass der neuronale ‚expectation suppression effect‘, d.h. die reduzierte 

Aktivierung für erwartete im Vergleich zu unerwarteten Gesichtern, durch die Berechnung von 

höheren PEs für unerwartete Gesichter erklärt werden könnte. Es wurden jedoch wenige 

alternative Modelle getestet. In unserer zweiten fMRT-Studie testeten wir mit multivariaten 

Analysen und Deep Convolutional Neural Networks, ob der Effekt besser durch Sharpening 

erklärt werden könnte, einer Aktivierung von Neuronen spezialisiert auf die erwartete 

Gesichterinformation. Sharpening würde den expectation suppression effect durch eine 

insgesamt reduzierte, aber weniger ‚noisy‘ Aktivierung für erwartete im Vergleich zu 

unerwarteten Gesichtern begründen. Wir fanden Evidenz für PEs entlang der gesamten 

ventralen Gesichterverarbeitungshierarchie sowie gleichzeitig geschärfte Gesichter-

Informationen im niedrigeren Areal ‚occipital face area‘ und frontalen Regionen. Zusätzlich 

fanden wir PEs in Arealen, die den univariaten expectation suppression effect zeigten, was 
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vorherige Annahmen unterstützt, dass sie der zugrundliegende Prozess für den Effekt sein 

könnten. 

Insgesamt unterstützen unsere Ergebnisse verschiedene Aspekte von Predictive Coding 

und betonen die Relevanz von sowohl erwartungskonformen als auch -abweichenden 

Informationen. Sie heben die Rolle von Erwartungen in unserem alltäglichen Leben hervor und 

lassen vermuten, dass Wahrnehmung sowohl auf Verhaltens- als auch auf neuronaler Ebene 

auf einem komplexen Zusammenspiel beider Informationsquellen beruht.  
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12. Zusammenfassung (Englisch) 

In this dissertation, we investigated expectation effects on face perception in the context of 

Predictive Coding. This framework suggests that the brain represents the world by predicting 

its contents using internal models based on experiences. Accurate predictions reduce the 

surprise, i.e., the deviation between expectation and sensory information (Prediction Error, 

PE). Humans are suggested to be active agents in their environment, meaning that they 

perform actions (e.g., eye movements) towards anticipated locations of expected sensory 

information to reduce PEs. In our first eye-tracking study, we found compelling evidence in 

favour of an active sampling of our environment, shown by a preferred and earlier fixation of 

expected compared to unexpected face information and expectations predictively guiding 

saccades. We also showed a reversal into an increased sampling of unexpected face 

information over time as well as a reduction of the initial fixation of the expected facial feature 

if sensory information differed strongly from expectations.  

Secondly, the Predictive Coding framework suggests a hierarchical information 

processing, with higher cortical areas sending predictions to lower cortical areas, which 

compute PEs and send them back to higher areas for model updating. Previous literature 

suggested that the neural expectation suppression effect, i.e., the reduced activation for 

expected compared to unexpected faces, could be explained by a higher PE for unexpected 

faces. However, there was a lack in alternative model testing. We tested with multivariate 

analyses combined with Deep Convolutional Networks whether this effect could be better 

explained by Sharpening, an activation of neurons tuned to the expected face information. 

Sharpening would explain the expectation suppression effect as an overall reduced, but less 

noisy activation for expected compared to unexpected faces. We found evidence for PE 

processing along the whole ventral face-processing hierarchy as well as a co-occurrence of 

sharpened face representations in lower area occipital face area and frontal regions. 

Furthermore, we found PE processing in areas showing the univariate expectation suppression 

effect, supporting previous assumptions about it being the underlying computational 

mechanism for that effect. 



63 

 

Taken together, our findings support different aspects of the Predictive Coding framework, 

enhancing the importance of both expectation-confirming and -deviating information. They 

highlight the importance of expectations for our everyday life and suggest that perception on 

the behavioural and neural level is most likely based on a complex interplay of both information 

sources. 
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13. Abkürzungsverzeichnis / List of Abbreviations 

aDDM  attentional Drift Diffusion Model 

ASD  autism spectrum disorder 

aIT  anterior inferotemporal cortex 

AnG  angular gyrus 

ATFA  anterior temporal face area 

aTL  anterior temporal lobe 

CI  confidence interval 

DCNN  Deep Convolutional Neural Network 

DDM  Drift Diffusion Model 

EEG  electroencephalography 

ERP  event-related potential 

FFA  fusiform face area 

fMRI  functional magnetic resonance imaging 

GLM  General Linear Model 

HD-tDCS high-definition transcranial direct current stimulation 

IOG  inferior occipital gyrus 

IQR  interquartile range 

ISI  inter-stimulus interval 

ITG  inferior temporal gyrus 

MEG  magnetoencephalography 

MFG  middle frontal gyrus 

MTG  middle temporal gyrus 

OFA  occipital face area 

PE  prediction error 

pFFA  posterior fusiform face area 
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RDM  representational dissimilarity analysis 

ROI  region of interest 

RT  reaction time 

SEM  standard error of the mean 

STS  superior temporal sulcus 

tDCS  transcranial direct current stimulation 

TMS  transcranial magnetic stimulation 

V1  primary visual cortex 
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14. Tools & References 

Tools 

scienceOS: https://www.scienceos.ai/ 

 Defining/understanding the concepts of associative and repetition priming and getting 

an overview of their differences (“What is associative priming?”) 

 Literature search: 

o “Do humans perform predictive saccades during face perception?” 

o “How do humans look at face morphs?” 

o “What do humans look at in face morphs?” 
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Expectations guide predictive eye movements
and information sampling during face recognition

Annika Garlichs,1,2,* Mark Lustig,1,3 Matthias Gamer,4 and Helen Blank1,2,5,6,*

SUMMARY

Context information has a crucial impact on our ability to recognize faces. Theoretical frameworks of pre-
dictive processing suggest that predictions derived from context guide sampling of sensory evidence at
informative locations. However, it is unclear how expectations influence visual information sampling dur-
ing face perception. To investigate the effects of expectations on eyemovements during face anticipation
and recognition, we conducted two eye-tracking experiments (n = 34, each) using cued face morphs con-
taining expected and unexpected facial features, and clear expected and unexpected faces. Participants
performed predictive saccades toward expected facial features and fixated expected more often and
longer than unexpected features. In face morphs, expected features attracted early eye movements, fol-
lowed by unexpected features, indicating that top-down as well as bottom-up information drives face
sampling. Our results provide compelling evidence that expectations influence face processing by guiding
predictive and early eyemovements toward anticipated informative locations, supporting predictive pro-
cessing.

INTRODUCTION

Context provides important information for recognizing faces as one of the most important stimuli in everyday life.1–3 While behavioral ev-

idence indicates that expectations can facilitate face recognition, especially when the face is degraded or ambiguous,4–7 it is unclear whether

context already guides how visual information is sampled when we look at a face. Frameworks of predictive processing suggest an active

sampling of informative locations, guided by prior beliefs.8,9 This process may direct eye movements toward expected sources of sensory

input, aiming to reduce uncertainty in predictions.10

Context efficiently influences gazing behavior in complex everyday scenes, making one faster at locating a pot than a printer in a kitchen

due to semantic and episodic knowledge about typical occurrences of objects11–14; for review, seeWolfe.15 Expectations can also guide pre-

dictive saccades ahead of time to anticipated regions of interest, e.g., toward ball locations during fast-paced games16–18 or prospective

steps when walking down a staircase.19 While examining objects or scenes, expectations can lead to an earlier and increased sampling of

either expected information14,20 or unexpected information.21,22

Previous eye-tracking studies on face perception revealed that humans typically first look at a point slightly below the eyes,23,24 before

fixating on the eyes andmouth,25,26 areas specifically relevant for emotion recognition.27,28Crucially, gaze patterns to faces can bemodulated

by context such as emotional content (for review, see Aviezer et al.29), familiarity,30–33 or ethnicity of the anticipated face.34 For instance, fix-

ation patterns for angry faces are altered if the face is shown in a disgust context (e.g., the person is holding a trash bag), counterbalancing the

typical bias toward the eye region. Conversely, if a disgusted face is shown in an anger context (e.g., the person is showing a fist), the usually

symmetrical scanning pattern to themouth and eye regions is shifted toward the eyes, which is already evident at the first fixation.35 Effects of

familiarity on viewing behavior during face identity recognition are mixed. In some studies, there were more fixations toward the eye region

for novel or unfamiliar faces, a location allowing holistic face processing, whereas famous or personally familiar faces had overall reduced up-

per-face fixations.31,33 In contrast, other studies using name recall and fame judgment instead of familiarity judgment tasks reported an

increased sampling of the eye region for familiar or famous compared to unfamiliar faces.30,32 Gaze patterns toward facial features also

vary depending on whether viewers anticipate a displayed face morph to be Chinese or Caucasian, directing the gaze toward either the

nose or the eyes, respectively.34 Taken together, these findings suggest that expectations derived from surrounding emotional context, fa-

miliarity, or general knowledge about racial categories influence how people look at face images.
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We investigated how expectations about an upcoming face with particular facial features affect eye movements during anticipation and

perception of that face in two preregistered experiments. Participants learned to associate images of four male faces with names in both ex-

periments. Each face was characterized by one distinct facial feature, such as a high forehead or a wide chin. In each trial, expectations about

the upcoming face and hence its distinct facial feature were induced by a name prior. Furthermore, we showed face morphs between two

identities, containing the expected and an unexpected identity. In Experiment 1, we hypothesized that participants would use context infor-

mation to perform predictive saccades toward locations containing the expected facial feature. To enhance the use of predictive information,

we inserted a long time interval before image presentation and provided only limited sensory information by restricting stimulus duration

(Figure 1D). In Experiment 2, we investigated whether context information influences how participants sample face information. We hypoth-

esized that expectations modulate active sampling, such that locations associated with the expected identity are preferentially sampled,

evident by (1) an initial fixation at the location of the expected facial feature in all faces as well as (2) more fixations and longer dwell time

on the expected feature in face morphs, containing expectation-compliant as well as -incompliant information (Figures 1B and 1E).

RESULTS
Facilitation and assimilation effect due to expectation

In both experiments, prior expectations induced a facilitation effect, i.e., faster classification of expected compared to (partially) unexpected

faces as evident by the main effects of ‘‘condition’’ (match, mismatch, partial) on reaction times (RTs) (Experiment 1: F(1.97, 65.09) = 77.72,

p < 0.001, h2 = 0.10; Experiment 2: F(1.43, 47.15) = 182.40, p < 0.001, h2 = 0.47; Figures 2A and 2C). Specifically, participants were

faster in classifying a clear face as expected or unexpected if the face matched their expectation compared to when it did not match their

expectation at all (match vs. mismatch: Experiment 1: match: M = 670.07 ms, SD = 101.16 ms; mismatch: M = 719.86 ms, SD = 102.22 ms;

t(33) = �8.05, p < 0.001, 95% confidence interval [CI] [�65.40, �34.20], d = 1.38, Figure 2A; Experiment 2: match: M = 1439.10 ms, SD =

290.96ms;mismatch:M= 1761.00ms, SD= 321.00ms; t(33) =�12.19, p< 0.001, 95%CI [�389,�255], d= 2.09, Figure 2C). Similarly, expected

faces were classified faster than face morphs containing the expected as well as an unexpected facial feature (match vs. partial: Experiment 1:

partial: M = 751.16 ms, SD = 103.96 ms; t(33) = �11.84, p < 0.001, 95% CI [�98.40, �63.80], d = 2.03; Experiment 2: partial: M = 2207.50 ms,

SD = 398.45 ms; t(33) =�15.43, p < 0.001, 95% CI [�894,�643], d = 2.65). Lastly, unexpected faces that completely mismatched expectations

were classified faster than face morphs that contained information of two identities (mismatch vs. partial: Experiment 1: t(33) = �4.72,

p < 0.001, 95% CI [�48.00, �14.60], d = 0.81, Figure 2A; Experiment 2: t(33) = �10.76, p < 0.001, 95% CI [�551, �342], d = 1.85, Figure 3A).

Prior expectations led to an assimilation effect in both experiments; i.e., face morphs were more often classified as the expected identity

(Experiment 1: t(33) = 4.12, p < 0.001, 95% CI [54.02, 61.85], d = 0.71, Figure 2B; Experiment 2: t(33) = 6.75, p < 0.001, 95% CI [58.11, 65.10], d =

1.16, Figure 2D).

In addition, participants performed well in identifying the clear faces in both experiments. The presented face was correctly identified in

the match (Experiment 1: M = 86.43%, SD = 9.84%, Z = 5.08, p < 0.001, Wilcoxon’s r = 0.87; Experiment 2: M = 98.07%, SD = 1.52%, Z =

5.11, p < 0.001, Wilcoxon’s r = 0.88) as well as in the mismatch condition (Experiment 1: M = 83.86%, SD = 11.18%, Z = 5.04, p < 0.001,

Wilcoxon’s r = 0.87; Experiment 2: M = 87.93%, SD = 10.65%, Z = 5.08, p < 0.001, Wilcoxon’s r = 0.87). In Experiment 1, the accuracies of

both conditions did not differ significantly from each other (Experiment 1: Z = 1.41, p = 0.16, Wilcoxon’s r = 0.24), while, in Experiment 2,

the accuracies in the match condition were higher compared to the accuracies in the mismatch condition (Z = 5.01, p < 0.001, Wilcoxon’s

r = 0.86).

Predictive saccades toward expected facial feature

Experiment 1 investigated whether participants use expectations to perform anticipatory eye movements. Indeed, expectations led to pre-

dictive saccades during the inter-stimulus interval (ISI) toward face locations associated with the expected distinct facial feature. A two-way

ANOVA revealed the main effect of ‘‘expectation’’ (F(1,33) = 157.86, p < 0.001, hp
2 = 0.83), as well as a significant interaction (F(1,33) =

14.27, p < 0.001, hp
2 = 0.30). Specifically, participants performed more saccades to a region of interest (ROI) if the corresponding facial

feature was expected (main effect ‘‘expectation’’: expected: M = 51.70%, SD = 18.20%; unexpected: M = 7.22%, SD = 4.17%,

Figures 3A and 3B). There was no main effect of ‘‘saccade’’ (F(1,33) = 0.01, p = 0.91, hp
2 = 0.0004). We report the corresponding post

hoc t tests (Bonferroni-corrected) for completeness. The first and second saccade landed more often in an ROI in trials in which its facial

feature had been expected compared to when it had not been expected, respectively (first/expected: M = 50.30%, SD = 16.80%; first/un-

expected: M = 8.71%, SD = 4.20%; t(33) = 11.98, p < 0.001, 95% CI [31.86, 51.35], d = 2.06; second/expected: M = 53.10%, SD = 19.70%;

second/unexpected: M = 5.74%, SD = 3.63%; t(33) = 12.59, p < 0.001, 95% CI [36.77, 57.87], d = 2.16). Furthermore, this expectation effect

was also evident when directly comparing the first and second saccade; i.e., the first saccade landed more often in an ROI if its facial

feature had been expected compared to the second saccade in trials in which it had not been expected (first/expected vs. second/unex-

pected: t(33) = 13.24, p < 0.001, 95% CI [35.12, 54.03], d = 2.12). This was also evident for the reverse effect; i.e., the second saccade landed

more often in an ROI in trials in which its facial feature had been expected compared to the first saccade in trials in which its facial feature

had not been expected (second/expected vs. first/unexpected: t(33) = 11.23, p < 0.001, 95% CI [33.27, 55.43], d = 1.93). Lastly, for expected

facial features, there was no difference in how often the first and second saccade landed in the respective ROI (first/expected vs. second/

expected: t(33) = �1.63, p = 0.68, 95% CI [�7.47, 1.99], d = �0.28), while second saccades landed more frequently in the unexpected ROIs

compared to first saccades (t(33) = 6.79, p < 0.001, 95% CI [1.74, 4.20], d = 1.16).
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Expectations guide fixations during face recognition

In Experiment 2, across all conditions (i.e., match, mismatch, and partial), expectations influenced the order in which the expected ROI was

fixated (c2(3, N = 34) = 27.47, p < 0.001, V = 0.03; Figure 4A). Post hoc tests revealed that this effect was mainly driven by the expected ROI

being fixated first or second more often than third or fourth (first vs. third: z = 4.83, p < 0.001, 95% CI [0.57, 0.67], h = 0.24; first

D Experiment 1: Predictive Saccades
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face
response window
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A B C D
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Figure 1. Experimental procedure

(A) Stimuli: Images of four identities were used. Each identity had one distinct facial feature (here shown with a red circle).

(B) Experimental conditions: in both experiments, a name prior was depicted randomly in one of the four corners. Afterward, a face was presented. The face could

be expected (match), unexpected (mismatch), or a morph containing the expected as well as an unexpected identity (partial; 50/50% morphs).

(C) Regions of interest (ROIs): We used four ROIs of identical size that covered the distinct features of the four identities.

(D) Exemplary trial of Experiment 1: after the presentation of a name prior, an outline of the ‘‘base face’’ was presented. Next, a face was shown for 100 ms. The

task for the participant was to indicate whether the face had been ‘‘expected’ or ‘‘unexpected’’ based on the preceding name. Participants received auditory

feedback on whether they answered correctly, incorrectly, or too slowly. The thick black frame indicates the time window for our eye-tracking analyses. ITI,

inter-trial interval (jittered between 1.25 and 1.75 s, mean 1.5 s).

(E) Exemplary trial of Experiment 2: in contrast to Experiment 1, the face was presented up to 4,500ms or until a button press. The first task for the participants was

to indicate whether the presented facewas ‘‘expected’’ or ‘‘unexpected’’ based on the preceding name. If participants answered ‘‘unexpected,’’ participants were

required to answer with one out of four buttons which identity they saw in the presented face. Auditory feedback (too slow) was provided.
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vs. fourth: z = 4.84, p < 0.001, 95% CI [0.59, 0.70], h = 0.31; second vs. third: z = 5.27, p < 0.001, 95% CI [0.62, 0.76], h = 0.39; second vs. fourth:

z = 5.25, p < 0.001, 95% CI [0.63, 0.79], h = 0.45). The number of times the expected ROI was fixated first or second differed (z = �5.06,

p < 0.001, 95% CI [0.39, 0.45], h = 0.16), whereas the number of times it was fixated third or fourth did not differ (z = 2.18, p = 0.17, 95% CI

[0.50, 0.57], h = 0.15).

Similarly, in facemorphs, the expected ROI was fixated earlier than the unexpected ROI (z= 4.98, p < 0.001, 95%CI [0.56, 0.64], h = 0.20) as

well as the other ROIs containing no distinct feature (z = 5.54, p < 0.001, 95% CI [0.39, 0.44], h = 0.17). The unexpected ROI was also fixated

earlier than the other ROIs (z = 3.37, p < 0.001, 95% CI [0.34, 0.37], h = 0.08, Figure 4B), indicating that, after initial guidance by expectations,

bottom-up deviations influenced subsequent fixations.

In mismatch trials, the expectation guidance of initial fixations was partially counterbalanced by bottom-up information: While the ex-

pected ROI was still fixated earlier than the other two ROIs (z = 4.37, p < 0.001, 95% CI [0.36, 0.41], h = 0.11), it was not fixated earlier than

the unexpected ROI (z = �1.71, p = 0.09, 95% CI [0.44, 0.50], h = 0.14). Rather, the unexpected ROI was also fixated earlier than the other

two ROIs (z = 5.33, p < 0.001, 95% CI [0.37, 0.41], h = 0.12), suggesting that, if the sensory information distinctly differed from the expectation,

when not a facemorph but a completely unexpected face was presented, top-down as well as bottom-up information guided eyemovements

to informative locations.

The second aim of Experiment 2 was to investigate whether expectations influence how often and how long information is sampled from

the expected and unexpected facial features. Therewere differences in the number of fixations and dwell time in line with a congruency effect;

i.e., expected facial features in face morphs were fixated more often and longer than unexpected and other features (number of fixations:

expected: M = 26.58%, SD = 3.91%; unexpected: M = 21.99%, SD = 2.78%; others: M = 15.34%, SD = 2.09%; expected vs. unexpected:

V = 582, p < 0.001, 95% CI [2.82, 5.74], Wilcoxon’s r = 0.83; expected vs. others: V = 595, p < 0.001, 95% CI [9.53, 12.54], Wilcoxon’s
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Figure 2. Behavioral results of experiments 1 and 2

(A and C) Facilitation effect: participants reacted faster to expected (match condition) compared to unexpected (mismatch condition) or morphed (partial

condition) faces. Dots represent single participants. The white dots represent means, gray rectangles 95% confidence intervals, and the lower and upper

whiskers Q1/3 �/+ 1.5*interquartile range. In (A) and (C), black lines indicate p < 0.001.

(B and D) Assimilation effect: participants responded more often to have perceived the expected identity in a face morph (partial condition). The dashed line

represents the chance level, i.e., perceiving the expected or unexpected identity equally often. Asterisks indicate p < 0.001. The upper and lower rows

depict the results for experiments 1 and 2, respectively.
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r = 0.87; dwell time: expected:M = 22.86%, SD = 3.73%; unexpected:M = 18.84%, SD = 2.23%; others:M = 12.04%, SD = 1.91%; expected vs.

unexpected:V= 559, p< 0.001, 95%CI [2.29, 5.38],Wilcoxon’s r= 0.77; expected vs. others: V= 595,p< 0.001, 95%CI [9.19, 12.20],Wilcoxon’s

r = 0.87).

Further exploratory analyses of fixation time courses during face presentation revealed an interaction effect of expectation and time on the

number of fixations and dwell times, with an initial preferred sampling of the expected feature in the first 1,000 ms of face presentation, which

reversed to an increased sampling of the unexpected feature in the later time window of 1,500–2,000 ms (Figure S1). Participants differentially

fixated the expected, unexpected, and other ROIs (main effect ‘‘ROI’’: number of fixations: F(1.92, 63.20) = 138.94, p < 0.001, hp
2 = 0.81; dwell

time: F(1.88, 62.13) = 132.56, p < 0.001, hp
2 = 0.80). In addition, there was a difference in the number of fixations toward any of the four ROIs

over time (main effect ‘‘bin’’: F(1.70, 55.98) = 9.80, p < 0.001, hp
2 = 0.23), although this was not evident in dwell times (F(1.85, 60.99) = 1.94, p =

0.16, hp
2 = 0.06). For both, i.e., number of fixations and dwell time, there was an interaction between ‘‘ROI’’ and ‘‘bin’’ (number of fixations:

F(3.49, 115.09) = 26.07, p < 0.001 = 0.18, hp
2 = 0.44; dwell time: F(3.53, 116.35) = 23.26, p < 0.001, hp

2 = 0.41), showing a preferred sampling of

the expected feature in the first two bins, which reversed into an increased sampling of the unexpected feature in the fourth bin (number of

fixations: expected vs. unexpected: first bin: t(33) = 7.94, p < 0.001, 95% CI [5.97, 15.02], d = 1.36; second bin: t(33) = 5.47, p < 0.001, 95% CI

[3.26, 14.20], d = 0.94; fourth bin: t(33) = �4.00, p = 0.01, 95% CI [�10.28, �0.80], d = �0.69; dwell time: expected vs. unexpected: first bin:

t(33) = 6.77, p < 0.001, 95% CI [3.89, 11.85], d = 1.16; second bin: t(33) = 4.11, p = 0.008, 95% CI [1.09, 12.03], d = 0.70; fourth bin: t(33) =�4.08,

p = 0.008, 95% CI [�9.04, �0.79], d = �0.70).

Moreover, an exploratory analysis of fixation durations showed that fixations on the expected and unexpectedROIs were longer compared

to the other ROIs, reflecting an increased sampling of informative features in face morphs (Figure S2). There were differences in the fixation

duration depending on expectation (main effect ‘‘ROI’’: F(2, 66) = 44.63, p < 0.001, h2 = 0.122), with longer fixations on features distinctive for

the two identities within a face morph compared to the other ROIs (expected: M = 239.58 ms, SD = 34.21 ms; unexpected: M = 244.88 ms,

SD = 37.78 ms; others:M = 215.68 ms, SD = 31.67 ms; expected vs. others: t(33) = 7.15, p < 0.001, 95% CI [15.50, 32.32], d = 1.23; unexpected

vs. others: t(33) = 9.09, p < 0.001, 95% CI [21.10, 37.30], d = 1.56). There was no difference in the fixation duration between the expected and

unexpected ROI (t(33) = �1.59, p = 0.36, 95% CI [�13.70, 3.09], d = �0.27).

Linking eye movements to behavior

Finally, we investigated the relationship between eye movements and participants’ responses. In Experiment 1, the accuracy in identifying a

clear face as expected or unexpected was higher if participants fixated on the expected facial feature at face onset, in thematch (M= 91.40%,

SD = 9.22% vs. M = 76.40%, SD = 12.40%; V = 584, p < 0.001, 95% CI [10.82, Inf], Wilcoxon’s r = 0.84) and in the mismatch condition (M =

87.40%, SD = 11.90% vs.M = 76.80%, SD = 14.90%; V = 529, p < 0.001, [5.90, Inf], Wilcoxon’s r = 0.68). Interestingly, in partial trials containing

face morphs, participants were more likely than chance level to indicate the expected face identity if they fixated on the expected ROI at face

onset (M= 89.73%, SD = 14.25%; V= 592, p < 0.001, [87.31, Inf], Wilcoxon’s r= 0.86), possibly linking the assimilation effect to the gathering of

expectation-compliant information at the expected face location.
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Figure 3. Eye-tracking results of Experiment 1

(A) Expectation-induced predictive saccades: participants performed saccades more often toward a region of interest (ROI) if the corresponding facial feature

had been expected compared to when it had not been expected (main effect ‘‘expectation’’). Each dot displays, for each participant, the average percentage of

fixations toward an ROI if its facial feature has been expected or not (averaged across the four ROIs). The white dots represent means, gray rectangles 95%

confidence intervals, and the lower and upper whiskers Q1/3 �/+ 1.5*interquartile range. The black line indicates p < 0.001.

(B) Visualization of predictive saccades: predictive saccades clustered depending on where the distinct facial feature was expected (forehead, chin, ears, and

nose). Single dots represent the endpoints of all participants’ first and second saccades during the presentation of the face outline in the inter-stimulus

interval (ISI) between the name prior and a presented face. Green, first saccade; yellow, second saccade.
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In Experiment 2, there was a last-sampling bias; i.e., participants perceived the identity in a face morph more often than chance if they

fixated its distinct ROI last (z = 7.09, p < 0.001, 95% CI [0.36, 0.45], h = 0.35).

DISCUSSION

In two preregistered eye-tracking studies, we investigated the influence of expectations, induced by name cues, on gazing behavior when

viewing faces. We created ambiguous sensory information by morphing two faces containing expected as well as unexpected facial features.

