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Abstract

This thesis is based in the research field of quantum simulation, particularly in the investigation of quan-
tum phenomena with cold ytterbium atoms. Based on Richard Feynman’s vision, the work employs
experimental techniques for the creation and manipulation of cold atoms to simulate specific quantum
scenarios.

In the first part, we investigate, on the one hand, interisotope interorbital interactions in mixtures of
171Yb and 173Yb and, on the other hand, spin-exchange interactions of 171Yb using clock spectroscopy.
We characterize the elastic scattering lengths as 171

173aeg = 497.4(8)a0 and 171
173age = 482(1)a0 and proof

their SU(2) ⊗ SU(6) symmetry. The measured decay coefficients for inelastic interactions reveal that
171
173βeg is approximately 400 times stronger than 171

173βge, indicating that 171Ybg-173Ybe mixtures are more
suited for quantum simulations. For the spin-exchange interactions of 171Yb, we find scattering lengths of
aeg+ = 203(5)a0 and aeg− = 308(6)a0. The negative value of the spin-exchange interaction Vex confirms
its antiferromagnetic nature, making 171Yb a promising candidate for simulating the Kondo lattice model
[1, 2].

In the more comprehensive second part, we investigate the influence of inter-particle interactions on
the emergence of chiral edge currents in quantum Hall systems. We provide a detailed report on the
experimental realization of a quantum Hall ladder system, beginning with the theoretical foundations of
the Harper-Hofstadter model and its implementation in cold atom systems through artificial gauge fields.
We outline the essential steps for preparing and implementing quantum Hall ladders, confirming the
successful realization of the system through precise measurements of chiral edge currents. Additionally,
this work provides valuable insights into practical challenges and optimization strategies for experimental
data. We describe previously unreported dynamics during bandmapping and, more importantly, during
the eigenstate preparation, which significantly impact the measurement of chiral currents. We observe
prominent chiral currents, which exceed those reported in comparable experimental studies (see Ref.
[3–7]) and exhibit momentum distributions closely aligning with theoretical predictions. Finally, we
examine how inter-particle interactions, which are infinitely long-ranged along a synthetic dimension
and localized to a single lattice site along a shallow optical lattice, affect the topologically protected
chiral edge currents. In the strongly interacting regime, we find a suppression of chiral currents. Our
data is consistent with two distinct interaction behaviors: a linear differential response and a constant
relative suppression of the currents within the explored interaction regime. Furthermore, our findings
suggest the possibility of a dynamic area in the weakly repulsive regime.

This thesis advances the field of quantum simulation by enhancing our understanding of interactions and
topological properties in cold atom systems. Our results deepen the comprehension of interaction effects
in different scenarios, and may contribute to the exploration of fractional quantum Hall states [8–13]. In
this context, a deeper understanding of interactions could pave the way for the development of robust
quantum information protocols [14].
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Zusammenfassung

Diese Dissertation ist im Forschungsbereich der Quanten-Simulation angesiedelt, insbesondere in der
Untersuchung von Quantenphänomenen mit kalten Ytterbiumatomen. Basierend auf Richard Feynmans
Vision werden experimentelle Techniken zur Erzeugung und Manipulation kalter Atome eingesetzt, um
spezifische Quantenszenarien zu simulieren.

Im ersten Teil untersuchen wir einerseits interisotopische interorbitale Wechselwirkungen in Mischun-
gen von 171Yb und 173Yb und andererseits Spin-Austausch-Wechselwirkungen von 171Yb mittels Uhren-
spektroskopie. Wir charakterisieren die elastischen Streulängen als 171

173aeg = 497.4(8)a0 und 171
173age =

482(1)a0 und bestätigen deren SU(2) ⊗ SU(6)-Symmetrie. Die gemessenen Zerfallskoeffizienten für
inelastische Wechselwirkungen zeigen, dass 171

173βeg etwa 400-mal stärker ist als 171
173βge, was darauf hin-

weist, dass Mischungen aus 171Ybg-173Ybe besser für Quanten-Simulationen geeignet sind. Für die Spin-
Austausch-Wechselwirkungen von 171Yb ermitteln wir Streulängen von aeg+ = 203(5)a0 und aeg− =

308(6)a0. Der negative Wert der Spin-Austausch-Wechselwirkung Vex bestätigt deren antiferromag-
netische Natur, was 171Yb zu einem vielversprechenden Kandidaten für die Simulation des Kondo-
Gittermodells [1, 2] macht.

Im umfassenderen zweiten Teil untersuchen wir den Einfluss von Teilchenwechselwirkungen auf das
Auftreten chiraler Randströme in Quanten-Hall-Systemen. Wir berichten detailliert über die experi-
mentelle Realisierung eines Quanten-Hall-Leitersystems, ausgehend von den theoretischen Grundlagen
des Harper-Hofstadter-Modells und dessen Implementierung in kalten Atomen mittels künstlicher Eich-
felder. Wir skizzieren die wesentlichen Schritte zur Vorbereitung und Implementierung von Quanten-
Hall-Leitern und bestätigen die erfolgreiche Realisierung des Systems durch präzise Messungen chi-
raler Randströme. Darüber hinaus bietet diese Arbeit wertvolle Einblicke in praktische Herausforderun-
gen und Optimierungsstrategien für experimentelle Daten. Wir beschreiben bisher nicht berichtete Dy-
namiken während des Bandmappings und noch wichtiger während der Eigenzustandspräparation, die
die Messung chiraler Ströme erheblich beeinflussen. Es werden ausgeprägte chirale Ströme beobachtet,
die die in vergleichbaren experimentellen Studien (siehe Ref. [3–7]) berichteten Werte übertreffen und
Impulsverteilungen aufweisen, die eng mit den theoretischen Vorhersagen übereinstimmen. Schließlich
untersuchen wir, wie Teilchenwechselwirkungen, die entlang einer synthetischen Dimension unendlich
langreichend und entlang eines flachen optischen Gitters auf eine einzelne Gitterstelle lokalisiert sind, die
topologisch geschützten chiralen Randströme beeinflussen. Im stark wechselwirkenden Regime stellen
wir eine Unterdrückung der chiralen Ströme fest. Unsere Daten sind mit zwei unterschiedlichen Wechsel-
wirkungsverhalten konsistent: einer linearen differentiellen Wechselwirkungsantwort und einer konstan-
ten relativen Unterdrückung der Ströme innerhalb des untersuchten Wechselwirkungsbereichs. Darüber
hinaus deuten unsere Ergebnisse auf die Möglichkeit eines dynamischen Bereichs im schwach repulsiven
Regime hin.

Diese Dissertation trägt zur Weiterentwicklung des Forschungsfeldes der Quanten-Simulation bei, indem
sie unser Verständnis von Wechselwirkungen und topologischen Eigenschaften in kalten Atom-Systemen
vertieft. Unsere Ergebnisse erweitern das Verständnis von Wechselwirkungseffekten in verschiedenen
Szenarien und könnten zur Erforschung von fraktionierten Quanten-Hall-Zuständen beitragen [8–13].
In diesem Zusammenhang könnte ein tieferes Verständnis von Wechselwirkungen den Weg für die En-
twicklung robuster Quanteninformationsprotokolle ebnen [14].
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Introduction

Quantum simulation, according to Richard Feynman’s vision, overcomes the limitations of analytical
calculations and computational power in the field of quantum physics by creating and manipulating real
quantum systems to replicate and simulate specific scenarios in quantum physics. In the ideal scenario,
properties of these quantum systems can be directly investigated and measured. Such quantum sys-
tems can, in principle, be based on various fundamental physical platforms, such as cold and ultracold
molecules, color centers, dopants in semiconductors, gate-defined quantum dots, photons in nanostruc-
tures, photons and atoms in cavities, Rydberg atom arrays, superconducting quantum circuits, trapped
atomic ions, ultracold neutral atoms, van der Waals heterostructures, Moiré materials, and excitons [17].
We will further focus on the platform of ultracold neutral atoms, which was utilized for this thesis. For
cold atoms, the first major difficulty for the realization of quantum simulators was overcome by the de-
velopment of methods for cooling and trapping atoms using laser light. This achievement was awarded
with the Nobel prize in physics for Steven Chu, Claude Cohen-Tannoudji and William Daniel Phillips in
1997 [18]. With the help of these methods, it became possible to transfer atoms from the regime of clas-
sical physics into the realm of quantum statistics. Depending on the total spin of the atoms, they can be
transformed into a Bose-Einstein condensate (BEC) [19, 20] or a degenerate Fermi gas [21]. Due to the
versatile capabilities of manipulating atoms with laser light, cold atoms provide an excellent platform to
realize a wide variety of very different quantum systems. This enables the observation of how the system
behaves, when specific physical parameters are altered in an otherwise identical system. The tunability
of the following parameters among others has been demonstrated, and many of these capabilities are
now standard in modern cold atom laboratories: confining potentials, particle density, effective dimen-
sionality [22], and interactions using Feshbach resonances [23]. Additionally, other parameters such as
optical lattice potentials, lattice geometry, and external fields can be manipulated with high precision.
To the most outstanding achievements with quantum gases belong the bosonic superfluid to Mott insu-
lator transition [24–26], the exploration of the Bardeen-Cooper-Schrieffer (BCS)-BEC crossover with
degenerate Fermi gases [27–31] and the creation of artificial gauge fields [32–41]. Initially, observations
were limited to momentum space through time of flight methods. However, advancements in technology
enabled the creation of quantum gas microscopes. These microscopes can pinpoint individual atoms
within a two-dimensional optical lattice. This innovation enables the direct measurement of correlations.
A significant milestone was achieved with the direct detection of antiferromagnetic order within an ul-
tracold fermionic system confined to an optical lattice [42]. Furthermore, the recent development of a
quantum gas magnifier for sub-lattice-resolved imaging of 3D quantum systems opens the path for spa-
tially resolved studies of new quantum many-body regimes and paves the way for single-atom-resolved
imaging of atomic species, where efficient laser cooling or deep optical traps are not available [43]. An-
other advancement involves micro-trap arrays, which enable the trapping, detection, and manipulation
of individual atoms. These arrays facilitate the creation of defect-free atomic geometries atom by atom
[44, 45]. Utilizing Rydberg excitation and blockade techniques, these systems have demonstrated the
entanglement of numerous particles [46] and have been utilized to investigate phenomena such as the
SSH model [47] and spin liquids [48].

The research field of quantum simulation, strives to increase possibilities to manipulate and tune system
parameters, increase accuracy and precision of measurements and increase the range of quantum systems,
which can be emulated. Two remarkable achievements in this direction, which are relevant for the work
in this thesis, are the utilization of alkaline earth (like) elements such as strontium and ytterbium and the
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Introduction

implementation of artificial gauge fields for neutral atoms. Alkaline earth (like) elements feature optical
transitions with linewidths below one Hz [49] and are, thus, much narrower than typical linewidths in
alkaline elements, which are in the order of several MHz. One particularly narrow transition, is used in
optical lattice clocks [50] as a frequency reference and by employing state-of-the-art technology, such
as an optical frequency comb, they surpass existing frequency standards [51, 52]. In optical lattice
clocks the combination of precise spectroscopy and ultracold quantum gases composed of alkaline earth
elements yield new applications for quantum simulation. On the one hand, precise spectroscopy provides
for example a robust tool for analyzing interaction-induced energy shifts in optical lattices [16, 53–
60]. On the other hand, the extended lifetime of the long-lived metastable clock state surpasses typical
experimental timescales, offering an additional degree of freedom for quantum simulation purposes [1,
2]. This orbital degree of freedom can, for example, induce particle losses, which result from inelastic
collisions between excited-state atoms. These losses can be used to engineer dissipative Hubbard systems
[15, 61], which hold potential for preparing highly entangled quantum states [15, 62].

The second remarkable achievement, the implementation of artificial gauge fields for neutral atoms, led
to the possibility to mimic the behavior of charged particles in strong magnetic fields. The reachable mag-
netic fields are extraordinarily high and unattainable in conventional solid-state setups. Consequently,
they open avenues for observing new phases of matter. Various schemes have been developed to imple-
ment artificial gauge fields, such as laser-assisted tunneling [36, 37], lattice shaking [38–41, 63, 64] or
synthetic dimensions [3, 4, 65–67]. These techniques enable the creation of quantum Hall structures with
quantum gases, as it was realized for bosons in Ref. [36, 66, 68–70] and for fermions in Ref. [3, 4, 7, 67,
71]. Prior to the discovery of the integer quantum Hall effect, quantum states were categorized based on
spontaneous symmetry breaking, marking a significant milestone in condensed matter physics in the pre-
vious century [72]. However, the integer quantum Hall state cannot be characterized in this way, leading
to the formulation of a new classification scheme based on topology. This classification of phases of mat-
ter such as topological insulators [73] exhibit an interplay between magnetic fields, spin-orbit coupling
and particle interactions and evoke a spectrum of captivating effects [74–76]. In this thesis, we exploit
the synthetic dimensions approach to realize quantum Hall states. This approach was first proposed in
Ref. [65]. In this paper, the authors state, that an internal degree of freedom of atoms could be seen as
a synthetic dimension, where different quantum states represent synthetic lattice sites. Possible internal
states are, for example, momentum states [77], harmonic oscillator eigenstates [78], orbital states of an
optical lattice [7, 79–81], electronic states [4, 67, 82] or spin states [3, 66]. Synthetic dimensions can be
exploited to create exotic (lattice) structures [83] and increase the dimensionality of a system to accom-
plish, for example, a four-dimensional quantum Hall effect [70, 84]. Beyond this, synthetic dimensions
can feature different interaction ranges. In this thesis, we realize a system, with long-range interactions
along the synthetic dimension [85]. This is interesting, as the Coulomb interaction found in electron
systems is long-ranged. Since the van der Waals force observed in ultracold gases typically behaves as a
short-range interaction, which is often simplified as a contact interaction, various experimental methods
are being explored to extend the interaction range. Some examples are the utilization of polar molecules
[86] or elements possessing large magnetic moments like chromium [87], dysprosium [88], or erbium
[89].

The content of this thesis is structured as follows:

• In chapter 1, we present our experimental methods for the creation and manipulation of degenerate
Fermi gases. We introduce relevant properties of ytterbium, explain our setup to trap gaseous
atoms and cool them down to quantum degeneracy, discuss our capabilities to engineer different
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quantum systems and address our techniques for the detection of atoms and their internal and
external states.

• Chapter 2 is about probing interactions with clock spectroscopy. In the first part of this chapter,
we present results on interorbital interisotope interactions in Fermi-Fermi mixtures of 171Yb and
173Yb. We measure the elastic and inelastic part of the interactions and directly show the SU(2)
⊗ SU(6) symmetry of the elastic scattering lengths. In the second part, we report on interorbital
interactions in a spin-balanced 171Yb gas, where we determine the direct and spin-exchange inter-
actions.

• In chapter 3, we present and discuss the realization of quantum Hall systems. We begin by in-
troducing the theoretical framework, including an in-depth discussion of the Harper-Hofstadter
model and its single-particle solutions. We then explain how this model can be realized in cold
atom systems through the creation of artificial gauge fields. Furthermore, we provide a detailed ex-
planation of our method for generating artificial magnetic fields, which employs stimulated Raman
transitions.

• Chapter 4 focuses on the practical implementation and preparation of quantum Hall states, provid-
ing a comprehensive overview of the experimental setup and preparation techniques. We outline
the design considerations and the selected parameter space with an emphasis on measurement ca-
pabilities. Moreover, we address the preparation of eigenstates for the Harper-Hofstadter Hamilto-
nian. Core measurements of Raman resonances, Raman-Rabi oscillations and chiral edge currents
are thoroughly examined, as they characterize the system. In addition, this chapter provides valu-
able insights into practical challenges and optimization strategies for experimental data.

• In chapter 5, we present our results of interaction effects in quantum Hall ladders. In particular, we
investigate how inter-particle interactions, which are infinitely long-ranged along a synthetic di-
mension and localized to a single lattice site along a shallow optical lattice, affect the topologically
protected chiral edge currents.
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1 Experimental Methods

This chapter provides information on the basic theoretical models and experimental methods used in this
thesis. Most of this knowledge is required to understand the conducted research. First, we introduce
relevant properties of ytterbium, which is the element used in our quantum gas machine. Second, we
explain our setup to trap gaseous atoms and cool them down to quantum degeneracy. Third, we discuss
our capabilities to engineer different quantum systems by selecting isotopes and manipulating internal
atomic states. Fourth, we present another method for engineering trapped quantum systems by applying
optical lattices. Fifth, we cover our techniques for the detection of atoms and their internal and external
states. General information on the introduced theoretical models and applied experimental methods in
quantum gas machines can be found in Ref. [90–93]. Specific information on our experimental setup is
described in Ref. [94–100].

1.1 Ytterbium Properties

In this section, we introduce some basic properties of ytterbium, which are relevant for using it in quan-
tum gas experiments. We provide the information needed to understand the behavior of ytterbium in
our experimental setup. We describe its isotopes, electronic configuration, energy level structure and
transitions. Furthermore, we discuss its interaction behavior and the consequences of its purely nuclear
spin in its ground and clock state. Further information on ytterbium properties in the context of quantum
gas machines can be found in Ref. [94].

Ytterbium is a lanthanide and has the atomic number 70. Because of its high atomic number, it has several
stable isotopes in different natural abundances [101] as shown in Table 1.1. We use the two fermionic
isotopes 171Yb and 173Yb in the measurements presented in this thesis. The electronic configuration of
ytterbium in its ground state is [Xe]4f146s2. The two valence electrons in the 6s-orbital make ytterbium
behave like an alkaline earth element. As characteristic for alkaline earth elements, ytterbium features
an energy level structure of singlet (S = 0) and triplet (S = 1) states, which are classified by the total
electronic spin S . The energy level structure is depicted in Fig. 1.1.

Table 1.1: Ytterbium isotopes. The table lists ytterbium isotopes with their natural abundance (according to
Ref. [101]), nuclear spin and statistical behavior.

Isotope Natural abundance (%) Nuclear spin Statistical behavior
168Yb 0.1 0 bosonic
170Yb 3.0 0 bosonic
171Yb 14.1 1/2 fermionic
172Yb 21.7 0 bosonic
173Yb 16.1 5/2 fermionic
174Yb 32.0 0 bosonic
176Yb 13.0 0 bosonic
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1 Experimental Methods

Figure 1.1: Ytterbium’s reduced energy level scheme. The figure displays the fundamental atomic states
and state transitions exploited in this thesis. In addition, the wavelengths λ and natural linewidths Γ of the
transitions are listed. Taken from Ref. [100].

Ytterbium’s ground state is the 1S0 state. In this thesis, we exploit the transitions from this ground
state to the states 1P1, 3P1 and 3P0. While the transition to the 1P1 state is a regular dipole transition,
the 3P1 and 3P0 state transitions are intercombination transitions from a singlet to a triplet state. These
intercombination transitions are only accessible by dipole radiation, because both states, 3P1 and 3P0,
mix with the 1P1 state (with different strengths) and, thus, are actually state mixtures [102]. Because
of the state mixing, the linewidths of the intercombination transitions are narrower than the 1S0 →

1P1

transition. The transition 1S0 →
3P0 is particularly narrow and, thus, exploited by atomic lattice clocks

[51, 103]. Therefore, this transition is often called clock transition and the 3P0 state is referred to as the
clock state.

We exploit the transitions shown in Fig. 1.1 for the following purposes. We use the 1S0 →
1P1 transition

for cooling and imaging and the 1S0 →
3P0 transition for cooling, spin manipulation and Raman transi-

tions. The clock transition is used to explore orbital physics and to measure frequency shifts as caused
by interactions for example. With the transition 3P0 →

3D1, we can repump atoms from the clock state
to the ground state on experimental time scales, which is useful because of the long natural lifetime of
ytterbium’s clock state.

After the 3D-MOT cooling phase (see Sec. 1.2.1) at our quantum gas machine, ytterbium’s atomic inter-
actions are reduced to s-wave scattering processes [104]. For this kind of scattering, the interactions are
characterized by a single number: the scattering length a. The inter- and intraisotope s-wave scattering
lengths for ytterbium ground state atoms are listed in Table 1.2. The interaction strengths are relevant for
the measurements in chapter 2 and are exploited for the chapter 5.

The interactions in ytterbium’s ground state 1S0 and in its clock state 3P0 are special, as they are SU(N)
symmetric and spin-conserving [1, 106, 107]. This is a result of the fact, that the total electronic angular
momentum in these states is zero, J = 0, which means, that the total atomic angular momentum has
no electronic part and is determined by the nuclear spin I, F = I + J = I. In addition, the nuclear
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1.2 Atomic Trapping and Cooling

Table 1.2: Ytterbium’s scattering lengths. The table lists the inter- and intraisotope s-wave scattering
lengths of ytterbium isotopes in units of the Bohr radius a0 = 5.29177210903(80) · 10−11 m. Adapted from Ref.
[105].

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
168Yb 251.9(34) 117.0(15) 89.2(17) 65.0(19) 38.6(25) 2.5(34) -359(30)
170Yb 63.9(21) 36.5(25) -2.1(36) -81.3(68) -518(51) 209.4(23)
171Yb -2.8(36) -84.3(68) -578(60) 429(13) 141.5(15)
172Yb -599(64) 418(13) 200.5(23) 106.2(15)
173Yb 199.4(21) 138.7(15) 79.7(19)
174Yb 104.9(15) 54.4(23)
176Yb -24.2(43)

magnetic moment is weaker with respect to an electronic magnetic moment by approximately the ratio
of proton to electron mass mp/me ≈ 1836. Thus, the ground and clock state are not as sensitive to
magnetic fields as states with J , 0, which includes for example ytterbium’s 1P1 and 3P1 state or the
ground states of alkaline atoms. This is an additional reason, why ytterbium and other alkaline earth
(like) elements are well suited for atomic lattice clocks. However, another consequence is, that ytterbium
does not possess magnetic Feshbach resonances, but only orbital Feshbach resonances [108–110] to tune
its interactions.

This section provided the knowledge about ytterbium properties, which are needed to understand its
behavior in the experimental context of this thesis. We presented its stable isotopes, its main energy level
structure and transitions. We discussed its interaction behavior and the results of the purely nuclear total
atomic angular momentum in its ground and clock state.

1.2 Atomic Trapping and Cooling

After introducing the atomic element of our quantum gas machine and its properties, we describe the
methods used to trap ytterbium atoms and cool them down to quantum degeneracy for the measurements
in this thesis. We focus on describing the functionality of the methods and disregard details of the build-
ing or preparation process. This section provides the information needed to understand the starting point
for further manipulation and preparation of the atoms. The atoms are first trapped and cooled in a two-
dimensional Magneto-Optical Trap (2D MOT) and 3D MOT setup. Afterwards, they are trapped in an all
optical dipole trap, where they can reach quantum degeneracy through evaporative cooling. A schematic
of the different cooling stages for a typical cooling sequence is displayed in Fig. 1.2. The planning,
building and performance testing of the experimental setups in this section was mainly conducted by
former PhD students and details about it can be found in Ref. [94–98].

1.2.1 Magneto-Optical Traps

The source of ytterbium atoms in our experiment are dispensers in the corners of a glass cell under
a vacuum of ≤ 10−9 mbar. A dispenser is heated up by electric currents in the order of 5 to 6.5 A
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Figure 1.2: Schematic of a typical cooling sequence. The scheme shows a typical arrangement of the
different stages in a cooling sequence. This is illustrated by relevant laser powers as a function of time.
Different stages are labeled below the horizontal axis. The stages are: MOT loading, MOT compression
(MC), green dipole trap ramp (GDT ramp), optical pumping (OP; see Sec. 1.3.2), crossed dipole trap ramp (IR
ramp), time of flight (TOF). Different lines show the power of different laser beams and are labeled directly next
to the respective line. The laser beams are: 2D MOT beams (2D MOT), 3D MOT beams (3D MOT), pushing
beam (push), green dipole trap (GDT), crossed dipole trap beam one (IR1), crossed dipole trap beam two
(IR2), first imaging beam (im; see Sec. 1.5.1), reference imaging beam (ref; see Sec. 1.5.1). Taken from Ref.
[99].

and emits gaseous atoms through a small slit. The slit is directed at the horizontal center of our two-
dimensional magneto-optical trap (2D MOT), which is also the horizontal center of the glass cell. The
2D MOT consists of a gradient magnetic field induced by magnetic coils and of two retro-reflected laser
beams from orthogonal directions in the horizontal plane. The light is circularly polarized and drives
the transition 1S0 →

1P1 with a wavelength of 399 nm. The atoms are slowed down through absorption
processes of the laser light (for details on the functionality of a magneto-optical trap see Ref. [91]). When
atoms are sufficiently slowed down, they are horizontally trapped in the 2D MOT.

After the trapping in the 2D-MOT, the atoms are falling down by gravity and additionally are pushed
downwards with a pushing beam coming from the top of the glass cell. The pushing beam is also oper-
ated at a wavelength of 399 nm. At the bottom of the 2D MOT glass cell, the atoms reach a differential
pumping stage, pass through it and reach the 3D MOT glass cell on the other end, which is under a
pressure of ≤ 2 · 10−10 mbar. The 3D MOT is similarly constructed as the 2D MOT with a gradient
magnetic field and circularly polarized laser beams. However, the 3D MOT features counter-propagating
laser beams in all three spacial dimensions, such that cooling and trapping can be achieved in the gravity
direction as well. Moreover, the beams have a wavelength of 556 nm and drive the intercombination
transition 1S0 →

3P1. Because this transition has a lower Doppler temperature (see Ref. [91]), the 3D
MOT can cool the atoms further down and reach lower temperatures than the 2D MOT. Typical tempera-
tures are 17(2) µK and 15(2) µK for 171Yb and 173Yb, respectively (for the temperature measurements see
Ref. [99]). However, because of the narrow natural linewidth of the transition, the beams are frequency
broadened to address a broader range of velocity classes (for details see Ref. [100]).

After a loading time of typically 18 s, during which atoms are accumulated in the 3D MOT, the MOT is
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compressed in two stages and slightly shifted, if necessary, to maximize the loading of atoms into the
combined dipole traps. During the two stages, which last about 200 ms each, the frequency broadening
and the power of the MOT beams are reduced. At the same time the center frequency of the 3D MOT
beams are shifted closer to resonance. The compressed 3D-MOT has a larger overlap with the combined
dipole traps. After the atoms are transferred to the dipole traps, the beams of the 2D and 3D MOT are
shuttered to avoid (near)-resonant stray light during the evaporative cooling and the experiments.

1.2.2 Evaporative Cooling

After the 3D MOT phase, the dipole traps are sufficient to trap the atoms and support them against
gravity. The dipole traps consist of a crossed dipole trap in the horizontal plane and a third dipole beam,
which is co-aligned onto one of the beams of the crossed dipole trap. The crossed dipole trap is operated
at a wavelength of 1064 nm in the infrared regime, whereas the third beam is green with a wavelength
of 532 nm. The confinement of the green beam is much stronger than the one of the crossed dipole trap.
Therefore, it is used as the first evaporative cooling stage (for details on the functionality of evaporative
cooling see Ref. [91]). After the exponential-like ramp for the cooling, the green beam is switched off
and the atoms are only held against gravity by the crossed dipole trap. In a second evaporative cooling
stage, the two beams of the crossed dipole trap are ramped down to a power, where the atomic sample
has the desired temperature. We accomplish typically 105 atoms at temperatures of 25 % TFermi for 171Yb
and 1.5×105 atoms at temperatures of 20 % TFermi for 173Yb, where TFermi is the Fermi temperature. The
atoms have reached quantum degeneracy and can now be used as a quantum gas for experiments.

While the dipole trap beams can be operated with free running lasers, the MOT beams need a frequency
stabilization in order to be functional. In general at our experiment, laser frequency stabilization is
achieved by coupling a small amount of light (in the order of 1 to 10 µW) into a cavity and using the
Pound-Drever-Hall locking technique (see Ref. [111]). Moreover, we have several lasers at the same
wavelength, for which we use offset locks. While one laser is locked to a cavity, others can be locked
on the first one, if the frequency difference is in the GHz regime or lower. These offset locks are either
based on a digital phase detector (see Ref. [112]) or on the locking technique described in Ref. [113].
For details on our different locking schemes see Ref. [100].

In this section, we described the cooling and trapping methods used in our quantum gas machine. We
explained our 2D and 3D MOT setup and our evaporative cooling procedure. At the end, the atoms have
reached quantum degeneracy.

1.3 Selection of Isotopes and Internal Atomic States

In the last section, we explored how quantum degeneracy can be reached in our setup. Here, we specify
what kind of quantum gases we can prepare by presenting the possibilities of our quantum gas machine
to select different ytterbium isotopes and manipulate atomic states. The atomic samples, which can be
prepared, are various and have an influence on the fundamental physics, which can be observed. First,
we discuss single isotopes and mixtures of isotopes. Second, we address mF state manipulation and,
third, we cover the clock state addressing.
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1.3.1 Selection of Isotopes

As mentioned in Sec. 1.1, ytterbium possesses several stable isotopes with different statistical behavior
and interactions. The measurements described in this thesis were conducted either with 171Yb atoms,
with 173Yb atoms or with a mixture of these two isotopes. The preparation of single isotopes and of
mixtures is described in the following.

Ytterbium’s isotopes have different resonance frequencies for the transitions addressed by the MOTs
(see Sec. 1.2.1). Therefore, for cooling different isotopes or mixtures to quantum degeneracy, we need
to adjust the frequencies of the MOT beams accordingly. For optimal MOT loading efficiencies, we
adjust also the alignment and polarization of the MOT beams slightly. For isotope mixtures, we use a
compromise between the optimal settings for the single isotopes. The frequency adjustment is performed
through changing the locking point of the frequency stabilization (see Sec. 1.2.2).

The cooling and trapping of isotope mixtures requires, that the 2D and 3D MOT are operated for both
isotopes in the same measurement cycle. We operate the 2D-MOT such, that we first load one isotope,
shift the frequency of the MOT beams and, then, load the other isotope. Whereas the 3D-MOT is operated
bicolor to trap both isotopes at the same time. For this purpose, we use two lasers at different frequencies,
whose beams are overlapped for the MOT. For details on the exact implementation see Ref. [114].

For a degenerate gas of 171Yb, the cooling procedure is more complex than for 173Yb and 174Yb because
the 171Yb atoms do not thermalize on experimental timescales, as the intraisotope s-wave scattering
length is too weak with a = −3(4) a0. Thus, this isotope requires sympathetic cooling (for details on this
concept see Ref. [91]). For this purpose, we use a mixture of 171Yb and 173Yb during the evaporative
cooling. Depending on the atom numbers of both isotopes before the evaporation, we can create either a
degenerate gas of 171Yb atoms alone or a mixture of 171Yb and 173Yb atoms with various atom number
ratios. The initial atom numbers of the isotopes can be influenced by the respective 2D-MOT loading
times.

1.3.2 Manipulation of Spin States

Once, the isotope or isotope mixture is selected, spin state manipulation delivers another choice for the
preparation of quantum systems. The mF state populations can influence the fundamental behavior of the
system. The possibility to manipulate them is necessary for the observations in chapters 2, 3 and 5. In
the following, we discuss our optical pumping procedure, the blasting of spin states and the stability of
the mF state populations.

