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1 Abstract

Redox active ligands are a promising tool to improve the catalytic activity of 3𝑑 transition
metal catalysts. These ligands influence the oxidation state of the metal center as well as
the ground spin-state and make the determination of both properties by experiment alone
challenging. Therefore, this thesis aims to advance the understanding and optimization of
these complexes for catalytic applications through experiment complimented by the use of
first-principles calculations, particularly density functional theory (DFT).

For employing DFT, a proper choice of exchange–correlation (xc) functional is crucial. 43
homoleptic octahedral tris(diimine) iron(II) complexes are investigated to evaluate the influ-
ence of redox-active ligands on spin-state energetics. Despite the significant effect of varying
redox activity on the electronic structure, the sensitivity of spin-state energy splittings to
the exact exchange admixture in exchange-correlation (xc) functionals is found to be un-
expectedly small. However, for iron(II) complexes with highly redox-active ligands and for
reduced tris(diimine) iron(I) complexes, self-consistent field (SCF) convergence to local min-
ima is observed, leading to incorrect redox states and molecular structures. Protocols for
detecting and addressing these convergence issues, particularly in large-scale calculations,
are proposed and discussed.

To evaluate computational methods for the prediction of spin state energetics, this work also
focuses on organic carbenes. A data set of 2841 carbenes from the QMspin data set[1] was
utilized to highlighting the impact of molecular structure not only on DFT calculations and
xc functional choice but also on machine learning (ML) and Δ-ML as a combination of both
methods. The study reveals that B3LYP-optimized structures, rather than a combination
of CASSCF- and B3LYP-optimized molecular structures, often yield better performance for
DFT calculations due to error compensation effects. Additionally, Δ-ML-based methods
can significantly improve predictive accuracy. For the latter method CASSCF- and B3LYP-
optimized molecular structures proved to be better suited.

The final part of the thesis presents the synthesis and characterization of iron complexes with
redox-active bis(imino)acenaphthene (BIAN) ligands. Novel hydrogen-bridged dinuclear fer-
rate complexes have been synthesized and a neutral dinuclear iron complex Fe2(BIAN)2 with
a unique coordination sphere and a very short Fe–Fe distance of 2.3068(8) Å has been iso-
lated. The hydridoferrate complexes are shown to exhibit unique electronic structures and
reactivity, including catalytic activity in hydrogenation reactions. The findings provide
valuable insights into the design of new catalysts based on similar ligand frameworks.

Overall, this thesis contributes to the development of more accurate and reliable computa-
tional methods for studying transition metal complexes and their catalytic properties. It
also opens avenues for future research, including the refinement of DFT functionals, the in-
tegration of machine learning with quantum chemistry, and the exploration of novel ligand
systems for catalytic applications.
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2 Zusammenfassung

Redox-aktive Liganden sind ein vielversprechendes Werkzeug zur Verbesserung der kat-
alytischen Aktivität von 3𝑑-Übergangsmetallkatalysatoren. Diese Liganden beeinflussen
den Oxidationszustand des Metallzentrums sowie den Spingrundzustand und erschweren die
Bestimmung beider Eigenschaften allein durch Experimente. Daher zielt diese Dissertation
darauf ab, das Verständnis und die Optimierung dieser Komplexe für katalytische Anwen-
dungen durch Experimente, ergänzt durch erstprinzipielle Berechnungen, insbesondere der
Dichtefunktionaltheorie (DFT), voranzutreiben.

Für den Einsatz von DFT ist eine sorgfältige Auswahl des Austausch-Korrelations-
Funktionals entscheidend. 43 homoleptische, oktaedrische Tris(diimin)-Eisen(II)-Komplexe
wurden untersucht, um den Einfluss von redox-aktiven Liganden auf die Spin-Zustands-
Energien zu bewerten. Trotz des signifikanten Einflusses der variierenden Redox-Aktivität
auf die elektronische Struktur zeigt sich, dass die Empfindlichkeit der Spin-Zustands-
Energieaufspaltung gegenüber dem exakten Austauschanteil in Austausch-Korrelations-
Funktionalen unerwartet gering ist. Allerdings wird bei Eisen(II)-Komplexen mit stark
redox-aktiven Liganden und bei reduzierten Tris(diimin)-Eisen(I)-Komplexen eine Konver-
genz des selbstkonsistenten Feldes (SCF) zu lokalen Minima beobachtet, was zu falschen
Redox-Zuständen und molekularen Strukturen führt. Protokolle zur Erkennung und Bewäl-
tigung dieser Konvergenzprobleme, insbesondere bei groß angelegten Berechnungen, werden
vorgeschlagen und diskutiert.

Zur Evaluierung von Rechenmethoden zur Vorhersage von Spin-Zustands-Energien konzen-
triert sich diese Arbeit auch auf organische Carbene. Ein Datensatz von 2841 Carbe-
nen aus dem QMspin-Datensatz [1] wurde verwendet, um die Auswirkungen der moleku-
laren Struktur nicht nur auf DFT-Berechnungen und die Wahl des Austausch-Korrelations-
Funktionals, sondern auch auf maschinelles Lernen (ML) und Δ-ML als Kombination beider
Methoden hervorzuheben. Die Studie zeigt, dass B3LYP-optimierte Strukturen, anstelle
einer Kombination aus CASSCF- und B3LYP-optimierten molekularen Strukturen, oft eine
bessere Leistung für DFT-Berechnungen aufgrund von Fehlerkompensationseffekten liefern.
Darüber hinaus können auf Δ-ML basierende Methoden die Vorhersagegenauigkeit erheblich
verbessern. Für letztere Methode erwiesen sich CASSCF- und B3LYP-optimierte molekulare
Strukturen als besser geeignet.

Der letzte Teil der Dissertation stellt die Synthese und Charakterisierung von Eisenkom-
plexen mit redox-aktiven Bis(imino)acenaphthen (BIAN)-Liganden vor. Neuartige hy-
dridverbrückte dinukleare Ferrat-Komplexe wurden synthetisiert, und ein neutraler dinuk-
learer Eisenkomplex Fe2(BIAN)2 mit einer einzigartigen Koordinationssphäre und einem
sehr kurzen Fe–Fe-Abstand von 2.3068(8) Å wurde isoliert. Es wird gezeigt, dass die
Hydridoferrat-Komplexe einzigartige elektronische Strukturen und Reaktivitäten aufweisen,
einschließlich katalytischer Aktivität in Hydrierungsreaktionen. Die Ergebnisse liefern
wertvolle Einblicke in das Design neuer Katalysatoren auf Basis ähnlicher Ligan-
dengerüste.

Insgesamt leistet diese Dissertation einen Beitrag zur Entwicklung genauerer und zuverläs-
sigerer Rechenmethoden für das Studium von Übergangsmetallkomplexen und deren kat-
alytischen Eigenschaften. Sie eröffnet auch Perspektiven für zukünftige Forschungen, ein-
schließlich der Verfeinerung von DFT-Funktionalen, der Integration von maschinellem Ler-
nen mit Quantenchemie und der Erforschung neuartiger Ligandensysteme für katalytische
Anwendungen.
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3 Introduction

Understanding catalytic intermediates through both experimental and computational ap-
proaches is crucial for improving the performance of chemical transformations. Well-known
catalysts for key transformations, such as hydrogenation reactions, are noble 4𝑑 and 5𝑑 tran-
sition metal (TM) complexes. In contrast, 3𝑑 TMs, which are more abundant and often less
toxic than their heavier counterparts, present a more sustainable alternative. Among these,
iron has garnered significant attention as a substitute for established noble metal catalysts,
aligning with the global push for sustainability.[2–10] Unlike noble TM complexes, 3𝑑 TMs
can access a wide range of spin ground states, opening up new reaction pathways. One
strategy to mimic 4𝑑 and 5𝑑 TMs is to use redox-active ligands with 3𝑑 TMs. These lig-
ands can accept electrons from the metal center, thereby facilitating redox steps in catalytic
processes.

The synthesis and experimental characterization of these often paramagnetic 3𝑑 TM com-
plexes can be highly challenging. As a result, computational approaches are frequently em-
ployed to complement experimental work. Among the various electronic structure methods,
density functional theory (DFT) remains the most popular choice due to its balance between
accuracy and efficiency. However, accurately predicting spin-dependent properties remains
a notorious challenge for DFT.[11, 12] Although methods such as coupled cluster (CC)
theory, second-order N -electron valence state perturbation theory (NEVPT2), or complete
active space self-consistent field (CASSCF) offer higher accuracy, DFT is significantly more
computationally efficient.[13, 14] Additionally, DFT’s performance can be tailored by se-
lecting appropriate exchange-correlation (xc) functionals. Several studies have investigated
the influence of different xc functionals on spin-state energy splittings in 3𝑑 TM complexes,
revealing a strong, mostly linear dependence on the amount of exact exchange admixture in
the xc functional.[15–24] This dependence is further influenced by the electronic properties
of the ligand.[24, 25]

Given the significant impact of redox-active ligands on the electronic structure of TM com-
plexes, one aim of this work is to investigate this influence. To focus specifically on the
redox properties of the ligand, a test set of tris(diimine) iron(II) complexes was selected.
The uniform coordination geometry and the use of the same metal across all complexes
eliminate variability due to these factors. This benchmark study is presented in Chapter
5.

The significance of spin-dependent properties extends beyond TM complexes. Carbenes,
which are key intermediates in numerous organic reactions, are characterized by a divalent
carbon atom with an electron sextet.[26, 27] The reaction pathways of these highly reactive
species are heavily influenced by their spin state,[28, 29] and computational studies have
become essential for exploring these reactive intermediates.[30–33] The group of Lilienfeld
et al. conducted a large-scale study on the electronic structures of carbenes, resulting
in the QMspin data set,[1] which encompasses a broader chemical space compared to the
tris(diimine) iron(II) complexes used in this work.

This extensive data set also facilitates comparisons between DFT and emerging approaches
like machine learning (ML), which has gained attention for its potential to reduce computa-
tional time while maintaining or even improving accuracy. ML has been applied to predict
molecular properties, including spin state energies.[34–41] One promising approach is Δ-ML,
which augments calculated values with machine-learned corrections rather than predicting
molecular properties directly.[42] While molecular representation and descriptor selection
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3 Introduction

for ML have been discussed extensively in the literature,[43–45] the impact of the origin of
molecular structures on ML predictions remains underexplored.

This work aims to evaluate the performance of DFT with various xc functionals, ML, andΔ-ML in predicting spin gaps in carbenes. A particular focus is placed on the impact of
the origin of molecular structures—whether they are optimized using DFT or the more
computationally efficient semiempirical PM6 method. Additionally, the use of only singlet
structures or both singlet and triplet structures significantly influences computational cost,
and this aspect is also discussed in Chapter 6.

As previously mentioned, 3𝑑 TM catalysis is of significant interest, particularly iron. Homo-
geneously catalyzed hydrogenation reactions are a cornerstone of organic synthesis, essen-
tial for producing a wide range of chemical products. In these catalytic processes, hydride
species often serve as crucial intermediates.[46–51] Despite their importance, there are rela-
tively few examples of polynuclear iron complexes featuring bridging hydrides, highlighting
an area with significant potential for further exploration.

A dimeric hydridocobaltate complex with the redox-active ligand bis(imino)acenaphthene
(BIAN) has been reported as an efficient precatalyst for the hydrogenation of alkenes un-
der mild conditions.[52] BIANs are readily synthesized from commercial precursors on a
multigram scale and are highly redox-active, capable of accepting up to four electrons.[53,
54] Preliminary work has successfully adapted the synthetic approach used for the hydri-
docobaltate to create a dimeric hydrido-bridged ferrate complex, which also serves as an
active precatalyst for alkene hydrogenation.[55] As mentioned earlier, the characterization
of this paramagnetic and highly air- and moisture-sensitive compound has proven to be
challenging.

Consequently, another focus of this work is to further characterize this hydridoferrate, em-
ploying computational approaches informed by the knowledge gained from the studies men-
tioned above. Additionally, this work explores the reactivity profile of such compounds.
The approaches to synthesize highly reduced iron complexes with BIAN ligands, as well as
their experimental and computational characterization, are presented in Chapter II.
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Computational Studies
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4 Theoretical Background

4.1 Kohn–Sham Density Functional Theory

In contrast to other quantum mechanical theories that rely on wave functions, density func-
tional theory (DFT) calculates energy and other quantum mechanical properties directly
from the ground-state electron density (Equation (4.1)).[56]

𝐸 = 𝐸[𝜌]. (4.1)

As a result, only three spatial coordinates need to be considered instead of 4𝑁 , where 𝑁
is the number of electrons in the system. The foundation of DFT lies in the Hohenberg–
Kohn theorems.[57] The first theorem establishes a one-to-one correspondence between the
ground-state density and the external potential (Equation (4.2)), which further implies a
unique relationship between the ground-state density and the ground-state wave function
(Equation (4.3)).

𝜌0( ⃗𝑟) ↔ 𝑉𝑒𝑥𝑡( ⃗𝑟) (4.2)𝜌0( ⃗𝑟) ↔ Ψ0( ⃗𝑟1, … , ⃗𝑟𝑁). (4.3)

According to the variational principle, the ground-state wave function is the one that
minimizes the energy. Due to the correlation between ground-state density and ground-
state wave function, the ground-state energy 𝐸0 can also be obtained by minimizing the
energy functional 𝐸[𝜌] with respect to variations in the density 𝜌 (second Hohenberg–Kohn
theorem).

The energy functional is composed of several energy contributions:

𝐸[𝜌] = 𝑇𝑛[𝜌] + 𝑇𝑒[𝜌] + 𝑉𝑒𝑒[𝜌] + 𝑉𝑒𝑛[𝜌] + 𝑉𝑛𝑛[𝜌]. (4.4)

The kinetic energy of the nuclei 𝑇𝑛[𝜌] and the internuclear interaction 𝑉𝑛𝑛[𝜌] can be simpli-
fied using the Born–Oppenheimer approximation,[58]

𝑇𝑛[𝜌] = 0 (4.5)𝑉𝑛𝑛[𝜌] = const. (4.6)

For the electron-nuclei interaction 𝑉𝑒𝑛[𝜌], a term can be derived from classical electrostatics
(Equation (4.7)):

𝑉𝑒𝑛[𝜌] = ∫ 𝑉𝑒𝑥𝑡( ⃗𝑟)𝜌( ⃗𝑟) d ⃗𝑟. (4.7)

9



4 Theoretical Background

The same principle applies to the Coulomb term 𝐽[𝜌], which represents the classical part of
the electron-electron interaction 𝑉𝑒𝑒[𝜌]. However, no classical analog exists for the remain-
ing part of the electron-electron interaction, 𝐸𝑛𝑜𝑛𝑐𝑙𝑎𝑠𝑠[𝜌], which arises from exchange and
correlation, as well as the kinetic energy of the electrons 𝑇𝑒[𝜌] due to electron correlation.

𝑉𝑒𝑒[𝜌] = 𝐽[𝜌] + 𝐸𝑛𝑜𝑛𝑐𝑙𝑎𝑠𝑠[𝜌] (4.8)𝑇𝑒[𝜌] = 𝑇𝑠[𝜌] + Δ𝑇 [𝜌] (4.9)

To address the challenge posed by interacting particles, Kohn and Sham introduced a ref-
erence system of non-interacting fermions that share the same ground-state density as the
original system (Equation (4.10)).[59]

𝜌( ⃗𝑟) = 𝑁∑𝑖=1 |𝜓𝑖( ⃗𝑟)|2. (4.10)

For such a system, the exact ground-state wave function is a single Slater determinant con-
taining the 𝑁 Kohn–Sham orbitals 𝜓𝑖( ⃗𝑟). The kinetic energy 𝑇𝑠[𝜌] of the non-interacting
system can therefore be calculated exactly. The minor error introduced by this approxima-
tion is encapsulated, along with exchange and correlation terms, in the exchange–correlation
functional 𝐸𝑥𝐶 [𝜌]:

𝐸[𝜌] = 𝑇𝑠[𝜌] + 𝑉𝑒𝐾[𝜌] + 𝐽[𝜌] + 𝐸𝑋𝐶 [𝜌] (4.11)
with 𝐸𝑋𝐶 [𝜌] = 𝐸𝑋[𝜌] + 𝐸𝐶 [𝜌] + Δ𝑇 [𝜌]. (4.12)

For practical applications of KS-DFT, approximations must be made for the exchange–
correlation functional.

4.1.1 Approximate Exchange–Correlation Functionals

Approximate exchange–correlation (xc) functionals can be devided by different types.
“Pure” functionals, also known as local or semi-local functionals, solely rely on the local
electron density (Local Density Approximation (LDA)) and additionally on the gradient of
the electron density in case of the generalized gradient approximation (GGA). An example
for a GGA xc functional is BLYP. Its the exchange-correlation energy 𝐸BLYP

XC is given by
(4.13): 𝐸BLYP

XC = 𝐸LDA
X + Δ𝐸B88

X + 𝐸LDA
C + Δ𝐸LYP

C (4.13)

Contributions are 𝐸LDA
X the exchange energy in the LDA), Δ𝐸B88

X the gradient-corrected
exchange energy according to Becke’s 1988 functional (B88), 𝐸LDA

C the correlation energy in
LDA and Δ𝐸LYP

C the correlation energy correction according to the Lee-Yang-Parr (LYP)
functional.[60]

Hybrid xc functionals also include an amount 𝑎HF of the exact exchange energy calculated
using Hartree-Fock theory 𝐸HF

X which is defined by (4.14).𝐸HF
X = −12 ∑𝑖,𝑗 ∫ ∫ 𝜓∗𝑖 (r1)𝜓∗𝑗(r2) 1|r1 − r2|𝜓𝑗(r1)𝜓𝑖(r2) 𝑑r1 𝑑r2 (4.14)
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4.2 Supervised Machine Learning

In (4.14) 𝜓𝑖(r) is the spin-orbital wavefunction for the 𝑖-th orbital and 𝜓∗𝑖 (r) is the complex
conjugate of the spin-orbital wavefunction. |r1 − r2| is the distance between two electrons
at positions r1 and r2.
An example for a hybrid functional is B3LYP functional. (4.15) shows the the exchange-
correlation energy calculated using the B3LYP functional 𝐸B3LYP

XC [61]:𝐸B3LYP
XC = 𝐸LDA

XC + 𝑎HF(𝐸HF
X − 𝐸LDA

X ) + 𝑎𝑋Δ𝐸B88
X + 𝑎𝐶Δ𝐸LYP

C (4.15)𝑎𝐻𝐹 , 𝑎𝑋, and 𝑎𝐶 are empirically determined parameters, with the values 𝑎𝐻𝐹 = 0.20,𝑎𝑋 = 0.72 and 𝑎𝐶 = 0.81
Range separated xc functionals are designed to improve the accuracy of the exchange part of
the functional by separating the treatment of short-range (SR) and long-range (LR) electron-
electron interactions. This allows different admixtures of exact HF exchange depended on
the range of the interaction. An example is the CAM-B3LYP functional, that at short ranges
uses 19 % 𝐸HF

X that smoothly increases to 65% at long ranges.[62]

4.2 Supervised Machine Learning

Supervised machine learning (ML) is a type of data analysis where a model is trained to
predict an output based on a set of input features. This approach is called “supervised”
because the model learns from a labeled data set, where both the input features and the
corresponding output labels or values (sometimes also referred to as targets) are known.

In supervised ML, the data set used for training consists of pairs {(x𝑖, 𝑦𝑖)}𝑁𝑖=1, where x𝑖
represents the input feature vector and 𝑦𝑖 denotes the corresponding output value. The
goal is to learn a mapping from the input features to the output, such that the model
can make accurate predictions on new, unseen data. The model is typically represented as
a function 𝑓(x; 𝜃), where 𝜃 represents the parameters of the model. During training, the
model’s parameters are adjusted to minimize a loss function 𝐿(𝑦, 𝑓(x; 𝜃)), which measures
the difference between the predicted output 𝑓(x; 𝜃) and the true output 𝑦.

While for electronic structure methods the representation in nuclear charges and atomic
coordinates is sufficient, they are not a suitable representation for ML as they are not
invariant to rotation and translation. Therefore, descriptors which represent the molecule in
a more suitable feature space are designed. Some examples are explained in Sections 4.2.4,
4.2.5, 4.2.6 and 4.2.7. Typically, the descriptors are based on structural features but it is
also common ad other molecular properties.[63]

4.2.1 Validation of Supervised Machine Learning Models

Validation is a critical step in the development and evaluation of supervised machine learning
models, including the tuning of their hyperparameters. Hyperparameters define the config-
uration of a machine learning model and are not adjusted during the learning procedure
itself.

Validation involves assessing the model’s performance on unseen data, also referred to as
the test set, to ensure that the model generalizes well beyond the specific data set used for
training. The primary goal of validation is to detect and mitigate issues such as overfitting,
where a model performs well on the training data but poorly on new data.

A common validation technique is the train-test split, where the data set is divided into
two distinct parts: a training set and a test set. The model is trained on the training set
and evaluated on the test set. This approach provides a straightforward measure of model
performance, but it is important to ensure that the split is representative of the overall data
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4 Theoretical Background

set to avoid biased results. A simple approach to achieve this is to repeat the validation
with a random train-test split. An advantage of this validation technique is that the size
of the training set can be easily adjusted, allowing for an analysis of the dependence of the
model’s performance on the training set size (learning curves).

One of the most commonly used techniques for validation is cross-validation. In k-fold cross-
validation, the data set is divided into k subsets of equal size. The model is trained on k-1
of these subsets (training set) and validated on the remaining subset (test set). This process
is repeated k times, with each subset being used exactly once as the validation data. The
results are averaged to provide an estimate of the model’s performance. However, in contrast
to the random train-test split, learning curves cannot easily be created since the number of
repetitions also depends on k, which controls the size of the training and test sets.

4.2.2 Nearest Neighbors Regression

The simple k-nearest neighbors regression model involves mainly two hyperparameters. The
number of neighbors k and a “weights” parameter which can be set to either “uniform” or
“distance”. As illustrated in Figure 4.1, distances for a new data point which is described by
the feature vector xnew are calculated to the points (x𝑖) in the training data. In the case that
the weights are uniform, the predicted value ̂𝑦new for this new point is than calculated from
the mean of target values 𝑦𝑖 of the k nearest points ((4.16)). Each of the k neighboring data
points contribute equally. Closer points will have a greater influence than points further away
from the new point if a weight based on distance is used. Again, only the k closest points
are considered for calculating the predicted value. But the target values of the training set
are in this case multiplied by the inverse distance as shown in (4.17)

̂𝑦new = 1𝑘 𝑘∑𝑖=1 𝑦𝑖 (4.16)

̂𝑦new = ∑𝑘𝑖=1 1𝑑𝑖 ⋅ 𝑦𝑖∑𝑘𝑖=1 1𝑑𝑖 (4.17)

Figure 4.1: Illustration of the 𝑘-nearest neighbors prediction for 2 dimensional feature
space.
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4.2 Supervised Machine Learning

4.2.3 Gaussian Process Regression

The Gaussian process regression (GPR) is a non-parametric, probabilistic model. It is par-
ticularly powerful for small to medium-sized data sets and provides a measure of uncertainty
in the predictions. GPR models the distribution over possible functions that fit the data,
making it well-suited for problems where the underlying relationship between input and
output is complex and non-linear.[64]

The predictive distribution of the target value 𝑦∗ of a new input feature vector x∗ for a
training set with input matrix X and the target feature vector y is a normal distribution
with the predictive mean 𝑓∗ and the predictive variance 𝜎∗ (4.18). x∗ has the size 𝑁 × 𝐷,
where 𝑁 is the number of training data and 𝐷 the dimensionality of the features.[65]𝑝(𝑦∗|x∗, X, y) = 𝒩(𝜇∗, 𝜎2∗ ) (4.18)

The predictive mean and variance can be calculated according to (4.19) and (4.20), re-
spectively. The covariance matrix of the training data K is defined by covariance func-
tion 𝑘(x𝑖, x𝑗) k∗ is the vector of covariances between the new point and all 𝑁 training
points.[65]

𝑓∗ = k⊤∗ (K + 𝜎2𝑛I)−1y (4.19)

The noise variance 𝜎2𝑛 includes noise of the training data and is 0 for noise-free data.[65]

𝜎2∗ = 𝑘(x∗, x∗) − k⊤∗ (K + 𝜎2𝑛I)−1k∗ (4.20)

With 𝛼 = (K + 𝜎2𝑛I)−1y the mean prediction (4.20) can also be written as a linear combi-
nation of the observations y:[65]

𝑓(x∗) = 𝑁∑𝑖 𝛼𝑖𝑘(x𝑖, x∗) (4.21)

The covariance function in GPR is also referred to as the kernel, which is a key component
that measures measuring similarities between two data points. Common kernels involve
parameters that control the shape and smoothness of the predicted function. These param-
eters are fitted during the training of the data. The radial basis function (RBF) kernel, also
known as the “squared exponential” or Gaussian kernel, is given by (4.22) and is parame-
terized by the length scale parameter 𝑙. As the name suggests it controls the length scale
for which two data points are considered similar. It can be either a scalar or a vector with𝐷 dimensions, that controls each feature dimension separately.𝑘RBF(x𝑖, x𝑗) = 𝑒− |x𝑖−x𝑗|22𝑙2 (4.22)

The Matérn kernel is a generalization of the RBF kernel (𝜈 = 0.5) that involves an additional
parameter 𝜈 that controls the smoothness of the predicted function Γ(𝜈) and 𝐾𝜈() are a
modified Bessel function and the gamma function, respectively.[65]𝑘Matern(x𝑖, x𝑗) = 21−𝜈Γ(𝜈) (√2𝜈‖x𝑖 − x𝑗‖𝑙 )𝜈 𝐾𝜈 (√2𝜈‖x𝑖 − x𝑗‖𝑙 ) (4.23)
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4.2.4 Smooth Overlap of Atomic Positions Descriptor

The smooth overlap of atomic positions (SOAP) method[43] describes the local environment
within a atomic system. The SOAP representation is invariant to translation and rotation.
The local atomic surroundings is represented by expanding a gaussian smoothed atomic
density using a combination of spherical harmonics 𝑌𝑙𝑚 and radial basis functions 𝑔𝑛.

The number of feature dimensions of the SOAP descriptor depends on the number of pairs
of different atom species (𝛼 and 𝛽), the number 𝑛𝑚𝑎𝑥 of the radial basis functions and the
number 𝑙𝑚𝑎𝑥 of spherical harmonics. The features are elements 𝑝𝛼𝛽𝑛𝑛′𝑙 of the partial power
spectrum vector p which are defined as:𝑝𝛼𝛽𝑛𝑛′𝑙 = 𝜋√ 82𝑙 + 1 ∑𝑚 𝑐𝛼𝑛𝑙𝑚𝑐𝛼𝑛′𝑙𝑚 (4.24)

𝑛 and 𝑛′ are indices for radial basis functions that correspond to atom species 𝛼 and 𝛽,
respectively. 𝑙 is the angular degree of the spherical harmonics. The coefficients in equa-
tion 4.24 can be calculated as followed:𝑐𝛼𝑛𝑙𝑚 = ∭ℛ3 𝑑𝑉 𝑔𝑛(𝑟)𝑌𝑙𝑚(𝜃, 𝜙)𝜌𝛼(r) (4.25)

The atomic density of atom species 𝛼, 𝜌𝛼(r), is obtained by a sum over un-normalized
gaussians centered on each atom of the species 𝛼:𝜌𝛼(r) = ∑𝑖𝑖𝑛𝛼 𝑒− 12𝜎2 |r−R𝑖|2 (4.26)

The SOAP descriptor can be tuned by several key parameters: apart from 𝑙𝑚𝑎𝑥 and 𝑛𝑚𝑎𝑥
prescribed above, the radial cutoff defines the extent of the atomic environment considered.
The atomic density can be varied by the standard deviation 𝜎 of the Gaussian functions
(equation 4.26. Additionally, the choice of radial basis functions can vary, with common
options including spherical Gaussian orbitals or polynomial bases.[63]

4.2.5 Many-Body Tensor Representation Descriptor

The many-body tensor representation (MBTR)[66] encodes a structure by breaking them
down into distributions 𝒟𝑘 of structural motifs that involve 𝑘 atoms. These distributions
are grouped by the chemical spaces. Typically 𝑘 values up to 3 are used (Figure 4.2).

The distributions are generated by firstly applying a geometry function 𝑔𝑘 on the 𝑘 atoms
of the structural motive to obtain a single value. The geometry function 𝑔1 is the atomic
number. For 𝑔2 either the distance or the inverse distance is used and 𝑔3 is the angle or
cosine of the angle. Broadening these scalar values with gaussian kernels with the standard
deviation 𝜎𝑘 leads to the distributions defined in (4.27), (4.28) and (4.29):

𝒟𝑙1(𝑥) = 1𝜎1√2𝜋 𝑒− (𝑥−𝑔1(𝑍𝑙))22𝜎21 (4.27)

𝒟𝑙,𝑚2 (𝑥) = 1𝜎2√2𝜋 𝑒− (𝑥−𝑔2(R𝑙,R𝑚))22𝜎22 (4.28)

𝒟𝑙,𝑚,𝑛3 (𝑥) = 1𝜎3√2𝜋 𝑒− (𝑥−𝑔3(R𝑙,R𝑚,R𝑛))22𝜎23 (4.29)
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4.2 Supervised Machine Learning

Figure 4.2: MBTR output for a water molecule showing the distributions MBTR𝑘 for𝑘 = 1, 2, 3 with different combinations of chemical elements. For each term,
the distributions can be arranged into a 𝑘-dimensional grid, resulting in a 𝑘+1
dimensional tensor. If a flattened one-dimensional vector is needed by the
learning model, the distributions may be concatenated together, possibly with
some weighting, as shown in the lower panel. Reproduced from reference [63].

The values 𝑥 ensure that all possible values for 𝑔𝑘 are covered. The combined weighted sums
over each of the distributions defined in (4.30), (4.31) and (4.32) then represents the MBTR
feature vector.

MBTR𝑍11 (𝑥) = |𝑍1|∑𝑙 𝜔𝑙1𝒟𝑙1(𝑥) (4.30)

MBTR𝑍1,𝑍22 (𝑥) = |𝑍1|∑𝑙 |𝑍2|∑𝑚 𝜔𝑙,𝑚2 𝒟𝑙,𝑚2 (𝑥) (4.31)

MBTR𝑍1,𝑍2,𝑍33 (𝑥) = |𝑍1|∑𝑙 |𝑍2|∑𝑚 |𝑍3|∑𝑛 𝜔𝑙,𝑚,𝑛2 𝒟𝑙,𝑚,𝑛3 (𝑥) (4.32)

The indexes 𝑙, 𝑚, and 𝑛 run over all atoms with the atomic number 𝑍1, 𝑍2 and 𝑍3 respec-
tively. The weighting functions 𝜔 are used to give more importance to structural motives
were the contributing atoms are closer together. Hence, no weighting is typically needed for𝑘 = 1 as only one atom is involved in that structure motive. Weighting functions for 𝑘 = 2
and 𝑘 = 3 are given in (4.33) and (4.34), respectively.𝜔𝑙,𝑚2 = 𝑒−𝑠𝑘|R𝑙−R𝑚| (4.33)

𝜔𝑙,𝑚,𝑛3 = 𝑒−𝑠𝑘(|R𝑙−R𝑚|+|R𝑚−R𝑛|+|R𝑙−R𝑛|) (4.34)

An important parameter to tune the MBTR descriptor is the cutoff distance 𝑠𝑘.

By using only geometry functions with degree 𝑘 > 1 the local many-body tensor represen-
tation (LMBTR) can be created as a modification of MBTR.[63]
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4.2.6 Atom-centered Symmetry Functions Descriptor

Atom-centered Symmetry Functions (ACSFs)[67] are utilized to represent the local atomic
environment through a fingerprint composed of the outputs of multiple two- and three-body
functions. These functions are customizable, allowing for the detection of specific structural
features. ACSFs encode the configuration of atoms around a central atom, indexed as 𝑖,
by employing symmetry functions. The presence of atoms neighboring the central atom is
captured by three distinct two-body symmetry functions, defined in equations (4.35), (4.36),
and (4.37).[63]

𝐺1,𝑍1𝑖 = |𝑍1|∑𝑗 𝑓𝑐(𝑅𝑖𝑗) (4.35)

𝐺2,𝑍1𝑖 = |𝑍1|∑𝑗 𝑒𝜂(𝑅𝑖𝑗−𝑅𝑠)2𝑓𝑐(𝑅𝑖𝑗) (4.36)

𝐺3,𝑍1𝑖 = |𝑍1|∑𝑗 cos(𝜅𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑗) (4.37)

In these symmetry functions, the sums are taken over all atoms with atomic number 𝑍1,
and 𝑅𝑖𝑗 represents the distance between atoms 𝑖 and 𝑗. The smooth cutoff function 𝑓𝑐, with
cutoff radius 𝑟cut, is defined as follows:

𝑓𝑐(𝑟) = 12 [cos (𝜋 𝑟𝑟cut
) + 1] (4.38)

The parameters 𝜂, 𝑅𝑠, 𝜅, and 𝑟cut can be adjusted to customize the two-body components
of the ACSF descriptor.

Additionally, three-body functions, shown in equations (4.39) and (4.40), can be used to
detect specific motifs involving three atoms, with one being the central atom. These func-
tions account for both the angles between atom triplets and their mutual distances within
the cutoff radius.

𝐺4,𝑍1,𝑍2𝑖 =21−𝜁 |𝑍1|∑𝑗≠𝑖 |𝑍2|∑𝑘≠𝑖 (1 + 𝜆 cos(𝜃))𝜁 𝑒−𝜂(𝑅2𝑖𝑗+𝑅2𝑖𝑘+𝑅2𝑗𝑘)× 𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑘)𝑓𝑐(𝑅𝑘𝑗) (4.39)

𝐺5,𝑍1,𝑍2𝑖 =21−𝜁 |𝑍1|∑𝑗≠𝑖 |𝑍2|∑𝑘≠𝑖 (1 + 𝜆 cos(𝜃))𝜁 𝑒−𝜂(𝑅2𝑖𝑗+𝑅2𝑖𝑘)× 𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑘) (4.40)

Similar to the two-body functions, the sums run over all atoms 𝑗 and 𝑘 of types 𝑍1 and𝑍2, respectively, with 𝜃 representing the angle between the three atoms 𝑖, 𝑗, and 𝑘. The
three-body functions can also be tailored using the user-defined parameters 𝜁, 𝜆, 𝜂, 𝑅𝑠, 𝜅,
and 𝑟cut.[63]
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4.2.7 Autocorrelation Functions as Descriptors

Autocorrelation functions (ACs) as descriptors are solely based on the connectivity of atoms
in a molecule and do not require any information on Cartesian coordinates. They are formed
by summing the product of atomic properties of atom pairs, as shown in (4.41)[68]:𝑃𝑑 = ∑𝑖 ∑𝑗 𝑃𝑖𝑃𝑗𝛿(𝑑𝑖𝑗, 𝑑) (4.41)

𝑃𝑑 is the AC for property 𝑃 at depth 𝑑. The depth describes how many bonds separate the
atom pairs. A depth of 0 thus results in a sum over squared properties. 𝛿 is the Dirac delta
function, and 𝑑𝑖𝑗 is the bond path between atoms 𝑖 and 𝑗.[69] The five atomic properties
used for the AC descriptor, as constructed by Kulik et al., are the nuclear charge, Pauling
electronegativity, the atom’s coordination number (the number of neighbors), the identity
(which is 1 for any atom), and the covalent atomic radius.[69] The dimensionality of the
AC is the product of the number of depths considered and the number of atomic properties
used. Therefore, with the five properties mentioned and a maximum depth of 3 (depths 0
to 3 are considered), the resulting descriptor has 20 dimensions. This construction ensures
that AC feature vectors are invariant with respect to system size and composition.

4.3 Error Measures

In order to evaluate and compare the performance of a method, a measure—ideally a single
number—is required.

The mean signed error (MSE)1 provides the mean of an error distribution, as shown in
(4.42), where 𝑦𝑖 is the prediction for point 𝑖 and ̂𝑦𝑖 is its true value. While the MSE reflects
the accuracy of a model, it provides no information on its precision (the spread of the errors).
Positive and negative errors can cancel each other out.

MSE = 1𝑛 𝑛∑𝑖=1(𝑦𝑖 − ̂𝑦𝑖) (4.42)

Error cancellation is avoided with the root-mean-square error (RMSE) (see (4.43)), where
the square root of the averaged squared errors is taken. As a result, this error measure has
the same unit as the predicted property. Because errors contribute by their square, larger
errors have a more significant impact, making the RMSE very sensitive to outliers. The
RMSE and the root-mean-square deviation (RMSD) are technically evaluated in the same
way.

RMSE = √ 1𝑛 𝑛∑𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2 (4.43)

The mean absolute error (MAE) ((4.44)) is less sensitive to outliers compared to the RMSE.
It is the mean of the absolute errors, so no error cancellation occurs as with the MSE.