In the first experiment, participants performed predictive saccades toward expected facial features. In the second experiment, expectations

guided fixations toward expected facial features in face morphs, which were reversed toward unexpected features over time. In both exper-

iments, participants were faster in recognizing an expected presented face compared to unexpected or morphed ones. Furthermore, the

name prior shifted the identification of the ambiguous face morphs toward the expected identity. Overall, our results show that context

shapes information sampling during face recognition, particularly during the early examination of a face. Guiding the eyes toward locations

with expected facial featuresmay help to evaluate whether the provided sensory informationmatches the prediction.We thereby support the

established view that perception is an active process in which bottom-up sensory information and top-down expectations are combined.7–9

In our first experiment, as hypothesized, participants performed predictive saccades toward expected facial features, effectively trans-

lating context information into anticipatory eye movements. While previous literature on eye movements during face perception showed

that humans tend to initially fixate on a point slightly below the eyes23,24,36,37 and preferentially fixate on the eyes andmouth,27,28 our findings

show that higher-order contextual effects can revoke this automatism during anticipation. Expectations guide fixations toward facial features

that are more informative for face identification, as has been shown for familiar faces compared to unfamiliar ones.33 An important determi-

nant of whether top-down information can predictively guide eye movements could be task relevance.38,39 In our experiment, predictive sac-

cades toward expected features allowed the sampling of relevant information to perform the identification task, further highlighting the pos-

sibility of task-relevant expectations tomodify typical viewing behavior of faces. Our findings of expectation-dependent eyemovements have

wider implications for our understanding of face perception within the framework of ‘‘predictive perception’’ and active inference.10 Accord-

ing to this view of the human brain as a pro-active Bayesian hypothesis tester, gaze control provides a strategy to actively sample evidence at

locations where important and relevant information is anticipated.40,41Our findings support the theoretical assumption that action, here in the

form of saccadic eye movements, tests perceptual hypotheses.10 This active visual sampling may partly explain why the perception and early

neural processing of face identity and facial expression are context dependent.1 Translating this effect to face recognition in everyday situ-

ations, this confirmatory gaze strategy would lead to faster recognition of expected faces, while potentially overlooking additional deviating

information within a face, as indicated by the assimilation effect for face morphs in our study—unless deviating sensory information leads to a

rejection of the perceptual hypothesis as in the current mismatch trials.

In our second experiment, we found an order effect of expectation; i.e., expected facial features were fixated early in all trials, as well as

earlier than the unexpected facial feature in partial trials. This is in line with the results of our first experiment, showing an early guidance of eye

movements by expectations. The first fixations on a face are especially important to determine how the face is identified.23,42 Similarly, there
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Figure 4. Results of Experiment 2

(A) Early fixation of the expected region of interest (ROI): in all trials (i.e., match, mismatch, partial), participants fixated the expected ROI more often as first or

second out of all four ROIs. Error bars indicate 95% CIs. The dashed line represents the chance level (p = 0.25). Black lines indicate p < 0.001.

(B) Fixation order in partial trials: in face morphs, participants fixated the ROI containing the expected feature earlier than the ROI containing the feature of the

unexpected identity and the other two ROIs. They also fixated on the unexpected feature earlier than on the other two ROIs. Error bars indicate 95% CIs. The

dashed lines represent the chance level (p = 0.50 and p = 0.33, respectively). See also Figure S3.
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were reduced latencies to the first target fixation when an object’s semantic surroundings have been primed43 and when an object seman-

tically fitted to its surroundings (e.g., a pot compared to a printer in a kitchen14), supporting the idea of an active sampling of expected in-

formation.10However, there have also been several contradictory reports of an earlier fixation on semantically incongruent information.21,44–46

Even when controlling for low-level stimulus properties, scene-incongruent information was recognized faster andmore accurately, which has

been taken as evidence for the preferred processing of unexpected information.47 In partial trials, we observed earlier fixations of expected

compared to unexpected features as well as of unexpected compared to the other two features. Correspondingly inmismatch trials, partic-

ipants fixated on the unexpected facial feature earlier than on the other two ROIs, with no difference between the fixation order of the ex-

pected and the unexpected ROI. This implies that, if sensory information sufficiently differs from expectations, it can also attract eye move-

ments to unexpected locations. We speculate that the weighted interplay of both bottom-up deviations and top-down context-driven goals

may provide a useful strategy during visual sampling while less important deviations in the environment are investigated after processing of

the expected information.

In line with the expectation effect on fixation order, we found a congruency effect on fixation number and dwell time; i.e., participants

fixated on the expected facial feature more often and longer than on the unexpected facial feature in a face morph. An active sampling of

expected information is in line with previous literature reporting more fixations on semantically congruent scenes20 but contradicts other ex-

periments demonstrating longer dwell times on scene-incongruent information.21,22 Further exploratory analyses of fixation time courses in

500ms bins revealed that this preference for the expected facial feature was especially evident during the first 1,000ms, followedby increased

fixations of the unexpected features during 1,500–2,000 ms.

On the behavioral level, we found the typical facilitation effect with faster RTs for expected compared to unexpected clear or morphed

faces.4–7 Furthermore, there was an assimilation effect; i.e., participants indicated the expected identity more often in a face morph, as antic-

ipated for the short cue duration,7 rather than contrastive after-effects in adaptation designs (for review, see Mueller et al.48).

Participants showed higher accuracy for identifying a presented face if they fixated on the expected feature at face onset (Experiment 1)

and a last-sampling bias49; i.e., they chose an identity more often than chance if they fixated on its distinct ROI last (Experiment 2). These links

between fixations and behavioral responses suggest that the perceptual decision about the identity of a face morph was reached by an in-

formation sampling strategy, in which first the expected informative features were tested and sampling at other locations continued until

enough confirmatory information for the decision was obtained.10

Future research is needed to evaluate the ecological validity of expectations guiding viewing behavior in face identification. This could be

realized in face-to-face experimental settings and mobile tracking of eye movements.50,51 Furthermore, viewing patterns of both super-rec-

ognizers, i.e., individuals who are exceptionally skilled in face identification,52,53 as well as developmental and acquired prosopagnosia, i.e.,

individuals who have difficulty recognizing familiar faces,54,55 bear the potential to gain more insights into human face recognition. Superior

performance might be related to more efficient processing of informative facial features to identify faces, whereas patients with prosopag-

nosia may fixate on less informative facial regions.54,56,57 Our findings may also have broader implications for understanding atypical face-

viewing behavior, such as that observed in individuals with autism spectrum disorders.58–60Understanding the effect of different viewing stra-

tegies might provide the potential to train and improve face recognition skills by focusing on expected informative facial features and help to

understand why observers deploy idiosyncratic strategies.61,62

Overall, we were able to show that context-induced expectations guide predictive saccades toward and an early sampling of expected

features during face recognition. Hence, expectations can influence the way we look at expected faces and direct the extraction of visual in-

formation from them. In face morphs, after sampling of expected information, unexpected features captured eye movements, suggesting

that bottom-up information is additionally considered during the perception of visually ambiguous sensory information. Our results offer

compelling evidence that expectations shape sampling of visual information, contributing empirical evidence to the influential theoretical

framework of predictive processing.

Limitations of the study

Finally, some limitations of our experimental design should be acknowledged. Firstly, in both experiments, the name cue was task relevant as

participants had to indicate whether a face was expected or unexpected. It will be interesting to test whether our observed expectation-

dependent gaze patterns are also present in implicit task settings. Secondly, in Experiment 2, participants might have responded ‘‘expected’’

more frequently to shorten the duration of the experiment, possibly contributing to the behavioral assimilation effect. However, this should

not affect the initial guidance of fixations. Thirdly, themanipulated facial features differed in saliency and could have affected gazing behavior

in a purely bottom-up fashion during the second experiment. While this holds for the match trials, it does not explain the initial guidance to

expected features in partial trials in which faces contained salient information in two regions. Inmismatch trials, we observed preferred initial

fixation of the expected and unexpected ROIs compared to the two regions of no interest, hinting toward a combination of bottom-up- and

top-down-driven viewingbehavior. Fourthly, the order analysis showed that overall the expectedROIwasmore often fixated second than first.

This was due to first fixations landing predominantly in the center of the face, in line with a central viewing tendency24,63 (Figure S3). Neverthe-

less, expectations clearly guided the second fixation to the other three ROIs in contrast to later (i.e., third and fourth) fixations (Figure S3).

Lastly, sample sizes were preregistered and based on power analyses to reach a power of at least 0.80 to find effects of medium size at an

alpha error probability of 5%. Studies powered to detect small effect sizes may reveal whether the currently observed group differences

are robust. We did not perform analyses split up by gender because we investigated a general perceptual effect and our experimental sam-

ples were not powered for gender-based analyses.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Sample size

For Experiment 1, we report the results of 34 participants (17 females, self-reported gender) with a mean age of 26.5 years (SD = 4.38 years)

(see quantification and statistical analysis). For Experiment 2, 34 participants (18 females) with amean age of 25.09 years (SD= 4.91 years) were

included. Participants had no history of neurological or psychiatric disorders. All experimental procedures were approved by the Ethics Com-

mittee of the Chamber of Physicians in Hamburg and participants providedwritten informed consent.We did not perform analyses split up by

gender because we investigated a general perceptual effect and our experimental samples were not powered for gender-based analyses.

METHOD DETAILS

Apparatus and stimuli

Stimuli were presented on a Samsung SyncMaster 204B display (41.0 3 31.0 cm; 20.100) with a resolution of 1600 3 1200 pixels and a refresh

rate of 75 Hz. Eye movements were recorded from the participant’s right eye using an EyeLink 1000 system at a sampling rate of 1000 Hz. The

head location of the participant was fixed using a chin rest and foreheadbar. Saccades were defined as periods in which the velocity exceeded

30�/sec or the acceleration 8000�/sec2, respectively. The saccadic motion threshold was set to 0.1�. A 13-point-calibration was performed at

the start of each experimental block in both experiments. Validation was repeated until the result was at least ‘‘good’’ according to the guide-

lines of the manufacturer (i.e., worst point error <1.5�, average error <1.0�). In case of calibration issues (e.g., due to dense eyelashes), a vali-

dated 9- or 5-point-calibration was used.

We used grey-scale images of four male faces created with FaceMaker (http://facemaker.uvrg.org/)64 (Figure 1A). The four faces

differed in one distinct feature (forehead, chin, ears, or nose) from an average ‘base face’. For the ‘base face’, the parameters ‘eyebrows-

Color’, ‘hairColor’, ‘faceGender’, and ‘skinColor’ were set to 1. The parameters of interest for creating different identities were set to: ‘fore-

headHeight’ (0.7), ‘jawChin’ (0.575), ‘jawLength’ (0.55), ‘earSize’ (0.7), and ‘noseWidth’ (0.625). For the first identity with a high forehead,

‘foreheadHeight’ was set to 0.9 while keeping the other parameters constant. For the second identity with a wide chin, ‘jawChin’ was

set to 0.65 and ‘jawLength’ to 0.6. For the third identity with large ears, ‘earSize’ was set to 0.9. For the fourth identity with a large

nose, ‘noseWidth’ was set to 0.75. Six pairwise face morphs (50/50%) between all faces were created by adjusting the parameters of in-

terest to the mean values between the base face and the two respective identities.The size of the images was 1100 3 1100 pixels, with the

face covering approximately 1064 3 736 pixels of the screen. Distance from the eyes to the screen was �560 mm, leading to a visual angle

of 27.44 3 19.17� for the face stimuli.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Experimental data (Experiment 1) own https://doi.org/10.17605/OSF.IO/7E38V

Stimuli (Experiment 1) own https://doi.org/10.17605/OSF.IO/7E38V

Material for experiments (Experiment 1) own https://doi.org/10.17605/OSF.IO/7E38V

Code for analyses (Experiment 1) own https://doi.org/10.17605/OSF.IO/7E38V

Code for experiments (Experiment 1) own https://doi.org/10.17605/OSF.IO/7E38V

Experimental data (Experiment 2) own https://doi.org/10.17605/OSF.IO/TBDH6

Stimuli (Experiment 2) own https://doi.org/10.17605/OSF.IO/TBDH6

Material for experiments (Experiment 2) own https://doi.org/10.17605/OSF.IO/TBDH6

Code for analyses (Experiment 2) own https://doi.org/10.17605/OSF.IO/TBDH6

Code for experiments (Experiment 2) own https://doi.org/10.17605/OSF.IO/TBDH6

Software and algorithms

R (v4.2.0) R Core Team https://www.r-project.org

RStudio (v2022.02.2) RStudio Team https://posit.co

MATLAB (vR2020b) Mathworks https://de.mathworks.com

faceMaker Schwind et al.63 http://facemaker.uvrg.org/

Audacity (v3.0.0) Audacity Team http://audacity.sourceforge.net/
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For auditory feedback, we used three different tones to indicate ‘correct’, ‘incorrect’, or ‘too slow’ responses. All tones were generated

with Audacity 3.0.0 (http://audacity.sourceforge.net/) with a duration of 200 ms and an amplitude of 0.7. The ‘correct’ tone was a sinus

wave (880 Hz), and the ‘incorrect’ and ‘too slow’ tones were square waves (no aliasing) with 440 Hz and 220 Hz, respectively. The loudness

of the tones was normalised.

Training sessions

In the training sessions of both experiments, no eye-tracking data were collected. The head location of the participant was fixed using a chin

rest and forehead bar to ensure the same distance to the monitor and visual input as in the main experiment.

The first training was identical for both experiments (�15min). Participants learned to associate the four distinct faces with their respective

names (Ari, Bob, Cid, Dan). The training was divided into three blocks. In each trial of the first block (32 trials), a face was shown for 4500 ms.

The task was to identify the face by pressing one out of four buttons with the right hand (index, middle, ring, and pinky finger). Afterward,

feedback was provided by presenting the face with a red circle around its distinct feature, a tone indicating whether the response was correct,

incorrect, or too slow, as well as written text at the bottom of the screen (‘correct’, ‘incorrect’, or ‘too slow’, and the correct name) for 3000 ms.

Each face was shown eight times. In the second block (48 trials), the face presentation duration was shortened to 3500ms, and visual as well as

auditory feedbackwas provided for 2000ms. Each facewas shown 12 times. In the third block (48 trials), a facewas presented for 3500ms.Only

auditory feedback was provided. The experimenter provided feedback about the accuracy score in the last block. If it was below 75%, the last

training block was repeated up to two times. If the threshold could still not be surpassed, the participant did not proceed to the next training

and the main experiment. In the second training, participants got accustomed to the task of the main experiment. For the training of Exper-

iment 1, 12 trials were shown (�1–2min). Each name prior was shown three times, once followed by the expected face (match), an unexpected

face (mismatch), and a face morph containing the expected identity (partial). For the training of Experiment 2, 24 trials were shown (�2 min).

Each prior name was shown six times, twice for each experimental condition (match, mismatch, partial). In between the experimental blocks

(three and four blocks in Experiment 1 and 2, respectively), a short repetition of the first training was performed (�2 min) to ensure that par-

ticipants still had a clear mental representation of the four distinct faces (16 trials, each face four times).

Procedure

In Experiment 1, participants first learned to associate the four faces with their respective names in training. In each trial of the main exper-

iment, a name prior (Ari, Bob, Cid, or Dan) was presented as a cue for the upcoming face in one of the four corners of the screen (750 ms)

(Figure 1D). Face-name associations were counterbalanced across participants. In the inter-stimulus interval (ISI), a face outline of the

‘base face’ (white line) was shown (1000 ms) so that participants could anticipate where the face would appear, followed by a brief presen-

tation of a face (100 ms) and a response window (1500 ms). The presented face was either one of the four learned identities or one of the

six pairwise morph combinations (e.g., 50/50% morph between Bob and Cid, Figure 1B). The task was to indicate with one of two buttons

whether the presented face was either ‘expected’ or ‘unexpected’ based on the prior name. The allocation of the response options to the

left and right keys was counterbalanced across participants. Auditory feedback indicated whether the response was correct, incorrect, or

too slow. For face morphs, any response was counted as correct. The experiment was divided into three blocks with 144 trials each

(�13 min per block). The ratio of trials per condition, i.e., match (face matched to the name), mismatch (face did not match to the name),

and partial (face morph containing the expected and an unexpected face identity), was identical in all blocks (48 trials per condition). The trial

order within each block was pseudo-randomized, ensuring that the same name cue was restricted to consecutively appear twice at maximum.

Each name prior appeared equally often in the upper-left, upper-right, bottom-left, and bottom-right corner. The total duration of the exper-

iment was approximately 90 min.

For Experiment 2, the face was presented longer than in Experiment 1 to allow for visual exploration. Participants started by learning the

four identities and their distinct features. In the main experiment, as in Experiment 1, a name was randomly presented in one of the four cor-

ners of the screen, followed by the presentation of a clear or morphed face (Figure 1E). The face images were either presented for 4500 ms or

until the button press. The first task in each trial was to indicate whether the presented face was ‘expected’ or ‘unexpected’ based on the

preceding name. If participants answered ‘unexpected’, a question mark prompted them to respond which identity was perceived in the

face. Auditory feedback for the first and second tasks was only provided for too-slow responses. Each trial lasted either maximally

7500 ms (in case of responding ‘expected’) or 9000 ms (in case of responding ‘unexpected’). The experiment was divided into four blocks

(�10 min). The ratio of trials per condition (match, mismatch, partial) was identical in all blocks (72 trials per block). In addition to the

pseudo-randomization and counterbalancing described for Experiment 1, the question mark was randomly presented in one of the four cor-

ners of the screen. The total duration of the experiment was approximately 90 min.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed using custom-written scripts in R/RStudio (https://www.r-project.org; https://posit.co) and MATLAB R2020b

(https://de.mathworks.com). In case data were not normally distributed (Shapiro-Wilk tests, p < 0.05, and visual inspection of Q-Q plots)

or outliers were present in the data (above or below Q1/3�/+1.5*IQR), we calculated non-parametric tests instead of the preregistered para-

metric tests, except for the ANOVAs due to their robustness to slight violations of the normality assumption and a lack of non-parametric

alternatives for two-factorial designs.
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Data exclusion and sample size estimation

For Experiment 1, we measured 42 participants. Eight participants were excluded from final data analyses: two participants did not suffi-

ciently learn the four identities and their features in the training (<75% accuracy) and six participants had less than 70% valid eye tracking

trials, leading to a final sample of 34 participants. For Experiment 2, we measured 35 participants, one participant was excluded due to

behavioral performance below chance level. Sample sizes for both experiments (N = 34, each) were preregistered and based on power

analyses using G*Power.65 For Experiment 1, the sample size was optimised to obtain 0.80 power to detect a medium effect size

(f = 0.25) at 0.05 alpha error probability for testing whether participants perform more predictive saccades to a region of interest (ROI)

if its facial feature has been expected compared to when it has not been expected, as the main effect ‘expectation’ in a 2 ✕ 2 repeated

measures ANOVA with the within-subject factors ‘expectation’ (expected, unexpected) and ‘saccade’ (first, second). For Experiment 2, we

aimed to optimise the power for our main research questions regarding the partial trials (facemorphs): we tested whether the dwell time on

the expected ROI was significantly different from the dwell time on (1) the ROI associated with the other identity contained in a facemorph,

and on (2) the other ROIs using paired t-tests (two-sided) with a power of 0.80 to detect a medium effect size (dz = 0.50) at 0.05 alpha error

probability.

Data exclusion criteria were preregistered. Firstly, single trials were excluded if participants did not fixate the name prior because aware-

ness of the prior is a prerequisite for the hypotheses about prediction-guided saccades and fixations we aimed to test. Secondly, trials with no

response were excluded from data analyses. Thirdly, single trials were excluded if the loss of eye-tracking data, e.g., due to blinks, in our time

windows ofmain interest exceeded a certain threshold. For Experiment 1 (‘predictive saccades’), trials were excluded if data loss during the ISI

(face outline for 750 ms) exceeded 30%. In Experiment 2 (‘information sampling’), trials were excluded if less than 50% valid fixation data were

available during face presentation. Face presentation duration was variable in each trial and was determined by a button press of the partic-

ipant or was 4500 ms at maximum.

Whole datasets (i.e., participants) were excluded in case of too many excluded trials (>30%).66,67 This was the case for six participants in

Experiment 1. Whole datasets were also excluded if the behavioral performance during the main experiment was below the chance level in

the match and mismatch conditions. In Experiment 1, chance level accuracy was at 50% (correctly responding ‘expected’ or ‘unexpected’).

One participant had an average accuracy score of 25% as well as > 30% invalid trials and was therefore excluded from final data analyses.

In Experiment 2, the chance level for mismatch was at 12.5%: participants needed to first correctly indicate that the presented face was ‘un-

expected’ and then correctly identify it was one out of four identities (0.5*0.25 = 0.125). For match, we considered a response correct if

participants either answered ‘expected’, or answered ‘unexpected’ but then correctly identified the face afterward. We chose the more con-

servative chance level of 0.5, also for the average match andmismatch scores. One participant in Experiment 2 had a mean accuracy score of

42.71% and was therefore excluded.

In addition to the preregistered exclusion criteria, a learning criterion during the training was important for the completion of the main

experiment, making sure that participants learned the four identities and their respective distinct facial features. Participants needed at least

75% accuracy in identifying the four faces in the training to proceed to themain experiment. In Experiment 1, two participants were not able to

surpass this cut-off despite two repetitions of the training phase (mean accuracies per participant: 22.92% and 65.97%) and did not participate

in the main experiment.

Behavioral analyses

In both experiments, participants were asked to indicate whether a presented face was ‘expected’ or ‘unexpected’ given the preceding name.

Firstly, a facilitation effect due to expectation, i.e., shorter reaction times (RT) for expected compared to unexpected clear andmorphed faces,

was tested with repeated-measures ANOVAs with the within-subject factor ‘condition’ (match, mismatch, partial). We report Greenhouse-

Geisser corrected results due to sphericity violation as well as the generalised h
2 as ameasure of effect size. Pairwise comparisons were based

on post-hoc tests (Bonferroni-corrected) with Cohen’s d as effect size estimate.

Secondly, we tested whether expectations shifted the perception of face morphs, either into the direction of the expected face (assimi-

lation effect) or the unexpected face part (contrastive effect). For each participant, we calculated a perceived face identity score indicating

which identity has been perceived in face morphs (partial condition) depending on the preceding name prior. For each face morph and

name combination (e.g.,ApriorABmorph), the number of expectation-noncompliant button responses was subtracted from the number of

expectation-compliant responses and divided by the number of possible combinations (N = 12). This index was converted to percentage

values (0–100%): A difference score of zero (no prior effect on morph identification) was converted to 50%, i.e., the participant equally often

identified face morphs as the expected or unexpected identity. Values above 50% were indicative of an assimilation effect and values below

50% of a contrastive effect. On the group level, we tested against chance level using a one-sample t-test (two-sided).Thirdly, for both exper-

iments, we calculated accuracy scores for thematch andmismatch conditions. On the one hand, we tested each condition’s accuracy scores

against chance level using one-sampleWilcoxon signed rank tests (one-sided): In Experiment 1, the chance level equaled a probability of 50%.

In Experiment 2, the chance level formismatch trials equaled a probability of 12.5% (first task: ‘unexpected’; second task: answering the cor-

rect ID out of four possibilities/ 0.5*0.25 = 0.125). Formatch trials, we considered trials as correct if participants either responded ‘expected’

or ‘unexpected’ and then correctly identified the person. We used the more conservative probability of 50% as chance level for the match

condition. On the other hand, we tested whether there was a difference in accuracy scores between the two conditions using pairedWilcoxon

signed rank tests (two-sided).
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Eye-tracking analyses

The aim of Experiment 1 was to investigate whether participants use context to perform predictive eye movements if limited sensory infor-

mation is available. We hypothesised to see predictive saccades during the ISI between name prior and face on the white face outline. We

investigated the target locations of the first two saccades68 and introduced a minimum latency criterion of 100 ms after face outline onset to

exclude non-intentional saccades. Our ROIs were four rectangular regions with the same area, covering the distinct features of the four iden-

tities (forehead, chin, ears, and nose; Figure 1C). We computed a 2 ✕ 2 repeated measures ANOVA with the within-subject factors ‘expec-

tation’ (expected, unexpected) and ‘saccade’ (first, second). We tested whether significantly more first or second saccades were performed

toward the ROI with the expected facial feature (hereafter: ‘expected ROI’) compared to how often the ROI was fixated in trials in which its

facial feature was not expected.We calculated relative frequencies to account for the different number of trials in which the facial feature of an

ROI (e.g., the nose) was expected vs. unexpected (1:3). Relative frequencies (%) of the different ROIs were averaged, yielding mean percent-

ages for each participant for the different combinations of ‘saccade’ and ‘expectation’. Post-hoc tests (Bonferroni-corrected) were performed.

The aim of Experiment 2 was to investigate whether context influences the order of fixations as well as the time spent looking at expected

or unexpected facial features. We used threemeasures to evaluate an expectation bias: (1) Order and ordinal number of fixations, (2) number

of fixations, and (3) dwell time.69–71 To evaluate an order effect (1), we conducted two analyses: firstly, in all trials (i.e.,match,mismatch, partial),

we tested whether participants fixated the expected ROI earliest out of all the four ROIs. We considered trials in which at least one of the ROIs

was fixated and assigned ordinal numbers of 1–4. In case of missing fixations, ROIs that were not fixated were randomly assigned to one of the

missing ordinal numbers in that trial.70 We evaluated whether the distribution of ordinal numbers differed from a uniform distribution using a

subject-level chi-square goodness of fit test (R-package {htestClust}72) and calculated Cramer’s V as an effect size. Post-hoc proportional tests

for clustered data were performed, Bonferroni-corrected for the number of tests (N = 6). As an estimate of effect size, we averaged the sub-

ject-level Cohen’s h. Secondly, in partial andmismatch trials, separately, we tested whether the expected ROI, the ROI with the unexpected

facial feature (hereafter: ‘unexpected ROI’), or the other two ROIs (hereafter: ‘other ROIs’) were fixated more often before the other by calcu-

lating tests of marginal proportion for clustered data against binomial distributions,72 tested against p = 0.5 and p = 0.33, respectively, to

account for the twice as large area of the other ROIs. We considered trials in which at least one of the respective ROIs had been fixated.

Next, we evaluated an expectation effect on the number and duration of fixations (2 and 3): We conducted pairedWilcoxon signed-rank tests

(two-tailed) to test whether the number of fixations and/or the dwell time on the expected ROI differed compared to the unexpected ROI and

the average across the other ROIs. The number of fixations and dwell times on each ROI were divided by the total number of fixations and face

presentation duration, respectively, to yield proportions.

Number of fixations and dwell time analysis by bin

We explored whether expectations influenced information sampling in face morphs in early time windows of the presented face (Figure S1).

