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General abstract

Maximizing current or future expected rewards is one of the most common goals of many

decisions we make. Decisions are always made within the context of a given task. To optimally

achieve our goals, we must combine knowledge of the structure of the environment with the

current goal to optimally predict different potential rewards. Even the same exact choice can

provide different rewards depending on the task at hand. How does the brain combine task

demands, environmental structure, and reward maximization in the service of decision-making?

Prior works have shown that the ventromedial prefrontal cortex (vmPFC) and adjacent

orbitofrontal cortex (OFC) are known to contain signals corresponding to anticipated outcomes of

decisions, known as expected value signals, that inform our choices. The hippocampal formation

is known to maintain a representation of the environment and potential courses of action in it,

known as a cognitive map. This thesis comprises three projects that explore the interaction

between task structure, value representation, and cognitive maps within the vmPFC, OFC, and

hippocampal formation.

In the first project (Moneta et al., Nature Communications, 2023), we investigate how the vmPFC

flexibly switches between different value representations in a task-dependent manner. Thirty-five

participants completed a random dot-motion task in which either stimulus color or motion

predicted rewards. Multivariate MRI analyses showed that vmPFC signals contain a rich

representation that includes the current task state or context (motion/color), the expected value

associated with the state, and crucially, the irrelevant expected value of the alternative context.

We also find that irrelevant value representations in vmPFC compete with relevant value signals,

interact with task-state representations, and relate to behavioral signs of value competition. Our

results shed light on vmPFC’s role in decision-making, bridging between its role in mapping

observations onto the task states of a mental map, and computing expected values for multiple

potential states.

In the second project (Moneta et al., in prep.), taking a broader perspective on task structure, we

examine how non-spatial cognitive maps are affected by value generalization. A non-spatial
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cognitive map refers to mental representations of abstract relationships between different states,

helping an agent navigate decision-making by encoding how various choices or actions relate to

one another. Animal work has shown that neural representations of spatial cognitive maps are

affected by reward. In this project, we tested if similar effects generalize to non-spatial maps in

humans. Seventy-two participants (38 of which underwent MRI scanning) performed two

sessions of a perceptual discrimination task, before and after extensive reward learning. In all

sessions, stimuli varied along two perceptual dimensions, forming a continuous two-dimensional

cognitive map. After reward learning, performance in the perceptual discrimination task improved

among previously rewarding stimuli. The effect of reward also generalized to areas of the

cognitive map that were never rewarding. The precise pattern of changes in perceptual similarity

judgments is consistent with the idea that reward learning leads to increased psychological

distance between stimuli in the rewarding area, and decreased spacing in neighboring areas.

Simulations show that a shift of representational fields towards the rewarded location, akin to a

gravitation pulling, can explain the behavioral changes. In line with this, preliminary fMRI data

analysis shows evidence for such gravitational pull in the hippocampus and, to some degree, in

the medial OFC representations. Future analyses including additional regions in the hippocampal

formation and the prefrontal cortex are planned. These results indicate that reward affects

non-spatial cognitive maps and suggests accompanying neural representational changes.

In the third project (Moneta, Grossman, Schuck, Trends in Neurosciences, 2024), we review

recent literature connecting value and state representations in the OFC/vmPFC, proposing that

these regions integrate stimulus, context, and outcome information into a unified representational

space. Comparable encoding principles emerge in late layers of deep reinforcement learning

models, where single nodes exhibit similar forms of mixed-selectivity, which enables flexible

readout of relevant variables by downstream neurons. Based on these lines of evidence, we

suggest that outcome-maximization leads to complex representational spaces that are

insufficiently characterized by linear value signals that have been the focus of most prior research

on the topic. We also discuss major outstanding questions concerning the role of OFC/vmPFC in
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learning across tasks, encoding of task-irrelevant aspects, and the role of hippocampus-PFC

interactions.

Collectively, these projects shed light on the dynamic relationship between task states and value

representations, their integration into a cognitive map, and the representational capacities of the

OFC/vmPFC and the hippocampal formation. The findings provide new insights into the neural

mechanisms guiding behavior and suggest future research directions.
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General Introduction

This thesis explores how the brain integrates value signals, task states, and cognitive maps to

support goal-directed behavior. It consists of three interconnected projects investigating the role

of the orbitofrontal cortex (OFC), adjacent and overlapping ventromedial prefrontal cortex

(vmPFC), and hippocampus in representing states, cognitive maps, and values.

The general introduction provides the conceptual foundation for the thesis. It starts with

examining how values influence goal-directed behavior and when they should guide decisions

and introduces task states as a potential framework for guiding which values are applicable. It

then explores cognitive maps, their relation to task states, their role as flexible environmental

representations, and their interaction with values. Lastly, the introduction takes a step back for a

broader look into potential theoretical accounts of how values are represented in the brain and

interact with other task aspects. After presenting the three projects, the general discussion

combines insights from the three projects, addressing the bi-directional influence of task structure

and values and the potential roles of vmPFC/OFC and hippocampus in integrating values with

states and cognitive maps. The thesis concludes with reflections on the flexibility of goal-directed

representational spaces, neuronal mechanisms that might support such flexibility, and future

directions.

The role of values in goal-directed behavior

In this thesis, reward refers to a concrete, often tangible outcome of a specific choice, such as the

nutritional benefit of eating an apple. Rewards are typically external, measurable events that

reinforce behavior. In contrast, value is a more abstract concept reflecting the desirability or

expected outcome of an option. Value integrates not only potential rewards but also subjective

considerations, such as personal preferences, long-term goals, and situational factors. Expected

value (EV) is a more specific term that refers to the expected outcome of a choice, calculated as

the sum of possible future rewards weighted by their probabilities. In mathematical terms, EV is

objective, as it is a probabilistic calculation. In psychological terms, and this thesis, the focus is

usually on more subjective expected values, as they reflect an individual’s beliefs about the world
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and future outcomes. For example, when choosing between a fresh apple and a chocolate bar, the

expected value might consider not only immediate taste but also the belief of future health

benefits or indulgence satisfaction. As detailed below, this subjectivity is an important part of

understanding value-based behavior and its neural underpinning, as objective and subjective

values are not always aligned and other factors (beyond the objective outcome) might influence

the desirability of choices.

In reinforcement learning theory, a state represents the current configuration of the environment,

encompassing all relevant information needed for decision-making (Sutton & Barto, 1998). States

help identify which features are predictive of future rewards (Schuck et al., 2018; Wilson et al.,

2014). Within this thesis, context refers to specific features (or feature types) that are predictive

of reward and are often used to describe subsets of states. For example, during grocery shopping,

in the context of searching for an apple to snack on, textures might be the relevant feature type to

focus on, and the specific textures of the apples (e.g. crisp or mealy) are the specific

reward-predictive states. When choosing an apple, the expected value of the apple is then the sum

of all past experiences we had with apples of similar texture.

Values should guide behavior

Grocery shopping in the supermarket can be a very complex task. Walking down the different

aisles, we need to not only make sense of the constant and changing flow of stimuli around us but

also make complex choices between them. What guides us in choosing between the different

items? A long-believed guiding principle for decision-making is to maximize potential future

rewards resulting from our decisions (Peasgood, 2014; Samuelson, 1947; Silver et al., 2021;

Sutton & Barto, 1998).

The idea of outcome-maximization goes back centuries to Expected Utility Theory (Daniele

Bernoulli, 1738; Peasgood, 2014; Samuelson, 1947), which states that decisions aim to maximize

the expected value of a utility function that represents our subjective preference. There has been

much work on identifying underlying value functions or decision rules that could potentially

guide different types of decisions (Gigerenzer & Gaissmaier, 2011; Kahneman & Tversky, 1979).
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Even after centuries of economic, and later neuroeconomic, research, there remains much debate

on the shape and nature of such functions, even questioning if they are continuous in nature

(Hayden & Niv, 2021). One key shared belief most of these theories have in common is that

people would want to choose the option that yields the highest potential outcome and that values

are a crucial part of the computations required to do so.

From a neuroscientific perspective, the ventromedial prefrontal cortex (vmPFC) and adjacent

orbitofrontal cortex (OFC) are two key areas involved in value processing in humans, primates

and rodents (e.g. Padoa-Schioppa & Assad, 2006; Plassmann et al., 2007; Rich & Wallis, 2016),

for reviews see (Bartra et al., 2013; Clithero & Rangel, 2014; O’Doherty et al., 2001;

Padoa-Schioppa & Assad, 2006). The idea that these regions are crucial for value computation is

broadly supported by lesion studies (Ballesta et al., 2020; Fellows, 2007; Hogeveen et al., 2017;

Vaidya & Fellows, 2020). Anatomically, vmPFC and OFC can be seen as distinct regions (Rolls

et al., 2023) comprised of many subdivisions (Cavada et al., 2000). However, when taking a

broader functional perspective, although some studies hint at functional differences between these

regions in primates (e.g. Bouret & Richmond, 2010; Castegnetti et al., 2021; M. Z. Wang et al.,

2022), the lack of consensus on terminology within and between species makes it challenging to

fully separate them. This thesis therefore does not make a harsh distinction between the two

regions and aims to focus on their functional roles in guiding decision-making across species (e.g.

Levy & Glimcher, 2012; Öngür & Price, 2000).

Value-based decision-making is not a static process; it is dynamic and is influenced by external

factors such as learning, experience, and contextual cues. The same apple could have a higher

value expectation if we are at a time of trying to keep a strict diet, or a lower value expectation if

the last apple we bought was rotten. Values assigned to options are not fixed but instead adapt

over time (D. Lee et al., 2012; O’doherty, 2004; Rushworth et al., 2012; Sutton & Barto, 1998).

One of the leading and most prominent theories of value-based decision-making is reinforcement

learning theory (Sutton & Barto, 1998). A main focus point of reinforcement learning is reward

prediction errors which serve to update value representations dynamically. Reward prediction
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errors are defined as the differences between expected and received outcomes. In simple terms,

the repeated experience of receiving a more satisfying outcome than expected reinforces the

subjective value of that option in future decisions, while disappointing outcomes decrease the

subjective valuation. This process of value updating was found to be associated with the

dopaminergic system and its interactions with the vmPFC/mOFC and striatum (Daw et al., 2006;

Frank & Claus, 2006; Montague et al., 1996), which further strengthen their role in dynamically

guiding behavior. Current estimates of potential outcomes based on past experiences are often

referred to as cashed values. Computationally, keeping cached values allows efficient and rapid

decision-making since we don’t need to compute them from scratch and retrieve all past

experiences every time we encounter a choice.

If values need to be constantly updated and changed, integrated with previous knowledge and

future predictions, then regions that are in charge of their representation might do more than only

represent a single final value estimate. Indeed, the vmPFC and mOFC are also involved in

integrating the expectations from different reward-predicting features of the same object (Basten

et al., 2010; Kahnt et al., 2011; Pelletier & Fellows, 2019; Shenhav et al., 2018). At the same

time, these regions are involved in optimizing other objective functions such as maximizing

confidence (Barron et al., 2015; De Martino et al., 2013; Gherman & Philiastides, 2018; Lebreton

et al., 2015), even when it is orthogonal to classic expected values (Shapiro & Grafton, 2020).

Additionally, internal states, such as tiredness, modulate choices and also affect values in the

brain (Pastor-Bernier et al., 2021; Yoshimoto et al., 2022). The interaction with internal states

emphasizes the dynamics of value computation, much like how shopping at the supermarket

while hungry can lead to a very different selection of items.

Brought together, these findings highlight the complexity of value-guided behavior, as

decision-making is not only a function of immediate reward maximization but rather shaped by

multiple interacting cognitive and neural processes.
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Not all values should guide behavior

Often we might have more than one goal in an environment, such as shopping for different meals

in the same trip to the supermarket. Items on the shelves then might elicit different values,

depending on the goal in mind. The same apple might have a different value expectation,

depending if the goal is to snack or to bake a cake. Decisions thus are always made within the

context of a given task and context is crucial for optimal behavior (see e.g. Hayden & Niv, 2021;

Juechems & Summerfield, 2019; Knudsen & Wallis, 2022; Miller et al., 2019; Palminteri &

Lebreton, 2021). Even when taking into account all the internal factors and past experiences, the

resulting value expectations are not absolute, but rather modulated by the current context.

Context could represent immediate influences, such that buying an umbrella on a rainy day might

be more valuable than on a sunny day (Berns et al., 2007). The influence of context can also be

long-lasting. For example, after participants were extensively trained to make decisions within

specific contexts, they were presented with choices between contexts. Participants showed a bias

to choose options that were optimal within their context, even if they were not the most valued

option presented. This bias shows that expected values are context-dependent in a way that can

even lead to violation of the principle of value maximization (Bavard & Palminteri, 2023; Bavard

et al., 2018; Molinaro & Collins, 2023a; Palminteri et al., 2015). Another important aspect of

context is that it is not always clearly observable. When we walk around the supermarket to bake

a pie, we don’t have the goal explicitly presented in front of us at every given moment. We need

to ‘keep in mind‘ that we are here to buy ingredients for a pie and not to bake bread. Partial

observability emphasizes goal uncertainty in decision-making, and solving it is key for optimal

goal-directed behavior. The OFC/vmPFC was found to represent task context, especially when it

is partially observable (e.g. Bradfield & Hart, 2020; Chan et al., 2016; Costa et al., 2023;

Elliott Wimmer & Büchel, 2019; Farovik et al., 2015; Muhle-Karbe et al., 2023; Schuck et al.,

2016; Wilson et al., 2014; Zhou et al., 2019).

Knowing and keeping track of the context is thus crucial for optimal goal-directed behavior. This

raises the question of to what extent context plays a role in neural value representations. Early
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studies suggested that OFC value signals are independent of any other task aspect such as sensory

features, motor aspects, or other choice options (Padoa-Schioppa & Assad, 2006, 2008; Tremblay

& Schultz, 1999). With time, the picture of how the OFC and adjacent vmPFC contribute to

decision-making has become more complex. When tasked to only focus on some features and

ignore others, lesions of the OFC hinder the ability to ignore irrelevant choice options (Noonan

et al., 2017) suggesting the OFC might have a crucial part in the process of identifying

context-dependent values. Even when looking at different options within the same context, value

signals are normalized within their context within macaque OFC single-cell recordings (Conen &

Padoa-Schioppa, 2019; Padoa-Schioppa, 2009), human fMRI (Nelli et al., 2023), and modeling

work (Zimmermann et al., 2018), suggesting that values in the OFC are encoded within a certain

context and not in an absolute manner.

Brought together, these findings highlight the importance of considering context when evaluating

which values should guide behavior. Context can be an influential factor in shaping our

perceptions and decisions by guiding which features are important and how values should be

evaluated. But what exactly is ’context’? How do we understand it, and how can we define it?

Task states might determine which values guide behavior

States, as previously mentioned, encompass all the observable and non-observable information

necessary to predict decision outcomes. Presented with a choice between two sorts of apples at

the supermarket, without knowledge of the context, multiple potential states might co-activate,

such as ’all the information needed to bake a cake’ or ’all the information needed to snack’.

Cognitive control and attention processes support such arbitration between goal-relevant and

goal-irrelevant information (Frömer & Shenhav, 2021; MacLeod, 1991; Monsell, 2003; Shenhav

et al., 2018) by enhancing features that are relevant given the current task context (Corbetta &

Shulman, 2002; Stokes et al., 2013) and shape which features influence expected value

representations in vmPFC (Castegnetti et al., 2021; Frömer et al., 2019; Leong et al., 2017; Niv

et al., 2015; Rudebeck & Murray, 2014). Computational modeling and multivariate imaging

studies suggest that the vmPFC/OFC not only encode values but also track the structure of the
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environment, potentially segmenting experiences into distinct task states that can then guide

future decisions (Chan et al., 2021; Nassar et al., 2019; Schuck et al., 2016; Wikenheiser &

Schoenbaum, 2016). Recent evidence suggests that states are not merely passive containers of

information but actively shape neural representations in value-based decision-making. In

particular, the vmPFC and OFC appear to encode latent state representations that integrate

contextual cues to guide behavior (Baram et al., 2021; Cromwell et al., 2018; Farovik et al., 2015;

Schuck & Niv, 2019; Schuck et al., 2016; Z. Zhang et al., 2017). These regions are thought to

maintain an abstract, high-dimensional representation of task states, dynamically updating them

based on experience and prediction errors (Niv, 2019; Wilson et al., 2014). This flexibility allows

for rapid adaptation to environmental changes, ensuring that decision-making remains optimal

even when faced with uncertainty (Momennejad et al., 2017; Piray & Daw, 2021).

States are thus a good framework to understand what context is and help determine which features

should predict values, and as a result which values should guide behavior. However, such

state-separation might not be as clean as traces of processing of irrelevant features have been

found in several cortical regions, including areas responsible for task execution (V. Li et al., 2018;

Mante et al., 2013; Schuck et al., 2015; Shahar et al., 2019; Takagi et al., 2020). At the same time,

vmPFC was shown to be critical to evaluating counterfactual choices (e.g. ”what might have

been” Levens et al., 2014), and to integrate counterfactual signals during decision-making,

allowing for the comparison between actual outcomes and potential alternatives (Tobia, Guo,

Schwarze, Böhmer, et al., 2014). Similarly, not only task-relevant but also task-irrelevant

valuation has been shown to influence cognitive control (Anderson, 2013; Frömer et al., 2021) as

well as activity in vmPFC (Lebreton et al., 2009), suggesting multiple states might

simultaneously contribute to guiding behavior.

Brought together, when thinking about the computations and representational space required for

optimal decision-making, values are not enough. They must come with the right context, as

buying a metal chair is only valuable if you want to sit, not if you need to light a fire. It is thus

likely that context would directly influence and interact with value representations to guide which
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are the correct values to guide behavior. The first project in this thesis focuses on the relationship

between states, relevant and irrelevant values, and their underlying neural interaction.

Cognitive maps and goal-directed behavior

Structural knowledge of the world around us, and specific experiences we had in it, play a crucial

role in guiding our behavior. To efficiently handle a shopping trip at the supermarket, we need

more than just the goal in mind. We need to keep track of where we are at every moment, which

items we already saw, where we are headed and even potentially make predictions of where

desired items might be located. Humans and animals can adapt their behavior to achieve goals

and have the ability to generalize from specific past experiences with the same goal (Daw et al.,

2005; Gershman et al., 2014). They can also draw on experiences that are only somewhat

connected or even envision new decisions and their outcomes, even if those were never

experienced (Barron et al., 2013; Gupta et al., 2010; Schacter et al., 2007).

Already decades ago, inspired by rats making unexperienced shortcuts in complex mazes to reach

rewards, Tolman coined the term ’cognitive map’ referring to the internal organization and

representation of the world around us (Tolman et al., 1946; Tolman & Honzik, 1930b). In their

broad sense, cognitive maps can be seen as the structured internal representations of relationships

among different states (Behrens et al., 2018). Decades of research revealed a set of

medial-temporal and medial-prefrontal representations that could construct such a spatial

cognitive map. The most prominent discovery was hippocampal place cells which fire at specific

locations of the map (Moser et al., 2008; O’Keefe & Dostrovsky, 1971) followed by entorhinal

grid cells which fire at different locations forming a hexagonal grid (Doeller et al., 2010; Gardner

et al., 2022; Hafting et al., 2005). Alongside place and grid cells, more and more cell ’types’ were

discovered in the hippocampal formation, such as cells encoding goals (Sarel et al., 2017), head

direction (Taube et al., 1990), distance to borders (Solstad et al., 2008) and even cells dedicated to

encoding locations of rewards (Gauthier & Tank, 2018). Together, these cells are seen as forming

a coordinate system, incorporating knowledge from the environment for optimal navigation

(Kaplan et al., 2017; Sharpe et al., 2019; Theves et al., 2019).
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Much of the focus on cognitive maps and their underlying representations has been on navigating

physical space (Behrens et al., 2018; O’Keefe, 1978). Recent work, however, suggests that this

system is not restricted to physically navigating in space and that the same system is also engaged

when imagining navigation (Bellmund et al., 2016; Horner et al., 2016; Neupane et al., 2024).

Even more strikingly, the same system can represent much more abstract concepts and

dimensions, such as visual features (Constantinescu et al., 2016; Theves et al., 2019, 2020), odors

and sounds (Aronov et al., 2017; Bao et al., 2019; Radvansky & Dombeck, 2018; Terada et al.,

2017), choice probabilities and magnitudes (Bongioanni et al., 2021) and even decisions along

two-dimensional social hierarchies (Park et al., 2020, 2021). Cognitive maps thus allow for the

spatial and non-spatial organization of experiences and knowledge, and play a crucial role in

goal-directed behavior (Behrens et al., 2018; Bellmund et al., 2018; Epstein et al., 2017; O’Keefe,

1978; Schuck et al., 2016; Stachenfeld et al., 2017; Tolman, 1948; Wilson et al., 2014).

As described above, states can be conceptualized as foundational units upon which agents base

their actions to maximize rewards. Cognitive maps, on the other hand, can be thought of as

internal representations that encode the relationships between different states. The interplay

between states and cognitive maps is crucial for understanding how agents learn and make

decisions (OC Jordan et al., 2020; Piray & Daw, 2021). The integration of reinforcement learning

principles with the concept of cognitive maps offers a comprehensive framework for

understanding how agents navigate complex environments (Behrens et al., 2018; Momennejad

et al., 2017; Stachenfeld et al., 2017; Stoewer et al., 2022). If states are related to cognitive maps,

we might be able to draw parallels between findings on states to enhance our understanding of

cognitive maps.

Cognitive maps as a dynamic representation of the environment

To optimally guide our behavior, cognitive maps might exhibit a similar dynamic nature as state

representation. One specific similarity cognitive maps might draw from state representations, is

filtering and sorting feature relevancy for optimal behavior. When optimizing a representation to

achieve a goal, disregarding or compressing certain feature dimensions could be beneficial for
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achieving a goal (Flesch et al., 2022; Muhle-Karbe et al., 2023). For example, the shape of the

leaves shouldn’t influence the apple’s taste and therefore a trained shopper might reduce the

representation of different sorts of apples on the shelf to a single gradient of color, ignoring the

leaves. Previous work indeed suggests that neural representations are reduced in dimension in

proportion to feature relevance (Mack et al., 2020). At the same time, contextually irrelevant

information is not completely filtered out, even after extensive amounts of practice (Mante et al.,

2013; Takagi et al., 2021). We might even keep track and associate value to task aspects that have

never been related to our goal (Ben-Artzi et al., 2023; Shahar et al., 2019). It is as if we know the

color of the apple predicts its taste, but still keep track of the shape of its leaves and even the hand

we use to pick it from the shelf. This suggests that while optimizing cognitive maps for goal

achievement, goal-irrelevant features might persist, potentially impacting behavior. Recent

findings indeed found that the hippocampus, while encoding complex transition probabilities

between stimuli, also simultaneously represented their semantic relations, even though those were

irrelevant to the task at hand (Zheng et al., 2024). These results raise the possibility that also on

the cognitive map level, previous goals and task-irrelevant aspects might still influence the broad

representation of the decision space, i.e. the cognitive map.

Different goals might require different optimizations of the decision space, which, in turn, elicit

various representational changes to the cognitive map (Muhle-Karbe et al., 2023). For example,

after tasting many apples, an agent might learn that red apples are sweet and green apples are

sour. To maximize sweetness, the agent might need to find the optimal shade of red.

Reinforcement learning offers methods such as function approximation to address this problem,

allowing for the representation of continuous features like color (Sutton & Barto, 1998). Rather

than defining discrete states like ’choosing sweet red apples’ or ’choosing sour green apples’,

function approximation enables the agent to treat color as a continuous variable. This approach

generalizes learned value functions across similar states using mathematical functions (such as

linear or neural network models), which allows the agent to estimate values for states it has not

directly encountered by learning the relationships between different states and their outcomes. If
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states have a role in emphasizing the right value, as hypothesized above, then when thinking

broadly on the cognitive map, value generalization over unseen states could prompt changes to

the cognitive map to emphasize rewarding areas. For instance, it might cause a gradual increase

in representation in specific rewarding areas, e.g. enhancing acuity around the optimal sweetest

red-shade goal. Moreover, such representational changes might not be restricted to the rewarded

area, but could also influence the entire map, affecting the entire ’color’ axis (Schaffner et al.,

2023).

Outside (and adjacent to) reinforcement learning, the idea of how continuous representations are

clustered into discrete categories has a long history. However, there is conflicting evidence for

the influence of applying discrete categories to the perception of continuous stimuli, sometimes

causing an increase and sometimes a decrease in discriminability (e.g. Goldstone, 1994; Harnad,

2003; Liberman et al., 1957; McMurray, 2022; Thalmann et al., 2024). These findings raise the

question of how continuous cognitive maps are influenced by goals and how continuous and

categorical structures interact over time.

Brought together, cognitive maps allow individuals to organize knowledge of the environment to

guide their behavior. One mechanism they might use is organizing information into current states

and even predicting future states. Having a more dynamic, experience-driven representation of

cognitive maps (and states) can help us better achieve different goals. Being able to predict

rewards is a crucial part of goal-directed behavior (Samuelson, 1947; Silver et al., 2021; Sutton &

Barto, 1998). Therefore the interplay of states, cognitive maps, and values is important to

understand how humans and animals navigate complex environments to achieve their goals.

The role of values in cognitive maps

Many approaches thus far focused on the separation between value and the structure of the

environment. One prominent example is the two-step task, a widely used experimental paradigm

to study the interaction of structure and reward. In this task, participants make sequential choices,

with each decision influencing subsequent states and potential rewards. This setup distinguishes

between model-free learning, which relies on directly cached values from past rewards associated
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with specific stimuli or actions, and model-based learning, which involves building a cognitive

map of the task structure to predict future outcomes (Daw et al., 2011). The successor

representation is another computational framework that bridges model-free and model-based

learning through the separation of value and task structures (Dayan, 1993; Momennejad et al.,

2017). Successor representation encodes the expected future states, not values, an agent will visit,

combining the temporal and spatial structure of the environment. Conceptually, SR can be

thought of as a ’value-free’ representation of the environment which allows flexibility to update

value prediction when those change. Neuroscientific research shows support for the role of

successor representations in the brain’s navigation and decision-making systems (Momennejad

et al., 2017; Stachenfeld et al., 2017; Stoewer et al., 2022; Wittkuhn et al., 2022).

Since states incorporate additional information beyond values, they can help guide decisions for

more optimal future outcomes. The approach to separate value and structure can be very

beneficial to understanding the dependency of value on states. Both the concept of ’states’ as well

as successor representations share the notion that the learned structure of the environment should

influence and emphasize the relevant value-predicting features. This flexibility is crucial for

optimal behavior and correct generalizations. For example, learning the structure of the

supermarket while buying ingredients for a cake, will also help us when we buy products for a

BBQ. However, it raises the question of whether such influences are not bi-directional. Could

values directly shape the representation of the structures of the environment? If one area of the

supermarket has our favorite sweets, which we value more than the hardware materials located

elsewhere. Will the representation of the supermarket remain agnostic to this aspect? It is

possible that over time, repeated exposures to reward in the same location would also influence

the underlying representation of the structure, suggesting they might not be as separated.

What role do values play in cognitive maps? One way to think of values is as another dimension

along which information is organized, similar to other task dimensions (Bongioanni et al., 2021;

Nitsch et al., 2024). Areas in the medial temporal lobe, associated with representing cognitive

maps, are also involved in representing rewards (LeGates et al., 2018; Wirth et al., 2009;
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Zeithamova et al., 2018). However, as mentioned above, values might play a bigger role in

shaping cognitive maps and their underlying representations. Supporting this, studies found that

the activity of place and grid cells are directly influenced by reward (Gauthier & Tank, 2018).

Place cells can conditionally respond only in a certain context, a larger number of place cells

represent areas around reward versus non-reward locations, and even grid cells change in firing

rate and location too (Boccara et al., 2019; Dupret et al., 2010; Moita et al., 2003; Sosa &

Giocomo, 2021). This raises the possibility that representations of value and other aspects of the

map are not fully independent and might influence each other (e.g. Garvert et al., 2023). The

second project aims to investigate how knowledge of reward re-organizes cognitive maps which

in turn guide behavior.

Rethinking the neural code for values in vmPFC/OFC

Cognitive maps and states exhibit flexible dynamics to organize knowledge and guide our

decisions. Identifying the (right) values is a crucial part of this process. At the same time, values

are strongly dependent on other task-related factors such as context. Task context might not only

shape how values are computed (1st project), but values themselves might reshape how the task is

represented (2nd project). This interplay raises a broader long-investigated question: how are

values represented in the brain? Are values represented independently or are they a part of a more

encompassing representational space? To try and shed light on these questions, in the last project,

we reviewed recent literature focused on the vmPFC and mOFC as key regions found to represent

value signals (Bartra et al., 2013; Clithero & Rangel, 2014; O’Doherty et al., 2001;

Padoa-Schioppa & Assad, 2006).

One prominent idea, inspired by early economic theory (e.g. Samuelson, 1947), is that the vmPFC

encodes expected values of different features in a common currency, i.e. a stable desirability scale

that guides decisions (Chib et al., 2009; Fehr & Rangel, 2011; Levy & Glimcher, 2012). This

notion is supported by evidence that vmPFC value signals can be decoded across tasks with

different goals, suggesting that values might be task-independent (Castegnetti et al., 2021; Frömer

et al., 2019; Gross et al., 2014; Howard et al., 2015; Kobayashi & Hsu, 2019; McNamee et al.,
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2013; Westbrook et al., 2019; Yao et al., 2023; Z. Zhang et al., 2017). However, at the same time,

as predicted by the first project and previously mentioned findings, context might interact with

these signals, suggesting that values may not be encoded independently, but rather in relation to

other task information.

Evidence suggests that neurons in vmPFC encode summary statistics of the current task such as

previous offers and outcomes, or the location of the currently attended offer (Mehta et al., 2019).

Recording studies have also shown that the same neurons in OFC often encode multiple variables

at once, a phenomenon known as mixed selectivity (Rigotti et al., 2013). For instance, the same

neurons in macaque OFC can represent both spatial and reward information, even when those are

unrelated (Yoo et al., 2018). This raises a challenge to the notion of a single, task-independent

value signal: if value representations are interwoven with other task-related signals, even within

single neurons, how should we conceptualize their role in the representational space that guides

our decisions? The question of how context and values might co-vary was one of the focus points

of the first project. The last project takes a broader perspective, synthesizing recent literature to

reconcile common-currency accounts of value representation with frameworks emphasizing state

representations in vmPFC/mOFC. Drawing from encoding principles observed in late layers of

deep reinforcement learning models, where individual nodes exhibit similar mixed selectivity, we

explore how value representations may be embedded within a broader representational space. We

suggest that outcome maximization leads to complex representational spaces, focused but not

restricted to vmPFC/mOFC, that are insufficiently characterized by simple linear value signals.

Representational spaces across the vmPFC/OFC and the hippocampal formation

Although the third project focused mainly on vmPFC/OFC, the hippocampal formation and its

interaction with vmPFC/OFC also play an important role in representing task spaces to guide

behavior. The hippocampus has a well-established role in long-term memory and cognitive maps

(Behrens et al., 2018; Sosa & Giocomo, 2021) and is crucial for model-based planning (Miller

et al., 2017). At the same time, state representations in the vmPFC/OFC can be understood as

encoding one’s current location within a cognitive map (Niv, 2019; Schuck et al., 2016). These
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regions share strong anatomical and functional connectivity (Öngür & Price, 2000) and have been

shown to represent spatial locations simultaneously in rodents (Tang et al., 2021; Zielinski et al.,

2019). In humans, their co-activation has been also linked to constructing complex mental

imagery, such as scenes (Monk et al., 2021), usage of tools for specific goals (Castegnetti et al.,

2021), and autobiographical memory recall (McCormick et al., 2020). Together, the hippocampal

formation and the OFC contribute to constructing spatial and abstract cognitive maps, and

trajectories within them, to guide decision-making (Park et al., 2020). Supporting this idea,

hippocampal replay, i.e. reactivation of sequences of neural activity corresponding to prior

experiences (for review, see Wittkuhn et al., 2021), has been associated with the representation of

task states in the OFC (Schuck & Niv, 2019) and the OFC was shown to dynamically updates

hippocampal representations to optimize choice inference (Garvert et al., 2023). Together, these

suggest a collaborative mechanism between the hippocampus and OFC in consolidating

task-related information which likely plays a key role in flexible, goal-directed behavior. While

this thesis only briefly touches on this idea in the third project, and the current results of the

second project are more focused on these regions separately, we hope that further work on the

second project will provide additional insights into more regions in the hippocampal formation

and how hippocampus-OFC interactions guide behavior.
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Thesis rationale

Understanding how task goals, value representations, and cognitive maps work together to guide

our behavior is a fundamental question in cognitive neuroscience. Are values computed

independently of task structure, or do they emerge within a structured representation of the

environment? Does exposure to reward shape how we organize task-relevant information, and if

so, how? How do regions such as the vmPFC, adjacent OFC, and hippocampus integrate these

elements into a joint representational space to guide us to our goals?

This thesis attempts to shed some light on these long-standing questions by investigating the

bidirectional relationship between task structure and value representation, focusing on their neural

substrates. It approaches this from three angles: how does task structure shape value

representations; how value generalization influences task structure; and how these elements may

be integrated into a unified representational space.

Project 1: How does task structure shape value representations?

In the first project, we ask whether the vmPFC represents values in a strictly task-relevant manner

or whether it also encodes other aspects of the task simultaneously. Specifically, does the vmPFC

encode only the values that are relevant for the current choice, or does it also maintain

information about alternative, context-inappropriate values? In the case of the latter, what can this

tell us about the underlying structure of value representations in the vmPFC?

To test this, we designed a task in which either stimulus color or motion predicted reward,

arbitrating between two possible contexts (or: states). We hypothesized that during choice,

vmPFC will represent different values that occur in different task contexts, i.e. values appropriate

in the current context, as well as other, context-inappropriate and therefore choice-irrelevant

values. We predicted that (1) vmPFC will represent values in a state-dependent manner. If that is

the case, we would expect that its signal and behavior would be mainly guided by the expected

value of potential choices within each context: the relevant context and the counterfactual choice

one would have made in an alternative state. Furthermore, if the vmPFC encodes both values and

context, we would expect to find (2) overlapping signals of value and context that interact with
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feature relevance to shape behavior.

Our findings suggest that task state representations govern value computations in vmPFC, such

that when faced with multiple potential states, a comparison is triggered in this region between

the expected values according to each state.

Project 2: How does value generalization influence cognitive maps?

If other task representations, such as states, influence value representations, can the reverse also

be true? Does value influence broader task representations, such as cognitive maps? And

specifically in cases where value is not observed but generalized from similar learning

experiences? As mentioned above, long exposure to specific goals or rewards can cause changes

to perceptual discriminability. Such changes might reflect broader influences on the

representation of the cognitive map. In the second project, we investigate how reward exposure

affects non-spatial cognitive maps in humans. We ask if exposure to reward can cause changes in

how task-relevant dimensions are represented in a perceptual task on the same and the next day.

To address these questions, across four MRI sessions, participants performed a perceptual

discrimination task before and after extensive reward learning. We hypothesized two levels of

generalization: (1) across time, such that areas associated with reward would show increased

behavioral and neural acuity even in later sessions when reward was absent; and (2) across space,

where the effects of reward would induce a systematic reorganization of the cognitive map,

affecting areas that were never directly rewarded.

We simulated potential mechanisms underlying changes in representational spaces due to reward,

considering three main possibilities: (1) Partial remapping, in which a random subset of

representational fields centers around reward. (2) Global (value-driven) remapping, where all

representational fields across the space remap with respect to distance from reward, causing the

signal to scale by distance to reward (equivalent to generalized value map), and (3) a

reward-driven ”gravitational pull” where representational fields shift based on proximity to

reward. Behavioral and preliminary fMRI results suggest a pulling mechanism, with evidence of

this effect in both the hippocampus and medial OFC. This project is ongoing and therefore all the
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results and conclusions are preliminary and should be taken with a grain of salt.

Project 3: How are task and value representations organized into a joint representational

space in the OFC/vmPFC?

After investigating the bidirectional influence of task structure on value representation and vice

versa, the final project asks how task structure, states, and values are integrated to guide our

behavior. We reviewed recent literature while focusing mainly on the vmPFC/OFC. We suggest a

strong connection between value and state representations and argue that the OFC/vmPFC

integrates stimulus, context, and outcome information into one representational space to guide

behavior. We explore theoretical frameworks, including deep neural networks, that provide

potential analogies for how these representations are structured. We suggest a shift of focus from

treating value as an independent, overarching signal, to a framework that emphasizes state

representations as the organizing principle of signals in these regions and their relation to

behavior. This suggests that values are only one part of a more complex manifold of

representations that all reside within the same region and guide our behavior.

A unified framework of how task, values, and cognitive maps shape neural representations

to guide behavior

Bringing these projects together, this thesis presents a perspective of bidirectional influences of

task and value representations. The first project demonstrates that task state representations shape

how value is computed in vmPFC. The second project shows that value exposure, in turn,

reshapes task representations. Finally, the third project proposes that these elements are not

independent but rather part of a single representational space in the OFC/vmPFC, which flexibly

integrates task and value information to guide current and future behavior.

These findings highlight the interaction between state-dependent representations, value

computation, and their role in shaping cognitive maps. Future directions include investigating the

precise mechanisms governing these interactions, exploring how generalizable these findings are

across different task domains, and further disentangling the roles of OFC, vmPFC, and

hippocampus in dynamically structuring and guiding behavior.
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Project 1: Task state representations in vmPFC mediate relevant and irrelevant value

signals and their behavioral influence

Work with Mona M. Garvert, Hauke R. Heekeren, H. R., & Nicolas W. Schuck.

Published at: Nature Communications (2023) DOI: https://doi.org/10.1038/s41467-023-38709-w

https://doi.org/10.1038/s41467-023-38709-w
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Introduction

Decisions are always made within the context of a given task. Even a simple choice between two

apples will depend on whether the task is to find a snack, or to buy ingredients for a cake. In other

words: The same objects can yield different outcomes in different task contexts. This could

complicate the computations underlying retrieval of learned values during a decision, since

outcome expectations from the wrong context might exert influence on the neural representation

of the available options.

Which reward a choice will yield in a given task context is at the core of many decisions (e.g.

Kahneman & Tversky, 1979). Ventromedial prefrontal cortex (vmPFC) represents this so-called

expected value (EV) in a variety of species (Bartra et al., 2013; Clithero & Rangel, 2014;

O’Doherty et al., 2001; Padoa-Schioppa & Assad, 2006; Plassmann et al., 2007; Rich & Wallis,

2016), and thereby is crucial in determining choices (Ballesta et al., 2020). Several investigations

have also shed light on how the brain maps from complex sensory input to expected values, and

the associated cognitive control processes. It is known, for instance, that the brain’s attentional

control network enhances the processing of features that are relevant given the current task

context or goal (Corbetta & Shulman, 2002; Stokes et al., 2013), which in turn helps shape which

features influence expected value representations in vmPFC (Castegnetti et al., 2021; Frömer

et al., 2019; Leong et al., 2017; Niv et al., 2015; Rudebeck & Murray, 2014). Moreover, vmPFC

seems to also represent expected value of different features in a common currency (Chib et al.,

2009; McNamee et al., 2013); and is involved in integrating reward expectations from different

features of the same object (Basten et al., 2010; Kahnt et al., 2011; Pelletier & Fellows, 2019;

Shenhav et al., 2018). It remains unclear, however, how context-irrelevant value expectations of

available features, i.e. rewards that would be obtained in a different task-context, might affect

vmPFC signals, and how such “undue” influence relates to wrong choices.

This is particularly relevant because we often have to do more than one task within the same

environment, such as shopping in the same supermarket for different purposes. Cognitive control

processes are known to arbitrate between relevant and irrelevant information (MacLeod, 1991;
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Monsell, 2003), and it has been suggested that they also gate the flow of information within the

value network (Frömer & Shenhav, 2021; Shenhav et al., 2018). But although cognitive control

does gate relevant information, it is also known that task-switching leads to less than perfect

separation between task contexts/goals (Monsell, 2003) and results in processing of

task-irrelevant aspects (MacLeod, 1991). Several studies found traces of the distracting features

in several cortical regions, including areas responsible for task execution (V. Li et al., 2018;

Mante et al., 2013; Schuck et al., 2015; Shahar et al., 2019; Takagi et al., 2020). Similarly, not

only task-relevant but also task-irrelevant valuation has been shown to influence cognitive control

(Anderson, 2013; Frömer et al., 2021) as well as activity in vmPFC (Lebreton et al., 2009) and

posterior parietal cortex (Grueschow et al., 2015). We therefore hypothesized that during choice

the vmPFC will represent different values that occur in different task contexts, i.e. values

appropriate in the current context, as well as other, context-inappropriate and therefore

choice-irrelevant values. Importantly, unlike in standard cognitive control settings, we asked

whether the above mentioned control during value-based choice involves the arbitration between

the expected values that would result from the counterfactual choices one would have made in

another context.

If that is the case, the neural representation of context might play a major role in gating

context-dependent values in vmPFC. Previous work has shown that vmPFC is involved in

representing such context-signals (Chan et al., 2016; Schuck et al., 2016, 2018; Wimmer &

Büchel, 2019), which suggests that its role goes beyond representing attention-filtered values.

Note that knowing the current context alone will not immediately resolve which value of two

presented options should be represented, similar to how knowing what you are shopping for (cake

or snack) will not answer which of the available apples you should pick. We therefore

hypothesized that vmPFC would have a role that goes beyond only encoding the task context,

namely that it would also be involved in the arbitration between context-dependent values,

meaning that a stronger activation of the relevant task-context will also enhance the

representation of task-relevant values. Such a multifaceted representation of multiple values and
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task contexts within the same region would reconcile work that emphasizes the role of choice

value representations in vmPFC and orbitofrontal cortex (OFC) (Ballesta et al., 2020; Bartra

et al., 2013; Clithero & Rangel, 2014; O’Doherty et al., 2001; Padoa-Schioppa & Assad, 2006;

Plassmann et al., 2007; Rich & Wallis, 2016) with work which emphasizes the encoding of other

aspects of the current task (Constantinescu et al., 2016; Doeller et al., 2010; Mack et al., 2020;

Schlichting et al., 2015; Schoenbaum & Roesch, 2005), in particular of so-called task states (Chan

et al., 2016; Schuck et al., 2016, 2018; Wimmer & Büchel, 2019), within the same region (see

also, Farovik et al., 2015; Zhou et al., 2019). More specifically, we propose that context/task state

representations influence value computations in vmPFC, such that a state representation triggers a

comparison between the values of options as they would be expected in the represented

state/context. In consequence, the value of the option that would be best in the activated state will

become represented, and partial co-activation of different possible states could therefore lead to

value representations that can refer to different choices (the value of the apple best for snacking

and the value of the apple best for baking, even if those are different apples). An alternative view

in which state representations do not impact value computations would assume that activated

values would always refer to the choice one is going to make in the present context (how valuable

the apple chosen for snaking would be for baking).

We investigated these questions using a multi-feature choice task in which different features of

the same stimulus predicted different outcomes, and a task-context cue modulated which feature

was relevant. We show that participants compute both value expectations of the relevant context

as well as value expectations of an additional, explicitly cued-to-ignore, irrelevant context.

Behavioral analyses indicated a choice conflict modulated by the possible expected values of the

relevant and irrelevant context. Multivariate fMRI signals in a vmPFC value ROI were sensitive

to (a) relevant values, (b) contextually irrelevant values and (c) the identity of the current context.

We also found that increased representation of irrelevant values during choice were accompanied

by a decreased representation of the relevant values, indicating a value competition in vmPFC.

This competition was modulated by the task-context signal found in vmPFC. Lastly, we found
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that neural indicators of context, values and the competition between them were linked to

increased choice conflict. We suggest that information within the vmPFC is organized into a

complex multi-faceted representation in which multiple values of the same choice under different

task-contexts are co-represented and compete in guiding behavior, while a context (or state)

signal might act as a moderator of this competition.

Results
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Figure 1

Task and Design a. Prior to value-learning, a participant-specific staircasing procedure adjusted color and motion

parameters such that variance of reaction times across different color and motion features (y-axis) was reduced (paired

t-test, p<.001, n=35). Box covers interquartile range (IQR), mid-line reflects mean, whiskers the range of the data

(until +-1.5*IQR), and solid points represent outliers beyond whiskers. b. After staircasing, specific rewards were

assigned to each of the four color and four motion directions, such that one feature from each context was associated

with the same reward/value. Feature-value mapping was counterbalanced across participants. c. Participants achieved

near ceiling accuracy in choosing the highest valued feature after training (µ=.89, σ=.06, n=35). Boxplot as in a. d.