MAE = 1𝑛 𝑛∑𝑖=1 |𝑦𝑖 − ̂𝑦𝑖| (4.44)

1Note that in some cases the abbreviation MSE is used for the mean squared error. In this work, however,
MSE always refers to the mean signed error.
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Errors can also be measured using the 𝑄95 error measure ((4.45)). Here, the absolute errors
are calculated, and the 95th percentile of their distribution is determined. This is the value
where 95% of the data points have an absolute error smaller than this value. As a result,
outliers are excluded, and both precision and accuracy are considered. Unlike the MAE, 𝑄95
communicates probabilistic information: by definition, the probability that an absolute error
exceeds 𝑄95 is 5%. For the MAE, such statements cannot be made, and the probability that
an absolute error exceeds the MAE typically varies between 20% and 50% [70]. While 𝑄95
often provides similar rankings compared to the MAE, it also offers more useful information.
Moreover, the percentile used for this error measure can be easily tailored to a required risk
level [70]. 𝑄95 = percentile(|𝑦𝑖 − ̂𝑦𝑖|, 95 %) (4.45)
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5 Redox-Active Ligands as a Challenge
for Electronic Structure Methods

This chapter has already been published.[71] Unless otherwise noted, all calculations, data
analysis and writing have been performed by the main author of this thesis. Carmen Her-
rmann has supervised and proofread and Axel Jacobi von Wangelin has co-supervised and
proofread the work in this chapter.
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5 Redox-Active Ligands as a Challenge for Electronic Structure Methods

5.1 Introduction

Following the example of nature, where enzymes containing 3𝑑 transition metals (TM)
effectively catalyze biochemical transformation reactions,[72] 3𝑑 TM catalysis, especially
with iron and cobalt complexes, is the subject of intense investigation.[3, 73] In comparison
to their established heavier homologues, 3𝑑 TMs are more abundant in the earth’s crust,
easier to extract, often less toxic and therefore less costly.[74] While precious metal
catalysts surrounded by a strong ligand field undergo predictable two-electron processes,
first-row transition metals have a weaker ligand field, resulting in a higher tendency for
high-spin (HS) complexes.[3] This causes a preference for single electron transfers (SETs),
opening up new pathways of radical reaction mechanisms and causing the mechanistic
landscape to be more complex than for second- and third-row TM catalysis. Redox-active
or redox-non-innocent ligands can equip 3𝑑 TM complexes with similar reactivity profiles as
the heavier 4𝑑 and 5𝑑 metal complexes by cooperative electronic effects of ligand and metal
ions.[75] Well-known examples of this type of ligands are bis(imino)pyridines, quinones and𝛼-diimines.[4, 76, 77] A huge variety of accessible oxidation and spin-states, paired with
reduced stability of the 3𝑑 TM complexes compared to their 4𝑑 and 5𝑑 TM counterparts,
makes experimental preparation and analysis more challenging. First-principles calculations
become therefore even more important to uncover catalytic properties and the operating
reaction mechanisms for 3𝑑 TM complexes.[78–81]

Kohn–Sham density functional theory (DFT) is one of the most important methods for
this purpose, due to its reasonable accuracy combined with its efficiency.[82] While DFT is
in principle exact, in practice its accuracy is limited by a proper choice of an approximate
exchange–correlation (xc) functional. Therefore, the development of new xc functionals
with larger universal accuracy as well as xc functionals that provide high accuracy for
specific properties at the cost of being less transferable are an ongoing area development.[83]
Validation studies or error measures when transferring DFT protocols to new classes of
systems are necessary.[11, 84–88]

Catalytic reaction mechanisms of 3d TM complexes may involve two or more spin-states
during a reaction.[89] Also, the change of spin-state by external stimuli in spin-crossover
(SCO) systems may be exploited for applications such as functional materials.[90] There-
fore, the determination of accurate spin-state energy splittings is fundamental to a deeper
understanding in these areas. Spin-dependent properties are a notorious challenge for
DFT.[11, 12] Various studies have investigated the influence of different xc functionals on
spin-state energy splittings of 3𝑑 TM complexes.[15–22] A strong, mostly linear dependence
on the amount of exact exchange admixture in the xc functional was reported.[16, 23, 24]
This dependence was investigated for 𝜎-donor and 𝜋-acceptor ligands and was found to
originate from different metal–ligand interactions in HS and low-spin (LS) complexes.[24, 25]

Spin-state energy splittings (Δ𝐸HS-LS) in first-principles simulations are the dif-
ference between energy of the HS state for the optimized HS molecular structure
(𝐸HS(RHS)) and the energy of the LS state for the optimized LS structure (𝐸LS(RLS)),Δ𝐸HS-LS = 𝐸HS(RHS) − 𝐸LS(RLS). Therefore, positive splittings correspond to the LS
state being more stable. Spin-state energy splittings have to be corrected by the zero-point
vibrational energies (ZPVE) for the comparison with experimental data. Investigations
by Mortensen et al. showed that zero-point energies in general favor HS states, with
the magnitude varying depending on the ligand.[17] Fortunately, studies by Reiher et
al. showed that between different functionals, only small changes of ΔZPVEHS-LS were
observed.[91]
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In contrast to “pure” xc functionals based on the generalized gradient approximation
(GGA), hybrid xc functionals include an admixture of (exact) Hartree Fock (HF) exchange
(𝐸HF

X ), 𝐸hybrid
XC = 𝐸DFT

XC + 𝑎HF(𝐸HF
X − 𝐸DFT

X ). As mentioned above, the spin-state energy
splittings depend mostly linearly on the amount of this admixture (𝑎HF). The slope𝜕Δ𝐸HS-LS𝜕𝑎HF was introduced by Kulik et al. as a measure of the sensitivity towards 𝑎HF.[16]
Generally, pure xc functionals over-stabilize LS states; hybrid functionals with larger
amounts of exact exchange 𝑎HF highly favor HS states, and therefore slopes are typically
negative. This has been suggested to originate from the difference in dealing with the
self interaction error (SIE) and with static correlation as described by pure and hybrid xc
functionals.[24, 25] The occupied 𝜎(M–L) and unoccupied 𝜎*(M–L) orbitals (Figure 5.1)
in the LS complex lead to static correlation in LS states. For HS states, 𝜎*(M–L) is
already occupied. Therefore, there is no static correlation originating from 𝜎(M–L) and𝜎*(M–L) in the HS state. Pure xc functionals tend to over-stabilize LS states, which has
been attributed to them containing some correction to this type of correlation.[24, 25, 92,
93] The energies of 𝜎(M–L) and 𝜎*(M–L) are closer for complexes with stronger 𝜎-donor
ligands compared to complexes with weaker 𝜎-donors. Therefore, static correlation in LS
complexes is increased when stronger 𝜎-donor ligands are present, and spin-state energy
splittings have a stronger sensitivity towards 𝑎HF (Figure 5.1).[24] In the HS state, the
occupation of the anti-bonding 𝜎*(M–L) decreases the M–L bond order, such that the
bond length is increased and the covalent character of the M–L bond is decreased. Charge
is less delocalized in the M–L bond and more localized on the ligand and on the metal
center. In full agreement with this, Kulik et al. found the local charges on the metal
center to be increased in HS complexes compared to LS complexes.[16] The differences in
local charges on the metal between HS and LS states, Δ𝑞HS-LS(M), were found to correlate
with the sensitivity of Δ𝐸HS-LS towards the amount of exact exchange 𝑎HF. The decrease
of covalency and the accompanying increase of electron localization increases the SIE for
HS structures.[25] In contrast to pure xc functionals, SIEs are partly canceled out by
the admixture of HF exchange in hybrid functionals.[94] Therefore, hybrid xc functionals
stabilize HS states. 𝜋-Acceptor ligands cause the formerly non-bonding 𝑑nb orbitals to
become bonding (𝜋M-L) and increase the covalent character of the M–L bond. This should
result in an increase of 𝑎HF dependence. An example supporting this hypothesis is the
reversal of the dependence on 𝑎HF for spin-state transitions in a porphin-containing iron(II)
complex. Due to the rigidity of the cyclic ligand, M–L bond elongation for HS complexes is
restricted and decreases the sensitivity on the amount of exact exchange. For one spin-state
transition, a positive slope 𝜕Δ𝐸HS-LS𝜕𝑎HF was found.[25]

Redox-active ligands contain low-lying 𝜋-orbitals (𝜋L). The lower in energy these orbitals,
the more redox-active the ligand. In comparison to 𝜋-acceptor ligands, the 𝜋L orbitals of
redox-active ligands are more centered on the ligand backbone, and the overlap with the
metals 𝑑nb is smaller. In contrast to 𝜋-back-bonding, the electron is transferred from the
metal center and delocalized on ligand. This situation is expected to reduce SIE and to be
increasingly favored by lower amounts of exact exchange. As shown in Figure 5.1, this is
expected to happen for HS states more likely than for LS states. A change in redox state
upon spin-state transition should largely influence the dependence of Δ𝐸HS-LS on 𝑎HF and
change its slope towards less negative or even positive values. For the tris(diimine) iron(II)
complexes studied here, the ligands are neutral in the ground state.[95, 96] In their LS state,
additional static correlation might occur involving 𝜋L and 𝑑nb. This should result in more
negative slopes for larger redox activity of the ligand.

The considerations discussed above suggest that the metal–ligand interaction with redox-
active ligands may cause a strong sensitivity of the spin-state energy splittings toward the
amount of exact exchange. While for 𝜎-donor ligands this sensitivity depends, apart from
the metal center, mostly on the nature of the donor atom, for redox-active ligands, an
additional correlation of the slope with the strength of redox activity would be expected,
resulting in a potentially larger spread of slopes than for comparable complexes with
redox-innocent ligands. Following Shatruk et al.,[97] we investigated a diverse set of
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5 Redox-Active Ligands as a Challenge for Electronic Structure Methods

Figure 5.1: Increase of static correlation (blue arrow) for LS complexes compared to HS
states (no static correlation, red arrow) with increasing sigma donor strength
has been suggested to increase the dependence of spin-state energy splittings
on exact exchange admixture. This could imply that for complexes with redox-
active ligands, this dependence is even more pronounced than for analogous
complexes without such ligands. Reproduced from reference [71].

43 structurally related octahedral iron(II) complexes coordinated by three 𝛼-diimine
ligands (see Figure 5.3). Ligands of very low (2,2´-bipyridin) to very high redox capacity
(bis(imino)acenaphthenes (BIAN)) were included. For these complexes, the individual
spin-state preferences (stable LS, stable HS or SCO) are known from the experiment.
Homoleptic complexes with uniform metal centers and fixed coordination geometries were
chosen to exclude effects by different combinations of ligand environments and metal ions.
The uniform diimine bond pattern allowed easy comparability between the ligands.

The uniform bond pattern, together with the correlation of N–N distances in the free ligand
with the complexes’ ground spin-states[97] also make these systems a promising tool for
developing and testing machine learning models. Such approaches have been under intense
investigation lately,[98] especially in the prediction of spin-state energy splittings,[35] as
quantum chemical calculations like DFT are too computationally expensive to scan large
numbers of molecular structures for optimal properties. Not only for machine learning, but
also for molecular dynamics simulations and for validation studies, it is important to perform
calculations of TM complexes in an automated and robust manner. We show that complexes
with redox-active ligands can pose a challenge toward such objectives, as the self-consistent
field (SCF) algorithm can be prone to converging to energetically higher-lying solutions in
these cases. This also may result in the possible convergence to molecular structures which
do not correspond to the lowest-energy one. We discuss signs and the underlying reasons
for such problems.
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5.2 Computational Details and Data Set Construction

All KS-DFT calculations were performed with the Gaussian 16[99] program package.
Molecular structure optimizations were employing the BP86[100, 101] exchange–correlation
functional and the D3 version of Grimme’s empirical dispersion corrections with Becke–
Johnson damping[102], combined with the def2-TZVP[103, 104] basis set (even though es-
tablished empirical dispersion corrections do not always improve the theoretical descrip-
tions of transition metal systems [91]). Density fitting with the W06[103, 104] fitting set
was employed for the BP86 exchange–correlation functional. Subsequent vibrational fre-
quency calculations were used to confirm the stationary point to be a minimum as well as
to evaluate ZPVE corrections. Single-point calculations on optimized structures were car-
ried out with the B3LYP[105], M06[106] TPSSh[107, 108], 𝜔B97XD[109], CAM-B3LYP[62],
PBE0[110], BP86[100, 101], PBE[111, 112], TPSS[107], M06L[113] and LC-𝜔PBE[114, 115]
exchange–correlation functionals combined with Ahlrichs’ def2-TZVP[103, 104] basis set.
SCF convergence criteria were set to “tight” (change in the root mean square of the density
matrix <10−8, change in the root mean square of the density matrix <10−8, maximal change
in the density matrix <10−6 and change in the root mean square of the energy <10−6 au).
Stability analyses of the wave function including relaxing symmetry constrains of orbitals
and checking for internal instabilities have been carried out as implemented in Gaussian
for selected single-point calculations.[116] Fractional occupation number weighted electron
density (FOD) analyses have been performed with the Orca package version 5.0.2[117–120]
(TPSS/def2-TZVP with a smearing temperature of 5000 K).

Figure 5.2: Workflow for evaluating spin-state energy splittings (Δ𝐸HS-LS) and corrected
spin-state energy splittings (Δ𝐸HS-LS

corr. ). a Dispersion corrections were not
added to 𝜔B97XD. Reproduced from reference [71].

Natural Population Analysis using the NBO version 3.1 as implemented in Gaussian
16 was used to calculate atomic partial charges. Atomic (or local) numbers of unpaired
electrons (𝑛𝛼−𝛽 = 𝑛𝛼 − 𝑛𝛽) are extracted based on Mulliken population analysis. In
Gaussian output files, these are (somewhat misleadingly) referred to as atomic “spin
densities” (which would imply their multiplication by a factor of 0.5). Raw data for all
calculations are available in the Nomad online repository [121] (https://nomad-lab.eu;
DOI: 10.17172/NOMAD/2022.07.27-1 ) .

The data set of 43 tris(diimine) iron(II)1 complexes (Figure 5.3) is based on a collection by
Shatruk and coworkers[97] and on the redox-active complex [(PhBIAN)3Fe]2+ (TEDCAJ)
from our own research activities.[95] Literature ground spin-states have been determined
experimentally by temperature-dependent magnetic measurements.[97] Input structures
were taken from the Cambridge Structural Database (CSD) and named after the identifier
from this database. If structures were not available in the CSD, input structures were
obtained by manual manipulation of similar structures with available crystal structures.
This is indicated by “mod” for modified or “simp” for simplified in the structure name.

1For the reader’s convenience, we refer to complexes of the type [L3Fe]2+ as “iron(II)” complexes and those
of the type [L3Fe]+ as “iron(I)” or “reduced” complexes based on their total charge, even though this
might not correctly describe the metal centers’ oxidation state due to possible ligand reduction.
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Figure 5.3: Lewis structures of all ligands under study, forming high-spin (HS), low-spin
(LS) or spin-crossover (SCO) complexes with Fe(II), and an example for the
structure of an octahedral tris(diimine) iron(II) complex with a simplified ver-
sion of the ligands studied here. For complexes CATWIGmod2 and TEDCAJ,
not enough experimental data is available for an unambiguous assignment of
a ground spin state. For complex JOWGIL, the SCO is accompanied by the
reduction of one ligand by the counter anion.[96] Therefore, a differentiation
between LS and SCO was not possible experimentally. Based on the findings
by Shatruk et al.[97], within the same ground spin-state the complexes are
ordered by the N–N distance in the free ligand. Reproduced from reference
[71].

The complex NENTABmod contains an asymmetric ligand resulting in two possible
diastereomers. Calculation of the second isomer revealed to be not essential for the
investigated properties (see SI). Spin-state energy splittings were obtained as shown in
Figure 5.2. Molecular structure optimizations of the reduced complexes [L3Fe]+ were
performed starting from the optimized Fe(II) structures.
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5.3 Spin-State Energetics in Tris(diimine) Iron(II)
Complexes

To investigate the dependence of the spin-state energy splittings of the 𝛼-diimine iron(II)1

complexes on the xc functional, 11 common xc functionals were employed. ZPVE cor-
rections (ΔZPVEHS-LS) are the difference between the ZPVE of the HS state and the
LS state. ΔZPVEHS-LS and empirical dispersion corrections (D3BJ) were evaluated with
BP86/def2-TZVP to compare the calculated with the experimental ground state. As the
deviations of ΔZPVEHS-LS among different functionals were found to be considerably
small,[91] the BP86 corrections were applied to all xc functionals. The 𝜔B97XD functional
already features dispersion corrections. Hence, only ZPVE corrections were added to
the energies calculated with this xc functional. The corrected spin-state energy splitting
(Δ𝐸HS-LS

corr. = Δ𝐸HS-LS + ΔZPVEHS-LS + Δ𝐸HS-LS
disp ) of the tris(diimine) iron(II) complexes

are shown in Figure 5.4. Except for one case (NENTABmod (5)), the orderings of the
spin-state energy splittings calculated with the different xc functionals are the same for
each complex. As discussed in Section 5.4, the exceptional behavior was also observed for
BACVOR B which is the HS structure of BACVOR (9) converged to a local minimum.

We will now compare the calculated spin-state energy splitting energies with the exper-
imentally determined ground spin-states. We consider HS states predicted correctly ifΔ𝐸HS-LS

corr. < 0 and LS and SCO2 predicted correctly if Δ𝐸HS-LS
corr. < 0. As observed in

previous studies[16, 24, 25, 92, 93], the pure xc functionals favor LS ground states, whereas
hybrid xc functionals favor HS states. Accordingly, TPSS, BP86, and PBE show always
positive values for the spin-state energy splittings. Also, the hybrid functional TPSSh
(10% HF exchange) over-stabilizes LS states. In contrast to this, the hybrid functionals
with a large amount of exact exchange, PBE0 and M06, with 25% and 27 % HF exchange,
respectively, strongly favor HS states for the majority of LS complexes. The best agreement
with the experiment was achieved by the highly parameterized M06L xc functional, which
only predicts 4 of the SCO complexes to be HS and complex HUSMAK to be LS instead
of HS. Also the LC-𝜔PBE xc functional, which only predicts complex RUZNOP to be HS
instead of LS but struggles with the harder to predict SCO complexes, performs well. It
should be mentioned that the data set is a little biased towards LS and SCO complexes,
which might result in xc functionals with smaller amounts of exact exchange performing
better. Despite great uncertainty due to the large spread of Δ𝐸HS-LS between the chosen
xc functionals, trends among the complexes are described well by DFT.

As the thermodynamic and dispersion corrections are a constant for each complex, they do
not influence the spread among the xc functionals and are neglected in further discussions.
Only the dispersion already included in 𝜔B97XD is kept. As reported by others,[16, 23, 24]
linear dependence of Δ𝐸HS-LS on 𝑎HF was found (Figure 5.5 (a)). While TPSS, BP86, and
PBE gave similar spin-state energy splittings, the highly parameterized M06L xc functional
(with 𝑎HF = 0) gave significantly lower spin-state energy splittings and therefore worsened
the linear fit of Δ𝐸HS-LS as a function of 𝑎HF and was therefore not considered. Except for
NENTABmod and BACVOR B (with a local minimal molecular HS structure), negative
slopes between −4.75 kJ mol−1% and −6.75 kJ mol−1% were observed for our set of complexes,
with 𝑅2 = 0.996 ± 0.002. This implies spin-state energy splittings spread by averagely
145 kJ mol−1 among the common xc functionals tested here in the moderate regime of 0 %
to 27 % HF exchange. Although the range-separated xc functionals do not have a fixed
amount of HF exchange, they, based on their Δ𝐸HS-LS, behave like hybrid xc functionals

2SCO implies that the ground state has low spin multiplicity, but the energy difference to the high-spin-
state is so small that the entropic factors favoring this high-spin-state can make it the dominantly
populated variant at higher temperatures accessible with standard experimental techniques. Predicting
the temperature at which SCO occurs is beyond the scope of this work.
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Figure 5.4: Spin-state energy splittings including ZPVE and dispersion corrections of
tris(diimine) iron(II) complexes evaluated from single-point calculations with
different xc functionals (see workflow in Figure 5.2). The labels of the xc func-
tionals are ordered in the same manner as their spin-state energy splittings.
For each complex, the molecular HS and LS structures were optimized with
BP86-D3BJ/def2TZVP. For BACVOR, preoptimization of the molecular HS
structure with M06-D3/def2-TZVP was necessary. Molecular structure opti-
mization of the HS structure starting from the crystal structure led to the local
minimum, structure BACVOR B, which is not included in this plot. Repro-
duced from reference [71].

with an 𝑎HF of 19.7(6) % (LC-𝜔PBE), 22.2(8) % (CAM-B3LYP) and 19.7(9)% (𝜔B97XD).
M06L behaves like a hybrid xc functional with 15.3(6)% exact exchange. Interestingly,
the positive slopes for the two outliers, NENTABmod (0.77 kJ mol−1% , 𝑅2 = 0.561) and
BACVOR B (4.83 kJ mol−1% , 𝑅2 = 0.972) imply the LS state is increasingly preferred at
larger amounts of exact exchange. Stability analyses were performed on the single-point
calculations of NENTABmod and BACVOR (B) and confirmed all LS and HS wave
functions to have no internal instability. ⟨𝑆2⟩ values are provided in Section B.3 and show
no significant deviations from their ideal values, i.e., no significant multi-reference character
of the wave functions. However, diagnosing static correlation by fractional occupation
number weighted electron density (FOD)[120] of all HS and LS complexes revealed that
the number of strongly correlated electrons (𝑁(FOD)) correlates with the size of the
HOMO–LUMO gaps of the free ligands (see Figure B.14). An increased redox activity
(smaller HOMO–LUMO gaps) of the ligand is accompanied with an increased number of
strongly correlated electrons. The largest amount of strongly correlated electrons has been
found for NENTABmod and BACVOR. For these complexes with strongly redox-active
ligands, strongly correlated electrons are also delocalized on the ligand backbone, while
they are mostly localized on the metal center for complexes with redox-innocent ligands
like HAXHOF (see Figure B.9).

We expected the redox activity of the ligands to have an impact on the slope, which, as
reported by Kulik and coworkers,[16] depends on changes in local charges on the iron center
between HS and LS structure. For the complexes discussed, the linear fit of the slopes
as a function of Δ𝑞HS-LS showed, at first sight, a correlation with 𝑅2 = 0.880 (see Figure
B.13). However, excluding NENTABmod, which showed much lower Δ𝑞HS-LS than the
other complexes, resulted in a rather poor correlation with 𝑅2 = 0.165. This suggests the
structures are too similar to have a large enough variety of Δ𝑞HS-LS to show a correlation
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Figure 5.5: (a) Spin-state energy splittings of BP86-D3BJ/def2TZVP-optimized
tris(diimine) iron(II) complexes as function of exact exchange admixture𝑎HF. For linear regression used xc functionals with 𝑎HF/% given in paren-
thesis: BP86 (0), TPSS (0), PBE (0), TPSSh (10), B3LYP (20), PBE0 (25),
M06 (27) (all three values for 𝑎HF=0 were treated individually and no averag-
ing was performed). The spin-state energy splitting for M06L (×), LC-𝜔PBE
(star), 𝜔B97XD (rhombus) and CAM-B3LYP (+) are given at admixtures of
exact exchange obtained from the linear regression. (b) Mulliken numbers of
unpaired electrons on iron centers calculated with different xc functionals and
the BP86-D3BJ/def2TZVP-optimized HS tris(diimine) iron(II) complexes;
(c) Spin density of selected HS complexes (B3LYP/def2-TZVP, iso surface
value= 0.01 𝑒𝑎0-3); (d) qualitative MO scheme for Fe(II) HS complexes local-
izing electrons on the ligands (red) or on the iron atom (grey). Reproduced
from reference [71].

to the slope , which supports Kulik‘s suggestion for the slope to be mainly influenced by
the type and oxidation state of the metal center and the type of the donor atom.[16] In
addition, as a measure for the redox activity of the ligands, we evaluated electron affinities
(EA) and HOMO–LUMO gaps of the free ligands. Electron affinities were evaluated as
energy differences between the neutral ligand and the radical anion, EA = 𝐸(Ligand−) −𝐸(Ligand0), optimized in their respective charge states.[122, 123] No systematic correlation
of the slope (𝜕Δ𝐸HS-LS𝜕𝑎HF ) or the spin-state energy splitting with the electron affinity or with
the HOMO–LUMO gap of the free ligand was found (see Figure B.13). The ligand of
the outlier BACVOR has the largest electron affinity with −2.32 eV. But, the ligand of the
other outlier complex NENTABmod shows just an average electron affinity of 0.66 kJ mol−1.
Nevertheless, the two outliers NENTABmod and BACVOR exhibit the lowest HOMO–
LUMO gaps (1.57 eV and 1.92 eV, respectively). This indicates that the redox activity could
be connected to the conspicuous behavior of both complexes.
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5.4 SCF Convergence to Local Minima

As we will discuss in this chapter, the positive slope 𝜕Δ𝐸HS-LS𝜕𝑎HF is caused by the reduction
of the ligands upon spin-state transition. For BACVOR B, this is is associated with SCF
convergence of the HS structure to a local minimum. However, for NENTABmod no data
suggesting the reduction of the ligands being the incorrect description of the HS state
has been found. Although this might seem like a trivial technical problem, we consider it
noteworthy as on the one hand, such artifacts may go unnoticed when predicting properties
for individual structures, and on the other hand, this poses a problem for evaluating large
amounts of structures for purposes ranging from machine learning to method validation, in
which it is unrealistic to check every calculation by hand.

Figure 5.6: Characteristic bond length trends in reduced 𝛼-diimine ligands. Reproduced
from reference [71].

In this section, we will discuss the observed abnormalities of the spin-state energy splitting
of NENTABmod and BACVOR B by first looking at characteristic bond lengths and bond
patterns, and then confirm involvement of redox-activity of the ligand by analyzing atomic
numbers of unpaired electrons. As discussed in Section 5.1, HS states are destabilized by
pure xc functionals due to increased SIE by reduced covalency of the metal–ligand bond
of HS structures in comparison to LS structures.[25] The metal–ligand distance 𝑑(Fe−N)
(see Figure 5.6) is expected to be larger for HS complexes than for LS complexes, and
thus Δ𝑑HS-LS(Fe−N) should be positive. This is observed for all complexes except for
NENTABmod and BACVOR B. On average, Fe−N bonds are elongated by 0.17 Å to 0.22 Å
in the HS structure compared to the LS structures. For BACVOR B and NENTABmod,
there is almost no change in bond length comparing the HS and LS structures: TheirΔ𝑑HS-LS(Fe−N) are 0.2 pm and −0.3 pm. Small changes in Fe−N bond length were also
considered the reason for the positive slope of a spin-state transition of the porphin complex
discussed in Section 5.1.[25] This suggests a comparatively high covalent character of the
Fe−N bonds in the HS and LS structures, and therefore no increase of SIE in the HS
structure. This explains the untypical dependence of Δ𝐸HS-LS on HF admixture.[25]
Crystal structures of Fe(II) HS complexes with anionic 𝛼-diimine ligands have also shown
similar short Fe–N bond length.[124, 125]

Another important way in which the electronic structure is reflected in the molecular
structure are bond-length patterns in the 𝛼-diimine ligands: Upon reduction of these
ligands, the imine bonds increase and the C−C bond decreases (Figure 5.6). These trends
are captured in the ratio of the imine to the C−C bond length (𝑑(C−N)𝑑(C−C) ), which increases

28



5.4 SCF Convergence to Local Minima

upon reduction. For all structures, the average value of this ratio ranges from 0.862
(TEDCAJ HS) to 0.967 (EDKUL LS). Among the HS structures, the average ratio 𝑑(C−N)𝑑(C−C)
is largest for the two outliers, 0.955 (BACVOR B) and 0.957 (NENTABmod). The two
complexes are the only ones showing a larger average ratio for the HS structure than for
LS structure. Remarkably, for these two structures, two out of the three ligands have a
larger ratio than the remaining one. This implies that two of them are more reduced than
the other. This again suggests the redox activity of the ligands to be key to the different
sensitivity of Δ𝐸HS-LS to the amount of exact exchange.

Another way of analyzing the redox state of the ligands in the HS structures is to look at the
numbers of unpaired electrons on the atoms. In comparison to atomic partial charges, these
have the advantage of being much less dependent on the choice of the local projector (see
Figure B.3).[126] A one-electron reduction of the ligand results in a radical anion. Therefore,
spin density should be found on the ligand, and the local spin density on the iron center
should be lower in the case of ligand reduction. Without redox-active ligands, a number of
around 4 unpaired electrons on the metal center is expected for d6 HS complexes (Figure 5.5
(d) grey). This is indeed the case for the HS state of all complexes, except for the two outliers
BACVOR B and NENTABmod. Their HS states have less than 2 unpaired electrons on
the iron center (Figure 5.5 (b)). In agreement with the structural characteristics of the HS
structures, unpaired electrons are localized on two of the ligands (Figure 5.5 (c) and (d)
red). As an exception, for BACVOR B, LC-𝜔PBE gives a large number of 3.74 unpaired
electrons on Fe, in contrast to the other xc functionals.

Taking the molecular orbitals (MOs) of LC-𝜔PBE as an initial guess for the single-point
calculations of the HS structure with the other xc functionals not only leads to a lower
SCF energy for M06L, the hybrid, and range-separated xc functionals, but also changes the
dependency of Δ𝐸HS-LS on 𝑎HF (Table 5.1). The corrected Δ𝐸HS-LS is now decreasing with𝑎HF as it does for the others. For TPSS, the SCF did not converge, and for the other two
BP86 and PBE, the same solution as before was obtained for both types of initial guess.
However, stability analysis of all HS wave functions with reduced ligands revealed them to
be stable. This suggests that for BACVOR B’s HS state, two SCF minima close in energy
are present: one with spin density localized mainly on the iron center (A), and one with
spin density partially localized on the ligands (B) (Figure 5.7 (a, red dashed line)). The
presence of a second minimum leads, in this case, to SCF convergence to a local rather
than the global minimum. This might be a general problem for complexes with highly
redox-active ligands.

Table 5.1: Mulliken numbers of unpaired electrons on iron center 𝑛𝛼−𝛽(Fe) of complex
BACVOR B’s Fe(II) HS structure and spin-state energy splittings Δ𝐸HS-LS of
complex BACVOR B determined with the xc functionals converging to different
SCF minima with the default initial guess𝑎 (1) and with electron density of LC-𝜔PBE as initial guess (2).Δ𝐸HS-LS

in kJmol−1 (1)
Δ𝐸HS-LS

in kJmol−1 (2)
𝑛𝛼−𝛽(Fe)

(1)
𝑛𝛼−𝛽(Fe)

(2)
M06L 248.7 216.8 0.54 3.91
TPSSh 268.7 251.8 1.05 3.78
B3LYP 312.4 225.1 1.11 3.73
PBE0 313.5 180.4 1.16 3.81
M06 354.2 151.8 1.22 3.94
CAM-B3LYP 354.3 212.9 1.91 3.70𝜔B97XD 382.0 216.1 1.09 3.66𝑎 Diagonalization of the Harris functional[127]

Finding a lower SCF energy for M06L, TPSSh, B3LYP, PBE0, M06, CAM-B3LYP and
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Figure 5.7: Exemplary illustration of a local and global minima for the SCF total energy as
a function of the MO coefficients: (a) dependence of electronic-strucure minima
for BACVOR’s [L3Fe]2+ on molecular HS structure: Molecular structure op-
timization from electronic-structure minimum A (with all spin density on the
metal center) leads to molecular structure A (green, solid); Molecular structure
optimization from electronic-structure minimum B (with two ligands reduced
and thus carrying spin density) leads to molecular structure B (red, dashed).
(b) minima for HS (dashed line) and LS (solid) structures of [L3Fe]+. Spin
densities from FUFHIYsimp (24) were evaluated with 𝜔B97XD/def-2TZVP
(iso surface value = 0.01). Reproduced from reference [71].

𝜔B97XD proves that the minimum B is a local minimum for these approximate xc
functionals. For TPSS, no clear statement is possible due convergence issues and for BP86,
PBE, and TPSS, convergence to minimum B in all cases suggests that, in contrast to the
other xc functionals, these xc functionals consider this minimum a global minimum of the
total SCF energy. The molecular structure is expected to influence the energy difference
between both minima A and B, and vice versa, molecular structure optimization will be
influenced by SCF convergence to either A or B (Figure 5.7 (a)). Similar considerations
are relevant in other contexts, for example for structural diradical character [128] and for
mixed-valence systems [129, 130]).

As discussed above, our standard protocol the molecular structure optimization of
BACVOR with BP86 starting from the crystal structure, yields a HS structure with larger𝑑(C−N)𝑑(C−C) for two of the three ligands and shorter Fe–N bond length compared to the other
HS structures (BACVOR B, Figure 5.7 (a) red dashed line). This fits to the SCF minimum
B, where the ligands are more reduced compared to A. Preoptimization of the molecular
structure using M06-D3/def2-TZVP (a single-point calculation with this xc functional on
the crystal structure leads to the electronic structure A) and subsequent optimization
with BP86-D3BJ/def2TZVP results in a structure with an average Fe–L bond length of
2.16Å and an average 𝑑(C−N)𝑑(C−C) of 0.92 that fits the SCF minimum A (Figure 5.7 (a) green
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solid line). A subsequent single-point calculation using BP86-D3BJ/def2-TZVP revealed a
SCF convergence to minimum A. In contrast to the HS structure obtained by BP86-D3BJ
optimization, the energy of this new molecular HS structure is lower by 67.3 kJ mol−1 (as
evaluated with BP86-D3BJ). This shows that molecular structure optimization might lead
to a non-minimum molecular structure due to the presence of the two SCF minima. A
test using the Orca package version 5.0.2[117–119] for molecular structure optimization
of BACVOR (HS) starting from the crystal structure resulted in the identical structure as
obtained with Gaussian and excluded the observed structure resulting from an artifact of
the quantum chemistry program package.

The difference in the energy between the two HS structures BACVOR A and BACVOR
B is larger for larger amounts of exact exchange (Figure 5.5 (a) red and red dashed line).
Therefore, the pure xc functional BP86 is more prone to erroneous convergence of the SCF
algorithm compared to hybrid xc functionals. However, a single-point calculation with
TPSSh on the M06-D3/def2-TZVP-preoptimized BACVOR HS molecular structure A still
converged to a local SCF minimum, indicated by the reduced number of electrons on the
iron center. Thus, despite the improved HS structure, both SCF minima A and B are still
close and can lead to erroneous SCF convergence.

5.5 Reduced Tris(diimine) Iron Complexes as a
Challenging Test Case

So far, we have seen erroneous SCF convergence and molecular structure optimization
towards a local minimum for strongly redox-active ligands in Fe(II) complexes. As we have
discussed in Section 5.1, those ligands have low-lying 𝜋-orbitals, and electrons from a metal
center might be localized on these. This reduction of the ligand can also be favored by a
more reduced metal center with higher-lying 𝑑-orbitals. Therefore, reduction the of the
complexes should lead to the errors discussed above for an increased amount of complexes.
Formal Fe(I) complexes [L3Fe]+ were optimized in HS (quartet) and LS (doublet) states,
and spin-state energy splittings were evaluated to test this hypothesis (Figure 5.8(a)). For
complex NOKFOJ (35) the coordination number dropped from 6 to 5 upon molecular
structure optimization for the HS as well as the LS structure. As these complexes were no
longer octahedral, NOKFOJ has been left out for the [L3Fe]+ complexes. If the additional
electron is placed on a ligand instead of on the iron center, the resulting HS complex
[L2L –FeII]+ represents an antiferromagnetically coupled quartet (see Figure B.4). For this
reason, broken symmetry calculations with an fragment based initial guess (fragment 1: Fe
(+2, quintet), fragment 2: all ligand atoms (-1, triplet)) were performed on the BACVOR,
NENTABmod, and HAXHOF HS complexes (B3LYP/def2-TZVP) as exemplary test cases.
However, no lower energies were obtained for these cases. In contrast to the [L3Fe]+2

complexes, spin contamination and the number of strongly correlated electrons evaluated
by FOD analysis are considerably increased for the reduced complexes (see Figure B.14).
This is consistent with studies by Head-Gordon et al., according to which TM complexes
in low oxidation states tend to show this spin symmetry breaking and multi-reference
character.[131]

SCF convergence to saddle points in MO coefficient space can be identified by an internal
instability of the wave function. Stability analyses have been performed for all single point
calculations on the reduced complexes. Convergence to such saddle points (168 cases) as
well as local SCF minima (27 cases) poses a challenge for the calculation of these reduced
systems (Figure 5.8 (b)). Especially the range-separated xc functionals are prone to this
behavior. While standardized stability analysis can identify convergence to saddle points,
local minima are not recognized. Potentially problematic cases can be identified by large
positive spin-state energy splittings deviating from the above observed ordering among the
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xc functionals, combined with decreased numbers of unpaired electrons on the iron center
(Figure B.5) for the HS structures. Taking orbitals from other xc functionals (BP86 (HS)
or B3LYP (LS)) as an initial guess does not only yield a lower energy for such cases but
also poses a more cost efficient alternative to the optimization of the wave function in cases
were SCF convergence to saddle points occurred.