Therefore, we analyzed the relative number of fixations and dwell time on the expected, unexpected, and other ROIs by splitting the face

presentation duration into time windows of 500 ms. As the presentation duration in each trial depended on the response given by partici-

pants, data availability for different time windows varied. We considered the first four time windows (i.e., 2000 ms) given that the fourth win-

dow was the latest window in which every participant had more than one trial for data analysis. We conducted 3 ✕ 4 repeated-measures

ANOVAs with the within-subject factors ‘ROI’ (expected, unexpected, others) and ‘bin’ (500 ms steps) on the number of fixations and dwell

times as the dependent variables. We report Greenhouse-Geisser corrected results as well as partial h2. Post-hoc tests were Bonferroni-cor-

rected and restricted to comparisons of interest, i.e., across conditions within each time window and within conditions across time windows.

Fixation durations

We explored fixation durations and conducted a one-way repeated-measures ANOVA with the within-subject factor ‘ROI’ (expected, unex-

pected, others) on average fixation durations as the dependent variable. We report h2 as a measure of effect size. Post-hoc tests were Bon-

ferroni-corrected.

Combined behavioral and eye-tracking analyses

Lastly, we investigated whether there was a link between eye movements and the responses given by the participants. In Experiment 1, we

tested whether accuracy for identifying faces as expected or unexpected (in match and mismatch trials) was higher in trials in which partic-

ipants fixated the expected ROI at face onset compared to when they did not fixate it in pairedWilcoxon signed-rank tests (one-sided). Corre-

spondingly, we investigated whether participants chose the expected identity in a facemorph if they fixated the expected vs. the unexpected

ROI at face onset using a Wilcoxon signed-rank test (one-sided).

In Experiment 2, we tested whether participantsmore often chose the identity in a facemorph if they fixated their distinct ROI last49 using a

proportional test for clustered data against chance level (p = 0.25).72

ADDITIONAL RESOURCES

The hypotheses, methods, and analysis plan were preregistered via the OSF (Experiment 1: https://osf.io/c2ydh; Experiment 2: https://osf.io/

vxyrg). For minor deviations from these preregistrations see the detailed description in Tables S1 and S2 (template by Willroth and

Atherton73).
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a
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 b
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c
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c
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c
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c
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c
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b
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p
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c
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is
 lim

ita
tio

n
 a

s
 to

o
 s

tric
t a

n
d

 

reform
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 c
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 m
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 b
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R
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ra
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f c
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., d

u
e

 to
 

d
e
n
s
e
 e

y
e
la

s
h
e
s
), w

e
 u

s
e
d
 a

 v
a
lid

a
te

d
 9

- 

o
r 5

-p
o
in

t-c
a
lib

ra
tio

n
. 

A
 c
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 d
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ra
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 p
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a
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w
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p
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h
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a
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c
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 p
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p
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; d
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Figure S1. Early viewing of face morphs in Experiment 2, related to STAR Methods. A) Relative 

number of fixations: Effects of expectation on early viewing behaviour were investigated by splitting 

the first 2000 ms of face presentation in partial trials into bins of 500 ms. There was an interaction 

between ‘ROI’ and ‘bin’, showing that after initial preferred sampling of the expected region of interest 
(ROI) in the first and second bin, participants preferentially fixated on the unexpected ROI in the fourth 

bin. Dots represent single participants, white dots means, grey rectangles 95% confidence intervals 

(CI), and the lower and upper whiskers Q1/3 -/+ 1.5*IQR. Post-hoc tests were Bonferroni-corrected for 

the comparisons of interest, i.e., across conditions within each time window and within conditions across 

time windows Lines indicate p < .05 (black/solid: across conditions, within bin; dark purple/dashed: 

within ‘expected’, across bins; rose/dotted: within ‘unexpected’, across bins. B) Relative dwell time: 

Similar to the relative number of fixations, dwell time analyses revealed an interaction between ‘ROI’ 
and ‘bin’. Light rose/dashed-dotted: within ‘others’, across bins.



 

 

 

Figure S2. Average fixation duration for face morphs in Experiment 2, related to STAR 

Methods. For each participant, average fixation durations (ms) for the expected, unexpected, and other 

two (‘others’) regions of interest (ROI) were calculated. Dots represent single participants, white dots 
means, grey rectangles 95% confidence intervals (CI), and the lower and upper whiskers Q1/3 -/+ 

1.5*IQR. Black lines indicate p < .05.  

  



 

 

 
 

Figure S3. Order of fixations on the four regions of interest (ROI), related to Figure 4A. Depicted 

are percentages of how often each ROI was fixated as the first, second, third, or fourth out of all ROIs 

(nose (A), forehead (B), chin (C), and ears (D)). Full and striped bars represent trials in which the ROI 

was expected or not expected, respectively. First fixations landed predominantly in the nose ROI, in 

line with a central viewing tendency. In the other three ROIs, expectations guided the second fixation 

towards an ROI. Error bars indicate 95% CIs. The dashed line represents the chance level (π = .25). 

Lines at the top indicate p < .05 (solid: expected vs. unexpected within each order number; dashed: 

within the condition ‘expected’; dotted: within the condition ‘unexpected’). The order analysis revealed 

that expectations guided eye movements towards the expected ROI so that it was fixated first or second 

more often than third or fourth (Figure 4A). In the following exploratory analysis, we further investigated 

whether fixation order differed depending on the ROI. In case of missing fixations within a trial, random 

ordinal numbers were assigned as described in the STAR Methods. Using subject-level chi-square 

goodness of fit tests, we evaluated whether the distribution of ordinal numbers differed from a uniform 

distribution within each ROI, for trials in which the ROI was either expected or unexpected. Cramer’s V 

was calculated as an effect size. Post-hoc proportional tests for clustered data were performed within 



 

 

each ROI, Bonferroni-corrected for the number of tests (expected: N = 6; unexpected: N = 6; expected 

vs. unexpected: N = 4). In case of missing values in both conditions of interest, post-hoc tests were 

performed with the remaining participants. As an estimate of effect size, we averaged the subject-level 

Cohen’s h. The order in which a ROI was fixated differed, both when its facial feature was expected 

(nose: χ²(3, N = 34) = 34.00, p < .001, V = 0.07; forehead: χ²(3, N = 34) = 23.37, p < .001, V = 0.06; 

chin: χ²(3, N = 34) = 33.21, p < .001, V = 0.07; ears:  χ²(3, N = 34) = 33.61, p < .001, V = 0.07), and 

when its feature was unexpected (nose: χ²(3, N = 34) = 33.97, p < .001, V = 0.04; forehead: χ²(3, N = 

34) = 33.09, p < .001, V = 0.04; chin: χ²(3, N = 34) = 33.98, p < .001, V = 0.04; ears:  χ²(3, N = 34) = 

33.93, p < .001, V = 0.04). First fixations landed predominantly in the nose ROI, especially if it was 

expected (z = 3.51, p = .002, 95% CI [0.25, 0.26], h = 1.03). After this initial fixation, participants fixated 

second on the expected ROIs (expected vs. unexpected: 2nd:  forehead: z = 6.42, p < .001, 95% CI 

[0.35, 0.44], h = 0.74; chin: z = 6.43, p < .001, 95% CI [0.34, 0.42], h = 0.77; ears: z = 8.67, p < .001, 

95% CI [0.43, 0.53], h = 0.57). In line with our number of fixations and dwell time analyses over time 

(Figure S3), post-hoc tests further revealed a reversal in the later fixations, showing that unexpected 

ROIs attracted more third or fourth fixations (expected vs. unexpected: 3rd: forehead: z = -2.95, p = .01, 

95% CI [0.14, 0.23], h = 1.23; chin: z = -3.33, p = .003, 95% CI [0.12, 0.22], h = 1.26; ears: z = -3.25, p 

= .005, 95% CI [0.15, 0.22], h = 1.21; 4th: forehead: z = -3.28, p = .004, 95% CI [0.11, 0.21], h = 1.30; 

chin: z = -3.41, p = .003, 95% CI [0.10, 0.21], h = 1.30; ears: z = -3.58, p = .001, 95% CI [0.08, 0.20], h 

= 1.34). 
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18.2 Study 2: Prediction error processing and sharpening of expected 

information across the face-processing hierarchy 

 

Garlichs, A., & Blank, H. (2024). Prediction error processing and sharpening of expected 

information across the face-processing hierarchy. Nature Communications, 15(1), 3407. 
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Prediction error processing and sharpening
of expected information across the face-
processing hierarchy

Annika Garlichs 1 & Helen Blank 1

The perception and neural processing of sensory information are strongly

influenced by prior expectations. The integration of prior and sensory infor-

mation can manifest through distinct underlying mechanisms: focusing on

unexpected input, denoted as prediction error (PE) processing, or amplifying

anticipated information via sharpened representation. In this study, we

employed computational modeling using deep neural networks combined

with representational similarity analyses of fMRI data to investigate these two

processes during face perception. Participants were cued to see face images,

some generated by morphing two faces, leading to ambiguity in face identity.

We show that expected faces were identified faster and perception of

ambiguous faces was shifted towards priors. Multivariate analyses uncovered

evidence for PE processing across and beyond the face-processing hierarchy

from the occipital face area (OFA), via the fusiform face area, to the anterior

temporal lobe, and suggest sharpened representations in the OFA. Our find-

ings support the proposition that the brain represents faces grounded in prior

expectations.

It is widely accepted that perception is a process of active inference in

which incoming sensory information is combinedwith priors thatwere

either learned or derived from the current context1–3. Expectations can

enhance our ability to recognise familiar stimuli more quickly and

accurately. For instance, recognising a colleague’s face in the office is

easier than spotting themat the beach. However, expectations can also

introduce a bias in our perceptionwhen facedwith ambiguous sensory

information. For instance, from a distance, we might mistakenly

categorise a distant individual as a friend due to their attire, even if

they are, in fact, a stranger. The neuralmechanismof howexpectations

influence representations of sensory information is still unclear. Here,

we combined multivariate functional magnetic resonance imaging

(fMRI) with neural network models to test whether face representa-

tions mainly rely on the processing of deviances from expectations

(i.e., Prediction Errors) or sharpening of expected information4–7.

Context effects on face perception have been studied extensively

showing assimilative8–16 as well as contrastive17–19 behavioural effects.

In the brain, an expectation suppression effect, i.e., reduced neural

activation for expected compared to unexpected face information, has

been reported across a variety of different designs and brainmeasures

(electroencephalography (EEG)20, magnetoencephalography (MEG)21,

and fMRI22–27). However, it is still unclear how prior and incoming

sensory information are combined. Different computational mechan-

isms could underlie reduced activation for expected faces: According

to the hierarchical framework of predictive coding, higher-level

‘representational units’ generate backward predictions concerning

anticipated sensory information, which are then compared with the

actual sensory input in lower-level ‘error units’ to compute the pre-

diction error (PE)2,5,6. These PEs may play a crucial role in updating

prior expectations about incoming sensory information, thereby

improving predictive accuracy2,7,28,29. Consequently, the phenomenon

of expectation suppression may be explained by a diminished PE for

expected faces relative to unexpected ones. Alternatively, this expec-

tation effect could also be attributed to a computational mechanism
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focusing on the sharpening of expected information4,7,30–33. Under the

Sharpening account, neurons encoding the expected features become

more active, whereas neurons encoding unexpected features are

suppressed. At the population level, this would result in a more

selective response for expected stimuli with lower overall amplitude.

Consequently, weaker univariate activity might reflect a “sharper”

neural population response for expected sensory events and sup-

pression of unexpected noise rather than a suppression of the

expected signals32–35. Since both computational processes lead to

decreased activation for expected stimuli compared to unexpected

ones and are indistinguishable at the univariate analysis level, our

study was designed to differentiate between them using multivariate

analyses4,30,36,37.

To do this, we investigated face representations in the well-

established face-processing hierarchy along the ventral stream of the

temporal lobe38–44. Previous studies have demonstrated that there is a

progression of higher-level feature analysis in the processing of facial

information, moving from lower to higher face-processing

regions9,42,45. Specifically, the occipital face area (OFA) has shown

sensitivity to low-level image properties such as the eyes, nose, and

mouth9,46,47. The fusiform face area (FFA) processes a combination of

low-level properties48,49, as well as higher-level face properties,

including traits, gender47, and identity9,50,51. Finally, the face-sensitive

anterior temporal lobe (aTL) specifically encodes identity

information9,51, which remains consistent across different images45,52,53.

The influence of face priors has been observed in the form of expec-

tation suppression effects in OFA24 and FFA23–26,54. Increased activity to

unexpected faces in the FFAhas been taken as evidence for PEs, i.e., the

difference between expected and presented faces23,26,55. In the maca-

que brain, which exhibits a face-processing hierarchy similar to

humans, signals recorded at the lowest level ML (comparable to the

human OFA) displayed identity-specific information derived from

higher levels. This finding was considered as evidence for predictions

transmitted from higher to lower levels, where incoming face infor-

mation is represented as deviating information56. However, others did

not observe any neural indication of repetition probability for faces

within face-responsive patches of the macaque IT57,58. In contrast,

recent studies have provided evidence for the sharpening of prior

information along the ventral processing stream. Our research

demonstrated that the strength of face prior representations can be

quantified through multivoxel fMRI patterns in the high-level face-

sensitive aTL39. In addition, we identified multivariate representations

of presented faces that increased with expectedness in the OFA, indi-

cating a potential sharpening of expected low-level facial features. This

finding is corroborated by a study that demonstrated the enhance-

ment of prior information across the ventral stream in sensory-

degraded Mooney face images, from early visual areas and extending

throughout the lateral occipital cortex and the fusiform gyrus31.

However, there is a lack of research that directly compares and tests

alternative explanations and computational mechanisms against each

other to determine how face images are represented based on prior

information.

In this study, we tested how the representation of identical face

images is changed by different prior expectations by investigating

multivariate fMRI response patterns from a paradigm involving

ambiguous face images that were created by morphing an expected

and an unexpected face image (Fig. 1a–c). In a preceding training,

participants learned to associate scene images with subsequently

presented face images (Fig. 1a). During the following fMRI session,

participants viewed the scene cues followed by expected, unexpected,

ormorphed ambiguous face images (Fig. 1b). Our design allowed us to

differentiate whether the neural representations for the same face

morph differed depending on the expectation and was better

explained by a computational model based on PE processing or based

on sharpened representations of expected face information (Fig. 1c).

Deep convolutional neural networks (DCNN) can be viewed as

advanced computational models for biological face recognition that

process information hierarchically, closely resembling the neural face-

recognition system found in humans and nonhuman primates59–62.

Combining computational modelling with neural network activations

based on the face-recognition DCNN VGG-Face60,63 (Fig. 2a) allowed us

to optimise our hypothesis models for the representational similarity
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scanner. b Trial: A scene was followed by a face image. The task was to identify the

face and, in case of a question mark, to indicate which face was anticipated based

on the scene. After the neutral scene, the taskwas to indicatewith the left hand ‘any’

face or, in case of a question mark, that ‘all’ four faces had been anticipated.

c Conditions and research question: There were four scenes predictive of the
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facemorphs depends onPredictionErrors (PE) or the Sharpeningof expected facial

features. The scene image shown is in the public domain and available at [https://

commons.wikimedia.org], but not part of the original stimulus set due to copy-

right; the exact stimulus set is available at [https://osf.io/765jx/]. The face images

were created using FaceGen Modeller Core 3.22.
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analysis (RSA)64,65 (Fig. 2b). We derived face activations from the final

two max pooling steps of this network, namely pool4 and pool5, to

construct our hypothesised representational dissimilarity matrices

(RDM). This choice was informed by a recent intracranial electro-

encephalography study associating these layers with our brain regions

of interest — specifically, pool4 was linked to lower-level inferior

occipital gyrus, while pool5 was associated with higher-level face

processing in the fusiform gyrus60. In addition, we tested two more

DCNNs (i.e., VGG-1666 and ResNet5067) to explore whether face repre-

sentations in the brain also correlate with face representations from

DCNNs that were not specifically trained on face images. All three

networks have previously been linked to brain activations in studies

using different methods, such as MEG59 and fMRI61, for a review see

ref. 62. Furthermore, to take into account that individualsmay differ in

their usage of prior information during ambiguous face identification,

we included individual prior weights by contrasting prior-confirming

with prior-discarding responses for a face morph in the RSA30,68,69. We

show that PE representations dominate along and beyond the face-

processing hierarchy, while there was also evidence for the co-

existence of sharpened expected face information in early face areas.

These PE and sharpened representations indicate a predictive

mechanism through which the brain integrates prior knowledge with

sensory input.

Results
Assimilation and facilitation in perception of expected faces
We recorded fMRI data from 43 participants while they viewed and

identified face images that were preceded by scene images. The

scene prior shifted the perception of ambiguous face morphs

towards the expected face identity (assimilation effect). Specifi-

cally, in partial trials, in which images of morphed faces contained

expected and unexpected face information, participants identified

the expected face identity more frequently than the unexpected

identity (Z = 5.65, p < 0.001, 95% CI [63.54, 69.01], Wilcoxon’s

r = 0.86; Fig. 3a).

In addition, reaction times (RT) showed a facilitation effect due to

expectancy (main effect of condition (match, partial, mismatch, neu-

tral): χ²(3) = 110.08, p < 0.001, Kendall’s W =0.85; Fig. 3b, Supplemen-

tary Results). RTs for expected faces were faster compared to

unexpected faces (match: M = 591.08ms, SD = 47.06ms; mismatch:

M = 727.56, SD = 47.82; p <0.001, LB/UB [−2.41, −0.98]) and ambiguous

faces (partial:M = 716.06, SD = 50.28; p < .001, [−2.30, −0.87]). The RTs
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Fig. 2 | The neural network architecture of VGG-Face and hypothesis repre-

sentational dissimilarity matrices (RDM). a Schematic architecture of the deep

convolutional neural network VGG-Face63: ReLU rectification linear unit.

b Hypothesis RDMs: The PE (top), Sharpening (middle), and pure Sensory Input

(bottom) models were used as hypothesis models in the RSA64,65. For visualisation

purposes, we included simplified RDMs (left panel) to demonstrate the theoretical

dissimilarities of the models without network activations and behavioural

weighting. For RDM creation, the activations of the neutral andmorph imageswere

extracted from the layers pool4 and pool5 of the network VGG-Face before cal-

culating their dissimilarities. Specifically, for prior activations in the PE and Shar-

pening model, we utilised neutral face images weighted by individual behaviour

based on how strongly each prior influenced the perception of the following

morph. For visualisation, the displayed PE and Sharpening RDMs were averaged

across individual (N = 43) RDMs.
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between unexpected and morphed faces did not differ (mismatch vs.

partial: p =0.98, [−0.60, 0.83]).

Furthermore, there was a facilitation effect for face morphs

depending on whether participants answered to have perceived the

expected or the unexpected face identity. Partial trials were split into

trials with prior-confirming responses (assimilation effect) and with

responses favouring the unexpected identity contained in a morph

(contrastive effect). RTs for trials with prior-confirming responses

were faster (M = 670.13ms, SD = 55.96ms) than for trials with con-

trastive responses (M = 783.83, SD = 48.67, Z = −5.71, p <0.001, 95% CI

[−128.58, −96.72], Wilcoxon’s r =0.87, Fig. 3c), but still slower com-

pared to responses in the match condition without face morphs

(Z = −5.64, p <0.001, [67.80, 93.07], Wilcoxon’s r =0.86).

Further control measures substantiated that participants effec-

tively acquired knowledge of the associations and attentively con-

sidered both scene priors and face images (see Supplementary

Results).

Expectations reduce evoked fMRI activations
To test which brain regions are overall differently activated by

expected and unexpected faces, we conducted a univariate whole-

brain analysis for unexpected vs. expected face images (contrast

‘mismatch >match’) that yielded a significant cluster along the ven-

tral face-processing hierarchy in the left inferior and middle tem-

poral gyrus (ITG/MTG, p(FWE) = 0.005; Fig. 4, Supplementary

Table 1). Within the face-sensitive regions that were localisedwith the

independent localiser (Fig. 4a), only the left posterior FFA (pFFA)

showed an increased response to unexpected face images

(p(FWEsvc(small-volume corrected)) = 0.042). Additionally, this analysis

revealed cluster activations in the bilateral anterior insula, superior

parietal lobule (SPL) including the supramarginal gyrus and pre-

cuneus, left thalamus, and right caudate (Fig. 4b, Supplementary

Table 1). Parts of this network are involved in surprise39,70 as well as

error processing71.

Next, we tested which brain regions were overall differently acti-

vated during the presentation of face morphs depending on whether

they were perceived as the expected or unexpected face. Therefore,

we split the partial trials into trials in which participants answered to

have perceived the expected and the unexpected part of the face

morph. A bilateral cluster along the ventral stream resembling

the ‘mismatch > match’ cluster was identified in the MTG (left:

p(FWE) = 0.004; right: p(FWE) = 0.031). In the ROIs along the ventral

face-processing hierarchy, the right pFFA as well as the right aTL

showed an increased response to morphed faces that were identified

as the unexpected face (p(FWEsvc) = 0.021 and p(FWEsvc) < 0.001,

respectively). Furthermore, the contrast ‘unexpected > expected’ yiel-

ded a similar activation network as the contrast ‘mismatch>match’,

bilaterally in the SPL, angular gyrus (AnG), superior frontal gyrus, and

right thalamus (all p(FWE) < 0.05 at the cluster level, Fig. 4b, Supple-

mentary Table 2). Additional activation was found in the left anterior

cingulate gyrus and bilaterally in the anterior orbital gyrus which are

typically involved in decision-making processes72,73.

Prediction error and sharpened representations of expected
face information in face-sensitive regions
We used RSA to investigate how the information of a face prior was

combined with the incoming face information64,65. Firstly, we com-

puted theoretical representational dissimilarity matrices (i.e.,

hypothesis RDMs) based on activations from the layers pool4 and

pool5 of the DCNN VGG-Face63 for three computational approaches of

how expected and presented face could be combined, i.e., PE, Shar-

pening, and a pure Sensory Input model without prior influence. The

computationalmodelswerebasedon the face-recognitionDCNNVGG-

Face because the similarity structure of face-image transformations

extracted from the layers pool4 and pool5 have been shown to cor-

relate with the neural similarity structure of single-cell recordings in

OFA and FFA, respectively60. Next, we compared the resulting

hypothesis RDMs with the dissimilarity structure of our neural data

(i.e., neural RDM). To obtain neural RDMs, we compared the multi-

voxel representations of morphed faces measured in partial trials with

the ‘pure’ face representations measured in the neutral trials.

By testing the correlation of hypothesis and neural RDMs, we

found evidence for PE processing at each stage of the face-processing

hierarchy (OFA: M =0.06, SEMws(within-subject) = 0.01, p =0.003; pFFA:

M =0.04, SEMws = 0.01, p = 0.0044), indicated in aTL by higher corre-

lations with the PE model compared to the Sharpening (PE: M = 0.03,

SEMws = 0.01; Sharpening: M = −0.02, SEMws = 0.02, p =0.046) and the

Sensory Input model (M = −0.01, SEMws =0.01, p =0.0154; Fig. 4a, d–f,

Supplementary Tables 3 and 4). Additionally, there was evidence for

sharpened face representations in the OFA (M = 0.03, SEMws =0.01,

p =0.0232). Furthermore, we investigated whether the reduced acti-

vation for expected faces observed in the univariate contrast
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Fig. 3 | Behavioural results of the fMRI experiment. a Assimilation effect: Parti-

cipants (N = 43) identified the expected face identity inmorphed images (two-sided

Wilcoxon signed rank test: Z = 5.65, p <0.001, 95% CI [63.54, 69.01], Wilcoxon’s

r =0.86). Dots represent single participants, the white dot the median, the grey

rectangle the interquartile range (Q1, Q3), and the lower and upper whiskers

Q1 − 1.5*IQR andQ3 + 1.5 * IQR, respectively. From (a) to (c), asterisks and black lines

indicate p <0.001. b Facilitation effect: Responses were faster for expected com-

pared to (partially) unexpected faces (N = 43; Friedman: χ²(3) = 110.08, p <0.001,

Kendall’s W =0.85; post-hoc tests (Tukey-corrected): match vs. mismatch:

p <0.001, LB/UB [−2.41, −0.98]; match vs. partial: p <0.001, [−2.30, −0.87]; mis-

match vs. partial: p =0.98, [−0.60, 0.83]). c Reaction time analysis for facemorphs:

Partial trials were split into trials in which the expected face or the unexpected face

had been identified in amorph (N = 43; two-sided pairedWilcoxon signed rank test:

expected vs. unexpected: Z = −5.71, p <0.001, 95% CI [−128.58, −96.72], Wilcoxon’s

r =0.87). Source data are provided as a Source Data file.
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‘mismatch>match’ might be due to a reduced PE or Sharpening pro-

cessing and found more evidence for PE processing in the ITG/MTG

cluster compared to sharpened representations (PE: M = 0.04,

SEMws = 0.02; Sharpening: M = −0.01, SEMws =0.01, p = 0.0366) and

pure sensory input processing (M = 0.0005, SEMws =0.01, p =0.0366;

Fig. 4b, c, Supplementary Tables 3 and 4).

Secondly, we tested the correlations of the object-trained DCNNs

with theneural dissimilarity structure. VGG-16 revealed evidence for PE
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Fig. 4 |Multivariate representations of expected faces in face-sensitive regions.

a Regions of interest (ROI): The face-sensitive ROIs along the ventral face-

processing hierarchy, i.e., the occipital face area (OFA), posterior fusiform face area

(pFFA), and anterior temporal lobe (aTL), were based on the independent func-

tional localiser ‘faces > scenes’ (see Methods). b Reduced univariate activation for

expected faces: The contrasts ‘mismatch>match’ and ‘unexpected > expected’

revealed enhanced activation in the inferior/middle temporal gyrus (ITG/MTG);

shown at p(unc.) < 0.001, overlaid on the average structural T1 image in Montreal

Neurological Institute (MNI) template space. c–f Representational similarity ana-

lysis (RSA) for both hemispheres: Hypothesis RDMs were based on representations

extracted from two layers (pool4 and pool5) from two deep convolutional neural

networks (DCNN) (VGG-Face, blue; VGG-16, green). The correlations between the

hypothesis and neural RDMs were used to test the three hypothesis models: Pre-

diction Error (PE), Sharpening, and a pure Sensory Input model. Grey error bars

indicate the between-subject standard error of the mean (SEM), and black error

bars the within-subject SEM135 (N = 43 participants). For (c)–(j), asterisks indicate

significance for each hypothesis model against zero (one-sided Wilcoxon

signed rank tests), black Bonferroni-corrected for the number of tests per ROI

(N = 6 (3 models × 2 DCNNs)), grey for p(unc.) < 0.05; horizontal lines indicate the

significance of model comparisons (two-sided paired Wilcoxon signed rank tests)

withinDCNNSs (blue: VGG-Face, green: VGG-16), and black horizontal lines indicate

significance of model comparisons between VGG-16 and VGG-Face, FDR-

corrected131 for the model comparisons per ROI. Grey rectangles display the lower

and upper boundary of the noise ceiling for each ROI as an estimation of how well

any model could perform given the noise in the data65. g–j RSA split up by hemi-

sphere: Display of the corresponding RSA results for the three hypothesis models

(i.e., P (Prediction Error), S (Sharpening), and I (Sensory Input)) split by hemisphere

in the four ROIs (OFA, pFFA, aTL, and I/MTG) for the DCNNs VGG-Face (blue) and

VGG-16 (green). Dots represent means, error bars the within-subject SEM (N = 43

participants). Source data are provided as a Source Data file.
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processing along thewhole face-processing hierarchy in linewith VGG-

Face (OFA: M =0.06, SEMws =0.02, p =0.0025; pFFA: M =0.10,

SEMws = 0.02, p = 0.0002; aTL: M = 0.10, SEMws =0.02, p =0.0001;

MTG: M =0.08, SEMws = 0.02, p =0.0038), with significantly higher

correlations in pFFA and aTL thanVGG-Face (pFFA:Z = −2.40,p = .0315,

Wilcoxon’s r =0.37; aTL: Z = −2.58, p =0.0176, Wilcoxon’s r =0.39;

Fig. 4c–f, Supplementary Tables 5–7). ResNet50 showed consistent

evidence for PE in pFFA, aTL, and MTG (pFFA: M = 0.05, SEMws =0.02,

p =0.0155; aTL: M = 0.05, SEMws =0.02, p =0.0151; MTG: M =0.05,

SEMws = 0.02, p =0.0064), and a trend in OFA (M = 0.04, SEMws = 0.03,

p =0.10; Supplementary Fig. 1, Supplementary Tables 8 and 9). Con-

trary to VGG-Face, both networks did not reveal any correlations with

the hypothesis RDMs based on Sharpening in OFA (VGG-16:M = −0.01,

SEMws = 0.02, p = 0.70; ResNet50: M = −0.03, SEMws =0.02, p =0.95),

nor in any of the other ROIs.