Single-feature (1D, top) and dual-feature (2D, bottom) trials both started with a cue of the relevant context (“Color” or

“Motion”, 0.6s), followed by a fixation (0.5s-2.5s, µ=0.6s) and a choice between two clouds (1.6s). In 1D trials, each

cloud only had one relevant feature (colored dots, but random motion, or directed motion, but gray dots), while in 2D

trials each cloud had a motion and a color feature. Participants were explicitly asked to select the option yielding the

highest outcome in the cued context and ignore irrelevant features. Then followed another fixation (1.5s-9s, µ=3.4s)

and the value associated with the chosen cloud’s feature of the cued context (outcome, 0.8s). The next trial started after

another fixation (0.7s-6s, µ=1.25s). e. Experimental manipulation of irrelevant values in 2D trials. For each relevant

feature pair (e.g. blue and orange), all possible context-irrelevant feature-combinations were included in the task,

except same feature on both sides. Congruency (left): trials were termed congruent when irrelevant features favored

the same choice as the relevant features, otherwise incongruent. EVback (right): trials were also characterized by the

hypothetical expected value of contextually-irrelevant features, i.e. the maximum value of both irrelevant features. NB

that both aspects did not have any impact on outcomes and were irrelevant for the task at hand and that EV, EVback
and Congruency were orthogonal by design. Highlighted cell reflects example trial in d, bottom.
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Behavioral results

Thirty-five right-handed young adults (18 women, µage = 27.6, σage = 3.35, see Methods for

exclusions) were asked to judge either the color (context 1) or motion direction (context 2) of

moving dots on a screen (random dot motion kinematogramms, e.g. Pilly & Seitz, 2009). Four

different colors and motion directions were used. Before entering the MRI scanner, participants

performed a stair-casing task in which participants first received a cue that instructed them which

feature (a color or direction) will be the target of the current trial. Then participants had select the

matching stimulus from two random dot motion stimuli (see Fig.S1c). In this task,

motion-coherence and the speed which dots changed from grey to a target color were adjusted

such that the different stimulus features could be discriminated equally fast, both within and

between contexts (i.e. Color / Motion, Fig.S1c). As intended, this led to significantly reduced

differences in reaction times (RTs) between the eight stimulus features, within and between

contexts (paired t test on RT variance before and after the staircasing: t(34) = 7.29, p < .001,

Fig.1a), also when tested for each button separately (t(34) = Left: 6.52, Right: 7.70, ps< .001,

Fig.S1d).

Only then, participants learned to associate each color and motion feature with a fixed number of

points (10, 30, 50 or 70 points), whereby one motion direction and one color each led to the same

reward (counterbalanced across participants, Fig.1b). To this end, participants made choices

between clouds that had only one feature-type, while the other feature type was absent or

ambiguous (clouds were grey in motion-only clouds and moved randomly in color clouds). To

encourage mapping of all features on a unitary value scale, choices in this part (and only here)

also had to be made between contexts (e.g. between a green and a horizontal-moving cloud).

Participants achieved near-ceiling accuracy in choosing the cloud with the highest valued feature

(µ = .89, σ = 0.06, t-test against chance: t(34) = 41.8, p < .001, Fig.1c), also when tested

separately for color, motion and across context (µ = .88, .87, .83,σ = .09, .1, .1, t-tests against

chance: t(34) = 23.9, 20.4, 19.9, ps< .001, respectively, Fig.S1e). Once inside the MRI scanner,

one additional training block ensured changes in presentation mode did not induce
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feature-specific RT changes (Anova on mean RT for each feature: F(7,202) = 1.06, p = 0.392).

These procedures made sure that participants began the main task with firm knowledge of feature

values; and that RT differences would not reflect perceptual differences, but could be attributed to

the associated values. Additional information about the pre-scanning phase can be found in

Methods and in Fig.S1.

During the main task, participants had to select one of two dot-motion clouds. In each trial,

participants were first cued whether a decision should be made based on color or motion features,

and then had to choose the cloud that would lead to the largest number of points. Following their

choice, participants received the points corresponding to the value associated with the chosen

cloud’s relevant feature. To reduce complexity, the two features of the cued task-context always

had a value difference of 20, i.e. the choices on the cued context were only between values of 10

vs. 30, 30 vs. 50 or 50 vs. 70. One third of the trials consisted of a choice between single-feature

clouds of the same context (henceforth: 1D trials, Fig.1d, top). All other trials were dual-feature

trials, i.e. each cloud had a color and a motion direction at the same time (henceforth: 2D trials,

Fig.1d bottom), but only the context indicated by the cue mattered. Thus, while 2D trials involved

four features in total (two clouds with two features each), only the two color or two motion

features were relevant for determining the outcome. The cued context stayed the same for four to

seven trials. Importantly, for each comparison of relevant features, we varied the values of the

irrelevant context, such that each relevant value was paired with all possible irrelevant values

(Fig.1e). While the irrelevant context in a trial did not impact the outcome, it might nevertheless

influence behavior. Specifically, the hypothetical outcomes as they would occur in the irrelevant

context could favor the same side as the relevant one, or not (Congruent vs Incongruent trials, see

Fig.1e left), and have larger or smaller values compared to the relevant features (Fig.1e right).

We investigated the impact of these factors on RTs in correct 2D trials, where the extensive

training ensured near-ceiling performance throughout the main task (µ = 0.91, σ = 0.05, t-test

against chance: t(34) = 48.48, p < .0001, Fig.2a). RTs were log transformed to approximate

normality and analysed using mixed effects models with nuisance regressors for choice side
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(left/right), time on task (trial number), differences between attentional contexts (color/motion)

and number of trials since the last context switch (all nuisance regressors had a significant effect

on RTs, Type II Wald χ2 test, all ps< 0.03). We used hierarchical model comparison to assess the

effects of (1) the objective value of the chosen option (or: EV), i.e. points associated with the

features on the cued context; (2) the maximum points that could have been obtained if the

irrelevant features were the relevant ones (the expected value of the background, henceforth:
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Figure 2

Behavioral results a. Participants performed near-ceiling throughout the main task, µ = 0.905, σ = 0.05 (n=35).

Box covers interquartile range (IQR), mid-line reflects mean, whiskers the range of the data (until +-1.5*IQR), and

solid points represent outliers beyond whiskers. b. Participants reacted faster to higher Expected Values (EV, x-axis)

and slower to incongruent (purple) compared to congruent (green) trials. RTs for 1D trials shown in gray. Error bars

represent corrected within subject SEMs (Cousineau et al., 2005; Morey et al., 2008). c. Comparison of log RTs

by trial condition. Incongruent trials were slower than 1D trials (paired t-test: p=.013), and 1D trials slower than

congruent trials (paired t-test: p =.017; paired t-test congruent vs incongruent: p<.001). Error bars represent corrected

within subject SEMs (Cousineau et al., 2005; Morey et al., 2008). P-values FDR-corrected, n=35. d. The Congruency

effect was modulated by EVback, i.e. the more participants could expect to receive from the ignored context, the

slower they were when the contexts disagreed and respectively faster when contexts agreed (x axis, shades of colours).

Likelihood-ratio test (LRR) to asses improved model fit: p<.001, n=35. Gray horizontal line depicts the average RT for

1D trials across subjects and EV. Error bars as above. e. Hierarchical comparison of 2D trial log-RT models showed

that inclusion of a Congruency main effect (p<.001, see c), yet not EVback (p=.27), improved model fit. However,

including an additional Congruency × EVback interaction improved model fit even more (p<.001, see d). P-values

from LR tests as above, stars indicate p<.05, n=35. f. We replicated the behavioral results in an independent sample of

21 participants outside the MRI scanner. Including Congruency (p =.009) but not EVback (p=.63), improved model

fit. Including an additional Congruency × EVback interaction explained the data best (p =.017). P-values/stars as in

e.
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EVback, Fig 1e right), and (3) whether the irrelevant features favored the same side as the relevant

ones or not (Congruency, Fig.1e left). Any effect of the latter two factors would indicate that

outcome associations that were irrelevant in the current context nevertheless influence behavior,

and therefore could be represented in vmPFC.

We found that participants reacted faster in trials that yielded larger rewards and slower in

incongruent compared to congruent trials (likelihood-ratio test to asses improved model fit, EV:

χ2
(1) = 1374.6, p < .001, Congruency: χ2

(1) = 29.0, p < .001, Fig.2b-c). Moreover, compared to

1D trials, participants were slower to respond to incongruent trials and faster to respond to

congruent trials (paired t-tests: t(34) = −2.79, p = .013, t(34) = 2.5, p = .017 respectively,

FDR-corrected, see Fig.2b-c). Crucially, we found that Congruency interacted with the expected

value of the other context: larger EVback increased participants’ speed on congruent trials and had

the opposite effect on incongruent trials (LR-test: χ2
(1) = 18.19, p < .001, Fig.2d). These effects

show that even when participants chose accurately based on the relevant context, the information

of the irrelevant context was not completely filtered. The expected value of a ’counterfactual’

choice resulting from consideration of the irrelevant context mattered: the outcome such a choice

could have led to influenced reaction times. A full model description including effect sizes and

confidence intervals can be found in SI table S2.

Neither adding a main effect for EVback nor the interaction of EV × EVback improved model fit

(LR-tests: χ2
(1) = 1.21, p = .27, χ2

(1) = .01, p = 0.9 respectively), indicating that neither the

presence of larger irrelevant values alone, nor their similarity to the relevant values influenced

participants’ RTs. Additionally, the lower valued irrelevant feature did not show comparable

effects and did not interact with Congruency (LR-test to baseline model: χ2
(1) = 0.92, p = .336,

with interaction: χ2
(1) = 2.76, p = .251). Replacing EVback with a parameter of overall value of

the irrelevant features did not improve the fit (which could be understood as an overall distraction

of the irrelevant context, AIC of model with EVback× Congruency: -6626.649, AIC of model

with Overall Value × Congruency: -6619.878, Fig.S3). These results further support that it is

specifically the expected reward of the ignored context that played a role in participants’ RT.
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All major RT effects hold when running the models nested within levels of EV, Block Context or

switch (Fig.S2). Moreover, the number of trials since context switch did not interact with our

main effect (LR-test with added term for Congruency×EVback× switch:χ2
(1) = 3.70, p = .157)

and our main RT effects still hold when we excluded the first 2 trials after the context switch

(LR-tests: Congruency, χ2
(1) = 8.12, p = .004, Congruency×EVback, χ2

(1) = 16.61, p < .001).

We note that an interaction of EV × Congruency indicated stronger Congruency effect for higher

EV (LR-test with added term: χ2
(1) = 4.34, p = .037, Fig.2b), but did not replicate in the

replication sample (see below, χ2
(1) = 0.23, p = .63). Details of other significant effects and

alternative models considering for instance within-cloud or between-context value differences can

be found in Fig.S3 and Fig.S4 respectively.

We replicated these findings in an additional sample of 21 participants (15 women,

µage = 27.1, σage = 4.91) that were tested outside of the MRI scanner (LR-tests: Congruency,

χ2
(1) = 6.89, p = .009, EVback, χ2

(1) = .23, p = .63, Congruency×EVback, χ2
(1) = 5.69, p = .017,

Fig.2e).

We next modeled choice accuracy in 2D trials using the same analysis approach and nuisance

variables (see methods and Fig.S5) and found the same effects as the RT models: (1) Higher

accuracy for higher EV (LR-test: χ2
(1) = 14.61, p < .001) (2) decreased performance on

incongruent trials with (3) higher error rates occurring on trials with higher EVback (LR-tests:

χ2
(1) = 66.12, p < .001, χ2

(1) = 6.99, p = .03, respectively, Fig.S5).

In summary, these results indicated that participants did not merely perform a value-based choice

among features on the currently relevant context. Rather, both reaction times and accuracy

indicated that participants also retrieved the values of irrelevant features and computed the

resulting counterfactual choice. We next turned to test if the neural code of vmPFC would also

incorporate such counterfactual choices, and if so, how the representation of the relevant and

irrelevant contexts and their associated values might interact.
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fMRI results

Outcome-relevant and outcome-irrelevant values co-exist within the vmPFC. We derived a

value-sensitive vmPFC ROI following common procedures in the literature (e.g. Bartra et al.,

2013; Clithero & Rangel, 2014) (see Fig.3a, and Methods) and tested whether both relevant and

irrelevant expected values are reflected in multivariate vmPFC patterns using RSA. To estimate

value-related activity patterns within the vmPFC mask, we fitted a General Linear Model (GLM)

with one separate regressor for each combination of EV and EVback, irrespective of the context

(cross-validated, 1D trials modeled separately). After multivariate noise normalization and mean

pattern subtraction (see Walther et al., 2016) we computed the Mahalanobis distance between

each combination of regressor. This resulted in one 9 × 9 Representational Dissimilarity Matrix

(RDM, Fig.3 and Methods) per subject, which we analyzed using mixed effects models (Gamma

family with a inverse link, Magnusson et al., 2017). We first asked whether EV was reflected in

the RDMs, as expected given that we used a functionally defined value ROI. Indeed, adding a

main effect for EV dissimilarity (0 when two regressors share the same EV, 1 otherwise)

improved model fit compared to a null model (LR-test: χ2
(1) = 10.89, p < .001, Fig.3b). Next, we

asked if the activity patterns from trials with the same EVback were more similar than patterns

reflecting different EVback. Strikingly, adding a main effect of EVback dissimilarity (0 when

sharing EVback and 1 otherwise) further improved model fit (LR-test with added term:

χ2
(1) = 247.67, p < .001, Fig.3c.).

We then reasoned that the neural codes of expected values should also reflect value-differences in

a gradual manner. We therefore asked whether pattern similarity was not only increased if two

trials had the same value (e.g. comparing ’30 to ’30’, Fig.3d. purple cells), but also higher when

the values in two trials had a difference of 20 (e.g. ’30’ to ’50’, Fig.3d. turquoise) compared to a

value difference of 40 (e.g. ’30’ to ’70’, Fig.3d. yellow). Indeed we found that adding main

effects for the value difference of EV as well as EVback improved model fit (VDEV :LR-test

compared to a null model: χ2
(1) = 12.34, p < .001, VDEVback: LR-test with added term:

χ2
(1) = 256.98, p < .001, Fig.3c-d.). Note that the full model with both value difference effects
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Figure 3

RSA analyses show that vmPFC encodes

both relevant as well as irrelevant expected

values given the current task context. a.

vmPFC region used in all analyses (green vox-

els), defined functionally as the positive effect

of a univariate value regressor thresholded at

pF DR<.0005 (one sided t-test, see methods).

Note that no information regarding the contex-

tually irrelevant values was used to construct

the ROI. Axial slice (left) at x=-6; Sagittal slice

(right) at z=-6. b. Left: Model RDM, each cell

represents one combination of EV and EVback,

see axes. Colors reflect whether a combination

of trials had the same EV (purple) or not (yel-

low). Right: Dissimilarity of vmPFC activa-

tion patterns for trials with the same vs different

EV. Dissimilarity was lower in trials that share

the same expected value (EV, p<.001, n=35).

c. Model RDM (left) testing whether irrelevant

expected value (EVback) affected similarity in

vmPFC. We found less dissimilarity for trails

with the same EVback (p<.001, n=35, right).

d. Left: Model RDM that tested whether pat-

terns similarity was influenced by the size of

EV differences (0: purple, 20: turquoise, 40:

yellow). Right: Average dissimilarity asso-

ciated with the varying levels of value differ-

ence, indicating that larger EV differences be-

tween trials were related to higher pattern dis-

similarity (p<.001, n=35). e. The same effect

was found with respect to EVback where pat-

terns that share the same EVback (irrespective

to EV) also showed a decrease in dissimilar-

ity (p <.001, n=35). Data shown in bar plots

are demeaned by trial-frequency in the design

to match the mixed effect models (see methods

and Fig.S6). Error bars in panels b-e represent

corrected within-subject SEMs (Cousineau et

al., 2005; Morey et al., 2008). P-values in pan-

els b-e reflect likelihood-ratio test of improved

model fit, see main text.

resulted in a better (lower) AIC score than the model with both main effects of the EVs

(AIC=165231 and AIC=165241, respectively, Fig.S6) indicating that the value similarity effect is

not merely driven by the diagonal. Full models including effect sizes and confidence intervals can
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be found in SI Table S5 and Table S6.

Hence, neural patterns in vmPFC were affected by contextually-relevant as well as irrelevant

value expectations. Notably, the values of irrelevant features were computed despite being

counterfactual (not related to the choice), and co-existed with well known expected values signals

in vmPFC.

vmPFC value and context signals co-exist and are positively related. We next turned to

investigate how the neural value representations of EV, EVback and context interacted with each

other on a trial-wise level. We therefore trained a multivariate multinomial logistic regression

classifier on the fMRI images acquired approx. 5 seconds after stimulus onset in same vmPFC

ROI used above. An expected value classifier was trained on behaviorally accurate 1D trials,

where no irrelevant values were present (henceforth: Value classifier, Fig.4a, left;

leave-one-run-out training; see methods). For each testing example, the classifier assigned the

probability of each class given the data (classes are the expected outcomes, i.e. ’30’,’50’ and ’70’,

and probabilities sum up to 1, Fig.4a, right). Crucially, it had no information about the task

context of each given trial (training sets were up-sampled to balance w.r.t. color/motion contexts,

see methods). We first validated that the classifier was sensitive to values, as expected given the

nature of the ROI. Indeed, the class with the maximum probability corresponded to the objective

outcome significantly more often than chance, both when when tested on held out 1D and 2D

trials as well as when tested only on 2D trials (µall = .35, σall = .029, t(34) = 2.89, p = .003,

µ2D = .35, σ2D = .033, t(34) = 2.20,p = .017, respectively. Fig.4b). Similar to the RSA analysis,

we reasoned that the similarity between the values assigned to the classes will be reflected in

gradual probability differences . Specifically, we expected not only that the probability associated

with the correct class be highest (e.g. ‘70’), but also that the probability associated with the

closest class (e.g. ‘50’) would be higher than the probability with the least similar class (e.g. ‘30’,

Fig.4c). Indeed we found that similar values elicited similar probabilities (LR-test of linear

relation between value difference and class probability: χ2
(1) = 12.74, p < .001, full analysis can

be found in Fig.S7) Additional control analyses indicated that our value classification results were
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not the result of a bias caused by overlap of perceptual features between training and test (Fig.S8).

A major feature of our task was that which value expectation was relevant depended on the task

context. We therefore hypothesized that vmPFC would also encode the task context, although this

is not directly value-related (the average values of both contexts were identical). We thus trained

a second classifier on the same data from the EV-sensitive ROI on the same accurate 1D trials,

but this time to identify if the trial was ’Color’ or ’Motion’ (Fig.4d, left). The classifier had no

information as to what was the EV of each given trial, and training sets were up-sampled to

balance the EVs within each set (see methods). The classifier performed above chance for

decoding the correct context, again both when tested on held out trials from all conditions as well

as when tested only on 2D trials (t-test against chance: t(34) = 3.93, p < .001, t(34) = 3.2,

p = .001, respectively. Fig.4e). Moreover, the context was still decodable when keeping the

perceptual input identical between the two classes (i.e. testing on 2D trials with fixed value

difference of the irrelevant values of 20, since the value difference of the relevant context was

always 20, t(34) = 2.73, p = .0005).

We first hypothesized that if vmPFC is involved in signaling both context and values, then the

strength of context signal might relate to the strength of the contextually relevant value. A

corresponding mixed effects analysis indeed found that the probability the context classifier

assigned to the correct class (henceforth: Pcontext) had a positive effect on the decodability of EV

(henceforth: Pev, LR-test compared to null model: χ2
(1) = 9.12, p = 0.002, Fig.4f). In other

words, the better we could decode the context, the higher was the probability assigned to the

correct EV class.

In summary, we found that the Context is represented within the same region as the EV, and that

the strength of its representation is directly linked to the representation of EV. The link between

Context and relevant EV signals suggest that the Context signal might play a role in governing

which values dominate vmPFC.

Competition of vmPFC EV and EVback signals is moderated by a context representation.

One main hypothesis was that contextually-irrelevant values might influence neural codes of



STATES, VALUES AND GOALS IN COGNITIVE MAPS 37

0.30

0.32

0.34

0.36

30 50 70

EV

P
c
la

s
s

class 30 50 70

**

0.3

0.4

0.5

0.6

0.7

All 2D

a
c

c
u

ra
c

y

0.3

0.4

-2 0 2

logit(Pcontext)

P
E

V

**

0.2

0.3

0.4

0.5

All 2D

a
c

c
u

ra
c

y

m
o

tio
n

EV = 30 EV = 50 EV = 70

10 vs. 30 30 vs. 50 50 vs. 70

a b

d

c
o

lo
r

Test example:

e

Test example:

Value classifier (trained on 1D)

Context classifier (trained on 1D)
f

c

𝐄𝐕

a
c
c
u

ra
c
y

a
c
c
u

ra
c
y

𝐥𝐨𝐠𝐢𝐭(𝐏𝐜𝐨𝐧𝐭𝐞𝐱𝐭)

P
E
V

P
c
la
s
s

P
c
la
s
s

P
c
la
s
s

class
Figure 4

Expected value and context signals co-reside within vmPFC. a. A logistic classifier was trained on behaviorally

accurate 1D trials to predict the true EV from vmPFC patterns (”Value classifier”, left). We analysed classifier cor-

rectness and predicted probability distribution (right). shown in b and c. b. The Value classifier assigned the highest

probability to the correct class (objective EV) significantly more often than chance for all trials (p =.003, n=35), also

when tested on generalizing to 2D trials alone (p=.017, n=35). c. The probabilities the classifier assigned to each class

(y-axis, colors indicate the different classes, see legend) split by the objective EV of the trials (x axis). As can be seen,

the highest probability was assigned to the class corresponding to the objective EV of the trial (i.e. when the color label

matched the X axis label). n=35, for individual data points see Fig. S7. d. A second logistic classifier was trained

on the same data to distinguish between task contexts (color vs motion), irrespective of the EV (“Context” classifier).

e. The Context classifier assigned the highest probability to the correct class (objective Context) significantly more

often than chance for all trials (p<.001, n=35), also when tested on generalizing to 2D trials alone (p = .001, n=35).

f. Increased evidence for the objective EV (PEV, y-axis) was associated with stronger context signal in the same ROI

(x-axis, where probabilities z-scored and logit-transformed, LR-test compared to null model: p=.002, N=35). Plotted

are model predictions and gray lines represent individual participants (mean of the top/bottom 20% of trials). Error

bands represent the 89% confidence interval. P values in panels b and e reflect one sided t-test against chance. Error

bars in panels b, c and e represent corrected within-subject SEMs (Cousineau et al., 2005; Morey et al., 2008).

expected value in vmPFC, and therefore should interact with EV probabilities decoded from

vmPFC in a trial-wise manner. Similar to our analyses above, we used mixed effects models to

test whether the Value classifier’s probability of the correct class (PEV) was influenced by EVback

and/ or Congruency of a given 2D trial. This analysis revealed that EVback had a negative effect

on PEV (LR-test compared to null model χ2
(1) = 5.96, p = .015, Fig.5b), meaning that larger

irrelevant expected value led to weaker representation of the relevant one (measured by lower

probability of the objective EV, PEV). Importantly, this effect cannot be attributed to attentional
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effects caused by perceptual input, since replacing EVback with a regressor indicating the presence

of its corresponding perceptual feature in the training class, as highest or lowest value, did not

provide a better model fit (AICs: -1229.2,-1223.3, respectively, see Fig.S8 for details). Adding

the minimum value of the irrelevant context of the trial also did not improve the fit, indicating that

it is specifically the highest of the two irrelevant features driving this effect (LR-test with added

term: χ2
(1) = 0.63, p = .43). We found no evidence for a EVback × Pcontext interaction (LR-test

with added term: χ2
(1) = 0.012, p = .91). Our RSA analysis also provided further support for this

effect, where we found that EVback also had a negative effect on the EV similarity, i.e. higher

dissimilarity for higher EVback (Type II Wald χ2 test: χ2
(1) = 36.6, p < .001, see Fig.S6).

Similarly, high EVback also disrupted the similarities between of the probabilities of the value

classifier (LR-test: χ2
(1) = 6.16, p = .013, see Fig.S7). A number of control analyses also

indicated the validity of finding: Interestingly, and unlike in the behavioral models, we found that

neither Congruency nor its interaction with EV or EVback influenced PEV (χ2
(1) = 0.035,

p = .852,χ2
(1) = 0.48, p = .787, χ2

(1) = .99, p = .317, respectively, Fig.5c), and a match of value

expectations of both contexts (i.e. EV=EVback) led no change of PEV (χ2
(1) = 0.45, p = .502, see

methods). We also found no effect of time since switch on the decodability of EV (Type II Wald

χ2 test: χ2
(1) = 0.85, p = .36, Fig S9, but see discussion on limitations). Alternative models of

PEV, e.g. including within-option or between-context value differences, or alternatives for EVback

(Fig.S9).

The decrease in value decodability due to high irrelevant value expectations could reflect a

general disturbance of the value retrieval process caused by the distraction of competing values.

Alternatively, the encoding of EVback could directly compete with the representation of EV –

reflecting that the relevant and irrelevant value expectations might be represented using similar

neural codes (note that the classifier was trained in the absence of task-irrelevant values, i.e. the

objective EV of 1D trials). In order to test this idea, we looked at the Value classifier probabilities

in trials where EV 6= EVback. This allowed us to interpret the class probabilities of our Value

classifier as either signifying EV (PEV), EVback (PEVback) or a value that was expected in neither
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case (Pother, Fig.5d). We then examined the correlation between each pair of classes. To prevent

any disadvantage of the ’other’ class, we included only trials in which the the ’other’ value’s

associated feature appeared on the screen (relevant or irrelevant). Note that the three class

probabilities for each trial sum up to 1 and hence are strongly biased to correlate negatively. Yet,

PEV and PEVback had a significantly more negative correlation than PEV and Pother (ρ = −.56,

σ = .22, ρ = −.40, σ = .25 respectively, paired t-test: t(34) = −2.77, p = .017, Fig.5e). This

shows that when the probability assigned to the EV decreased, it was accompanied by a stronger

increase in the probability assigned to EVback, akin to a competition between both types of

expectations. Formally, we show that adding PEVback to the model predicting PEV results in a

smaller AIC than when adding Pother (-574 vs -473, respectively. Fig.5f), likelihood-ratio-test for

a model with PEVback: χ2
(1) = 144.34, p < .001, and with Pother: χ2

(1) = 43.83, p < .001).

The previous analysis only informs us about the overall correlation of probabilities across the

entire experiment. To investigate the trial-wise dynamics of the neural representation within

vmPFC, we trained an additional classifier to detect the EVback on behaviorally accurate 2D trials.

Although this classifier suffers from some caveats (see Methods, Fig.S6a-c and below for details),

we reasoned that trialwise probability fluctuations are unbiased, and proceeded to ask if the

probability the EVback classifier assigned to the correct class (P
2D
EVback

) might relate to encoding of

the relevant value as indicated by the Value classifier (i.e., PEV). Importantly, both classifiers

were trained on independent data (EVback classifier on 2D, and Value classifier on 1D trials), but

in both cases on behaviorally accurate trials, i.e. trials where participants choose according to EV,

as indicated by the relevant context. This model showed that an increase in neural representation

of EVback, when measured independently (P
2D
EVback

), reduced EV decodability on a trial-wise basis

(lowered AIC score from -1223.6 to -1225.0, but note that in the LR-test χ2
(1) = 3.45, p = 0.063,

Fig.5d). Most remarkably, the effect of Context, Pcontext, interacted with the effect of P
2D
EVback

,

such that when the context signal was stronger, the negative effect of irrelevant value signals on

relevant value signals was weaker (i.e. Pcontext affected the association between P
2D
EVback

and PEV,

LR-test: χ2
(1) = 5.22, p = 0.022, Fig.5e). In other words, the stronger the relationship between
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Context and EV representations, the less vmPFCs irrelevant value signal competed with its value

representations, akin to a shielding effect. The same analysis also confirmed our previous finding

that the strength of context encoding affected value encoding (effect of Pcontext, LR-test:

χ2
(1) = 9.99, p = .002). Note that the above analysis was complicated by the frequency differences

between different EVback classes, which we controlled by running the model of PEV with random

effects nested within levels of EVback for each subject, i.e. any effect found is not influenced by

the (biased) mean difference between the probabilities assigned to each of those levels

(intuitively, this is similar to running each correlation separately within each level of EVback).

Full models including effect sizes and confidence intervals can be found in tables S3 and S4.

In summary, we showed the neural representation of EV was reduced in trials with higher

expected value of the irrelevant context, and weakened EV representations were accompanied by

an increase in neural representations of such irrelevant value expectation, in the same vmPFC

region. The effect occurred irrespective of action-conflict between the relevant and irrelevant

values (unlike participants’ behaviour). Most strikingly, the negative influence of EVback

representation on EV decodability was mediated by a neural context signal, i.e. when the link

between Context and EV increased, the effect of EVback representations diminished. As will be

discussed later in detail, we consider this to be evidence for parallel processing of two task

aspects in this region, EV and EVback.

Neural representation of EV, EVback and Context guide choice behavior. Finally, we

investigated how vmPFC’s representations of EV, EVback and Context influence participants’

behavior. We first investigated this influence on choice accuracy. Note that the two contexts only

indicate different choices in incongruent trials, where a wrong choice could be a result of a strong

influence of the irrelevant context. Motivated by our behavioral analyses that indicated an

influence of the irrelevant context on accuracy, we asked whether PEVback was different on

behaviorally wrong or incongruent trials. We found an interaction of accuracy × Congruency

(Type II Wald χ2 test: χ2
(1) = 4.51, p = .034, Fig.6a) that indicated increases in PEVback in

accurate congruent trials and decreases in wrong incongruent trials. Hence, on trials in which
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Figure 5

vmPFC representations of task context, expected value and irrelevant expected value interact a. Exemplary

2D color trial (top), its relevant outcomes (middle, color-based), and hypothetical/irrelevant outcomes (motion-based,

bottom). The maxima of relevant and irrelevant outcomes are termed EV and EVback, respectively. b. Higher EVback
was related to decreased decodability of EV (PEV) in behaviorally accurate trials, likelihood-ratio (LR)test: p=.015,

n=35. Color see legend. Error bars represent corrected within-subject SEM. For supporting RSA evidence see Fig.S6d.

(Cousineau et al., 2005; Morey et al., 2008). c. Modelling the probabilities assigned to the true EV class (PEV) showed

an effect of EVback (p=.015) but not Congruency (p=.852). Including EVback and context decodability (Pcontext)

yielded the best fit (p=.001). P-values reflect LR-tests. d. Illustration that Value classifier class probabilities in panel

a’s example could reflect the true EV (PEV), the EVback (PEVback) or neither EV or EVback (POther). e. The correlation

between PEV and PEVback (yellow) was significantly more negative than the correlation between PEV and POther (blue,

paired t-test, p=.017, n=35). Box covers interquartile range (IQR), mid-line reflects median, whiskers the range of the

data (until +-1.5*IQR), and solid points represent outliers beyond whiskers. f. Comparing models of PEV confirmed

that adding PEVback improved fit more than adding POther (AIC: -574 vs. -473), LR test with each individual effect:

p<.001. n=35. g. The neural representations of relevant EV (PEV, y-axis) and the irrelevant EV (P2D
EVback

, x-axis,

z-scored and multinomial-logit-transformed) were marginally negatively associated (LR-test: p=.063, n=35). Error

bands represent 89% confidence interval and gray lines individual participants’ top/bottom 20%. h. Increased evidence

for a Context representation (Pcontext) correlated with less EV/EVback competition (i.e. weaker effect of P
2D
EVback

on

PEV when Pcontext was stronger, LR-test with interaction term: p=.022). Lines reflect model predictions, error bands

represent 89% CI and vertical lines show group means of the top/bottom 20% of data (averaged first within participant,

for individual lines, see Fig.S10). NB that Pcontext was split into three levels for visualization; in our model it was

continuous. i. Comparing models of PEV (nested within EVback levels) revealed that adding either P
2D
EVback

or Pcontext

improved model fit (panels g and h, p=.063 and p=.022), as well as their interaction Pcontext×P2D
EVback

(LR-test with

interaction compared to only Pcontext: p=.022, and only P2D
EVback

: p=.029, n=35). Note that PEVback (panels a-f)

indicates the Value classifier’ class probabilities of the the EVback class, whereas P2D
EVback

(panels g-i) indicates the

EVback classifier’s EVback class probabilities (the former was trained on 1D, the latter on 2D trials). Stars in c, e, f, i

represent threshold of p<.05.
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participants erroneously chose the option with higher valued irrelevant features, PEVback was

increased. Focusing only on behaviorally accurate trials, we found no effect of EV or Congruency

on PEVback (Type II Wald χ2 tests: χ2
(1) = 0.07, p = .794, χ2

(1) = 0.00, p = .987 respectively).

This effect is preserved when modeling only wrong trials (Type II Wald χ2 test of Congruency:

χ2
(1) = 4.36, p = .037).

Motivated by the different predictions for congruent and incongruent trials, we next turned to

model these trial-types separately. When focusing on incongruent trials we found that a weaker

representation of the relevant context was marginally associated with an increased error rate

(negative effect of Pcontext) on accuracy, indicating an increased representation of the wrong

context, LR-test: χ2
(1) = 3.66, p = .055, Fig.6b). Moreover, we found that the joint increases of

the wrong context and its associated irrelevant expected value representation (EVback)

strengthend this effect, i.e. adding a Pcontext × PEVback term to the model of error rates improved

model fit (LR-test: χ2
(1) = 6.33, p = .012, Fig.6b; NB that we found no main effects of EV or

EVback LR-tests: χ2
(1) = 0.28, p = .599, χ2

(1) = 0.0, p = .957, respectively). We next turned to

congruent trials, where a wrong choice should not be associated with activation of the wrong

context since both contexts indicate the same choice. Indeed, there was no influence of Pcontext on

accuracy in Congruent trials (LR-test: χ2
(1) = 0.0, p = .922). However, strong representation of

either relevant or irrelevant EV should lead to a correct choice. Indeed, we found that both an

increase in PEVback and (marginally) in PEV had a positive relation to behavioral accuracy

(χ2
(1) = 3.5, p = .061, χ2

(1) = 6.48, p = .011, respectively, Fig.6c).

Finally, we investigated reaction times of behaviorally accurate trials. In line with the results

presented above, we found that participants who had a weaker influence of Context activity on

their EV representation, also had a stronger RT Congruency effect (r = −.39,p = .022 Fig 6d).

Next, we hypothesized that increased conflict between EV and EVback representations of should

influence RT. Indeed, all neural signatures of EV/EVback conflict correlated with the

Congruency-related RT effect: the more negative a participant’s correlation between PEV and

PEVback was, the stronger her RT Congruency effect (r = −.45,p = .008, Fig.6e); a more negative
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association between EVback and PEV was linked to a stronger EVback modulation of the RT

Congruency effect (r = .43,p = .01, Fig.6f); finally, the same was true when considering the

strength of the effect of the neural representation of EVback (P
2D
EVback

) on the neural EV signal in

relation to the above behavioral marker (r = 35,p = .004, Fig.6g). In other words, the negative

influence of irrelevant EV and its neural representation on relevant EV signal, related to the

interactive effect of EVback × Congruency on RTs (i.e. slower RT for incongruent and faster for

congruent trials).

In sum, choice accuracy was negatively related to the the representation of irrelevant contexts and

its associated value only in incongruent trials (i.e. when it mattered), while in congruent trials

neural representations of EV and EVback contributed to accuracy. RT analyses showed that

markers of (a) weaker representational link between context and EV and (b) stronger conflict

between EVback and EV were both associated with a stronger influence of the counterfactual

choice on their RT. Brought together these findings show that the representations of EV, EVback

and Context in vmPFC don’t only interact with each other, but guide choice behavior as reflected

in accuracy as well as RT in behaviorally accurate trials.

No univariate evidence for effects of irrelevant values on expected value signals in vmPFC.

The above analyses indicated that multiple value expectations are represented in parallel within

vmPFC. Lastly, we asked whether whole-brain univariate analyses could also uncover evidence

for processing of multiple value representations. Detailed description of the univariate analysis

can be found in Fig.S12. Unlike the multivariate analysis, this revealed no positive modulation of

Congruency, EVback or their interaction was observed in any frontal region. A negative effect of

was found EVback in the Superior Temporal Gyrus, p < .001, Fig.S12c). We also found no region

for the univariate effect of Congruency × EV2D interaction (even at p < .005). However, we

found a negative univariate effect of Congruency × EVback in the primary motor cortex at a

liberal threshold, which indicated that the difference between Incongruent and Congruent trials

increased with higher EVback, akin to a response conflict (p < .005, Fig.S12d). These findings

contrast with the idea that competing values would have been integrated into a single EV
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vmPFC representations of context and value jointly guide behavior Panels a-c include all trials whereas panels d-g

show only behaviorally accurate trials. a. The Value classifier’s probability of EVback (PEVback , y-axis) was increased

when participants chose the option based on EVback, corresponding to a wrong choice in incongruent trials (purple)

and correct choice in congruent trials (green), LR-test vs. null model: p=.034, n=35. Error bars represent corrected

within subject SEMs (Cousineau et al., 2005; Morey et al., 2008). b. Decrease in behavioral accuracy (y-axis) in

incongruent trials was marginally associated with lower context decodability (Context classifier, x-axis, p=.051). This

effect was modulated by EVback representation, i.e. stronger in trials with higher PEVback in vmPFC (shades of gold,

p=.012, discretisation only for visualization). P-values represent LR-test with added terms and error bands represent

the 89% CI. c. Value classifier decodability of EV (blue, left) and EVback (gold, right) were both positively related

to behavioral accuracy in congruent trials (ps: .058 and .009, respectively, y axis). Lines are fitted slopes. Grey

dots are group means of top and bottom 20% of data (within participant, for individual lines, see Fig.S11). P-values

represent LR-test with added terms and error bands represent the 89% confidence interval. d. Participants with weaker

associations between Context and EV representations (y-axis, Fig.5f), had a stronger Congruency RT effect (x-axis,

larger values indicate stronger RT difference between incongruent and congruent trials, i.e. distance between purple

and green lines in Fig.2b.) e. More negative correlations between EV and EVback representations (y-axis, Fig.4b) were

associated with stronger Congruency RT effects (x-axis, see panel d.). f. Participants with a stronger (negative) link

between PEV and EVback (y-axis, see Fig.5e.) also had a stronger EVback modulation on the Congruency RT effect

(x-axis, see distance between purple and green lines in Fig.2d). g. Participants with a more negative link between PEV
and P2D

EVback
(y-axis, more negative indicate stronger decrease, see Fig.5g), had a stronger modulation of EVback on

Congruency RT effect (x-axis, see panel f.). Panels d-g present Pearson correlations, p-values represent Spearman’s p

statistic to estimate a rank-based measure of association (Best & Roberts, 1975; Hollander et al., 2013) and error bands

represent 95% confidence interval.

representation in vmPFC, because this account would have predicted a higher signal for

Congruent compared to incongruent trials.
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Discussion

We investigated how contextually-irrelevant value expectations influence behavior and neural

activation patterns in vmPFC. Participants reacted slower when the irrelevant context favored a

different choice and faster when it favored the same. This Congruency effect increased with

increasing reward associated with the hypothetical choice in the irrelevant context (EVback). fMRI

analyses of vmPFC voxels sensitive to the objective, i.e. relevant, expected value (EV) showed

that (a) vmPFC contains a multifaceted representation of each trials expected value, irrelevant

expected value and context; and that (b) higher irrelevant expected values, or a stronger neural

representation of them, impaired the expected value signal, akin to a representational conflict

between the two values. This conflict was moderated by the strength of the context signal, such

that a stronger context signal was associated with a stronger expected value signal, and a

diminished negative effect of the expected value of the irrelevant context. The different facets of

vmPFC’s representations were linked to participants’ behavior in a manner generally consistent

with the idea that the representations of the alternative/irrelevant context and its associated value

were present within vmPFC and guided behavior. The strength of these representations within

vmPFC was related to slower and less accurate choices when the different contexts implied

different actions, and faster and more accurate choices when they agreed on the action to be made.

One notable aspect of our experiment was that feature relevance was cued on each trial, and

rewards were never influenced by irrelevant features. Nevertheless, participants’ behavior was

influenced by the expected outcome of the counterfactual choice. This supports the notion that

cognitive control based arbitration between relevant and irrelevant features is incomplete (Frömer

& Shenhav, 2021; Mante et al., 2013; Takagi et al., 2020). Our neural analyses showed how

internal value expectation(s) within vmPFC were shaped by such incomplete suppression: not the

ignored context per se influenced vmPFC signals, but rather the computed expected value of the

counterfactual choice that would have been made in that context. This was evidenced by the fact

that the expected value of the background captured fluctuations in value representations. A

control analysis showed that this cannot be explained by the presence of its corresponding
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perceptual-feature on the screen. Hence, our results cannot be explained by value-independent

attention capture caused by the ‘distracting’ irrelevant context (Fig.S8), and go beyond previous

research on cognitive control, such as the Stroop Task (MacLeod, 1991).

We also asked whether relevant and irrelevant expected values integrate into a single EV, but

found neither univariate nor multivariate evidence for this possibility. Specifically, we found no

univariate EVback or congruency effects, and no increase in EV decodability when EV equalled

EVback. This suggests some differences in the underlying representations of relevant and

irrelevant expected values. At the same time, our analysis showed that the value classifier was

sensitive to the expected value of the irrelevant context in 2D trials, even though it was trained on

1D trials during which irrelevant values were not present. This suggests that within vmPFC

‘conventional’ expected values and counterfactual values are encoded using partially, but not

completely, similar patterns. Moreover, our results suggest that the EV of each context were

activated simultaneously and competed with each other, a competition governed by the context

signal. While neural evidence for EV competition did link behavioral evidence of choice conflict,

we found no influence of action-congruency on vmPFC signal itself. This suggests that the

conflicts between incongruent motor commands might be resolved elsewhere. Univariate

analyses revealed that primary motor cortex was sensitive to Congruency, and hence might be the

site of conflict resolution, in line with studies that suggest distracting information can be found in

task execution cortex in humans and monkeys (Mante et al., 2013; Takagi et al., 2020). The idea

that the conflict between multiple values encoded in vmPFC is resolved in motor cortex and is

also in line with our interpretation that vmPFC does not integrate both tasks into a single EV

representation that drives choice.

Participants repeatedly had to switch between contexts in our task, a process that is well known to

engage cognitive control mechanisms (Frömer et al., 2021; Frömer & Shenhav, 2021; MacLeod,

1991; Monsell, 2003; Shenhav et al., 2018). We evaluated to what extent this task switching

affected our results and found that behavioral effects hold when excluding the first 2 trials after a

context switch, and that the distance from the last switch did not interact with the influence of the
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irrelevant values (Fig.S2). Likewise, we found no influence of task switching on multivariate EV

effects in vmPFC. Note, however, that due to our design we could not create balanced training

sets (with respect to number of trials since context switch) which would be required for a more

thorough investigation of the effect of trials since switch on value signals. We therefore conclude

that while context switching is part of the investigated phenomenon, its presence alone cannot

explain our findings.

Another important implication of our study concerns the nature of neural representations in

vmPFC/mOFC, and in particular the relationship between state (Schuck et al., 2016, 2018;

Wilson et al., 2014; Wimmer & Büchel, 2019) and value (Bartra et al., 2013; Clithero & Rangel,

2014; O’Doherty et al., 2001; Padoa-Schioppa & Assad, 2006; Plassmann et al., 2007; Rich &

Wallis, 2016) codes in this area. In order to compare both aspects, we used a categorical classifier

for value as well as states, rather than examining continuous value representations. Nevertheless,

we believe that the value similarity analysis (both in the RSA, Fig.3d-e. and classifier

probabilities, Fig.S7) additionally shows evidence for such continuous value representations. We

specifically chose to focus on the vmPFC region that is commonly investigated in value-based

decision research. We therefore defined our ROI in a univariate manner as commonly done in the

literature (e.g. Bartra et al., 2013; Clithero & Rangel, 2014)) and studied the multivariate state and

value signal within this ROI (e.g. Schuck et al., 2016, 2018) . We found that in addition to

(expected) value information, vmPFC/mOFC also represented the context or task-state, which

identified relevant information and thereby disambiguated the partially observable sensory state

(e.g. Schuck et al., 2016, 2018; Wilson et al., 2014). Note that in our case the task context was

agnostic to value (which was balanced across contexts) and specific features, but rather consisted

of a superset of the more specific motion direction/color features. Any area sensitive to these

more specific states would therefore also show decoding of context as defined here. Another

methodological aspect was that we decoded based on timeshifted TR images, rather than

deconvolved activity patterns (Mumford et al., 2012) as is common practice in fMRI decoding

papers (McNamee et al., 2013; Momennejad et al., 2018; Polyn et al., 2005; Wittkuhn & Schuck,
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2021). Decoding level and approach may have implications for the representations that can be

uncovered in future research. Overall, our findings are in line with work that has found that EV

could be one additional aspect of OFC activity (Zhou et al., 2019), which is multiplexed with

other task-related information. Crucially, the idea that state representations integrate different

kinds of task-relevant information (Niv, 2019; Schoenbaum & Roesch, 2005) could explain why

this region was found to be crucial for integrating valued features when all features of an object

are relevant for choice (Pelletier & Fellows, 2019; Schoenbaum & Roesch, 2005), although some

work suggests that it might also reflect integration of features not carrying any value (Mack et al.,

2020).