As for the Fe(II) complexes ([L3Fe]2+), the ordering of the spin-state energy splittings as a
function of exact exchange admixture is reversed for the reduced complex of NENTABmod
as well as BACVOR. Comparing their HS and LS structures reveals that the Fe−N bond
lengths are almost the same for their HS and LS structures. Also, they are the only complexes
with larger average 𝑑(C−N)𝑑(C−C) in the HS structures.

Largely deviating numbers of unpaired electrons from the ideal values for iron (II) centers
are indicators for convergence to local minima or saddle point that have large impact on
the total SCF energy. They indicate a potentially wrong description of the redox state
of the iron center and the ligand. Properly defining the metal oxidation state is a topic
of great interest in current research and could be a helpful means for further analysis
of such complexes.[132, 133] Numbers of unpaired electrons on iron of around 0 for LS
structures and around 3.5 for HS structures suggest that the additional electron is localized
on the ligands, while the iron centers remain in oxidation state two for all complexes
despite their formal Fe(I) character. At the example of spin densities of FUFHIYsimp
(24) in Figure 5.7 (b) (dashed line), it can be seen that the global SCF minimum of the
HS structures is described best by minimum A. The local minimum has much less spin
density localized on the metal center and can be described by minimum B (Figure 5.7
(b)). In contrast to that, for the LS structure, the local minimum localizes more spin
density on the metal center (A), and the global minimum localizes spin density on the
ligands (B) (Figure 5.7 (b) (solid line)). This implies the ligands are less reduced at the
local minimum. As expected for the reduced complexes, the increased involvement of
the ligands’ redox activity makes convergence to the global SCF minimum more challenging.

32



5.5 Reduced Tris(diimine) Iron Complexes as a Challenging Test Case

Figure 5.8: (a) Spin-state energy splittings of reduced tris(diimine) complexes [L3Fe]+,
evaluated from single-point calculations with different xc functionals; Com-
plex NOKFOJ (35) has been left out due to decoordination of one of the
ligands. The labels of the xc functionals are ordered in the same manner as
their spin-state energy splittings. For each complex, the molecular HS and LS
structures were optimized with BP86-D3BJ/def2TZVP. (b) Numbers of single
point calculation where the SCF convergence towards local minima or saddle
points has been observed for HS and LS [L3Fe]+ complexes. 924 single point
calculations have been performed for the reduced complexes. Of these 169
converged to saddle points and 28 to local minima. Reproduced from reference
[71].
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5.6 Conclusions

The sensitivity of spin-state energy splittings on the exact exchange admixture (𝜕Δ𝐸HS-LS𝜕𝑎HF )
is known to be dependent on metal–ligand interactions. The redox activity of ligands
is related to the energies of their unoccupied 𝜋-orbitals and is expected to influence the
strength of this metal–ligand interaction. In contrast to what one might expect based on
these considerations, redox activity of the ligands does not correlate much with 𝜕Δ𝐸HS-LS𝜕𝑎HF

for our set of homoleptic octahedral tris(diimine) iron(II) complexes. 𝜕Δ𝐸HS-LS𝜕𝑎HF is generally
highly negative for all of them. The spread of the spin-state energy splittings between
pure xc functionals (0 % exact exchange) and M06 (27 % exact exchange) ranges for
the [L3Fe]2+ complexes from 134.4 to 189.5 kJ mol−1, with an average of 145 kJmol−1,
and from 91.2 to 174.6 kJ mol−1 for the reduced [L3Fe]+ complexes, with an average of
116 kJ mol−1. Regardless of the large spread among the xc functionals, with the right choice
of functional, the experimentally determined ground spin-states are reproduced well for the
investigated complexes. The best performing functionals here are M06L and LC-𝜔PBE,
which correspond to an exact exchange admixture of around 15 to 19 percent.

In two cases, we find a change of the oxidation state of the ligand when going from one
spin-state to the other. This is accompanied by a positive slope 𝜕Δ𝐸HS-LS𝜕𝑎HF . The two cases
are the iron(II) complexes BACVOR and NENTABmod. Such transitions are in principle
chemically reasonable, as HS states are expected to reduce the ligand more likely than
LS states (Figure 5.1). However, we found that for BACVOR, the reduction of the ligand
originates from SCF convergence towards a local minimum which is around 35 kJmol−1

higher in energy than the global one. Starting from the “wrong” SCF solution leads to an
optimized molecular structure for BACVOR’s HS state which was not the global minimum.
Conversely, a “good” molecular structure does not guarantee convergence to the matching
lowest-energy SCF solution, as we observed for the HS structure of complex BACVOR
for some functionals. For NENTABmod, only the “outlier” positive-slope SCF minimum
could be converged, so that the question of chemically reasonable structure vs. SCF artifact
could not be answered. In the reduced complexes [L3Fe]+, where the redox activity of the
ligand is more important, we observed a strong increase of instances of SCF convergence
towards local minima in our data set. One might argue that this is associated with stronger
static correlation in complexes with redox-active ligands, and that approximate DFT is
simply not suitable for such systems and multireference methods should be employed
instead. However, at the time being DFT is the only method which can optimize molecular
structures for such systems with reasonable accuracy and in a routine fashion.

Correlated electronic structure methods such as density matrix renormalization group
(DMRG) might be suitable to avoid such troubles.[134–136] However, these methods are
are too expensive for dealing with large amounts of complexes or for routine structure op-
timizations. Fortunately, critical cases can be detected by deviations from the majority of
complexes in a data set, in particular (1) in spin-state bond lengths ratios (e.g., in our case,
Fe–N bond lengths in HS and LS structures are very similar for the two critical cases, while
they deviate considerably for the majority of cases), (2) in numbers of unpaired electrons
on the metal center and (3) in the sign of 𝜕Δ𝐸HS-LS𝜕𝑎HF . Of course, such deviations could al-
ways point to an interesting chemical structure rather than an SCF artifact. But first, for
a set of chemically related systems as studied here, artifacts would not appear too unlikely
an explanation, and second, if they were “chemically real”, it would still be interesting
to automatically scan for such interesting observations in data sets too large to scrutinize
by hand. In such automated protocols, (1) and (2) can be implemented directly as cost-
efficient tests. The computational cost for the check of (3) could be achieved by a quick
screen of Δ𝐸HS-LS by single-point calculations for several amounts of exact exchange, with-
out optimizing molecular orbitals. For potentially critical cases, we also recommend testing
several initial guesses with reduced and not reduced ligands based on, e.g., fragment guesses
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as implemented in Jaguar[137] or employing restrained optimizations.[138] Also, varying
characteristic structural features such as Fe–L bond lengths in starting structures can push
molecular structure optimization as well as SCF convergence towards different potentially
relevant minima.
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6.1 Introduction

Carbenes are pivotal intermediates in numerous organic chemistry reactions[26, 27], distin-
guished by a divalent carbon atom with two non-bonding orbitals containing two electrons.
Depending on the spin configuration of these electrons, carbenes can exist either as singlet
states, where the electrons are paired, or as triplet states, where the electrons remain un-
paired. The spin state of a reaction intermediate or reactant significantly influences the
reaction pathway and outcome [28, 29]. While stable singlet carbenes have been synthesized
[29, 139, 140], carbenes are typically highly reactive and exhibit short lifetimes, complicat-
ing their experimental characterization. Consequently, computational methods have become
essential for studying these reactive species [30–33].

Figure 6.1: a) Illustration of adiabatic (ad) and vertical (vert) spin gaps. Adiabatic spin
gaps are the difference between energies of the triplet state for the optimized
triplet molecular structure (𝐸t(Rt)) and the energy of the singlet state for the
optimized singlet structure (𝐸s(Rs)), Δ𝐸t−s

ad = 𝐸t(Rt)−𝐸s(Rs). Vertical spin
gaps are the difference between energies of the triplet state for the optimized
singlet molecular structure (𝐸t(Rs)) and 𝐸s(Rs) (Δ𝐸t−s

vert = 𝐸t(Rs)−𝐸s(Rs)).
b) Explanation of the notation of the differently calculated spin gaps used
in this work. Δ𝐸 always refers to the energy difference between a triplet
and a singlet spin set (a spin gap). The superscript (s-t) as used in a) is
omitted for clarity. The superscript refers to the method used for the energy
calculation of the triplet, as well as singlet state (single point calculations). No
superscript refers to the reference spin gaps. The index contains information
on the method used for the optimization of molecular structures. Vertical
spin gaps are calculated on singlet structures only. Adiabatic spin gaps use
molecular structures optimized in singlet as well as triplet states. Reference
structures (ref) are optimized by CASSCF (singlet) and B3LYP (triplet). Blue
highlighting is used for calculations used for the spin state energies, and green
highlighting is used when referring to molecular structure properties.

The importance of carbenes prompted the group of Lilienfeld et al. to undertake a large-scale
study on the electronic structures of carbenes, resulting in the creation of the QMspin dataset
[1]. Derived from the QM9 dataset [141], QMspin includes organic molecules containing up to
nine heavy atoms (C, N, O, F) and provides multireference level spin gaps of carbenes, which
were categorized based on their neighboring groups. These groups range from 𝜎-electron-
withdrawing and 𝜋-electron-donating neighbors, to aliphatic and aromatic 𝛼-substituents,
and even those with 𝜎- and 𝜋-electron-withdrawing characters, such as cyano and carbonyl
groups. The dataset spans a wide range of adiabatic spin gaps, from −70 kJ mol−1 to
300 kJ mol−1. These gaps are defined as the energy difference between the triplet state,
with its corresponding optimized molecular structure, and the singlet state, with its own
optimized structure (Δ𝐸t−s

ad = 𝐸t(Rt) − 𝐸s(Rs), Figure 6.1 a). For the QMspin dataset
CASSCF and DFT with the B3LYP exchange-correlation(xc) functional were employed for
these optimizations. In contrast, vertical spin gaps are defined as the energy difference
between the singlet and triplet states calculated at the same molecular geometry, typically

38



6.1 Introduction

the singlet structure (Δ𝐸t−s
vert = 𝐸t(Rs) − 𝐸s(Rs), Figure 6.1 a).

The molecular structure optimization is a key factor of the computational time in terms of the
calculation of adiabatic spin gaps (see Section 6.3). Moreover, a linear relationship between
vertical and adiabatic spin gaps calculated with three xc functionals was reported for a set of
14 halocarbenes.[142] The authors recognized an almost constant energy contribution from
the geometrical relaxation (𝐸t(Rs) vs. 𝐸t(Rt)). This indicates that vertical spin gaps could
serve as a computationally less demanding alternative to adiabatic gaps. One of the goals of
this work is to challenge this with the QMspin dataset that provides a significantly greater
coverage of chemical space compared to the halocarbenes.

Over the past three decades, Kohn–Sham DFT has become the most widely used electronic
structure method in computational chemistry, due to its balance of reasonable accuracy and
computational efficiency.[143, 144] Ongoing research continues to refine exchange-correlation
functionals for diverse applications, including spin gap calculations (see also Chapter 5).
Meanwhile, machine learning approaches have gained prominence for their potential to sig-
nificantly reduce computational time while maintaining or improving accuracy. This has
led to increased focus on machine learning (ML) in computational chemistry [38, 69, 145–
152], particularly for predicting molecular properties such as spin state energies.[34–41] In a
conceptually different approach, ML has been applied as tool to recommend the best xc func-
tional for calculating vertical spin splitting energies of transition metal complexes.[153] Also
combining the possibilities of ML and electronic structure methods is the Δ-ML approach
that instead of predicting molecular properties directly adds machine learned corrections to
the calculated value.[42]

While molecular representation and descriptor selection for ML have been extensively dis-
cussed in the literature [43–45], the impact of the origin of molecular structures on ML
predictions remains underexplored. Hence, this work aims to investigate trade-offs between
accuracy and computational cost based on three aspects, using the reference data from
QMspin:

1. The number of optimized molecular structures needed: Molecular graph-based de-
scriptors for ML do not require a 3D molecular structure. For vertical and adiabatic
spin gaps, one and two optimized molecular structures are required, respectively.

2. The method used for molecular structure optimization: DFT (B3LYP) and the
semiempirical PM6 method are used in this work.

3. The method used for the calculation/prediction of the spin gaps: DFT, ML, and Δ-ML
as a hybrid approach are considered.

The combination of these three aspects leads to a variety of ways to obtain spin gaps, as
illustrated in Figure 6.2.
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Figure 6.2: Overview of methods to obtain spin gaps. ML can be applied to molecular
graph-based descriptors, and no optimized molecular structures are needed.
For vertical spin gaps, only singlet molecular structures (Rs) are required, while
for adiabatic spin gaps, both singlet and triplet molecular structures (Rs+Rt)
are needed. These molecular structures can be obtained by optimization with
different methods. Based on the different structures, different methods can
be applied to obtain the spin gaps. The path used for the QMspin dataset is
highlighted in red.
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6.2 Computational Details

All KS-DFT calculations were performed using the Gaussian 16 program package[99].
Molecular structure optimizations were carried out with the B3LYP[105] exchange-
correlation functional combined with the def2-TZVP[103, 104] basis set or with the semi-
empirical PM6[154] method.

Single-point calculations on optimized molecular structures were conducted with various
exchange–correlation (xc) functionals, including B3LYP[105], M06[106], TPSSh[107, 108],𝜔B97XD[109], CAM-B3LYP[62], PBE0[110], BP86[100, 101], PBE[111, 112], TPSS[107],
M06L[113], and LC-𝜔PBE[114, 115], all combined with Ahlrichs’ def2-TZVP[103, 104] basis
set. SCF convergence criteria were set to “tight” (change in RMS density matrix < 10−8,
change in RMS MAX density matrix < 10−6, and change in RMS energy < 10−6 au). Atomic
numbers of unpaired electrons (𝑛𝛼−𝛽 = 𝑛𝛼 − 𝑛𝛽) were extracted based on Mulliken popu-
lation analysis. In Gaussian output files, these are referred to as atomic “spin densities.”
Similarities between two molecular structures were evaluated using the minimal root-mean-
square deviation (RMSD) of the Cartesian coordinates with the RMSD package[155], which
implements Kabsch[156] and Quaternion[157] algorithms for aligning the molecules.

Figure 6.3: Workflow of the machine learning process and model validation used for the
prediction of spin gaps in carbenes.

Machine learning models were implemented using Scikit-learn[64]. The model setup
including hyperparameters are given sample code in Listing C.1. Molecular descriptors
LMBTR, SOAP and ACSF were constructed using DScribe[63]. Parameters can be taken
from sample code in Listing C.2 An autocorrelation function descriptor (AC) with a maxi-
mum depth of 3 was constructed as implemented in MolSimplify[158, 159]. The validation
of ML models was achieved by repeated random train-test splits as depicted in Figure 6.3.

international chemical identifier (InChI)[160] strings were extracted using Open Babel
Version 3.0.0[161]. Unless otherwise noted, for scaling of the feature vectors the standard
scaler as implemented in Scikit-learn has been used on all 2841 carbenes prior to the
test-train split. In this standard scaler, each feature is reported relative the mean of the
corresponding feature dimension for the full data set and divided by its variance.

6.3 Data Set Construction

The QMspin dataset[1] is constructed from the QM9 data set[141] and provides 3743 car-
benes with MRCISD-F12+Q/cc-pVDZ-F12 calculated adiabatic spin gaps Δ𝐸ad,ref[1], which
we take as reference. The molecular structures in the QMspin dataset have been optimized
with CASSCF(2e,2o)/cc-pVDZ-F12 and B3LYP/def2-TZVP for singlet and triplet carbenes,
respectively.[1] From this carbenes, those that exhibited rearrangements during molecular
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structure optimization with B3LYP (singlet carbenes) or with PM6 (singlet and triplet car-
benes) were excluded. This resulted in a final data set of 2841 carbenes.

Rearrangements result in more stable molecules compared to the artificially constructed
carbenes. Thus, spin gaps calculated with these structures result in spin gaps that are
outside the expected range of −70 kJmol−1 to 300 kJ mol−1. Rearrangements in the singlet
molecular structure result in a lowering of Δ𝐸s and thus in spin gaps above that range
(Δ𝐸t−s = Δ𝐸t − Δ𝐸s). In contrast to that, rearranged triplet molecular structures cause
spin gaps below that range. This can be visualized by a plot of kernel density estimation
(KDE)1 of the adiabatic spin gaps (Figure 6.4 a). An explanation of the used notation for
the differently calculated spin gaps can be found in Figure 6.1 (b). In the top plot spin gaps
of the uncut dataset (3743 carbenes) is shown. Δ𝐸DFT

ad,B3LYP (green) shows numerous spin
gaps larger than 300 kJ mol−1 as highlighted by the green up pointing arrow. These spin
gaps are calculated with different singlet molecular structures compared to Δ𝐸DFT

ad,ref (orange
curve). The latter are calculated with the molecular structures provided by QMspin. This
is indicative for the above mentioned rearrangements during the B3LYP optimization of the
singlet carbenes. On the other hand, Δ𝐸𝐷𝐹𝑇

a𝑑,𝐵3𝐿𝑌 𝑃 show fewer spin gaps around 0 kJ mol−1

compared to Δ𝐸𝐷𝐹𝑇
a𝑑,𝑟𝑒𝑓 (down pointing arrow). This small spin gaps are mostly observed for

carbenes with aliphatic neighboring groups, which seem to be prone to undergo ring-opening
rearrangements or 𝛼H-shifts (Figure 6.4b top). Also for the spin gaps calculated with PM6-
optimized molecular structures Δ𝐸DFT

ad,PM6 (red curve) a few spin gaps outside −70 kJ mol−1

to 300 kJ mol−1 have been observed.

Figure 6.4: (a) Kernel density estimation (KDE) (gaussian kernel, width=5) of adiabatic
spin gaps for the full data set (top) and the cut data set (bottom). (b) Exam-
ples of molecular structure changes during molecular structure optimization.
Rearrangements that change the chemical identity of the molecules are ex-
cluded from the data set (top). Changes in bond angles and rotamers result
in large RMSD but do not result in a different chemical identity and are kept
in the data set (bottom).

Rearrangements change the chemical identity of the molecule (Figure 6.4b top). Thus,
calculating spin gaps with these structures and comparing them to carbenes is not useful.
Early attempts to exclude rearranged molecules were based on RMSD and evaluating the
neighboring atoms of the carbene carbon. This method failed as on one hand the number
of neighbors does not change for all rearranged carbenes (e.g. cumulenes). Therefore,
some rearranged carbenes remained undetected. On the other hand large RMSD can also

1The KDE can be considered as a smoothed histogram.
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be caused by rotations around 𝜎-bonds or changes in bond angles (Figure 6.4 b). These
changes do not influence the chemical identity and should therefore not be excluded. The
comparison of InChI[160] strings generated from the xyz-files before and after molecular
structure optimization proved to be a simple and straightforward way to exclude molecules
with a changed chemical identity. This can be seen from the distribution of spin gaps after
the exclusion of rearrangements by this method (Figure 6.4 a, bottom). For Δ𝐸DFT

ad,B3LYP
and Δ𝐸DFT

ad,PM6 no spin gaps outside the expected range are observed. Additionally, the
distribution of Δ𝐸DFT

ad,B3LYP within the expected range does not change much compared to
uncut dataset. Hence, no carbenes have been falsely removed.

6.4 Computing Times

For all DFT single-point calculations and the molecular structure optimization of the sin-
glet carbenes with B3LYP (Rs

B3LYP), the molecular structure optimization with PM6 of
singlet (Rs

PM6) and triplet (Rt
PM6) carbenes, the CPU time has been analyzed (Figures C.1

and C.2). On average, DFT single-point calculations took 13.8min, the optimization with
B3LYP took 119 min, and the optimization with PM6 took 2.9 min. For the single-point
MRCI calculation of QMspin, a mean CPU time of 7.5 h was reported by Heinen et al..[162]
The CPU time for the CASSCF optimizations of QMspin was reported to be 4.1 h.[162]
As different machines have been used for the calculations in this work and for the gener-
ation of the QMspin dataset, these are not directly comparable. Nonetheless, we want to
compare the computational cost of an ML or Δ-ML approach to pure DFT calculations.
Therefore, we assume the CPU timings in this work and those from the QMspin dataset are
comparable. Additionally, we assume that the train-test split does not influence the mean
computational time of the train and test sets. Lastly, it is assumed that the time for model
fitting and prediction of the test set is negligible for all ML processes compared to the elec-
tronic structure calculations. Except for some combinations of Gaussian process regression
(GPR) with very large descriptors (LMBTR or SOAP, see Figure C.9), the last statement
is valid, and including the model fitting, the prediction per molecule costs less than 1 s.
Unlike DFT calculations, which are independent of the reference calculations, with all these
assumptions, ML processes depend linearly on the training set size, as shown in Figure 6.5.
ML processes are only more efficient compared to DFT when the molecular structure quality
used for ML is lower than the one for DFT and training sets are small. With a training
set size larger than 800 carbenes, DFT calculations are more time-efficient. Due to the very
small CPU times of the PM6 optimization, it is almost negligible compared to the reference
calculation. Hence, ML with Rs+t

PM6, Rs
ad,PM6, as well as molecular graph-based descriptors,

do not differ significantly. The last two cases are therefore not shown in Figure 6.5.

While B3LYP optimization timings for QMspin are not provided by Heinen et al., a mean
CPU time for B3LYP optimizations of the QM9 dataset is presented (4.4min).[162] Although
the QM9 dataset is different from QMspin, the size of the molecules is similar. Therefore, the
CPU times for the B3LYP optimization of QM9 might be a realistic approximation. Based
on that, CPU times for B3LYP optimizations are 56 times faster compared to CASSCF op-
timizations. With this updated approximation, relative computing times almost exclusively
dependent on the amount of CASSCF optimizations and MRCI single-point calculations
(Figure C.3). Under these conditions, any ML that needs training sets larger than 600 car-
benes has longer CPU times compared to DFT calculations based on the reference molecular
structures. Whether ML or Δ-ML are still useful compared to DFT calculations depends
on their performance in predicting the spin gaps. To evaluate this, in Section 6.5, the per-
formance of DFT based on different molecular structures will be analyzed first. Afterwards,
the performance of ML and Δ-ML will be analyzed in Sections 6.6 and 6.7, respectively.
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Figure 6.5: Approximation of the CPU timing for the DFT calculations, ML, and Δ-
ML of spin gaps in carbenes relative to the CPU times of the reference spin
gaps Δ𝐸ad,ref (1 CASSCF optimization, 1 B3LYP optimization, and 2 single-
point MRCI calculations per carbene). It is assumed that the time needed for
the ML process is negligible in comparison to the electronic structure calcula-
tions. Further, it is assumed that 𝑡(optimization CASSCF) is approximately 2𝑡(optimization B3LYP).
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6.5 Influence of Molecular Structures on DFT
Calculated Adiabatic and Vertical Spin Gaps

Before looking into the ML and Δ-ML approach for predicting spin gaps in carbenes, in this
section, the performance of DFT for the calculation of spin gaps in organic carbenes is exam-
ined based on different molecular structures. This includes various exchange–correlation (xc)
functionals such as pure, hybrid, and range-separated ones. While the reference molecular
structures employ the accurate yet computationally costly CASSCF method for the opti-
mization of the singlet carbenes (Rs

ref), purely DFT-optimized molecular structures (B3LYP
xc functional) as well as the computationally very efficient semi-empirical PM6 method are
also considered here. An explanation of the notation used to differentiate between these
differently obtained spin gaps is shown in Figure 6.1 b.

Figure 6.6: Examples of carbenes where all 11 DFT xc functionals give errors <
−50 kJ mol−1. The number of unpaired electrons on the carbene carbon has
been evaluated using Mulliken population analysis. Spin densities are given
with an isosurface value of 0.01 𝑒 𝑎0−3.

Figure 6.8 provides an overview of the error distributions for spin gaps calculated with each
xc functional on the different molecular structures. Errors are given relative to the reference
spin gaps (Error = Δ𝐸DFT − Δ𝐸ad,ref). The rows in the Figure use the same structures,
while the columns group pure, hybrid, and range-separated xc functionals.

First, the adiabatic DFT spin gaps calculated with the same structures as the reference
calculation (Δ𝐸DFT

ad,ref) will be analyzed. Their error distributions are depicted in the first row
of Figure 6.8. Additionally, each of these error distributions for individual xc functionals is
described by MSE, MAE, and the 𝑄95 error measure. Those are depicted in the top, middle,
and bottom of Figure 6.7, respectively. For the MSE error bars show the standard deviation
of the errors. While the MSE reflects the accuracy of a prediction the standard deviation is a
measure of its precision. For the MAE the standard deviation of absolute errors is shown by
the error bar. The combination of low accuracy and good precision are generally indicative
of systematical errors. There is a high chance that these can be corrected by additionally
applying an ML approach. High precision at low accuracy on the other hand might not
easily be corrected.Δ𝐸DFT

ad,ref show the highest precision compared to spin gaps calculated with different struc-
tures. This is evident from the small standard deviation of the MSE in Figure 6.7 (a more

45



6 Machine Learning Guided Strategies Towards Spin-Gaps in Carbenes

detailed view can be found in the supporting information in Figure C.4). However, the error
distribution for Δ𝐸DFT

ad,ref is shifted towards negative errors most strongly (most negative
MSE), and the differences among the xc functionals are the largest. This can be clearly seen
when comparing the MAE or MSE with the other methods. Negative errors result from
triplet spin states being more favored.

Interestingly, spin gaps of the pure xc functionals BP86, TPSS, and PBE are most negative
among the functionals. That is, pure functionals favor the triplet (high-spin) state more
than hybrid functionals. That is the opposite behavior observed when calculating spin gaps
in transition metals, as discussed in more detail in Chapter 5. Although the spin gaps
calculated with M06, which has the largest amount of exact exchange (𝑎𝐻𝐹 = 27 %) among
the xc functionals tested in this study are the least negative, the dependence on the exact
exchange is not simply inverted if compared to the TM complexes. For carbenes, there is no
clear linear dependence on 𝑎𝐻𝐹 , as evidenced by the strong negative shift of the spin gaps
of PBE0 (𝑎𝐻𝐹 = 25 %). The functionals working well for carbenes are different from those
working well for TM complexes discussed in Chapter 5. The best-performing xc functional
is M06 (27% exact exchange) with a MAE of 7.6 kJ mol−1 and 𝑄95 of 25.5 kJmol−1, making
it the best functional choice for 89% of the carbenes when using the reference molecular
structures.

All distributions of the adiabatic spin gap errors of Δ𝐸DFT
ad,ref evaluated for the reference

structures (first row Figure 6.8) are unsymmetrical and show a tail at the negative side of
the distribution. These very large negative errors have been observed for carbenes conjugated
to unsaturated or aromatic systems (Figure 6.6). For these systems, DFT calculations quite
often converge to a solution where the spin density is delocalized onto the conjugated system,
instead of it being localized on the carbene carbon. In accordance with this, an analysis
of the number of unpaired electrons on the carbene carbon (𝑛𝛼−𝛽∶C ) shows that there is a
correlation with the absolute error of Δ𝐸DFT

ad,ref. for most xc functionals (see Figure C.6). The
largest correlation was observed for B3LYP (linear fit: 𝑅2 = 0.77, Figure C.7). However,
the linear correlation for LC-𝜔PBE is very weak (𝑅2 = 0.17, Figure C.8).

Interestingly, all DFT xc functionals discussed here outperform Δ𝐸CASSCF
ad,ref precisionwise

(see error bar on yellow bar in Figure 6.7). Due to additionally better accuracy of the four
best xc functionals, those perform better than CASSCF by any error measure tested here.

For Δ𝐸DFT
ad,B3LYP, where both triplet and singlet molecular structures were optimized with

B3LYP, errors are more symmetrically distributed compared to Δ𝐸DFT
ad,ref (Figure 6.8, second

row). The shift towards negative errors is much less pronounced, resulting in better overall
performance for each xc functional. Due to using molecular structures of the same quality for
singlet and triplet carbenes error compensation might occur. 𝜔B97XD, CAM-B3LYP, M06,
and B3LYP perform best with 𝑄95 values of 23.2 kJ mol−1, 24.0 kJ mol−1, 24.5 kJ mol−1,
and 24.7 kJmol−1, respectively (Figure 6.7, bottom row). While 𝑄95 values are improved
compared to Δ𝐸M06

ad,ref, the MAEs (8.0 kJmol−1, 8.1 kJ mol−1, 8.7 kJ mol−1, and 9.1 kJ mol−1,
respectively) are not.

Although the quantitative differences for the MAEs and 𝑄95 values compared to Δ𝐸M06
ad,ref

are small, this demonstrates the importance of the choice of error measure for determining
the quantitatively best choice.

The difference in the performance between Δ𝐸DFT
ad,ref and Δ𝐸DFT

ad,B3LYP stems only from the
differently optimized molecular singlet structures. Although the computationally more ex-
pensive CASSCF-optimized singlet molecular structures are considered more accurate com-
pared to the B3LYP-optimized ones, the latter are energetically preferred by not only the
B3LYP functional but all xc functionals tested. This explains the systematic favoring of
the B3LYP-optimized triplet carbenes observed for Δ𝐸DFT

ad,ref and shows that more accurate
molecular structures do not necessarily result in more accurate predictions.

For Δ𝐸DFT
ad,PM6, which is determined based on PM6-optimized singlet and triplet structures,

the accuracy (represented by the MSE) is very similar to Δ𝐸DFT
ad,B3LYP (Figure 6.7, top).
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However, the precision (standard deviation) of Δ𝐸DFT
ad,PM6 is much worse, resulting in poorer

performance compared to Δ𝐸DFT
ad,B3LYP for all xc functionals.

Now, the focus will be on to the vertical spin gaps, which are calculated using the molecular
structure of the singlet carbene only. These errors are generally expected to shift towards
more positive values due to a systematic favoring of the singlet carbene, for which the
molecular structure has been optimized.

This shift is evident in the case of Δ𝐸DFT
vert,B3LYP

2, which exhibits very large errors and a
broad error distribution across all xc functionals. The performance of these vertical spin gap
predictions is even worse than simply predicting the spin gap of each carbene as 69 kJ mol−1,
which is the mean of all Δ𝐸ad,ref. This comparison is visualized in Figure 6.7, where the
standard deviation (MSE) and error measures calculated from this prediction are indicated
by black horizontal lines.

In contrast, Δ𝐸DFT
vert,PM6 performs surprisingly well, with errors more evenly distributed

around 0 kJmol−1. Some xc functionals even show better performance with these vertical
gaps compared to the adiabatic spin gaps. Nevertheless, the distribution of errors remains
broad. When compared to spin gaps calculated based on other molecular structures, the
differences in performance among the xc functionals are relatively small. This indicates
that the choice of molecular structure optimization method plays a significant role in the
accuracy of the predicted spin gaps.

Vertical spin gaps calculated on the CASSCF-optimized singlet structures have been pro-
vided for CASSCF and the reference MRCI method.[1] For both methods, the expected
preference of singlet carbenes has been observed. Interestingly, this preference is larger
for MRCI than for CASSCF (see Figure C.4). This results for CASSCF in a comparable
performance to Δ𝐸DFT

vert,PM6 and a worse performance for Δ𝐸MRCI
vert,CASSCF.

2All single-point calculations terminated normally, and no convergence issues were observed to cause the
large errors.
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Figure 6.7: Errors of DFT predictions for spin gaps relative to MRCI calculated adiabatic
spin gaps (Δ𝐸𝐷𝐹𝑇 − Δ𝐸ad,ref) evaluated by MSE, MAS and 𝑄95. Black er-
ror bars indicate standard deviation of signed errors (top) and absolute errors
(middle). The black horizontal line is the error measure resulting from pre-
dicting the constant 69.1 kJ mol−1, the mean of Δ𝐸ad,ref, for each carbene.
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Figure 6.8: Kernel density estimate of DFT spin gap errors (kernel=’gaussian’, width=0.5)
between −100 kJmol−1 and 100 kJmol−1. Errors are given relative to the
MRCI spin gaps (Δ𝐸DFT − Δ𝐸ad,ref). For each row the same molecular struc-
tures have been used. For the first three rows, adiabatic spin gaps with op-
timized singlet and triplet molecular structures have been calculated. The
bottom two rows show the errors of vertical spin gaps that only employ opti-
mizes singlet molecular structures. Columns contain the error distributions of
the spin gaps calculated with sets of the same xc functionals. In the columns,
pure, hybride and range separated xc functionals are grouped together from
left to right.

49



6 Machine Learning Guided Strategies Towards Spin-Gaps in Carbenes

6.5.1 Differences in Molecular Structures

Figure 6.9: Violin plots of RMSD between structures evaluated for different descriptors
and xyz coordinates. Blue shaded areas show the distribution of RMSDs for
individual carbenes (KDE with gaussian kernel). The Mean of each distribu-
tion is represented by black dots and 𝑄95 values are given by the blue vertical
lines. Features have been scaled before evaluating the RMSD. comparison of
B3LYP- and PM6-optimized structures with the reference structures. Singlet
structures are compared to singlet CASSCF-optimized molecular structures
and triplet PM6 structures are compared to triplet B3LYP structures. Bot-
tom: Structural comparison between singlet and triplet carbenes.

Differences in performance discussed in this Section are primarily based on variations in
molecular structures. To investigate these differences, structural changes resulting from
the three types of molecular structure optimizations were analyzed. Structural differences
between two molecules can be reduced to a single value by calculating the root mean squared
deviation (RMSD) of the atomic coordinates. However, this method does not distinguish
where the structural changes occur, and, for example, a rotation of an alkyl group far away
from the carbene carbon could result in a larger RMSD than a structural change near the
carbene carbon. But, when looking at spin gaps, especially the latter case should have a
greater impact.

For this reason, we also use the descriptors that are employed for the machine learning in
Section 6.6 to compare structural details. As local descriptors are used, they mostly reflect
the surroundings of the carbene. More details on the descriptors can be found in Sections
4.2 and 6.6. Molecular changes are visualized in Figure 6.9 using violin plots, which depict
the root mean squared deviation (RMSD) between reference and newly optimized structures
(top row). In the columns, the RMSD, for the different descriptors as well as the atomic
coordinates (XYZ) are displayed. The RMSD of the descriptors is dimensionless due to
feature scaling, while for coordinates, no scaling was applied as all dimensions are atomic
distances. In the violin plots, the blue-shaded areas represent the RMSD distribution for
each carbene, the black dot indicates the mean, and the vertical blue line shows the 𝑄95.
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Optimization of singlet carbenes using B3LYP resulted in relatively small changes for the
majority of carbenes, as seen in the changes in Cartesian coordinates as well as LMBTR,
SOAP, and NDA descriptors. This is in good agreement with the goof performance of
DFT for the adiabatic spin gaps calculated with the B3LYP-optimized molecular structures.
However, the ACSF descriptor showed some more outliers. The spin gaps calculated withΔ𝐸DFT

ad,B3LYP were also most similar to the reference values. In contrast, optimization with
PM6 resulted in more significant changes, with the triplet structures showing even more
changes than the singlet structures. Interestingly, for the ACSF descriptor, these trends
were inverted, raising the question of whether this will also reflect in the machine learning
performance for this descriptor.

To compare vertical and adiabatic gaps, structural differences between singlet and triplet
structures were analyzed similarly (Figure,6.9 bottom). The structural differences between
singlet and triplet structures are generally larger than the changes made by B3LYP op-
timization. These differences increase progressively from reference structures to purely
B3LYP-optimized to purely PM6-optimized structures. This leads to the conclusion that
the significant differences between singlet and triplet molecular structures are essential for
precise calculations.
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6.6 Influence of Molecular Structures on the Supervised
Learning of Adiabatic Spin Gaps

In Chapter 6.5, we observed how sensitive electronic structure properties are on how the
underlying molecular structures were generated, a phenomenon that is recognized widely.
Now, we investigate the influence of these structures on the performance of machine learning
approaches for predicting the MRCI-calculated adiabatic spin gaps (Δ𝐸ad,ref). For carbenes,
where spins are mainly localized on the carbene carbon, the local environment is expected
to have the most significant impact on the spin gap. Therefore, we have used local variants
of the descriptors in this work. One example is the ACSF descriptor, where symmetry
functions have been exclusively generated for the carbene carbon. In preliminary tests, this
has lead to a better performance.

Additionally, a very simple descriptor, Neighbors + Distances + Angles (NDA), has been
developed. A similar approach of constructing such use specific descriptors for a com-
pound class has been reported for the prediction of spin exchange couplings in dicopper
complexes.[37] The carbene specific NDA descriptor includes the atomic numbers of both
neighboring atoms of the carbene carbon, and the corresponding distances and angle as il-
lustrated in Figure 6.10. The “adiabatic” version of the NDA descriptor considers distances
and angles from both singlet and triplet carbene structures. Therefor, the feature dimensions
increase from 5 to 8 compared to a variant based solely on one molecular structure. A consis-
tent notation, in line with the spin gaps, has been applied to these descriptors. Subscripts
“s”, “t”, or “ad” indicate their origin from singlet, triplet, or both molecular structures,
respectively. The method used for molecular structure optimization is also denoted with
subscripts.

