# Universitätsklinikum Hamburg-Eppendorf

Faculty of Medicine
Institute for Structural- and Systemsbiology

Prof. Dr. Thomas Marlovits

# Towards deciphering the Type III secretion signal

#### **Dissertation**

zur Erlangung des Grades eines Doctor of Philosophy (Ph.D.) an der Medizinischen Fakultät der Universität Hamburg

> vorgelegt von: Maurice Pantel aus Berlin

> Hamburg 2024

Angenommen von der

Medizinischen Fakultät der Universität Hamburg am: 15.04.2025

Veröffentlicht mit Genehmigung der

Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der/die Vorsitzende: Prof. Dr. Thomas C. Marlovits

Prüfungsausschuss, zweite/r Gutachter/in: Prof. Dr. Martin Aepfelbacher

# **Contents**

| Gl | Glossary |           |                                       | X  |
|----|----------|-----------|---------------------------------------|----|
| I. | Abst     | ract      |                                       | 1  |
| 1. | Intro    | oduction  | ı                                     | 4  |
|    | 1.1.     | Gram-n    | negative pathogens                    | 5  |
|    | 1.2.     | Secretion | on systems                            | 6  |
|    | 1.3.     | The typ   | be III secretion system               | 7  |
|    |          | 1.3.1.    | T3SS structure                        | 7  |
|    |          |           | 1.3.1.1. The needle complex           | 9  |
|    |          |           | 1.3.1.2. The export apparatus         | 9  |
|    |          |           | 1.3.1.3. The sorting platform         | 10 |
|    |          | 1.3.2.    | T3SS assembly and substrate secretion | 10 |
|    | 1.4.     | Type II   | I effector proteins                   | 12 |
|    |          | 1.4.1.    | Role of the chaperone-binding domain  | 12 |
|    |          | 1.4.2.    | Secretion signals                     | 14 |
|    | 1.5.     | Salmon    | ella                                  | 17 |
|    | 1.6.     | Aim of    | this work                             | 17 |
| 2. | Mate     | erials &  | Methods                               | 19 |
|    | 2.1.     | Materia   | ds                                    | 20 |
|    |          | 2.1.1.    | Buffers & solutions                   | 23 |
|    |          |           | Plasmids & primers                    | 24 |
|    |          |           | 2.1.2.1. Plasmids                     | 24 |
|    |          |           | 2.1.2.2. Primers & oligos             | 27 |
|    |          | 2.1.3.    | Bacterial strains                     | 30 |
|    |          |           | 2.1.3.1. Strain selection             | 30 |
|    | 2.2.     | Experir   | mental procedures                     | 32 |
|    |          | 2.2.1.    | Cell culture                          | 32 |
|    |          | 2.2.2.    | Cloning                               | 34 |
|    |          | 2.2.3.    | Sample preparation                    | 36 |
|    |          | 2.2.4.    | Imaging                               | 36 |
|    |          | 2.2.5.    | Computational procedures              | 37 |

| 3. | Results                           |        |                                                                  |     |
|----|-----------------------------------|--------|------------------------------------------------------------------|-----|
|    | 3.1. T3SS effector quantification |        |                                                                  | 40  |
|    |                                   | 3.1.1. | Qualitative detection of type 3 secretion system (T3SS)-secreted |     |
|    |                                   |        | proteins                                                         | 40  |
|    |                                   |        | 3.1.1.1. T3SS reporter system design                             | 40  |
|    |                                   | 3.1.2. | Quantitative detection of T3SS-secreted proteins                 | 46  |
|    |                                   |        | 3.1.2.1. Mass spectrometric quantification of T3SE secretion     | 46  |
|    |                                   |        | 3.1.2.2. Luminescence-based quantification of T3SE secretion .   | 47  |
|    |                                   |        | 3.1.2.3. Species-independent T3SS secretion                      | 53  |
|    |                                   | 3.1.3. | Optimization of assay conditions                                 | 55  |
|    |                                   |        | 3.1.3.1. Culture volume & sample number                          | 55  |
|    |                                   |        | 3.1.3.2. Cultivation time                                        | 57  |
|    |                                   |        | 3.1.3.3. Reporter expression control                             | 59  |
|    |                                   |        | 3.1.3.4. Absorbance calibration                                  | 61  |
|    |                                   |        | 3.1.3.5. Device settings                                         | 62  |
|    |                                   |        | 3.1.3.6. Time & temperature effects                              | 66  |
|    |                                   |        | 3.1.3.7. Optimized parameters                                    | 67  |
|    |                                   | 3.1.4. | Quantification of secretion signal effects                       | 68  |
|    |                                   |        | 3.1.4.1. Generation of plasmid variants                          | 68  |
|    |                                   |        | 3.1.4.2. Dual reporter secretion quantification                  | 70  |
|    |                                   |        | 3.1.4.3. Single reporter secretion quantification                | 72  |
|    |                                   |        | 3.1.4.4. Reproducibility                                         | 73  |
|    |                                   |        | 3.1.4.5. Calculation of secretion efficiency scores              | 77  |
|    | 3.2.                              | T3SS 6 | effector database                                                | 79  |
|    |                                   | 3.2.1. | Semi-automated T3SE dataset assembly                             | 79  |
|    |                                   | 3.2.2. | T3SE database assembly                                           | 80  |
|    |                                   |        | 3.2.2.1. Database classes                                        | 82  |
|    |                                   | 3.2.3. | Manually curated T3SE dataset assembly                           | 91  |
|    |                                   | 3.2.4. | Cytoplasmic proteins dataset assembly                            | 91  |
|    |                                   | 3.2.5. | LSTM prediction                                                  | 92  |
| 4. | Dice                              | ussion |                                                                  | 95  |
| т. |                                   |        | design                                                           | 97  |
|    | 1.1.                              | 4.1.1. | Reporter choice                                                  |     |
|    |                                   | 4.1.2. | Reporter quantification                                          |     |
|    |                                   | 4.1.3. | Expression control                                               |     |
|    |                                   | 4.1.4. | -                                                                |     |
|    |                                   | 1,1,7, | 4.1.4.1. Secretion quantities                                    |     |
|    |                                   |        | 4.1.4.2. Secretion efficiencies                                  |     |
|    | 4.2.                              | T3SE   | database                                                         |     |
|    | r.4.                              |        | Dataset preprocessing                                            |     |
|    |                                   | 1.4.1. |                                                                  | 100 |

|    |      | 4.2.2.  | Prediction of secretion efficiencies     | ) |
|----|------|---------|------------------------------------------|---|
| 5. | Cone | clusion | 108                                      | 3 |
|    | 5.1. | Conclu  | sion                                     | ) |
| A. | App  | endices | 110                                      | ) |
|    | A.1. | Append  | lix A                                    | Ĺ |
|    |      | A.1.1.  | Figures                                  | Ĺ |
|    |      |         | A.1.1.1. Immunoblotting                  | Ĺ |
|    |      | A.1.2.  | Plots                                    | ) |
|    |      |         | A.1.2.1. Secretion quantification assays | ) |
|    |      | A.1.3.  | Tables                                   | Ĺ |
|    | A.2. | Append  | lix B                                    | 3 |
|    |      | A.2.1.  | Python code                              | 3 |
|    |      |         | A.2.1.1. Primer designer                 | 3 |
|    |      |         | A.2.1.2. Dataset random subselection     | Ĺ |
|    | A.3. | Append  | lix C                                    | ļ |
|    |      | A.3.1.  | T3SE database                            | ļ |

# **List of Figures**

| 1.1.  | Structure of the Type III secretion system                                                         | 8  |
|-------|----------------------------------------------------------------------------------------------------|----|
| 1.2.  | Two hypothesis on the origin of the secretion signal have been proposed                            | 15 |
| 3.1.  | Assembly of reporter plasmid pMP005                                                                | 41 |
| 3.2.  | SptP and SipA are secreted from plasmid-complemented strains                                       | 42 |
| 3.3.  | Replacing the native N-terminus of SptP abolishes reporter expression                              | 44 |
| 3.4.  | The expression of SptP is regulated via RNA secondary structures in the                            |    |
|       | N-terminus and contains an unusual start codon deviating from the Uniprot                          |    |
|       | annotation                                                                                         | 45 |
| 3.5.  | The chimeric secretion signal-reporter fusion protein SipA <sub>1-25</sub> -SptP <sub>26-535</sub> |    |
|       | is expressed and secreted via the T3SS                                                             | 46 |
| 3.6.  | Plasmid map of pMP028 with the native sptP sequence tagged C-terminally                            |    |
|       | with the Nanoluc luciferase.                                                                       | 48 |
| 3.7.  | Secretion signals from different T3SS-secreted proteins display diverging                          |    |
|       | secretion quantities                                                                               | 49 |
| 3.8.  | Reporter variants are secreted in T3SS-mediated manner                                             | 50 |
| 3.9.  | Residual Nanoluc luminescence observed in T3SS-deficient cultures can                              |    |
|       | be attributed to cell lysis                                                                        | 52 |
| 3.10. | Reporter variants with N-termini from other T3SS-carrying bacteria tested                          |    |
|       | for T3SS-mediated secretion in the Nanoluc luminescence quantification                             |    |
|       | assay (see Figure 3.11)                                                                            | 53 |
| 3.11. | T3SS-mediated secretion of reporter fusion proteins with secretion signals                         |    |
|       | from Chlamydia, Escherichia, Shigella and Yersinia                                                 | 54 |
| 3.12. | Nanoluc luminescence signals converge due to sample mixing                                         | 56 |
| 3.13. | Arrangement of cell cultures in the 96-well deep well plate incubation setup.                      | 57 |
| 3.14. | Incubation times between 3.5 h to 5.5 h yield the highest Nanoluc signal-                          |    |
|       | to-noise ratios                                                                                    | 58 |
| 3.15. | The dual-reporter plasmid pMP049 expresses and secretes SptP-Nanoluc                               |    |
|       | luciferase (NLuc) and SipA-red firefly luciferase (RFLuc)                                          | 60 |
| 3.16. | The calibration of absorbance measurements enables the high-throughput                             |    |
|       | measurement of cell culture optical densities using a platereader                                  | 61 |
| 3.17. | Application of a residual light filter reduces the average signal intensity                        | 63 |
| 3.18. | Enhanced dynamic range increases the resolution of luminescence signals.                           | 64 |
| 3 10  | Prior sample shaking reduces the average luminescence signal intensity                             | 65 |

| 3.20 | 0. The Nanoluc luminescence intensity decays faster in high intensity samples.                  | 66  |
|------|-------------------------------------------------------------------------------------------------|-----|
|      | 1. The Nanoluc luciferase displays optimal activity at room temperature                         | 67  |
|      | 2. Optimized parameters of the secretion quantification assay in the current                    | 0,  |
| 3.2  | experimental setup                                                                              | 68  |
| 3.2  | 3. The levels of secreted control reporter SipA-RFLuc do not correlate with in-                 | 00  |
| 3.2. | creasing levels of secreted SptP-NLuc reporter and display large variations                     |     |
|      |                                                                                                 | 71  |
| 2.2  | in signal intensity.                                                                            | 71  |
|      | 4. Design of the single-reporter plasmid pMP059                                                 | 72  |
| 3.23 | 5. Nanoluc luminescence signals quantified from supernatants of the wildtype                    |     |
|      | (WT) control strain SB905 $\Delta sptP$ + pMP059 display variation in quantity                  |     |
|      | across 10 assays.                                                                               | 74  |
| 3.20 | 6. Nanoluc luminescence signals quantified from supernatants of the T3SS-                       |     |
|      | deficient negative control strain SB905 $\Delta invA$ $\Delta sptP$ + pMP059 exhibit            |     |
|      | consistent signal intensities                                                                   | 75  |
| 3.2  | 7. The relative secretion efficiency of secretion signal-reporter variants is                   |     |
|      | altered by employing different induction strategies                                             | 76  |
| 3.28 | 8. Salmonella effector N-termini promote different secretion efficiencies                       | 78  |
| 3.29 | 9. Exemplary fasta entry of the type 3 secretion system effector (T3SE)-                        |     |
|      | database for Salmonella effector SipA                                                           | 82  |
| 3.30 | 0. Non-proteinaceous interaction partners targeted by T3SS-secreted proteins.                   | 87  |
| 3.3  | 1. Experimentally validated localizations of T3SS-secreted proteins identified                  |     |
|      | in our database                                                                                 | 88  |
| 3.32 | 2. Small, polar amino acids are enriched in the N-terminus of T3SS-secreted                     |     |
|      | proteins                                                                                        | 90  |
| 3.33 | 3. Shigella T3SS effector of the IpaH class display strong homology within                      |     |
|      | their N-terminal 10 residues                                                                    | 91  |
| 3.34 | 4. The implementation of an embedding layer increases the models accuracy.                      | 94  |
|      |                                                                                                 |     |
| A.1  | . Expression and secretion of SptP from plasmid pMP005 as visualized by                         |     |
|      | immunoblotting                                                                                  | 112 |
| A.2  | Expression and secretion of SptP from plasmid pMP008 as visualized by                           |     |
|      | immunoblotting                                                                                  | 113 |
| A.3  | Expression and secretion of SipA from plasmid pMP0008 as visualized by                          |     |
|      | immunoblotting                                                                                  | 114 |
| A.4  | Expression and secretion of SipA <sub>1-25</sub> -SptP <sub>26-543</sub> and SptP from plasmids |     |
|      | pMP009 and pMP010, respectively as visualized by immunoblotting                                 | 115 |
| A.5  | Expression and secretion of SptP <sub>1-25</sub> -SipA <sub>26-685</sub> and SipA from plasmids |     |
|      | pMP009 and pMP010, respectively as visualized by immunoblotting                                 | 116 |
| A.7  | . Original western blots for expression of reporter variants in T3SS-deficient                  |     |
|      | strain SB906                                                                                    | 118 |
| A.8  | 6. Original blot of Lysis control western blot                                                  | 119 |

A.9. The effect of shaking on absorbance measurements is negligible. . . . . . . 120

# **List of Tables**

| 2.1.  | Devices used in this work                                                 | 20  |
|-------|---------------------------------------------------------------------------|-----|
| 2.2.  | Chemicals used in this work                                               | 21  |
| 2.3.  | Consumables used in this work                                             | 21  |
| 2.4.  | Enzymes & assay kits used in this work                                    | 22  |
| 2.5.  | Antibodies used in this work                                              | 22  |
| 2.6.  | Buffers, media & solutions used in this work                              | 23  |
| 2.8.  | Plasmids used in this work                                                | 24  |
| 2.10. | Primers used in this work                                                 | 27  |
| 2.12. | Oligos used in this work                                                  | 30  |
| 2.13. | Salmonella typhimurium strains used in this work                          | 31  |
| 2.14. | Escherichia coli strains used in this work                                | 32  |
| 2.15. | Touchdown-polymerase-chain reaction (PCR) cycle program                   | 35  |
| 2.16. | Python libraries used for data analysis and machine learning pipeline de- |     |
|       | velopment                                                                 | 37  |
| 2.17. | Functions used for 2-class prediction of T3SE vs cytoplasmic proteins     | 38  |
| 3.1.  | Salmonella proteins identified via liquid chromatography-coupled tandem   |     |
| 3.1.  | mass spectrometry (LC-MS/MS) in Salmonella typhimurium SB905              | 47  |
| 3.2.  | N-termini of experimentally verified <i>Salmonella</i> T3SEs              | 68  |
| 3.3.  | Different sample types display diverging degrees of Nanoluc luminescence  | 00  |
| 3.3.  | signal variation                                                          | 73  |
| 3.4.  | Current status of effector sequences in our T3SE database                 | 81  |
| 3.5.  | Experimental validation methods qualifying T3SS effector proteins for     | 01  |
| 5.5.  | inclusion into the T3SE database, sorted by frequency                     | 84  |
| 3.6.  | Functional characterization of validated T3SS-secreted proteins           | 85  |
|       | Identified host species sorted by animal and plant hosts                  | 89  |
| 3.7.  | identified flost species softed by affilmal and plant flosts              | 09  |
| A.1.  | Salmonella enterica subsp. enterica Typhimurium LT2 codon table, fre-     |     |
|       | quency per thousand Kazusa database. * denotes the stop codons            | 122 |
| A.2.  | Search terms and annotations used for collecting and cleaning dataset 1   | 134 |
| A.3.  | Functions associated with T3SE-secreted proteins                          | 135 |
| A.5.  | Identified target proteins of T3SS-secreted proteins                      | 149 |
| A.7.  | Identified localizations of T3SS-secreted proteins                        | 167 |

# Glossary

| ddH <sub>2</sub> O <u>d</u> | double-distilled H <sub>2</sub> O  |
|-----------------------------|------------------------------------|
| AMR <u>a</u>                | antimicrobial resistance           |
| APS                         | ammoniumperoxodisulfate            |
| ATP <u>a</u>                | adenosine triphosphate             |
| BLA <u>β</u>                | 3- <u>La</u> ctamase               |
| bp                          | oase pair                          |
| cAMP                        | cyclic Adenosinemonophospate       |
| CBD                         | chaperone-binding domain           |
| CDS                         | coding sequence                    |
| CV <u>c</u>                 | coefficient of variation           |
| CyaA a                      | adenylate cyclase                  |
| DMSO <u>d</u>               | dimethylsulfoxide                  |
| DNA <u>d</u>                | deoxyribonucleic acid              |
| DOC <u>d</u>                | deoxycholate                       |
| DTT                         | dithiothreitol                     |
| EDR                         | enhanced dynamic range             |
| EDTA                        | ethylendiaminetetraacetic acid     |
| FL <u>F</u>                 | Full length                        |
| FRET <u>F</u>               | Foerster resonance energy transfer |

| fT3SS <u>f</u> lagellar T3SS                                               |
|----------------------------------------------------------------------------|
| GLuc <u>G</u> aussia <u>luc</u> iferase                                    |
| HR <u>h</u> ypersensitive <u>r</u> esponse                                 |
| HRP <u>h</u> orse <u>r</u> adish <u>p</u> eroxidase                        |
| LB <u>lysogeny broth</u>                                                   |
| LC-MS/MS <u>liquid chromatography-coupled tandem mass</u> spectrometry     |
| LN <u>l</u> iquid <u>n</u> itrogen                                         |
| LPS <u>lipop</u> oly <u>s</u> accharide                                    |
| LSTM long-short-term memory network                                        |
| MAD <u>m</u> edian <u>a</u> bsolute <u>d</u> eviation                      |
| MODEST <u>m</u> age <u>o</u> ligo <u>des</u> ign <u>t</u> ool              |
| mRNA <u>m</u> essenger <u>r</u> ibo <u>n</u> ucleic <u>a</u> cid (RNA)     |
| NC <u>n</u> eedle <u>c</u> omplex                                          |
| nfT3SS <u>n</u> on- <u>f</u> lagellar T3SS                                 |
| NLuc <u>N</u> anoluc <u>luc</u> iferase                                    |
| NMR <u>n</u> uclear <u>m</u> agnetic <u>r</u> esonance                     |
| OD optical density                                                         |
| PAGE <u>p</u> oly- <u>a</u> crylamide <u>g</u> el- <u>e</u> lectrophoresis |
| PBS <u>p</u> hospate- <u>b</u> uffered <u>s</u> aline                      |
| PBS-T                                                                      |
| PCR <u>p</u> olymerase- <u>c</u> hain <u>r</u> eaction                     |
| PTB <u>p</u> rotein <u>t</u> ransfer <u>b</u> uffer                        |

| PVDF <u>p</u> oly <u>v</u> inylidene <u>dif</u> luoride           |
|-------------------------------------------------------------------|
| rcf <u>relative centrifugal force</u>                             |
| RFLuc red firefly <u>luc</u> iferase                              |
| RLuc <u>Renilla luc</u> iferase                                   |
| RNA ribonucleic acid                                              |
| RNN recurrent neural network                                      |
| rpm <u>r</u> otations <u>per minute</u>                           |
| RT room temperature                                               |
| SCV <u>Salmonella-c</u> ontaining <u>v</u> acuole/vesicle         |
| SDS sodium dodecyl sulfate                                        |
| SPI-2 <u>Salmonella pathogenicity island-2</u>                    |
| SPI-1 <u>Salmonella pathogenicity island-1</u>                    |
| SS <u>S</u> ecretion <u>signal</u>                                |
| T1SS type 1 secretion system                                      |
| T2SS type 2 secretion system                                      |
| T3SE type 3 secretion system effector                             |
| T3SS type 3 secretion system                                      |
| T4SS type 4 secretion system                                      |
| T5SS type <u>5</u> secretion system                               |
| T6SS type <u>6</u> secretion system                               |
| T7SS type 7 secretion system                                      |
| T9SS type 9 secretion system                                      |
| TAE tris-acetate-EDTA                                             |
| TCA trichloroacetic acid                                          |
| TD touchdown                                                      |
| TEMED <u>te</u> tra <u>m</u> ethyl <u>e</u> thylen <u>d</u> iamin |
| WHO <u>W</u> orld <u>H</u> ealth <u>O</u> rganization             |

# I. Abstract

### **Abstract**

The non-flagellar T3SS (nfT3SS) is a large, multimeric complex that is widely distributed among pathogenic and commensal gram-negative bacteria alike. Spanning the inner and outer membrane of diderm bacteria, this syringe-like structure facilitates the unfolded transport of specific proteins to the extracellular space or directly into eukaryotic host cells. Upon entry into host cells, these type 3 secretion system effectors (T3SEs) modulate a diverse array of host cell pathways involved in immune response, cytoskeletal organization or host cell trafficking, promoting bacterial survival, invasion or infection. Although critically required for type 3 secretion system (T3SS)-specific transport of substrates, a secretion signal, located in the extreme N-terminus of the effectors, has yet eluded a clear characterization. Building up on previous studies that indicate a correlation between the composition of the secretion signal and the secretion efficiency of substrates, this work establishes a Nanoluc luciferase-based high-throughput secretion assay to quantitatively monitor the impact of the N-terminal secretion signal on the secretion efficiency of T3SS substrates. Towards obtaining comprehensive experimental data, differential secretion efficiencies for several Salmonella effector N-termini were confirmed, and the largest and best annotated database of T3SS-secreted proteins to date assembled.

## Zusammenfassung

Das nicht-flagellare Typ 3 Sekretionssystem T3SS ist ein grosser, multimerer Proteinkomplex der unter pathogenen und kommensalen gram-negativen Bakterien gleichermassen weit verbreitet ist. Dieser einer Nadel ähnliche Proteinkomplex, der die innere und äußere Membran der didermen Bakterien umspannt, ermöglicht den Transport ungefalteter, spezifischer Proteine in den extrazellulären Raum oder direkt in eukaryotische Wirtszellen. Bei der Injektion der sogenannten Typ 3 Effektorproteine modulieren diese eine Vielzahl zellulärer Abläufe, die an der Immunreaktion, zytoskeletalen Organisationsprozessen, dem intrazellulären Transport sowie einer Reihe weitere Vorgänge beteiligt sind. Ein Sekretionssignal, das sich im extremen N-terminus dieser Effektoren befindet, konnte sich, obwohl essentiell fuer den T3SS-spezifischen Transport der Effektoren, bisher einer klaren Charakterisierung entziehen. Aufbauend auf früheren Studien, die eine Korrelation zwischen der Zusammensetzung des Sekretionssignals und der Sekretionseffizienz der Substrate andeuten, wird in dieser Arbeit ein Nanoluc-Luciferase basiertes Hochdurchsatz-Assay etabliert, welches es ermöglicht, den Einfluss verschiedener Sekretionssignale auf die Sekretionsquantität zu ermitteln. Zur Erfassung umfassender experimenteller Daten wurden unterschiedliche Sekretionseffizienzen für eine Reihe von Salmonella Effektoren bestätigt, ausserdem wurde die bisher größte und umfassendste Datenbank Typ 3 sekretierter Protein aufgebaut.

# 1. Introduction

## 1.1. Gram-negative pathogens

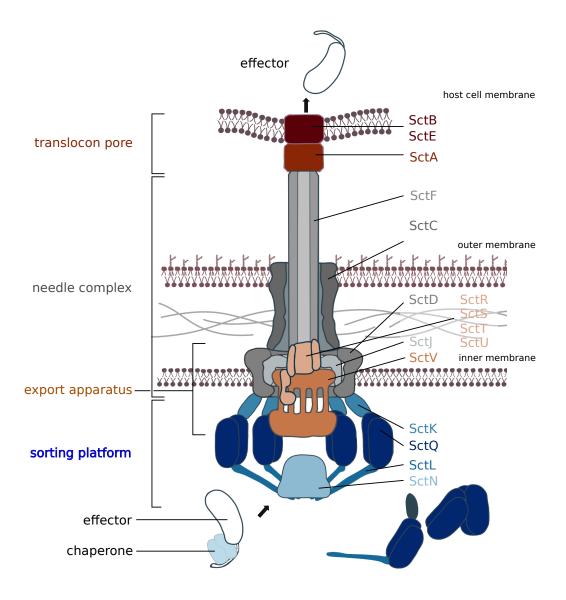
Communicable diseases transmitted by pathogenic bacteria remain one of the major global threats to human health in the 21st century [1]. In 2019, bacterial infections were associated with 7.7 million deaths making it the second largest cause of death worldwide [2]. The emerging spread of bacterial antimicrobial resistance (AMR) linked to an estimated 4.95 million deaths further aggravates the burden on health systems as effective treatment becomes increasingly challenging [3]. Driven by predictions of up to 10 million deaths by the year of 2050, the World Health Organization (WHO) has issued a priority list of bacterial species for which new antibiotics are urgently needed [4]. 9 out of 12 of the bacterial species are gram-negative, reflecting the high relevance of this group as pathogens [5]. In gram-negative bacteria, the distinct architecture of the diderm cell envelope with an inner membrane, a thin peptidoglycan layer and an asymmetric lipopolysaccharide (LPS)phospholipid outer membrane provides advanced protection from antimicrobial drugs and antibiotics. Conceived as the main barrier of resistance against large, charged molecules the characteristic outer membrane forms a rigid layer intercalated by β-barrel porin proteins that allow passive uptake and efflux of nutrients and other molecules [6]. Active export of antibiotics via specialized drug efflux pumps contributes significantly to the high resistance of gram-negative bacteria to antibiotics and poses a significant threat towards the dissemination of resistant strains [7].

Mechanisms to deliver cargo across cell membranes are essential to the survival and growth of all living organisms and can be found in all domains of life [8]. In bacteria, a multitude of complex transport systems has evolved to traverse one or multiple membranes. The most abundant and ubiquitous export pathways are the Sec- and Tat pathways that direct transport from the cytoplasmic to the periplasmic or extracellular space. The importance of these pathways is reflected by the fact that in certain species up to 25 % of the proteome localizes to the periplasmic space and cell envelope, requiring appropriate means for transport [9]. In E.coli for example, the transport of unfolded proteins via the general secretory (Sec) pathway constitutes 98 % of all proteins to cross the inner membrane [10]. Some proteins are not viable for unfolded transport requiring specific ions, cofactors or a suitable folding environment [11]. These proteins are folded in the cytoplasm of the bacteria and directed to the Twin-Arginine translocation (Tat) pathway for export. To be recognized by the Tat translocase, the presence of a cleavable N-terminal signal peptide containing a specific twin-arginine motif at the N-terminus of the substrate is required [11]. This energy-consuming process contributes to a lesser degree to protein translocation but is still found in 77 % of all bacteria, in many archaeal species as well as in cyanobacteria and plants [12].

## 1.2. Secretion systems

In addition to the universal Sec and Tat-pathways prevalent in almost all bacterial species, many bacteria have evolved an arsenal of dedicated secretion systems to export substrates into the surrounding environment or into host cells. Out of 11 secretion systems identified to date, 10 have been identified in gram-negative bacteria [13][14][15][16]. A notable exception to this prevalence displays the type 7 secretion system (T7SS) that has been found in gram-positive bacteria of the family *Corynebacteria* and *Mycobacteria* [17][18]. While some of these systems seem to be restricted to specific bacterial phyla like the type 9 secretion system (T9SS) in *Bacteroidetes*, others like the type 2 secretion system (T2SS), T3SS or the type 6 secretion system (T6SS) are widespread among pathogenic and commensal gram-negative bacteria [14][19].

Functionally, secretion systems can be categorized according to multiple traits. The type 1 secretion system (T1SS) comprised of an inner membrane ATP-binding cassette (ABC) transporter, a periplasmic membrane-fusion and an outer-membrane porin, exports unfolded peptides across both diderm membranes in a one-step mechanism [8][20]. As opposed to the small size of substrates of classical ABC transporters, the T1SS has been shown to also export large substrates [20]. The T2SS and type 5 secretion system (T5SS) are unique in that they rely on the transport of cytoplasmic components via the Sec- or Tat pathways. While the T2SS facilitates the translocation of folded substrates delivered to the periplasm via the Tat pathway to the extracellular environment, type 5 substrates engage in a 2-step translocation procedure. They are translocated in unfolded manner via the Sec pathway before they fold and secrete themselves through the outer membrane forming a distinct βbarrel domain pore [8]. Similar to the type 1 secretion system, type 3 (T3SS), type 4 (T4SS) and T6SS moderate transport across both the inner and outer bacterial membrane. In contrast to the T1SS, these three systems are also capable of translocating cargo across a third membrane into other bacteria or eukaryotic host cells. Intriguingly, the highly diverse type 4 secretion system facilitates not only transport of proteins and protein-protein complexes, but also protein-DNA complexes both intercellularly and to the external environment [21]. Ancestrally related to DNA conjugation systems, this trait allows type 4 secretion system (T4SS)-harboring bacteria to exchange genetic information with other bacteria or induce bacterial killing providing a competitive advantage in microbial communities [22][23][24]. Another secretion system that has been associated with interbacterial communication is the highly conserved T6SS for which multiple roles such as involvement in bactericidal activity, growth competition in biofilms or self-versus-nonself discrimination has been reported [25][26][27]. Importantly, both the T4SS and the T6SS also play a role in virulence to eukaryotic hosts underlining their high versatility and the frequently occurring exaptation to specific tasks [19][28].


## 1.3. The type III secretion system

One of the best characterized secretion systems to date is the type 3 secretion system. T3SS can be divided into two distinct, ancestrally related systems; the flagellar T3SS (fT3SS) that drives locomotion and the non-flagellar T3SS (nfT3SS) or virulence-associated T3SS that presumably evolved as an exaptation of the related flagellar system [29][30]. The nfT3SS that is also referred to as the injectisome, is a large, membrane-embedded multimeric protein complex. It comprises more than 20 proteins and is widely distributed among gram-negative bacteria forming both pathogenic and symbiotic relationships with a broad range of eukaryotic hosts [31][32]. Bypassing the periplasm, it serves as a direct conduit to translocate proteins from the bacterial cytoplasm into the extracellular space or into eukaryotic host cells crossing two to three membranes, respectively [33].

In a global survey of 20000 bacterial genomes, Hu et al. identified nfT3SSs from 36 bacterial species that could be divided into 12 categories based on microsynteny organization and phylogenetic analysis [34]. The identification of 174 different T3SS from 109 genera emphasizes the wide spread of this secretion system among gram-negative bacteria. Often these bacteria not only harbor a single but multiple T3SSs, highlighting its importance to the bacterial survival [35].

### 1.3.1. T3SS structure

The structure of nfT3SS can be segmented into four major substructures: the basal body, the extracellular needle, the export apparatus and the cytoplasmic sorting platform (see Figure 1.1) [36]. Together, the basal body and the needle comprise the needle complex (NC), a 3.6 MDA syringe-like subcomplex, that coined the term injectisome [37].



**Figure 1.1.:** Structure of the Type III secretion system adapted from Wimmi et al. [38]. The nfT3SS can be segmented into the subcomplexes, needle complex, export apparatus and sorting platform. At the distal end of the needle complex, a translocon pore allows secretion of substrates directly into host cells. The cytoplasmic sorting platform is thought to dynamically exchange effector-bound subcomplexes of SctK, SctQ and SctL as a shuttle mechanism during the secretion process[38].

### 1.3.1.1. The needle complex

The needle complex is composed of the basal body, formed by several membrane-embedded rings and the needle filament, protruding the bacterial cell to form contact with host cells. The basal body mainly acts as a scaffold anchoring the complex between the inner and outer bacterial membrane and providing a rigid basis for translocation [39][40]. Two inner rings with 24-fold symmetry composed of the proteins SctD and SctJ are connected to an outer ring comprised of SctC proteins [41][42]. The inner rings connects the complex to the inner bacterial membrane, while the outer ring embeds the complex in the outer membrane. Anchored to the basal body via the inner rod protein SctI, the needle is composed of the needle filament SctF, enclosing a narrow channel of roughly 2.5 nm that serves as a conduit for substrates necessitating transport in unfolded manner [41]. Arranged in helical fashion, the needle extends between 30 nm to 70 nm in length in a species-specific manner [43]. The  $\alpha$ -helical arrangements results in an inner lumen composition of mostly polar residues with alternating positively and negatively charged regions that is assumed to promote secretion [43]. Interestingly, recent findings indicate potential translocation of partially unfolded substrates retaining  $\alpha$ -helical secondary substructures during transport [39]. The length of the needle is regulated by SctP and the inner rod protein SctI that has also been connected to play a role in the selectivity of substrates [44]. At the distal end of the needle, the tip protein SctA provides the basis for translocon proteins SctB and SctE to insert into the host cell membrane forming a translocon pore [45]. In some bacterial species, the tip protein is replaced by a pilus or filament protein as shown e.g. for enteropathogenic Escherichia strains [46].

#### **1.3.1.2.** The export apparatus

The export apparatus is embedded within the needle complex and constitutes a decameric complex of the proteins SctR, SctS and SctT [39]. Four SctS proteins form the entry for substrates to traverse the complex, forming a hydrophilic interface of glutamine residues interacting with the substrate backbone (Q1-belt) [39]. Following this sidechain-independent translocation of the substrate, 5 SctR and a single SctT molecules constitute the hydrophobic, staircase-like M-gate. Opening of this gate allows passage of substrates while maintaining celullar homeostasis [39]. Located on top sits a second hydrophilic Q2-belt with the conformationally flexible SctT acting as a lid and two SctR glutamines promoting further transport through the channel.

Wrapping around the cytoplasmic end of the export apparatus, a single protein of SctU forms connections with SctR and SctT [47]. Hypothesized to induce conformational changes leading to an opening of the apparatus, SctU is often designated as a substrate switch [47]. In accordance with the assumed role for SctU, its directional position within the export apparatus supports speculations of an interaction with the cytoplasmically located nonameric ring of SctV that has been shown to bind to effector-chaperone pairs [48].

#### **1.3.1.3.** The sorting platform

The sorting platform is located at the cytoplasmic interface of the injectisome. Anchored by the cytoplasmic domain of the inner ring protein SctD, five proteins (SctK, SctL, SctN, SctO, SctQ) comprising this subcomplex form a pod-like structure with 6-fold symmetry [33][37][41]. SctK acts as a linker between SctD and SctQ and docks this cytosolic complex beneath the inner ring and the export apparatus [35]. Full-length SctQ shares homology to the flagellar C-ring protein FliM, an internal translation site produces a truncated SctQ homologous to FliN [49],[50]. In Yersinia, 22 copies of the full SctQ protein are found in non-secreting and secreting conditions [49]. Instead of forming a closed ring structure similar to the flagella system, the C-ring proteins of the sorting platform seem to adopt podlike folds that dynamically cycle between cytosolic subcomplexes and injectisome-docked state, putatively acting as shuttles for effector-chaperone complexes [51][38]. Transient complexes of SctQ, SctK and SctL have been shown to comigrate with T3SS substrates that display differential affinities towards binding to the cytosolic complexes. The direct binding of effector proteins to SctQ that coincides with evidence for chaperone-independent secretion of effectors in Shigella as well as binding of effector-chaperone complexes to SctQ indicates several possible modes of action depending on the bacterial species [38][52][53]. SctL and SctK appear not to be involved in effector binding but seem to contribute to the stability of the cytosolic subcomplexes [38].