Additionally, we conducted multivariate ROI analyses split up by

hemisphere to explore lateralized representations (Fig. 4g–j, Supple-

mentary Fig. 1, Supplementary Results). As in the bilateral analyses, we

identified PE processing along the whole face-processing hierarchy for

all three DCNNs (VGG-Face, VGG-16, ResNet50), evident by stronger

correlations with the PE model compared to the Sensory Input and/or

Sharpening model in all ROIs (Supplementary Results, Supplementary

Tables 10–13). There was no main effect of hemisphere in any of the

networks.

Prediction error and sharpened representations of expected
face information in the whole brain
Furthermore, we conducted searchlight analyses to investigate how

expected faces are represented in the whole brain beyond the pre-

defined face-sensitive regions along the ventral stream (Fig. 5). All

searchlight analyses were conducted with hypothesis models for PE

and Sharpening both based on pool4 or pool5 VGG-Face63 activations

to test for lower-level as well as higher-level face image representa-

tions.With the lower-level hypothesismodel for PE based onpool4, we

identified correlations between the neural and hypothesised similarity

structure in occipital and temporal regions, as well as in the right

fusiform gyrus including the parahippocampal gyrus (p(FWE) < 0.05;

Fig. 5a, Supplementary Table 14). Further large clusters were found in

parietal and frontal regions. With the hypothesis model based on

pool5, testing for higher-level PE representations, we found a similar

pattern with additional correlations in the right insula (Fig. 5a, Sup-

plementary Table 15). In contrast to a sensory input searchlight based

on the second convolutional layer of VGG-Face59, there was additional

evidence for PE representations based on pool4 in the right hippo-

campus (p(FWE) < 0.05; Fig. 5a, Supplementary Tables 16 and 17). To

further investigate the spatial overlap between the ROIs and thewhole-

brain searchlight approach, we conducted small-volume corrected

analyses by applying our ROI masks. The ROIs overlapped with the PE

searchlight maps in the OFA (pool4), as well as in the pFFA, aTL, and

MTG(pool5), respectively (p(FWEsvc) < 0.001 in lOFAand rOFA; lpFFA:

p(FWEsvc) = 0.001; rpFFA: p(FWEsvc) = 0.015; laTL: p(FWEsvc) = 0.015;

raTL: p(FWEsvc) = 0.035; lMTG: p(FWEsvc) = 0.001; rMTG:

p(FWEsvc) = 0.009).

The searchlight analysis testing for Sharpening based on pool4

revealed further evidence for enhanced representations of expected

faces in the frontal lobe and postcentral gyrus (Fig. 5c, Supplementary

Table 18). In contrast to a sensory input searchlight, therewas evidence

for sharpened representations in the right hippocampus (p(FWE) =

0.017, [34 −6 −22], k = 64; Fig. 5c), which was located more anterior

than the hippocampal PE representations. There were no significant
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neural and hypothesised dissimilarity structures based on pool4 and pool5 layers

from VGG-Face are displayed against zero and as difference maps against a sen-

sory input searchlight without prior influence based on the second convolutional

layer59, respectively.a Searchlight analyses results for PE:Clusterswere identified in

angular gyrus (AnG), inferior occipital gyrus (IOG), inferior frontal gyrus (IFG),

middle frontal gyrus (MFG), temporal pole (TP), middle temporal gyrus (MTG),
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anterior insula (aIns), posterior insula (pIns), and hippocampus (HC).bComparison

of the ‘PE > Sharpening’ searchlight results: Stronger correlations for PE than

Sharpening were evident in the right AnG, bilateral SMG, PrG, and MTG.

c Searchlight analysis results for Sharpening: Clusters were identified in the frontal

pole (FP) and HC. All maps in (a)–(c) are displayed at p(FWE) < 0.05 (peak-cor-

rected), except for Sharpening pool4 in (c), displayed at p(FWE) <0.05 (cluster-

corrected), with a cluster-inducing threshold of p(unc.) < 0.001. Maps are overlaid

on the average structural T1 image in the Montreal Neurological Institute (MNI)

template space. Source data are provided as a Source Data file.
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correlations between the neural RDMs and the Sharpening hypothesis

RDMs based on pool5 activations. Additionally, the correlation maps

for Sharpening revealed overall concordance with our ROI analysis

results (lOFA: p(FWEsvc) = 0.039 and trend in rOFA: p(FWEsvc) =

0.058, and p(FWEsvc) > 0.1 for all other ROIs (pFFA, aTL, MTG), based

on pool4 for OFA and pool5 for all other ROIs). While the ROI and

searchlight results overlapped, the strongest effects in thewhole-brain

searchlight analyses were observed in the angular gyrus, insula, and

precentral gyrus for PE, and in the frontal pole for Sharpening (similar

to refs. 74–76).

Next, we compared the searchlight results based on PE and

Sharpening. There were higher correlations between the neural RDMs

and the hypothesis PEmodel than the Sharpeningmodel (pool4) in the

right AnG (p(FWE) = 0.01, [44 −46 22], k = 205), MFG (p(FWE) = 0.015,

[28 30 28], k = 142), and putamen (p(FWE) = 0.048, [30 −16 2], k = 2).

The difference correlation map based on pool5 revealed additional

evidence for PE representations in theMTG aswell as in frontal regions

and bilateral SMG (Fig. 5b, Supplementary Table 19). There were no

significant differences in correlations for the reverse contrasts ‘Shar-

pening > PE’ (pool4, pool5).

For comparison to the face-trained DCNN VGG-Face, we addi-

tionally investigated the searchlight results of the object-trained net-

works VGG-16 and ResNet50. Overall, searchlight analyses based on

these networks showed a comparable distributed representation of

PEs across the whole brain, mainly in parietal and frontal regions

(Supplementary Figs. 2, 3, Supplementary Tables 20–28). None of

these two networks revealed significant clusters for Sharpening.

Discussion
In this fMRI study, we provide evidence that prior context shapes the

neural representation of presented faces. By means of our paradigm,

in which participants learned to associate images of scenes with

images of four face identities, we controlled for stimulus-related

differences by presenting face morphs between two identities. On

the behavioural level, we observed a facilitation effect, i.e., expected

faces were identified faster compared to unexpected faces, and an

assimilation effect, i.e., facemorphs weremore often classified as the

expected identity. With univariate fMRI, we found reduced activation

for expected compared to unexpected faces in the posterior FFA as

well as in a more lateral cluster in the ITG/MTG. Crucially, multi-

variate fMRI RSA in combination with DCNNs revealed PE repre-

sentations of presented faces along the whole face-processing

hierarchy fromOFA, pFFA, to the face-sensitive aTL, as well as in ITG/

MTG.We found additional indications for sharpened representations

at an earlier stage of the hierarchy in the OFA. Our results provide

insights into the computational mechanisms underlying context-

dependent stimulus representations along the face-processing

hierarchy.

In our fMRI study, expectations for the upcoming faces were

induced by images of indoor scenes that participants learned to

associate. Faster identification of expected faces replicated and

extended previous research on face perception that showed a facil-

itation effect for other context cues, such as names8,13,16,77,78, identity

cues14, voice9, or face primes10–12,15,79. When presented face information

matches with prior expectations, judgements or identification is

accelerated independent of the specific cue modality.

In addition, participants showed an assimilation effect and iden-

tified the presented ambiguous face morph more often as the expec-

ted than the unexpected face. This finding is in linewith the facilitation

of expected unmorphed face images and consistent with previous

studies showing priming effects with non-face cues in the context of

priming and associative learning8,13,14,16,77,78, whereas contrastive

perception80 is typically observed in adaptation experiments that use

long exposure to faces17–19,81,82 (for review see refs. 83,84). Hence, the

observed assimilation effect in our study is based on the combination

of a short prior duration, a prior cue that is qualitatively different from

face images, and a short target duration85.

Through univariate fMRI, we observed reduced activation for

expected compared to unexpected faces in a network involving par-

ietal regions, midbrain regions, as well as bilateral anterior insula (for

the contrasts ‘mismatch >match’ and ‘unexpected > expected’,

respectively, see SupplementaryTables 1 and2). This network hasbeen

repeatedly shown to be involved in the processing of surprise and

error awareness39,70,71,86. In our study, in addition to surprise related to

the unexpected face, this activation is also likely related to attention

shifting andmotor inhibition87,88 as well as the internal verbalisation of

the names associated with the faces89. Response times for recognising

unexpected faces were notably longer than those for expected ones,

evident in both the comparisons involving clear faces in the ‘match vs.

mismatch’ and face morphs in the ‘unexpected vs. expected’ context.

These prolonged response times suggest that the processing involved

in identifying unexpected faces demands more time and effort. Con-

sequently, the observed differences in univariate fMRI activity for the

corresponding contrasts (as depicted in Fig. 4b) may be attributed to

variations in effort or task difficulty rather than discrepancies in PEs or

enhanced neural signals. Crucially, our multivariate analysis approach

remains unaffected by this potential confounding factor. This is

because we assessed expectation-dependent representations of faces

in the face identification task, where participants were required to

press one of four buttons with their right hand (corresponding to the

index, middle, ring, or pinky finger) to identify the faces, and com-

pared them with face representations from the neutral condition,

where participants simply pressed the thumb of their left hand after

viewing any face. This ensured that motor responses were controlled

and did not introduce confounding influences into the observed pat-

terns of similarity.

We specifically investigated the expectation-dependent univariate

effect along the ventral face-processing hierarchy (OFA, pFFA, aTL)

and observed reduced activation for expected faces in the pFFA,

replicating previous reports of expectation suppression in FFA23–26,

and in more lateral clusters in the ITG and MTG. We used multivariate

RSA to test whether these prior-dependent face activations along the

ventral face-processing hierarchy are computationally explained by PE

processing or sharpening of expected face information4,7,30–33. To do

this, we compared themultivariate similarity of facemorphs to neutral

face images with the corresponding hypothetical similarity derived

from PE and sharpened representations based on activations derived

fromDCNNs (Fig. 2a, Supplementary Fig. 4). We found evidence for PE

processing at every stage of the processinghierarchy (OFA, pFFA, aTL),

and in ITG/MTG (Fig. 4, Supplementary Fig. 1). The finding of PE

representations in pFFA may explain the univariate expectation sup-

pression effect in this area and rule out a predominant role of shar-

pened representations of the expected face. This extends previous

univariate studies showing evidence for PE processing in FFA that did,

however, not rule out Sharpening as an alternative model23,90,91.

Furthermore, the PE searchlight analyses revealed a distributed

network of occipital, parietal, temporal, and frontal brain regions

highly similar to the activation networks observed for the univariate

contrasts testing for increased signal for unexpected face information

which is involved in the processing of surprise39,70,71. PEs in the IFG69,92

and MFG are also in line with previous studies suggesting their invol-

vement in face recognition38,93 and the processing of facial features94,95.

PEs in the fusiform gyrus extending into the parahippocampal gyrus

may reflect the contextual association of linking the scene cues with

the associated faces and names96,97.

With the hypothesis model based on VGG-Face activations, we

found evidence for sharpened representations of expected face

information in OFA, an earlier stage of the face-processing hierarchy.

This is in line with our recent finding of enhanced face representations

for highly expected faces in OFA39, suggesting that scene priors
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sharpened the low-level facial features of associated faces in OFA, and

with a study showing sharpening of prior information in Mooney face

images along the whole ventral processing stream, already starting in

early visual areas31.

While in the ROI approach, we did not observe any evidence for

Sharpening based on pool5 in the higher face-processing regions

(pFFA, aTL), the searchlight analysis based on pool4 revealed further

evidence for enhanced face representations in frontal areas, extending

across the frontal pole, AC, and superior frontal gyrus. The sharpened

representations in these frontal areas are in agreement with previous

work showing top-down predictive face information in this region74,

but this searchlight cluster was not significantly stronger than a purely

input-driven face representation. In contrast to expectation-

independent sensory input, there were stronger sharpened face

representations in the right hippocampus. The involvement of the

hippocampus in expectation-dependent representations for both PEs

as well as for prior confirming inputs have also been repeatedly

observed during association learning98 and application of these pre-

dictive associations99,100.

Overall, the observed searchlight patterns were more extensive

and stronger for PE than Sharpening and do not predominantly reflect

the ventral face system, but extend to frontal and parietal regions. This

network of regions has also previously been observed in studies

investigating familiar face recognition38,75,76. Potentially, these dorsal

regions may play a crucial role in representing familiar faces. As par-

ticipants in our study acquired the association between face images

and semantically distinct scene images (e.g., a library or fitness court),

it is plausible that they attributed semantic meaning to these face

images beyond mere visual representations.

Interestingly, although overall participants more often identified

the presented face morph as the expected face, we observed more

evidence for PEs than sharpened representations of expected facial

features. This observation stands in contrast to the intuition that

sharpened representations likely occur when facial input aligns with

expectations, whereas PE becomes more prominent when facial input

deviates significantly from expectations. In our paradigm, participants

most likely noticed the deviation as indicated by slower RTs for

‘expected’ responses to face morphs than to clear faces in the match

condition. Future work may help to determine how universal the

dominance of PE over sharpened representations for partially expec-

ted faces is. For example, observations of PEs may be reduced in a

paradigm in which the presented ambiguous face deviates less from

the expected face.

Our initial computational models underlying the hypothesis

RDMs used for testing whether representations of facemorphs can be

explained by the reduction or enhancement of the expected infor-

mation were based on the DCNN VGG-Face63 since the convolutional

layers of this face-recognition network correspond to the hier-

archically organised regions of face processing in the human brain59,60

and also predicted face dissimilarity judgements101. We decided to use

pool5 to test face representations in the high-level aTL because these

layer activations correspond to the highest level of sensory face pro-

cessing in the VGG-Face network, in contrast to activations from the

highest connected layer (fc8) which activations rather reflect decision

about choosing one of the 2.622 identities that this network was

trained on. In addition,weused twoDCNNs, i.e., VGG-16 andResNet50,

thatwereoriginally trainedonobject recognition. Therefore, our study

contributes to the growing research investigating the correspondence

of neural network activations to neural activations in the human brain.

Additionally, as considering inter-individual differences in RSA ana-

lyses is crucial30,68,69, we used individually weighted hypothesis RDMs

by incorporating the behavioural responses. Specifically, by contrast-

ing prior-confirming with prior-discarding responses for a facemorph,

we were able to capture individual perceptual dominance of one

identity in a face morph that remained despite the individual face-

morph calibration on the first experimental day. By including these

individual prior weights, we took into account that individuals may

differ in their usage of prior information.

Our decision to leverage DCNNs as sophisticated hierarchical

computational models for studying expectation-dependent face

representations in the human brain was motivated by growing evi-

dence supporting their alignment with the neural face-recognition

systems observed in both humans and nonhuman primates59–62,102.

Specifically, a recent intracranial electroencephalography study suc-

cessfully related the layers pool4 and pool5 of VGG-Face to single

neuronal recordings from OFA and FFA, respectively60. While also

other methodological approaches, such as MEG59 and fMRI61, suc-

cessfully related DCNN layer activations to brain activations, further

research is needed to test whether the relationship between DCNNs

and brain representations is readily applicable to more coarse neuro-

nal representations such as the voxel-level resolution obtained with

fMRI. In addition, there are limits in correspondence and fundamental

differences in how the brain and DCNNs represent visual

information103. Biological face recognition is far more complex than

image labelling and involves objectives beyond physical properties

and, likely, DCNNs do not capture several functional properties of face

recognition (for a review see ref. 62). However, applying RSA based on

DCNNs revealed stronger evidence than a model-free classification

approach (Supplementary Fig. 5, Supplementary Methods, Supple-

mentary Results).

By comparing VGG-Face to VGG-16, a DCNN with the identical

architecture thatwas however trained on object recognition instead of

face images66, as well as to ResNet50, a more complex convolutional

neural net with deeper architecture and skip connections67, we

observed commonalities as well as differences between these net-

works. Across all networks, the correlations between voxel- and

network-based face representations were low, similar to other studies

reporting significant but small correlations between face-selective

brain areas and face-identification models based on their representa-

tional similarity47,62. Notably, PE was more dominant than sharpened

representations in both ROI as well as searchlight analyses across all

three DCNNs. Sharpened face representations in OFA were only

observed based on VGG-Face and not based on the object-trained

networks. However, consistent with prior findings that DCNN models

trained on ImageNet demonstrate comparable or superior perfor-

mance compared to models specifically trained for faces in predicting

human neural responses to facial stimuli (see supplementary material

of ref. 60 and the work of ref. 61), our study revealed higher correla-

tions between voxel-based similarity and PE similarity patterns when

using VGG-16 compared to VGG-Face. Thus, our results suggest that

the features extracted from VGG-16 can effectively form a repre-

sentational space suitable for capturing the static facial images

employed in our study. In sum, the incorporation of different DCNNs

substantiates the PE hypothesis across all face-sensitive regions, with

the superior performance of object-trained models, but raises uncer-

tainties regarding Sharpening that was only observed based on VGG-

Face. This incongruity across DCNNs underscores the critical impor-

tance of a careful model selection and comparison, as the choice of

DCNN can significantly impact the interpretation of underlying neural

representations in the human brain and may lead to different conclu-

sions. Further research is needed to establish whether the observed

pattern, wherein a face-trained DCNN also exhibits alignment with

neural representations of expected facial features,while object-trained

DCNNs alignmore strongly with neural representations of unexpected

facial features in the human brain, can be extrapolated to other

datasets.

Our additional ROI analyses based on VGG-Face investigating

potential hemispheric differences in face representations suggested

higher PE-based face representations in the left compared to the right

pFFA and aTL (see Fig. 4h, i; although no main effect of hemisphere;
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see Supplementary Results). This left lateralisation is in concordance

with a previous meta-analysis and study showing left hemispheric aTL

activation for familiar individuals, while right aTL was mainly involved

in novel faces104. However, other studies pointed towards face pro-

cessing as a predominantly right hemispheric process105,106. Indications

for left lateralisation in our study may be related to the computational

modelling based on the VGG-Face network that previously captured

dissimilarity representations only in left hemispheric OFA and FFA60.

However, in the respective paper, due to the smaller number of right

hemispheric intracranial electrodes, analyses were solely based on left

hemispheric electrodes. The left lateralisation was not prominently

evident in thewhole-brain searchlight analyses based onVGG-Face and

VGG-16 (Fig. 5, Supplementary Fig. 2). Also, our additional ROI analysis

based on VGG-16 did not show this left hemispheric dominance

(Fig. 4g–j), whereas the overall weaker results based on ResNet50

indicated stronger effects in the left hemisphere (Supplementary

Fig. 1). Therefore, we do not draw strong conclusions about any

hemispheric differences in expectation-dependent face representa-

tions. Future research is needed to investigate whether other layers of

VGG-Face or other neural network architectures would have a higher

correspondence to right hemispheric face representations.

Our study exhibits typical characteristics of multivariate fMRI

analyses focused on individual stimuli, including a relatively low noise

ceiling and modest effect sizes. The maximum possible correlation

values that could be observed in our fMRI data from the face-sensitive

ROIs are all considerably smaller than 1 (Fig. 4, Supplementary Fig. 1),

underscoring inherent constraints in our experimental data. These

constraints may arise from factors such as limited spatial resolution,

substantial measurement noise, or a shortage of data. In addition,

these small effect sizes could be attributed to the noise added to the

presented face images, potentially impeding clarity. Although this was

intended to encourage the use of the prior, itmight have inadvertently

reduced neural responses. However, it is important to note that these

limitations do not introduce differential effects among our experi-

mental conditions. Consequently, measurement noise and other

extraneous variables cannot account for theobserved similarity effects

within the multivariate analyses. For RSA, similar noise ceilings and

correlation values between fMRI-response-based and hypoth-

esis RDMs have been observed previously4,39,47,102. Analogously, low

classification accuracies are also common in decoding task events

using multivariate classification of fMRI data52,69,75,76,107. Despite these

inherent limitations, distinctions in the observed correlations, parti-

cularly variations in the degree of similarity between expected and

unexpected facial stimuli, provide evidence for the presence of

expectation-dependent multivoxel representations.

Our findings from both the ROI and the searchlight approach

point to the co-existence of representations of the unexpected as well

as the expected information contained in images of morphed faces

across the face-processing hierarchy, suggesting that different com-

putational mechanisms may be simultaneously applied to combine

priors with sensory input. Within the predictive coding framework1,2,6,

this could be interpreted as evidence for the co-existence of error units

as well as representational units containing the updated face prior.

Previous research has also suggested the co-existence of both unit

types by identifying voxels that showed prediction or error processing

consistently over time22,108. Future research using a higher spatial

resolution (e.g., 7 T) will enable us to differentiate whether the co-

existence of PE and Sharpening in OFA is linked to different types of

cortical layers109, with superficial layers containing bottom-up and

deeper layers top-down information110,111.

In conclusion, we used multivariate fMRI analysis combined with

computational modelling based on the activations of DCNNs to

investigate prior-dependent face representations along the ventral

face-processing hierarchy. These analyses revealed PE processing

throughout the entire face-processing hierarchy, as well as sharpened

representations of expected faces based on a face-trained network at

an early stage of processing. The observed PE and sharpened repre-

sentations provide evidence for predictive processing, through which

the brain combines prior knowledge with sensory input, thereby

influencing our perception of faces.

Methods
This study was preregistered at the Open Science Framework (OSF)

([https://osf.io/sd54e]).

Participants
We preregistered to schedule 50 participants for this fMRI study.

Seven participants were excluded from final data analyses: one due to

technical issues, one due to anatomical anomalies, one due to exten-

sive head movements, three did not take part in all study appoint-

ments, and one was identified as an outlier in the behavioural

experiment analysis (see SupplementaryMethods). In the final sample,

43 right-handed participants (22 females, self-reported gender) with a

mean age of 24.37 years (SD = 3.61) and no current or past neurological

or psychiatric disorders were included. Compensation for participa-

tionwas 55€. All experimentalprocedureswere approvedby theEthics

Committee of the Chamber of Physicians in Hamburg and participants

provided written informed consent.

Stimuli
In this study, we used images of faces and scenes.

Specifically, we used images of four male faces that were created

with FaceGen (FaceGen Modeller Core 3.22, Singular Inversion). The

four face identities were created so that they differed in the facial

features that are important for face discrimination112: shape, colour,

and positioning of the eyes, eyebrows, nose, and mouth. Images were

normalised for their general face shape so that they only differed in

their central facial features. To ensure that the four faces were equally

distinct and well-distinguishable, the activations of layer pool4 of the

DCNN VGG-Face were used to evaluate their dissimilarity structure

(Supplementary Fig. 6)60. All face images were normalised by inde-

pendently equalising the mean luminance and standard deviation of

the RGB channels. Noise was added to the face images to decrease the

clarity of the sensory input and hence increase the usage of the prior

information. The noise was added by applying Fourier transformation

and adding a random phase structure to its original phase spectrum.

After combining it with the original amplitude spectrum, an inverse

Fourier transformation was performed. For each face image pre-

sentation (e.g., for each repetition of the image of Ari), a new random

phase structure was applied, i.e., all presented face images had a

unique noise pattern.

We used nine scene images to provide prior context. For the

training and the main experiment, five indoor scenes were chosen as

context primes for the four face images: four images were taken from

the SUN database113 and the fifth scene from the indoor scene

database114. For the functional localiser, four additional indoor scenes

were selected113. Scene images were converted to grey-scale and

luminance-matched using the SHINE toolbox’ histMatch-function115.

We used grey-scaled scene images to avoid any colour confounds on

the perception of the following face image. For further image specifi-

cations, please refer to the Supplementary Methods.

Experimental procedure
Participants came to the lab on two consecutive days. On the first

day, they completed the individual face-morph calibration to identify

each individual’s personal morphs that equalled their 50/50 per-

ceptual threshold so that both identities were equally likely to be

seen in a morph (Supplementary Fig. 7, Supplementary Methods).

Afterwards, participants took part in a training session in which they

learned to associate each face with a scene. For a complete
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experimental protocol of the training sessions, please refer to the

Supplementary Methods.

On the second day, participants completed the fMRI experiment

which was divided into four blocks. Each block was conceptually

identical to the last part of the association training session and con-

sisted of 107 experimental trials (16 match, 48 partial, 12 mismatch, 12

catch, 16 neutral, 3 neutral catch) and 36 null events. In match trials,

the presented facewas preceded by the associated scene. Inmismatch

trials, the presented face differed from the expected face. In partial

trials, face morphs of two identities were presented. These face

morphs always contained the expected face identity (thatmatched the

preceding scene) as well as an unexpected face identity. The task was

to indicate the face identity (Ari, Bob, Cid, Dan) by pressing one of four

buttons with the right hand (index,middle, ring, pinky finger). In catch

trials (question mark instead of face), participants were required to

indicate which face they expected based on the preceding scene. In

neutral trials (indicated by a fifth scene), therewas an equal probability

for each of the four face identities to occur. If a face appeared after the

neutral scene, participants had to press a button with their left thumb

for any face. In neutral catch trials (question mark instead of face),

participants had to press a button with their left index finger to indi-

cate that they had anticipated all faces with equal probabilities. An

exemplary trial canbe seen in Fig. 1b. Innull event trials, afixation cross

was presented for the duration of a whole trial (5300ms). The ratio of

trials per condition (match, partial, mismatch, catch, neutral, neutral

catch, null events) was identical in all four blocks and identical to the

last part of the training sessions. The order of the trials was pseudo-

randomised such that the same face or face morph was allowed to

consecutively appear four times at maximum. This randomisation

limitation was selected so that participants could not easily foresee

which face was likely (or not likely) to appear next. Only two null event

trials could appear consecutively after each other to avoid too long

periods of fixation crosses. After each block (~12min), short verbal

feedbackwas given to keep themotivational and attentional level high

for the whole duration of the experiment (~53min, more details in

Supplementary Methods).