Figure 6.10: Construction of the Neighbors + Distances + Angle (NDA) descriptor. The
distance + angle (DA) descriptor does not include the atomic number of the
neighboring atoms.

Figure 6.11 provides an overview of the performance for predicting Δ𝐸ad,ref measured by 𝑄95
for each combination of ML approach and descriptor. Both scaled and unscaled descriptors
have been tested. For better comparability, descriptors in Figure 6.11 have been grouped
as follows: all descriptors solely based on molecular structures are found in the R groups.
In each R group, the same molecular structures are used. For example the group Rs

B3LYP
employs B3LYP-optimized molecular structures of the singlet carbenes and Rs+t

ref combines
CASSCF optimized structures of the singlet carbenes with B3LYP-optimized triplet molec-
ular structures. with the descriptors NDA, DA (reduced version of NDA that only includes
Distances + Angle, not used for adiabatic versions of the descriptors), ACSF, LMBTR, and
SOAP.
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As DFT-calculated spin gaps Δ𝐸DFT have shown to systematically favor triplet errors (Sec-
tion 6.5), these have also been used as features (11 feature dimensions, one for each xc
functional) to check the extent to which machine learning can compensate these errors. Fea-
ture vectors of this type have been created for each set of spin gaps that are calculated with
different molecular structures and are grouped under Δ𝐸DFT in Figure 6.11 in the order𝐸DFT

ad,ref, Δ𝐸DFT
ad,B3LYP, Δ𝐸DFT

ad,PM6, Δ𝐸DFT
vert,B3LYP and Δ𝐸DFT

vert,PM6. This is an approach that
combines ML and DFT calculations like Δ-ML. The difference lies with the used targets.
While for Δ-ML the errors of DFT calculated spin gaps (Δ𝐸DFT − Δ𝐸ad,ref) are the targets
in this Section Δ𝐸DFT containing feature vectors are processed the same as the structure
based descriptors and the adiabatic spin gaps Δ𝐸ad,ref are the target directly. Descriptors
By computational time using the spin gaps calculated with all 11 xc time is the most costly
approach discussed here (see also Figure 6.5 discussed in Section 6.4). Using only properties
calculated by single point calculations with one xc functional is timewise identical to theΔ-ML approach.

In a similar fashion to the Δ𝐸DFT based descriptors, properties calculated with DFT have
been used as features. A HOMO–LUMO gaps descriptor (HLDFT) has been created with
the HOMO–LUMO gaps calculated with the 11 xc functionals for the singlet carbenes with
the singlet carbenes molecular structure 𝐸s,DFT

s,CASSCF, 𝐸s,DFT
s,B3LYP and 𝐸s,DFT

s,PM6. In contrast
to the descriptor Δ𝐸DFT only one single point calculation is needed for each feature in-
stead of the two single point calculation needed to calculate the spin gaps. Additionally,
the Charges+Spins (CS) descriptor was created. It involves Mulliken charges on the car-
bene carbon and both neighboring atoms for the singlet as well as triplet state. And for
the triplet state also the Mulliken number of unpaired electrons on the carbene carbon as
well as both neighboring atoms is added. Here, only the M06 calculated properties were
considered (CSM06) which results in 9 dimensional feature vectors. Again those have been
constructed based on the different molecular structures discussed in this work (CSM06

ad,ref,
CSM06ad, B3LYP,CSM06

ad,PM6, CSM06
vert,B3LYP and CSM06

vert,PM6).

From the overview Figure 6.11 can be seen that feature scaling generally improves the perfor-
mance. Because of this, we will focus on scaled features in the following. The performances
of the ML models and the different descriptors that are given are depicted combined in
Figure 6.11 will be discussed separately in the following. In Section 6.6.1 the performance
will be analyzed based on the ML models. Afterwards the influence of the descriptor will be
analyzed by the different types of descriptors in Section 6.6.2 and by the different underly-
ing molecular structures in Section 6.6.3. Lastly, the performance of descriptors involving
electronic structure properties will be discussed in Section 6.6.4. When analyzing the per-
formances it is important to keep in mind that with a training set size of 1500 carbenes the
computational cost for any ML process validated in Figure 6.11 are at least 60% larger than
any DFT calculated spin gap discussed in this work. Hence, in order consider ML to be
useful in practical application a 𝑄95 considerably smaller 23.2 kJ mol−1 which was achieved
by DFT calculations is required.
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Figure 6.11: Overview of 𝑄95 error measures for supervised machine learning with differ-
ent models (y-axis) and descriptors (x-axis). The train-test split has been
performed randomly 10 times with training set size of 1500. The squares
are colored by the mean 𝑄95 of the performance of each trained model with
the corresponding test set. Features have been scaled for the top 7 models
prior to the test-train split using the standard scaler. Descriptors grouped
under the R label employ only singlet or singlet and triplet molecular struc-
tures indicated by superscribed “s” or “s+t”, respectively. The method used
for molecular structure optimization is denoted with subscripts. Within the
groups, descriptors are ordered: NDA, DA, ACSF, LMBTR and SOAP. The
DA descriptor is omitted for the “s+t” groups. For the group Δ𝐸DFT, DFT
spin gaps calculated with all 11 xc functionals are used as features. The
group contains Δ𝐸DFT

ad,ref, Δ𝐸DFT
ad,B3LYP, Δ𝐸DFT

ad,PM6, Δ𝐸DFT
vert,B3LYP, Δ𝐸DFT

vert,PM6.
For the HLDFT group HOMO–LUMO, gaps calculated for the singlet car-
benes with the 11 xc functionals are used as features. CASSCF, B3LYP- and
PM6-optimized singlet structures are used to calculate the HOMO–LUMO
gaps. The CSM06 descriptor contains Mulliken charges on the carbene car-
bon and the two neighboring atoms for the singlet and triplet carbene as
well as the Mulliken number of unpaired electrons on those three atoms for
the triplet carbene (9 feature dimensions). For these calculations the M06
functionals has been used. Different molecular structures have been used and
the CS group contains CSM06

ad,ref, CSM06ad, B3LYP,CSM06
ad,PM6, CSM06

vert,B3LYP and
CSM06

vert,PM6.
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6.6.1 Performance Analysis of Models

The models tested for the ML are Gaussian process regression (GPR) and kernel ridge
regression (KRR), each with different kernels. The k-nearest neighbors (k-NN) method has
been used with 𝑘 = 5 and no weights (5-NN 01) and with weights based on the distance (5NN
02) (see also Section 4.2.2). Additionally, a simple linear regression has been performed for
each descriptor (see Appendix C.1 for technical details).

When focusing on the ML models (y-axis in Figure 6.11) at first glance it is noticeable that
GPR in combination with the RBF kernel performs very bad with 𝑄95 almost always larger
than 70 kJmol−1. Therefore, it is not considered further. Similarly, KRR with any structure
based descriptor except NDA or DA performs bad. The GPR with Matern kernel is the only
model considered here, that results in 𝑄95 lower than 40 kJmol−1 for almost any structure
based descriptor.

Figure 6.12: CPU times (left) and learning curves (right) for machine learning of adiabatic
reference spin gaps. Various models have been tested on the scaled NDAad,ref
descriptor. The learning has been repeated 10 times with random train-test
splits. Solid lines display the mean and shaded areas display the standard
deviation of the 𝑄95 error measure (right) and training times (left) for the 10
repetitions.

To get a more detailed comparison of the different ML models learning curves with the
scaled version of the NDAad,ref descriptor have been generated. This is the structure based
descriptor that performs best for all of models. And the only one for which 𝑄95 values
similar to those achieved by DFT are obtained. With learning curves the dependence of
performance on the size of the training set is analyzed. The learning curve in Figure 6.12
(right) shows that the performance (𝑄95) of linear regression is mostly independent of the
size of the training set as soon as the size exceeds 50 carbenes. The performance of all other
methods continuously improves with the training set size. The KRR with the Matern 01
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kernel performed worst and only beats the linear regression at training set sizes larger than
50 carbenes.

For the k-NN model, whether the number is 2 or 5 neighbors has no significant influence
on the performance. Only at large training set sizes of 2500 carbenes is a performance
comparable to calculations with DFT achieved (𝑄95 = 23 kJmol−1).
GPR with a Matern kernels performs best. The Matern 01 kernel, which has an additional
parameter to be fitted compared to Matern 02, is superior to the Matern 02 kernel. For
training set sizes larger than 35% (1000 carbenes), the 𝑄95 are smaller than 23 kJ mol−1

and all DFT calculations are outperformed. The increased performance of the GPR with
the Matern kernel goes hand in hand with increased CPU time needed for the fit of the
data (Figure 6.12 left). However, even for training set sizes of 2500 within 500 s the model
is trained and 341 spin gaps are predicted. Per molecule this results in a CPU time of less
than 2 s, which is negligible compared to all electronic structure calculations as discussed
in Section 6.4. However, the computational cost for optimizing the molecular structures as
well as for calculating the targets for the training set result in an increased CPU time by a
factor of at least 2.5.

6.6.2 Performance Analysis of Descriptors

Analyzing the ML models revealed that GPR and k-NN perform best for the structure based
descriptors. As the relative performance of the descriptors might depend on the ML model,
both will be to analyze the different types of structure based descriptors.

Figure 6.13 shows learning curves for all structure-based descriptors for the GPR Matern
01 and 5-NN 02 models. The adiabatic reference structures, considered to be the best
description for the singlet and triplet carbenes, are used for this purpose. While GPR
generally performs better compared to k-NN, as has been found in Section 6.6.1, both
models show similar trends. The SOAP descriptor, with 8200 feature dimensions (adiabatic
version), the largest descriptor tested in this work, performs the worst. The simple NDA
descriptor performs best among the structure-based descriptors, regardless of the size of the
training set in the case of GPR. This highlights the advantage of problem-driven thinking
and simplicity over much more complex general-purpose descriptors. ACSF and LMBTR
perform similarly for training sets larger than 300. For smaller set sizes, ACSF performs
more similarly to NDA.
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Figure 6.13: Learning curves for machine learning of adiabatic reference spin gaps for
different structure based descriptors. Various scaled features based on molec-
ular structures optimized separately for each spin state structures have been
tested. The learning has been repeated 10 times with random train-test splits.
Shaded areas display the standard deviation of the 𝑄95 error measure for these
10 repetitions. As machine learning model Gaussian process regression with
the Matern 01 (1.0 * Matern(1.0, nu = 0.5)) kernel (left) and 5-nearest neigh-
bors (weights=’distance’) (right) have been used.

6.6.3 Dependency between Performance and Molecular Structure

After comparing different descriptors with one another, the dependence on the how the
molecular structure were generated will now be the focus for each of them. The dependence
on the molecular structure is strongest for the NDA descriptor (Figure 6.14 and C.11, left).
As originally expected, the adiabatic descriptor performs better than the vertical ones;
reference structures perform best, and B3LYP-optimized structures performs slightly better
than (5-NN singlet) or equal to PM6.

For GPR Matern 01 and NDAs,ref, NDAs,B3LYP and NDAs,PM6, large deviations of the
predictions for the repeated ML processes are observed at some training set sizes. This
indicates a significant dependence of the performance on the train-test split and underfitting
due to the low number of feature dimensions (5). In Section 6.5 the structural changes
by reoptimizing the molecular structures provided by QMspin with PM6 and B3LYP was
analyzed by comparing the molecular structures in the representation of the descriptors. In
the representation of ACSF, the changes for Rt

PM6 were smallest and the changes for Rs
B3LYP

were largest. For all other representations this trend was inverted. For that reason, it was
expected that the performance of ACSF depends differently on the underlying molecular
structures compared to the other descriptors. Compared to NDA it is less dependent on the
molecular structure and shows different trends. Fitting problems have been observed for
ASCFad,ref, which performs the worst, and the ASCFs,B3LYP structure. Among the ACSF
descriptors, the best performance is achieved with ASCFs,CASSCF and ASCFad,B3LYP. For

57
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Figure 6.14: Learning curve for machine learning of adiabatic reference spin gaps. The
GPR with Matern 01 kernel has been used on scaled features. The NDA
(left) and ACSF (right) descriptor generated from different structures have
been used. The learning has been repeated 10 times with random train-test
splits. Shaded areas display the standard deviation of the 𝑄95 error measure
for these 10 repetitions.

the B3LYP-optimized structures by ACSF representation the largest RMSD was observed
between singlet and triplet state. Even for the best ACSF versions, training sets larger than
2500 are needed to achieve performances similar to DFT.

As for ACSF, for LMBTR the dependence of the performance on the underlying molecular
structures is small (Figure 6.15, left). For LMBTR, there is a larger dependence on the train-
test split for train sizes smaller than 250. Surprisingly, the adiabatic reference structures
perform worse than all other molecular structures in LMBTR representation. As already
mentioned, the high dimensional SOAP descriptor does not perform well in general with
GPR. The performance of single ML runs varies significantly with different train-test splits
(Figure 6.15, left). This effect only decreases at large training set sizes (> 1000), which
hints that the combination of large feature dimensions and comparable smaller training set
sizes cause the observed fitting issues. With the k-NN model those fitting issues are not
observed. For k-NN the general dependence on how the molecular structure was obtained
is smaller compared to GPR (See SI Figure C.11 and C.13). Apparently, the identity of the
closest neighbors does not change much with differently optimized molecular structures.
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Figure 6.15: Learning curve for machine learning of adiabatic reference spin gaps. The
GPR with Matern 01 kernel has been used on scaled features. The LMBTR
(left) and SOAP (right) descriptor generated from different structures have
been used. The learning has been repeated 15 times. Shaded areas display
the standard deviation of the 𝑄95 error measure.

6.6.4 Descriptors Based on Electronic Structure Properties

As mentioned above, using DFT-calculated properties as features in ML can combine both
methods. In the overview plot (Figure 6.11) these type of descriptors are displayed under
the groups Δ𝐸DFT, HLDFT and CSM06 with DFT calculated spin gaps, HOMO-LUMO
gaps and Mulliken CHarges and numbers of unpaired electrons as features, respectively.
As this method is the most computationally expensive one discussed in this work, it is
desirable to keep the number of computationally expensive reference calculations, and thus
the training set size, small. If only single point calculations of one xc functional are involved
in the generation of the features, this methods computational cost is identical to one ofΔ-ML. If more xc functionals are employed, this method is computationally more expensive
respectively.

For Δ𝐸DFT, HLDFT and CS descriptors feature dimensions either have the same unit or val-
ues are compatible in magnitude. Hence, scaling of the features has no significant influence
on the performance (𝑄95). Both HLDFT and CS descriptors do not yield any improvement
compared to those only based on molecular structures. On the contrary, HLDFT

s,B3LYP per-
formed very bad with 𝑄95 > 60 kJmol−1. The CS descriptor is mostly independent on how
molecular structures are obtained.

As has been expected by the slim distributions of errors for the DFT calculated adiabatic
gaps Δ𝐸DFT

ad,ref and Δ𝐸DFT
ad,B3LYP, using those as features results in very good performances𝑄95 < 10 kJmol−1 for almost any ML model. The learning curve for different ML models

using Δ𝐸DFT
ad,ref as features shows that a simple linear regression works best for training
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set sizes smaller than 1000 carbenes (Figure C.14). 100 carbenes are already enough to
fit the linear regressor properly and there is no further improvement when increasing the
training set size more. But already even smaller training set sizes of only 40 carbenes
yields 𝑄95 < 10 kJmol−1. A comparison of the spin gap calculated with different molecular
structures is shown in Figure 6.16. For all of them training set sizes of 100 carbenes are
sufficient. The linear regression model includes the addition of a constant value. Therefore,
if the training set is large enough to accurately represent the mean error, a considerable
improvement compered to the DFT calculations is expected. Using Δ𝐸DFT

ad,ref, that showed
the most narrow error distributions, as features works best (𝑄95 = 8 kJmol−1, training
set size: 100). Δ𝐸DFT

ad,B3LYP as features also results in a very low 𝑄95 of 14 kJ mol−1. ForΔ𝐸DFT
ad,PM6, the correction effect is much smaller. The 𝑄95 value at a training set size of 100

is 29 kJmol−1 while Δ𝐸DFT
ad,PM6 has a 𝑄95 of 35 kJmol−1. For Δ𝐸DFT

vert,PM6, which showed 𝑄95
values around 50 kJmol−1 (see Figure 6.7), improvements to 38 kJmol−1 could be made. ForΔ𝐸DFT

vert,B3LYP, which showed very broadly distributed large errors with 𝑄95 > 160 kJmol−1,
still have 𝑄95 > 80 kJmol−1 when used as features for ML.

Using only the spin gaps calculated with B3LYP or M06 as features (1-dimensional feature
vector) still yields an improvement compared to the DFT calculations. However, the cor-
rection effect is considerably smaller compared to using spin gaps calculated with all 11 xc
functionals as descriptors (Figure 6.16 right). This applies most notably to Δ𝐸DFT

ad,ref andΔ𝐸DFT
ad,B3LYP, as the largest differences in performance of individual xc functionals are ob-

served for these. Future investigations might clarify which of the xc functionals are most
important for good ML performance. Using only the most different performing xc function-
als in the feature vector could, for instance, reduce the dimensionality of the feature vector
and thus the number of necessary DFT calculations for its construction, while maintaining
the good performance of the feature vector containing all 11 xc functionals.
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Figure 6.16: Learning curve for machine learning of adiabatic reference spin gaps. A linear
regression has been performed together with spin gaps calculated with the 11
xc functionals (left) or only one xc functional (right) as features. The learning
has been repeated 20 times. Shaded areas display the standard deviation of
the 𝑄95 error measure.

6.7 Delta-Machine Learning

The concept of combining less accurate method (here DFT) compared to a reference method
(here MRCI), as we have applied by applying a linear regression on DFT calculated spin
gaps, is also followed by Δ-ML. In contrast to the ML discussed in Section 6.6.4, where
the adiabatic reference spin gaps are used the targets, for Δ-ML method errors are used as
targets. Hence, in this Section the DFT errors (ΔΔ𝐸DFT = Δ𝐸DFT − Δ𝐸ad,ref) are used
as the target for the machine learning process.Δ-ML has been performed with ΔΔ𝐸M06

ad,ref, ΔΔ𝐸B3LYP
ad,B3LYP, ΔΔ𝐸M06

ad,PM6, ΔΔ𝐸M06
vert,PM6, andΔΔ𝐸B3LYP

vert,B3LYP
3 used as targets. The overview of the performances is depicted in Figures

6.17, 6.19, 6.22, 6.23, and 6.20, respectively.

The plots contain the same ML models used in Section 6.6 on the y-axis, which are used with
scaled and unscaled features as indicated on the y-axis. On the x-axis are the descriptors.
For each of them, a version that includes the DFT-calculated spin gap is generated (right
part of x-axis). The features are generated based only on molecular structures that have also
been used for the DFT calculation of the spin gaps for which the errors are learned. Singlet
and triplet molecular structures are used for adiabatic spin gaps, while for the vertical gaps
only the singlet structures are used.

3For all spin gaps calculated only on B3LYP-optimized structures, the B3LYP xc functional was also chosen
for the determination of the spin gap as after molecular structure optimization no further single point
calculation would be necessary. In all other cases, the M06 xc functional was chosen because it showed
to be the best performing one.
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For comparability, in addition to Δ-ML (bottom plot), each figure contains an overview of
the standard ML results (targets are reference gaps, top plot) using identical descriptors.Δ-ML should be an improvement compared the DFT calculated spin gaps. To visualize that,
the scaling for the color code of 𝑄95 values was adapted compared to the one used in Figure
6.11. A yellow color is indicative of no improvement compared to DFT calculations.

6.7.1 Adiabatic Spin Gaps with CASSCF- and B3LYP-Optimized
Structures

Among the investigated xc functionals M06 showed the best performance for calculating
the adiabatic spin gaps with the reference molecular structures (see Section 6.5). Hence,ΔΔ𝐸M06

ad,ref serves as target for the Δ-ML discussed in this section.

A first glance at the overview plot 6.17 (bottom) shows that the dependence on feature
scaling is much smaller than for the ML models discussed in Section 6.6 as long as the spin
gap Δ𝐸M06

ad,ref is not included in the feature vector. For the features that include the spin
gaps or for the NDA descriptor, scaling results in an improvement of the performance by
up to 9 kJ mol−1. This probably originates from the different scale of values for the angle
between the carbene carbon and its neighbors as well as the spin gaps compared to the other
feature dimensions. Similar to the standard ML models, GPR with a RBF kernel generally
does not perform well, while GPR with the Matern 01 kernel performs best and achieves 𝑄95
values around 10 kJ mol−1 for almost any descriptor. Exceptions are only the AC, NDAs,ref,
DAs,ref and as well as the 1 dimensional descriptor Δ𝐸M06

ad,ref. However, when combining
any of NDAs,ref or DAs,ref with Δ𝐸M06

ad,ref good performances with 𝑄95 = 10 kJmol−1 are
observed.

At the training set size of 1500 carbenes NDAad,ref is the best performing descriptor with
GPR (𝑄95 = 6.9 kJmol−1). Therefore, descriptors based on the singlet and triplet molecular
structures (Rs+t

ref ) have been used for comparing the dependence of the different descriptor
types on the training set size (Figure 6.18 left). The learning curves for GPR Matern 01 with
scaled features shows, that the addition of Δ𝐸M06

ad,ref to the feature vector does not influence
the performance considerably. Also, the dependence on the choice of descriptor is low. As
for the standard ML the NDA descriptor performs best. At training set sizes larger than 400
carbenes the fluctuation 𝑄95 for different train-test splits becomes smaller than 1 kJ mol−1

and NDA shows a great performance of with 𝑄95 < 9 kJmol−1. A further increase of the
training set to 1000 carbenes is necessary to lower 𝑄95 by 1 kJ mol−1. This is the best
performance observed so far and still reduces the CPU time to a third (400 carbenes in test
set) or half (1000 carbenes in test set) compared to the MRCI reference calculations.
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Figure 6.17: Overview on 𝑄95 error measures for supervised machine learning (top, tar-
gets are the reference spin gaps) and Δ-machine learning (bottom, targets
are errors of Δ𝐸M06

ad,ref) with different models (y-axis) and descriptors (x-axis).
The size of the training set is 1500 and the machine learning has been per-
formed 10 times each. The squares are colored by the mean 𝑄95 of the 10
runs for each combination of model and descriptor. Features have been scaled
for the top 7 models prior to the test-train split using the standard scaler.
Descriptors grouped under the R label employ only singlet, triplet or singlet
and triplet molecular structures indicated by superscribed ’s’, ’t’ or ’s+t’,
respectively. The method used for molecular structure optimization is de-
noted with subscripts. Within this groups descriptors are ordered: NDA,
DA, ACSF, LMBTR and SOAP. The DA descriptor is omitted for the ’s+t’
groups. The ESM group contains features obtained by electronic structure
calculations. It includes Δ𝐸DFT

ad,ref (11 feature dimensions), Δ𝐸M06
ad,ref (1 feature

dimension) and CSM06
ad,ref (9 feature dimensions). To the feature vectors on the

right side Δ𝐸M06
ad,ref has been added as feature dimension.
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Figure 6.18: Learning curve for Δ-machine learning of ΔΔ𝐸M06
ad,ref (left) and ΔΔ𝐸B3LYP

ad,B3LYP
(right). The features have been scaled prior to the test train split.The learning
has been repeated 10 times. Shaded areas display the standard deviation of
the 𝑄95 error measure.

6.7.2 Spin Gaps with B3LYP-Optimized Structures

For the Δ-ML of ΔΔ𝐸B3LYP
ad,B3LYP

4, trends are very similar compared to the Δ-ML of ΔΔ𝐸M06
ad,ref

(Figure 6.19). Feature scaling also has the largest effect when Δ𝐸B3LYP
ad,B3LYP is included in the

feature vector and GPR Matern 01 performs best among the ML models. The performance
is generally worse compared to ΔΔ𝐸M06

ad,ref. For the GPR Matern 01 the 𝑄95 is worse by
5 kJ mol−1 for the Δ-ML of ΔΔ𝐸B3LYP

ad,B3LYP compared to ΔΔ𝐸M06
ad,ref. Interestingly, and also

different from the Δ-ML of ΔΔ𝐸M06
ad,ref, the NDA descriptor only performs best compared to

the other descriptors for the scaled version with Rs+t
B3LYP and the addition of Δ𝐸B3LYP

ad,B3LYP
(GPR Matern 01).

As can be seen from the learning curves in Figure 6.18 (right), in comparison to learn-
ing ΔΔ𝐸M06

ad,ref, the performance is even less dependent on the descriptor choice forΔΔ𝐸B3LYP
ad,B3LYP. Like for ΔΔ𝐸M06

ad,ref, performance is strongly dependent on the training set
size. The best performing descriptor NDAad,B3LYP has a 𝑄95 of 11 kJ mol−1 at a training
set size of 1000 carbenes. Although, the CASSCF optimization is not required for the whole
data set like for ΔΔ𝐸M06

ad,ref, due to the larger training set needed there is also no advantage
in terms of computational time compared to the Δ-ML of ΔΔ𝐸M06

ad,ref. Depending on the
model used to approximate the CPU time for the CASSCF optimization and MRCI single
point calculation, the CPU time is reduced to 51 % or 36 % at training set sizes of 1000
carbenes.

4The different choice of xc functional (Δ𝐸B3LYP
ad,B3LYP vs. Δ𝐸M06

ad,B3LYP) for the single point calculations used
to determine the spin gaps does not have a large influence on the performance. The differences observed
mostly result from the different molecular structures for the singlet carbenes.
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Figure 6.20 shows the overview on the Δ-ML of ΔΔ𝐸B3LYP
vert,B3LYP. For the DFT-calculated

vertical spin gaps Δ𝐸DFT
vert,B3LYP very brought error distributions were observed (see Section

6.5). As expected this results in still large errors for Δ-ML of ΔΔ𝐸B3LYP
vert,B3LYP. The best

performance is achieved with GPR Matern 01 and NDAs,B3LYP+gap descriptor at a training
set size of 1500 with 𝑄95 of 30 kJ mol−1. At that training set size the Δ-ML of ΔΔ𝐸B3LYP

vert,B3LYP
is less efficient by computational time as well as by performance compared to calculating
the spin gaps by DFT.
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Figure 6.19: Overview of 𝑄95 error measures for supervised machine learning (top, tar-
gets are the reference spin gaps) and Δ-machine learning (bottom, targets
are errors of Δ𝐸B3LYP

ad,B3LYP) with different models (y-axis) and descriptors (x-
axis). The size of the training set is 1500 and the machine learning has been
performed 10 times each. The squares are colored by the mean 𝑄95 of the
10 runs for each combination of model and descriptor. Features have been
scaled for the top 7 models prior to the test-train split using the standard
scaler. Descriptors grouped under the RB3LYP label employ only singlet,
triplet or singlet and triplet B3LYP-optimized molecular structures indicated
by superscripted ’s’, ’t’ or ’s+t’, respectively. Within this groups, descriptors
are ordered: NDA, DA, ACSF, LMBTR and SOAP. The DA descriptor is
omitted for the ’s+t’ groups. The ESM group contains features obtained by
electronic structure calculations. It includes Δ𝐸DFT

ad,ref (11 feature dimensions),Δ𝐸B3LYP
ad,B3LYP (1 feature dimension) and CSB3LYP

ad,B3LYP (9 feature dimensions). To
the feature vectors on the right side Δ𝐸B3LYP

ad,B3LYP has been added as feature
dimension.
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Figure 6.20: Overview of 𝑄95 error measures for supervised machine learning (top, targets
are the reference spin gaps) and Δ-machine learning (bottom, targets are er-
rors of Δ𝐸B3LYP

vert,B3LYP) with different models (y-axis) and descriptors (x-axis).
The size of the training set is 1500 and the machine learning has been per-
formed 10 times each. The squares are colored by the mean 𝑄95 of the 10
runs for each combination of model and descriptor. Features have been scaled
for the top 7 models prior to the test-train split using the standard scaler.
Structure based descriptors are grouped under the R𝑠

B3LYP label and employ
B3LYP-optimized singlet molecular structure. Within this groups descrip-
tors are ordered: NDA, DA, ACSF, LMBTR and SOAP. The ESM group
contains features obtained by electronic structure calculations. It includesΔ𝐸DFT

vert,B3LYP (11 feature dimensions), Δ𝐸B3LYP
vert,B3LYP (1 feature dimension)

and CSB3LYP
vert,B3LYP (9 feature dimensions). As indicated by the bracket, to the

feature vectors on the right side, Δ𝐸B3LYP
vert,B3LYP has been added as feature

dimension.
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6.7.3 Spin Gaps with PM6-Optimized Structures

Lastly, we will look into Δ-ML of spin gaps based on PM6-optimized molecular structures,
which are the computationally least costly in this study. The difference in computational
cost between Δ-ML based on optimized molecular structures for one and for both spin states
is negligible, due to in comparison much larger cost for the reference calculations needed for
the training set.

As can be seen from the overview plots 6.22 and 6.22, even at large training set sizes of 1500
carbenes, no combination of model and descriptor results in better 𝑄95 than 15 kJ mol−1.
The learning curves depicted in Figure 6.21 show that neither the Δ-ML of ΔΔ𝐸M06

ad,PM6
(left) nor the Δ-ML of ΔΔ𝐸M06

vert,PM6 (right) are strongly dependent on the descriptor type
chosen. The best performance for Δ-ML of Δ𝐸M06

ad,PM6 is observed for NDAad,PM6+gap with
GPR Matern 01. At a training set size of 1000 a 𝑄95 of 18 kJ mol−1 is obtained.

Unfortunately, that neither results in satisfying errors smaller nor do the methods discussed
in this section reduce computational time sufficiently at that training set sizes compared
to the Δ-ML of ΔΔ𝐸M06

ad,ref which achieved 𝑄95 smaller than 10 kJ mol−1 at much smaller
training set sizes.

Figure 6.21: Learning curve for Δ-machine learning of ΔΔ𝐸M06
ad,PM6 (left) and ΔΔ𝐸M06

vert,PM6
(right). The features have been scaled prior to the test train split. The
learning has been repeated 10 times. Shaded areas display the standard
deviation of the 𝑄95 error measure.
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Figure 6.22: Overview of 𝑄95 error measures for supervised machine learning (top, targets
are the reference spin gaps) and Δ-machine learning (bottom, targets are er-
rors of Δ𝐸M06

ad,PM6) with different models (y-axis) and descriptors (x-axis). The
size of the training set is 1500 and the machine learning has been performed
10 times each. The squares are colored by the mean 𝑄95 of the 10 runs for
each combination of model and descriptor. Features have been scaled for the
top 7 models prior to the test-train split using the standard scaler. Descrip-
tors grouped under the RPM6 label employ only singlet, triplet or singlet and
triplet PM6-optimized molecular structures indicated by superscripted ’s’,
’t’ or ’s+t’, respectively. Within this groups descriptors are ordered: NDA,
DA, ACSF, LMBTR and SOAP. The DA descriptor is omitted for the ’s+t’
groups. The ESM group contains features obtained by electronic structure
calculations. It includes Δ𝐸DFT

ad,PM6 (11 feature dimensions), Δ𝐸M06
ad,PM6 (1 fea-

ture dimension) and CSM06
ad,PM6 (9 feature dimensions). To the feature vectors

on the right side Δ𝐸M06
ad,PM6 has been added as feature dimension.

69



6 Machine Learning Guided Strategies Towards Spin-Gaps in Carbenes

Figure 6.23: Overview of 𝑄95 error measures for supervised machine learning (top, targets
are the reference spin gaps) and Δ-machine learning (bottom, targets are er-
rors of Δ𝐸M06

vert,PM6) with different models (y-axis) and descriptors (x-axis).
The size of the training set is 1500 and the machine learning has been per-
formed 10 times each. The squares are colored by the mean 𝑄95 of the 10
runs for each combination of model and descriptor. Features have been scaled
for the top 7 models prior to the test-train split using the standard scaler.
Structure-based descriptors are grouped under the R𝑠

PM6 label and employ
PM6-optimized singlet molecular structure. Within this groups descriptors
are ordered: NDA, DA, ACSF, LMBTR and SOAP. The ESM group contains
features obtained by electronic structure calculations. It includes Δ𝐸M06

vert,PM6

(1 feature dimension) and CSM06
vert,PM6 (9 feature dimensions). To the feature

vectors on the right side Δ𝐸M06
vert,PM6 has been added as feature dimension.
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6.8 Conclusions

The QMspin data set utilized in this work provides CASSCF-optimized singlet carbene
molecular structures as well as B3LYP-optimized triplet carbene molecular structures. Ad-
ditionally, it includes MRCI-calculated adiabatic spin gaps (Δ𝐸ad,ref) based on these struc-
tures [1]. In this study, we have generated additional sets of B3LYP-optimized singlet, as
well as PM6-optimized singlet and triplet carbene molecular structures.

Using these differently optimized molecular structures, five sets of spin gaps were calculated
using DFT, employing 11 xc functionals for each set. Adiabatic spin gaps were calcu-
lated based on the molecular structures provided by QMspin (Δ𝐸DFT

ad,ref), purely B3LYP-
optimized molecular structures (Δ𝐸DFT

ad,B3LYP), and purely PM6-optimized molecular struc-
tures (Δ𝐸DFT

ad,PM6). Vertical spin gaps were calculated based on B3LYP-optimized singlet
structures (Δ𝐸DFT

vert,B3LYP) and PM6-optimized singlet structures (Δ𝐸DFT
vert,PM6).

In addition to DFT calculations, the same sets of molecular structures were used with
different descriptors for machine learning (ML) of the reference spin gaps (Δ𝐸ad,ref). Fur-
thermore, the errors for each of the DFT-calculated spin gap sets were predicted using theΔ-ML approach.

The generated data allowed for a comprehensive analysis of different approaches to predicting
spin gaps in carbenes and how these predictions depend on the origin of the molecular
structures used.

The performance of DFT calculations strongly depends on the quality of the molecular struc-
tures and the chosen xc functionals. Surprisingly, the best performance was observed not
with the reference molecular structures (𝑄95 = 25.5 kJmol−1, Δ𝐸M06

ad,ref), but with B3LYP-
optimized molecular structures (𝑄95 = 23.2 kJmol−1, Δ𝐸𝜔B97XD

ad,B3LYP). This is likely due to er-
ror compensation when using B3LYP-optimized singlet structures, which reduces the strong
favoring of triplet carbenes by DFT. The better accuracy (smaller spreads of the error
distributions) of Δ𝐸DFT

ad,ref compared to Δ𝐸DFT
ad,B3LYP supports this conclusion. CalculatingΔ𝐸DFT

ad,B3LYP reduces computational time by at least 80 % compared to MRCI-calculated
spin gaps. However, a 𝑄95 of 23.2 kJ mol−1 still represents a significant error for a spin gap,
where values less than 10 kJ mol would be desirable.

It is also worth noting that the dependence of spin gaps on the xc functional, or more
precisely, the amount of exact exchange, observed for transition metal complexes as discussed
in Chapter 5, differs for carbenes. For transition metal complexes, pure xc functionals favor
lower spin states, whereas for carbenes, the same functionals most strongly favor the triplet
state.

In comparison to the DFT-calculated spin gaps, the performance of ML predictions generally
depends much less on how the molecular structures used for feature generation were obtained.
A simple descriptor specifically designed for carbenes performed best compared to the other
general-purpose descriptors ACSF, LMBTR, and SOAP. This descriptor, which includes the
atom type of the neighbors of the carbene carbon as well as their bond lengths and angles
(NDA), highlights the importance of problem-driven thinking.

Unlike the other descriptors, NDA depends more strongly on the origin of the molecular
structure. Using both singlet and triplet molecular structures from the QMspin data set
(NDAad,ref) is required for a 𝑄95 below 23 kJ mol−1 at training set sizes of 1000 carbenes
(ML model: GPR with Matern kernel). However, the computational costs for this prediction
exceed those of Δ𝐸DFT

ad,B3LYP by a factor of 2.5. Additionally, even at larger training set sizes,
the performance is not significantly improved, making this method less suitable for practical
application.Δ-ML, which targets the error of DFT-calculated spin gaps, was performed separately for
spin gaps calculated based on each set of molecular structures. Δ-ML performs best forΔ𝐸M06

ad,ref, which showed the greatest accuracy among the DFT-calculated spin gaps. Again,
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the NDA descriptor showed the best results in combination with GPR (Matern kernel).
At small training set sizes of 400 carbenes, good performances of 𝑄95 = 9 kJ/mol were
observed.

Although this method has longer computational times compared to Δ𝐸DFT
ad,B3LYP, its perfor-

mance is greatly improved. Given that the CPU time is still reduced to a third compared
to MRCI-calculated spin gaps, this method is worth considering, especially for large data
sets.