To conclude, the main contribution of our study is that we elucidated the relation between

task-context and value representations within vmPFC. By introducing multiple possible values of

the same option in different contexts, we were able to reveal a complex representation of task

structure in vmPFC, with both task-contexts and their associated expected values activated in

parallel. The decodability of both contexts and EVs independently from vmPFC, and their

relation to choice behavior, hints at integrated computation of these in this region. We believe

that this bridges between findings of EV representation in this region to the functional role of this

region as representing task-states, whereby relevant and counterfactual values can be considered

as part of a more encompassing state representation.
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Methods

The study complies with all relevant ethical regulations and was approved by the ethics board of

the Free University Berlin (Ref. Number: 218/2018).

Participants

Forty right-handed young adults took part in the experiment (18 women,

µage = 27.6, σage = 3.35) in exchange for monetary reimbursement. Participants were recruited

using the participant database of Max-Planck-Institute for Human Development. Beyond common

MRI-safety related exclusion criteria (e.g. piercings, pregnancy, large or circular tattoos etc.), we

also did not admit participants to the study if they reported any history of neurological disorders,

tendency for back pain, color perception deficiencies or if they had a head circumference larger

than 58 cm (due to the limited size of the 32-channel head-coil). Gender of participants was

self-reported (note that the study was conducted in the German language where there is no clear

distinction between sex and gender). We had no reason to suspect any gender differences in the

task and therefore did not include this information in the analyses. After data acquisition, we

excluded five participants from the analysis; one for severe signal drop in the OFC, i.e. more than

15% less voxels in functional data compared to the OFC mask extracted from freesurfer

parcellation of the T1 image (Dale et al., 1999; Klein et al., 2017). One participant was excluded

due to excessive motion during fMRI scanning (more than 2mm in any axial direction) and three

participants for low performance (less than 75% accuracy in one context in the main task). In the

behavioral-replication, 23 young adults took part (15 women, µage = 27.1, σage = 4.91) and two

were excluded for the same accuracy threshold. Due to technical reasons, 3 trials (4 in the

replication sample) were excluded since answers were recorded before stimulus was presented

and 2 trials (non in the replication) in which RT was faster than 3 SD from the mean (likely

premature response). The monetary reimbursement consisted of a base payment of 10 Euro per

hour (8.5 for replication sample) plus a performance dependent bonus of 5 Euro on average.
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Experimental procedures

Design. Participants performed a random dot-motion paradigm in two phases, separated by a

short break (minimum 15 minutes). In the first phase, psychophysical properties of four colors

and four motion directions were first titrated using a staircasing task. Then, participants learned

the rewards associated with each of these eight features during a outcome learning task. The

second phase took place in the MRI scanner and consisted mainly of the main task, in which

participants were asked to make decisions between two random dot kinematograms, each of

which had one color and/or one direction from the same set. Note there were two additional

mini-blocks of 1D trials only, at the end of first- and at the start of the second phase (during

anatomical scan, see below). The replication sample completed the same procedure with the same

break length, but without MRI scanning. That is, both phases were completed in a behavioral

testing room. Details of each task and the stimuli are described below. Behavioral data was

recorded during all experiment phases. MRI data was recorded during phase 2. We additionally

collected eye-tracking data (EyeLink 1000; SR Research Ltd.; Ottawa, Canada) both during the

staircasing and the main decision making task to ensure continued fixation (data not presented).

The overall experiment lasted between 3.5 and 4 hours (including the break between the phases).

Additional information about the pre-scanning phase can be found in Fig. S1.

Room, Luminance and Apparatus. Behavioral sessions were conducted in a dimly lit room

without natural light sources, such that light fluctuations could not influence the perception of the

features. A small lamp was stationed in the corner of the room, positioned so it would not cast

shadows on the screen. The lamp had a light bulb with 100% color rendering index, i.e. avoiding

any influence on color perception. Participants sat on a height adjustable chair at a distance of 60

cm from a 52 cm horizontally wide, Dell monitor (resolution: 1920 x 1200, refresh rate 1/60

frames per second). Distance from the monitor was fixed using a chin-rest with a head-bar.

Stimuli were presented using psychtoolbox version 3.0.11 (Brainard & Vision, 1997; Kleiner

et al., 2007; Pelli & Vision, 1997) in MATLAB R2017b (MATLAB version 9.3.0.713579

(R2017b), 2017)In the MRI-scanner room lights were switched off and light sources in the
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operating room were covered in order to prevent interference with color perception or shadows

cast on the screen. Participants lay inside the scanner at distance of 91 cm from a 27 cm

horizontally wide screen on which the task was presented a D-ILA JVC projector (D-ILa

Projektor SXGA, resolution: 1024x768 , refresh rate: 1/60 frames per second). Stimuli were

presented using psychtoolbox version 3.0.11 (Brainard & Vision, 1997; Kleiner et al., 2007; Pelli

& Vision, 1997) in MATLAB R2012b (MATLAB version (R2012b), 2017) on a Dell precision

T3500 computer running windows XP version 2002.

Stimuli. Each cloud of dots was presented on the screen in a circular array with 7◦ visual angle in

diameter. In all trials involving two clouds, the clouds appeared with 4◦ visual angle distance

between them, including a fixation circle (2◦ diameter) in the middle, resulting in a total of 18◦

field of view (following total apparatus size from Pilly & Seitz, 2009). Each cloud consisted of

48 square dots of 3x3 pixels. We used four specific motion and four specific color features.

To prevent any bias resulting from the correspondence between response side and dot motion,

each of the four motion features was constructed of two angular directions rotated by 180◦, such

that motion features reflected an axis of motion, rather than a direction. Specifically, we used the

four combinations: 0◦-180◦ (left-right), 45◦-225◦ (bottom right to upper left), 90◦-270◦ (up-down)

and 135◦-315◦ (bottom left - upper right). We used a Brownian motion algorithm (e.g. Pilly &

Seitz, 2009), meaning in each frame a different set of given amount of coherent dots was chosen

to move coherently in the designated directions in a fixed speed, while the remaining dots moved

in a random direction (Fig. S1). Dots speed was set to 5◦ per second (i.e. 2/3 of the aperture

diameter per second, following Pilly & Seitz, 2009). Dots lifetime was not limited. When a dot

reached the end of the aperture space, it was sent ’back to start’, i.e. back to the other end of the

aperture. Crucially, the number of coherent dots (henceforth: motion-coherence) was adjusted for

each participant throughout the staircasing procedure, starting at 0.7 to ensure high accuracy (see

Pilly & Seitz, 2009). An additional type of motion-direction was ’random-motion’ and was used

in 1D color clouds. In these clouds, dots were split to 4 groups of 12, each assigned with one of

the four motion features and their adjusted-coherence level, resulting in a balanced
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subject-specific representation of random motion.

In order to keep the luminance fixed, all colors presented in the experiment were taken from the

YCbCr color space with a fixed luminance of Y = 0.5. YCbCr is believed to represent human

perception in a relatively accurate manner (cf. Abbott et al., 2016). In order to generate an

adjustable parameter for the purpose of staircasing, we simulated a squared slice of the space for

Y = 0.5 (Fig. S1) in which the representation of the dots color moved using a Brownian motion

algorithm as well. Specifically, all dots started close to the (gray) middle of the color space, in

each frame a different set of 30% of dots was chosen to move coherently towards the target color

in a certain speed whereas all the rest were assigned with a random direction. Perceptually, this

resulted in all the dots being gray at the start of the trial and slowly taking on the designated color.

Starting point for each color was chosen based on pilot studies and was set to a distance of

0.03-0.05 units in color space from the middle. Initial speed in color space (henceforth:

color-speed) was set so the dots arrive to their target (23.75% the distance to the corner from the

center) by the end of the stimulus presentation (1.6s). i.e. distance to target divided by the number

of frames per trial duration. Color-speed was adjusted throughout the staircasing procedure. An

additional type of color was ’no color’ for motion 1D trials for which we used the gray middle of

the color space.

Staircasing task. In order to ensure RTs mainly depended on associated values and not on other

stimulus properties (e.g. salience), we created a staircasing procedure that was conducted prior to

value learning. In this procedure, motion-coherence and color-speed were adjusted for each

participant in order to minimize between-feature detection time differences. As can be seen in

Fig. S1, in this perceptual detection task participants were cued (0.5s) with either a small arrow

(length 2◦) or a small colored circle (0.5◦ diameter) to indicate which motion-direction or color

they should choose in the upcoming decision. After a short gray (middle of YCbCr) fixation

circle (1.5s, diameter 0.5◦), participants made a decision between the two clouds (1.6s). Clouds in

this part could be either both single-feature or both dual-features. In dual feature trials, each

stimulus had one color and one motion feature, but the cue indicated either a specific motion or a
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specific color. After a choice, participants received feedback (0.4s) whether they were (a) correct

and faster than 1 second, (b) correct and slower or (c) wrong. After a short fixation (0.4s), another

trial started. All timings were fixed in this part. Participants were instructed to always look at the

fixation circle in the middle of the screen throughout this and all subsequent tasks. To motivate

participants and continued perceptual improvements during the later (reward related) task-stages,

participants were told that if they were correct and faster than 1 second in at least 80% of the

trials, they will receive an additional monetary bonus of 2 Euros.

The staircasing started after a short training (choosing correct in 8 out of 12 consecutive trials

mixed of both contexts) and consisted of two parts: two adjustment blocks an two measurement

blocks. All adjustments of color-speed and motion-coherence followed this formula:

θt+1
i = θt

i + αθt
i

RTt
i − RT0

RT0
(1)

where θt+1
i represents the new coherence/speed for motion or color feature i during the upcoming

time interval/block t + 1, θt
i is the level at the time of adjustment, RT t

i is the mean RT for the

specific feature i during time interval t, RT0 is the “anchor” RT towards which the adjustment is

made and α represents a step size of the adjustment, which changed over time as described below.

The basic building block of adjustment blocks consisted of 24 cued-feature choices for each

context (4 × 3 × 2 = 24, i.e. 4 colors, each discriminated against 3 other colors, on 2 sides of

screen). The same feature was not cued more than twice in a row. Due to time constrains, we

could not include all possible feature-pairing combinations between the cued and uncued features.

We therefore pseudo-randomly choose from all possible background combinations for each

feature choice (unlike later stages, this procedure was validated on and therefore included also

trials with identical background features). In the first adjustment block, participants completed 72

trials, i.e. 36 color-cued and 36 motion-cued, interleaved in chunks of 4-6 trials in a

non-predictive manner. This included, for each context, a mixture of one building block of 2D

trials and half a block of 1D trials, balanced to include 3 trials for each cued-feature. 1D or 2D
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trials did not repeat more than 3 times in a row. At the end of the first adjustment block, the mean

RT of the last 48 (accurate) trials was taken as the anchor (RT 0) and each individual feature was

adjusted using the above formula with α = 1. The second adjustment block started with 24

motion-cued only trials which were used to compute a new anchor. Then, throughout a series of

144 trials (72 motion-cued followed by 72 color-cued trials, all 2D), every three correct answers

for the same feature resulted in an adjustment step for that specific feature (Eq. 1) using the

average RT of these trials (RT t
i ) and the motion anchor RT 0 for both contexts. This resulted in a

maximum of six adjustment steps per feature, where alpha decreased from 0.6 to 0.1 in steps of

0.1 to prevent over-adjustment.

Next, participants completed two measurement blocks identical in structure to the main task (see

below) with two exceptions: First, although this was prior to learning the values, they were

perceptually cued to chose the feature that later would be assigned with the highest value.

Second, to keep the relevance of the feature that later would take the lowest value (i.e. would

rarely be chosen), we added 36 additional trials cued to choose that feature (18 motion and 18

color trials per block).

Outcome learning task. After the staircasing and prior to the main task, participants learned to

associate each feature with a deterministic outcome. Outcomes associated with the four features

on each contexts were 10, 30, 50 and 70 credit-points. The value mapping to perceptual features

was assigned randomly between participants, such that all possible color- and all possible

motion-combinations were used at least once (4! = 24 combinations per context). We excluded

motion value-mapping that correspond to clockwise or counter-clockwise ordering. The outcome

learning task consisted only of single-feature clouds, i.e. clouds without coherent motion or dots

‘without’ color (gray). Therefore each cloud in this part only represented a single feature. To

encourage mapping of the values for each context on similar scales, the two clouds could be either

of the same context (e.g. color and color) or from different contexts (e.g. color and motion). Such

context-mixed trials did not repeat in other parts of the experiment.

The first block of the outcome learning task had 80 forced choice trials (5 repetitions of 16 trials:
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4 values × 2 Context × 2 sides of screen), in which only one cloud was presented, but

participants still had to choose it to observe its associated reward. These were followed by mixed

blocks of 72 trials which included 16 forced choice interleaved with 48 free choice trials between

two 1D clouds (6 value-choices: 10 vs 30/50/70, 30 vs 50/70, 50 vs 70 × 4 context combinations

× 2 sides of screen for highest value). To balance the frequencies with which feature-outcome

pairs would be chosen, we added 8 forced choice trials in which choosing the lowest value was

required. Trials were pseudo-randomized so no value would repeat more than 3 times on the same

side and same side would not be chosen more the three consecutive times. Mixed blocks repeated

until participants reached at least 85% accuracy of choosing the higher valued cloud in a block,

with a minimum of two and a maximum of four blocks. Since all clouds were 1D and choice

could be between contexts, these trials started without a cue, directly with the presentation of two

1D clouds (1.6s). Participants then made a choice, and after short fixation (0.2s) were presented

with the value of both chosen and unchosen clouds (0.4s, with value of choice marked with a

square around it, see Fig. S1). After another short fixation (0.4s) the next trial started.

Participants did not collect reward points in this stage, but were told that better learning of the

associations will result in more points, and therefore more money later. Specifically, in the MRI

experiment participants were instructed that credit points during the main task will be converted

into a monetary bonus such that every 600 points they will receive 1 Euro at the end. The

behavioral replication cohort received 1 Euro for every 850 points.

Main task preparation. In preparation of the main task, participants performed one block of 1D

trials at the end of phase 1 and then at the start of the MRI session during the anatomical scan.

These blocks were included to validate that changing presentation mediums between phases

(computer screen versus projector) did not introduce a perceptual bias to any features and as a

final correction for post value-learning RT differences between contexts. Each block consisted of

30 color and 30 motion 1D trials interleaved in chunks of 4-7 trials in a non-predictive manner.

The value difference between the clouds was fixed to 20 points (10 repetitions of 3 value

comparisons × 2 contexts). Trials were pseudo-randomized so no target value was repeated more
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than once within context (i.e. not more than twice all in all) and was not presented on the same

side of screen more than 3 consecutive trials within context and 4 in total. In each trial, they were

first presented with a contextual cue (0.6s) for the trial, followed by short fixation (0.5s) and the

presentation of two single-feature clouds of the cued context (1.6s) and had to choose the highest

valued cloud. After a short fixation (0.4s), participants were presented with the chosen cloud’s

outcome (0.4s). The timing of the trials was fixed and shorter than in the remaining main task

because no functional MRI data was acquired during these blocks. Participants were instructed

that from the first preparation block they started to collect the rewards. Data from these 1D block

were used to inspect and adjust for potential differences between the MRI and the behavior setup.

First, participants reacted generally slower in the scanner (t(239) = −9.415, p < .001, paired

t-test per subject per feature). Importantly, however, we confirmed that this slowing was uniform

across features, i.e. no evidence was found for a specific feature having more RT increase than

the rest (ANOVA test on the difference between the phases, F (7, 232) = 1.007, p = .427).

Second, because pilot data indicated increased RT differences between contexts after the outcome

learning task we took the mean RT difference between color and motion trials in the second

mini-block in units of frames (RT difference divided by the refresh rate), and moved the starting

point of each color relative to their target color, the number of frames × its speed. Crucially, the

direction of the move (closer/further to target) was the same for all colors, thus ensuring not to

induce within-context RT differences.

Main task. Finally, participants began with the main experiment inside the scanner. Participants

were asked to choose the higher-valued of two simultaneously presented random dot

kinematograms, based on the previously learned feature-outcome associations. As described in

the main text, each trial started with a cue that indicated the current task context (color or motion).

In addition, both clouds could either have two features (each a color and a motion, 2D trials) or

one feature only from the cued context (e.g., colored, but randomly moving dots).

The main task consisted of four blocks in which 1D and 2D trial were intermixed. Each block

contained 36 1D trials (3 EV × 2 Contexts × 6 repetitions) and 72 2D trials (3 EV × 2 Contexts
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× 12 feature-combinations, see fig1c). Since this task took part in the MRI, the duration of the

fixation circles were drawn from a truncated exponential distribution with a mean of µ=0.6s

(range 0.5s-2.5s) for the interval between cue and stimulus, a mean of µ=3.4s (1.5s-9s) for the

interval between stimulus and outcome and a mean of µ=1.25s (0.7s-6s) for the interval between

outcome and the cue of the next trial. The cue, stimulus and outcome were presented for 0.6s,

1.6s and 0.8s, respectively. Timing was optimized using VIF-calculations of trial-wise regression

models (see Classification procedure section below).

The order of trials within blocks was controlled as follows: the cued context stayed the same for

4-7 trials (in a non-predictive manner), to prevent context confusion caused by frequent

switching. No more than 3 repetitions of 1D or 2D trials within each context could occur, and no

more than 5 repetition overall. The target did not appear on the same side of the screen on more

than 4 consecutive trials. Congruent or incongruent trials did not repeat more than 3 times in a

row. In order to avoid repetition suppression, i.e. a decrease in the fMRI signal due to a repetition

of information (e.g. Barron et al., 2016; Garvert et al., 2017), no target feature was repeated two

trials in a row, meaning the EV could repeat maximum once (i.e. one color and one motion). As

an additional control over repetition, we generated 1000 designs according the above-mentioned

rules and choose the designs in which the target value was repeated in no more than 10% of trials

across trial types, as well as when considering congruent, incongruent or 1D trials separately.

In all mixed effect models, When describing main effects of models, the χ2 represents Type II

Wald χ2 tests, whereas when describing model comparison, the χ2 represents the log-likelihood

ratio test. Model comparison throughout the paper was done using the ’anova’ function. The

reason we used χ2 test is that classification probabilities as well as RSA dissimilarities are not

normally distributed (these follow beta and gamma distributions respectively, note that the

glmmTMB toolbox also uses χ2 as its default for these distributions). Regressors were scaled

prior to fitting the models for all analyses.

Throughout the behavioral and fMRI analyses we report exact p-values unless they fall below

0.001, in which case we report p < .001.
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Behavioral analysis

RT data was analyzed in R (R version 3.6.3 R Core Team, 2017, RStudio version 1.3.959 RStudio

Team, 2020) using linear mixed effect models (lmer in lme4 1.1-21: Bates et al., 2015). The

behavioral model that we found to fit the behavioral RT data best was:

log RT t
k = β0 + γ0k + β1EV + β2Congruencyt + β3Congruencyt × EVbackt + β4Congruencyt × EVt

+ν1t + ν2sidet + ν3switcht + ν4contextt

(2)

where log RT t
k is the log reaction time of subject k in trial t, β0 and γ0k represent global and

subject-specific intercepts, ν-coefficients reflect nuisance regressors (side of target object, trials

since last context switch and the current context), β1 to β4 captured the fixed effect of EV,

Congruency, Congruency × EVback and Congruency × EV, respectively. The additional models

reported in the SI included intercept terms specific for each factor level, nested within subject (for

EV, Block and Context, see Fig. S2). An exploratory analysis investigating all possible 2-way

interactions with all nuisance regressors can be found in Fig. S4.

Investigations of alternative parametrizations of the values can be found in Fig. S3.

Accuracy data was analyzed in R (R version 3.6.3 R Core Team, 2017, RStudio version 1.3.959

RStudio Team, 2020) using generalized linear mixed effect models (glmer in lme4 1.1-21: Bates

et al., 2015) employing a binomial distribution family with a ’logit’ link function. Regressors

were scaled prior to fitting the models for all analyses. No-answer trials of were excluded from

this analysis. The model found to fit the behavioral accuracy data best was almost equivalent to

the RT model, except for the fourth term involving Congruency × switch:

ACCt
k = β0 + γ0k + β1EV + β2Congruencyt + β3Congruencyt × EVbackt + β4Congruencyt × switcht

+ν1t + ν2sidet + ν3switcht + ν4contextt

(3)
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where ACCt
k is the accuracy (1 for correct and 0 for incorrect) of subject k in trial t and all the

rest of the regressors are equivalent to Eq. 2. An exploratory analysis investigating all possible

2-way interactions with all nuisance regressors can be found in Fig. S5. We note that the

interaction Congruency × switch indicates that participants were more accurate the further they

were from a context switch point. Out of the nuisance variables, only ‘switch’ influenced

accuracy, Type II Wald χ2 test in baseline model: χ2
(1) = 10.22, p = .001.

fMRI data

fMRI data acquisition. MRI data was acquired using a 32-channel head coil on a

research-dedicated 3-Tesla Siemens Magnetom TrioTim MRI scanner (Siemens, Erlangen,

Germany) located at the Max Planck Institute for Human Development in Berlin, Germany.

High-resolution T1-weighted (T1w) anatomical Magnetization Prepared Rapid Gradient Echo

(MPRAGE) sequences were obtained from each participant to allow registration and brain surface

reconstruction (sequence specification: 256 slices; TR = 1900 ms; TE = 2.52 ms; FA = 9 degrees;

inversion time (TI) = 900 ms; matrix size = 192 x 256; FOV = 192 x 256 mm; voxel size = 1 x 1 x

1 mm). This was followed with two short acquisitions with six volumes each that were collected

using the same sequence parameters as for the functional scans but with varying phase encoding

polarities, resulting in pairs of images with distortions going in opposite directions between the

two acquisitions (also known as the blip-up / blip-down technique). From these pairs the

displacements were estimated and used to correct for geometric distortions due to

susceptibility-induced field inhomogeneities as implemented in the the fMRIPrep preprocessing

pipeline. In addition, a whole-brain spoiled gradient recalled (GR) field map with dual echo-time

images (sequence specification: 36 slices; A-P phase encoding direction; TR = 400 ms; TE1 =

4.92 ms; TE2 = 7.38 ms; FA = 60 degrees; matrix size = 64 x 64; 619 FOV = 192 x 192 mm;

voxel size = 3 x 3 x 3.75 mm) was obtained as a potential alternative to the method described

above. However, this GR frield map was not used in the preprocessing pipeline. Lastly, four

functional runs using a multi-band sequence (sequence specification: 64 slices in interleaved

ascending order; anterior-to-posterior (A-P) phase encoding direction; TR = 1250 ms; echo time
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(TE) = 26 ms; voxel size = 2 x 2 x 2 mm; matrix = 96 x 96; field of view (FOV) = 192 x 192 mm;

flip angle (FA) = 71 degrees; distance factor = 0, MB acceleration factor = 4). A tilt angle of -30

degrees from AC-PC (tilted backwards, or: front side of FOV upwards) was used in order to

maximize signal from the orbitofrontal cortex (OFC, see Weiskopf et al., 2006). For each

functional run, the task began after the acquisition of the first four volumes (i.e., after 5.00 s) to

avoid partial saturation effects and allow for scanner equilibrium. Each run was about 15 minutes

in length, including a 20 seconds break in the middle of the block (while the scanner is running)

to allow participants a short break. We measured respiration and pulse during each scanning

session using pulse oximetry and a pneumatic respiration belt part of the Siemens Physiological

Measurement Unit. Full details of the sequences used, as provided by the MRI scanner, are

shared in the same repository with the code (see ”MRI_Sequences.pdf”)

BIDS conversion and defacing. Data was arranged according to the brain imaging data structure

(BIDS) specification (K. J. Gorgolewski et al., 2016) using the HeuDiConv tool (version

0.6.0.dev1; freely available from https://github.com/nipy/heudiconv). Dicoms were converted to

the NIfTI-1 format using dcm2niix [version 1.0.20190410 GCC6.3.0; (X. Li et al., 2016)]. In

order to make identification of study participants highly unlikely, we eliminated facial features

from all high-resolution structural images using pydeface (version 2.0; available from

https://github.com/poldracklab/pydeface). The data quality of all functional and structural

acquisitions were evaluated using the automated quality assessment tool MRIQC [for details, (see

Esteban et al., 2017), and the MRIQC documentation]. The visual group-level reports confirmed

that the overall MRI signal quality was consistent across participants and runs.

fMRI preprocessing. Data was preprocessed using fMRIPrep 1.2.6 (Esteban, Markiewicz, et al.,

2018; Esteban, Blair, et al., 2018; RRID:SCR_016216), which is based on Nipype 1.1.7

(K. Gorgolewski et al., 2011; K. J. Gorgolewski et al., 2018; RRID:SCR_002502). Many internal

operations of fMRIPrep use Nilearn 0.5.0 (Abraham et al., 2014, RRID:SCR_001362), mostly

within the functional processing workflow.

Specifically, the T1-weighted (T1w) image was corrected for intensity non-uniformity (INU)
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using N4BiasFieldCorrection (Tustison et al., 2010, ANTs 2.2.0), and used as a

T1w-reference throughout the workflow. The anatomical image was skull-stripped using

antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as the target template. Brain surfaces

were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale et al., 1999),

and the brain masks were estimated previously was refined with a custom variation of the method

to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of

Mindboggle (RRID:SCR_002438, Klein et al., 2017). Spatial normalization to the ICBM 152

Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009, RRID:SCR_008796) was

performed through nonlinear registration with antsRegistration (ANTs 2.2.0,

RRID:SCR_004757, Avants et al., 2008), using brain-extracted versions of both T1w volume and

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and

gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9,

RRID:SCR_002823, Y. Zhang et al., 2001).

To preprocess the functional data, a reference volume for each run and its skull-stripped version

were generated using a custom methodology of fMRIPrep. A deformation field to correct for

susceptibility distortions was estimated based on two echo-planar imaging (EPI) references with

opposing phase-encoding directions, using 3dQwarp (Cox & Hyde, 1997) (AFNI 20160207).

Based on the estimated susceptibility distortion, an unwarped BOLD reference was calculated for

a more accurate co-registration with the anatomical reference. The BOLD reference was then

co-registered to the T1w reference using bbregister (FreeSurfer), which implements

boundary-based registration (Greve & Fischl, 2009). Co-registration was configured with nine

degrees of freedom to account for distortions remaining in the BOLD reference. Head-motion

parameters with respect to the BOLD reference (transformation matrices, and six corresponding

rotation and translation parameters) are estimated before any spatiotemporal filtering using

mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD runs were slice-time corrected using

3dTshift from AFNI 20160207 (Cox & Hyde, 1997, RRID:SCR_005927) and aligned to the

middle of each TR. The BOLD time-series (including slice-timing correction) were resampled
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onto their original, native space by applying a single, composite transform to correct for

head-motion and susceptibility distortions. First, a reference volume and its skull-stripped version

were generated using a custom methodology of fMRIPrep.

Several confound regressors were calculated during preprocessing: Six head-motion estimates

(see above), Framewise displacement, six anatomical component-based noise correction

components (aCompCorr) and 18 physiological parameters (8 respiratory, 6 heart rate and 4 of

their interaction). The head-motion estimates were calculated during motion correction (see

above). Framewise displacement was calculated for each functional run, using the

implementations in Nipype (following the definitions by Power et al., 2014). A set of

physiological regressors were extracted to allow for component-based noise correction

(CompCor, Behzadi et al., 2007). Principal components are estimated after high-pass filtering the

BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants:

temporal (tCompCor, unused) and anatomical (aCompCor). For aCompCor, six components are

calculated within the intersection of the aforementioned mask and the union of CSF and WM

masks calculated in T1w space, after their projection to the native space of each functional run

(using the inverse BOLD-to-T1w transformation). All resamplings can be performed with a

single interpolation step by composing all the pertinent transformations (i.e. head-motion

transform matrices, susceptibility distortion correction, and co-registrations to anatomical and

template spaces). Gridded (volumetric) resamplings were performed using

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the

smoothing effects of other kernels (Lanczos, 1964). Lastly, for the 18 physiological parameters,

correction for physiological noise was performed via RETROICOR (Glover et al., 2000; Hutton

et al., 2011) using Fourier expansions of different order for the estimated phases of cardiac

pulsation (3rd order), respiration (4th order) and cardio-respiratory interactions (1st order)

(A. K. Harvey et al., 2008): The corresponding confound regressors were created using the

Matlab PhysIO Toolbox (Kasper et al., 2017, open source code available as part of the TAPAS

software collection (Version 3.2.0): https://www.translationalneuromodeling.org/tapas. For more

https://www.translationalneuromodeling.org/tapas
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details of the pipeline, and details on other confounds generated but not used in our analyses, see

the section corresponding to workflows in fMRIPrep’s documentation.

For univariate analyses, BOLD time-series were re-sampled to MNI152NLin2009cAsym

standard space in the fMRIPrep pipeline and then smoothed using SPM (Penny et al., 2011,

SPM12 (7771)) with 8mm FWHM, except for ROI generation, where a 4mm FWHM kernel was

used. Multivariate analyses were conducted in native space, and data was smoothed with 4mm

FWHM using SPM (Penny et al., 2011, SPM12 (7771)). Classification analyses further involved

three preprocessing steps of voxel time-series: First, extreme-values more than 8 standard

deviations from a voxels mean were corrected by moving them by 50% their distance from the

mean towards the mean (this was done to not bias the last z scoring step). Second, the time-series

of each voxel was detrended, a high-pass filter at 128 Hz was applied and confounds were

regressed out in one action using Nilearn 0.6.2 (later changed to 0.7.0) (Abraham et al., 2014).

Lastly, the time-series of each voxel for each block was z scored.

Univariate fMRI analysis

All GLMs were conducted using SPM12 (Penny et al., 2011, SPM12 (7771)) in MATLAB

(MATLAB version 9.3.0.713579 (R2017b), 2017). All GLMs consisted of two regressors of

interest corresponding to the onsets of the two trial-types (1D/2D, except for one GLM where 2D

onsets were split by Congruency) and included one parametric modulator of EV assigned to 1D

onset and different combinations of parametric modulators of EV, Congruency, EVback and their

interactions (see Fig.S13 for GLM visualization). All parametric modulators were demeaned

before entering the GLM, but not orthogonalized. Regressors of no interest reflected cue onsets in

Motion and Color trials, stimulus onsets in wrong and no-answer trials, outcome onsets and 31

nuisance regressors (e.g. motion and physiological parameters, see fMRI-preprocessing). The

duration of stimulus regressors corresponded to the time the stimuli were on screen. The

durations for the rest of the onset regressors were set to 0. Microtime resultion was set to 16 (64

slices / 4 MB factor) and microtime onset was set to the 8 (since slice time correction aligned to

middle slice, see fMRI-preprocessing). Data for all univariate analyses were masked with a whole

https://fmriprep.readthedocs.io/en/latest/workflows.html
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brain mask computed as intercept of each functional run mask generated from fMRIprep (Dale

et al., 1999; Klein et al., 2017). MNI coordinates were translated to their corresponding brain

regions using the automated anatomical parcellation toolbox (Rolls et al., 2015, 2020;

Tzourio-Mazoyer et al., 2002, AAL3v1) for SPM. We verified the estimability of the design

matrices by assessing the Variance Inflation Factor (VIF) for each onset regressor in the

HRF-convolved design matrix. Specifically, for each subject, we computed the VIF (assisted by

scripts from https://github.com/sjgershm/ccnl-fmri) for each regressor in the HRF-convolved

design matrix and averaged the VIFs of corresponding onsets across the blocks. None of the VIFs

surpassed a value of 3.5 (a value of 5 is considered a conservative indicator for overly colinear

regressors, e.g. Mumford et al., 2015, see Fig.S13 for details). Detailed descriptions of all GLMs

are reported in the main text. Additional GLMs verifying the lack of Congruency in any frontal

region can be found in Fig.S13.

Functionally defined vmPFC ROI. Our fMRI analyses focused on understanding the

representations of expected values in vmPFC. We therefore first sought to identify a

value-sensitive region of interest (ROI) that reflected expected values in 1D and 2D trials,

following common procedures in the literature (e.g. Bartra et al., 2013). We analyzed the fMRI

data using general linear models (GLMs) with separate onsets and EV parametric modulators for

1D and 2D trials (at stimulus presentation with 0s duration) and defined a functional ROI for

value representations centered on vmPFC using the the union of the EV modulators for 1D and

2D trials (EV1D + EV2D >0), Fig.3a, p < .0005 FDR corrected). Note that this GLM had no

information regarding the contextually irrelevant context. The group ROI was generated in MNI

space and included 998 voxels. Multivariate analyses were conducted in native space and the ROI

was transformed to native space using ANTs and nearest neighbor interpolation (ANTs 2.2.0

Avants et al., 2008) while keeping only voxels within the union of subject- and run-specific brain

masks produced by the fMRIprep pipeline (Dale et al., 1999; Klein et al., 2017). The resulting

subject-specific ROIs therefore had varying number of voxels (µ = 768.14, σ = 65.62, min = 667,

max = 954).

https://github.com/sjgershm/ccnl-fmri
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Verifying design trial-wise estimability. To verify that the individual trials are estimatable (for

the trial-wise multivariate analysis) and as a control over multi-colinearity (Mumford et al.,

2015), we convolved a design matrix with the HRF for each subject with one regressor per stimuli

(432 regressors with duration equal to the stimulus duration), two regressor across all cues (split

by context) and three regressor for all outcomes (one for each EV). We then computed the VIF for

each stimulus regressor (i.e. how predictive is each regressor by the other ones). None of the

VIFs surpassed 1.57 across all trials and subjects (µV IF = 1.42, σV IF = .033, min = 1.34). When

repeating this analysis with a GLM in which also outcomes were split into trialwise regressors,

we found no stimuli VIF larger than 3.09 (µV IF = 2.64, σV IF = .132, min = 1.9). Note that 1 is

the minimum (best) value and 5 is a relatively conservative threshold for colinearity issues (e.g.

Mumford et al., 2015). This means that the BOLD responses of individual trials can be modeled

separately and should not have colinearity issues with other stimuli nor with the outcome

presentation of each trial.

Multivariate analysis

RDM analyses. RDM was conducted using betas taken from a GLM fit to data in native space

(4mm smoothing) with one onset for EV of 1D trials and one onset for each combination or EV

and EVback for 2D trials (e.g. one onset for all trials where EV=30 and EVback=30, one onset

when EV=30 and EVback=50 etc.). Duration of the onsets was set to 0. Regressors of no interest

were identical to the GLMs described in ’Univariate fMRI analysis’ section above. For each

subject, we extracted the beta values for each run from the above defined functional ROI for each

one of the 2D onset regressors. We then performed multvariate noise normalization (normalize

each voxel by its residuals, Walther et al., 2016) and mean pattern subtraction (i.e. subtract the

mean pattern across conditions for each voxel from each response pattern, Walther et al., 2016).

Lastly, we computed the Euclidean distance between each pair of patterns across runs using

Nilearn (Abraham et al., 2014). Note that noise-normalized Euclidean distance is equivalent to

the Mahalanobis distance (Walther et al., 2016). To prevent biasing the diagonal, we excluded

any correlation within a run across conditions (where the diagonal would be 1). This resulted in a
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9x9 RDM for each subject and each block comparison. The resulting distances (half the matrix

including the diagonal for each subject) were analyzed in R (R version 3.6.3 R Core Team, 2017,

RStudio version 1.3.959 RStudio Team, 2020) with Generalized Linear Mixed Models using

Template Model Builder (glmmTMB, Brooks et al., 2017) models, employing a gamma

distribution family with a ’inverse’ link function. When describing main effects of models, the χ2

represents Type II Wald χ2 tests, whereas when describing model comparison, the χ2 represents

the log-likelihood ratio test. Model comparison throughout the paper was done using the ’anova’

function. Throughout all the analyses, each regressor was scaled prior to fitting the models.

The best explaining model for the main effects of the RDM was:

dk
i,j = β0 + γ0k + β1DiagonalEV + β2DiagonalEVback

+ ζ0k,frequency
(4)

where dk
i,j is the Mahalanobis distance of combination i and j for subject k, where i and j each

represent all possible patterns (i.e. combination of EV and EVback. β0 and γ0k represent global

and subject-specific intercepts. DiagonalEV is 1 when the EV of pattern i is the same as the EV

of pattern j. DiagonalEVback is 1 when the EVback of pattern i is the same as EVback of pattern j.

ζ0k,frequency is an additional intercept for every level of frequency nested within each within each

subject level. For details on the effect of frequency, see Fig.S6.

The best explaining model for the value difference effects of the RDM was:

dk
i,j = β0 + γ0k + β1ValueDifferenceEV + β2ValueDifferenceEVback + ζ0k,frequency

(5)

where all parameters are identical to eq. 4 above, only that V alueDifferenceEV corresponds to

the value difference between the EV of pattern i and the EV of pattern j and

ValueDifferenceEVback is the value difference between the EVback of pattern i and the EVback of

pattern j.

Classification procedure. The training set for Value and Context classifiers consisted of fMRI

data from behaviorally accurate 1D trials. For each trial, we took the TR corresponding to approx.
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5 seconds after stimulus onset (round(onset + 5)) to match the peak of the Haemodynamic

Response Function (HRF) estimated by SPM (Penny et al., 2011). Training of Value and Context

classifiers was done using a leave-one-run-out scheme across the four runs with 1D trials. To

avoid bias in the training set after sub-setting only to behaviorally accurate trials (i.e.

over-representation of some information) we up-sampled each training set to ensure equal number

of examples in the training set for each combination of EV (3), Context (2) and Chosen-Side (2).

Specifically, if one particular category was less frequent than another (e.g., more value-30, left,

color trials than value-50, left-color trials) we up-sampled that example category by randomly

selecting a trial from the same category to duplicate in the training set, whilst prioritising

block-wise balance (i.e., if one block had 2 trials in the chunk and another block had only 1, we

first duplicated the trial from under-represented block etc.). We did not up-sample the testing set.

The EVback classifiers were trained on behaviorally accurate 2D trials (5 seconds after stimulus

onset) and up-sampled by EV (3), Context (2) and EVback (3) (without Chosen-Side as this

resulted in excluding many subjects for lack of trials in some training sets). Due to strong

imbalance of unique examples of EVback in the training sets (see below) we trained 3 one-vs-rest

classifiers, each tasked with identifying one level of EVback. This required to adjust the sample

weights in order to account for the higher frequency of the ‘rest’ compared to the ‘one’ label.

Decoding was conducted using multinomial logistic regression as implemented in scikit-learn

0.22.2 (Pedregosa et al., 2011), using a C parameter of 1.0, L2 regularization and the lbgfs solver.

For each test example (i.e. trial) we obtained the predicted probability per class. To avoid

numerical issues in the subsequent modeling of the classifier’s predictions, probabilities were

constrained to lie within 0.00001 and 0.99999, rather than 0 and 1. In addition to the probabilities,

we obtained the balanced classification accuracy (i.e. is the class with the highest probability also

the correct class of the test trial). We separately averaged classification for each participant, test

fold and label (this ensured controlling for any label imbalance in the testing set).

In the classification analyses we modelled directly the class probabilities estimated by the

classifiers with beta regression mixed effects models (Magnusson et al., 2017). For technical
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reasons, before modelling the probabilities using linear mixed effects models, we averaged the

classifiers probabilities across the nuisance effects, i.e. we obtained one average probability for

each combination of relevant and irrelevant values. Crossing each level of EV (three levels) with

each level of irrelevant value of the chosen side combined with irrelevant value of the non-chosen

side (12 level, see Fig. 1), resulted in 36 combinations per participant. Note that the relevant

value of the unchosen cloud was always EV - 20 and therefore we did not include this as a

parameter of interest. After averaging, we computed for each combination of values the EVback,

Congruency and alternative parameters (see Fig. S9). The main model comparison, as well as the

lack of effects of any nuisance regressor, was confirmed on a dataset with raw, i.e. non-averaged,

probabilities (see Fig S7 and S9). Because in the one-vs-rest training of EVback classifiers the

three class probabilities for each trial were obtained independently, they sum to 1. We therefore

first normalized the probabilities for each testing trial.

Probabilities were analyzed in R (R version 3.6.3 R Core Team, 2017, RStudio version 1.3.959

RStudio Team, 2020) with Generalized Linear Mixed Models using Template Model Builder

(glmmTMB, Brooks et al., 2017) models, employing a beta distribution family with a ’logit’ link

function. When describing main effects of models, the χ2 represents Type II Wald χ2 tests,

whereas when describing model comparison, the χ2 represents the log-likelihood ratio test.

Model comparison throughout the paper was done using the ’anova’ function. Throughout all the

analyses, each regressor was scaled prior to fitting the models. Lastly, for the analysis of

behavioral accuracy (Fig. 6) we also included behaviorally wrong trials.

Additional coding of the analyses in Python (3.7, Python3-10.5555/1593511) using NumPy

(1.19.5, Harris et al., 2020) and pandas (1.1.5, reback2020pandas). Most of the plots were

produced using ggplot2 (3.3.5, Wickham, 2016)

Value similarity analyses. asked whether the predicted probabilities reflected the difference

from the objective probability class.
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The model we found to best explain the data was:

P k
t,c = β0 + γ0k + β1|EVt − ct| + β2|EVt − ct|EVbackt

(6)

where Pk
t,c is the probability that the Value classifier assigned to class c in trial t for subject k, β0

and γ0k represent global and subject-specific intercepts, |EVt − Classc,t| is the absolute

difference between the EV of the trial and the class the probability is assigned to and

|EVt − Classc,t|EVbackt is the interaction of this absolute difference with EVback. For models

nested in the levels of EV, we included ζ0k,EV , which is the EV-specific intercept nested within

each within each subject level. In these models, testing for main effects of EVback or Congruency

was not sensible because both factors don’t discriminate between the classes, but rather assign the

same value to all three probabilities from that trial (which sum to 1). More details can be found in

Fig. S7

Values, not perceptual features and not attention capture, explain our effects best. For the

feature similarity model we substituted |EVt − ct| from eq. 6 with a “similarity” parameter that

encoded the perceptual similarity between each trial in the test set and the perceptual features that

constituted the training examples of each class of the classifier. For 1D trials, this perceptual

parameter was identical to the value similarity parameter (|EVt − ct|). This was because from the

shown pairs of colors, both colors overlapped between training and test if the values were

identical; one color overlapped if the values were different by one reward level (e.g. a 30 vs 50

comparison corresponded to two trials that involved pink vs green and green vs orange, i.e.

sharing the color green); and no colors overlapped if the values were different by two levels (30

vs 70). On 2D trials however, due to changing background features and their value-difference

variation, perceptual similarity of training and test was not identical to value similarity. Even

though both the value similarity and the perceptual similarity parameter correlated (ρ = .789,

σ = .005), we found that the value similarity model provided a better AIC score (value similarity

AIC: -3898, Feature similarity AIC: -3893, Fig. panel d). Detailed description with examples can
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be found in Fig. S7. Crucially, even when keeping the value difference of the irrelevant features at

20, thus limiting the testing set only to trials with feature-pairs that were included in the training,

our value similarity model provided a better AIC (-1959) than the feature similarity model

(-1956). To test for a perceptual alternative of EVback we substituted the corresponding parameter

from the model with Similarityback. This perceptual parameter takes on 1 if the perceptual feature

corresponding to the EVback appeared in the 1D training class (as highest or lowest value) and 0

otherwise. As described in the main text, none of the perceptual-similarity encoding alternatives

provided a better fit than our models that focused on the expected values the features represented.