After the atoms are transferred to the dipole traps (see Sec. 1.2.2), all available mF states of the ground
state(s) are equally populated, even though, not all of these states are initially trapped by the MOTs
(see Ref. [94, 115]). Atoms can be pumped from one mF state to another with resonant excitations
by laser light. For this purpose, we use green light at a wavelength of 556 nm to address the transition
|1S0, F = 1/2,mF⟩ → |

3P1, F′ = 3/2,mF ± 1⟩ for 171Yb and |1S0, F = 5/2,mF⟩ → |
3P1, F′ = 7/2,mF ± 1⟩

for 173Yb. The intercombination transition allows us to address single mF states, if the transition frequen-
cies are much more separated than the broadened linewidth of the transition. The transition is broadened,
on the one hand, by the power of the laser beams (see Ref. [91]) and, on the other hand, by the beam
profiles of the trapping beams, which can lead to inhomogeneous AC Stark shifts for the atoms. In our
setup, the separation of the transitions is dominated by the differential Zeeman splitting between 1S0 and
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3P1 for |∆mF| B |m′F −mF| = 1, which is ∆EZeeman = 1.4 MHz /G for 171Yb and ∆EZeeman = 597 kHz /G
for 173Yb. With an external magnetic field of about 18 G, the transitions are split by 10.7 MHz. On the
one hand, this is far enough separated to address the transitions individually with reasonable power (to
have enough absorption processes for a good depletion) and, on the other hand, the energy differences
are manageable with frequency changes of a double-pass acousto-optic modulator (AOM). For 171Yb, it
is much simpler to address the states individually, since there are only two different nuclear spins. Thus,
the separation of the two transitions can take up the full operation range of an AOM.

We perform the optical pumping in between the two evaporation stages. At this point of the cooling,
the confinement of the atoms is homogeneous enough, such that the linewidth broadening caused by
the beam profiles of the trapping beams is weak enough to address the states individually for all atoms.
At the same time, the confinement is still strong enough to keep the atoms trapped, when the optical
pumping gives the atoms a momentum impact. We use the 3D MOT beams for the optical pumping since
they are already aligned at the atoms and have a rather homogeneous intensity over the atomic sample.
Depending on the desired final results of populated mF states, we perform up to five pump pulses towards
lower or higher states. A single pump pulse with a duration from 10 µs to 1 ms can depopulate a single
mF state to a great extent and pumps the atoms either to higher states mF → mF + {1, 2} or to lower
states mF → mF − {1, 2}. The repopulation after a single absorption process towards higher or lower
states depends on the Clebsch-Gordan coefficients, which can be found in Ref. [115, 116] for the used
transition.

For a clear depopulation of a spin state and without repopulation of others, blast pulses can be used.
They can be either used before the main preparation of the measurement state for a cleaner preparation
or directly before the imaging to image a single spin state for example. The blast pulses are done almost
in the same way as the pump pulses. The differences between them are the following. The blast pulses
are used, when the trapping confinement is weak enough to let the targeted atoms escape. Also, the
pulse durations can be longer and the resonance frequencies are slightly different because of the reduced
dipole potential. The population of the mF states stays stable as long as the quantization axis is either
not changed at all or only adiabatically, such that the spin orientation of the atoms can follow it. This
stability of the spin state population results from the lack of spin-changing collisions (see section 1.1)
for ytterbium’s ground and clock state.

With an optical pumping sequence, we can produce atomic samples with different populations in the mF

states, from spin-polarized samples to samples with only one depopulated mF state. We can also produce
off-balanced samples with, for example 75 % of atoms in one mF state and 25 % of atoms in another.
In Fig. 1.3 an unperturbed, spin-balanced sample is shown together with spin-polarized samples for the
six different spin states of 173Yb. The spin states are separated before they are imaged using an optical
Stern-Gerlach technique (see Sec. 1.5.2). Spin manipulation is used for all measurements described in
this thesis.

1.3.3 Clock State Addressing

Another possible manipulation of atomic states is the addressing and preparation of ytterbium’s clock
state 3P0. The clock state has a long lifetime, which we observed to be τ ≈ 4 s in our optical lattice (see
Sec. 1.4), and, thus, can be treated as stable for the time scales of typical quantum gas experiments and
for the measurements presented in this thesis. Here, we explain the requirements for exciting ground
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Figure 1.3: Spin state manipulation. The figures show the mF states of 173Yb for an unperturbed spin
distribution and for spin-polarized gases in different mF states. The states are spatially separated on the
images by applying an optical Stern-Gerlach technique (see Sec. 1.5.2). Figure a) shows the optical density
images, while figure b) shows an integrated signal along the vertical direction of the images in figure a) for all
spin-polarized cases. Taken from Ref. [100].

state atoms into the clock state. In this thesis, the meta-stable clock state is used to probe interaction
strengths (see chapter 2).

The clock state has the same number of mF states as the ground state and can be excited with different
polarizations of a laser beam. We perform the excitation either with a π pulse on resonance or with a
rapid adiabatic passage (RAP; see Ref. [90, 117]) over the resonance. As the natural linewidth of the
clock transition is very narrow with Γ<2π×10 mHz [118], we take several measures to avoid broadening
the transition resonance. First, we trap the atoms only a three dimensional optical lattice (see Sec. 1.4)
without additional dipole traps and operate the lattice beams at the magic wavelength (see Ref. [119]) of
the desired clock transition. Second, we make the optical lattice deep enough to be in the Lamb-Dicke
regime (see for example Ref. [120]). In addition to the efforts for keeping the transition linewidth narrow,
we reduce the linewidth of our clock laser, which is used to address the transition. For the reduction of
the linewidth, the laser is locked on an ultrastable cavity in a shielded housing. Furthermore, a fiber noise
cancellation technique is applied. A detailed description of the experimental setup and challenges of the
frequency stabilization can be found in Ref. [95, 98, 100]. The narrowest linewidth, we measured with
this setup, is 26.7(2.4) Hz full width at half maximum (FWHM).

In this section, we described the basic addressing and preparation of different isotopes and states. The
different techniques can be used in various combinations. Starting with the selection of the isotope or
mixture, different possibilities for mF states and clock state are available.

1.4 Atoms in Optical Lattices

After clarifying the internal degrees of freedom for the choice of the quantum gas with the isotope and
atomic state selection, a common external degree of freedom is described in this section. Optical lattices
are used to implement periodic potentials for quantum gases. This is often imposed with the aim, that
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the atoms mimic the behavior of electrons in the atomic potential of solid state materials. All main
measurements in this thesis are performed with atoms in optical lattices. First, we present the creation
of optical lattices and introduce their mathematical description. Second, we give a background about the
theories for describing particles in periodic potentials: Bloch’s theorem and Wannier states. Third, we
discuss a more specific model relevant for our system: the Fermi-Hubbard model.

1.4.1 Optical Lattices

Laser beams can be used to implement a periodic potential for atoms and, thus, realize an optical lattice.
This requires, that the laser radiation imposes an AC Stark shift on the atoms and that the laser beams
interfere, such that they form standing waves. A simple scenario to realize an optical lattice is to use two
counter-propagating laser beams at the same wavelength λlat, with the same polarization and which are
phase-locked to each other. This can be realized with a single beam, which is retro-reflected. The wave
number of the beams is klat = 2π/λlat and the propagation direction is along z. Then, the laser beams
create the lattice potential [121]

Vlat = V0 cos2(klatz), (1.1)

where V0 represents the depth of the lattice, which is commonly given in units of the recoil energy
Erec = ℏ

2k2
lat/(2m).

In our experiment, we use a retro-reflected one-dimensional lattice (1D lattice) along z and a two-
dimensional lattice (2D lattice) in the x-y plane, which is formed by three laser beams under an angle of
120 degrees. For the results in this thesis, the 2D lattice is operated as a triangular lattice with a linear
polarization out of plane, but in general it can be used as a hexagonal lattice or other structures with
different polarization (see Ref. [122]). The optical lattices used in this thesis are operated at the magic
wavelength (see Ref. [119]) to enable narrow clock transitions (see subsection 1.3.3). However, we have
an additional 1D lattice at a wavelength of λ = 660 nm, which is used to implement a state-dependent
potential for the ground and clock state atoms (see Ref. [100]).

1.4.2 Bloch’s Theorem and Wannier States

Particles in a periodic potential Vperiodic, such as atoms in an optical lattice, can be described by Bloch
waves according to the Bloch theorem [93]. The Bloch waves are the solution of the corresponding
stationary Schrödinger equation

Hψ =

[
p2

2m
+ Vperiodic

]
ψ = Eψ. (1.2)

For a single dimension z, a Bloch wave ψn,q depends on the band index n and the quasimomentum q as
follows [93]

ψn,q(z) = eiqz · un,q(z), (1.3)

where un,q(z) has the same periodicity as Vperiodic. The momentum is not a good quantum number in
these systems and is replaced by the band index and the quasimomentum, which is reduced to the first
Brillouin zone (see Ref. [93]).

In a periodic potential, particles can be either rather delocalized over many lattice sites or stronger con-
fined to a single lattice site. In an optical lattice, this depends on the lattice depth V0. For the delocalized
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case, Bloch waves are a common description, but for localized particles a description in terms of Wannier
states is more suited. The Wannier states can be expressed by Bloch waves as [121, 123]

wn,⃗ri (⃗r − r⃗i) = Θ−1/2
∑

q⃗

e−i(q⃗r⃗i)ψn,q(⃗r), (1.4)

where r⃗i is a lattice vector. The Wannier functions are a complete set of states for each band n [121].

1.4.3 Fermi-Hubbard Model

In the tight-binding approximation, particles in a lattice are localized to single lattice sites and only
nearest neighbor tunneling is considered. Furthermore, interactions are limited to particles at the same
lattice site (on-site interaction) [93]. This is a good approximation for deep enough lattices. Hubbard
models can describe the dynamics of the particles in this approximation, if we assume that all particles
are in the lowest Bloch band. The Fermi Hubbard Hamiltonian for fermions with spin σ is in second
quantization [124]

ĤFermi−Hubbard = −t
∑

<i, j>,σ

(
ĉ†i,σĉ j,σ + ĉ†j,σĉi,σ

)
+ Uint

∑
j,σ,σ′

n̂ j,σn̂ j,σ′ , (1.5)

where ĉ†j,σ (ĉ j,σ) creates (annihilates) a particle with spin m at lattice site r⃗ j, n̂ j,σ B ĉ†j,σĉ j,σ is the
fermionic number operator and < i, j> denotes, that the sum only considers nearest neighbor lattice sites.
The tunneling matrix element t can be calculated as [121]

t =
∫

w∗r⃗i
(⃗r)

[
p2

2m
+ Vperiodic

]
wr⃗ j

(⃗r) dr⃗ (1.6)

and the interaction potential Uint as [121]

Uint = g
∫ ∣∣∣w(⃗r)

∣∣∣4 dr⃗, (1.7)

where we denoted the Wannier function for the lowest Bloch band as wr⃗i B w0,⃗ri . If interactions are
limited to s-wave scattering (see Ref. [104]), the interaction strength g is given by [121]

g =
4πℏ2a

m
, (1.8)

where a is the s-wave scattering length and m is the mass of the interacting particle.

In this section, we introduced the description of physics in optical lattices. We explained how laser beams
can create a periodic potential for atoms, presented the eigenstates of such a system and introduced
the Fermi-Hubbard model. All the results in this thesis, where at least partially conducted in optical
lattices.

1.5 Detection of Atomic States

So far in this chapter, we discussed our capabilities to prepare and manipulate different quantum systems
with ytterbium atoms in our quantum gas machine. In this last section of the chapter, we cover our
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1.5 Detection of Atomic States

methods to detect atoms and their internal and external quantum states. These techniques are essential
for any measurements. First, we describe our basic absorption imaging of ground state atoms and the
detection of the atoms’ momentum state. Second, we discuss the detection of different nuclear spin
states. Third, we report on the simultaneous imaging of different isotopes and the detection of clock state
atoms.

1.5.1 Absorption Imaging and Momentum Detection

In our experiment, we use absorption imaging to image ground state atoms. For this purpose, we shine
laser beams on the atoms, which are resonant with the blue transition 1S0 →

1P1 of the desired ytterbium
isotope. The atoms absorb the resonant photons and, thus, reduce the optical density of the imaging
beam at their position. This difference in optical density is measured by taking two images; one with
atoms and a second one without atoms as a reference. These two imaging pulses are displayed in the
typical cooling sequence illustration in Fig. 1.2. In addition, we take two dark images without atoms and
without imaging light to further improve the imaging quality in further processing (see Ref. [92]).

We use two different imaging axis and objectives. The main imaging is along the x direction, which is in
the horizontal plane and perpendicular to the 1D lattice. It has a magnification of 4.7 and is used for all
main results presented in this thesis. Images along this direction are taken with an EMCCD camera. The
second imaging axis is along the z direction, which means along the 1D lattice and orthogonal to the 2D
lattice. It has a magnification of 2.2 and is mainly used for 2D lattice alignment and calibration. Images
along this direction are taken with a CCD camera. For further details on the imaging beam setup and the
imaging procedure see Ref. [100, 125]. The absorption imaging is the basis of the atomic state detection
and used in all other detection methods.

In most cases, we image the atomic cloud after a time of flight (TOF), in which the atoms fall towards
gravity direction and additionally move according to their initial momentum. Typical TOFs of 16 to
19 ms long enough for the atoms to move far enough, such that their initial spatial position within the
cloud can be neglected and their position at the moment of the imaging, resembles their momentum
state. This allows us, to image the atoms in momentum space. Moreover, for atoms in optical lattices, we
can image the quasimomentum state in different bands by applying a bandmapping technique (see Ref.
[126]). For this purpose, the lattice power is ramped down quasi-exponentially, in such a way, that the
quasimomentum of the atoms goes over into momentum in real space. This means, that the ramp needs
to be non-adiabatic to avoid band transitions [126, 127]. Occupation of higher bands is mapped to the
corresponding Brillouin zones.

1.5.2 Spin State Imaging

At our quantum gas machine, we use two different methods to detect population in single mF states of
ytterbium’s ground state. The first method uses an optical Stern-Gerlach (OSG) technique (see Ref. [128,
129] and the second method relies on blast pulses, which are described in Sec. 1.3.2.

The OSG technique uses a spin state-dependent force to separate different spin states spatially. This
force is realized with AC Stark shifts and an intensity gradient over the atomic sample. For small enough
detunings from a resonance, the AC Stark shifts can be different for each mF state. The intensity gradient
can be provided by the slope of a laser beam profile, when the beam is not exactly centered on the atomic
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Table 1.3: Comparison of spin-selective imaging via blast pulses and OSG. The table lists application
advantages and disadvantages of two spin-selective imaging techniques described in the main text.

OSG Blast pulses

Advantages
• all spin states detected

in same image
• momentum of atoms

stays unperturbed

Disadvantages
• momentum of atoms

is influenced
• only one spin state population

imaged per cycle

cloud, but slightly displaced, such that the center of the beam does not hit the atoms. We implement
this with a laser beam of σ− polarized light at a detuning of 1.4 GHz above the |1S0, F = 5/2⟩ →
|3P1, F′ = 7/2⟩ transition of 173Yb. We apply laser pulses with a power of 30 to 40 mW and durations of
200 to 800 µs right after the release of the atoms from their confinement and during TOF. After a reduced
TOF of typically 13.5 ms, the different spin states are separated because of the additional momentum
gained by the state-dependent force and can be detected individually in the same absorption image. We
use the same OSG beam with the same parameters for 171Yb and 173Yb atoms. We can even image all
different mF states of both isotopes at the same time (see Sec. 1.5.3). A disadvantage of the OSG is,
that the momentum of the atoms is influenced and, thus, that a simultaneous momentum imaging is not
possible or at least has a higher uncertainty. For further details on the implementation and the optical
setup see Ref. [95, 97, 114].

For the second method, blast pulses are used right before the imaging to depopulated targeted spin states.
We can check the influence of the blast pulses with OSG images. If necessary, we can improve the
blasting effect by adjusting AOM frequencies, pulse durations or the beam power. If the blast pulse
sequence has the desired effect in the OSG images, we can use the sequence without the OSG to get
the undisturbed momentum information, if combined with the momentum detection described above.
Usually, we apply them to depopulated all states but one. This remaining state is then imaged alone
with the absorption imaging described above. With this procedure, we can implement a spin-selective
imaging. We can image, for example, the quasimomentum of a single mF state in a system where several
mF states are present. This is exploited in chapters 3 and 5. However, for a single measurement cycle, we
can only determine the individual population of a single spin state. A comparison of different spin state
populations can only be achieved by performing several measurement cycles and taking the uncertainty
of cycle-to-cycle fluctuations into account. An application comparison of our two spin-selective imaging
methods is shown in Table 1.3.

1.5.3 Imaging of Isotope Mixtures and Clock State Atoms

The basic absorption imaging sequence as described above in subsection 1.5.1, can be altered in the
following ways to allow double imaging methods. These methods enable, on the one hand, the detection
of 171Yb and 173Yb ground state atoms in the same measurement cycle, and, on the other hand, the
detection of ground state and clock state atoms of a single isotope.

For the detection of isotope mixtures, the imaging beams for 171Yb and 173Yb are overlapped and aligned
along the main detection axis. The first absorption image is taken with imaging light, which is resonant
for 171Yb, whereas the reference image is taken with imaging light, which is resonant for 173Yb. The
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data and reference images are taken with a delay in between, such that the 173Yb atoms experience a
longer TOF (typically 19 ms) and are imaged at a different position than the 171Yb atoms with a typical
TOF of 16 ms. Because of the different positions, the reference image can still function as a reference
for 171Yb and the data image can be used as a reference for 173Yb. The evaluation of the images needs to
be adjusted accordingly. The imaging beams are overlapped and aligned along the main detection axis.
Isotope double imaging is used in chapter 2. For details on the planning, implementation and imaging
laser system see Ref. [100, 114].

For detecting atoms in the clock state, the atoms are first repumped into the ground state and, then,
imaged with the ground state imaging light. For this purpose, a repumper with a wavelength of 1389
nm is used, which addresses the transition 3P0 →

3D1. Atoms, which are excited to the 3D1 state, decay
either into the 3P2, into the 3P1 or back into the 3P0 state. We drive the transition long enough, such that
remaining clock state population can be neglected. Then, atoms have a theoretical probability of 97.5 %
to decay back into the ground state via the 3P1 state [97]. The remaining 2.5 % of atoms in the 3P2 state
are not imaged. This branching ratio is accounted for in the evaluation of the number of excited state
atoms. The repumper can be used for 171Yb and 173Yb atoms.

For double imaging ground state and clock state atoms in the same image, the basic absorption imaging
procedure is altered similarly as for the isotope double imaging. First, the absorption image of the ground
state atoms is taken. Second, remaining ground state atoms are blasted away. Third, atoms in the clock
state are repumped to the ground state. Fourth, the reference image is taken, which images the repumped
atoms. The ground state atoms experience typically a TOF of 16 ms and the repumped atoms a TOF of
19 ms. Thus, as for the isotope double imaging, atoms of different initial states are imaged at different
positions on the same image and and the reference image can function as a reference for the ground state
atom detection and the first image can function as a reference for the excited state atom detection. As
the repumping process is not spin-conserving, the detection of clock state atoms is not spin-resolved.
However, first steps have been taken for the implementation of a spin-conserving repumping mechanism
at our experiment (see Ref. [100, 130] for details). Clock state imaging is used in chapter 2.

In this section, we described our methods to detect atoms and their internal and external quantum states.
We described the basic absorption imaging of ground state atoms and the detection of the atoms’ momen-
tum state. We discussed the detection of different nuclear spin states and we reported on the simultaneous
imaging of different isotopes and the imaging of clock state atoms. We can combine the different detec-
tion methods to image for example all different mF states of 171Yb and 173Yb atoms in a single image or
the quasimomentum of a single spin state in a spin mixture.

This chapter introduced the general theoretical models and experimental methods used for the experi-
mental results in this thesis. We introduced relevant properties of ytterbium and explained our setup to
trap and cool atoms. Furthermore, we discussed our capabilities to engineer different quantum systems
by selecting isotopes, manipulating internal and external atomic states and covered our techniques for
the detection of atoms and their internal and external states. Moreover, we addressed the particularly
relevant physics of stimulated Raman transitions, which are used to realize an artificial gauge field in
chapters 3 and 5. This chapter provided the basic knowledge to understand the research described in the
rest of this thesis.
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2 Probing Interactions with Clock
Spectroscopy

In the previous chapter, we introduced the basic theoretical models and experimental methods of our
quantum gas machine. On this basis, we present results for probing interactions in Fermi gases and
Fermi-Fermi isotope mixtures with clock spectroscopy in this chapter. We discuss the specific underlying
theories and the experimental approaches to gain insight into the systems.

Because of its narrow natural linewidth, clock transitions in alkaline earth (like) atoms (see Sec. 1.1) are
used for high precision spectroscopy measurements. In particular, the combination of narrow linewidths
and the low temperatures of quantum gases enables the detection of interaction induced energy shifts.
This concept was exploited to measure different kinds of interactions in Ref. [53–57, 60]. We use our
high precision spectroscopy to detect energy shifts, which are induced by inter-orbital interactions of
either distinguishable or indistinguishable particles. In the first part of this chapter, we present results
from a set of measurements on interorbital interisotope interactions in Fermi-Fermi mixtures of 171Yb
and 173Yb. We measure the elastic and inelastic part of the interactions and directly show the SU(2) ⊗
SU(6) symmetry of the elastic scattering lengths. In the second part, we report on another set of mea-
surements on interorbital interactions in a spin-balanced 171Yb gas, where we determine the direct and
spin-exchange interactions. During our investigations, the latter interactions have also been characterized
in Ref. [58, 59].

The work in this chapter was done under the project administration and supervision of C. Becker and
K. Sengstock. First measurement series of the interorbital interisotope interactions were conducted by
B. Abeln, K. Sponselee, N. Pintul and the author. The final measurements were taken and analyzed by
B. Abeln and K. Sponselee. First measurement series of the spin-exchange interaction in 171Yb were
conducted and analyzed by B. Abeln, K. Sponselee and the author. The final measurements shown here
were taken by B. Abeln, K. Sponselee and the author with help of N. Pintul. The final data analysis was
performed by B. Abeln and K. Sponselee. The main results of this chapter are published in Ref. [16].
For details about high precision spectroscopy with our clock laser in general see Ref. [99, 100].

2.1 Interorbital Interactions of 171Yb-173Yb Mixtures

As introduced above, in this first section of the chapter, we present results on interorbital interisotope
interactions in Fermi-Fermi mixtures of 171Yb and 173Yb, where we fully characterize the interactions.
The isotope mixtures described here feature an SU(2) ⊗ SU(6) symmetry, which might enable quantum
simulation of two-flavor superfluid symmetry-locking phases [131, 132]. Our measurements give insight
into these exotic mixtures and generally extend the knowledge about Fermi-Fermi mixtures with SU(2)
⊗ SU(N ≥ 2) symmetry. The section is structured as follows. First, we describe the theory of the
elastic interactions in the Fermi-Fermi mixtures with possible scattering channels. Second, we present
our measurements on interaction strength and interaction symmetry. Third, we address the inelastic
interactions in the mixtures.
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2 Probing Interactions with Clock Spectroscopy

2.1.1 Theory of Elastic Interactions

Before we present our measurements on the interactions in Fermi-Fermi mixtures of 171Yb and 173Yb,
we describe the theory of the elastic interactions and their properties in the following. The interactions
in the mixtures are characterized by the Hubbard on-site interaction defined in Eq. 1.7. Furthermore, as
we exclusively consider s-wave scattering, the interaction strength g is given by Eq. 1.8. We denote an
interisotope quantity X in the form 171

173Xi j for a 171Yb atom in orbital state i and a 173Yb atom in orbital
state j. The Hubbard on-site interaction is adjusted for the case of interisotope interactions, such that the
interaction potential is [16]

171
173Ui j =

4π 171
173ai j ℏ

2

2µ

∫ ∣∣∣w0(s1D, s2D, r⃗)
∣∣∣4 dr⃗, (2.1)

where 171
173ai j is the interisotope s-wave scattering length and w0 the Wannier functions of the lowest

band, which depend on the lattice depths s1D and s2D of our 1D and 2D lattice, respectively, and the
lattice geometry. A particularly relevant feature of the on-site interactions discussed in this chapter is the
SU(N) symmetry (see Sec. 1.1). It is characteristic for the ground and clock state of alkaline earth (like)
atoms, which have a close-to-perfect decoupling of the nuclear spin and electronic angular momentum,
which manifests in the fact, that the total electronic angular momentum J = 0. In the measurements
presented in this section, we want to prove, that the interisotope interactions of the Fermi-Fermi mixture
are in fact SU(2) ⊗ SU(6) symmetric, which would mean, that the interactions are independent of the
spin projections of the atoms.

In the following, we demonstrate, that the twelve different possible spin projections of the two isotopes
can only interact via two distinguishable scattering lengths (in different compositions). This means,
that it is sufficient to show, that these two scattering lengths are equal to prove the full SU(2) ⊗ SU(6)
symmetry. Since s-wave interactions are rotationally symmetric, the corresponding interaction Hamilto-
nian Hint, s-wave commutes with the square of the total spin operator F̂2. The total spin of the system is
F⃗ = f⃗171 + f⃗173 and the total magnetization is M = m171 + m173, where f⃗171 ( f⃗173) is the total spin and
m171 (m173) is the magnetization along z of the 171Yb (173Yb) atom. Then, Hint, s-wave can be expressed
in the eigenfunctions |F,M⟩ of operator F̂2, such that [16]

Hint, s-wave =
4πℏ
2µ

δ(⃗r1 − r⃗2)
F= f171+ f173∑
F=| f171− f173 |

F∑
M=−F

aF |F,M⟩ ⟨F,M| . (2.2)

In this equation, δ(⃗r1 − r⃗2) denotes the Dirac delta function for atoms at positions r⃗1 and r⃗2 and the
summations go over all possible |F,M⟩ states. The equation shows, that the scattering lengths aF only
depend on the total spin F. Our isotope mixtures have the spins f171 = 1/2 and f173 = 5/2. Therefore,
the total spin can only reach the values F = 2 and F = 3. This means, that there are only two different
scattering lengths in our system: a2 and a3. Thus, to prove SU(2) ⊗ SU(6) symmetry, it is sufficient to
demonstrate, that a2 = a3.

In our measurements, we do not have direct access to these scattering lengths, as we operate in the mag-
netization basis |m171,m173⟩. We use this basis, because we can experimentally control and observe the
single magnetization of the particles, but not the total spin or the total magnetization. The transformation
between the two bases is described by

|m171,m173⟩ =

F= f171+ f173∑
F=| f171− f173 |

cF,M
m171,m173

|F,M⟩ , (2.3)
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where cF,M
m171,m173 denote the Clebsch-Gordan coefficients and, for the case of 171Yb-173Yb Fermi-Fermi

mixtures, the summation is carried out from F = 2 to F = 3. Using this basis transformation, we can
extract the two aF values, by measuring the interactions for only two different spin configurations in our
magnetization basis.

2.1.2 Measurements of Elastic Interactions

After the theoretical description of the interorbital interactions and their properties, we describe mea-
surements to determine the elastic scattering lengths for two different spin configurations of 171Yb-173Yb
mixtures in the following. Furthermore, we proof the underlying SU(2) ⊗ SU(6) symmetry of the inter-
actions. We prepare a degenerate Fermi-Fermi mixture of spin-polarized 171Yb and 173Yb atoms using
the methods described in Sec. 1.2 and 1.3. We reach atom numbers of N171, 173 ≈ 10 to 40 × 103 atoms
at T171, 173 ≈ 0.25 to 0.55 TF, where TF is the Fermi temperature, and load the mixture into our magical
optical 1D and 2D lattice (see Sec. 1.4). In the following, lattice depths are given in units of the recoil
energy Er = h · 2.0 kHz. Furthermore, we set a magnetic field of B = 8.8 G in gravity direction. To
this system, we apply π-polarized clock laser light co-propagating with our 1D lattice to excite 171Yb
or 173Yb atoms from the ground state 1S0 to the excited state 3P0. The states are denoted as |g⟩ and |e⟩,
respectively, in the following. For the excitation, we use rectangular π-pulses with a duration tpulse = 1.6
ms (1.55 ms) resulting in a Fourier-limited spectroscopic line width of ΓFWHM ≈ 500 Hz (516 Hz). As the
resonance frequencies of the two isotopes differ by approximately 20 GHz [115, 133], the locking point
of our frequency stabilization (see Sec. 1.2) needs to be adjusted, when switching between the excitation
of one isotope to another (see Ref. [100] for details). Consequently, we either excite 171Yb or 173Yb,
but not both at the same time. After the excitation pulse, we detect the atom numbers of the ground and
excited state with a double-imaging technique in the same image (see Sec. 1.5.3). The atom numbers are
recorded for different laser frequencies around the clock transition resonance for single-particles to form
a spectrum.

Moreover, we conduct auxiliary measurements to keep track of the linear drifts of our clock cavity,
which is used for the frequency stabilization. In these auxiliary measurements, we record a spectrum
of a single spin-polarized isotope and fit this data to extract the resonance position. Then, the linear
drifts are continuously compensated afterwards. With these auxiliary measurements, we know the exact
position of the single-particle resonances. Because of that, we can directly identify these resonances
in the spectra recorded with isotope mixtures. As another auxiliary measurement, we record the blue
sideband of our magic 1D lattice for each spectrum. This data provides a more accurate information on
the 1D lattice depth than the momentum-resolved lattice modulation spectroscopy, which we typically
use to calibrate the depth of our optical lattices (see Ref. [126]). As this data is only used for the 1D
lattice calibration, we do not present it here. However, this data can be found in Ref. [100].