Located in the center of the sorting platform sits the homohexameric ATPase SctN. A recent cryo-EM structure of the E.coli ATPase EscN hexamer in complex with the central stalk protein EscO/SctO reported by Majewski et al. displays similarity to the rotational mechanism of  $F_1/V_1$ -ATPases [54]. The stalk protein SctO is thought to serve as a anchoring point between SctN and SctV relaying conformational changes within the T3SS as a result of SctN activity [55][56]. Linked via SctL dimers, SctN forms a central complex that serves as a docking point for effector-chaperone bound SctK-SctL-SctQ pods and assists in chaperone detachement, a process that has drawn comparisons to the functional role of AAA+-ATPases in protein complex dissociation or unfolding [57] [58]. The recognition of effector-chaperone complexes seems to occur independent of the presence of ATP, the dissociation of chaperones however requires the catalytic activity of SctN [57]. Reports of the ATPase-independent secretion of substrates question whether SctN acts as the major driving force in the translocation process or in an auxiliary role in the initial unfolding of effectors [59]. The export of flagellar proteins in the related fT3SS in absence of its ATPase FliL suggest the latter and underline the necessity of the proton motive force (PMV) as driver for translocation [60][61][62][63].

### 1.3.2. T3SS assembly and substrate secretion

To add more complexity to the open question of how the initial recognition and secretion of substrates is orchestrated, the assembly of T3SS systems appears to be a highly hierarchical

process that can be divided into four discrete steps [31].

For the initial stages of assembly two models have been proposed, the inside-out model and the outside-in model. In the inside-out model, the integration of the export apparatus to the inner membrane and the subsequent formation of the inner rings (SctI, SctD) is followed by the localization of the secretin SctC to the outer membrane. In the outside-in model, the onset of activity by peptidoglycan-cleaving enzymes is defined earlier allowing initial localization of the outer membrane ring in the outer membrane followed by integration of the export apparatus and the inner rings. Intriguingly, while the ancestral relationship of the fT3SS and the nfT3SS promotes the inside-out model, fluorescence-labeling experiments on the structural components of the T3SS suggest an alternative evolutionary path for the *Yersinia* T3SS that follows the outside-in model [64].

After assembly of the basal body and the export apparatus, subsequent steps necessitate the secretion of structural components in T3SS-dependent manner [35]. The complex architecture of the T3SS machinery requires the precise sequential secretion of substrates in order to guarantee the correct assembly of the complex. The first substrates to be T3SS-secreted are the structural proteins SctI and SctF that arrange into the inner rod and needle. Completion of the inner rod has shown to induce conformational changes that result in the first substrate specificity switch and prevent further secretion of early substrates [65]. In Salmonella, the regulatory protein SctP has been associated with a role as a needle length regulator and is critically required for assembly of the inner rod, serving in a stabilizing function promoting anchoring of the inner rod and needle in the basal body [44]. Curiously, the length of SctP correlates well with the length of the resulting needle leading to a divergent explanation on the mechanism of needle length regulation. Supported by experiments in Yersinia, this model assumes SctP to function as a molecular ruler that signals the substrate switch upon full extension [66]. Finally, the species-specific length of the needle is influenced by the stoichiometry of SctF and SctI, overexpression of either protein results in aberrantly long or short, yet functional needles [65]. The absence of SctP however, completely impaired the assembly of a functional T3SS emphasizing its importance in the assembly process. Thus, how SctP regulates needle length and substrate switch is still under debate and findings in E.coli, reporting an interaction of SctP with the gatekeeper protein SctW in a calcium-dependent manner indicate another additional role in external sensing [67].

Ensuing the assembly of the needle, the middle substrates comprised of the tip protein SctA and the translocon proteins finalize the assembly of the T3SS and establish host cell contact. In the process of switching from early to middle substrates, the switch protein SctU seems to act as binding partner for different structural components in the export apparatus as *in-vitro* studies suggest [68]. SctU belongs to a family of inner membrane proteins that contain a conserved motif for autocatalytic cleavage. Early speculations of this autocleavage as the trigger for substrate switching appear unlikely as the cleavage event occurs prior to incorporation of SctU into the T3SS base [69]. At this point a second

substrate specificity switch occurs resulting in the secretion of effector proteins (T3SE). This switch seems to be mediated by SctW, often termed gatekeeper protein that has been identified in multiple species such as *Pseudomonas*, *Salmonella* or *Shigella* [70][71][72]. In its role as gatekeeper SctW binds to translocon-chaperone complexes and recruits them to the sorting platform by docking them to SctN. Additionally, SctW is able to suppress secretion of later substrates. The exact mechanism how SctW is able to sense the assembly of the translocon pore and activate substrate switching to effector proteins is still debated [35][73]. After the establishment of host cell contact, secretion of T3SE proteins occurs that mainly exert their function in the host cell. The intricate manipulation of the host cells and the interplay of many of these effectors adopting redundant functions during infection or invasion furthermore stresses the importance of a highly regulated secretion process.

## 1.4. Type III effector proteins

Despite significant advances in the structural characterization of the nfT3SS several aspects of the substrate recognition and translocation mechanism remain elusive. For the study of these processes it has become imperative to not only focus on the structural components comprising the T3SS but to also thoroughly investigate features of the T3SS-secreted substrates that might be important during translocation. Concomitant to the elucidation of functional roles and activities of effector proteins in the context of host cell interaction and virulence, distinct patterns shared by the majority of effector proteins have emerged. Typically, T3SEs are multi-domain, sometimes multifunctional proteins that display a wide array of activities adapted to their specific role of interaction with the targeted host cells. Despite the large range of functions, T3SEs seem to share a modular architecture that has prompted speculations about their origin and evolution [74].

Commonly, type III effectors harbor one or multiple functional domains located in the central or C-terminal fraction of the protein that often mediate different, seemingly unrelated activities [74]. Exemplarily, the *Salmonella* effector SptP containing both a GTPase-activating domain (GAP) with homology to the *Pseudomonas* effector ExoS and a tyrosine-phosphatase domain related to the *Yersinia* effector YopH, these functional domains suggest a shared origin and subsequent adaptation to the respective host [74][75][76]. In respect to the fact that T3SS-harboring pathogens infect and manipulate eukaryotic hosts, it is not surprising that the evolution of the active domains often mimics structural and functional roles of eukaryotic proteins [77][78].

## 1.4.1. Role of the chaperone-binding domain

Separate from the functional diversity of the C-terminal domains, T3SE harbor one to two distinct domains located in the N-terminal region that play a role in facilitating secretion and determining the hierarchical secretion of different substrates. For many of the identified

effector proteins a chaperone-binding domain (CBD), located between residues 50 to 150, displays a prerequisite for T3SS-mediated secretion. The identification of single- and multicargo chaperones for a vast number of effectors and the interaction of structural components with chaperone-effector pairs implies a certain importance to the secretion process. In the fT3SS, the interaction of a chaperone-substrate complex to FlhA, a homolog of the export apparatus protein SctV highlights a potential mode of action with the substrate-chaperone interaction adopting a conformation suitable for bringing the substrate in close proximity to the opening of the export apparatus channel [79]. As recently demonstrated by Wimmi et al., chaperone-effector complexes also bind to the sorting platform protein SctQ, as well as to the ATPase SctN suggesting a common theme in priming effectors for translocation [38][80]. Supporting this hypothesis, the mechanical lability of some effectors as shown for Salmonella SopE2 and SptP stresses the important role of chaperones in keeping effector proteins in a stable, secretion-competent state and assisting in the translocation process [81]. The dynamics of this mechanism remain to be determined, differential expression patterns of chaperones and their cognate effectors support a recycling mechanism of chaperones after dissocciation from their effectors [62].

With a view to the intricate hierarchical secretion order required for T3SS assembly and manipulation of hosts, it has further been speculated whether different binding affinities of chaperone-effector complexes to the cytoplasmic sorting platform might contribute to determining the secretion order [82]. Studies monitoring the secretion kinetics of several effectors have reported both similar but also strongly diverging secretion rates for different T3SEs [83][84]. The fact that *Salmonella* effectors SopE and SipA displaying similar secretion kinetics bind to the same multi-cargo chaperone InvB could be indicative of the assisting role chaperones play in regulating the secretion process [83]. Alternatively, the real-time observation of functionally opposing *Salmonella* effectors SopE2 and SptP respectively activating or suppressing the host GTPase Cdc42, revealed that SopE2 is secreted 2-fold faster than SptP [84]. Remarkably, both effectors contain signals within their N-terminal domain that result in differential proteasomal degradation rates in the host cell, adding another layer of regulation [84][85].

Despite these findings, Ernst et al. have reported the chaperone-independent secretion for multiple *Shigella* effectors [52]. This is in congruence with the chaperone-independent secretion of the *Yersinia* effector YopO lacking its chaperone-binding domain (CBD) [86]. Finally, Lee and Galán proposed a role in conferring secretion-pathway specificity for the *Salmonella* chaperones SicP and InvB targeting the effectors SptP and SopE to the nfT3SS rather than the fT3SS [87]. The finding that these effectors are still secreted via a Type III secretion system further sparked interest into another essential domain identified in the extreme N-terminus of the effector proteins that functionally seems to resemble a secretion signal as observed for other secretion systems.

### 1.4.2. Secretion signals

Secretion signals have been identified for a number of secretion systems. Typically located in the amino acid sequence, these signal peptides guide the substrates to the designated export pathway via a distinct composition or pattern, either composed of conserved physicochemical properties, structural elements or by a clear consensus sequence. For example, proteins targeted to the general Sec pathway contain a cleavable N-terminal signal sequence comprised of 3 distinct regions, a positively charged N-terminal region, a hydrophobic core and a polar carboxyterminal region, promoting association with components of the SecYEG machinery [88]. Substrates of the type I secretion system however, are characterized by a C-terminal secretion sequence and nonapeptide repeats N-terminal to the secretion sequence [89]. T1SS secretion signals display high variability in sequence, yet adopt a flexible structural fold consisting of 2  $\alpha$ -helices and an unstructured C-terminal domain [90].

For type III secretion system substrates, several studies have proclaimed the existence of a secretion signal in the extreme N-terminus of the T3SE. Although critically required for T3SS-mediated secretion, the lack of a distinct conserved secretion signal has fueled research towards its identification.

In the late 1990s, two opposing hypotheses were postulated proposing a T3SS secretion signal to either originate in the peptide sequence or the mRNA 5'-end of an effector protein, respectively [91][92][93][94]. The identification of two domains within the N-terminal 75 residues of the Yersinia effector YopE by Schesser et al. and Sory et al. that are required for T3SS-mediated secretion and translocation strengthened the idea of a signal rooted in the peptide sequence [91],[92]. Composed of a secretion signal at the extreme N-terminus and a translocation signal within the N-terminal 49 residues of YopE these domains facilitate transport across the bacterial or host cell membranes [91]. Mutational studies on the Yersinia effectors YopE, YopN and YopQ implying a tolerance to frameshift mutations in the Nterminal nucleotides led to the alternative theory of an mRNA-encoded secretion signal [93][94]. The limited effect of those frameshifts on the peptide sequence (Figure 1.2A) and ambiguous results on the Yersinia effector YopQ presented in subsequent works by Schneewind and colleagues did not lead to a clarification on the origin of the presumed secretion signal [95] [96]. Findings, like the abrogation of secretion via introduction of a silent mutation in the YopQ N-terminus have remained scarce and although an impact of the mRNA sequence on T3SS-mediated secretion should not be ruled out [96], subsequent works provided more evidence in support of a secretion signal localized in the peptide sequence. As Lloyd et al. showed in 2001, the alteration of more than half of the nucleotides in the N-terminal 10 codons of YopE did not impair its secretion as long as the amino acid sequence remained intact [97]. The expansion of research to other effectors and T3SS-harboring species such as Salmonella brought more evidence of a peptide-encoded signal and advanced its characterization [98][99]. It should be noted, that while more evidence for a peptide located secretion signal exists, a study from 2013 also identified the

potential involvement of 5'-Untranslated leader sequences and the RNA-binding protein Hfq in effector translocation [100].

The ability to facilitate T3SS-mediated secretion in heterologous bacteria as shown for

| A       |                 | В                       |                   |
|---------|-----------------|-------------------------|-------------------|
| YopN WT | MTTLHNLSYGNTPLR | pattern                 | enriched/depleted |
| YopN -1 | MRRFITYLMAIPRCV | polar-hydrophobic-polar | enriched          |
| YopN +2 | MKRRFITYLMAIPRC | alkaline-alkaline       | depleted          |
| YopN +1 | MNDASKPILWQYPAA | threonine               | enriched          |
| YopN -2 | MDASKPILWAYPAAG | serine                  | enriched          |
| YopE WT | MKISSFISTSLPLPA | proline                 | enriched          |
|         |                 | polar                   | enriched          |
| YopE -1 | MKYHHLFLHHCPCRQ | alkaline                | depleted          |
| YopE +2 | MKKYHHLFLHHCPCR | acidic                  | depleted          |
| YopE +1 | MENIIIYFYITAPAG | hydrophobic-alkaline    | depleted          |
| YopE -2 | MNIIIYFYITAPAGG | polar-polar             | enriched          |

**Figure 1.2.:** Two hypothesis on the origin of the secretion signal have been proposed. A N-terminal peptide composition of the *Yersinia* effectors YopE and YopN after introduction of frameshift mutations. Adapted from [93]. **B** The computational analysis of T3SEs N-termini exhibits discriminatory features within the peptide sequence against non-T3SE sequences with an enrichment bias towards small polar residues such as threonine and serine. Adapted from [101].

chlamydial and *Vibrio* effector N-termini in *Yersinia* or the identification of homologous effectors in *Salmonella* led to a systematic review into secretion signal properties [102][103] [104][105]. With the growing availability of sequenced bacterial genomes and the advent of sophisticated computational methods such as machine learning it became apparent that while a consensus pattern as identified for signal peptides of other secretion systems seems lacking, T3SS secretion signals share common features across bacterial species.

An analysis of the N-terminal domains of animal and plant pathogens revealed a significant enrichment for small polar residues such as serine and threonine and a depletion of leucine and acidic residues [106] [101][107]. Based on the propensity for an overall amphipathic sequence composition in combination with the enrichment of prolines it was speculated that the secretion signal might be intrinsically disordered as a key property [101][107]. In light of the fact that some ATPases specifically recognize unstructured peptides on their substrates, one could speculate about a role of the secretion signal in the binding to SctN [108]. Despite the lack of a concrete definition for the secretion signals several computational approaches have successfully predicted new effector proteins using solely the information of the N-terminal peptide sequence [101][109][110][111]. The concomitant biochemical characterization of more T3SS substrates revealed that effector proteins are secreted in hierarchical and competitive order [84][112]. Importantly, Sorg et al. demonstrated that during assembly of the export apparatus, autocleavage of the substrate switch protein SctU is specifically required to allow secretion of the tip and translocon

proteins SctA, SctB and SctE to form the needle tip and translocon pore without hindering secretion of late substrates [113]. Remarkably, the exchange of the N-terminus of SctA with the N-terminal sequence of the late substrate YopE restored its secretion in a strain incapable of SctU autocleavage. As opposed to the location of T3SS secretion signals in the extreme N-terminus, Login and Wolf-Watz identified a C-terminal secretion signal in the cleaved C-terminal peptide of SctU that is critical for its secretion. The lack of this signal resulted in increased secretion of the middle substrate SctF without compromising secretion of late substrates [114]. Considering that in both cases the secretion of late substrates were not affected, it seems natural to assume the existence of separate, specific secretion signals recognized by the T3SS machinery securing the secretion order of early, middle and late substrates. A work conducted in *E.coli* also supports this notion, postulating the existance of an additional translocon protein-specific secretion signal located downstream of the N-terminal secretion signal between residues 20 to 70 [115].

Diverging secretion rates as briefly described before (subsection 1.4.1), not only prompted the investigation of T3SE chaperones but also raised speculations whether the N-terminal secretion signal itself might contribute to the secretion efficiency. In general, effector proteins are secreted and translocated in highly different quantities depending on their activity in the host cell. Some effectors critically involved in promoting infection such as the *E.coli* effector Tir or the *Salmonella* effector SipA have been shown to be translocated in high abundance and very early during the infection process [116]. Other effectors however, are translocated at much lower rates, possibly due to the translocation of multiple effectors with redundant function inside the host. Aside from regulatory effects on the gene level, the translocation efficiency of many effectors is directly influenced both by the intrabacterial concentration as well as the availability of chaperones to stabilize them and guide them to the T3SS [117][118]. Interestingly, as shown for several Shigella effectors not all T3SEs require chaperones for secretion, raising the question how the secretion levels for these substrates are modulated [52]. Another study, that conducted shuffling experiments on the N-terminal residues of the *Yersinia* effector YopE, discovered that amphipathic sequences with alternating serine and isoleucine residues facilitate effective secretion, while longer streches of polar or very hydrophobic signal sequences diminished the quantity of effector secretion [106]. It therefore seems likely to assume that the sequence composition of the secretion signal itself also contributes to the finetuned deployment of effectors unrelated to expression levels and chaperone-mediated allocation to the sorting platform. The investigation of a correlation between secretion signal and effector secretion quantity/efficiency has not been tested and could narrow the search for why the secretion signal is essential for the translocation process. It will be part of this work.

### 1.5. Salmonella

Among the most intensively studied organisms for deciphering the role of the T3SS and its effectors in the context of virulence is the gram-negative bacterium *Salmonella* of the *Enterobacteriaceae* family. As the major cause for foodborne infections, *Salmonella* serovars are responsible for an estimated number of 200 million to 1.3 billion cases of disease worldwide and the increasing dissemination of drug-resistant *Salmonella* strains has prompted the WHO to include this genus on their priority list of monitored bacterial species [4][119].

During its life cycle as a facultative pathogen salmonella deploys several secretion systems, among them a T1SS, two T3SS, a T4SS and a T6SS [120]. The two nfT3SSs encoded by Salmonella are the Salmonella pathogenicity island-1 (SPI-1) T3SS-1 and the Salmonella pathogenicity island-2 (SPI-2) T3SS-2 [121]. During the initial stages of invasion, the SPI-1 T3SS is utilized to inject a range of T3SEs, notably SipA, SipC, SopE and others into the host cell to remodel the cells cytoskeleton and facilitate entry of the Salmonella. Inside the host, a Salmonella-containing vacuole/vesicle (SCV) is formed around the Salmonella that promotes its intracellular survival and replication. To persist in its intracellular niche and evade the host immune responses, effectors secreted via the SPI-2 T3SS mediate SCV maturation, regulate the hosts defense pathways and induce migration towards the perinuclear region of the host cell [121]. Tethered to the SCV via secreted SPI-2 effectors, the SCV remains in close proximity to the nucleus, promoting prolonged bacterial survival and replication [122]. While the T6SS also seems to contribute to the intracellular growth and replication of Salmonella in macrophage cells, the vast range of interactions and roles of T3SS-secreted proteins underlines the decisive importance of the type III secretion system in the context of invasion and surival [123].

## 1.6. Aim of this work

Using *Salmonella enterica* subsp. *enterica sv*. Typhimurium as a model organism, this work aims to advance the current knowledge how the N-terminal T3SE secretion signal promotes and regulates T3SE-mediated secretion.

In consideration of the limited success to identify key components within the secretion signal, we hypothesized that the purely qualitative analysis of sequence features of T3SEs will not be sufficient to shed further light on the signals key attributes. By investigating the putative connection between the secretion signal sequence and the secretion efficiency of a T3SE we strive to determine whether the secretion signal itself confers a modulating effect on the quantity and rate of a secreted substrate.

To address this, a quantitative T3SS secretion assay using a luminescence-based approach was established fulfilling the requirements for high-throughput, speed and simplicity of

handling. Given the large number of identified T3SEs with individual activities requiring an intricate regulation of secretion, it is envisioned to test as many secretion signals as possible to attain a finegrained vision of ranked secretion efficiencies. At this point, the quantification of signals is ongoing, therefore this work provides secretion efficiencies for the majority of identified *Salmonella* N-termini. Concomitant to the setup of the quantitative assay, the largest and most comprehensive database of experimentally verified type III secreted substrates to date was compiled, comprising both early, middle and late substrates. Initially serving the purpose of providing validated secretion signal sequences for our large-scale quantification setup, it also features annotated data about a proteins function, host cell targets and host cell localization directly connected to the information source. Overall, this makes it a valuable source not only for this work, but could also serve as a reference beneficial for future research on type III secreted substrates. The following sections describe the process of developing and establishing a quantification and analysis pipeline:

#### 1. Endpoint quantification of secreted reporter proteins with secretion signal variants

We aim to complement a *Salmonella typhimurium* strain with plasmids carrying different N-termini fused to a reporter protein. By quantifying the amount of secreted protein after a specified timepoint, we rank the effect of individual secretion signals according to their propensity to promote T3SS-mediated secretion.

### 2. Database of experimentally confirmed T3SE

To test the maximal number of secretion signals and study their intricacies, a database of published, experimentally validated and non-redundant T3SS-secreted proteins comprising both structural/regulatory components and effectors proteins will be assembled.

# 3. Computational integration of secretion efficiencies with qualitative sequence features

Following experimental determination of secretion efficiency scores, the quantitative data needs to be associated with the respective peptide sequences. We intend to deploy machine learning frameworks for both classification and regression tasks in order to gain a deeper understanding of the signal.

# 2. Materials & Methods

# 2.1. Materials

Table 2.1.: Devices used in this work.

| name                                      | manufacturer      |
|-------------------------------------------|-------------------|
| tuberoller                                | Starlabs          |
| tuberoller SRT9D                          | Stuart            |
| cell density meter WPA Biowave CO8000     | Biochrom          |
| centrifuge 5810 R                         | Eppendorf         |
| centrifuge Biofuge fresco                 | Heraeus           |
| tabletop centrifuge 5425R                 | Eppendorf         |
| incubator HT Multitron Std                | Infors            |
| incubator Heratherm                       | Heraeus           |
| Safety cabinet Maxisafe 2020              | Thermo Scientific |
| PCR cycler T1                             | Biometra          |
| spectrophotometer DS-11 Fx+               | DeNovix           |
| platereader Clariostar Plus               | BMG Labtech       |
| platereader Envision                      | Perkins Elmer     |
| imager Chemostar                          | Intas             |
| thermomixer                               | ThermoScientific  |
| thermoblock                               | ThermoScientific  |
| imager ChemiDoc MP                        | Bio-Rad           |
| Western blotting transfer device          | Bio-Rad           |
| power supply PowerPac <sup>TM</sup> HC    | Bio-Rad           |
| power supply PowerPac <sup>TM</sup> Basic | Bio-Rad           |
| pump                                      | Bio-Rad           |
| gel electrophoresis system MiniProtean    | Bio-Rad           |

Table 2.2.: Chemicals used in this work.

| name                      | manufacturer      |
|---------------------------|-------------------|
| agarose                   | Invitrogen        |
| 10 % APS                  | Thermo Scientific |
| L-(+)arabinose            | Sigma             |
| DMSO                      | Honeywell         |
| 20 % arabinose            | Sigma             |
| 99 % methanol             | Sigma             |
| milk powder               | Sucofin           |
| 4 % acrylamide solution   | Roth              |
| 20 % acrylamide solution  | Roth              |
| ampicillin sodium salt    | Roth              |
| sodium chloride           | Merck             |
| sodium deoxycholate       | Sigma             |
| sodium dodecyl sulfate    | Sigma             |
| tricholoracetic acid      | Sigma             |
| Tween 20                  | Sigma             |
| chloramphenicol           | Sigma             |
| kanamycin sulfate         | Sigma             |
| tetracyclin hydrochloride | Sigma             |
| TEMED                     | Applichem         |
| m-toluic acid             | Sigma             |

Table 2.3.: Consumables used in this work.

| name                                              | manufacturer      |
|---------------------------------------------------|-------------------|
| pipette tips                                      | Eppendorf         |
| Nunc flat-bottom 96-well plate                    | Thermo Scientific |
| 96-well LumiTrac <sup>TM</sup> luminescence plate | Bio-Greiner       |
| 0.2 μm filter-membranes                           | Sigma             |
| gas-permeable foil                                | Machery-nagel     |
| PVDF-membrane                                     | Merck             |
| filter papers                                     | Sigma             |
| Sanger sequencing Ecoli Nightseq                  | Microsynth        |
| Sanger sequencing Economy Run                     | Microsynth        |

Table 2.4.: Enzymes & assay kits used in this work.

| name                                                   | manufacturer        |
|--------------------------------------------------------|---------------------|
| 2X repliQa HiFi ToughMix                               | Quantabio           |
| PCR purification kit                                   | Qiagen              |
| Plasmid isolation kit QiaPrep Mini                     | Qiagen              |
| In-Fusion®Snap Assembly Master Mix                     | Takarabio           |
| 20000x RedSafe™Nucleic acid stain                      | Intronbio           |
| Gibson Assembly®Master Mix                             | New England BioLabs |
| Hifi assembly mix                                      | QuantaBio           |
| PageRuler <sup>TM</sup> Prestained protein-ladder      | Thermo Scientific   |
| PageRuler <sup>TM</sup> Plus Prestained protein-ladder | Thermo Scientific   |
| GeneRuler 100bp DNA-ladder                             | Thermo Scientific   |
| GeneRuler 1kb DNA-ladder                               | Thermo Scientific   |
| GeneRuler 1kb Plus DNA-ladder                          | Thermo Scientific   |
| Nano-Glo®Live cell assay kit                           | Promega             |
| Nano-Glo®luciferase assay system kit                   | Promega             |
| Nano-Glo®Dual-luciferase assay system kit              | Promega             |
| DpnI                                                   | New England Biolabs |

Table 2.5.: Antibodies used in this work.

| name              | description/usage | manufacturer      |
|-------------------|-------------------|-------------------|
| <del>α-SipA</del> | 1:5000, 1:10000   | in-house          |
| α-SptP            | 1:10000           | in-house          |
| α-GroEL           | 1:80000           | Sigma             |
| α-rabbit HRP      | 1:10000           | Thermo Scientific |
| α-NC              | 1:10000           | in-house          |

## 2.1.1. Buffers & solutions

Table 2.6.: Buffers, media & solutions used in this work.

| buffer/medium                                           | ingredient                        | quantity |            |
|---------------------------------------------------------|-----------------------------------|----------|------------|
| 10x sodium dodecyl sulfate (SDS)-running buffer (V=2 L) |                                   |          |            |
|                                                         | glycine                           | 288.4    | g          |
|                                                         | Tris base                         | 60.6     | g          |
|                                                         | SDS                               | 20       | g          |
|                                                         | double-distilled H <sub>2</sub> O | 2000     | mL         |
|                                                         | $(ddH_2O)$                        |          |            |
| 10x protein transfer buffer (PTB)<br>(V=1.5 L)          |                                   |          |            |
|                                                         | glycine                           | 58       | g          |
|                                                         | Tris base                         | 116      | g          |
|                                                         | SDS                               | 7.4      | g          |
|                                                         | $ddH_2O$                          | 1500     | mL         |
| 10x PBS (V=1 L)                                         |                                   |          |            |
|                                                         | NaCl                              | 80       | g          |
|                                                         | KCl                               | 2        | g          |
|                                                         | Na <sub>2</sub> HPO <sub>4</sub>  | 11.5     | g          |
|                                                         | $KH_2PO_4$                        | 2        | g          |
|                                                         | $ddH_2O$                          | 1000     | mL         |
| PBS-Tween 20 (PBS-T)                                    |                                   |          |            |
|                                                         | 10 x PBS                          | 1000     | mL         |
|                                                         | Tween 20                          | 5        | mL         |
| mPBST V=50 mL                                           |                                   |          |            |
|                                                         | PBS-T                             | 50       | mL         |
|                                                         | milk powder                       | 2.5      | g          |
| 5x Laemmli (V=60 mL)                                    |                                   |          |            |
|                                                         | SDS                               | 6        | g          |
|                                                         | dithiothreitol (DTT)              | 4.64     | g          |
|                                                         | 1 M Tris base (pH:6.8)            | 15       | mL         |
|                                                         | 1 % bromphenol Blue               | 6        | mL         |
|                                                         | 87 % glycerol                     | 17.2     | mL         |
|                                                         | $ddH_2O$                          | 21.8     | mL         |
| 10x tris-acetate-EDTA (TAE)-buffer<br>V=1 L             |                                   |          |            |
|                                                         | Tris                              | 48.5     | g          |
|                                                         | glacial acetic acid               | 11.4     | $^{ m mL}$ |

### Buffers, media & solutions used in this work (continued).

| buffer/medium                                             | ingredient                                                 |     | quantity      |
|-----------------------------------------------------------|------------------------------------------------------------|-----|---------------|
|                                                           | 0.5 M ethylendiaminete-<br>traacetic acid (EDTA)<br>pH:8.0 | 20  | mL            |
| annealing-buffer                                          |                                                            |     |               |
|                                                           | 0.5 M EDTA                                                 | 2   | mL            |
|                                                           | 1 M Tris pH:8.0                                            | 10  | $\mathrm{mL}$ |
|                                                           | 1 M NaCl                                                   | 50  | $\mathrm{mL}$ |
| Wash buffer 1 CaCl2-competent cells (V=500 $\mathrm{mL})$ |                                                            |     |               |
|                                                           | 1 M CaCl <sub>2</sub>                                      | 50  | $\mathrm{mL}$ |
|                                                           | $ddH_2O$                                                   | 450 | $\mathrm{mL}$ |
| Wash buffer 2 CaCl2-competent cells (V=500 mL)            |                                                            |     |               |
|                                                           | 1 M CaCl <sub>2</sub>                                      | 50  | mL            |
|                                                           | 99 % glycerol                                              | 75  | $\mathrm{mL}$ |
|                                                           | $ddH_2O$                                                   | 375 | $\mathrm{mL}$ |

### 2.1.2. Plasmids & primers

### **2.1.2.1.** Plasmids

**Table 2.8.: Plasmids used in this work.** All plasmids with initials p**JA**XXX were assembled by J.Ahrendt during her masters thesis. Plasmids with initials p**MP**XXX were assembled by myself and partly by B.Grueter.

| plasmid          | description/usage                                           | /usage reference   |  |
|------------------|-------------------------------------------------------------|--------------------|--|
| pWSK29           |                                                             | [124]              |  |
| pT10_SptP_NL_myc |                                                             | Wagner group, Tue- |  |
|                  |                                                             | bingen             |  |
| pM2              | pORTMAGE                                                    | [125]              |  |
| pM3              | pORTMAGE                                                    | [125]              |  |
| pM4              | pORTMAGE                                                    | [125]              |  |
| pEC1             | pORTMAGE                                                    | [126]              |  |
| pHilA pacyc184   | HilA induction                                              |                    |  |
| pMP005           | SptP                                                        | this work          |  |
| pMP008           | SptP and SipA                                               | this work          |  |
| pMP009           | SptP and SptP <sub>1-25</sub> SipA <sub>26-685</sub>        | this work          |  |
| pMP010           | SipA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc and SipA | this work          |  |
| pMP017           | SipA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc and SipA | this work          |  |
| pMP028           | SptP-NLuc and SipA                                          | this work          |  |
| pMP029           | AvrA <sub>1-25</sub> -SptP <sub>26-543</sub> -NLuc and SipA | this work          |  |
| pMP030           | SipB <sub>1-25</sub> -SptP <sub>26-543</sub> -NLuc and SipA | this work          |  |

# Plasmids used in this work (continued).

| plasmid | description/usage                                           | reference |  |
|---------|-------------------------------------------------------------|-----------|--|
| pMP037  | SopD <sub>1-25</sub> -SptP <sub>26-543</sub> -NLuc and SipA | this work |  |
| pMP049  | SptP-NLuc, SipA-RFLuc                                       | this work |  |
| pMP059  | SptP-NLuc                                                   | this work |  |
| pMP071  | AvrA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP072  | GogA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP073  | $GogB_{1-25}$ -SptP <sub>26-535</sub> -NLuc                 | this work |  |
| pMP075  | GtgE <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP076  | $OrgC_{1-25}$ -SptP <sub>26-535</sub> -NLuc                 | this work |  |
| pMP077  | PipA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP079  | PipB2 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc         | this work |  |
| pMP080  | PrgI <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP081  | PrgJ <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP082  | SboA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP083  | SboC <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP084  | SboH <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP086  | SifA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP087  | SifB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP088  | SipA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP089  | SipB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP090  | $SipC_{1-25}$ -SptP <sub>26-535</sub> -NLuc                 | this work |  |
| рМР091  | SipD <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP092  |                                                             | this work |  |
| -       | SlrP <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP093  | SopA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          |           |  |
| pMP094  | SopB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP095  | SopD <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP096  | SopD2 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc         | this work |  |
| pMP097  | SopE <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP098  | SopE2 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc         | this work |  |
| pMP099  | SopF <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP102  | SrfJ <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP104  | SsaG <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP105  | SsaL <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP106  | SseB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP107  | $SseC_{1-25}$ -SptP <sub>26-535</sub> -NLuc                 | this work |  |
| pMP109  | $SseF_{1-25}$ - $SptP_{26-535}$ - $NLuc$                    | this work |  |
| pMP111  | SseI <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP112  | SseJ <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP113  | SseK1 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc         | this work |  |
| pMP114  | SseK2 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc         | this work |  |
| pMP115  | SseK3 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc         | this work |  |
| pMP116  | $SseL_{1-25}$ -Spt $P_{26-535}$ -NLuc                       | this work |  |
| pMP118  | SspH2 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc         | this work |  |
| pMP120  | SteB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP121  | SteC <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |
| pMP122  | SteD <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc          | this work |  |

# Plasmids used in this work (continued).

| plasmid | description/usage                                                     | reference              |
|---------|-----------------------------------------------------------------------|------------------------|
| pMP124  | StoD <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc                    | this work              |
| pJA022  | AvrA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA023  | NleC <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA024  | GogB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA025  | GtgA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA026  | GtgE <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA027  | OrgC <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA028  | PipA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA029  | PipB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA030  | PipB2 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc       | this work              |
| pJA031  | (prgI) PrgI <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc | this work              |
| pJA032  | (prgJ) PrgJ <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc | this work              |
| pJA033  | SboA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA034  | SboC <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA035  | SboH <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA036  | SboI <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA037  | SifA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA038  | SifB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA039  | (SipA) SipA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc | this work              |
| pJA040  | SipB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA041  | SipC <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA042  | SipD <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA043  | SlrP <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA044  | SopA <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA045  | SopB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA046  | SopD <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA047  | SopD2 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc       | this work              |
| pJA048  | SopE <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA049  | SopE2 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc       | this work              |
| pJA050  | SopF <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA053  | VsdE/SpvD <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc   | this work              |
| pJA056  | SsaG <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA057  | SsaL <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA058  | SseB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA061  | SseF <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA063  | SseI <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA064  | SseJ <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA065  | SseK1 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc       | this work              |
| -       |                                                                       |                        |
| pJA066  | SseK3 SptP NLuc, SipA PFLuc                                           | this work<br>this work |
| pJA067  | SseK3 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc       |                        |
| pJA068  | SseL <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA070  | SspH2 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc       | this work              |
| pJA072  | SteB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA073  | SteC <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |
| pJA074  | SteD <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc        | this work              |

# Plasmids used in this work (continued).

| plasmid | description/usage                                              | reference |
|---------|----------------------------------------------------------------|-----------|
| pJA076  | StoD <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc, SipA-RFLuc | this work |

# 2.1.2.2. Primers & oligos

Table 2.10.: Primers used in this work.