Modelling the influence of irrelevant values and Context signals on EV representation. The

following model of the probability of the objective EV was found to explain the data best:

P k
t,EV = β0 + γ0k + β1EVbackt + β2P

k
t,Context (7)

where Pk
t,EV is the probability assigned to the objective class by the Value classifier

(corresponding to EV of the trial t) for subject k, β0 and γ0k represent global and subject-specific

intercepts, EVback is the maximum of the two ignored values (or the EV of the contextually

irrelevant context) and Pk
t,Context is the probability assigned to the objective class by the Context

classifier (logit-transformed , i.e. logit(P ) = log P
1−P

, and scaled for each subject). For models

nested in the levels of EV, we included ζ0k,EV which is EV specific intercept nested within each

within each subject level (see Fig. S9). Investigations of alternative parametrizations of the

values can be found in Fig. S9. Including an additional regressor that encoded trials in which

EV=EVback (or: match) which did not improve model fit, and no evidence for an interaction of

the match regressor with the EVback was found (LR test with added terms: χ2
(1) = 0.45, p = .502,

χ2
(1) = 0.77, p = .379, respectively). This might indicate that when value expectations of both

contexts matched, there was neither an increase nor a decrease of PEV.

To compute the correlations between each pair of classes we transformed the probabilities for

each class using a multinomial logit transform. For example, for class 30 we performed

probabilities were transformed with mlogit(Pt,30) = 0.5(log Pt,30
Pt,50

+ log Pt,30
Pt,70

). To examine the
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relationship between EV and EVback, we only included 2D trials in which EV 6= EVback. This

allowed us to categorize all three probabilities as either EV, EVback or Other, whereby Other

reflected the value that was neither the EV, nor the EVback. To prevent bias we included only

trials in which Other was presented on screen (as relevant or irrelevant value). We then averaged

across nuisance regressors (see Classification procedure) and computed the correlation across all

trials (Spearman rank correlation). Lastly, we Fisher z-transformed the correlations (0.5 log 1+ρ
1−ρ

)

to approximate normality for the t test. To validate these results, we performed an additional

model comparison in which we added a term of the logit transformed PEVback or of Pother to Eq. 7

(β2mlogit(Pt,EVback) or β2mlogit(Pt,Other) ,respectively). As reported in the main text, adding a

term reflecting PEVback resulted in a smaller (better) AIC score than when we added a term for

Pother (-567,-475, respectively). This was also preserved when running the analysis including

nuisance regressors (see νs in Eq. 2) on the non-averaged data (AICs: -5913.3,-5813.3). We note

that subsetting the data the way we did resulted in a strong negative correlation in the design

matrix between EV and EVback (ρ = −0.798, averaged across subjects). Although this should not

directly influence our interpretation, we validated the results by using alternative models with

effects hierarchically nested within the levels of EV and EVback (Averaged data AICs: -560, -463,

Raw data AICs: -5906.8,-5804.3)

As previously clarified, P2D
EVback

was derived from a classifier trained on 2D trials. The number of

unique examples for each class of EVback differed drastically (due to our design, see Fig.1c and

S6), which motivated us to split the decoding of EVback to three classifiers, each trained on a

different label (see ’Classification procedure’). However, our approach of combining one-vs-rest

training with oversampling and sample weights could not fully counteract these imbalances and a

balanced accuracy did not surpass chance level (t-test against chance: t(34) = 0.96, p = .171) and

the probabilities each classifier assigned to its corresponding class (P2D
EVback

) were still biased by

class imbalances. Specifically, the correlation of P2D
EVback

and EVback was ρµ = .26, ρσ = .07

across subjects, where ’2D’ indicates the classifier was directly trained on 2D trials, unlike with

PEVback which comes from a classifier trained on EV in 1D trials. Since in this analysis we were
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mainly interested in the neural representation of EVback regardless of whether EVback was 30, 50

or 70 in given trial, we solved this issue by using mixed effect models and setting a random

intercept for each level of EVback (i.e. running the models nested within the levels of EVback).

Importantly, due to the symmetric nature of the RDM, this trial frequency bias is orthogonal to

the main effect of EVback reported earlier (Fig.S6a-c).

Thus, when testing across the levels of EVback, the model that best explained the data was:

P k
t,EV = β0 + γ0k + β1EVbackt + β2P

k
t,Context + β3P

k,2D
t,EVback

+ β4P
k
t,ContextP

k,2D
t,EVback

+ ζ0k,EVback

(8)

where similar to Eq. 7, Pk
t,EV, is the probability assigned to the EV class by the Value classifier

for trial t and subject k, β0 and γ0k represent global and subject-specific intercepts and P
k
t,Context is

the logit-transformed probability assigned to Context class. P
k,2D
t,EVback

is the probability the EVback

classifier assigned the correct class (in main text: P2D
EVback

, where 2D notes that this classifier was

trained on 2D trials) and ζ0k,EVback
is EVback specific intercept nested within each within each

subject level.

Linking MRI effects to behavior. When modelling the probability of EVback from the Value

classifier (PEVback , Fig. 6a.), we did not average across nuisance regressors. Our baseline model

was: P k
t,EVback

= β0 + γ0k + ν1side(t) + ν2switch(t) + ν3Context(t). Neither including a main

effect nor interactions between EV, EVback and Congruency improved model fit. When including

behaviorally wrong trials in the model, we used drop1 in combination with χ2-tests from lmer4

package (Bates et al., 2015) to test which of the main effects or interactions improves the fit. This

resulted in the following model as best explaining the data:

P k
t,EVback

= β0 + γ0k + β1EVt × EVbackt + β2Congruencyt × Accuracyt

+ν1t + ν2sidet + ν3switcht + ν4Contextt

(9)

where Pk
t,EVback

is the probability the Value classifier assigned to the EVback class (corresponding
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to EVback of trial t) for subject k, β0 and γ0k represent global and subject-specific intercepts, EV

is the maximum of the two relevant and EVback is the maximum of the two ignored values.

Congruency reflects whether the actions chosen in the relevant vs. irrelevant context would be the

same, and the Accuracy regressor has 1 if participants chose the highest relevant value and 0

otherwise. We note that the interaction EV × EVback (χ
2
(1) = 4.18, p = .041) indicates higher in

trials in which EV and EVback were more similar, the probability assigned to EVback was higher.

However, we find this effect hard to interpret since this corresponds to the value similarity effect

we previously reported.

In order to investigate the effect of vmPFC neural representations on behavioral accuracy, we

used hierarchical model comparison to directly test the influence of neural representation of EV,

EVback and Context on behavioral accuracy separately for congruent and incongruent trials (Fig.

6b-c.). First, we tested if adding logit(Pt,Context), mlogit(Pt,EV) or mlogit(Pt,EVback
) to Eq. 3,

would help to explain the behavioral accuracy better. Because the analysis was split for congruent

and incongruent trials, we excluded the terms involving a Congruency effect. For incongruent

trials, only logit(Pt,Context) improved the fit (LR-tests: logit(Pt,Context): χ2
(1) = 3.66, p = .055,

mlogit(Pt,EV): χ2
(1) = 0.28, p = .599, mlogit(Pt,EVback): χ2

(1) = 0.0, p = .957). In a second step

we then separately tested the interactions logit(Pt,Context) × mlogit(Pt,EV) or logit(Pt,Context) ×

mlogit(Pt,EVback) and found that only the latter had improved the fit (χ2
(1) = 1.78, p = .183,

χ2
(1) = 6.33, p = .012, respectively). For congruent trials, only mlogit(Pt,EVback) and marginally

mlogit(Pt,EV) improved the fit (LR-tests: logit(Pt,Context): χ2
(1) = 0.0, p = .922, mlogit(Pt,EV):

χ2
(1) = 3.5, p = .061, mlogit(Pt,EVback): χ2

(1) = 6.48, p = .011). In a second step we tested

separately the interactions logit(Pt,Context) × mlogit(Pt,EV) ,logit(Pt,Context) × mlogit(Pt,EVback)

or mlogit(Pt,EVback) × mlogit(Pt,EV) and found none of these improved model fit when adding

them to a model that included both main effects from the previous step (χ2
(1) = 0.34, p = .560,

χ2
(1) = .278, p = .598, χ2

(1) = 2.49, p = .115, respectively).

To investigate the effect of vmPFC neural representations on RT in behaviorally accurate trials,

we asked whether subjects who had a stronger effect of Context representation (Pcontext) on EV



STATES, VALUES AND GOALS IN COGNITIVE MAPS 74

representation (PEV) or a stronger Spearman rank correlation between PEV and PEVback (taken

from the Value classifier) also had a stronger effect of Congruency on their RT. Additionally, we

asked whether subjects who had a stronger effect of EVback on PEV and or a stronger effect of

P
k,2D
EVback

on PEV also had a stronger modulation of EVback on the Congruency RT effect. To obtain

subject specific effect of Congruency on RT we added γ1kCongruency and

γ2kCongruencyEVbackt to the RT model (Eq. 2), representing subject-specific slopes of

Congruency for subject k and for the interaction of Congruency and EVback, respectively. The

subject-specific correlation of PEV and PEVback was estimated by using only trials in which EV 6=

EVback. Probabilities were multinomial logit transformed and correlations were Fisher

z-transformed (see above) before averaging across trials to achieve one correlation value per

subject. In the main text and in Fig 5e-f we did not average the data to achieve maximum

sensitivity to trial-wise variations. The results reported in the main text replicate when running

the same procedure while averaging the data across nuisance regressors following the

multinomial logit transformation (R = .38, p = .023). To extract subject-specific slopes for the

effect of EVback on PEV we included a term for this effect (γ1kEVbackt) in Eq. 7, but due to

convergence issues during model fitting, we had to drop the subject-specific intercept (γ0k) in that

model. Similarly, to extract subject-specific slopes for the effect of P2D
EVback

on PEV we included a

term for this effect (γ1kP k,2D
t,EVback

) in Eq. 8.
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Introduction

Understanding how humans and animals navigate and represent their spatial environment has

been a central question in cognitive neuroscience (Doeller et al., 2010; O’Keefe, 1976).

Following the observation that in pursuit of reward, rats make unexperienced shortcuts in complex

mazes, Tolman coined the term ’cognitive map’ as an internal representation of the world

(Tolman et al., 1946; Tolman & Honzik, 1930b), for review see (Behrens et al., 2018). Decades

of research have revealed a set of medial temporal and medial prefrontal spatial representations,

such as hippocampal place cells which fire at specific locations of the map (Moser et al., 2008;

O’Keefe & Dostrovsky, 1971) and entorhinal grid cells that fire at different locations, forming a

hexagonal grid (Doeller et al., 2010; Gardner et al., 2022; Hafting et al., 2005). Alongside place

and grid cells, more cell ’types’ were discovered in the hippocampal formation, encoding goals

(Sarel et al., 2017) and even locations of rewards (Gauthier & Tank, 2018). Together, these cells

are seen as forming a coordinate system, incorporating knowledge from the environment for

spatial navigation (Behrens et al., 2018; Jacobs et al., 2013; Sosa & Giocomo, 2021).

Recent work suggests that this system is not restricted to navigating in physical space and is also

engaged when imagining navigation (Bellmund et al., 2016; Horner et al., 2016; Neupane et al.,

2024) and also represents distances and trajectories between more abstract concepts and

dimensions, such as visual features (Constantinescu et al., 2016; Theves et al., 2019, 2020), odors

(Bao et al., 2019), sounds (Aronov et al., 2017), choice probabilities and magnitudes (Bongioanni

et al., 2021) and even decisions along two-dimensional social hierarchies (Park et al., 2020,

2021). These findings suggest that representations of cognitive maps in this system might go

beyond physical spatial navigation. Cognitive maps, in this broader sense, allow for the spatial

and non-spatial organization of experiences and knowledge and play a crucial role in

goal-directed behavior (Behrens et al., 2018; Bellmund et al., 2018; Epstein et al., 2017; O’Keefe,

1978; Schuck et al., 2016; Sharpe et al., 2019; Sosa & Giocomo, 2021; Stachenfeld et al., 2017;

Tolman, 1948; Wilson et al., 2014).

To guide goal-directed behaviors in changing environments, cognitive maps must be dynamically
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adaptive. Studies have shown that receptive fields of place and grid cells adapt to changes in the

shape of the environment (Grieves et al., 2021; Krupic et al., 2015, 2018; O’Keefe & Burgess,

1996) and to salient locations within it (Boccara et al., 2019; Butler et al., 2019; Derdikman et al.,

2009; Sanguinetti-Scheck & Brecht, 2020), even causing grid firing patterns to become irregular

or ’distorted’ (Ginosar et al., 2021; Grieves et al., 2021; Krupic et al., 2014; Sosa & Giocomo,

2021). Correspondingly, it has been suggested that the role of this system might not be to provide

an objective metric of space, spatial or otherwise, but rather to reflect a more subjective,

experience-driven representation (Behrens et al., 2018; Ginosar et al., 2023; Sosa & Giocomo,

2021; Stachenfeld et al., 2017). One main aspect of this subjective nature is that cognitive maps

can over- or under-represent certain regions, for instance via changes in field density. These

changes might help guide our perception of the environment and following behaviors (Aurelio

et al., 2021; Bellmund et al., 2020; Ginosar et al., 2023; Theves et al., 2024). For example, areas

of the map with an increase in field density might be represented in higher resolution,

contributing to higher acuity, and making it easier to distinguish among the different locations

there. Recent work suggests that objects in areas believed to have less spacing between grid fields

(equivalent to the higher density of grid fields) are subjectively judged to be further apart relative

to their true distance (Bellmund et al., 2020). This suggests that when field density increases,

perceived distances increase with it. Having a more dynamic, experience-driven representation

can thus help us achieve different goals more effectively, and changes in field density might be

one potential account for such a mechanism.

The ability to predict reward locations is crucial for goal-directed behavior (Samuelson, 1947;

Silver et al., 2021; Sutton & Barto, 1998). Understanding where and how value expectations are

represented in the brain has been a long-standing goal of cognitive neuroscience research

(Ballesta et al., 2020; Bartra et al., 2013; Clithero & Rangel, 2014; Moneta et al., 2023, 2024;

O’Doherty et al., 2001). What role do values play in cognitive maps? One way to think of values

is as another dimension along which information is organized (Moneta et al., 2024) such that

value might simply be another task dimension (Bongioanni et al., 2021; Nitsch et al., 2024).
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Indeed, areas in the medial temporal lobe, associated with representing cognitive maps, are also

involved in representing rewards (LeGates et al., 2018; Wirth et al., 2009; Zeithamova et al.,

2018). During navigation toward reward, cells in the hippocampus were found to increase their

activity when approaching reward (Eichenbaum et al., 1987), with a firing pattern that matches

subjectively anticipated outcomes, depending on recent experience (H. Lee et al., 2012). This

suggests that during reward foraging, the hippocampus might represent a predictive value map,

with an increased signal closer to the reward location. Values might also cause broader influences

on the representation of the map. After exposure to reward, a proportion of place cells in the

hippocampus re-allocate their receptive fields, a phenomenon known as remapping, to locate

around the reward location (Hollup et al., 2001). This type of remapping was observed especially

when the reward location is to be inferred and not when it was explicitly cued (Dupret et al.,

2010). Similar changes in both firing rate and receptive field locations were observed in the

entorhinal cortex (Boccara et al., 2019; Hollup et al., 2001; Sanguinetti-Scheck & Brecht, 2020;

Sosa & Giocomo, 2021). Recent theoretical work suggests that these observed increases in

representation around reward or other salient locations might indicate a more subjective,

experience-driven representation in these regions, meant to provide a guide to future behaviors

(Ginosar et al., 2021). Taken together, these findings imply that the representations of value and

other elements of the cognitive map are interdependent, potentially influencing each other across

varying temporal scales (Garvert et al., 2023; Moneta et al., 2023, 2024).

The goal of this study is therefore to investigate how reward causes long-lasting changes to the

representation of an abstract cognitive map. By examining how reward affects perceptual

discrimination between stimuli within the map and their neural representations, we hope to gain

insights into the underlying neural mechanisms and their implications for behavior. Our first

hypothesis was that exposure to reward will increase the perceptual discrimination between

previously rewarding stimuli, accompanied by a systematic change such that a clustering of

neural representational fields will form in the rewarded area.

One important question this hypothesis raises is where the increase in density comes from. Some
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work has shown that clustering of representational fields in one area might come at the expense of

other areas of the map (Schaffner et al., 2023; Thalmann et al., 2024). It remains unclear if this

reallocation of fields is a result of a random allocation of resources or a systematic change to the

representation of the environment. Based on previous theoretical work (Ginosar et al., 2023;

Schaffner et al., 2023), we predicted that the increase in density around the reward would come at

the expense of the immediately surrounding areas. More specifically, we expected that the

increase in field density would be a result of a scaled pull of fields towards the reward, such that

fields closer to the reward have a higher chance to be pulled towards the reward (henceforth:

Pulling hypothesis).

We also considered alternative hypotheses such as partial remapping, i.e. re-distribution of a

random selection of fields around the reward, or global remapping of all fields such that activity is

scaled as a function of distance to reward. As discussed below, the latter is equivalent to a

generalized reward predictive map. Such value representations are often found in mOFC (Moneta

et al., 2024) and were also previously reported in the hippocampus during spatial navigation

towards reward (e.g. H. Lee et al., 2012). Importantly, these different accounts are not mutually

exclusive as some brain regions might be more focused on representing value maps whereas

others might focus on representing other aspects of the map, such as (subjective) distances. We

simulated all three hypotheses and found that although all three make the same prediction

regarding the clustering of fields around the reward, they differ with respect to the influence the

reward has on areas around it as well as generalizable changes to the rest of the map. Beyond the

focus on rewarded areas of the map, our experimental design allowed us to focus on areas of the

map that were never rewarded and to test these potential generalization effects. Preliminary

univariate and multivariate fMRI analyses show support for the pulling hypothesis. Future

analysis is planned to better understand the representational change and identify regions that

might match these different hypotheses.
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Figure 7

Task and Design a. On day 1, the perceptual discrimination task (PRE) was followed by a reward learning session

(REW1). On day 2, the reward learning session (REW2) was followed by a repetition of the perceptual task (POST).b.

In the perceptual task, a target tree (T, 2s) was followed by a fixation cross (µ=3s [1.8s-7s]) and two reference trees (’A’

left, ’B’ right, 2.7s/3s for behavioral/MRI). The task was to select a reference tree more similar to the target. Another

fixation cross appeared before the next trial (µ=2.7s [1.8s-9s]). c.) In reward learning (REW1 & REW2), participants

chose between two trees (2.7s/3s for behavioral/MRI), followed by a fixation (µ=3s [1.8s-7s]), then the same trees

reappeared with outcomes (2.2s). A fixation cross appeared before the next trial (µ=2.7s [1.8s-9s]). Trees were the

same size in both tasks. d. Trees can be mapped by the number of leaves (x-axis) and fruits (y-axis), sampled mainly

in four quadrants, each split by 12 lines at 15-degree intervals (gray lines). Reference trees (A & B) were at line edges

with target trees (T) between them. Each line represents 6 trials with A and B at the edges and T at the one-quarter,

midpoint, or three-quarter point between them. e. In reward learning, participants were split by the rewarding tree’s

location: top left (Top-Left group, teal) or bottom right (Bottom-Right). The center tree of the rewarded quadrant

gave 1100 points, surrounding trees 150, and others 5. Choices were mainly between the center and a surrounding

tree (orange points) from four quadrants with a slightly smaller diameter (85%. see design section in methods). f.

Participants performed above chance in both perceptual sessions and showed improvement from PRE to POST (all

ps<.001). g. Participants performed above chance in both reward sessions and showed improvement from the first

to the second (all ps<.001). h. Participants also performed above chance in each session and showed improvement
when only comparing the most rewarding tree and trees more towards the corner (trials depicted in black square, all

ps<.001). i. Only the rewarded quadrant showed a significant increase in accuracy from PRE to POST (Bottom-right

group in bottom-right quadrant: p=.017, Top-left in top-left quadrant:p=.03, all the rest: p>.05) j. Participants showed
marginal improvement in accuracy in the rewarded quadrant compared to all other quadrants (p = .089).
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Participants, tasks, and design

A total of 74 participants (46 women, 1 diverse, µage = 26.1, σage = 4.69, see participants section

in methods for full exclusion criteria) completed four experimental sessions across two days

(Fig.7a), 38 of which performed four sessions in an MR scanner (25 women,

µage = 26.84, σage = 4.96) and 36 participants performed the same task outside the scanner (21

women, 1 diverse µage = 25.38, σage = 4.33). Across two consecutive days, participants first

performed one session of a perceptual discrimination task at the beginning of the experiment

(PRE), followed by a reward learning task that involved the same stimuli (REW1 & REW2), and

another identical perceptual task (POST) (Fig.7b-c). Our main focus is on how the experience of

reward changed behavior and neural stimulus representations while mainly focusing on the

difference between PRE to POST sessions.

In the main perceptual discrimination task (Fig.7b), participants made perceptual similarity

judgments by indicating which of two reference trees is more similar to a target tree shown

immediately prior. Each tree was characterized by the number of leaves (green dots) and fruits

(purple dots). These features varied independently and hence formed a 2-dimensional ’map’ of a

leaf/fruit space (Fig.7d). In anticipation of the non-linear perception of quantities, based on pilot

data and as stipulated by the Weber-Fechner law, the trees were distributed in a logarithmic

manner. Importantly, our models can account for any participant-specific variation in the logging

of the space (see below and Fig.S14). Therefore for simplicity, we continue presenting the trees

in logged space. Within this log space, trees were mainly sampled from four circles that covered

the four quadrants of the map such that the target and reference trees were always along a straight

line along the quadrant with the target tree either positioned at either the one-quarter, midpoint, or

three-quarter point between the reference trees (see Fig.7d and Fig.S14). There was no

location-based reward for this task. However, to motivate participants, they were told that if they

were correct in over 70% of all trials in the 1st and 4th sessions they would receive an additional

monetary bonus. Feedback was only given at the end of the block and only showed the mean

accuracy of that specific block.
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In the reward learning task (2nd and 3rd sessions, REW1 & REW2), participants performed a

two-forced choice task and learned through trial and error to associate a specific set of trees from

a circumscribed area within the 2-dimensional tree space with a reward (Fig.7c), i.e. some fruit &

leaf proportions were rewarded while others were not, akin to introducing a reward to a location

in a 2D cognitive map. Participants started the task with no knowledge of the reward location and

were only told that similar trees yield similar rewards. To ensure that any change between the

PRE- and POST sessions would be reward-specific, we split our participants into two groups

which determined which quadrant would be rewarding: either the top-left or the bottom-right

(henceforth: Top-Left, Bottom-Right groups, Fig.7e.). The reward was fixed for both reward

sessions. Also here, we mainly sampled from four quadrants of the space such that the center tree

of the rewarding quadrant was most rewarding (1100 pts. +-5), trees surrounding it were less

rewarding (110 pts +-5) but still more rewarding than the the rest of the trees (5 pts +-5).

Participants were told that points would be translated into monetary rewards. To further localize

the effect of the reward, the sampled trees from each quadrant were more centered than in the

perceptual task.

Importantly, throughout each session of each task, participants were exposed equally to the entire

map, preventing over-exposure to any area. There were also never ’free-navigation’ trials, i.e.

participants could not control which trees would be shown. More details on the task and design

can be found in Fig.16 in the methods section.

Results

behavioral results

General performance

Participants performed well above chance in both PRE and POST perceptual sessions in choosing

the tree closest to the target tree (PRE: µ=.765,σ=.046, t-test against chance: t(73) = 48.9, p<.001,

POST: µ=.787,σ=.044, t-test against chance: t(73) = 56, p<.001, Fig.7f, equidistant trees in

logarithmic space were removed). Performance increased from PRE to POST session (paired

t-test: t(73) = 3.9, p<.001) Participants also learned with high accuracy to identify the most
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rewarding tree in the reward task (REW1: µ=.736,σ=.092, t-test against chance: t(73) = 22,

p<.001, REW2: µ=.83,σ=.082, t-test against chance: t(73) = 34.6, p<.001, Fig.7g) and

significantly improved from the 2nd to the 3rd sessions (paired t-test: t(73) = 11.05, p<.001,

Fig.7g). To ensure participants learned the reward depended on a specific amount of fruits and

leaves and not a generalized rule such as ’more leaves/fruits are more rewarding’, we included

trials in which participants decided between the most rewarding tree and trees with the maximum

or minimum amount of fruits/leaves(Fig.7h, low). Participants performed above chance and

showed improvement also in these trials, indicating they learned the reward is at a specific

location of the 2D map (REW1: µ=.643,σ=.17, t-test against chance: t(73) = 7.27, p<.001,

REW2: µ=.8,σ=.11, t-test against chance: t(73) = 21.58, p<.001, paired t-test between reward

sessions, REW2-REW1: µ=.15,σ=.17, t(73) = 7.78, p<.001).

Increased accuracy in the rewarded quadrant. We hypothesized that exposure to reward

would increase perceptual acuity in the POST task in the rewarding region. To test this, we

investigated the accuracy improvement from PRE to POST in each quadrant using repeated

measures ANOVA with group x session x quadrant as factors and subject as a random effect. Post

hoc tests found that for each group, accuracy improved significantly only in their rewarded

quadrant, but not in any other quadrant (PRE-POST change in the bottom right quadrant in the

’bottom right’ group: µ=.038, σ=.016, t(288)=2.41,p=.017, Top left in the ’top left’ group: µ=.035,

σ=0.016, t(288)=2.18,p=.03, Bonferroni corrected, p>.05 for all other quadrants for both groups

(see behavioral analysis methods for details). A direct contrast of the improvement in the

rewarded quadrant against the mean improvement in all other quadrants (across groups), indicated

a marginal increase (t(73)=1.36,p=0.089, Fig.7j).

Behavioral model

These changes in accuracy show that exposure to reward increased participants’ perceptual

discrimination ability even in a subsequent task without localized reward. To ask which

perceptual changes could underlie these changes in performance, we set up a logistic regression

model of participants’ choices that included several factors that could model possible perceptual
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Figure 8

Computational model to capture choice bias in the cognitivemap a. Distance of Distances (DD) is the difference in
relative distance of each reference tree (A & B) to the target tree (T). WhenDD is positive, tree A is closer to the target,

and when DD is negative, tree B is closer to the target. b. Depicted are three trials sharing the same reference trees

and only differ in the location of the target. Scaling DD up or down does not change the correct choice (sign of DD),
only how strong the evidence for it is. c. If when DD is high, choices become easier, then a potential interpretation is

as if all trees are equally further apart from one another. Depicted is an example of model input (orange) and potential

underlying perceived distances due to a fit with high DD (blue). d. Sinusoid wave with one peak (H1). Adding this

term to the model allows capturing angular-dependent choice bias. Depicted is an example where the bias is to choose

trees pointing to the left. e. Same three trials from panel b. An effect of H1 means a bias to choose the tree on the

left (here, A), meaning the distance from A to the target is perceived as smaller, irrespective of whether the target is

closer to it (first row), in the middle (second row) or closer to B (third row). f. An effect of H1 indicates that distances

between trees pointing in one direction to their respective targets are smaller compared to the trees pointing to the other

side. One interpretation of such an effect is depicted similarly to panel d, showing an angle-dependent gradual change

in distances equivalent to a positive effect of H1 with a peak pointing left. g. Sinusoid wave with two peaks (H2). This

term allows us to capture axial choice bias. Depicted is an example where the bias is to choose trees pointing to the

left or right over trees up and down. h. An effect of H2 indicates that all the distances between the trees along one axis

(here horizontal) are smaller compared to the orthogonal. i. One interpretation of H2 effect is a compression of the

respective quadrant along an axis, e.g. making choices along the horizontal axes harder compared to choices along the

vertical axes. Note that in the model, both H1 and H2 had free phase and amplitude and could point to any direction.
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biases and alterations. Specifically, we looked at the probability of choosing tree A over tree B,

where tree A is always the tree presented on the left-hand side of the screen (including trials with

a target presumed to be roughly in the middle between references, which were removed from the

accuracy analysis above).

The goal of this analysis is to isolate different choice biases which could result from exposure to

reward. We focused on two main components. The first was the relative distance of the distances

of each reference tree to the target tree (distance of tree B to target minus distance of tree A to

target, henceforth: DD, Fig.8a); When DD is positive, it means tree A is closer to the target and is

the correct answer. When it is negative, it means tree B is correct. An increase in the general size

of DD does not influence which is the correct response (set by its sign) but simply indicates a

higher amount of evidence since the similarity of the trees to the target is more different (Fig.8b).

A high beta coefficient for DD hence means that participants were more sensitive to even small

differences in which tree was more similar to the target (akin to perceiving them as more ’distant’,

see example in Fig.8c.). Including the interaction of DD with session, group, and quadrant allows

us to compare group-specific changes in acuity from PRE to POST in specific quadrants.

We reasoned that reward would not only cause changes in the rewarded region but also generalize

to the whole map, introducing perceptual differences in other, non-rewarded quadrants. A main

feature of our perceptual decision-making task was the target and two reference trees always lay

on a line (see Fig.7d) that pointed in a particular direction. To capture whether participants had

choice biases for particular trials as a function of their direction, we added a directional regressor

for each quadrant that could rotate in any single direction.This was implemented through a

harmonic addition of a sine and a cosine regressor that modeled the phase and amplitude of a

single sine wave in directional space (harmonic addition theorem, see behavioral methods). This

1-peaked directional regressor hence allowed us to capture a bias to choose trees at a specific

direction irrespective if they are the correct ones (henceforth: 1st harmonic, or H1, Fig.8d., Fig.8e

for details). One interpretation of such choice bias is that trees pointing in one direction, are

perceived closer to the center of the quadrant compared to trees pointing at the opposite direction
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(Fig.8f). We also included a two peaked direction regressor (henceforth: 2nd harmonic, or H2,

Fig.8g-h.) to capture possibly more complex directional modulations of perceptual similarity

judgments. An interpretation of such choice bias is depicted in Fig.8i, where all trees on the left

and right to the center are perceived closer to the middle, compared to the trees on the top and

bottom of the quadrant. The interpretation of this regressor is somewhat challenging since in

practice, choices were always between A and B which were on a straight line. We believe its

main role is complimentary to H1, modulating its effect in some direction, but plan to investigate

this further in the future.

We tested for an effect of these components on all the data from the perceptual tasks, first

ignoring any interaction of session and group (Fig.8j). We started with a baseline model with only

nuisance regressors for cohort (behavioral only or MRI), group, session, quadrant, and interaction

of session and quadrant and added each component hierarchically. Adding DD and its interaction

with quadrant both improved the fit, indicating that participants had different acuity in the

different quadrants (likelihood-ratio test comparing baseline to model with main effect DD,

χ2
(1) = 9340.19, p < .001; comparing DD model with model including DD × Q interaction:

χ2
(3) = 63.295, p < .001). Adding a main effect of H1, and its interaction with quadrant improved

the fit further (LR test when adding main effect H1, χ2
(2) = 403.461, p < .001, then further adding

H1 × Q: χ2
(6) = 897.254, p < .001). The fit improved even further we we also modeled H2 (LR

tests: H2, χ2
(2) = 15.090, p < .001, with H2 × Q: χ2

(6) = 34.058, p < .001). Note that we found

no evidence that DD interacted with any of the sinusoid waves (adding DD × H1 to the best

model: χ2
(2) = 1.1235, p = .57, adding DD × H2 to the best model: χ2

(2) = 3.56, p = .169). Since

the DD mainly indicates which tree is the correct one, the lack of interaction indicates that the

effect of the waves was independent of which tree is correct. Similar results were found when

fitting PRE or POST sessions separately (see Fig.S14).

Next, focusing on the main question of this project, we tested for an interaction of the components

with the session and group. Since model complexity increases exponentially (multiple 4-way

interactions), we focused on the general improvement including all possible interactions, and later
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Reward-induced change in behavioral acuity a. Model comparison revealed that all the components had an effect

on participants’ choices and interacted with the quadrant, irrespective of session or group (all ps<.001). b. Including
interaction with the session or group improved the fit, yet the best explaining model included all interactions with the

session and group (all ps<.001). c. Averaged participants change in response to all trees in each quadrant from PRE to

POST (POST-PRE, y-axis) with respect to DD (x-axis). Points and lines represent participants’ mean responses and

shades represent SEM. d. Model prediction equivalent to panel c. To show the marginal effect of DD, include only
coefficients associated with DD. An increase in slope indicates an increase in acuity as even smaller DD would result

in a higher choice probability. Each group (Top-Left, Bottom-Right) showed an increase in slope for the rewarded

quadrant. e. The highest increase acuity, measured as an increase in coefficients associated with DD, was in the

rewarded Quadrant. Bars indicate the mean effect of an increase in the rewarded quadrant of each group from PRE to

POST compared to the mean effect of all the rest of the quadrants (p<.001) f. Following the same logic as panel g,
contrasting specifically the rewarded quadrant with the opposite revealed a significant increase for both groups (Top

left quadrant against bottom right quadrant for the Top-Left group, and the opposite for Bottom-right (p=.017).
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turned to post-hoc tests for specific predictions generated from the experimental design. Adding

an interaction of all components (DD, H1, H2) with either session or group improved the fit

(LR-test: session × (DD + H1 + H2): χ2
(58) = 51.532, p < .001, group × (DD + H1 + H2):

χ2
(2) = 66.155, p < .001). The interaction with the session hints at a potential general

quadrant-specific change in choice biases from the PRE to POST session, independent of the

reward location. The interaction with the group is less ideal, as it shows a potential

session-independent group difference in perceiving the map. However, adding interaction with

both group and session provided the best fit over only session interactions (χ2
(40) = 154.4,

p < .001) or only group interactions (χ2
(40) = 139.8, p < .001). Together, these regressors help

explain the differences between choices in the PRE vs POST session in a reward-group and

quadrant-specific manner. Next, we will look at specific marginal effects to test our hypotheses of

local and generalized changes in perceived distances due to reward exposure.

Exposure to reward increased local acuity. We first focused on the distance of distances (DD)

which represents the difference in Euclidean distance between each reference tree and the target

(for choosing tree A, Fig.8a-c). As mentioned above, an increase in the coefficient associated

with DD does not influence which is the correct response, rather makes the trail easier (similar to

a temperature parameter, Fig.9c-d.). We therefore interpret the effects associated with DD as

proxy for all the perceived distances of each quadrant. Examining the relative change in DD’s

coefficients from PRE to POST revealed an increase in the respective rewarded quadrant of each

group (Fig.9e). Contrast of the interaction effect using estimated marginal means (EMMs) with a

z-test for significance revealed a specific higher increase in the rewarded quadrant from PRE to

POST compared to all other quadrants (estimate = 2.348, SE = 0.286, p<0.001, Fig.9f). This

effect holds even when specifically testing the rewarded quadrant against the quadrant opposite to

it, with respect to the reward-group (estimate = 0.485, SE = 0.204, p=0.0176, Fig.9g). The

latter shows an even clearer effect of our reward manipulation since for the top left group, the

contrast takes the top-left quadrant minus the bottom right quadrant, and for the bottom right

group exactly the opposite direction.
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Generalized reward-induced change in behavioral acuity to non-rewarding areas a. Depiction ofH1 effect, taken

from Fig.8. b. Depiction of H2 effect, taken from Fig.8. c. Model prediction of change in choice bias from PRE to

POST by group and quadrant. Color scheme represents model choice prediction change from PRE to POST. Black ’R’

marks the quadrant that was rewarded between the sessions for each group and arrows in the other quadrants point at

the angular direction for the reward. d. Model prediction of change in choice bias from PRE to POST by group and

quadrant, sorted by angle. y-axis represents model choice prediction change from PRE to POST and x-axis the angle

of the quadrant, whereas vertical lines in each quadrant show the angular direction pointing towards the reward of each

quadrant (equivalent to arrows in panel c). Note that for Top-left group there is no vertical line in the Top-left quadrant

and the same for Bottom-right group. Stars represents significance of a z-test for effect contrast between the two groups

at particular angles using estimated marginal means (see stats in main text). e. True data of participants, same as (c).

N=74. f. True data of participants, same as (d). N=74. Points represent average response of all participants. Smoothed

line represent locally estimated scatter-plot smoothing (LOESS) across all individual participants’ averaged responses,

used for visualization without assuming a specific parametric form.
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Generalized effect of reward to neighboring quadrants. Next, to test for the generalized

influence of reward on areas that were not previously rewarded, we focused on the sinusoid

waves (H1 & H2) to capture angle-dependent choice biases (Fig.10a-b). By examining the effect

of these angular regressors at the perceptual indifference point (setting DD to 0), we can test for

choice effects that would be invisible in any investigation of accuracy. This analysis revealed a

choice bias directed towards the reward in the neighboring quadrants, i.e. in quadrants south of

the formerly rewarded quadrant, participants tended to judge the northern trees to be more similar

to the target, and in quadrants to the west, they were biased towards the eastern trees (Fig.10c-d).

This occurred (1) even though none of the trees in question were ever directly rewarded in the

REW session and (2) in a manner that was specific to the POST session and the relative location

of the quadrant with respect to the reward location (see Fig.10d, vertical lines, for which angles

point towards the reward in a group and quadrant specific manner). A post-hoc analysis of

PRE-POST emergence of choice biases at reward-directed angles revealed a significant change

between the groups in most of the quadrants, indicating a generalized choice bias due to reward

exposure (see Table1 below). Lastly, we examined the averaged choices of participants and

applied locally estimated scatter-plot smoothing (LOESS, without assuming a specific parametric

form) across all participants’ averaged responses and found qualitatively similar response patterns

(Fig.10e-f). We note that in the right quadrants, the effects diverge in both model prediction and

data, especially with respect to the top-left group. We plan to better understand this diversion in

the future and hope the MRI data could shed some light on this.

Brought together, our behavioral models suggest reward increased acuity in the rewarded area.

The influence of reward is generalized to neighboring quadrants, biasing choices towards it.

Since during perceptual sessions participants’ task was to indicate which of the reference trees

had the least distance to the target, we reasoned that any bias in choice might be due to a

generalized change in field density representing the map, accompanied by changes in perceived

distances between the trees. An alternative interpretation is that participants carry over the reward

task into the perceptual session such that they keep on following the rule of ’choose the most
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Contrast Quadrant Angle (°) Estimate SE z.ratio p.value

Top-Left Quadrant 315 315 -0.569 0.198 -2.877 0.004

Top-Right Quadrant 180 180 0.076 0.205 0.371 0.710

Top-Right Quadrant 270 270 -0.557 0.208 -2.675 0.008

Bottom-Right Quadrant 135 135 -0.039 0.197 -0.196 0.845

Bottom-Left Quadrant 90 90 0.566 0.200 2.833 0.005

Bottom-Left Quadrant 360 360 -0.600 0.200 -2.998 0.003

Table 1

Post hoc tests of group difference in the change of choice bias from PRE to POST at specific angles pointing towards

the reward of each group. For each quadrant, we tested the difference between the two groups in choice bias at

angles pointing toward each of the two reward locations. Note that since the reward was centered in its respective

quadrant, there is no reward-pointing angle for the Top Left group in the Top-Left quadrant and for the Bottom Right

in the Bottom-Right quadrant. The reward-neighboring quadrant (Top-Right and Bottom-Left) was tested at two

points: once pointing toward the reward location of each group.

rewarding tree’. However, this alternative can not explain the increase in performance in each

group’s rewarded quadrant. As discussed in more detail below, such a carry-over effect does not

necessarily exclude a change in the representation of the cognitive map. In the next part, we ask

what representational changes could accompany the observed choice biases.

Simulations of reward-induced representational change, univariate signals

To better interpret our behavioral results and generate hypotheses for the fMRI data, we first

asked what would happen to a uniformly represented cognitive map after introducing a reward to

it according to each of the three hypotheses described above: the pulling hypothesis, partial

remapping, and global value-driven remapping. Each hypothesis provides a different mechanistic

explanation for the clustering of fields following reward exposure and makes different predictions

for the representational change in the map. We reasoned that a change in field density would

correspond to a change in discriminability which would translate to a change in perceived

distances (Bellmund et al., 2020), such that trees in areas of the map with a decrease in field

density would be perceived more similar to one another.

We first simulated a simplified hypothetical representation for the cognitive map (both the x and

y coordinates ranged from −1 to 1) by simulating 100,000 cells with 2D-Gaussian firing fields at

random centers with random standard deviations (σ ∼ U(0.01, 0.1)), akin to hippocampus place

cells showing firing patterns sensitive to specific locations in the cognitive map. We then tested
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Figure 11

Simulation of univariate effects for place-cells-like representation of the cognitive map Legend on top depicts the

color scheme throughout panels a-d, with teal indicating an increase in firing/field density, gray showing no change,

and brown colors indicating a decrease in field density. Panels b-d show the predicted effect for the Top Left group

only, symmetric effects were simulated for the Bottom-Right (maps not presented). a. Simulated random uniform

activity map (PRE map). Orange points show the reference trees’ location and red the targets of each quadrant. b. The

pulling hypothesis predicts the pulling of fields towards the reward, scaled by their distance to the reward (POST map,

bottom left). Contrasting the POST-PRE map shows that after scaled pulling of fields, the increase in field density in

the rewarded area (teal) is accompanied by a decrease in neighboring areas (brown). c. Partial remapping of 20% of

the cells to redistribute around the reward also predicts an increase in field density around the reward (teal) without

prediction for change in other areas. d. Global remapping of all cells, scaled by the distance to the reward, also

revealed an increase in field density around the reward location which stretches across the map, such that locations

closer to the reward show an increase in field density (teal colors). The resulting map is equivalent to a generalized

value-mapping where the firing rate scales with distance to reward. e. Panels f-h show cumulative activity from the

center of each quadrant to a single reference tree, as indicated by black arrows on the depicted map. In all panels teal

shows the top-left group and red shows the bottom-right. f. Pulling hypothesis predicted a decrease in field density

(and univariate signal, y-axis) for trees at an angle pointing towards the reward (x-axis represents angles of quadrants

presented in panel e). Each panel represents a quadrant and vertical lines the angles pointing towards the reward of

each group. Shades represent +- standard deviation. g. Prediction per quadrant for the partial remapping, similar to

panel f. No clear prediction for the non-rewarding quadrants. h. Prediction per quadrant for the global remapping,

similar to panels f and g. Global remapping predicts an increase in signal pointing towards the reward in neighboring

quadrants.
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the sum of the activity of all cells at each location in the map, either without any change (PRE

map) or after the predicted changes according to each hypothesis. We repeated this simulation

200 times. Our main motivation was to test which changes in field density could produce our

behavioral results. As mentioned above, we expected that all three hypotheses would predict an

increase in univariate signal at the rewarded location but differ in their prediction of the

generalized effect on the rest of the map. Before any reward was introduced, the sum of activity

was roughly uniform (Fig.11a), as expected.

Starting with the pulling hypothesis, we shifted the centers of all cells towards the reward,

proportionally by their distance to the reward (similarly to Ginosar et al., 2023). The attraction

force was calculated using an exponential decay function based on the distance from the reward

location:

Attraction Force Formula: Fattraction(r) = −strength × exp
(
− r

length

)
, where r is the distance from

the reward, strength is the force strength (set to 4), and length is a characteristic distance (set to

0.2).

We then contrasted the POST - PRE maps, showing the predicted change in field density across

sessions. It is already visually apparent that under the pulling hypothesis, the increase in the

rewarded quadrant comes at the cost of a decrease in field density in its surroundings (brown

areas in Fig.11.b).

The first alternative hypothesis was that the increase in density was a result of randomly selected

fields that were re-distributed to salient locations in the map (partial remapping). To simulate this,

we randomly selected 20% of the cells and re-distributed them around the reward (new location

variation: σ = 0.15). Since cells were randomly selected, this did not result in a visible change to

any other quadrants (Fig.11c) and therefore predicts no reward-induced behavioral change in

neighboring quadrants.

A second alternative is that all cells would remap, scaled by their distance to the reward (global

remapping). In practice, this would mean that the firing rate in such a map would be higher for

locations closer to the reward, akin to a generalized value mapping across the space. To simulate
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this, we re-distributed all cells using a multivariate normal distribution centered at the reward

location (new location variation: σ = 0.5). Contrasting POST-PRE maps revealed a gradual

increase in field density towards the reward across the map (Fig.11d.).

By definition, all hypotheses predict an increase in signal in the rewarded quadrant. To generate

behavioral predictions in the neighboring quadrants, we summed the activity of all cells along

trials-trajectories from the center of each quadrant (red points, Fig.11e) to one of the references

(orange points, Fig.11e), approximating the number of fields activated between the two. As

mentioned above, a decrease in field density could correspond to a decrease in perceived distance.

The pulling hypothesis predicts an angular-dependent decrease in field density pointing towards

the reward in all non-rewarded quadrants (Fig.11f). The partial remapping did not make stable

predictions for angle-dependent change in field density in the neighboring quadrants (Fig.11g).