In Fig. 2.1, we present parts of our spectroscopic data for the excitation of either 171Yb or 173Yb. We
plot the excited state fraction ne = Ne/(Ng + Ne) as a function of the clock laser frequency detuning δ
with respect to the single-particle resonance. Several spectra are shown for different 1D lattice depths
as indicated by the legend. In each spectrum, we observe another spectroscopic feature despite the
already identified single-particle resonance. We expect this feature to be the excitation of an atom at
a doubly-occupied lattice site. With respect to the single-particle resonance, the peak of the 171Ybe-
173Ybg or 171Ybg-173Ybe mixture would be displaced by the differential Hubbard on-site interaction
∆Ueg/ge =

171
173Ueg/ge−

171
173Ugg. Moreover, the interaction peak displacement would depend on the 1D lattice
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Figure 2.1: Spectroscopy of elastic interactions. The figure shows the excited state fraction ne as a
function of the clock laser frequency detuning with respect to the single-particle resonance. Spectroscopy for
the excitation of 171Yb is presented in (a), while spectroscopy for the excitation of 173Yb is presented in (b).
Data points represent single measurements of ne. Lines show a fit with a sinc2 function for the peaks at δ = 0
and a fit with a Lorentzian for the remaining peaks. Different markers and colors denote different 1D lattice
depths s1D as listed in the legends, whereas the 2D lattice depths is fixed at s2D = 16.971(15) Er. Reprinted
figure with permission from Ref. [16]. Copyright 2021 by the American Physical Society.
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Figure 2.2: Elastic interactions in lattice depth dependence. The figure shows the differential interisotope
interorbital interactions ∆U as a function of the 1D lattice depth s1D for the the excitation of 171Yb on the left
and for the excitation of 173Yb on the right. ∆U is obtained by the frequency difference between single-particle
and interaction peaks for spectra as shown in Fig. 2.1, while s1D is determined from auxiliary measurements
as described in the main text. Each data point is extracted from a single spectrum and error bars represent
the peak fit uncertainty. For each excitation, data is presented for several measurements and two different
spin configurations, which are denoted by different markers and colors as illustrated in the legends. The
spin configurations are |m171 = −1/2; m173 = 5/2⟩ and |−1/2; 3/2⟩ in the figure on the left and |−1/2; 5/2⟩ and
|1/2; 5/2⟩ in the figure on the right. For each excitation and spin configuration, the data is fitted using Eq. 2.1
with the differential scattering length ∆aeg/ge =

171
173aeg/ge −

171
173agg as a free parameter. The fits are plotted as

solid and dashed lines in the colors of the respective data points. Reprinted figure with permission from Ref.
[16]. Copyright 2021 by the American Physical Society.

depth because of the Wannier functions, as it can be seen in Eq. 2.1. In the spectra, we can observe a
monotonic increase of the frequency difference between the single-particle peak and the interaction peak
candidate for increasing lattice depth. This behavior matches the expectations from the Wannier integrals,
thus, we claim, that the second spectroscopic feature is in fact the interaction peak. We fit the single-
particle resonances in the spectra with a sinc2 function and the interaction peak with a Lorentzian. Then,
we extract the difference between the two peak positions, which is identical to ∆U (denotes either ∆Ueg or
∆Uge). We plot ∆U as a function of the 1D lattice depth s1D in Fig. 2.2. In addition to the data displayed
in Fig. 2.1, we include data of two different spin configurations for each isotope excitation, namely
|m171 = −1/2; m173 = 5/2⟩ and |−1/2; 3/2⟩ for the excitation of 171Yb and |−1/2; 5/2⟩ and |1/2; 5/2⟩
for the excitation of 173Yb. We fit this data with ∆Ueg/ge using Eq. 2.1, where we use the differential
scattering length ∆aeg/ge =

171
173aeg/ge −

171
173agg as a free parameter. The result of the fit is plotted as a

blue solid line (red dotted line) for the first (second) spin configuration in Fig. 2.2. The good agreement
of the fit with the data confirms the underlying theory. From the fit, we obtain the lattice independent
observable ∆aeg/ge for each data set.

The differential scattering lengths ∆aeg/ge can be expressed in the two fundamental scattering lengths
∆a2 = a2−

171
173agg and ∆a3 = a3−

171
173agg by exploiting Eq. 2.2 and 2.3. For ∆Ueg the basis transformations
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Table 2.1: Scattering length results. The table lists the results for the measurements of the differential
scattering lengths for elastic interactions in 171Yb-173Yb mixtures.

Quantity 171Ybe-173Ybg
171Ybg-173Ybe

∆a−1/2,5/2 498(1) 481.3(18)
∆a−1/2,3/2 495.7(13) -
∆a1/2,5/2 - 482.9(13)
∆a2 501.2(25) 481(2)
∆a3 485(8) 482.9(13)
∆a 497.4(8) 482(1)

are [16]

∆a−1/2,5/2;eg |−1/2; 5/2⟩ =

√
1
6
∆a3;eg |3, 2⟩ −

√
5
6
∆a2;eg |2, 2⟩ (2.4)

∆a−1/2,3/2;eg |−1/2; 3/2⟩ =

√
1
3
∆a3;eg |3, 1⟩ −

√
2
3
∆a2;eg |2, 1⟩ (2.5)

and for ∆Uge the transformations are [16]

∆a−1/2,5/2;ge |−1/2; 5/2⟩ =

√
1
6
∆a3;ge |3, 2⟩ −

√
5
6
∆a2;ge |2, 2⟩ (2.6)

∆a1/2,5/2;ge |1/2; 5/2⟩ = ∆a3;ge |3, 3⟩ . (2.7)

We calculate ∆a2 and ∆a3 and determine the average ∆a from the measured scattering lengths ∆am171,m173

of the two spin configurations for both interactions ∆Ueg and ∆Uge. The results for the differential
scattering lengths are listed in Table 2.1. The fundamental scattering lengths ∆a2 and ∆a3 do not differ
significantly for both interactions ∆Ueg and ∆Uge. This proofs the underlying SU(2) ⊗ SU(6) symmetry.
Furthermore, the interactions for the two scenarios 171Ybe-173Ybg and 171Ybg-173Ybe are significantly
different in their absolute values. This difference is unexpected, as the reduced mass is the same for both
scenarios. Therefore, this could be interesting for theoretical studies of interactions, which go beyond
mass scaling.

2.1.3 Inelastic Interactions

The measurements of the elastic interisotope interorbital interactions in the last section characterizes
only one part of the interactions. For a full characterization, also the inelastic part of the interactions
is required. Here, we conduct loss measurements on the 171Ybe-173Ybg and 171Ybg-173Ybe mixtures to
extract the inelastic interactions and complete the interaction information for two different spin configu-
rations for each mixture. Similar to the elastic interactions in Eq. 2.1, the inelastic part of the interactions
171
173Γi j can be expressed by a lattice independent parameter 171

173βi j and a Wannier integral as [57]

171
173Γi j =

171
173βi j

∫ ∣∣∣w0(s1D, s2D, r⃗)
∣∣∣4 dr⃗. (2.8)
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Figure 2.3: Typical loss measurements of 171Ybe-173Ybg and 171Ybe-173Ybg mixtures. The figure
shows the number of excited atoms Ne as a function of holding time t in the optical lattice. Data for
|e, m171 = −1/2; g, m173 = 3/2⟩ is presented in (a), while data for |g, 1/2; e, 5/2⟩ is presented in (b). Data
points show the atom number determined by a single measurement and error bars the uncertainty in the
determination. Solid curves show an exponential fit (see Eq. 2.10) and the shaded area around it the 95 %
confidence interval of the fit. Lattice depths for the data in (a) are s1D = 24.0(2) Er and s2D = 16.0(1) Er and
for the data in (b) s1D = 34.7(6) Er and s2D = 17.0(4) Er. Reprinted figure with permission from Ref. [16].
Copyright 2021 by the American Physical Society.

For the measurement of the inelastic interactions 171
173Γi j of the Fermi-Fermi mixtures, we prepare and

excite the atoms in the same way as for the elastic interaction measurements. However, this time, we
do not take spectra, but excite the atoms on resonance to the interaction states |e, m171; g, m173⟩ and
|g, m171; e, m173⟩. Then, we measure the number of excited atoms Ne, which is equivalent to the number
of excited doublons, for various holding times t in the lattice after the excitation pulse. The number of
excited atoms is expected to decrease with time due to the inelastic interactions, however, despite the
decay rate Γint caused by these two-body losses, the excited state fraction can also decrease via one-body
losses. To distinguish between these two processes, we characterize the one-body losses separately and
subtract them from the total losses. We obtain the decay rate via one-body losses Γ0 by additionally
measuring the losses in the number of excited atoms of the single-particle resonances for various holding
times in the lattice. The decay rates are determined in the same way as for the two-body decay rates
described below, but the data is not shown here. Then, the decay rate caused by inelastic collisions is

171
173Γeg/ge = Γint − Γ0. (2.9)

In Fig. 2.3 one example of the interaction state decay measurements for each interaction is shown, where
the number of excited atoms Ne is plotted as a function of the holding time t. We expect an exponential
decay (see Ref. [57]) and fit the data with the function [16]

Ne(t) = Nd exp(−t · Γint), (2.10)

where Nd = Ne(t = 0) is the initial number of doublons. The fit with Nd and Γint as free parameters is
displayed as a solid blue line and the shaded area around it shows the 95% confidence interval. These
measurements are conducted for the same spin configurations as for the elastic interaction measurements
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2 Probing Interactions with Clock Spectroscopy

Table 2.2: Inelastic decay coefficients. The table lists the results for the determination of the decay coeffi-
cients for inelastic interactions.

Quantity 171Ybe-173Ybg
171Ybg-173Ybe

β−1/2,5/2 1.69(7) × 10−12 cm3 s−1 4.6(17) × 10−15 cm3 s−1

β−1/2,3/2 1.79(5) × 10−12 cm3 s−1 -
β1/2,5/2 - 3(1) × 10−15 cm3 s−1

and for each spin configuration the decay rates are recorded for various 1D lattice depths s1D. The data
for further lattice depths can be found in Ref. [99]. For all data sets, Ne decreases monotonically with
increasing holding time t and seems to vanish for long enough times. The behavior is in good agreement
with the assumed exponential decay.

We extract the decay rates for the interaction states and the single-particle excitations and calculate
171
173Γeg/ge using Eq. 2.9. The results are plotted as data points in dependence of the 1D lattice depth s1D

in Fig. 2.4. From this data, we determine the lattice independent parameters β for each interaction and
spin configuration using Eq. 2.8. The values are β−1/2,5/2 = 1.69(7) × 10−12 cm3 s−1 and β−1/2,3/2 =

1.79(5) × 10−12 cm3 s−1 for 171Ybe-173Ybg and β−1/2,5/2 = 4.6(17) × 10−15 cm3 s−1 and β1/2,5/2 = 3(1) ×
10−15 cm3 s−1 for 171Ybg-173Ybe. The results are also listed in Table 2.2. Furthermore, we use the results
of β to calculate 171

173Γeg/ge(s1D) and plot it as solid lines in Fig. 2.4. The shaded area around the lines
represents the 95 % confidence interval. These calculations agree well with the data points with only one
exception and, thus, confirm the underlying theory.

For each interaction, the decay coefficients of the two spin configurations are equal within experimental
uncertainties. However, in contrast to the elastic interactions, the inelastic interactions cannot be reduced
to two fundamental scattering channels. Hence, it is not sufficient to prove the equality of two spin con-
figurations to demonstrate a possible SU(2) ⊗ SU(6) symmetry. This proof, would require a measurement
of the decay coefficients of all twelve spin configurations. The decay coefficients of the 171Ybe-173Ybg

mixtures are approximately 400 times stronger than the ones of the 171Ybg-173Ybe mixtures, whereas
the elastic interactions only slightly differ from each other (see Table 2.1). The origin of this difference
is unclear. Possible reasons could be laser-assisted losses or photo-association to a molecular state in a
similar way to the measurements in Ref. [105]. A source for these processes could be our 1D and 2D
lattice, which are detuned with respect to each other by 160 kHz to prevent interferences.

In this section, we fully characterized the interisotope interorbital interactions of 171Yb-173Yb mixtures
for two spin configurations. We determined the elastic scattering lengths 171

173aeg and 171
173age and proofed

their SU(2) ⊗ SU(6) symmetry. Furthermore, we measured the decay coefficients 171
173βeg and 171

173βge of the
inelastic part of the interactions for two spin configurations. The values of 171

173aeg and 171
173age are similar,

but differ significantly, which might be interesting for theoretical studies, as this difference cannot be
explained by mass scaling. In contrast to the similar elastic interactions, the decay coefficients 171

173βeg

are approximately 400 times stronger than 171
173βge, which makes 171Ybg-173Ybe mixtures more suited for

quantum simulations.
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2.1 Interorbital Interactions of 171Yb-173Yb Mixtures

Figure 2.4: Inelastic decay rates in dependence of lattice depth. The figures show different decay rates
as a function of the 1D lattice depth s1D. The decay rate 171

173Γeg is displayed on the left for the states
|e, −1/2; g, 3/2⟩ (top) and |e, −1/2; g, 5/2⟩ (bottom), while 171

173Γge is displayed on the right for the states
|g, 1/2; e, 5/2⟩ (top) and |g, −1/2; e, 5/2⟩ (bottom). The decay rates are extracted from the exponential fit
of loss measurements as the ones presented in Fig. 2.3. Each data point is averaged several times and the
error bars represent the fit uncertainties. To this data, we fit Eq. 2.8 with 171

173βeg/ge as a free parameter. The
fit is shown as a solid line and the shaded area around it represents the 95% confidence interval. Reprinted
figure with permission from Ref. [16]. Copyright 2021 by the American Physical Society.
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2 Probing Interactions with Clock Spectroscopy

2.2 Interorbital Spin-Exchange Interactions of 171Yb

While in the last section, we investigated the interactions between different orbitals and isotopes, in this
section, we explore the interactions between different orbitals of the same isotope. The fundamental
difference between the two systems is, that the former dealt with distinguishable particles, whereas the
particles, underlying the interactions in this section, are indistinguishable. Because of that, the particles
experience spin-exchange dynamics, which could be used for simulating orbital magnetism or the Kondo
lattice model [1, 2]. Spin exchange interactions were already measured for 173Yb and 87Sr in Ref. [53–
55]. For example, the interorbital spin-exchange interaction of 173Yb was found to be ferromagnetic
and exceptionally large [53, 54]. However, for the simulation of the Kondo lattice model, the spin-
exchange interaction needs to be antiferromagnetic and the ground state interactions of the system need
to be negligible [2]. In this section, we characterize the spin-exchange interactions of 171Yb, which
has an exceptionally small ground state interaction with agg = −3(4)a0 [105]. At first, we derive the
Hamiltonian, which describes the atomic system and the possible clock excitations. Afterwards, we
present our experimental characterization of the spin-exchange interactions. During our investigations,
these spin-exchange interactions were also characterized in Ref. [58, 59].

2.2.1 Spectroscopy Hamiltonian

In the following, we derive the spectroscopy Hamiltonian of our clock excitation for a spin-balanced
171Yb gas. This derivation is based on Ref. [95, 100, 115]. We consider a degenerate Fermi gas of 171Yb
atoms with mF = ±1/2 in a deep optical lattice, where the tight-binding approximation is valid (see
Sec. 1.4.3). This system is described by the Fermi-Hubbard model (see Sec. 1.4.3) for indistinguishable
particles with spin ±1/2. The lattice sites of this model can be empty, singly occupied or doubly oc-
cupied. For singly occupied lattice sites, the particle wave function is the same as for a spin-polarized
gas, whereas, for doubly occupied sites, the two particles become part of a two-body wave function. As
the two particles are at the same lattice site, the spatial wave function is symmetric and neglected in the
following considerations. We extend the model by the metastable clock state 3P0, which we denote as |e⟩,
while the ground state (1S0) is |g⟩. Then, the two-body wave function is a product state of an orbital wave
function and a spin wave function. Since fermions are considered, the total wave function is required to
be antisymmetric. This can either be achieved by a symmetric orbital wave function and antisymmetric
spin wave function or vice versa. In total, there are six different ways to form the two-body wave function
for two particles at the same lattice site. The wave functions are as follows.

If both atoms are simultaneously either in the ground or in the excited state, the Pauli principle dictates
an antisymmetric spin wave function. The resulting states are

|gg⟩ = |g,g⟩ ⊗
1
√

2
(|↑↓⟩ − |↓↑⟩) and (2.11)

|ee⟩ = |e,e⟩ ⊗
1
√

2
(|↑↓⟩ − |↓↑⟩) . (2.12)

For one particle in the ground and one particle in the excited state, four states can be formed with either
an antisymmetric spin singlet (and accordingly a symmetric orbital state) or a symmetric spin triplet (and
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2.2 Interorbital Spin-Exchange Interactions of 171Yb

accordingly an antisymmetric orbital state). The four states are

|eg+⟩ =
1
√

2

(
|e,g⟩ + |g,e⟩

)
⊗

1
√

2
(|↑↓⟩ − |↓↑⟩) , (2.13)

|eg−⟩ =
1
√

2

(
|e,g⟩ − |g,e⟩

)
⊗

1
√

2
(|↑↓⟩ + |↓↑⟩) , (2.14)

|eg↑⟩ =
1
√

2

(
|e,g⟩ − |g,e⟩

)
⊗ |↑↑⟩ and (2.15)

|eg↓⟩ =
1
√

2

(
|e,g⟩ − |g,e⟩

)
⊗ |↓↓⟩ . (2.16)

Since we are interested in spin-exchange dynamics, we disregard the latter two states, |eg↑⟩ and |eg↓⟩,
where both particles have the same spin. This negligence is also reasonable, as these states are not
accessible in the measurements described below, because of the π-polarization of the excitation pulse
(see below for details). The four remaining states form a two-body interaction basis, where the two
states with one ground state and one excited state atom, |eg+⟩ and |eg−⟩, experience the spin-exchange
interactions, which we want to investigate.

The total atomic Hamiltonian Hatom of this system is the sum of three parts: the electronic state Hamil-
tonianHel, the atomic interaction HamiltonianHint, and the Zeeman HamiltonianHZ. Thus, the atomic
Hamiltonian can be written as

Hatom = Hel +Hint +HZ (2.17)

and the individual Hamiltonians are given as follows. First, if only the ground and clock state are con-
sidered and if the system is transformed into the rotating frame of the clock laser, the electronic state
Hamiltonian is

Hel = ℏ∆
(
|gg⟩ ⟨gg| − |ee⟩ ⟨ee|

)
, (2.18)

where ∆ is the detuning of the clock laser with respect to the atomic resonance. Second, the atomic
interaction Hamiltonian can be expressed by the respective Hubbard on-site interaction Ui j of state |i j⟩:

Hint = Ugg |gg⟩ ⟨gg| + Uee |ee⟩ ⟨ee| + Ueg+ |eg+⟩ ⟨eg+| + Ueg− |eg−⟩ ⟨eg−| . (2.19)

Third, the Zeeman Hamiltonian is [100]

HZ = EZ(B)
(
|eg−⟩ ⟨eg+| + |eg+⟩ ⟨eg−|

)
, (2.20)

where the differential Zeeman energy EZ(B) = δgBmF . δg is the differential Landé factor. Then, the total
atomic HamiltonianHatom in the interaction basis (Eq. 2.11, 2.12, 2.13 and 2.14) is

Hatom =


Ugg + ℏ∆ 0 0 0

0 Ueg+ EZ(B) 0
0 EZ(B) Ueg− 0
0 0 0 Uee − ℏ∆

 (2.21)

Since the Zeeman energy mixes the states |eg+⟩ and |eg−⟩, the atomic Hamiltonian is not diagonal and
|eg+⟩ and |eg−⟩ are not eigenstates of the Hamiltonian. Therefore, the eigenstates are calculated and
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2 Probing Interactions with Clock Spectroscopy

denoted as [16]

|+⟩ = c1(B) |eg+⟩ + c2(B) |eg−⟩ and (2.22)

|−⟩ = c1(B) |eg−⟩ + c2(B) |eg+⟩ , (2.23)

where |gg⟩ and |ee⟩ are already eigenstates and complete the new basis. The |±⟩ states are mixtures of
the |eg+⟩ and |eg−⟩ states with the mixing coefficients [16]:

c1(B) =
|Vex| +

√
V2

ex + E2
Z(B)√

2V2
ex + 2E2

Z(B) + 2|Vex|

√
V2

ex + E2
Z(B)

and (2.24)

c2(B) =
|EZ(B)|√

2V2
ex + 2E2

Z(B) + 2|Vex|

√
V2

ex + E2
Z(B)

. (2.25)

(2.26)

At B = 0 and consequently EZ(B = 0) = 0, the coefficients are c1(B = 0) = 1 and c2(B = 0) = 0
and the eigenstates automatically reduce to the interaction basis. The eigenenergies E± of the atomic
Hamiltonian are [16]

E± = V ± Vex

√
1 +

(
EZ(B)

Vex

)2

, (2.27)

where the direct interaction V and spin-exchange interaction Vex are [16]

V =
Ueg+ + Ueg−

2
and (2.28)

Vex =
Ueg+ − Ueg−

2
. (2.29)

In addition to the atomic Hamiltonian, we consider the coupling of its eigenstates by π-polarized light,
which is used in the measurements. At vanishing magnetic field, the atom-field Hamiltonian Hatom-field

has only two non-vanishing matrix elements and, thus, can be expressed as [100]

Hatom-field =
ℏΩ
√

2

(
|eg−⟩ ⟨gg| − |ee⟩ ⟨eg−| + h.c.

)
, (2.30)

where Ω is the Rabi frequency and h.c. denotes the hermitian conjugate. Because of opposite signs in the
Clebsch-Gordan coefficients, the Hamiltonian does not couple to the spin singlet state |eg+⟩ [100, 115].
For a finite magnetic field, the couplings are [100]

Hatom-field =
√

2c2(B)
ℏΩ

2
(
|+⟩ ⟨gg| + |ee⟩ ⟨+| + h.c.

)
(2.31)

+
√

2c1(B)
ℏΩ

2
(
|−⟩ ⟨gg| + |ee⟩ ⟨−| + h.c.

)
(2.32)

=
ℏΩ+

2
(
|+⟩ ⟨gg| + |ee⟩ ⟨+| + h.c.

)
(2.33)

+
ℏΩ−

2
(
|−⟩ ⟨gg| + ⟨ee| ⟨−| + h.c.

)
, (2.34)
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2.2 Interorbital Spin-Exchange Interactions of 171Yb

where the effective Rabi frequencies Ω± of the |±⟩ states depend on the magnetic field and are

Ω± =
√

2 c2/1(B) Ω. (2.35)

This completes the theoretical description of the atomic system for two particles at the same lattice site
with the four two-body wave functions |gg⟩, |ee⟩ and |±⟩ and their spectroscopic coupling byHatom-field.

2.2.2 Spectroscopic Characterization of Spin-Exchange Interactions

After the theoretical description of the atomic system and its possible excitations above, here, we present
our experimental characterization of the direct and spin-exchange interactions. We prepare a spin-
balanced degenerate Fermi gas of 171Yb atoms (see Sec. 1.2). We reach atom numbers of N171 ≈

(15 to 35)× 103 atoms and load them into a magical optical lattice (see Sec. 1.4) with s1D = 50(2) Erecoil

and s2D ≈ 25.0(3) Erecoil. To this system, we apply π-polarized clock laser light co-propagating with our
1D lattice to excite 171Yb atoms from the ground state 1S0 to the excited state 3P0. For the excitation, we
use rectangular π-pulses with a Rabi frequency of Ω = 2π × 345(2) Hz for the single-particle transition.
We adapt the length of the clock pulse to account for different Rabi frequencies and to fulfill the π-pulse
condition for excitations, which we expect to correspond to the |±⟩ states. After the excitation pulse, we
detect the atom numbers of the ground and excited state Ng and Ne, respectively, in the same image (see
Sec. 1.5.3). The atom numbers are recorded for different laser frequencies around the clock transition
resonances to form a spectrum. Furthermore, we take spectra at various magnetic field strengths in grav-
ity direction. An example of such a spectrum is shown in Fig. 2.5 for B = 13.1 G, where the excited
state fraction ne = Ne/(Ng + Ne) is plotted as a function of the clock laser detuning ∆ with respect to the
single-particle resonance at B = 0.

We observe four spectroscopic features and fit them with a multi-peak function consisting of four sinc2-
functions. We can directly identify two peaks as the single-particle excitations |g, ↑⟩ → |e, ↑⟩ and
|g, ↓⟩ → |e, ↓⟩, because the single-particle resonance is determined with a spin-polarized sample in aux-
iliary measurements. We denote these excitation peaks as |↑⟩ and |↓⟩. The remaining two spectroscopy
features are expected to be the excitations of the |±⟩ states (Eq. 2.22 and 2.23) from the theoretical con-
siderations in Sec. 2.2.1. To distinguish between the |+⟩ and |−⟩ state, we record the Rabi frequencies of
their excitation for various magnetic fields, which is further described below.

We take such a spectrum for six different magnetic field strengths and display them in Fig. 2.6. In
addition, the centers of the spectroscopy peaks are extracted from the fits for each spectrum and are also
plotted in Fig. 2.6 as data points with their detuning ∆ as a function of the magnetic field strength B. Each
spectrum exhibits four peaks, except for the measurement at the lowest magnetic field with B = 0.9 G,
which shows only three features. We notice, that the energy difference between |↑⟩ and |↓⟩ increases
monotonically and linearly for increasing magnetic field strength, which is expected from the linear
Zeeman shift. Whereas, the energy difference between |+⟩ and |−⟩ increases also monotonically, but
only roughly linearly for B ≥ 8.8 G. For smaller magnetic field strengths, the energy difference deviates
from the linearity. This behavior is expected, since, for EZ(B) ≫ Vex, the eigenenergies in Eq. 2.27 are
proportional to the differential Zeeman shift: E± ∝ EZ(B), but, for EZ(B) ≪ Vex, the eigenenergies are:
E± = V ± Vex and, thus, independent of the magnetic field.

To further analyze the data, we fit the resonance positions of |↑⟩ and |↓⟩ with E↑↓ = ±EZ(B), where
EZ(B) = −399.0(1) Hz/G × B mF for 171Yb [59]. As the Zeeman shift is known, the fit is used to deter-
mine the magnetic field strength. For the two-body states, we only have direct access to the differential
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2 Probing Interactions with Clock Spectroscopy

Figure 2.5: Typical clock spectrum of spin-balanced 171Yb. The figure shows the excited state fraction ne

of a spin-balanced degenerate 171Yb gas after a π-pulse excitation. ne is plotted as a function of the clock laser
frequency detuning ∆ with respect to the center of the single-particle resonances. Data points are averages
over three individual measurements. Error bars display one standard deviation, but are typically smaller than
the size of the data points. The solid line represents a fit of the data with a multi-peak function consisting of
four sinc2 functions. The shaded area around the line indicates the 95 % confidence interval of the fit. The data
is recorded at a magnetic field strength of B = 13.1 G. Peaks are labeled after the expected excited state. For
the single-particle excitations the used pulse time is tpulse = 1.45 ms, which corresponds to a Rabi frequency
Ω0 = 2π × 345(2) Hz. Whereas, for the peaks labeled with |+⟩ and |−⟩, the pulse duration was adapted to
achieve the highest excited state fraction. Figure adapted with permission from Ref. [16]. Copyrighted by the
American Physical Society.

quantities, which take the ground state interactions Ugg into account. Therefore, with the magnetic field
strength information, we calculate the differential interactions ∆Ueg± = Ueg± − Ugg for each spectrum
in Fig. 2.6 and average the results. We find ∆Ueg+/h = 3.53(4) kHz and ∆Ueg−/h = 2.32(3) kHz, which
correspond to ∆V/h = (V − Ugg)/h = 2.896(11) kHz and ∆Vex/h = (Vex − Ugg)/h = −0.60(2) kHz. Fur-
thermore, we compute the Wannier integrals and use Eq. 1.7 and 1.8 to determine the s-wave scattering
lengths, which are lattice-independent parameters. The results are aeg+ = 203(5)a0 and aeg− = 308(6)a0,
where we used agg = −3(4)a0 from Ref. [105]. Using these results, we calculate ∆E±(B) = E±(B) −Ugg

with Eq. 2.27 and plot them in dependence of the magnetic field as solid lines in Fig. 2.6. The lines are
in good agreement with the data points for |±⟩ and, hence, confirm the theoretical model.

In addition to the measurements above, we measure the magnetic field dependence of the Rabi frequen-
cies Ω± for the excitation of the |±⟩ states. For this purpose, we record the excited state fraction ne at
the |+⟩ and |−⟩ resonance for various durations tpulse of the excitation pulse. Subsequently, we fit ne as
a function of tpulse with solutions of the optical Bloch equations and extract the Rabi frequencies. More
details on this topic and the single measurements of the Rabi oscillations can be found in Ref. [99, 100].
Here, we present the results for Ω± as a function of the magnetic field in the lower right of Fig. 2.6.
Moreover, we calculate Ω± using Eq. 2.35, 2.24 and 2.25 and the found result of Vex. We plot Ω±(B) in
dependence of the magnetic field in the lower right of Fig. 2.6 as solid lines. The data points agree well
with the calculations and, thus, confirm the underlying theory.

In this section, we characterized the scattering lengths aeg+ and aeg− . We found Vex to have a negative
sign and, thus, to be antiferromagnetic. The interorbital spin-exchange interaction in 171Yb was also
characterized in Ref. [58, 59]. The results of the different groups for the interaction parameters are
listed in Table 2.3. The results of all three measurements correspond to an antiferromagnetic spin-
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2.2 Interorbital Spin-Exchange Interactions of 171Yb

Figure 2.6: Clock spectra of spin-balanced 171Yb at different magnetic field strengths. The upper figure
shows the spectroscopy signals at various magnetic field strengths in the range B ∈ [0.9, 17.5] G. The indica-
tions of data points and solid lines are analogous to the ones in Fig. 2.5. The individual spectra are displaced
vertically with respect to each other for clarity and each spectrum is labeled by the magnetic field strength, at
which it is recorded. Within each spectrum the vertical direction reflects the excited state fraction ne. The data
points in the lower left figure illustrate the detuning frequency δ of each peak center from the spectroscopy
measurements as a function of the magnetic field strength B. The color of the data points reflects the cor-
responding excited state as labeled on the right. The dashed lines display calculations of E↑↓ = ±EZ(B),
while the solid lines display calculations of ∆E±. All lines are in the color of the respective data points. The
figure in the lower right displays the Rabi frequencies Ω± as a function of the magnetic field strength B. Data
points are the fit results of Rabi oscillation measurements and the error bars indicate the uncertainty of the
respective fit. The color of the data points reflects the state correspondence as specified in the legend. Lines
are calculations of Ω±(B) using Eq. 2.35, 2.24 and 2.25 with the found result of Vex. The lines are displayed
in the color of the respective data points. Reprinted figure with permission from Ref. [16]. Copyright 2021 by
the American Physical Society.
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Table 2.3: Spin-exchange scattering length results. The table lists the results from different references for
the measurements of the spin-exchange scattering lengths of 171Yb.

aeg+ (a0) aeg− (a0) Reference

203(5) 308(6) [16] (this work)
225(13) 355(6) [58]
240(4) 389(4) [59]

exchange interaction with Vex < 0 and agree qualitatively as all values lay within the same order of
magnitude. However, quantitatively all results differ significantly with the exception of the result of
aeg+ in Ref. [58] which has the largest uncertainty and agrees with the results of Ref. [59] and this
work. An experimental difference between the setup of this work and the other two setups is the lattice
geometry. Both references use simple cubic lattices, whereas we work with a triangular 2D lattice in
combination with a 1D lattice. However, the determined scattering lengths are independent of the lattice
geometry. Hence, the origin of the different results remains unclear. The found results of moderate
antiferromagnetic spin-exchange interactions and the very weak ground state interactions make 171Yb a
promising candidate for the simulation of the Kondo lattice model [1, 2]. Furthermore, our high-precision
clock spectroscopy of interorbital interactions in 171Yb gases and 171Yb-173Yb mixtures enriches the
knowledge about interorbital scattering behavior of particles and provides a basis for further studies.
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3 Realization of Quantum Hall States

In the previous chapter, we reported on measurements on Fermi gases and Fermi-Fermi mixtures in
a zero-dimensional system. There, any motion was frozen in a deep three dimensional lattice, which
inhibited tunneling processes in every direction. In this chapter and following chapters, we work in
a different system, where tunneling is possible in a single real space dimension and, moreover, in a
synthetic dimension, realizing a two dimensional system. Furthermore, we implement an artificial gauge
field in this system to mimic the behavior of charged particles in a strong magnetic field. These two
ingredients let us create a quantum Hall structure with quantum gases. Similar systems have already
been realized for bosons in Ref. [36, 66, 68–70] and for fermions in Ref. [3, 4, 7, 67, 71]. We want to
realize it for further in depth studies, which are reported in the following chapters. Here, we describe
and discuss our realization of quantum Hall systems. In Sec. 3.1, we introduce the basic model and the
theoretical background. We go into the description of the Harper-Hofstadter model and discuss the single
particle solutions, i.e. without inter-particle interactions. In Sec. 3.2, we explain how this model can be
implemented in cold atom systems by creating artificial gauge fields. In addition, we detail our specific
method for generating an artificial magnetic field by exploiting stimulated Raman transitions.