| primer                    | description/usage      | sequence              |
|---------------------------|------------------------|-----------------------|
| MP_A09_SicP_SptP_rv       | isolation SicP-SptP    | TCAGCTTGCCGTCGTCATAA  |
| MP_A10_SicP_SptP_fw       | isolation SicP-SptP    | AAGTAAATTGCAAGCA-     |
|                           |                        | CACCAG                |
| MP_A52_SptP_ko_test_fw    | sequencing SptP N-     | GCGTATATTGATGCCGCA-   |
|                           | terminus               | GAGA                  |
| MP_A53_SptP_ko_test_rv    | sequencing SptP N-     | GCACCACTTCAGTGTTTT-   |
|                           | terminus               | TAAATAACG             |
| MP_A70_SptP_upstream01_fw | gibson assembly pMP005 | TCCGATGCGTAGTGAATGG   |
| MP_A73_SptP_up01_GA_fw    | gibson assembly        | CGCTCTAGAACTAGTG-     |
|                           | pMP005                 | GATCTCCGATGCGTAGT-    |
|                           |                        | GAATGGCTATT           |
| MP_A76_SptP_up_GA_rv      | gibson assembly        | GAGAGTCATTACC-        |
|                           | pMP005                 | CCAGGCGTCAGCTTGC-     |
|                           |                        | CGTCGTCATAAGC         |
| MP_A77_rrnB_T1_fw         | amplification of rrnB  | CGCCTGGGGTAATGACTCTC  |
|                           | T1 terminator region   |                       |
| MP_A78_rrnB_T1_rv         | amplification of rrnB  | ATTTGTCCTACTCAGGA-    |
|                           | T1 terminator region   | GAGCGTTC              |
| MP_A79_rrnB_T1_GA_fw      | gibson assembly        | TTATGACGACGGCAAGCT-   |
|                           | pMP005                 | GACGCCTGGGGTAATGACTC  |
| MP_A80_rrnB_T1_GA_rv      | gibson assembly        | ACGGTATCGATAAGCTTCA-  |
|                           | pMP005                 | GATTTGTCCTACTCAGGA-   |
|                           |                        | GAGCGT                |
| MP_A81_pWSK_bb_GA_fw      | amplification pWSK     | CTCTCCTGAGTAGGA-      |
|                           | backbone, gibson as-   | CAAATCTGAAGCTTATC-    |
|                           | sembly pMP005          | GATACCGTCGACCTC       |
| MP_A82_pWSK_bb_GA_rv      | amplification pWSK     | GCCATTCACTACGCATCGGA  |
|                           | backbone, gibson as-   | GATCCACTAGTTCTAGAGCG- |
|                           | sembly pMP005          | GCC                   |
| MP_A85_SipA_fw            | amplification SipA     | CAGAAGAGGATATTAATAATO |
|                           |                        | GTTACAAGTG            |
| MP_A86_SipA_rv            | amplification SipA     | CGCATCTTTCCCGGTTAAT-  |
|                           | -                      | TAAC                  |
| MP_A87_pMP005_back-       | gibson assembly        | AATTAACCGGGAAAGAT-    |
| bone_GA_fw                | pMP008                 | GCGCGCCTGGGGTAAT-     |
|                           | -                      | GACTCTCTAGCTTG        |

# $\underline{\textbf{Primer used in this work (continued).}}$

| primer                       | description/usage  | sequence                  |
|------------------------------|--------------------|---------------------------|
| MP_A88_pMP005_back-          | gibson assembly    | ATTATTAATATCCTCTTCT-      |
| bone_GA_rv                   | pMP008             | GTCAGCTTGCCGTCGT-         |
|                              |                    | CATAAGCA                  |
| MP_A89_SipA_GA_fw            | gibson assembly    | TTATGACGACGGCAAGCT-       |
|                              | pMP008             | GACAGAAGAGGATAT-          |
|                              |                    | TAATAATGGTTACAAGTG-       |
|                              |                    | TAAGGAC                   |
| MP_A90_SipA_GA_rv            | gibson assembly    | GAGAGTCATTACC-            |
|                              | pMP008             | CCAGGCGCGCATCTTTCC-       |
|                              |                    | CGGTTAATTAACGCT           |
| MP_A91_SptP_Nterminus_seq_fw | sequencing SptP N- | CTGCGAATAATGAAGGTACGT-    |
|                              | terminus           | TAGCGTATAT                |
| MP_A92_SptP_Nterminus_seq_rv | sequencing SptP N- | TGGTCCTGTACTCT-           |
|                              | terminus           | GATATTTTCCGTATGT          |
| MP_A93_SipA_Nterm_seq_fw     | sequencing pMP008  | GGCGGCCCTTGTACTTAAG-      |
|                              |                    | GATAAT                    |
| MP_A94_SipA_Nterm_seq_rv     | sequencing pMP008  | CAGCGCGGGAAAATCTTCCAG     |
| MP_A95_SipA_Cterm_seq_fw     | sequencing pMP008  | GGCTGACCAGGCTAAAA         |
| MP_A96_pMP009_bb_GA_fw       | gibson assembly    | agatcaaaacgcaggccacgGCCC- |
|                              | pMP009             | GACTTTATATTGCTAAG-        |
|                              |                    | GAAAATACT                 |
| MP_A97_pMP009_bb_GA_rv       | gibson assembly    | gtccttacacttgtaac-        |
|                              | pMP009             | catATTCCTGCAGTAT-         |
|                              |                    | GTTTTTGAGCGCTTCCTG        |
| MP_A98_pMP010_bb_GA_fw       | gibson assembly    | AAGTTGGTGTGTCGAAT-        |
|                              | pMP010             | GATAATCTTGCGGC-           |
|                              |                    | GAATCTTTCCG               |
| MP_A99_pMP010_bb_GA_rv       | gibson assembly    | TTCTCTCCTCATACTTTAG-      |
|                              | pMP010             | CATTATTAATATCCTCTTCT-     |
|                              |                    | GTCAGCTTGCC               |
| MP_B01_SipA_Nterm_seq_fw     | sequencing of SipA | GCGCAGGAAGAAAATAT-        |
|                              | region             | GAAAACCACA                |
| MP_B02_SipA_seq_rv           | sequencing of SipA | AAAGTTATGTTCAAT-          |
|                              | region             | GCAGCTGGCA                |
| MP_B23_M13_fw                | common primer M13  | TGTAAAACGACGGCCAG         |
|                              | forward            |                           |
| MP_B24_M13_rv                | common primer M13  | CAG GAA ACA GCT ATG ACC   |
|                              | reverse            |                           |
| MP_B27_pMP017_bb_GA_fw       | gibson assembly of | AATACTGATAAG-             |
|                              | pMP018             | GCATATGTTGCGCCT-          |
|                              |                    | GAAAAATTTTCGT             |
| MP_B28_pMP017_bb_GA_rv       | gibson assembly of | TTTTCTCTCCTCATACTTTAG-    |
|                              | pMP018             | CATATTCCTGCAGTATGTT       |

# Primer used in this work (continued).

| primer                       | description/usage                        | sequence                                                                                  |
|------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|
| MP_B29_pMP018_bb_GA_fw       | gibson assembly of pMP018                | tagatattagaggtagtgcgTTAATGTCC-<br>CGTATAAATATGAACAAACC-<br>CCT                            |
| MP_B30_pMP018_bb_GA_rv       | gibson assembly of pMP018                | gataaagttatttttgtcacTTTTCTCTC-<br>CTCATACTTTAGCATATTCCT-<br>GCA                           |
| MP_B31_pMP018_SopE_GA_fw     | amplification SopE N-terminus (1-100 aa) | TAAAGTATGAGGAGA-<br>GAAAAgtgacaaaaataactttatctcccca                                       |
| MP_B32_pMP018_SopE_GA_rv     | amplification SopE N-terminus (1-100 aa) | ATATTTATACGGGACATTAAcg-cactacctctaatatctatatcatt                                          |
| MP_B47_pMP028_NL_fw          | isolation of                             | TGCTTATGACGACGGCAAG-<br>CATGGTCTTCACACTCGAA-<br>GATTTCGTT                                 |
| MP_B48_pMP028_NL_rv          | assembly of pMP028                       | ATTAATATCCTCTTCTGT-<br>CACGCCAGAATGCGTTCG-<br>CACA                                        |
| MP_B49_pMP028_bb_GA_fw       | assembly of pMP028                       | TGTGCGAACGCATTCTG-<br>GCGTGACAGAAGAGGATAT-<br>TAATAATGGTTACAAGT                           |
| MP_B50_pMP028_bb_GA_rv       | assembly of pMP028                       | TCTTCGAGTGTGAAGACCAT-<br>GCTTGCCGTCGTCATAAGCA                                             |
| MP_B51_pMP030_SipB_insert_fw | assembly of pMP030                       | GCGGATATACCCAAAATC-<br>CGCGCCTCGCTGAGGCG-<br>GCTTTTGAAAATACTGATAAG-<br>GCATATGTTGC        |
| MP_B52_pMP030_SipB_insert_rv | assembly of pMP030                       | TTTTGGGTATATCCGCTACG-<br>GCTAATGCTACTTGCGTCATT-<br>TACCATTTTTCTCTCCTCAT-<br>ACTTTAGC      |
| MP_B59_pMP037_SopD_insert_fw | assembly of pMP037                       | TCAAAATTATACGCTTAAT-<br>GAAAGTCGGCTTGCTCATCT-<br>GTTAAGCAATACTGATAAG-<br>GCATATGTTGCGC    |
| MP_B60_pMP037_SopD_insert_rv | assembly of pMP037                       | AAGCGTATAATTTTGATGAT-<br>TACCGAAGCTTAAAGTGACTG-<br>GCATTTTTCTCTCCTCATACTT-<br>TAGCATATTCC |
| MP_C14_pMP028_bb_GA_fw       | gibson assembly of pMP049                | ctgattagcgaagaagatttaTAATTAAC-<br>CGGGAAAGATGCGCGCCT                                      |
| MP_C15_pMP028_bb_GA_rv       | gibson assembly of pMP049                | gtccttacacttgtaaccatTATTAATATC-<br>CTCTTCTGTCACGCCAGAAT-<br>GCGTT                         |
| MP_C16_SipA_RFL_GA_fw        | gibson assembly of pMP049                | CGTGACAGAAGAGGATAT-<br>TAATAatggttacaagtgtaaggactca                                       |

#### Primer used in this work (continued).

| primer                         | description/usage                   | sequence                                           |
|--------------------------------|-------------------------------------|----------------------------------------------------|
| MP_C18_SipA_RFL_GA_rv          | gibson assembly of pMP049           | ATCTTTCCCGGTTAATTAcatcttg-gccacgggtttct            |
| MP_C19_pMP028_bb_GA_fw         | gibson assembly of pMP049           | gaaacccgtggccaagatgTAATTAAC-<br>CGGGAAAGATGCGCGCCT |
| MP_C20_pMP049_bb_fw            | backbone-PCR<br>pMP049              | aaccegtggccaagatgTAATTAAC-<br>CGGGAAAGATGCGCGCCTGG |
| MP_C21_pMP049_bb_rv            | backbone-PCR<br>pMP049              | atettggccaegggtttetteaggateteeeg-<br>gatggccetg    |
| MP_C22_InvI_seq_fw             | sequencing InvI N-terminus          | GCGTAAATTAAT-<br>GACGCGTTTGGAAG                    |
| MP_C23_InvI_seq_rv             | sequencing InvI N-terminus          | GTCGCGATCTTTTTTATCACCG-GAATA                       |
| MP_C24_pMP049_SipA_excision_fw | creation of plasmid pMP059, pMP071- | TGGCGTGACGCCTGGGGTAAT-<br>GACTCTCTAGCT             |
| MP_C25_pMP049_SipA_excision_rv | pMP124                              | CCCAGGCGTCACGCCAGAAT-GCGTTCGC                      |

Table 2.12.: Oligos used in this work.

| oligo                  | description/usage         | sequence            |
|------------------------|---------------------------|---------------------|
| BY_pORTMAGE_InvA_ko    | pORTMAGE mutagenesis InvA | TGACGAACATAGAAAT-   |
|                        |                           | GATCATCACCATTAG-    |
|                        |                           | TACCAGAATCtaTcAT-   |
|                        |                           | TaAGGTCGTAAACGAG-   |
|                        |                           | CACTGTTAAGTAGA-     |
|                        |                           | GAAAGCAGCACTA       |
| MP_pORTMAGE_InvC_3stop | pORTMAGE mutagenesis InvC | TAATTGGGCCGGT-      |
|                        |                           | TATTTTTTGTGGGTAG-   |
|                        |                           | GCCAGATATTGCtatTAt- |
|                        |                           | CaAGGTGTTTTCATCT-   |
|                        |                           | CATTAGCGACCGAC-     |
|                        |                           | TAAAAACTTCCAG       |
| MP_pORTMAGE_SptP_ko    | pORTMAGE mutagenesis SptP | ATATAAAGTCGGGCAT-   |
|                        |                           | CATTCGACACAC-       |
|                        |                           | CAACTTTTGAAAAC-     |
|                        |                           | tAttACtACGTTAAAT-   |
|                        |                           | TATTCAATTTTCTCTCCT- |
|                        |                           | CATACTTTAGCATA      |

# 2.1.3. Bacterial strains

#### 2.1.3.1. Strain selection

Salmonella strains used in this work are listed in Table 2.13. Strain M2433 was used for most of the proof-of-principle experiments. This strain lacks the genes for flagellar

assembly and T3SS effectors SopE, SopE2, SipA, SopB, SopA, SptP, SpvB and SpvC [127]. To reduce the risk of undesired effects caused by the genotype of this strain, the flagellar knockout strain S. typhimurium SB905 was modified by introducing triple stop codons immediately downstream of the start codon of the respective gene using pORTMAGE mutagenesis (section 2.2.1.0.1) [125], [126]) [128]. All generated Salmonella strains were isogenic derivatives from either Salmonella enterica enterica serovar Typhimurium LT2 or SL1344 [129]. The S. typhimurium strain SB905 served as the basis for the majority of generated strains [128]. The resulting strains SB905  $\Delta sptP$ , SB905  $\Delta sipA$  and SB905  $\Delta sptP$   $\Delta sipA$  strains did not express the knocked-out proteins and were subsequently used for secretion quantification assays. Additionally, a knockout strain not expressing SptP, SipA and InvA was prepared as a T3SS-deficient negative control strain (SB905  $\Delta sptP$   $\Delta sipA$   $\Delta invA$ ) to replace the T3SS-deficient SB906 strain that still expresses SptP and SipA.

**Table 2.13.:** Salmonella typhimurium strains used in this work. All generated strains were confirmed via sequencing.

| strain                                                   | genotype                                                       | reference |
|----------------------------------------------------------|----------------------------------------------------------------|-----------|
| SB905                                                    | Flg-                                                           | [128]     |
| SB906                                                    | Flg-, $\Delta prgH$                                            | [128]     |
| M2433                                                    | Flg- $\triangle sopE$ , $\triangle sopE2$ , $\triangle sipA$ , | [127]     |
|                                                          | $\Delta sopB$ , $\Delta sopA$ , $\Delta sptP$ , $\Delta spvB$  |           |
| SL1344                                                   |                                                                | [129]     |
| SB905 ΔsipA                                              | $\Delta sipA$                                                  | this work |
| SB905 $\Delta sptP$                                      | $\Delta sptP$                                                  | this work |
| SB905 $\Delta sptP \Delta invA$                          | $\Delta sptP \Delta invA$                                      | this work |
| SB905 $\Delta sptP \Delta invC$                          | $\Delta sptP \Delta invC$                                      | this work |
| SB905 ΔsipA ΔsptP                                        | $\Delta sipA \ \Delta sptP$                                    | this work |
| SB905 \( \Delta sipA \( \Delta sptP \) \( \Delta invA \) | $\Delta sipA \ \Delta sptP \ \Delta invA$                      | this work |

Commercial *Escherichia* strains as listed in Table 2.14 were used for plasmid amplification and assembly using appropriate protocols described below.

Table 2.14.: Escherichia coli strains used in this work.

| strain        | genotype                                                                                                                                                                        | reference |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| E. coli DH5α  | F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80 dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK-mK+), Λ-                                                                         | [130]     |
| E. coli Top10 | F- $mcrA$ $\Delta(mrr-hsdRMS-mcrBC)$ $\Phi 80dlacZ\Delta M15$ $\Delta lacX74$ $nupG$ $recA1$ $araD139$ $\Delta(ara-leu)7697$ $galE15$ $galK16$ $rpsL(StrR)$ $endA1$ $\Lambda$ - |           |

# 2.2. Experimental procedures

#### 2.2.1. Cell culture

All *Salmonella* cultures were grown in lysogeny broth (LB)-0.3 M NaCl with appropriate antibiotics, if not specified differently. Strains complemented with the plasmid pHilA pacyc184 were induced with 0.012 % arabinose. *Escherichia* cultures were grown in LB with appropriate antibiotics, if not specified differently.

**Glycerol stocks** 5 mL *Salmonella* strains of choice were grown overnight at 180 rpm,  $37\,^{\circ}$ C. 5 mL day cultures were inoculated to a starting optical density (OD) of 0.1 and incubated for 2 to 3 h at 180 rpm,  $37\,^{\circ}$ C to an OD: 0.8 to 0.9.  $500\,\mu$ L day culture was mixed with  $500\,\mu$ L  $50\,\%$  glycerol, labelled and shockfrozen in liquid nitrogen (LN) for storage at  $-80\,^{\circ}$ C until use.

T3SS secretion assays 5 mL *Salmonella* cultures inoculated from plated culture or directly from glycerol stocks were grown overnight 180 rpm, 37 °C. The next day, 10 mL day cultures (100 mL Erlenmeyer flask) were inoculated without antibiotics to a starting OD of 0.05 and incubated for 5 h at 180 rpm, 37 °C. After incubation, OD was measured and cultures normalized to OD:1.0 using LB-0.3 M NaCl. 5 mL normalized culture was transferred to round-bottom tubes and centrifuged for 10 min at 3214 rcf, 4 °C. The supernatant was filtered through a 0.2 μm membrane and samples processed as described in section 2.2.3.

**Secretion quantification assays** 5 mL *Salmonella* cultures of choice inoculated from plated culture or directly from glycerol stocks were grown overnight at 180 rpm, 37 °C. The next day, cultures were centrifuged for 10 min at 3214 rcf, 20 °C. The supernatant was discarded and the pellets resuspended in 5 mL LB-0.3 M NaCl before measuring OD.

For each strain carrying a different plasmid variant,  $8 \times 1.5 \, \text{mL}$  cultures were inoculated without antibiotics to a starting OD of 0.1 in 96-well deep well plate. The deep well plate was sealed with a gas-permeable foil and incubated for 4 h,  $180 \, \text{rpm}$ ,  $37 \, ^{\circ}\text{C}$ .  $30 \, \text{min}$  prior to the end of incubation, the Nanoluc substrate-mix was prepared according to manufacturers instructions and equilibrated to room temperature. After incubation,  $3 \times 100 \, \mu\text{L}$  samples of each cell culture were transferred to a transparent 96-well plate for OD-measurement. The remaining culture volume was centrifuged for  $10 \, \text{min}$  at  $3214 \, \text{rcf}$ ,  $37 \, ^{\circ}\text{C}$ .  $3 \times 100 \, \mu\text{L}$  supernatant per sample were transferred to 96-well luminescence plates. The remaining supernatant was either discarded or processed for western blot analysis (section 2.2.3). Pellets were resuspended in  $1200 \, \mu\text{L}$  LB-0.3 M NaCl and  $3 \times 100 \, \mu\text{L}$  samples transferred to 96-well luminescence plates. All samples and the Nanoluc substrate-mix were equilibrated to  $20 \, ^{\circ}\text{C}$ . Using a multipipette,  $25 \, \mu\text{L}$  substrate-mix was added to each  $100 \, \mu\text{L}$  sample, subsequently the 96-well plate was sealed with a PCR foil and directly quantified using a plate reader.

Plasmid variants with N-termini of all verified *Salmonella* effectors were constructed and tested. Using an adaptation of the touchdown (TD) PCR protocol, new overhangs were created to introduce secretion signals replacing the native N-terminus (section 2.2.2). Our T3SE database includes the amino acid sequences of experimentally verified effectors and not the original nucleotide sequence. To convert the secretion signal peptide sequence into a corresponding DNA sequence, a python script was written using the *Salmonella typhimurium* LT2 codon table as a basis to automatically generate overhang primers (subsubsection A.2.1.1). By default, the most frequent codon for each amino acid was selected for assembly of the present plasmids. All generated primers were manually reviewed and if necessary adjusted to required melting points. The correct assembly of the plasmids was confirmed via sequencing.

**2.2.1.0.1.** Time-curve quantification asssay 5 mL *Salmonella* cultures of choice inoculated from plated culture or directly from glycerol stocks were grown overnight at 180 rpm, 37 °C. The next day, cultures were centrifuged for 10 min at 3214 rcf, 20 °C. The supernatant was discarded and the pellets resuspended in 5 mL LB-0.3 M NaCl before measuring OD. A 1.5 mL culture was prepared for every 30 min of incubation time, thus for a 6 h assay 12 cell cultures per strain were prepared. The deep well plate was sealed with a gas-permeable foil and incubated for the specified incubation time at 180 rpm, 37 °C. Every 30 min, a single culture per strain was harvested and directly processed as described for the secretion quantification assays.

**pORTMAGE mutagenesis** Mutant strains were generated using an adaptation of the pORTMAGE protocol as described by Wannier et al. [126]. Target strains were complemented with plasmid pEC1 via electroporation. Complemented cells were grown in 10 mL

LB with appropriate antibiotics in 100 mL erlenmeyer flasks at 180 rpm, 37 °C until an OD of 0.4 to 0.6 was reached. At this point, induction of the pEC1 plasmid was started by adding 1 mL 1 M m-toluic acid. After 30 min incubation was stopped, cells transferred to round-bottom tubes and centrifuged for 10 min at 3214 rcf, 4 °C. Cells were washed in 10 mL chilled ddH<sub>2</sub>O and centrifuged again for 10 min. This process was repeated for a second cycle before resuspension in 100 µL chilled ddH<sub>2</sub>O was done. 81 µL cells were mixed with 9 µL 100 µM pORTMAGE oligo and kept on ice for 10 min. All oligos were designed using the mage oligo design tool (MODEST)-server. Electroporation was conducted as described in section 2.2.2. After electroporation, 910 µL prewarmed LB was added to the cells and the whole mixture added to 4 mL prewarmed LB in a 100 mL erlenmeyer flask. Cells were incubated for 30 min to 60 min prior to addition of 5 mL LB and 10 µL appropriate antibiotics. If conducting multiple pORTMAGE cycles this whole process was repeated up to 3 times per day. Typically, 4 cycles for a single mutation were conducted.

## **2.2.2.** Cloning

**Electropermeabilization** Salmonella strains of choice were made competent for electroporetic transformation via repeated washing. 5 mL Salmonella cultures of choice inoculated from plated culture or directly from glycerol stocks were grown overnight at 180 rpm, 37 °C in LB and appropriate antibiotics. The next day, 5 mL day cultures were inoculated with overnight culture in LB without antibiotics to a starting OD of 0.05 and incubated at 180 rpm, 37 °C. Upon reaching an OD of 0.6-0.8, cultures were centrifuged briefly for 5 min at 3214 rcf, 4 °C. Pellets were resuspended in 5 mL chilled ddH<sub>2</sub>O and centrifuged again. After 2 cycles of washing, cells were resuspended in 50 µL chilled ddH<sub>2</sub>O and kept on ice until further use. A total of 100 ng to 200 ng of plasmid was added to 50 μL cells and left to rest for 10 min. Electroporation was conducted in 0.1 cm cuvettes at a constant 1800 kV in an Eppendorf 2510 electroporator. After electroporation, cells were supplied with 950 µL prewarmed LB medium and left to regenerate for 30 min to 60 min at 37 °C. Cells were centrifuged for 1 min at 4000 rpm, 800 µL supernatant removed and the pellet resuspended. 20 µL resuspended pellet were mixed with 180 µL prewarmed LB and plated onto prewarmed LB agar plates with respective antibiotics. After incubation overnight, grown colonies were picked and tested in cell culture.

Chemical transformation 5 mL *E. coli* Top10 cultures inoculated from plated culture or directly from glycerol stocks were grown overnight at 180 rpm, 37 °C in LB and appropriate antibiotics. The next day, a 250 mL culture was inoculated with 2.5 mL overnight culture and incubated to an OD:0.6 at 180 rpm, 37 °C. The culture was transferred on ice to rest for 20 min prior to centrifugation for 10 min, 3214 rcf, 4 °C. Supernatant was discarded and pellets resuspended in 15 mL ice-cold wash buffer I (see Table 2.6). The centrifugation was repeated and pellets resuspended in 15 mL ice-cold wash buffer II. Following a third

**Table 2.15.:** Touchdown-PCR cycle program.

| phase 1 | step         | temperature [°C] | time                                     | cycles       |
|---------|--------------|------------------|------------------------------------------|--------------|
| 1       | Denaturation | 98               | $2\mathrm{min}$                          |              |
| 2       | Denaturation | 98               | 30 s                                     |              |
| 3       | Annealing    | $T_m + 10$       | $30\mathrm{s}$                           | 10 to $15^a$ |
| 4       | Elongation   | 72               | $15\mathrm{s/kbp}$ to $30\mathrm{s/kbp}$ |              |

<sup>&</sup>lt;sup>a</sup> **Step 3** Decrease of annealing temperature 1 °C per cycle.

| phase 2     |              |                               |                                          |          |
|-------------|--------------|-------------------------------|------------------------------------------|----------|
| 5           | Denaturation | 98                            | 30 s                                     |          |
| 6           | Annealing    | $T_{\rm m}$ or $T_{\rm m}$ -5 | $30\mathrm{s}$                           | 20 to 25 |
| 7           | Elongation   | 72                            | $15\mathrm{s/kbp}$ to $30\mathrm{s/kbp}$ |          |
|             |              |                               |                                          |          |
| termination | l            |                               |                                          |          |
| 8           | elongation   | 72                            | 5 min                                    |          |
| 9           | hold         | 4                             | $10 \min$ to $15 \min$                   |          |

centrifugation, pellets were resuspended in  $4\,\mathrm{mL}$  wash buffer II and split into  $100\,\mu\mathrm{L}$  aliquots. Aliquots not directly used for chemical transformation were frozen in liquid nitrogen (LN) and stored at  $-80\,^{\circ}\mathrm{C}$ .

For immediate use, a total of  $10\,\mathrm{ng}$  to  $100\,\mathrm{ng}$  of plasmid was added to  $50\,\mu\mathrm{L}$  competent cells. Cells were incubated at  $37\,^\circ\mathrm{C}$  for  $45\,\mathrm{s}$  and left to rest on ice for  $4\,\mathrm{min}$ . After addition of  $500\,\mu\mathrm{L}$  prewarmed LB, cells were incubated for  $10\,\mathrm{min}$  at  $37\,^\circ\mathrm{C}$ . Subsequently, cells were centrifuged for  $1\,\mathrm{min}$  at  $5000\,\mathrm{rpm}$  and the pellet resuspended in  $200\,\mu\mathrm{L}$  prewarmed LB. The mix was incubated for at least  $20\,\mathrm{min}$  at  $850\,\mathrm{rpm}$ ,  $37\,^\circ\mathrm{C}$ , before plating onto LB agar plates with required antibiotics. Plates were incubated overnight at  $37\,^\circ\mathrm{C}$ , grown colonies were selected the next day for further analysis.

**Touchdown-PCR** All PCR reactions were conducted using an adaptation of the protocol as described by Korbie and Mattick [131]. Briefly,  $50\,\mu\text{L}$  PCR-mixes were assembled and subjected to the PCR protocol displayed in Table 2.15. For colony-PCR, the DNA-template for amplification was substituted with  $1\,\mu\text{L}$  diluted cell culture.

**Gibson assembly** For Gibson assembly, plasmids were linearized via PCR using suitable primers. Inserts were annealed by mixing equimolar amounts of single-stranded DNA in annealing-bufer, heated to 95 °C and subsequently cooled to room temperature (RT). Following a DpnI digest, plasmid backbone and inserts were assembled following the manufacturers instruction with ratios between 1:3 to 1:10. 25 μL Gibson assembly mix was added to 100 μL competent *E. coli* Top10 cells and processed as described in section 2.2.2.

## 2.2.3. Sample preparation

**Secretion assay samples** If not specified differently, samples from secretion assays were prepared in the following way. Pellets were resuspended in  $200 \,\mu\text{L}$  PBS.  $100 \,\mu\text{L}$  resuspended pellet was mixed with  $100 \,\mu\text{L}$  87 % glycerol and  $50 \,\mu\text{L}$  5 x Laemmli-buffer. 1 mL supernatant was subjected to TCA precipitation (section 2.2.3).

TCA precipitation  $1 \,\mathrm{mL}$  supernatant sample was incubated for  $10 \,\mathrm{min}$ , RT with  $100 \,\mu\mathrm{L}$   $0.15 \,\%$  deoxycholate (DOC). Subsequently,  $195 \,\mu\mathrm{L}$   $100 \,\%$  trichloroacetic acid (TCA) was added to the sample for a final concentration of  $15 \,\%$ . Samples were kept overnight at  $-20 \,^{\circ}\mathrm{C}$ . After overnight incubation, samples were spun down for  $30 \,\mathrm{min}$ ,  $28 \,000 \,\mathrm{rpm}$  at  $4 \,^{\circ}\mathrm{C}$ . Using a vacuum aspiration system, the supernatant was removed and the protein pellet resuspended in  $500 \,\mu\mathrm{L}$  ice-cold  $99 \,\%$  acetone. Following a  $20 \,\mathrm{min}$  centrifugation step at  $28 \,000 \,\mathrm{rpm}$   $4 \,^{\circ}\mathrm{C}$ . the acetone was removed using vacuum aspiration and the step repeated. After the second washing step, the protein pellet was resuspended in  $80 \,\mu\mathrm{L}$  PBS.  $20 \,\mu\mathrm{L}$  5x Laemmli-buffer was added. If a color shift as a result of residual TCA was visible, pH was adjusted using  $1 \,\mathrm{M}$  NaCl.

## **2.2.4. Imaging**

**Agarose gel electrophoresis** Depending on desired percentage 50 mL TAE-buffer was mixed with 0.5 g to 1 g LE-agarose and dissolved by heating for 50 s to 70 s in a microwave. Dissolved agarose-mix was cooled to 50 °C before adding 2.5 mL 20000x gel stain. Gels were cast and left to polymerize for a minimum of 20 min.

SDS poly-acrylamide gel-electrophoresis (PAGE) By default, handcast 4% to 20% gradient polyacrylamide gels were used for SDS PAGE. To  $50\,\mathrm{mL}$  of 4% and 20% acrylamide stock solutions  $50\,\mu\mathrm{L}$  and  $20\,\mu\mathrm{L}$  TEMED was added, respectively. Gels were cast by adding  $5.5\,\mathrm{mL}$  of each mixture to a peristaltic pump setup and adding  $55\,\mu\mathrm{L}$  10% APS to each solution prior to casting the gel. Cast gels were left to polymerize for  $45\,\mathrm{min}$  before usage or storage at  $4\,\mathrm{^{\circ}C}$ . After sample application gels were run for  $40\,\mathrm{min}$  to  $50\,\mathrm{min}$  at  $55\,\mathrm{mA}$  constant current per gel.

Western blotting After SDS PAGE gels were left to equilibrate in PTB for 10 min. 7X9 cm PVDF-membrane were activated for 3 min in pure methanol and subsequently stored in PTB. Filter papers were soaked in PTB. Assembly of the transfer sandwich was conducted using 3 filter papers, adding the PVDF-membrane, the polyacrylamide gel and finally 3 more filter papers. Transfer was conducted for 70 min at 20 V. After transfer, membranes were blocked in 45 mL 5 % milk-PBS-T for 1 h on a tube roller at RT. Antibody solutions were freshly prepared, 10 mL of the first antibody solution was applied to each membrane and incubated overnight or for a minimum of 2 h. Membranes were washed in PBS-T 3 times for at least 20 min before applying 10 mL of the secondary antibody solution.

After incubation for 2 h,60 rpm, 20 °C on a tuberoller, chemiluminescent detection and imaging was performed.

## 2.2.5. Computational procedures

All generated code was written in python 3 using Visual Studio Code. Data analysis procedures and machine learning pipelines were written using JupyterNotebooks or plain python files.

Table 2.16.: Python libraries used for data analysis and machine learning pipeline development

| library           | version    |  |
|-------------------|------------|--|
| matplotlib        | 3.7.1      |  |
| numpy             | 1.24.3     |  |
| pandas            | 1.5.3      |  |
| propy3            | 1.1.1      |  |
| rdkit             | 2022.09.05 |  |
| seaborn           | 0.12.2     |  |
| scikit-learn      | 1.2.2      |  |
| scipy             | 1.10.1     |  |
| pytorch           | 1.13.1     |  |
| pytorch-lightning | 2.0.2      |  |
| ray               | 2.4.0      |  |
| keras             | 2.6.0      |  |
| transformers      | 4.28.1     |  |
| uncertainties     | 3.1.7      |  |

**Database assembly** The database of Type III effector proteins was assembled in entirely manual fashion. Literature obtained from a GoogleScholar search on species-specific effectors was investigated for experiments providing evidence of T3SS-mediated secretion or translocation. Initially, all organisms mentioned in [34] were investigated for known effectors, through the literature search this was later expanded to more species. If available, protein sequences were selected directly from the publication presenting the experimental evidence. Sequences from experiments that did not display suitable negative controls were excluded. Additional information on effectors was included in the dataset if available, specifying functions, host cell or other targets, localizations, hosts and references. Furthermore, available online databases on T3SEs from species-specific effectors were used for supplementation of the data.

**Machine learning** Using the Keras library, long-short-term memory network (LSTM) models were utilized for binary classification. The following settings were used.

Table 2.17.: Functions used for 2-class prediction of T3SE vs cytoplasmic proteins.

| parameter           |                     |
|---------------------|---------------------|
| loss function       | binary crossentropy |
| optimizer           | RMSProp             |
| activation function | sigmoid             |

**Statistical analysis** Statistical analysis was performed using python3 and jupyter notebooks.

**Secretion quantification assay analysis** For individual cell cultures, the mean was calculated from triplicate measurements. For each sample variant, the median  $\pm$  median absolute deviation (MAD) was calculated from 8 biological replicates using their mean signal. All subsequent calculations (e.g. normalization procedures, secretion efficiency score) were performed with error propagation.

**2.2.5.0.0.1.** Calculation of signal-to-noise ratio For calculation of signal-to-noise ratios in the time-curve secretion quantification experiments, the following formula was applied.

$$signal-to-noise ratio = \frac{luminescence positive control}{luminescence negative control}$$
 (2.1)

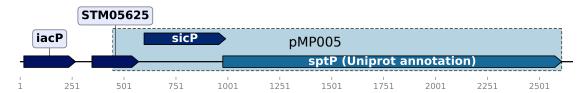
# 3. Results

Disclaimer: The following section includes experimental work conducted by Jiline Ahrendt during her master thesis as part of the project. Furthermore the lab technician Barbara Grueter assisted with data generation. These experiments are marked accordingly. All analysis was conducted by me.

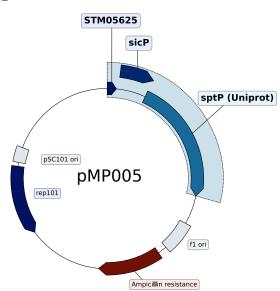
# 3.1. T3SS effector quantification

## 3.1.1. Qualitative detection of T3SS-secreted proteins

A simple and frequently applied method to monitor T3SS-mediated secretion is the Type 3 secretion assay. This type of assay enables the qualitative and semi-quantitative detection of T3SEs after incubating the bacterial strains of interest for a determined period of time [132][133][134]. The *Salmonella* T3SS secretion assay established in our lab (section 2.2.1) was modified to identify suitable conditions for conducting high-throughput quantitative detection of T3SEs. Our initial strategy encompassed complementing a *Salmonella* strain with a specific inactivated effector gene with plasmids expressing fusion proteins of various secretion signals to the respective effector.


#### 3.1.1.1. T3SS reporter system design

Based on the low-copy plasmid pWSK29 a reporter vector was constructed [124]. The reporter protein serves as a scaffold by replacing its native N-terminal secretion signal with other confirmed secretion signals and assessing the impact on T3SS secretion quantity. In the past, different T3SS effector proteins from *Salmonella* have been identified using classical immunoblotting techniques that rely on specific antibodies or tags fused to the candidate effector protein. To study the temporal and hierarchical regulation of the T3SS, other research groups have routinely applied the SPI-1 effector SptP as a reporter protein [85][84][135]. In the chromosome, the tyrosine-phosphatase SptP is translationally coupled to its chaperone SicP (Figure 3.1A) [136]. To mimic the native gene expression conditions of the T3SS machinery, cistrons *sicP* and *sptP* as well as a segment of the sicP upstream sequence were included on the plasmid in order to incorporate the native promoter region. The construct pMP005 was assembled, complemented into the *S. typhimurium* strain SB905  $\Delta sptP$  (Table 2.13) and assessed for secretion. Stable expression and secretion of SptP was confirmed, plasmid pMP005 was subsequently used as the basis for further modification (Figure 3.1B).