However, the global remapping (or value-mapping) made the exact opposite prediction compared

to the pulling hypothesis. This alternative predicts a generalized effect of an increase in field

density at non-rewarded quadrants pointing towards the reward (Fig.11h). We note that

depending on allowed variation in the re-distribution of cell centers under partial remapping, a

similar effect to Global remapping might appear (see tendency in Fig.11g), but an angular

dependent decrease is very unlikely (see discussion for details).

Our behavioral results indicated that distances on the side pointing towards the reward were

perceived as smaller (Fig.10). Although formal testing of the simulations is still to follow, this

effect corresponds to the same angular decrease in field density according to the pulling

hypothesis. Our behavioral results therefore show support for the pulling hypothesis as the

representational change to the cognitive map due to reward. In the next section, we test our

hypotheses regarding the change in univariate signal due to reward exposure. Our simulations of

the pulling hypothesis suggest an increase in univariate signals in the rewarded quadrant

accompanied by an angle-dependent decrease in signal in the neighboring quadrants such that

trees pointing towards the reward would show the biggest decrease in univariate signal.

As mentioned before, behavior alone can not fully rule out that the effect is driven by participants
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still performing the reward task during the perceptual task. In the case of such task confusion, we

might expect co-activation of both a uniform perceptual map and a value-predictive map, i.e. a

map where the signal is scaled by distance to reward, equivalent to the global (value-driven)

remapping map in Fig.11d. Therefore we still tested for evidence for value-map representation in

the next sections.

Preliminary fMRI univariate results

To test for the effect of reward on the neural representation of the cognitive map we set a GLM

with one regressor for each unique target tree and one regressor for each unique reference tree

(ignoring their side on the screen, see GLM section in methods). In the following analyses, we

only focus on the betas of the target tree and their signal in three a priory defined regions of

interest (ROIs, see ROI section in methods and Fig.12a.). Since our hypotheses focused on

cognitive map representations, we looked into the Hippocampus (HP), medial Orbitofrontal

cortex (mOFC), and Visual cortex (visual). We are currently focusing on these three pre-defined

ROIs and plan more detailed whole-brain analyses in the future.

We first tested for an increase in signal in the rewarded quadrant compared to the opposite

quadrant. Since the reward was located on opposite quadrants of the map for the two groups, the

most controlled test would be to compare the rewarded quadrant to its opposite as those point at

exact opposite quadrants for each group. We then set up a contrast to test the relative increase in

signal in the rewarded quadrant from PRE to POST compared to the opposite quadrant

(Qrpost − Qrpre > Qoppositepost − Qoppositepre). When averaging across all trials, we did not find a

significant increase in the mean signal (12b.). Nevertheless, we wanted to test if an increase in

mean signal in rewarded areas related to performance in the same location. Therefore, we

correlated across subjects the increase of accuracy in the rewarded quadrant compared to its

opposite with the increase in mean signal. We found a significant correlation in the Hippocampus

and Visual cortex and not in mOFC (one-sided Spearman’s rank correlation test: HP: p = .027,

Visual: ρ = .36, p = .017, mOFC: ρ = .32, Fig.12c). Future work is planned to further

investigate the potential mean signal change in the rewarded quadrant (also, see RSA below).
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Preliminary univariate results support the pulling hypothesis a. Depiction of the different ROIs used: Visual cortex

(blue), mOFC (green), and Hippocampus (red). Coordinates are in the MNI space. See the ROI section in Methods for

the feature selection. b. We found no univariate increase of signal in the rewarded quadrant compared to the opposite

from PRE to POST in any of the ROIs. c. Participants who showed a higher increase in accuracy from PRE to POST in

the rewarded quadrant compared to the opposite also showed an increase in HP and Visual signal (p=0.027, p=0.017,
respectively). No equivalent effects were found in mOFC. d. Model group prediction of angular dependent change in

signal only in the neighboring quadrants (left), according to two normalization approaches. Middle panels show the

normalization of all four waves together which keeps the amplitude different between the quadrants. The right panels

show normalization by wave, ignoring amplitude and focusing only on the angular differences. e. Testing the Mean

Square Error between the waves across normalization methods and ROIs showed the HP signal matches the negatively

signed behavioral model, just as the pulling hypothesis predicted. No other tested region showed equivalent effects.



STATES, VALUES AND GOALS IN COGNITIVE MAPS 99

Next, we tested for generalizable univariate effects on neighboring quadrants. Our behavioral

results suggest a choice bias pointing towards the reward and simulations showed a predicted

drop in signal to accompany such a choice bias (pulling hypothesis). The opposite pattern was

predicted by the global remapping (or carry-over value-mapping). This resulted in two potential

MRI predictions based on the behavioral data, either an increase or a decrease in signal pointing

to the same direction, only differed by their sign. Partial remapping made no generalizable

predictions to neighboring quadrants. To test for these effects we took the mean activity during

each target tree presentation from the above-mentioned GLM and fitted an equivalent model to

the behavioral model for data coming from Hippocampus, medial OFC, or Visual cortex. This

model included the same regressors for H1 and H2 for angular effects, without any effect for DD

since the latter depends on the reference trees which were presented only after the target. We then

took the cumulative coefficients of group, session, quadrant, and angle to generate a predicted

mean signal for each ROI. Contrasting the PRE and POST resulted in a single wave of predicted

signal change for each quadrant and group for each ROI. We compared this predicted signal to the

predictions of the behavioral models, once positive and once negative, corresponding to an

increase or decrease signal. We focused only on the neighboring quadrants (Fig.12d, left) since

according to our simulations, those should have the strongest generalization and testable

differences between the two groups. In Fig.12d we show the predicted waves for the hippocampus

(black line) and the negative signed behavioral prediction, adhering to the prediction of the pulling

hypothesis (colored lines). Since choice and MRI signal predictions are on different scales, we

needed to bring them to the same range. We tested two approaches for such normalization: either

normalizing all waves together, emphasizing potential between-quadrants differences in

amplitude and phase (Fig.12d, left), or normalizing each wave separately, emphasizing the

angular direction and ignoring between-quadrants amplitude differences (Fig.12d, right). To

formally test for correspondence between the behavioral and fMRI predictions, we computed the

Mean Square Error (MSE) between the MRI and the two opposite behavioral predictions (positive

or negative angular change) and compared it to a permutation test. We found that regardless of
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the normalization method, the MSE of the hippocampus signal and the negative behavioral signal

was significantly below the 5th percentile of the permutation, indicating the hippocampus showed

a drop of signal pointing towards the reward in neighboring quadrants, just as the pulling

hypothesis predicts (Fig.12e). No equivalent results were found in the mOFC or the Visual cortex.

Brought together, these show preliminary evidence for an increase in univariate signal in the

rewarded quadrant for participants who showed a stronger increase in accuracy in the rewarded

quadrant, suggesting a link between an increased signal in the hippocampus and an increase in

accuracy. Furthermore, the signal in the hippocampus in reward-neighboring quadrants showed

an angular decrease in signal pointing toward the reward, adhering to the predictions of the

pulling hypothesis.

Simulations of reward-induced representational change, multivariate signals

Next, we tested for potential multivariate signal change as a result of systematic change in field

density. The main goal of this simulation is to show what happens to multivariate dissimilarities

when field density changes. To answer this question, we focused on one-dimensional

representational space which simplifies visualization and helps avoid high computational

demands. The underlying neural mechanisms that govern place cell activity are similar across

different spatial dimensions (e.g. Sosa et al., 2024; Tessereau et al., 2025), suggesting that any

systematic changes observed in one-dimensional simulations should be similar in

two-dimensional maps. Intuitively, it is as if we took a single line from the 2D map and tested

changes in dissimilarities between different positions on it (Fig.13a black dashed line).

We simulated 1000 cells with the same Gaussian activity and random standard deviations as in

the univariate simulation with each cell center at equidistance along a line. Then, we either pulled

the cell centers towards a single ’rewarding’ point, remapped a random 20% of the cell centers

around the reward (partial remapping), or remapped all cell centers to normally distribute around

the reward, causing the firing rate to be scaled by distance to reward location (global remapping

or value mapping, Fig.13a), using the same parameters as before. We repeated this analysis 200

times to allow variations in sampling of the cells’ standard deviations and selection of remapped
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cells.

We first looked at the change in univariate signal according to each hypothesis, similar to the 2D

univariate simulation. This resulted in an increase of field density (and univariate signal) around

the reward for all hypotheses, a decrease in the nearby surrounding of the reward for the pulling

hypothesis, a constant decrease over distance to reward for the global remapping (or: value

mapping) and only very local change for the partial remapping (Fig.13b).

We then looked at the multivariate dissimilarities of each pair of 100 points along the simulated

line within each map and contrasted it with the dissimilarities from the PRE map, equivalent to

testing changes of within-session dissimilarities from PRE to POST sessions (Fig.13c). We

looked at both Pearson and Euclidean distances since they differ in their sensitivity to mean

differences between the patterns (Pearson is mean-insensitive, e.g. Walther et al., 2016). Visually

inspecting these dissimilarity matrices shows that all hypotheses predict that representations of all

locations within each side of the reward would generally tend to get more dissimilar to one

another (bright yellow colors in Fig.13c). The pulling hypothesis, however, makes a unique

prediction of decreased dissimilarities across both sides of the reward, specifically for locations

very close to it (dark blue shades in Fig.13c). To better understand and visualize the simulation

results, we examined four specific locations and their change of dissimilarity to the rest of the

map: the reward location, a location close to the reward, a mid-distance location chosen where we

would expect a drop in univariate signal (and perceived distances) according to the pulling

hypothesis and a fourth point located far from the reward (vertical lines in Fig.13b and panels in

Fig.13d). As expected by the representation of a continuous map, all points showed a decrease in

dissimilarity for points close to them (see ’dips’ in dissimilarity in every subplot of panel Fig.13d).

There is still a lot to unpack from these simulations as well as formally test their predictions. A

systematic test across different potential parameters is still lacking (see discussion for details). For

now, we focus on one finding regarding dissimilarities in the immediate proximity of the reward.

The pulling hypothesis, unlike the global remapping, makes a unique prediction of a decrease in

dissimilarities for locations on opposite sides of the reward (Fig.13c-d). Such a decrease might be
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simulation of multivariate effects for place-cells-like representations a. The three hypotheses for representational

change due to reward. The first row shows the previously presented 2D prediction and the second depicts equivalent

1D predictions according to each hypothesis. The pulling hypothesis (green) shows cells on each side of the reward

became gradually closer to it, scaled by their distance. Partial remapping (orange) shows a random set of 20% cells

allocated around the reward and global remapping (value-mapping, blue) shows a full remap of all cells normally

distributed around the reward. Ribbons represent standard deviation across simulations. b. Mean univariate signal

across all simulations at each location shows equivalent results as the 2D simulation. Vertical lines represent the

selected locations depicted in panel d. c. Full dissimilarity matrix of all location pairs. Left: 1-Pearson, mean-

insensitive. Each panel shows the prediction of a different hypothesis contrasted to the unchanged map (equivalent to

the POST-PRE test). Mean-sensitive Euclidean is depicted on the right. The red point marks the ’reward’ location.

d. Mean dissimilarity of selected locations (panel b) and all other locations on the map. Ribbons represent standard

deviation across simulations. 1-Pearson (first row) shows the strongest effect of decreased dissimilarity for locations

on opposite sides of the reward.
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the result of the strong pull of fields around this area, causing fields to be pulled closely together.

If these cells have large receptive fields (i.e. simulated standard deviation), the multivariate

neural signal might become less distinct since the overlap is too big there. Most importantly, the

’close’ locations are not the same locations where there is the biggest decrease in field density,

i.e. univariate signal becomes negative (’middle’ point in Fig.13b.). Rather these are locations

much more adjacent to the reward (’close’ point in Fig.13b.). Behaviorally, we saw the effect of a

decrease in field density in the neighboring quadrants. This suggests that the observed effect in

the simulation here might be more localized, potentially mainly within the rewarded quadrant and

not in the neighboring ones. The decrease in dissimilarities effect across the reward location

appears in both 1-Pearson (mean-sensitive) as well as Euclidean (mean-insensitive) measures.

Brought together, the multivariate simulation predicts that under the pulling hypothesis, trees

located in the immediate surroundings of the reward would become more similar to one another.

The global remapping (value map) makes the opposite prediction, namely an increase of

dissimilarity across the sides of the reward region. Next, we turned to the MRI data to look for

representational changes that could match the different hypothesized changes, currently only

focusing on changes within the rewarded quadrant. We note that the variation in re-distribution

under partial remapping could cause a similar effect to the pulling hypothesis within the rewarded

quadrant. Therefore, we continue, for now, by comparing the predictions based on the pulling

hypothesis against the global remapping (see discussion for details and plans for future work).

Preliminary multivariate fMRI results

Next, to test our multivariate predictions, we took the same betas from the above-mentioned GLM

which corresponded to the signal during the presentation of every target tree and computed the

multivariate dissimilarities of all trees within each quadrant, split by session and group (Fig.14a,

see RSA section in methods for details). The above simulation predicted that a scaled pulling of

fields towards the reward would result in a decrease in dissimilarities across the sides of the

reward, but only in its immediate surroundings. Global remapping (or: value mapping) predicted

an increase in dissimilarity for these comparisons (Fig.14b). Therefore we focus on dissimilarities
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within the rewarded quadrant, which corresponds to trees very close to the peak reward location.

Currently, we only test average dissimilarities and plan more detailed modeling work for the

future. All tests below are two-sided to allow for an opposite effect due to the remapping

hypotheses, although our hypothesis favored the pulling hypothesis.

We first focused on the predefined hippocampus ROI and, similar to the DD analyses, we

averaged the dissimilarities across participants by session, group, and quadrant. Contrasting the

rewarded quadrant against its opposite revealed a significant decrease in 1-Pearson dissimilarity,

which matches the pulling hypothesis (two-sided t-test against 0: t(35) = −2.38, p=.023, Fig.14c).

No equivalent result was found for Euclidean distances (t(35) = .91, p=.367, not presented). Since

our simulations predicted that this effect should be quite local to the reward location, we asked if

it relates to how accurate participants were in identifying the exact reward location. To measure

this, we took two behavioral indicators from the previous reward learning sessions. We first took

the general improvement in accuracy from the first to second reward session as an indirect

measure of participants’ learning curves across the days. We found that participants who showed

a higher learning curve between the reward learning sessions also showed a stronger decrease in

dissimilarity (spearman rank correlation test: ρ=−.52 p=.001, Fig.14d). The second indicator we

took was the performance only on the reward session on the second day, as a proxy for more

immediate, recent reward experience. Here, we found no relation to hippocampus

representational change (spearman rank correlation test: ρ=−.01, p=.95, 14e).

Next, we performed the same analyses on the signal from the mOFC. Similar to the hippocampus,

we found an indication for a marginal effect showing a decrease in dissimilarity from PRE to

POST in the rewarded quadrant compared to its opposite, but only for Euclidean (mean sensitive

multivariate measure, two-sided t-test against 0: t(35) = −1.72, p=.09, Fig.14f) and not for

1-Pearson (mean-insensitive, t(35) = −1.48, p=.145, not presented). We then compared this

change in signal to the across-day learning curve and same-day immediate experience with

reward. No relationship was found with the across-day learning curve (ρ=.11, p=0.52, Fig.14g).

However, participants that showed a stronger decrease in Euclidean dissimilarities in the mOFC,
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Figure 14

Preliminary multivariate results support the pulling hypothesis aWe looked at the multivariate dissimilarity of

all trees within each quadrant. The red lines on the right panel show all the pairs of trees used for this analysis. b

Closely examining the predicted similarity in the immediate surroundings of the reward revealed a predicted decrease

in dissimilarity on both sides of the reward. Such a decrease is only predicted by the pulling hypothesis. The red point

represents the reward location. c Change in 1-Pearson dissimilarities (mean-insensitive) in the hippocampus from PRE

to POST in all quadrants by group (left). Directly contrasting the rewarded quadrant against its opposite with respect to

the group revealed a decrease in dissimilarities, just as the pulling hypothesis predicted (p=.043). Error bars represent
the standard error of the mean. d Participants that showed a higher increase in accuracy from the first to second reward

session (x-axis), also showed a stronger decrease in hippocampus dissimilarities (y-axis, p=.001). e No relationship
was found between change in hippocampus dissimilarities (y-axis) and participants’ performance on the second reward

session (x-axis, p=.95). f Change in Euclidean dissimilarities (mean-sensitive) in the mOFC from PRE to POST in

all quadrants by group (left). Directly contrasting the rewarded quadrant against its opposite with respect to the group

revealed a decrease in dissimilarities, just as the pulling hypothesis predicted, p=.043. gMo relation was found between

participants’ increase in accuracy from the first to second reward session (x-axis) and mOFC dissimilarities change

(y-axis, p=.52). h Participants that performed better on the second reward session (x-axis) showed a higher decrease
in mOFC dissimilarities (y-axis, p=.95). We note that due to technical reasons, we had to exclude two subjects from

all analyses presented here (both in the BR group). We hope to solve this issue in the near future.
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also performed better on the same day (ρ=.33, p=0.049, Fig.14h) hinting at a link between mOFC

representational change and more recent experiences with reward.

Visual cortex showed no significant change in the rewarded quadrant compared to its opposite

(1-Pearson: t(35) = −0.36, p=0.97, Euclidean: t(35) = 1, 03, p=0.308), and no relation to learning

curve over the days (1-Pearson: ρ=−0.02, p=0.93, Euclidean: ρ=−0.039, p=0.82). The only

effect seen in the visual cortex is related to reward performance on the second day (similar to the

mOFC), and only for 1-Pearson measures (ρ=−0.42, p=0.011) and not Euclidean (ρ=−0.17,

p=0.31, similar to the hippocampus). Future work is needed to disentangle these results.

Brought together, these results further support the pulling hypothesis as an explanation for the

representational change of a cognitive map as a result of reward learning. Initial evidence

suggests that hippocampus representational change was sensitive to across-day improvement in

reward performance whereas mOFC might be sensitive to more immediate recent experiences

with reward. Future analyses are planned to dive deeper into these changes and look both at other

regions as well as multivariate generalizable effects into neighboring quadrants.

Discussion

In this project, we asked which representational changes could be caused by reward exposure in

an abstract cognitive map. Participants improved discriminability among trees in a previously

rewarded area and showed a generalized choice bias toward the reward in areas that were never

rewarded before. By splitting our participants into two groups with opposing reward locations,

we ensured the observed changes were not due to general training in the task. Based on previous

literature, we tested three potential representational changes that could account for the observed

choice bias: a systematic pull of fields towards the reward, partial remapping of random cells

around the reward, or global remapping where all cells remap such that the firing rate is scaled by

distance to reward across the map, equivalent to value-mapping. Participants’ behavior in the

neighboring quadrants matched angular-dependent decrease in perceived similarities similar to

the pulling hypothesis predictions. Preliminary findings from fMRI analyses provide further

support for the pulling hypothesis as the guiding principle for reward-driven representational
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changes in the hippocampus. First, although we could not find significant group-level evidence

for an increase in mean signal, closer examination of between-subjects differences revealed that

participants who showed a stronger increase in signal in the rewarded quadrant also showed better

behavioral performance in the rewarded quadrant (Fig.15a). When looking at generalization to

other quadrants, we found an angle-dependent decrease in signal in the reward-neighboring

quadrants which was related to a behaviorally observed decrease in perceived distances (Fig.15b).

Such angular decrease was uniquely predicted by the pulling hypothesis. Multivariate analyses

revealed a decrease in neural dissimilarities in the hippocampus in the rewarded immediate

surroundings on the group level, an effect which, on the participant level, related to across-days

reward learning improvement (Fig.15a). All of these findings were predicted by univariate and

multivariate simulations of representational changes according to the pulling hypothesis. mOFC

signal during the target presentation did not show univariate increase, but a similar decrease in

multivariate dissimilarities in the rewarded quadrant. Unlike the hippocampus, this effect was

related to reward performance on the second reward session and not to cross-day learning.

Brought together, behavioral and preliminary fMRI results show support of hippocampus

representational fields pulled towards the reward, with some evidence suggesting a similar pattern

in mOFC.

One alternative explanation to the behavioral findings is that participants ’carry over’ the reward

session task itself, i.e. continuing to also answer ’which tree is closest to reward’. We can not

fully rule out this explanation merely based on the behavior, but find it very unlikely for a few

reasons. First, such rule confusion can not explain the increase in accuracy and discriminatability

in the rewarded quadrant (accuracy effect Fig.7i-j, discriminatability Fig.9f-g). Second, there was

a 40+ minute break between the last reward session and the perceptual task. Moreover,

participants were told that if they were accurate in more than 70% of the trials in the perceptual

task in both PRE and POST sessions, they would get an additional monetary bonus. From their

perspective, if they kept on performing the reward task, it would harm their chances to gain this

bonus. The core question of this project is to try to characterize the carry-over effect between the
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tasks. If participants were following a rule of choosing the most (hypothetical) rewarding tree,

then we might see evidence of value mapping which should be the optimal representation for such

a task. We found no evidence that supports value mapping in the Hippocampus or the mOFC, at

least during target presentation, although both have been previously found to represent predicted

value signals in other tasks (e.g. H. Lee et al., 2012; Moneta et al., 2023). In the future, we hope

to identify evidence for such value mapping during the reward session and test for evidence for

the same mapping during the POST session.

Our simulations of both multivariate and univariate signals made clear opposite predictions for

global remapping according to the value and pulling hypothesis. As mentioned above, the

variance of the distribution of the new locations for the cells plays a crucial role in the partial

remapping predictions. Univariately, increasing the variance would cause the map to be more

similar to the global remapping. However, since cells are randomly chosen, there can not be an

angular decrease in signal in the neighboring quadrants. This means that the univariate findings

show specific support for the pulling hypothesis. Multivariately, however, a decrease in variance

around the new location could potentially cause the same decrease in dissimilarities around the

reward observed under the pulling hypothesis. This means that currently, the multivariate results

do not clearly distinguish between the pulling hypothesis and the partial remapping. However, all

results show evidence that it is unlikely that the behavior is driven by task confusion, as none of

which show support of a co-activation of a value-map that would support such interpretation. In

the future, we hope to find better markers for the different hypotheses. Specifically, similar to the

univariate simulation, closer examination of the multivariate signal in the neighboring quadrants

might help better distinguish the hypotheses. Furthermore, testing directly the similarity across

the sessions (PRE -> POST), and not only the difference of similarities within sessions as

presented here, might be the ideal test to show the pulling of fields. All of these analyses are

planned for the near future.

One interesting and somewhat counter-intuitive finding is a decrease in neural dissimilarity in the

hippocampus, in a similar area of the map where we saw an increase in behavioral performance.
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Summary of representational changes in the hippocampus. Summary of representational changes in the hip-

pocampus a. The pulling hypothesis predicts an increase in field density in the rewarded quadrant (left). Focused on

the change of neural signal during target tree presentation in the rewarded quadrant from PRE to POST (highlighted

on the left) compared to the opposite quadrant, participants’ increase in behavioral performance in the perceptual task

(x-axis, middle), was related to increase in univariate increase in signal (y-axis, middle). Participants who showed

a steeper learning curve between the reward sessions (x-axis, right), showed a stronger decrease in multivariate dis-

similarities (y-axis, right). b. The pulling hypothesis predicted a decrease in field density (and univariate signal) in

reward-neighboring quadrants (left). The decrease in univariate neural signal in the hippocampus (black lines, middle)

was related to behavioral choice bias corresponding to decreased perceived distances (colored lines, middle). Lines

are model predictions. On the right is the permutation test after normalizing all model predictions to be on the same

scale.
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If trees in the rewarded quadrant became more neurally similar to one another, how come there is

an increase in accuracy and discriminability? One potential explanation could be the variation in

localization of the reward effect. According to our simulation, it is areas very close to the reward

that increased their similarities. One speculation would be, that if the effect of reward is very

localized, then trees around the middle would become more similar, yet trees just slightly further

away would become more distinct. In the RSA analyses, we took only the target trees, which

form an ’inner’ circle of the quadrant. Participants’ choices, however, were along a much longer

line across the ’outer’ circle of the quadrant (Fig.15). This interpretation is supported by the fact

that comparisons made in the rewarded session were between trees closer to the center of the

quadrate than the reference trees (roughly 85%, see design in methods). It could be that the loss of

discriminability was very localized, among the target trees, which participants never needed to

choose among. Although this does not provide a full account of this discrepancy, we plan to

investigate this complexity more thoroughly.

Related to this, the lack of a clear univariate signal change in the rewarded quadrant in the

hippocampus is puzzling. One potential explanation is that in the transition from cells to voxels,

the distribution of cells that moved did not translate to a strong enough univariate signal. Another

possibility is that such an effect is present more at the early stages of the POST session and

washes off over time. Examining the accuracy of the behavioral data also only revealed marginal

effects. In fact, it was crucial to account for the full set of different perceptual biases (DD,H1,

and H2) to find a clear and strong behavioral effect. In the future, models fitted to the fMRI data

might better identify such effects. Lastly, as mentioned before, the univariate and multivariate

analyses pointed at a different ’flip’ point in the sign of the predicted signal, with multivariate

predicting a flip closer to the reward. The location of such a flip might depend on the size of the

receptive fields of the cells as well as on the slope of the attraction force applied according to the

pulling hypothesis. Between-subject differences in these parameters might make a group effect

harder to identify. We plan to address these challenges in the future.

We also did not find an increase in univariate signal in mOFC for trees closer to the reward,
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although this region is often associated with representing univariate value signals (e.g. Moneta

et al., 2024). There could be a few potential explanations. First, we only looked at the

presentation of the target tree. There is some limited evidence that mOFC only represents values

when they are actively relevant for choice, not when imagining potential outcomes (Castegnetti

et al., 2021). Since there was no choice during the target presentation, value signals might have

simply not been there. Another issue could be that our ROI is not sufficient, especially as it does

not include the adjacent and overlapping vmPFC region. Lastly, it could also be that, at least in

this task, mOFC does not represent value and simply shows a similar effect to the hippocampus.

One big conundrum we plan to face in the near future is the finding that the hippocampus showed

an effect in 1-Pearson measures whereas the mOFC showed a marginal effect in Euclidean. This

difference between mean sensitive and insensitive measures might relate to the presence of value

signals but requires more detailed analyses. Future modeling work will look into these

explanations in closer detail.

Brought together, behavioral and preliminary fMRI results support the notion that reward

increased perceptual discrimination around it, in a manner equivalent to pulling representational

fields, scaled by their distance to it. Reward thus causes systematic and generalizable changes to

an abstract cognitive map. This effect of reward in behavior as well as hippocampus was

generalized both in time, to a following task where the reward was not present anymore, as well

as in space, to areas of the map that were never rewarded before. Future analyses, including

modeling of uni- and multivariate signals during target presentation as well as grid-like coding

and potential reward-induced influences during choice are planned soon.
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Methods

The study complies with all relevant ethical regulations and was approved by the ethics board of

Deutsche Gesellschaft für Psychologie e.V. (DGPs) (Ref. Number:

SchuckNicolas2022-01-14WV).

Participants

92 young neurotypical adults took part in the experiment (58 women, 1 diverse,

µage = 26.3, σage = 4.54, minimum age: 18, maximum age: 36) in exchange for monetary

reimbursement. Out of which, 45 performed the task inside the MR scanner (MRI cohort: 30

women, µage = 27.1, σage = 4.8), and 47 performed all sessions outside the scanner (28 women, 1

diverse µage = 25.5, σage = 4.2). Participants were recruited using the participant database of the

Max-Planck-Institute for Human Development.

For the MRI cohort, Beyond common MRI-safety-related exclusion criteria (e.g. piercings,

pregnancy, large or circular tattoos, etc.), we also excluded participants if they had a head

circumference larger than 58 cm (due to the limited size of the 32-channel head-coil). Across both

cohorts, we also did not admit participants to the study if they reported any history of neurological

disorders, tendency for back pain, or color perception deficiencies. The gender of participants

was self-reported (note that the study was conducted in the German language where there is no

clear distinction between sex and gender). We had no reason to suspect any gender differences in

the task and therefore did not include this information in the analyses.

Task-performance exclusion criteria: we excluded participants based on several behavioral

criteria:

First, 7 participants in the behavioral cohort and 2 participants in the MRI cohort did not perform

in the last two reward learning blocks with accuracy above 60%. This blocks were crucial to

make sure they learned the exact reward location. Second, one participant in each cohort had 30

or more no answer trials in both reward sessions as well as in both perceptual sessions.

Participants were instructed that no answer would count as wrong answer for calculation of the

rewards. Third, in the perceptual task, we interleaved special one-dimensional trials where the
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target tree showed both leaves and fruits, but the following reference trees showed only leaves or

only fruits. These were control trials to make sure participants fully processed both features. This

reasoning was explicitly told by participants and they were trained before the main task

specifically on these types of trials. Nevertheless, three participants in the behavioral cohort

performed below 60% in those trials across perceptual sessions (in addition to one of the subjects

with increased no-answer trials).

Altogether, we excluded 11 participants from the behavioral cohort and 3 participants from the

MRI cohort. We note that the relatively large number of excluded participants in the behavioral

cohort was mainly driven by a lack of reward learning. This motivated us to include an additional

’easy’ block in the first reward session for the MRI cohort (see below) which seems to have

improved performance. However, This increase could be that without the MRI total payment was

lower (see below), lowering general motivation. Another potential reason is that due to technical

reasons, we had limited control over the size of the screen inside the MRI scanner, resulting in

potentially larger stimuli for this cohort.

MRI-based exclusion criteria: We excluded an additional 6 participants from the MRI cohort

due to MRI-based criteria: Three participants exhibited excessive motion throughout at least one

of the perceptual sessions (one of which also had a total of 130 no-answer trials across all

sessions). Whereas on average, the rest of the group had 1.65 TRs across all sessions (out of

8522, σ = 3.8) where framewise displacement was above 2mm (full voxel) to any direction, these

three subjects had 150, 231, and 247 TRs. Framewise displacement was measured by fmriprep,

see below for details.

Although we tried to optimize the tilt angle of the field of view to minimize signal drop at both

MTL and OFC, two additional subjects exhibited significant signal drop out at the entorhinal

cortex and were therefore excluded from the analyses (one of which also did not pass the

reward-learning threshold). To set the exclusion threshold, we took the bilateral ROI as defined

according to the freesurfer-based output of fmriprep and excluded from it voxels that exhibited

less than 50% of the mean signal of the whole time series (per block). We then took for each



STATES, VALUES AND GOALS IN COGNITIVE MAPS 114

subject and ROI the maximum drop in voxels for each session and averaged across sessions. We

then excluded two participants for having more than 50% signal loss in the entorhinal cortex in

native space. One additional participant was excluded since the MR scanner constantly crashed,

resulting in 4 repetitions of the first block of the POST session in addition to too much data loss.

The final sample of participants resulted in 74 participants (46 women, 1 diverse,

µage = 26.1, σage = 4.69) with 38 in the MRI cohort (25 women, µage = 26.84, σage = 4.96) and

36 in the behavioral cohort (21 women, 1 diverse µage = 25.38, σage = 4.33).

Experimental procedures

Stimuli. Tree generation was inspired by (Flesch et al., 2022). The two colors for leaves and

fruits, as well as all colors used for the tree base (trunk and branches, shades of brown) had the

same luminance to make sure more leaves and/or fruits coverage does not also increase

luminance. The same tree base was used for all trees and it was symmetric on the left and right

such that the shape of the tree should not influence or interact with the amount of leaves and

fruits. We note that due to technical reasons beyond our control, the screen inside the MRI had a

strange color gradient from one side to the other, making half the screen slightly darker. By

design, the trees presented on each side of the screen were balanced across the session (see

below), but this might hinder future analyses if they plan a very detailed examination of the visual

cortex responses.

For all participants, fruits were distributed on the lower half of the branches (roughly mid-third of

the tree) and leaves were on the top part. This separation was done to encourage a perception of

both amounts separately. However, to prevent a too harsh separation, ca. 10% of the leaves/fruits

in each tree were distributed on the opposite side (leaves below fruits above). Trees were

generated at the beginning of each session. The same base tree was used for all participants. The

total amount of leaves and the total amount of fruits were built of a subset of images overlayed on

each other. The images used were a distribution of each prime number from 1 to the total sum

needed. Location across images did not overlap. To make sure there is a clear difference between

the amounts and a more holistic perception of the amounts (especially for example for the most
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rewarding tree), we always added a small noise to the number of items on the tree (+-5 items).

This addition, in combination with using prime-number templates, resulted in almost complete

re-distribution of the items on the tree, not only between trees but also for repetition of the same

number, e.g. tree with 510 leaves did not look exactly like the previous time 510 appeared, but

also not exactly like 500 plus 10 items, rather every time is complete random locations.

Experimental design

After a general description of the experimental design, we will explain each part in detail

(Fig.16a). The experimental sessions spanned over 2 consecutive days. On the first day,

participants first performed a perceptual training session for the perceptual discrimination task.

This session had mainly full one-feature trials, meaning the target tree and references had either

only leaves or only fruits. This was done outside the MR scanner for all cohorts. Afterward, they

performed the first session of the perceptual discrimination task, followed by the first session of

reward learning. These two sessions took place in the MRI for the MRI cohort. On the second

day participants first performed another reward learning task and then the second perceptual

discrimination session, also inside the MRI for the MRI cohort. After the last session, participants

performed a memory placement task to test their memory of the reward location (data currently

not presented). Each of the sessions started with a short training and instructions which included

explicit questions to confirm participants followed the instructions. Training also took place on

the second day, to further ensure no task confusion. In all sessions and tasks, stimuli remained on

screen for a fixed amount of time, irrespective of choice (i.e. did not disappear after choice). To

give participants an indication that their choice was received, whenever a choice was required

(second part of each trial), two small circles appeared on the left and right ends of the screen and

disappeared once a choice was made. Between the two main sessions, there was always a break of

40-60 minutes in the MRI cohort and at least 20-30 minutes in the behavioral cohort.

General training session. For the perceptual training task (mainly 1D), participants completed

178 trials per context similar in structure to the main perceptual task, only that all targets and

references had either only leaves or only fruits. The design for each context consisted of 58
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Figure 16

Trial types in the different tasks: a. Full experimental design. On the first day, participants first performed a

perceptual training session outside theMR scanner. Then, they performed two consecutive sessions in theMR scanner:

the perceptual discrimination task followed by reward learning. On the second day participants first performed another

reward learning task and then the second perceptual session. After the last session, participants performed a memory

placement task to test their memory of the reward location. The behavioral cohort did all sessions outside the scanner.

b. In the perceptual discrimination task there were three trial types: trials drawn from the 4 quadrants (used for all

main analyses), trials drawn from a bigger area across the map (cross-map), and OneD trials where the target tree had

both leaves and fruits and the reference trees had either leaves or fruits. We note that all trials sampled from the big

circle where the target was not in the middle (2/3rd) to 1D trials (dropped leaves or fruits from the reference trees, see

methods for details). c. In the reward learning task, there were two types of blocks. Easy blocks (left) had trials with

mainly large distances and mainly 90 degrees making it easier to learn the reward location. Hard blocks (right) had

mainly trials where participants needed to compare the center of each quadrant to one of the trees in its surroundings,

similar to the location of the reference trees, slightly closer to the center. In all blocks, we systematically sampled

across the space to ensure equal exposure to the whole space.

standard trials, which were then flipped in position to control for motor responses. The 58 trials

were consistent with 16 ”short distance” trials with items positioned close together, and 8 catch

trials where the target was identical to one of the references. We also added 7 trials with very

short distances where targets were presented in 2D, this was meant to start exposing participants

to the integration of the axes together. Trials for each context were split into two blocks, resulting

in four blocks in total. The starting context was pseudo-randomized across participants, balanced

within each reward-location group. The trials were pseudo-randomized and balanced to make

sure no hidden structure could bias participants’ choices. We made sure there was no more than

one repetition of trials where the tree with the highest amount of items was on the same side, no
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more than two consecutive trials choosing the same motor response, and no more than three trials

with the target in the middle position (very hard trials), no more than two repetitions of the same

decision difficulty level (e.g. short), and no more than three consecutive trials requiring selection

of the highest (or lowest) value. Trials featuring 2D targets were spaced no more than 11 trials

apart to maintain regular exposure.

Perceptual discrimination task (PRE & POST sessions). The main perceptual task (mainly

2D) included 360 trials divided into 6 blocks of 60 trials each. The spatial structure was

geometrically organized with 4 peripheral ”circles” (or quadrants) containing stimuli arranged at

24 possible angle positions (15-degree increments) and one central circle with stimuli at 12 angle

positions (30-degree increments, Fig.16b). Each trial presented three points forming a straight

line with 5 possible positions along each line with the external two points always the references

and the centered three acting as target trees. Trials were sampled in chunks of 9 trials: twice, one

trial of each small quadrant in random order, followed by one trial from the bigger circle. This

was done to encourage participants to orientate to the full map. Trials were carefully controlled to

prevent repetition of the same angle, limit consecutive presentations of angles within the same

60-degree bin to no more than two, and restrict consecutive identical motor responses to no more

than three. The design incorporated an additional 24 trials (4 per block) featuring 1D reference

trees to make sure participants paid attention to both contexts separately while encoding the target

tree. These trials were strategically positioned at least 20 trials apart. Lastly, we transferred all

trials sampled from the big circle where the target was not in the middle (2/3rd) to 1D trials

(changed only the reference). We made sure that each half of the experiment (three blocks)

sampled all possible angles from the small quadrants, however balancing the motor (which side of

the screen A or B are placed) was only possible across both halves. Currently, only trials from the

4 small quadrants are used in the analyses. In each trial, the duration of the target tree was 2s, and

the reference trees for 2.7s for the behavioral cohort. Pilot data suggested reaction time is slightly

slower in the scanner, which is why we increased the duration of the reference trees to 3s. The

fixation between the target and reference trees was drawn from a truncated exponential
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distribution with a mean of 3s and ranged between 1.8-7s. Similarly, the fixation after choice had

a mean of 2.7s and ranged from 1.8-9s.).

Reward learning task (REW1 & REW2 sessions). The reward learning task had two

components with different difficulty levels - ”easy” and ”hard” trials - balanced across 5-6 blocks

(Fig.16c). The easy component (59 trials per block) featured grid-arranged stimuli with points at

corners and centers, while the hard component (60 trials per block) used angle-based

arrangements similar to the 2D perception task but with modified spacing from the center to

centralize the reward effect (perceptual task had a radius of 426 in logged space and reward task

was 362 which is 85%). Reward values were distributed according to a multivariate normal

pattern centered at either the bottom-right or top-left quadrant center (counterbalanced between

subjects), with reward values of 1100 (center of quadrant), 150 (surrounding trees in the same

quadrant) or 5 (rest of the map). The design included several controls: no more than one

repetition of non-zero reward differences, no more than three consecutive trials with zero reward

difference, and no more than two consecutive trials with maximum reward on the same side. For

the behavioral cohort (and the first two MRI participants) the second and third sessions each

started with an easy block followed by 4 hard blocks. After observing that some participants

struggled with learning the reward location, we introduced an additional easy block to the second

reward session (easy-hard-hard-easy-hard-hard). Sampling of trails ensured that each half of the

session (first and last pair of hard blocks) sampled the full space of potential angles for each

quadrant. In each trial, the duration of the choice period tree was 2.5s for the behavioral pilot.

After noticing some participants struggled with learning the reward location, we increased this

timing to 2.8s for the MRI cohort. The outcome presentation duration was 2.2s. The fixation

before the outcome and after it were the same as in the perceptual task (mean of 3s range of 1.8-7s

and mean of 2.7s, range 1.8-9s, respectively)

Behavioral analyses

accuracy tests: For all accuracy tests in the PRE and POST sessions, we excluded trials where

the target was presumed to be roughly in the midpoint between the references (in log space). Note
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however that since the models below account for subjective distances, these included these trials

and found equivalent and even stronger effects (see below and main text). For the reward

sessions, we only included trials where the value difference between the trees was different than

0, in easy and hard blocks. We used repeated measures ANOVA to assess accuracy improvements

from PRE to POST sessions, with group, session, and quadrant as factors, and subject as a

random effect. Post hoc tests included estimated marginal means which were computed using the

‘emmeans‘ package (Lenth, 2025). The full result of the pairwise comparisons on session

differences within each quadrant and group with Bonferroni correction to adjust for multiple

comparisons revealed significant improvements only in the rewarded quadrants for each group:

Quadrant Group Contrast Estimate SE df t.ratio p.value

TL BottomRight POST - PRE 0.01776 0.0157 288 1.129 0.2596

BL BottomRight POST - PRE 0.02066 0.0157 288 1.313 0.1901

TR BottomRight POST - PRE -0.00365 0.0157 288 -0.232 0.8169

BR BottomRight POST - PRE 0.03790 0.0157 288 2.410 0.0166

TL TopLeft POST - PRE 0.03517 0.0162 288 2.176 0.0304

BL TopLeft POST - PRE 0.02879 0.0162 288 1.781 0.0759

TR TopLeft POST - PRE 0.01654 0.0162 288 1.023 0.3070

BR TopLeft POST - PRE 0.02610 0.0162 288 1.615 0.1073

Table 2

Pairwise comparison results for accuracy in each quadrant and group with POST-PRE contrast

behavioral models: We defined the distance of distances, DD, as the relative distance of the

target tree from reference tree B minus its distance to A:

DDt =
√

(Txt − Bxt)2 − (Tyt − Byt)2 −
√

(Txt − Axt)2 − (Tyt − Ayt)2 (10)

where T , A and B are the target tree are the two references for trial t. x represents the number of

leaves and y the number of fruits (in logged space).

To model angular-dependent choice biases, we implemented the harmonic addition theorem

which states that a linear combination of sine and cosine functions of the same frequency can be

expressed as a single sine function with a different amplitude and phase. Specifically, if we have:

A sin(θ) + B cos(θ), this can be rewritten as: R sin(θ + φ), where R is the amplitude and φ is the
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phase shift. The values of R and φ can be given by: R =
√

A2 + B2 ,φ = tan−1
(

B
A

)
.

The best fitting model to capture choice biases, irrespective of group or session in the perceptual

task was:

log P (A)
P (B)

t

k

= β0 + γ0k+

β1DD + β2qDD+

β3(sin θ + cos θ) + β4q(sin θ + cos θ)+

β5(sin 2θ + cos 2θ) + β6q(sin 2θ + cos 2θ)+

ν1c + ν2g + ν3s + ν4q + ν5qs

(11)

where log P (A)
P (B)

t

k
is the probability to choose A over B for subject k at trial t and β0 and γ0k

represent global and subject-specific intercepts. DD is the distance of distances, sin(θ) and cos(θ)

and (sin(2θ) and cos(2θ)) represent the 1st and 2nd harmonic components respectively whereas θ

is the angle between the reference trees of the specific trial. As mentioned above, adding sin(θ)

and cos(θ) is equivalent to adding a single sin wave allowing free phase and amplitude. c the

cohort (MRI or behavioral only), g the group, s the session and q quadrant. All the νs represent

nuisance regressors of no interest.

The best fitting model to capture choice bias including sessions and group interaction with the

main components was:

log P (A)
P (B)

t

k

= β0 + γ0k+

(β1 + β2q + β3s + β4g + β5qs + β6gs + β7qg + β8qgs)DD+

(β9 + .. + β16qgs)(sin θ + cos θ)+

(β17 + .. + β32qgs)(sin 2θ + cos 2θ)+

ν1c + ν2g + ν3s + ν4q + ν5qs

(12)

Where all the parameters are the same as in eq.11, only now βs 1-8 represent the main effect of

DD, interactions with group, session, and quadrant, all possible 3-way interactions and the 4-way
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interaction. βs 9-16 show the same for the first harmonic (H1) and βs 17-32 for the second

harmonic (H2).

Post hoc tests were done using Estimated marginal means with a z-test for significance using

(Lenth, 2025) toolbox in R.

fMRI data

fMRI data acquisition. MRI data was acquired using a 32-channel head coil on a

research-dedicated 3-Tesla Siemens Magnetom TrioTim MRI scanner (Siemens, Erlangen,

Germany) located at the Max Planck Institute for Human Development in Berlin, Germany.

Each MRI session consisted of 5-6 functional runs (see above) with anatomical scan and field

maps (see below) placed right after the 3rd functional run. We placed the anatomical scan in the

middle of the session to provide a mid-session short rest and made sure the design is roughly

balanced between the two halves (see above).

The structural images were acquired using a T1-weighted magnetization-prepared rapid

gradient-echo (MPRAGE) sequence (sequence specification: 192 slices; TR = 1900 ms; TE =

2.52 ms; FA = 9 degrees; inversion time (TI) = 900 ms; matrix size = 192 x 256; voxel size = 1 x

1 x 1 mm). The scan with parallel imaging (GRAPPA acceleration factor = 2) and isotropic

resolution allow for precise anatomical measurements.