Calculations on the properties of the Harper-Hofstadter Model in Sec. 3.1.3 were carried out by L. Hilbig
under the author’s supervision (see Ref. [116] for details). All other aspects of this chapter were com-
pleted by the author.

3.1 Theory of Quantum Hall States

As a first step towards the realization of quantum Hall systems in quantum gases, we present the theo-
retical description of the system to gain insight into the system properties. This section is organized as
follows. In the first part, we give a brief overview of the concept of topological matter. In the second
part, we examine the theoretical model of the system: the Harper-Hofstadter model. In the third part, we
analyze the properties of this model.

3.1.1 Integer Quantum Hall Effect and Topological Matter

In the following, we place our work in the context of the research field by introducing two fundamental
concepts: the integer quantum Hall effect and topological matter. We begin with an explanation of the
integer quantum Hall effect and, subsequently, provide a concise overview of the theory of topological
states. Detailed descriptions and explanation of the quantum Hall effect and topological classification of
matter can be found in Ref. [74, 75, 134–136].

The integer quantum Hall effect was first observed by von Klitzing in 1980 in a two-dimensional semi-
conductor at a temperature of T = 1.5 K and a magnetic field of B = 18 T normal to the semiconductor
plane [137]. In the semiconductor, which is insulating in its bulk, a Hall conductance σ was observed.
This Hall conductance was strictly quantized in the following way

σ = n ·
e2

h
, (3.1)
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3 Realization of Quantum Hall States

where n is a positive integer, h is the Planck constant and e is the elementary charge. The measured
conductance comes from states, which are localized at the edges of the sample and, thus, are called edge
states. When electrons populate these states, they can move along the edge, where they travel in opposite
directions for opposite edges. Therefore, the total motion is chiral. In a semiclassical approach, this
can be thought of as follows. The electrons in the semiconductor perform cyclotron orbits because of
the magnetic field. In the bulk of the sample, these orbits are closed, but at the edges, the electrons
cannot complete the whole orbit, instead they bounce off the edge and continue with a new orbit until
they reach the edge again. As a result, they move in half circles along the edge. By performing these
skipping orbits [138], they move forward, instead of staying localized in a single orbit. In this picture, it
is also clear, why the electrons move in a chiral way: the performed half circles are complementary for
opposite edges. Whether the electrons circle the cyclotron orbits clockwise or anticlockwise depends on
the magnetic field direction. Hence, the chirality of the edge currents depends also on the magnetic field
direction.

Until the discovery of the integer quantum Hall effect, quantum states were classified in means of spon-
taneous symmetry breaking, which was one of the greatest achievements in condensed matter physics in
the last century [72]. However, the integer quantum Hall state cannot be classified in this way. Thus, a
new kind of state classification in terms of topology was formulated. Topology is a mathematical concept
denoting specific characteristics, which are conserved during continuous deformations [138]. A typical
example for topology is described in Ref. [138] and examines the number of twists in a buckled belt. The
number of twists in the belt cannot be changed by a continuous deformation and partial twists are not
possible. A possible deformation, which is not continuous and which can change the number of twists,
needs to open and close the belt. In this example, one can think of the number of twists in the belt as
a topological invariant, which characterizes different states. Analogously, in condensed matter physics,
topological invariants are independent of continuous changes in a material. Here, a continuous change
means, that energy gaps to other bands must not be closed [138].

In this framework, the integer quantum Hall effect can be explained as follows. The integer quantum Hall
state and the vacuum are both insulating phases, which do not have the same topology. Therefore, the
Hamiltonian must be gapless (deformation, which is not continuous) at the boundary and there must exist
a conductive state: the edge state, which carries the Hall conductance. The integer quantum Hall effect
was the first observation of a topologically nontrivial state [139]. It has a broken time-reversal symmetry
because of the applied magnetic field. Hence, it belongs to a topological class, which breaks time-
reversal symmetry explicitly [136]. In a different topological class, the class of 2D topological insulators
or synonymously called quantum spin Hall insulators, the time-reversal symmetry remains intact and
strong spin-orbit coupling plays an essential role [136, 139]. Therefore, time-reversal symmetry breaking
is not a requirement for topological non-trivial phases.

The quantum Hall and the quantum spin Hall state both feature an insulating bulk and conducting edge
states. The edge states and, therefore, the chiral currents are very robust against impurities [136]. This
is a result of the fact, that they are squeezed in between two vacua, which belong to different topological
classes [139]. This robustness of the currents makes these states highly interesting research subjects
with astonishing possible applications [14]. The fundamental relevance of topology was acknowledged
by the Nobel Prize in Physics to David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz
“for theoretical discoveries of topological phase transitions and topological phases of matter” [18]. In
this work, we want to explore the robustness of chiral edge currents under interactions between the
(effectively) charge carrying particles and investigate the general behavior under these interactions. Our
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findings may contribute to advancing the understanding of fractional quantum Hall (FQH) states [9].
FQH states can arise in a quantum Hall system with strong interactions. In the FQH effect, the Hall
conductance is quantized at fractional values of e2/h, rather than at exact integer multiples. As the FQH
effect is not yet fully understood theoretically and is believed to involve phenomena such as non-Abelian
anyonic excitations, it remains a highly promising area of research. The scientific significance of the
FQH state was recognized in 1998 when Robert B. Laughlin, Horst L. Störmer, and Daniel C. Tsui were
awarded the Nobel Prize in Physics "for their discovery of a new form of quantum fluid with fractionally
charged excitations" [18]. Several proposals suggest the potential for using ultracold atomic gases as
quantum emulators for FQH states [8–13]. The synthetic dimensions approach explored in this thesis (see
Sec. 3.2.1) appears particularly well-suited for this purpose, due to the long-range interactions present in
the synthetic dimension [8]. In this context, enhancing our understanding of interaction dynamics could
also pave the way for the development of robust quantum information protocols [14]. The interaction
regime is particularly hard to access with computations because, when the particles interact, the single
particle solution ansatz (see Eq. 3.10) discussed below breaks down. Therefore, we use our quantum gas
machine to probe the influence of repulsive interparticle interactions on chiral edge currents.

3.1.2 Harper-Hofstadter Model

Following the introduction of the integer quantum Hall effect and its profound connection to topological
matter, we aim to establish the theoretical framework for the integer quantum Hall state. For this purpose,
we use the Peierls substitution to derive the Harper-Hofstadter Hamiltonian, which generally describes
the behavior of charged particles in two-dimensional lattice systems with uniform magnetic field [135].
We restrict our considerations to non-interacting particles.

To understand the effect of a magnetic vector potential A⃗ on charged particles, we explore the case
of charged particles in free space. When particles with charge q move around in this system, they
accumulate a phase ΦAharanov-Bohm along their path P according to the Aharanov-Bohm effect (see Ref.
[140]):

ΦAharanov-Bohm =
q
ℏ

∫
P

A⃗ · dr⃗. (3.2)

We proceed by switching from free space to a two-dimensional lattice system, where the motion of
particles is limited to tunneling from one lattice site to an adjacent lattice site. This system is realized,
when the tight-binding approximation is valid (see Sec. 1.4.3). In addition, we consider the particles to
be fermions and restrict the dynamics to the lowest lattice band. Then, the describing Hamiltonian is
the Fermi-Hubbard Hamiltonian (see Eq. 1.5). Analogous to the free space case, if a vector potential A⃗
is added to this system, charged particles acquire a phase, when they tunnel from one lattice site to the
next. This Peierls phase ϕi

m,n (see Ref. [141]) depends on the position of the particle in the lattice (lattice
site) and the tunnel direction. It can be calculated as [141]

ϕi
m,n = −qAi

m,n/h, (3.3)

where i is a placeholder for one of the dimensions {x, y} and m (n) is the number of the lattice site
in direction x (y). To implement this phase factor in the Fermi-Hubbard Hamiltonian (Eq. 1.5), we
substitute the real tunneling matrix elements with complex ones, which include the Peierls phase. This
process is the Peierls substitution [34]. Then, the Hamiltonian reads [142]

H =
∑
<m,n>

(
−txeiϕx

m,n ĉ†m+1,nĉm,n − tyeiϕy
m,n ĉ†m,n+1ĉm,n + h.c.

)
. (3.4)
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This Hamiltonian already describes the desired system: non-interacting charged particles on a two di-
mensional lattice with a magnetic vector potential. However, this Hamiltonian can be adjusted for an
easier theoretical description in the case of a uniform magnetic field, which is our experimental scenario.
For this purpose, we define the magnetic flux per lattice unit cell ϕ. It represents the accumulated flux
for the motion around a single plaquette and can be calculated as follows [142]

ϕ = ϕx
m,n + ϕ

y
m+1,n − ϕ

x
m,n+1 − ϕ

y
m,n. (3.5)

This is analogous to the Aharonov-Bohm effect, where for a closed path C, the acquired phase is exactly
the magnetic flux enclosed by the path [140]:

ΦAharonov-Bohm =
q
ℏ

∮
C

A⃗ · dr⃗ =
q · ΦB

ℏ
, (3.6)

where ΦB is the magnetic flux through the area enclosed by the particle’s trajectory. As an additional
step for the simplification of the theoretical computations, we perform a gauge transformation, that shifts
the acquired phase to only one dimension. In this Landau gauge the phase factors are ϕx

m,n = −n · ϕ and
ϕ

y
m,n = 0 [138, 143]. The gauge modification does not change the values of the physical observables, even

though, the Landau gauge is not the gauge of the implemented system (see Ref. [5], Fig. 3.6 and Sec.
3.2.3 for details). We apply this gauge to our Hamiltonian and get the Harper-Hofstadter Hamiltonian
(see Ref. [144, 145])

HHarper-Hofstadter =
∑
<m,n>

(
−txeinϕĉ†m+1,nĉm,n − tyĉ†m,n+1ĉm,n + h.c.

)
. (3.7)

If the tunneling matrix elements in the Hamiltonian are complex with a phase ϕ , 0 mod 2π, they break
time-reversal symmetry and enable non-trivial topological states [138]. It is the theoretical fundament of
the physics in this chapter and following chapters.

3.1.3 Properties of the Harper-Hofstadter Model

In addition to the derivation of the Harper-Hofstadter model above, we explore some relevant properties
for our experimental studies. In the Harper-Hofstadter model, the behavior of particles in real space is
described above: Particles can tunnel along two directions to adjacent lattice sites and, in the y direction
(for the Landau gauge), they additionally acquire a phase factor each time they tunnel. Here, we take
a look at, how the eigenenergies of this model dictate the behavior. For this purpose, we switch from
the real space representation to the momentum space representation for the x direction, while leaving the
other direction unaltered. The Harper-Hofstadter Hamiltonian takes the form [116]

HHarper-Hofstadter =

π∫
−π

dkx

2π
H(kx) =

π∫
−π

dkx

2π

∑
n

−2txcos(kx + nϕ)ĉ†kx,n
ĉkx,n −

(
tyĉ†kx,n+1ĉkx,n + h.c.

)
. (3.8)

As this Hamiltonian is time independent, the eigenenergy problem is described by the stationary Schrödinger
equation:

H(kx) |ψ⟩ = E(kx) |ψ⟩ , (3.9)

where |ψ⟩ is the wavefunction of the system and E(kx) are the eigenenergies. To solve the Schrödinger
equation, we use the ansatz [34]:

|ψ⟩ =

N−1∑
n=0

anĉ†kx,n
|0⟩ . (3.10)
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This ansatz leads to the following eigenenergy equation [116]

E(kx)an = −2txcos(kx + nϕ)an − ty(an−1 + an+1) = νn+1an − ty(an−1 + an+1), (3.11)

where
νn+1 = −2txcos(kx + nϕ). (3.12)

The eigenenergy equation reveals insights, which become clearer when expressed as a matrix in the basis
of Bloch bands:

ν1 − E1(kx) −ty 0 . . . 0 −t′y
−ty ν2 − E2(kx) −ty 0

0 −ty ν3 − E3(kx)
...

...
. . . 0

0 −ty
−t′y 0 . . . 0 −ty νN−1 − EN−1(kx)





a1

a2

...

aN−1


= 0, (3.13)

where

t′y =

 ty for periodic boundary conditions.

0 for open boundary conditions.
(3.14)

The diagonal elements show, that neighboring Bloch bands are displaced by ϕ with respect to each other.
Two of these bare bands are plotted as dashed lines in Fig. 3.1. In addition, the off-diagonal elements
show, that the Hamiltonian couples neighboring Bloch bands with the amplitude ty. If this coupling is
realized, the eigenstates of the Hamiltonian form dressed bands as plotted in Fig. 3.1 as solid lines.

The energy spectrum of the Harper-Hofstadter model is given by the solution of Eq. 3.11, that means the
diagonalization of the matrix in Eq. 3.13. For tx = ty and periodic boundary conditions along the y di-
rection, this energy spectrum is known as the Hofstadter butterfly (see Ref. [145]). It can be seen in Fig.
3.2 on the upper left. The spectrum shows a fractal structure, which can be explained as follows. With-
out a magnetic field the Harper-Hofstadter Hamiltonian reduces to the non-interacting Fermi-Hubbard
Hamiltonian (Eq. 1.5), which features translational invariance for multiples of one lattice spacing, i.e. for
n · a, where n ∈ Z and a is the lattice spacing. The presence of a magnetic field breaks this translational
invariance in general [34]. However, the invariance can be restored for different translation operations in
the following cases. If

ϕ = 2π ·
p
q
, (3.15)

with p and q ∈ Z \ 0 and prime to each other, the Hamiltonian is invariant under translations of n · qa,
where n ∈ Z. This means, that the unit cell of the Bravais lattice is enlarged by q with respect to the case
of B⃗ = 0⃗ and consequently the Brillouin zone is shrunk by q. Thus, the lowest Bloch band splits into q
subbands and possesses q − 1 band gaps [34]. The splitting of the bands is illustrated in Fig. 3.2 on the
medium and lower left for the two different fluxes ϕ = 2π · 1/3 and ϕ = 2π · 1/5. This is characteristic of
the Hofstadter butterfly and explains the fractal structure, when the energy of the states is plotted against
the magnetic flux in the system.

The spectrum for open boundary conditions along y is shown in Fig. 3.2 on the right under the same
conditions and for direct comparison to the case of closed boundary conditions on the left. The energy
spectrum changes such, that it exhibits states, which energies lie in the band gaps and connect the bands.
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Figure 3.1: Bandstructure Harper-Hofstadter model. The figure depicts the bandstructure of two eigen-
state bands in the Landau gauge and ϕ = 2π · 1/3. The vertical axis displays the energy in units of the
tunneling energy tx and the horizontal axis displays the quasimomentum k for the first Brillouin zone. Dashed
lines show the unperturbed bandstructure of the bare bands with vanishing coupling, i.e. ty → 0. Whereas
solid lines show the bandstructure of the eigenstate bands with ty = tx. The color of the solid lines express
the state population as denoted in the color bars on the right. For the bandstructure in the laboratory gauge
see Fig. 3.6. Figure adapted from Ref. [116].

In real space these states are located at the edge of the system and, thus, are called edge states. These
edge states are integer quantum Hall phases [34]. This demonstrates the direct connection to the quantum
Hall effect. Furthermore, the edge states are connected to the topology of the bulk of the system over
the bulk-boundary correspondence (see Ref. [75]). This means, that the existence of the edge states is
protected as long as the topology of the bulk does not change. For example, the size of the bulk, that
means the number of lattice sites along y do not influence the edge states. Even a system without bulk,
which consists solely of edges, features the same edge state energies, if the number of lattice sites along
y are at least n · q − 1, n ∈ N \ 0 [146]. This is particularly interesting for ladder systems, which have
only few lattice sites (typically less than 5) in one of the two directions. In Fig. 3.3 the energy bands
for two different bulk sizes are compared. The figure displays the energy bands for a magnetic flux of
ϕ = 2π ·1/4 as a function of the quasimomentum. The bands are plotted for a maximally reduced system
(3 lattice sites along y) on the left and for a system with a larger bulk (11 lattice sites along y) on the
right. The comparison demonstrates, that the edge states of both systems are identical. For the larger
bulk additional energy bands appear, but these do not alter the bands of the edge states. In this thesis, we
create a ladder system (see Sec. 3.2.3), which we use to observe edge state physics.

3.2 Harper-Hofstadter Hamiltonian in Quantum Gases

Above, we introduced the integer quantum Hall effect and topological matter and presented the system
describing Hamiltonian with its properties. Here, we turn to methods to realize the Harper-Hofstadter
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Figure 3.2: Energy spectrum of the Harper-Hofstadter Hamiltonian for periodic and open boundary
conditions. The figure displays the energy spectrum of the Harper-Hofstadter Hamiltonian for periodic and
open boundary conditions along the y direction. The spectrum is plotted for the energy range, which corre-
sponds to the lowest Bloch band of the Fermi-Hubbard Hamiltonian (see Eq. 1.5). The data is computed for
tx = ty and 50 × 6 lattice sites. The left column presents data for periodic boundary conditions and the right
column the same data for open boundary conditions. The first row displays the energy as a function of the
magnetic flux ϕ. The second and third row illustrate all energy states for a specific flux of ϕ = 2π · 1/3 and
ϕ = 2π · 1/5, respectively. Figure adapted from Ref. [116].
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Figure 3.3: Comparison of different bulk sizes. The figure presents the energy bands for a magnetic flux
of ϕ = 2π · 1/4 as a function of the quasimomentum. The bands are plotted for a maximally reduced system
(3 lattice sites along y) on the left and for a system with a larger bulk (11 lattice sites along y) on the right.
The energy bands of the edge states are displayed in red, whereas energy bands of the bulk are displayed in
blue. The edge states of both systems are identical. Figure adapted from Ref. [116].

Hamiltonian in Eq. 3.7 in quantum gas systems and describe the experimental access to the model and
its physics. In the first part, we start with a short argumentation why quantum gases are a good platform
for the study of these physics. We continue with the description of how the realization works with
artificial gauge fields and what different approaches are used for the realization. In the second part, we
introduce our method of stimulated Raman transitions and, in the third part, we detail the realization of
the Harper-Hofstadter Hamiltonian in our system.

3.2.1 Artificial Gauge Fields

The Harper-Hofstadter model describes charged particles in a two-dimensional lattice with a uniform
magnetic field (see Sec. 3.1.3). Two-dimensional lattice systems can be routinely created in solid state
materials and quantum gases. The part, that is harder to realize, is a magnetic field, that is strong enough
to realize magnetic fluxes in the order of ϕ ≈ 0.1 π. Only with magnetic fluxes in this order of magnitude,
the model can be explored in a decent range with non-trivial physics to observe, since for ϕ = 0 the
model is reduced to the tight-binding model. With current technology, magnetic fields of about 50 T can
be routinely applied to materials in laboratories. This field strength corresponds to ϕ ≈ 10−4π, for typical
lattice spacings of 10−10 m in condensed matter [143]. Therefore, the regime of the Harper-Hofstadter
model accessible with condensed matter is strongly limited. Also for quantum gases, external magnetic
fields are not strong enough to reach desired magnetic fluxes. In addition, neutral atoms are not charged
and, thus, even with a strong magnetic field, the particles could not show Harper-Hofstadter physics.
However, for quantum gases, there exists a solution to overcome these issues. With the creation of an
artificial gauge field, the atoms behave as charged particles, on the one hand, and, on the other hand,
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fluxes in the order of ϕ ≈ π can be reached [32, 147–150]. Hence, the generation of artificial gauge fields
generally enrich the physics, which can be simulated with cold atoms, and has gained a lot of interest in
the last 25 years [34, 143, 151, 152].

Artificial gauge fields implement gauge field physics in quantum gases by realizing the Peierls substitu-
tion (see Sec. 3.1.3) in the Hamiltonian in the following way. We described in Sec. 3.1.3, that a magnetic
vector potential can be accounted for in the Hamiltonian, when the tunneling becomes complex for at
least one direction. It is also sufficient to show, that the Hamiltonian features non-trivial complex tun-
neling matrix elements, in order to prove, that the corresponding particles behave as charged particles
in a magnetic field. The implementation of Peierls phases for artificial gauge fields can be done with
different techniques. Many schemes first inhibit the common tunneling along one lattice direction and
then recreate it with either laser-assisted tunneling [36, 37] or lattice shaking [38–41, 63, 64]. The com-
mon tunneling can be stopped, for example, by either tilting the lattice [36] or by creating a superlattice
[153]. However, these schemes are not used in this thesis and are, therefore, not further discussed. The
approach, we use for the results in this thesis, is the one of synthetic dimensions.

In the synthetic dimensions approach, physical systems are engineered so that various internal states
(or other non-spatial degrees of freedom) of particles are reinterpreted as additional spatial dimensions.
These synthetic dimensions are formed by coupling different internal states, with the couplings designed
to mimic the behavior of particles hopping between sites in a lattice. The synthetic dimensions approach
was first proposed in Ref. [65]. In this paper, the authors state, that an internal degree of freedom of
atoms could be seen as a synthetic dimension, where different quantum states represent synthetic lattice
sites. In comparison to lattice sites of an optical lattice, we highlight two advantages in the context of
topological edge states and artificial gauge fields. The first advantage is, that the synthetic dimension
naturally has sharp edges, because typically the coupling of the internal states can be controlled well.
For an optical lattice, this is not the case for most implementations. Because of harmonic confinement,
the coupling becomes rather weaker and weaker towards the edges until it is negligible. As a result of
sharp edges, the observation of edge states is much simpler, because it is clear, where they are localized.
In addition, if the edges are energy states, state-selective imaging techniques (see Sec. 1.5) can be used
to image each edge individually. The second advantage of synthetic dimensions is, that the internal states
are not naturally coupled, which means for the realization of Peierls phases, it is not necessary to inhibit
normal tunneling, which is usually a first step. Without additional steps, the internal states or synthetic
lattice sites can be coupled by laser fields to reach a non-trivial complex tunneling and create an artificial
magnetic field.

The internal states of the atoms used as synthetic lattice sites are arbitrary, but there are two requirements
to meet:

• The states need to be stable at least on the timescales of the measurements conducted on them.
Otherwise, there can be atoms dissipating out of the system, which is typically unwanted, or the
atoms stay in the system, but destroy the coherence of the system.

• In the context of artificial gauge field creation, there should be a coupling available, which can
impose a non-trivial phase factor onto the atoms.

Possible internal states are, for example, momentum states [77], harmonic oscillator eigenstates [78],
orbital states of an optical lattice [7, 79–81], electronic states [4, 67, 82] or spin states [3, 66]. The last
approach is the one, we use and further present in this thesis.
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The coupling of the synthetic lattice sites has one strict and one soft requirement, if it is supposed to
implement an artificial magnetic field. The strict one is, as mentioned above, that it imposes a complex
phase to the atoms with the coupling and that this phase should be at least in the order of ϕ = 0.1π.
The soft requirement is, that the coupling should not heat the sample or destroy coherence in a different
way. This is desired for a robust experimental system. A low heating rate typically expands the range
of accessible measurements in the setup. Already the strict requirement is an experimental challenge.
Usually, the coupling of states is realized with dipole transitions. However, for typical optical lattice
spacings the imposed phase is only large enough, if the dipole transition is energetically in the optical
regime or higher. This is a challenge, since the lifetime of coupled excited states in the optical regime,
which are accessible via dipole transition, is typically to short. The states are not stable, for typical
measurement times in the range of 10 ms to 100 ms. There are two solutions for that. The first solution
is, to use an intercombination transition (see Sec. 1.1), preferable a clock transition, which feature longer
lifetimes than ordinary dipole transitions for the same energy difference. Such systems were realized in
Ref. [4, 67]. The second solution is, to use stimulated two-photon Raman transitions (see Sec. 3.2.2).
For such a transition, the laser fields can be in the optical regime, while the coupled states can have no
energy difference at all. For the results in this thesis, we use the latter solution of stimulated Raman
transitions.

In the following, we will point out the characteristics of our approach for the realization of artificial gauge
fields. We use different nuclear spin states (mF states) of ytterbium atoms as a synthetic dimension, which
are coupled by two-photon Raman transitions. Some of these properties are not limited to our system
and are typical for other schemes as well.

• As mentioned above, synthetic dimensions, feature sharp edges, which in the case of mF states can
be individually imaged with our spin-selective imaging (see Sec. 1.5.2).

• Interactions are in the real dimension strongly localized to a single lattice site, whereas in the
synthetic dimension, they are infinitely long-ranged over all lattice sites.

• The induced heating by the Raman laser coupling on the intercombination transition 1S0 →
3P1 is

negligible on our experimental timescales as the ratio of coupling strength over scattering rate is
3.983 × 103 and higher.

• The implementation at a quantum gas experiment only requires the alignment of one (for direct
clock transitions) or two (for Raman transitions) beams. In addition, for desired coupling strengths
of Ω ≈ 100 − 500 Hz, the required intensities in the coupling beams is easily provided by modern
lasers.

• The magnetic flux can be altered by changing the angle between the coupling beams and the lattice
in real space.

• The induced magnetic flux is, by construction, uniform and orthogonal to the 2D system. This
means that the Harper-Hofstadter model is directly realized.

• A clear drawback of the synthetic dimensions approach is, that the number of lattice sites is very
limited in the synthetic dimension. For most schemes, as in this thesis, it is restricted to single
digits. The highest number of coupled states was realized with 17 spin states of dysprosium in
Ref. [69].
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Figure 3.4: Schematic of stimulated Raman transitions. The figure illustrates the schematic of stimulated
Raman transitions for a three-level atom in the Λ-configuration. A detailed description can be found in the
main text. Figure inspired by Ref. [91, 117].

Our approach for the realization of an artificial gauge field automatically induces a significant spin-orbit
coupling. This is a direct result of the fact, that the coupling of the mF states needs to impart a significant
momentum kick to the atoms for each spin transition. Otherwise, the magnetic flux of the system would
be negligible (see Eq. 3.25 and Sec. 3.2.3 for details). Spin-orbit coupling naturally occurs in condensed
matter, where it is a relativistic effect caused by the intrinsic high electric fields, which are present at
the atomic scale [139]. It means a link between the spin and the momentum of particles, such that
the quantities are not separated, but connected as such, that a certain spin is locked to a corresponding
momentum and vice versa. Spin-orbit interactions can give rise to interesting classes of matter, such as
topological insulators or topological superconductors [75]. Thorough proofs of the induced spin-orbit
coupling of our synthetic dimensions approach can be found in Ref. [5, 139, 143, 154].

3.2.2 Stimulated Raman Transitions

Following the general realization of the Harper-Hofstadter model in cold atoms in the previous section,
we now address the implementation of the synthetic dimension approach in our apparatus using stim-
ulated Raman transitions. We apply them for all results presented in chapters 3 and 5. We present the
mathematical terms for describing a stimulated Raman transition in atoms and its treatment as an effec-
tive two-level system. A thorough derivation of the presented results can be found in Ref. [91, 117].

Raman scattering describes the inelastic scattering of photons caused for example by multiple rotational
and vibration sublevels of a molecule [91]. It was first discovered by Sir Chandrasekhara Venkata Raman
and awarded with the Nobel Prize in Physics in 1930 [91]. While Raman scattering in general can be a
spontaneous process and has various different applications, we focus on the case of stimulated Raman
transitions in atoms.

At first, we consider a three-level atom in the Λ-configuration. In this configuration, which is illustrated
in Fig. 3.4, there are two ground states |g1⟩ and |g2⟩ and one excited state |e⟩. The energy difference
between |g1⟩ and |e⟩ is ℏω01 and the energy difference between |g2⟩ and |e⟩ is ℏω02. To enable stimulated
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Raman transitions in this atom, we add two light beams with the electric fields E⃗1(⃗r, t) and E⃗2(⃗r, t),
where

E⃗i(⃗r, t) = ϵ̂iEi cos(k⃗i r⃗ − ωit). (3.16)

Furthermore, we define the energy differences ∆1 = ω01 − ω1 and ∆2 = ω02 − ω2. For this system, we
make the following assumptions: |ω01 − ω02| ≪ ω0α and |∆1 − ∆2| ≪ |∆α|.

The system is described by an atom Hamiltonian Hatom and an atom-field interaction Hamiltonian
Hatom−field. The atom Hamiltonian can be expressed as [117]

Hatom =
p2

2m
− ℏω01 |g1⟩ ⟨g1| − ℏω02 |g2⟩ ⟨g2| , (3.17)

where we set the energy of the excited state to be zero. If we apply the dipole and rotating wave approx-
imation and perform the rotating frame transformation, the atom-field Hamiltonian is [117]

Hatom−field =
ℏΩRabi

1

2

(
σ1e−i⃗k1 ·⃗reiω1t + σ†1ei⃗k1 ·⃗re−iω1t

)
+
ℏΩRabi

2

2

(
σ2e−i⃗k2 ·⃗reiω2t + σ†2ei⃗k2 ·⃗re−iω2t

)
. (3.18)

ForHatom−field we used σα B |gα⟩ ⟨e| and the Rabi frequencies ΩRabi
α , which are defined as [91]

ΩRabi
α B

− ⟨gα| E⃗α · d⃗ |e⟩
ℏ

. (3.19)

This system can be reduced to an effective two-level system (for details see Ref. [91, 117]). Then, the
two-level system can be described by the effective Raman Hamiltonian [117]

HRaman =
p2

2m
+ ℏ(∆1 + V1) |g1⟩ ⟨g1| + ℏ(∆2 + V2) |g2⟩ ⟨g2|

+
ℏΩRaman

12

2

(
σRe−i(⃗k1−k⃗2)·⃗r + σ†Rei(⃗k1−k⃗2)·⃗r

)
,

(3.20)

where σR B |g1⟩ ⟨g2|, ΩRaman is the Raman Rabi frequency and Vα is the AC Stark shift induced by the
two light beams. They can be calculated as [117]

ΩRaman
12 B

ΩRabi
1 ΩRabi

2

2∆R
, Vα B

|ΩRabi
α |2

4∆R
, (3.21)

where ∆R is the single-photon detuning, defined as ∆R B (∆1 + ∆2)/2. Cross coupling effects from E⃗2

on |g1⟩ and vice versa are assumed to be small and are neglected. In distinction to the single-photon
detuning, we define the two-photon detuning δR B (ω2 − ω1) − (ω02 − ω01). The Raman Hamiltonian
(equation 3.20) is equivalent to a two-level system, which is coupled by a single-photon transition with
momentum k⃗R = k⃗1 − k⃗2 and frequency ΩRaman

12 .