A common strategy to enhance the expression of *Salmonella* T3SS invasion genes utilizes the expression of the transcriptional activator protein HilA from a vector [137], [138]. In *Salmonella* HilA acts a central coordinative regulator that activates expression of invasion genes upon stimulation by environmental factors such as oxygen, osmolarity or pH [137].

Using an arabinose-inducible plasmid carrying the hilA sequence (denoted as pHilA in the following, see Table 2.8) we compared the signal strength of native and enhanced induction levels.





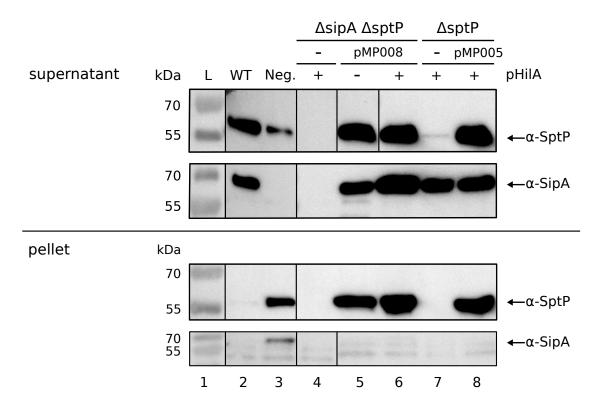
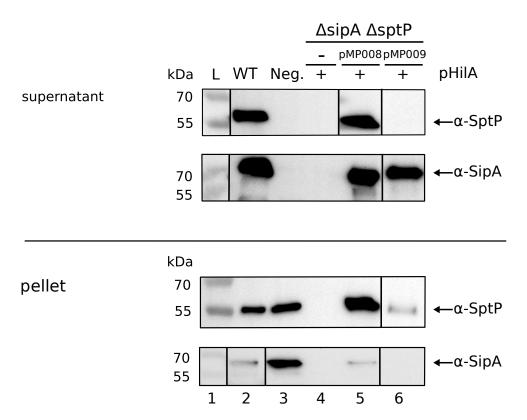
В

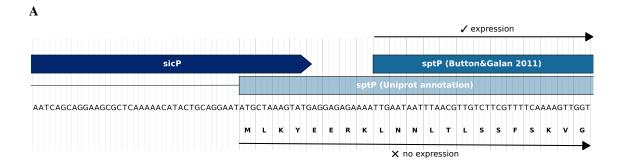


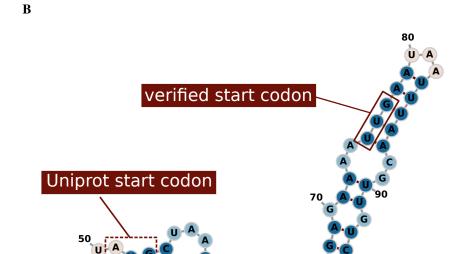
**Figure 3.1.: Assembly of reporter plasmid pMP005. A** Chromosomal organisation of the SicP-SptP genomic region. Construct pMP005 was assembled encompassing the genetic region upstream of *sicP*, *sicP* and *sptP*. ((highlighted in light blue ●)). **B** Plasmid map of pMP005. The nucleotide sequence highlighted in blue in Figure 3.1A was introduced into the pWSK29 backbone.

As an internal protein expression control, the *Salmonella* T3SE SipA with its 18 basepair upstream non-coding region was introduced downstream of the SptP coding sequence (CDS). SipA is encoded in the multicistronic sipBCDA operon downstream of SipD. By creating an artificial operon consisting of sicP-sptP-sipA, we intended to monitor any secretion changes of our primary reporter reflected in relation to the secretion of the unaltered effector SipA. Expression of both reporters was confirmed via Western Blotting (Figure 3.2, lanes 5-6) from strain M2433 ( $\Delta sopE \ \Delta sopE2 \ \Delta sipA \ \Delta sopB \ \Delta sopA \ \Delta sptP \ \Delta spvB \ \Delta spvC$ ), that was used in lack of a  $\Delta sptP \ \Delta sipA$  strain at that time. Secretion levels were slightly higher compared to the wildtype strain, presumably originating from the higher gene dosage of the pWSK29 low-copy plasmid.

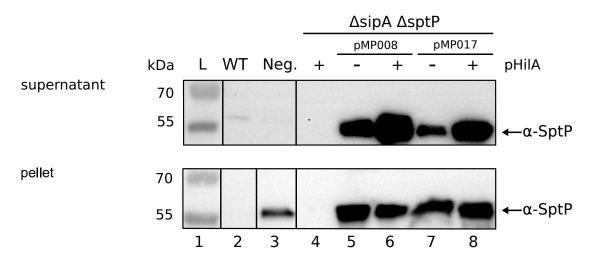
After confirmation of stable expression and T3SS-mediated secretion of both reporter proteins from plasmid pMP008, the N-terminus of the native SptP peptide sequence was



Figure 3.2.: SptP and SipA are secreted from plasmid-complemented strains. S.typhimurium strain M2433 ( $\Delta sptP \ \Delta sipA \ \Delta sopE \ \Delta sopE2 \ \Delta sopB \ \Delta spvB \ \Delta spvC$ , for brevity denoted here as  $\Delta sipA \ \Delta sptP$ ) complemented with pMP008 expresses and secretes both SipA and SptP (lanes 5-6). HilA-induction leads to a slight increase of secretion. S. typhimurium strain SB905 \Delta SptP complemented with the precursor plasmid pMP005 displays similar levels of expressed and secreted SptP (lane 8). All complemented strains expresses and secrete at higher levels than the wildtype (WT) strain S. typhimurium SB905 (lane 2). The slight SptP signal visible in the supernatant of the T3SS-deficient strain SB906 (\Delta prgH) is a result of carryover from the WT lane. All strains were grown for 4 h at 37 °C and 180 rpm, separated into pellet and supernatant and detected via polyclonal antibodies by western blot analysis as described in section 2.2.4. Blots cropped for clarity, original blots are available in appendix A Figure A.2 and Figure A.3.


replaced with the N-terminal secretion signal of the effector SipA. We chose to replace the first 25 residues of the N-terminus to exclusively capture the secretion signal and avoid disrupting downstream chaperone binding regions.

A construct carrying a *sipA*<sub>1-25</sub>-*sptp*<sub>26-543</sub> sequence (pMP009) did not express the respective fusion protein (Figure 3.3, lane 6) but only showed expression and secretion of the SipA control reporter. Upon shifting the N-terminal replacement site 24 basepairs downstream of the annotated SptP start codon (Uniprot entry: P74873 (SPTP\_SALTY), 2024-03-25) to an alternative start codon, expression and T3SS-mediated secretion for a SipA<sub>1-25</sub>-SptP<sub>26-535</sub> fusion protein was established (Figure 3.5, lanes 7-8). This unusual *TTG*-encoded start codon for SptP was first described by Button and Galán [136] and confirmed using a series of mutagenesis experiments (Figure 3.4). Thus, in this instance the automated sequence annotation of the Uniprot database is erroneous. We also compared native induction conditions with pHilA-supplemented induction conditions. Expectedly, HilA expression leads to an enhanced expression and secretion of the reporter protein (see Figure 3.5).




**Figure 3.3.:** Replacing the native N-terminus of SptP abolishes reporter expression. *S.ty-phimurium* strain M2433 (for brevity denoted as  $\Delta \text{SipA}$   $\Delta \text{SptP}$ ) complemented with plasmid pMP009 carrying the chimeric fusion protein SipA<sub>1-25</sub>-SptP<sub>26-543</sub> (pMP009) did not express (lane 6), whereas strain M2433 complemented with pMP008 (lane 5) shows stable expression and secretion of native SptP and SipA. The T3SS-deficient strain negative control strain SB906 (Neg., lane 3) did not secrete expressed SptP. All strains were grown for 4 h at 37 °C and 180 rpm, separated into pellet and supernatant and detected via polyclonal antibodies by western blot analysis as described in section 2.2.4. Blots cropped for clarity, original blots are available in appendix A Figure A.4 and Figure A.5.





**Figure 3.4.:** The expression of SptP is regulated via RNA secondary structures in the N-terminus and contains an unusual start codon deviating from the Uniprot annotation. A Nucleotide sequence and open reading frames of the *sptP* N-terminal region as annotated by Uniprot (state: 2024-03-25) and by Button and Galán [136]. **B** RNA secondary structure prediction of the *sptP* N-terminus with 2 stem loops involved in regulation of SptP translation (calculated via the Vienna RNAfold webserver) [139]. The start codon of the Uniprot-deposited SptP peptide sequence is depicted in the dashed box, the experimentally verified start codon in the continuous box. This shortens the SptP effector by 8 residues [136].



**Figure 3.5.:** The chimeric secretion signal-reporter fusion protein SipA<sub>1-25</sub>-SptP<sub>26-535</sub> is expressed and secreted via the T3SS. *S.typhimurium* strain M2433 complemented with plasmids carrying the wildtype SptP reporter (pMP008, lane 5-6) and the SipA<sub>1-25</sub>-SptP<sub>26-535</sub> fusion protein (pMP017, lane 7-8) expresses and secretes both proteins. To enhance expression and secretion additional complementation with the pHilA pacyc184 plasmid was tested. In comparison, the wildtype (WT) strain *S.typhimurium* SB905 expresses and secretes weaker amounts of SptP (lane 2), the T3SS-deficient negative control strain SB906 (Neg., lane 3) does not secrete SptP. All strains were grown for 4 h at 37 °C and 180 rpm, separated into pellet and supernatant and detected via polyclonal antibodies by western blot analysis as described in section 2.2.4. Blots cropped for clarity, original blots are available in appendix A Figure A.6.

## 3.1.2. Quantitative detection of T3SS-secreted proteins

Ensuing the successful detection of a secretion signal-reporter fusion protein using our reporter system, a suitable method to quantify T3SS-secreted proteins was investigated.

#### 3.1.2.1. Mass spectrometric quantification of T3SE secretion

Initially, the application of a mass spectrometric approach to monitor the entire secretome of T3SS-mediated proteins was pursued [82][117]. Mass spectrometric analysis of the secretome of *Salmonella* strains SB905, SL1344 and M2433 was performed by the UKE mass spectrometric facility and to confirm the chromosomal knockout of specified T3SEs. A small fraction of *Salmonella* proteins could be identified from TCA-precipitated supernatant, the majority of proteins however were of *Saccharomyces* origin, indicating significant contamination from the LB growth medium. Of the *Salmonella* proteins identified, two hits were directly (SipA, marked bold in Table 3.1) or indirectly (DnaJ) associated with host cell invasion (Table 3.1) [140]. The constraints arising from the choice of growth medium and the elevated workload, time frame and cost of a single experiment led us to abandon a mass spectrometric approach as the main quantification method in favour of a simpler and faster approach using a reporter-tagging strategy.

Table 3.1.: *Salmonella* proteins identified via LC-MS/MS in *Salmonella typhimurium* SB905. Type III effector proteins are marked in bold.

| protein name                                   | gene name  | <b>Uniprot ID</b> | coverage [%] |
|------------------------------------------------|------------|-------------------|--------------|
| Major outer membrane lipoprotein Lpp 1         | lpp1       | Q7CQN4            | 18           |
| 10 kDa chaperonin                              | groS       | P0A1D5            | 14           |
| DNA-binding protein HU-α                       | hupA       | P0A1R6            | 14           |
| glyceraldehyde-3-phosphate dehydrogenase       | gapA       | P0A1P0            | 11           |
| EIIAB-Man                                      | manX       | Q8ZP03            | 7            |
| elongation factor Ts                           | <i>tsF</i> | P64052            | 7            |
| hyperosmotically inducible periplasmic protein | osmY       | Q7CP68            | 5            |
| L-seryl-tRNA(Sec) selenium transferase         | selA       | Q8ZL69            | 4            |
| Ribosome-recycling factor                      | frr        | P66738            | 4            |
| chaperone protein DnaJ                         | dnaJ       | P0A1G7            | 3            |
| glycerol-3-phosphage dehydrogenase             | glpD       | Q8ZLH4            | 3            |
| Lipopolysaccharide core heptose(I) kinase RfaP | rfaP       | Q06995            | 3            |
| 60 kDa chaperonin                              | groL       | P0A1D3            | 2            |
| cell invasion protein SipA                     | sipA       | POCL52            | 2            |
| putative periplasmic binding protein           | vieP       | Q8ZKB2            | 1            |

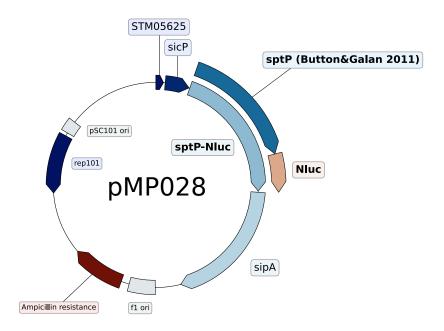
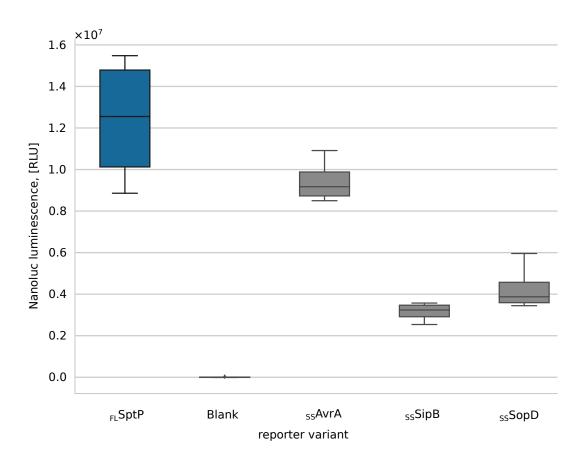
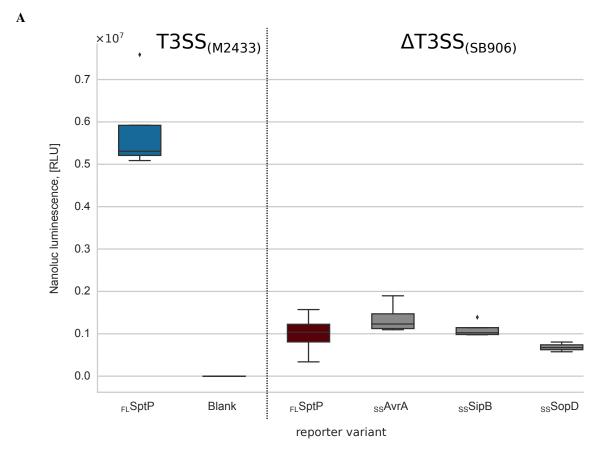
#### 3.1.2.2. Luminescence-based quantification of T3SE secretion

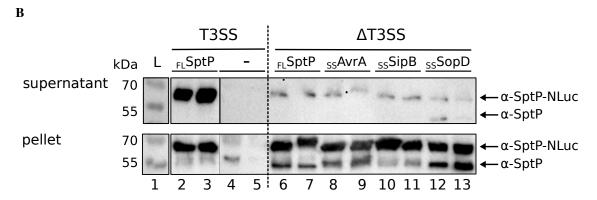
An alternative method that allows precise quantification has been described by Westerhausen et al. by tagging effector proteins with luciferase proteins [141]. Bioluminescent luciferases offer high sensitivity, enhanced signal-to-noise ratios and suitability for real-time kinetic applications. Due to its small size of 19 kDa, high brightness and stability, we set out to test the Nanoluc luciferase as the C-terminal effector tag [142] (in the following abbreviated as NLuc).

To express a Sptp-NLuc fusion protein, SptP was C-terminally tagged with the Nanoluc luciferase (Figure 3.6). Based on the created plasmid, 3 plasmid variants were assembled replacing the native N-terminus of SptP with the secretion signals of the *S. typhimurium* effectors AvrA and SopD, as well as the secreted translocon protein SipB.

In a first 8 h secretion quantification assay, secretion of the native SptP-NLuc (denoted as  $_{FL}$ SptP in Figure 3.7) as well as the generated reporter variants (AvrA $_{1-25}$ -SptP $_{26-535}$ -NLuc, SipB $_{1-25}$ -SptP $_{26-535}$ -NLuc, SopD $_{1-25}$ -SptP $_{26-535}$ -NLuc) was quantified in the supernatant using a commercial Nanoluc kit (Table 2.4) following the methodology described in section 2.2.1.

All of the secreted fusion proteins were quantitatively detectable to different degrees in the supernatant of the cell cultures (Figure 3.7). To ascertain that the detected proteins were secreted via the T3SS, the T3SS-deficient *S.typhimurium* strain SB906 was complemented with each of the tested constructs. In comparison to the secretion pattern of the T3SS-competent *S.typhimurium* M2433 expressing native SptP-NLuc, all T3SS-deficient strains display diminished amounts of reporter fusion protein in the supernatant regardless of the



Figure 3.6.: Plasmid map of pMP028 with the native sptP sequence tagged C-terminally with the Nanoluc luciferase. This plasmid serves as the scaffold for subsequent secretion-signal variants.

complemented plasmid (Figure 3.8A). Qualitative detection of samples from the same assay confirms that the decrease in supernatant luminescence levels can not be attributed to reduced expression levels (Figure 3.8B). Notably, the T3SS-deficient SB906 strain still expresses the native untagged SptP protein resulting in a second band around 55 kDA.



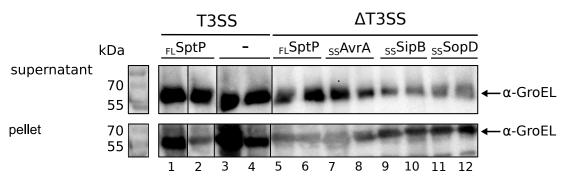
**Figure 3.7.:** Secretion signals from different T3SS-secreted proteins display diverging secretion quantities. *S.typhimurium* strain M2433 complemented with plasmids expressing native SptP-NLuc (denoted as  $_{\text{Full length (FL)}}$ SptP) or chimeric fusion proteins  $_{\text{AvrA}_{1-25}}$ -SptP $_{26-535}$ -NLuc , SipB $_{1-25}$ -SptP $_{26-535}$ -NLuc and SopD $_{1-25}$ -SptP $_{26-535}$ -NLuc respectively, were grown for 8 h at 37 °C and 180 rpm. Reporter variants are denoted according to the effector protein the secretion signal (Secretion signal (SS)) is derived from. Uncomplemented cultures of M2433 were grown as a blank control. Following incubation, the amount of secreted reporter protein was quantified in the supernatant using the commercial NanoGlo Live cell assay kit (as described in section 2.2.1). Each box denotes 4 cultures per sample variant (n=4) measured in triplicate, the box displays the quartiles of the data distribution, whiskers denote the rest of the distribution, outliers are displayed rhombs.





**Figure 3.8.:** Reporter variants are secreted in T3SS-mediated manner. A The T3SS-deficient *S.typhimurium* strain SB906 (denoted as  $\Delta$ T3SS) complemented with plasmids expressing native SptP-NLuc ( $_{FL}$ SptP) or chimeric fusion proteins  $AvrA_{1-25}$ -SptP $_{26-535}$ -NLuc, SipB $_{1-25}$ -SptP $_{26-535}$ -NLuc and SopD $_{1-25}$ -SptP $_{26-535}$ -NLuc, respectively were grown for 8 h at 37 °C and 180 rpm. Reporter variants are denoted according to the effector protein the secretion signal (SS) is derived from. T3SS-competent *S.typhimurium* M2433 expressing native SptP-NLuc ( $_{FL}$ SptP) and uncomplemented cultures of M2433 were grown as positive and blank control, respectively. After sample preparation, the amount of secreted reporter protein was quantified in the supernatant using the NanoGlo Live cell assay kit (as described in section 2.2.1). All tested variants display reduced signal intensities compared to the positive control. Each box denotes 4 cultures per sample variant (n=4) measured in triplicate, the box displays the quartiles of the data distribution, whiskers denote the rest of the distribution, outliers are shown as rhombs **B** Additional samples of supernatant and pellet were prepared as described in section 2.2.3 and visualized using polyclonal antibodies against SptP following the protocol described in section 2.2.4. All annotation follows Figure 3.8A, except for the blank control that is denoted with a —. Original blots available in appendix A Figure A.7

A comparison of the luminescence signals of the T3SS-competent M2433 strain expressing FL SptP-NLuc in Figure 3.7 and Figure 3.8A also revealed significant variance in signal strength between assays despite an identical experimental setup. To maintain comparability across assays we included this strain as as wildtype (WT) control strain in all subsequent assays and set the luminescence signal of each reporter variant in relation to it. The clearest indication for T3SS-mediated secretion marks the reduction of the Nanoluc luminescence signal in supernatants of the T3SS-deficient strain SB906 expressing FL SptP-NLuc to 24 % of the signal detected in supernatants from strain M2433 expressing FL SptP-NLuc (Figure 3.9A). The other tested reporter variants also display moderate (AvrA, SopD) to marginal (SipB) signal reductions in signal intensity between the T3SS-competent and deficient strain. Considering the incubation time of 8 h, the residual signals detected in strain SB906 might be attributed to cell lysis as an additional blotting against the cytoplasmic marker groEL indicates (Figure 3.9B).


|   | 1 | ۹ | ۱ |   |
|---|---|---|---|---|
| ú | ۴ |   |   | ۱ |
|   |   |   |   |   |

|                    | secretion ratio, [%]    |                         |  |
|--------------------|-------------------------|-------------------------|--|
| reporter variant   | T3SS <sub>(M2433)</sub> | $\Delta T3SS_{(SB906)}$ |  |
| FL SptP-NLuc       | 100 a                   | 24 <sup>b</sup>         |  |
| SSAvra-SptP-NLuc   | 83                      | 33                      |  |
| SSSipB-SptP-NLuc   | 26                      | 25                      |  |
| SSS SopD-SptP-NLuc | 39                      | 17                      |  |

a = wildtype control (WT), all values are calculated in relation to this signal

b = negative control (Neg.), residual signal obtained from supernatants of the T3SS-deficient strain SB906.





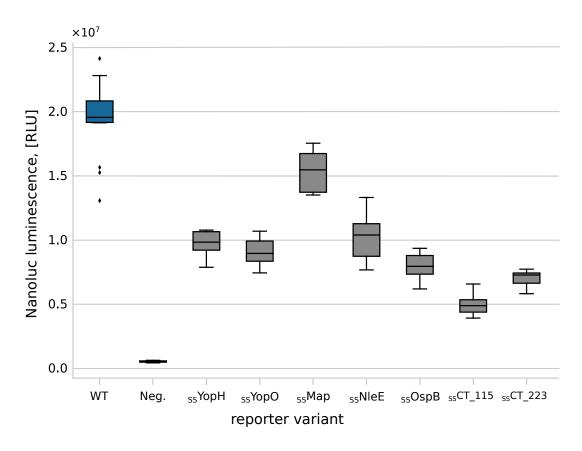
**Figure 3.9.:** Residual Nanoluc luminescence observed in T3SS-deficient cultures can be attributed to cell lysis. A The relative Nanoluc luminescence signal is reduced in T3SS-deficient strains. The mean Nanoluc luminescence signal from each reporter variant displayed in Figure 3.7 and Figure 3.8A was set in relation to the mean luminescence signal of strain *S. typhimurium* M2433 expressing <sub>FL</sub>SptP-NLuc of the respective assay. In comparison, luminescence signals in the T3SS-deficient strain SB906 are reduced. Ratios were calculated using the mean value of each reporter variant. **B** Immunoblotting of the samples displayed in Figure 3.8B against the cytoplasmic marker GroEL indicates elevated levels of cell lysis. Sample annotation is identical to Figure 3.8B. Samples were prepared as described in section 2.2.3 and visualized against GroEL following the protocol described in section 2.2.4. Original blots available in appendix A Figure A.8.

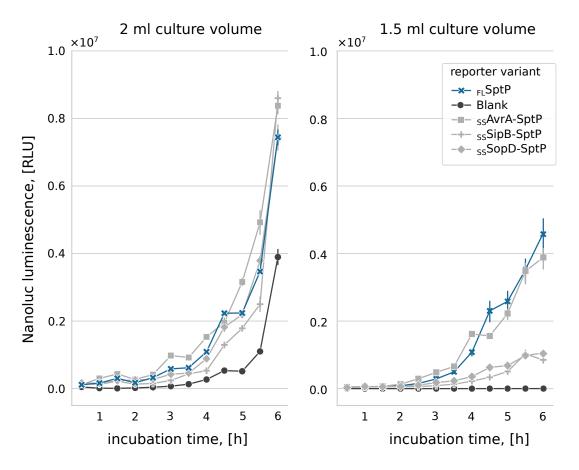
#### 3.1.2.3. Species-independent T3SS secretion

To demonstrate the wide applicability of our reporter system beyond *Salmonella* N-termini we expanded the choice of secretion signals to effectors from *Yersinia*, *Escherichia*, *Shigella* and *Chlamydia*. We confirmed varying degrees of T3SS-mediated secretion for all tested secretion signal variants(Figure 3.11). In this setup, a specifically engineered *Salmonella* strain lacking  $\Delta sptP$  and  $\Delta sipA$  and a strain lacking  $\Delta sptP$  and  $\Delta invA$  were utilized as wildtype (WT) and negative control (Neg.), respectively.

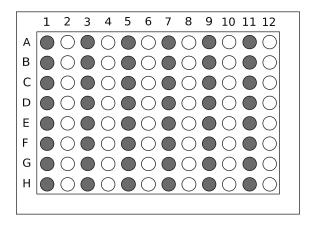
**Figure 3.10.:** Reporter variants with N-termini from other T3SS-carrying bacteria tested for T3SS-mediated secretion in the Nanoluc luminescence quantification assay (see Figure 3.11).

| abbreviations        | reporter variant                                     | Salmonella strain                           | effector organ-<br>ism |
|----------------------|------------------------------------------------------|---------------------------------------------|------------------------|
| WT                   | FL SptP-NLuc                                         | SB905 ΔsipA ΔsptP                           | Salmonella             |
| Neg.                 | FLSptP-NLuc                                          | SB905 $\Delta invA \Delta sipA \Delta sptP$ | Salmonella             |
| <sub>SS</sub> YopH   | YopH <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc   | SB905 $\Delta sipA \Delta sptP$             | Yersinia               |
| SSYopO               | YopO <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc   | SB905 $\Delta sipA \Delta sptP$             | Yersinia               |
| <sub>SS</sub> Map    | Map <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc    | SB905 $\Delta sipA \Delta sptP$             | Escherichia            |
| <sub>SS</sub> NleE   | $NleE_{1-25}$ -SptP <sub>26-535</sub> -NLuc          | SB905 $\Delta sipA \Delta sptP$             | Escherichia            |
| <sub>SS</sub> OspB   | OspB <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc   | SB905 $\Delta sipA \Delta sptP$             | Shigella               |
| <sub>SS</sub> CT_115 | CT_115 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc | SB905 $\Delta sipA \Delta sptP$             | Chlamydia              |
| SSCT_223             | CT_223 <sub>1-25</sub> -SptP <sub>26-535</sub> -NLuc | SB905 \(\Delta sipA \Delta sptP\)           | Chlamydia              |





Figure 3.11.: T3SS-mediated secretion of reporter fusion proteins with secretion signals from *Chlamydia*, *Escherichia*, *Shigella* and *Yersinia*. *S.typhimurium* strain SB905  $\Delta sipA$   $\Delta sptP$  complemented with plasmids expressing  $_{FL}$ SptP-NLuc (WT) or reporter variants with secretion signals from *Yersinia* effectors YopH and YopO, *Escherichia* effectors Map and NleE, *Shigella* effector OspB as well as *Chlamydia* effectors CT\_115 and CT\_223 were grown for 4 h, 180 rpm, 37 °C (variants are annotated by the origin of their secretion signal (SS)). The T3SS-deficient strain SB905  $\Delta sipA \Delta sptP$  strain were grown as negative (Neg.) and blank control, respectively. All strains were additionally induced via the complemented pHilA pacyc184 plasmid. After sample preparation, Nanoluc luminescence was quantified in the supernatant using the commercial NanoGlo Live cell assay kit (as described in section 2.2.1). The signal of the blank control strain was subtracted from all samples, the individual Nanoluc luminescence signals normalized to the optical density of the respective culture. Each box denotes 8 cultures per sample variant (n=8) measured in triplicate, the box displays the quartiles of the data distribution, whiskers denote the rest of the distribution, outliers are shown as rhombs. Assay partly conducted by J.Ahrendt.

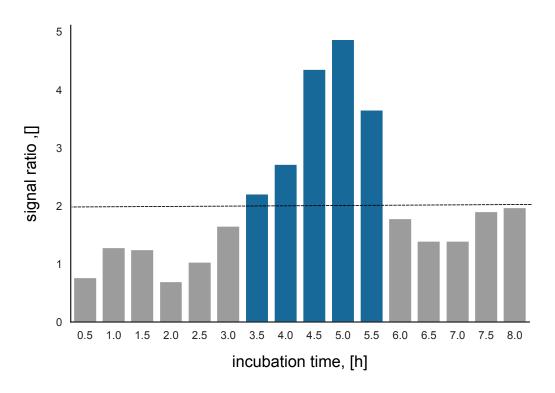
## 3.1.3. Optimization of assay conditions


After having confirmed the principal applicability of our quantification approach, a set of optimization experiments were performed to enhance the validity and reproducibility of the assay. Cell culture conditions were optimized regarding incubation time and culture volume to obtain a robust luminescence signal whilst preserving the feasibility of conducting the experimental setup. Furthermore, both the luminometer device settings as well as the luminescence assay conditions were examined to increase the reproducibility of the assay.

#### 3.1.3.1. Culture volume & sample number

To enable a larger sample throughput, all quantification assays were performed in 96-well deep well plates suitable for cell culture. To detect the progression of T3SS secretion and determine an optimal endpoint for incubation cell culture volumes of 1.5 mL and 2 mL were monitored in a 6 h timecurve experiment. Despite sealing the plates with lids, we observed converging signal intensities in the 2 mL culture volume setup, as exemplified by the increase in signal intensity of the blank control (Figure 3.12). This effect was not detectable in the 1.5 mL culture setup. Consequently, subsequent cell cultures were adapted to 1.5 mL culture volume, as an additional precaution the sample culture variants were separated by an empty well column in the 96-well format to minimize mixing effects (Figure 3.13).

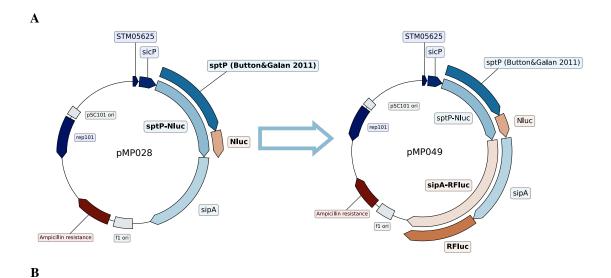


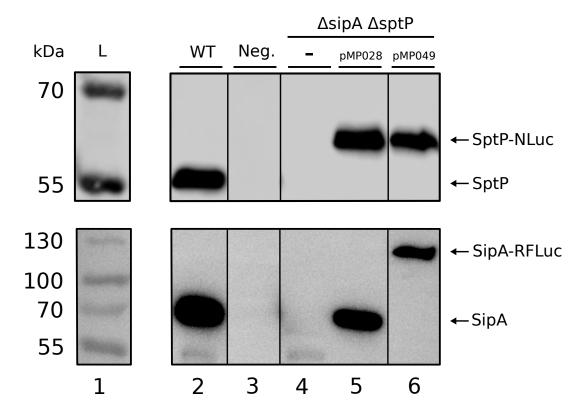

**Figure 3.12.:** Nanoluc luminescence signals converge due to sample mixing. 12 x 2 mL cultures of *S.typhimurium* strain M2433 complemented with plasmids expressing <sub>FL</sub>SptP-NLuc or chimeric fusion proteins AvrA<sub>1-25</sub>-SptP<sub>26-535</sub>-NLuc, SipB<sub>1-25</sub>-SptP<sub>26-535</sub>-NLuc and SopD<sub>1-25</sub>-SptP<sub>26-535</sub>-NLuc were grown for 6 h at 180 rpm, 37 °C in a 96-well deep well plate. An uncomplemented M2433 culture was grown as a blank control. Every 30 min one culture was harvested and processed (see paragraph 2.2.1.0.1). After sample preparation, the amount of secreted reporter protein was quantified in the supernatant using the commercial NanoGlo Live cell assay kit (as described in section 2.2.1). All strains display similar secreted Nanoluc luminescence quantities throughout incubation, the increase of signal in the blank control indicates sample mixing. Each datapoint denotes a single culture measured in triplicate with standard deviation.



**Figure 3.13.:** Arrangement of cell cultures in the 96-well deep well plate incubation setup. Incubation of cell cultures in the planned 96-well format requires gap columns between strains to avoid sample mixing. Each column containing cultures of a single *S.typhimurium* strain variant are separated by an empty well column to avoid mixing of cell cultures as observed in Figure 3.12. Wells filled with cell culture are marked in dark grey.

#### 3.1.3.2. Cultivation time


The observed cell lysis during cultivation (appendix A Figure A.8) indicated unfavourable assay conditions for *Salmonella* survival. Naturally, the dimensions of the deep well plate limit the surface area for air exchange resulting in oxygen-deprived culture conditions. In order to find an acceptable compromise between between signal intensity and cell lysis levels, a timecurve experiment was performed with sample collections every 30 min (see section 2.2.1). After normalization to an optical density of 1.0, the signal-to-noise ratio was determined by dividing the luminescence signal of the T3SS-competent M2433 strain expressing FLSptP-NLuc with the luminescence signal of the T3SS-deficient negative control SB906 expressing FLSptP-NLuc (see Equation 2.1). Signal ratios with a ratio > 2.0 were defined as sufficient and obtained for timepoints between 3.5 to 5.5 hours incubation time with an optimal ratio after 5 hours incubation (Figure 3.14). As a tradeoff, between signal-to-noise ratio and the necessicity of increasing sample throughput, we set the cultivation endpoint to 4 h to duplicate the number of samples processible in one experiment.




**Figure 3.14.:** Incubation times between 3.5 h to 5.5 h yield the highest Nanoluc signal-to-noise ratios. 16 cultures of strains M2433 and T3SS-deficient SB906 both expressing <sub>FL</sub>SptP-NLuc were incubated over 8 h at 180 rpm, 37 °C. Every 30 minutes, one culture was harvested and processed for quantification (as described in paragraph 2.2.1.0.1). All data shown displays the mean from single biological replicates, measured in triplicate. The chosen threshold of 2.0 denotes the range between 3.5 h to 5.5 h that was determined suitable for analyzing culture endpoints (●).

#### 3.1.3.3. Reporter expression control

The construction of effector fusion proteins alters the nucleotide sequence composition in the N-terminal region of the fusion construct. As shown previously, the N-terminal region of *sptP* within the *sicP-sptP* genomic region is tightly regulated via RNA secondary structures [136]. To monitor whether an alteration of this region causes differential secretion patterns, the second reporter protein SipA was C-terminally tagged with the Red Firefly luciferase (Figure 3.15A, described in subsubsection 3.1.1.1). The quantification of this effector should provide a consistent signal strength allowing to determine changes in the secretion patterns of the primary reporter variants. Although smaller tags seem more appropriate than the 60 kDa Red Firefly luciferase, many luciferases are not compatible with the Nanoluc luciferase. The Nanoluc substrate furimazine is a derivate of coelenterazine, a substrate metabolized by common luciferases such as *Gaussia* or *Renilla* luciferase. Therefore, crossreactivity between the luciferases and their substrates cannot be excluded, which limits the range of applicable luciferases. The Red Firefly luciferase requires D-luciferin, oxygen and ATP for activity. Expression and secretion of both reporters from a plasmid expressing FI SptP-NLuc and SipA-RFLuc was confirmed via Western blotting (Figure 3.15B).