Functional localiser
A functional localiser experiment was run to identify individual

ROIs along the ventral face-processing hierarchy, i.e., theOFA, the FFA,

and the higher-level face-sensitive region in the aTL40–42,44. The design

was similar to established localiser paradigms9,116,117. Alternating blocks

of face and scene images and neutral blocks with a fixation cross were

shown. In the face blocks, the images of the known four faces (Ari, Bob,

Cid, Dan) were presented. In the scene blocks, four unknown scenes

were displayed. New scenes were chosen because participants had

learned to associate each scene with one of the four faces. Therefore,

the presentation of these scene images could have automatically

triggered unwanted activation due to the recall of the associated faces.

In each block, 44 images each with a duration of 500ms were pre-

sented. There was no ISI between the images. Each block had a dura-

tion of 22 s. The task was to look at the fixation cross in the centre of

the screen, no buttons had to be pressed. The order of the images

within a blockwaspseudo-randomised such that the same image could

not appear twice after each other. Due to the missing ISI, multiple

consecutive presentations of the same image would have led to see-

mingly prolonged presentation durations. The starting block (faces or

scenes) was counterbalanced across participants.

Behavioural data analysis
Analyses were performed as preregistered and additional analyses are

described below. Since values of perceived face identity in face

morphs, RTs, as well as accuracies were not normally distributed

(Kolmogorov–Smirnov tests, all p <0.001), non-parametric tests were

used for the analyses instead of the preregistered parametric tests.

Our first variable of interest was the perceived face identity. In

partial trials, participants answered which person they mostly recog-

nised in a face morph. To investigate whether participants identified

facemorphs more often as the expected or the unexpected identity, a

difference scorewas calculated for each face pair to indicate how likely

the participant answered in favour of the prior. The mean of the dif-

ference scores of all scene andmorph combinations was calculated to

obtain an individual index for an assimilation and/or contrastive effect.

Values above 50% indicated that a participant respondedmore often in

favour of the expected face identity in a face morph (assimilation

effect). Values below 50% were indicative of a contrastive effect. We

tested whether the participants’ scores significantly differed from 50%

(no prior effect) using a two-sided Wilcoxon signed rank test and cal-

culating Wilcoxon’s r as a measure of effect size.

RTs were measured for the time point of a button press after face

onset. Additionally to the preregistered conditions mismatch, match,

and neutral, we included the partial condition because we were also

interested in how fast participants processed face morphs. We calcu-

lated a non-parametric Friedman test and Kendall’s W as effect size.

Post-hoc paired tests between the average ranks of the different con-

ditions were performed using Tukey’s honestly significant difference

(HSD) test for multiple comparisons. In an exploratory analysis, we

investigated whether the RTs to the morphed faces in partial trials

depended on the response given by the participants. Therefore, partial

trials were split into trials with prior-confirming responses (assimila-

tion effect) and trials with responses favouring the other identity

contained in a morph (contrastive effect) and tested with a two-sided

paired Wilcoxon signed rank test. Wilcoxon’s r was calculated as a

measure of effect size. Lastly, we tested whether RTs in trials with

prior-confirming responses differed from RTs in the match condition

using a two-sided paired Wilcoxon signed rank test, calculating Wil-

coxon’s r as a measurement of effect size.

fMRI data acquisition and preprocessing
All imaging data were acquired on a Siemens 3T scanner at the Uni-

versityMedical Center Hamburg-Eppendorf (Hamburg, Germany)with

a 64-channel head coil. Functional data were obtained using a multi-

band echo-planar imaging sequence (repetition time (TR) = 0.961 s,

echo time (TE) = 30ms, flip angle = 55°, field of view (FoV) = 224mm,

multi-band mode, number of bands: 3). Each volume of the experi-

mental data contained 45 slices (voxel size 2 × 2 × 2mm plus 0.5mm

gap) and were obtained in descending order.

The parameters for the functional data were chosen to maximise

the signal strength in the aTL. Due to its location near the sphenoidal

sinuses (i.e., near air/tissue and bone/tissue interfaces), susceptibility

artefacts can lead to a poor signal-to-noise ratio (SNR)118,119. We fol-

lowed the proposed guidelines119 to maximise our SNR in the aTL by

choosing a short TR (<1000ms), a voxel size of 2 × 2 × 2mm, and

covering additional ‘no-brain’ space below the temporal lobe with our

FoV (so that the aTL was not at the edge of the FoV).

An additional structural image (magnetisation prepared rapid

acquisition gradient echo (MPRAGE)) was acquired for functional

preprocessing and anatomical overlay (TR = 7.1ms, TE = 2.98ms, flip

angle = 9°, FoV = 256mm, 240 slices, voxel size 1 × 1 × 1mm, ascend-

ing order).

A fieldmap was acquired for field inhomogeneity corrections

(TR= 495ms, TE1 = 5.51ms, TE2 = 7.97ms, flip angle = 40°, FoV = 224

mm, 45 slices (voxel size 3 ×3 × 2mm plus 0.5mm gap)). The slices

were obtained in an interleaved order. The protocols with scanning

parameters are available here: [https://osf.io/765jx/].

Structural and functional data were analysed using SPM12 and

custom scripts inMATLAB. First, the functional images of all functional

runs were realigned to the mean functional image. We then applied

field mapping distortion correction to the functional volumes to cor-

rect for geometric distortions in EPI caused by magnetic field
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inhomogeneity (with the FieldMap toolbox). The individual structural

T1 image was co-registered to the mean, distortion-corrected func-

tional image. The functional images were spatially normalised to MNI

space. For the univariate analysis, the functional images were addi-

tionally smoothed with an 8-mm full-width at half maximum isotropic

Gaussian kernel.

Univariate fMRI analysis
Data from the four functional runs were analysed using the general

linear model (GLM) with a 128 s high pass filter. We applied SPM’s

alternative pre-whitening method to account for autocorrelation,

FAST, which has been suggested to perform better than SPM’s

default120. Raw motion parameters (three translations and three rota-

tions) were included as regressors of nuisance. This approach was also

used for the multivariate analyses (see below).

For the four runs of themain experiment, onsets of ten eventswere

modelled as separate regressors in the GLM, each convolved with the

canonical SPM haemodynamic response. The first regressor was for the

scenes thatwere presented at the start of each trial.We further specified

six face regressors for the different conditions: neutral, match, mis-

match, and partial. While neutral, match, and mismatch had one

regressor each, the partial face onsets were divided into three regres-

sors: in the first partial regressor, we included trials inwhich participants

answered to have perceived the expected face identity (expected), in

the second regressor we included trials in which they answered to have

perceived the unexpected face identity within themorph (unexpected),

and the third regressor consisted of onsets of partial trials in which

participant either answered to have perceived an identity which was not

within amorph or answered too slowly. We included three regressors of

no interest, one for catch trials, one for button responses, and one for

feedback. If a participant did not receive any feedback and/or never

incorrectly identified a partial trial as an identity not contained in a

morph or answered it too slowly, dummy onsets were defined. At the

end of each run, we presented a fixation cross for 10 s to capture the

haemodynamic response function of the last trial.

On the second level, we computed the ‘mismatch >match’ and the

‘unexpected > expected’ contrasts. For the whole-brain analyses, we

report cluster activations (p(FWE) <0.05, with cluster-inducing thresh-

old of p<0.001). For the small-volume corrected analyses of our ROIs

(OFA, pFFA, aTL), we report peak activations (p(FWEsvc <0.05)).

A functional localiser was run at the end of the experiment to

define ROIs along the face-processing hierarchy. The GLM included

two event types, each convolved with the canonical hemodynamic

response function. The event types were the onsets of the face and the

scene blocks. For the first-level analyses of the main experiment and

the functional localiser, individual whole-brain masks were used (see

Supplementary Methods). On the second level, we computed the

contrast ‘faces > scenes’ to obtain the ROIs (see below for further

details).

Regions of interest (ROI) extraction
We defined ROIs along the ventral face-processing stream (OFA, FFA,

and aTL). As previous studies on face perception and/or face identifi-

cation in humans and macaques revealed a contribution of right

hemispheric105,106,121,122 as well as bilateral51,56,123 brain areas, we defined

bilateral ROIs. We extracted the ROIs from SPM12 using MarsBaR124.

The functional localiser, using the contrast ‘faces > scenes’, yielded

bilateral activation clusters spanning from the inferior occipital gyrus

(IOG) to the fusiform gyrus (Supplementary Table 29). Since a clear

separation of these clusters into OFA and FFA was not possible, we

overlaid our activation clusters with the OFA and pFFA clusters from

an atlas map125. We obtained OFA ROIs in the right (k = 892, peak at

[54 −70 −4]) and left hemisphere (k = 483, peak at [−50 −76 −8]) as well

as pFFA ROIs in the right (k = 848, peak at [44 −46 −18]) and left

hemisphere (k = 477, peak at [−44 −52 −20]). Previous literature

suggested a differentiation into a posterior and anterior part of the

FFA41,126,127. When comparing our activation cluster with pFFA and aFFA

clusters125, we only found an overlay with the posterior part. The peak

activations of our pFFA clusters are also comparable to the area

FFA-2126.

We obtained face-sensitive ROIs in the aTL from the functional

localiser ‘faces > scenes’ in the right (k = 192, peak at [34 −8 −38]) and

left hemisphere (k = 153, peak at [−40 −20 −38]) at p(unc.) < 0.01, as the

clusters at p <0.001 were too small with k = 54 and k = 5, respectively.

These peak activations are close to previously reported face-selective

regions in the temporal pole39,43,126,128.

In addition to our main ROIs (OFA, pFFA, aTL), we extracted ROIs

along the ventral face-processing hierarchy from our univariate con-

trast ‘mismatch >match’ to investigate with our multivariate analyses

whether this expectation suppression effect might be due to PE pro-

cessing or sharpened representations. The contrast revealed a lateral

cluster in the left ITG and MTG (k = 312, peak at [−56 −42 −18]; at

p(FWE) < 0.05 (cluster-corrected), based on a cluster-inducing

threshold p(unc.) < 0.001; Supplementary Table 1) and in the right

MTG with a comparable size to the left hemisphere (k = 332, peak at

[58 −34 −16]; at p(unc.) < 0.01). These clusters identified based on the

contrast ‘mismatch > match’ are independent of the RSA which is

based on neutral and partial trials.

All bilateral ROIs (OFA, pFFA, aTL, and ITG/MTG) were trans-

formed from MNI space into individual native spaces using the inver-

sion matrices from SPM12’s normalise-function.

Face-trained deep neural network
The DCNN VGG-Face, available at [www.robots.ox.ac.uk/~vgg/

software/vgg_face/]63, was pre-trained to recognise 2.622 different

face identities using adatabase containing 2.6million face images. This

model achieved a state-of-the-art performance level while using less

data compared to other advanced models like DeepFace and FaceNet.

This network performs best compared to numerous other neural

networks in predicting humans’ face dissimilarity judgements101. The

network architecture of VGG-Face includes a total of 16 layers, con-

sisting of 13 convolutional layers and 3 fully connected layers. A rec-

tification linear unit follows each of these 16 layers. The 13

convolutional layers are organised into five blocks, with the first two

blocks containing two consecutive convolutional layers followed by

max pooling. The latter three blocks consist of three consecutive lay-

ers followed by max pooling. In DCNNs like VGG-Face, layers closer to

the input layer capture lower-level facial features such as edges, tex-

tures, and local facial details, while higher layers in the network learn

more complex and informative facial representations such as gender,

age, and identity information59. We extracted face activations from the

last two max pooling steps, i.e., pool4 and pool5, to design our

hypothesis RDMs (see more detail below). These layers can be

described as intermediate to higher layers in VGG-Face (see Fig. 2a for

hierarchical model architecture), with pool5 located directly before

the final three fully connected layers that lead to a classification of the

input image as one of the face identities it was trained on63. The

representational space of pool4 and pool5 activations is robust against

low-level manipulations such as luminance and colour and has been

previously related to our brain regions of interest, i.e., pool4 to lower-

level inferior occipital gyrus and pool5 to higher-level face processing

in fusiform gyrus60.

Object-trained deep neural networks
Previous literature has shown that even though DCNNs like VGG-Face

show correspondences to the single-cell and voxel-level representa-

tional space of face processing60,61, DCNNs trained on object recogni-

tion can perform similarly (SupplementaryMaterial of ref. 60) or even

outperform them in the context of face processing61. Therefore, in

addition toour preregistered approach to employVGG-Face,we tested
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two object-trained DCNNs for comparison with VGG-Face: firstly, we

chose VGG-1666, a convolutional network with the identical archi-

tecture as VGG-Face, i.e., consisting of 16 layers, but pre-trained on the

ImageNet dataset129. From VGG-16, in agreement with our approach

based on VGG-Face, we chose activations of layer pool4 for the

hypothesis RDMs forOFA and layer pool5 for all higherROIs. Secondly,

we selected the DCNN ResNet5067 because this network performed

best across a large variety of tested networks in predicting neural

responses to faces in a recent fMRI study61. For our hypothesis RDMs to

test representations in all our ROIs (OFA, pFFA, aTL, MTG), we

extracted face activations from the convolutional layer

res5b_branch2b (MATLAB) because this layer best predicted neural

responses in FFA61.

Representational similarity analysis: computational modelling
based on VGG-Face activations
To investigate whether PE or Sharpening mechanisms underlie the

integration of expected and presented face information, we used

RSA64,65.

RSA involves defining theoretical dissimilarity matrices (i.e.,

hypothesis RDMs) between experimental conditions and comparing

them to neural dissimilarity matrices (i.e., neural RDMs) based on the

measured brain activation. By defining different theoretical models

and comparing their correlation values with the neural data, we can

test which of the hypothetical models fits the data best. The multi-

variate analyses were performed on realigned data in the individual’s

native space. A first-level analysis using a whole-brain mask was per-

formed for each participant. Onsets of 25 events were modelled as

separate regressors in the GLM, each convolved with the canonical

SPM haemodynamic response. Four regressors were for the neutral

trials differing by which face was presented after the neutral scene

(neutralA, neutralB, neutralC, neutralD). Four regressors were for the

match trials in which the presented face matched the expected face

(matchA, matchB, matchC, matchD). Twelve regressors were for the

partial trials, each for one combination of prior and presented face

morph (e.g., ApriorABinput, ApriorACinput, ApriorADinput, …,

DpriorCDinput). Five regressors of no interest were for scenes,mismatch

trials, catch trials, button responses, and presented feedback. In case

no feedback was given in a run, a dummy onset was defined. For the

multivariate analyses, we used T-images instead of beta estimates as in

our previous studies4,39 because due to the additional division of the

beta values by the standard error estimates the influence of noisy

single voxels can be reduced130.

In this study, we defined three hypothesis RDMs to test how

presented faces are represented depending on prior context. The two

main hypothesis models were a (1) PE and a (2) Sharpening model

(Fig. 2b). These models differ in how the prior and the input are

mathematically combined. The third hypothesismodel testedwas a (3)

pure Sensory Input model that only takes the visual properties of the

face image into account without considering any influence of the

prior (Fig. 2b).

To test our main research question about how the information of

the prior is combined with the incoming face information, we used the

partial trials in which the presented face contained the expected as

well as an unexpected face part. By comparing the activation patterns

of the partial trialswith the ‘pure’ face representationsmeasured in the

neutral trials, we aimed at differentiating whether the representation

observed for a face morph was more similar to the unexpected face

part (i.e., PE processing) ormore similar to the expected face part (i.e.,

Sharpening). We designed and chose the neutral trials to extract the

pure face representations insteadof thematch trials for two important

reasons: firstly, the neutral scene was not predictive of the upcoming

face, therefore, the measured activation for the face was independent

of prior information while in match trials the face expectation was

confirmed. Secondly, the motor response required in neutral and

partial trials was different and therefore did not confound the RSA.

While in partial trials participants were required to indicate which

person they mostly recognised in a face by pressing one of four but-

tons with the right index, middle, ring, and pinky finger, their task in

neutral trials indicated by the fifth scenewas to press a buttonwith the

left thumb for whichever face appeared.

All three hypothesis RDMs, i.e., the PE, Sharpening, and Sensory

Input hypothesis model, were based on the neural network activations

of theDCNNVGG-Face63 for both the expected aswell as the presented

faces. The dissimilarity structure of activations of the network’s layers

pool4 and pool5 for different face images significantly correlates with

the representational dissimilarity structure of neural activations mea-

sured from electrodes in the human OFA and FFA, respectively60. To

measure neural representations in the face-processing hierarchy (OFA,

pFFA, aTL), we created the hypothesis RDMs based on the network

activation extracted from lower-level layer pool4 for bilateral OFA and

from higher-layer pool5 for all higher face-sensitive areas (pFFA, aTL,

ITG/MTG clusters of ‘mismatch > match’). Searchlight analyses were

performed with both pool4 and pool5 activations.

The neural network activations were read out for the RDM crea-

tion as follows: in the main experiment, each participant saw each of

the four faces (i.e., Ari, Bob, Cid, Dan) in the neutral condition. These

four images were fed into the VGG-Face network to extract their acti-

vation vectors from layers pool4 and pool5. For the 12 partial condi-

tions, we combined the network activations for the priors and the face

morphs. For the prior activations, we used the corresponding four

unmorphed face images weighted with the individual behaviour to

account for the prior usage during the perceptual decision about

which face was identified in a face morph (see below for further

explanation). These weighted face images were fed into the VGG-Face

network and read out at layers pool4 and pool5 to obtain the prior

activation vectors. To obtain the morph activations, the six 50/50%

morph images (AB, AC, AD, BC, BD, CD) were fed into the network and

their activations were extracted at layers pool4 and pool5. This pro-

cedure resulted in prior activation vectors (pool4, pool5) and

facemorph activation vectors (pool4, pool5) which were differentially

combined for the PE and Sharpening hypothesis RDMs (descri-

bed below).

Prediction error model. For the calculation of the PE model, the

individually weighted prior representation (i.e., precision) was sub-

tracted from the input representation7:

PE=morph� ðprior:*precisionpriorf ormorphÞ ð1Þ

For example, in trials in which the scene predictive for Ari pre-

ceded a face morph between Ari and Bob, this equation would trans-

late into:

PEðApriorABinputÞ=ABinput � ðAprior:*precisionpriorf orABÞ ð2Þ

The precision of the prior was used to account for the individual

prior usage during the perceptual decision which face participants

identified in a facemorph. The prior precision was calculated as follows:

precisionpriorf ormorph = ðnprior � notherpartÞ=n ð3Þ

In detail, nprior refers to the number of responses in favour of the

expected face, while notherpart refers to the number of responses in

favour of the unexpected face in a face morph. N refers to the total

number of trials in which the participant answered to have perceived

the expected or the unexpected part in a facemorph (nprior + notherpart),

i.e., we did not include trials in which participants identified a face that

was not contained in a morph or were too slow. This calculation can

result in precision values in the range of [−1 1]. If a participant always

answered to have perceived the expected face in the morph AB
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(irrespective of whether the prior was A or B), this would translate into

a value of 1, therefore, giving a high weight to the prior. If a participant

always answered to have perceived the unexpected face in the morph

AB, this would translate into a value of −1, therefore, giving a highly

negative weight to the prior that could lead to contrastive effects. The

distance of all of the experimental conditions (neutral, partial) for the

hypothesis RDM was calculated using ‘1 - Pearson Correlation’64,65. The

RDM was rescaled to dissimilarity values between 0 and 1 while con-

sidering shared ranks (equal ranks stayed equal) (Fig. 2b). The same

correlation metric and ranking were used for the Sharpening and

Sensory Input RDMs.

Sharpening model. An alternative approach for how the Bayesian

brain may combine priors/expectations with incoming sensory infor-

mation is the multiplication of predictions and inputs4,7. We translated

this sharpening of expected information into the following equation:

Sharpening = logðmorph:
*
ð1+prior:*precisionpriorf ormorphÞÞ ð4Þ

For example, in trials in which the scene predictive of Ari pre-

ceded a face morph between Ari and Bob, this would translate into:

SharpeningðApriorABinputÞ= logðAB:*ð1+Aprior:
*precisionpriorf orABÞÞ

ð5Þ

Furthermore, ‘1+’ was added to the prior to account for the case in

which the prior had no effect on the perception of a morph, so that the

face morph is treated as the sole basis of the measured information.

Since DCNNs can have positive or negative activations, we extend the

traditional Sharpening model to deal with cases of negative priors or

inputs: when the layer activations of both input and prior have the

identical sign, i.e., both are positive or both are negative, the sign of the

input activations is preserved after sharpening, i.e., expected positive

activations are sharpened to be “more positive” and negative activations

are sharpened to be “more negative”. On the other hand, when the

activations of input and prior have opposite signs (i.e., one is positive

and the other is negative), the input activations are dampened rather

than sharpened while keeping the sign of the input activation. Dam-

pening is achieved by multiplying the input activation with a number

between 0 and 1. Specifically, the input activation is multiplied with (1 -

abs(prior.* precisionpriorformorph)) for these cases where the prior is

rescaled to be in the range −1 to 1 (which is necessary so that 1 - prior

does not get negative). Finally, we applied a log transformation on the

combined prior and morph activation to account for extraordinarily

high values inherent to the multiplication of large activation numbers.

Sensory input model. We created pure Sensory Input hypothesis

models to test whether a model without the combination of prior and

input information would perform better than the PE or Sharpening

model (Fig. 2b). For the neutral trials, the pool4 and pool5 activation

vectors were created as for the other hypothesis models. For the

partial trials, the activation vectors for the face morph images were

taken without combining them with the prior. For instance, the acti-

vation of the morph image between Ari and Bob was extracted from

the network, irrespective of the preceding scene.

The RDMs for our hypothesis models (PE, Sharpening, Sensory

Input) for the object-trained DCNNs (VGG-16, ResNet50) can be found

in the Supplementary Fig. 4.

Representational similarity analysis: ROI analyses
The multivariate ROI analyses were performed using the RSAtoolbox65

in Python 3.9.12. Individual grey matter masks in native space with a

threshold of zero were applied. We calculated the neural RDM for each

ROI and averaged their right and left hemispheric neural RDMs to get an

estimate of themean neural representational space across hemispheres.

For each ROI, we obtained one Kendall’s Tau A correlation coefficient

for each participant and hypothesis RDM. We chose Kendall’s Tau A as

the appropriate correlation measurement for tied ranks65. Since corre-

lation values for the different models (PE, Sharpening, Sensory Input)

and ROIs were not normally distributed (Kolmogorov–Smirnov tests,

p<0.001), we used non-parametric tests to test for significance. For

each model, we tested against zero using a one-sided Wilcoxon

signed rank test, Bonferroni-corrected for the number of tests per ROI

(for VGG-Face vs. VGG-16: N=6 (3 models × 2 DCNNs), see Fig. 4; for

ResNet50: N =3, see Supplementary Fig. 1). For model comparisons, we

used two-sided paired Wilcoxon signed rank tests, FDR-corrected131 for

the model comparisons per ROI (all model comparisons within each

DCNN and within model comparisons across the DCNNs). We addi-

tionally calculated the lower and upper boundary of the noise ceiling for

each ROI with the RSAtoolbox62 to obtain an estimate of how well any

model could perform given the noise in the data. For the calculation of

the noise ceiling, we made sure to only consider the relevant dissim-

ilarities in the neural RDMs corresponding to the hypothesis models

(4 neutral conditions × 12 partial conditions). Additional analyses for the

left and right hemispheres can be found in the Supplementary Results

(Fig. 4g–j, Supplementary Fig. 1, Supplementary Tables 3–13).

Representational similarity analysis: searchlight analyses
To explore the representations beyond the prespecified ROIs, a mul-

tivariate searchlight was applied within the whole brain and the same

analyses as in the ROI approach were computed. The searchlight ana-

lyses were performed in native space using a grey matter mask and a

spherewith a radius of 6mm, containing amaximumof 90 voxels and a

minimum of 10% valid voxels. The resulting correlation maps were

Fisher’s z-transformed, normalised, and smoothed with an 8-mm full-

width at half maximum isotropic Gaussian kernel. These maps were

tested in a one-sample t-test on the second-level and significant results

are reported at p(FWE) <0.05, except for the ResNet50 searchlight

results which are reported at p(FWE) < 0.05 (cluster-corrected), with a

cluster-inducing threshold of p(unc.) < 0.001. Additionally, to compare

the results of the searchlight analyses for the hypothesis PE and the

Sharpening models, we calculated difference correlation maps on the

individual participant level and conducted second-level one-sample t-

tests across the participants65.

Lastly, to specifically investigate expectation-dependent face

information and potentially control for the representation of low-level

visual information, we computed difference correlationmaps between

the PE and Sharpening searchlight maps and sensory input searchlight

maps. For VGG-Face and VGG-16, the sensory input searchlight maps

were based on the second convolutional layer (conv1_2)59 of the

respective network. For ResNet50, the sensory input map was based

on the same layer activations as the PE and Sharpening RDMs

(res5b_branch2b). The resulting searchlight maps may be indicative of

expectation-dependent face information, extending beyond mere

visual representations.

Multivariate classification analysis
In addition to the preregistered RSA, we conducted a simpler multi-

variate classification approach without model-based hypothesis RDMs

(Supplementary Fig. 5, Supplementary Methods, Supplementary

Results).

Statistics and reproducibility
Behavioural and fMRI data of 43 subjects were analysed with non-

parametric tests.

Dataofperceived face identity in facemorphswere tested against a

chance level of 50%, i.e., that the prior had no influence on the per-

ception of the facemorph, using a two-sidedWilcoxon signed rank test.

RTs of the different conditions (match, mismatch, neutral, partial) were

compared using a Friedman test and post-hoc tests (Tukey–Kramer).
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For the RT analysis of the partial trials split up into trials in which par-

ticipants had answered to have either perceived the expected or the

unexpected identity, we used a two-sided paired Wilcoxon signed rank

test. Similarly, for comparing the RTs of trials with prior-confirming

responses to the match condition, we calculated a two-sided paired

Wilcoxon signed rank test. Accuracy data were analysed using a Fried-

man test and post-hoc tests with Tukey–Kramer’s critical value.

For the univariate whole-brain analyses of unexpected compared

to expected faces (‘mismatch>match’ and ‘unexpected > expected’),

we report cluster activations (p(FWE) < 0.05) with a cluster-inducing

threshold of p <0.001. For the small-volume corrected ROI analyses

(OFA, pFFA, aTL), we report peak activations (p(FWEsvc <0.05)).