The system can be extended to the case of multiple excited states |en⟩, which are often present in real
atomic systems, such as ytterbium. The states have the energies ∆R − δn with respect to the center of the
ground states. Then, the equations for the Rabi frequency, the Raman-Rabi frequency and the light shifts
are [117]

ΩRabi
α n B

− ⟨gα| E⃗α · d⃗ |en⟩

ℏ
, (3.22)
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ΩRaman
12 =

∑
n

ΩRabi
1n Ω

Rabi
2n

2(∆R − δn)
(3.23)

and

Vα =
∑

n

|ΩRabi
α n |

2

4(∆R − δn)
. (3.24)

In this section, we presented the initial conditions for stimulated Raman transitions and its reduction to
an effective two-level system, which is even valid for multiple excited states. We introduced the terms
for the calculation of the Raman-Rabi frequency and the expected AC Stark shifts, which are induced by
the Raman beams.

3.2.3 Realization of the Harper-Hofstadter Hamiltonian

As mentioned in Sec. 3.2.1, we implement the Harper-Hofstadter Hamiltonian in this thesis by using
a synthetic dimension to create an artificial magnetic field. There are different coupling methods for
the implementation of a synthetic dimension in ytterbium atoms. The first successful method coupled
different spin states of the ground state manifold with stimulated Raman transitions in Ref. [3]. The
second successful method coupled the ground state to a metastable clock state with a clock transition
in Ref. [4]. Another method realized in Ref. [7] used Raman transitions to couple orbital states of an
optical lattice. In this thesis, we choose to work with different spin states, because we want to exploit
the fact, that atoms in the ground state of 171Yb are only weakly interacting. In addition, different orbital
states of an optical lattice would have different interaction over tunneling ratios Uint/tx because of the
different tunneling rates in different bands. This would make the system more complex and is rather
subject to possible future studies. Therefore, we use different mF states of the ground state manifolds
for the isotopes 171Yb and 173Yb to investigate their different interaction behavior. For this purpose,
we implement the first realized technique, which uses stimulated Raman transitions. Furthermore, we
prepare the following system. We use a degenerate Fermi gas of a single isotope and load it into a
three-dimensional optical lattice (see Sec. 1.4). Along two dimensions, the lattice is deep and inhibits
tunneling on experimental time scales. Only in the third dimension, the lattice is shallow enough to allow
atom tunneling, yet still sufficiently deep to meet the requirements of the tight-binding approximation.

In the following, we demonstrate, that the Raman Hamiltonian in Eq. 3.20 can be transformed into the
Harper-Hofstadter Hamiltonian for the prepared system. This will show, that stimulated Raman transi-
tions can be used to realize the Harper-Hofstadter model, thereby enabling the realization of quantum
Hall states. For this purpose, we bring the kinetic energy and the phase factor of the Raman Hamiltonian
in different forms. First, we consider the kinetic energy term of the atomic motion in the Hamilto-
nian: p2/(2m). In the lattice system described above, this term transforms into a tunneling along the
shallow lattice direction, as this is the only possible (real space) motion of the particles. The kinetic
term becomes: −tx

∑
<m,n>

ĉ†m+1,nĉm,n, where tx is the tunneling amplitude along the shallow lattice. Sec-

ond, we express the phase factor associated with a state transition, exp(i(⃗k2 − k⃗1) · r⃗), in an alternative
form. We define the momentum transfer ∆k of the Raman beams along the shallow lattice, such that
(⃗k2 − k⃗1) · r⃗ = ∆k · x. As we have a 1D lattice system, the position x is limited to lattice sites and can be
expressed by the lattice spacing a and the lattice site m, such that x = a ·m. The lattice spacing, in turn, is
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half the wavelength of the optical lattice laser: a = λlat/2 = π/klat. Altogether, the phase factor becomes
exp(i(⃗k2 − k⃗1) · r⃗) = exp(imπ∆k/klat). Then, the Peierls phase induced by the Raman transition is

ϕ = π
∆k
klat

. (3.25)

The transferred momentum ∆k of the Raman beams is the projection of the photon momentum vectors
k⃗R on the shallow lattice direction. Because of the symmetry of our beams with respect to the lattice (see
Fig. 4.1), it can be calculated as

∆k = sin (θ/2) · 2
∣∣∣∣⃗kR

∣∣∣∣ , (3.26)

where θ is the angle between the two Raman beams and
∣∣∣∣⃗kR

∣∣∣∣ is the photon momentum of the Raman
laser.

With the alterations of the kinetic term and the phase factor and ΩR as the Raman-Rabi frequency of
the coupling, which is assumed to be independent of the spin state n, the Raman Hamiltonian takes the
form:

H =
∑
<m,n>

ℏδnĉ†m,nĉm,n +

−tx

∑
<m,n>

ĉ†m+1,nĉm,n −
ℏΩR

2

∑
<m,n>

eimϕĉ†m,n+1ĉm,n + h.c.

 , (3.27)

where δn = Vn − (n − 1) · ∆ω. Vn is the AC Stark shift of the nth spin state (or equally: of the nth
synthetic lattice site), which is induced by the Raman beams, as defined in Eq. 3.24. Moreover, ∆ω
is the frequency difference between the two Raman beams: ∆ω = ω1 − ω2. For δn = 0, this is the
Harper-Hofstadter Hamiltonian in a different gauge:

HHarper-Hofstadter = −tx
∑
<m,n>

ĉ†m+1,nĉm,n −
ℏΩR

2

∑
<m,n>

eimϕĉ†m,n+1ĉm,n + h.c. (3.28)

The system described by this Hamiltonian is illustrated in position space in Fig. 3.5. In the synthetic di-
mension, displayed along the vertical axis, there are only two lattice sites or spin states: the (pseudo)spin-
up, |↑⟩, and (pseudo)spin-down state, |↓⟩. This structure already reflects the specific realization of our
system. In the real dimension x, the lattice consists of multiple sites labeled with m − 1, m, m + 1 and
so forth. Atoms can tunnel along the real dimension with the amplitude tx and along the synthetic di-
mension they tunnel with the amplitude ℏΩR/2 · eimϕ, which corresponds to a spin transition. The phase
factor eimϕ leads to the magnetic flux ϕ, which pierces each plaquette of the two-dimensional system.
For non-trivial cases of ϕ and ΩR/tx, the system features chiral edge currents, which are indicated by the
colored arrows, that illustrate the motion of atoms along the two legs.

This implementation of the Harper-Hofstadter model has a different gauge than the Landau gauge, which
we introduced in Sec. 3.1.2 to simplify the theoretical calculations. The laboratory gauge differs by the
fact, that the phase factor in the Hamiltonian is in the synthetic y direction instead of the real x direction.
This gauge difference has direct consequences for the bandstructure, which are illustrated in Fig. 3.6. In
the theory gauge (Fig. 3.1), the bare and dressed energy bands are axially symmetric with respect to the
Brillouin zone center (k = 0). The bare Bloch bands of the two coupled states are shifted with their lowest
energy from the center to ϕ/2 and −ϕ/2. In the laboratory gauge, the bare energy bands are the unshifted
Bloch bands for both states with their lowest energy in the center of the Brillouin zone. The bare bands
for both states are identical. While the state population in the dressed bands is complementary for the
two different states in the theory gauge, this is not the case in the laboratory gauge. There, the areas
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3.2 Harper-Hofstadter Hamiltonian in Quantum Gases

Figure 3.5: Two-leg quantum Hall ladder in position space. The figure presents a scheme of the realized
two-leg quantum Hall ladder in position space. On the horizontal axis, the real dimension of the shallow optical
lattice is shown. On the vertical axis, the synthetic dimension is shown with its two synthetic lattice sites |↓⟩
and |↑⟩. Along the real dimension the atoms can hop from lattice site m to m + 1 with the tunneling amplitude
tx and along the synthetic dimension, atoms can hop at site m from |↓⟩ to |↑⟩ with the amplitude (ΩR/2) eim ϕ.
This system is pierced by a uniform magnetic flux ϕ, which is the phase, that atoms acquire when they hop
around a unit cell. For non-trivial cases of ϕ and ΩR/tx, the system features chiral edge currents, which are
indicated by the colored arrows, that illustrate the motion of atoms along the two legs.

Figure 3.6: Bandstructure in the laboratory gauge. The figure depicts the bandstructure of the two lowest
dressed bands in the laboratory gauge for a two-photon detuning δR = 0 and ϕ = 2π · 1/3. The vertical axis
displays the energy in units of the tunneling energy and the horizontal axis displays the quasimomentum k for
the first Brillouin zone. Dashed lines show the unperturbed bandstructure of the bare bands with vanishing
Raman coupling, i.e. ΩR → 0. Whereas solid lines show the bandstructure of the dressed bands with ΩR =

2tx. The color and opacity of the solid lines express the state population as denoted in the color bars on the
right. For the bandstructure in the Landau gauge see Fig. 3.1. Figure adapted from Ref. [116].
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with the highest populations in the center and at the boundaries of the Brillouin zone are overlapping
for both states. In our measurements with quantum Hall ladders described below, we observe the state
populations in the first Brillouin zone with our bandmapping technique (see Sec. 1.5.1). Hence, we only
have access to the laboratory gauge and expect the populations to be as plotted in Fig. 3.6.

The depicted bandstructure in both gauges shows the bands of the edge states, which reside in the q − 1
band gaps. We can identify two eigenstate bands, which correspond to the q − 1 = 2 band gaps for the
magnetic flux of ϕ = 2π · 1/3 (see Fig. 3.3 for comparison). However, because of the finite size of our
system along the synthetic dimension (with only two legs), the bandstructure transforms smoothly for
changes in ϕ. As a result, also for ϕ = 2π · 1/4, the bandstructure does not split into q − 1 = 3 bands,
but still features only 2 bands, with their form modified according to the different momentum transfer
between the two bare bands. This finite size effect, makes the bandstructure - and, thus, the predictions
on the chiral edge currents - robust against small variations in ϕ. This is despite the fact that, in principle,
the bandstructure depends strongly on the precise value of ϕ, as demonstrated by the fractal structure
displayed in the upper-right subfigure in Fig. 3.2.

In this chapter, we have detailed the realization of quantum Hall systems, starting with the basic the-
oretical concepts and progressing to practical implementation methods. We began by introducing the
Harper-Hofstadter model and discussing its single-particle solutions, which helped us understand the
behavior of these systems without inter-particle interactions. We then explored how to implement this
model in cold atom systems by creating artificial gauge fields. Finally, we outlined our approach to
generating artificial magnetic fields and quantum Hall states through stimulated Raman transitions. This
chapter provides a clear path from theoretical understanding to practical realization of quantum Hall
states, paving the way for the following chapters.
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4 Preparation and Implementation of Quantum
Hall Ladders

Building on the theoretical framework established in the previous chapter, which explored the realization
of quantum Hall states in quantum gases, this chapter focuses on their practical implementation and
preparation. For this crucial step in exploring topological phases of matter, we detail the experimental
setup, preparation techniques, and primary measurements required to observe and characterize these
states. Sec. 4.1 begins with the technical implementation, including an overview of the Raman Laser
System. We discuss our design considerations and the selected parameter space with a focus on the
measurement possibilities, which are necessary for achieving the desired quantum control. In Sec. 4.2,
we address the eigenstate preparation for the Hamiltonian. Starting with our applied technique: the
adiabatic passage and then discuss other approaches. Sec. 4.3 covers primary measurements to verify the
successful creation of these states. We examine Raman resonances, Raman-Rabi oscillations and chiral
edge currents, which directly indicate the topological nature of the quantum Hall effect. Lastly, Sec.
4.4 addresses various methods for optimizing the experimental data, including improvements in the spin
detection, imaging, eigenstate preparation and data analysis. This chapter provides a concise guide to the
experimental procedures necessary for studying quantum Hall ladder systems, laying the groundwork
for further exploration of their unique properties.

The planning and design of the Raman laser system in Sec. 4.1 was mainly done by the author and
supervised by C. Becker. The building and characterization of the laser system described in Sec. 4.1.1
was mainly done by N. Pintul (see Ref. [155] for details) under supervision of B. Abeln and the author,
with small alterations done by the author at a later stage. The analysis of the eigenstate preparation in
Sec. 4.2 and 4.4.3 was primarily conducted by the author, with initial analysis provided by L. Hilbig
under the author’s supervision (see Ref. [116] for details). All computations were performed by the
author and are partially based on code developed by L. Hilbig. The primary measurements and those for
the optimization methods presented in Sec. 4.3 and 4.4 were conducted by the author with the assistance
of T. Petersen. All measurements were planned and analyzed by the author.

4.1 Technical Preparation

4.1.1 Raman Laser System

After the theoretical description of stimulated Raman transitions in the previous chapter, we discuss the
implementation of a Raman laser system in our experiment in the following. This laser system is used
to realize a synthetic dimension (see Sec. 3.2.1) and explore the physics described in this chapter and
chapters 3 and 5. First, we describe the chosen transition and the laser. Second, we present advantages
and disadvantages of two design options and discuss our design decision. Third, the whole laser system is
presented. At last, we introduce the application possibilities. Further details on the Raman laser system,
such as the custom-made attachments and a characterization of the beam quality can be found in Ref.
[155].
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Table 4.1: Comparison of Raman Laser Setup Options. The table lists advantages and disadvantages of
two implementation options for the Raman laser setup described in the main text.

Option 1: Raman beams
split in front of fiber

Option 2: Raman beams
split behind fiber

Advantages

• less space needed in the
vicinity of the atoms
• better beam profile
• simpler to change angle

between Raman beams

• Raman beams are completely
separated

Disadvantages
• possible decoherence caused

by insufficient splitting
of Raman beams

• more space needed in the
vicinity of the atoms
• worse beam profile

• more difficult to change angle
between Raman beams

For the stimulated Raman transitions, we choose to work with green laser light of 556 nm, which ad-
dresses the intercombination transition 1S0 →

3P1. This transition features a broad hyperfine splitting,
which can be exploited to reach high ratios of the Raman coupling strengths over the total scattering rate
of the Raman beams ΩR/ΓR. As this ratio can limit the coherence time of the quantum Hall system, high
values are desired. This transition was also addressed in Ref. [3, 7, 71] to successfully implement Raman
transitions in ytterbium for synthetic dimensions. To generate the Raman beams, we use a single laser
exclusively. Since the laser is not used for any other applications, its operating frequency can be chosen
as desired (in the limits of the laser capabilities). The laser is not frequency stabilized, but free running.
This is sufficient, because the laser’s frequency walk-off is not a problem for the Raman transitions de-
scribed in this thesis. We observe the walk-off with a wavemeter to be in the order of ≤ 20 MHz per day.
The frequency of the laser translates directly to a change of the single-photon detuning ∆R for the Raman
transition as defined in Sec. 3.2.2. We operate the Raman beams at a single-photon detuning of 2.44 GHz
and 3.25 GHz above the transition 1S0 →

3P1(F′ = 1/2) and 1S0 →
3P1(F′ = 7/2) for 171Yb and 173Yb,

respectively. The largest influence of the frequency walk-off is on the Raman coupling strength ΩRaman.
There, the uncertainty caused by a 20 MHz change can be estimated to be approximately 0.3 % and
1.2 % (for details see Sec. 4.1.2). Hence, this effect can be neglected, as other imperfections, such as
the stability of the beam intensity or the uncertainty in the determination of ΩRaman, are dominating the
atomic behavior and total measurement uncertainty.

The first design consideration for the implementation of a Raman laser system at our quantum gas ma-
chine is the placement of the optical components. Since there is not enough space to build a whole laser
system in free space at the optical table of the ytterbium atoms, some parts of the system need to be
placed on a separate optical table and the laser beams must propagate to the atoms through a fiber at
some point. There are two options to implement this with low differential phase noise. Low differential
phase noise is crucial for the coherence of Raman transitions, whereas common phase noise cancels out
for the two-photon transition, as the phase relation between the beams stays stable. The first implemen-
tation option is, that both laser beams are coupled into the same polarization-maintaining fiber, one on
the fast and one on the slow axis. This was realized for example in Ref. [3]. The second option is, that
the laser beam is split into the two Raman beam branches after it is brought to the vicinity of the atoms
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and the Raman beams stay in free space until they hit the atoms.

Advantages of option one are, that only little space is needed in the vicinity of the glass cell and that
it is simpler to change the beam paths of the Raman beams, if needed, for example for changing the
transferred momentum on the atoms (see Sec. 4.1.2). Moreover, the laser beam profiles are usually closer
to a Gaussian profile than for option two. However, with this option, it is crucial, that the beams are very
well separated behind the fiber to avoid decoherence. This requires, that the coupling into the fiber is
very accurate along the respective propagation axis and that the splitting of the two polarizations behind
the fiber is very clean. Remaining fractions of light with the frequency of the other Raman beam destroy
coherence. This is not necessarily the case for the Raman transition itself, but for the realization of an
artificial gauge field with it, as the gauge field requires the momentum transfer to be clearly directed.

Disadvantages of option two are, that the frequency changes via AOM to the two Raman beams have to
be made in the vicinity of the glass cell. This requires more space and makes a fast adjustment of the
beam paths more difficult. Furthermore, the beam profile of light, which propagated through an AOM,
differs usually from a Gaussian profile, which can affect the coherence of the atomic sample. However, a
great advantage of this option is, that the two Raman beams are completely separated. For an overview of
the advantages and disadvantages of the two options see Table 4.1. We decided to use option two for the
implementation at our experiment. To prevent alterations in the beam profiles to affect the coherence of
the transition, we choose the waists of the Raman beams with approximately 0.6 mm large enough, such
that only the centers of the beams hit the atomic cloud, which is expanded over a few µm. In addition,
this strategy has the benefit, that the intensity of the beams is more homogeneous for the atoms than
for smaller beam diameters. Moreover, the alignment of the beams on the atoms is more robust and an
estimation of the beam intensity at the position of the atoms is typically more accurate.

The setup of the Raman beam paths is as follows. The used laser provides approximately 105 mW of
laser radiation at 556 nm. Behind the laser output, there is a half-waveplate and a polarizing beam splitter
(PBS) to regulate the transmitted laser power, which goes to the Raman branch. Unwanted power in the
laser beam, which is not needed for the Raman transition, can be dumped in the reflection of the PBS.
Behind the PBS, the beam propagates through an AOM, which is operated in double passage. On the
one hand, this AOM is used to regulate the power of the Raman beams from cycle to cycle. On the other
hand, it is used to switch the Raman beams on and off. After passing through the AOM, the laser beam is
coupled into a polarization-maintaining fiber, which directs it to a breadboard, where additional optical
elements manipulate the laser beam further. We refer to this breadboard as the Raman breadboard.

The realized Raman breadboard can be seen in Fig. 4.1. The starting point on the Raman board is a
fiber coupler, which emits the linearly polarized 556 nm light from the polarization-maintaining fiber
mentioned above. The fiber coupler has an adjustable lens included, which can be used for a fast tuning
of the beam waists. The board is designed to be used with a beam diameter of approximately 1.2 mm.
This beam diameter results in a Rayleigh length of approximately 2.0 m, which means, that the beam
diameter can be assumed to be stable over the whole beam path through the Raman board up to the
atoms in the glass cell, which is a total length of approximately 80 cm. Behind the fiber coupler, there is
a half-waveplate and a PBS. The waveplate can be used to alter the branching ratio at the beam splitter
and the beam splitter divides the beam into the two Raman beams. The fiber to the Raman board is
polarization-maintaining to keep the polarization and, therefore, the relative powers of the two Raman
beams stable. In both paths, behind the beam splitter, there is an AOM to change the frequency of each
beam individually. The frequencies applied to the AOMs are used to realize a detuning between the two
Raman beams. The AOMs on the Raman board are switched on, for most of the time of the experimental
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Figure 4.1: Raman breadboard setup. The figures show the setup of the optical elements of the Raman
breadboard as a schematic on the left and as a computer assisted drawing on the right. The drawing on the
right is true-to-scale. Laser beams are illustrated as green lines. A detailed description of all optical elements
and their function can be found in the main text. Taken from [155].

Figure 4.2: Raman breadboard implementation. The figure illustrates the implementation of the Raman
breadboard in the experimental setup. The breadboard is connected to two posts and a lateral breadboard.
The breadboard is implemented under an angle of approximately 18.35◦ with respect to the horizontal axis.
Taken from [155].
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cycle. This keeps the AOMs at operating temperature and inhibits thermal walk-offs of the laser pointing
during measurements. In front of each AOM, there is another half-waveplate to rotate the polarization
for an optimum AOM efficiency. Light in undesired orders of the AOMs is blocked. Behind the AOMs,
there are three mirrors in each beam path in total. The first two mirrors can be used to align the beams
in all degrees of freedom on the last mirror. The last mirror is used to align the beams on the atoms in
the glass cell. In addition, in each beam path behind the AOMs, there are a pair of half- and quarter-
waveplates to change the final polarization of the Raman beams as desired. The Raman breadboard is
placed at the experimental setup under an angle of approximately 18.35◦ with respect to the horizontal
plane. The implementation is shown in Fig. 4.2. To check and monitor the polarization of the Raman
beams, we additionally installed a PBS in each Raman beam path, after they propagated through the
glass cell. When the beam splitters are combined with a power meter or photodiode behind it, changes
of the polarization can be seen. In our measurements, we could not detect a difference between the beam
polarization in front of and behind the glass cell. Thus, we assume, that the polarization behind the glass
cell is very similar to the polarization at the position of the atoms.

The Raman board is designed, such that the angle between the Raman beams can be changed by translat-
ing the last mirror in front of the glass cell for each beam. The minimal angle is limited by the dimensions
of the mounts for the last mirrors and the distance between the last mirrors and the glass cell. The maxi-
mal angle is limited by the space between the Helmholtz coils of the 3D MOT. The possible angle range
is θ ∈ [5◦, 24◦]. This corresponds to a magnetic flux range of ϕ ∈ [0.12π, 0.57π], if implemented with
an optical lattice at the magic wavelength of 759 nm (for details see Sec. 4.1.2). Using a state-dependent
lattice at a wavelength of 660 nm, which is also already implemented at the experiment (see Ref. [100]),
the possible magnetic flux range would be ϕ ∈ [0.10π, 0.49π].

4.1.2 Applied Raman Transitions

In this section, we provide a detailed description of the applied Raman transitions, focusing on the
specific parameters used in our setup. We begin by examining the polarization of the Raman beams for
171Yb and 173Yb. Next, we discuss how we select the single-photon detuning and the momentum transfer.
Finally, we present the simplified Raman Hamiltonians for both isotopes, tailored to the parameters we
have chosen.

We use stimulated Raman transitions to couple two mF states of the ground state manifold. We use
only two states for both isotopes, because there are only two states available for 171Yb with F = 1/2
and we want both systems to be as similar as possible. Hence, we couple also only two states, when
working with 173Yb. How we achieve this for the six different spin states of 173Yb (F = 5/2) is discussed
below. Independently of which states are coupled for 173Yb, the two coupled states can be treated as a
pseudo spin up |↑⟩ and pseudo spin down state |↓⟩ [156]. The applied Raman couplings for both isotopes
are illustrated in Fig. 4.3. In the following, we discuss the polarizations of the Raman beams for the
implementation of the shown coupling.

For the mF = −1/2 and mF = 1/2 state of 171Yb the transition polarizations need to be σ in one beam and
π in the other. For the realization of the Peierls phase, it is important, that the momentum transfer of the
Raman beams to the atoms has an unambiguous direction. Consequently, the virtual absorption process
must always be from one beam and the virtual stimulated emission process from the other. To realize
this, the quantization axis of the atoms is chosen to be normal to the plane, which is spanned by the
propagation directions of the Raman beams. In this configuration, one beam can be purely π polarized
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Figure 4.3: Scheme of the Raman couplings in 171Yb and 173Yb. The figure depicts a scheme for the im-
plemented Raman couplings in the two fermionic isotopes 171Yb and 173Yb. The Raman beams are operated
in between the hyperfine splitting of the 1S0 →

3P1 transitions with a single-photon detuning ∆R to the lowest
hyperfine state. There, the ratio of Raman coupling strength over scattering rate ΩR/ΓR is the highest. We use
a σ-π transition for 171Yb and a σ-σ transition for 173Yb to couple two spin states in each case. The displayed
energies along the vertical axis are scaled. The hyperfine splittings of the 3P1 states and the detunings ∆R are
on the order of GHz, while the depicted Zeeman splittings in the ground states are on the order of kHz. This
representation highlights that the single-photon detunings are robust against external magnetic field changes,
whereas the two-photon detunings strongly depend on the magnetic field.

(linearly polarized along the quantization axis), whereas the other can be a combination of σ− and σ+

polarization (linearly polarized perpendicular to the quantization axis). In addition, for a clear direction
of the momentum transfer, it is important, that the states have an energy difference greater than the power
broadened linewidth. Then, only one of the two processes, σ+ absorption paired with π emission or π
absorption paired with σ− emission, is resonant with the two-photon transition. The energy difference
between the states is a combination of the Zeeman splitting and a spin-dependent dipole potential induced
by the Raman beams. This is further discussed in Sec. 4.3.1.

For 173Yb, there are more possibilities to choose the beam polarizations. As mentioned above, we want
to realize a system for 173Yb, which is similar to the scenario of the 171Yb case. This means, we want to
couple only two different spin states, thereby forming a two-leg ladder. For the same beam polarizations
as for 171Yb, several spin states of 173Yb would automatically be coupled. There are two reasons for that.
First, the Zeeman splitting is linear. This means, it does not affect the individual two-photon resonances
between different states, as long as the spin difference ∆mF between the states is equal. Second, for
these beam polarizations, the spin-dependent dipole potentials are very similar, which makes it difficult
to shift spin states out of resonance. Hence, it is unfavorable to use the same polarization for 173Yb as
for 171Yb. Instead, we use σ σ transitions for 173Yb. This already reduces possible unwanted transitions
from four to only one with respect to σ π transitions. The spin-dependent dipole potentials have the
largest difference for the case, in which both beams are linearly polarized orthogonal to the quantization
axis, i.e. they are an equal combination of σ− and σ+ polarization. This is the optimal configuration,
if only two Raman beams with single frequencies are considered. However, the unwanted coupling to
the third state does not completely vanish. This is further discussed below and in Sec. 4.3 (see also Ref.
[116] for additional computations).
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The exact polarizations of the Raman beams differ slightly from the ideal cases described above, because
of the choice of the external magnetic field direction. The magnetic field, and consequently the quanti-
zation axis, is aligned along the 1D lattice direction using our 3D-MOT coils. This alignment is essential
for spin-selective imaging with blast pulses (see Sec. 1.5.2) and a rapid rotation of the magnetic field
could influence the data. This leads to a small angle between the quantization axis and the linearly polar-
ized light, which would be ideally along the quantization axis for π transitions. The σ transitions are not
influenced, since the polarization is still perpendicular on the quantization axis. This small angle is half
the angle between the Raman beams: θ/2 = 9.95(45)◦. The linearly polarized light is then composed of
97.3 % π-polarized light for the atoms. This has no effect on the measurements described in this thesis,
except for a small relative energy shift on the order of 10 × 10−5 of the Raman resonance for 171Yb.

The single-photon detuning of the Raman transition should be chosen mainly such, that the ratio of
Raman coupling strength over scattering rate ΩR/ΓR is at its maximum. This maximum provides the
longest coherence times for the system. Additionally, at this maximum, the slope of the coupling strength
over scattering rate is zero and, thus, changes in the laser frequency during a measurement have minimal
effect. If necessary, one could make a trade-off of stronger coupling against shorter coherence times, but
this was not needed for the measurements presented in this thesis. As mentioned in subsection 4.1.1,
the base frequency of the Raman beams can be chosen freely as the laser is free running and not used
for other applications. Therefore, we operate the laser such, that the single-photon detuning is exactly
at the maximum of the ratio ΩR/ΓR for both isotopes 171Yb and 173Yb. Concretely, the detunings are
2.440 GHz and 3.255 GHz above the transitions 1S0 →

3P1(F′ = 1/2) and 1S0 →
3P1(F′ = 7/2) for

171Yb and 173Yb, respectively. Details for the calculation of the ratio ΩR/ΓR can be found in Ref. [116,
155]. At the chosen detunings, they are 11.54 × 103 and 3.983 × 103, respectively. This means, that
the expected coherence lifetimes are on the order of 103/Ω. This is much longer than the timescales
of the measurements, which are < 10 · 2π/Ω. Therefore, the scattering rates can be neglected for the
measurements presented in this thesis.

The magnetic flux of the system is determined by the angle θ between the Raman beams (see Eq. 3.26).
For the purposes of this work, which is to probe interaction effects in a quantum Hall ladder, the exact
value of the magnetic flux is of minor importance. It should only be chosen as such, that the chiral
currents are very prominent. The currents vanish at ϕ = 0 modulus π, because of the symmetry of the
system [4]. Therefore, taking theoretical considerations and published experimental data from Ref. [4]
into account, the range ϕ ∈ [0.2, 0.8]π modulus π is expected to be fine. The results in this thesis were
taken at an angle θ = 19.9(9)◦ and correspondingly at a magnetic flux of ϕ = 0.444(20) π.

In the following, we derive simplified Raman Hamiltonians, which are specified to our selected parame-
ters. As described in Sec. 3.2.2, the Raman transitions can be described by the effective Raman Hamil-
tonian in Eq. 3.20. We only consider the state coupling of the synthetic dimension. For this purpose, we
disregard the kinetic energy term p2/(2m) and the phase factor exp(i(⃗k2 − k⃗1) · r⃗) in the Raman Hamilto-
nian. We present the coupling Hamiltonians for both isotopes and denote them in matrix notation in the
basis of (possibly) coupled mF states, i.e. |m171 = −1/2⟩ , |+1/2⟩ and |m173 = −5/2⟩ , |−1/2⟩ , |+3/2⟩ for
171Yb and 173Yb, respectively. For 171Yb, we obtain

H171

ℏ
=

(171V−1/2
171Ω12/2

171Ω12/2 171V+1/2 −
171∆ω

)
(4.1)
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and for 173Yb, we get

H173

ℏ
=


173V−5/2

173Ω12/2 0
173Ω12/2 173V−1/2 −

173∆ω 173Ω23/2
0 173Ω23/2 173V+3/2 − 2 173∆ω

 . (4.2)

We further simplify H173 for our parameters. For the fixed single-photon detuning 173∆R and polariza-
tions of the Raman beams in the 173Yb case, the coupling 173Ω23 can be expressed by 173Ω12. We obtain
173Ω23 = 1.339 · 173Ω12. Moreover, with the chosen beam polarizations, we find 173V+3/2 − 2 173∆ω =
173V−5/2+2.65 · 173Ω12. We consider this energy difference to be large enough to neglect the effect of the
coupling in our model and for most measurements. The HamiltonianH173 takes the following form

H173

ℏ
=


173V−5/2

173Ω12/2 0
173Ω12/2 173V−5/2 1.339 · 173Ω12/2

0 1.339 · 173Ω12/2 173V−5/2 + 2.65 · 173Ω12

 . (4.3)

This section has detailed the technical groundwork necessary for implementing stimulated Raman tran-
sitions to explore synthetic dimensions in quantum gases. We designed a laser system that maintains
coherence while minimizing spatial constraints. Furthermore, we carefully selected transition parame-
ters to ensure accurate measurements.