**Figure 3.15.:** The dual-reporter plasmid pMP049 expresses and secretes SptP-NLuc and SipA-RFLuc. A Assembly of plasmid pMP049 with Nanoluc (NLuc)-tagged SptP and RedFirefly luciferase (RFLuc)-tagged SipA using plasmid pMP028 as a template. **B** *S. typhimurium* strain SB905 Δ*sipA*Δ*sptP* complemented with pMP028 or pMP049 expresses and secretes <sub>FL</sub>SptP-NLuc and SipA or <sub>FL</sub>SptP-NLuc and SipA-RFLuc, respectively. All strains were complemented with pHilA pacyc184 (pHilA), including wildtype (WT) strain SB905 and T3SS-deficient strain SB906 (Neg.). All strains were grown for 4 h, 180 rpm, 37 °C, separated into pellet and supernatant and visualized using specific antisera against SptP and SipA by western blot analysis (as described in section 2.2.4. Blots cropped for clarity, assay conducted by J.Ahrendt.

#### 3.1.3.4. Absorbance calibration

For a more robust statistical validity of the assay, all culture variants were grown in multiple biological replicates (n= 4 to 8). To account for differences in growth between individual cultures, an endpoint absorbance measurement was performed to calculate the optical density of each individual culture. The optical density measurement was then applied to normalize the obtained luminescence signals. To preserve the high-throughput nature of the quantification assays, absorbance values (600 nm) obtained from platereader measurements in the 96-well format were calibrated to the optical density cuvette measurement in a cell density meter (Figure 3.16). All subsequently obtained platereader absorbance values were converted using the derived calibration formula (Equation 3.1).

$$f(x) = 3.85 * x + 0.03 \tag{3.1}$$

During preparation of the luminescence samples, the samples for the absorbance measure-

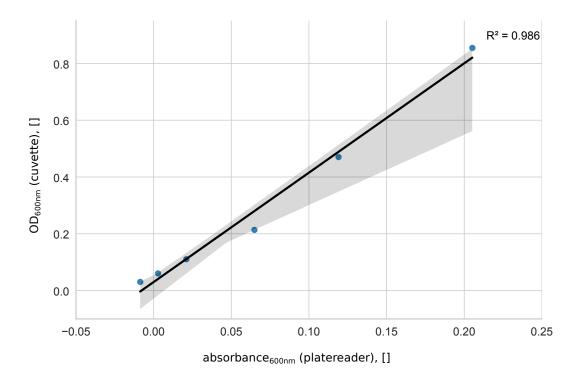



Figure 3.16.: The calibration of absorbance measurements enables the high-throughput measurement of cell culture optical densities using a platereader. After 4 h incubation at 180 rpm, 37 °C, cell culture dilutions of strain *S. typhimurium* SB905  $\Delta sptP$  expressing  $_{FL}$ SptP-NLuc ( $\frac{1}{2}$ ,  $\frac{1}{5}$ ,  $\frac{1}{10}$ ,  $\frac{1}{20}$ ,  $\frac{1}{50}$ , diluted in LB-0.3 M NaCl) were measured in a cuvette cell density meter (pathlength 1 cm) to obtain optical density values (OD<sub>600 nm</sub>). Subsequently, absorbance<sub>600 nm</sub> was measured in 100  $\mu$ L aliquots of the identical sample (n=6) in a flat-bottom 96-well plate using a platereader. The formula (Equation 3.1) obtained from fitting a linear regression was utilized to convert all platereader absorbance measurements into optical density values.

ment were taken before further processing of the cell culture and separation into supernatant and pellet samples. To assess whether the resting period from sample taking to sample measurement influences the absorbance measurement, we compared absorbance signals of rested samples with samples that were shaken immediately before the measurement. The effect of shaking on the measured absorbance is negligible (Figure A.9), to ensure appropriate mixing of the samples we nonetheless retained a preceding shaking step in all subsequent assays.

## 3.1.3.5. Device settings

For the simultaneous measurements of all samples in 96-well plates, the Clariostar Plus platereader from BMG Labtech was used. Different device settings were tested to optimize the luminescence measurement protocol. A backlight filter is commonly applied to minimize the influence of residual light on luminescence and fluorescence measurements and enhance the signal-to-noise ratio. The application of such a filter reduced the average signal intensity up to 15.55 % but also decreased residual light by a magnitude (see Figure 3.17, WT sample). The uncomplemented M2433 strain not expressing a luminescent protein displays an average luminescence signal decrease from 1058 RLU to 101 RLU.

The Clariostar platereader offers the option to use an Enhanced-Dynamic Range (EDR) feature allowing signal detection over 8 concentration decades. In comparison to the standard dynamic range, EDR displays elevated signal intensities for strong luminescence signals, effectively increasing the resolution of the measurement (Figure 3.18). We also assessed the impact of a sample shaking step prior to the luminescence measurement as previously performed for the absorbance measurement. As seen in Figure 3.19, shaking decreases the average signal intensity of the samples with increasing effect on larger signal intensities. A homogeneous sample was deemed desirable in terms of reproducibility of our assay, therefore all subsequent assays included a shaking step prior to each luminescence measurement.

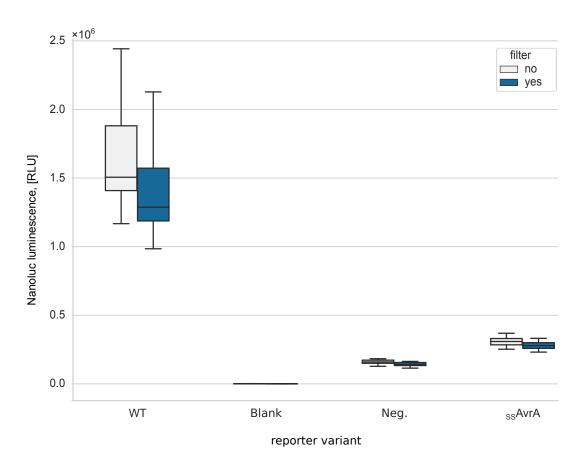



Figure 3.17.: Application of a residual light filter reduces the average signal intensity. Nanoluc luminescence from supernatants of S. typhimurium strain SB905  $\Delta sptP$  expressing  $_{FL}$ SptP-NLuc or AvrA $_{1-25}$ -SptP26-535-NLuc, an uncomplemented SB905  $\Delta sptP$  as a blank signal control and the T3SS-deficient SB905  $\Delta sptP\Delta invA$  as negative control (Neg.) was quantified first without applying a filter reducing residual light signals. Subsequently, the same samples were remeasured using a residual light filter. The usage of such filter reduces the average signal up to 15.55 % (WT signal). Measurements were conducted using a BMG Labtech Clariostar Plus platereader. Each box denotes 8 biological replicates measured as triplicates, the box displays the quartiles of the data distribution, whiskers denote the rest of the distribution, outliers are shown as rhombs.

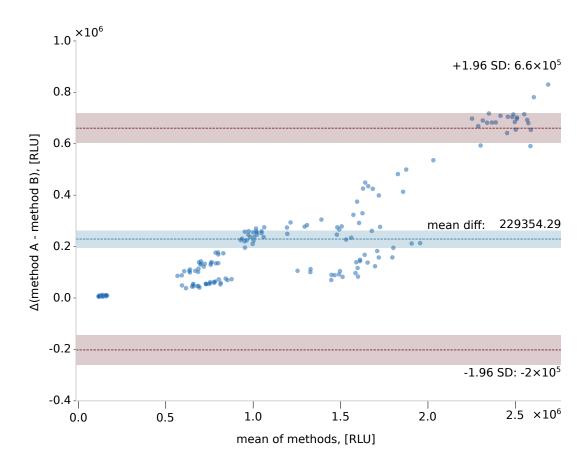



Figure 3.18.: Enhanced dynamic range (enhanced dynamic range (EDR)) increases the resolution of luminescence signals. The Nanoluc luminescence signals from supernatants of 8 sample variants (192 individual measurements in total) were quantified with and without using the Enhanced Dynamic Range (EDR) feature of the BMG Labtech Clariostar Plus platereader (EDR=method A, no EDR=method B). The EDR setting of the platereader enhances the detection range of the luminescence signal enabling concomitant measurement of both very weak and very high signal intensities. With increasing signal intensities. the divergence between method A and method B becomes more pronounced; the mean difference over all sample points amounts to 229 354 RLU. The mean value of both measurement methods (X-axis) is plotted against the measurement difference between both methods (Y-axis) for a given data point (mean\_diff=mean difference, SD=standard deviation).



Figure 3.19.: Prior sample shaking reduces the average luminescence signal intensity. The Nanoluc luminescence signals from supernatants of 8 sample variants (192 individual measurements in total) were quantified with and without a sample shaking routine (30 s, 300 rpm) prior to luminescence quantification (shaking = method A, no shaking = method B). With increasing luminescence signal intensity, the effect of shaking becomes more pronounced, reducing the average signal strength by an average of 194 035 RLU over all sample points. The mean value of both measurement methods (X-axis) is plotted against the measurement difference between both methods (Y-axis) for a given data point (mean\_diff=mean difference, SD=standard deviation).

#### 3.1.3.6. Time & temperature effects

The Nanoluc luciferase is a glow-type luciferase with a declared signal half-life time of 120 min at room temperature [143]. We examined the signal stability in our assay conditions in a 120 min-timescale experiment with measurement intervals of 30 min (Figure 3.20). As opposed to the manufacturers specifications, we observed a 4-fold signal decay in the wildtype (WT) sample expressing <sub>FL</sub>SptP-NLuc. The detected reduction is more pronounced at higher initial signal intensities.

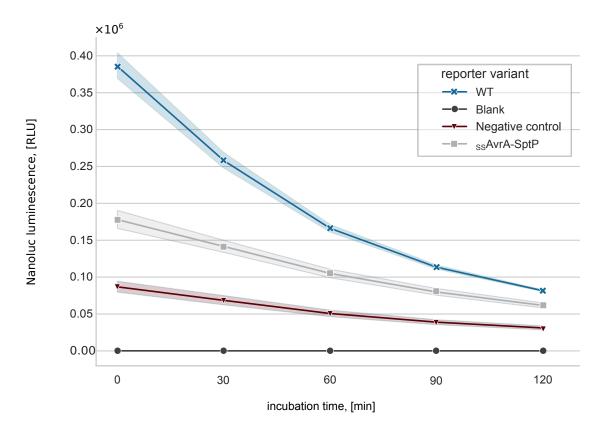



Figure 3.20.: The Nanoluc luminescence intensity decays faster in high intensity samples. Nanoluc luminescence signals in the supernatant of 4 samples with different initial luminescence intensity (WT = SB905  $\Delta sptP$  expressing  $_{FL}$  SptP-NLuc, SB905  $\Delta sptP$  expressing  $_{AvrA_{1-25}}$ -SptP $_{26-535}$ , uncomplemented SB905  $\Delta sptP$  (Blank), negative control = SB905  $\Delta invA$   $\Delta sptP$ ) were quantified in 30 min intervals for a duration of 120 min. Prior to each measurement, the 96-well plate was shaken for 30 s at 300 rpm. Each datapoint represents 8 biological replicates measured in triplicate, displayed is the median value and standard deviation.

We also tested the temperature dependency of the Nanoluc luciferase during the luminescence measurement, for 20 °C and 37 °C, respectively. A selection of samples was first measured in a single 96-well luminescence plate equilibrated at room temperature, the same plate incubated for 15 min at 37 °C after the measurement and remeasured again at 37 °C. A signal decrease was detected in all samples incubated at 37 °C compared to measurement at 20 °C (Figure 3.21), thus the influence of higher measurement temperatures seems detrimental. Notably, the wildtype sample that exhibited the strongest initial luminescence

signal at 20 °C also displayed the most pronounced signal reduction (5-fold decrease). As a consequence, all subsequent experiments were conducted at 20 °C with an equilibration period of 30 min for samples and substrate prior to performing the luminescence assay.



Figure 3.21.: The Nanoluc luciferase displays optimal activity at room temperature. The Nanoluc luminescence signal of 4 samples (WT = SB905  $\Delta sptP$  expressing  $_{FL}$ SptP-NLuc, SB905  $\Delta sptP$  expressing  $_{AvrA_{1-25}}$ -SptP $_{26-535}$ , uncomplemented SB905  $\Delta sptP$  (Blank), negative control = SB905  $\Delta invA$   $\Delta sptP$ ) was quantified first at 20 °C. Following a 15 min incubation period at 37 °C, samples were remeasured at 37 °C. Prior to each measurement, the 96-well plates were shaken for 30 s at 300 rpm. Each box represents 8 biological replicates measured in triplicate, the box displays the quartiles of the data distribution, whiskers denote the rest of the distribution, outliers are shown as rhombs.

## 3.1.3.7. Optimized parameters

After performance of all optimization tests, the conditions displayed in Figure 3.22 were applied to all subsequent secretion quantification assays.

# assay optimization

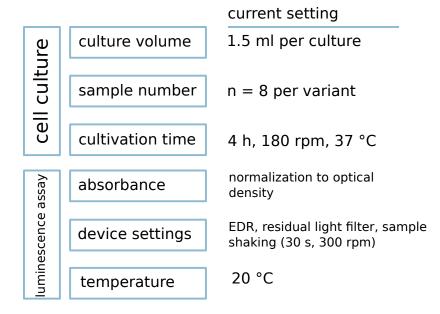



Figure 3.22.: Optimized parameters of the secretion quantification assay in the current experimental setup

## 3.1.4. Quantification of secretion signal effects

Subsequent to the optimization of the assay conditions, the amount of tested secretion signals was expanded to all experimentally verified *Salmonella* effector N-termini. In this first setup the dual-reporter strategy was used, additionally expression was enhanced using the arabinose-inducible HilA plasmid (pHilA).

## 3.1.4.1. Generation of plasmid variants

All N-termini of Salmonella T3SS effectors are shown in Table 3.2.

**Table 3.2.:** N-termini of experimentally verified *Salmonella* T3SEs. For 42 of the 54 verified effectors secretion quantities could be obtained. The plasmids of the remaining 12 N-termini failed to assemble despite manual modification of the generated plasmids. The majority of variants were assembled and quantified by J.Ahrendt.

| Effector | Uniprot ID | N-terminus                | tested |
|----------|------------|---------------------------|--------|
| AvrA     | Q8ZMI3     | MIFSVQELSCGGKSMLSPTTRNMGA | ✓      |
| NleC     | A0A0F6B537 | MPAGIKPIFINNMMSIYGLSHPHDS | ✓      |
| GogB     | Q8ZN18     | MTYRLKKRMKIGFQPAILQYAYTSN | ✓      |
| GtgA     | A0A0F6AZI6 | MPTGIKPIFINNMMSTYGLSHPHDS | ✓      |
| GtgE     | A0A0H3N9Y3 | MLRHIQNSLGSVYRSNTATPQGQII | ✓      |
| OrgC     | A0A0H3NF83 | MIPGTIPTSYLVPTADTEATGVVSL | ✓      |
| PipA     | A0A0F6AZQ0 | MLPVTYRLIPQSGVSTYRLNTADTP | ✓      |

| Effector  | Uniprot ID | N-terminus                | tested |
|-----------|------------|---------------------------|--------|
| PipB      | Q8ZQ59     | MPITNASPENILRYLHAAGTGTKEA | ✓      |
| PipB2     | Q8ZMM8     | MERSLDSLAGMAKSAFGAGTSAAMR | ✓      |
| PrgI      | P41784     | MATPWSGYLDDVSAKFDTGVDNLQT | ✓      |
| PrgJ      | P41785     | MSIATIVPENAVIGQAVNIRSMETD | ✓      |
| SboA      | A0A0K0H8V0 | MNISSSRINFSTIPFQVKKLVKTIH | ✓      |
| SboC      | A0A0K0HD42 | MNVIKNCLSSLNNLLGISCRSYAVS | ✓      |
| SboH      | A0A0K0HC32 | MNISSSGINISTIPTQVKKSVETIR | ✓      |
| SboI      | A0A0K0H9B7 | MFDINSAHVSIRSINIPPQPSSTRS | ✓      |
| SifA      | Q56061     | MPITIGNGFLKSEILTNSPRNTKEA | ✓      |
| SifB      | Q9KIB9     | MPITIGRGFLKSEMFSQSAISQRSF | ✓      |
| SipA      | POCL52     | MVTSVRTQPPVIMPGMQTEIKTQAT | ×      |
| SipB      | Q56019     | MVNDASSISRSGYTQNPRLAEAAFE | ✓      |
| SipC      | POCL47     | MLISNVGINPAAYLNNHSVENSSQT | ✓      |
| SipD      | Q56026     | MLNIQNYSASPHPGIVAERPQTPSA | ✓      |
| SlrP      | Q8ZQQ2     | MFNITNIQSTARHQSISNEASTEVP | ✓      |
| SopA      | Q8ZNR3     | MKISSGAINFSTIPNQVKKLITSIR | ✓      |
| SopB      | O30916     | MQIQSFYHSASLKTQEAFKSLQKTL | ✓      |
| SopD      | P40722     | MPVTLSFGNHQNYTLNESRLAHLLS | ✓      |
| SopD2     | Q8ZQC8     | MPVTLSFGNRHNYEINHSRLARLMS | ×      |
| SopE      | O52623     | MTKITLSPQNFRIQKQETTLLKEKS | ✓      |
| SopE2     | Q7CQD4     | MTNITLSTQHYRIHRSDVEPVKEKT | ✓      |
| SopF      | Q8ZPY9     | MLKPICHSGSIKVPEYLETDKEKNA | ✓      |
| SpvC      | P0A2M9     | MPINRPNLNLNIPPLNIVAAYDGAE | ×      |
| VsdE/SpvD | P0A2N2     | MPINRPNLNLNIPPLNIVAAYDGAE | ✓      |
| SrfJ      | A0A0H3NPQ1 | MKGRLISSDPYRQQFLVERAVSFSH | ×      |
| SpiC      | P0CZ04     | MSEEGFMLAVLKGIPLIQDIRAEGN | ×      |
| SsaG      | A0A0H3NKW1 | MDIAQLVDMLSHMAHQAGQAINDKM | ✓      |
| SsaL      | H9L496     | MSVVPVSTQSYVKSSAEPSQEQINF | ✓      |
| SseB      | Q7BVH7     | MSSGNILWGSQNPIVFKNSFGVSNA | ✓      |
| SseC      | O84947     | MNRIHSNSDSAAGVTALTHHHLSNV | ×      |
| SseD      | Q9R803     | MEASNVALVLPAPSLLTPSSTPSPS | ×      |
| SseF      | H9L407     | MKIHIPSAASNIVDGNSPPSDIQAK | ✓      |
| SseG      | H9L486     | MKPVSPNAQVGGQRPVNAPEESPPC | ×      |
| SseI      | A0A0F6AZL3 | MPFHIGSGCLPAIISNRRIYRIAWS | ✓      |
| SseJ      | Q9FD10     | MPLSVGQGYFTSSISSEKFNAIKES | ✓      |
| SseK1     | Q9L9J3     | MIPPLNRYVPALSKNELVKTVTNRD | ✓      |
| SseK2     | Q8ZNP4     | MARFNAAFTRIKIMFSRIRGLISCQ | ✓      |
| SseK3     | PODUJ7     | MFSRVRGFLSCQNYSHTATPAITLP | ✓      |
| SseL      | Q8ZNG2     | MNICVNSLYRLSIPQFHSLYTEEVS | ✓      |
| SspH1     | D0ZVG2     | MFNIRNTQPSVSMQAIAGAAAPEAS | ×      |
| SspH2     | POCE12     | MPFHIGSGCLPATISNRRIYRIAWS | ×      |
| SteA      | Q8ZPD7     | MPYTSVSTYARALSGNKLPHVAAGD | ×      |

| Effector | Uniprot ID | N-terminus                | tested |
|----------|------------|---------------------------|--------|
| SteB     | Q8ZPA6     | MPISICKHGAPFVVQHENRYGSGAS | ✓      |
| SteC     | Q8ZP57     | MPFTFQIGNHSCQISERYLRDIIDN | ✓      |
| SteD     | Q8ZNP2     | MNVTSGVNAQTPLLPPSERGNDEKP | ✓      |
| SarA     | A0A0F6B506 | MMRFVYIYILVIYGSYLWFSLGGNM | ×      |
| StoD     | Q8Z7T2     | MFLTFPNVAITRDNRIDKLSENDLE | ✓      |

## 3.1.4.2. Dual reporter secretion quantification

For 42 of the 54 *Salmonella* N-termini secretion quantities could be retrieved (Figure 3.23). In comparison, we obtained up to 1000-fold larger signal intensities for the Nanoluc luminescence reporter compared to the Red Firefly reporter. Ideally, the SipA-RFLuc reporter should exhibit a reproducible, constant signal regardless of the upstream Secretion signal (SS)-SptP-NLuc variant. The wildtype controls expressing <sub>FL</sub>SptP-NLuc and SipA-RFLuc however displayed a significant degree of variation. A relationship between the Nanoluc luminescence intensity and the Red Firefly luminescence could not be identified. As a consequence, we concluded that using the SipA-RFLuc construct as a reporter control was not a feasible approach to identify and normalize differences in T3SS secretion differences between secretion signal variants.

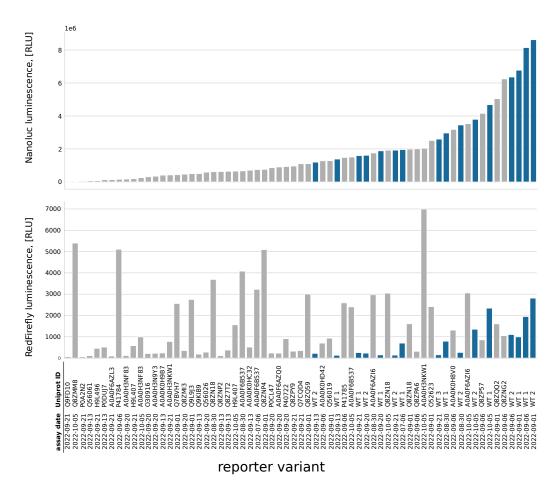
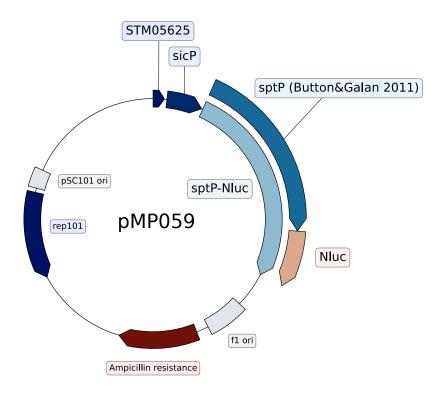




Figure 3.23.: The levels of secreted control reporter SipA-RFLuc do not correlate with increasing levels of secreted SptP-NLuc reporter and display large variations in signal intensity. Nanoluc and Red Firefly luminescence signals obtained from 8 conducted secretion quantification assays were ranked ascendingly, following the order of the Nanoluc luminescence signal. The luminescence signal from the Red Firefly luciferase is displayed below the Nanoluc luminescence signal. All luminescence signals were normalized to the optical density of the respective culture. Each assay included the quantification of two wildtype samples (*S. typhimurium* SB905  $\Delta sipA \Delta sptP$ , expressing FLSptp-NLuc and SipA-RFLuc  $\bullet$ ). Each bar displays the median value of the respective sample variant. The displayed data was generated in parts by J.Ahrendt as part of her master thesis.

#### 3.1.4.3. Single reporter secretion quantification

The initial idea of assessing reporter expression by quantification of a second unaltered reporter did not provide reliable results (subsubsection 3.1.4.2). The weak signal strength of the second effector with the RFLuc-tag resulted in a large margin of error that did not allow normalization against the control effector (Figure 3.23). To enable an estimation of the amount of secretion whilst taking the total reporter expression levels into account, a new strategy was pursued. Using a new plasmid variant containing solely the SptP-NLuc



**Figure 3.24.: Design of the single-reporter plasmid pMP059.** Plasmid pMP059 expressing wildtype SicP and SptP-NLuc induced from the native promoter was used as a template for generating plasmid variants with secretion signals from *Salmonella* effectors. The N-terminal 25 residues of SptP-NLuc were replaced with the respective N-terminal residues of the selected T3SE.

reporter, we instead expanded the sample protocol to include preparation of cell culture samples and pellet samples (Figure 3.24). The quantification of either cell culture or pellet luminescence signal should allow an extrapolation of the total expressed reporter protein levels. A control assay was performed to assess the sensitivity and robustness of both samples types. The coefficient of variation (CV) was calculated as a measure of relative variability within the triplicate measurement of a biological replicate of a sample. Compared to the average CV of the supernatant samples, pellet and cell culture samples display elevated degrees of variation of 0.097 and 0.296, respectively (Table 3.3). To estimate the fraction of samples that exhibit higher variability, we defined a threshold CV of 0.2 as the maximum acceptable degree of variation. Of 48 samples tested in this experiment, 5 pellet samples and 26 cell culture samples exhibit a CV above 0.2, in contrast to only 2 samples of the supernatant samples.

Thus, for all subsequent assays, pellet and supernatant samples were prepared. The average

coefficient of variation over all conducted assays showed a distinct increase for pellet samples to an average CV of 0.271 and a marginal increase for supernatant samples to 0.073. Again, for all *Salmonella* N-termini new plasmid variants based on pMP059 (Figure 3.24) were assembled and quantified. In this setup, additional induction via expression of HilA was omitted to preserve native expression conditions.

Table 3.3.: Different sample types display diverging degrees of Nanoluc luminescence signal variation. A secretion quantification assay with strains S.typhimurium SB905  $\Delta sptP$  expressing  $_{FL}$ SptP-NLuc, SipA $_{1-25}$ -SptP $_{26-535}$ -NLuc, SopD2 $_{1-25}$ -SptP $_{26-535}$ -NLuc and SopE2 $_{1-25}$ -SptP $_{26-535}$ -NLuc and the T3SS-deficient SB905  $\Delta invA$   $\Delta sptP$  expressing  $_{FL}$ SptP-NLuc was performed as described in 2.2.1. 48 samples were prepared for all sample types and quantified in triplicate. For strain SB905  $\Delta sptP$  expressing  $_{FL}$ SptP-NLuc 16 samples were prepared as this strain served as a wildtype reference on two luminescence plates. For each of the other strains 8 samples were prepared.

| Sample type     | Average coefficient of variation | No. of samples with $CV >= 0.2, [\%]$ |
|-----------------|----------------------------------|---------------------------------------|
| supernatant     | 0.059                            | 4.2                                   |
| pellet          | 0.097                            | 10.4                                  |
| optical density | 0.249                            | 31.2                                  |
| cell culture    | 0.296                            | 54.2                                  |

## 3.1.4.4. Reproducibility

The previously conducted quantification procedure exhibited high degrees of variation for identical sample variants that could not be attributed to differences in growth. To assess the reproducibility of our assay and develop a methodology for signal comparison across assays, we monitored the signal strength of the control strain SB905  $\Delta sptP$  expressing wildtype FL SptP-NLuc. Despite identical growth, culture and sample preparation conditions, the signal strength of this control varied by a significant amount from assay to assay  $(2.89 \times 10^6 \text{ RLU})$  to  $1.31 \times 10^7 \text{ RLU}$  with an average luminescence signal of  $6.44 \times 10^6 \text{ RLU}$ . The negative controls of these assays (SB905  $\Delta invA$   $\Delta sptP$  expressing FL SptP-NLuc) displayed mean residual signals ranging from  $1.46 \times 10^5 \text{ R}$  to  $1.08 \times 10^6 \text{ RLU}$  with an average luminescence signal of 358263.00 (Figure 3.26). We attributed this to cell lysis.

By comparing the results of the first quantification assay using HilA-induced cultures with the current assay relying on the native induction mechanism, we attempted to examine differences and similarities regarding the quantitative effect of the N-termini. Using the Nanoluc luminescence signal of each N-terminus normalized against optical density and the respective positive control of the assay, a ranking of each secretion signal was compiled. It became evident that some secretion signal-reporter variants are secreted to different levels in natively grown cultures in contrast to HilA-induced cultures. For other secretion signal variants the relative secretion levels remain similar, overall no clear conclusion could be drawn (Figure 3.27).

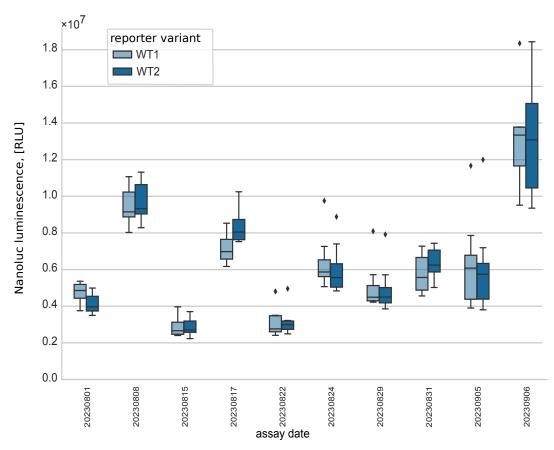



Figure 3.25.: Nanoluc luminescence signals quantified from supernatants of the wildtype (WT) control strain SB905  $\Delta sptP$  + pMP059 display variation in quantity across 10 assays. Nanoluc luminescence measured from supernatants of the wildtype control strain SB905  $\Delta sptP$  + pMP059 expressing FL SptP-NLuc were quantified over the course of 10 assays. All assays were conducted identically. Cell cultures were grown for 4 h, 180 rpm, 37 °C and separated into pellet and supernatant samples. For each assay, the control strain was measured in 2 separate LumiTrac plates for comparability. All supernatant luminescence signals are normalized to the optical density of the respective culture. Each box represents 8 identical biological replicates measured in triplicate, the box displays the quartiles of the data distribution, whiskers denote the rest of the distribution, outliers are shown as rhombs.

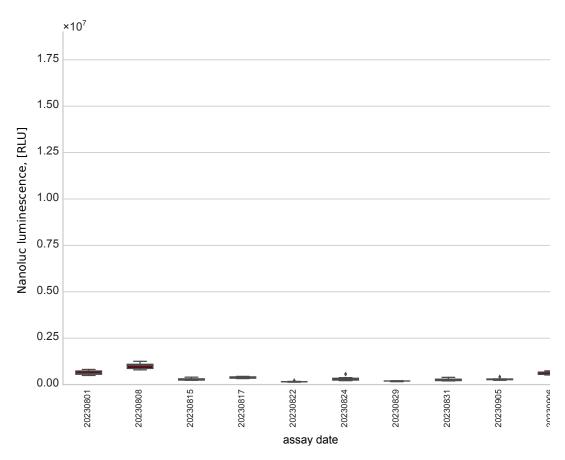
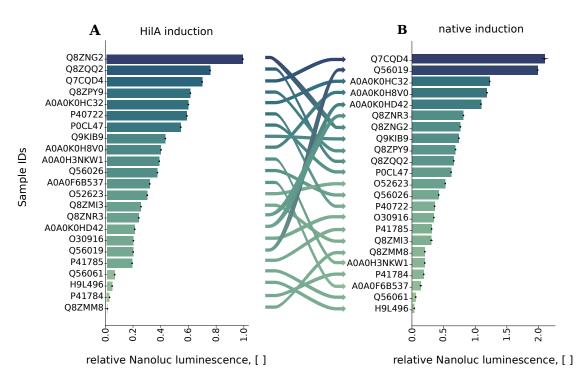
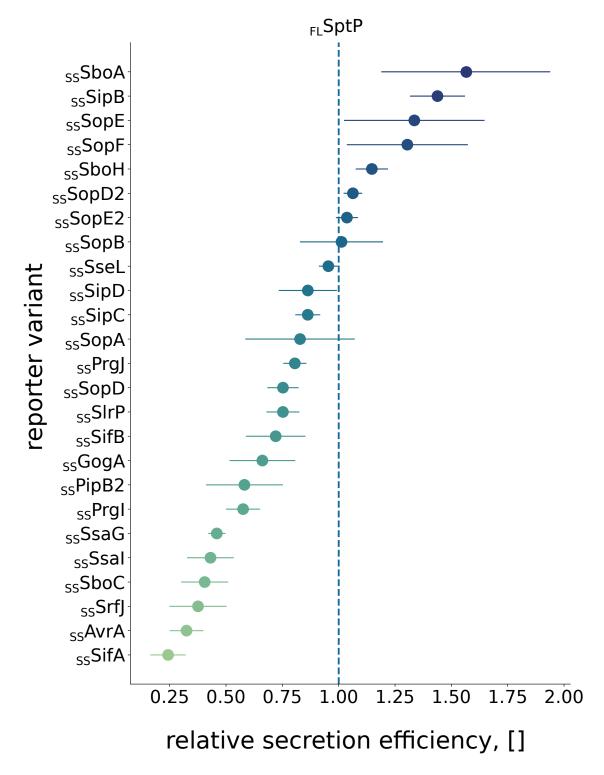




Figure 3.26.: Nanoluc luminescence signals quantified from supernatants of the T3SS-deficient negative control strain SB905  $\Delta invA$   $\Delta sptP$  + pMP059 exhibit consistent signal intensities. Nanoluc luminescence measured from supernatants of the T3SS-deficient negative control strain SB905  $\Delta invA$   $\Delta sptP$  + pMP059 expressing  $_{FL}$ SptP-NLuc were compared across 10 assays. All assays were performed identically. Cell cultures were grown for 4 h, 180 rpm, 37 °C and subsequently separated into pellet and supernatant samples. All supernatant luminescence signals are normalized to the optical density of the respective culture. Each box represents 8 identical biological replicates measured in triplicate, the box displays the quartiles of the data distribution, whiskers denote the rest of the distribution, outliers are shown as rhombs.



**Figure 3.27.:** The relative secretion efficiency of secretion signal-reporter variants is altered by employing different induction strategies. A comparison of the relative secretion quantities of secretion signal-reporter variants incubated either under HilA-induced ( $\mathbf{A}$ ) or native induction ( $\mathbf{B}$ ) conditions reveals differences in the ranking of low to high secreted reporters.  $\mathbf{A}$  Nanoluc luminescence quantified in supernatants of HilA-induced cultures expressing different reporter variants visualized as a ratio against the luminescence signal of  $_{FL}$ SptP-NLuc, ranked from low to high.  $\mathbf{B}$  Nanoluc luminescence quantified in supernatants of naturally induced cultures expressing different reporter variants visualized as a ratio against the luminescence signal of  $_{FL}$ SptP-NLuc. Each bar displays the median value of the respective sample.


## 3.1.4.5. Calculation of secretion efficiency scores

To tackle the persistent variation of the reporter luminescence signal between assays, we calculated the secretion efficiency for all controls and samples by building a ratio between secreted and total quantified protein (Equation 3.2). To achieve comparability between assays, we calculated a secretion score for each sample using the wildtype <sub>FL</sub>SptP-NLuc reporter secretion efficiency as a reference for the average secretion efficiency per assay (Equation 3.3).

$$secretion efficiency = \frac{supernatant luminescence signal}{supernatant luminescence signal + pellet luminescence signal}$$
 (3.2)

$$secretion score = \frac{sample secretion efficiency}{wildtype secretion efficiency}$$
(3.3)

Secretion efficiency scores were obtained for 25 of 44 tested *Salmonella* N-termini (Figure 3.28). Secretion signals from the remaining tested N-termini were not included in the current summary, as they displayed secretion signal quantities below the negative control signal of the respective assay.



**Figure 3.28.:** Salmonella effector N-termini promote different secretion efficiencies. Secretion efficiency scores for N-termini from 25 Salmonella T3SS-secreted proteins fused to  $SptP_{26-535}$ -NLuc were calculated in relation to the native SptP reporter secretion efficiency on the respective assay day. The quantified Nanoluc-luminescence was normalized against cell growth and total reporter expression to obtain the percentage of secreted reporter protein (see Equation 3.2). Subsequently, the obtained percentage was set in relation to the wildtype reporter secretion efficiency (see Equation 3.3). The relative secretion efficiency of the  $_{FL}SptP$ -NLuc reporter is marked as a dashed, green line. Each datapoint displays the median value with MAD.