To correct for susceptibility-induced distortions, two spin-echo echo-planar imaging (EPI) field

maps were acquired immediately after the structural scan with reversed phase-encoding directions

(sequence specifications: TR = 1.75 s; TE = 28.8 ms; FA = 71 degrees; multiband acceleration

factor = 4; partial Fourier = 0.75; matrix size = 112 × 112; voxel size = 1.75 × 1.75 × 1.75 mm; 80

slices). The field maps were collected with identical geometric distortions as the functional scans

but with phase-encoding directions reversed: one in the anterior-to-posterior direction (AP) and

one in the posterior-to-anterior direction (PA). These field maps were used for distortion

correction of the functional data during preprocessing (see below).

The functional images were acquired using a multiband echo-planar imaging (EPI) sequence

(sequence specification: 80 slices; TR = 1.75 s; TE = 28.8 ms; FA = 71 degrees; multiband
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acceleration factor = 4; partial Fourier = 0.75; phase encoding direction = j-; matrix size = 112 ×

112; voxel size = 1.75 × 1.75 × 1.75 mm). The scan was performed with effective echo spacing of

0.77 ms, bandwidth per pixel phase encode of 11.596 Hz/px, and a total readout time of 0.0855s.

A total of 360 volumes were acquired during each functional run. Scans were manually aligned to

the corpus callosum (i.e. no tilt angle) based on pilot testing to maximize signal from both the

MTL and the orbitofrontal cortex (OFC, see Weiskopf et al., 2006). Unfortunately, after

collecting the full sample, it seems that the entorhinal cortex still suffered from signal drop (see

exclusions). For each functional run, the task began after 10 seconds to avoid partial saturation

effects and allow for scanner equilibrium. Each run was about 10 minutes in length. We

measured respiration and pulse during each scanning session using pulse oximetry and a

pneumatic respiration belt part of the Siemens Physiological Measurement Unit.

BIDS conversion and defacing. Data was arranged according to the brain imaging data structure

(BIDS) specification (K. J. Gorgolewski et al., 2016) using the HeuDiConv tool (version

0.6.0.dev1; freely available from https://github.com/nipy/heudiconv). Dicoms were converted to

the NIfTI-1 format using dcm2niix [version 1.0.20190410 GCC6.3.0; (X. Li et al., 2016)].

fMRI preprocessing (fmriprep). Results included in this manuscript come from preprocessing

performed using fMRIPrep 23.1.4 (Esteban, Markiewicz, et al., 2018; Esteban, Blair, et al., 2018;

RRID:SCR 016216), which is based on Nipype 1.8.6 (K. Gorgolewski et al., 2011;

K. J. Gorgolewski et al., 2018; RRID:SCR 002502).

Preprocessing of B0 inhomogeneity mappings A total of 4 field-maps were found available

within the input BIDS structure for this particular subject. A B0-nonuniformity map (or fieldmap)

was estimated based on two (or more) echo-planar imaging (EPI) references with ’top-up’

(topup; FSL None).

Anatomical data preprocessing A total of 4 T1-weighted (T1w) images were found within the

input BIDS dataset. All of them were corrected for intensity non-uniformity (INU) with

’N4BiasFieldCorrection’ (Tustison et al., 2010), distributed with ANTs (version unknown)

(RRID:SCR_004757; Avants et al., 2008). The T1w-reference was then skull-stripped with a
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Nipype implementation of the ’antsBrainExtraction’ workflow (from ANTs), using

OASIS30ANTs as the target template. Brain tissue segmentation of cerebrospinal fluid (CSF),

white matter (WM), and gray matter (GM) was performed on the brain-extracted T1w using ’fast’

[FSL (version unknown), RRID:SCR 002823, (Y. Zhang et al., 2001)]. An anatomical

T1w-reference map was computed after registration of 4 T1w images (after INU-correction) using

mri_robust_template [FreeSurfer 7.3.2, (Reuter et al., 2010)]. Brain surfaces were reconstructed

using ’recon-all’ [FreeSurfer 7.3.2, RRID:SCR 001847, (Dale et al., 1999)], and the brain mask

estimated previously was refined with a custom variation of the method to reconcile

ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle

[RRID:SCR 002438, (Klein et al., 2017)]. Volume-based spatial normalization to two standard

spaces (MNI152Lin, MNI152NLin2009cAsym) was performed through nonlinear registration

with ’antsRegistration’(ANTs (version unknown)), using brain-extracted versions of both T1w

reference and the T1w template. The following templates were selected for spatial normalization

and accessed with TemplateFlow [23.0.0, (templateflow)]: ICBM 152 Nonlinear Asymmetrical

template version 2009c (mni152nlin2009casym) RRID:SCR_008796; TemplateFlow ID:

MNI152NLin2009cAsym.

Functional data preprocessing (fmriprep). For each of the 21 BOLD runs found per subject

(across all tasks and sessions), the following preprocessing was performed. First, a reference

volume and its skull-stripped version were generated using a custom methodology of fMRIPrep.

Head-motion parameters with respect to the BOLD reference (transformation matrices, and six

corresponding rotation and translation parameters) are estimated before any spatiotemporal

filtering using ’mcflirt’ [FSL <ver>, (Jenkinson et al., 2002)]. The estimated fieldmap was then

aligned with rigid-registration to the target EPI (echo-planar imaging) reference run. The field

coefficients were mapped onto the reference EPI using the transform. BOLD runs were slice-time

corrected to 0.834s (0.5 of slice acquisition range 0s-1.67s) using ’3dTshift’ from AFNI

(RRID:SCR_005927; Cox & Hyde, 1997). The BOLD reference was then co-registered to the

T1w reference using ’bbregister’ (FreeSurfer) which implements boundary-based registration
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(Greve & Fischl, 2009). Co-registration was configured with six degrees of freedom.

Several confounding time-series were calculated based on the preprocessed BOLD: framewise

displacement (FD), DVARS and three region-wise global signals. FD was computed using two

formulations following Power (absolute sum of relative motions, Power et al., 2014) and

Jenkinson (relative root mean square displacement between affines, Jenkinson et al., 2002). FD

and DVARS are calculated for each functional run, both using their implementations in Nipype

[following the definitions by (Power et al., 2014)]. The three global signals are extracted within

the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors

were extracted to allow for component-based noise correction [CompCor, (Behzadi et al., 2007)].

Principal components are estimated after high-pass filtering the preprocessed BOLD time-series

(using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal

(tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the top

2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM,

and combined CSF+WM) are generated in anatomical space. The implementation differs from

that of Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, a mask of

pixels that likely contain a volume fraction of GM is subtracted from the aCompCor masks. This

mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and

it ensures components are not extracted from voxels containing a minimal fraction of GM.

Finally, these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in

the original implementation). Components are also calculated separately within the WM and CSF

masks. For each CompCor decomposition, the k components with the largest singular values are

retained, such that the retained components’ time series are sufficient to explain 50 percent of

variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining

components are dropped from consideration. The head-motion estimates calculated in the

correction step were also placed within the corresponding confounds file. The confound time

series derived from head motion estimates and global signals were expanded with the inclusion of

temporal derivatives and quadratic terms for each (confounds_satterthwaite_2013). Frames that
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exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion

outliers. Additional nuisance time-series are calculated by means of principal components

analysis of the signal found within a thin band (crown) of voxels around the edge of the brain, as

proposed by (patriat_improved_2017). The BOLD time-series were resampled into several

standard spaces, correspondingly generating the following spatially-normalized, preprocessed

BOLD runs: MNI152Lin, MNI152NLin2009cAsym. First, a reference volume and its

skull-stripped version were generated using a custom methodology of fMRIPrep. The BOLD

time-series was resampled onto the following surfaces. (FreeSurfer reconstruction nomenclature):

fsnative, fsaverage. All resamplings can be performed with a single interpolation step by

composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility

distortion correction when available, and co-registrations to anatomical and output spaces).

Gridded (volumetric) resamplings were performed using ’antsApplyTransforms’ (ANTs),

configured with Lanczos interpolation to minimize the smoothing effects of other kernels

(Lanczos, 1964). Non-gridded (surface) resamplings were performed using ’mri_vol2surf’

(FreeSurfer). Many internal operations of fMRIPrep use Nilearn 0.10.1 (RRID:SCR_001362;

Abraham et al., 2014), mostly within the functional processing workflow. For more details of the

pipeline, see [the section corresponding to workflows in *fMRIPrep*’s

documentation](https://fmriprep.readthedocs.io/en/latest/workflows.html ”FMRIPrep’s

documentation”).

Additional 18 physiological parameters were calculated to be used as confound regressors (8

respiratory, 6 heart rate, and 4 of their interaction). These were derived from collected

physiological data. For these 18 physiological parameters, correction for physiological noise was

performed via RETROICOR (Glover et al., 2000; Hutton et al., 2011) using Fourier expansions of

different order for the estimated phases of cardiac pulsation (3rd order), respiration (4th order)

and cardio-respiratory interactions (1st order) (A. K. Harvey et al., 2008): The corresponding

confound regressors were created using the Matlab PhysIO Toolbox (Kasper et al., 2017, open

source code available as part of the TAPAS software collection (Version 3.2.0):
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https://www.translationalneuromodeling.org/tapas. For more details of the pipeline, and details

on other confounds generated but not used in our analyses, see the section corresponding to

workflows in fMRIPrep’s documentation.

Regions of Interests (ROIs) and feature selection. We constructed several Regions of Interest

(ROIs) based on the output of fmriprep and freesurfer. For each ROI we took specific labels from

the freesurfer output, across both hemispheres (Entorhinal cortex: 1006, 2006; OFC: 1012, 1014,

2012, 2014; and Visual Cortex: 1005, 1011, 1013, 1021, 1029, 2005, 2011, 2013, 2021, 2029).

Then, similar to the procedure done in SPM for implicit masking (Penny et al., 2011), we

excluded voxels that showed a mean signal lower than 50% of the global mean signal across all

voxels and TRs, for each functional run (unsmoothed but preprocessed). Then we took the

intersect across runs and sessions to result in the subject-specific ROI used in the analyses. To

compute the % loss used for exclusion, we divided the number of voxels that survived by the

number of voxels from the freesurfer map (i.e. if no mean signal was computed).

GLM analyses. We conducted a block-wise General Linear Model (GLM) analysis on our fMRI

data to investigate neural responses during the perceptual discrimination task. The fMRI data

were preprocessed using fmriprep, and physiological parameters were included as regressors of

no interest. The analysis was performed in MNI space with a smoothing kernel of 4mm.

For each block, we specified a GLM with the following components: Reference trees were split

by their location in the map, such that one regressor was set for each target tree. All target trees

repeated twice within a session, except when the target was in the middle of the quadrant which

repeated more. For the reference trees, we split the regressors by the angle of the line (0 to 180

degrees in jumps of 15). Separate regressors were used for OneD trials and or the Big quadrant

trials. All regressors had a duration of 0. A total of 17 regressors from fmriprep and 18 from

physiological parameters were included as regressors of no interest. The GLM was estimated

using classical restricted maximum likelihood. The model included a high-pass filter and an

AR(1) model to account for serial correlations.

https://www.translationalneuromodeling.org/tapas
https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
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RSA analyses. RDM was conducted using betas taken from the above mentioned GLM,

currently only taking the betas associated with the target tree. We then performed multivariate

noise normalization (normalize each voxel by its residuals from the GLM, Walther et al., 2016).

Lastly, we computed either the 1-Pearson or the Euclidean distance between each pair of patterns

across runs (to avoid temporal auto-correlations) using Nilearn (Abraham et al., 2014). Note that

noise-normalized Euclidean distance is equivalent to the Mahalanobis distance (Walther et al.,

2016). To control for temporal autocorrelation, we only included trials across runs, and excluded

the the diagonal, we excluded any correlation within a run across conditions (where the diagonal

would be 1). This resulted in an RDM for each subject and each block comparison between all

possible target trees. For the currently presented analyses we only included trials from the four

small quadrants.
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Highlights

• Orbitofrontal and ventromedial-prefrontal areas encode a rich diversity of variables that

intertwine value, task-state, and outcome properties, using mixed selectivity

• A core benefit of this representational space is that it can encode contextual variables that

are not directly observable but are required for predicting outcomes

• Task-state representations emerge in deep reinforcement learning networks alongside

value-like signals, offering insights into why the brain multiplexes value with other

task-related variables

• The complex activity patterns in OFC/vmPFC can be interpreted as an internal

representation that maps internal states, sensory observations and past knowledge onto

values and choice preferences

Main Text

Computational and neural underpinnings of value-based decision making

Humans and other mammals are versatile decision-makers, skilled at quickly learning how to

achieve their goals in diverse environments. To do so, we learn to anticipate the outcomes of our

choices. But while learning outcome expectations is straightforward in simple tasks, optimizing

real-world behavior is more complex. It requires generalizing expectations across events, and

understanding how changing goals affect outcome desirability.

One prominent notion is that the goal of decision making is to maximize the so-called expected

value of a decision (Silver et al., 2021; Sutton & Barto, 1998), which is defined as the

(time-discounted) sum of all expected future rewards after a choice is made. The basic idea of

value maximisation goes back centuries to Expected Utility Theory (Peasgood, 2014), which

states that decisions aim to maximize the expected value of a utility function that represents our

subjective preference. Expected Utility theory has had a marked impact on psychological theory

ever since it was observed that rational decision makers will behave as if they are maximizing
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expected utility (Samuelson, 1947), although psychological literature has pointed out many

important additional perspectives on what drives human choices (Gigerenzer & Gaissmaier, 2011;

Kahneman & Tversky, 1979).

In parallel to these discussions, several neuroscientific studies have found that ventro-medial

prefrontal (vmPFC) and adjacent orbitofrontal (OFC) areas are implicated in value processing in

humans, non-human primates and rodents [e.g., (O’Doherty et al., 2001; Padoa-Schioppa &

Assad, 2006), for reviews see (Bartra et al., 2013; Clithero & Rangel, 2014) as well as Fig. 17A],

and interact with the wider corticolimbic dopaminergic reward system (Averbeck & O’Doherty,

2022). One influential study showed that when monkeys choose between different quantities of

flavored juice or water, single neurons in the OFC reflect the animal’s subjective value of the

different outcomes (Padoa-Schioppa & Assad, 2006). The existence of value signals throughout

the vmPFC and OFC has since been confirmed in humans, monkeys and rodents [e.g., (Ballesta

et al., 2020); see (Bartra et al., 2013; O’Doherty et al., 2001) for reviews] and is broadly

supported by lesion studies (Ballesta et al., 2020; Fellows, 2007; Hogeveen et al., 2017; Vaidya &

Fellows, 2020). Note that we will use the term expected value hereafter to denote the subjective

belief of the subject about the expected outcome of a decision. While in many cases the objective

and subjective values align, some experimental paradigms can dissociate the two types of value.

In this review, we argue that the role of OFC/vmPFC goes beyond providing an (subjective) value

signal, and suggest instead that they have a broader function focused on integrating information in

the service of learning to predict outcomes in rich and partially observable environments. We

first summarize findings from human, primate and rodent studies that relate hidden task-state

(see Glossary) representations to these regions, and show that value and task-state codes are

intertwined (Fig. 17B). We then show that a similar intertwining occurs in value-maximizing

neural networks capable of performing complex tasks. Finally, we argue that these deep

reinforcement learning models indicate that value maximizing computations do not necessitate

the dominance of value representations as envisaged in neuroscientific research, and might serve

as a useful model of OFC/vmPFC function that emphasizes the integration of predictive and
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possibly unobservable task states with expected values.

While our focus is on learning, our conception of OFC/vmPFC function includes a deep

interaction with memory processes which can reinstantiate pre-existing value or policy knowledge

when needed (Abitbol et al., 2015; Frömer et al., 2019; A. H. Harvey et al., 2010; Lebreton et al.,

2009; Lopez-Persem et al., 2020; Plassmann et al., 2007; Suzuki et al., 2017). This process is also

crucial when old knowledge needs to be recombined in the service of inference (e.g. Barron et al.,

2020), and during continual learning processes that involve ongoing refinement. We propose that

the interaction between OFC/vmPFC and the hippocampus is critical for such a reinstatement.

We also acknowledge that VMPFC and adjacent OFC are anatomically diverse regions with

many subdivisions (Cavada et al., 2000). Although many studies hint at differences between

sub-regions (M. Z. Wang et al., 2022), anatomical differences between species and lack of

terminological agreement make integration of evidence at a finer anatomical scale difficult. Our

focus on the “OFC/vmPFC” region reflects the most pronounced distinction between medial and

lateral areas (e.g. Izquierdo, 2017), in line with previous work (Levy & Glimcher, 2012), and

broadly corresponds to the “orbital and medial prefrontal cortex (OMPFC)” region as defined by

Ongur and Price (Öngür & Price, 2000).

All you need is value?

Inspired by early economic theory [e.g., (Samuelson, 1947)], some researchers have proposed that

value signals reflect a “common currency” that acts as a stable cardinal desirability scale guiding

individuals’ decisions (Fehr & Rangel, 2011; Levy & Glimcher, 2012). According to this

conceptualization, one of OMPFC’s main functions is to map incommensurable options onto a

unidimensional, cardinal scale. Early observations that OFC value signals were independent of

sensory features, motor aspects, or other choice options (Padoa-Schioppa & Assad, 2006, 2008;

Tremblay & Schultz, 1999) support this idea, leading to the assumption that OMPFC signals are

tailored to generalize across aspects that are represented in other brain areas. This is supported by



STATES, VALUES AND GOALS IN COGNITIVE MAPS 132

the finding that vmPFC signals can be decoded across tasks with different goals (Castegnetti

et al., 2021; Frömer et al., 2019; Gross et al., 2014; Howard et al., 2015; Kobayashi & Hsu, 2019;

McNamee et al., 2013; Westbrook et al., 2019; Yao et al., 2023; Z. Zhang et al., 2017), and even

when cognitive effort (Westbrook et al., 2019), or acquisition of knowledge (Kobayashi & Hsu,

2019) drive valuation or choice.

Other lines of research, however, challenged this idea. Choice preferences, for instance, are

affected by irrelevant alternatives, and the range of outcomes (Bavard et al., 2018; Vlaev et al.,

2011), counter to the predictions of common currency accounts. Contextual information is also

important for value encoding, as illustrated in several studies [e.g., (Winston et al., 2014); for a

review see (Juechems & Summerfield, 2019)]. Internal states, such as tiredness, modulate choices

and also affect values in the brain [(Pastor-Bernier et al., 2021; Yoshimoto et al., 2022)], in line

with the observation that desirability and neural value signals are goal-dependent – for instance, a

hammer is better than a spoon if you want to drive a nail into the wall, while the opposite is true if

you want to eat soup (Castegnetti et al., 2021; Elliott Wimmer & Büchel, 2019; Frömer et al.,

2019; Moneta et al., 2023; Zhou et al., 2019). Some evidence also suggests that OMPFC is

involved in optimizing other objective functions. Decision confidence, for instance, affects

OMPFC firing, suggesting that this region might support maximizing confidence (Barron et al.,

2015; De Martino et al., 2013; Gherman & Philiastides, 2018; Lebreton et al., 2015), even when it

is orthogonal to expected values (Shapiro & Grafton, 2020).

Context matters: how tasks shape choice and neural value signals

Much work has highlighted context-dependency of decisions, further underlining the

forementioned challenges to common currency ideas (see e.g. Hayden & Niv, 2021; Juechems &

Summerfield, 2019; Knudsen & Wallis, 2022; Miller et al., 2019; Palminteri & Lebreton, 2021).

Decisions made across contexts, for instance, can systematically violate the principle of value

maximization (Bavard & Palminteri, 2023; Bavard et al., 2018; Molinaro & Collins, 2023a;
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Values and task states in orbitofrontal and ventromedial prefrontal cortex (A)Amidsagittal section of the human

brain (MNI template) overlaid with medial prefrontal regions identified as encoding value in a meta analysis of BOLD

fMRI experiments (Bartra et al., 2013) in orange. This region overlaps with the OFC area reported by (Schuck et al.,

2016) where representations of (partially-observable) states were found (pink), and the medial prefrontal cortex region

reported in (Moneta et al., 2023) where value and state representations co-exist and interact (cyan). (B) Illustration

of how task states influence option values. Task states reflect the combination of sensory and non-sensory variables

that are predictive of future outcomes. The computation of task states therefore requires input from several other areas

which supply sensory processing, memory function, and access to internal affective and arousal states, amongst others.

This information serves to map options onto the values they have for a given goal, thereby allowing the same options

to have different values in different contexts. Images of suitcase and apple were adapted from vectorportal (Licensed

under CC BY 4.0) and Wikimedia Commons (Licensed under CC BY 1.0), respectively.

Palminteri et al., 2015). In one study, participants were trained to decide between outcomes

ranging either from 14 to 50 points or from 14 to 86 points (Bavard & Palminteri, 2023). Asked

to pick options across sets, participants chose based on the within-set relative rather than the

absolute values, making seemingly irrational decisions. This suggests that values are normalized

within each context. Similarly, single cell recordings in macaque OFC found that value signals

are normalized by the range of the current context (Conen & Padoa-Schioppa, 2019;

Padoa-Schioppa, 2009), in line with human fMRI findings (Nelli et al., 2023), and modeling work

(Zimmermann et al., 2018). Interestingly, value range adaptation does not seem to appear in OFC

during forced choices, suggesting that this form of context-sensitivity is itself context-dependent

https://vectorportal.com/vector/travel-case-on-wheels/31371
https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:Apple_by_hatalar205.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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(Yamada et al., 2018).

One of our recent studies has provided additional insights into the relation between context and

value signals in vmPFC (Moneta et al., 2023). Participants first learned discrete values of four

colors and four movement directions while undergoing fMRI. They were then asked to make a

choice between two moving and colored stimuli, based only on either the color or

motion-direction, but not both (feature relevance was explicitly cued, and changed every 4-7

trials; see Fig. 18a.). Standard analyses confirmed that value was decodable from vmPFC.

Nonetheless, using only value-responsive voxels, current task context was decodable too –

although contexts were matched in value (Fig. 18B). Two keys observations were made: first,

value and context were related, i.e. stronger context signals correlated with a stronger value signal

within participants (Fig. 18C), as well as with the degree to which behavior was influenced by the

irrelevant context (Fig. 18d). Moreover, these two effects were related: a strong connection

between vmPFC context and value signals was linked to less influence of “irrelevant” context on

behavior, Fig.18E. Context thus seemed to co-exist with and enhance value representations, and

determined which values influenced behavior. Second, behavior and vmPFC signals were

influenced by the irrelevant feature with the highest value, which sometimes was not the chosen

option. This implies a hypothetical calculation of the maximal possible value, assuming the

alternative context, and possibly another choice (Fig.19A-B). Results hence suggested that

vmPFC calculated the values of each context, which then competed for representation. Strikingly,

context signals modulated which value signal dominated vmPFC – the true value or the

above-mentioned hypothetical value (Fig.19C). Hence, task-context signals, not options or

actions, organized value representations and choices (see Fig.19 and Box 1), providing a way for

vmPFC value signals to reflect possible future goals in addition to ongoing tasks.

That vmPFC representations of contexts and values interact with each other, is broadly in line

with evidence for context signals alongside values in OMPFC (Baram et al., 2021; Cromwell

et al., 2018; Farovik et al., 2015; Z. Zhang et al., 2017), but also extends previous work by

demonstrating an intricate interplay of value and context signals.
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Figure 18

Interlinked vmPFC representations of task-state and expected value (A) Schematic illustration of the experimental

paradigm in (Moneta et al., 2023). After learning to associate rewards with a set of colors and motion directions,

participants made choices between two color-motion stimuli. Before each decision, a context cue indicated whether

rewards were dependent on color or direction (here: color). The expected value of a trial was the maximum reward

of the cued features (here: 70). On congruent trials, choosing the maximally rewarding cued feature also selected the

most rewarding uncued feature; on incongruent trials, the reverse was true (see example). Outcome presented after

each choice only depended on the features of the cued context. (B) Pattern classifiers were trained on vmPFC data to

either distinguish between different values (irrespective of context) or trial context (irrespective of value). The ROI

is indicated in Fig.17A. (C) Expected value and context could both be decoded from the same vmPFC area, which

was defined based on value only (main effect not shown). Moreover, these decoding strengths were related to one

another: a stronger context signal (x-axis) accompanied a stronger expected value signal (y-axis). Shown are mixed

effects models testing the association between expected value and context decoding. (D) Participants were slower

on incongruent compared to congruent trials, i.e. when the contexts didn’t agree which decision was best, showing

that alternative context influenced behavior. (E) Participants who showed a weaker relationship between context and

value representations in vmPFC (y-axis, panel c) also showed a stronger behavioral influence of the irrelevant context

(congruency effect, x-axis, panel d). Plot shows the correlation of the betas from an expected value decoding model

(y-axis) with the congruency effect in reaction times (x-axis). Panels modified from (Moneta et al., 2023).
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Context encoding modulates irrelevant value signals (A) Schematic illustration of the experimental paradigm in

(Moneta et al., 2023). Participants made choices between two color-motion stimuli, cued to focus only on color or only

onmotion. Rewardwas only predicted by the cued context (here, color). In the trial presented, the best choice according

to the cued dimension is on the right (denoted expected value), while the maximum rewarding feature of the cued-to-

ignore context is on the left, making this trial incongruent. Thus, the ‘alternative’ expected value reflects the maximum

number of points that would have been obtained in the alternative context (i.e. if the irrelevant features were the relevant

ones). (B) Alternative expected value influenced behavior, but only in relation to the congruency of contexts. Larger

irrelevant values led to faster reaction times in congruent trials (green), and slower reaction times on incongruent

trials (brown). Note that on incongruent trials, the irrelevant expected value reflected a different, hypothetical choice

(c.f. panel a). (C) Relationship between neural signals for expected value (y-axis) and the strength of irrelevant

expected value (x-axis), separately for trials in which the context signal was weak, medium or strong. The neural

representation of both expected values (stemming from the relevant and irrelevant contexts) was negatively related.

However, this negative relation was modulated by the context signal. When the context signal was strong, the influence

of the irrelevant values on the vmPFC signal was reduced, akin to an arbitrating effect between competing value

signals. Shown relationships reflects mixed effects model testing the association between expected value decoding

and alternative expected value decoding.

From Context to Task States: how cognitive maps influence values

The context-sensitivity of value signals in the brain might not be surprising given that adaptive

behavior needs to reflect how goals and contexts influence outcome desirability. But how exactly

should ’context’ be defined? One perspective, albeit not the only one, comes from reinforcement

learning (RL) theory (Sutton & Barto, 1998), which formalizes how agents can learn reward

maximizing behavior from trial-by-trial feedback. The simplest RL algorithms receive

handcrafted information about the current “state”, or context, of the environment, which does not

have to be directly observable but can for instance be defined by past events or internal needs. If

RL models activate the wrong state they will also retrieve the wrong value, which means that

reward learning is always contingent on current state knowledge (Fig. 17B). While this
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perspective agrees with other theories that values are abstract in nature and enable comparison of

incommensurable options, it suggests that relevant task details must exist in the same region – a

level of specificity that has been de-emphasized in particular by common currency approaches.

The aforementioned findings of context signals that reside alongside value in OMPFC (Baram

et al., 2021; Cromwell et al., 2018; Farovik et al., 2015; Schuck et al., 2016; Z. Zhang et al., 2017)

and their close connection to value signals in the same area (Moneta et al., 2023) support this

perspective.

What are states, specifically? First, RL accounts emphasize that states must (exclusively) reflect

information that is needed to predict future reward. This can be sensory information (whether the

sun is shining or not), but it can also be something that cannot be observed directly, such as how

much time has passed. The second major aspect is that, in some RL models, states are part of a

cognitive map that specifies transitions between them. This emphasis on predicting future states

is core to RL approaches that provide additional flexibility (e.g. model-based RL Sutton, 1991;

successor representations Stachenfeld et al., 2017 or replay approaches Schuck & Niv, 2019, see

below). In sum, the RL perspective therefore emphasizes the role of reward and state

predictiveness as defining features of context. Both aspects are in line with research on state

representations in OMPFC(Bradfield & Hart, 2020; Niv, 2019; Schuck et al., 2016; Wilson et al.,

2014) as well as on OFC role in generalization and inference (Baram et al., 2021; Boorman et al.,

2021; Shi et al., 2023). More broadly, it can also explain the dominance of goal-aligned value

signals in OMPFC in cases where values depend on goal context (Castegnetti et al., 2021; Frömer

et al., 2019; Grueschow et al., 2015; Hare et al., 2009; Moneta et al., 2023, see below).

Adopting this perspective, one study showed that OFC lesions in rats affect reward-related

dopamine firing in line with predictions from an account that assumes OFC is needed to signal,

latent task states that are independent from sensory input (known as “partially observable”)

(Wilson et al., 2014). A fMRI study in humans also found that partially observable states can be

decoded from medial OFC (Schuck et al., 2016), in line with a number of other studies (Bradfield

& Hart, 2020; Chan et al., 2016; Costa et al., 2023; Elliott Wimmer & Büchel, 2019; Farovik
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et al., 2015; Moneta et al., 2023; Muhle-Karbe et al., 2023; Zhou et al., 2019). Hence, OMPFC

may infer latent states that are needed to retrieve context-sensitive values, which is crucial when

the same choices lead to different outcomes given partially observable states. Some studies

suggest that OFC represents task structures and rules even without any explicit value (Lipton

et al., 1999; Schuck et al., 2016; Zhou et al., 2021), akin to “schemas” that seem to reside in

OMPFC too (Bein & Niv, 2023; Gilboa & Marlatte, 2017). OFC representations also appear

similar when the same task is done with and without rewards, presumably reflecting

stimulus-stimulus associations (Sadacca et al., 2018), akin to latent learning ideas (Tolman &

Honzik, 1930a) that emphasize how stimulus-stimulus learning done in the absence of rewards

can be used for later reward tasks. This suggests that OMPFC might serve more broadly as a

cognitive map that guides decisions (Behrens et al., 2018; Schuck et al., 2018; Tolman, 1948), a

function that is likely to occur in close connection with the hippocampus (see below for further

discussion, and c.f. Garvert et al., 2023; Kaplan et al., 2017; Wikenheiser & Schoenbaum, 2016;

Wikenheiser et al., 2017).

In sum, a state representation perspective envisages a dynamic process in which choice options

can be flexibly projected onto different expected values, depending on goals and past history that

influences how desirable an option is. States also support efficient learning by forming a

cognitive map that facilitates generalization and planning in information rich environments with

complex temporal structure (see e.g. Eppinger et al., 2023; Niv, 2019; Schuck et al., 2018).

While the evidence discussed above generally supports this perspective, several questions remain.

One notable deviation is that OMPFC systematically represents task-irrelevant information and

even “irrelevant” values – a finding that we discuss in Box 1. A second issue concerns cases in

which non-value quantities are optimized, such as distance to a non-value goal (see below), where

the predictiveness of OMPFC signals will not refer to future rewards, but closeness to goal.

Finally, we acknowledge that while some have presented direct computational or empirical

evidence that context and cognitive maps can be understood as states that arise in RL machinery

(e.g. Stachenfeld et al., 2017; Whittington et al., 2022), further evidence is needed.
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Box 1: Representation and compression of task-irrelevant values

Amajor role of state representations is to define which information is needed to predict outcomes

in a given context. State representations have been linked to OMPFC (Schuck et al., 2016; Wilson

et al., 2014), where lesions hinder the ability to ignore irrelevant choice-options (Noonan et al.,

2017). Moreover, OMPFC activity compresses inputs to focus on goal-relevant information (Eb-

itz et al., 2020; Mack et al., 2020; Muhle-Karbe et al., 2023), and guides hippocampus in forming

reward-predictive relational maps (Garvert et al., 2023). Compression also occurs in deep neural

networks, although contingent on factors such as activation functions (Saxe et al., 2018) or weight

initialization (Flesch et al., 2022). This raises the question how complete such compression is,

i.e. if OMPFC still maintains some representation of (1) irrelevant task/stimulus information, and

(2) irrelevant values.

In a study addressing the first question, participants were initially instructed to focus on one of

two stimulus features, but later, unbeknownst to participants, the previously irrelevant feature

suddenly became task-relevant (Schuck et al., 2015). Some participants did notice the changed

relevance – even when this was never needed to complete the task (Gaschler et al., 2019) – and

MRI results showed irrelevant information processing arose in mPFC before participants abruptly

changed choices to tap into changed relevance. Neural network simulations of the same task

demonstrate that regularized gating can lead to preserved latent knowledge of irrelevant aspects

which can be accessed rapidly if needed and leads to similarly abrupt and spontaneous behavioral

switches as those observed in humans (Loewe et al., 2024; Löwe et al., 2024). Broadly in line with

this idea, some studies have shown that task-irrelevant features can be decoded from the frontal

eye fields in monkeys and motor cortex in humans (Mante et al., 2013; Takagi et al., 2021).

If some representation of task-irrelevant information is maintained, what happens to task-

irrelevant values? Many fMRI studies reported task-relevant values within vmPFC, but no uni-

variate evidence of task-irrelevant values has been found [(Castegnetti et al., 2021; Frömer et al.,

2019; Grueschow et al., 2015; Hare et al., 2009); but see (Abitbol et al., 2015; Frömer et al., 2019;

A. H. Harvey et al., 2010; Lebreton et al., 2009; Levy & Glimcher, 2011) for task-independent

value-like signals]. However, using multivariate methods, recent work from our group showed

that such task-irrelevant values do exist in vmPFC (Moneta et al., 2023), interact with other value

and non-value representations, and influence behavior (Fig. 18-19). This raises the possibility

that multivariate fMRI methods are better suited to uncover compressed representations.

A complex and versatile code in OMPFC

The evidence reviewed so far suggests that values are part of a complex activation manifold with

multiple dimensions related to choice values, (partially observable) task states, and alternative
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values (Conen & Padoa-Schioppa, 2019; Moneta et al., 2023; Padoa-Schioppa, 2009; Schuck

et al., 2016; Wilson et al., 2014). Electrophysiological studies support this idea and indicate

diverse information encoding in OFC (Farovik et al., 2015; Lopatina et al., 2015, 2017). For

instance, neurons in OMPFC encode summary statistics of the current task such as previous offers

and outcomes, or the location of the currently attended offer (Mehta et al., 2019). Recording

studies have also shown that the same neurons in OFC often encode multiple variables at once, a

phenomenon known as mixed selectivity (Rigotti et al., 2013). One study recorded neurons from

monkeys performing a choice between options characterized by the flavor and probability of a

juice reward. The authors reported that most neurons in OFC showed mixed selectivity for

probability and flavor (Stoll & Rudebeck, 2024). Another study showed that the same neurons in

macaque OFC can represent both spatial and reward information, even when those are unrelated

(Yoo et al., 2018). Although different variables can be encoded by the same neurons (Ebitz et al.,

2020) or voxels (Moneta et al., 2023), merely representing different variables does not mean that

they are integrated. Perhaps the most direct evidence for such an integration comes from (Moneta

et al., 2023, see above), where context signal strength covaried with value signal strength and

behavioral markers or context adaptive behavior.

This line of evidence raises a major conundrum: How can the findings that OMPFC activity

multiplexes many task variables with reward expectations be reconciled with the reports of

generalizable, content-independent value representations discussed above? One explanation could

be that, on a population level, neurons with mixed selectivity can still form a high dimensional

representation in which mostly orthogonal planes reflect different variables (Fusi et al., 2016).

This means that downstream neurons can easily ready out independent codes for each variable.

Indeed, in (Stoll & Rudebeck, 2024) the subspaces of population activity within OFC reflected

probability and flavor and were minimally dependent (i.e. nearly orthogonal). We note that

mixed selectivity is not unique to OMPFC and prevalent throughout the frontal cortex (Rigotti

et al., 2013; Tye et al., 2024). This suggests that mixed selectivity has a very broad function in

high-order and flexible cognition that goes beyond the specific computations in OMPFC.
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Another, not exclusive, possibility is that goal-independent representations emerge during a late

computational stage when state-dependent values transform into specific action-selection signals.

In support of this idea, it has been shown that while the same OFC neuron population can be

involved in evaluation and selection during value-guided choice, activations during these

different phases lie on almost orthogonal subspaces (Yoo & Hayden, 2020). Others found

expected values in OMPFC arise only when the task requires a selection [(Castegnetti et al.,

2021), but see (Lebreton et al., 2009)], without encoding motor signals (Kennerley et al., 2009;

Knudsen & Wallis, 2022; Moneta et al., 2023; Padoa-Schioppa & Assad, 2006)].

A neural network perspective on value and state representations

As reviewed above, OMPFC does not appear to be exclusively committed to signaling only value

or only task-states. But can an exclusive focus on univariate codes for either value or task states

even be expected from a complex computational system like the brain? One avenue for addressing

this question is to study deep RL models, which reflect an integration of RL with deep neural

networks (Botvinick et al., 2020). In addition to being powerful AI tools that can master games

(Mnih et al., 2015; Silver et al., 2018), or control self-driving cars (Kiran et al., 2022), deep RL

models can be useful for neuroscientific research of learning and decision-making (see Box 2).

Deep RL models’ advantage over classic RL is their ability to master reward learning in complex

environments by learning task-specific representations in their late layers, positioned close to the

output. Classic RL models directly receive information about a small number of hand-crafted,

discrete states, such as their position in an artificially discretized spatial environment. Deep RL

models, by contrast, can learn directly from a high-dimensional, continuous, and noisy sensory

description (e.g. perceived distance to the wall) by relying on their representation learning power

to form task-appropriate lower dimensional representations of the input (Bengio et al., 2014) (see

Fig. 20). Critically, these emergent representations arise without explicit guidance other than the

network’s objective function, which for deep RL is typically the optimal reward (e.g. Mnih et al.,
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2015) or policy function (e.g. Heess et al., 2017; Mehta et al., 2019; Silver et al., 2016), and often

end up having many features of (partially-observable) task-states we reviewed above. A

reward-focused objective function therefore does not only lead to value representations, but also

to task-appropriate abstractions of the sensory input, as we discuss below.
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Principles of deep RL models and emergent representations in late hidden layers (A) General scheme of a deep

RLmodel. High-dimensional inputs (e.g., thousands of pixels) are first processed through stacked convolutional layers

(akin to sensory processing), usually followed by non-convolutional fully-connected layers (”late layers”, marked here

by the yellow-orange arrow). Adding recurrency to the network (green arrows) allows to incorporate past events

with present observations for representing partially-observable states. In the case of purely value based models, such

as DQNs, the output nodes are trained to approximate the expected action values; for more policy oriented models,

output nodes are trained to reflect action probabilities, sometimes in addition to value estimates (such as in Actor-

Critic). Once an action is chosen and rewarded, the error is used to update the weights of the model, incrementally

forming hidden representations. While the learning process is focused on achieving maximally accurate value or action

probability estimates, it also shapes the representations in the late layers such as to form distributed representations of

task and value relevant variables that represent a compact world model, or ‘cognitive map’, of the task. (B)A schematic

exemplifying the formation of hidden task representations in late layers of the deep RL network, while multiplexing

value with non-value task variables. The axes reflect reduced dimensions of the population code (for example through

principal component analysis or other dimensionality reduction methods). Note that context is not explicitly signaled in

the input and the network needs to infer contexts, often based on observations that go beyond those currently observed

(as is the case in partially-observed tasks).
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Because of their densely connected multi-layer architecture, deep RL models also learn

differently. Standard models only update the currently activated state when receiving input. But

in deep RL models input and output are connected via many intermediate hidden layers that often

feature mixed-selectivity (Dabney et al., 2020; Song et al., 2017; Wierda et al., 2023; Z. Zhang

et al., 2018), similar to what has been observed in the OMPFC (see above). A single

weight-update will therefore affect many representations, and learning is never confined to just

one state ( Fig. 20b).

Value and state representations in deep RL models

Using the principles outlined above, deep RL models solve complex tasks by learning to extract

multiple layers of representations, with an increasing level of abstraction (Kozma et al., 2018). A

major question is what characterizes late layer representations which are only a few computations

away from the decision output, and whether their features correspond to what we know about

OMPFC. One notable paper has shown that a recurrent deep RL model can capture several core

aspects of OFC function, and might reconcile value and state accounts on this brain area

(Pessiglione & Daunizeau, 2021). Other evidence from neural network studies also suggests late

layer representations are not merely sorted by the value of the input they correspond to. In one

study, (Mnih et al., 2015) a deep Q network (DQN; a form of deep RL model) was trained to play

various Atari games. Visually investigating the DQN’s last layer representations showed that the

different input frames were not uniformly sorted by the value that the network predicted for them.

Rather, value led to some clustering, but other factors such as perceptual or strategic similarity

were reflected too. A subsequent study (Cross et al., 2021) found that the geometry of

representations in late layers of the same DQN (i.e. their pairwise similarities) correlated with a

hand-crafted geometry which retains abstract information about input features (e.g. the ball

position, or the position of the two paddles in the game pong). Such abstract signals are

reminiscent of the task-states discussed above. Counter to our argument, however, in (Cross et al.,

2021), no link was found between these representations and human participants’ OMPFC activity.

Other work has used encoding models to ask whether hidden units reflect human-generated
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concepts. One study (McGrath et al., 2022) demonstrated this approach on a deep RL model for

chess, AlphaZero (Silver et al., 2017), and found late hidden layers come to represent many

concepts other than the expected value of the current board, such as whether the player is in

check, or whether the opponent can capture the queen. The selectivity profile of single units of

deep RL models portrays a similar picture. In a deep RL model trained to solve a spatial reward

task, a recent study (Suhaimi et al., 2022) found that good performance was related to the

emergence of value selective units. But these units made up only 10% to 50% of the population,

and units not related to value were also highly correlated with the performance of the model

(although this analysis was performed on units taken from all 4 model layers, so its result is not

exclusive to the late layers).

Similar observations have been made for different deep RL architectures. Hidden units in a

decision network of an actor-critic-based recurrent RL model (see Box 2) show mixed selectivity

to combinations of task conditions, such as context and stimulus coherence levels (Song et al.,

2017). Other work on recurrent RL models has shown that hidden representations capture task

structure by retaining information about recent choices and rewards (Hattori et al., 2023;

J. X. Wang et al., 2018; Z. Zhang et al., 2018). Another line of work has demonstrated the

importance of non-value representations more broadly by showing that adding other constraints

on hidden representations than a reward maximization objective helps performance (de Bruin

et al., 2018; Lesort et al., 2018).Unsupervised pretraining of neural networks, for instance, can

speed up later training with a specific objective function (Hinton & Salakhutdinov, 2006). In

addition, maximizing mutual information between hidden representations of inputs that are

adjacent in time and space can enable better abstraction and generalization in Atari games (Anand

et al., 2019). Further, a deep RL architecture can benefit from being endowed with grid-like

representations prior to learning (Banino et al., 2018) or self-supervised learning objectives (Fang

& Stachenfeld, 2023).

In sum, we argue that the late layers of deep RL networks offer a useful model to understand the

computational role of OMPFC. This role consists in using (reward) feedback signals to shape a
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mixed selectivity code in a way that emphasizes outcome predictive state and value

representations. This process depends critically on input from many other regions, which for

instance provide appropriately processed sensory information, or access to working memory.

Perhaps the biggest challenge to this idea is that studies that directly compare late layers in deep

RL models and OMPFC signals are largely lacking, and available evidence is inconclusive.

Future experiments should test the extent to which deep RL models truly align with observed

OMPFC signals.

Beyond standard deep RL: flexibility through long-term memory, meta learning and

model-based RL

If OMPFC signals reflect computations akin to late layers in deep RL models, how can this

account for value or liking signals in OMPFC that occur when no learning or action are needed?

A potential explanation is that once value information has been established (e.g. value of known

food items), the information can be reinstantiated in the network, for instance when conditioned

stimuli are presented. This reinstatement is also critical for inference or when past goals are

revisited, and even can occur spontaneously in the absence of a choice task.