Using RSA64,65, we calculated Kendall’s Tau A correlations between

the hypothesised and the neural dissimilarity structures. In our multi-

variate ROI analyses, the correlations for each hypothesis model (PE,

Sharpening, Sensory Input) were tested against zero using one-sided

Wilcoxon signed rank tests. Significance was evaluated by Bonferroni-

correcting for the number of tests per ROI. For themodel comparisons,

we used two-sided paired Wilcoxon signed rank tests. Significance was

inferred by FDR-correcting131 the p-values for all model comparisons

per ROI. For comparing left to right hemispheric correlations, we per-

formed analyses of variances using ARTool132. For main effects and

interactions, significance was evaluated by p(unc.) < 0.05, for post-hoc

pairwise comparisons by p <0.05, Tukey-corrected133. Furthermore, we

report whole-brain searchlight analysis results for our different

hypothesis models based on individual Fisher’s z-transformed corre-

lationmaps using one-sample t-tests (p(FWE) <0.05). Finally, we report

exploratory classification ROI analyses of the face morphs as the

expected or unexpected face identity at p(unc.) < 0.05.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The face stimuli used in this studywere createdwith FaceGenModeller

Core 3.22 (Singular Inversion; [https://facegen.com]) and are available

at the OSF ([https://osf.io/765jx/]). The scene images used in this study

were taken from the SUN database113 ([https://groups.csail.mit.edu/

vision/SUN/hierarchy.html]) and the indoor scene database114 ([https://

web.mit.edu/torralba/www/indoor.html]) and are available at [https://

osf.io/765jx/]. The exemplary scene image in Fig. 1 is in public domain

and available at [https://commons.wikimedia.org]. The VGG-Face

model63 used in this study is available at [www.robots.ox.ac.uk/~vgg/

software/vgg_face/]. The VGG-1666 and ResNet5067 models used in this

study, pre-trained on the ImageNet dataset, are available via MATLAB

([https://de.mathworks.com/help/deeplearning/ref/vgg16.html];

[https://de.mathworks.com/help/deeplearning/ref/resnet50.html]).

The raw behavioural and fMRI data generated in this study are avail-

able from the authors upon reasonable request. Source data are pro-

vided with this paper.

Code availability
Custom code for behavioural (MATLAB, R) and multivariate analyses

(MATLAB, Python) is available at the OSF ([https://osf.io/765jx/]). We

programmed our experiments using MATLAB R2020b ([https://de.

mathworks.com]) and Psychtoolbox (v3.0.18; [www.psychtoolbox.

org]). For stimulus presentation and data collection, we used differ-

ent MATLAB and Psychtoolbox versions (MATLAB: R2016b, R2020b;

Psychtoolbox: v3.014, v3.0.17, v3.0.18). For our behavioural data ana-

lyses,weusedMATLABR2020bandR/RStudio (Rv4.2.0, [https://www.

r-project.org]; Rstudio v2022.02.2; [https://posit.co]). For our uni-

variate fMRI data analyses, we used SPM12 ([https://www.fil.ion.ucl.ac.

uk/spm/software/spm12]). For our multivariate RSA, we used the

RSAtoolbox65 (v0.0.4; [https://github.com/rsagroup/rsatoolbox]) in

Python 3.9.12. For neuroanatomical labelling, we used the Neuro-

morphmetrics atlas (Neuromorphometrics, Inc.) implemented in

SPM12 as well as the Harvard-Oxford Cortical Structural Atlas and the

Harvard-Oxford Subcortical Structural Atlas in FSLeyes (v0.24.3). For

visualisation, we used MRIcroGL (v1.2.20220720; [https://www.nitrc.

org/projects/mricrogl]). For our non-parametric analysis of variance

for the RSA split up by hemisphere, we used the ARTool-package132,133

(v0.11.1; [https://cran.r-project.org/web/packages/ARTool/index.

html]) in RStudio. For our multivariate classification analyses, we

used The Decoding Toolbox134 (v3.999F; [https://sites.google.com/

site/tdtdecodingtoolbox/]) in MATLAB R2020b.
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Supplementary Figures 

 
Supplementary Figure 1. RSA based on the network ResNet501. a-d) We performed 

Representational Similarity Analysis (RSA) in our four ROIs (occipital face area, OFA; 

posterior fusiform face area, pFFA; anterior temporal lobe, aTL; inferior/middle temporal gyrus, 

ITG/MTG) and applied hypothesis models based on Prediction Error (PE), a Sharpening, and 

a pure Sensory Input model. For the creation of the hypothesis representational dissimilarity 

matrices (RDM), we extracted activations from layer res5b_branch2b in MATLAB (based on2). 

Grey bars indicate the between-subject standard error of the mean (SEM), black bars indicate 

the within-subject SEM3 (N = 43 participants). Asterisks indicate the tests of each hypothesis 

model against zero (one-sided Wilcoxon signed rank test), black asterisks showing 

significance Bonferroni-corrected for the number of models per ROI (N = 3), grey asterisks 

showing uncorrected significance p < .05, and horizontal lines indicate model comparison 

results (two-sided paired Wilcoxon signed rank tests), FDR-corrected4 per ROI. Grey 

rectangles display the lower and upper boundary of the noise ceiling for each ROI5. 
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Supplementary Figure 2. Whole-brain searchlight analyses for the hypothesis models 

Prediction Error (PE) and Sharpening (VGG-16). Results for the comparison of the neural 

and hypothesised dissimilarity structures based on pool4 and pool5 layers from VGG-16 are 

displayed against zero and as difference maps against a sensory searchlight without prior 

influence based on the second convolutional layer6, respectively. a) Searchlight analyses 

results for PE: Clusters were identified in angular gyrus (AnG), inferior occipital gyrus (IOG), 

triangular part of the inferior frontal gyrus (TrIFG), temporal pole (TP), superior temporal gyrus 

(STG), inferior temporal gyrus (ITG), middle occipital gyrus (MOG), precentral gyrus (PrG), 

middle frontal gyrus (MFG), anterior insula (aIns), and posterior insula (pIns). b) Comparison 

of the PE > Sharpening searchlight results: Stronger correlations for PE than Sharpening 

were evident in the left MFG, TrIFG, and ITG, and in the right PrG. All maps are displayed at 

p(FWE) < .05. Maps are overlaid on the average structural T1 image in Montreal Neurological 

Institute (MNI) template space.  
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Supplementary Figure 3. Whole-brain searchlight analyses for the hypothesis models 

Prediction Error (PE) and Sharpening (ResNet50). Results for the comparison of the neural 

and hypothesised dissimilarity structures based on layer res5b_branch2b from ResNet50 are 

displayed against zero and as difference maps against a sensory searchlight without prior 

influence also based on res5b_branch2b activations. a) Searchlight analyses results for 

PE: Clusters were identified in angular gyrus (AnG), supramarginal gyrus (SMG), middle 

frontal gyrus (MFG), triangular part of the inferior frontal gyrus (TrIFG), frontal operculum (FO), 

inferior temporal gyrus (ITG), middle temporal gyrus (MTG), middle occipital gyrus (MOG), 

precentral gyrus (PrG), and posterior insula (pIns). b) Comparison of the PE > Sharpening 

searchlight results: Stronger correlations for PE than Sharpening were evident in the areas 

identified in a). All maps are displayed at p < .001, uncorrected. Maps are overlaid on the 

average structural T1 image in Montreal Neurological Institute (MNI) template space.  
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Supplementary Figure 4. Hypothesis Representational Dissimilarity Matrices (RDMs) 

for the object-trained neural networks VGG-16 and ResNet50. For VGG-Face, the RDMs 

for our hypothesis models (Prediction Error, PE; Sharpening; Sensory Input) were based on 

pool4 and pool5 activations. For ResNet50, the RDMs were based on activations extracted 

from the layer res5b_branch2b in MATLAB. For visualisation, the displayed PE and 

Sharpening RDMs were averaged across individual (N = 43) RDMs.  
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Supplementary Figure 5. Classification analyses of the face morph images. Images of 

face morphs were classified as either the expected or unexpected identity. Classification 

values above 50% indicate classification as the expected identity (i.e., Sharpening) while 

values below 50% indicate classification as the unexpected identity (i.e., Prediction Error 

(PE)). The darkest purple colour shows the mean classification values across hemispheres, 

the middle purple colour shows the left hemispheric values, and the light purple shows the 

right hemispheric values. Grey bars indicate the between-subject standard error of the mean 

(SEM), black bars indicate the within-subject SEM3 (N = 43 participants). Asterisks show 

significance (p < .05, uncorrected). OFA = occipital face area, pFFA = posterior fusiform face 

area, MTG = middle temporal gyrus, aTL = anterior temporal lobe. 
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Supplementary Figure 6. Multidimensional scaling (MDS) (pool4) of the four face 

images. Four male identities were created using FaceGen Modeller Core 3.22. To ensure that 

the four selected faces were equally distinct from each other, a classical MDS was performed 

based on the activations of layer pool4 of the deep neural network VGG-Face7. The distance 

measure was ‘1 - Pearson correlation’ and the dissimilarities were rescaled to values between 

0 and 1. The dissimilarity structure based on two dimensions showed that the images were 

equally dissimilar to each other. 
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Supplementary Figure 7. Calibration results of the morph selection experiment. 

Participants performed a face morph calibration experiment on the day before the fMRI 

experiment took place (see Supplementary Methods: Morph Calibration Experiment and 

Selection of Morph Levels in Face Pairs for Individual Participants). The goal was to select for 

each participant the individual morph levels for each face pair that equaled the point of 

ambiguous perception (i.e., the morph level that they individually identified as the first and the 



 

10 

second identity in 50% of the cases). A polynomial function of 3rd order was fitted to each 

participant’s data to grasp the typical nonlinear classification of face morphs between two 

identities8. Single participants’ fitted functions are shown as blue lines (N = 43). The mean 

response function across all participants is shown in red. The black line indicates the threshold 

for identifying a morph level as the first and the second identity equally often, i.e., ambiguous 

perception. 
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Supplementary Methods 

Image Specifications 

All face images and all morphs were created in two sizes: 400 x 400 and 531 x 531 

pixels. The smaller images were used for the behavioural training sessions outside of the 

scanner on monitors (20’’) with a spatial resolution of 1920 x 1200. The distance between the 

retina and the monitor was approximately 72 cm. The larger images were used for the 

experiment in the fMRI scanner where images were displayed via a NordicNeuroLab 

InroomViewing Device 40’’ LCD monitor with a spatial resolution of 1920 x 1080. The distance 

from the participant’s eyes to the head coil mirror was 13 cm and from the mirror to the monitor 

150 cm. The image sizes were calculated so that they had the same visual angle inside and 

outside of the scanner (8.59° x 8.59°).  

From each original scene image, an excerpt was taken and rescaled to 531 x 531 

and 400 x 400 pixels. Again, the larger images were used in the scanner for the main 

experiment and the functional localizer and the smaller images were used for training sessions 

outside of the scanner.  

Morph Calibration Experiment 

On the first day, participants started with the morph calibration experiment. The goal 

of the calibration was to identify each individual’s morph level that corresponded to the 50/50 

perceptual threshold at which both identities were equally often identified. For the calibration 

experiment, morphs between each pair of the four faces ranging from 26/74 to 68/32 

(faceID1/faceID2) in steps of six percent were created. Morph windows were slightly shifted 

towards the less dominant face identity within each pair based on a behavioural pilot with an 

independent set of participants (N = 9).  

 In the first part of the calibration, participants learned to associate each of the four 

faces with their respective names. They got accustomed to the duration of 100 ms per face 

presentation and the additional noise applied to the faces. In the second part of the calibration, 

morph faces for all face pairs were presented. The task was to indicate via pressing one of 

four buttons with the right hand (index, middle, ring, and pinky finger) which person they saw: 

Ari, Bob, Cid, or Dan. If the presented face was not one of the four original faces, their task 

was to indicate which of the four faces they saw predominantly. Feedback was provided if the 

participants were too slow or if they wrongly answered a person that was not contained in a 

morph. The calibration was divided into three sub-blocks for five minutes: In each block, each 

morph level of a face pair (eight morph levels per pair) was presented twice. Additionally, each 

of the original faces was presented twice in each block to reinforce the originally learned face 

representations. This resulted in 112 trials per block. Between each block, there was a break 
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screen showing the original four faces and their names. The order of faces was pseudo-

randomized so that the same face or face morph was consecutively presented twice at 

maximum. After the calibration experiment, the most ambiguous face morph for each face pair 

was selected (see Supplementary Methods: Selection of Morph Levels in Face Pairs for 

Individual Participants) and noise was added to the images for the consecutive training 

sessions and the main experiment. 

 

Selection of Morph Levels in Face Pairs for Individual Participants  

Based on the calibration experiment, the individual morph levels for each face pair that 

equaled the point of ambiguous perception were selected (see Supplementary Figure 7). We 

tested six morph levels per face pair. For each morph level, the number of responses in favour 

of the first and the second identity within the morph was counted across the three blocks of 

the experiment. A polynomial function of 3rd order was fitted to the data to grasp the typical 

nonlinear classification of face morphs between two identities8. Two additional morph levels 

(100/0 and 0/100) with perfect classification scores were added for each morph pair to obtain 

a better fit. The fitting of the polynomial function resulted in a vector of 1010 interpolated values 

representing probabilities of choosing the first identity in a face morph. All interpolated values 

close to 0.5 (i.e., 50% probability of identifying a morph as the first and the second identity) 

with a tolerance of 0.001 were extracted to identify the most ambiguous morph level. In case 

the polynomial function did not cross the threshold line, a morph level was chosen to 

counteract the perceptual dominance of one face identity in a pair. For the first three 

participants, the morph levels were chosen based on visual inspection of the psychometric 

curves.  

Training Sessions 

Participants came to the lab on two consecutive days to take part in the experiment. 

On the first day, they completed the individual face morph calibration (25 min), a training 

session for learning the associations between scenes and faces (25 min), and a repetition of 

the last part of the association training which was a short form of the final experiment (5 min). 

On the second day, participants started with a shortened version of the association training 

(15 min), followed by a short repetition of the final task (5 min). Afterwards, they completed a 

short part (5 min) in which the inter-trial intervals (ITI) were as long as they would be in the 

scanner. For all previous training sessions, ITIs were shortened to reduce overall duration. All 

training sessions were performed outside of the scanner. Finally, the experiment in the 

scanner took place (52 min) followed by a functional localizer (4 min). 

After the completion of the calibration experiment (see Supplementary Methods: 

Morph Calibration Experiment), participants took part in an association training session in 
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which they learned to associate each face with a scene. The training started by having definite 

transition probabilities, i.e., that the faces always correctly appeared after the scene to which 

they belonged. The task was to correctly identify each face as Ari, Bob, Cid, or Dan. No morphs 

were shown during this learning phase. Later, a neutral scene was introduced after which each 

face was equally likely to appear. The task was still to identify the faces, however, participants 

should press a button with the left thumb for whichever face appeared after the fifth, neutral 

scene. The allocation of which scene was predictive of which identity and which scene was 

neutral was counterbalanced across participants. There were five different allocation versions. 

As a next step of the association training session, catch trials were introduced: In some trials, 

a question mark followed a scene instead of a face. If a question mark appeared, the task for 

the participant was to indicate which person they had anticipated after the previous scene 

(catch trial). If the question mark appeared after the neutral scene, they should press a button 

with the left index finger to signal that all faces had been equally likely to appear (neutral catch 

trial). Afterwards, mismatch trials were introduced. Transition probabilities for the four scenes 

were manipulated such that they were followed by the correct face in ~66.66 % of the trials, in 

~20 % by a face which had not been anticipated, and in ~13.33 % by a question mark. In the 

last part, face morphs were added as partial trials. This part had the same transition 

probabilities and number of trials as one block in the final fMRI experiment. The part consisted 

of 107 trials. There were 16 match trials, 48 partial trials, 12 mismatch trials, 12 catch trials, 

16 neutral trials, and 3 neutral catch trials. The transition probabilities were as follows: The 

four main scenes (88 trials) were followed by the expected face or a morph containing it in 

~72,73 % of the trials (~18.18 % match trials, ~54.54 % partial trials)., as well as mismatch 

(~13.64 %) and catch trials (~13.64 %). The neutral scene (19 trials) was followed by one of 

the four faces in ~84.21% of the trials and neutral catch trials with a question mark (~15.79 

%). An exemplary trial can be seen in Figure 1b.  

For the last part of the association training, participants were given feedback (see 

Supplementary Methods: Feedback) by the experimental leader when there were 

misunderstandings concerning the task and brief feedback about single mistakes was also 

provided if participants performed well. Finally, participants repeated the last part of the 

association training session and received a second feedback with improvements or still 

occurring errors. Overall, participants had learned and understood the task (accuracy: M = 

85.50 %, SD = 7.54 %).  

 On the second day, participants completed a shortened version of the association 

training session and obtained feedback. The task and condition distribution of the final part 

was identical to one block in the fMRI experiment. The participants were informed that the 

timing in the scanner was different due to the specificities of the MRI scanner. They completed 

a four-minute experiment with longer ITIs (1500-2500 ms, mean: 2000 ms) and null events 
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(fixation cross) with a trial duration of 5300 ms so that they would not be surprised in the 

scanner. 

 

Feedback 

Participants received verbal feedback after completion of the training sessions and 

after each block of the fMRI experiment. They were given an overall score of their performance 

which was the mean of the accuracy scores for the match, partial, mismatch, catch, neutral, 

and neutral catch trials, as well as individual feedback for the different conditions. Partial trials 

were classified as correct if the participant answered in time to have perceived one of the two 

identities that were present in the morph. Feedback for specific conditions was provided if 

participants had not understood the task.  

 

Behavioural Outlier 

Although in the preregistration we had not defined an exclusion criterion, we decided 

to exclude one participant who performed worse than 99.9% of the participants (i.e., z = -4.16 

for the z-standardised mean accuracy based on the match, mismatch, partial, catch, neutral, 

and neutral catch conditions). Therefore, the reported results are based on 43 participants.  

 

Whole-Brain Mask 

For the first-level analyses of the main experiment and the functional localizer, 

individual whole-brain masks were created based on grey matter, white matter, and 

cerebrospinal fluid probability maps obtained from SPM12’s segmentation-function. The 

threshold for all three tissue types was set to 0. The mask was additionally smoothed with a 

2-mm full-width at half maximum isotropic Gaussian kernel and its resulting mask binarized 

using a threshold of 0. For the second-level analysis, a group-level whole-brain mask was 

created by averaging the individual skull-stripped normalised anatomies. The average 

anatomy was then thresholded at 0.6, smoothed at 8-mm full-width, and finally binarized. 

Anatomical labels of brain regions reported in the Supplementary Tables were taken 

from the Neuromorphometrics atlas (Neuromorphometrics, Inc.) implemented in SPM12 and 

the Harvard-Oxford Cortical and Subcortical Structural Atlases implemented in FSLeyes. In 

the case of white matter localizations, the respective brain lobe was provided for anatomical 

orientation. 

 

Multivariate Classification Analysis 

In addition to the RSA, we conducted a simpler multivariate classification approach 

without model-based hypotheses RDMs by using The Decoding Toolbox9. We used L2-norm 

support vector machines (SVM) from the library LIBSVM10 and performed a classification 
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analysis. To answer the question whether a 50/50 morphed face is classified as the expected 

or unexpected face identity based on voxel-based activation patterns, we trained individual 

classifiers on the T-images of pairs of the neutral faces and tested them for each 

corresponding morph combination (AB, AC, AD, BC, BD, CD) across the four runs. The 

classifier’s performance, i.e., classification score, was evaluated using classification accuracy 

minus chance (50%). We labelled the T-images of the test set so that classification scores 

larger than .5 indicate that a morph was classified as the expected face and classification 

scores below .5 indicate that a morph was classified as the unexpected face. Classification 

analyses were separately conducted for each participant, for each morph combination and 

each ROI separated by hemisphere and averaged across these to obtain a total classification 

score per participant per ROI. As classification scores were not normally distributed 

(Kolmogorov-Smirnow tests, all p < .001), we used two-sided Wilcoxon signed rank tests for 

all classification analyses. 

 

Supplementary Results 

Control Indices 

To control whether participants were attentive and correctly performed the task, a 

Friedman test with the within-subject factor condition (match, mismatch, catch, neutral, neutral 

catch) and accuracy (%) as the dependent variable was calculated. We performed a non-

parametric test instead of the preregistered ANOVA because the accuracies were not normally 

distributed due to ceiling effects (Kolmogorow-Smirnow tests, all p < .001). Match and 

mismatch trials were classified as correct if the presented (unmorphed) face was correctly 

identified in time. In catch trials, participants had to correctly answer the question mark by 

indicating which person they expected based on the preceding scene. Neutral trials were 

correct if participants pressed the button with the left thumb irrespective of which face was 

presented and neutral catch trials were correctly answered if they pressed the button with the 

left index finger to indicate that all persons were equally likely to be expected. Note that for 

the conditions mentioned, no morphs were presented.   

Participants performed well in all experimental control conditions, especially in the 

match condition. There was a significant difference in accuracy (χ²(4) = 32.17, p < .001, 

Kendall’s W = 0.19). Tukey’s HSD test for multiple comparisons showed that participants 

significantly more often correctly identified a face in the match (M = 97.64%, SD = 3.98%) 

compared to the mismatch (M = 90.94, SD = 11.77, p < .001, LB/UB [0.62, 2.33]), catch (M = 

95.11, SD = 5.12, p = .049, [0.003, 1.72]), and neutral catch condition (M = 91.28, SD = 9.08; 
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p < .001, [0.44, 2.16]). Participants also showed higher accuracy in the neutral compared to 

the neutral catch condition (p = .01, [0.13, 1.85]), possibly due to the more frequent occurrence 

of neutral compared to neutral catch trials. No difference in accuracy was observed between 

the match and neutral condition (M = 96.22, SD = 5.48; p = .86, [-0.54, 1.17]) nor in any other 

condition comparison. 

 

Reaction Time Analysis 

A Friedman test with the within-subject factor condition (match, mismatch, partial, 

neutral) and RT as the dependent variable was conducted. Additionally to the results reported 

in the main text, in the neutral condition, participants responded faster (M = 547.7, SD = 55.84) 

compared to all other conditions (match: p = .047, LB/UB [0.01, 1.44]; mismatch: p < .001, 

[1.70, 3.13]; partial: p < .001, [-3.02, -1.59]), because they simply had to press a fifth button 

for whichever face appeared after the neutral scene. 

 

Multivariate ROI Analyses: Left vs. Right Hemisphere 

In our main multivariate ROI analyses, we investigated the correlations between the 

hypothesis models and bilateral ROIs along the ventral face-processing hierarchy. We 

performed additional analyses to test whether the correlations differed between the left and 

the right hemispheres (see Figure 4g-j, Supplementary Figure 1). We tested for main effects 

and interactions between the factors hemisphere (left, right) and model (PE, Sharpening, 

Sensory Input) for each ROI and each deep neural network with the non-parametric Aligned 

Rank Transform (ART)11 and calculated ηp
2 as a measure of effect size. 

There was no significant main effect of hemisphere for any of the three neural networks 

(VGG-Face, VGG-16, ResNet50) in any of the ROIs (OFA, pFFA, aTL, MTG), i.e., the 

correlations of the neural data with the three hypothesis models (PE, Sharpening, Sensory 

Input) did not differ between the left and right hemisphere (all p(unc.) < .05; see Supplementary 

Tables 10-13). 

There was a significant main effect of model for every neural network in every ROI (all 

p(unc.) < .05; see Supplementary Tables 10-13). For VGG-Face, post-hoc pairwise 

comparisons12, Tukey-corrected, revealed that these main effects were mainly driven by 

higher correlation values with the PE model compared to the Sensory Input model in OFA and 

pFFA as well as higher correlation values for the PE model compared to the Sharpening model 

in pFFA, aTL, and ITG/MTG (see Supplementary Table 10, 11). The object-trained network 

VGG-16 showed a similar pattern, with stronger correlations of the PE model compared to the 

Sensory Input model in pFFA and aTL as well as stronger PE correlations compared to 

Sharpening correlations in all ROIs (see Supplementary Tables 10, 12). Additionally, there 

were stronger correlations of the Sensory Input model compared to the Sharpening model in 
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pFFA. The neural network ResNet50 showed similar higher correlations for the PE model, 

mainly compared to the Sharpening model in all ROIs, but contrary to the other object-trained 

network VGG-16, it did not reveal any evidence for stronger correlations with the Sensory 

Input model compared to the other hypothesis models (see Supplementary Tables 10, 13). 