## 3.2. T3SS effector database

The quantification of secretion signal effects as well as computational prediction of T3SEs necessitates the availability of a large number of non-redundant N-terminal secretion signal sequences. For computational approaches attempting to classify protein sequences, high data quality is of utmost importance to achieve satisfactory performance [144]. This effect is more pronounced for small datasets and promotes a data-centric approach with focus on data quality [145]. Numerous efforts to identify and analyze T3SEs have led to the availability of a growing number of publically available datasets [101], [146], [147], [148], [149]. With the expanding repertoire of experimentally identified T3SEs in recent years, these datasets encompass non-redundant sequences ranging from roughly 250 to more than a thousand sequences. Common approaches to assemble such a dataset utilize a combination of automated/semi-automated sequence selection tools and subsequent curation procedures based on available literature. In this work, both a common workflow with semi-automated sequence picking as well as a bottom-up approach starting from an extensive literature review were tested and applied. The following section describes these two strategies and the resulting T3SE database.

## 3.2.1. Semi-automated T3SE dataset assembly

To retrieve T3SS effector sequences, an extended search and processing routine was established using the database of the National Center for Biotechnology Information. A text-based search on the annotated sequence data was conducted using the *Identical protein* groups database. This database contains a single non-redundant entry for each unique protein translation from various sources such as Genbank, RefSeq but also Swiss-Prot and PDB [150]. Eligible text strings used for the search are listed in table A.2A. As a result, 162237 unique sequence entries were obtained. An inspection of all words in the annotation data revealed a set of annotation tags indicating incomplete sequence entries (appendix Table A.2B). Sequences containing any of the identified tags (see Table A.2B) were removed. All remaining sequences with annotations that cast doubt on their origin as effector proteins were manually reviewed for further dataset refinement. These included proteins identified as chaperones, pseudogenes or flagellar proteins. The remaining entries were merged with the updated T3SE dataset (2015) that was used for the EffectiveT3 classification model [151]. As a final step, the CD-Hit software was utilized to perform a homology clustering with a sequence identity cut-off at 60 % [152]. Each identified cluster contains entries with a sequence identity of 60 % to each other or higher. To reduce sequence redundance, a representative sequence was manually selected from each cluster. A final dataset of 244 T3SEs was obtained, this dataset will be denoted as dataset 1 in the upcoming sections.

## 3.2.2. T3SE database assembly

The assembly of a T3SE dataset using a semi-automated approach is based on the annotation status of the retrieved sequences identifying them as T3SEs. Thus, the assembly of a high-quality dataset is highly reliant on actuality and completeness of the underlying databases. The review process of some of the publically available datasets revealed reoccurring problems such as lack of annotation or false positive entries derived from inapt sources. For example, our analysis of multiple published T3SE datasets revealed protein sequences obtained from crystallization studies that represent N-terminally truncated proteins. Furthermore, tracing the origin of sequences remains laborious as sufficient annotation of publication sources is often missing. The frequently outdated annotation status of sequence entries furthermore makes automated selection strategies prone to the incorrect removal of verified effector proteins undermining the completeness of the dataset. To circumvent the aforementioned problems, a bottom-up approach was pursued starting from an extensive literature review. In the 2017 survey conducted by Hu et al. on T3SS-harboring bacterial species over 30 different bacteria were identified to potentially contain T3SEs [34]. A species-specific effector search for each of the referenced species was conducted using GoogleScholar. All accessible publications were manually reviewed and examined for experiments demonstrating T3SS-mediated secretion and the original protein sequence. The retrieval of effector sequences followed a multistep procedure. All protein sequences were derived directly from referenced nucleotide or protein identifiers as specified in the reviewed publication. Initially, the https://www.uniprot.org/ was searched for the specified sequence identifier. In case no matching sequence was available, the NCBI database was searched. If this search also failed to return a sequence entry, the genomic sequence of the bacterial strain was downloaded on which the experimental validation was performed. Matching gene identifiers of the genomic annotation were used to retrieve a suitable protein sequence. For two effector entries, the Ralstonia Genomic database was employed as no other source was available (Table 3.4A). In its current state (2024-04), the dataset encompasses 735 entries that have been confirmed for T3SS-mediated secretion. As of now, a total of 2192 publications were reviewed.

**Table 3.4.: Current status of effector sequences in our T3SE database.** A Database sources for effector sequences employed in our database with the number of sequences derived from every source. **B** Annotation status of T3SS effector proteins sorted by bacterial species. Partly annotated effectors have been experimentally confirmed as T3SE yet lack definite annotation in supplementary information categories.

## A Frequency of database usage for entries in our database

| database                     | abbreviation | frequency |
|------------------------------|--------------|-----------|
| TrEMBL                       | tr           | 539       |
| Swiss-Prot                   | sp           | 166       |
| Genbank                      | gb           | 2         |
| National library of medicine | ncbi         | 26        |
| Ralsto T3E                   | rdb          | 2         |

## **B** Annotation status of T3SS-secreted proteins per species.

| bacterial species | annotation status |  |
|-------------------|-------------------|--|
| Acidovorax        | annotated         |  |
| Aeromonas         | annotated         |  |
| Bordetella        | annotated         |  |
| Burkholderia      | partly annotated  |  |
| Chlamydia         | annotated         |  |
| Chromobacterium   | annotated         |  |
| Citrobacter       | annotated         |  |
| Edwardsiella      | annotated         |  |
| Escherichia       | annotated         |  |
| Erwinia           | annotated         |  |
| Pantoea           | annotated         |  |
| Pectobacterium    | annotated         |  |
| Photorhabdus      | annotated         |  |
| Pseudomonas       | partly annotated  |  |
| Salmonella        | annotated         |  |
| Shigella          | annotated         |  |
| Sodalis           | annotated         |  |
| Ralstonia         | not annotated     |  |
| Rhizobium         | partly annotated  |  |
| Vibrio            | partly annotated  |  |
| Xanthomonas       | partly annotated  |  |
| Yersinia          | annotated         |  |

#### 3.2.2.1. Database classes

Supplementary information retreived during the literature review process was categorized into the four classes protein function, host cell targets, cellular localization and host organisms. Therefore, each completed entry in this dataset contains 6 annotation categories as displayed in Figure 3.29. Currently, 494 of 735 entries have been completely annotated, an additional 241 have been confirmed for T3SS-mediated secretion, yet lack complete annotation. For each category, a set of defining rules were established to be met.

>sp|P0CL52|SIPA\_SALTY Cell invasion protein SipA OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=sipA PE=1 SV=1

**function** = bundles F-actin, induces membrane ruffling, recruits syntaxin-8 to the

SCVs, promotes fusion of SCVs with early endosomes

target = F-actin, Syn7, Syn8, Syn13, SNAP23, PERP
evidence = T3SS secretion assay, T3SS translocation assay

**localization** = host cell plasma membrane, host cell cytoskeleton

host = human

**PMID** = 30309979, 11331579, 8522512, 18005682, 10092234, 21902796, 10487745, 16107539, 22636784, 16869830, 20947770, 17635190,

28630067, 14512630,25486861, 15522075, 30532744

MVTSVRTQPPVIMPGMQTEIKTQATNLAANLSAVRESATATLSGEIKGPQLEDFPALIKQASLD ALFKCGKDAEALKEVFTNSNNVAGKKAIMEFAGLFRSALNATSDSPEAKTLLMKVGAEYTAQI IKDGLKEKSAFGPWLPETKKAEAKLENLEKQLLDIIKNNTGGELSKLSTNLVMQEVMPYIASCI EHNFGCTLDPLTRSNLTHLVDKAAAKAVEALDMCHQKLTQEQGTSVGREARHLEMQTLIPLLL RNVFAQIPADKLPDPKIPEPAAGPVPDGGKKAEPTGINININIDSSNHSVDNSKHINNSRSHVD NSQRHIDNSNHDNSRKTIDNSRTFIDNSQRNGESHHSTNSSNVSHSHSRVDSTTHQTETAHS ASTGAIDHGIAGKIDVTAHATAEAVTNASSESKDGKVVTSEKGTTGETTSFDEVDGVTSKSIIG KPVQATVHGVDDNKQQSQTAEIVNVKPLASQLAGVENVKTDTLQSDTTVITGNKAGTTDND NSQTDKTGPFSGLKFKQNSFLSTVPSVTNMHSMHFDARETFLGVIRKALEPDTSTPFPVRRA FDGLRAEILPNDTIKSAALKAQCSDIDKHPELKAKMETLKEVITHHPQKEKLAEIALQFAREAG LTRLKGETDYVLSNVLDGLIGDGSWRAGPAYESYLNKPGVDRVITTVDGLHMQR

**Figure 3.29.:** Exemplary fasta entry of the T3SE-database for *Salmonella* effector SipA. In addition to the original information from the fasta-file, supplemental information about function, target proteins, experimental proof for T3SS-mediated secretion, cellular localization, host organisms and literature references (Pubmed ID format) is included.

**3.2.2.1.1. Evidence for T3SS-mediated secretion** The range of experiments applied in T3SE characterization studies vastly exceeds the methods defined as experimental evidence for T3SS-secreted proteins. For example, it has been shown that many proteins of plant pathogens elicit hypersensitive responses (HRs) in susceptible host plants, a property indicative of T3SS effector proteins. *In-vitro* cytotoxicity assays like Yeast-to-Hybrid (Y2H) or infection assays also strengthen the presumption of certain proteins to be T3SS effectors. Finally, bioinformatic approaches identifying proteins homologous to known effectors or structural methodologies like nuclear magnetic resonance (NMR) spectroscopy, electron microscopy or crystallographic studies expand the range of potential proteins as effectors. However, none of these methods can provide a definite conclusion as to whether a protein

is secreted via the T3SS.

The key criterion for any entry in this database constitutes the experimental proof for T3SS-mediated secretion or translocation of the protein. Analogous to the Uniprot database which defines 5 types of evidence for the existence of a protein, the level of evidence of a candidate effector for T3SS-mediated secretion was classified based on the conducted experiments. The most simple type of sufficient experimental evidence is displayed by the T3SS secretion assay. Typically, a candidate effector was visualized in the supernatant of a cell culture using specific antibodies targeting the candidate protein or an enclosed tag via western blotting and compared to a T3SS-deficient strain. Experiments that lacked suitable negative controls, such as the expression in a T3SS-deficient strain, were not considered. In strains like Chlamydiae that are intractable to genetic modification, the proteins of interest can not be expressed in the native strain. Here, the application of a heterologous T3SS secretion assay in strains such as Yersinia or Shigella is an accepted strategy for validation. To ascertain the exclusive selection of T3SEs and secreted structural components of the nfT3SS, proteins that have been demonstrated to be secreted via the flagellar T3SS were not included in the database. This comprises several putative effectors from Vibrio and Pectobacterium [153],[104]. Furthermore, Campylobacter strains only possesses a flagellar T3SS, therefore 42 proteins verified for flagellar T3SS export remain categorized as putative effector proteins [154]. Considering that both systems are ancestrally related, an expansion to testing these candidates might be of interest.

A more sophisticated approach to demonstrate a proteins nature as a T3SE are translocation assays. As previously specified (subsubsection 3.1.2.2), Adenylate cyclase-based assays or TEM-1 β-Lactamase (BLA) assays that require the eukaryotic cell environment can be regarded as clear evidence for T3SS-mediated translocation. Seldomly, a unique type of assay was employed as in the case of the *Erwinia amylovora* effector DspA that induces electrolyte leakage in plants. Here, the detection of electrolyte leakage in tobacco cells infected with an *E.amylovora* wildtype strain in comparison to a T3SS-deficient mutant strain was used to prove T3SS secretion [155]. Finally, mass proteomic approaches comparing secretomes of secreting strains with T3SS-deficient strains also provide a robust classification about whether a protein can be considered a *bona fide* effector protein or not. Amongst others, this approach has been widely applied to categorize putative effector proteins from *Aeromonas*, *Citrobacter*, *Erwinia*, *Pseudomonas*, *Ralstonia*, *Escherichia* or *Shigella* [156],[157],[158],[159], [160], [161], [162], [163].

The number of approved experimental procedures applied in the current database are summarized in Table 3.5. Predicted effector proteins based on homology or experimental characterization hinting towards a role as an effector protein were excluded.

**3.2.2.1.2. Effector protein functions** The discovered T3SS effector proteins thus far have been characterized to vastly different extent. The attributed functions and *in vivo* roles

**Table 3.5.:** Experimental validation methods qualifying T3SS effector proteins for inclusion into the T3SE database, sorted by frequency. Experimental evidence for T3SS-mediated secretion of all 735 entries of the database were summarized into the three main validation methods and sorted by frequency. Multiple effectors were validated for T3SS secretion using different experimental approaches.

| experimental evidence     | frequency |
|---------------------------|-----------|
| T3SS secretion assay      | 362       |
| T3SS translocation assay  | 347       |
| T3SS secretome proteomics | 158       |

of validated effectors collected throughout the literature review were summarized in this category to obtain an overview of enzymatic activities, effects on host cells, pathways and more. Due to the different extent of functional annotation, this information class represents the broadest category in the dataset.

For the majority of T3SEs information is sparse, hence for 298 proteins no function or activity was determined. Whilst most of the collected information comprises descriptions of phenotypic alterations of host cell morphology, involvement in pathway manipulation or targeted host cell proteins, experimentally confirmed enzymatic activities have been identified in 92 effector proteins (Table 3.6). Interestingly, Yersinia effector YopJ is the only effector with multiple confirmed enzymatic activities (cysteine protease activity, acetyltransferase activity). The most investigated enzymatic class are E3 ubiquitin ligases with 27 confirmed effectors. Notably, the majority of these effectors belong to Escherichia and Shigella effectors with 12 and 9 entries, respectively. Other considerable protein classes encompass proteases and transferases. Expect for the few, well characterized proteins for which an enzymatic activity has experimentally been elucidated, most effectors lack a precise annotation. Therefore, a distinct categorization for these proteins is challenging. The decision to include secreted components of the T3SS lead to 79 entries comprising either structural or regulatory components of the T3SS (Table 3.6B). The secretion of these early substrates, while often highly regulated via several control mechanisms, also requires an N-terminal secretion signal.

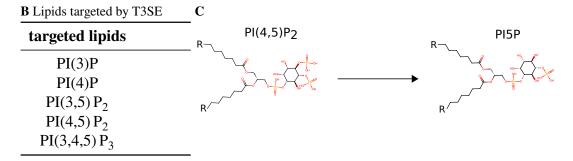
The range of annotated function descriptions associated with the effectors in this database exceeds the scope of this thesis, a detailed overview is available in appendix C Table A.3.

**3.2.2.1.3. Target proteins** Supplementary to the general function description of the annotated effectors, specific information about interaction partners of T3SEs was also included. To retain the most precise class categorization, only interactions were included for which a direct binding or enzymatic activity was experimentally determined using either *in vitro* or *in vivo* studies. The decision to also include *in vitro* reactions was made in order to achieve a general understanding of a proteins reactivity. In the future, this knowledge might help to infer potential *in vivo* host targets.

Overall, 905 unique interaction partners were identified. These include proteins, lipids,

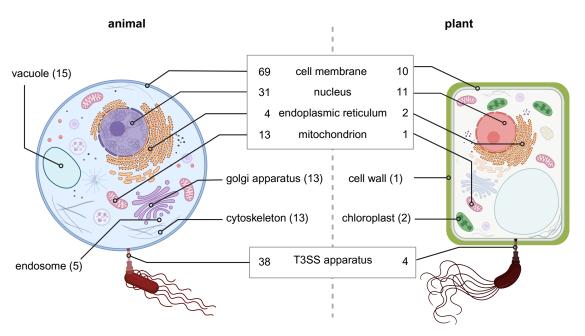
**Table 3.6.: Functional characterization of validated T3SS-secreted proteins. A** Enzymatic activities of T3SS-secreted proteins for which an enzymatic activity has been determined, ranked by frequency of occurrence. **B** Identified T3SS-secreted components of the type 3 secretion system.

A B


| enzymatic class            | frequency | component                   | frequency |
|----------------------------|-----------|-----------------------------|-----------|
| E3 ubiquitin transferase   | 27        | T3SS translocon protein     | 37        |
| cysteine protease          | 12        | T3SS needle component       | 27        |
| ADP-ribosyltransferase     | 9         | T3SS inner rod protein      | 5         |
| glycosyltransferase        | 7         | regulator of T3SS secretion | 5         |
| zinc metalloprotease       | 7         |                             |           |
| acetyltransferase          | 6         |                             |           |
| phosphothreonine lyase     | 6         |                             |           |
| ADP-riboxanase             | 4         |                             |           |
| serine/threonine kinase    | 4         |                             |           |
| methyltransferase          | 3         |                             |           |
| tyrosine phosphatase       | 2         |                             |           |
| fatty acyltransferase      | 1         |                             |           |
| serine hydroxymethyltrans- | 1         |                             |           |
| ferase                     |           |                             |           |
| serine protease            | 1         |                             |           |
| SUMO-protease              | 1         |                             |           |
| oxidoreductase             | 1         |                             |           |
| phosphoglucomutase         | 1         |                             |           |

sugars or cofactors but also nucleotides as is the case for TAL effectors or the Shigella effector VapC [164]. Consistent with the abundance of E3 ubiquitin ligases in the dataset, components of the ubiquitin signalling pathway belong to the largest group of interaction partners, with 19 different interactions partners being targeted 54 times by 20 different T3SEs. Furthermore, small GTPases like CDC42, Rac1, RhoA and numerous Rab proteins are frequent interaction partners for effector proteins with 90 confirmed interactions. Commonly targeted functional clusters include proteins associated with inflammation or apoptosis, vesicle trafficking pathways or cytoskeletal reorganisation. A thorough investigation into the functional clusters targeted by effector proteins would certainly reveal intriguing insights into strategies adopted by different T3SS-harboring pathogens. Due to the unfinished status of the current dataset, this analysis has not yet been performed. Interestingly, not only proteins are targeted. Some effectors also manipulate the hosts on a transcriptional level or alter the cell membrane composition by targeting specific lipids (Figure 3.30). As the annotation of several effector proteins from bacteria like *Pseu*domonas or Xanthomonas is unfinished, it is likely that the number of effectors involved in transcriptional manipulation of plant genes will increase in the fully annotated database (Figure 3.30A).

Another group of targets comprises cell membrane lipids that are bound and modified by several effector proteins (Figure 3.30B). The *Shigella* inositol-phosphatase IpgD for example, dephosphorylates PI(4,5) P<sub>2</sub> into PI5P, presumably resulting in the activation of PI3K and subsequently regulation of Rac GEF activity (Figure 3.30C). Considering that similar activities have been identified for effector proteins from *Aeromonas* (Ati2) and *Salmonella* (SopB, SopF), a directed investigation could reveal how widespread the specific modulation of membrane lipids as a strategy for host cell manipulation is [165][166]. Finally, target molecules like cholesterol, bile acids (doexycholate) and sugars (glucose, N-acetylglucosamine) have been reported for isolated T3SE [167][168][169][170][171].


#### A T3SS effectors targeting specific DNA sequences in the host cell nucleus

| effector     | target nucleotide sequence | target gene             |
|--------------|----------------------------|-------------------------|
| Q07061_9XANT | TATAATTAATAATCCACTT        | Bs4C                    |
| AVRB3_XANEU  | TATATAAACCTNNCCCTCT        | UPA20                   |
| Q47867_PANAY | ACACCaAA                   | HsvgT                   |
| B7UJQ8_ECO27 | (TC)(TC)GCCAG(ACT)         | FlgL, FlgK, FlgB, FlgC, |
|              |                            | FliE, FliG, FliM, FliN  |



**Figure 3.30.:** Non-proteinaceous interaction partners targeted by T3SS-secreted proteins. A T3SS-secreted proteins binding to specific nucleotide motifs. Notably, the *E. coli* protein BolA (B7UJQ8\_ECO27) while involved in biofilm formation, also represses expression of its own flagellar genes [159][172] **B** Cell membrane lipids targeted by T3SS effectors from *Bordetella*, *Salmonella* and *Shigella* specifically modifing or binding to lipids to alter the cell membrane composition or recruit target proteins. **C** The *Shigella* effector IpgD dephosporylates PI(4,5) P<sub>2</sub> into PI(5)P, modifying the host cell morphology [173][174][166].

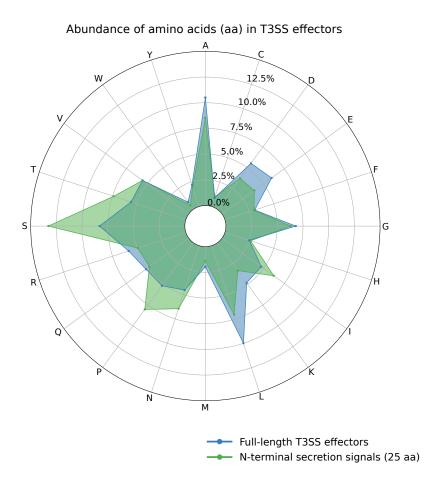
**3.2.2.1.4.** Localizations A proteins site of activity often allows to draw inferences regarding likely interaction partners or their enzymatic activity. Experimentally determined localization patterns were identified for 315 of 735 T3SEs in the current database. All effector localizations were sorted into categories from broad to specific, thus a single effector can contain multiple localization tags. 55 effectors were broadly categorized in the cytoplasm, an additional 44 exclusively in the host cell cytosol. Specifically targeted host cell organelles are shown in Figure 3.31. Effector proteins associated with the bacte-



**Figure 3.31.:** Experimentally validated localizations of T3SS-secreted proteins identified in our database. The majority of proteins for which a cellular localization was identified, localize to the host cell membrane. Created with BioRender.com

rial T3SS mostly comprise structural or translocon components that are secreted during assembly. Species-specific localization patterns are present for effectors of *Salmonella*, *Shigella* or *Edwardsiella*. These pathogens invade their hosts and partly spend steps of their reproductive life cycle in a specialized phagosome-like vacuole [175]. For *Salmonella* 13 effector proteins were directly localized to the *Salmonella*-containing vacuole, whereas for *Shigella* and *Edwardsiella* a single effector is localized to the vacuole, respectively. The obligate intracellular bacterium *Chlamydia* resides in a *Chlamydia*-containing vacuole (also termed inclusion body) and the majority of its effectors are localized to the inclusion membrane (29), the inclusion lumen (16) or in close vicinity (6).

Interestingly, some effector proteins were localized exclusively to the extracellular space and thus were only shown to be secreted rather than translocated. These proteins are mainly plant effectors that are thought to act as pectate lyases on the plant cell wall.


**3.2.2.1.5. Host organisms** The host organism class comprises both native host organisms as well as lab strains that were utilized in the investigation of T3SE functions. Currently, animal hosts were identified in 452 instances; plant hosts in 116 instances. A detailed summary is depicted in Table 3.7

**Table 3.7.: Identified host species sorted by animal and plant hosts. A** Animal hosts of T3SEs sorted by descending frequency. **B** Plant hosts of T3SEs sorted by descending frequency.

A B

| Mus musculus (house mouse)  Oncorhynchus mykiss (rainbow trout)  Salmonidae spp. (salmon)  Ictalurus punctatus (channel catfish) | 49<br>33<br>18<br>18<br>9 | Arabidopsis thaliana (thale cress) Malus spp. (apple) Capsicum annum (pepper) Glycine max (soybean) Beta vulgaris (beet) Aeschynomene indica (curly indigo) | 28<br>12<br>11<br>10<br>10 |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| mouse) Oncorhynchus mykiss (rainbow trout) Salmonidae spp. (salmon) Ictalurus punctatus (channel catfish)                        | 18<br>18                  | cress)  Malus spp. (apple)  Capsicum annum (pepper)  Glycine max (soybean)  Beta vulgaris (beet)  Aeschynomene indica (curly                                | 11<br>10<br>10             |
| Oncorhynchus mykiss (rainbow trout) Salmonidae spp. (salmon) Ictalurus punctatus (channel catfish)                               | 18                        | Capsicum annum (pepper) Glycine max (soybean) Beta vulgaris (beet) Aeschynomene indica (curly                                                               | 11<br>10<br>10             |
| (rainbow trout)  Salmonidae spp. (salmon)  Ictalurus punctatus (channel catfish)                                                 | 18                        | Glycine max (soybean) Beta vulgaris (beet) Aeschynomene indica (curly                                                                                       | 10<br>10                   |
| Salmonidae spp. (salmon) Ictalurus punctatus (channel catfish)                                                                   |                           | Beta vulgaris (beet) Aeschynomene indica (curly                                                                                                             | 10                         |
| (salmon)  Ictalurus punctatus (channel catfish)                                                                                  |                           | Aeschynomene indica (curly                                                                                                                                  |                            |
| Ictalurus punctatus (channel catfish)                                                                                            | 9                         |                                                                                                                                                             | 10                         |
| (channel catfish)                                                                                                                | 9                         | indigo)                                                                                                                                                     |                            |
| ` '                                                                                                                              |                           | 1114150)                                                                                                                                                    |                            |
| 4 111 1                                                                                                                          |                           | Pyrus spp. (pear)                                                                                                                                           | 9                          |
| Anguilla japonica                                                                                                                | 6                         | Nicothiana benthamiana (ben-                                                                                                                                | 7                          |
| (japanese eel)                                                                                                                   |                           | thi)                                                                                                                                                        |                            |
| Paralichthys olivaeus                                                                                                            | 6                         | Solanum lycopersicum                                                                                                                                        | 5                          |
| (olive flounder)                                                                                                                 |                           | (tomato)                                                                                                                                                    |                            |
| Cavia porcellus (guinea                                                                                                          | 4                         | Macroptilium atropurpureum                                                                                                                                  | 4                          |
| pig)                                                                                                                             |                           | (purple bush bean)                                                                                                                                          |                            |
| Danio rerio (zebrafish)                                                                                                          | 3                         | Gypsophila paniculata                                                                                                                                       | 2                          |
| Glossina spp. (tsetse)                                                                                                           | 2                         | pv. <i>perfecta</i> (common                                                                                                                                 |                            |
| Cyprinus carpio                                                                                                                  | 1                         | gypsophila)                                                                                                                                                 |                            |
| (eurasian carp)                                                                                                                  |                           | Solanum lycopersicoides                                                                                                                                     | 1                          |
| Locusta migratoria (mi-                                                                                                          | 1                         | (wild tomato)                                                                                                                                               |                            |
| gratory locust)                                                                                                                  |                           | Vigna mungo (black gram)                                                                                                                                    | 1                          |
| Spodoptera littoralis                                                                                                            | 1                         | Vigna unguiculata (cowpea)                                                                                                                                  | 1                          |
| (cotton leafworm)                                                                                                                |                           | Vigna radiata (mung bean)                                                                                                                                   | 1                          |
| Trichopodus tri-                                                                                                                 | 1                         | Zea mays pc. saccharata                                                                                                                                     | 1                          |
| chopteris (blue                                                                                                                  |                           | (sweet corn)                                                                                                                                                |                            |
| gourami)                                                                                                                         |                           | Lactuca sattiva (lettuce)                                                                                                                                   | 1                          |
| - ,                                                                                                                              |                           | Lablab purpureus (hyacinth                                                                                                                                  | 1                          |
|                                                                                                                                  |                           | bean)                                                                                                                                                       |                            |
|                                                                                                                                  |                           | Oryza spp. (rice)                                                                                                                                           | 1                          |

**3.2.2.1.6. Sequence composition** Previous attempts to uncover the nature of the secretion signal have failed to elucidate a consensus pattern or motif based on the qualitative composition of the N-terminal effector sequences. The distinct enrichment of small, polar residues however, as identified by Arnold et al., and tendencies like the relative depletion of acidic and alkaline residues indicate the existence of hidden features defining the secretion signal [101]. To assess if these biases also exist in the sequences of our assembled database, we compared the composition of the N-terminal 25 residues of all 735 entries with their full-length peptide sequence. Indeed, we also identified several of the previously described propensities. In our database, residues like serine, threonine and proline are enriched compared to the full-length sequence, whereas acidic (aspartic acid, glutamic acid) and alkaline residues (arginine, lysine, leucine) are relatively depleted (Figure 3.32). This is in agreement with previous studies [101].



**Figure 3.32.:** Small, polar amino acids are enriched in the N-terminus of T3SS-secreted proteins. The relative abundance of amino acids was calculated in the N-terminal 25 residues of all entries and compared to the relative abundance of amino acids in the full length protein sequence. In agreement with previous studies, small polar residues are enriched in the N-terminus [101]. Amino acids are depicted in one-letter code, the N-terminal start codon (99 % methionine) was not included in the calculation.

## 3.2.3. Manually curated T3SE dataset assembly

The assembled T3SE database (subsection 3.2.2) was built with the notion of including every experimentally validated T3SS-secreted protein. Thus, it also comprises homologous protein sequences that may distort the predictional capabilities of any subsequent prediction model. For example, several *Shigella* IpaH effectors share a remarkable sequence identity within their first 10 N-terminal residues (Figure 3.33). These sequence redundancies

```
---MKPINNHSFFRSLCGLSCISRLSVEEQCTRDYHRIWDDWAREGTTTENRIQAVRLLK
                                                                                57
ipah4.5
ipah2202
              ---MLPVNNPPLST---GNVSFYRTTSIDNVHNNYLSEWVEWTKNSISGENRETAFTRLO
                                                                                54
ipah7.8
              ---MFSVNNTHSSV---SCSPS--INSNSTSNEHYLRILTEWEKNSSPGEERGIAFNRLS
                                                                                52
ipah1880
              ---MLPTNNNHRLI---SNSFSTYSIDTSRAYENYLTHWTEWKNNRIQEEQRDIAFQRLV
                                                                                54
ipah3
             MSIMLPINNNFSLS---QNSFYN---TISGTYADYFSAWDKWEKQALPGENRNEAVSLLK
                                                                                54
ipah9.8
              ---MLPINNNFSLP---QNSFYN---TISGTYADYFSAWDKWEKQALPGEERDEAVSRLK
                                                     .* .:
                                                              *:* *. *
```

**Figure 3.33.:** *Shigella* **T3SS effector of the IpaH class display strong homology within their N-terminal 10 residues.** The The first 50 residues of selected *Shigella* IpaH effectors were aligned using the ClustalOmega webserver.

introduce a bias that potentially skews the prediction outcome of a model trained on this data. To make our database suitable for computational prediction, the dataset preprocessing pipeline established for dataset 1 was also applied for the creation of the manually curated dataset 2(subsection 3.2.1). CD-Hit with a sequence identity cutoff of 60 % was applied to the full T3SE database to identify clusters of homologous proteins [152]. From each cluster, the sequence with the highest amount of annotated information was selected as a representative sequence, yielding a final dataset size of 623 entries.

# 3.2.4. Cytoplasmic proteins dataset assembly

The majority of prediction methods to identify type 3 effector proteins rely on the binary classification of candidate sequences into T3SEs or non-T3SEs. As an assessment of the performance of our assembled datasets, we also implemented a classification model to distinguish T3SEs from other proteins of T3SS-harboring bacteria. To train our model, the compilation of a second class of proteins not secreted by the T3SS machinery was necessary to allow prediction of two distinct protein classes. This class is referred to as the *negative* training dataset.

Previously, I employed the positive T3SE dataset used for training the EffectiveT3 program as a reference to supplement dataset 1 with sequences that were not initially included in our dataset (subsection 3.2.1). For assembly of the negative training set, the negative training set of the EffectiveT3 publication was filtered to exclude sequence entries shorter than 60 residues, followed by a random subsampling procedure (for python code see appendix B subsubsection A.2.1.2). Entries were randomly selected until the number of selected

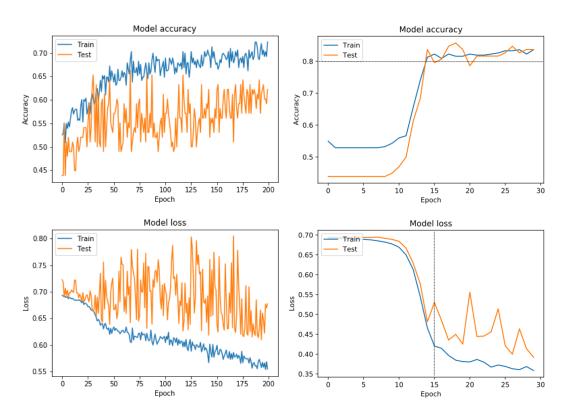
sequences matched the size of the positive training dataset (244). Combining both datasets, we obtained a balanced 2-class dataset of 488 entries.

For dataset 2 (subsection 3.2.3), we chose to assemble our own negative training dataset to retain a better control over the selection process and origin of sequences. In consideration of the abundance of well characterized, manually reviewed cytoplasmic proteins in the Uniprot database, we chose to assemble a negative dataset of cytoplasmic, bacterial proteins.

A Swiss-Prot search was conducted for cytoplasmic proteins from all bacterial species in our T3SE database. According to the relative abundance of effectors per species, cytoplasmic proteins were selected from each species. Naturally, the amount of identified cytoplasmic proteins is much larger than for effector proteins, thus following homology reduction using CD-Hit (60% identity cutoff), an additional subselection procedure was introduced. Using a python script, a random subselection of cytoplasmic proteins was made to adapt the size of each dataset class (see A.2.1.2). This was done to ensure that the prediction model does not preferentially learn predicting cytoplasmic proteins. In the case of an unbalanced dataset, there is always a risk that while training, the model learns to predict the majority class rather than distinguish between both classes.

**Final dataset** The combination of both protein classes into a single dataset suitable for performing predictive tasks led to 2 datasets with balanced class distribution of 488 and 1246 sequence entries, respectively. These are referred to as dataset 1F and dataset 2, respectively. Given the incomplete status of the T3SE database, dataset 2 will likely undergo changes in both sequence composition and dataset size.

## 3.2.5. LSTM prediction


In the past years a variety of model architectures have been employed to tackle the prediction of T3SEs, improving the correct classification of new effectors constantly. Although reaching prediction accuracies of up to 94 % [176], neither of the developed techniques has advanced the understanding of the biological principles underlying T3SS-mediated secretion. For sequential data, recurrent neural network (recurrent neural network (RNN)) models have become popular due to their ability to capture information between different sections of a sequence. Long-short term memory network (LSTM) models have advanced the ability of these models to capture long-term dependencies within data by introducing gate functions [177]. The introduction of the Attention mechanism by Bahdanau et al. in RNNs ultimately led to the now ubiquitous Transformer architecture [178], [179]. Attention allows to identify positions in a sequence input that are important for the correct output prediction. Therefore, it could provide useful insights into the underlying features and dependencies qualifying an N-terminal region as a T3SS secretion signal.

As a starting point, a LSTM model was assembled to assess the performance of dataset 1F (3.2.1) in a binary classification task and to experiment with feature extraction methods

and model variants. The dataset was split into training and test dataset at a ratio of 80:20. Using cost function and accuracy as metrics, a simple single-layer LSTM was constructed. The loss measures the error between a single prediction and the actual value, the cost function is the average of all losses per epoch (1 iteration over the training data). In a binary classification context, the accuracy describes the proportion of correct predictions out of all predictions.

Despite their thorough and meticulate assembly, both datasets are considerably small for machine learning and especially deep learning approaches. To circumvent the lack of available data in many biological questions, the transformation of sequence data is often accompanied by feature extraction methods that aim at enhancing the information content of an input sequence. In protein prediction tasks, protein sequences are often translated using biological features such as amino acid composition or physico-chemical properties. The human-readable SMILES representation of molecules has been widely applied in chemoinformatics and also proven beneficial for bioinformatic approaches such as protein-ligand binding prediction [180]. The usage of such feature extraction methods can help a model make better predictions but also bears the risk of introducing a bias made by the researchers choice of properties. Mathematical feature extraction methods as proposed by Bonidia et al. and others aim to bypass this risk [181]. Using a singlelayer LSTM, the conversion of sequence data into numerical or one-hot encoded vectors, structural representations via SMILES formatting and mathematical feature extraction using Discrete Fourier transforms was assessed [182]. Interestingly, none of the tested feature conversions had a beneficial impact on the accuracy of the model, therefore we retained a simple conversion to numerical format. The implementation of an embedding layer had the largest effect increasing the accuracy on the test set from 70 % to 84 % (Figure 3.34). Experiments with additional layers or the usage of bidirectional LSTMs did not increase the final accuracy.