The importance of flexible access to long term memory has often been overlooked because most

laboratory tasks capture “isolated” learning processes that start from a blank slate and are

completed after a few hours of experience. Yet, the perhaps most remarkable aspect of animal

and human learning is the flexibility with which subjects apply previously gained insights to new

problems (Sandbrink & Summerfield, 2024), and learn over long time spans to extract

commonalities between learning problems (Lake et al., 2017). A notable recent advance that

captures this idea, and can make deep RL models more flexible, is deep “meta-RL”. Deep

meta-RL uses a meta-learning approach in which slow weight changes come to encode fast

learning in the activity dynamics of a recurrent network (Duan et al., 2016). The resulting models

capture instances of accelerating learning over a set of new but related problems (J. X. Wang

et al., 2018). Notably, recent findings have shown that plasticity within OFC is necessary for such

a process (Hattori et al., 2023). Hence, the combination of access to previously established
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knowledge with the aforementioned learning powers could give OMPFC a unique power to

meta-learn and integrate fast with slow learning processes. One aspect of neural processing of

potential relevance for this notion is the interaction between OMPFC and hippocampus, given the

important role of the hippocampus in long-term memory and memory reactivation, the functional

similarities between both regions, and their close connectivity (Öngür & Price, 2000). It should

be noted that this idea suggests a more complex deep RL architecture with separate long-term

value storage systems that interact with OMPFC.

A second approach within reinforcement learning frameworks to support flexibility when

adapting to new problems is model-based RL, which learns a model of state transitions separately

from values. The combination of values and a state transition model can then be used to make

on-the-fly value calculations. Yet, most deep RL models we discussed so far are in fact

model-free, i.e. they do not incorporate structural knowledge and consequently tend to be

inflexible. When it comes to the brain, one possibility is that transition knowledge is stored

outside of the OMPFC, but can still influence OMPFC computations via offline updating (Sharpe

et al., 2019). In line with this idea, previous work has found that replay in the hippocampus – a

putative mechanism used by the brain to sample from a model of the task during rest (Wittkuhn

et al., 2021) – is linked to state representations in the OFC (Schuck & Niv, 2019), suggesting a

role of hippocampal-OFC interactions in the service of flexibility.

A final consideration concerns the availability of task-irrelevant signals in deep RL models that is

in line with findings about irrelevant signals in the OMPFC discussed above (Abitbol et al., 2015;

A. H. Harvey et al., 2010; Moneta et al., 2023; Schuck et al., 2015). An intriguing open question

is whether such irrelevant signals are intentionally retained to accommodate for a dynamic

environment with constantly changing contexts (“a feature”), or whether the computational

machinery is limited in suppressing them fully (“a bug”). Further studying such cross-task signals

in deep RL models trained on several tasks might help elucidate the origins of their neural

counterparts.
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Box 2: Using deep RL models for the neuroscientific study of decision-making and learning

The core idea of deep RL models is to train a deep neural network through trial-and-error reward

feedback, rather than through supervised training. These models usually receive sensory observa-

tions as inputs, such as image pixels, and are trained to output expected values and/or actions that

maximize reward. Most deep RL models process visual inputs in early convolutional layers, on

top of which fully-connected layers are stacked. A popular type are deep Q-Networks (DQNs),

which approximate the expected values of a set of discrete actions, given the input. Important ad-

ditions to this standard architecture are recurrent layers that provide the network with memory,

and replay buffers that allow offline sampling (Botvinick et al., 2020; Wittkuhn et al., 2021).

Deep RLmodels are regarded as a useful tool in neuroscience because they share some basic prop-

erties with the brain. They process information through layers of connected and distributed nodes

in a stage-like fashion, and learn by adjusting the connection strength between nodes as a function

of feedback. These broad principles are reminiscent of the distributed information processing and

synaptic plasticity found in real neurons. Although these similarities are relatively superficial -

substantial differences exist for instance in how synaptic weight updates are propagated through-

out the networks - the main promise of deep RL networks is to offer a useful level of abstraction

for studying algorithmic aspects of cognition. Because deep RL models can perform complex

cognitive tasks on par with humans (Mnih et al., 2015; Silver et al., 2017), they seem to retain

at least some of the necessary ingredients for complex cognitive skills. A burgeoning field now

uses deep RL as models for behavior (Kuperwajs et al., 2023). Some work has made progress by

deriving analytical solutions of learning dynamics in simplified neural networks which yield pre-

cise explanations for observed learning trajectories (Saxe et al., 2019). Others have used them to

derive testable neurobiological predictions about context-dependent learning (Flesch et al., 2022)

or to provide explanations about why certain computational ingredients are essential for achieving

human-like learning (Flesch et al., 2018; Nelli et al., 2023). Finally, deep RL models are useful

because they allow studying the interaction of learning algorithms, behavior, and representations,

providing for instance ideas about which representations can be expected in value maximizing

networks. One example that showcases this strength comes from the area of distributional RL

models (Bellemare et al., 2017), which suggests benefits of computing many diversely tuned re-

ward prediction errors (RPEs), rather than only the single RPE assumed in standard RL. While

the single RPE signal has famously been found in the firing rate of dopamine neurons (Schultz,

1998), the notion of distributional RL in midbrain circuits has recently gained empirical support

(Dabney et al., 2020; Muller et al., 2024). In a similar vein, deep RL models might help refine

understanding of OMPFC codes in the brain.

Concluding remarks and future perspectives

We provided an overview of information encoded in OMPFC during decision making tasks.

OMPFC representations are multifaceted, shaped not only by immediate and expected rewards,

but also by sensory and non-sensory information required for optimizing behavior in current
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tasks. As discussed in previous sections, such representational richness aligns with the concept of

task-states in reinforcement learning, and with late hidden layer activations that arise in deep RL

models that learn to perform complex tasks. Ultimately, this suggests that value-oriented

computations do not necessarily lead to simple representations of expected value in the form of a

universal currency for decision-making. Instead, we propose a perspective in which the OMPFC

provides an integration of value and task states in the service of decision-making in complex

environments. We also highlighted the important observation from neurophysiological as well as

simulation work that single neurons are characterized by mixed selectivity to linear and nonlinear

mixtures of value, outcome, task state and other variables. Notably, while information is mixed

on the single neuron level, it is still possible for different variables to be read out independently

on the population level (example visualized in Fig. 20B)). This implies that complex neural codes

which feature information integration on the single neuron level do not contradict the existence of

more abstract, independent representations on the population level (Tye et al., 2024)

While deep RL can offer useful insights for OMPFC function, we believe important aspects need

to be considered. Of particular relevance is the need to complement on-task learning powers of

standard models with access to long term memory in a way that enables learning across tasks over

larger horizons. Some promising first results have indicated a link between OMPFC and

meta-learning and memory replay, but more work will be need, in particular concerning the role

of hippocampus-OMPFC interactions in this regard. We also argue that re-instatement of

established (value) knowledge could explain the documented role OMPFC plays for flexible

generalization, as well as in tasks that neither require learning nor choices. Another important

observation that requires deeper investigation is that value signals can reflect not only current but

also future or hypothetical tasks (see Moneta et al., 2023), suggesting OMPFC decision making

function reflects not only past tasks, but also future ones.

While neural network-based computational models might inspire new concepts and predictions

concerning representations in OMPFC, another remaining challenge is the lack of a clear

correspondence between network components or computations and specific brain regions. Most
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observations about similarities of deep RL models and OMPFC remain qualitative, and a previous

study (Cross et al., 2021) failed to find any direct relation between the model representations and

fMRI activity in OMPFC. Additional in-depth investigations are therefore critical (see

Outstanding Questions).

Finally, we believe that it is time to reconceptualize value as a multidimensional signal that tracks

distance to the current task-goal, rather than accumulated reward (Frömer et al., 2019; Juechems

& Summerfield, 2019; Martino & Cortese, 2023). This approach could open the door for

frameworks that integrate goal and value signals (Molinaro & Collins, 2023b), integrate

confidence into the decision (Barron et al., 2015; De Martino et al., 2013; Gherman &

Philiastides, 2018; Lebreton et al., 2015), and even ones which assume no explicit computation of

value at all (Hayden & Niv, 2021). Together, we believe these shifts in focus will help gain better

understanding of the full complexity of OFC/vmPFCs function.

Outstanding Questions

• Do late layers of deep RL models offer a model for representations in OMPFC? If so, which

network architectures and layers therein best match OMPFC regions?

• Can recurrent neural network architectures reveal previously unidentified links between deep

RL models and OMPFC, given their role in partially-observable tasks and meta learning?

• What influences encoding of non-value signals and information irrelevant for the current task

in OMPFC? Can this be linked to objective functions, weight initialization and activation

functions in neural networks?

• What controls the amount of compression and (dis)entanglement in OMPFC representations?

• Learning is a dynamic process that evolves over time. Is OMPFC’s role in decision making

most prominent during early learning stages?

• How do the representation learning dynamics of deep RL on a trial-by-trial level, and across

episodes, compare with those in OMPFC?

• Does OMPFC guide value-free decision-making processes in the brain? How can one dis-

entangle value-based vs value-free learning and choice?

• How do ventromedial and orbital areas interact with the hippocampus during offline replay

and during on-task periods to guide decision making?
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Glossary

• Actor-Critic: A policy-based RL algorithm that learns the reward-maximizing probability of choosing

among possible actions in a given state of the task (the actor). The model also learns an estimate of the

state’s value, independent of which action will be chosen, and uses it as a learning signal to optimize the

policy (the critic).

• Convolutional layer: The building block of convolutional neural networks (CNNs). Each node receives

input from a small set of spatially confined nodes (receptive field). With network training, the restricted

connectivity leads to nodes acting as filters which detect a specific input feature within their receptive field.

Convolutions are typically applied over successive layers, allowing the network to form more complex

filters.

• Deep reinforcement learning (RL) models: Deep neural network models trained with reward signals,

instead of supervised teaching signals. This fusion integrates the representation learning abilities of deep

learning with the decision-making abilities of RL, and allows powerful machine-learning solutions to real

life tasks such as autonomous driving.

• DQN (DeepQNetwork): A value-based deep RLmodel which receives inputs andmaps them to the values

of possible actions, with each action being an output node of the network.

• Objective function: The function the model is trained to minimize, usually expressed as the difference

between a model prediction, and a target, i.e. what the model should have predicted. For example, a deep

RL model can be trained using a Q-loss function, in which the output nodes are trained to match the current

and future reward resulting from each action in a given state. In supervised neural networks, the most

common objective function is cross entropy.

• Fully-connected layer: Usually contrasted with convolutional layer, a fully connected layer is composed

of artificial units which are all connected to each other by adjusted weights.

• Recurrent layer: A recurrent layer holds previous observations in its memory and allows them to shape its

responses to current inputs. This can be especially useful for solving partially observable tasks, where the

estimation of the current state of the world cannot be fully determined by the current sensory inputs. Recur-

rent layers are usually contrasted with feed-forward layers which process each observation independently

of previous ones.

• Task-State: Collection of observable and non-observable information necessary to predict decision out-

comes.The transitions between task-states constitute a Markov Decision Process that allows RL algorithms

to solve the reward maximization problem.
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General Discussion

This thesis examined the bidirectional effects of task structural knowledge and value

representations and their joint influence on guiding behavior. Throughout three projects, it

explores how task and state representations guide value and behavior, how value triggers

representational change of cognitive maps and states within, and how all these factors might

integrate into representational spaces to guide behavior.

Summary of the different projects

The first project asked how contextually irrelevant values influence behavior and neural activity

in vmPFC. When participants were faced with decisions between choices where only one context

predicted the outcome, they still reacted slower when the irrelevant context favored a different

choice and faster when it favored the same. This congruency effect increased with increasing

reward associated with the hypothetical choice in the irrelevant context. This shows that

participants fully processed both contexts and simulated the potential outcome, even though one

context was explicitly cued to ignore. In the fMRI analyses, we isolated vmPFC voxels which

were scaled by the relevant expected value, and found that the same voxels were also sensitive to

the irrelevant context and its expected value; Moreover, higher irrelevant expected values, or a

stronger neural representation of them, impaired the relevant expected value signal. The neural

representation in vmPFC during choice was conflicted between the potential values, akin to a

representational conflict between the two contexts and their associated values. We also found a

clear signal representing the task state (context: motion or color, irrespective of value) in the same

value-sensitive voxels. We then showed that a stronger context signal not only related to a

stronger task-relevant expected value signal but also diminished the previously observed

competition between the relevant and irrelevant expected values. All the neural findings in

vmPFC, namely the relation between expected value and context and evidence for value

competition, were linked to participants’ behavior in a manner generally consistent with the idea

that the representations of the alternative/irrelevant context and its associated value were present

within vmPFC and guided behavior. The strength of these ‘irrelevant‘ representations within
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vmPFC was related to slower and less accurate choices when the different contexts implied

different actions, and faster and more accurate choices when they agreed on the action to be made.

Brought together, the first project shows that task-irrelevant values are not filtered out during

context-dependent decision-making and that state representations are likely the governing

framework to determine which values should guide behavior.

In the second project, we asked how exposure to reward influences broader task representations.

Participants were tasked with making similarity judgments between sets of trees that differed by

the amount of leaves and/or fruits. Then, in a separate task using the same stimuli, they learned

that specific trees were more rewarding than others, akin to a reward located in a two-dimensional

spatial map. Following reward learning, participants repeated the same similarity judgment task.

Participants increased perceptual discrimination among previously rewarded trees, as predicted,

shown by accuracy and behavioral models. Based on previous theoretical work, we hypothesized

that this increase in acuity would be a result of an increase of representational fields around the

reward that would come at the expense of other areas of the map, such that the reward pulls

representational fields towards it, akin to a gravitational pull. Behavioral analyses showed the

effect of reward on participants’ choices generalized to areas of the map that were never directly

rewarded, aligning with the pulling hypothesis. Specifically, participants judged trees in areas

believed to have a decrease in field density as more similar. At the same time, we observed a

decrease in hippocampus univariate signals in the same locations participants judged as more

similar, further supporting a decrease in field density in reward-adjacent areas. Multivariate

analyses revealed an increase in similarity among trees very close to the reward location in both

the hippocampus and mOFC, a representational change also predicted by the pulling hypothesis,

according to simulations. Representational changes in the hippocampus were related to

participants’ general learning of reward across multiple days, whereas changes in mOFC were

linked to more recent, immediate experiences with reward on the same day of the task. Taken

together, these findings suggest that reward not only causes localized changes to an abstract

cognitive map but rather induces a systematic change by pulling representational fields across the
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map toward it.

In the third project, we took a broader perspective and reviewed recent literature to explore how

value expectations guide humans and animals to achieve goals in complex environments. Our

focus was on the vmPFC and OFC, crucial regions for value processing and integrating

information for learning. We show support for a reinforcement learning perspective, emphasizing

the importance of context as the state of the environment for predicting rewards, strengthening the

idea of OFC/vmPFC as supporting cognitive maps in guiding decisions. This emphasis

challenges earlier notions of a task-independent ”common currency” as the main role of these

regions. We showed that vmPFC and OFC encode multifaceted information, integrating value

and task states for decision-making, and suggested that mixed selectivity potentially allows for

versatile coding, enabling abstract representations.

Brought together, the first project showed how task structure guides value representation and the

influence its neural signature, state representation, had on value signals. The second project

showed that value generalization influenced the entire cognitive map and its neural representation

by causing systematic changes to other task-relevant dimensions. In the last project, we reviewed

recent literature to try and reconcile how values could be represented in the decision-making

representational space and what guides this representation in OFC/vmPFC.

Task structure and states govern value representations

The main finding of the first project was that the expected value of each context influenced

vmPFC representation and choice behavior. An alternative could have been that the irrelevant

feature of the same object would have guided behavior but it was not the case, neither

behaviorally nor in vmPFC. It is as if while choosing between two apples for snacking, focusing

on the texture, the value associated with the best apple for baking interfered with the decision,

even if that was the apple that was not chosen. This finding further reinforces that participants

fully processed and simulated the potential alternative choice, holding representations of both in

mind. Such simulation is strongly dependent on the task structure, suggesting it is the context, or

states, that govern which values would guide participants’ choices.
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One assumption we made in the first project was that knowledge of values would remain stable

during the main task. This assumption was supported by the fact that participants learned the

value-feature mapping before the main task in multiple separate sessions and performed

near-ceiling in identifying the most rewarding choice. Therefore we didn’t model any ’learning’

or changes to subjective values across time during the main task. This was also the motivation to

focus on choice deliberation in the fMRI analysis, i.e. when participants needed to sort out the

perceptual input and make a choice. However, if irrelevant features are not fully filtered out

during choice deliberation, then they might also interact with the processing of the subsequent

outcome. In reinforcement learning, identifying the right features to associate with an outcome is

known as the credit assignment and is crucial in determining the correct prediction error signal to

update cashed values (e.g. Asaad et al., 2017; Sutton & Barto, 1998). Imagine a decision between

yogurts that differ based on two features: shape and taste. One is a strawberry round-packaged

yogurt and the other is a squared-packaged pineapple yogurt. As a strawberry enthusiast, your

choice to maximize potential outcomes would likely be the strawberry. However, what would

happen to the value of the pineapple flavor after not choosing it? Humans do maintain value

information of unchosen options (Boorman et al., 2011; Hayden et al., 2009; Tobia, Guo,

Schwarze, Boehmer, et al., 2014) and even update those options based on the obtained reward

(Biderman & Shohamy, 2021). This suggests that the positive experience with strawberry flavor

might not only positively reinforce choosing strawberry in the future, but also decrease the

likelihood of choosing the pineapple option, even if strawberry is not available anymore. Our

findings raise the question if these reported spill-over effects also generalize to contextually

irrelevant features. For example, after a good experience with a strawberry-flavored

square-shaped yogurt, we could find ourselves on future visits to the supermarket gravitating

towards squared products, mistakenly reinforcing the irrelevant feature (shape) along with the

relevant one (taste). We are currently working on a follow-up project re-analyzing the same

behavioral data to investigate if also task-irrelevant features generalize over time to future

decisions. One potential mechanism through which such interference could occur might be by
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causing false value updating via contextually irrelevant prediction error signals. This line of work

could hopefully shed light on how different value functions interact within the task

representational space not only when needing to identify the right one, but also when these

interferences generalize over time based on recent experiences.

Are neural representations sub-optimal at separating different value functions?

One important question the first project raises is why different value functions interact if one is

not predicting the current outcome. Is it a bug in the system or is such contextual spill-over

beneficial? In our experiment, we (artificially) imposed full independence of the two contexts

such that the irrelevant context never influenced the outcome. Not only have we told that to

participants explicitly, but we also made sure outcomes are deterministic (e.g. choosing blue

when relevant always gave 70 points). We reasoned that lack of stochasticity would prevent

potential inference of hidden rules (e.g. accidentally inferring from experience that relevant blue

feature, when paired with diagonal motion, provides a higher outcome). However, in daily life,

different contexts rarely exhibit such independence, where two feature dimensions are not only

orthogonal, but one is completely relevant in one context and completely irrelevant in another.

Even the example of apples previously presented is not ideal. In this example, we proposed that

texture is a crucial feature for snacking, but the color might also have an objective effect on the

expected outcome of the same experience of snacking. Moreover, in many cases, the dimensions

themselves are not fully orthogonal. For example, maybe out of the potential apples available in

your supermarket, green apples are often the crispiest. This suggests that reward-predicting

feature dimensions might be more related in real life, as opposed to the way we set up the design.

Although the lack of ecological validity might be considered a limitation of our study, this

perspective suggests that the observed interaction of different value maps might be a more

ecologically valid explanation of the findings. Our results can then be interpreted as incorporating

into the representational space dependencies, and accompanied uncertainty, that is learned

through daily experiences.

Another related aspect of our task was that decisions were partially-observable, i.e. not all the
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information needed for the decision was present at the time of choice. In the third project, we

discuss the importance of accounting for partial observability in the representation of decisions in

more detail. Partial observability inherently introduces uncertainty about the state. To try and

mitigate this uncertainty, we designed the experiment to have a full separation of state reward

predictability, i.e. only one context-predicted reward at each trial. In real life, however, we often

want to optimize for multiple goals at the same time. We might want to buy the best apple for

baking a pie, but if we don’t have the time to bake, we might end up snacking it. This suggests

that even when one is certain in the current state, taking other potential states might prove to be

beneficial. In our task, it was beneficial to have a complete representational separation between

the context and ignore the ‘irrelevant‘ context. However, in a dynamic and complex world, it

might, more often than not, be beneficial to consider all potential states while making a decision.

This suggests that even if features are indeed ’irrelevant’, taking them into account while making

a decision might not have been a ’bug’ in the system, as our experimental design suggests, but

rather a ’feature’.

Supporting the interpretation of decisions as an integration of all potential contexts, we found that

the irrelevant context did not only make participants slower when the trial was incongruent but

also made them faster when trials were congruent. This increase in speed went beyond the

reaction time of single-feature trials, where the irrelevant context was absent. This hints at the

possibility that the two contexts integrated into a single choice, rather than one only interfering

with the other. One limitation of our study was that we excluded trials in which the irrelevant

context was present, yet did not indicate a preferred choice, i.e. when both irrelevant features

were the same. Comparing this condition to single-feature trials could have further shed light on

the representation of the irrelevant context in the guiding representations in the lack of competing

action signals. If the irrelevant context is ‘only‘ interfering and not integrating, then we should

not have seen a difference between single-feature trials and these trials. Concurrently, comparing

the representation of the irrelevant context in the lack of competing actions might have influenced

the level to which the irrelevant context is actively suppressed as it does not pose a competition to
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guide behavior (see below for a detailed discussion on suppression of alternative maps).

Brought together, the findings of the first project bridge the gap between state and value

representations found in the vmPFC and OFC. We suggest that values are not only

state-dependent but that their representations are intertwined such that, when facing multiple

potential value-predicting features, the state signal organizes and governs which would guide

behavior. At the same time, state separation is not fully intact, as multiple potential states are

co-activated and the strength of each state relates to which would guide behavior. Such imperfect

separation, however, might be beneficial in more ecologically valid daily situations.

Value generalization triggers representational changes to cognitive maps

The second project took a different angle on the interaction of rewards, states, and perceptual

features and asked how values influence task representations and perceptual processing. As

mentioned before, reward is often referred to as a tangible experience, such as the pleasure

derived from eating chocolate. Value expectations, however, often encompass a broader

interpretation, integrating different elements such as personal preference or long-term goals. One

way to think of expected values is as a generalization of related reward experiences over time.

Whereas in the first project, we demonstrated how learned value functions influence one another

and are integrated given the states in the task structure, in the second project, we investigated

whether generalizing reward experiences integrate into the task structure and the underlying

representations of a cognitive map.

In the pursuit of understanding how tasks are represented in the brain, disentangling value and

task structure was the goal of many studies, including, to some extent, the first project. As

debated in the third project, classic neuroeconomic studies usually emphasize value signals as

task-independent ’common currency’ whereas studies grounded in reinforcement learning

frameworks highlight the importance of task structure and its governing power over values. Two

prominent frameworks in reinforcement learning that grew out of this peruse are model-based

decision-making and successor representations (Daw et al., 2011; Dayan, 1993; Momennejad

et al., 2017). In a way, both approaches have a focus on decoupling environment dynamics from
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reward structures. The advantage of these approaches is that they enable dynamic switching

between value functions without requiring a complete restructuring of environmental knowledge.

This is especially beneficial in environments where rewards are stochastic. For example, they

allow us to generalize structural knowledge from one supermarket to another, such that when we

arrive at a new supermarket we have never seen before, we can navigate between the aisles

effectively even if we never saw where products are placed. In the second project, however, we

found that exposure to reward altered the representation of the cognitive map and generalized to

tasks where reward was not present anymore. This suggests that, at least in some cases, rewards

and task structures exert bidirectional influences and dependencies and might not be as easy to

disentangle from one another. While dynamically adapting the representation according to the

experience of rewards could be expected from the OFC (as detailed in the 3rd project), the

hippocampal formation is often believed to hold a more stable representation over time (e.g.

Gonzalez et al., 2019) that can be generalized across tasks (e.g. Baram et al., 2021).

One question brought by the dependency of reward and task structure relates to the requirement

for reward to cause such a structural change. One aspect of our task was that the reward was

roughly deterministic and stable over long periods (i.e. two full MRI sessions). Unlike stochastic

rewards, where approaches as successor representation are beneficial, under these conditions,

separating task structure and value might not be optimal and reward location might cause a

permanent change to the structure of the environment. For example, if we frequently buy

chocolate and learn over time that all types of chocolates are always positioned near the checkout,

we may gradually increase the resolution of our representation of areas close to the checkout. This

increase in resolution could be beneficial to finding our favorite chocolate among the options. The

stability in the experience of finding our favorite chocolate might result in generalization to visits

to other supermarkets. However, if the supermarket frequently changes the location of sweets, it

might not be beneficial to prioritize resources toward any specific area and not generalize such

changes to new environments. This idea is to some degree supported by recent findings that grid

fields shift their receptive fields primarily when reward is consistently located in one place
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(Boccara et al., 2019). When additional sparse rewards were interleaved, however, grid fields

increased their firing rate rather than shifting their receptive fields (Butler et al., 2019). At the

same time, the hippocampus only showed an increase in place cells around reward when the

reward needed to be inferred, compared to explicitly cued (Dupret et al., 2010), which could hint

that reward-related representational changes are not only a reaction to experiencing reward, rather

a result of generalizing values under partial observability to guide future behavior. These finding

potentially suggests that hippocampal formation representations need a stable constant reward in

the environment to change their representations. This interpretation is also partially supported by

our finding in the second project that hippocampus changes were related to across-day

performance matrices and not to recent same-day experiences. However, defining what is

considered a ’stable’ reward location can be challenging. Two recent studies suggest that within

the same task, hippocampus place cells can shift towards the reward location even on very short

periods of a few trials (Sosa et al., 2024; Tessereau et al., 2025). At the same time, both studies

showed that this dynamic adaptation was stronger when reward-switching was more predictable.

This suggests that the predictability of change might play a direct role in how fast representation

in the hippocampus will change. The idea that representational change depends on more abstract

concepts such as predictability or volatility is in line with recent ideas of the hippocampus’ role in

learning meta-representations to navigate under uncertainty (Ambrogioni & Ólafsdóttir, 2023).

Since the reward in our task in the second project was constant (within each group), with very low

noise introduced, we will likely not be able to directly examine the role uncertainty plays in the

hippocampus representational changes, leaving this interpretation mostly speculative.

Another, more nuanced, question this dependency raises is if the change is true to the entire

cognitive map, as potentially represented in the medio-temporal and medio-prefrontal network

(Behrens et al., 2018; Schuck et al., 2018; Stachenfeld et al., 2017), or could it be an ‘earlier‘

change to the input of the system, e.g. in how the visual cortex represents the perceptual features.

Reward-induced changes in the visual cortex have been observed before (e.g. Schaffner et al.,

2023) and to the best of my knowledge, work that found reward effects on place and grid cells in
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the hippocampal formation did not simultaneously measure signals from the visual cortex.

Notably, even if the change originates on the ‘lower‘ perceptual level, those are still task

dimensions that are, in principle, independent of reward when it is absent and would still point to

an influence of reward on the formation and structure of the cognitive map. In future work on the

second project, we hope to look at sub-divisions of the visual cortex to potentially shed more light

on the low-level perceptual processing contribution to the interaction of perception, value, and

cognitive maps.

Related to this, another important anatomical subdivision relates to value, states, and cognitive

map representations in the prefrontal cortex. As mentioned in the third project, there are still

many open questions regarding the distinction between mOFC and vmPFC, especially when

comparing findings across species. When considering representations related to cognitive maps,

this distinction becomes even more important as the findings of grid-like coding in humans were

found in a much more dorsal region, which might overlap with some definitions of vmPFC but is

usually distinct from the mOFC (e.g. Bongioanni et al., 2021; Doeller et al., 2010;

Padoa-Schioppa & Assad, 2006; Schuck et al., 2016). Future work could further investigate the

functional role of these regions, ideally guided by their anatomical and functional connectivity

structures and potential link to the medial temporal lobe.

Brought together, hippocampus representations can show short-term flexibility to encode salient

locations, potentially especially when changes are predictable. Stability and predictability may

play a role in generalizing these representational changes to new environments. Future work on

the second project, e.g. analyzing fMRI data from the reward learning session, and a deeper look

into further anatomical sub-regions of the visual cortex and the hippocampal formation would

hopefully shed more light on some of these important questions.

vmPFC/mOFC: The intersection of values, states, and cognitive maps

In the last project, we dove into the underlying neural code in the OFC and adjacent vmPFC,

bridging findings of value and states co-existing and interacting within their neural code. We

support previous findings that the OFC represents states (Niv, 2019; Schuck et al., 2016). As
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discussed above, states can be conceptualized as a location within a cognitive map, incorporating

structural knowledge and previous experiences with current observations. If the hippocampus is

to represent a somewhat more stable representation of the environment, mOFC might exhibit

more dynamic representations as it needs to take a lot more changing factors into account. Our

findings in the second project also partially support this intuition as mOFC changes were related

to same-day recent experiences. This is supported by other recent work which suggests that OFC

dynamically updates hippocampus representation to optimize future choice inference (Garvert

et al., 2023).

One aspect of OFC’s neuronal coding that might support such dynamics is mixed selectivity. As

discussed in detail in the third project, single neurons in OFC are characterized by mixed

selectivity to mixtures of value, outcome, task state, and other variables. Such complex

representational space does not mean that single representational dimensions (such as value) can’t

be read out from it, but it does emphasize the possibility that different aspects of the task might be

strongly connected. If mixed selectivity is part of binding perceptual inputs, value, and memory,

then it might potentially facilitate learning in which states or locations of the map strongly

co-vary with value and contribute to goal-dependent representational changes. One example of

such representational change is presented in the simulations in the second project, suggesting that

over time, reward acts as a gravitational pull within the cognitive map, changing representational

axes that were previously unrelated to reward. Mixed selectivity might play a role in the

dynamics of learning and changing task structure representations over time (see more concrete

suggestions below).

Compression and competition of alternative goals within the cognitive map

In the first project, we saw multiple states co-activated within vmPFC. Although we saw evidence

for simultaneously processing relevant and irrelevant context and their associated values, there

were still differences in how they were represented within the vmPFC. Evidence for the irrelevant

value in the frontal context was only found in the multivariate code, with no univariate effect.

This suggests that task-irrelevant variables are represented in a compressed form which is not
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easily detectable using univariate tests. At the same time, as briefly mentioned in the third

project, some studies indeed found linear scaling with task-independent value-like signals, such

as the beauty of faces or more general likability (Abitbol et al., 2015; Frömer et al., 2019;

A. H. Harvey et al., 2010; Lebreton et al., 2009; Levy & Glimcher, 2011). This raises an

interesting conundrum, namely why are some task-irrelevant aspects more compressed than

others? And specifically in our task, irrelevant values were so compressed such that they have no

linear trace. One aspect of our task is that contexts changed frequently, making relevant values in

one trial irrelevant in subsequent trials. We also made sure that in one-third of the trials, the

contexts pointed at different options (incongruent condition), further emphasizing the conflict

between the contexts. One potential speculation is that in our task, the alternative context needed

to be actively suppressed in order not to interfere with choice, which could explain why we could

not detect univariate evidence for the irrelevant values. Previous findings showed that the degree

of neural compression of irrelevant features in vmPFC predicted the ability to better perform in

context-dependent decisions (Mack et al., 2020) and could suggest that the level of compression

might relate to task demands. A complimentary point of view is that dimensions such as

aesthetics or general likability which were observed in previous studies are so often trained in

daily life, that they are automatically activated in an uncompressed manner (e.g. Lebreton et al.,

2009). This would be in line with the hippocampus representing semantic relations between

objects even though those were irrelevant for the task at hand (Zheng et al., 2024), since also here

they were not posing a competition on which is the right choice at the tasks at hand. Future work

could try to better understand under which conditions and to what extent task-irrelevant values

(and states) are compressed.

Binding it all together: integrating goals and values in dynamic cognitive maps

One question that relates to all three projects is what is the representational space required to

guide goal-directed behavior? Both the first and second projects incorporated tasks with different

goals that often pointed to opposing actions. In the first project, those were color versus motion

value mappings, whereas, in the second project, it was judging perceptual similarity versus
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Potential mechanisms for competing goals and their representational spaces a In the first project, a contextual cue

appeared in every trial instructing participants which context to follow. The context changed every 4-7 trials. b Two

separate potential spaces for the task(s) presented in the first project, each one mapping either color (top, y-axis) or

motion directions (bottom, y-axis) by their values (x-axis in both). Each stimulus can be conceived as a state in this

space. To achieve the right goal in the existence of two separate maps, on each trial one of the maps is activated

and the other is suppressed. c Dynamically compressed representational space for color (z-axis), motion-directions

(y-axis), and values (x-axis), co-represented within the same space. To achieve the right goal, on each trial, one of

the axes is expanded and the other is compressed. In this toy example, linear value-guided relations between the

different motion states remained intact only for green, whereas the blue states only kept a separation of the highest

rewarding feature (horizontal motion). d In the second project, the goal was presented only once at the beginning of the

session and remained constant throughout. e Two separate spaces for perceptual similarities (top) and mapping values

(bottom). To achieve the right goal, in the case of two competing separated maps, on each trial, the perceptual map

is activated and the value map should be suppressed. We currently can not find evidence for value mapping, pending

further investigations. f Integrated representational space for perceptual features, after the exertion of reward-driven

gravitational pull (conceptually illustrated by red points and black arrows). Unlike panel c, here the value is not an

independent axis but rather integrated into a two-dimensional perceptual space.
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identifying a specific rewarding tree. Both projects also incorporated partial observability, in the

sense that the context was not present while choosing, but rather before making the decision,

which might encourage co-representations of multiple potential states. In the third project, we

proposed that the OFC represents a multidimensional space of all task-relevant information,

along multiple axes with value being one of them. In both projects, we found evidence of one

opposing goal interfering with the other, although in a slightly different manner. The existence of

simultaneously opposing goals raises the question if those goals are represented in separate and

competing representational spaces, or if they co-exist in one dynamically changing space.

Focusing on the first project, one interpretation of the findings is that there exist two separate

representational spaces: a color space and a motion space. Given a specific contextual cue (e.g.

’focus on color’, Fig.21a), one map might be activated whereas the other suppressed (Fig.21b).

Discussed findings that the hippocampus maintains task-irrelevant semantic relationships and the

mOFC representing commonly used task-irrelevant attributes support the existence of multiple

co-activated maps (Garvert et al., 2023; Lebreton et al., 2009). As mentioned previously, our

analyses suggest that when states switch from relevant to irrelevant their representation is

compressed. Such compression could be a result of suppressing a separate map. An alternative

perspective is that the representational space incorporates all presented information, and

dynamically compresses feature dimensions depending on the current goal (Fig.21c). This

perspective is not in contradiction to the conclusion of the third project but rather expands the

interpretation of ’relevance’ by emphasizing that such a space might preserve more information

than what is immediately goal-related. Similar to the line of argument in the third project, a

read-out model could still extract the two separate maps from the full space by selectively

integrating over the irrelevant axes (from Fig.21c to Fig.21b), or even further integrate to show a

single dimension of value representation (as suggested by the ’common currency’ framework).

However, considering the space as inherently one opens the door to phenomena that can not be

explained if representation is separated. For instance, this perspective allows us to discover

through experience co-variation and dependencies between dimensions previously assumed to be
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independent and even assign values to task aspects that were never goal-related (e.g. Ben-Artzi

et al., 2023; Shahar et al., 2019). This perspective still leaves many open questions on what

governs compression, what remains intact after such compression, and what forms such

compression can take (see examples in Fig.21c).

The findings of the second project provide a different perspective on the co-variation of task axes

and hint at different types of representational change. Also in this project, the goal was not

explicitly present during the choice period but was rather presented once at the beginning of the

session (Fig.21d), making the task partially observable. This could potentially lead to two

competing maps: one only representing the perceptual space and one only representing potential

values. According to this perspective, the observed behavior would then be a result of failure to

suppress the reward map (Fig.21e). However, we do not (currently) find clear evidence for

univariate or multivariate value mapping, in contrast to the previous project, where multivariate

analyses found the representation of the so-called ’suppressed’ map. This suggests that in this

task, the previously learned value might not be directly present in the representational space. Our

findings point to a different form of representational change, namely that generalizing reward

knowledge (or saliency) is integrated over time into the perceptual dimensions (Fig.21f).

The discrepancy between the first and second projects might be attributed to the time spent on

each task and the frequency of change between the tasks. Whereas in the first project, contexts

switched every 1-2 minutes, in the second project, the two tasks were completely separated,

sometimes 1-2 hours apart, with no interleaved appearance of the alternative task. The stability of

the goal during the extensive reward learning sessions could be a reason for the integration of

axes in the hippocampus and OFC representational spaces. It is possible, that the co-variation of

reward and perceptual dimensions over a long time enforced gravitational pull on the space,

potentially to support optimal reward maximization in the future (Ginosar et al., 2021). It is

important to note that none of the projects aimed to test for the effects of goal consistency and did

not include controlled conditions, leaving this interpretation more speculative for the time being.

As mentioned in the third project, mixed selectivity might play an important role in the



STATES, VALUES AND GOALS IN COGNITIVE MAPS 166

representational changes of task spaces. This mechanism could potentially support the learning of

dependencies between different representational axes. Neurons exhibiting mixed selectivity can

encode multiple task-relevant dimensions simultaneously, but their responses dynamically adapt

depending on the behavioral context. This property could play a role in shaping how different

task dimensions interact over time. If mixed selectivity contributes to dynamically adjusting

representations based on task demands, then during the extended exposure to a single goal in the

second project, neural populations may gradually refine their tuning to emphasize the most

behaviorally relevant features while deprioritizing others. In this case, reward information may

have become increasingly integrated with perceptual features rather than being represented as an

independent axis. This is supported by the (current) lack of evidence for a separate representation

of the value mapping. Correspondingly, when task dimensions are engaged in competition, e.g.

such as when one must be suppressed to optimize decision-making in the first project, neurons

encoding one dimension may shift their tuning away from the suppressed axis, effectively

reducing interference.

Notably, mixed selectivity was found in different areas of the prefrontal cortex, visual cortex, and

retrosplenial cortex which is adjacent and connected to the hippocampal formation but not part of

it (Kira et al., 2023; Rigotti et al., 2013; Tye et al., 2024). To the best of my knowledge, there is

currently no direct evidence for mixed selectivity on the neuronal level in the hippocampal

formation. It is possible that if mixed selectivity plays a role in learning co-variation of task

dimensions, such learning might happen outside of the hippocampal formation (e.g. the OFC),

potentially informing it on such learned dependencies (e.g. Garvert et al., 2023; Schuck & Niv,

2019). As leading candidates to represent task structures and guide our behavior, there is also still

much to uncover about the specific roles of hippocampal formation and OFC, how dynamically

they adapt to current and past goals, and how they potentially inform one another to guide our

behavior.
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Concluding remarks

Taken together, the projects in this thesis provide new insights into how cognitive maps flexibly

integrate structural knowledge, value representations, and task demands to guide goal-directed

behavior. By demonstrating how task state representations influence value signals in vmPFC,

how reward reshapes cognitive maps in the hippocampus and mOFC, and how values might be

structured in a multidimensional representational space in the OFC/vmPFC, this work contributes

to a growing understanding of how the brain dynamically constructs internal models of the

environment. The findings challenge simplified notions of value representation and instead

highlight the flexible, context-dependent nature of these representations. At the same time, these

findings challenge strong separations between value and task structure, especially when values

are stable and predictable. By bridging perspectives from reinforcement learning, cognitive maps,

and representational geometry, this thesis provides a framework for thinking about how multiple

task dimensions, whether perceptual, structural, or value-based, interact over different timescales

to guide decision-making. Future research could further explore how these representational

spaces evolve with experience, how they are influenced by learning across different temporal

scales or uncertainty levels, and how interactions between hippocampal and prefrontal

sub-regions contribute to the continuous adaptation of goal-directed behavior.
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Supplementary information for 1st project

• Fig. S1: Full procedure and experimental design for all phases, related to Fig 1

• Fig. S2: Nested RT models (EV, Context, Block and switch) related to Fig 2

• Fig. S3: Alternative RT models, extended RT model comparisons and correlation matrix of

all regressors, related to Fig 2

• Fig. S4: Exploratory analysis of RT model presented in Main Text, related to Fig 2

• Fig. S5: Behavioral accuracy results: related to Fig 2

• Fig. S6: Frequency bias in the design and supplementary information for Representational

Similarity Analysis: related to Fig. 5 and Fig. 3

• Fig. S7: Supplementary information for Value similarity analysis: related to Fig. 4 and Fig.

5

• Fig. S8:Supplementary information for perceptual similarity analysis: related to Fig. 4 and

Fig. 5

• Fig. S9: Modelling probability assigned to the EV class: related to Fig. 5

• Fig. S10: Main effects and corresponding data, fMRI effects, related to Fig. 5

• Fig. S11: Main effects and corresponding data, link of fMRI to behavioral accuracy,

related to Fig. 6

• Fig. S12: Main univariate results

• Fig. S13: Additional univariate results,

• Table 3: Detailed univariate results: Clusters for whole brain univariate analysis

• Effect sizes and confidence intervals for best explaining models:

– Table 4: RT model

– Table 5: fMRI model (PEV , main model)

– Table 6: fMRI model (PEV , nested in EVback)

– Table 7: RSA model - Main effect models

– Table 8: RSA model - Main effect models value difference models

Source data for all figures are provided as a Source Data file.
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Figure S1

Full procedure and experimental design for all phases

Figure S1: Full procedure and experimental design for all phases, related to Fig 1. a.