4.2 Eigenstate Preparation

With the detailed description of the laser system and the specific Raman transitions, we only need one
more step to carry out the planned measurements on the influence of interactions in quantum Hall sys-
tems: the preparation of single eigenstates of the Harper-Hofstadter Hamiltonian. This ensures clear
and unambiguous measurement results and enables the isolated analysis of physical phenomena. In this
section, we describe the technical aspects of the preparation in detail. Following that, we will discuss
potential optimizations of the preparation. We will sometimes refer to the eigenstates as the dressed
states, as the eigenstates are the bare atomic states dressed with the Raman laser light.

4.2.1 Adiabatic Passage

For the preparation of an eigenstate, we use an adiabatic passage. An adiabatic passage is a very common
approach to transfer atoms from one quantum state to another. It is described in detail in Ref. [117] for
example. In this method, the change in the Hamiltonian is performed slowly with respect to the energy
difference between the eigenenergies of the initial and final Hamiltonian. This is done in such a way, that
the state follows an avoided crossing to always stay in an eigenstate of the current Hamiltonian.

Initially, we assume that all atoms are in the lowest Bloch band. This can be confirmed experimentally
by performing a bandmapping technique (see Sec. 1.5.1). We aim to transfer all atoms to the same
eigenstate band of the Harper-Hofstadter Hamiltonian. For this purpose, the Raman beams are switched
on at the desired power of the final system with a large two-photon detuning δR, such that the coupling
is very weak (see details below). For the adiabatic passage, we ramp the detuning to zero, such that
the atoms can follow the time evolution of the state and always stay in the current eigenstate of the

58



4.2 Eigenstate Preparation

0 5 10 15 20

t (2:=+R)

0

0.2

0.4

0.6

0.8

1

n

0

2

4

6

8

10

/ R
(+

R
)

nbare
#

ndres
low

nbare
"

ndres
high

/R

fidelity = 98.8%

Figure 4.4: Adiabatic passage. The figure displays state transfer for an adiabatic passage. For this purpose,
we present several quantities as a function of the ramp time t. On the left vertical axis, we depict, on the one
hand, the relative population n↑/↓ of the pseudo spin states |↑⟩ and |↓⟩ for the bare states (dashed lines). On
the other hand, we depict the population ndres

low/high of the lowest and higher (second lowest) dressed band (solid
lines). On the right vertical axis, we show the two-photon detuning δR (dotted line) in units of the Raman
coupling strength ΩR. The illustrated adiabatic passage reaches a fidelity of 98.8 %.

system. For this ramp, we choose an initial detuning, as small as possible, while large enough, that the
coupling of the Raman transition is negligible. This is equivalent to the statement, that the amplitude
of the induced Raman-Rabi oscillations is negligible for the chosen detuning. The amplitude can be
calculated as [157]

AR =
Ω2

R

Ω2
R + δ

2
R

. (4.4)

We choose to work with δini = 10 ·ΩR, for which AR, max = 1/101 ≈ 1.0 %.

For the shape of the ramp, we choose an exponential-like shape, as it shortens the preparation duration for
the same preparation fidelity with respect to a linear or s-shaped ramp. This does not necessarily mean,
that an exponential shape is the best ramp shape to avoid the observed decay of the chiral currents, but
it gives a shorter upper limit on the duration of the decay, which makes it easier for first investigations.
The exponential-like experimental ramp has the form:

δR(t) = A(t) exp
(
−

t
τ

)
+ B(t),

A(t) =
δfin − δini

exp
(
−T
τ

)
− 1

,

B(t) = δini − A(t),

(4.5)

where δini is the initial detuning, δfin is the final detuning, τ is the exponential time constant and T is
the total time of the ramp. This ramp has the advantage with respect to a pure exponential, that the final
detuning is reached in the finite time T .

We calculate the preparation behavior during and after the adiabatic passage for different parameters by
numerically solving the time-dependent Schrödinger equation

iℏ
∂

∂t
|Ψ(t)⟩ = H(k) |Ψ(t)⟩ . (4.6)
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For details on these calculations see Ref. [116]. A typical example of such a calculation is shown in Fig.
4.4. We observe in the displayed case, that all atoms are initially in the |↓⟩ state. During the adiabatic
ramp half the population smoothly transfers into the |↑⟩ state and the lowest dressed band is prepared
with a fidelity of 98.8 %. If the ramp parameters are expressed in units of ΩR and the ratio ΩR/tx stays
the same, the preparation dynamics are equal for different values of tx.

For the adiabatic passage, we want to realize the avoided crossing only for the targeted transfer. This
means, there must not be other state crossings during the detuning ramp. Other crossings could be higher
Bloch bands, if the ramp starts blue-detuned and the initially populated bare state is energetically higher
(in the rotating frame) than the unpopulated bare state. Further crossings could be unwanted Raman
resonances to other mF states. This would be the case, for example, if the initial state is |1S0, mF = 5/2⟩
for 173Yb and one ramps red-detuned to zero. The wanted Raman coupling would be of mF = 5/2 →
mF = 1/2, but there is the resonance mF = 5/2→ mF = −3/2 energetically in between (for the chosen
Raman beam polarizations). Therefore, we choose to work with a spin-polarized sample in |1S0, −5/2⟩
for 173Yb. Furthermore, there are Raman resonances to other mF states such as mF = −5/2→ mF = −3/2
for 173Yb (even though this transition is only possible by residual parts of incorrect polarization), which
could be crossed by the ramp. To avoid this, we apply a high enough external magnetic field, such that
the other resonances are pushed further away in frequency than the initial detuning δini = 10ΩR and that
also for the initial detuning the coupling to other mF states is negligible.

4.2.2 Other Approaches

In Ref. [5, 6], it is described, that the chiral edge currents in a very similar system seem to decay much
faster than the theoretically expected coherence time. The measured decay constants were in the order
of 2/ΩR or 1/(2t) for systems with ΩR/tx = 3.7, whereas the scattering rates of the Raman beams were
only in the order of 10−3ΩR [154]. This decay happened on the same timescale as typical adiabatic
preparations used in the references. Hence, the decay could have already influenced the measured chiral
currents. This issue motivated us, to explore alternative methods for eigenstate preparation. In the
following, we review common approaches and argue, that the adiabatic passage is the most suitable
option for our purposes. The investigated methods are a fast non-adiabatic method (colloquially often
called Bang-Bang method) and stimulated Raman adiabatic passage (STIRAP).

One possibility would be to use a fast non-adiabatic method. With this method, some physical systems
can be brought into the eigenstate of a new Hamiltonian. The basic idea is to quench between the
initial Hamiltonian and the final one [158, 159]. When the system is not in an eigenstate of the final
Hamiltonian, it experiences a time evolution, which can bring the system closer to the desired eigenstate.
By quenching back to the initial Hamiltonian the time evolution is changed and another quench to the
desired Hamiltonian can now bring the system closer to the eigenstate than a single quench could have
done it. With a sequence of different time evolutions, it has been demonstrated, that a BEC can be
prepared from a weak harmonic confinement into Bloch bands of an optical lattice [158, 159]. This
method is very useful in cases, where an adiabatic loading is not possible or unfavored. In addition, it
can be much faster than an adiabatic preparation. In our case, a quench between the Fermi-Hubbard
and Harper-Hofstadter Hamiltonian can be accomplished by switching the Raman beams on with the
desired power at a two-photon detuning δR = 0. Unfortunately, this method cannot be used to prepare
our system. As discussed in detail in Ref. [116], the largest problem is, that to every momentum state k
with a certain time evolution under quench, there exists a momentum state k′ in the system, for which
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the time evolution is exactly reversed with respect to the lowest and second lowest eigenstate. This
means, that, if a quench dynamic is optimized to prepare an atom in state k in the lowest eigenstate of
the Harper-Hofstadter Hamiltonian, an atom in state k′ will be prepared in the second lowest eigenstate.
Therefore, not all momentum states can be prepared in the same eigenstate. In total, this would lead to
the preparation of a mixed state instead of a pure eigenstate for typical momentum state occupations. For
initial states, which occupy less than half of the Brillouin zone, this technique might be applicable, but
this is not our desired case. Hence, this approach is not suited for our purposes.

The next possibility would be a stimulated Raman adiabatic passage (STIRAP), which is a common
method to transfer particles from one quantum state to another [160]. In this method, the detuning of
the Raman beams would be fixed on resonance, and instead, the two beams are independently ramped in
their intensity. This approach would have the advantage, that the atoms remain in a dark state during the
preparation. Details of the investigation can be found in Ref. [116]. It turns out, that the system cannot
be prepared in the lowest eigenstate for all momentum classes. However, it is possible to prepare nearly
all atoms in the second lowest eigenstate for sufficient large ratios of ΩR/tx > 2. Close to this lower
boundary, the preparation works only well for preparation times longer than the adiabatic preparation
in Ref. [5, 6]. For the desired preparation times of this thesis, the ratio should rather be ΩR/tx ≥ 3.
However, this parameter regime is unfavored for our measurements, where we want to work at a ratio
of ΩR/tx = 2. Thus, also this approach is not suited for our measurements. Instead, to reduce the
possible influence of the decay on the data, we perform the adiabatic passage as rapidly as possible in
our measurements. This matter is discussed in detail in Sec. 4.4.3.

4.3 Primary Measurements

With all the components in place to prepare a quantum Hall ladder system, we now conduct primary mea-
surements to characterize and probe the system. For this purpose, we first characterize the Raman tran-
sition by measuring Raman resonances and Raman-Rabi oscillations for both fermionic isotopes, 171Yb
and 173Yb. Subsequently, we demonstrate the successful preparation of a Harper-Hofstadter eigenstate
and explain, how we extract the chiral edge currents in the system. The measurements are discussed in
detail for single examples in this section. In following sections, only their outcomes will be presented.

4.3.1 Raman Resonances

For the characterization of the Raman transitions and the eigenstate preparation, it is crucial to know
the exact resonance position of the Raman transition. With the Raman transition, we want to couple
two ytterbium states of the ground state manifold. These states have an energy difference ∆Etot. The
Raman resonance detuning ∆ωres is the frequency detuning ∆ω, which matches this energy difference:
∆ωres = ∆Etot/ℏ. The energy difference ∆Etot is dictated by the Zeeman shift ∆EZeeman and all state-
dependent AC Stark shifts ∆EStark: ∆Etot = ∆EZeeman + ∆EStark. The state-dependent AC Stark shifts are
caused by the Raman beams themselves (see Eq. 3.24). The optical lattice beams are so far detuned from
any dipole transitions, that the induced AC Stark shifts are equal for all mF states, whereas the single-
photon detuning of the Raman beams ∆R is on the order of the hyperfine splitting and close enough to
resonances to induce different potentials for different mF states.
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In order to measure the Raman resonance, we prepare a spin-polarized sample of quantum degenerate
Fermions in the mF = −1/2 (mF = −5/2) state for 171Yb (173Yb). We load the atoms in a deep three
dimensional optical lattice to make the Bloch bands flat for the resolution of the spectroscopy mea-
surement. The lattice depths are s1D = 30 Erec for the 1D-lattice and s2D = 15 Erec for the triangular
2D-lattice. Moreover, we set an external magnetic field of about 19 Gauss to separate the different mF

states using the Zeeman effect. The corresponding Zeeman splittings are −14.2 kHz·mF and 3.90 kHz·mF

for 171Yb and 173Yb, respectively. On the one hand, the magnetic field must be strong enough to separate
the mF states (including the contribution of the AC Stark shifts), such that the adiabatic passage (see Sec.
4.2.1) is unperturbed. On the other hand, we choose the magnetic field to be weak enough to enable spin-
selective imaging with blast pulses (see Sec. 1.5.2), where the frequency range of a double-pass AOM
limits the possible splitting of the resonances. We do not alter the magnetic field between the imaging
and the prepared eigenstate of the Harper-Hofstadter Hamiltonian to avoid any disturbances of the data.
For the measurement, we estimate the duration tpulse of a π-pulse on resonance. The π-pulse time can be
calculated with [117]

tπ = π/ΩR. (4.7)

ΩR, in turn, is estimated by using Eq. 3.23 and calculating the Rabi frequencies of the single Raman
beams. For this purpose, we measure the power of the single Raman beams in front of the glass cell
and take their waists, the single-photon detuning ∆R (see Sec. 4.1.2) and the Clebsch-Gordan coefficients
into account (for details see Ref. [116]). Subsequently, we apply the estimated π-pulse using the Raman
beams and take an OSG image to distinguish between atom population in different mF states (see Sec.
1.5.2). The spin state populations are used to calculate the population fraction nmF for all relevant spin
states. We define it as

nmF B
NmF∑

mF

NmF

, (4.8)

where NmF is the number of atoms in the corresponding mF state. The summation goes over all relevant
mF states, i.e. mF = {−

1
2 ,+

1
2 } (mF = {−

5
2 ,−

1
2 ,+

3
2 }) for 171Yb (173Yb). To form a spectrum, we record

data for a variation of ∆ω in a range of approximately two to three expected full width at half maximum
(FWHM) around the expected resonance frequency.

To visualize the Raman resonances, we plot nmF as a function of ∆ω for both isotopes in Fig. 4.5. The
error bars reflect the uncertainty in the determination of the atom number after the separation by the
OSG. To determine the atom numbers in the different spin states, the optical density in the OSG images
is integrated along the direction, which is (nearly) orthogonal to the separation direction. The integrated
signal of each atomic cloud is fitted with a Gaussian profile to extract the number of atoms and the
fit uncertainty is used as the uncertainty of the atom number. We fit a numerical solution for the time
evolution of the density matrix to the plotted data. The fit allows us to extract key system parameters and
confirms the validity of our applied model. Taking the Hamiltonian of the Raman transitions for 171Yb
and 173Yb from Eq. 4.1 and 4.3, we can calculate the time evolution of an arbitrary density matrix using
the Von-Neumann equation [161]

∂tρ(t) = −
i
ℏ

[H , ρ(t)]. (4.9)

The fit parameters are ΩR, the energy differences ∆EmF between different mF states, the state populations
at time t = 0 in the density matrix ρini

mF
, and the evolution time tpulse. The shaded areas around the lines in

Fig. 4.5 mark the 95 % confidence interval of the fit. The fit results are listed in Table 4.2.

62



4.3 Primary Measurements

Figure 4.5: Typical Raman resonances for 171Yb (left) and 173Yb (right). The Figure displays the population
fraction nmF as a function of the Raman frequency difference ∆ω. The system starts in a spin-polarized state in
a deep optical lattice (s1D = 30 Erec and s2D = 15 Erec). The data points show nmF after an estimated π-pulse of
the desired transitions for the relevant mF states. The error bars illustrate the uncertainty in the determination
of the atom number. The lines display a fit of numerically solving the time evolution of the density matrix (see
main text for details). The shaded areas around the lines show the 95 % confidence interval of the fit. The fit
results are listed in Table 4.2.

Table 4.2: Fit results for Fig. 4.5. The table lists the fit results for the time evolution of the density matrix.

Parameter 171Yb fit 173Yb fit

ΩR 2π × 50.5(21) Hz 2π × 9.58(19) Hz

∆E−1/2/h - 7.770 28(16) kHz

∆E+1/2/h 14.156 22(56) kHz -

∆E+3/2/h - 7.784 22(21) kHz

ρini
−5/2 - 85.86(71) %

ρini
−1/2 95.8(16) % 12.45(99) % 1

ρini
+1/2 4.40(63) % -

ρini
+3/2 - 2.36(75) %

tpulse 9.02(10) ms 64.37(92) ms
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The measured data can be well described with the fit model. The fit results agree with theoretical expec-
tations within experimental limitations. We determine the center of the resonance from the fit parameter
∆E+1/2 (∆E−1/2) for 171Yb (173Yb). The value of ∆E+1/2 for 171Yb is recorded in several measurements
and used to precisely measure the applied magnetic field at the position of the atoms. The magnetic field
is found to be |B| =

∣∣∣∆E171
Zeeman/ (−752.6 Hz/G)

∣∣∣ = 18.808(1) G. For this magnetic field strength and the
measuredΩR in the 173Yb case, we expect the energy differences between the states to be ∆E−1/2 = 7.780
kHz and ∆E+3/2 = 7.792 kHz. However, if the magnetic field slightly changed within the 19 days be-
tween the two measurements by about 20 mG, the corresponding Zeeman shift would be ∆E−1/2 = 7.770
kHz and ∆E+3/2 = 7.782 kHz. The slightly larger splitting measured between the two resonances sug-
gests a larger ΩR ≈ 2π × 11 Hz.

For the 173Yb isotope, we have a second resonance slightly overlapping with the desired resonance
mF = −5/2 → m′F = −1/2. This means, that there is a residual coupling to another state, which is
unwanted. This additional resonance comes from the Raman transition mF = −1/2 → m′F = +3/2.
For our single-photon detuning ∆R, the coupling strength of this transition is 1.339 times stronger than
Ω12 because of the Clebsch-Gordan coefficients (see Sec. 4.1.2). For our polarization, the separation of
the two resonances is already maximized, if only one frequency per Raman beam is used. For multiple
frequencies in a single Raman beam, it is possible to achieve an additional differential light shift, which
increases the separation of the two resonances. This could be a next step for future measurements. How-
ever, for our work, this is not necessary, as other influences dominate the data quality. Furthermore, not
introducing additional frequencies has the benefit of keeping the system simpler and reducing potential
sources of discrepancies. This is particularly important in our case, as an unexpected behavior in the
data, described below in Sec. 4.4 and chapter 5, prompted a search for possible issues in the measure-
ments. The coupling to mF = +3/2 can also be seen in the Raman-Rabi oscillations, which are presented
below.

4.3.2 Raman-Rabi Oscillations

With the knowledge of the Raman resonances, we know the exact energy difference between the states
and can perform Raman-Rabi oscillations. The Raman-Rabi oscillations let us precisely measure ΩR

and test the coherence of our system. With a Raman transition one can drive Raman-Rabi oscillations
analogously to Rabi oscillations.

For recording Raman-Rabi oscillations, a spin-polarized degenerate Fermi gas is loaded into a deep
optical lattice as in the previous section. For the measurement, we set the magnetic field again to 19
Gauss and the two-photon detuning δR to zero (according to the Raman resonance measurement in Sec.
4.3.1). We use square pulses with a rise and fall time of about 1 µs and take an OSG image directly after
the end of the pulse. We evaluate the OSG images and extract the number of atoms in the different spin
states NmF . We plot the relative population of the spin states nmF as a function of time t in Fig. 4.6. The
error bars show the uncertainty in the determination of the atom number in the same way as in Fig. 4.5.
We fit a numerical solution for the time evolution of the density matrix to this data, analogous to how we
fit the Raman resonances. Only the fit parameters change to a single one: ΩR. The shaded areas around

1The initial population of the −1/2 spin state ρini
−1/2 is measured to be unexpectedly large with about 12.5 %, we attribute this

result to the method of determining the relative populations (see 1.5.2). We expect the residual population of the −1/2 state
to be below 10 % after our spin polarization procedure (see 1.3.2).
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Figure 4.6: Typical Raman-Rabi oscillations for 171Yb (left) and 173Yb (right). The figure displays the
population fraction nmF as a function of the evolution time t. The system starts in a spin-polarized state in a
deep lattice. The data points show nmF for the relevant mF states, while the Raman frequency difference ∆ω
is set on resonance. The error bars mark the uncertainty in the determination of the atom number. The lines
present a fit of numerically solving the time evolution of the density matrix (see main text for details). The
shaded areas around the lines mark the 95 % confidence interval of the fit. Fit results and parameters of the
measurements are listed in Table 4.3.

Table 4.3: Fit results and parameters for Fig. 4.6. The table lists fit results and parameters for the time
evolution of the density matrix.

Parameter 171Yb fit 173Yb fit

ΩR 2π × 58.03(17) Hz 2π × 10.534(30) Hz

∆ω 2π × 14.153 kHz 2π × 7.769 kHz

the lines in Fig. 4.6 mark the 95 % confidence interval of the fit. The fit results can be seen in Table
4.3.

The measured data can be well described with the fit model and the uncertainties show a precise mea-
surement of ΩR. For longer oscillation times - in particular for the data with 173Yb - the amplitude of
the oscillations decreases. However, the data displayed here shows high amplitudes for up to 200 ms,
which is longer than all chiral edge current measurements performed in this thesis. In addition, with
ΩR ≈ 2π × 11 Hz the displayed data resembles a more critical scenario than all chiral current data with
ΩR ≥ 2π × 49 Hz. One could capture the decoherence in the oscillations with additional terms in the
Hamiltonian (see for example Ref. [162, 163]), but this goes beyond the scope of these calibration mea-
surements. As already discussed above for the Raman resonances, there is a coupling to the mF = +3/2
state for 173Yb. The population of the state stays below 10 % for the relevant timescales of the experi-
ment. This can be used to deduce an upper limit on expected influences.
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4.3.3 Chiral Edge Currents

After we characterized the system for a specific parameter set, we can use the information of the exact
position of the Raman resonance and the coupling strength given by the Raman-Rabi oscillation fre-
quency, to realize the Harper-Hofstadter model by preparing an eigenstate. Subsequently, we want to
investigate the system and characterize it further. For us, the most interesting property are the chiral
currents - despite the basic characteristics of magnetic flux and tunneling amplitudes along the real and
synthetic dimension, which we already know. Here, we describe and discuss our measuring process and
present a typical data set.

The chiral currents are a consequence of the topologically non-trivial system. They are a remarkable
property of quantum Hall systems, as they are protected by the bulk-boundary correspondence and robust
against impurities. The net current along one leg of our ladder system, would manifest itself as an
imbalance in the quasi-momentum distribution of the (effectively) charge carrying particles. Therefore,
in order to measure the currents, we need the quasi-momentum information of the atoms. Furthermore,
as the currents are chiral and have opposite signs along the two legs of our ladder system, it is important
to only measure the currents for one leg at a time. Otherwise, the absolute value of the currents may be
reduced or even zero, for a fully occupied dressed band. In the following, we demonstrate how we extract
this information from the system. In contrast to the Raman resonance and oscillation measurements
described above, for these measurements, the optical 1D-lattice is shallow (tunneling in the order of
ΩR) and not deep, such that a system as illustrated in Fig. 3.5 is realized. Furthermore, the 2D-lattice
depth is reduced to s2D = 9Erec, which reduces the harmonic confinement along the 1D-lattice, while
it is still deep enough to inhibit transverse tunneling. We assume a system where the Fermi energy lies
between the lowest two Bloch bands of the 1D lattice, and initially, only one spin state is occupied.
Unless explicitly stated otherwise, this is our intended filling factor. After loading the atoms into the
three-dimensional lattice, all dipole traps are ramped down, leaving only the lattice beams to support the
atoms against gravity. The system is then allowed to relax for 300 ms. Following this relaxation period,
we begin the adiabatic passage (see Sec. 4.2.1) to prepare the atoms in an eigenstate of the Harper-
Hofstadter Hamiltonian. Immediately after the preparation of the eigenstate, we perform a bandmapping
technique along the shallow one-dimensional optical lattice. Subsequently, the deep optical 2D-lattice
in the transverse directions is switched off abruptly without any bandmapping to avoid influences on
the data. Possible influences of the bandmapping and countermeasures are discussed in Sec. 4.4.2. In
the 1D-lattice direction, the quasi-momentum of the atoms is transferred into momentum in free space
and after a time of flight, it is mapped to a position in space (see Sec. 1.5.1). In addition to the quasi-
momentum imaging, we include a spin-selective imaging to only image one spin state and, thus, only
one leg at a time. For this purpose, we blast away all atoms in other spin states with short resonant light
pulses during TOF (see Sec. 1.5.2). We do not use the spin-selective imaging method with OSG, which
in principle could detect atoms in both legs individually, as it may influence the momentum information
(see Sec. 1.5.2).

To demonstrate the agreement between the measurements and the theoretical model, we prepare the
two isotopes in two different eigenstate bands. 173Yb is prepared in the lowest dressed band, whereas
171Yb is prepared in the second lowest. According to Fig. 3.6, we anticipate complementary spin state
populations for the different bands. For the measurements, we average five data images and rotate the
spin-selective images, such that the shallow lattice direction is exactly along our horizontal axis. Typical
examples of these rotated images can be seen in Fig. 4.7. We extract the chiral current information from
the images analogously as in Ref. [3, 4]. For this purpose, we compute the integral along the vertical
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Figure 4.7: Typical chiral current data. The figure presents typical data for the calculation of chiral currents.
Data on the left in red is taken with 171Yb and illustrates the second lowest eigenstate of the Harper-Hofstadter
Hamiltonian, whereas data on the right in blue is taken with 173Yb and illustrates the lowest eigenstate. The
top row shows atoms of a single spin state, i.e. of a single leg of the ladder system. The images are averages
of five data images. The middle row shows the atom density n(k) as a function of the momentum k. The
normalization of n(k) is defined in Eq. 4.10. The bottom row shows the asymmetry function h(k) (defined in
Eq. 4.11) as a function of k. Furthermore, the values of J (equation 4.12) are displayed for the corresponding
data. The gray vertical dashed lines mark the boundaries of the first Brillouin zone.

axis and normalize the atom density n(k) such that

π/a∫
−π/a

n(k) dk = 1, (4.10)

where the integral goes over the first Brillouin zone. Then, we compute the asymmetry function defined
as

h(k) B n(k) − n(−k). (4.11)

Finally, the chiral current J is calculated as

J = −

π/a∫
0

h(k) dk. (4.12)

n(k) and h(k) are plotted as a function of the lattice momentum k in Fig. 4.7 for the first and second
Brillouin zone for typical data. Also, the values of J for this data can be seen in the figure. The chiral
edge currents of the two distinct eigenstate bands have the same sign for the same pseudo-spin state. The
reason for that is, that the isotopes are not only prepared in different bands, but additionally, we inverted
the direction of the momentum transfer and, consequently, the sign of the magnetic flux. Hence, the
chiral currents for both isotopes are expected to have the same direction and magnitude, if interactions
are neglected.

For the correct calculation of h and J, the exact position of the Brillouin zone center is crucial. We
determine the center from a reference image in auxiliary measurements, which we take additionally for
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all data. The reference images display atoms in the initially prepared spin state loaded into the same
lattice as the data images. They are taken with the same procedure as the data images, but without
the Raman beams. To minimize differences to the data, we also use the spin-selective imaging. The
Brillouin zone center is identified using a Gaussian fit to the reference data. While the actual line profile
generally deviates from a perfect Gaussian shape, our deliberately incomplete bandmapping (see Sec.
4.4.2) results in a line profile that closely approximates a Gaussian. Consequently, this fitting method
provides an accurate determination of the center. To not be limited to a discrete pixel of the camera
for the Brillouin zone center, we interpolate the data. This reduces the uncertainty in the chiral current
value. The typical measurements of the chiral currents confirm that our system behaves as a synthetic
ladder system under the influence of an artificial magnetic field. It demonstrates directly the underlying
spin-orbit coupling. As predicted, the lowest and second-lowest eigenstate exhibit complementary atom
distributions in momentum space.

In this section, we have presented the primary measurements that lay the groundwork for characterizing
the quantum Hall ladder system. By recording the Raman resonances and Raman-Rabi oscillations, we
have shown how to obtain the essential information about the Raman transitions needed to realize the
quantum Hall ladder states. Additionally, the successful preparation of Harper-Hofstadter eigenstates
has been demonstrated, and the method for extracting chiral edge currents has been outlined. These
foundational measurements provide a detailed understanding of the system, which will serve as the basis
for the results presented in chapter 5.

4.4 Methods for Data Optimization

With the ability to create quantum Hall ladders and to measure the intriguing chiral edge currents, we
are ready to explore interaction effects in these systems. However, before we begin, we detail different
methods for data optimization in this section. This is particularly important in our case, as we encoun-
tered some unexpected results in the data, which are described in Chapter 5. We provide a comprehensive
overview of our methods for acquiring data on interaction effects, detailing countermeasures and remain-
ing influences. Specifically, we address the following aspects:

• Sec. 4.4.1: The impact and management of imperfect spin manipulation and detection.

• Sec. 4.4.2: Detailed analysis of the imaging stage components.

• Sec. 4.4.3: The effects of eigenstate preparation.

• Sec. 4.4.4: Potential optimizations in data analysis.

By systematically addressing these areas, we aim to enhance the accuracy and reliability of our data
before proceeding with the study of interaction effects.

4.4.1 Imperfect Spin Manipulation and Detection

The starting point of our measurements for the chiral currents of the quantum Hall ladder is a spin-
polarized Fermi gas. For the spin-polarization, atoms are optically pumped into a single spin state, but
this process does not work perfectly. This can be seen, for example, in the data of the typical Raman
resonances in Fig. 4.5 and their fit results in Table 4.2. Therefore, we want to explore the influence of
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atoms in unwanted spin states on the chiral current data. For this purpose, we consider, what happens
to the atoms in the incorrect spin state. In the case of 171Yb, there is only one other spin state available,
which is the mF = 1/2 state. During the eigenstate preparation, atoms in this state will be prepared in
the other dressed band of the two available bands shown in Fig. 3.1 and 3.6. This means, if the atoms in
mF = −1/2 are prepared in the lowest dressed band, then, atoms in mF = 1/2 are prepared in the second
lowest dressed band and vice versa. The reason for this is, that, in the rotating frame and at the beginning
of the adiabatic passage, the atoms in mF = −1/2 start, for example, in a state lower than the other
spin state, whereas atoms in mF = 1/2 start in the higher spin state. During the eigenstate preparation,
the atoms perform an avoided crossing and remain in the lower or higher available state, respectively.
Thus, the atoms in the undesired spin state of the imperfect spin-polarized Fermi gas are prepared in the
opposite dressed band. The opposite dressed band also exhibits chiral currents. The exact value of these
undesired currents is unclear, as it is hard to predict the currents at the particular reduced filling factor.
However, it is known from Ref. [85], that the atoms show a chiral current in the opposite direction of
the correct data. This is true, if all atoms remain in the opposite dressed band, which is the case for our
available parameter regimes ofΩR/tx = 2.06(15) and filling factors equal or below the ones of the correct
data. Thus, we treat this influence of the imperfect spin-polarization as an additional uncertainty on the
chiral current data. Therefore, we add the relative population in the unwanted spin state as a relative
uncertainty to the standard deviation of the statistical uncertainty on the chiral current data. The added
uncertainty has only a component along the direction of the chiral currents, i.e. in positive direction for
positive currents and in negative direction for negative currents.

In the case of 173Yb, there are more spin states available than for 171Yb. All spin states, which have a
negligible Raman coupling to the two states, which form the legs of the quantum Hall ladder, can be
neglected, as they can be expected to not affect the system. This means, only the mF = 3/2 state needs
to be considered, since it has a residual population after the optical pumping for the spin-polarization
process and which is slightly coupled to the two relevant spin states, as described in Sec. 4.3. However,
the off-resonant Raman coupling to this spin state results in a very weak alteration of the band’s spin
composition in the dressed frame. Thus, atoms in this spin state populate a dressed state, which features
chiral currents, that are at least one order of magnitude smaller than the currents of the other dressed
bands. In addition, the residual population of this state with respect to the desired state is at least one
order of magnitude smaller, so the total influence of the state population on the measured chiral currents
can be neglected. Hence, we can treat the data for 173Yb analogously to the 171Yb data and only need to
consider the residual population in mF = −1/2.