Additionally, the performance might be further improved by optimizing the descriptor. A
promising starting point could be combining NDA with atomic spins on the carbene carbon,
for which a correlation to spin gap errors was observed. Furthermore, automated feature
selection algorithms could be a valuable tool for exploring feature dimensions.
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Synthesis and Characterization

73





7 Synthesis and Characterization of
Dinuclear Iron Complexes

This chapter is based on a project started by Sebastian Sandl.[55] Therefore, catalytic stud-
ies, a first report of complexes 2, 3a and 4 and some reactivity studies with 2 have already
been published in his thesis. Furthermore, following authors contributed to this chapter:
The measurement of Mössbauer spectra and SQUID magnetory have been performed by
Serhiy Demeshko in the group of Frank Meyer in the University of Göttingen. ESI-MS
measurements have been performed in cooperation with Konrad Koszinowski from the Uni-
versity of Göttingen. Catalytic studies (Section 7.2) have been performed by Matteo Villa
and Sebastian Sandl. Reactivity studies have been performed by Sebastian Sandl (Figure
7.17 (a) A and Figure 7.18 (a)) and Ursula Rastetter. CV measurements, DFT calculations
and writing have been done by Ursula Rastetter.
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7.1 Introduction to Polynuclear Hydrido-Bridged Iron
Complexes

The replacement of noble metal catalysts with more abundant, affordable, and less toxic
3d transition metals, especially iron, has garnered significant interest in recent years.[2–
10] Homogeneously catalyzed hydrogenation reactions represents a key transformation in
organic synthesis, pivotal for the production of a wide range of chemical products. In these
catalytic processes, hydride species often serve as crucial intermediates.[46–51] Despite the
importance of these intermediates, there are relatively few examples of polynuclear iron
complexes featuring bridging hydrides, highlighting an area with significant potential for
further exploration and development.

An early example reported by Sacconi and coworkers in 1974 is the cationic [Fe2H3(p3)2]+,
which was obtained by reacting an iron(II) salt with the ligand in the presence of NaBH4.[163]
The compound was analyzed by activation energy (Ea) and UV-vis spectroscopy. Single
crystal XRD was used to identify the molecular structure, revealing an Fe-Fe distance of
2.332(3)Å. In the 1H-NMR spectrum of the diamagnetic compound, the bridging hydrides
produce a septet at 𝛿 = 21.13 ppm due to coupling with the phosphorus nuclei of the ligand.
Another indicator for bridging hydrido ligands is the IR band at 1048 cm−1, which shifts
to 790 cm−1 for the deuterido complex. The hydride content was additionally quantified by
reaction with an excess of hydrochloric acid, that led to the evolution of 3 equivalents of
H2. In 1992, Shilov et al. reported anionic dinuclear hydridoferrates with aryl ligands and
coordinated counter cations.[164] In diethyl ether, Li4[FePh4] was synthesized in situ by the
reaction of FeCl3 with PhLi. Subsequent addition of H2 gas resulted in the mononuclear
dihydridoferrate Li4[FePh4H2], which was recrystallized from THF to yield the dinuclear tri-
hydridoferrate Li5[Ph3Fe(µ H)3FePh3]. In contrast to the mononuclear hydride, the dimer
reacts with N2 and forms hydrazine upon subsequent addition of HCl.

Several neutral, dinuclear tetrahydridoiron complexes with cyclopentadienyl (Cp) deriva-
tives have been reported by Suzuki (Cp* = C5Me5), White (Cp’ = 1,2,4-(Me3C)3C5H2),
Qu (Cp” = C5iPr4H), and coworkers.[165–168] The syntheses involve the reduction of
monomeric (Cp*) or dimeric (Cp’ and Cp”) precursor complexes with LiAlH4, KBEt3H,
or reduction under H2 pressure. The crystal structures reveal the Fe-Fe distances to be very
short (2.1989(5)Å to 2.2034(8) Å). These reported tetrahydrides have been analyzed by
Mössbauer spectroscopy, which shows well-resolved doublets and supports the presence of
two equivalent low-spin FeII.[166, 168, 169] This is also in agreement with the NMR spectra,
which show diamagnetic signals. The bridging hydrides exhibit a singlet with a chemical
shift around −22 ppm in the 1H-NMR spectra. Variable temperature NMR spectroscopy of
[(cp*)Fe(µ-H)4Fe(cp*)] revealed the complex as a classical metal hydride with no bonding
interaction between the H atoms.[165, 167] In contrast to analogous ruthenium complexes,
[(cp*)Fe(µ-H)4Fe(cp*)] is more reactive: C-H activation was observed in C6D6, with com-
plete H/D exchange achieved after 75 h.[165] Also, the H2 activation was faster than in
the ruthenium complex, and D/H exchange of [(cp*)Fe(µ-D)4Fe(cp*)] is completed in 9 h.
Further reactivities involve Si-H, P-H, and B-H activation,[165, 170, 171] the reaction with
P4,[167] and S8.[168] Addition of MeCN leads to the evolution of H2 and the formation of
dimeric MeCN complexes.[168]

Holland and coworkers synthesized dihydride-bridged diiron complexes supported by 𝛽-
diketiminate ligands.[172–177] The neutral dihydride complexes were synthesized by reduc-
tion of the precursor [Fe(R,R’NacnacAr)Cl] (where Nacnac = 𝛽-diketiminate) with KBEt3H.
An equilibrium between the dimer and the monomeric three-coordinate hydride complex
LFeH in solution was determined using 1H-NMR spectroscopy. While the magnetic moment
for the monomer is consistent with a high-spin FeII, the dimer shows a lower magnetic mo-
ment resulting from the antiferromagnetic coupling of both iron centers.[172] Additionally,
the monomer was trapped with 4-tert-butylpyridine. Characteristic Fe-H bands in IR and
Raman spectra have not been observed. A structurally closely related dihydrido iron com-
plex bearing unsymmetrical enamido-phosphinimine (NpN) ligands was reported by Fryzuk
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and coworkers.[178] Both the Nacnac and the NpN hydrido iron complexes show insertion re-
activity towards 3-hexyne, azobenzene, and 1-azidoadamantane[172, 174, 178] and are active
in the catalytic hydrodefluorination of perfluorinated arenes in the presence of silanes.[173,
178] Murray and coworkers used a macrocyclic tris(𝛽-diketiminate)cyclophanate ligand to
synthesize a trimeric hydrido complex with a [Fe3(𝜇-H)3]3+ core, which forms a planar cycle.
The Fe-Fe distances, ranging from 3.2570(6) Å to 3.3561(5) Å, are much larger compared to
the dinuclear iron complexes.[179] The iron centers are each in a tetrahedral coordination
environment and are assigned as FeII,hs by Mössbauer spectroscopy (one doublet at 80 K, 𝛿
= 0.79 mm s−1, Δ𝐸Q =2.34mm s−1).

Using a combination of X-ray diffraction, Mössbauer spectroscopy, and magnetic mea-
surements at variable temperatures as well as neutron diffraction, Holland and cowork-
ers were able to capture the dynamic nature of the iron sites and illustrate the motion
of the bridging hydrides of complex [(MeNacnacAr)Fe(µ-H)2Fe(MeNacnacAr)] in a unique
way.[177] While at room temperature the Mössbauer spectrum and magnetic measurements
are consistent with two equivalent high-spin FeII centers, similar to the previously described
[(R,R’NacnacAr)Fe(µ-H)2Fe(R,R’NacnacAr)] complexes, cooling the crystals below 170 K leads
to splitting in the X-ray diffraction data and in the Mössbauer spectrum (Figure 7.2). A
phase change to a lower-symmetry space group occurs at lower temperatures, resulting in
two inequivalent iron centers. One was found to be tetrahedrally coordinated and of high-
spin, and the other has a square planar structure and intermediate spin. Rotation of both
hydrido ligands leads to the change of the coordination sphere from tetrahedral to square
planar and vice versa for each iron center. A similar coordination pattern was observed
for the bis(carbene)borate ligand-bearing dihydride reported by Smith and coworkers in
2019.[180] With the help of magnetic measurements and Mössbauer spectrometry, they de-
scribed the metal centers as iron(II) S=1 (square planar) and iron(II) S=2 (tetrahedral)
with an S=3 ground state.

Reduction of [(tBu,HNacnacDipp)Fe(µ H)2Fe(tBu,HNacnacDipp)] with potassium graphite
produces a dianionic dihydridoferrate. Unlike the other hydrido iron complexes discussed
here, this dimer is stabilized by potassium cations that interact with the aryl groups of
the 𝛽-diketiminate ligands.[176] Analysis of Mössbauer spectra and magnetic measurements
suggests that both iron centers are weakly antiferromagnetically coupled high-spin iron(I).
Introducing potassium chelating agents into a solution of this hydridoferrate led to the
formation of the monomeric hydridoferrate, which also consists of high-spin FeI.

Gomez and coworkers investigated a system comprising a precursor iron(II) complex with an
iminopyrrolyl ligand and KBEt3 for the catalytic hydroboration of olefins.[181] Mechanistic
studies of this system revealed a mixture of a monomeric iron hydrido complex, a dihydrido-
bridged dimer, and a neutral toluene complex, demonstrating the dynamic nature of this
system. In the dimer, the two distinct iron centers can be observed through 57Fe Mössbauer
spectroscopy.

Examples with PNP pincer ligands differ structurally from the previous examples, where
each iron center is coordinated by one ligand and the Fe-Fe axis lies mostly in the plane with
the ligand planes (Figure 7.1). Thompson and coworkers synthesized a dihydrido iron dimer
with a pyrrole-based pincer ligand. Uniquely, each ligand in this complex coordinates both
iron centers. Measurements of the magnetic moment by NMR spectroscopy indicates the
presence of FeII,hs centers.[182] Similarly, Nishibayashi developed a hydride with a derivative
of the pyrrole-based pincer ligand and utilizing it in boron-catalyzed sp3 C-H borylation of
anisole derivatives.[183] Carbazole-based PNP pincer ligands were synthesized by reducing
the chlorido precursor with KBEt3 or treating monomeric alkyl complexes with H2. Each
iron atom’s coordination sphere is highly distorted square-pyramidal, with twisted [Fe(PNP)]
fragments. Magnetic susceptibility measurements based on Evan’s method suggest the iron
centers as FeII,hs with significant antiferromagnetic coupling. This complex also catalyzes
the hydrogenation of alkenes.[184]
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Table 7.1: Overview on Fe-Fe distances and Mössbauer parameters for polynuclear iron
hydrides.

Reference 𝑑(Fe-Fe) in Å Mössbauer parameters𝛿(Δ𝐸Q) in mm s−1

Sacconi 1974[163] 2.332(3) -
Shilov 1992 [164] 2.389(l),

2.379(1)
-

Suzuki 2000[165, 166] 2.202(2) 90K:0.271(1.801)𝛽-diketiminates [172, 175, 177] 2.46 to 2.62 80 K: 0.60(0.74) to 0.43(2.16)
Fryzuk 2017 [178] 2.6762(4) -
Murray 2015[179] - 80K: 0.79(2.34)
Bill, Hoffman, Holland 2012 [176] - 80K: 0.48(1.90)
Smith 2019[180] 2.5247(4) 80K: 0.35(3.77), 0.51(1.92)
[185] 2.5719(5) -
Tonzetich 2017[182] 2.4796(7) -
Gade 2018[184, 189] 2.5880(7) -
[190] 2.86 -
Gomes 2019[181] 2.4874(5) 4K: 0.69(3.08), 0.96(1.92)
[185] 2.5719(5) -
Ohki 2017 [Fe4][188] 2.513 to 2.769 78 K: 0.178(1.189), 0.592(1.811)
Ohki 2017 [Fe6][188] 2.434 to 2.623 78 K: −0.259 (0.391), 0.482(0.650)

A recent example reported by Tamm and coworkers features an unsymmetrical amino-
imidazolin-2-imine ligand. Again, antiferromagnetically coupled high-spin Fe(II) centers
are determined based on solid-state magnetic measurements. This complex serves as pre-
catalysts in H/D exchange reactions with deuterium (D2) in hydrosilanes.[185]

Apart from the dimeric structures discussed above, the bis(hexamethyldisilazide) ligand
gives rise to polynuclear iron clusters in a broad variety of structures (Figure 7.1). Jacobi von
Wangelin and coworkers have reported the reduction of [Fe(HMDS)2] using Dibal-H which
resulted in the isolation of Fe4, Fe6, and Fe7 clusters. These clusters were characterized by
crystallographic structure analysis and LIFDI-MS and they are capable of hydrogenating
a wide range of tri- and tetrasubstituted alkenes under mild conditions.[186, 187] Ohki’s
group utilized the same precursor but employed pinacolborane as the reducing agent. By
adding phosphines, they accessed various clusters with different oxidation and spin states
of the iron centers, which were characterized by Mössbauer spectroscopy. The hydride
bridges were analyzed by deuteration and the comparison of IR spectra between hydrido
and deuterido clusters, similar to the approach used by Sacconi and coworkers.[188] These
clusters were also employed for the catalytic silylation of N2 in the presence of sodium and
Me3SiCl.

The examples above have demonstrated that the synthesis of the variously applied polynu-
clear hydrides in catalysis can be achieved through reduction using hydride sources such as
alkali tetraethylborohydrides or the direct addition of H2. Their isolation and characteriza-
tion pose challenges due to their high sensitivity and paramagnetic nature. Key methods for
characterization include Mössbauer spectrometry, magnetic measurements, deuteration cou-
pled with IR spectroscopy comparison, mass spectrometry, and single crystal X-ray diffrac-
tion. An overviw of the Fe-Fe distances and typicall Mössbauer parameters for the iron
hydrides can be found in Table 7.1

In this work, the stabilization of highly reduced ferrates by the redox-active ligand
bis(imino)acenaphthene (BIAN) was considered. BIANs are easily synthesized from com-
mercial precursors on multigram scales and are highly redox-active, capable of harboring up
to four electrons.[53, 54] Recently, BIAN was employed for the synthesis of a related dimeric
cobaltate with three bridging hydrides, which served as an active precatalyst for the hydro-
genation of alkenes.[52] Consequently, the focus of this study is on the catalytic reactivity
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of a system involving the analogous iron precursor as well as the isolation, characterization,
and reactivity studies of the derived ferrate complexes.
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Figure 7.1: Reported polynuclear ironhydride complexes.
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Figure 7.2: Mössbauer data of crystalline [(Me,MeNacnacAr)Fe(µ-H)2Fe(Me,MeNacnacAr)]
(with Ar = 2,6-dimethylphenyl, toluene-free crystal). Each orange inset shows
an equivalent section of the diffraction pattern, corresponding to the (−8 −4
6) reflection in the high-temperature indexing in C2/c, and the splitting of the
reflection at low temperature is a result of conversion to the twinned structure.
Each main panel shows the Mössbauer data (black circles) with the associated
fits (red) that are the sum of components for the tetrahedral site (green) and
the square-planar site (blue). The residuals are shown in grey. Reproduced
from Ref. [177] with permission from the Royal Society of Chemistry.
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7.2 Catalyzed Hydrogenation of Alkenes with DippBIAN
Iron Complexes

The catalytic studies shown in this section have been performed in preliminary work.[55,
95]

As for the DippBIAN (L) cobalt system, optimizations of the reducing agent in previously
reported catalytic systems of [(L)FeCl2] 1/ 3 n-BuLi[95] revealed that LiBEt3H is even more
suitable (Tab. 7.2).[55]

Table 7.2: Catalytic optimization studies on reducing agent.0.25mmol triphenylethylene
were hydrogenated. Yields and conversions are determined by quantitative GC-
FID vs. n-pentadecane as internal standard.[55]

Entry Reductant Yield (Conversion)
1 n-BuLi 31%(31 %)
2 i-PrMgCl 51(51)
3 LiBEt3H 77(79)
4 NaBEt3H 3(3)
5 KBEt3H 2(2)
6 L-selectride 62(62)
7 N-selectride 1(1)
8 DiBAl-H 25(25)

Similar to related cobalt-containing catalytic systems, a strong alkali cation effect was ob-
served.[52, 191] Quantitative hydrogenation of alkenes under mild conditions was achieved
(20–60° C, 2–10 bar) (Figure. 7.3). Even challenging alkenes such as triphenylethylene were
hydrogenated quantitatively under these conditions. [Li][Fe(L)(toluene)] is assumed to be
the active species in the hydrogenation catalysis. It was detected in the catalyst solution by
LIFDI-MS (m/z = 655) alongside the neutral [Fe(L)(toluene)] 6, which was previously re-
ported by Findlater et al.[192] but found to be inactive as a catalyst for alkene hydrogenation
under the conditions described above.[55, 95] On the other hand, the tetrahydridoferrate 2,
which will be discussed in greater detail in section 7.3, proved to be an active precatalyst
(see Figure. 7.3).[55] Notably, 1/3 LiBEt3H and 2 produced a very similar product ratio
of the product from competing alkene hydrogenation and the product from hydrogenative
ring-opening of 𝛼-cyclopropyl styrene (Figure 7.3 bottom). This key experiment suggests a
closely related mechanism for the hydrogenation with the in situ reduced precursor and the
isolated hydridoferrate 2.[55]
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Figure 7.3: Catalytic hydrogenation of alkenes. Yields are determined by quantitative
GC-FID vs. n-pentadecane. Conversions are given in parenthesis if <,95 %.
Blue highlighting indicates 𝜋-bonds being hydrogenated. Green highlighting
indicates sites for hydrogenative ring-opening. a traces of hydrodehalogenation.
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7.3 Synthesis and Characterization of Reduced
DippBIAN Iron Complexes

To synthesize hydridoferrates, the stable precursor [LFeCl2] was reduced with 3 equivalents
of an alkali metal triethylborohydride (AMBEt3H, AM = Li, Na1) in Et2O in a closed
reaction vessel.[193] Gas evolution was observed during the reduction, presumably due to
the formation of H2. The products were percipitated with n-hexane. Afterwards subsequent
extraction with Et2O and THF afforded the dianionic tetra- and dihydridoferrate 2 and 3,
respectively, as the main products with yields up to 42%[55] (Figure,7.4).

Figure 7.4: Complexes synthesized by reduction of [LFeCl2] with AMBEt3H (AM = Li
and Na). Complexes isolated from both reactions are highlighted green, those
isolated from AM = Li are highlighted blue and those isolated from AM = Na
are highlighted yellow.

In different fractions, isomeric [Fe2L2] complexes 4 and 5 were isolated. While complexes 2,
3, and 5 form dark green block-shaped crystals and solutions in THF, complex 4 crystallizes

1Synthesis attempts with KBEt3H resulted in oily residues, and no crystals suitable for sc-XRD could be
obtained so far.
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as green plates and forms red solutions in THF or toluene, similar in appearance to the
complex 6[192].

Complexes 2[55], 3a[55], 3b, and 4[55] have been analyzed by elemental analysis (EA).
Unfortunately, individual measurements for complex 5 varied and no satisfactory EA results
were obtained, likely due to the decomposition of the highly air-sensitive compound before
measurement.

Like the 1H-NMR spectra of 2 and 3a,[55] also the1H-NMR spectrum of 3b (Figure,D.8)
shows only solvent signals from the solvated cation in the range from −120 ppm to 120 ppm
which is indicative of the paramagnetic nature of this complex. 5 displays broad signals that
are significantly shifted, suggesting that it is also paramagnetic. In contrast, the isomeric
complex 4 shows a diamagnetic 1H-NMR spectrum with sharp signals.[55] Additional sets
of doublets for the i-Pr groups indicate coordination to one of each Dipp group. Similar to
the closely related [FeL(tol)] 6 complex,[192] the p- and m-aryl protons of the coordinated
Dipp are shifted upfield (5.62 ppm to 4.76 ppm, Figure,D.7).

Single crystal X-ray diffraction analysis of 2 shows four hydride ligands that bridge two
LFe units (Figure 7.5).[55] The molecule exhibits pseudo D2h symmetry and lies across an
inversion center located between the iron atoms. The [Li(thf)3(Et2O)]+ cation is solvent-
separated. A short Fe–Fe distance (2.5286(7) Å) is observed due to the presence of four
bridging hydrides and may indicate metal-metal interaction. This bond is longer than in
the related complexes [Cp·Fe2(µ H)4] (2.202(2) Å)[165] and Li5[Ph3Fe2(µH)3] (2.389(1)
and 2.379(1)Å),[164] but shorter than [(NacNac)Fe(µ H)]2 (2.624(2)Å).[172] The Fe–H
bond distances are 1.60(7) Å and 1.73(11) Å. The NC=CN bond length of BIAN is sig-
nificantly shortened in comparison to the neutral ligand, indicative of a dianionic BIAN
(C–N 1.383(4) Å and 1.374(4) Å; C–C 1.397(4)Å; Fe-N: 1.981(2) Å; N-Fe-N: 88.26(10)°).
Similar bond lengths have been recently reported by Wolf and coworkers for a related fer-
rate [LFeI(1,5 cod)]– (1,5-cod = 1,5-cyclooctadiene, C–N 1.385(4) Å, C–C 1.388(5) Å, Fe–N
1.971(2)Å, N–Fe-N 82.1(1)°).[194]

Figure 7.5: Molecular structures of 2. Thermal ellipsoids at the 50 % probability level; mi-
nor disordered parts, non-coordinated solvents, selected H atoms, and cations
are omitted for clarity. Adapted from reference [55].

Next to the main product 2, the related dihydridoferrate 3a was isolated in small amounts
from a THF fraction. Single crystal X-ray diffraction analysis shows a very similar structure
to 2, which formally differs by the loss of H2. Like for 2, bond lengths are indicative of a
dianionic BIAN (C-C 1.387(3) Å; C-N: 1.382(2) and 1.393(2) Å; Fe–Fe: 2.5122(5) Å; Fe-N:
1.9863(16) and 1.9890(16) Å; Fe-H 1.84(3) Å; N-Fe-N 89.00(6)°).[55]

When using NaBEt3 as the reducing agent, the analogous dihydridoferrate 3b was isolated as
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Figure 7.6: Molecular structures of 3b and 3c. Thermal ellipsoids at the 50 % probability
level; non-coordinated solvents, selected H atoms, and cations are omitted for
clarity.

the main product. So far, no sodium variant of the dihydridoferrate was isolated. The struc-
tural parameters obtained from single crystal X-ray diffraction analysis are again close to
those of 2 and 3a, and the BIAN ligand is presumably in its dianionic state (C-C 1.397(2)Å;
C-N: 1.381(2) and 1.377(2)Å; Fe–Fe: 2.5360(6)Å; Fe-N: 1.9874(13) and 1.9927(14) Å; Fe-H
1.68(3)Å; N-Fe-N 87.79(6)°, Figure 7.6 left).

In contrast to the ion pair separated 3b, the dihydridoferrate 3c with coordinated Na+

cations shows better solubility in nonpolar solvents, and a few crystals were obtained from a
n-hexane fraction. The distance between the sodium ion and the coordinated plane through
the iron diimine moiety is 2.4506(9)Å. Again, bond lengths and angles are closely related
to the above-described tetra- and dihydridoferrates (C-C 1.392(2) Å; C-N: 1.3926(19) and
1.3907(19)Å; Fe–Fe: 2.5660(5)Å; Fe-N: 1.9882(12) and 1.9983(12) Å; Fe-H 1.86(2) Å; N-
Fe-N 86.59(5)°, Figure 7.6 right). Among the hydridoferrates described here, 3c shows the
longest Fe–Fe distance (Table 7.3).

For all reductions performed with AMBE3H, the neutral complex 4 could be crystallized
from the filtrate of the reaction mixture. In this dinuclear complex, each iron coordinates
to one diisopropylphenyl moiety of the ligand of the other iron center (Figure 7.7). The
NCCN bond lengths of BIAN (1.405(4)Å for C-C, 1.345(4)Å and 1.336(4) Å for C-N) are in
good agreement with a related complex [LFe(iPrC6H5)] (1.405(3) Å for C-C, 1.341(3) Å and
1.343(3)Å for C-N)[55] and [LFe(tol)] (1.400(4) Å for C-C, 1.343(3) Å for C-N) as reported
by Findlater and coworkers.[192, 195] The authors suggested a monoanionic BIAN strongly
and antiferromagnetically coupled to a FeI center (𝑆 = 0).[195] However, Fedushkin and
coworkers reported a monoanionic BIAN antiferromagnetically coupled to a high-spin FeII

in [(L2Fe] (1.4234(18) Å for C-C, 1.3367(15) Å and 1.3393(15) Å for C-N).[196] Note that
the C-C bond length of this monoanionic BIAN is much longer than in 3. The electronic
structure (𝑆 = 2 − 2 ⋅ 12 = 1 ground state) is assigned by SQUID magnetometry.[196]
Hence, an alternative description for 3 would involve a dianionic BIAN with a low-spin FeII

(𝑆 = 0).[55]

The structurally unique complex 5 is isomeric to complex 13. Both BIAN ligands coordi-
nate both iron centers, each with one of the N atoms (1𝜅1𝑁, 2𝜅1𝑁 ′), forming a diferradi-
cyclic moiety (Figure,7.8). Each Fe2NC2N cycle is almost planar with a sum of internal
angles of 717.9° (N-C-C: 125.86(19)°, 125.12(18)°; C-N-Fe: 130.35(14)°, 135.76(13)°; N-Fe–
Fe: 104.04(6)°, 96.78(5)°), which is only slightly smaller than the 720° of a plane hexagon.

Complex 5 has a remarkably short Fe–Fe bond length of 2.3068(8) Å. Apart from iron car-
bonyl clusters, only a small number of complexes with such short Fe–Fe bond distances have
been reported so far. The shortest Fe–Fe bonds described are found in two iron complexes
with two FeI, hs centers and two bulky guanidinato ligands (2.127(7) Å and 2.1516(5) Å).[197,
198] Like 5, their inner Fe2N4C2 or Fe2N6 entities are essentially planar.
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Figure 7.7: Molecular structures of 4. Thermal ellipsoids at the 50 % probability level;
selected H atoms are omitted for clarity. Reproduced from reference [55]

The NCCN bond lengths of the ligands are similar to those of the hydridoferrates (Ta-
ble,7.3), which is characteristic of a dianionic BIAN ligand. For tri- and tetragonal lantern-
type iron(II) dimers with three amidinato and four triazenido ligands, Fe–Fe distances of
2.198(2)Å and 2.167(8)Å have been reported.[199, 200] Other examples involve large multi-
dentate ligand systems[201–204] such as the mixed-valence [FeIIIFeICl(py3tren)][201] (with
py3tren being the triply deprotonated form of N,N,N -tris(2-(2-pyridylamino)ethyl)amine,
Fe–Fe: 2.2867(5) Å) reported by Lu and coworkers and [FeII,hs

2(NDI)(C6H6)] with a rigid
naphthyridine–diimine (NDI) ligand (Fe–Fe: 2.287(1) Å).[203]

Table 7.3: Overview of the characteristic bond lengths in the described dinuclear iron com-
plexes in this work.

Complex d(Fe–Fe)/Å d(Fe-N)/Å d(C-C)/Å d(C-N)/Å
2 2.5286(7) 1.981(2) 1.397(4) 1.383(4),

1.374(4)
3a 2.5122(5) 1.9863(16),

1.9890(16)
1.387(3) 1.382(2),

1.393(2)
3b 2.5360(6) 1.9874(13),

1.9927(14)
1.397(2) 1.381(2),

1.377(2)
3c 2.5660(5) 1.9882(12),

1.9983(12)
1.392(2) 1.3926(19),

1.3907(19)
4 - 1.928(3),

1.909(3)
1.405(4) 1.345(4),

1.336(4)
5 2.3068(8) 1.9019(17),

1.8895(13)
1.391(3) 1.380(3),

1.377(3)
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Figure 7.8: Molecular structure of 5 (top: top view, bottom: side view). Thermal ellipsoids
at the 50% probability level; selected H atoms are omitted for clarity.
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Figure 7.9: (a): Negative-ion mode ESI mass spectrum of a solution of 2 (𝑐 ≈ 6 m m) in
THF. (b): Section from the negative-ion mode ESI mass spectrum (black) to-
gether with the theoretical isotope pattern of [LFeH]– (blue). (c): Section from
the negative-ion mode ESI mass spectrum (black) together with the theoretical
isotope pattern of [LFe(H2BEt2)]– (blue). (d): Section from the negative-ion
mode ESI mass spectrum (black) together with the theoretical isotope pattern
for a 40:60 mixture of [L2Fe]– and [L2FeH]– (blue).

Utilizing negative-ion mode ESI-mass spectrometric analysis under mild conditions, a solu-
tion of 2 in THF afforded an ion of the composition of [LFe(H2BEt2)]– as the main species,
[LFeH]– and [L2FeHn]– (𝑛 = 0 and 1) (Figure 7.9, Table D.1). The presence of [LFeH]–
is quite expected as it could supposedly form from 2 by dehydrogenation and dissocia-
tion. The occurrence of these processes despite the use of mild ESI conditions suggests
that 2 readily loses H2 and easily dissociates into its mono-nuclear components. Upon gas-
phase fragmentation, [LFeH]– underwent extensive dehydrogenation with the loss of up to
4 H2 molecules (Figure D.17). Although coordinatively more saturated than [LFeH]–, its
[L2FeHn]– counterparts also underwent dehydrogenation, together with the elimination of
one DippBIAN ligand (Figure D.19). Similar behavior has previously been observed for the
related dinuclear hydridocobaltate complex LCo2H3−.[52] Most likely, this high propensity
toward dehydrogenation reflects not just the unsaturated character of [LFeH]–, but also its
intrinsically high reactivity for such reactions. Under catalytic conditions, the principle of
microscopic reversibility then implies that [LFeH]– and related complexes, such as 2, are
also active in mediating hydrogenation reactions. During measurement the intensity of the
[LFeH]– peak decreased, indicating the decomposition of 2 inside the syringe with the mea-
sured solution.[LFeH]– and [LFe(H2BEt2)]– were also observed for the reaction mixture of
LFeCl2 and 3 LiBEt3H in THF (Figure D.20 and Table D.2). Intuitively, [LFe(H2BEt2)]– is
closely related to 2 and can be assumed to form from the dinuclear complex by dehydrogena-
tion, dissociation, and the exchange of the hydride ligand for H2BEt –

2 , the latter apparently
remaining from the synthesis. Gas-phase fragmentation of mass-selected [LFe(H2BEt2)]–
resulted in the selective and facile loss of HBEt2 and the formation of the hydridoferrate
[LFeH]– (Figure D.18).
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To investigate the electronic structure, DFT calculations were employed. Given the involve-
ment of the redox-active ligand, which is most likely either an anion (𝑆 = 12 ) or a closed-shell
dianion, several oxidation and spin states are plausible (Figure D.25). Optimization of the
molecular structure encountered convergence issues, as well as the dissociation of the com-
plex 2 for some spin states. Only using optimized molecular structures for some spin states
would result in a strong preference for these optimized spin states, as has been discussed in
chapter 6.5. Initial attempts revealed that spin state energetics are highly dependent on the
choice of functional (Figure D.26). A benchmark study on iron complexes with redox-active𝛼-diimine ligands, discussed in Chapter 5, shows that hybrid functionals with 15% exact
exchange are suitable for spin state energetics of iron complexes with this type of ligand[71].
For the aforementioned reasons, crystal structures were used for the calculations, and the
B3LYP* functional, which has generally been shown to be suitable for spin state energetics
of iron complexes, was chosen. For 2, the septet (two ferromagnetically coupled FeIII,is) is
lowest in energy, while for 3, the nonet (two ferromagnetically coupled FeII,hs) is lowest in
energy (Figure 7.10). The plot of the spin density shows nearly no spin density localized
on the ligand, which is consistent with a closed-shell dianion as suggested by the crystal
structure. Using the OPBE functional yielded similar results for 2 (Figure D.27). Analyz-
ing the number of unpaired electrons on each iron center shows that 2 has two inequivalent
iron centers with 2.6 and 3.4 unpaired electrons each, which aligns with the assumption
of FeIII,is (Figure 7.12). However, the calculated number of unpaired electrons is usually
smaller than the theoretical one. With some spin density of opposite sign localized on two of
the bridging hydrides, the complex could also be described as FeII,hs antiferromagnetically
coupled to two H (Figure 7.10). A direct comparison of 3 and 2 by adding the energy of
H2 to 3 resulted in an unreasonably large energy difference (Figure D.28), likely due to the
insufficient description of entropic effects.

For complex 4, as expected from the diamagnetic NMR spectrum, the singlet state (FeII,ls) is
much preferred compared to the quintet and nonet (two FeII,hs) (Figure 7.11). In contrast,
spin state energies of isomer 5 are similar. In agreement with the paramagnetic NMR
spectrum, the nonet is predicted to be in the ground state. Unlike the singlet of 4, where
no unpaired electrons are localized on the iron center, 5 has an open-shell singlet with
3.4 unpaired electrons of opposite spins localized on each iron center, consistent with two
antiferromagnetically coupled FeII,hs. As 4 and 5 are isomers a direct comparison of their
energy levels is possible. Both complexes are energetically close with 5 being favored by
6.9 kJ/mol. This is in agreement with isolating both complexes from the same reaction.

Figure 7.10: Relative energies of spin states calculated with B3LYP*/def2-TZVP with
PCM(THF) on crystal structures. Spin densities for selected spin states are
calculated with an iso surface value of 0.005 𝑒𝑎0-3.
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Figure 7.11: Relative energies of spin states calculated with B3LYP*/def2-TZVP with
PCM(THF) on crystal structures. Spin densities for selected spin states are
calculated with an iso surface value of 0.005 𝑒𝑎0-3.

Figure 7.12: Number of unpaired electrons on iron atoms calculated by Mulliken popula-
tion analysis for different spin states (B3LYP*/def2-TZVP with PCM(THF)).
The grey dashed lines indicate ideal values for different oxidation and spin
states of the iron centers.
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As mentioned before, Mössbauer spectroscopy is crucial for the analysis of the oxidation and
spin state of iron centers. The 57Fe Mössbauer spectra of 2 and 3 show the same isomer
shift (0.53mm s−1) and very large quadrupole splittings of 3.98mm s−1 and 4.21 mm s−1,
respectively (Figure 7.13 top). These values do not fit the smaller quadrupole splitting
observed in the literature for FeII,hs complexes (see Table 7.1)[179, 181]. A better fit might
be an FeII or FeIII intermediate spin state, as described for the square planar coordinated
FeII reported by Smith et al. (𝛿=0.35mm s−1, Δ𝐸Q=0.35mm s−1). To gain more insight,
Mössbauer spectra were calculated with DFT according to Neese and coworkers[205, 206]
(Figure 7.13 bottom). The calculated isomer shifts do not depend much on the spin state
and are similar for complexes 2 and 3. They are slightly smaller than the experimental
values, which might result from the use of unoptimized molecular structures.[207]

The calculation for 2 with Fe(III) intermediate spin (septet), predicted to be the ground
state by DFT, results in a very small QS of 0.50 mms−1 and therefore constituting the
furthest deviation from the experimental data. In contrast, the calculation of FeII,hs (nonet)
for 3 results in a much larger QS of 3.63 mm s−1, thus describing the experiment much
better. A possible explanation for these findings is that 2 loses H2 during drying. The main
species in the Mössbauer spectrum is then 3 with FeII,hs. The impurities observed in the
spectrum of 2, which fit the calculated QS of FeII,hs much better, actually result from the
tetrahydride 2. Although FeII,hs is predicted as the ground state of complex 3, such a large
quadrupol splitting is atypical for FeII,hs. Nevertheless, this scenario is also supported by
solid-state magnetic measurements, which can be fitted to two 𝑆 = 2 iron centers (Figures
7.14).

Figure 7.13: Mössbauer spectra of 2 and 3a measured at 80 K (top) mössbauer parameters
calculated with TPSSh and CP(PPP) basis set on iron atoms and def2-TZVP
on all other atoms (bottom).

The Mössbauer spectra for the isomeric complexes 4 and 5 are clearly distinguishable (Figure
7.15 top). Neither of these compounds appears to be the impurity observed in the Mössbauer
spectrum of 2. The parameters of 4 are in good agreement with those of the related toluene
complex, which has an isomer shift (𝛿) of 0.45 mms−1 and a quadrupole splitting (Δ𝐸Q)
of 0.41mm s−1.[192] The authors of the related toluene complex are hesitant to assign an
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Figure 7.14: Temperature-dependence of the product 𝜒𝑀𝑇 of 2. The red curve is the fit
for 2 ⋅ 𝑆 = 2.

oxidation state due to missing measurements. Similarly, for 4, magnetic measurements
cannot be provided due to iron nanoparticle impurities in the measured sample. However,
the isomeric shift of 4 is well fitted by the DFT calculations.

The Mössbauer spectrum of 5 reveals two observed species in a 1:2 ratio (green fit vs. blue
fit in Figure 7.15 top right). The calculated spectra of the quintet (FeII,is) fit the green
curve better. Nevertheless, it is unclear which species is the impurity, and there is a lack of
comparable precedence in the literature due to the unique coordination sphere. Additionally,
no further measurements of the magnetic moment are available and a definitive statement
on the oxidation and spin state cannot yet be made.