Brownian algorithm for color and motion. Each illustration shows the course of 3 example dots;

’S’ and ’E’ marked dots reflect Start and End positions, respectively. Remaining dots represent

location in space for different frames. Left panel: Horizontal motion trial. Shown are framewise

dot positions between start and end. In each frame, a different set of dots moved coherently in the

designated direction (gray) with a fixed speed; remaining dots moved in a random direction

(conceptually taken from Pilly & Seitz, 2009). Right panel: Example of a pink color trial. We

simulated the YCbCr color space that is believed to represent the human perception in a relative

accurate way (cf. Abbott et al., 2016). A fixed luminance of Y = 0.5 was used. For technical

reasons we sliced the X-axis by 0.1 on each side and the Y-axis by 0.2 from the bottom of the

space to ensure the middle of the space remained gray given the chosen luminance. In each frame,
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a different set of dots (always 30% of the dots) moved coherently towards the target color in a

certain speed whereas the rest were assigned with a random direction. All target colors were

offset by 23.75% from the center towards each corner. Right bar illustrates the used target colors.

b. Full procedure. The experiment consisted of two phases, the first one took place in the

behavioral lab and included Staircasig, Outcome-learning and the first 1D mini-block. The

second took place inside the MRI scanner and consisted of the second 1D mini-block and the

main task. c. Example trial procedures and timing of the different tasks. Timing of each trial is

depicted below illustrations. Staircasing (left) Each trial started with a cue of the relevant

feature. Each cloud had one or two features (motion and/or color) and participants had to detect

the cued feature. Participants’ task was to choose the cued feature (here: blue). After a choice,

participants received feedback if they were correct and faster than 1 second, correct and slower, or

wrong. Outcome learning (middle) Participants were presented with either one or two

single-feature clouds and asked to chose the highest valued feature. Following their choice, they

were presented with the values of both clouds, with the chosen cloud’s associated value marked

with a square around it. The pair of shown stimuli included across contexts comparisons, e.g.

between up/right and blue, as shown. 1D mini block (right) At the end of the first phase and

beginning of the second phase participants completed a mini-block of 60 1D trials during the

anatomical scan (30 color-only, 30 motion-only, interleaved). Participants were again asked to

make a value-based two alternative forced choice choice decision. In each trial, they were first

presented with a contextual cue (color/motion), followed by the presentation of two single-feature

clouds of the cued context. After a choice, they were presented with the chosen-cloud’s value. No

BOLD response was measured during these blocks and timing of the trials was fixed and shorter

than in the main task (see Main task preparation in methods)Main task (bottom) This part

included 4 blocks, each consisting of 36 1D and 72 2D trials trials presented in an interleaved

fashion (see method and Fig. 1). d. Button specific reduction in RT variance following the

staircasing. We verified that the staircasing procedure also reduced differences in detection speed

between features when testing each button separately. Depicted is the variance of reaction times

(RTs) across different color and motion features (y axis). While participants’ RTs were markedly

different for different features before staircasing (pre), a significant reduction in RT differences

was observed after the procedure (post, paired t-test: p < .001, N=35) e. Choice accuracy in
outcome learning trials. Participants achieved near ceiling accuracy in choosing the highest

valued feature in the outcome learning task, also when testing for color, motion and mixed trials

separately (ps< .001, N=35). Mixed trials only appeared in this part of the experiment to

encourage mapping of the values on similar scales. f. Accuracy throughout the experiment,

plotted for each block of each part of the experiment. In the staircasing (left) High accuracy for

the adjustment and measurement blocks (2-3) ensured that there were no difficulties in perceptual

detection of the features. In Outcome learning a clear increase in accuracy throughout this task

indicated learning of feature-outcome associations. Note that Block 5 of this part was only

included for those who did not achieve 85% accuracy beforehand. Starting the 1D mini blocks

(middle) and throughout themain task (right) until the end of the experiment high accuracy. µ and

σ from left to right: Staircasing: .84,.07;.91,.06;.94,.04; Outcome Learning:

.81,.1;.86,.09;.83,.08;.82,.06; 1D mini blocks: .91,.07;.88,.08; Main task:

.89,.06;.91,.05;.9,.06;.92,.05.; N=35. In panels d-f boxes mid-line represent mean, lower and

upper the 25th and 75th percentile and whiskers extend to the range of the data (no more than 1.5

of the full box range). Data beyond the whiskers are plotted as individual solid points.
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Figure S2

Nested RT models, related to Fig 2

Figure S2: Nested RT models, related to Fig 2

a-d. Nested models within Factors. Each row represents one congruency analysis, done

separately for each level of expected value (a, top row), context (b, 2nd row), block (c, 3rd row)

or switch (d, bottom row). The RT effect of Congruency × EVback is shown on the left,

corresponding AICs for mixed effect models with nested factors are shown on the right. Mean RT
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(line) and SEM (shades) for the corresponding 1D trials is plotted in gray for each panel (e.g.

mean across all 1D trials where EV=30 are on top left panel). Error bars assigned to colored lines

and gray error band represent corrected within subject SEMs (Cousineau et al., 2005; Morey

et al., 2008). Null models shown on the right are identical to Eq. 2, albeit included ζ0kv
, which is

the factor-specific (v) intercept nested within each within each subject level (see methods).
Likelihood ratio tests were performed to asses improved model fit when adding (1) Congruency

or (2) EVback terms to the Null model and when adding (3) Congruency × EVback) in addition to

Congruency. Stars represent p values less than .05. For nested within EV, the Null model did not

include a main effect for EV and the likelihood ratio (LR) tests with added term: (1) χ2
(1) = 31.22,

p < .001; (2) χ2
(1) = 1.47, p = .226; (3) χ2

(1) = 19.37, p < .001; For models nested within
Context the LR test was: (1) χ2

(1) = 30.01, p < .001; (2) χ2
(1) = 1.5, p = .22; (3) χ2

(1) = 18.9,
p < .001; For models nested within Block: (1) χ2

(1) = 26.06, p < .001; (2) χ2
(1) = 1.27, p = .26;

(3) χ2
(1) = 18.25, p < .001; And for models nested within switch: (1) χ2

(1) = 23.29, p < .001; (2)
χ2

(1) = 1.13, p = .29; (3) χ2
(1) = 17.66, p < .001;, N=35 for all panels and models. In the first row

(nested across EV) the interaction with EV is visible, i.e. the higher the EV, the stronger our

effects of interests were.
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Winning model spaceonly irrelevant 
values

Between context value difference

Alternatives to 𝑬𝑽𝒃𝒂𝒄𝒌

Within cloud value differences

Null model 𝛽2𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 𝑡 +𝛽3𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 𝑡 𝐸𝑉𝑏𝑎𝑐𝑘 𝑡

+𝛽3𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 𝑡 𝐸𝑉𝑑𝑖𝑓𝑓 𝑡

+𝛽3𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 𝑡 𝑎𝑏𝑠(𝐸𝑉𝑑𝑖𝑓𝑓) 𝑡

+𝛽3𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 𝑡 𝑂𝑉 𝑇
+ 𝛽4𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 𝑡 𝑉𝐷(𝑡)

𝛽2𝑎𝑏𝑠(𝐸𝑉𝑑𝑖𝑓𝑓) 𝑡

𝛽2𝑂𝑉 𝑡

𝛽2𝑉𝐷 𝑡

𝛽2𝐸𝑉𝑏𝑎𝑐𝑘 𝑡

𝛽2𝐸𝑉𝑑𝑖𝑓𝑓 𝑡

𝛽2𝑛𝑜𝑛𝑇𝑔𝑡𝑑𝑖𝑓𝑓 𝑡

𝛽2𝑇𝑔𝑡𝑑𝑖𝑓𝑓 𝑡 +𝛽3 𝑛𝑜𝑛𝑇𝑔𝑡𝑑𝑖𝑓𝑓 𝑡
+ 𝛽4𝑛𝑜𝑛𝑇𝑔𝑡𝑑𝑖𝑓𝑓 𝑡 𝑇𝑔𝑡𝑑𝑖𝑓𝑓 𝑡

𝛽2𝑇𝑔𝑡𝑑𝑖𝑓𝑓 𝑡

a. Alternative models b. Extended correlation matrix

     

     

     

 
  

c. AIC scores
Main model comparison

Between contexts value difference
Within cloud value difference

Alternatives for 𝑬𝑽𝒃𝒂𝒄𝒌

Figure S3

Alternative RT models, extended RT model comparisons and correlation matrix of all regressors, related to Fig 2.

Figure S3: Alternative RT models, extended RT model comparisons and correlation matrix

of all regressors, related to Fig 2.

a. Alternative mixed effect models, each represented as a row which lists main factors of interest.

We clustered different alternative models into three classes: Green models included factors that

reflected the difference between the expected values of both contexts (EV - EVback, including

unsigned EV factors); blue models include instead factor that reflect the value-difference between

context within each cloud where ‘tgt’ (target) is the chosen cloud with the highest value according

to the relevant context and orange models included two alternative parameterization of values in

the non-relevant context: irrelevant features’ Value Difference (VD) and Overall Value (OV),

which are also orthogonal to Congruency (Cong), and to each other. In black is the main model

comparison as presented in the main text. b. Extended correlation matrix. Averaged correlation

across subjects of all scaled regressors for accurate 2D trials (models’ input). Marked in red
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rectangle are main factors of the experiment which are orthogonal by design and used for the

model comparison reported in the Main Text. c. AIC scores. We tested different alternatives

shown in (a) in a stepwise hierarchical model comparison, as in the main text. Each bar represents

the AIC (y-axis) of a different model (x-axis) where the labels on the x-axis depict the added

terms to the Null model for that specific model. The Null model included nuisance regressors and

the main effect of EV (see ν and β1 in Eq. 2). The models described in the main text are shown in

black. The gray model includes the additional term for Congruency × EV. Dashed lines

correspond to the AIC values of the models used in the main text. Importantly, no main effect

representing only the contextually irrelevant values (VD, OV, EVback) nor the difference between

the EVs (EVdiff ,|EVdiff |, also when excluding EV from the null model, not presented) improved

model fit over the Null model. This supports our finding that neither large irrelevant values, nor

their similarity to the objective EV, influenced participants’ behavior. Similar to EVback, factors

from the green and orange clusters are also orthogonal to Congruency, which allowed us to test

their interaction. Factors from the blue cluster highly correlate with both Congruency (and

EVback) and therefore were tested separately. Non of the alternatives provided a better AIC score

(y axis, lower is better).
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effect Df AIC
likelihood 

ratio test
P value

Switch 1 -6490.88 15.19 <.001

Trial 1 -6499.01 7.04 .008

Context 1 -6304.79 201.27 <.001

EV 1 -6159.75 346.31 <.001

Congruency 1 -6496.76 9.29 .002

Congruency x EV 1 -6501.69 4.37 .037

Congruency x EV𝑏𝑎𝑐𝑘 1 -6488.35 17.70 <.001

Switch x Side 1 -6502.42 3.64 .0565

Switch x Context 1 -6503.25 2.80 .094

Switch x EV 1 -6500.23 5.83 .0158

Switch x Congruency 1 -6502.54 3.52 .068

Context x EV 1 -6499.16 31.07 <.001

Context x Trial 1 -6499.16 6.89 .009

Side x EV𝑏𝑎𝑐𝑘 1 -6501.28 4.77 .029
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Figure S4

Exploratory analysis of RT model presented in Main Text, related to Fig 2.

Figure S4: Exploratory analysis of RT model presented in Main Text, related to Fig 2.

a. The table presents the individual contribution of terms taken from Eq. 2 and all possible

two-way interactions to the model fit using the drop1 function in R (R Core Team, 2017). In

short, this exploratory analysis started with a model that included all main effects from Eq. 2 and

all possible 2-way interaction between them and tested which terms contribute to the fit. If a term

did not improve fit, it was dropped from the model. Presented are all effects with p value less than

p < .01 for likelihood ratio test with added terms. Additionally, we specifically tested if the
switch interacts with our main effect and found no such interaction (likelihood-ratio test with

added term for Congruency x EVback x switch:χ
2
(1) = 3.70, p = .157). b-g. Model fits of all

effects with p < .01 for likelihood ratio test with added terms. X-axes are normalized (as in the
model) and y-axes reflect RTs on a log scale (model input). Clockwise from the top: RTs became

progressively faster with increasing trials since the context switch. This effect was possibly

stronger for higher EV (b) and for incongruent trials (c). We note that our experiment was not

designed to test the effect of the switch. (d) An interaction of Side and EVback was found, for

which we offer no explanation. Panels (e) to (g) reflect interaction of context with EV (e), trial

(f), and switch (g). In panels b-g error bands represent the 89% confidence interval. P values of

each effect are found in the table in panel (a). We note that due to the used perceptual color space

there might be a context-specific ceiling effect in RTs due to training throughout the task which

could have induced effects of context. Specifically, since dots start gray and slowly ’gain’ the

color, it might take a few frames until there is any evidence for color. However, the motion could

be theoretically detected already on the second frame (since coherence was very high). This could
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explain why some effects that represent decrease in RT might hit a boundary for color (and not

motion). Crucially, we refer the reader to supplementary Fig S2 where the main model

comparison hold also when we ran the model nested within the levels of Context.
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effect Df AIC
likelihood 

ratio test
P value

Context 1 5177.23 4.22 .04

EV 1 5184.14 11,12 .0009

Congruency 1 5186.46 13.44 .0002

Context x Trial 1 5176.76 2.74 .0979

Context x Side 1 5177.01 4.00 .0456

Context x Switch 1 5177.24 4.23 .0398

Context x EV 1 5188.95 15.94 <.0001

Congruency x Switch 1 5185.89 12.87 .0003

Congruency x EV𝑏𝑎𝑐𝑘 1 5176.43 3.41 .0649
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Figure S5

Behavioral accuracy results: related to Fig 2.

Figure S5: Behavioral accuracy results: related to Fig 2.

a. Comparison of accuracy (y-axis) for each level of EV (x-axis) showed that participants were

more accurate for higher EV, likelihood ratio test against null model: p = .001, N=35. b.
Comparison of congruent versus incongruent trials also revealed a performance benefit of the

former, paired t-test: p = .001, N=35. c. The effect of Congruency was modulated by EVback, i.e.

the more participants could expect to receive from the ignored context, the less accurate they were

when the contexts disagreed (x axis, shades of colours). Further investigations revealed that the

modulation of EVback is likely limited to Incongruent trials (likelihood ratio test with added term:

χ2
(1) = 6.91, p = .009, N=35, when modeling only Incongruent trials), yet does not increase

accuracy for Congruent trials (likelihood ratio test with added term: χ2
(1) = 0.07, p = .794, N=35,

when modeling only congruent trials), likely due to a ceiling effect. Error bars in panels a-c

represent corrected within subject SEMs (Cousineau et al., 2005; Morey et al., 2008). d.

Hierarchical model comparison of choice accuracy, similar to the RT model reported in the main

text. These analyses showed that including Congruency improved model fit (likelihood-ratio test

with added term: p < .001, N=35). Including the additional interaction of Congruency × EVback
improved the fit even more (likelihood-ratio test with added term: p = .03, N=35). e. We

replicated the choice accuracy main effect in an independent sample of 21 participants outside of
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the MRI scanner, i.e. including Congruency improved model fit (likelihood-ratio test with added

term: χ2
(1) = 55.95, p < .001). We did not find a main effect of EV on accuracy in this sample

(likelihood-ratio test with added term: χ2
(1) = 0.93, p = .333). The interaction term Congruency

× EVback did not significantly improve fit in this sample. Modeling only Incongruent trials, as

above, reveled that EVback had a marginal effect on accuracy (likelihood-ratio test with added

term: χ2
(1) = 2.90, p = .088). Near-ceiling accuracies in Congruent trials in combination with a

smaller sample might have masked the effects. f. The table presents the individual contribution of

terms taken from Eq. 3 and all possible two-way interactions to the model fit using the drop1

function in R (R Core Team, 2017). In short, this exploratory analysis started with a model that

included all main effects from Eq. 3 and all possible 2-way interaction between them and tested

which terms contribute to the fit. If a term did not improve fit, it was dropped from the model.

Subsequent panels present all the effects corresponding to p < .01. Note that this is a
non-hypothesis driven exploration of the data and that accuracy was very high in general

throughout the main task. g. Accuracy as a function of time since switch. Akin to RTs, accuracy

increased with number of trials since the last context switch, mainly for incongruent trials. h.

Context effect on accuracy. According to the exploratory model, participants were slightly more

accurate in color than in motion trials. However, a direct paired t test between average accuracy

of color compared to motion was not significant (paired t-test: t(34) = 0.96, p = .345, N=35).
Error bars represent corrected within subject SEMs (Cousineau et al., 2005; Morey et al., 2008).

i-l. Depicted are some minor interactions of no interest with Context, according to the exploratory

model, N=35 for all panels. Error bars and bands in panels g-l correspond to 89% confidence

interval.
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a. Trial Frequency

c. Euclidean distance

demeaned by frequencyoriginal

b. Correlations of parameters in RDMs

d. 𝒎𝒂𝒙(𝑬𝑽𝒃𝒂𝒄𝒌)
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Figure S6

Frequency bias in the design and supplementary information for Representational Similarity Analysis: related to

Fig. 5 and Fig. 3

Fig. S6: Frequency bias in the design and supplementary information for Representational

Similarity Analysis: related to Fig. 3. a-b Panel a shows the frequency of unique examples

within 2D trials (for each context). Panel b is taken from Fig. 1e. to help with visualization. Each

cell shows the number of how many trials were used for to both the betas that correspond to that

cell (presented as ratio relative to the rest). As can be seen, our design included more trials for

higher EVback. We believe this is the reason why the probabilities the classifier trained on 2D

trials were biased. Note that the analyses depicted in Fig. 5g-i. was conducted nested within the

levels of EVback, thus eliminating influences of frequency of trials (henceforth: Frequency) from

the probability of the EVback classifier. Additionally, all RSA models were conducted nested

within the levels of Frequency, meaning all effects found go beyond any mean difference

resulting from the frequency bias. c Correlations of parameters used in the RSA analyses show

that all the main and value difference parameters are orthogonal to the frequency effect. Added

below the correlations are the effects taken from Fig. 3 to help with visualization. d. In order to

replicate the effect found in Fig. 5b, when focusing only on the cells corresponding to the same
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EV (i.e. corresponding to the diagonal in the EV main effect matrix), only one level of Frequency

(4) has two separate levels of maxEV
back (parameter indicating which is the maximum EVback

involved in the comparison, explaining the high correlation in panel c). Nevertheless, when

comparing these two cells across subjects we find a positive effect of maxEV
back indicating an

increase in dissimilarity of EV representation when maxEV
back is higher, paired t-test: t(34) = −5.42,

p < .001, N=35. Boxes mid-line represent median, lower and upper the 25th and 75th percentile
and whiskers extend to the range of the data (no more than 1.5 of the full box range). Data beyond

the whiskers are plotted individually as solid points. e. Hierarchical model comparison showing

that the model with both Main effects (right) and with both Value similarity effects (left) explain

the data best. All models are nested within the levels of frequency (see panel a).

Likelihood-ratio-tests with added terms: For Diagonal effects models (left): adding EVdiagonal to

null model: χ2
(1) = 10.89, p = .001; adding EVdiagonal

back to null model: χ2
(1) = 255.44, p < .001;

adding EVdiagonal to the model with EVdiagonal: χ2
(1) = 3.12, p = .077. adding EVdiagonal

back to the

model with EV
diagonal
back : χ2

(1) = 247.67, p < .001; For Value Difference models (VD, right):
adding EVVD to null model: χ2

(1) = 12.34, p < .001; adding EVVD
back to null model: χ2

(1) = 264.61,
p < .001; adding EVVD to the model with EVVD

back: χ2
(1) = 4.71, p = .03; adding EVVD

back to the

model with EVVD: χ2
(1) = 256.98, p < .001. Stars in panels d-e represent the p-value is lower

than conventional .05 threshold.
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Model term 𝝌𝟐 Df
Type II

Wald 𝝌𝟐

|EV-class| 11.55 1 <.001

|EV-class| × EV𝑏𝑎𝑐𝑘 3.90 1 .048

|EV-class| × Block .06 3 .164

|EV-class| × Context 1.45 1 .906

|EV-class| × Switch 1.95 1 .158

|EV-class| × Side .94 1 .911
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Figure S7

Supplementary information for value similarity analysis: related to Fig. 4 and Fig. 5

Fig. S7: Supplementary information for Value similarity analysis: related to Fig. 4 and Fig.

5. .

Focusing on the Value classifier we asked whether EVs affected not only the probability of the

corresponding class, but also influenced the full probability distribution predicted by the Value

classifier. We reasoned that if the classifier is decoding the neural code of values, then similarity

between the values assigned to the classes will yield similarity in probabilities associated to those

classes. Specifically, we expected not only that the probability associated with the correct class be

highest (e.g. ‘70’), but also that the probability associated with the closest class (e.g. ‘50’) would

be higher than the probability with the least similar class (e.g. ‘30’, panel a, note that this

difference also reflects which options where displayed vs not in a given trial). The following

analyses model directly the class probabilities estimated by this classifier. Probabilities were

modelled with beta regression mixed effects models (Magnusson et al., 2017). For technical
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reasons, we averaged across nuisance regressors used in behavioral analyses. An exploratory

analysis of raw data including nuisance variables showed that they had no influence and

confirmed all model comparison results reported (see Fig. S7. To test our hypothesis, we

modelled the probabilities in each trial as a function of the absolute difference between the

objective EV of the trial and the class (|EV-class|, i.e. in the above example with a correct class of

70, the probability for the class 50 will be modelled as condition 70-50=20 and the probability of

30 as 70-30=40). This analysis indeed revealed such a value similarity effect (χ2
(1) = 12.74,

p < .001) also when tested separately on 1D and 2D trials (χ2
(1) = 14.22, p < .001, χ2

(1) = 9.99,
p = .002, respectively, panel d.). Note that the difference between |EV-class| = 20 and |EV-class|
= 40 also reflects which options where displayed vs. not in a given trial. Careful analysis of

perceptual overlap, however, indicated that this could not explain our results (see below and SI).

Our main hypothesis was that context-irrelevant values might directly influence neural codes of

expected value in the vmPFC. The experimentally manipulated background values in our task

should therefore interact with the EV probabilities decoded from vmPFC. We thus asked whether

the above described value similarity effect was influenced by EVback and/ or Congruency in 2D

trials. Analogous to our RT analyses, we used a hierarchical model comparison approach and

tested if the interaction of value similarity with these factors improved model fit. We found that

EVback, but not Congruency, modulated the value similarity effect (χ
2
(1) = 6.16, p = .013,

χ2
(1) = .58, p = .446, respectively, panel d). This effect indicated that the higher the EVback was,

the less steep was the value similarity effect. These results also hold when running the models

nested within the levels of EV (panels g-i). Additional control analyses included perceptual

models that merely encoded the amount of perceptual overlap between each training class and 2D

testing as well as the presence of the perceptual feature corresponding to EVback in the training

class. These analyses indicated that our classifier was indeed sensitive to values and not only to

the perceptual features the values were associated with, see S8 for details.

a. Analyses of all probabilities by the Value classifier revealed gradual value similarities. The

y-axis represents the probability assigned to each class, colors indicate the classifier class and the

x-axis represents the trial type (the objective EV of the trial). As can be seen, the highest

probability was assigned to the class corresponding to the objective EV of the trial (i.e. when the

color label matched the X axis label). N=35. b. Larger difference between the decoded class and

the objective EV of the trial (x axis) was related to a lower probability assigned to that class (y

axis) when tested in 1D, 2D or all trials (likelihood ratio test compared to null model: all p < .002,
N=35, grey shades). Hence, the multivariate classifier reflected gradual value similarities. Note

that when |EV - class|=0, Pclass is the probability assigned to the objective EV of the trial. c.

EVback modulated the value similarity effect (likelihood-ratio test with added term: p = .013,
N=35) indicating weaker simialrity between EV representations for higher EVback. d. AIC values

of competing models of value probabilities classified from vmPFC. Hierarchical model

comparison of 2D trials revealed not only the differences between decoded class and objective

EV (|EV-class|) improved model fit (likelihood-ratio test: p < .002, N=35), but rather that EVback
modulated this effect. Crucially, Congruency did not directly modulate the value similarity

(likelihood-ratio test: p = .446, N=35). Asterisks represent p-value lower than conventional .05
threshold. Light gray bars represent models outside the hierarchical comparison. Including a

3-way interaction (with both EVback and Congruency) did not provide better AIC score

(-3902.5,-3901.6, respectively). A perceptual model encoding the feature similarity between each
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testing trial and the training classes (irrespective of values) did not provide a better AIC score

than the value similarity model (|EV-class|), see Fig S8 for details. e. Main value similarity model

comparison replicated when fitting the models to unaveraged data. Adding a term for |EV-class|

improved model fit (likelihood-ratio test with added term: χ2
(1) = 11.56, p < .001). Adding an

additional term for |EV-class| × EVback further improved the fit (likelihood-ratio test: χ2
(1) = 3.86,

p = .049, N=35), as in the model reported in panel c). Asterisks represent p-value lower than
conventional .05 threshold. f. Effect of Nuisance regressors on unaveraged data (t, Side, Switch

and Context). Same as Congruency and EVback, all of the nuisance regressors don’t discriminate

between the classes, but rather assign the same value to all three probabilities from that trial

(which sum to 1). We therefore tested if any of them modulated the value similarity effect. As

can be seen in the table, none of the nuisance regressors modulated the value similarity effect. g-i.

Replication of the value similarity model comparison reported in the main text, averaged across

nuisance regressors and nested within the levels of EV, i.e. including EV-specific intercepts

nested within each within each subject level (ζ0kv
, see methods). As in the analysis reported in the

Main Text, adding a main effect for |EV-Class| improves model fit (likelihood-ratio test against

null model: χ2
(1) = 16.15, p < .001, N=35, first row) as well as adding an additional interaction

term |EV-class| × EVback (likelihood-ratio test with added term: χ2
(1) = 6.16, p = .013, N=35).

Panel g shows the value simialrity effect across levels of EV, panel h and g show data and fit of

the effect of EVback interaction across levels of EV, respectively. Error bars throughout the figure

represent corrected within subject SEMs (Cousineau et al., 2005; Morey et al., 2008).
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Figure S8

Supplementary information for perceptual similarity analysis: related to Fig. 4 and Fig. 5

Fig. S8: Supplementary information for perceptual similarity analysis: related to Fig. 4.

To control that our EV classifier was indeed sensitive to values and not only to the perceptual

features the values were associated with, we compared this value similarity model to a perceptual

models that merely encodes the amount of perceptual overlap between each training class and 2D

testing (irrespective of their corresponding values) and found that our model explained the data

best (see panel d). Replacing the EVback with a parameter that encodes the presence of the

perceptual feature corresponding to EVback in the training class (Similarityback: 1 if the feature

was preset, 0 otherwise) did not provide a better AIC score (-3897.1) than including the value of

EVback (-3902.5). a. Left: training set consisting of 1D trials provided for the classifier for each

class (in the experiment the sides were pseudorandomised). Note that each class had the same

amount of color and motion 1D trials and that the value difference between the values was always

20. Right: two examples of 2D trials that constituted the classifier test set. b. The table illustrates

the calculation of feature similarity between classifier test and training in two example trials in

one 1D and one 2D trial. Specifically, shown are the corresponding values and features for each

trial with the predicted values at each class for the parameters value similarity (|EV-class|), feature

similarity and similarityback. Feature similarity encodes the perceptual overlap between the shown

test example and the training examples underlying with each value class. The first row shows a

case in which the classifier was tested on a 1D green vs. orange color trial ( 30 vs 50, EV = 50).

Considering in this case for instance the predicted probability that EV=30, the table illustrates the

training example underlying the EV = 30 cases (10 vs 30, dark gray shading), the |EV-class| (here:

20, because 50-30), and the feature similarity i.e. how many features from the training class

appeared in the test example (here: 1). The second row shows a 2D color trial, reflecting the same

value based choice between 30 and 50. The value similarity between training and test stays the

same as for the 1D trial shown above. However, the feature similarity between test and training

changes because of the motion features. If we take class 30 for example (which is 10 vs 30, dark

gray shading), the feature 30 appeared twice (color and motion) and the feature 10 appeared once
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(motion), i.e. feature similarity now takes on the value 3. Similarityback was used to test a

perceptual-based alternative to the EVback parameter. Similarityback takes on 1 if the perceptual

feature corresponding to the EVback appeared in the training class and 0 otherwise (red text in

table). As described in the main text, none of the perceptual-similarity encoding alternatives

provided a better fit than the reported models that focused on the values the features represent.
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Model term 𝝌𝟐 Df
Type II 

Wald 𝝌𝟐

Block 1.93 3 .5866

Context .01 1 .9172

Switch .85 1 .3558

Side 1.45 1 .2291

EV𝑏𝑎𝑐𝑘 5.58 1 .018

logit(P𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 3.90 1 .0485

a.

b.
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Main model comparison
Between contexts value difference
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Alternatives for 𝑬𝑽𝒃𝒂𝒄𝒌
Parametrization for EV

Figure S9

Modelling probability assigned to the EV class.

Fig. S9: Modelling probability assigned to the EV class: related to Fig. 5.

a. We replicated the main results using the unaveraged data. The Null model was:

P k
t,EV = β0 + γ0k + ν1side(t) + ν2switch(t) + ν3context(t), where Pk

t,EV is the probability

assigned to the class corresponding to the EV of trial t for subject k, β0 and γ0k represent global

and subject-specific intercepts. Side, Switch and Context are the same as in the RT model (Eq. 2);

None of these variables had a main effect, p > 0.4 (Type II Wald χ2 tests, N=35, see table, right),

N=35. The factor trial could not be included due to model convergence issues. Adding a term
representing EVback improved model fit (likelihood-ratio test including term: χ2

(1) = 5.42,
p = .019). Adding an additional term for context decodability further improved the fit

(likelihood-ratio test with added term: χ2
(1) = 3.9, p = .048). The table (right) displays the Type 2

Wald χ2 test for all main effects from the model. b. Depicted is the effect of EVback (x-axis) on

the probability assignd to the EV class (PEV , y axis). Solid lines represent the data and dashed

lines the model fit of a model that included random effects of subject and EV nested within subject

(data averaged across nuisance regressors, adding a main effect for EVback improved model fit

(likelihood-ratio test with added term: χ2
(1) = 5.99, p = .014, N=35). Error bars represent
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corrected within subject SEMs Cousineau et al., 2005; Morey et al., 2008. c. Similar to our

analysis of alternative models of RT, we clustered models reflecting alternative explanations into

three conceptual groups (see color legend; cf. Fig. S3a). All models were fitted to the probability

assigned to the objective EV in accurate 2D trials, similar to Eq. 7. Each column represents the

AIC (y-axis) of a different model (x-axis) where the labels on the x-axis depict all the main

effects included in that specific model (i.e. added to the Null, i.e. Eq. 7 without any main effects).

We found no evidence that any other parameters explain the data better than the ones we used in

the main text. Specifically, only including main effect of EVback, Overall Value of the irrelevant

values (OV) and the difference of both EVs (EVdiff ) provided a better AIC score than the Null

model. Note that adding OV (-1229.6) only slightly surpassed EVback (-1229.26). Crucially, the

correlation of EVback and OV is very high (Pearson correlation: ρ = .87, see main text). We then

looked at possible interactions with the EVback effect. Congruency did not seem to modulate the

main effect of EVback and adding an interaction term EV × EVback provided a slightly better AIC

(-1230.33), yet this effect was not significant (likelihood-ratio test: χ2
(1) = 3.08, p = .079).

Section (b) also visualizes this effect. Lastly, adding a term for the Context decodability provided

the lowest (i.e. best) AIC score. This exploratory analysis revealed that our model provides the

best fit for PEV in all cases except when EVback was replaced with the sum of irrelevant values

(-1229.6, -1229.2, respectively, Fig. S9). In contrast, AIC scores of behavioral models’ favored

EVback as modulator of Congruency, over the sum of irrelevant values (-6626.6, -6619.9,

respectively, Fig.S3). However, both parameters were strongly correlated (ρ = .87, σ = .004) and
therefore our task was not designed to distinguish between these two alternatives.
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Figure S10

Main effects and corresponding data, fMRI effects, related to Fig. 5

Fig. S10: Main effects and corresponding data, fMRI effects, related to Fig. 5. Since the

effects describe data and predictors that are beta-distributed, visualization of simply imposing the

true data over the predictions is not very informative. To solve this, and only for visualization

purposes here and in the main paper, we took for each effect the mean of top and bottom 20% of

the true probabilities from the classifiers (not transformed) for each participant. Context signal

(Pcontext) moderated the negative effect of EVback decodability (P
2D
EVback

) on EV decodability

(PEV ). Model prediction of multilogit(P2D
EVback

) x Pcontext (left, taken from Fig. 5h.) and top and

bottom 20% for each subject for three levels of Pcontext (right, the split to three levels is for

visualization whereas in the model the predictor was continuous). In all panels error bands

represent the 89% confidence interval.



STATES, VALUES AND GOALS IN COGNITIVE MAPS 190



STATES, VALUES AND GOALS IN COGNITIVE MAPS 191

a. Congruent trials

b. Incongruent trials

Figure S11

Main effects and corresponding data, link of fMRI to behavioral accuracy, related to Fig. 6

Fig. S11: Main effects and corresponding data, link of fMRI to behavioral accuracy, related

to Fig. 6. Since the effects describe data and predictors that are beta-distributed, visualization of

simply imposing the true data over the predictions is not very informative. To solve this, and only

for visualization purposes here and in the main paper, we took for each effect the mean of top and

bottom 20% of the true probabilities from the classifiers (not transformed) for each participant. a

Congruent trials. Stronger EV decodability (left) and stronger EVback decodability (right)

increases behavioral accuracy. The left side of each panel is taken from Fig. 6. The right side

depicts the same plot with additional individual subject-specfic lines that represent the top and

bottom 20% of the data for each subject (meaning that the gray line on the left side is the mean of

the individual lines on the right). b. Incongruent trials. Stronger Context decodability (Pcontext)

increases behavioral accuracy, modulated by EVback decodability (PEVback
) such that when PEVback

was low, the effect of Pcontext diminished. For visualization purpose, Right panel is split by 3

equal sized bins of PEVback
(left is the lowest bin, increasing to the right, the split to three levels is

for visualization whereas in the model the predictor was continuous). In all panels error bands

represent the 89% confidence interval.
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e.

Figure S12

Main univariate results

Fig. S12: Main univariate results.

The main analyses indicated that multiple value expectations are represented in parallel within

vmPFC. Here, we asked whether whole-brain univariate analyses could also uncover evidence for

processing of multiple value representations. In particular, we asked whether we could find

evidence for a single representation that integrates the multiple value expectations into one signal.

To this end, we first analyzed the fMRI data using GLMs with separate onsets and EV parametric

modulators for 1D and 2D trials (see below for detailed description).

a. The intersection of the EV parametric modulators of 1D and 2D trials (EV1D > 0 ∩ EV2D >0)

revealed several regions including right Amygdala, bilateral Hippocampus and Angular Gyrus,

the lateral and medial OFC and overlapping vmPFC. Hence, the vmPFC signaled the expected

value of the current context in both trial types as expected – even though 2D trials likely required

higher attentional demands (see panel b). Voxelwise threshold p < .001, FDR cluster-corrected.

b 2D trials were characterized by increased activation in an attentional network involving

occipital, parietal and frontal clusters (2D > 1D, p < .001 FDR cluster corrected).

Next, we searched for univariate evidence of processing irrelevant values by modifying the



STATES, VALUES AND GOALS IN COGNITIVE MAPS 194

parametric modulators assigned to 2D trials in the above-mentioned GLM. Specifically, in

addition to EV2D, we added Congruency (+1 for congruent and -1 for incongruent) and EVback as

additional modulators of the activity in 2D trials. This GLM revealed no evidence for a

Congruency contrast anywhere in the brain (even at a liberal voxel-wise threshold of p < .005). c.
An unexpected negative effect of EVback was found in the Superior Temporal Gyrus (p < .001),
i.e. the higher the EVback, the lower the signal in this region. p < .001, FDR cluster-corrected.

No overlap with (b), see S13. We note that this is similar to previous reports implicating this

region in modelling choices of others (Nicolle et al., 2012)). Notably, unlike the multivariate

analysis, no effect in any frontal region was observed.

Motivated by our behavioral analysis, we then turned to look for the interaction of each relevant

or irrelevant value with Congruency. An analysis including only a Congruency × EV2D
parametric modulator revealed no cluster (even at p < .005).
d. A cluster in the primary motor cortex was negatively modulated by Congruency × EVback, i.e.

the difference between Incongruent and Congruent trials increased with higher EVback, similar to

the RT effect and akin to a response conflict, p < .005, FDR cluster-corrected. No overlap with

(b), see S13

Lastly, we re-ran all above analyses concerning Congruency and EVback only inside the identified

vmPFC ROI. No voxel survived for Congruency, EVback nor the interactions, even at threshold of

p < .005.
e. Visualization of GLMs. The tables depict the structure of GLMs1-4 which were mainly

motivated by the behavioral analysis; onset regressors are shown in the top table, parametric

modulators assigned to 1D and 2D onsets (middle-left), the values they were modeled with

(demeaned, middle-right) are shown below. The contrasts of interest are shown in the bottom

table. The GLMs differed only in their modulations of the 2D trials: GLM1 included only

modulators of the objective outcome, GLM2 included one modulator for Congruency and one for

EVback, GLM3 included a modulator for the Congruency × EVback interaction and GLM4

included instead of the EV modulator a modulator of the EV × Congruency interaction. In the

contrast table (bottom) contrasts that only revealed effects at a liberal threshold of p < .005 are
marked with one star, and contrasts significant at p < .001 are marked with two stars. All
statistical tests represent one-sided t-test either larger or smaller than 0, see lower table in panel e

for details of each contrast.
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GLM 1D 2D

GLM5 1D 𝐸𝑉 Congruent 𝐸𝑉 +𝐸𝑉𝑏𝑎𝑐𝑘 Incongruent 𝐸𝑉 +𝐸𝑉𝑏𝑎𝑐𝑘

GLM6 𝟏𝑫𝟑𝟎 𝟏𝑫𝟓𝟎 𝟏𝑫𝟕𝟎 𝑪𝒐𝒏𝒈𝟑𝟎 𝑪𝒐𝒏𝒈𝟓𝟎 𝑪𝒐𝒏𝒈𝟕𝟎 𝑰𝒏𝒄𝒐𝒏𝟑𝟎 𝑰𝒏𝒄𝒐𝒏𝟓𝟎 𝑰𝒏𝒄𝒐𝒏𝟕𝟎

GLM Contrasts: below threshold, *p<0.005, **p<0.001

GLM5 Congruent > Incongruent, Congruent > Incongruent
1D > Incongruent , 1D > Congruent*
CongruentEV > IncongruentEV ,CongruentEV < IncongruentEV * 

CongruentEVback > IncongruentEVback, CongruentEVback < IncongruentEVback

GLM6 Cong30+Cong50+Cong70>Incon30+Incon50+Incon70
Cong30+Cong50+Cong70<Incon30+Incon50+Incon70
Cong70>Incon70 , Cong70<Incon70*

b.
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Figure S13

Additional univariate results

Fig. S13: Additional univariate results.

a. Overlap of effects of EVback and trial type (2D > 1D). Main effects of EVback<0 (GLM2,

p < 0.001 FDR cluster corrected, top, blue shades) and EVback X Congruency < 0 (GLM3,

p < 0.005, FDR cluster corrected, bottom, blue shades, t values) did not overlap with the 2D

network (red shades in both panels, t values). b. Main effect of 1D > 2D. A stronger signal in

vmPFC for 1D over 2D trials revealed weak activation in a PFC network (p < .005, red shades,t
values). This included the vmPFC (our functional ROI is depicted in green). Interestingly, at a

liberal threshold of p < .005 we found stronger activity for 1D over 2D trials in a cluster

overlapping with vmPFC (1D > 2D, p < .005). Although this could be interpreted as a general
preference for 1D trials, splitting the 2D onsets by Congruency revealed no cluster for 1D >

Incongruent (also at p < .005) but a stronger cluster for 1D > Congruent (p < .001,Fig. S13). In
other words, the signal in the vmPFC was weaker when both contexts indicate the same action,

compared to when only one context is present. c. Stronger signal in vmPFC for 1D over

congruent but not incongruent trials. When we split the onset of the 2D into Congruent and
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Incongruent trials (GLM5), we found no significant cluster for the 1D > Incongruent contrast, but

an overlapping and stronger cluster for the 1D > Congruent contrast (p < .001, FDR cluster

corrected, red shades, t values). We found very similar results when contrasting the onsets of 1D

and Congruent in GLM6 (not presented), confirming the same results also when controlling for

the number of trials for each level of EV (i.e. 1D30+1D50+1D70>

Congruent30+Congruent50+Congruent70). Our functional ROI is depicted in green. d. Additional

exploratory analyses such as contrasting the onsets of congruent and incongruent trials, confirmed

the lack of Congruency modulation in any frontal region. Specifically, We constructed additional

GLMs to verify the results of GLMs 1-4. In GLM5 we split the onset of 2D trials into congruent

and incongruent trials and assigned a parametric modulator of EV and EVback to each. As in

GLM2, we found no effect of congruency; no voxel survived when contrasting the congruency

onsets nor their EVback modulators. Only the contrast CongruentEV <IncongruentEV revealed a

weak cluster in the right visual cortex (peak 38,-80,16, p<0.005 not presented). In GLM6 we split

the onsets of the 1D and 2D trials by levels of EV and the 2D trials further by Congruency. No

Congruency main effect survived correction. Only when the onsets of Congruent and Incongruent

2D trials with EV=70 were contrasted, a cluster in the primary motor cortex was found (also at

p < .005). Unsurprisingly, this cluster largely overlapped with the Congruency × EVback effect

reported in the Main Text. Except the contrast of 1D > Congruent (see Main Text) none of the

other contrasts shown in the table revealed any cluster, even at p < .005. All statistical tests in
panels a-d represent one-sided t-test either larger or smaller than 0, see lower table in panel d for

details of each contrast. e.Variance Inflation Factor (VIF) of the different regressors in all GLMs.

None of the regressors (x axis) had a mean VIF value (y axis) across blocks and participants

above the threshold of 4. Regressors involved in GLMs 1-4 shown on the left (Fig. S12); GLM5

and GLM6 are shown in the middle and on the right, respectively. See Methods for details. N=35.

Error bars represent corrected within subject SEMs (Cousineau et al., 2005; Morey et al., 2008)
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Anatomical region Peak (MNI) peak

Label Distance X Y Z Cluster size t$_34$ p$_unc$

EV1D > 0 ∩ EV2D >0 , p<001, k = 280

R Inferior Temporal Gyrus 4.90 60 -18 -14 1770 6.53 < .0001

R Middle Temporal Gyrus 0 50 -6 -20 5.49 < .0001

R Middle Temporal Gyrus 0 56 -30 -8 5.27 < .0001

R Superior Frontal Gyrus, medial Orbital 0 8 68 -12 1045 6.09 < .0001

L Inferior Frontal Gyrus pars orbitalis 0 -50 30 -10 4.67 < .0001

L Superior Frontal Gyrus 0 -24 58 -6 4.35 < .0001

L Middle Temporal Gyrus 0 -60 -30 -6 1318 5.85 < .0001

L Middle Temporal Gyrus 0 -66 -24 -8 5.78 < .0001

L Hippocampus 2 -40 -26 -12 4.96 < .0001

L Angular Gyrus 0 -50 -60 38 875 5.58 < .0001

L Angular Gyrus 0 -46 -52 30 4.86 < .0001

L Angular Gyrus 0 -46 -70 34 3.66 .0002

L Middle Cingulate & Paracingulate

Gyri

0 -4 -40 44 1065 5.51 < .0001

L Posterior Cingulate Gyrus 0 0 -44 32 4.52 < .0001

R Middle Cingulate & Paracingulate

Gyri

0 12 -48 32 4.52 < .0001

L Hippocampus 0 -18 -6 -20 280 4.59 < .0001

L Olfactory Cortex 2 -10 6 -18 4.34 < .0001

R Angular Gyrus 0 50 -56 30 474 4.27 < .0001

R Superior Temporal Gyrus 0 62 -54 22 4.26 < .0001

2D > 1D, p<.001, k=158

L Superior Occipital Gyrus 2.83 -28 -76 38 5367 8.71 < .0001

L Inferior Occipital Gyrus 0 -48 -76 -4 7.69 < .0001

L Superior Parietal Gyrus 0 -28 -66 52 7.62 < .0001

L Precentral Gyrus 0 -46 4 30 1766 7.69 < .0001

L Inferior Frontal Gyrus, triangular part 0 -44 34 22 5.88 < .0001

L Inferior Frontal Gyrus, triangular part 0 -40 26 22 5.59 < .0001

R Inferior Parietal Gyrus 0 32 -56 54 3876 7.23 < .0001

R Fusiform Gyrus 0 30 -76 -10 7.16 < .0001

R Inferior Temporal Gyrus 0 48 -70 -8 7.13 < .0001

R Inferior Frontal Gyrus, triangular part 0 48 26 26 616 5.17 < .0001

R Precentral Gyrus 0 48 8 32 4.50 < .0001

R Precentral Gyrus 0 38 2 30 4.23 .0001

L Supplementary Motor Area 0 -8 14 50 159 4.69 < .0001

EVback<0, p<.001, k = 240

L SupraMarginal Gyrus 2 -62 -38 22 240 4.50 < .0001

L Superior Temporal Gyrus 0 -60 -32 10 4.26 .0001

L Superior Temporal Gyrus 0 -60 -22 8 3.71 .0004

Congruency × EVback<0, p<.005, k=632

L Postcentral Gyrus 6.93 -36 -18 60 632 4.03 .0002

L Postcentral Gyrus 0 -48 -22 52 3.11 .0019

L Postcentral Gyrus 0 -24 -20 74 3.08 .0020

EV1D + EV2D >0, within functional ROI, p<.001, k=979

R Anterior Orbital Gyrus 4.47 8 68 -12 979 7.89 < .0001

L Superior Frontal Gyrus, Medial Orbital 2 -6 68 -12 6.86 < .0001

L Superior Frontal Gyrus, Medial 0 -10 64 2 5.86 < .0001

Table 3

Detailed univariate results: Clusters for whole brain univariate analysis, related to Fig. S12. Presented are the

closest labels to the local maxima of each cluster and each contrast using AAL3v1 (Rolls et al., 2015, 2020;

Tzourio-Mazoyer et al., 2002). All contrasts are FDR cluster corrected. p and k values presented for each cluster. p

values represent one sided t-test.
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b.

example fitlog space pixels

a.

Pixel space

c. Both sessions PRE POST

d.

Log space

e.

Figure S14

Fit on PRE and POST separately and logging of space a We logged the space of leaves and fruits (left). On the

right is the true number of leaves and fruits (’pixel’ space). b By adding H1 and H2 to coordinates in logged space,

the model can modify the space such that it would capture even if participants perceive the distances exactly as the un-

logged space. Orange dots show one toy quadrant in logged space and pink in pixel. There exists a set of coefficients

that would, in practice, transform the coordinates ’back’ to the pixel space. Blue points show the model prediction

of such a hypothetical set of parameters, after moving each point according to the model prediction, similar to Fig.8.

c General effect of DD, H1 and H2 and their interaction with Quadrant on both sessions, only PRE and only POST

(columns) for pixel of logged coordinates (rows), without any interaction with group or session (equivalent to Fig9a).

For each space, we re-calculated DD and the angles generating H1 and H2. Most of the comparisons hold across all

combinations of sessions, showing each component had a main effect in each session and almost always an interaction

with the quadrant. Vertical lines show the best-explaining model in log space. There are some minor discrepancies

with respect toH2 and its interaction with Quadrant orDDwhich we plan to investigate in the future. The main effects

related to reward,DD and H1, hold across all combinations of sessions and spaces. d Our best-explaining model

(without session and group interaction) provided a better fit (lower AIC) in log space compared to pixel space, for both

session (left), PRE (middle), or POST (right). e Our best explaining model, including session and group interaction,

also provided a better fit (lower AIC) in log space compared to pixel space.
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