 

Multivariate Classification Analysis 

In the classification analysis, ambiguous morphed faces were more often classified as 

the unexpected face identity based on multivariate activation patterns in the posterior FFA (M 

= 46.22, SD = 10.83, z = -2.17, p = .03), especially in the left FFA (M = 45.54, SD = 12.25, z 

= -2.29, p = .02; see Supplementary Figure 5). Classification as the expected or unexpected 

face did not differ in OFA (M = 49.32, SD = 9.66, p = .72, z = -0.35), aTL (M = 52.33, SD = 

7.73, p = .055, z = 1.92), and MTG (M = 50.19, SD = 10.48, p = .93, z = 0.09). Hence, the 

classification analysis confirms the RSA results for PE representations in the FFA, while 

classification did not reveal either PE or Sharpening in the other ROIs. Overall, both 

multivariate analyses approaches, i.e., RSA and classification analysis, suggest concurrent 

PE and sharpened face representations. The major difference between the two different 

multivariate analyses approaches is that RSA allows us to test for both PE and sharpened 

face representations simultaneously in one region, while the classification approach is forced 

to classify morphed faces as either the expected or unexpected face. In addition, the RSA 

approach also takes the similarity of a morphed face with all neutral faces into account (see 

hypothesis RDMs in Figure 2b and Supplementary Figure 4, which are not empty in the off-

diagonal), while the classification approach only compares a morphed face with the two 

corresponding neutral face images. Furthermore, the classification analysis we implemented 

here was a model-free approach. In contrast, our RSA approach relied on hypothesis RDMs 

generated from various DCNN layer activations, derived from images based on combinations 

of expected and presented face images with PE or sharpening computations. 
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Supplementary Tables 

 

Supplementary Table 1. Univariate analysis of the contrast ‘mismatch > match’. 

cluster 
p(FWE) 

cluster 
equivk 

peak 
p(FWE) 

peak  
T 

peak 
equivZ 

x,y,z {mm} label 

0.000 7236 0.000  11.04  7.52 -36 -42  48  left superior parietal lobule 

  0.000   9.93  7.08  42 -32  48  right supramarginal gyrus 

  0.000   9.65  6.97 -44 -32  48   

0.000 6702 0.000  10.87  7.46  -4  12  50  left supplementary motor cortex 

  0.000  10.58  7.34 -30  24  -6  left anterior insula  

  0.000  10.42  7.29   2  20  46   

0.000 3052 0.000  10.35  7.25  32  26  -4  right anterior insula 

  0.000   9.87  7.06  34  24   4   

  0.009   6.15  5.16  50   8  38   

0.000 716 0.002   6.72  5.51  38 -52 -32  right cerebellum exterior 

  0.010   6.11  5.14  26 -52 -26   

  0.014   5.99  5.06  30 -62 -30   

0.000 1755 0.003   6.49  5.37  -6 -16  12  left thalamus proper 

  0.012   6.06  5.11  10  10   2  right caudate 

  0.016   5.95  5.04  -8 -16 -12   

0.005 309 0.010   6.12  5.15  32 -74 -52  right cerebellum exterior 

  0.992   3.74  3.46  36 -64 -42   

0.000 647 0.012   6.04  5.09  12 -76 -24  right cerebellum exterior 

  0.041   5.61  4.82  -8 -78 -30   

  0.098   5.28  4.60   8 -82 -30   

0.015 246 0.054   5.50  4.75 -12 -56 -46 left cerebellum exterior 

  0.383   4.70  4.19 -12 -54 -38  

  0.412   4.66  4.16  -2 -54 -38   

0.000 499 0.088   5.32  4.63  16 -60 -48  right cerebellum exterior 

  0.092   5.30  4.61  28 -54 -54   

  0.469   4.59  4.11  16 -66 -60   

0.005 312 0.104   5.25  4.58 -56 -42 -18 left inferior temporal gyrus 

  0.856   4.14  3.77 -68 -38 -16  
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0.000 479 0.115   5.21  4.55 -38 -56 -32 left cerebellum exterior 

  0.210   4.97  4.38 -36 -68 -28  

  0.310   4.80  4.26 -28 -54 -32  

0.001 403 0.136   5.15  4.51  22  54 -14  right anterior orbital gyrus 

  0.932   4.00  3.66  42  48 -16   

  0.976   3.86  3.55  34  50 -18   

Note. For the univariate contrast ‘mismatch > match’, a one-sample t-test was performed (N 

= 43 participants). Clusters at p(FWE) > .05, with a cluster-inducing threshold of p(unc.) < 

.001, are reported (k > 10 voxels). 
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Supplementary Table 2. Univariate analysis of the contrast ‘unexpected > expected’. 

cluster 
p(FWE) 

cluster 
equivk 

peak 
p(FWE) 

peak  
T 

peak 
equivZ 

x,y,z {mm} label 

0.000 13699 0.000   9.49  6.90 -36 -36  44  left superior parietal lobule 

  0.000   8.71  6.55  20 -52 -22   

  0.000   8.35  6.38  -8 -62  46   

0.000 1829 0.000   7.73  6.07  40 -44  48  right superior parietal lobule 

  0.000   7.27  5.82  40 -34  48   

  0.190   4.97  4.39  38 -56  46   

0.000 4469 0.000   7.28  5.82  26  -6  52  right superior frontal gyrus 

  0.001   6.93  5.63 -24  -6  52   

  0.002   6.61  5.44  -4  36  24  left anterior cingulate gyrus 

0.000 5723 0.001   6.91  5.62  10  -6   8  right thalamus proper 

  0.003   6.50  5.38  10 -14   6   

  0.003   6.49  5.37  34  20  -2  right anterior insula 

0.000 2271 0.029   5.70  4.88 -42  48  16  left middle frontal gyrus 

  0.033   5.65  4.85 -20  50 -18   

  0.060   5.43  4.70 -28  54 -12  left anterior orbital gyrus 

0.000 635 0.092   5.26  4.59  30  46 -18  right anterior orbital gyrus 

  0.150   5.07  4.45  34  60 -10   

  0.463   4.56  4.09  38  44  -4   

0.001 444 0.197   4.96  4.37  40  36  20  right frontal pole 

  0.336   4.72  4.21  44  34  30  right middle frontal gyrus 

  0.781   4.20  3.82  46  36  38   

0.031 223 0.214   4.92  4.35  54 -32 -12  right middle temporal gyrus 

  0.227   4.90  4.33  56 -40 -14   

0.004 348 0.510   4.51  4.05 -56 -40 -14 left middle temporal gyrus 

  0.706   4.29  3.88 -54 -26 -26  

  0.991   3.71  3.43 -58 -18 -30  

 

Note. For the univariate contrast ‘unexpected > expected’, a one-sample t-test was performed 

(N = 43 participants). Clusters at p(FWE) > .05, with a cluster-inducing threshold of p(unc.) < 

.001, are reported (k > 10 voxels). 
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Supplementary Table 3. Means and standard error of the means (SEM) of the 

multivariate ROI analyses (VGG-Face). 

 PE Sharpening Input 

ROI mean SEM (bw) SEM (ws) mean SEM (bw) SEM (ws) mean SEM (bw) SEM (ws) 

bilateral 

OFA 0.0553 0.0178 0.0136 0.0283 0.0131 0.0110 0.0096 0.0133 0.0087 

pFFA 0.0408 0.0158 0.0133 -0.0108 0.0138 0.0173 -0.0006 0.0121 0.0101 

aTL 0.0341 0.0195 0.0144 -0.0172 0.0141 0.0150 -0.0131 0.0149 0.0120 

ITG/ 
MTG 

0.0418 0.0177 0.0167 -0.0074 0.0141 0.0142 0.0005 0.0145 0.0116 

unilateral   

lOFA 0.0552 0.0172 0.0131 0.0236 0.0134 0.0103 0.0196 0.0148 0.0095 

rOFA 0.0517 0.0178 0.0135 0.0241 0.0128 0.0112 0.0062 0.0115 0.0075 

lpFFA 0.0426 0.0133 0.0131 -0.0213 0.0134 0.0158 -0.0016 0.0117 0.0096 

rpFFA 0.0240 0.0197 0.0166 -0.0182 0.0146 0.0176 -0.0136 0.0136 0.0117 

laTL 0.0481 0.0188 0.0139 -0.0086 0.0153 0.0154 0.0068 0.0165 0.0114 

raTL 0.0146 0.0170 0.0156 -0.0053 0.0129 0.0140 -0.0123 0.0114 0.0101 

lITG/ 
MTG 

0.0212 0.0165 0.0156 -0.0067 0.0160 0.0169 -0.0080 0.0158 0.0112 

rITG/ 
MTG 

0.0353 0.0177 0.0151 -0.009 0.0134 0.0154 0.0002 0.0131 0.0112 

Note. This table provides the means and SEMs (N = 43) for the DCNN VGG-Face in Figure 

4. Individual correlation coefficients (Kendall’s Tau A) between the representational 

dissimilarity matrices (RDM) of the three hypothesis models (PE, Sharpening, Sensory Input) 

and the neural RDM were calculated. Correlations for the occipital face area (OFA) are based 

on pool4 activations, the correlations for the other ROIs on pool5 activations. Within-subject 

(ws) SEMs were calculated considering the individuals’ correlation coefficients across the two 

compared DCNNs (VGG-Face and VGG-16). For p-values of the model tests against zero and 

the model comparison tests, please refer to the Supplementary Table 4. pFFA = posterior 

fusiform face area; aTL = anterior temporal lobe; ITG = inferior temporal gyrus; MTG = middle 

temporal gyrus; bw = between-subject; ws = within-subject.  
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Supplementary Table 4. P-values of the multivariate ROI analyses (VGG-Face). 

ROI PE 
vs. 
0 

Sharpening 
vs. 
0 

Input 
vs. 
0 

PE 
vs. 

Sharpening 

PE 
vs. 

Input 

Sharpening 
vs. 

Input 

bilateral 

OFA 0.0030* 0.0232* 0.2913 0.2941 0.0396* 0.2941 

pFFA 0.0044* 0.5528 0.4140 0.0315* 0.0315* 0.6311 

aTL 0.0780 0.8462 0.7838 0.0460* 0.0154* 0.7766 

ITG/ 

MTG 
0.0168* 0.8641 0.5457 0.0366* 0.0366* 0.8468 

unilateral 

lOFA 0.0013* 0.0319* 0.0961 0.1624 0.1624 0.7766 

rOFA 0.0048* 0.0321* 0.3451 0.3042 0.0424* 0.3917 

lpFFA 0.0016* 0.8729 0.5866 0.0044* 0.0192* 0.2004 

rpFFA 0.2381 0.8841 0.8242 0.1460 0.0778 0.9278 

laTL 0.0206* 0.7820 0.3145 0.0202* 0.0202* 0.2746 

raTL 0.2322 0.6482 0.9432 0.4373 0.2529 0.9615 

lITG/ 
MTG 

0.1256 0.7620 0.7542 0.3443 0.3443 0.5232 

rITG/ 
MTG 

0.0263* 0.8847 0.4726 0.0928 0.0928 0.4826 

Note. This table reports the precise p-values for the DCNN VGG-Face in Figure 4 and 

corresponds to the data in Supplementary Table 3. We tested for the significance of the 

hypothesis model correlations against a null correlation using one-sided Wilcoxon signed-rank 

tests. Model comparisons were tested using paired, two-sided Wilcoxon signed rank tests. For 

the tests against zero, a black asterisk indicates Bonferroni-corrected significance considering 

the number of tests per ROI (N = 6 (3 models x 2 DCNNs); p < .0083), a grey asterisk indicates 

uncorrected significance (p(unc.) < .001). For the model comparisons, an asterisk indicates 

FDR-corrected4 significance for the model comparisons per ROI. OFA = occipital face area; 

pFFA = posterior fusiform face area aTL = anterior temporal lobe; ITG = inferior temporal 

gyrus; MTG = middle temporal gyrus.  
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Supplementary Table 5. Means and standard error of the means (SEM) of the 

multivariate ROI analyses (VGG-16).  

 PE Sharpening Input 

ROI mean SEM (bw) SEM (ws) mean SEM (bw) SEM (ws) mean SEM (bw) SEM (ws) 

bilateral 

OFA 0.0623 0.0191 0.0173 -0.0146 0.019 0.0216 0.0206 0.0142 0.0091 

pFFA 0.101 0.0245 0.0223 -0.0099 0.0197 0.0193 0.0413 0.0207 0.0154 

aTL 0.0963 0.0219 0.0205 -0.0396 0.0153 0.0163 0.0272 0.0183 0.0135 

ITG/ 
MTG 

0.0760 0.0225 0.0209 -0.0127 0.0193 0.0188 0.0357 0.0211 0.0144 

unilateral     

lOFA 0.0523 0.0179 0.0161 -0.0124 0.0172 0.0191 0.0284 0.0147 0.0087 

rOFA 0.0535 0.0202 0.0178 -0.0076 0.0186 0.0223 0.0172 0.0137 0.0096 

lpFFA 0.0971 0.0233 0.0212 -0.0055 0.0181 0.0172 0.0460 0.0223 0.0159 

rpFFA 0.0843 0.0261 0.0235 -0.0205 0.0197 0.0206 0.0212 0.0208 0.0152 

laTL 0.0831 0.0206 0.0194 -0.0266 0.0163 0.0186 0.0254 0.0176 0.0129 

raTL 0.0572 0.0176 0.0163 -0.0162 0.0175 0.0147 0.0236 0.0202 0.0143 

lITG/ 
MTG 

0.0531 0.0248 0.0243 -0.0146 0.0212 0.0203 0.0153 0.0222 0.0151 

rITG/ 
MTG 

0.0662 0.0226 0.0207 -0.0037 0.0181 0.0187 0.0373 0.0198 0.0137 

 

Note. This table provides the means and SEMs (N = 43) for the DCNN VGG-16 in Figure 4. 

Individual correlation coefficients (Kendall’s Tau A) between the representational dissimilarity 

matrices (RDM) of the three hypothesis models (PE, Sharpening, Sensory Input) and the 

neural RDM were calculated. Correlations for the occipital face area (OFA) are based on pool4 

activations, the correlations for the other ROIs on pool5 activations. Within-subject (ws) SEMs 

were calculated considering the individuals’ correlation coefficients across the two compared 

DCNNs (VGG-Face and VGG-16). For p-values of the model tests against zero and the model 

comparison tests, please refer to the Supplementary Table 6. pFFA = posterior fusiform face 

area; aTL = anterior temporal lobe; ITG = inferior temporal gyrus; MTG = middle temporal 

gyrus; bw = between-subject; ws = within-subject.  
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Supplementary Table 6. P-values of the multivariate ROI analyses (VGG-16). 

ROI PE 
vs. 
0 

Sharpening 
vs. 
0 

Input 
vs. 
0 

PE 
vs. 

Sharpening 

PE 
vs. 

Input 

Sharpening 
vs. 

Input 

bilateral 

OFA 0.0025* 0.7045 0.0611 0.1351 0.1471 0.1471 

pFFA 0.0002* 0.6322 0.0379* 0.0086* 0.0315* 0.0433* 

aTL 0.0001* 0.9871 0.0901 0.0010* 0.0047* 0.0026* 

ITG/ 

MTG 
0.0038* 0.6227 0.0797 0.0366* 0.1922 0.0366* 

unilateral 

lOFA 0.0032* 0.8093 0.0374* 0.1410 0.3881 0.1379 

rOFA 0.0099* 0.5096 0.1148 0.3339 0.3042 0.4826 

lpFFA 0.0002* 0.6637 0.0249* 0.0050* 0.1206 0.0244* 

rpFFA 0.0018* 0.7270 0.1509 0.0395* 0.0395* 0.2551 

laTL 0.0003* 0.9221 0.0428* 0.0092* 0.0202* 0.0202* 

raTL 0.0017* 0.8177 0.1956 0.0313* 0.1575 0.0630 

lITG/ 
MTG 

0.0206* 0.7506 0.3451 0.3443 0.3443 0.3443 

rITG/ 
MTG 

0.0051* 0.6459 0.0411* 0.0928 0.4066 0.0928 

Note. This table reports the precise p-values for the DCNN VGG-16 in Figure 4 and 

corresponds to the data in Supplementary Table 5. We tested for the significance of the 

hypothesis model correlations against a null correlation using one-sided Wilcoxon signed-rank 

tests. Model comparisons were tested using paired, two-sided Wilcoxon signed rank tests. For 

the tests against zero, a black asterisk indicates Bonferroni-corrected significance considering 

the number of tests per ROI (N = 6 (3 models x 2 DCNNs); p < .0083), a grey asterisk indicates 

uncorrected significance (p(unc.) < .001). For the model comparisons, an asterisk indicates 

FDR-corrected4 significance for the model comparisons per ROI. OFA = occipital face area; 

pFFA = posterior fusiform face area aTL = anterior temporal lobe; ITG = inferior temporal 

gyrus; MTG = middle temporal gyrus.   
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Supplementary Table 7. P-values of the multivariate ROI analyses (VGG-Face vs. VGG-

16). 

ROI PE 
vs.  
PE 

Sharpening 
vs. 

Sharpening 

Input 
vs.  

Input 

bilateral 

OFA 0.9134 0.0396* 0.1471 

pFFA 0.0315* 0.8185 0.0715 

aTL 0.0176* 0.2970 0.0837 

ITG/MTG 0.3105 0.8468 0.1212 

unilateral 

lOFA 0.6743 0.1379 0.1624 

rOFA 0.6799 0.3042 0.2506 

lpFFA 0.0192* 0.3979 0.0192* 

rpFFA 0.0778 0.9278 0.2178 

laTL 0.1247 0.4762 0.3965 

raTL 0.1556 0.9247 0.1575 

lITG/ 
MTG 

0.3702 0.8232 0.3443 

rITG/ 
MTG 

0.4066 0.6726 0.1029 

Note. This table reports the precise p-values for the model comparisons of the DCNNs VGG-

Face and VGG-16 in Figure 4 and corresponds to the data in Supplementary Table 3 and 5. 

An asterisk indicates FDR-corrected4 significance for the model comparisons per ROI. OFA = 

occipital face area; pFFA = posterior fusiform face area aTL = anterior temporal lobe; ITG = 

inferior temporal gyrus; MTG = middle temporal gyrus.  
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Supplementary Table 8. Means and standard error of the means (SEM) of the 

multivariate ROI analyses (ResNet50).  

 PE Sharpening Input 

ROI mean SEM (bw) SEM (ws) mean SEM (bw) SEM (ws) mean SEM (bw) SEM (ws) 

bilateral 

OFA 0.0355 0.0240 0.0253 -0.0264 0.0156 0.0196 0.0048 0.0132 0.0098 

pFFA 0.0521 0.0214 0.0247 -0.0347 0.0156 0.0184 0.0131 0.0130 0.0098 

aTL 0.0484 0.0204 0.0207 -0.0475 0.0146 0.0155 -0.0107 0.0153 0.0093 

ITG/ 
MTG 

0.0542 0.0187 0.0189 -0.0465 0.0133 0.0147 -0.0053 0.0143 0.0085 

unilateral     

lOFA 0.0313 0.0221 0.0242 -0.0171 0.0160 0.0177 0.0107 0.0136 0.0095 

rOFA 0.0292 0.0256 0.0255 -0.0295 0.0148 0.0203 0.0014 0.0123 0.0086 

lpFFA 0.0478 0.0181 0.0199 -0.0213 0.0131 0.0148 0.0087 0.0120 0.0083 

rpFFA 0.0500 0.0236 0.0263 -0.0491 0.0170 0.0204 -0.0012 0.0135 0.0096 

laTL 0.0363 0.0218 0.0217 -0.0290 0.0161 0.0175 0.0089 0.0135 0.0077 

raTL 0.0281 0.0181 0.0201 -0.0309 0.0138 0.0140 -0.0183 0.0140 0.0088 

lITG/ 
MTG 

0.0401 0.0196 0.0223 -0.0419 0.0164 0.0180 -0.0135 0.0146 0.0089 

rITG/ 
MTG 

0.0482 0.0197 0.0208 -0.0370 0.0148 0.0159 -0.0093 0.0137 0.0082 

 

Note. This table provides the means and SEMs (N = 43) for the DCNN ResNet50 in 

Supplementary Figure 1. Individual correlation coefficients (Kendall’s Tau A) between the 

representational dissimilarity matrices (RDM) of the three hypothesis models (PE, Sharpening, 

Sensory Input) and the neural RDM were calculated. Correlations were based on 

res5b_branch2b activations. For p-values of the model tests against zero and the model 

comparison tests, please refer to the Supplementary Table 9. OFA = occipital face area; pFFA 

= posterior fusiform face area; aTL = anterior temporal lobe; ITG = inferior temporal gyrus; 

MTG = middle temporal gyrus; bw = between-subject; ws = within-subject. 
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Supplementary Table 9. P-values of the multivariate ROI analyses (ResNet50). 

ROI PE 
vs. 
0 

Sharpening 
vs. 
0 

Input 
vs. 
0 

PE 
vs. 

Sharpening 

PE 
vs. 

Input 

Sharpening 
vs. 

Input 

bilateral 

OFA 0.1011 0.9522 0.3399 0.1726 0.3310 0.0420* 

pFFA 0.0155* 0.9781 0.1171 0.0327* 0.1359 0.0038* 

aTL 0.0151* 0.9981 0.7132 0.0109* 0.0204* 0.0110* 

ITG/ 

MTG 
0.0064* 0.9988 0.7350 0.0014* 0.0062* 0.0014* 

unilateral 

lOFA 0.1003 0.8547 0.1716 0.3008 0.6420 0.0203* 

rOFA 0.1625 0.9659 0.3496 0.2502 0.4116 0.1255 

lpFFA 0.0111* 0.9506 0.2381 0.0342* 0.0902 0.0284* 

rpFFA 0.0503 0.9935 0.4952 0.0366* 0.1490 0.0121* 

laTL 0.0267* 0.9432 0.3124 0.0894 0.3556 0.0413* 

raTL 0.1057 0.9873 0.9367 0.0496* 0.0496* 0.1413 

lITG/ 
MTG 

0.0245* 0.9863 0.8921 0.0621 0.0621 0.0621 

rITG/ 
MTG 

0.0129* 0.9797 0.6615 0.0199* 0.0199* 0.0201* 

Note. This table reports the precise p-values for the DCNN ResNet50 in Supplementary Figure 

1 and corresponds to the data in Supplementary Table 8. We tested for the significance of the 

hypothesis model correlations against a null correlation using one-sided Wilcoxon signed-rank 

tests. Model comparisons were tested using paired, two-sided Wilcoxon signed rank tests. For 

the tests against zero, a black asterisk indicates Bonferroni-corrected significance considering 

the number of tests per ROI (N = 3; p < .017), a grey asterisk indicates uncorrected 

significance (p(unc.) < .001). For the model comparisons, an asterisk indicates FDR-

corrected4 significance for the model comparisons per ROI. OFA = occipital face area; pFFA 

= posterior fusiform face area aTL = anterior temporal lobe; ITG = inferior temporal gyrus; 

MTG = middle temporal gyrus.  
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Supplementary Table 10. Means and standard deviations for the main effects of the ROI 

analyses split-up by hemisphere. 

 

VGG-Face 

ROI 
PE Sharpening Input left right 

M SD M SD M SD M SD M SD 

OFA 0,0534 0.1143 0.0239 0.0852 0.0129 0.0866 0.0328 0.1001 0.0273 0.0949 

pFFA 0.0333 0.1100 -0.0198 0.0915 -0.0076 0.0829 0.0065 0.0875 -0.0026 0.1072 

aTL 0.0313 0.1182 -0.0069 0.0923 -0.0028 0.0929 0.0154 0.1126 -0.0010 0.0918 

ITG/ 

MTG 
0.0282 0.1118 -0.0079 0.0961 -0.0039 0.0944 0.0021 0.1054 0.0089 0.0987 

VGG-16 

ROI 
PE Sharpening Input left right 

M SD M SD M SD M SD M SD 

OFA 0.0529 0.1243 -0.0100 0.1168 0.0228 0.0930 0.0228 0.1117 0.0210 0.1179 

pFFA 0.0907 0.1614 -0.0130 0.1235 0.0336 0.1411 0.0459 0.1452 0.0283 0.1518 

aTL 0.0702 0.1255 -0.0214 0.1101 0.0245 0.1237 0.0273 0.1269 0.0215 0.1239 

ITG/ 

MTG 
0.0597 0.1547 -0.0092 0.1285 0.0263 0.1377 0.0179 0.1507 0.0333 0.1349 

ResNet50 

ROI 
PE Sharpening Input left right 

M SD M SD M SD M SD M SD 

OFA 0.0302 0.1558 -0.0233 0.1008 0.0061 0.0845 0.0083 0.1161 0.0003 0.1227 

pFFA 0.0489 0.1370 -0.0352 0.1001 0.0037 0.0832 0.0117 0.0994 -0.0001 0.1271 

aTL 0.0322 0.1307 -0.0299 0.0978 -0.0047 0.0907 0.0054 0.1170 -0.0071 0.1035 

ITG/ 

MTG 
0.0442 0.1280 -0.0395 0.1017 -0.0114 0.0921 -0.0051 0.1155 0.0006 0.1116 

 

Note. PE = Prediction Error, ROI = region of interest, M = mean, SD = standard deviation, left 

= left hemisphere, right = right hemisphere, OFA = occipital face area, pFFA = posterior 

fusiform face area, aTL = anterior temporal lobe, ITG = inferior temporal gyrus, MTG = middle 

temporal gyrus. 
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Supplementary Table 11. Main effects and post-hoc tests for the ROI analyses split-up 

by hemisphere (VGG-Face). 

 

Main effects and interaction of factors ‘hemisphere’ and ‘model’ 

ROI factor df SS MS F p ƞp² 

  hemisphere 1 3852.7481 3852.7481 0.9359 0.3344 0.0044 

OFA model 2 39357.0233 19678.5116 4.9035 0.0083* 0.0446 

  hemisphere:model 2 2557.5891 1278.7946 0.3097 0.7340 0.0029 

  hemisphere 1 7370.7016 7370.7016 1.5714 0.2114 0.0074 

pFFA model 2 64890.3023 32445.1512 7.2968 0.0009* 0.0650 

  hemisphere:model 2 4555.5891 2277.7946 0.4836 0.6173 0.0046 

  hemisphere 1 6763.7248 6763.7248 1.6550 0.1997 0.0078 

aTL model 2 27796.4651 13898.2326 3.4311 0.0342* 0.0316 

  hemisphere:model 2 8146.6589 4073.3295 1.0094 0.3662 0.0095 

  hemisphere 1 1937.3992 1937.3992 0.4857 0.4866 0.0023 

MTG model 2 36569.1860 18284.5930 4.7405 0.0097* 0.0432 

  hemisphere:model 2 4162.7674 2081.3837 0.5261 0.5917 0.0050 

Post-hoc tests for main effect ‘model’ 

ROI contrast df SE t-ratio p 

  Input - PE 210 9.661 -3.0139 0.0081* 

OFA Input - Sharpening 210 9.661 -0.7703 0.7216 

  PE - Sharpening 210 9.661 2.2436 0.0664 

  Input - PE 210 10.169 -2.8873 0.0119* 

pFFA Input - Sharpening 210 10.169 0.7227 0.7503 

  PE - Sharpening 210 10.169 3.6100 0.0011* 

  Input - PE 210 9.706 -2.0127 0.1116 

aTL Input - Sharpening 210 9.706 0.4457 0.8964 

  PE - Sharpening 210 9.706 2.4584 0.0390* 

  Input - PE 210 9.471 -2.3511 0.0512 

MTG Input - Sharpening 210 9.471 0.5463 0.8485 

  PE - Sharpening 210 9.471 2.8975 0.0115* 

  

Note. We tested the correlation values (Kendall’s Tau A) for each region of interest (ROI) for 

main effects and interactions between the factors hemisphere (left, right) and model (PE, 

Sharpening, Sensory Input) using the non-parametric Aligned Rank Transform (ART)11. An 

asterisk indicates significance (p(unc.) < .05 for main effects and interaction, Tukey-corrected 

for post-hoc tests12). Df = degrees of freedom, SS = sum of squares, MS = mean square, SE 

= standard error of the mean, ROI = region of interest, OFA = occipital face area, pFFA = 

posterior fusiform face area, aTL = anterior temporal lobe, MTG = middle temporal lobe.  

  



 

30 

Supplementary Table 12. Main effects and post-hoc tests for the ROI analyses split-up 

by hemisphere (VGG-16). 