In conclusion, we established a starting point for classification of T3SEs using machine learning. Compared to published work by other groups that employ sophisticated models to obtain state-of-the-art prediction scores, our approach presents a preliminary working status [183][148][184]. A more comprehensive performance assessment using additional metrics and the application of the larger dataset 2 might help improve increasing the predictive power, furthermore switching to different model structures should be investigated.



**Figure 3.34.:** The implementation of an embedding layer increases the models accuracy. A single-layer LSTM was trained for 200 epochs on dataset 1F. **B** A single-layer LSTM with an embedding layer was trained for 30 epochs on dataset 1F. The embedding layer increases the final test accuracy and the speed or learning drastically.

# 4. Discussion

Secretion and translocation of substrates via the T3SS is a highly regulated process that is modulated on multiple transcriptional, translational and posttranslational levels [185][186][187][188]. The necessity of the extreme N-terminal secretion signal for T3SS-mediated secretion has been the focus of previous studies, but an explanation for its role in secretion and an understanding of the intrinsic properties that qualify a sequence to function as as secretion signal have yet to be resolved [101]. Despite extensive knowledge of the structural assembly of the T3SS, the scarcity of experimental data on secretion quantities and kinetics of T3SS substrates have impaired painting a more comprehensive picture of the T3SS effector recognition process and in particular of the role of the secretion signal during passage through the T3SS.

The few instances that went beyond the qualitative characterization of the effector N-termini, have implied an impact of the N-terminal amino acid composition on the secretion efficiency of a T3SE, prompting us to develop a methodology that can monitor the isolated effect of the N-terminus on the amount of secreted protein [106]. In this work, a quantitative high-throughput T3SS secretion assay was established that enables an assessment of the subtle differences within the peptide sequence of secretion signals that impair or promote efficient T3SS-mediated secretion. By assembling the largest and most comprehensive database on T3SS-secreted proteins, the foundation has been laid to experimentally determine the effects of over 700 secretion signals on the efficiency of secretion and to elucidate the role of the secretion signal in a mechanistic context. Moreover, the extended annotation of effectors in our database provides an excellent source of information to foster the investigation of novel and uncharacterized effectors.

## 4.1. Assay design

In its current version, the developed quantitative T3SS secretion assay relies on the quantification of luminescence signals emitted from the *Salmonella* effector SptP tagged Cterminally with the engineered Nanoluc luciferase from *Oplophorus gracilirostris* [142]. By replacing the N-terminus of SptP with secretion signals from other T3SEs and quantifying its impact on secreted reporter protein in the supernatant, an assessment of the secretion efficiency is made.

For simplicity, we adapted a T3SS secretion assay that is routinely applied to the qualitative detection of T3SE secretion. To serve the demands of a high-throughput setup, we chose to complement a suitable *Salmonella* carrier strain with a vector carrying the SptP reporter effector. Whilst this approach is not capable of fully preserving the native induction conditions, it eliminates the need to laboriously manipulate the genome for each secretion signal variant, drastically reducing the workload. In comparison to expression from the chromosome, the use of a vector-based reporter strategy results in a higher reporter expression due to the elevated copy number of the plasmid. Since the intrabacterial effector concentration influences the secretion hierarchy, we aimed to limit the extent of additional expression by incorporating the nucleotide region upstream of the *sicP-sptP* operon containing the natural promoter region and utilizing the low-copy plasmid pWSK29 as backbone [117]. Alternative induction methods using an arabinose-inducible plasmid expressing the master regulator HilA were also assessed, but given the potential disruption of the secretion hierarchy and efficiency, this approach was abandoned in the final version of the assay (Figure A.1).

Secretion signals have been identified in substrates from many T3SS-harboring bacterial species [34]. While there is a consensus on its essential role in guiding effectors towards the T3SS, definitions in regard to its length are diverging [92]. Secretion signal aided transport of substrates via the T3SS has been demonstrated for secretion signals as short as 5 residues, while other substrates require at minimum 10 to 15 residues to promote export [92]. Importantly, the N-terminal fusion of shorter secretion signal peptides to a reporter generally mediates weaker secretion efficiencies compared to longer segments that often facilitate secretion comparable to wildtype levels. In some instances, the residues downstream of the secretion signal contain additional translocation signals or chaperone binding domains [74]. A search through 77 identified chaperones and their targets revealed that none of these signals appear before residue 27 in any validated effector protein. Hence, to exclude the possibility of hampering with these domains when replacing the N-terminal secretion signal, we chose to study the effect of the first N-terminal 25 residues on secretion quantity and allow a clear separation between secretion signal and CBDs or translocation domains.

### 4.1.1. Reporter choice

The *Salmonella* effector SptP was selected as a scaffold for quantifying the effect of individual secretion signals. In contrast to other effectors like SopE, SopE2, SopA and SipA that share the multi-cargo chaperone InvB, SptP is chaperoned by the single-cargo chaperone SicP conferring secretion specificity towards the nfT3SS [87]. Considering that differential binding affinities of chaperone-effector pairs to the ATPase SctN might also contribute to the secretion hierarchy, the use of a reporter that competes with other effector proteins for available chaperones might therefore prove to be detrimental [82]. Using a reporter protein like SptP that relies on a single specific chaperone, eliminates the risk of a secretion rate limiting competition.

The qualitative assessment of SptP expression and T3SS secretion provided satisfactory results, but the introduction of N-termini from other effectors in place of the native SptP N-terminus initially abolished expression and secretion. Despite the rich annotation status of SptP (Uniprot entry: SPTP\_SALTY (2024-04)), a review of available literature revealed the erroneous deposition of the *sptP* coding sequence. In 2011, Button and Galán investigated the translational coupling of the SicP-SptP operon [136]. They also experimentally identified an alternative starting site for the *sptP* CDS that does not concur with the Uniprotannotated sequence. Located 24 bp downstream of the Uniprot-annotated start codon, an unusual TTG codon marks the beginning of the coding sequence of SptP, truncating its actual length by 8 amino acids.

In our work, shifting the secretion signal exchange site to the experimentally verified start codon restored expression and secretion of the first secretion-signal reporter fusion protein (SipA<sub>1-25</sub>SptP<sub>26-535</sub>), confirming the experimental work conducted by Button and Galán. The translational coupling of SicP and SptP is mediated via two stem loop structures forming in the messenger RNA (mRNA). Whereas the first stem loops plays a critical role in regulation of SptP expression, disruption of the second stem loop containing the TTG start codon does not alter translation of SptP [136]. Hence, replacing the N-terminus of SptP with N-termini from other effectors should not conflict with translation of the reporter protein.

In summary, SptP has proven to be an appropriate choice as a reporter for our quantification assay, despite its highly regulated translation process. This work corroborated evidence for a shorter CDS of SptP, thus an update of the outdated Uniprot entry should be submitted.

## 4.1.2. Reporter quantification

We investigated two methodologies to quantify the reporter protein. Using a mass spectrometric approach to quantify the complete T3SS secretome was quickly abandoned due to the workload per sample, higher costs and insufficient detection of effectors resulting from an inadequate growth medium masking the presence of most *Salmonella* proteins. Theoretically, the holistic detection of all T3SS-secreted proteins might provide an intriguing insight how the secretome composition is influenced by intrabacterial effector expression levels and whether different secretion signals alter the secretion hierarchy and magnitude of secretion. In principle, switching to alternative growth and sample preparation protocols as conducted by Auweter et al., using LPM medium instead of LB medium might have improved the detection of *Salmonella* proteins. The higher workload per secretion signal variant however impaired an application in a high-throughput setup.

In order to accelerate and simplify the simultaneous quantification of multiple secretion signal variants, we adopted a luminescence-based quantification method by C-terminally tagging the SptP reporter protein with the Nanoluc luciferase. To investigate effector proteins and elucidate their role *in vivo*, researchers often label candidate effectors with suitable protein tags. For instance, to monitor Type III effector translocation into host cells, the creation of translational fusion proteins of an effector with the adenylate-cyclase domain of the *Bordetella pertussis* toxin adenylate cyclase (CyaA) or TEM-1 BLA has been widely established [190][191]. The CyaA assay exploits the calmodulin-dependence of the adenylate cyclase domain of CyaA to convert adenosine triphosphate (ATP) to cyclic Adenosinemonophospate (cAMP) requiring the eukaryotic host cell environment.

For detection of TEM-1 activity, Foerster resonance energy transfer (FRET)-based substrates such as CCF2/AM or CCF4/AM are trapped inside the host cell, cleavage of a  $\beta$ -lactam linker within the substrate results in a detectable fluorescent shift upon translocation of TEM-1 tagged effectors [192] [190]. As a tool for quantifying T3SS-mediated secretion, these type of tags are not applicable as they require the infection of host cells. As shown by Westerhausen et al., the Nanoluc luciferase is well suited for performing large-scale reporter assays in automated fashion [141]. Known as one of the brightest and smallest luciferases to date, Nanoluc provides an excellent signal-to-noise ratio and a strong signal strength [193]. To prevent a competition of our reporter with the native chromosomally-encoded SptP protein, a SB905  $\Delta sptP$  mutant strain was created using the pORTMAGE methodology [125][194]. Notably, while we did not notice changes in the phenotype of the created strain, a recent study reports off-target mutations induced via the pORTMAGE mutagenesis protocol [195]. To rule out additional and potentially deleterious mutations, a comparative genome sequencing of our carrier strain with the original wildtype strain could resolve whether mutations were introduced.

In our cell culture setup, we chose to implement a 96-well format as a compromise between the simultaneous measurement of a large amount of samples and a cell culture volume sufficient to obtain stable, detectable secretion (per-well). In the current setup, this allows to sample six different strains with eight biological replicates per plate (V=1.5 mL), practically the processing of 18 different strain variants plus control strains is manageable per assay. To attain a satisfactory statistical certainty, we chose to grow 8 cultures per tested secretion signal variant, each culture was quantified in triplicate.

We optimized all steps of the quantification protocol, starting with the cell culture conditions, sample handling as well as device settings. The remaining issue of elevated cell lysis

during incubation could not be eliminated by changing the culture conditions. Presumably, the geometry of the 96-well deep well plates acts as an adverse factor for viable cell growth. Considering that low-oxygen conditions similar to environmental conditions in the small intestine have been shown to induce the activation of T3SS SPI-1 regulatory genes, other factors such as shear stress might be the leading cause for the observed cell death [196][197]. To account for Nanoluc signals originating from cell lysis, every assay included a negative control of a T3SS-deficient strain (SB905  $\Delta invA \Delta sptP$ ) to define a baseline signal unrelated to T3SS secretion. As a tradeoff between the optimal signal-to-noise ratio and a sufficiently high throughput of samples, the endpoint of incubation at 4 h was selected at the cost of a decreased signal resolution. Differences in growth rate were taken into accoung by measuring the optical density of each individual culture and normalizing the cultures' luminescence signal against the optical density.

### 4.1.3. Expression control

To reliably evaluate the secretion efficiency of our reporter, we chose to monitor the intrabacterial reporter concentration. Common techniques to study the secretion of translocation of effectors and their kinetics often neglect the total amount of protein produced and focus on the amount of secreted/translocated protein in the host cells. For some effectors an increase in intrabacterial effector concentration promotes higher translocation rates into host cells as shown for Escherichia effectors EspF, EspG, EspH and Map [117]. Accordingly, an estimate whether elevated secretion quantities are the result of increased effector expression or can be ascribed to the introduced N-terminal secretion signal variant is of central essence [117]. In this work, we compared two approaches to assess expression. First, a second reporter effector immediately downstream of sicP-sptP was incorporated to set the secretion quantities of each SptP reporter variant in relation to a stable, unaltered second reporter effector. We utilized the Salmonella SPI-1 effector SipA that has been shown to be secreted in high abundance in T3SS-mediated manner [198]. By including the 18 bp 5'-UTR region bridging the CDSs of sipD and sipA on the sipBCDA operon, an artifical sicP-sptP-sipA operon was created. InvB, the chaperone for SipA, was not included as it also primes the effectors SopE, SopE2 and SopA for secretion. Hence, a plasmid-mediated increase of InvB could have farther-reaching effects on secretion hierarchy affecting multiple effectors and thus complicate the interpretability of our assay. SipA was C-terminally tagged with the red firefly luciferase. Despite its large size of 60 kDA and a significantly weaker signal strength, the firefly luciferase is one of the few luciferases compatible with Nanoluc in dual-use systems as both require different substrates for activity. Using a  $\triangle sptP$   $\triangle sipA$  strain complemented with plasmid variants carrying a secretion-signal SptP-NLuc fusion and the native SipA-RFLuc, the quantitative detection of both luciferases was conducted. Unfortunately, the firefly luciferase displayed extremely

weak luminescence signals with average signal strengths below ranging from 50 RLU to 10000 RLU. For comparison, Nanoluc luminescence signals displayed up to 1000-fold higher signal intensities. In relation to the absolute signal strength this resulted in high variance between samples, making the firefly luminescence signal unreliable as a reporter secretion control. The cause for the weak and highly variable signals emitted from the firefly luciferase is unclear. A relationship between size and secretion quantity has been indicated by the differential secretion rates of SopE2 and SptP, with SopE2 (26 kDA) being secreted at a roughly 2-fold rate to SptP (59 kDa)[84]. Assuming a constant rate of secretion, it is therefore conceivable that the large size of the SipA-RFLuc construct (134 kDa) attenuates secretion of higher quantities of SipA-RFLuc and prevents a reliable detection. This infers that the luminescence signal variance in is within normal bounds, but disproportionally elevated by the low average signal intensity. In retrospective, choosing a smaller and brighter luciferase like the Gaussia (Gaussia luciferase (GLuc)) or Renilla luciferases (Renilla luciferase (RLuc)) for detection would have probably been advantageous despite cross-reactivity of their substrates with the Nanoluc luciferase [199]. As performed by Sarrion-Perdigones et al., individual signals of some coelenterazine-consuming luciferases can be distinguished using band-pass filters on the respective emission maxima of the luciferases, thus separately facilitating quantitative detection of NLuc, GLuc and RLuc luminescence [199].

Instead, we included an additional sample preparation step by measuring luminescence signal intensities in the cell pellet. Because the NLuc-substrate furimazine is membrane-permeable, we were able to obtain a quantitative measurement of non-secreted reporter protein and derive a relative secretion efficiency for every secretion signal variant tested.

Statistically, the variance in our assay is comparable to other studies. As described by Westerhausen et al. that proclaim a coefficient of variation (CV) of 7 %, the luminescence signals of the supernatant samples currently display a CV of 7.3 % in our assay. The degree of variation in the pellet samples is considerable higher with 27.1 % thus further optimization of the sample preparation procedure might prove beneficial. A potential cause of the displayed sample heterogeneity could be that the Nanoluc substrate furimazine has to diffuse through the cell membrane into the bacteria. According to the manufacturer, membrane permeability was tested on eukaryotic cells, thus the diderm architecture of Salmonella might complicate a homogenous accessibility throughout the pellet sample. By adapting the pellet sample preparation procedure and solubilise the cell pellet with a detergent of choice instead of resuspending it in growth medium, a more homogeneous sample could be obtained. This remains to be tested. The overall variability between assays diplays another factor to be considered. To monitor general differences we took the positive control sample SB905 \( \Delta sptP \) expressing and secreting \( \text{FL} \) SptP-NLuc (pMP059) and compared its signal strength over the course of all assays. Astonishingly, the signal strength varied to a significant degree between assays despite identical assay conditions and handling  $(2.23 \times 10^6 \text{ RLU to } 1.84 \times 10^7 \text{ RLU for }_{\text{FL}}\text{SptP-NLuc}$ , see Figure 3.25). Considering the careful optimization of all assay parameters, the elimination of external influence factors and the fact that only a fraction of the bacterial population expresses virulence genes, we attribute this degree of variation to biological factors [83][84]. Thus, as a means to enable comparison of secretion efficiencies across different assays, all secretion efficiencies calculated per assay were normalized against the positive/wildtype control of the respective assay. This assumes that during assay cell culture all cultures behave similar to the wildtype positive control, a conjecture that is difficult to ascertain. Therefore, to narrow the degree of variation it is advisable to quantify each secretion signal variant across a minimum of 2 assays with a large enough sample size (n=4-8) to provide a more comprehensive picture of the factual secretion efficiency and reflect on the observed biological variation.

### 4.1.4. Effect of the secretion signal on secretion quantity

### 4.1.4.1. Secretion quantities

To date, secretion quantities for secretion signals of the majority of *Salmonella* effector proteins (42 of 54) have been tested. With our automated primer generation script we streamlined the generation of new plasmids via backbone-PCR. The codon usage of the generated primers followed the *Salmonella* LT2 codon table, thus potential effects of RNA regulatory elements as proposed by Anderson and Schneewind can not be directly studied [93]. The remaining 12 of 54 constructs failed to assemble despite manual examination of all primer pairs.

As previously reported, T3SS secretion signals contain seemingly universal characteristics facilitating transport even in heterologous bacterial species [158][200]. To assess the general applicability of our approach, we corroborated this by testing secretion signals from the *Yersinia* effectors YopH and YopO, *Shigella* effector OspB, *Escherichia* Map and NleE, as well as *Chlamydia* effectors CT\_115 and CT\_223 in our *Salmonella*-based secretion quantification assay (Figure 3.11).

Initially, secretion quantities for 42 secretion signal variants could be obtained using an arabinose-inducible HilA plasmid for enhanced expression, whereas the subsequent methodology relying on the natural induction of the T3SS thus far yielded secretion quantities for 25 N-terminal variants. As we excluded all samples displaying secretion quantities below or in the range of the negative control, a fraction of the naturally induced samples were not included in the subsequent analysis. Several of the excluded samples also exhibited low expression levels, a potential cause for the weak secretion level leading to their exclusion. Notably, the reporter fusion SipA<sub>1-25</sub>SptP<sub>26-535</sub> was expressed and secreted poorly, a finding that stands in contrast to our initial proof-of-principle and the high abundance of SipA in other secretome studies [198]. While for the initial proof-of-principle the native nucleotide sequence was used, the later approach in our high-throughput setup followed the automated primer generation procedure that results in an altered nucleotide usage possibly diminishing SipA expression. Especially rare codons can have a major impact on protein expression, it

would be therefore of interest to investigate a potential link between the codon usage of the created reporter fusions and the degree of expression from our plasmid [201]. Weakly expressed secretion signal reporter fusions could thus be easily identified and optimized for enhanced expression. Furthermore, it might be a valid strategy to investigate different codon compositions for poorly expressed N-terminal variants.

Intriguingly, a notable number of sequences revealed only minor differences of their secretion quantities relative to the wildtype signal for natively and HilA-induced samples (Figure 3.27). Although the natural induction method produces higher secretion quantities relative to the wildtype signal, both methods are comparable to a limited extent. It is therefore reasonable to speculate that the secretion efficiency is in parts determined by the secretion signal, irrespective of the expression level of the reporter.

A ranking of the secretion quantities revealed that the wildtype reporter sequence makes up the majority of the highest secretion quantities. This indicates good robustness of the assay as similar secretion quantities are observed between different assays. However, it also implies that the native SptP signal sequence is highly optimized towards expression and secretion of SptP. The replacement of the native N-terminal sequence with different secretion signals might therefore entail the disruption of this delicate regulation process, resulting in an alteration of expression and secretion levels of all secretion signal variants. Nonetheless, considering that both expression and secretion of the reporter is quantified in our setup, the derivation of relative secretion efficiencies allows to extract valuable information.

#### 4.1.4.2. Secretion efficiencies

To evaluate the measured secretion quantities, we also quantified the amount of expressed reporter protein. As the first attempt using a second reporter protein failed, the current setup includes quantification of luminescence signals from pellet samples. The variation of the luminescence signals measured in the pellets was significantly higher than in the supernatant samples indicating a heterogenous sample composition. Despite this, the estimate of the total expressed reporter protein is a crucial parameter for evaluating the effects of the tested N-termini on expression and secretion. Considering the apparent variability between positive/wildtype controls in different assays, calculating relative ratios of secretion efficiencies and normalizing them to the wildtype secretion efficiency of the respective assay provided the means for a comparability between assays. Furthermore, it also allows to trace whether weak luminescence signals in the supernatant are the cause of low expression or low secretion efficiency.

The limited number of tested N-termini thus far prevented identification of a correlation between high secretion efficiencies and the secretion signals composition. Expanding the amount of tested N-termini will be necessary to gain insights to what drives efficient secretion. It will be crucial to further expand the generation of quantitative secretion data,

thus eliminating the time-consuming generation of reporter variant plasmids could be accelerated by the application of commercially available combinatorial libraries .

### 4.2. T3SE database

The assembly of the T3SE database, whilst not envisioned to such a scope in the initial project idea, constitutes the foundation for all subsequent work. Data of the highest possible quality are required both for the large-scale experimental analysis of secretion quantities and for the development of a prediction pipeline for the identification of T3SEs. In light of published type 3 effector databases and datasets often lacking traceable sources for included effector sequences, containing erroneous sequences and the outdated or unavailable status of many datasets, we shifted our focus towards assembly of our own T3SE database [202][101]. Despite the fact that many of these datasets have successfully been used for T3SE prediction tasks, the experimental status of its entries often remains unclear and a rationale behind the separation of verified versus putative effector proteins is lacking. To achieve the highest possible quality for our database and guarantee the exclusive incorporation of T3SS-secreted proteins, we established criteria defining what type of experimental evidence qualifies a protein to be categorized as a validated T3SS-secreted protein. Experiments lacking suitable controls were disregarded and the respective effectors listed as putative T3SEs. In comparison to the largest published T3SE databases we have expanded the number of verified T3SS effector proteins significantly already, despite its currently unfinished status. Datasets of recent prediction models such as DeepT3\_4, DeepT3\_2.0, EP3, Bastion3 contain 379, 302, 379 and 379 T3SEs respectively based on published datasets [184][203][183][148]. The T3SE databases BastionHub, EffectiveDB and T3SEdb comprise 1194, 504 and 504 experimentally verified effectors respectively, compared to the 735 entries of our database [204][151] [202]. Considering that the BastionHub database includes homologous protein sequences of the same effector, a juxtaposition of our database with Bastion3 T3SS substrates might reveal the fraction of unique effectors within BastionHub [204].

The assembly of most of these databases relied on retrieval of sequences and annotation data from both automated approaches and literature reviews, whereas our approach was a purely manual inspection of literature. While clearly associated with a much higher workload, the high quality of our database justifies the undertaken efforts. Considering the outdated status of many sequence annotations in publically available sequence databases as exemplified on the Uniprot annotation of the *Salmonella* effector SptP, the reliance of several published approaches on the available annotation must be seen as a major source of error introducing false positive entries. In comparison, we can provide additional information regarding effector functions, enzymatic activities, host cell targets and interaction partners, as well as host cell localizations. Critically, all this information is directly derived from experimental data such as *in-vivo* or *in-vitro* binding studies, enzymatic assays or fluorescence microscopy. Albeit still in a preliminary, unfinished status, our database thus provides the most comprehensive collection of information for T3SS effector proteins available to date. Once the assembly process is completed, a thorough analysis of the database will certainly promote the identification of new promising research targets and

questions.

### 4.2.1. Dataset preprocessing

For any computational prediction/classification task, the prediction outcome is highly dependent on the underlying data used for training. Ideally, a dataset should be of high quality, quantity and variability. With the T3SE database a foundation for a high-quality dataset comprising the largest number of T3SS effector proteins was available. The presence of highly similar sequences in a dataset can introduce biases that lead to overfitting and low generalizability of the prediction model to unseen data. A common procedure to increase variability in a protein dataset is to remove all sequences displaying homology above a certain threshold. In contrast to other studies that used thresholds of 70 %, we opted for a homology cutoff at 60 % to obtain a variable dataset without losing larger fractions of data [184][148]. In principle, even lower thresholds (30 %) as applied by Li et al. result in higher diversity data, but also drastically reduce the amount of retained sequences. We tried to establish a balance between dataset size and variability, nonetheless an investigation into what tradeoff between quantity and variability provides optimal results could be beneficial.

### 4.2.2. Prediction of secretion efficiencies

While the focus of this work lied on establishing the experimental quantification setup and assembly of the T3SE database, the preliminary results obtained from the LSTM prediction model with a test accuracy above 80 % mark a solid starting point for subsequent work. Whilst lacking a comprehensive assessment of the models performance using additional metrics such as the Matthews correlation coefficient (MCC), F1-score, receiver-operator curve, sensitivity and specificity, the principal application of our datasets to a binary classification problem has been shown. Using different feature extraction methods such as SMILES or physico-chemical features did not improve the models performance, thus the focus of future efforts should lie on optimization of the model architecture.

With the increasing availability of quantitative secretion data linked to a specific peptide sequence from our experimental setup, the application of state-of-the-art model architectures offer an interesting perspective to gain a deeper understanding of the secretion signal properties that promote efficient secretion. Although the usage of an LSTM is an eligible method for predictions on sequential data that has been utilized on T3SEs datasets in the past [184], newer model architectures have superseded the wide application of LSTMs. Specifically, transformer models that rely on the Attention mechanism introduced by Bahdanau et al. offer an intriguing perspective as they allow to identify key positions within a sequence important for making the right prediction [179]. In principle, this might facilitate the deduction of specific sequence features within the secretion signal. A first application

of an attention-based prediction model on T3SE predication was published by Li et al., however without capitalizing on identifying features of potential biological relevance [183]. As a long-term prospect we envision adapting such a model architecture to continously predict secretion quantities/efficiencies based on the input sequence as a regression model rather than a binary classification task.

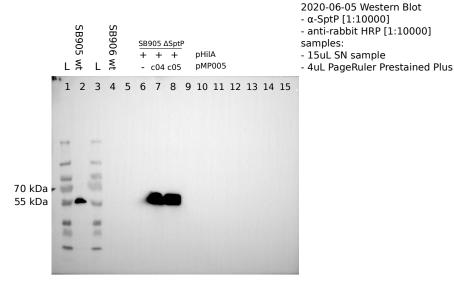
The rich annotation of our T3SE database with information about enzymatic activity, host cell targets or host cell localization for a large number of effectors might also prove beneficial to assemble multiple specific prediction models and integrate them into a final ensemble pipeline. As shown by the EP3 ensemble prediction pipeline that combines 6 different classifiers, such a methodology can help to achieve a more robust and generalizable prediction outcome [149]. Furthermore, by predicting putative host cell localizations and likely host cell targets, a subsequent experimental characterization of a predicted effector protein would be narrowed, thus streamlining the experimental characterization process.

## 5. Conclusion

### 5.1. Conclusion

To conclude, I have established a quantitative secretion assay suitable for high-throughput analysis of secretion signals and provided a platform for testing candidate effectors based on their N-termini. The assay accounts for both the cell growth of individual cultures as well as for the overall expression level of our reporter. Expression differences induced by variant N-termini are thus accounted for. Having quantified the impact of N-termini from Salmonella effectors on the secretion efficiency, we indeed identify different secretion efficiencies that can directly be associated with the introduced secretion signal. To gain an understanding which features within the secretion signal is required for efficient secretion, the number of tested N-termini thus far is not sufficient, therefore the expansion of the quantification process to a larger number of effectors is essential. To do so, I have furthermore assembled the largest and most comprehensive T3SE database to date, providing a direct trace of experimentally verified effector sequences to the original publication in which the experiment was conducted. By not only providing sequence data and T3SE evidence, but advanced annotation of experimentally determined host cell targets, enzymatic activities, interaction partners and host cell localization the present database can be used to narrow the experimental characterization of effectors of interest.

Finally, I have conducted preliminary tests that confirm the general usability of the underlying data by applying the assembled dataset to a binary classification task predicting whether candidate proteins are T3SEs.


# A. Appendices

## A.1. Appendix A

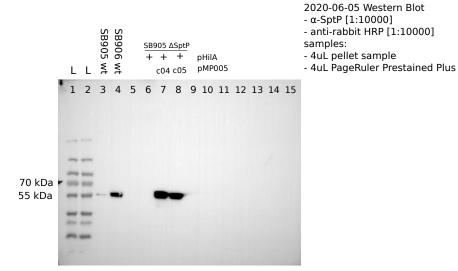
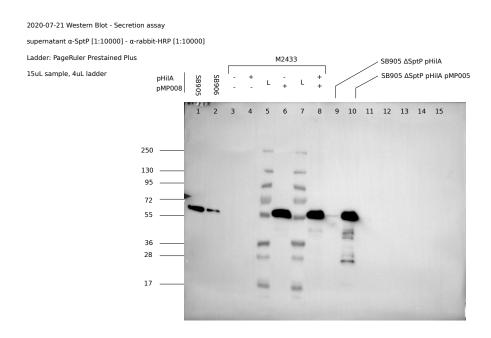
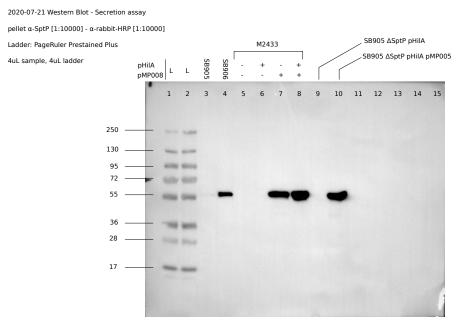
## A.1.1. Figures

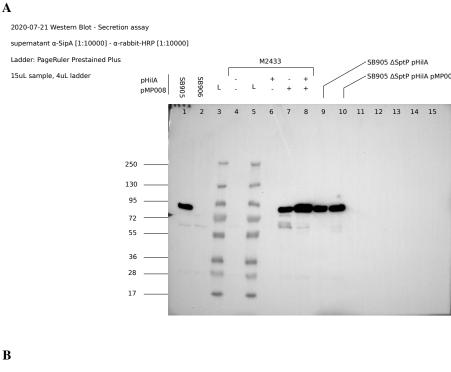
## A.1.1.1. Immunoblotting

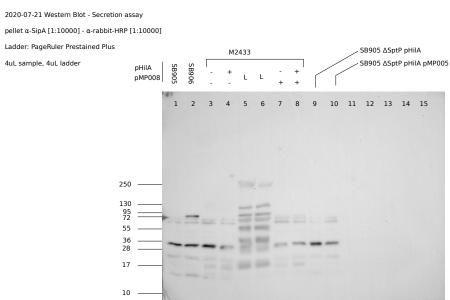




В



Figure A.1.: Expression and secretion of SptP from plasmid pMP005 as visualized by immunoblotting. S. typhimurium strain SB905  $\Delta$ sptP complemented with plasmid pMP005 and pHila pacyc184 expresses and secretes SptP. Cultures of wildtype strain S. typhimurium SB905 and T3SS-deficient SB905 ( $\Delta$ prgH, negative control) were grown as controls, as well as an uncomplemented strain SB905  $\Delta$ sptP. All cultures were grown according to section 2.2.1. Plasmid tags co4 and c05 denote different clones of plasmid pMP005, L=ladder. Immunoblotting was performed as described in section 2.2.4 using a polyclonal antibody against SptP. A supernatant samples **B** pellet samples




### A Secretion assay confirming expression and secretion of plasmid pMP008



**Figure A.2.:** Expression and secretion of SptP from plasmid pMP008 as visualized by immunoblotting. Cultures of wildtype strain *S. typhimurium* SB905 and T3SS-deficient SB905 (Δ*prgH*, negative control) were grown as controls, the M4233 strain was grown either uncomplemented or complemented with combinations of pHilA and pMP008. As an additional control strain SB905 complemented with pHilA and pMP005 was grown. All cultures were grown according to section 2.2.1. L=ladder. Immunoblotting was performed as described in section 2.2.4 using a polyclonal antibody against SptP. **A** supernatant samples **B** pellet samples





**Figure A.3.:** Expression and secretion of SipA from plasmid pMP008 as visualized by immunoblotting. Cultures of wildtype strain *S. typhimurium* SB905 and T3SS-deficient SB905 (Δ*prgH*, negative control) were grown as controls, the M4233 strain was grown either uncomplemented or complemented with combinations of pHilA and pMP008. As an additional control strain SB905 complemented with pHilA and pMP005 was grown. All cultures were grown according to section 2.2.1. L=ladder. Immunoblotting was performed as described in section 2.2.4 using a polyclonal antibody against SipA. **A** supernatant samples **B** pellet samples

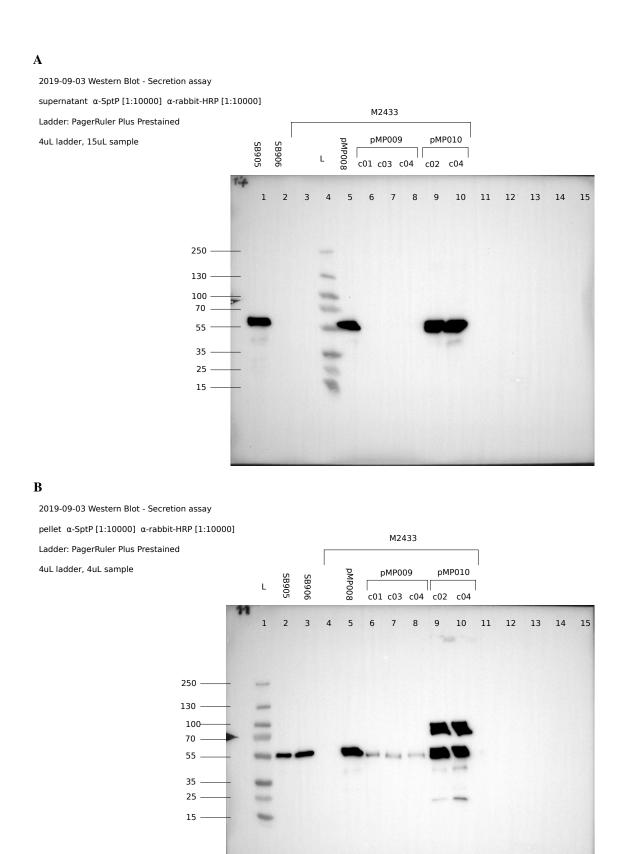



Figure A.4.: Expression and secretion of SipA<sub>1-25</sub>-SptP<sub>26-543</sub> and SptP from plasmids pMP009 and pMP010, respectively as visualized by immunoblotting. Cultures of wildtype strain *S. typhimurium* SB905 and T3SS-deficient SB905 ( $\Delta prgH$ , negative control) were grown as controls, the M4233 strain was grown either uncomplemented or complemented with pMP008 ( $_{FL}$ SptP,  $_{FL}$ SipA), pMP009 (SipA<sub>1-25</sub>-SptP<sub>26-543</sub> and SipA) or pMP010 (SptP<sub>1-25</sub>-SipA<sub>26-685</sub> and  $_{FL}$ SptP). All cultures were grown according to section 2.2.1 Immunoblotting was performed as described in section 2.2.4 using a polyclonal antibody against SptP. A supernatant samples **B** pellet samples