In addition to the imperfect spin manipulation, there are also imperfections in our spin state detection
methods, which influence our measurement data. As extensively discussed in Ref. [95, 97, 100], for the
OSG method in our setup (see Sec. 1.5.2), there is finite scattering of atoms by the OSG beam. Since
this scattering varies in strength for the respective spin states, the atom numbers of different spins are
also influenced and distorted to a different extent. As a result, the relative occupancies of spin states
in the OSG images are not accurately represented. We observe this very clearly, for example, when
imaging a Fermi gas, which should feature uniform occupancy of all spins. We assume that this is the
case, when we do not perform any optical pumping for the following reasoning. After the MOT stage,
where not all spin states can be trapped [94, 115], there is an experimental stage, where the external
magnetic field from an Anti-Helmholtz configuration is switched off and there is no defined quantization
axis. Afterwards, a quantization axis is reintroduced by an external magnetic field from a Helmholtz
configuration. Therefore, we expect a homogeneous spin distribution at this stage and the distribution is
also not changed during evaporative cooling, because the inter-particle interactions are SU(N) symmetric
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Figure 4.8: Comparison of spin state detection methods. The upper subfigure displays the atom numbers
in the mF = +1/2 and mF = −1/2 state for 171Yb determined with three different methods. The atom numbers
are presented for separate measurements, which are distinguished by different Raman preparation ramp
times and plotted as such to make the connection to other data presented below in Fig. 4.11 clearer. The
exact meaning of this parameter is explained below in Sec. 4.4.3. We determine the atom numbers with
the uncorrected OSG method (labeled as "OSG"), with the correction described in the main text (labeled as
"corrected") and with our other spin-selective imaging method (labeled as "blasts"), which uses blast pulses
(see Sec. 1.5.2). In the lower subfigure, the relative occupancy n↑ of the |↑⟩ state is shown, which is calculated
from the data in the upper subfigure. As displayed in the legend, markers indicate different spin states, while
colors indicate the detection method. Data from the OSG methods are single-shot data, while the data from
the blast pulses method are averaged five times and the error bars to these data points show the standard
deviation.
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(see Sec. 1.1). Thus, we would expect, that, when imaging such a gas with OSG, an equal number of
atoms would be measured in each spin state, but this is not the case.

To partially compensate for this imperfection of the OSG method in our measurements, we perform
auxiliary measurements, where we image a spin-balanced Fermi gas and use it as a reference for the
imaging efficiency of individual spin states. We obtain a corrected number of atoms in a spin state Ncor

mF
,

by adjusting the measured atom number in a spin state NOSG
mF

according to the following equation

Ncor
mF
=

NOSG
mF

Z · nref
mF

, (4.13)

where Z is the number of available spin states for each isotope, i.e. 2 for 171Yb and 6 for 173Yb, and
nref

mF
is the relative spin state population measured in the auxiliary measurements of the spin-balanced

sample. To verify, whether this correction indeed reflects the occupation of spin states better, we com-
pare atom numbers between three different methods in Fig. 4.8. We determine the atom number with the
uncorrected OSG method, with the correction described above and with our other spin-selective imaging
method, which uses blast pulses (see Sec. 1.5.2). We present data with 171Yb and for several separate
measurements. In the upper subfigure, we display the absolute atom numbers, while in the lower sub-
figure, the relative occupancy n1/2 of the spin mF = +1/2 state is shown. In the absolute numbers, we
observe, that the atom numbers for the blast pulse method are generally higher than for the OSG meth-
ods. There are several possible reasons for this. First, it could be that not all atoms in other spin states are
blasted away in the blast pulse method. Second, despite the wrong spin state classification, the scattering
of atoms by the OSG beam can lead to atom losses. Third, there could also be a systematic error, since
the atom numbers in the OSG images are determined with a Gaussian profile fit, while for the blast pulse
method, the atom number is determined directly through the optical density. We do not fit the images of
the blast pulse method, as they are additionally used for further analysis purposes and, thus, generally do
not exhibit a simple line profile and cannot easily be fitted. However, the exact details and clarification of
the discrepancy is of minor importance to us for our measurements and further investigations go beyond
the scope of this thesis.

In the relative occupancy shown in the lower subfigure, it can be seen, that the OSG data with correc-
tion matches the blast method data much better than the OSG data without correction. From this, we
conclude, that our compensation method reflects the genuine spin state occupation better. Hence, we
use it for all data extracted from OSG images. This means, among others, in the measurements of the
Raman resonances, the Raman-Rabi oscillations and in the auxiliary measurements for the chiral edge
currents.

4.4.2 Imaging

To extract the chiral currents information from the physical system, the atoms need to be imaged spin-
selectively in their quasimomentum state. For this purpose, there are several steps included in the imaging
procedure: switching off the Raman beams, bandmapping, TOF and spin-selective imaging. In the
following, we shortly discuss the possible influences on the chiral current data from the individual stages.
The first step of the imaging is to switch off the Raman beams before the bandmapping. This step ensures,
that the spin state composition of the atoms is locked before the tunneling amplitude t is changed during
bandmapping. Hence, the atoms cannot change their spin state composition, which is necessary as a
change in ΩR/tx generally influences the composition. We do not expect a further influence on the chiral
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Figure 4.9: Influence of bandmapping time. The figure displays data with 173Yb atoms, ΩR/tx = 2.06(15)
and s1D = 12Erec for various times of the quasi-exponential bandmapping ramp of the 1D-lattice. The 2D-
lattice is switched off abruptly at the beginning of the ramp. The different ramp times are plotted on the
horizontal axis and labeled as "bandmap time". The upper figure presents the chiral currents J for the two
legs of the quantum Hall ladder, denoted by their pseudospin |↑⟩ and |↓⟩. The lower figure presents the atom
number fraction in the first three Brillouin zones, defined as ni = Ni/(N1st BZ + N2nd BZ + N3rd BZ), i ∈ {1st BZ,
2nd BZ, 3rd BZ} for the same data as in the upper figure. Data points are averaged at least five times and
error bars denote the standard deviation. In the lower figure, error bars are typically smaller than the data
point markers.

current data by the missing Raman beams. The next imaging step is the bandmapping, which we discuss
in detail below. We first discuss the other stages briefly. During TOF, the atoms evolve according to their
initial momentum state. This is a well established process for momentum imaging and its imperfection
in the mapping from momentum space to position space is negligible compared to other uncertainties
for the chiral currents determination. The last imaging stage is the spin-selective imaging. We expect
the uncertainty on the chiral currents caused by this technique to be negligible, as there are indications,
that the process works very well. The first indication is, that the atom numbers in the initially prepared
spin-polarized state equals the sum of the atom numbers in the two spin states of the quantum Hall
ladder. These atom numbers are displayed below in Fig. 4.11. The second indication is, that the found
relative atom numbers of the individual spin states of the dressed state are confirmed in the auxiliary
measurements where the dressed state is imaged with the OSG technique. This data is presented in Fig.
4.8.

In the following, we discuss the influences of the bandmapping technique. First, we discuss the transverse
lattice direction, which means the triangular 2D-lattice. In this direction, the beams are switched off
abruptly to avoid any corruption of the data. This quench has the effect, that the quasimomentum of the
atoms is not mapped onto a single real space momentum. Instead, the quasimomentum q will evolve
according to its momentum distribution, expanding as a superposition of plane waves with momenta
pn = ℏq ± nℏG, where n is an arbitrary integer and G is the reciprocal-lattice vector [151]. Since
we integrate the optical density in this direction for the calculation of the chiral currents, the mapping
into other Brillouin zones does not affect the data. Along the 1D lattice direction, the influence of the
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bandmapping is explored by measurements displayed in Fig. 4.9. The figure depicts data with 173Yb
atoms, ΩR/tx = 2.06(15) and s1D = 12Erec for various times of the quasi-exponential bandmapping
ramp of the 1D-lattice. The upper figure displays the chiral currents J for the two legs of the quantum
Hall ladder, denoted by their pseudospin |↑⟩ and |↓⟩. The lower figure presents the atom number fraction
in the first three Brillouin zones for the same data as in the upper figure. The atom number fractions ni

are defined as
ni = Ni/(N1st BZ + N2nd BZ + N3rd BZ), (4.14)

where i ∈ {1st BZ, 2nd BZ, 3rd BZ}. In the upper figure, we observe, that the chiral current of |↑⟩
decreases in its absolute value, i.e. increases from a negative value towards zero, for longer bandmap
times. At a bandmap time of about 3 ms, the current has nearly reached zero and stays in the regime up
to the longest measured bandmap times. The chiral current of |↓⟩ is close to zero for all bandmap times
and fluctuates, but does not show a clear behavior trend as a function of the bandmap time. We attribute
the strong asymmetric chiral currents for the two pseudospin states for the shortest bandmap times to
the influence of the eigenstate preparation, which is discussed in detail below in Sec. 4.4.3. In the lower
figure, we observe, that the atom number fractions in the first three Brillouin zones starts at a nearly equal
occupation of 45 % in the first and second Brillouin zone and about 10 % in the third Brillouin zone for
the shortest bandmap time of 10 µs. For longer bandmap times, the atom number fraction in the first
Brillouin zone increases, as the fraction in the second and third Brillouin zone decreases monotonically
until a bandmap time of about 0.5 ms. For this and longer bandmap times, the fractions stay constant
within experimental accuracy at about 80 % in the first Brillouin zone, 20 % in the second Brillouin zone
and 0 % in the third Brillouin zone. The behavior of the atom number fractions is as expected. The
fidelity of the bandmapping increases for longer bandmap times up to a saturation time. The remaining
occupancy in the second Brillouin zone for long bandmap times is higher than expected, but not further
investigated in this thesis due to minor importance for our measurements. By comparing the upper and
lower figure, we observe, that the bandmapping and, thus, the correct Brillouin zone projection of the
atoms, saturates already at a bandmap time of about 0.5 ms, whereas the decrease in |J↑| continues up
to bandmap times of about 3 ms. This means, that the influence of the bandmap time on the chiral
current value cannot be reduced to an imperfect bandmapping. In addition, we see that, if we perform a
projection of atoms from higher Brillouin zones into the first, which is described in detail below in Sec.
4.4.4, we still observe the same qualitative behavior of the chiral currents in the upper figure.

Therefore, we observe a strong dependence of the alleged currents on the bandmap time. This seems
to be a corruption of the data. We choose to present only data for the deepest 1D-lattice depth, with
which we work in this chapter, as it is expected to be the most critical scenario. We recorded also data
for shallower lattice depths, which are not presented here, but also show a dependency on the bandmap
time with a smaller magnitude. In some of this data, the chiral currents are not decreased, but increased
in their absolute value. We conclude, that data with long bandmapping times cannot be trusted. As a
countermeasure, it would be good to eliminate the bandmapping, while still being able to extract the
quasimomentum information of the atoms along the 1D lattice. This could be realized by switching
off the 1D lattice beam abruptly like the 2D lattice beams and, subsequently, project all atoms from
higher Brillouin zones to the first one in the data analysis. This method would require, that only the
first Brillouin zone is occupied by the atoms, which is in general the case for our parameter regimes
to a great extent. However, as evident from the data (displayed in Fig. 4.9), for very short bandmap
times, the chiral currents are only slightly affected, while the bandmapping fidelity can already increase.
As a compromise between avoiding the influence of the bandmapping and to reduce possible additional
uncertainties in the data analysis, we decide to work with a very fast, non-optimal bandmapping ramp
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time of 300 µs for all following chiral current measurements. As the deepest 1D-lattice depth requires
the longest bandmap time to achieve a high fidelity, we anticipate that this ramp time will even work
better for shallower lattice depths.

To further understand, what happens to the data during bandmapping, one could investigate the timescales,
on which these dynamics take place for different parameter regimes. Another strategy to understand this
better, would be to take images also during the bandmapping ramp and not only after it. In this way, one
could follow the actual dynamics also during bandmapping. However, such investigations are not the
main purpose of our measurements and go beyond the scope of this thesis.

4.4.3 Eigenstate Preparation

After the discussion of optimizations for the imaging above, we consider optimizations for the eigenstate
preparation in this section. As described in Sec. 4.2.1, we use an adiabatic ramp of the two-photon
Raman detuning δR to prepare an eigenstate of the Harper-Hofstadter Hamiltonian. Here, we investigate
the preparation further in their influence on the measured chiral currents.

As mentioned in Sec. 4.1, there are indications of a much faster decay of the chiral currents than theoret-
ically expected in Ref. [5, 6] and the observed decay rates are in the order of the eigenstate preparation
time. Therefore, an optimized preparation of the eigenstate would be one, which prepares the eigenstate
well and at the same time is fast enough to avoid any decay of the currents. To get a good estimation of
the fastest well-working preparation times, we simulate the adiabatic passage of the eigenstate prepara-
tion and try to find a good parameter regime. For a fixed ratio of ΩR/tx and a fixed value of ϕ, the time
evolution of the adiabatic passage is independent of the individual values of ΩR and tx, if all parameters
are expressed in values of ΩR. This means, we can find universal ramp parameters for the measurements
of various lattice depths with fixed ΩR/tx. Thereby, we neglect interaction effects, which may cause the
optimal parameters to change slightly.

We find a fast preparation with a theoretical fidelity of 97.9 % for the following parameters:

δini = 10ΩR

Tramp =
75
2π
·

1
ΩR

τramp = 0.3Tramp.

(4.15)

The exact form of the exponential-like ramp can be found in Eq. 4.5. In addition, we simulate the adia-
batic passage for various ramp times A · Tramp around the found value to get insights into the dependence
on the ramp duration. The simulations are displayed in Fig. 4.10, where the additional factor A is mono-
tonically increasing from top to bottom and takes the values: 0.25, 0.5, 1 and 5. This means, the third
simulation displays the simulation for the parameters listed above, whereas the first two simulations
show faster ramps and the fourth ramp is slower. In the simulations, we observe, that the fidelity does
only marginally increase for ramp times longer than the found parameters, whereas for faster ramp times
the fidelity decreases significantly to values, where it can be expected, that the insufficient eigenstate
preparation has a major influence on the behavior of the system.

For these simulated adiabatic passages and additionally for A = 1.5, 2 and 3, we take experimental data
with the weakly interacting 171Yb. We use a fixed parameter set ofΩR/tx = 2.06(15) and ϕ = 0.444(20)π
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Figure 4.10: Comparison of preparation ramp times. The figures display the state transfer for adiabatic
passages with various ramp times. For this purpose, we present several quantities as a function of the ramp
time t in each subfigure. On the left vertical axis, we depict the relative population n of different states. On the
one hand, the population nbare

↑/↓
of the pseudo spin states |↑⟩ and |↓⟩ in the bare states is plotted (dashed lines).

On the other hand, we present the population ndres
low/high of the lowest and higher (second lowest) dressed band

(solid lines). On the right vertical axis, we show the two-photon detuning δR (dotted line) in units of the Raman
coupling strength ΩR. From top to bottom the displayed ramp times of the adiabatic passages increase. The
ramp times are A · Tramp = A · 75/ (2πΩR), where the additional factor A takes the values from top to bottom:
0.25, 0.5, 1 and 5.
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Figure 4.11: Influence of preparation ramp times. The figure displays various quantities recorded with
171Yb as a function of the Raman ramp time. The parameters are set to ΩR/tx = 2.06(15) and ϕ = 0.444(20)π.
The left column presents data for the shallowest 1D lattice depth, s1D = 2 Erec, while the right column presents
data for the deepest 1D lattice depth, s1D = 12 Erec. The figures in the top row show the measured chiral
currents J for the spin states |↑⟩ and |↓⟩ and the reference case without spin-orbit coupling (SOC) labeled as
"No SOC". The figures in the middle row display the number of atoms N for the three different cases of the top
figures. The bottom figures exhibit the fidelity F for the preparation of the eigenstate. The data in the top and
middle row is averaged five times and the error bars indicate the standard deviations, which are often smaller
than the data point markers. The fidelity data is extracted from a single-shot measurement.
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and measure the chiral currents. In auxiliary measurements, we additionally track data to evaluate the
fidelity of the preparation. The results are presented as a function of the Raman ramp time in Fig. 4.11
for a 1D lattice depth of s1D = 2Erec on the left and s1D = 12Erec on the right. The top row of the figure
exhibits the chiral currents for |↑⟩, |↓⟩ and reference data without spin-orbit coupling (SOC) labeled "No
SOC". For the reference data, the measurement cycle is equal to the one, which records the chiral currents
in the (pseudo)spin states, but without the Raman beams. To minimize differences to the data, we also
use the spin-selective imaging in these measurements. In the middle row of the figure, we depict the
atom numbers N for the same data as in the top row. These subfigures are used to verify, that the system
behaves as expected and to rule out large particle losses during the eigenstate preparation. We observe
in the different atom numbers, that the total number of atoms before and after the ramp are equal for all
preparation times within experimental accuracy, i.e. NNo SOC = N↑ + N↓. This means, that the scattering
of photons by the Raman beams can be neglected as expected from theory. An additional observation
is, that, after the preparation ramp, the atoms are distributed over the two spin states to roughly equal
amounts, which is expected for the dressed state. The population of the dressed state in our Harper-
Hofstadter model for fully occupied band would theoretically consist of 50 % in one spin state and 50 %
in the other spin state. However, some effects can influence this ratio in our experimental system. First,
if the two-photon detuning δR is not exactly zero (this can be caused by an imperfect measurement of
the Raman resonance). Second, due to the small coupling to the third spin state for data with 173Yb
(which is not the case of the chosen data). Third, because of the harmonic confinement, which couples
the quasimomentum and position of the atoms and leads to an inhomogeneous momentum distribution
for the initial spin-polarized state (see Ref. [116]), which is further described below. Because of these
influences, it is hard to define an optimal population ratio of the spin states for a perfect eigenstate
preparation. Thus, we do not use it to evaluate the fidelity of the eigenstate preparation. We only take
this measurement into account as an additional check, that a population transfer occurred.

To evaluate the fidelity of an eigenstate preparation, we make another auxiliary measurement, where
we perform the preparation ramp and immediately afterwards perform an additional inverse preparation
ramp. After this inverse ramp, we measure the relative number of atoms nmF as defined in Eq. 4.8 in the
two spin states, which constitute the synthetic dimension. After the inverse ramp, we expect all atoms to
be transferred back to the initially prepared spin state. With this data, we determine the fidelity F of the
eigenstate preparation as

F = nmF,ini, (4.16)

where nmF,ini denotes the relative population in the initially prepared spin state after the inverse ramp.
Using this measurement to assess the fidelity of the eigenstate preparation is not entirely precise, as
the atoms, for instance, pass through two Raman ramps instead of just one. However, it provides a
reasonable estimate. The calculated fidelity of the eigenstate preparation is plotted in the bottom row
of Fig. 4.11. For the case of s1D = 2Erec, we observe, that the fastest ramp time reveals only a fidelity
below 50 %, whereas for the other ramp times, the fidelity is above 70 %. For the second to fourth fastest
ramp times the fidelity is the highest and for longer ramp times the fidelity decreases monotonically.
This behavior is qualitatively as expected by the theory, for too fast preparations the fidelity is bad, then
it reaches a maximum and at some point for slower preparations, it gradually decreases, which is most
likely caused by the limited coherence time of the system. For the case of s1D = 12Erec, we observe,
a similar behavior. Differences are, that the two fastest preparation ramps exhibit bad fidelity values
instead of only the fastest and the maximum values for the fidelity are lower than for the case of the
shallower lattice depth.

For the data at s1D = 2Erec, we observe prominent chiral currents, which feature values higher than
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in comparable experimental studies (see Ref. [3–7]). In all quantities of the auxiliary measurements,
we observe a behavior consistent with the theory. However, even though, we only observe a small
decoherence in the fidelity for the displayed preparation times, the chiral currents strongly depend on
the preparation time in the case of s1D = 12Erec. The currents even change sign. This behavior cannot
be explained by the observed decoherence in the fidelity measurements and is unexpected. Despite the
dependency on the preparation ramp time, we observe two other behaviors, which are unexpected from
the theoretical model. First, for some ramp times with a good eigenstate preparation fidelity, the s1D =

12Erec data displays strongly asymmetric chiral currents. Second, the chiral currents for s1D = 12Erec

are generally smaller in their amplitude than for s1D = 2Erec. Instead, the predictions from the model
are, that the chiral currents are the same for all lattice depths and that the currents are equally strong for
both spin states but in opposite directions. We discuss the implications of these findings after making
further data optimizations in the next section.

4.4.4 Data Analysis

The work in this section so far concentrated on the possibilities to optimize the chiral current data acqui-
sition by varying parameters for the measurements. In this subsection, we continue with optimizations
in the analysis of the data. First, we try to reconstruct the data of a perfect bandmapping by projecting
atoms to the first Brillouin zone. Second, we account for the initial quasimomentum distribution caused
by the harmonic confinement.

Brillouin Zone Projection

As mentioned in the previous subsection, the bandmapping affects the chiral current data, which is, why
we record all data with a very fast ramp of the lattice, instead of a well-working bandmap time. Therefore,
the bandmapping works only up to a certain extent, and some quasimomenta from the lowest Bloch band
are not exclusively transferred into the first Brillouin zone, but also into higher Brillouin zones. Here,
we describe our approach to handling this influence in our data analysis. We first calculate the Brillouin
zone size 2π/a on our images in pixels using the following relation:

2π
a
=

2ℏklattTOF

mYb
·

M
dpx

Pixels, (4.17)

where tTOF is the time of flight, mYb is the mass of an ytterbium atom (with small differences between
the isotopes), M is the magnification of the imaging, dpx is the pixel size. In addition, the center of the
Brillouin zone is determined as for the extraction of the chiral currents. Then, we project atoms from
higher Brillouin zones into the first by transferring them by multiples of the lattice vector G⃗. We perform
this projection, before we normalize the atom density according to Eq. 4.10. Hence, for some momenta
the atom density in the first Brillouin zone is reduced, even though atoms are exclusively added by the
projection.

Fig. 4.12 shows an example of the Brillouin zone projection, using data from auxiliary measurements
to determine the initial quasimomentum distribution nini(k) of the spin-polarized Fermi gas in our setup.
This is the same data, which we used for the determination of the atom number before the eigenstate
preparation (see Sec. 4.4.3). The figure presents nini(k) for the shallowest (s1D = 2) and deepest (s1D =

12) 1D lattice depths of our measurements. In each subfigure, the momentum distribution is displayed
for three different scenarios. First, it is shown without any projection of atoms. Second, the momentum
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Figure 4.12: Typical initial momentum distributions with and without Brillouin zone projections. The
figure presents typical initial momentum distribution nini(k) for the shallowest (s1D = 2 on the left side) and
deepest (s1D = 12 on the right side) 1D lattice depths of our measurements. In each subfigure, the momen-
tum distribution is displayed as a function of the quasimomentum k of the 1D lattice and for three different
scenarios. First, it is shown without any projection of atoms from higher Brillouin zones into the first one
(labeled as "without proj."). Second, the momentum distribution is shown with a projection of atoms from the
second to the first Brillouin zone (labeled as "2nd BZ proj."). Third, the momentum distribution is shown with
a projection of atoms from the second and third Brillouin zone into the first Brillouin zone (labeled as "2nd &
3rd BZ proj.").

distribution is shown with a projection of atoms from the second to the first Brillouin zone. Third, the
momentum distribution is shown with a projection of atoms from the second and third Brillouin zone
into the first Brillouin zone.

In both lattice depth cases, we observe, that the difference between the data with only the second Brillouin
zone projected in comparison to the data with the second and third Brillouin zone projected is marginal.
Hence, the influence of higher Brillouin zones than the third can be neglected. For our parameters and
a lattice depth of s1D = 12Erec, we expect for a Fermi energy between the lowest two Bloch bands,
that the initial momentum distribution is approximately homogeneous. This can in fact be observed in
the data with projections, which suggests, that the Brillouin zone projection works correctly and that
the quasimomenta are represented more realistically with such a projection. Furthermore, this supports
the assumption, that there are only negligible occupancies in higher Bloch bands (than the lowest one),
because of the following reasoning. The data shows, that the second Bloch band is at least not fully
occupied. If it were partially occupied (because of the Fermi energy lying in the band and not by thermal
excitations), the momentum distribution at the edges of the Brillouin zone would be higher than in the
center. This would be a consequence of the shape of the second Bloch band, which has lower energy
states at the Brillouin zone edges than in the center. This reasoning is at least valid, when the effect of
the harmonic confinement on the initial quasimomentum distribution is disregarded, which is reasonable
for this lattice depth.

Initial Quasimomentum Distribution
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Since the initial quasimomentum distribution is not homogeneous for shallow lattice depths, we explore
in the following, how we can consider its influence. This is another option to optimize the data analysis,
besides the Brillouin zone projection. Without harmonic confinement, the quasimomentum distribution
of the prepared spin-polarized Fermi gas would be homogeneous over the first Brillouin zone for a Fermi
energy between the lowest two Bloch bands. This means, that the probability to find an atom in a certain
quasimomentum state would be equal for all quasimomenta in the first Brillouin zone. However, in
our system, we have a finite harmonic confinement induced by the beam profiles of our lattice beams.
The harmonic confinement is not diagonal in quasi-momentum space, and therefore it couples different
quasimomentum states. As a result, the quasimomentum distribution changes and is in general not
homogeneous. One consequence of the inhomogeneous distribution is, that the chiral currents along
the two legs are not necessarily equal in their absolute value with opposite sign. Instead, the currents
can be very different and can even have the same sign (see Ref. [116] for details). The reason for this
unbalanced influence is, that the distribution is different for both spin states, because of the momentum
transfer, which the atoms experience, when they change the spin state.

The data in Fig. 4.12 already allows for a preliminary assessment of the influence of the initial quasimo-
mentum distribution on the edge current data. First, it tends to be stronger for shallower lattices than for
deeper ones. Second, if the Brillouin zone projection is additionally performed, the influence of consid-
ering the initial distribution is weaker, such that for example the influence for s1D = 12Erec with Brillouin
zone projection can be neglected. Moreover, if we consider the initial distribution for the chiral currents,
we expect, that the effect of the imperfect bandmapping is partially compensated, if the Brillouin zone
projection is not performed. The reason for this is, that the initial distribution is also affected by the
imperfect bandmapping and has a lower occupancy at the Brillouin zone edges, as it would be expected
for a perfect bandmapping.

We aim to reconstruct the momentum distribution, n↓/↑hom(k), that would result from an initially homoge-
neous distribution. This allows us to better compare the data with the ideal case in our theoretical model,
enabling more accurate interpretations. We achieve this by dividing the measured momentum distribu-
tions n↓/↑(k) by the initial momentum distribution nini(k). For the spin-up case, we further account for the
momentum kick induced by the Raman transition by dividing by nini(k−ϕ/a). The following calculations
outline this process:

n↓hom(k) =
n↓(k)
nini(k)

and (4.18)

n↑hom(k) =
n↑(k)

nini(k − ϕ/a)
. (4.19)

Comparison of Different Analysis Options

We compare the consideration of the initial momentum distribution with the effect of the Brillouin zone
projections on the chiral currents, by presenting the momentum distribution for a single parameter set
and four analysis options and compare them with the theoretical expectation. Fig. 4.13 displays the
momentum distribution of the spin-down state on the left and of the spin-up state on the right. The
displayed data corresponds to chiral currents for a 1D-lattice depth of 4 Erec and a Raman ramp time of
9.2 ms (i.e. A · Tramp = 1.5 · 75/(2πΩR)). We choose this parameter set, because at this lattice depth and
ramp time, the influence of the undesired dynamics is minimal, while at the same time, the tight-binding
approximation is well satisfied. The analysis options are – despite the raw data without further analysis
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Figure 4.13: Momentum distribution for different analysis options. The figure displays the momentum
distribution of the spin down state on the left and of the spin up state on the right for different analysis options.
The displayed data corresponds to the chiral currents shown in Fig. 4.14 for a 1D-lattice depth of 4 Erec and
a Raman ramp time of 9.2 ms. The colors of the data indicate the four different analysis options as labeled in
the legend (for a detailed description see Fig. 4.14). In addition, the expected distribution from the theoretical
model is plotted.

(labeled "raw") – data with the projection of atoms from higher Brillouin zones to the first zone labeled
as "BZ", data with the consideration of the initial momentum distribution labeled as nini and data as a
combination of both additional options. This means, with the Brillouin zone projections and with the
consideration of nini(k) labeled as "BZ & nini". The analysis options are indicated by the color of the data
as illustrated in the legend.

We observe that the data, compared to the theoretical curve, aligns particularly well, when there is a
balanced occupancy (i.e. n = 0.5). The higher values are undershot by the experimental data, while
the lower values are exceeded. It appears as though there is a redistribution in the occupancy towards an
equal distribution throughout the Brillouin zone. In the figure on the right, there’s a visible effect resulting
from imperfect bandmapping. If only the initial population is considered, the atoms located at the edges
of the Brillouin zone are not properly captured. For this spin state, there is the peculiarity that the initial
distribution is shifted by ϕ/a. However, if the Brillouin zone projection is not performed, the atoms at the
edge of the Brillouin zone are underrepresented and, for this spin state, are not located at the edge but at
k = π/a−ϕ/a mod 2π/a. The unusual peak indicates that the atoms are not being correctly mapped. This
shows that the BZ projection is quite important for accurately representing the data. The BZ projection
better approximates the momentum distribution to the theoretical model, especially near the BZ edges.
Overall, the trend looks similar to the theoretical curve, but the asymmetry is less pronounced in the
data compared to the theory. Otherwise, we observe similar patterns as mentioned for the analysis of the
chiral currents.

In addition to the momentum distribution, we present chiral current data in Fig. 4.14 for the same analysis
options, but for different Raman ramp times and 1D lattice depths. The used raw data is the same as in
Fig. 4.11 with additional data for s1D = 8Erec. Both additional analysis options seem to improve the
data quality in the sense, that the momentum distribution is closer to the expected behavior of the theory.
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Figure 4.14: Chiral currents for different analysis options. The figure displays chiral current data for
different analysis options and different lattice depths. From top to bottom, the subfigures present data for
the 1D lattice depths s1D = 2Erec, s1D = 8Erec and s1D = 12Erec. In each subfigure, the chiral currents are
presented as a function of the Raman ramp time in the same way as in Fig. 4.11. The data point markers
indicate the state of the data as the chiral current along the pseudo spin up state |↑⟩ or pseudo spin down
down state |↓⟩. For clarity the reference data without SOC is omitted. The different analysis options do not
change the reference data significantly. The colors of the data indicate the four different analysis options
as labeled in the legend. The first option is the data without any further analysis, which means the same
data as in Fig. 4.11, which is labeled as "raw". The second option is the data with the projection of atoms
from higher Brillouin zones to the first zone, which is labeled as "BZ". The third option is the data with the
consideration of the initial momentum distribution nini(k), which is labeled as "nini". The fourth option is the
data as a combination of the second and third option. This means, with the Brillouin zone projections and with
the consideration of nini(k). This option is labeled as "BZ & nini".
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Especially, the Brillouin zone projection is reasonable, as we perform a very fast lattice power ramp
instead of a proper bandmapping. However, the main issues of the chiral current data, which were
evident for the raw data without further analysis, remain: The deeper the lattice, the more the data shows
an unstable behavior for different preparation times, even though these preparations feature a very similar
fidelity. In addition, the amplitude of the chiral currents decreases on average for deeper lattices, even
though the particles are nearly non-interacting. These For this behavior of the chiral current data, we rule
out any perturbation, that would destroy the coherence of the system, since the fidelity of the preparations
suggests, that the system is coherent. Furthermore, we exclude, that the preparation is too fast for all
preparation times in the measurement. The first reason for that is again, that the system behaves coherent
in the fidelity measurements. The second reason is, that these preparation ramps feature a very high
fidelity of 97.9 % and higher, according to the theoretical calculations in Fig. 4.10. The calculations do
not include interaction effects, but for the 171Yb data, interactions can be neglected, as they are much
weaker than other system parameters.