 

Main effects and interaction of factors ‘hemisphere’ and ‘model’ 

ROI factor df SS MS F p ƞp² 

  hemisphere 1 240.3140 240.3140 0.0440 0.8340 0.0002 

OFA model 2 56799.2326 28399.6163 5.4971 0.0047* 0.0497 

  hemisphere:model 2 3831.9767 1915.9884 0.3514 0.7041 0.0033 

  hemisphere 1 5242.5155 5242.5155 1.2246 0.2697 0.0058 

pFFA model 2 104916.3488 52458.1744 13.2052 0.0000* 0.1117 

  hemisphere:model 2 2173.0465 1086.5233 0.2524 0.7772 0.0024 

  hemisphere 1 3132.5620 3132.5620 0.7089 0.4008 0.0034 

aTL model 2 130361.0465 65180.5233 16.3647 0.0000* 0.1348 

  hemisphere:model 2 5105.0930 2552.5465 0.5796 0.5610 0.0055 

  hemisphere 1 5152.7481 5152.7481 1.1194 0.2913 0.0053 

MTG model 2 46720.4012 23360.2006 5.2176 0.0061* 0.0473 

  hemisphere:model 2 1073.5814 536.7907 0.1162 0.8903 0.0011 

Post-hoc tests for main effect ‘model’ 
ROI contrast df SE t-ratio p 

  Input - PE 210 10.9611 -1.5647 0.2633 

OFA Input - Sharpening 210 10.9611 1.7493 0.1895 

  PE - Sharpening 210 10.9611 3.3140 0.0031* 

  Input - PE 210 9.6117 -2.5804 0.0283* 

pFFA Input - Sharpening 210 9.6117 2.5587 0.0300* 

  PE - Sharpening 210 9.6117 5.1391 0.0000* 

  Input - PE 210 9.6243 -2.8151 0.0147* 

aTL Input - Sharpening 210 9.6243 2.9057 0.0113* 

  PE - Sharpening 210 9.6243 5.7207 0.0000* 

  Input - PE 210 10.2040 -1.6535 0.2257 

MTG Input - Sharpening 210 10.2040 1.5766 0.2580 

  PE - Sharpening 210 10.2040 3.2300 0.0041* 

  

Note. We tested the correlation values (Kendall’s Tau A) for each region of interest (ROI) for 

main effects and interactions between the factors hemisphere (left, right) and model (PE, 

Sharpening, Sensory Input) using the non-parametric Aligned Rank Transform (ART)11. An 

asterisk indicates significance (p(unc.) < .05 for main effects and interaction, Tukey-corrected 

for post-hoc tests12). Df = degrees of freedom, SS = sum of squares, MS = mean square, SE 

= standard error of the mean, ROI = region of interest, OFA = occipital face area, pFFA = 

posterior fusiform face area, aTL = anterior temporal lobe, MTG = middle temporal lobe. 
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Supplementary Table 13. Main effects and post-hoc tests for the ROI analyses split-up 

by hemisphere (ResNet50). 

 

Main effects ‘model’ and ‘hemisphere’ 
ROI factor df SS MS F p ƞp² 

  hemisphere 1 1344.6550 1344.6550 0.2529 0.6156 0.0012 

OFA model 2 43267.9767 21633.9884 4.2061 0.0162* 0.0385 

  hemisphere:model 2 192.1473 96.0736 0.0180 0.9822 0.0002 

  hemisphere 1 5260.5620 5260.5620 0.9338 0.3350 0.0044 

pFFA model 2 99196.3488 49598.1744 9.5595 0.0001* 0.0834 

  hemisphere:model 2 2333.4961 1166.7481 0.2075 0.8128 0.0020 

  hemisphere 1 12909.3992 12909.3992 2.6021 0.1082 0.0122 

aTL model 2 71736.9302 35868.4651 7.6288 0.0006* 0.0677 

  hemisphere:model 2 2907.1705 1453.5853 0.2915 0.7475 0.0028 

  hemisphere 1 3760.5620 3760.5620 0.7321 0.3932 0.0035 

MTG model 2 111785.9535 55892.9767 11.8647 0.0000* 0.1015 

  hemisphere:model 2 269.3256 134.6628 0.0261 0.9742 0.0002 

Post-hoc tests for main effect ‘model’ 
ROI contrast df SE t-ratio p 

  Input - PE 210 10.9369 -0.7995 0.7037 

OFA Input - Sharpening 210 10.9369 2.0147 0.1112 

  PE - Sharpening 210 10.9369 2.8142 0.0147* 

  Input - PE 210 10.9845 -1.8493 0.1563 

pFFA Input - Sharpening 210 10.9845 2.5067 0.0344 

  PE - Sharpening 210 10.9845 4.3560 0.0001* 

  Input - PE 210 10.4567 -2.2329 0.0681 

aTL Input - Sharpening 210 10.4567 1.6591 0.2235 

  PE - Sharpening 210 10.4567 3.8920 0.0004* 

  Input - PE 210 10.4669 -3.1972 0.0045* 

MTG Input - Sharpening 210 10.4669 1.5842 0.2547 

  PE - Sharpening 210 10.4669 4.7814 0.0000* 

 

Note. We tested the correlation values (Kendall’s Tau A) for each region of interest (ROI) for 

main effects and interactions between the factors hemisphere (left, right) and model (PE, 

Sharpening, Sensory Input) using the non-parametric Aligned Rank Transform (ART)11. An 

asterisk indicates significance (p(unc.) < .05 for main effects and interaction, Tukey-corrected 

for post-hoc tests12). Df = degrees of freedom, SS = sum of squares, MS = mean square, SE 

= standard error of the mean, ROI = region of interest, OFA = occipital face area, pFFA = 

posterior fusiform face area, aTL = anterior temporal lobe, MTG = middle temporal lobe. 
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Supplementary Table 14. Searchlight analysis for the hypothesis model Prediction 

Error (PE) (p(FWE) < .05) (VGG-Face, pool4). 

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 
x,y,z {mm} label 

0.000 5841   6.61  5.44  52  -54  28 right angular gyrus 

0.002     5.82  4.96  48  -58  -2 right middle temporal gyrus 

0.004     5.50  4.75  32  -60  22 
right lateral occipital cortex, 
superior division 

0.000 10955   6.58  5.43  32   -8  48 right precentral gyrus 

0.001     6.14  5.16  48   18  14 
right inferior frontal gyrus, pars 
opercularis 

0.002     5.83  4.96  12   22  40 right paracingulate gyrus 

0.003 7916   5.67  4.86 -54  -54  46 left angular gyrus 

0.003     5.61  4.82 -26  -86  26 left superior occipital gyrus 

0.006     5.39  4.67 -44  -60  -4 
left inferior temporal gyrus, 
temporooccipital part 

0.010 157   5.17  4.52 -46  -24 -14 
left middle temporal gyrus, 
posterior division 

0.013 585   5.07  4.45 -44   14   8 
left inferior frontal gyrus, pars 
opercularis 

0.027     4.81  4.27 -34   26  26 left middle frontal gyrus 

0.015 207   5.03  4.43 -42   26  48 left middle frontal gyrus 

0.033     4.73  4.21 -30   10  56  

0.039     4.66  4.16 -30   16  50  

0.030 30   4.76  4.23  44   50  22 right middle frontal gyrus 

0.032 65   4.74  4.22  56  -16 -16 
right middle temporal gyrus, 
posterior division 

0.042     4.63  4.14  60  -12 -30  

0.035 8   4.71  4.19  20 2  58 right superior frontal gyrus 

0.037 14   4.68  4.17 -48   16 -14 left temporal pole 

0.040 16   4.66  4.16  30  -28 -26 right fusiform gyrus 

0.043 9   4.62  4.13 -38   58   6 left middle frontal gyrus 

0.047 5   4.59  4.11  -4   56  12 
left superior frontal gyrus medial 
segment 

0.048 1   4.58  4.10 -18   10  -6 left putamen 

0.048 3   4.58  4.10  30   14   2 right insular cortex 

0.050 1   4.57  4.09  28  -22 -16 right hippocampus 
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Supplementary Table 15. Searchlight analysis for the hypothesis model Prediction 

Error (PE) (p(FWE) < .05) (VGG-Face, pool5). 

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 
x,y,z {mm} label 

0.000 1498   6.95  5.64  30  -8  46 right precentral gyrus 

0.004     5.54  4.77  34 -14  14 right posterior insula 

0.031     4.79  4.26  20  -2  58 right superior frontal gyrus 

0.002 1071   5.74  4.90  12  24  40 right paracingulate gyrus 

0.011 463   5.19  4.54 -54 -54  44 left angular gyrus 

0.031     4.79  4.26 -50 -64  32  

0.012 438   5.14  4.50  28 -66  28 
right lateral occipital cortex, superior 
division 

0.015     5.06  4.44  32 -60  22  

0.017     5.03  4.42  46 -54  28 right angular gyrus 

0.014 264   5.08  4.46  48  16  14 right inferior frontal gyrus, pars opercularis 

0.030     4.80  4.26  56  10  40 right precentral gyrus 

0.040     4.69  4.18  50   6  24  

0.015 155   5.07  4.46  32  12   4 right insular cortex 

0.016 54   5.04  4.43 -46 -24 -14 left middle temporal gyrus, posterior division 

0.018 74   4.99  4.40 -28   8  54 left middle frontal gyrus 

0.019 67   4.97  4.38  54 -16 -16 
right middle temporal gyrus, posterior 
division 

0.021 663   4.94  4.36 -28 -74  32 left lateral occipital cortex, superior division 

0.029     4.82  4.28 -24 -90  34 left occipital pole 

0.029     4.82  4.27 -34 -86  34 left middle occipital gyrus 

0.028 39   4.83  4.28 -64 -58  -2 
left middle temporal gyrus, temporooccipital 
part 

0.034 7   4.76  4.23 -42  26  48 left middle frontal gyrus 

0.037 28   4.73  4.21 -22 -62 -24 left cerebellum exterior 

0.044 9   4.66  4.16 -40  14  12 left frontal operculum cortex 

0.049 1   4.61  4.13 -10 -66  26 left precuneus 

0.049 1   4.61  4.13   2 -14  36 right middle cingulate gyrus 
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Supplementary Table 16. Difference searchlight results for ‘Prediction Error (PE) minus 

Sensory’ (p(FWE) < .05) (VGG-Face, pool4 minus conv1_2). 

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 
x,y,z {mm} label 

0.000 34547   6.92  5.62  50  4  42 right precentral gyrus 

0.000     6.80  5.55  52  -46  36 right angular gyrus 

0.000     6.73  5.51  -2   14  40 left middle cingulate gyrus 

0.008 2080   5.30  4.61   0  -60  14 left precuneus 

0.008     5.28  4.60  -6  -50  52  

0.009     5.23  4.56 -10  -48  22 
left cingulate gyrus, posterior 
division 

0.019 106   4.96  4.38 -46  -20 -14 
left middle temporal gyrus, 
posterior division 

0.024 93   4.88  4.32 -34  -54 -60 left cerebellum exterior 

0.047 1   4.61  4.12  30   4  -32 
right parahippocampal gyrus, 
anterior division 

0.049 1   4.60  4.12  32   2 -30 
right parahippocampal gyrus, 
anterior division 

0.049 2   4.60  4.11 -38   54   4 left middle frontal gyrus 
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Supplementary Table 17. Difference searchlight results for ‘Prediction Error (PE) minus 

Sensory’ (p(FWE) < .05) (VGG-Face, pool5 minus conv1_2). 

peak 
p(FWE) 

cluster 
equivk 

peak 
T 

peak 
equivZ 

x,y,z {mm} label 

0.000 2511   6.87  5.59  -2  12  42 left middle cingulate gyrus 

0.009     5.27  4.59   2 -14  40 right middle cingulate gyrus 

0.013     5.13  4.50   8 -16  46 right supplementary motor cortex 

0.001 3221   6.18  5.18  32  -6  48 right precentral gyrus 

0.001     5.94  5.03  42  10  -2 right anterior insula 

0.002     5.84  4.97  52   4  40  

0.004 639   5.60  4.81  42 -46  22 right angular gyrus 

0.045     4.66  4.16  42 -64  12 
right lateral occipital 
cortex, inferior division 

0.005 539   5.44  4.71 -24 -86  30 left superior occipital gyrus 

0.008 349   5.33  4.63 -56 -52  46 
left supramarginal gyrus, 
posterior division 

0.012 466   5.17  4.52  34  24  48 right middle frontal gyrus 

0.026     4.87  4.31  30  32  24   

0.013 1013   5.12  4.49 -46  14  18 
left inferior frontal gyrus, pars 
opercularis 

0.018     5.01  4.41 -34  24  50 left middle frontal gyrus 

0.023     4.93  4.35 -38  26  32   

0.014 94   5.10  4.47 -48  16 -16 left temporal pole 

0.015 176   5.08  4.46  54 -18 -16 
right middle temporal gyrus, 
posterior division 

0.016 112   5.04  4.43 -50 -22 -18 
left middle temporal gyrus, 
posterior division 

0.022 406   4.93  4.36 -44 -66  -2 left inferior occipital gyrus 

0.032     4.80  4.26 -56 -72   6 
left lateral occipital cortex, 
inferior division 

0.037     4.74  4.22 -62 -64  -2 
left middle temporal gyrus, 
temporooccipital part 

0.024 135   4.90  4.34 -52 -68  30 left angular gyrus 

0.046 2   4.65  4.15 -14 -62 -48 left cerebellum exterior 
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Supplementary Table 18. Searchlight analysis for the hypothesis model Sharpening 

(p(FWE) < .05) (VGG-Face, pool4). 

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 
x,y,z {mm} label 

0.027 20   4.88  4.32  -6  68 14 left frontal pole 

0.027 35   4.88  4.32 -52 -22 50 left postcentral gyrus 

0.037 23   4.77  4.24   0  26  2 left subcallosal cortex 
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Supplementary Table 19. Difference searchlight results for ‘Prediction Error (PE) minus 

Sharpening’ (p(FWE) < .05) (VGG-Face, pool5) . 

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 

x,y,z 

{mm} 

label 

0.003 380  5.65  4.84  12  22  42 right paracingulate gyrus 

0.043    4.71  4.20  -4  12  44 left supplementary motor cortex 

0.007 75  5.37  4.66  22  -6  56 right superior frontal gyrus 

0.008 302  5.34  4.64  40 -46  22 
right supramarginal gyrus, posterior 
division 

0.016    5.09  4.47  32 -54  26 right parietal lobe 

0.010 559  5.26  4.58 -16 -64 -22 left cerebellum exterior 

0.013    5.15  4.51 -26 -66 -20   

0.015 148  5.12  4.48 -54 -50  46 left supramarginal gyrus 

0.017 117  5.05  4.44 -48  10   8 
left inferior frontal gyrus, pars 
opercularis 

0.021 50  4.98  4.39  30  36  26 right middle frontal gyrus 

0.025 37  4.91  4.34 -38 -56 -58 left cerebellum exterior 

0.030 44  4.85  4.30  52   2  48 right precentral gyrus 

0.040    4.74  4.22  48  -2  38   

0.033 19  4.81  4.27  54 -18 -16 right middle temporal gyrus 

0.050 1  4.65  4.16 -60   8   8 left precentral gyrus 
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Supplementary Table 20. Searchlight analysis for the hypothesis model Prediction 

Error (PE) (p(FWE) < .05) (VGG-16, pool4). 

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 

x,y,z {mm} label 

0.000 1988   6.69  5.49  34 -16  48 right precentral gyrus 

0.004     5.53  4.77  34 -14  20 right insular cortex 

0.001 2440   6.24  5.22 -40  28  48 left middle frontal gyrus 

0.013     5.09  4.46 -48  16 -14 left temporal pole 

0.017     4.98  4.39 -54  10  40  

0.001 2837   6.23  5.21 -50 -50  44 left supramarginal gyrus 

0.006     5.36  4.65 -46 -58  -8 
left inferior temporal gyrus, 
temporooccipital part 

0.007     5.31  4.62 -56 -38  54  

0.001 1550   6.17  5.18  56 -48  48 right angular gyrus 

0.001     5.90  5.01  50 -50  30  

0.002 1666   5.77  4.92   2  24  34 right paracingulate gyrus 

0.003     5.66  4.85   2  18  40  

0.013     5.08  4.46  -2  38  52 
left superior frontal gyrus medial 
segment 

0.002 916   5.71  4.88   0 -50  18 left posterior cingulate gyrus 

0.004 472   5.56  4.79   2 -14  42 right middle cingulate gyrus 

0.031 26   4.76  4.23  34  36  18 right frontal pole 

0.034 22   4.73  4.21  -4 -60 -20 cerebellar vermal lobules I-V 

0.037 70   4.69  4.19 -22 -82  24 left superior occipital gyrus 

0.040 18   4.67  4.17 -48  -8 -18 left superior temporal gyrus 

0.048 2   4.60  4.11  36 -84  18 right middle occipital gyrus 

0.049 3   4.59  4.11  50   8  42 right precentral gyrus 

0.049 2   4.59  4.11 -24 -96  20 left occipital pole 
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Supplementary Table 21. Searchlight analysis for the hypothesis model Prediction 

Error (PE) (p(FWE) < .05) (VGG-16, pool5).  

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 

x,y,z {mm} label 

0.000 10278   6.97  5.65 -36   28  52 left middle frontal gyrus 

0.001     6.16  5.17  36   -8  48 right precentral gyrus 

0.001     5.95  5.04  -6   40  52 left superior frontal gyrus 

0.001 951   6.04  5.10  -4  -46  18 left posterior cingulate gyrus 

0.041     4.64  4.15 -16  -56  34 left precuneus cortex 

0.001 10506   5.91  5.01 -44  -58  16 left angular gyrus 

0.002     5.81  4.95 -46  -58   4 left middle temporal gyrus 

0.002     5.80  4.94 -50  -52 -38 left cerebellum exterior 

0.002 1726   5.70  4.87  60  -54  38 right angular gyrus 

0.004     5.52  4.76  58  -48  50  

0.045     4.60  4.11  54  -66   4 right inferior occipital gyrus 

0.006 284   5.34  4.64  -2  -14  42 left middle cingulate gyrus 

0.007 543   5.32  4.62  40   12  -6 right anterior insula 

0.011 415   5.13  4.50  40  -84  12 right middle occipital gyrus 

0.017 311   4.98  4.39  20  -40 -20 right cerebellum exterior 

0.034     4.71  4.19  26  -28 -14 right hippocampus 

0.017 151   4.98  4.39   6  -92  30 right occipital pole 

0.020 82   4.92  4.35  32   26  52 right middle frontal gyrus 

0.025 96   4.82  4.28 -68  -20   2 left superior temporal gyrus 

0.029 80   4.77  4.24 -10   42 -10 left medial frontal cortex 

0.033 36   4.72  4.20  30  -86 -36 right cerebellum exterior 

0.042 22   4.63  4.14  38  -76 -18 right occipital fusiform gyrus 

0.044 4   4.61  4.12 -18   10 -10 left putamen 

  

 

  



 

40 

Supplementary Table 22. Difference searchlight results for ‘Prediction Error (PE) minus 

Sensory’ (p(FWE) < .05) (VGG-16, pool4 minus conv1_2). 

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 

x,y,z {mm} label 

0.007 523   5.34  4.64   0  24 36 paracingulate gyrus 

0.007     5.33  4.63   0  14 42  

0.009 384   5.24  4.57 -36  30 40 left middle frontal gyrus 

0.019 87   4.97  4.38   6 -14 54 right supplementary motor cortex 

0.042     4.68  4.17  -2 -12 46 left middle cingulate gyrus 

0.022 73   4.91  4.34  32 -16 22 right central opercular cortex 

0.025 65   4.87  4.31  42 -10 52 right precentral gyrus 

0.048 2   4.62  4.13 -44  18 26 
left opercular part of the inferior 
frontal gyrus 
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Supplementary Table 23. Difference searchlight results for ‘Prediction Error (PE) minus 

Sensory’ (p(FWE) < .05) (VGG-16, pool5 minus conv1_2).  

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 

x,y,z {mm} label 

0.005 172   5.42  4.69  32 -14  24 right parietal lobule 

0.006 500   5.36  4.65 -32  30  52 left middle frontal gyrus 

0.023     4.86  4.31 -38  34  36  

0.027     4.80  4.26 -44  40  14  

0.021 38   4.89  4.33  -6  40  56 left superior frontal gyrus 

0.021 62   4.88  4.32 -28  20 -14 left posterior orbital gyrus 

0.026 55   4.81  4.27  38  14  -4 right anterior insula 

0.030 41   4.76  4.23 -44 -60  -4 
left inferior temporal gyrus, 
temporooccipital part 

0.030 18   4.75  4.23 -56 -60 -34 left cerebellum 

0.032 10   4.73  4.21  14  66  24 right frontal pole 

0.039 17   4.66  4.16 -46  50   0 left middle frontal gyrus 

0.043 11   4.62  4.13   2  16  42 right paracingulate gyrus 

0.044 12   4.61  4.13  40 -86  16 right middle occipital gyrus 

0.045 7   4.60  4.12 -50   8  30 left precentral gyrus 

0.047 1   4.59  4.11 -42 -58  20 left angular gyrus 

0.047 3   4.58  4.10  36  32  34 right middle frontal gyrus 
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Supplementary Table 24. Difference searchlight results for ‘Prediction Error (PE) minus 

Sharpening’ (p(FWE) < .05) (VGG-16, pool4). 

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 

x,y,z 

{mm} 

label 

0.002 658  5.85  4.97 -38  28  50 left middle frontal gyrus 

0.002 608  5.70  4.88  36 -14  46 right precentral gyrus 

0.013    5.11  4.48  32 -16  30 right parietal lobule 

0.034    4.74  4.21  34 -16  22 right insular cortex 

0.007 541  5.30  4.61  12  22  38 right paracingulate gyrus 

0.009    5.25  4.58   2  16  42   

0.010    5.21  4.55   2  24  34   

0.022 137  4.91  4.34 -42  16 -10 left insular cortex 

0.033 34  4.75  4.23   8 -14  50 right precentral gyrus 

0.034 118  4.74  4.22 -44  36  12 left triangular part of the inferior frontal gyrus 

0.038 19  4.69  4.18  36 -86  18 right middle occipital gyrus 

0.047 2  4.61  4.12 -52 -52  42 left supramarginal gyrus 
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Supplementary Table 25. Difference searchlight results for ‘Prediction Error (PE) minus 

Sharpening’ (p(FWE) < .05) (VGG-16, pool5). 

peak 

p(FWE) 

cluster 

equivk 

peak 

T 

peak 

equivZ 

x,y,z 

{mm} 
label 

0.000 1115  6.50  5.38 -34  28  52 left middle frontal gyrus 

0.006    5.35  4.64 -42  26  36  

0.008 87  5.24  4.57  -4  42  54 left superior frontal gyrus 

0.009 103  5.22  4.56 -44 -20 -38 left inferior temporal gyrus 

0.010 546  5.16  4.52 -46  40  10 left triangular part of the inferior frontal gyrus 

0.016 94  4.99  4.40  18  64  24 right frontal pole 

0.035 25  4.70  4.19  34 -86  16 right middle occipital gyrus 

0.039 20  4.66  4.16  -2  28  36 left superior frontal gyrus medial segment 

0.043 8  4.61  4.13  -2 -48  18 left posterior cingulate gyrus 

0.047 3  4.58  4.10 -30 -60  30 left lateral occipital cortex, superior division 

0.049 2  4.57  4.09 -50 -50 -38 left cerebellum exterior 
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Supplementary Table 26. Searchlight analysis for the hypothesis PE model, p(unc.) < 

.001 + cluster-corrected p(FWE) < .05, k > 10 voxel) (ResNet50, res5b_branch2b). 

cluster 
p(FWE) 

cluster 
equivk 

peak 
p(FWE) 

peak 
T 

peak 
equivZ 

x,y,z {mm} label 

0.000 15925 0.002   5.80  4.94 -38  28  50 left middle frontal gyrus 

  0.023   4.87  4.31   0  26  34 paracingulate gyrus 

  0.049   4.57  4.09  38 -12  50 right precentral gyrus 

0.000 6163 0.033   4.73  4.21 -50 -48 -38 left cerebellum exterior 

  0.119   4.21  3.82 -42 -58  -6 left inferior temporal gyrus 

  0.155   4.09  3.73 -44 -46  52 left supramarginal gyrus 

0.002 3876 0.035   4.70  4.19  56 -48  48 right angular gyrus 

  0.045   4.61  4.12  50 -48  34  

  0.165   4.06  3.71  28 -66  28 
right lateral occipital cortex, 
superior division 

0.039 1392 0.059   4.50  4.04   8 -46  26 
right cingulate gyrus, posterior 
division 
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Supplementary Table 27. Difference searchlight results for ‘Prediction Error (PE) minus 

Sensory’, p(unc.) < .001 + cluster-corrected p(FWE) < .05, k > 10 voxel (ResNet50, 

res5b_branch2b). 

cluster 

p(FWE) 

cluster

equivk 

peak 

p(FWE) 

peak 

T 

peak 
equivZ 

x,y,z 

{mm} 

label 

0.001 4705 0.052   4.57  4.09 -38  30  36 left middle frontal gyrus 

  0.069   4.46  4.01 -34  28  48  

  0.096   4.32  3.91 -48  50   0 left frontal pole 

0.009 2495 0.126   4.21  3.82  42  26  36 right middle frontal gyrus 

  0.190   4.03  3.68  38  18  44  

  0.215   3.97  3.64  48  -8  52 right precentral gyrus 
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Supplementary Table 28. Difference searchlight results for ‘Prediction Error (PE) minus 

Sharpening’, p(unc.) < .001 + cluster-corrected p(FWE) < .05, k > 10 voxel (ResNet50, 

res5b_branch2b). 

cluster 
p(FWE) 

cluster 
equivk 

peak 
p(FWE) 

peak 
T 

peak 
equivZ 

x,y,z 
{mm} 

label 

0.000 17100 0.000   6.30  5.25 -38  28  50 left middle frontal gyrus 

  0.010   5.17  4.52   6 -14  50 
right supplementary motor 
cortex 

  0.014   5.06  4.45  -2  26  34 
left superior frontal gyrus 
medial segment 

0.004 3231 0.044   4.61  4.12  56 -44  52 right supramarginal gyrus 

  0.092   4.32  3.91  34 -86  18 right middle occipital gyrus 

  0.167   4.06  3.71  58 -62  26 right angular gyrus 

0.002 3722 0.079   4.38  3.96 -44 -58  -6 
left inferior temporal gyrus, 
temporooccipital part 

  0.206   3.97  3.64 -28 -58  28 left angular gyrus 

  0.238   3.90  3.58 -48 -54 -22 left inferior temporal gyrus 
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Supplementary Table 29. Localizer ‘faces > scenes’, p(unc.) < .001 + cluster-corrected 

p(FWE) < .05, k > 10 voxel. 

cluster 
p(FWE) 

cluster 
equivk 

peak 
p(FWE) 

peak  
T 

peak 
equivZ 

x,y,z {mm} label 

0.000 6300 0.000  14.14   Inf  48 -62   2  right middle temporal gyrus 

  0.000  12.33   Inf  52 -70  -2   

  0.000  10.40  7.28  42 -70  -8   

0.000 2887 0.000  10.75  7.41 -46 -72   4  left inferior occipital gyrus 

  0.000   9.75  7.01 -50 -76  -6  

  0.000   7.89  6.14 -44 -52 -20  

0.001 444 0.007   6.17  5.18  -8 -76 -44  left cerebellum exterior 

  0.151   5.05  4.44 -22 -78 -56  

0.000 820 0.026   5.72  4.89  52   8  32  right precentral gyrus 

  0.227   4.88  4.32  54  10  16   

  0.494   4.50  4.05  48   2  42   

0.000 730 0.034   5.62  4.82 -38 -36  40  left supramarginal gyrus 

  0.205   4.93  4.35 -62 -26  46   

  0.842   4.10  3.74 -54 -26  34   

0.019 262 0.042   5.54  4.78  44  36   8  
right triangular part of the 
inferior frontal gyrus 
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