The electrochemical properties of the complexes were investigated using cyclic voltammetry
(CV) measurements. For the formally more reduced complex 2, oxidative processes were
examined. The CV of tetrahydridoferrate 2 shows a reversible oxidation at 𝐸0 = −2.53 V
(THF/[nBu4N]PF6, Δ𝐸p = 84 mV) and another likely reversible oxidation at 𝐸0 = −2.19 V
(Δ𝐸p = 123 mV) vs. Fc/Fc+.[55]

For the formally less reduced 4, reductive processes were investigated. Two very close
reversible reductions were observed, with a shoulder formation at −2.48 V and −2.60V
(Figure 7.16 left). The differences between the two peak potentials (Δ𝐸p) for 4 are 55mV
and 91 mV, which are close to the expected value of 57mV for a reversible 1 e–process. The
small deviations likely result from the overlap of both reductions. These findings strongly
support that 4 is also a dimer in solution. The related toluene complex 6 exhibits a reversible
reduction at −2.56 V (Figure 7.16 right), which is between the reduction potentials of 4,
thereby highlighting the electrochemical similarity of both compounds. The similarity of the
reduction potentials of 4 and 6 with the oxidation potential of 3 supports the assumption
that a 1 e–reduction of 4 or 6 under a hydrogen atmosphere could lead to the formation of
2.
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Figure 7.15: Mössbauer spectra of 4 and 5 measured at 80K (top). Mössbauer parameters
calculated with TPSSh and CP(PPP) basis set on iron atoms and def2-TZVP
on all other atoms (bottom)

Figure 7.16: Cyclic voltammograms in THF/ [nBu4N]PF6 at scan rate 100 mV s−1. left:
complex 4 𝐸0,1 = −2.48 V, 𝐸pc1 = −2.53 V, 𝐸pa1 = −2.44 V, Δ𝐸p1 = 91 mV,𝐸0,1 = −2.60 V 𝐸pc2 = −2.62 V, 𝐸pa2 = −2.57 V, Δ𝐸p2 = 55 mV; right:
complex 6 𝐸pc = −2.62 V, 𝐸pa = −2.49 V, Δ𝐸p = 74 mV.
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7.4 Reactivity of Ironhydrides

To gain insight into the possible applications of hydridoferrates 2[55] and 3b, a reactivity
assessment was conducted. The reaction with acetophenone (Figure 7.17 (a)) yielded 1-
phenylethanol and hydrobenzoin, with hydrobenzoin present in slightly larger amounts for
both hydrides. The formation of 1-phenylethanol indicates hydride transfer, while hydroben-
zoin formation suggests a single-electron transfer (SET) process. This competition between
hydride transfer and SET was also observed during catalytic hydrogenation (see Section
7.2). Similarly, the reaction with benzyl bromide produced both hydride transfer (toluene)
and SET (1,2-diphenylethane) products (Figure 7.17 (b)). The hydrodebromination of 4-
bromotoluene was observed with both complexes. Additionally, under mild conditions (room
temperature and 1 atm pressure), hydride transfer to CO2 was successfully demonstrated.

The isomerization of Z-stilbene to E-stilbene indicates olefin coordination to the iron com-
plexes (Figure 7.18 (a))[55]. For the terminal alkene allylbenzene, isomerization products
were only observed as side products, while the main product was propylbenzene (Figure 7.18
(b)). The workup was performed in D2O, and since no deuteration was found in the prod-
uct, it is likely that of the added hydrogen atoms originate from the hydridoferrates. The
reactivity of 2 towards phenylacetylene was poor, resulting in only 10 % cyclotrimerization
and no hydrogenation.[55] Due to the acidic hydrogen in phenylacetylene, hydrogen gas for-
mation could be a potential reason for this. However, experiments targeting the detection
of formed hydrogen gas showed no formation of hydrogen during the reaction of 2 or 3 with
phenylacetylene (Table 7.4 entry 5).

These experiments were conducted by placing a smaller vial containing a solution of styrene
and a Pd/C catalyst inside a vial with the hydridoferrate solution. After the addition of the
reactant to the outer vial with the hydridoferrate, the vial was quickly closed. In this setup,
any formed hydrogen could diffuse through the gas phase to the inner vial, where it would
be consumed to hydrogenate styrene. The formed ethylbenzene could then be quantified
by GC-FID. A blank sample with an empty outer vial resulted in no conversion of styrene
(Table 7.4 entry 1), proving that the formed hydrogen resulted from the reaction and not
from H2 contamination in the glovebox atmosphere.

Table 7.4: Hydrogen evolution reactions with hydridoferrates.

Entry [Fe] solvent additives Yield PhEt
1 blank - - 0 µmol
2 0.5 mL ”fresh” solution of 2 Et2O - 16 µmol
3 0.5 mL ”fresh” solution of 2 Et2O anthracene 24 µmol
4 65 µmol 2 THF anthracene 8.5 µmol
5 6 µmol 2 or 3b THF phenylacetylene 0 µmol

With this setup, a solution of freshly synthesized 2 was also investigated. In this context, a
fresh solution refers to the extract obtained in the synthesis, which would usually be cooled
for crystallization (see Section 8.2.7). It was suspected that the hydrides easily lose H2 upon
drying. Therefore, amounts of the fresh solution of the hydride in ether were added to the
outer vial before quickly sealing it. The ether would then evaporate and dissolve in the THF
solution in the inner vial. During this process, a color change from the green solution to a
brown residue was observed in the outer vial, and hydrogen formation was verified (Table 7.4
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entry 2). A higher volume of hydrogen gas evolution could be induced by adding anthracene
to the outer vial (Table 7.4 entry 3). Hydrogen formation was also observed using the prior
isolated complex 2 without the drying effect (Table 7.4 entry 4). The addition of anthracene
to a solution of 2 resulted in a rapid color change from green to blue. Thus suggesting the
formation of an anionic anthracene complex, [LFe(anthracene)]–.
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Figure 7.17: Reactivity of hydridoferrates 2 and 3a towards electrophiles. Yields are de-
termined by quantitative GC-FID vs. n-pentadecane after aqueous workup.
Due to its volatility, the yields for toluene might be higher than the actual
detected amount. The yield of formate has been determined by quantitative
1H-NMR vs. internal DMF standard.
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Figure 7.18: Reactivity of hydridoferrates 2 and 3a towards alkenes and alkynes. Yields
are determined by quantitative GC-FID vs. n-pentadecane after aqueous
workup. Reactivity of hydridoferrates 2 and 3a with alkenes and alkynes.
Yields are determined by quantitative GC-FID vs. n-pentadecane. Yields
shown in red are quantified by GC-MS. Although GC-MS quantification is
less accurate, it provides better peak separation compared to GC-FID in these
cases.
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7.5 Conclusions

The bis(imino)acenaphthene ligand has demonstrated its ability to stabilize highly reduced
iron complexes by maintaining the iron centers in stable oxidation states through the uptake
of two electrons. Consequently, several rare hydrogen-bridged dinuclear iron complexes,
including the tetrahydridoferrate 2 and the dihydridoferrates 3a, 3b, and 3c, have been
successfully synthesized and characterized.

Investigations into the electronic structure of these complexes involved Mössbauer spec-
troscopy, which revealed unusually large quadrupole splittings for all hydridoferrate com-
plexes, along with SQUID magnetometry and DFT calculations. The most fitting description
of the iron centers is FeIII,is for the tetrahydridoferrate 2 and FeII,hs for the dihydridofer-
rates.

Reactivity studies indicated that 2 easily loses H2 and suggesting an equilibrium between
the tetrahydridoferrate 2 and the dihydridoferrate, facilitated by the elimination or addi-
tion of H2. This dynamic system is further supported by the presence of the complex 4,
which is related to 2 through a reductive process, as demonstrated by cyclovoltammetric
measurements.

Additionally, the unique complex 5, an isomer of 4, has been isolated. As supported by
DFT calculations, both complexes are energetically similar. The electronic structure of the
diamagnetic 4 is closely related to the arene complex [LFe(tol)] (6), likely with FeII,ls centers,
while 5 is paramagnetic with FeII,hs centers.

The system [LFeCl2] 1/3 LiBEt3H, as well as the dihydridoferrates, have proven to be ac-
tive precatalysts for the hydrogenation of challenging alkenes even under mild conditions.
Mechanistic experiments and reactivity studies have demonstrated that the presented hy-
dridoferrates can undergo both single-electron transfer and hydride transfer reactions.

In summary, this work has provided valuable insights into the electronic structures and
reactivity of these unique iron complexes.
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8 Experimental Section

8.1 General

All experiments involving air- and moisture-sensitive compounds were performed under an
atmosphere of dry argon or nitrogen using standard Schlenk and glove box techniques.
Chemicals and Solvents: Anhydrous dichloromethane, toluene and hexane were obtained
from solvent purification system by M. Braun. Tetrahydrofuran and diethylether were dis-
tilled from sodium benzophenone ketyl. All anhydrous solvents and liquid alkenes were
stored over molecular sieves (3 Å). Ethyl acetate and commercially available olefins were
distilled under reduced pressure before use.
Elemental analyses (CHN) were performed with a vario ELIII by Fa.elementar.
IR mesurements were carried out inside an nitrogen filled glove box with an Agilent Cary
630 FT-IR-spektrometer with ATR-element.
The 1H-NMR spectra were mesured with an Bruker AV3400 (400 MHz) and Bruker Fu-
rierHD (300 MHz) spectrometer.
Hydrogenation reactions were carried out in 300mL high pressure reactors (Parr). The
reactors were loaded under argon, purged with H2 (1min, H2 : 99.9992 % from Linde),
sealed, and the internal pressure was adjusted.
Gas chromatography with Flame Ionization Detector (GC-FID): HP6890 GC-FID
with injector 7683B and Agilent 7820A, carrier gas: N2. Calibration was performed with
analytically pure samples vs. internal standard n-pentadecane). Gas chromatography
with mass-selective detector (GC-MS): Agilent 6890N Network GC-System, mass de-
tector 5975 MS. Column: HP-5MS (30 m × 0.25 mm × 0.25 um, 5 % phenylmethylsiloxane,
carrier gas: H2. Standard heating procedure: 50 °C (2 min), 25 °Cmin−1 to 300 °C (5 min)
Liquid injection field desorption mass spectrometry (LIFDI-MS): The spectra were
recorded by the Central Analytics Lab at the Department of Chemistry, University of Re-
gensburg, on a LIFDI-MS from Linden connected to an AccuTOF GCX from Jeol.
ESI mass spectrometry: Sample solutions were transferred into a gas-tight syringe and
fed into the ESI source of a micrO-TOF-Q II mass spectrometer (Bruker Daltonik) at a
flow rate of 8 �L min−1. The ESI source was operated at a voltage of 3500 V with nitrogen
as nebulizer (10 L min−1 flow rate) and drying gas (heated to 333K and held at 0.7 bar
backing pressure). The thus produced ions with 50 � m/z � 3000 were then allowed to pass
the instrument’s quadrupole mass filter and collision cell before entering the time-of-flight
(TOF) mass analyzer. In gas-phase fragmentation experiments, the ions were mass-selected
in the quadrupole mass filter (with isolation widths of 6 or 8 u), accelerated to kinetic
energies ELAB, and subjected to collisions with N2 gas present in the collision cell. The
residual precursor ions and resulting fragment ions were then also injected into the TOF
analyzer. Ions were identified on the basis of their m/z ratio, their isotope pattern, and their
fragmentation behavior. On average, measured m/z accuracies of < 10 ppm were obtained
with an external calibration with a mixture of CF3COOH and phosphazenes in H2O/MeCN.
Theoretical m/z ratios and isotope patterns were calculated with the DataAnalysis software
(Bruker Daltonik).
Cyclovoltammetry: Electrochemical measurements were carried out under an atmosphere
of nitrogen using 0.5 m msolutions of the analyte and [N(n Bu)4][PF6] (0.1 m0.1 mol�L–1)
as supporting electrolyte in tetrahydrofuran The redox potentials are given against the
ferrocene/ferrocenium redox couple according to Gritzner and Kuta.[208] An Autolab PG-
STAT101 setup was used with a platinum electrode (by Ω Metrohm 6.0301.100), a glassy
carbon electrode (by Ω Metrohm 6.1241.060) and an Ag/AgCl electrode (by Ω Metrohm
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6.0724.140) were used as working, counter and reference electrode, respectively.
DFT Calculations: All KS-DFT calculations were carried out with Orca program pack-
age117–119. B3LYP*[23, 61, 105] or OPBE[111, 209] xc functionals with atom-pairwise dis-
persion correction with the Becke-Johnson damping scheme (D3BJ)[102] were employed
together with the def2-TZVPP[103] basis set and the auxiliary basis def2/J[104] for single
point calculations. Mössbauer parameters were calculated according to Neese[205, 206] at
al. using TPSSh xc functional and CP(PPP) basis function for iron atoms and def2-TZVPP
basis set for all other atoms. Isomer shifts have been fitted with parameters 𝛼 = −0.376,𝛽 = 4.130 and 𝐶 = 11810 by (𝛿 = 𝛼(𝜌 − 𝐶) + 𝛽).[206] The conductor-like Polarizable
Continuum Model (C-PCM) with THF as solvent has been used for all calculations.[210]
Convergence criteria were set to TightSCF.

8.2 Synthesis

8.2.1 General Procedure for Catalysed Alkene Hydrogenation

A 4mL vial was charged with the precatalyst (7.5 µmol, 3 mol %) in toluene (2mL).
LiEt3BH (22.5 µmol, 1.0 m in THF, 9mol %) was added dropwise. After stirring for 10 min,
the alkene (0.25 mmol, 1 equiv.) was dissolved in in toluene (0.5 mL) and added to the
catalyst solution. After a cannula was placed in the septum of the vial, it was transferred to
a high-pressure reactor. The reactor was purged with H2 for 1 min. The pressure was then
adjusted. After the reaction time the pressure was released. The reaction was quenched
with saturated aqueous NH4Cl solution (1 mL) and extracted with ethyl acetate (2 x 1 mL).
The organic phases were dried over Na2SO4 and analyzed by quantitative GC-FID analysis
against internal standard (n-pentadecane).

8.2.2 General Procedure for Reactivity Tests of Hydridoferrates

A 4 mL vial was charged with the hydridoferrate (6 µmol, 10mol %). The substrate
(60 µmol, 1 equiv.) was dissolved in THF 1 mL and added to the hydridoferrate. After
stirring for 10 min at room temperature, the reaction mixture was quenched with D2O,
extracted with ethyl acetate (2 x 1mL) and the extracts dried over Na2SO4.
Reaction products were analyzed by GC-MS and quantitative GC-FID analysis against
internal standard (n-pentadecane).

8.2.3 General Procedure for Catalysed CO2 Hydrogenation

A 4 mL vial was charged with the precatalyst (6 µmol, 3 mol %) in THF (2mL). The
reducing agent (18 µmol, 9 mol%) was added dropwise. After stirring for 10 min, the base
(0.20mmol, 1 equiv.) was added to the catalyst solution. After a cannula was placed on the
septum of the vial, it was transferred to a high-pressure reactor. The reactor was purged
with H2 for 1 min. Then, the pressure was adjusted to 20 bar. Afterwards, CO2 was added
until the total pressure of 40 bar was reached. After heating to 80 °C the pressure increased
to 46 bar. After the reaction time, the reactor was cooled to room temperature and the
pressure was released. The reaction was quenched with D2O and the solvent removed
under reduced pressure. The residue was dissolved in D2O and DMF (15.5 µL, 0.20 mmol,
1 equiv.) was added as internal standard. After filtration the formed formate salt was
quantified by 1H-NMR.
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8.2.4 General Procedure for Reactions of CO2 with
Hydridometallates

In a 25mL Schlenk tube the hydridometallate (25 µmol, 1 equiv.)was dissolved in 5mL
THF. The solution was frozen in liquid nitrogen and the gas phase exchanged with CO2
(1 bar). The solution was allowed to warm to room temperature. Afterwards it was stirred
for 1 h. The solvent was removed in vacuo and the residue dissolved in 1mL D2O. DMF
(7.7 µL, 0.100 mmol, 4 equiv.) was added as internal standard. After filtration the formed
formate salt was quantified by 1H-NMR.1

8.2.5 Synthesis of DippBIAN L

N NDippO O NH2
AcOH, acetonitrile

2
reflux, 1h

Dipp

73 %

L

Scheme 1: Synthesis of DippBIAN (L).

DippBIAN was synthesized according to literature procedure.211

Acenaphthenquinone (3.65 g, 20.0mmol, 1.00 equiv.) were suspended in 100mL acetonitrile
and 30 mL acetic acid was added. After was stirred at 90 °C for 15 min, 2,6-Diisopropylanilin
(8.5mL, 45 mmol, 2.3 equiv.) were added dropwise. The reaction mixture was refluxed at
90 °C for 5 h during which the acenaphthenquinone was first dissolved and then an orange-
yellow precipitate formed. After cooling to room temperature the suspension was filtered.
After washing with n-pentane (70 mL) the orange-red solid was dried in vacuo.

Yield: 7.3 g (14.6 mmol, 73 %).
1H-NMR (300 MHz,27°C, CDCl3): 𝛿 [ppm] = 7.87 (d, 3𝐽(HH) = 8.3 Hz, 2H, CHBIAN);
7.36 (t, 3𝐽(HH) = 7.8 Hz, 2 H, CHBIAN); 7.27 (m, 6 H, CH(Dipp)); 6.64 (d, 3𝐽(HH) = 7.2 Hz,
2H, CH(BIAN)); 3.03 (hept, 3𝐽(HH) = 6.9 Hz, 6H, CH(CH3)2); 1.24 (d, 3𝐽(HH) = 6.9 Hz,
12H, CH(CH3)2); 0.97 (d, 3𝐽(HH) = 6.8 Hz, 12H, CH(CH3)2).
13C-NMR (101 MHz,27°C, CDCl3): 𝛿 [ppm] = 161.11 (C=N); 147.65 (ipso-CDipp);
140.94 (C(BIAN)); 135.57 (ortho-CDipp); 131.26 (C(BIAN)); 129.65 (C(BIAN)); 129.00
(C(BIAN)); 128.01 (C(BIAN)); 124.43 (ortho-CDipp); 123.61 (meta-CDipp); 123.49 (C(BIAN));
28.76 (CH(CH3)2); 23.56 (CH(CH3)2); 23.27 (CH(CH3)2).
IR: (ATR) ̃𝜈 [cm−1] = 3064, 2961,1668 ( ̃𝜈C=N),1640 ( ̃𝜈C=N), 1430, 1383, 787, 751.

8.2.6 Synthesis of (DippBIAN)FeCl2 1

Synthesis was performed following an adapted procedure by M. Villa et al.[95]

In a Schlenk flask FeCl2 (2.46 g, 19.4 mmol, 1.07 equiv.) and DippBIAN (9.08 g, 18.1 mmol,
1.00 equiv.) were suspended in 60 mL DCM. The mixture was stirred for 18 h at room
temperature, during which the solution turned green. The solution was concentrated in
vacuo to 80 mL. The residual FeCl2 was separated by filtration. The solvent was removed
in vacuo and the green residue was washed with toluene (3 x 10 mL) and dried in vacuo.
The product was obtained as green solid.

1Remaining paramagnetic impurities can be removed by an additional filtration or addition of EDTA
followed by filtration.
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N N DippDipp

FeCl2
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L 1

Scheme 2: Synthesis of (DippBIAN)FeCl2.

Yield: 10.8 g (17.2 mmol, 95 %).
Elemental Analysis: Found (calc. for ): C: 69.00 (68.91); H: 6.41 (6.43); N: 4.46 (4.46).
Magnetic Moment (Evans): 𝜇𝑒𝑓𝑓𝜇B

(THF-d8,293K): 6.78.
HR-MS (ESI+, m/z): calc.: 501.327 [M+H]+, found: 501.324 [M+H]+.
IR: (KBr) ̃𝜈 [cm−1] = 3064, 2961,1668,1640,1430,1383,787,751.

8.2.7 Synthesis of 2, 5, 3a and 4
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Scheme 3: Reduction of 1 with LiBEt3H.

Inside a Schlenk flask ()DippBIAN)FeCl2 (512mg, 0.80 m mol, 1.0 equiv.) was suspended in
20mL diethylether. The reaction vessel was closed with an unused septum and cooled to
−35 °C. A solution of LiEt3BH (2.3mmol, 1.05 m in THF, 3.0 equiv.) was put in a syringe
closed with rubber stopper and also cooled to −35 °C. The LiEt3BH solution was added
dropwise to the suspension of DippBIAN)FeCl2. During the addition a color change from
pale green to a dark green solution was observed. The reaction mixture was allowed to
warm to room temperature and stirred for 35 min. The product was precipitated by the
addition of 20 mL n-hexane and filtered with a frit (P3). The filtrate V had a maroon color
and was stored at room temperature for three days. After washing with n-hexane (4 mL)
and diethylether (6 mL) the residue was extracted with diethylether (10 mL) and filtrated
through the P3 frit (fraction A). Afterwards the residue was extracted with 6mL THF
and the filtrate was collected as fraction B. Fraction A and B had a dark green color and
were stored at −35 °C for crystallization. After 3 days green, plate shaped crystals of 4 had
formed from fraction V. The tetrahydridoferrate 2 crystallized as dark green blocks from
fraction A and the dihydridoferrate 3a crystallized as dark green blocks from fraction B.
The mother liquor of B was decanted and stored at −35 °C for at least a three months.
A few crystals of 5 were obtained as dark blocks from that fraction. After decanting the
mother liquor and washing with hexane (2 x 2 mL) all crystals were dried via exposure to
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the glovebox atmosphere.

Yield 5: 20mg (0.018 mmol, 4.4 %).
1H-NMR (400 MHz,300 K, THF d8): 𝛿 [ppm] = 47.23 (bs); 46.71 (bs); 14.10 (bs);
11.76 (bs); 7.14 (bs); 5.29 (bs); 2.86 (bs); 2.35 (bs); −0.94 (bs); −3.34 (bs); −3.93 (bs);
−10.92 (bs).
IR: (ATR) ̃𝜈 [cm−1] = 2983,2954, 2863, 1584, 1489, 1458, 1423, 1379, 1308, 1252, 1206,
1175, 1100, 1035, 918, 885, 867, 814, 798, 758, 677, 663.

Yield 4: 26mg (0.023 mmol, 6 %).
1H-NMR (300 MHz,300 K, THF d8): 𝛿 [ppm] = 7.60–7.43 (m, 6 H); 7.28–7.15 (m,
6H); 6.91 (dd, 3𝐽(HH) = 8.3 Hz, 3𝐽(HH) = 7.0 Hz, 1 H); 6.77 (dd, 3𝐽(HH) = 8.3 Hz,3𝐽(HH) = 7.0 Hz, 2 H); 6.61 (dd, 3𝐽(HH) = 8.2 Hz, 3𝐽(HH) = 7.1 Hz, 2 H); 6.15 (d,3𝐽(HH) = 6.4 Hz, 4 H); 6.07 (d, 3𝐽(HH) = 6.9 Hz, 1 H); 5.62 (d, 3𝐽(HH) = 7.0 Hz, 2 H); 5.43
(d, 3𝐽(HH) = 7.1 Hz, 2 H); 4.76 (t, 3𝐽(HH) = 6.3 Hz, 2 H); 4.40 (sept, 3𝐽(HH) = 6.8 Hz,
2H); 4.26 (sept, 3𝐽(HH) = 6.6 Hz, 2 H); 1.87 (d, 3𝐽(HH) = 6.5 Hz, 12 H); 1.22 (d,3𝐽(HH) = 6.9 Hz, 6 H); 1.06 (d, 3𝐽(HH) = 6.8 Hz, 6 H); 0.82 (d, 3𝐽(HH) = 6.8 Hz, 12 H);
0.64 (d, 3𝐽(HH) = 6.6 Hz, 12 H).

Yield 3: 67mg (0.040 mmol, 10 %).

Yield 2: 122mg (0.071 mmol, 17 %).
1H-NMR (400 MHz,27°C, THF d8): 𝛿 [ppm] = 8.33 (d, 3𝐽(HH) = 8.2 Hz, 4 H,
CHBIAN); 7.23 (d, 3𝐽(HH) = 7.0 Hz, 4H, CHBIAN); 6.59 (s, 12 H, CHAr ); 6.50 (dd,3𝐽(HH) = 8.2 Hz, 3𝐽(HH) = 6.9 Hz 4 H, CH(BIAN)); 3.52–3.34(br, 8 H, -C(CH3)2H); 0.87
(d, 24 H, -C(CH3)2H); 0.13–0.03 (br, 24H, -C(CH3)2H)); −74.53 (s, 3H, Co-H).
MS (ESI, m/z): ber.: 186.01 [M]+⋅, gef.: 186.08 [M]+⋅.
IR: (ATR) ̃𝜈 [cm−1] = 3048, 2983,2953, 2861, 1608, 1582, 1488, 1458, 1419, 1378, 1313,
1253, 1172, 1101, 1036, 998, 918, 884, 865, 806, 798, 757, 681.

8.2.8 Synthesis of [Na(thf)6]2[{Fe(DippBIAN)}2(µ H)2] 3b
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Scheme 4: Synthesis of [Na(thf)6]2[{Fe(DippBIAN)}2(𝜇 H)2].

Inside a Schlenk flask DippBIAN)FeCl2 (502mg, 0.80 mmol, 1.0 equiv.) was suspended in
20mL diethylether. The reaction vessel was closed with an unused septum and cooled to
−35 °C. A solution of NaEt3BH (2.4 mmol, 1.0 m in THF, 3.0 equiv.) in a syringe closed
with rubber stopper was also cooled to −35 °C. The NaEt3BH solution was added dropwise
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to the suspension of DippBIAN)FeCl2. During the addition a color change from pale green
to a dark green solution was observed. The reaction mixture was allowed to warm to
room temperature and stirred for 15 min. The product was precipitated by the addition
of 20 mL n-hexane and filtered with a frit (P3). After washing with n-hexane (6 mL),
diethylether (4 mL) and THF/n-hexane 2:1 (5mL) the residue was extracted with THF
(25mL) and filtrated through a P3 frit. The product was crystallized at −35 °C and the
solvent decanted. After washing with hexane (2 x 2 mL) it was driedvia exposure to the
glovebox atmosphere. The product was obtained as black, block shaped crystals.

Yield: 227mg (0.104 mmol, 26 %).
Elemental Analysis: Found (calc. for Na2L2Fe2H2 + 4.55 THF): C: 72.75 (72.75); H:
8.17 (8.01); N: 3.92 (3.76).
Magnetic Moment (Evans): 𝜇𝑒𝑓𝑓𝜇B

(THF-d8,293K): 6.78.
IR: (ATR) ̃𝜈 [cm−1] = 2983,2955, 1584, 1496, 1457, 1425, 1314, 1253, 1209, 1180, 1099,
1045, 918, 886, 865, 812, 799, 756, 683.

8.2.9 Synthesis of [Fe(L)(tol) 6]

2 LiBEt 3H

-35°C     25°C
hexane/toluene 1:1

24 h

N NDipp
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Fe
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1 6
.

Scheme 5: Synthesis of [Fe(L)(tol)] (6)

The synthesis was carried out inspired by the literature protocol.[192]

Inside a Schlenk flask DippBIAN)FeCl2 (504mg, 0.80 mmol, 1.0 equiv.) was suspended in
20mL n-hexane/toluene 1:1. The reaction vessel was cooled to −35 °C. A solution of
LiEt3BH (1.6mmol, 1.0 m in THF, 2.0 equiv.) was added dropwise to the suspension of
DippBIAN)FeCl2. During the addition a color change from pale green to red was observed.
The solvent was removed under reduced pressure and red residue extracted with hexane.
At room temperature the product crystallized as green plates.

Yield : 60mg (0.092 mmol, 12 %)2.
1H-NMR (400 MHz,300 K, C6D6): 𝛿 [ppm] = 7.47 (t, 3𝐽(HH) = 7.6 Hz, 2 H); 7.37
(d,3𝐽(HH) = 7.6 Hz, 4 H); 7.10 (d,3𝐽(HH) = 8.2 Hz, 2H); 6.69 (t,3𝐽(HH) = 7.6 Hz, 2 H); 6.09
(d,3𝐽(HH) = 7.0 Hz, 2H); 5.88 (t,3𝐽(HH) = 5.6 Hz, 1H, p-H(tol)); 4.99 (d,3𝐽(HH) = 6.0 Hz,
2H, o-H(tol)); 4.87 (t,3𝐽(HH) = 5.8 Hz, 2 H, m-H(tol)); 4.04 (sept,3𝐽(HH) = 6.8 Hz, 4 H);
2.35 (s, 3H, PhCH3); 1.54 (d,3𝐽(HH) = 6.9 Hz, 12 H); 0.93 (d,3𝐽(HH) = 6.8 Hz, 12 H).

2Only the crystal yield has been considered.The yield could be increased through further work-up.
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8.2.10 Synthesis of (DippBIAN)CoBr2 7

NN DippDipp
Co

Br Br

THF, RT, 1.5 h

CoBr 2

NN DippDipp

L 7

Scheme 6: Synthesis of (DippBIAN)CoBr2 7.

The synthesis was performed following the literature procedure.[52, 212]

A Schlenk flask was charged with CoBr2 (2.1 g, 9.5 mmol, 1.00 equiv.) and DippBIAN (5.0 g,
10mmol, 1.1 equiv.) in THF (120mL). The mixture was stirred for 1.5 h, during which the
color changed from orange to brown. The solvent was removed in vacuo, the residue was
washed with toluene (50 mL) and dissolved in DCM (130mL). The solution was filtered
with a frit (P3) and concentrated in vacuo (90 mL). The raw product was recrystallized by
carefully adding a lyer of hexane (40mL) on top of the filtrate. Black needles were isolated
by decantation and washed with toluene (3 x 15mL).

Yield: 4.5 g (7.52 mmol, 66 %).
Elemental Analysis: Found (calc. for C36H40Br2CoN2 ): C: 60.19 (60.10); H: 5.67
(5.60); N: 3.72 (3.89).
Magnetic Moment (Evans): 𝜇𝑒𝑓𝑓𝜇B

(THF-d8,299K): 4.91.

8.2.11 Synthesis of [{Co(DippBIAN)}2(µ H)3]– 8

.
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Scheme 7: Synthesis of [{Co(DippBIAN)}2(𝜇 H)3]– 8.

The synthesis of [{Co(DippBIAN)}2(𝜇 H)3]– 8 was carried out based on literature proto-
col.[52]

Inside a 100mL Schlenk tube 7 (1.0 g, 1.4 mmol, 1 equiv.) was suspended in 10 mL
diethylether. The reaction vessel was closed with an unused septum and cooled to −35 °C
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as well as the LiEt3BH solution (4.2 mmol, 1.05 m in THF, 3 equiv.). It was added dropwise
to the suspension of 7. During the addition a color change from pale brown to a dark green
solution was observed. The reaction mixture was allowed to warm to room temperature and
was stirred for 30 min. The product was precipitated by the addition of 10mL hexane and
filtered with a frit (P3). After washing with hexane (3 x 8mL) and diethylether (3 x 8mL)
the filter cake was extracted subsequently with THF/hexane 1:1 (2 x 8mL), THF/hexane
2:1 (3 x 8 mL). The product was crystallized at −35 °C and the solvent decanted. After
washing with hexane (2 x 2 mL) it was dried via exposure to the glovebox atmosphere.

Yield: 321mg (0.227 mmol, 33 %).
1H-NMR (400 MHz,27°C, THF d8): 𝛿 [ppm] = 8.33 (d, 3𝐽(HH) = 8.2 Hz, 4 H,
CHBIAN); 7.23 (d, 3𝐽(HH) = 7.0 Hz, 4H, CHBIAN); 6.59 (s, 12 H, CHAr ); 6.50 (dd,3𝐽(HH) = 8.2 Hz, 3𝐽(HH) = 6.9 Hz 4 H, CH(BIAN)); 3.52–3.34(br, 8 H, -C(CH3)2H); 0.87
(d, 24H, -C(CH3)2H); 0.13–0.03 (br, 24 H, -C(CH3)2H)); −74.53 (s, 3H, Co-H).

8.2.12 Synthesis of [{Co(DippBIAN)}2(formato)2] 9
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Scheme 8: Synthesis of [{Co(DippBIAN)}2(formato)2] 9.

In a 50 mL Schlenk tube hydridocobaltate 8 (210mg, 148 µmol) were dissolved in 20 mL
THF. The solution was frozen in liquid nitrogen and the gas phase exchanged with CO2.
The solution was allowed to warm to room temperature and stirred for 1.5 h. During that
time the color changed from dark green-blue to brown to olive green. The solvent was
removed in vacuo and the green residue was extracted with n-hexane. A cannula was placed
in the septum of the vial to allow slow evaporation of the solvent. After 4 d the mother
liquor was decanted and the crystals were dried via exposure to the glovebox atmosphere.

Yield: 79mg (65 µmol, 44 %).
Elemental Analysis: Found (calc. for Co2C74H82N4O4): C: 73.50 (73.49); H: 6.91 (6.83);
N: 4.64 (4.63).
1H-NMR (400 MHz,27°C, THF d8): 𝛿 [ppm] = 78.75 (bs); 75.69 (bs); 65.95 (bs); 7.20
(s); 2.57 (bs); 2.09 (bs); 1.23 (d, 3𝐽(HH) = 6.8 Hz); 1.07 (d, 3𝐽(HH) = 7.5 Hz); 0.12 (s);
78.75 (bs); −0.24 (d, 3𝐽(HH) = 7.5 Hz); −0.84 (s); −4.76 (bs); −5.10 (bs); −5.90 (bs);
−6.14 (d, 3𝐽(HH) = 7.2 Hz); −13.27 (bs); −16.00 (bs); −19.32 (bs).
Magnetic Moment (Evans): 𝜇𝑒𝑓𝑓𝜇B

(THF-d8,299K): 4.59.
MS (LIFDI (FD+), m/z): calc.: 1208.4995 [M]+⋅, found: 1208.4948 [M]+⋅.
8.2.13 Reaction of [{Co(DippBIAN)}2(µ H)3]– 8 with DBU

.
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Scheme 9: Deprotonation of [{Co(DippBIAN)}2(µ H)3]– 8 with DBU.

[{Co(DippBIAN)}2(µ H)3]– 8 (21mg, 15 µmol, 1 equiv.) was dissolved in 0.7mL THF-d8
and DBU (9 µL, 60 µmol, 4 equiv.) was added droppwise. A 1H-NMR measurement of the
reaction mixture showed complete conversion after 20 min. The reaction mixture was layered
with n-hexane (0.5mL). Dihydridocobaltate 10 was obtained as dark green-blue crystals.

Yield: 11mg (6 µmol, 40 %).

8.2.14 Reaction of (DippBIAN)CoBr2 7 with DBU

.

Dipp BIANCoBr 2 3 DBU
THF, RT, 1.5 h

[CoBr 2(dbu) 2] Dipp BIAN
7 L

Scheme 10: Reaction of (DippBIAN)CoBr2 7 with DBU.

DippBIAN)CoBr2 7 (144mg, 0.20 mmol, 1 equiv.) was dissolved in 2 mL THF and DBU
(90 µL, 0.60mmol, 3 equiv.) was added droppwise. An immediate color change of the so-
lution from brown to green was observed and a yellow precipitant formed. The mixture
was filtrated and the filtrate layered with hexane. Yellow and blue crystals formed. The
yellow precipitant precipitate was determined to be free DippBIAN ligand. Single crystal
XRD revealed the blue crystals to be complex [Co(dbu)2Br2]3.

8.2.15 Synthesis of (DippBDI)CoBr2 11

CoBr 2N DippNDipp

L2

N DippNDipp

11

Co

Br Br

DCM, RT, 16 h

Scheme 11: Synthesis of (DippBDI)CoBr2 7.

The synthesis was performed following the literature procedure.[52, 213]
3The quality of the measurement is low but sufficient to identify the compound.
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A Schlenk flask was charged with CoBr2 (2.2 g, 10 mmol, 1.00 equiv.) and DippBDII (4.2 g,
11mmol, 1.1 equiv.) in DCM (150mL). The mixture was stirred for 16 h, during which the
color changed from yellow to green. The solvent was removed in vacuo, the residue was
washed with hexane (3 x 10mL)). The product was obtained as green solid.

Yield: 6.0 g (9.6 mmol, 96 %).
Elemental Analysis: Found (calc. for C28H40Br2CoN2 ): C: 54.07 (53.95); H: 6.40
(6.47); N: 4.51 (4.49).

8.2.16 Synthesis of [{Co(DippBDI)}2(µ H)2]– 12a
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Scheme 12: Synthesis of [{Co(DippBDI)}2(𝜇 H)2]– 12a.