We conclude, that an additional dynamic must occur, which is not accounted for in the theoretical
model and which does not reduce the system’s coherence. We suspect, that the harmonic confinement
along the 1D-lattice is the cause of these dynamics. Ref. [164] demonstrates, that the coupling between
(quasi)momentum states, induced by harmonic confinement, can generate non-linear pendulum dynam-
ics in the (quasi)momentum distribution. Consequently, we expect dynamic behavior in the system, if the
momentum distribution differs from the distribution, which is favored by the harmonic confinement. This
situation generally arises in the presence of chiral currents. Thus, this effect appears to be the most plau-
sible explanation for the observed behavior. However, quantifying these dynamics is challenging, and
our data suggests no dependencies on either relative or absolute time scales. A complete understanding
of these dynamics will require further investigation, which lies beyond the scope of this thesis.

One possibility to understand the dynamics further would be to take images also during the preparation
ramp and not only after it. In this way, one could try to understand, what happens already over the course
of the preparation. In addition, one could perform theoretical simulations for the expected pendulum
dynamics and compare them with the data. By doing so, it might be possible to reconstruct the initial
chiral current data to some extent. As an alternative strategy, it is possible to implement countermea-
sures for the harmonic confinement induced by the lattice beams. This was for example implemented for
a similar system in Ref. [165] with an additional laser beam, which creates a double-well potential at an
anti-trapping frequency (1112 nm). The laser beam is shone onto the atoms from a direction perpendicu-
lar to the shallow lattice, such that the atoms are between the double-well potential. In this reference, the
harmonic confinement could be compensated to a residual value of 0.01tx along the legs of the quantum
Hall ladder. Unfortunately, it is not possible for us to get rid of the harmonic confinement in our current
setup. We can only reduce it as much as possible. However, this is already the case, as the harmonic con-
finement is only caused by the lattice beams and the transverse lattice depth cannot be reduced further,
as otherwise motion in a transverse direction is not inhibited. The optimization methods in this section
are already aimed at getting data, which is as little influenced by this effect as possible.

In this section, we discussed and implemented methods to improve the quality and accuracy of the chiral
current data. We examined unreported dynamics that occur during the bandmapping and eigenstate
preparation stages, analyzing their impact on the measured momentum distribution and, consequently,
on the chiral current data. To reduce these effects, we implemented targeted strategies, focusing mainly
on utilizing a fast 1D lattice ramp and shortening the eigenstate preparation time.

In this chapter, we have outlined the critical steps involved in the preparation and implementation of
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quantum Hall ladders at our quantum gas machine. Beginning with the technical setup, we detailed the
design and operation of the Raman Laser System and the applied Raman transitions. We then discussed
the preparation of eigenstates, where we described the performed adiabatic passage in detail. Through
the primary measurements of Raman resonances, Raman-Rabi oscillations, and chiral edge currents,
we verified the successful realization of the quantum Hall effect in our experimental setup. Lastly, we
addressed various methods for optimizing the experimental data, including improvements in the spin
detection, imaging, eigenstate preparation and data analysis. We observed prominent chiral currents,
which feature values higher than in comparable experimental studies (see Ref. [3–7]) and which exhibit
momentum distributions very close to theoretical expectations. This chapter lays a solid groundwork for
further exploration of quantum Hall ladder systems and their topological properties in quantum gases,
providing valuable insights into both the practical challenges and the strategies to overcome them.
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With the groundwork covered in the previous two chapters, we now present our findings on interaction
effects in quantum Hall ladders. In general interactions in synthetic dimensions can be very diverse.
Ref. [166] lists various implementations of synthetic dimensions, which yield different forms of inter-
particle interactions. For example, in synthetic directions constituted by harmonic oscillator eigenstates,
interactions decay algebraically [78], whereas in photonic frequency modes [167, 168], interactions pre-
serve the total synthetic positions of colliding particles. Furthermore, momentum states as synthetic
dimensions in ultracold gases [77] result in effective locally attractive interactions in momentum states,
which have been experimentally explored regarding localization transitions [169, 170]. Theoretical stud-
ies examined dipolar interactions when synthetic dimensions are defined by the rotational states of polar
molecules, revealing phase transitions to intriguing states localized along the synthetic dimension [171,
172]. Moreover, a proposed synthetic dimension based on the angular coordinate of a photonic ring res-
onator can have local interactions within the resonator, which would translate to local interactions along
the synthetic dimension [173].

In our system, we investigate how inter-particle interactions, which are infinitely long-ranged along the
synthetic dimension and localized to a single lattice site along a shallow optical lattice, affect the topolog-
ically protected chiral edge currents. It is an open question, what happens to the system, if interactions
come into play. First, we examine the quantum Hall ladder system with vanishing interactions using
171Yb. Second, we compare the data for the non-interacting case with those obtained with repulsive in-
teractions using 173Yb, in order to extract the effects of the interactions. The measurements in this chapter
were planned, conducted and analyzed by the author under the project administration and supervision of
C. Becker and K. Sengstock.

To investigate the influence of interaction effects on chiral edge currents in a quantum Hall ladder, we
measure the chiral currents as a function of the 1D lattice depth, while holding the ratio ΩR/tx constant.
We do this for the nearly non-interacting isotope 171Yb (ascat = −3(4)a0) and the repulsive interacting
isotope 173Yb (ascat = 199(2)a0). By comparing the two data sets, we extract the effect of interactions,
as we treat the 171Yb data as non-interacting reference data. We prepare the quantum Hall ladder system
with an adiabatic passage and measure the chiral currents directly afterwards. After the preparation,
we first switch off the Raman beams and then at the same time switch off the transverse lattice beams
and perform a very fast bandmapping in the 1D lattice direction to avoid additional dynamics during
this stage, which we observed for longer bandmapping times (see Sec. 4.4.2). Finally, we analyze the
absorption images as described in Sec. 4.3.3 to calculate the chiral currents. For the chiral current data
presented in this chapter, we averaged over several preparation ramp times. For this, we use data of
all preparation ramp times, which exhibit a high fidelity for the preparation of the eigenstates in the
theoretical calculations and in the auxiliary measurements, namely for Tramp ≥ 75/ (2π ·ΩR). We choose
this averaging, as it captures the uncertainty in the chiral currents caused by the undesired dynamics
discussed in Sec. 4.4. With more insight into the exact behavior of these dynamics, one could possibly
find a more accurate approach to represent the unperturbed currents and reduce uncertainties. However,
given our current level of understanding, this would be speculative and lies beyond the scope of this
thesis.
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Figure 5.1: Chiral currents for various lattice depths without interactions. The figure presents the mea-
sured chiral edge currents J of a two-leg quantum Hall ladder as a function of lattice depth along the legs.
The currents are displayed for the spin states |↑⟩ and |↓⟩ and the reference case without spin-orbit coupling
(SOC) labeled as "No SOC". This data is recorded with 171Yb atoms, which exhibit vanishing interactions of
−3(4) a0. The magnetic flux is ϕ = 0.444(20)π and the ratio of synthetic and real tunneling is kept constant at
ΩR/tx = 2.06(15). Chiral currents are averaged for various preparation ramp times with Tramp ≥ 75/ (2π ·ΩR)
(see Sec. 4.4.3 for details). Error bars represent the uncertainties calculated through error propagation.

5.1 Vanishing Interactions

First, we present data for the case of vanishing interactions of −3(4) a0. This data is recorded with the
isotope 171Yb. We measure the chiral currents of both spin states (synthetic lattice sites) for different 1D
lattice depths at a constant ratio of ΩR/tx == 2.06(15). The data is displayed in Fig. 5.1. In particular
for data at shallow lattice depths, we observe prominent chiral currents, which feature values higher
than in comparable experimental studies (see Ref. [3–7]). Moreover, the amplitude of the chiral currents
decreases for deeper lattices. We attribute this to the observed dynamics for different preparation times,
which become worse for deeper lattices as it is discussed in Sec. 4.4.3. Additionally, an increasing
number of atoms may become trapped in localized states as the lattice depth grows. These localized
atoms would not contribute to the current, thereby reducing the measured values. Without the knowledge
about the observed dynamics, which are most likely caused by the harmonic confinement, we would
have expected that the data of the chiral currents as a function of the 1D-lattice depth is constant for the
weakly interacting isotope 171Yb, as we keep ϕ and ΩR/tx constant. In particular, the data for s1D = 10
and 12 Erec behaves very different from theoretical expectations in the momentum distribution and in
the value of the currents. Furthermore, we notice asymmetries in the absolute values of the currents for
opposite legs of the quantum Hall ladder. Since we already consider the initial momentum distribution
nini, which can cause asymmetries, we do not know the origin of this effect. However, as the dynamics
during the preparation are asymmetric as well, we assume that the two effects are related. Another
observation on the data is, that the first data point with 2 Erec features slightly lower chiral currents than
the data for s1D = 4 and 6 Erec. This might be caused by the tight-binding approximation breaking down,
as this lattice is already such shallow, that the requirement of atoms localized at a single lattice site is
not perfectly met. Moreover, the data without spin-orbit coupling (No SOC) is expected to be symmetric
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Figure 5.2: Comparison of chiral currents with vanishing and repulsive interactions. The figure displays
the data of Fig. 5.1 for vanishing interactions (in red with solid lines) in comparison to analogous data with
repulsive interactions (in blue with dashed lines). Measured chiral edge currents J of a two-leg quantum Hall
ladder are presented as a function of lattice depth along the legs. Data for vanishing interactions (ascat =

−3(4)a0) is recorded with 171Yb atoms, whereas repulsive interaction data (ascat = 199(2)a0) is recorded with
173Yb atoms. The magnetic flux is ϕ = 0.444(20)π and the ratio of synthetic and real tunneling is kept constant
atΩR/tx = 2.06(15). Chiral currents are averaged for various preparation ramp times with Tramp ≥ 75/ (2π ·ΩR)
(see Sec. 4.4.3 for details). Error bars represent the uncertainties calculated through error propagation.

within the Brillouin zone, which would result in J = 0. However, we observe a significant deviation for
the two shallowest lattice depths, s1D = 2 and 4 Erec. While the origin of this discrepancy is unclear, it
appears to be present only in the non-interacting case (compare Fig. 5.2). Although further investigation
into its cause could be of general interest, this issue is of secondary importance for the scope of our study
and is not further explored. Despite the deviation from an ideal system without harmonic confinement,
we use this data as a reference and compare it with data from interacting particles. This comparison can
still provide insights into the interaction dynamics, assuming the interacting particles are influenced by
the dynamics in a similar manner.

5.2 Repulsive Interactions

In this section, we present the effect of repulsive interactions on the chiral edge currents of a quantum
Hall system. For this purpose, we record the same data displayed in Fig. 5.1 with 173Yb. We plot the
data sets of both isotopes in Fig. 5.2. The figure displays the case of vanishing interactions in red with
solid lines in comparison to analogous data with repulsive interactions in blue with dashed lines. For the
interacting isotope 173Yb, we expect that the chiral currents data as a function of the lattice depth shows
a different behavior than the 171Yb data. The difference in the behavior would than be due to interactions
as all other parameters are the same. We observe for the 173Yb isotope, that the amplitude of the chiral
currents is significantly smaller for most data. The exceptions are on the spin up side for the data at
s1D = 8 and 10Erec, where the current is equal within the uncertainties and for s1D = 12Erec, where the
current for 173Yb is stronger in the negative direction than for 171Yb. Further observations for the 173Yb
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isotope are, that the chiral current for the spin down data first increases from s1D = 2 to 4Erec and then
monotonically decreases for deeper lattices until they are even negative for s1D = 12Erec. For the spin up
data, we observe, that the chiral current is similar for the two most shallow lattice depths, then decreases
for s1D = 6 to 8Erec and finally increases to the highest values for s1D = 10 to 12Erec. Moreover, for the
data without SOC, we observe that in the case of 173Yb, the measured chiral currents are consistent with
zero, as expected. As discussed above, for 171Yb, the data without SOC differs significantly from zero
for the two shallowest lattice depths, s1D = 2 and 4Erec.

The data of 173Yb has in common with the non-interacting data, that the currents of the two legs are
asymmetric. The asymmetries make it harder to compare the data of the two isotopes, while at the same
time, they are not the main focus of our studies. It is rather the difference of the currents for the two
legs of the quantum Hall ladder, which represent the non-triviality of the system’s topology. Hence, to
neglect the asymmetries, we additionally present the chiral current difference ∆J of the two legs for the
same data. We define it as

∆J B J↓ − J↑. (5.1)

In the current difference ∆J, the asymmetries of the two legs do not play a role anymore and possible
dynamics, which affect both current values in the same way are averaged out. We present ∆J as a function
of the lattice depth s1D at the top of Fig. 5.3. As a consequence of this representation, the following
similarities in the data of 171Yb and 173Yb become more evident. For both isotopes, the first data point
at s1D = 2Erec exhibits lower absolute values than the currents for s1D = 4 and 6Erec. Moreover, except
for the first data point, the currents tend to decrease for deeper lattices. Especially for s1D = 10 and
12Erec, the absolute values of the currents are much lower than for the other lattice depths. Despite the
similarities, we observe that the chiral current difference for the interacting particles

(
173Yb

)
is generally

smaller than for the non-interacting case. This indicates a suppression of the chiral currents due to the
interactions.

We present two additional visualizations to compare the interacting and non-interacting chiral currents,
utilizing different representations of the non-interacting data as a reference. In the first case, we visu-
alize the absolute (differential) change induced by interactions, while in the second, we examine the
proportional (relative) change. To illustrate these two potential descriptions, we present, on one hand,
the difference ∆J173 − ∆J171, and on the other hand, the ratio ∆J173/∆J171, shown in the middle and
bottom panels of Fig. 5.3. For the difference in the currents, we observe, that it is equal for s1D = 2 and
4 Erec. For deeper lattice depths, it monotonically increases with increasing lattice depth, which means,
that the absolute difference between the currents decreases until they are nearly equal for s1D = 12 Erec.
For the chiral current ratio, we observe a rather constant behavior within the experimental uncertainties.
While for s1D in the range of 2 to 6 Erec, the uncertainties in the data, which are calculated through error
propagation, are rather constant, the uncertainties increase for deeper lattice depths. For s1D = 12 Erec,
the uncertainties even include a negative ratio, which would mean an enhancement of chiral currents for
strong repulsive inter-particle interactions.

To trace the differences between the data of the two isotopes back to variations in the interaction strength,
we present the same data as a function of Uint/tx in Fig. 5.4. We calculate Uint by determining the
Wannier functions and using Eq. 1.7. As the 171Yb isotope has nearly vanishing interactions (−3(4)a0),
all its data is close to Uint/tx = 0, whereas the 173Yb data is spread over the range [1.45, 36.30]. The
specific values according to the different 1D lattice depths from shallowest to deepest are: Uint/tx ∈
{1.45, 3.22, 6.50, 12.17, 21.50, 36.30}. For the differential data in the second row, we now observe a
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Figure 5.3: Different representations of chiral current data. The figure depicts the chiral current data of
Fig. 5.2 in different representations as a function of the lattice depth s1D. The top figure displays the chiral
current difference ∆J = J↓ − J↑ for both isotopes, the middle figure displays the differential of the chiral
currents with interactions and without ∆J173 − ∆J171 and the bottom figure displays the ratio of the chiral
currents ∆J173/∆J171. Error bars represent the uncertainties calculated through error propagation.
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Figure 5.4: Chiral current data as a function of the interaction strength Uint/tx. The figure shows the
same data as in Fig. 5.3, but plotted as a function of the interaction strength Uint/tx instead of the lattice depth.
In the middle panel, a linear fit is applied to the differential data, described by the function (−0.279 ± 0.010) +
(0.00689 ± 0.00053) · Uint/tx. The shaded region around the fit represents the 95 % confidence interval. In
the bottom panel, the weighted mean (solid line) and weighted uncertainty (shaded area) of the ratio data
are included, with the value: ∆J173/∆J171 = 0.391 ± 0.045. Error bars represent the uncertainties calculated
through error propagation.
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linear behavior as a function of Uint/tx. We fit this data with a linear function and obtain

(−0.279 ± 0.010) + (0.00689 ± 0.00053) · Uint/tx. (5.2)

For the relative data of the ratio ∆J173/∆J171, we still observe a constant behavior as a function of Uint/tx.
We determine the weighted mean and weighted uncertainties of the ratios and plot it with the data. The
result is

∆J173/∆J171 = 0.391 ± 0.045. (5.3)

This data should be treated with caution, as it may not be fully reliable, given the observed dependence
of the chiral currents on the preparation of the eigenstate. The averaging over different preparation
velocities might also be suboptimal, potentially influencing the results. Nonetheless, the data exhibits a
systematic trend within the measured range, and we explore potential consequences with caution and a
critical perspective.

5.2.1 Possible interpretations

As a final step, we want to visualize our results in a way, that makes it easier to compare with future
studies and show what the data might look like without the dynamics during the eigenstate preparation
(i.e., likely without harmonic confinement). As discussed above, we assume, that the dynamics during
the preparation are caused by the harmonic confinement and are the reason for the non-constant behavior
of the chiral currents as a function of the lattice depth for the nearly non-interacting case

(
171Yb

)
. Next,

we illustrate our data under the assumption of constant chiral currents in the non-interacting scenario.
Our best estimate for the undisturbed chiral currents, ∆Jassumed

171 , is the average of the values for the lattice
depths s1D = 4 Erec and 6 Erec:

∆Jassumed
171 =

∆J4 Erec
171 + ∆J6 Erec

171

2
. (5.4)

At these lattice depths, the conditions for the tight-binding approximation are well satisfied, and the
differences in the currents for varying preparation velocities are minimal. We then assume that these
currents would be observed across all lattice depths if our measurements were conducted in a system
without harmonic confinement. Based on this assumption, we hypothesize how the chiral current behav-
ior might appear as a function of Uint/tx. We adjust our data for the two investigated cases – differential
and relative effects – according to the newly assumed constant currents, ∆Jassumed

171 . For visualizing the
differential effect, ∆Jdiff, we start with the assumed constant chiral current of the non-interacting case,
∆Jassumed

171 , and add the current difference ∆J173 − ∆J171, as observed in Fig. 5.3 and 5.4. This gives:

∆Jdiff = ∆Jassumed
171 + (∆J173 − ∆J171) . (5.5)

For visualizing the relative effect, ∆Jrel, we multiply the assumed constant currents, ∆Jassumed
171 , by the

ratios ∆J173/∆J171, as shown in Fig. 5.3 and 5.4, resulting in:

∆Jrel = ∆Jassumed
171 ·

∆J173

∆J171
. (5.6)

The results for both ∆Jdiff and ∆Jrel are presented as a function of Uint/tx in Fig. 5.5. These visualizations
represent two potential scenarios of how the data might appear in the absence of the dynamics during the
eigenstate preparation (i.e., likely without harmonic confinement).
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Figure 5.5: Possible interpretations for the interaction behavior of chiral edge currents in quantum Hall
ladders. The figure illustrates two possible interpretations of the interaction behavior of chiral edge currents
in quantum Hall ladders within the explored parameter regime. Assuming constant chiral currents ∆Jassumed

171
in the non-interacting case (red data), we present two scenarios: a differential effect ∆Jdiff (blue data) and a
relative effect ∆Jrel (green data). Error bars represent the uncertainties calculated through error propagation.
Details are provided in the main text.

For Uint/tx ∈ {3.22, 6.50}, the currents in both interpretation scenarios are nearly congruent. For the
remaining data points, the differential currents are larger than the relative currents. The data at Uint/tx ∈
{1.45, 12.17} only differs by about one sigma of their uncertainties for the two scenarios. The largest
discrepancies between the two scenarios occur at Uint/tx ∈ {21.50, 36.30}, suggesting that significantly
different conclusions can be drawn for large interaction strengths. However, the uncertainties for the
relative data, particularly at Uint/tx = 36.30, are that large, that predictions based on these data have a
wide range, potentially even including the differential data point at the same interaction strength.

In addition to the behavior observed for ∆Jdiff and ∆Jrel, we note a significant difference between
∆Jassumed

171 and the data with the weakest repulsive interactions. The transition between these data sets
remains unclear. Given the substantial discrepancy in the edge current values on both sides, we expect
that the system’s behavior is strongly influenced. The weakest interaction point for ∆Jdiff and ∆Jrel oc-
curs at Uint/tx = 1.45, placing it in a regime where interactions begin to dominate the tunneling rate and
are close to ΩR (Uint/ΩR = 0.725). This suggests that significant interaction effects are already present.
However, we cannot completely rule out systematic differences between measurements with the two yt-
terbium isotopes, despite our efforts to make the systems as similar as possible. In our current setup, it is
not possible to probe the transition in the regime of weakly repulsive interactions, as our parameters are
already optimized for the weakest repulsive interactions achievable with 173Yb. At the shallowest lattice
depth of s1D = 2, Erec, the validity of the tight-binding approximation becomes already questionable.

In the following, we discuss our findings in relation to the existing literature on interactions in quan-
tum Hall systems and compare our system and our results to a selection of similar works. The inter-
actions in our ladder geometry are infinite-ranged along the synthetic dimension with special unitary
group (SU(N)) symmetry. The effect of these interactions has been actively studied in several works.
For fermions, intriguing gapped states have been proposed in the presence of magnetic flux, featuring
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fractional filling and charge and/or spin order [9]. Additionally, edge physics [8, 85, 174], fractional
pumping [11, 175], Creutz–Hubbard models [176], and exotic bound states [177, 178] have also been
studied. For bosons, charge density wave states, 1D Haldane phases, and other exotic phases have been
identified [179–183]. However, these works still lack experimental evidence in various scenarios.

In Ref. [184] the authors investigate the dynamics of interacting fermions under spin-orbit coupling with
an optical lattice clock. While their system is similar to ours, there are several key distinctions. For ex-
ample, they do not work in a three-dimensional lattice, thus, allowing transverse motion. Consequently,
the atoms in their system experience p-wave interactions and are not limited to s-wave interactions. Fur-
thermore, the authors do not work with a degenerate Fermi gas and do not prepare an eigenstate of the
Harper-Hofstadter Hamiltonian. Due to these differences, a direct comparison of our data with the results
in this reference is not possible.

In Ref. [185], the authors explored the Hall effect in quantum Hall ladders for both fermionic and bosonic
cases with attractive and repulsive interactions. They identified an extensive parameter regime, in which
the Hall imbalance exhibits universal behavior. This universality was experimentally confirmed in Ref.
[165] for strongly repulsive interactions between fermions. However, a direct comparison between the
results in these references and our results is not feasible, as their studies utilized a tilted ladder to measure
the Hall imbalance, while our work is conducted without a tilt and relies on different observables.

In Ref. [186], the authors investigate resonant dynamics in strongly interacting SU(N) fermions in a
synthetic flux ladder. They identify that the chiral currents in our system exhibit point symmetry with
respect to the reversal of the coupling strength ΩR, specifically J(−ΩR/tx) = −J(ΩR/tx). The authors
claim that under strong interactions, this symmetry is shifted from ΩR/tx = 0 to ΩR/tx = Uint/tx. Addi-
tionally, they observe smaller resonances at fractions of U, such as ΩR = Uint/2, Uint/3, and so on. This
behavior is explained by the fact, that the energy Uint required to create doublons can be derived from
the energy difference ΩR between the two dressed state bands, allowing for tunneling that is otherwise
suppressed by Uint. The additional resonances are attributed to higher order (at least three-body) pro-
cesses. If we derive predictions for our data based on the calculations presented in the referenced paper,
we find the following. For the nearly non-interacting case

(
171Yb

)
, we expect ∆J171 ≈ 0.41 at our ratio

of ΩR/tx = 2.06(15), which agrees very well with our data for shallow lattice depths. For the interacting
case, if Uint/tx > ΩR/tx = 2, the system should shift to the left of the original resonance. This shift
would suggest a negative ∆J173 that increases towards zero with increasing interaction strength. This is
not consistent with our data. Furthermore, for the shallowest lattice depth at Uint/tx = 1.45, we expect to
remain on the right of the resonance, transitioning to the left as the interaction strength increases. This
transition would imply a remarkable difference in the chiral current, including a sign reversal. However,
this sign reversal is not observed in our measurements.

Our work is based on the scheme proposed in Ref. [85]. In this study, the authors employ DMRG
simulations to analyze the impact of repulsive interactions on the emergence of chiral currents in a
hybrid two- and three-leg Hall ribbon, similar to the one described in this thesis. The general result
presented in the reference indicates that repulsive interactions are expected to significantly enhance the
chiral currents for the filling factors considered in our experiments (i.e., less than one atom per lattice
site and negligible population in the higher dressed band). However, the reference does not account for
the influence of harmonic trapping confinement and finite-temperature effects. In addition, the authors
of this reference calculated the behavior for a similar system, where they considered the effect of the
harmonic confinement. In that case, they predict an approximately linear decrease in the chiral currents
for increasing lattice depths [5, 6]. Our results show a suppression of the chiral currents for interactions in
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comparison with the case of vanishingly small attractive interactions. However, an almost linear decrease
is inconsistent with our findings.

In this chapter, we investigated how inter-particle interactions influence the formation of chiral edge cur-
rents in quantum Hall systems. We observed pronounced chiral currents that surpass those reported in
comparable experimental studies (see Ref. [3–7]). In the regime of strong interactions, we observed a
suppression of chiral currents and our data is consistent with two distinct interaction behaviors: a linear
differential response and a constant relative suppression of the currents within the observed interaction
regime. Additionally, our results hint at the potential existence of a dynamic region in the weakly repul-
sive regime.

To better understand and further study the interaction effects, it is crucial to eliminate or significantly
reduce the harmonic confinement, as we observed its strong influence, which limits the reliability of
our results. In the absence of harmonic confinement, it would be possible to gather similar data that
could potentially lead to more conclusive findings. One approach to achieve this was demonstrated in
Ref. [165], where the authors implemented an additional laser beam to create a double-well potential
at an anti-trapping frequency of 1112 nm. The laser beam was directed perpendicular to the shallow
lattice, placing the atoms between the double-well potential. In this setup, the harmonic confinement
was reduced to a residual value of 0.01tx along the legs of the quantum Hall ladder.

In principle, interaction effects could also be investigated with an alkaline element, which has a magnetic
Feshbach resonance to tune the interaction strength. The coherence time would not be as long as for
alkaline earth (like) elements, but this might not be a limiting factor. However, the interactions would be
different as they would not be SU(N) symmetric and spin-changing collisions are possible. These might
also occur to "lost" spin states, which are not included in the synthetic dimension, if not all spin states
are coupled in the quantum Hall ladder system.
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This thesis contributes to the field of quantum simulation by improving our understanding of interactions
and topological properties in cold atom systems. The findings provide valuable insights into interactions
in different scenarios and could aid in the investigation of fractional quantum Hall states [8–13]. In this
context, gaining a deeper understanding of interactions may support the development of robust quantum
information protocols [14].

We investigated how inter-particle interactions influence the formation of topologically protected chiral
edge currents in quantum Hall ladder systems. The interactions are infinitely long-ranged along a syn-
thetic dimension and confined to individual lattice sites along a shallow optical lattice. We observed
pronounced chiral currents that surpass those reported in comparable experimental studies (see Ref. [3–
7]) and closely match theoretical predictions in their momentum distributions. In the regime of strong
interactions, we observed a suppression of chiral currents. Our data is consistent with two distinct inter-
action behaviors: a linear differential response and a constant relative suppression of the currents within
the explored interaction regime. Additionally, our results hint at the potential existence of a dynamic
region in the weakly repulsive regime.

We provided a comprehensive overview of the experimental realization of a quantum Hall ladder sys-
tem, starting with the theoretical framework of the Harper-Hofstadter model and its implementation in
cold atom systems using artificial gauge fields. We outlined the key steps for preparing and implement-
ing quantum Hall ladders, confirming the system’s successful realization through precise measurements
of chiral edge currents. Additionally, this work offered valuable insights into practical challenges and
strategies for improving experimental techniques, including advancements in spin detection, imaging,
eigenstate preparation, and data analysis. During bandmapping and the eigenstate preparation, we ob-
served previously unreported dynamics, which had a significant impact on the measurement of chiral
currents. To gain deeper insights into these dynamics, a promising approach would be to capture images
at various stages of the preparation ramp, rather than solely at its conclusion. This could reveal, what
happens already over the course of the preparation. In addition, theoretical simulations of the expected
pendulum dynamics could be computed and compared with the experimental data. This might enable
a partial reconstruction of the initial chiral currents. As an alternative strategy, it would be possible to
implement countermeasures for the harmonic confinement induced by the lattice beams. This was for
example implemented for a similar system in Ref. [165] with an additional laser beam, which creates
a double-well potential at an anti-trapping wavelength of (1112 nm). The laser beam is shone onto the
atoms from a direction perpendicular to the shallow lattice, such that the atoms are between the double-
well potential. In this reference, the harmonic confinement along the quantum Hall ladder’s legs could
be compensated to a residual value of 0.01tx.

Moreover, we measured interactions in ytterbium Fermi gases using clock spectroscopy. On the one
hand, we examined interisotope interorbital interactions in mixtures of 171Yb and 173Yb, and, on the
other hand, spin-exchange interactions of 171Yb. We determined the elastic scattering lengths as 171

173aeg =

497.4(8)a0 and 171
173age = 482(1)a0 and proofed their SU(2) ⊗ SU(6) symmetry. While these values

are similar, their significant difference offers a fascinating subject for theoretical studies, as it cannot be
attributed to mass scaling. Despite the similarity of the elastic interactions, measurements of the inelastic
decay coefficients showed strong contrasts, with 171

173βeg being roughly 400 times stronger than 171
173βge.

This suggests that mixtures of 171Ybg and 173Ybe are more promising for quantum simulations. For the
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spin-exchange interactions of 171Yb, we determined scattering lengths of aeg+ = 203(5)a0 and aeg− =

308(6)a0. These interorbital spin-exchange interactions in 171Yb were also analyzed in Ref. [58, 59].
All three sets of measurements indicate an antiferromagnetic spin-exchange interaction with Vex < 0 and
are showing qualitative agreement as the values are within the same order of magnitude. Quantitatively,
however, the results differ significantly. The cause of the discrepancies between the results remains
uncertain. The observed moderate antiferromagnetic spin-exchange interactions, combined with the very
weak ground-state interactions, position 171Yb as a strong candidate for simulating the Kondo lattice
model [1, 2]. Moreover, our precise clock spectroscopy of interorbital interactions in 171Yb gases and
171Yb-173Yb mixtures deepens our understanding of interorbital scattering behavior and lays a foundation
for future research.
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