Inside a 100 mL Schlenk tube 11 (679mg, 1.09mmol, 1 equiv.) was suspended in 10 mL
diethylether. The reaction vessel was closed with an unused septum and cooled to −35 °C.
A LiEt3BH solution (3.1 mmol, 1.05 m in THF, 3 equiv.) cooled to −35 °C was added
dropwise to the suspension of 7. During the addition a color change from green to a
dark green solution was observed. The reaction mixture was allowed to warm to room
temperature and was stirred for 40 min. 35 mL hexane were added and filtered with a frit
(P3). At −35 °C the crude product was precipitated and extracted with hexane (3 x 2mL).
The product was crystallized at −35 °C and the solvent decanted. After washing with
hexane (0.1 mL) the dark green blocks were dried via exposure to the glovebox atmosphere.

Yield: 11mg (10 µmol, 1.8 %).
1H-NMR (400 MHz,27°C, THF d8): 𝛿 [ppm] = 6.94 (t, 3𝐽(HH) = 7.3 Hz, 4 H,
p-H(Dipp)); 6.85 (d, 3𝐽(HH) = 7.5 Hz, 8 H, CmBIAN); 3.49–3.29 (m, 4 H, -C(CH3)2H);
1.28–1.14 (m, 24 H, -C(CH3)2H); 0.20–−0.07 (m, 24H, -C(CH3)2H); −0.87 (s, 12H, -CH3);
−45.95 (s, 2H, Co-H).

8.2.17 Synthesis of [{Co(DippBDI)}2(µ H)2]– 12b

.

Inside a 100mL Schlenk tube 11 (932mg, 1.5mmol, 1 equiv.) was suspended in 10 mL
hexane. The reaction vessel was closed with an unused septum and cooled to −35 °C as
well as the NaEt3BH solution (4.5 mmol, 1.0 m in THF, 3 equiv.). It was added dropwise to
the suspension of 7. During the addition a color change from green to a dark green solution
was observed. The reaction mixture was allowed to warm to room temperature and was
stirred for 25 min. After filtration with a frit (P3) the filtrate the solvent was removed in
vacuo and the residue co-evaporated with hexane (3 x 2 mL). The residue was washed with
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Scheme 13: Synthesis of [{Co(DippBDI)}2(𝜇 H)2]– 12b.

hexane (10 mL) and extracted with hexane/diethylether 1:1. The green extract was stored
at −35 °C for 4 d. After washing with hexane (0.1 mL) the dark green blocks were dried
under reduced pressure.

Yield: 15mg (13 µmol, 1.6 %).
1H-NMR (400 MHz,27°C, THF d8): 𝛿 [ppm] = 6.95 (t, 3𝐽(HH) = 7.3 Hz, 4 H,
p-H(Dipp)); 6.85 (d, 3𝐽(HH) = 7.5 Hz, 8 H, CmBIAN); 3.39 (sept, 3𝐽(HH) = 6.9 Hz, 4 H,
-C(CH3)2H); 1.23 (d, 3𝐽(HH) = 6.0 Hz, 24H, -C(CH3)2H); 0.77 (d, 3𝐽(HH) = 6.8 Hz, 24H,
-C(CH3)2H); −0.83 (s, 12H, -CH3); −45.93 (s, 2 H, Co-H).
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9 Conclusions

This thesis has explored the complex interplay between electronic structure, molecular struc-
ture, and reactivity in transition metal complexes, particularly homoleptic tris(diimine)
iron(II) complexes, bis(imino)acenaphthene-stabilized iron complexes, and organic carbenes.
Across these studies, density functional theory (DFT) played a pivotal role in characterizing
spin-state energy splittings, and the electronic structures of various iron species, while also
revealing the limitations and challenges associated with these computational methods.

The investigation into the sensitivity of spin-state energy splittings in iron(II) complexes
highlighted the significant dependence of these properties on the choice of exchange-
correlation functionals (see Chapter 5). Despite the variability in performance among
functionals, careful selection allowed for accurate reproduction of experimental ground spin
states. This work also underscored the importance of addressing SCF convergence issues,
particularly in complexes with redox-active ligands, where static correlation effects may
demand more advanced electronic structure methods.

In the study of carbenes, the analysis of spin gap predictions emphasized the crucial role
of molecular structure and functional selection in determining DFT accuracy (see Chapter
6). The successful application of Δ-machine learning (ML) techniques demonstrated the
potential for improving spin gap predictions through error correction. The promising results
obtained from Δ-ML approaches suggest that future work could focus on the refinement of
ML descriptors and feature selection to enhance predictive accuracy and computational
efficiency further.

Finally, the synthesis and characterization of bis(imino)acenaphthene-stabilized iron com-
plexes revealed the remarkable ability of these ligands to stabilize iron in unusual oxidation
states, leading to the discovery of novel hydrogen-bridged dinuclear complexes (see Chapter
II). These findings contribute to a deeper understanding of the electronic structures and
reactivity of such complexes, with implications for their application in catalysis. Further
investigations could explore the scope of these complexes in catalyzing more challenging
transformations and their potential to be tuned through ligand modification for enhanced
activity and selectivity.

Overall, this thesis advances our knowledge of the factors influencing the electronic structure
and reactivity of transition metal complexes, providing valuable insights into the develop-
ment of more accurate computational methods and the design of novel catalytic systems. The
integration of experimental and theoretical approaches throughout this work highlights the
importance of interdisciplinary research in pushing the boundaries of modern chemistry.
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B Supporting Information for
Redox-Active Ligands as a
Challenge for Electronic Structure
Methods

B.1 Additional Data on Spin-State Energy Splittings of
Trisdiimineiron(II) Complexes

As shown in Figure B.1, there are two possible diastereomers for complex NENTABmod
(5 and 5a). A positive slope (𝜕𝐸Hs-LS𝜕𝑎HF ) were observed for both isomers (Figure B.2 and
the same change of bond pattern was observed for the optimization of HS structures (see
Section B.6).

Figure B.1: Possible diastereomeres for complex NENTABmod. Reproduced from refer-
ence [71].

Figure B.2: Spin splitting energy splittings of BP86-D3BJ/def2TZVP-optimized trisdi-
imineiron(II) complexes including NENTABmod2 as function of exact ex-
change admixture 𝑎HF. Used xc functionals with 𝑎HF/% given in parenthesis:
BP86 (0), TPSS (0), PBE (0), TPSSh (10), B3LYP (20), PBE0 (25), M06 (27).
Reproduced from reference [71].
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Structure Methods

The influence of the local projector on the local spin densities were investigated for
BACVOR’s HS structure using BP86-D3BJ/def2-TZVP Figure B.3. Local Hirshfield, AIM
and Becke spin densities have been calculated using Multiwfn Version 3.5[214] (medium
grid quality).

Figure B.3: Local spin densities on Iron center of BP86-D3BJ/def2-TZVP optimized HS
structure BACVOR using different local projectors. Reproduced from refer-
ence [71].
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B.1 Additional Data on Spin-State Energy Splittings of Trisdiimineiron(II) Complexes
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B.2 Additional Data on Spin-State Energy Splittings of Trisdiimineiron(I) Complexes

B.2 Additional Data on Spin-State Energy Splittings of
Trisdiimineiron(I) Complexes

Reduced complexes of [L3Fe]+ were obtained by adding an electron to the optimized (BP86-
D3BJ/def2-TZVP) iron(II) structures [L3Fe]2+. Geometry optimizations were than per-
formed for the LS (doublet) and HS (quartet) spin state using the same methodology. For
the HS structure of NENTABmod taking the unoptimized structure (manipulated crystal
structure) did not result in significant changes of the bond pattern compared to the preop-
timized structure (B.10).
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Figure B.4: Possible occupation of metal 𝑑 and ligand centered 𝜋∗ orbitals of reduced
[L3Fe]+ complexes for HS and LS cases. Reproduced from reference [71].
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B.2 Additional Data on Spin-State Energy Splittings of Trisdiimineiron(I) Complexes

Figure B.5: Spin-state energy splittings of reduced tris(diimine) complexes [L3Fe]+, evalu-
ated from single-point calculations with different xc functionals before (a) and
after (b) correction of convergence issues by using orbitals from BP86 (HS) or
B3LYP (LS) as an initial guess and optimization of wave function with internal
instability (“stable=opt” keyword in the Gaussian program package). The
labels of the xc functionals are ordered in the same manner as their spin-state
energy splittings. For each complex, the molecular HS and LS structures were
optimized with BP86-D3BJ/def2TZVP. Mulliken numbers of unpaired elec-
trons on Fe for the HS complexes before (c) and after (d) the correction of
SCF convergence issues as well as for LS complexes before (e) and after (f)
these corrections. Reproduced from reference [71]
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Figure B.6: Spin-state energy splittings of reduced complexes between quartet (HS) and
doublet (LS) spin state of reduced [L3Fe]+ complexes over the amount of ex-
act exchange. Structures have been optimized with BP86-D3BJ/def2-TZVP.
Reproduced from reference [71].

Figure B.7: Spin-state energy splittings of reduced complexes between sextet (HS) and
doublet (LS) spin state of reduced [L3Fe]+ complexes. Structures have been
optimized with BP86-D3BJ/def2-TZVP. Reproduced from reference [71].
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B.2 Additional Data on Spin-State Energy Splittings of Trisdiimineiron(I) Complexes

Figure B.8: Spin-state energy splittings of reduced complexes between sextet (HS) and
doublet (LS) spin state of reduced [L3Fe]+ complexes. Structures have been
optimized with BP86-D3BJ/def2-TZVP. Reproduced from reference [71].
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B.3 Spin Contamination and FOD Analysis
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B Supporting Information for Redox-Active Ligands as a Challenge for Electronic
Structure Methods

Figure B.9: FOD plots of selected [L3Fe] 2 (top) and [L3Fe]+ (bottom) HS and LS
complexes (isosurface value=0.005 e Bohr−3, TPSS/def2-TZVP (T=5000 K)
level). Reproduced from reference [71].

Table B.5: Fractional occupation number weighted electron density (FOD) analysis
(TPSS/def2-TZVP with a smearing temperature of 5000 K). Structures have
been optimized with BP86-D3BJ/def2-TZVP

N(FOD) [L3Fe]+2 N(FOD) [L3Fe]+1

Complex No. css quintet doublet quartet
BOFNEP 1 0.76 1.67 1.37 1.93
OKIWEKsimp 2 0.92 1.99 2.03 2.85
QOSNIWmod 3 1.26 1.97 2.05 2.49
WEYLERsimp 4 0.90 1.78 1.99 2.66
NENTABmod 5 1.78 3.22 2.49 3.25
HEYRAEsimp 6 1.29 2.73 2.52 3.42
HAXHOF 7 0.88 1.83 2.16 2.75
NENTAB 8 1.04 2.09 2.24 2.91

Continued on next page
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B.4 Broken Symmetry Calculations

Table B.5: Fractional occupation number weighted electron density (FOD) analysis
(TPSS/def2-TZVP with a smearing temperature of 5000 K). Structures have
been optimized with BP86-D3BJ/def2-TZVP

N(FOD) [L3Fe]+2 N(FOD) [L3Fe]+1

Complex No. css quintet doublet quartet
BACVOR 9 2.38 3.51 3.17 4.19
AZUHUY 10 1.11 2.28 2.20 2.83
KOQDEZ 11 1.01 2.00 2.39 2.89
QAJKUH 12 0.77 1.71 2.13 2.60
JUSCILsimp 13 0.89 1.81 2.08 2.68
RUZNOP 14 0.84 1.83 2.01 2.29
OJIVOSsimp 15 0.64 1.58 2.02 2.35
SIXJUE 16 0.97 2.25 2.26 2.99
JOWGIL 17 0.97 1.82 1.95 2.45
VEWVEY 18 0.94 1.68 2.13 2.50
CATXAZ 19 0.83 1.73 2.20 2.53
KINQUT 20 0.71 1.62 1.97 2.30
KINQUTmod2 21 1.12 1.79 2.22 2.70
YIVSEBsimp 22 0.71 1.60 2.03 2.37
SAFGAHmod2 23 0.68 1.69 2.01 2.43
FUFHIYsimp 24 0.79 1.66 1.98 2.51
KINQUTmod 25 0.85 1.70 2.09 2.50
ABIWAKsimp 26 0.82 1.76 2.03 2.35
SAFGAHmod3 27 0.74 1.63 1.94 2.18
CATWIGsimp 28 1.12 1.76 2.08 2.46
BAKHECsimp 29 0.70 1.58 1.87 2.19
ACAHUJsimp 30 0.87 1.65 1.94 2.31
SAFGAHmod 31 1.03 1.90 2.10 2.63
QOSNIW 32 1.07 1.70 2.13 2.46
EDUKUL 33 1.08 2.12 2.39 2.93
KABYER 34 0.95 1.76 2.13 2.60
NOKFOJ 35 1.32 1.97 2.15 2.74
CATWIGmod 36 0.96 1.63 2.00 2.27
CATXAZsimp 37 0.73 1.60 1.95 2.26
CATWIG 38 1.19 1.76 2.27 2.44
CATWUS 39 1.42 2.27 2.56 3.01
CEPZOM 40 1.06 1.86 2.41 2.65
HUSMAK 41 0.89 1.65 2.14 2.61
CATWIGmod2 42 1.35 2.16 2.16 2.75
TEDCAJ 43 2.10 3.26 2.85 3.51

Continued on next page
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Figure B.10: Spin density of selected [L3Fe]+ complexes in HS (quartet) and BS (quar-
tet) (isosurface value=0.01 e Bohr−3, B3LYP/def2-TZVP). For HAXHOF
(a) and TEDCAJ (b) identical solutions were obtained for the HS and BS
calculation (fragment based initial guess: fragment 1: Fe (+2, quintet), frag-
ment 2: all ligand atoms (-1, triplet)) . For BACVOR (c) the HS solution
is lower in energy by 22.1 kJmol−1 compared to the BS solution and for
NENTABmod (d) the HS solution is lower in energy by 91.8 kJ mol−1. Re-
produced from reference [71].
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Figure B.11: HOMO–LUMO gaps of the neutral free ligands and electron affinities (EA) of
the free ligands as energy difference of neutral and negatively charged ligand.
Ligands have been optimized with BP86-D3BJ/def2-TZVP in neutral (sin-
glet) and anionic (doublet) charge are calculated on optimized ligand struc-
tures using BP86-D3BJ/def2-TZVP. Slopes (𝜕𝐸Hs-LS𝜕𝑎HF ) and difference in local
charges on iron centers (𝑞Hs-LS(NPA)) have been evaluated by single-point
calculations with all xc functionals and BP86-D3BJ/def2-TZVP optimized
Fe(II) complexes. Reproduced from reference [71].
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Figure B.12: Dependence of spin-state energy splittings of Fe(II) complexes on the N−N
bond length in the free ligand (crystal structure). Structures have been
optimized with BP86-D3BJ/def2-TZVP. Reproduced from reference [71].
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Figure B.13: Correlations between slope (𝜕𝐸Hs-LS𝜕𝑎HF ), difference in local charges on iron cen-
ters (𝑞Hs-LS(NPA)) of BP86-D3BJ/def2-TZVP optimized Fe(II) complexes
and HOMO–LUMO gaps as well as electron affinities (EA) of the free ligands
including NENTABmod (left) and excluding NENTABmod (right). Ligands
have been optimized with BP86-D3BJ/def2-TZVP in neutral (singlet) and
anionic (doublet) charge. Reproduced from reference [71]
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Figure B.14: Correlations between the mean spin-state energy splitting of all functionals
and HOMO–LUMO gaps as well as electron affinities (EA) of the free lig-
ands (top). Correlations between the number of strongly correlated electrons
(𝑁(FOD)) and the HOMO–LUMO gaps of the free ligands (bottom). Lig-
ands have been optimized with BP86-D3BJ/def2-TZVP in neutral (singlet)
and anionic (doublet) charge. Reproduced from reference [71].
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B.6 Characteristic Structural Features of Optimized
Structures

All KS-DFT calculations have been preformed with Gaussian 16[99]. Geometry optimiza-
tions were preformed with the BP86[100, 101] exchange-correlation functional, the D3 ver-
sion of Grimme’s dispersion with Becke-Johnson damping[102] and the def2-TZVP[103, 104]
basis set. Density fitting with the W06[103, 104] fitting set was applied. Optimization of the
[L3Fe]2+ complexes using BP86 were performed on crystal structures or manually altered
crystal structures. This structures were used for optimizations of the [L3Fe]+ complexes.

Fe
N

N

R
R

R
R

d(Fe-N)

d(C-N)

d(C-C)

Figure B.15: Characteristic bond lengths. Reproduced from reference [71].

Table B.6: Comparison of crystal structures with trisdiimineiron(II) HS structures opti-
mized with BP86-D3BJ/def2-TZVP (opt.-crystal). Bond lengths are given in
Å.
Complex Δ𝑑(Fe−N) Δ𝑑(C−N) Δ𝑑(C−C)) Δ 𝑑(N−C)𝑑(C−C)
BOFNEP 0.193213 0.031408 0.034026 0.000731
HAXHOF 0.164181 -0.004172 0.018208 -0.014335
NENTAB 0.185792 0.008418 0.020288 -0.006880
BACVOR 0.173849 0.005427 -0.000730 -0.003924
BACVOR B -0.020691 0.008404 -0.031873 0.026632
AZUHUY 0.191366 0.001581 0.019629 -0.011478
KOQDEZ 0.181716 0.001775 0.014206 -0.008239
QAJKUH 0.191708 0.003528 0.014877 -0.007362
RUZNOP 0.186096 0.005106 0.017069 -0.007507
SIXJUE 0.206236 0.011612 -0.003330 0.009922
JOWGIL 0.179637 0.008710 0.012505 -0.001465
CATXAZ 0.174869 0.018347 0.000827 0.012163
VEWVEY 0.175048 -0.065655 -0.025863 -0.027809
KINQUT 0.186853 0.017106 0.051077 -0.021672
QOSNIW -0.027676 0.012905 -0.009722 0.014253
EDUKUL 0.189234 -0.002676 0.012726 -0.010397
KABYER 0.082123 0.007935 -0.000431 0.005599
NOKFOJ -0.039210 0.009946 -0.007526 0.011268
CATWIG -0.027757 0.011426 -0.008089 0.012842
CATWUS 0.000514 0.015229 -0.001961 0.011690
CEPZOM -0.021470 0.010407 0.027953 -0.011476
HUSMAK -0.031664 0.011359 -0.005492 0.011101
TEDCAJ 0.152636 0.005745 0.027481 -0.012120
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Table B.7: Comparison of crystal structures with trisdiimineiron(II) LS structures opti-
mized with BP86-D3BJ/def2-TZVP (opt.-crystal).Bond lengths are given in
Å.
Complex Δ𝑑(Fe−N) Δ𝑑(C−N) Δ𝑑(C−C)) Δ 𝑑(N−C)𝑑(C−C)
BOFNEP 0.001136 0.034049 0.020789 0.010625
HAXHOF -0.030455 0.004406 0.002898 0.001161
NENTAB -0.012487 0.017281 0.004799 0.008720
BACVOR -0.022858 0.005920 -0.013367 0.012643
AZUHUY -0.009372 0.010035 0.005697 0.003176
KOQDEZ -0.014344 0.007450 -0.002760 0.007110
QAJKUH -0.010454 0.010983 0.003633 0.005014
RUZNOP -0.017821 0.010293 0.007697 0.002111
SIXJUE -0.002825 0.020559 -0.019097 0.025942
JOWGIL -0.008674 0.019214 -0.008594 0.018202
CATXAZ -0.022791 0.021884 -0.016454 0.025925
VEWVEY -0.024913 -0.056243 -0.040648 -0.012075
KINQUT -0.013671 0.022507 0.039732 -0.010674
QOSNIW -0.207727 0.019884 -0.029486 0.030714
EDUKUL -0.005349 0.003470 -0.003929 0.005116
KABYER -0.109746 0.018720 -0.012584 0.020497
NOKFOJ -0.118645 0.017672 -0.015483 0.021516
CATWIG -0.218660 0.011067 -0.034840 0.029486
CATWUS -0.203319 0.015572 -0.029153 0.029426
CEPZOM -0.215963 0.017687 0.012283 0.004104
HUSMAK -0.236500 0.022730 -0.021094 0.028735
TEDCAJ -0.014584 0.013816 -0.000292 0.009512

Table B.8: Characteristic average distances in the trisdiimineiron(II) HS structures opti-
mized with BP86-D3BJ/def2-TZVP. Bond lengths are given in Å.
Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
BOFNEP 1 2.126 1.470 1.309 0.891
OKIWEKsimp 2 2.149 1.463 1.322 0.904
QOSNIWmod 3 2.140 1.499 1.302 0.869
WEYLERsimp 4 2.156 1.460 1.326 0.908
NENTABmod 5 1.945 1.433 1.371 0.957
NENTABmod2 5a 1.947 1.433 1.371 0.957
HEYRAEsimp 6 2.139 1.486 1.351 0.909
HAXHOF 7 2.148 1.478 1.360 0.920
NENTAB 8 2.156 1.489 1.359 0.913
BACVOR 9 2.159 1.468 1.357 0.924
BACVOR B 9 1.964 1.431 1.366 0.955
AZUHUY 10 2.153 1.470 1.359 0.925
KOQDEZ 11 2.157 1.436 1.364 0.950
QAJKUH 12 2.155 1.465 1.374 0.938
JUSCILsimp 13 2.149 1.459 1.346 0.923
RUZNOP 14 2.157 1.457 1.359 0.933
OJIVOSsimp 15 2.159 1.458 1.368 0.938
SIXJUE 16 2.133 1.476 1.354 0.917
JOWGIL 17 2.135 1.490 1.301 0.873
VEWVEY 18 2.186 1.478 1.360 0.920
CATXAZ 19 2.151 1.446 1.350 0.934
KINQUT 20 2.153 1.461 1.359 0.930
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Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
KINQUTmod2 21 2.149 1.471 1.337 0.909
YIVSEBsimp 22 2.172 1.460 1.370 0.938
SAFGAHmod2 23 2.158 1.458 1.390 0.953
FUFHIYsimp 24 2.161 1.455 1.348 0.926
KINQUTmod 25 2.162 1.453 1.352 0.931
ABIWAKsimp 26 2.172 1.457 1.369 0.940
SAFGAHmod3 27 2.161 1.446 1.348 0.932
CATWIGsimp 28 2.153 1.467 1.308 0.891
BAKHECsimp 29 2.174 1.442 1.344 0.932
ACAHUJsimp 30 2.167 1.441 1.320 0.917
SAFGAHmod 31 2.160 1.441 1.339 0.929
QOSNIW 32 2.144 1.493 1.306 0.875
EDUKUL 33 2.152 1.434 1.364 0.951
KABYER 34 2.145 1.485 1.364 0.918
NOKFOJ 35 2.177 1.475 1.351 0.916
CATWIGmod 36 2.172 1.469 1.297 0.883
CATXAZsimp 37 2.171 1.438 1.344 0.934
CATWIG 38 2.201 1.449 1.302 0.899
CATWUS 39 2.218 1.455 1.336 0.919
CEPZOM 40 2.186 1.438 1.366 0.950
HUSMAK 41 2.154 1.475 1.358 0.921
CATWIGmod2 42 2.145 1.469 1.304 0.887
TEDCAJ 43 2.146 1.505 1.297 0.862

Table B.9: Characteristic average distances in the trisdiimineiron(II) LS structures opti-
mized with BP86/def2-TZVP. Bond lengths are given in Å.
Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
BOFNEP 1 1.934 1.457 1.312 0.901
OKIWEKsimp 2 1.941 1.445 1.332 0.922
QOSNIWmod 3 1.959 1.480 1.311 0.886
WEYLERsimp 4 1.955 1.444 1.336 0.926
NENTABmod 5 1.948 1.461 1.341 0.918
NENTABmod2 5a 1.948 1.461 1.341 0.918
HEYRAEsimp 6 1.928 1.471 1.361 0.925
HAXHOF 7 1.954 1.462 1.368 0.936
NENTAB 8 1.958 1.474 1.368 0.928
BACVOR 9 1.962 1.450 1.364 0.941
AZUHUY 10 1.952 1.456 1.367 0.939
KOQDEZ 11 1.961 1.419 1.370 0.965
QAJKUH 12 1.953 1.454 1.382 0.950
JUSCILsimp 13 1.945 1.446 1.355 0.937
RUZNOP 14 1.953 1.448 1.364 0.942
OJIVOSsimp 15 1.949 1.448 1.375 0.949
SIXJUE 16 1.924 1.460 1.363 0.933
JOWGIL 17 1.947 1.469 1.311 0.893
VEWVEY 18 1.986 1.463 1.370 0.936
CATXAZ 19 1.953 1.429 1.354 0.947
KINQUT 20 1.953 1.450 1.364 0.941
KINQUTmod2 21 1.953 1.454 1.344 0.924
YIVSEBsimp 22 1.963 1.448 1.376 0.950
SAFGAHmod2 23 1.951 1.449 1.397 0.964
FUFHIYsimp 24 1.949 1.442 1.355 0.940
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Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
KINQUTmod 25 1.957 1.440 1.360 0.944
ABIWAKsimp 26 1.962 1.446 1.375 0.951
SAFGAHmod3 27 1.954 1.438 1.354 0.941
CATWIGsimp 28 1.952 1.452 1.315 0.906
BAKHECsimp 29 1.959 1.433 1.351 0.943
ACAHUJsimp 30 1.957 1.427 1.329 0.931
SAFGAHmod 31 1.955 1.431 1.348 0.943
QOSNIW 32 1.964 1.473 1.313 0.891
EDUKUL 33 1.958 1.417 1.370 0.967
KABYER 34 1.954 1.473 1.375 0.933
NOKFOJ 35 2.098 1.467 1.359 0.926
CATWIGmod 36 1.963 1.453 1.305 0.898
CATXAZsimp 37 1.959 1.428 1.351 0.946
CATWIG 38 2.010 1.422 1.301 0.915
CATWUS 39 2.014 1.428 1.337 0.936
CEPZOM 40 1.992 1.422 1.373 0.965
HUSMAK 41 1.949 1.459 1.369 0.938
CATWIGmod2 42 1.948 1.453 1.313 0.904
TEDCAJ 43 1.979 1.478 1.305 0.883

Table B.10: Characteristic average distances in the trisdiimineiron(I) HS structures (quar-
tet) optimized with BP86/def2-TZVP. 𝑎 Manipulated crystal structure or crys-
tal structure was used as input structure for the geometry optimization. Bond
lengths are given in Å.
Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
BOFNEP 1 2.103 1.445 1.323 0.915
OKIWEKsimp 2 2.130 1.447 1.332 0.921
QOSNIWmod 3 2.135 1.472 1.310 0.890
WEYLERsimp 4 2.132 1.445 1.336 0.924
NENTABmod 5 1.941 1.430 1.365 0.955
NENTABmod𝑎 - 1.943 1.429 1.365 0.955
NENTABmod2 5a 1.940 1.431 1.365 0.955
HEYRAEsimp 6 2.125 1.474 1.360 0.923
HAXHOF 7 2.131 1.466 1.366 0.932
NENTAB 8 2.131 1.474 1.367 0.927
BACVOR 9 1.958 1.430 1.366 0.955
BACVOR - 1.958 1.430 1.366 0.955
AZUHUY 10 2.130 1.460 1.364 0.934
KOQDEZ 11 2.138 1.429 1.369 0.958
QAJKUH 12 2.135 1.460 1.378 0.944
JUSCILsimp 13 2.131 1.444 1.354 0.938
RUZNOP 14 2.130 1.450 1.363 0.940
OJIVOSsimp 15 2.139 1.450 1.373 0.947
SIXJUE 16 2.127 1.462 1.363 0.932
JOWGIL 17 2.129 1.458 1.317 0.903
VEWVEY 18 2.164 1.467 1.366 0.931
CATXAZ 19 2.139 1.432 1.356 0.947
KINQUT 20 2.130 1.451 1.364 0.940
KINQUTmod2 21 2.130 1.451 1.343 0.925
YIVSEBsimp 22 2.153 1.452 1.375 0.947
SAFGAHmod2 23 2.141 1.456 1.390 0.954
FUFHIYsimp 24 2.139 1.441 1.355 0.940
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Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
KINQUTmod 25 2.142 1.442 1.358 0.942
ABIWAKsimp 26 2.150 1.451 1.374 0.947
SAFGAHmod3 27 2.141 1.434 1.353 0.943
CATWIGsimp 28 2.136 1.440 1.316 0.914
BAKHECsimp 29 2.149 1.435 1.352 0.942
ACAHUJsimp 30 2.140 1.429 1.329 0.931
SAFGAHmod 31 2.141 1.426 1.345 0.943
QOSNIW 32 2.133 1.464 1.314 0.897
EDUKUL 33 2.135 1.426 1.369 0.960
KABYER 34 2.137 1.477 1.370 0.927
NOKFOJ 35 2.154 1.463 1.357 0.927
CATWIGmod 36 2.144 1.440 1.308 0.908
CATXAZsimp 37 2.159 1.424 1.350 0.948
CATWIG 38 2.196 1.423 1.308 0.919
CATWUS 39 2.207 1.454 1.335 0.918
CEPZOM 40 2.169 1.432 1.370 0.957
HUSMAK 41 2.134 1.462 1.365 0.934
CATWIGmod2 42 2.132 1.444 1.312 0.908
TEDCAJ 43 2.141 1.480 1.306 0.882

Table B.11: Characteristic average distances in the trisdiimineiron(I) LS structures opti-
mized with BP86/def2-TZVP. Bond lengths are given in Å.
Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
BOFNEP 1 1.933 1.436 1.328 0.925
OKIWEKsimp 2 1.935 1.426 1.347 0.944
QOSNIWmod 3 1.948 1.452 1.323 0.911
WEYLERsimp 4 1.947 1.430 1.348 0.943
NENTABmod 5 1.940 1.442 1.352 0.938
NENTABmod2 5a 1.942 1.441 1.351 0.938
HEYRAEsimp 6 1.919 1.452 1.371 0.944
HAXHOF 7 1.946 1.445 1.378 0.953
NENTAB 8 1.945 1.454 1.378 0.947
BACVOR 9 1.954 1.441 1.365 0.947
AZUHUY 10 1.944 1.442 1.376 0.954
KOQDEZ 11 1.955 1.410 1.378 0.977
QAJKUH 12 1.943 1.442 1.385 0.961
JUSCILsimp 13 1.938 1.430 1.365 0.955
RUZNOP 14 1.942 1.438 1.372 0.954
OJIVOSsimp 15 1.943 1.434 1.386 0.967
SIXJUE 16 1.920 1.442 1.375 0.953
JOWGIL 17 1.940 1.445 1.328 0.919
VEWVEY 18 1.975 1.447 1.379 0.954
CATXAZ 19 1.948 1.416 1.363 0.963
KINQUT 20 1.942 1.437 1.375 0.957
KINQUTmod2 21 1.945 1.433 1.355 0.945
YIVSEBsimp 22 1.951 1.435 1.385 0.965
SAFGAHmod2 23 1.940 1.445 1.392 0.963
FUFHIYsimp 24 1.944 1.425 1.366 0.958
KINQUTmod 25 1.950 1.426 1.370 0.961
ABIWAKsimp 26 1.949 1.436 1.386 0.965
SAFGAHmod3 27 1.944 1.425 1.363 0.956
CATWIGsimp 28 1.942 1.424 1.329 0.933
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Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
BAKHECsimp 29 1.950 1.425 1.365 0.958
ACAHUJsimp 30 1.949 1.415 1.342 0.949
SAFGAHmod 31 1.947 1.417 1.357 0.958
QOSNIW 32 1.958 1.443 1.326 0.919
EDUKUL 33 1.952 1.407 1.378 0.979
KABYER 34 1.950 1.460 1.383 0.947
NOKFOJ 35 2.129 1.460 1.363 0.934
CATWIGmod 36 1.949 1.424 1.321 0.928
CATXAZsimp 37 1.952 1.413 1.361 0.963
CATWIG 38 2.000 1.399 1.312 0.938
CATWUS 39 2.004 1.418 1.338 0.943
CEPZOM 40 1.978 1.424 1.379 0.968
HUSMAK 41 1.941 1.442 1.380 0.957
CATWIGmod2 42 1.939 1.427 1.327 0.930
TEDCAJ 43 1.975 1.458 1.317 0.903

Table B.12: Differences in bond lengths and bond length ratios Δ( 𝑑(N−C)𝑑(C−C) )HS-LS (HS-LS)
for Fe(II) and Fe(I) complexes. Bond lengths are given in Å.

Fe(II) Fe(I)
No. Δ𝑑HS-LS(Fe−N) Δ( 𝑑(N−C)𝑑(C−C) )HS-LS Δ𝑑HS-LS(Fe−N) Δ( 𝑑(N−C)𝑑(C−C) )HS-LS

1 0.192 -0.010 0.170 -0.010
2 0.208 -0.018 0.195 -0.023
3 0.181 -0.017 0.186 -0.021
4 0.201 -0.017 0.185 -0.018
5 -0.003 0.039 0.001 0.017

5a -0.001 0.039 -0.002 0.017
6 0.211 -0.016 0.207 -0.021
7 0.195 -0.015 0.185 -0.022
8 0.198 -0.016 0.186 -0.020
9 0.197 -0.017 0.004 0.008

10 0.201 -0.015 0.186 -0.020
11 0.196 -0.015 0.183 -0.019
12 0.202 -0.012 0.191 -0.017
13 0.204 -0.014 0.192 -0.017
14 0.204 -0.010 0.188 -0.014
15 0.210 -0.011 0.197 -0.020
16 0.209 -0.016 0.207 -0.021
17 0.188 -0.020 0.189 -0.016
18 0.200 -0.016 0.190 -0.022
19 0.198 -0.014 0.191 -0.016
20 0.201 -0.011 0.188 -0.017
21 0.196 -0.015 0.186 -0.020
22 0.208 -0.011 0.202 -0.018
23 0.207 -0.011 0.201 -0.009
24 0.211 -0.013 0.195 -0.018
25 0.204 -0.014 0.192 -0.019
26 0.210 -0.011 0.201 -0.018
27 0.206 -0.009 0.197 -0.013
28 0.201 -0.014 0.194 -0.019
29 0.215 -0.011 0.198 -0.015
30 0.210 -0.015 0.191 -0.018
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Fe(II) Fe(I1)
No. Δ𝑑HS-LS(Fe−N) Δ( 𝑑(N−C)𝑑(C−C) )HS-LS Δ𝑑HS-LS(Fe−N) Δ( 𝑑(N−C)𝑑(C−C) )HS-LS

31 0.205 -0.013 0.194 -0.015
32 0.180 -0.016 0.175 -0.022
33 0.195 -0.016 0.184 -0.020
34 0.192 -0.015 0.187 -0.020
35 0.079 -0.010 0.025 -0.007
36 0.209 -0.015 0.194 -0.019
37 0.213 -0.011 0.208 -0.015
38 0.191 -0.017 0.196 -0.019
39 0.204 -0.018 0.203 -0.025
40 0.194 -0.016 0.191 -0.011
41 0.205 -0.018 0.193 -0.023
42 0.197 -0.016 0.193 -0.022
43 0.167 -0.022 0.166 -0.021

Table B.13: Characteristic bond pattern of BP86/def2-TZVP optimized
[(𝛼 diimine)3Fe]+ complexes in sextet spin state. Bond lengths are
given in Å.

Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
BOFNEP 1 2.133759 1.447710 1.324909 0.915478
OKIWEKsimp 2 2.134664 1.443610 1.336479 0.925821
QOSNIWmod 3 2.138215 1.469664 1.314651 0.894588
WEYLERsimp 4 2.137989 1.441974 1.340138 0.929389
NENTABmod 5 1.942462 1.417395 1.379584 0.973323
NENTABmod2 5a 1.944745 1.417489 1.380324 0.973781
HEYRAEsimp 6 2.129923 1.470629 1.364335 0.927728
FUFHIYsimp 7 2.151677 1.437329 1.359251 0.945694
NENTAB 8 2.140825 1.467042 1.371502 0.934876
AZUHUY 10 2.138326 1.457150 1.367505 0.938480
KOQDEZ 11 2.146017 1.426536 1.372216 0.961922
QAJKUH 12 2.142202 1.451579 1.379648 0.950447
JUSCILsimp 13 2.140454 1.440744 1.357866 0.942476
RUZNOP 14 2.140721 1.448898 1.367185 0.943604
OJIVOSsimp 15 2.148641 1.445515 1.379126 0.954082
SIXJUE 16 2.129991 1.460771 1.365586 0.934845
JOWGIL 17 2.132119 1.462445 1.318971 0.901950
VEWVEY 18 2.174404 1.461189 1.370795 0.938137
CATWUS 19 2.201989 1.443739 1.338442 0.927068
KINQUT 20 2.139158 1.447281 1.370000 0.946617
KINQUTmod2 21 2.135750 1.447612 1.347819 0.931067
YIVSEBsimp 22 2.156982 1.445560 1.380764 0.955176
SAFGAHmod2 23 2.141881 1.452937 1.384605 0.952970
EDUKUL 24 2.142436 1.423513 1.372128 0.963903
KINQUTmod 25 2.151006 1.438700 1.363042 0.947413
ABIWAKsimp 26 2.154452 1.447537 1.379746 0.953168
SAFGAHmod3 27 2.148698 1.431737 1.358337 0.948735
CATWIGsimp 28 2.139513 1.438060 1.322568 0.919745
BAKHECsimp 29 2.155264 1.431933 1.357891 0.948299
ACAHUJsimp 30 2.150041 1.428096 1.334000 0.934146
SAFGAHmod 31 2.149513 1.424741 1.348835 0.946723
QOSNIW 32 2.137361 1.462568 1.318850 0.901754
CEPZOM 33 2.175266 1.428553 1.373416 0.961405

Continued on next page

145



B Supporting Information for Redox-Active Ligands as a Challenge for Electronic
Structure Methods

Complex No. 𝑑(Fe−N) 𝑑(C−C) 𝑑(C−N) 𝑑(N−C)𝑑(C−C)
KABYER 34 2.140217 1.473610 1.374354 0.932650
CATWIGmod 36 2.149877 1.437687 1.314417 0.914318
CATXAZ 37 2.149287 1.430378 1.361558 0.951896
CATWIG 38 2.207819 1.428090 1.313869 0.920041
CATWOM 39 2.142425 1.423511 1.372133 0.963908
CATXAZsimp 40 2.161913 1.422505 1.354245 0.952015
HUSMAK 41 2.144077 1.457142 1.368629 0.939284
CATWIGmod2 42 2.138882 1.442637 1.316576 0.912626
TEDCAJ 43 2.146400 1.478141 1.312177 0.887723

B.7 Zero-Point Vibrational Energies and Dispersion
Corrections

Table B.14: Zero-point vibrational energies (ZPVE), thermal corrections at 𝑇 = 298 K and
dispersion (D3BJ) corrections to Fe(II) complexes calculated with BP86/def2-
TZVP. All energies are given in kJ mol−1. Thermal and entropic corrections
have been determined by vibrational analysis using the harmonic approxima-
tion.

No. ΔZPVE ΔΔ𝐻HS-LS 𝑇 ΔΔ𝑆HS-LS ΔΔ𝐺HS-LS Δ𝐸corr𝑑𝑖𝑠𝑝.
1 -9.08 -4.42 21.57 -25.99 3.57
2 -16.06 -8.30 28.27 -36.57 13.08
3 -8.72 -5.03 13.48 -18.51 0.93
4 -14.73 -7.36 27.36 -34.72 13.24

5a -7.93 -5.95 9.62 -15.56 1.40
5 -9.65 -7.35 10.74 -18.09 -2.83
6 -15.36 -7.43 33.80 -41.23 13.18
7 -11.94 -5.88 26.18 -32.06 13.93
8 -11.83 -5.55 26.20 -31.75 13.82
9 -10.82 -5.33 24.87 -30.20 13.81

10 -12.68 -6.26 27.49 -33.76 14.47
11 -11.30 -5.74 24.24 -29.97 13.06
12 -11.06 -5.11 26.78 -31.88 15.56
13 -12.43 -6.26 27.90 -34.16 13.07
14 -10.41 -4.61 25.70 -30.31 11.92
15 -11.64 -5.49 26.70 -32.19 12.17
16 -14.68 -7.23 34.87 -42.10 14.21
17 -15.89 -9.54 23.13 -32.67 12.28
18 -13.17 -6.04 31.04 -37.09 14.18
19 -8.83 -4.02 24.39 -28.41 11.19
20 -10.28 -4.49 26.35 -30.84 12.33
21 -12.68 -5.81 29.61 -35.42 14.11
22 -9.90 -4.23 24.76 -28.99 13.58
23 -10.99 -5.34 26.27 -31.61 14.97
24 -11.16 -5.24 25.97 -31.21 10.82
25 -10.53 -4.82 25.25 -30.08 13.34
26 -10.55 -4.64 25.64 -30.28 13.50
27 -10.45 -4.64 27.28 -31.92 16.54
28 -12.06 -5.47 33.19 -38.67 14.29
29 -13.19 -6.08 27.44 -33.52 13.59
30 -13.52 -6.50 26.96 -33.46 12.68

Continued on next page
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No. Δ𝑍𝑃𝑉 𝐸 ΔΔ𝐻HS-LS 𝑇 ΔΔ𝑆HS-LS ΔΔ𝐺HS-LS Δ𝐸corr𝑑𝑖𝑠𝑝.
31 -9.56 -4.09 25.31 -29.40 12.44
32 -9.44 -4.69 21.32 -26.01 10.42
33 -10.15 -5.20 22.62 -27.82 12.83
34 -11.58 -5.22 24.73 -29.94 -1.88
35 -15.24 -11.51 14.91 -26.42 8.48
36 -9.18 -4.17 21.70 -25.88 14.60
37 -9.75 -4.13 25.76 -29.89 12.82
38 -7.28 -2.65 22.22 -24.87 7.20
39 -8.01 -3.36 22.69 -26.06 9.20
40 -12.59 -6.02 27.13 -33.15 13.70
41 -9.74 -4.42 21.47 -25.88 11.29
42 -12.68 -6.60 29.82 -36.43 16.84
43 -13.06 -7.37 28.36 -35.73 13.03
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Listing C.1: Machine Learning Models
1

from sk l earn . l inear_model import LinearRegress ion
3 from sk l earn . neighbors import KNeighborsRegressor

from sk l earn . kernel_ridge import KernelRidge
5 from sk l earn . gaussian_process import GaussianProcessRegressor

from sk l earn . gaussian_process . ke rne l s import Matern
7

#kerne l s
9 matern_01 = 1.0 ∗ Matern ( 1 . 0 , nu = 0 .5 ) # Matern 01 kerne l

matern_02 = Matern ( 1 . 0 , nu = 0 .5 ) # Matern 02 kerne l
11 rbf_01 = RBF( 1 . 0 ) # RBF 01 kerne l

rbf_02 = 1.0∗RBF( 1 . 0 ) # RBF 02 kerne l
13

#GPR
15 gpr_matern_01 = GaussianProcessRegressor ( kerne l = matern_01 ,

n_restarts_optimizer = 10)
gpr_matern_02 = GaussianProcessRegressor ( kerne l = matern_02 ,

n_restarts_optimizer = 10)
17 gpr_rmb_01 = GaussianProcessRegressor ( kerne l = rbf_01 ,

n_restarts_optimizer = 10)
gpr_rbf_02 = GaussianProcessRegressor ( kerne l = rbf_02 ,

n_restarts_optimizer = 10)
19

#KRR
21 krr_matern_01 = KernelRidge ( kerne l = matern_01)

krr_rbf_01 = KernelRidge ( kerne l = rbf_01 )
23

#k−NN
25 knn_01 = KNeighborsRegressor ( weights=’ uniform ’ , n_neighbors=5)

knn_02 = KNeighborsRegressor ( weights=’ d i s tance ’ , n_neighbors=5)
27

#l i n e a r regre s s ion
29 l i n = LinearRegress ion ( )

Listing C.2: Descriptors for ML

2 from dsc r ibe . d e s c r i p t o r s import ACSF, SOAP, LMBTR

4 ’ ’ ’
v a r i a b l e s

6 mol : ase . Atoms o b j e c t
carbene_posit ion : po s i t i on of carbene carbon

8 ’ ’ ’

10 s p e c i e s = [H,C,F,N,O]
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12 #### ACSF ####
a c s f = ACSF( s p e c i e s = spec i e s ,

14 rcut = 6 .0 ,
g2_params = [ [ 1 , 1 ] , [ 1 , 2 ] , [ 1 , 3 ] ] ,

16 g3_params = None ,
g4_params = [ [ 1 , 1 , 1 ] , [ 1 , 2 , 1 ] , [ 1 , 1 , −1] , [ 1 , 2 , −1]] ,

18 g5_params = None)

20 f ea ture s_acs f = a c s f . c r eate ( system = mol , c ente r s = [ carbene_posit ion ] )

22 #### SOAP ####
soap = SOAP( s p e c i e s = spec i e s , p e r i od i c = False , rcut = 14 , nmax = 8 ,

lmax = 4 , average = ’ outer ’ , rb f = ’ gto ’ )
24

features_soap = soap . c reate ( system = mol , cente r s = [ carbene_posit ion ] )
26

#### LMBTR ####
28 lmbtr = LMBTR( s p e c i e s = spec i e s , p e r i od i c = False ,

k2 = {”geometry” : {” funct ion ” : ” inverse_distance ” } ,
30 ” gr id ” : {”min” : 0 . 1 , ”max” : 2 , ” sigma” : 0 . 1 , ”n” :

50} ,
” weighting ” : {” funct ion ” : ”exp” , ” s c a l e ” : 0 .75 , ”

thresho ld ” : 1e −2}},
32 k3 ={”geometry” : {” funct ion ” : ” angle ” } ,

” gr id ” : {”min” : 0 , ”max” : 180 , ” sigma” : 5 , ”n” : 50} ,
34 ” weighting ” : {” funct ion ” : ”exp” , ” s c a l e ” : 0 . 5 , ”

thresho ld ” : 1e −3}},
normalize_gaussians = normalize_gaussians ,

36 normal izat ion =’ none ’ , f l a t t e n = True )

38 features_lmbtr = lmbtr . c r ea te ( system = mol , cente r s = [ carbene_posit ion ] )

C.1 Additional Data on Computing Times
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C.1 Additional Data on Computing Times

Figure C.1: Distribution of CPU times for DFT single point calculations for 11 xc func-
tionals.
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Figure C.2: Distribution of CPU times for the molecular structure .optimization of car-
benes.
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C.1 Additional Data on Computing Times

Figure C.3: Distribution of CPU times for DFT single point calculations for 11 xc func-
tionals.
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C.2 Additional Data for DFT Calculations

Figure C.4: Errors are given relative to the MRCI spin gaps (Δ𝐸DFT − Δ𝐸ad,ref).
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C.2 Additional Data for DFT Calculations

Figure C.5: Kernel density estimate of adiabatic and vertical spin gap errors (ker-
nel=’gaussian’, width=0.5). Vertical spin gaps are calculated on CASSCF-
optimized singlet structures.[1]
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Figure C.6: Correlation matrix for all absolute errors (AE) of Δ𝐸𝐷𝐹𝑇 − Δ𝐸𝑎𝑑,𝑟𝑒𝑓 cal-
culated with 11 different xc functionals and number of unpaired electrons
localized on the carbene carbon for each of the triplet carbenes 𝑛𝛼−𝛽∶C .
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C.2 Additional Data for DFT Calculations

Figure C.7: Fit for all absolute errors (AE) of Δ𝐸𝐵3𝐿𝑌 𝑃 − Δ𝐸𝑎𝑑,𝑟𝑒𝑓 number of unpaired
electrons localized on the carbene carbon for each of the triplet carbenes𝑛𝛼−𝛽∶C,B3LYP.
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Figure C.8: Fit for all absolute errors (AE) of Δ𝐸LC𝜔−PBE − Δ𝐸𝑎𝑑,𝑟𝑒𝑓 number of un-
paired electrons localized on the carbene carbon for each of the triplet car-
benes 𝑛𝛼−𝛽∶C,LC𝜔−PBE.
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C.3 Additional Data on ML
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Figure C.9: Overview of CPU time for supervised machine learning with different mod-
els (y-axis) and descriptors (x-axis). The train-test split has been performed
randomly 10 times with training set size of 1500. Models have been used
with unscaled and scaled as indicated by the brackets. Descriptors grouped
under the R label employ only singlet or singlet and triplet molecular struc-
tures indicated by superscribed “s” or “s+t”, respectively. The method used
for molecular structure optimization is denoted with subscripts. Within the
groups, descriptors are ordered: NDA, DA, ACSF, LMBTR and SOAP. The
DA descriptor is omitted for the “s+t” groups. For the group Δ𝐸DFT, DFT
spin gaps calculated with all 11 xc functionals are used as features. The group
contains Δ𝐸DFT

ad,ref, Δ𝐸DFT
ad,B3LYP, Δ𝐸DFT

ad,PM6, Δ𝐸DFT
vert,B3LYP, Δ𝐸DFT

vert,PM6. For
the HLDFT group HOMO–LUMO, gaps calculated for the singlet carbenes
with the 11 xc functionals are used as features. CASSCF, B3LYP- and PM6-
optimized singlet structures are used to calculate the HOMO–LUMO gaps.
The CSM06 descriptor contains Mulliken charges on the carbene carbon and
the two neighboring atoms for the singlet and triplet carbene as well as the
Mulliken number of unpaired electrons on those three atoms for the triplet car-
bene (9 feature dimensions). For these calculations the M06 functionals has
been used. Different molecular structures have been used and the CS group
contains CSM06

ad,ref, CSM06ad, B3LYP,CSM06
ad,PM6, CSM06

vert,B3LYP and CSM06
vert,PM6.
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Figure C.10: Overview of standard deviation of 𝑄95 for supervised machine learning with
different models (y-axis) and descriptors (x-axis). The train-test split has
been performed randomly 10 times with training set size of 1500. Models have
been used with unscaled and scaled as indicated by the brackets. Descriptors
grouped under the R label employ only singlet or singlet and triplet molecular
structures indicated by superscribed “s” or “s+t”, respectively. The method
used for molecular structure optimization is denoted with subscripts. Within
the groups, descriptors are ordered: NDA, DA, ACSF, LMBTR and SOAP.
The DA descriptor is omitted for the “s+t” groups. For the group Δ𝐸DFT,
DFT spin gaps calculated with all 11 xc functionals are used as features. The
group contains Δ𝐸DFT

ad,ref, Δ𝐸DFT
ad,B3LYP, Δ𝐸DFT

ad,PM6, Δ𝐸DFT
vert,B3LYP, Δ𝐸DFT

vert,PM6.
For the HLDFT group HOMO–LUMO, gaps calculated for the singlet car-
benes with the 11 xc functionals are used as features. CASSCF, B3LYP- and
PM6-optimized singlet structures are used to calculate the HOMO–LUMO
gaps. The CSM06 descriptor contains Mulliken charges on the carbene car-
bon and the two neighboring atoms for the singlet and triplet carbene as well
as the Mulliken number of unpaired electrons on those three atoms for the
triplet carbene (9 feature dimensions). For these calculations the M06 func-
tionals has been used. Different molecular structures have been used and the
CS group contains CSM06

ad,ref, CSM06ad, B3LYP,CSM06
ad,PM6, CSM06

vert,B3LYP and
CSM06

vert,PM6.
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Figure C.11: Learning curve for machine learning of adiabatic reference spin gaps. The
GPR with Matern 01 kernel has been used on scaled features. The NDA
(left) and ACSF (right) descriptor generated from different structures have
been used. The learning has been repeated 10 times. Shaded areas display
the standard deviation of the 𝑄95 error measure.

Figure C.12: Learning curve with various scaled ACSF descriptors. Repititions: 10
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Figure C.13: Learning curve for machine learning of adiabatic reference spin gaps. The
k-nearest neighbors methods with 𝑘 = 5 and distance based weights has
been used on scaled features. The NDA (left) and ACSF (right) descriptor
generated from different structures have been used. The learning has been
repeated 15 times. Shaded areas display the standard deviation of the 𝑄95
error measure.
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Figure C.14: Learning curve for machine learning of adiabatic reference spin gaps. Differ-
ent models have been used together with Δ𝐸DFT

ad,ref as features. The learning
has been repeated 20 times. Shaded areas display the standard deviation of
the 𝑄95 error measure.
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D.1 IR Spectra

Figure D.1: IR spectrum of 5.

Figure D.2: IR spectrum of 3b
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Figure D.3: IR spectrum of 2

D.2 NMR Spectra
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D.2 NMR Spectra

Figure D.4: Example 1H-NMR spectrum of quantifying formate salt. Measured in D2O.

Figure D.5: 1H-NMR spectrum of 5 measured in THF-d8.
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Figure D.6: Detailed view of 1H-NMR spectrum of 5 measured in THF-d8.

Figure D.7: 1H-NMR spectrum of 4 measured in THF-d8.
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D.2 NMR Spectra

Figure D.8: 1H-NMR spectrum of 3b measured in THF-d8.

Figure D.9: 1H-NMR spectrum of 6 measured in C6D6.
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Figure D.10: 1H-NMR spectrum of 8 measured in THF-d8.

Figure D.11: 1H-NMR spectrum of 12a measured in THF-d8.
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D.2 NMR Spectra

Figure D.12: 1H-NMR spectrum of 12b measured in THF-d8.

Figure D.13: 1H-NMR spectrum of 9 measured in THF-d8.
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Figure D.14: 1H-NMR spectrum of the reaction mixture of the deprotonation of 8 with
DBU measured in THF-d8.
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D.3 Mass Spectra

Figure D.15: LIFDI-MS spectrum of 9.

Table D.1: Measured and theoretical 𝑚/𝑧 ratios of the ions observed upon negative-ion
mode ESI of a solution of 2 in THF (𝑐 ≈ 6 m m). The given values refer to the
most abundant isotopologue of each species.

Assignment 𝑚/𝑧
(measured)

𝑚/𝑧
(theoretical)

Relative error
in ppm

[LFeH]– 557.255 557.263 -14
[LFe(H2BEt2)]– 627.353 627.359 -10

[L2FeH]– 1057.565 1057.582 -16
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Figure D.16: Zoom of LIFDI-MS spectrum of 9 (top) simulation for Co2C74H82N4O4 (bot-
tom).

Table D.2: Measured and theoretical 𝑚/𝑧 ratios of the ions observed upon negative-ion
mode ESI of the reaction mixture of LFeCl2/3LiBEt3H in THF (𝑐 ≈ 8 m m).
The given values refer to the most abundant isotopologue of each species.

Assignment 𝑚/𝑧
(measured)

𝑚/𝑧
(theoretical)

Relative error
in ppm

[LFeH]– 557.260 557.263 -5
[LFe(H2BEt2)]– 627.358 627.359 -2

[LFe(HBEt2)(MeCN)]– 696.413 696.417 16

Figure D.17: Mass spectrum of mass-selected [LFeH]– and its fragment ions formed upon
collision-induced dissociation at 𝐸LAB = 30 eV. Left: whole spectrum, right:
enlarged section
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D.3 Mass Spectra

Figure D.18: Mass spectrum of mass-selected [LFe(H2BEt2)]– and its fragment ions formed
upon collision-induced dissociation at 𝐸LAB = 12 eV. Left: whole spectrum,
right: enlarged section

Figure D.19: Mass spectrum of mass-selected [L2FeHn]– (𝑛 = 0 and 1) and its fragment
ions formed upon collision-induced dissociation at 𝐸LAB = 30 eV. Left:
whole spectrum, right: enlarged section
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Figure D.20: (a): Negative-ion mode ESI mass spectrum of a solution of the reaction
mixture of LFeCl2/3LiBEt3H in THF (𝑐 ≈ 8 m m). (b): Section from
the negative-ion mode ESI mass spectrum (black) together with theoreti-
cal isotope pattern of [LFeH]– (blue). (c): Section from the negative-ion
mode ESI mass spectrum (black) together with theoretical isotope pat-
tern of [LFe(H2BEt2)]– (blue). (d): Section from the negative-ion mode
ESI mass spectrum (black) together with theoretical isotope pattern of
[LFe(HBEt2)(MeCN)]– (blue).
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Figure D.21: Mass spectrum of mass-selected [LFe(HBEt2)(MeCN)]– and its fragment ions
formed upon collision-induced dissociation at 𝐸LAB = 10 eV. Left: whole
spectrum, right: enlarged section
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D.4 Crystal Data

Table D.3: Crystal data and structure refinement for 3b

Identification code UR65B
Empirical formula C128H194Fe2N4Na2O14
Formula weight 2170.54
Temperature/K 100.0(7)
Crystal system monoclinic
Space group P21/c
a/Å 12.77279(12)
b/Å 29.8307(3)
c/Å 17.35368(18)α/° 90.0β/° 111.4258(11)γ/° 90.0
Volume/Å3 6155.17(10)
Z 2ρcalcg/cm3 1.171
µ/mm-1 2.433
F(000) 2352.0
Crystal size/mm3 0.25 × 0.25 × 0.05
Radiation Cu Kα (λ = 1.54184)
2Θ range for data collection/° 6.222 to 152.818
Index ranges -15 ≤ h ≤ 16, -37 ≤ k ≤ 37, -21 ≤ l ≤ 21
Reflections collected 138081
Independent reflections 12823 [Rint = 0.0579, Rsigma = 0.0240]
Data/restraints/parameters 12823/648/698
Goodness-of-fit on F2 1.036
Final R indexes [I>=2σ (I)] R1 = 0.0467, wR2 = 0.1203
Final R indexes [all data] R1 = 0.0510, wR2 = 0.1239
Largest diff. peak/hole / e Å3 0.64/-0.52
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Table D.4: Crystal data and structure refinement for 3c

Identification code UR86V_2
Empirical formula C88H114Fe2N4Na2O4
Formula weight 1449.51
Temperature/K 200(140)
Crystal system monoclinic
Space group P21/n
a/Å 14.4333(3)
b/Å 13.7450(2)
c/Å 19.3612(4)α/° 90.0β/° 90.332(2)γ/° 90.0
Volume/Å3 3840.92(13)
Z 2ρcalcg/cm3 1.253
µ/mm-1 0.443
F(000) 1552.0
Crystal size/mm3 0.24 × 0.22 × 0.18
Radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/° 4.594 to 59.13
Index ranges -19 ≤ h ≤ 19, -18 ≤ k ≤ 18, -26 ≤ l ≤ 24
Reflections collected 114684
Independent reflections 10274 [Rint = 0.0479, Rsigma = 0.0240]
Data/restraints/parameters 10274/0/463
Goodness-of-fit on F2 1.040
Final R indexes [I>=2σ (I)] R1 = 0.0414, wR2 = 0.1023
Final R indexes [all data] R1 = 0.0489, wR2 = 0.1071
Largest diff. peak/hole / e Å3 0.96/-0.50
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Table D.5: Crystal data and structure refinement for 4

Identification code UR33H-2
Empirical formula C72H80Fe2N4
Formula weight 1113.10
Temperature/K 99.96(18)
Crystal system monoclinic
Space group P21/n
a/Å 13.1317(2)
b/Å 13.23430(10)
c/Å 17.5846(2)α/° 90.0β/° 107.1180(10)γ/° 90.0
Volume/Å3 2920.63(6)
Z 2ρcalcg/cm3 1.266
µ/mm-1 0.543
F(000) 1184.0
Crystal size/mm3 0.452 × 0.243 × 0.142
Radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/° 5.742 to 65.928
Index ranges -19 ≤ h ≤ 19, -20 ≤ k ≤ 20, -26 ≤ l ≤ 26
Reflections collected 183454
Independent reflections 10637 [Rint = 0.0341, Rsigma = 0.0126]
Data/restraints/parameters 10637/0/360
Goodness-of-fit on F2 1.071
Final R indexes [I>=2σ (I)] R1 =0.0586, wR2 = 0.1818
Final R indexes [all data] R1 = 0.0631, wR2 = 0.1868
Largest diff. peak/hole / e Å3 1.52/-1.51
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Table D.6: Crystal data and structure refinement for 5

Identification code UR25b1
Empirical formula C72H80Fe2N4
Formula weight 1113.10
Temperature/K 99.96(18)
Crystal system monoclinic
Space group C2/c
a/Å 19.1589(4)
b/Å 18.1992(3)
c/Å 24.2834(5)α/° 90.0β/° 99.617(2)γ/° 90.0
Volume/Å3 8348.1(3)
Z 4ρcalcg/cm3 0.886
µ/mm-1 0.380
F(000) 2368.0
Crystal size/mm3 0.3 × 0.28 × 0.06
Radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/° 5.924 to 59.202
Index ranges -24 ≤ h ≤ 26, -24 ≤ k ≤ 23, -31 ≤ l ≤ 32
Reflections collected 109592
Independent reflections 11141 [Rint = 0.0479, Rsigma = 0.0270]
Data/restraints/parameters 11141/0/360
Goodness-of-fit on F2 1.021
Final R indexes [I>=2σ (I)] R1 = 0.0590, wR2 =0.1497
Final R indexes [all data] R1 = 0.0746, wR2 = 0.1592
Largest diff. peak/hole / e Å3 0.53/-0.34
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Table D.7: Crystal data and structure refinement for 9

Identification code UR13a1
Empirical formula C148H164Co4N8O8
Formula weight 2418.58
Temperature/K 99.9(3)
Crystal system monoclinic
Space group P21/n
a/Å 10.8709(2)
b/Å 14.0289(2)
c/Å 21.2653(4)α/° 90.0β/° 93.7880(10)γ/° 90.0
Volume/Å3 3236.02(10)
Z 1ρcalcg/cm3 1.241
µ/mm-1 0.564
F(000) 1280.0
Crystal size/mm3 0.3 × 0.2 × 0.1
Radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/° 5.948 to 59.228
Index ranges -14 ≤ h ≤ 15, -19 ≤ k ≤ 19, -29 ≤ l ≤ 29
Reflections collected 140115
Independent reflections 8834 [Rint = 0.0335, Rsigma = 0.0153]
Data/restraints/parameters 8834/813/671
Goodness-of-fit on F2 1.121
Final R indexes [I>=2σ (I)] R1 = 0.0534, wR2 = 0.1229
Final R indexes [all data] R1 = 0.0617, wR2 = 0.1271
Largest diff. peak/hole / e Å3 0.49/-0.32
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Table D.8: Crystal data and structure refinement for 12b

Identification code UR59A2
Empirical formula C68H112Co2N4Na2O3
Formula weight 1197.45
Temperature/K 99.97(18)
Crystal system triclinic
Space group P-1
a/Å 12.5304(3)
b/Å 13.0331(5)
c/Å 13.0416(3)α/° 61.799(3)β/° 81.560(2)γ/° 64.995(3)
Volume/Å3 1697.33(10)
Z 1ρcalcg/cm3 1.171
µ/mm-1 0.547
F(000) 648.0
Crystal size/mm3 0.32 × 0.18 × 0.1
Radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/° 6.132 to 60.048
Index ranges -17 ≤ h ≤ 17, -17 ≤ k ≤ 17, -17 ≤ l ≤ 18
Reflections collected 75834
Independent reflections 9017 [Rint = 0.0439, Rsigma = 0.0285]
Data/restraints/parameters 9017/54/397
Goodness-of-fit on F2 1.052
Final R indexes [I>=2σ (I)] R1 = 0.0426, wR2 = 0.1036
Final R indexes [all data] R1 = 0.0533, wR2 = 0.1094
Largest diff. peak/hole / e Å3 0.96/-0.44
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Table D.9: Crystal data and structure refinement for 10

Identification code UR69
Empirical formula C114H162Co2Li2N8O6
Formula weight 1872.25
Temperature/K 201(140)
Crystal system triclinic
Space group P-1
a/Å 13.0903(4)
b/Å 14.9456(4)
c/Å 15.0317(4)α/° 96.566(2)β/° 95.032(2)γ/° 105.366(2)
Volume/Å3 2795.65(14)
Z 1ρcalcg/cm3 1.112
µ/mm-1 2.732
F(000) 1010.0
Crystal size/mm3 0.16 × 0.16 × 0.08
Radiation Cu Kα (λ = 1.54184)
2Θ range for data collection/° 6.196 to 153.458
Index ranges -16 ≤ h ≤ 16, -18 ≤ k ≤ 18, -18 ≤ l ≤ 18
Reflections collected 54573
Independent reflections 11464 [Rint = 0.0495, Rsigma = 0.0371]
Data/restraints/parameters 11464/582/635
Goodness-of-fit on F2 1.083
Final R indexes [I>=2σ (I)] R1 = 0.0490, wR2 = 0.1275
Final R indexes [all data] R1 = 0.0580, wR2 = 0.0580
Largest diff. peak/hole / e Å3 0.38/-0.44
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Table D.10: Crystal data and structure refinement for 12a

Identification code UR52B
Empirical formula C64H102Co2Li2N4O2
Formula weight 1091.23
Temperature/K 99.9(2)
Crystal system monoclinic
Space group P2/c
a/Å 22.5648(3)
b/Å 14.45820(10)
c/Å 20.3155(2)α/° 90β/° 107.3920(10)γ/° 90
Volume/Å3 6324.84(12)
Z 4ρcalcg/cm3 1.146
µ/mm-1 4.423
F(000) 2360.0
Crystal size/mm3 0.3 × 0.15 × 0.12
Radiation Cu Kα (λ = 1.54184)
2Θ range for data collection/° 7.364 to 152.236
Index ranges -27 ≤ h ≤ 28, -18 ≤ k ≤ 18, -5 ≤ l ≤ 25
Reflections collected 137981
Independent reflections 13139 [Rint = 0.0573, Rsigma = 0.0253]
Data/restraints/parameters 13139/697/702
Goodness-of-fit on F2 1.031
Final R indexes [I>=2σ (I)] R1 = 0.0854, wR2 = 0.2256
Final R indexes [all data] R1 = 0.0895, wR2 = 0.2287
Largest diff. peak/hole / e Å3 0.98/-0.74
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Table D.11: Crystal data and structure refinement for [CoBr28dbu)2]

Identification code UR60C
Empirical formula C18H31Br2CoN4
Formula weight 522.22
Temperature/K 99.9(2)
Crystal system monoclinic
Space group P21/n
a/Å 12.32(4)
b/Å 14.69(3)
c/Å 14.41(3)α/° 90β/° 90γ/° 90
Volume/Å3 2610(11)
Z 4ρcalcg/cm3 1.329
µ/mm-1 3.727
F(000) 1056.0
Crystal size/mm3 0.32 × 0.26 × 0.21
Radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/° 5.158 to 70.52
Index ranges -16 ≤ h ≤ 15, -20 ≤ k ≤ 20, -19 ≤ l ≤ 20
Reflections collected 32244
Independent reflections 6405 [Rint = 0.0280, Rsigma = 0.0233]
Data/restraints/parameters 6405/0/226
Goodness-of-fit on F2 1.112
Final R indexes [I>=2σ (I)] R1 = 0.0694, wR2 = 0.1805
Final R indexes [all data] R1 = 0.0901, wR2 = 0.2011
Largest diff. peak/hole / e Å3 1.27/-4.00
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D.5 Cyclic Voltammetry

Figure D.22: Cyclic voltammograms of complex 6.
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Figure D.23: Cyclic voltammograms of complex 6 at different scan rates (in mV s−1).

Figure D.24: Cyclic voltammograms of complex 4.
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D.6 Additional DFT Calculations

D.6 Additional DFT Calculations

Figure D.25: Possible electronic structures for each L-Fe fragment in complex 2 (left) and
complex 3. Resulting total spin 𝑆 for each possibility is given for the whole
complex. Cases, where the ligand is charged -1 does not influence the total
spin. In the case of antiferromagnetic coupling 𝑆 = 0 is also plausible for the
complex 2.
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Figure D.26: Energies of spin states calculated with different xc functionals and def2-
TZVP basis set and with PCM(THF) on TPSS D3BJ optimized molecular
structures of 2. The undecet molecular structure was used for all septet
calculations due to the failed convergence of the septet molecular structure
optimization. For the triplet molecular structure only the equatorial hydrides
are bridging both iron centers. The remaining two hydrides coordinate one
iron center each.
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D.6 Additional DFT Calculations

Figure D.27: Energies of spin states calculated with OPBE/def2-TZVP with PCM(THF)
on crystal structures relative to oss of complex 2 for complexes 2 and 3 and
relative to the oss of 14 for complexes 14 and 5.
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Figure D.28: Energies of spin states calculated with B3LYP*/def2-TZVP with
PCM(THF) on crystal structures relative to oss of complex 2 for complexes
2 and 3 and relative to the oss of 14 for complexes 14 and 5.
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D.6 Additional DFT Calculations

Figure D.29: Number of unpaired electrons on iron atoms calculated by Mulliken popula-
tion analysis for different spin states (OPBE/def2-TZVP with PCM(THF)).
The grey dashed lines indicate ideal values for different oxidation and spin
states of the iron centers.
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Figure D.30: Number of unpaired electrons on iron atoms calculated by Löwdin population
analysis for different spin states (OPBE/def2-TZVP with PCM(THF)). The
grey dashed lines indicate ideal values for different oxidation and spin states
of the iron centers.
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D.6 Additional DFT Calculations

Figure D.31: Number of unpaired electrons on iron atoms calculated by Löwdin population
analysis for different spin states (B3LYP*/def2-TZVP with PCM(THF)).
The grey dashed lines indicate ideal values for different oxidation and spin
states of the iron centers.
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E Hazardous Materials

Material GHS-Symbol H-Statements P-Statements

Acenaphthenequinone 315, 319, 335 261, 305+351+338

Acetonitrile 225, 302+312+332
210, 240, 302+352,
305+351+338,
403+233

Acetic acid 226, 290, 314

210, 280,
301+330+331,
305+351+338,
308+310

Benzene 225, 304, 315, 319,
340, 350, 372, 412

201, 210, 280,
308+313, 307+378,
403+233

Carbondioxide 280 403

Cobalt(II)-bromide 302, 317, 334, 341,
350, 410

201, 261, 280, 284,
304+340, 308+313

Dichlormethane 315, 319, 335, 336,
351, 373

261, 281,
305+351+338

Diethylether 225, 304, 315, 319,
340, 350, 372, 412

201, 210, 280,
308+313, 307+378,
403+235

Hydrogen 220, 280 210, 377, 381, 403

𝛼-Methylstyrene 226, 319, 335, 411 261, 273,
305+351+338

Nitrogen
(refrigerated,
liquid)

281 282, 336+315, 403

Propan-2-ol 225, 319, 336
210, 233, 240,
305+351+338,
403+235
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Material GHS-Symbol H-Statements P-Statements

Trichlormethane-d 302, 315, 319, 331,
336, 351, 361d, 372

261, 281,
305+351+338, 311

Triphenylethylene 373, 302 260, 301+312

n-Hexane 225, 304, 361f, 373,
315, 315, 336, 411

210, 240, 273,
301+310, 331,
302+352, 403+235

Super-Hydride®-
solution (1 m in
THF)

225, 260, 302, 314,
335, 351,
EUH014,EUH019

210, 231+232, 280,
370+378, 402+404,
403+235

Sodium
triethylborohydride-
solution (1 m in
THF)

225, 261, 304, 314,
336, 361d, 373, 412

210, 231+232, 280,
301+330+331,
303+361+353,
304+340+310

Tetrahydrofuran 225, 302, 319, 335,
351, EUH019

210, 280,
301+312+330,
305+351+338,
370+378, 403+235

2,6-
Diisopropylylaniline 319, 412 237, 305+351+338

Iron(II)cloride 302, 318
264, 270, 280,
301+312,
305+351+338, 501

1,8-
Diazabicyclo[5.4.0]undec-
7-ene

290, 301, 314, 412

234, 273, 280,
303+361+353,
304+340+310,
301+312,
305+351+338, 501

Carbon dioxide 280 410+403

Dimethylformamide 226, 312+332, 319,
360d

210, 280,
303+361+353,
304+340+310,
301+312,
305+351+338,
308+313
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Table E.2: Used CMR-compounds of category 1a und 1b (GHS).

Cas-number Name
(IUPAC) Procedure and used amount Category (GHS)

865-49-6 Trichlormethan-
d

Analysis
40 x 0.6 mL

K: 1B
R: 1B

7789-43-7 Cobalt(II)-
bromide

Synthesis
2 x 5 g K: 1B

68-12-2 N,N -Dimethyl-
formamide

Analysis
20 x 5 mg R: 1B
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Acronyms

AC autocorrelation

AIM atoms in molecules

ACSF atom-centered symmetry functions

BIAN bis(imino)acenaphthene

bp. boiling point

calc. calculated

cat. catalyst

CASSCF complete active space self consistent field

css closed shell singlet

DCM dichlormethane

DFT density functional theory

Dipp 2,6-diisopropylphenyl

DME 1,2-dimethoxyethane

Ea activation energy

EPR electron paramagnetic resonance

equiv. equivalent

ESI electron spray ionization

Et ethyl

FID flame ionization detector

GC gas chromatography

HF Hartree–Fock

HOMO highest occupied molecular orbital

IR infrared

InChI international chemical identifier

KDE kernel density estimation

KRR kernel ridge regression

KS Kohn-Sham

LMBTR local many-body tensor representation

LUMO lowest unoccupied molecular orbital

ML machine learning

MO molecular orbital

MAE mean absolute error
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Acronyms

MBTR many-body tensor representation

MS mass spectrometry

MSE mean signed error

MRCI multireference configuration interaction

NMR nuclear magnetic resonance

oss open shell singlet

PCA principle component analysis

RMSD root-mean-square deviation

RMSE root-mean-square error

RT room temperature

s singlet

SCF self consistent field

SCO spin crossover

SET single electron transfer

SIE self-interaction error

SOAP smooth overlap of atomic positions

SQUID superconducting quantum interference device

THF tetrahydrofuran

TM transition metal
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