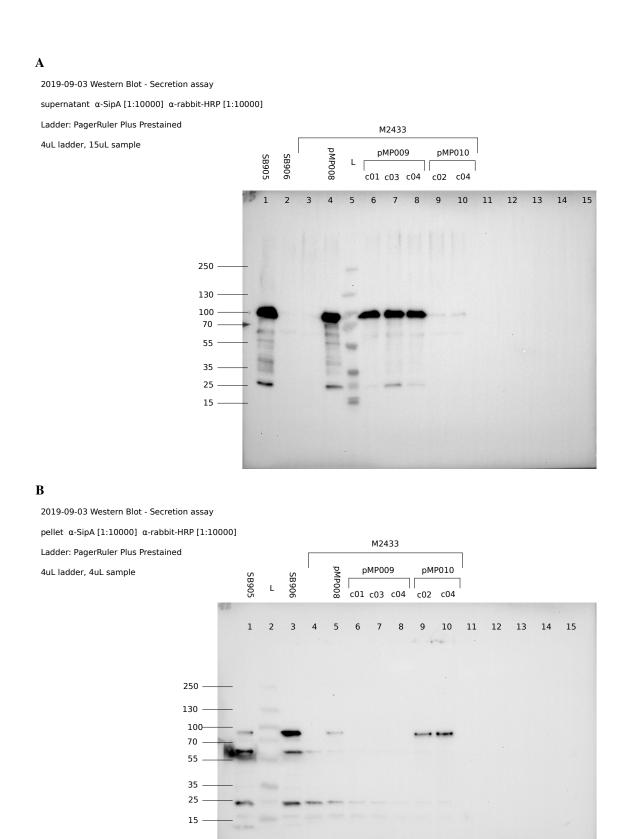
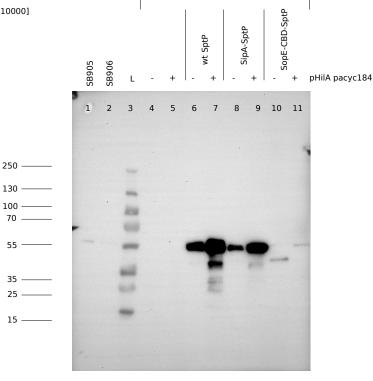
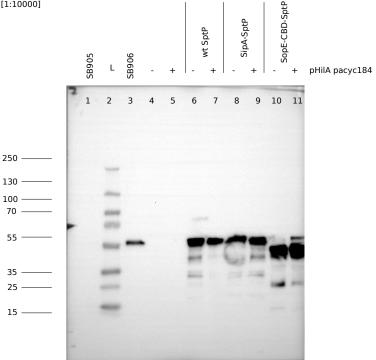



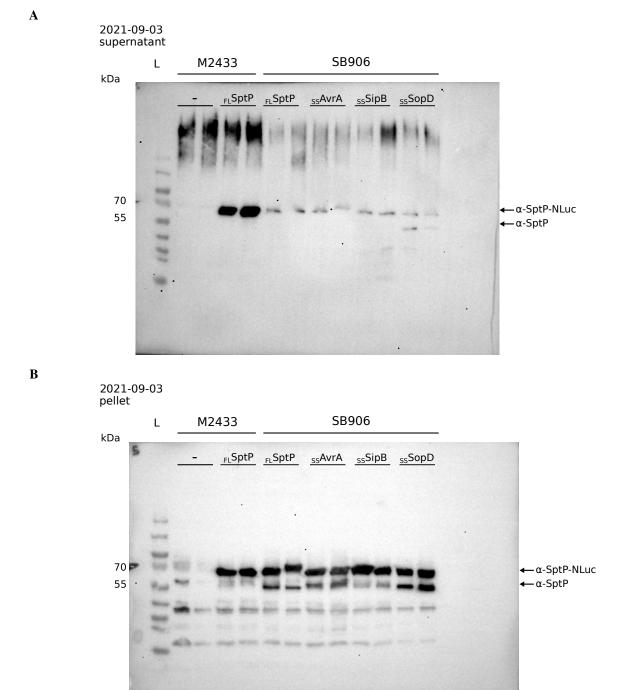

Figure A.5.: Expression and secretion of SptP<sub>1-25</sub>-SipA<sub>26-685</sub> and SipA from plasmids pMP009 and pMP010, respectively as visualized by immunoblotting. Cultures of wildtype strain S. typhimurium SB905 and T3SS-deficient SB905 ( $\Delta prgH$ , negative control) were grown as controls, the M4233 strain was grown either uncomplemented or complemented with pMP008 ( $_{FL}$ SptP,  $_{FL}$ SipA), pMP009 (SipA<sub>1-25</sub>-SptP<sub>26-535</sub> and SipA) or pMP010 (SptP<sub>1-25</sub>-SipA<sub>26-685</sub> and  $_{FL}$ SptP). All cultures were grown according to section 2.2.1. Immunoblotting was performed as described in section 2.2.4 using a polyclonal antibody against SipA. A supernatant samples **B** pellet samples




2021-01-21 Western Blot - Secretion assay SN  $\alpha$ -SptP [1:10000]  $\alpha$ -rabbit-HRP [1:10000] Ladder: PageRuler Plus Prestained 4uL ladder, 20uL sample



M2433

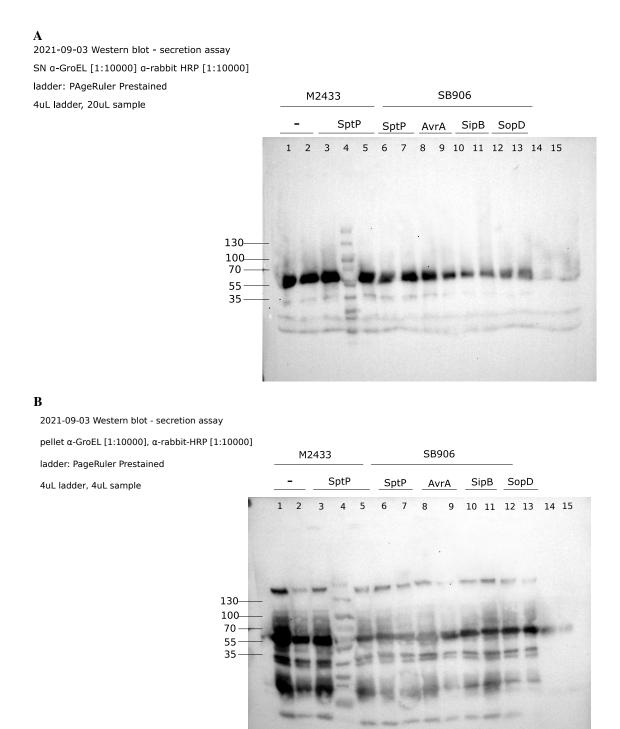



2021-01-21 Western Blot - Secretion assay pellet  $\alpha$ -SptP [1:10000]  $\alpha$ -rabbit-HRP [1:10000] Ladder: PageRuler Plus Prestained 4uL ladder, 4uL sample



M2433

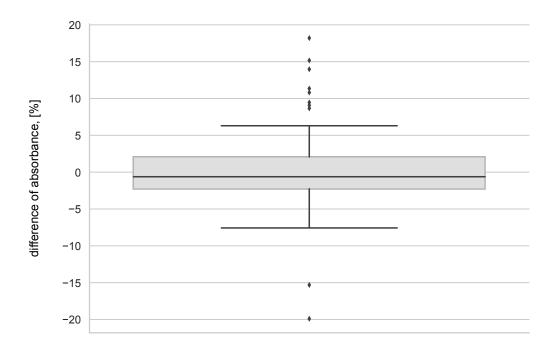
**Figure A.6.:** Expression and secretion of  $SipA_{1-25}$ -SptP<sub>26-535</sub> and SptP from plasmids pMP017 as visualized by immunoblotting. Cultures of wildtype strain *S. typhimurium* SB905 and T3SS-deficient SB905 ( $\Delta prgH$ , negative control) were grown as controls, the M4233 strain was grown either uncomplemented or complemented with pMP008 (wt SptP), pMP017 (SipA-SptP), pMP018 (SopE-CBD-SptP) and pHilA. All cultures were grown according to section 2.2.1. Immunoblotting was performed as described in section 2.2.4 using a polyclonal antibody against SptP. **A** supernatant samples **B** pellet samples




**Figure A.7.:** Original western blots for expression of reporter variants in T3SS-deficient strain SB906. Expression and secretion of reporter variants for  $_{FL}$ SptP-NLuc and reporter variants Avra, SipB and SopD was tested in the T3SS-deficient strain SB906 ( $\Delta prgH$ ). As a positive control strain M2433 expressing  $_{FL}$ SptP was grown. All cultures were grown according to section 2.2.1. Immunoblotting was performed as described in section 2.2.4 using a polyclonal antibody against SptP. **A** supernatant samples **B** pellet samples

8 9

10 11 12 13


2 3 4 5 6



**Figure A.8.: Original blot of lysis control western blot.** Immunoblotting against the cytoplasmic marker groEL was performed according to section 2.2.4 using a commercial antibody against groEL. All samples are identical to the cultures displayed in Figure A.7. **A** supernatant samples **B** pellet samples

## **A.1.2. Plots**

### A.1.2.1. Secretion quantification assays



**Figure A.9.:** The effect of shaking on absorbance measurements is negligible. Using the previously generated cell culture dilutions, absorbance $_{600\,\mathrm{nm}}$  was remeasured in the platereader setup including a shaking step of the 96-well plate (30 s, 300 rpm) prior to the measurement. On average, the difference in absorbance between both measurements stays below 5 %.

## A.1.3. Tables

**Table A.1.:** *Salmonella enterica* subsp. *enterica* Typhimurium LT2 codon table, frequency per thousand Kazusa database. \* denotes the stop codons.

| residue | codon | frequency $\left[\frac{1}{1000}\right]$ | residue | codon | frequency $\left[\frac{1}{1000}\right]$ |
|---------|-------|-----------------------------------------|---------|-------|-----------------------------------------|
| F       | UUU   | 23.3                                    | Y       | UAU   | 17.1                                    |
|         | UUC   | 15.3                                    |         | UAC   | 11.6                                    |
| L       | UUA   | 13.2                                    | Н       | CAU   | 13.3                                    |
|         | UUG   | 12.4                                    |         | CAC   | 9.6                                     |
|         | CUU   | 11.8                                    | Q       | CAA   | 12.7                                    |
|         | CUC   | 10.4                                    |         | CAG   | 31.0                                    |
|         | CUA   | 4.9                                     | N       | AAU   | 17.8                                    |
|         | CUG   | 53.6                                    |         | AAC   | 20.1                                    |
| I       | AUU   | 29.3                                    | K       | AAA   | 31.7                                    |
|         | AUC   | 24.4                                    |         | CAA   | 12.7                                    |
|         | AUA   | 5.3                                     |         | AAG   | 11.3                                    |
| M       | AUG   | 27.4                                    | D       | GAU   | 31.6                                    |
| V       | GUU   | 15.5                                    |         | GAC   | 20.3                                    |
|         | GUC   | 18.2                                    | E       | GAA   | 35.4                                    |
|         | GUA   | 11.4                                    |         | GAG   | 20.7                                    |
|         | GUG   | 25.2                                    | C       | UGU   | 4.8                                     |
| S       | UCU   | 7.2                                     |         | UGC   | 6.6                                     |
|         | UCC   | 10.1                                    | W       | UGG   | 15.2                                    |
|         | UCA   | 6.2                                     | R       | CGU   | 18.8                                    |
|         | UCA   | 9.5                                     |         | CGC   | 23.3                                    |
|         | AGU   | 7.4                                     |         | CGA   | 3.6                                     |
|         | AGC   | 17.4                                    |         | CGG   | 6.9                                     |
| P       | CCU   | 7.2                                     |         | AGA   | 2.3                                     |
|         | CCC   | 6.9                                     |         | AGG   | 1.6                                     |
|         | CCA   | 5.8                                     |         | GGU   | 17.4                                    |
|         | CCG   | 24.7                                    | G       | GGC   | 35.3                                    |
| Т       | ACU   | 6.7                                     |         | GGA   | 8.7                                     |
|         | ACC   | 23.3                                    |         | GGG   | 12.0                                    |
|         | ACA   | 5.8                                     | *       | UAA   | 1.9                                     |
|         | ACG   | 18.8                                    |         | UAG   | 0.3                                     |
| A       | GCU   | 12.8                                    |         | UGA   | 1.0                                     |
|         | GCC   | 29.1                                    |         |       |                                         |
|         | GCA   | 13.0                                    |         |       |                                         |
|         | GCG   | 42.5                                    |         |       |                                         |

## A.2. Appendix B

All code was written using Python 3.

### A.2.1. Python code

### A.2.1.1. Primer designer

The following code snippet generates primers for the backbone-PCR protocol 2.2.2 to introduce new N-termini in place of the natural secretion signal of sptP. This code was written in collaboration with J.Ahrendt.

```
from Bio. Seq import Seq
from Bio import SeqIO
from Bio. SeqRecord import SeqRecord
from Bio. SeqFeature import SeqFeature, FeatureLocation
from Bio. SeqUtils import GC
import primer3 as p3
import datetime
class PlasmidBuilder():
    def __init__(self , codon_table = None):
        if codon_table == None:
             self.codon_usage_table =
                                                   { 'Salmonella ...
                                                      typhimurium LT2':
                                                                            {
                                                                                F
                                                                                : {
                                                                                UUU
                                                                                :23.3,
                                                  'UUC':15.3},
                                             'L':{'UUA':13.2,
                                                  'UUG':12.4,
                                                  'CUU':11.8,
                                                  'CUC':10.4,
                                                  'CUA':4.9,
```

```
'CUG':53.6},
'I':{'AUU':29.3,
     'AUC':24.4,
     'AUA':5.3},
'M':{ 'AUG':27.4},
'V':{ 'GUU':15.5,
     'GUC':18.2,
     'GUA':11.4,
     'GUG':25.2},
'S':{'UCU':7.2,
     'UCC':10.1,
     'UCA':6.2,
     'UCG':9.5,
     'AGU': 7.3,
     'AGC':17.4},
'P':{ 'CCU':7.2,
     'CCC':6.9,
     'CCA':5.8,
     'CCG':24.7},
'T':{ 'ACU':6.7,
     'ACC':23.3,
     'ACA':5.8,
     'ACG':18.8},
'A':{ 'GCU':12.8,
     'GCC':29.1,
     'GCA':13.0,
     'GCG':42.5},
'Y':{ 'UAU':17.1,
     'UAC':11.6},
'H':{ 'CAU':13.3,
     'CAC':9.6},
'Q':{ 'CAA':12.7,
     'CAG':31.0},
'N':{ 'AAU':17.8,
     'AAC':20.1},
'K':{'AAA':31.7,
     'CAA':12.7,
     'AAG':11.3},
'D':{ 'GAU':31.6,
     'GAC':20.3},
'E':{ 'GAA':35.4,
     'GAG':20.7},
'C':{'UGU':4.8,
     'UGC':6.6},
'W':{'UGG':15.2},
'R':{'CGU':18.8,
     'CGC':23.3,
     'CGA':3.6,
     'CGG':6.9,
```

```
'AGA':2.3,
                                            'AGG':1.6},
                                       'G':{ 'GGU':17.4,
                                            'GGC':35.3,
                                            'GGA':8.7,
                                            'GGG':12.0},
                                       '*':{ 'UAA':1.9,
                                            'UAG':0.3,
                                            'UGA':1.0}
                                                }
                                             }
    else:
        self.codon_usage_table = codon_table
def get_codon_probabilities(self):
    Calculates the probabilities for a residue to be encoded by a
       certain codon.
    This calculation is done by summing up all occurrences of the
       codons per 1000 residues as given
    by the input codon usage table and subsequently calculating the
        percentual occurrence.
   E.g. In S.typhimurium LT2, phenylalanine occurrs 23.3/1000
       residues encoded as UUU and 15.3/1000 residues as UUC.
    Therefore, phenylalaline is encoded in 60.3% of occurrences by
       UUU.
    Input parameters:
        codon_table : dict of dicts
            Dictionnary containing the codon frequency per 1000
               residues for the given organism.
    Returns:
        codon_probability_dict : dict of dicts
            Dictionnary containing the percentual codon usage per
               residue for the fiven organism.
    , , ,
    codon_probability_dict = {}
```

125

```
for strain in self.codon_usage_table.keys():
        res_codon_probability = []
        for residue in self.codon usage table[strain].keys():
            residue_codons = self.codon_usage_table[strain][residue
            codon_no = len(residue_codons.values())
            total_res_usage = sum(residue_codons.values())
            codon_dict = \{\}
            for key, value in residue_codons.items():
                probability = value/(total_res_usage)
                codon_dict[key] = probability
            codon_probability_dict[residue] = codon_dict
   return codon_probability_dict
def protein_to_DNA_sequence(self, protein_sequence, most_common=
   True):
   , , ,
   Converts a protein sequence into a DNA sequence.
    If most_common = False (default=True), a weighted random choice
        based on the codon occurrence probability is used to
       create a DNA sequence. Otherwise,
    the most common codons for each residue will be used.
   Input parameters:
    protein_sequence : str
        String of a peptide sequence
   most_common : bool (default = True)
        Whether the most common codon or a weighted random choice
           based on codon occurrence probabilities is used to
           generate the DNA sequence.
    Returns:
   dna_sequence : str
        String of the encoding DNA sequence for a given protein/
           peptide.
```

```
self.probabilities = self.get_codon_probabilities()
        if most_common == True:
            most_common_codon_sequence = ''
            for residue in protein_sequence:
                codons = list (self.probabilities[residue].keys())
                probability = list(self.probabilities[residue].values()
                most_common_codon = [codons[probability.index(max(
                   probability))]]
                most_common_codon_sequence += ''.join(most_common_codon
            self.insert_sequence = most_common_codon_sequence
            return most_common_codon_sequence
        elif most common == False:
            shuffled_codon_sequence = ''
            for residue in protein_sequence:
                codon_choice = random.choices(list(self.probabilities[
                   residue].keys()), list(self.probabilities[residue].
                   values())
                shuffled_codon_sequence += ''.join(codon_choice)
            self.insert_sequence = shuffled_codon_sequence
            return shuffled_codon_sequence
class Primer():
   def __init__(self , amplification_sequence):
        self.amp_sequence = Seq(amplification_sequence)
```

, , ,

```
self.amp_sequence_rv = self.amp_sequence.complement()
    self.amp_sequence = str(self.amp_sequence)
    self.amp_sequence_rv = str(self.amp_sequence_rv)
def calculate_primer_tm(self, sequence):
    melting_t = p3.calcTm(sequence)
   return melting_t
def calculate_hairpin_formation(self, primer):
    hairpin = p3.calcHairpin(primer)
    hairpin_tm = p3.calcHairpinTm(primer)
   return hairpin, hairpin_tm
def create_primer(self, fw=True, tm_range : list = [54,72],
   default_tm : int = 62, primer_length_range : list = [20,35]) ->
    str:
    Creates the forward primer for the sequence region to be
       amplified. When creating the primer, the optimal melting
       temperature is prioritized over optimal primer length.
   Input parameters:
   fw : bool (default=True)
        Whether the forward or reverse primer is generated
   tm_range : list (default = [54, 72])
        Minimal and maximal acceptable melting temperature
    default tm : int (default = 62)
        Optimal melting temperature.
    primer_length_range : list (default = [20,35])
        Minimal and maximal primer length
    Returns:
```

[primer, primer\_tm] : list Primer sequence fitting to the specified instructions (Tm, length) and corresponding Tm primer\_length = min(primer\_length\_range)  $primer_tm = 0$ if fw == True: primer = self.amp\_sequence[:primer\_length] primer\_tm = self.calculate\_primer\_tm(primer) rounded\_tm = round(primer\_tm) while primer\_length in range(min(primer\_length\_range), max( primer\_length\_range)) and rounded\_tm <= default\_tm:</pre> primer = self.amp\_sequence[:primer\_length] primer\_tm = self.calculate\_primer\_tm(primer) rounded\_tm = round(primer\_tm) primer\_length += 1 if (primer\_tm < min(tm\_range)) and (primer\_length ==</pre> max(primer\_length\_range)): **print**('The longest lpossible loligo l(length: |{}) |  $created_{\sqcup}is_{\sqcup}outside_{\sqcup}of_{\sqcup}the_{\sqcup}specified_{\sqcup}melting_{\sqcup}$ temperature urange u([{}{}]).uPlease uadapt ueither  $\sqcup$ tm\_range $\sqcup$ or $\sqcup$ allowed $\sqcup$ oligo $\_$ length . '. format(max( primer\_length\_range), min(tm\_range), max( tm\_range))) while primer\_length in range(min(primer\_length\_range), max( primer\_length\_range)) and primer\_tm >= default\_tm: primer = self.amp\_sequence[:primer\_length]

primer\_tm = self.calculate\_primer\_tm(primer)

rounded\_tm = round(primer\_tm)

primer\_length -= 1

```
if (primer_tm > max(tm_range)) and (primer_length ==
            min(primer_length_range)):
             print('The shortest possible oligo (length: {})∪
                 created_{\sqcup}is_{\sqcup}outside_{\sqcup}of_{\sqcup}the_{\sqcup}specified_{\sqcup}melting_{\sqcup}
                 temperature urange u([{}{}]).uPlease uadapt ueither
                 utm_rangeuorualloweduoligo_length.'. format(min(
                 primer_length_range), min(tm_range), max(
                 tm_range)))
    return [primer, primer_tm]
elif fw == False:
    primer = self.amp_sequence[:primer_length]
    primer_tm = self.calculate_primer_tm(primer)
    rounded_tm = round(primer_tm)
    while (primer_length in range(min(primer_length_range), max
        (primer_length_range))) and (rounded_tm <= default_tm):
         primer = self.amp_sequence_rv[-primer_length:]
         primer_tm = self.calculate_primer_tm(primer)
         rounded_tm = round(primer_tm)
         primer_length += 1
         if (primer_tm < min(tm_range)) and (primer_length ==</pre>
            max(primer_length_range)):
             print(\ 'The \sqcup longest \sqcup possible \sqcup oligo \sqcup (\ length: \sqcup \{\,\}\,) \sqcup
                 created is below the specified melting
                 temperature \Box range \Box ([{}}^{\circ}\BoxC, \Box{}^{\circ}\BoxC]). \Box Please \Box
                 adapt_either_tm_range_or_allowed_oligo_length.'
                 . format(max(primer_length_range), min(tm_range)
                 , max(tm_range)))
    while (primer_length in range(min(primer_length_range), max
        (primer_length_range))) and (primer_tm >= default_tm):
         primer = self.amp_sequence_rv[-primer_length:]
         primer_tm = self.calculate_primer_tm(primer)
         rounded_tm = round(primer_tm)
         primer_length -= 1
```

```
if (primer_tm > max(tm_range)) and (primer_length ==
                       min(primer_length_range)):
                        print('The u shortest u possible u oligo u (length: u {}) u
                            created is above the specified melting
                            temperature \, {}_{\sqcup} range \, {}_{\sqcup} ([\{\}\, {}^{\circ} \, {}_{\sqcup} C, \, {}_{\sqcup} \{\}\, {}^{\circ} \, {}_{\sqcup} C]) \, . \, {}_{\sqcup \sqcup} Please \, {}_{\sqcup}
                            adapt u either utm_range u or u allowed u oligo_length.'
                            . format(min(primer_length_range), min(tm_range)
                            , max(tm_range)))
              return [primer, primer_tm]
     def create_primer_pair(self, default_tm : int = 62,
         max_tm_difference : int = 3, max_length_difference : int = 8,
         create_overlaps = False):
         fw_primer = self.create_primer(fw=True, default_tm=default_tm)
         rv_primer = self.create_primer(fw=False, default_tm=default_tm)
         fw_len = len(fw_primer[0])
         fw_tm = int(fw_primer[1])
         rv_len = len(rv_primer[0])
         rv_tm = int(rv_primer[1])
         if (fw_tm in range(rv_tm - max_tm_difference, rv_tm +
             max_tm_difference)) and (fw_len in range(rv_len -
             max_length_difference , rv_len + max_length_difference)):
              return fw_primer, rv_primer
A.2.1.2. Dataset random subselection
```

```
from Bio import SeqIO
from Bio. SeqRecord import SeqRecord
from Bio. Alphabet import IUPAC
from Bio. Seq import Seq
import pandas as pd
''' Loading the EffectiveT3 negative training dataset. '''
```

```
fasta_file = 'TTSS_negative_training.faa'
records = list (SeqIO.parse (fasta_file, "fasta"))
neg\_seqlist = []
for record in records:
    seqentry = [record.id, record.name, str(record.seq), record.
       description]
    neg_seqlist.append(seqentry)
columns= ['Protein_ID', 'Name', 'Sequence', 'Description']
df_neg = pd. DataFrame(neg_seqlist, columns=columns)
''' Random subselection of entries from the negative training dataset.
        Sequences shorter than 60 residues are excluded.
rand_list = []
neg_rand_list = []
for i in range (0, 348):
    while len(neg_rand_list) != 244:
        randint = np.random.randint(0,348)
        seq = df_neg.iloc[randint]
        if len(seq[2]) >= 60 and randint not in rand_list:
            neg_rand_list.append(seq)
        else:
            pass
''' Writing the resulting dataset to file. Both csv- and fasta-files
   are created.
        The naming of the resulting file follows this nomenclature:
        date_initials_EffectiveT3_negative_dataset_Dataset_(number)
           _status(Finished).csv/fasta
        (YYYYMMDD)_(MP)_EffectiveT3_negative_dataset_D_X_F
columns= ['Protein_ID', 'Name', 'Sequence', 'Description']
df_neg_subsampled = pd.DataFrame(neg_rand_list, columns=columns)
```

# A.3. Appendix C

#### A.3.1. T3SE database

Appendix C contains addditional information used for assembly of the T3SE database, as well as information about host cell functions, targets and localizations.

**Table A.2.:** Search terms and annotations used for collecting and cleaning dataset 1. A Search terms used for collecting T3SS-secreted proteins from the NCBI database for assembly of dataset 1 (subsection 3.2.1). The following key strings were used to select protein entries from the NCBI IPG database. **B** Protein entries retreived from the IPG database contain annotations that indicates the presence of non-T3SE sequences. All strings displayed in this table were isolated from fasta-files collected using the search terms in Table A.2A. Entries containing any of the tags were manually reviewed to determine inclusion or discarding the respective entry.

| A                                          | В                      |
|--------------------------------------------|------------------------|
| search term                                | annotation tag         |
| T3SS secreted effector                     | fragment               |
| T3SS effector protein                      | truncated              |
| type 3 secreted effector                   | putative               |
| type 3 effector protein                    | partial                |
| type III effector                          | probable               |
| type III secreted effector                 | uncharacterized        |
| type III effector protein                  | hypothetical           |
| type III secretion system effector         | nonfunctional          |
| type III secretion system effector protein | chaperone/co-chaperone |
| type 3 secretion system effector           | candidate              |
| type 3 secretion system effector protein   | subunit                |
|                                            | unknown                |
|                                            | pseudogene             |
|                                            | unassigned             |
|                                            | flagellar              |
|                                            | unnamed                |
|                                            | crystallin             |

**Table A.3.:** Functions associated with T3SE-secreted proteins.

| Uniprot_ID           | gene_name     | function                                                                                                 |
|----------------------|---------------|----------------------------------------------------------------------------------------------------------|
| A4SUG8               | acrH          | secreted chaperone for AopB/AopD                                                                         |
| A4SUG9               | acrV          | tip translocon protein, needle tip protein                                                               |
| Q93Q17               | aexT          | GTPase activity, actin ADP-ribosylation                                                                  |
| D5LUP3               | aexU          | ADP-ribosylation, GAP activity towards Rac1, Cdc42 and RhoA                                              |
|                      |               | delays degradation of IkkB in host cells, reduces IL-6 and IL-8                                          |
|                      |               | secretion, disrupts the host cell skeleton                                                               |
| A4SUG7               | aopB          | translocon protein, needle tip protein                                                                   |
| A4SUG6               | aopD          | translocon protein, needle tip protein                                                                   |
| Q27RI1               | aopH          | putative tyrosine phosphatase activity, might induce cytoskeletal                                        |
| A 4011117            | N             | damage                                                                                                   |
| A4SUH7               | aopN          | SctW family T3SS gatekeeper subunit, putatively involved in regu                                         |
| A O A 1/7/20 (D) HO  | 0             | lation of secretion                                                                                      |
| A0A1Z3MNJ8           | aopO          | putative serine/threonine kinase                                                                         |
| Q14SK3               | aopP          | acetyltransferase, inhibits the NF-kappa-B signaling pathway, in                                         |
| A ACTUE              | <b>F</b>      | duces apoptosis                                                                                          |
| A4SUF4               | ascF          | needle subunit, early substrate                                                                          |
| A4SUF4               | ascH          | regulator needle assembly                                                                                |
| A4SUF3               | ascI          | needle component                                                                                         |
| A4SUI0               | ascP          | needle length control, secretion regulation                                                              |
| A4SUH4               | ascX          | needle subunit                                                                                           |
| A4SUE8               | ati1          | chaperone for Ati2                                                                                       |
| A4SUE7               | ati2          | inositol polyphosphatase 5-phosphatase, dephosphorylates Pt                                              |
| A ACLICA             | exsE          | dIns(4,5)P2 and PtdIns(3,4,5)P3                                                                          |
| A4SUG4               |               | negative transcriptional regulator                                                                       |
| Q9REZ5<br>A0A6N3S484 | bopB<br>bopD  | translocon protein, formation of the translocon pore<br>translocon protein, formation of translocon pore |
|                      | bopD          | putative gatekeeper subunit, induces IL-10 in host cells, involved                                       |
| Q84CS9               | bopN          | in downregulation of MAPK kinase                                                                         |
| Q84CT6               | bscF          | needle filament protein                                                                                  |
| A0A5P2MRE5           | bsp22         | needle tip protein, tip complex formation                                                                |
| A0A6N3S465           | bspR/btrA     | negatively regulates T3SS secretion, anti-sigma factor                                                   |
| A0A6N3S5J5           | bteA          | induces caspase-1 independent necrotic cell death, targets PI(4,5)P2                                     |
|                      |               | indirectly involved in dephosphorylation of tyrosine-phosphorylated                                      |
|                      |               | proteins                                                                                                 |
| A0A2U3QAH8           | BRAD3257_7792 | contains a ULP domain                                                                                    |
| A0A0K0WSG7           | bel2-5        | NF-independent symbiosis, nodulation restriction, contains a                                             |
|                      |               | ubiquitin-like protease domain                                                                           |
| A0A2U3QA97           | ernA          | required for nodulation, might regulate host gene expression                                             |
| A0A562K8J2           | gunA2         | cellulase activity                                                                                       |
| A0A384VCK8           | innB          | regulates nodulation formation with different symbionts                                                  |
| A0A6F8NWU7           | nopA          | T3SS needle/pilus protein                                                                                |
| SPP98367.1           | nopAB         | promotes nodulation                                                                                      |
| A0A2U3Q975           | nopAO         | increase in nodulation and nitrogenase activity                                                          |
| C4ALD1               | nopC          | influences nodule formation                                                                              |
| A0A2U9K2V6           | nopD          | SUMO-protease                                                                                            |

| Uniprot_ID | gene_name     | function                                                               |
|------------|---------------|------------------------------------------------------------------------|
| G7DET7     | nopE1         | modulates gene expression of plant hormones                            |
| G7DGM5     | nopE2         | modulates gene expression of plant hormones                            |
| A0A2U8GEX4 | nopI          | beneficial for nodule formation                                        |
| P55704     | nopL          | modulates MAPK kinase pathways                                         |
| P55456     | nopM          | NEL/E3 ubiquitin ligase activity                                       |
| A0A2U3Q8X5 | NopM,NopM1    | putative novel E3 ubiquitin ligase                                     |
| P55724     | nopP          | involved in nodule formation                                           |
| A0A2U3Q8S9 | nopP,nopP1    | positively influences symbiosis                                        |
| A0A2U3QAQ0 | nopP,nopP2    | cause of incompability between ORS3257 and V.radiata                   |
| P55730     | nopT          | cysteine autoprotease                                                  |
| Q89T99     | blr2140,nopT1 | cysteine protease, induces HR-like cell death                          |
| Q9AMW4     | blr2058,nopT2 | cysteine protease                                                      |
| P55711     | nopX          | translocon protein                                                     |
| Q63K38     | BPSS1528,bapA | involved in early invasion stages, involved in adherence and cell-to   |
|            |               | cell spread                                                            |
| Q63K40     | bapC          | putative transglycosylase                                              |
| Q63K34     | bipB          | translocon protein, involved in MNGC formation, induces apoptosis      |
|            | _             | involved in phagosomal escape                                          |
| Q63K35     | bipC          | translocon protein, F-actin binding capability                         |
| Q63K37     | bipD          | translocon protein                                                     |
| Q63K42     | bopA          | contains a Rho GTPase inactivation domain, contains a cholesterol      |
|            | _             | binding domain                                                         |
| Q63K41     | bopE          | guanine nucleotide exchange factor, induces activation of caspase-l    |
|            | _             | and caspase-7, induces cytoskeleton rearrangements                     |
| Q63K18     | bsaL          | needle protein                                                         |
| Q63KH5     | cif           | deamidase activity, papain-like hydrolytic activity, putative cysteine |
|            |               | protease                                                               |
| Q9Z9F3     | CP_0748       | Inc protein, contains DUF648-domain                                    |
| Q9Z9D2     | CP_0725       | Inc protein                                                            |
| Q9Z9B4     | CP_0707       | Inc protein                                                            |
| Q9Z949     | CPn_0132      | Inc protein                                                            |
| Q9Z937     | CP_0627       | Inc protein                                                            |
| A0A0F7WL04 | CPn_0174      | Inc protein                                                            |
| Q9Z903     | CP_0587       | Inc protein                                                            |
| Q9Z8X3     | CP_0554       | Inc protein                                                            |
| Q9Z8W9     | CP_0550       | Inc protein                                                            |
| Q9Z8W1     | CP_0542       | Inc protein                                                            |
| A0A0F7WDZ9 | CPn_0354      | contains a DUF1389 domain                                              |
| A0A0F7WNQ2 | CPn_0355      | contains a DUF1389 domain                                              |
| Q9Z8I6     | CP_0401       | contains a DUF1389 domain                                              |
| Q9Z8A0     | IncV;(CT005)  | interacts with VAPs, promotes the formation of ER-inclusion MCS        |
| Q9Z868     | CPn_0483      | deubiquitiniase activity, targets NDP52                                |
| Q9Z7W9     | CP_0163       | interacts with Rab GTPases 1,10 and 11                                 |
| A0A0F7WRH6 | CPn_1027      | interacts with Caprin2 and GSK-beta, enhances anti-apoptopic ac        |
|            | _             | tivity                                                                 |

| Uniprot_ID | gene_name | function                                                                        |
|------------|-----------|---------------------------------------------------------------------------------|
| Q9Z8A1     | CT006     | interacts with VAMP3                                                            |
| O84046     | glgX      | glycogen hydrolase, glycogen degradation                                        |
| O84089     | malQ      | 4-alpha-glucanotransferase                                                      |
| O84091     | lcrE/copN | putative secretion regulator                                                    |
| O84107     | cteG      | localizes to Golgi                                                              |
| P0DJI3     | incD      | binds to the ceramide transfer protein CERT                                     |
| P0DJI4     | incE      | modulation of retromer-dependent trafficking, interacts with SNX5/6             |
| P0DPS6     | incG      | phosphorylated by phosphoserine binding protein 14-3-3-beta binds VAMP3         |
| POCI27     | incA      | induces homotypic fusion of inclusions, targets VAMP3/7/8                       |
| O84155     | CT_153    | mimics MACPF domain                                                             |
| O84226     | ipaM      | targets CEP170, modulation of the microtubule network, inhibition               |
|            |           | of host cell cytokinesis                                                        |
| O84229     | CT_226    | interaction with LRRF1 and FLII                                                 |
| O84231     | CT_228    | recruits MYPT1, regulates host cell egress                                      |
| K0GA27     | cpoS      | binds to multiple Rab GTPases                                                   |
| Q9Z8P7     | incB      | interacts with host protein Snapin                                              |
| O84236     | incC      | control of inclusion membrane stability                                         |
| O84250     | glgP      | glycogen phosphorylase                                                          |
| O84251     | CT_249    | localizes to inclusion membranes                                                |
| O84290     | CT_288    | interacts with centrosomal host protein CCDC146                                 |
| O84297     | mrsA_1    | phosphoglucomutase                                                              |
| O84363     | CT_358    | localizes to the inclusion membrane                                             |
| O84388     | CT_383    | localizes to the inclusion membrane                                             |
| O84432     | CT_425    | immunogenic in humans                                                           |
| O84439     | glyA      | serine hydroxymethyltransferase                                                 |
| O84449     | srp/crpA  | stimulates CD8+ T cell response                                                 |
| O84462     | tarP      | targets actin,ABI1,VAV2,PI3K,SHC1                                               |
| O84466     | CT_460    | localizes to the host cell nucleus, putatively involved in chromatir remodeling |
| O84582     | copB      | translocon protein, localizes to inclusion membrane                             |
| Q9Z798     | copD      | translocon protein                                                              |
| O84587     | CT_583    | target of human T cells, similar to virulence factor pGp6D                      |
| O84616     | cadD      | oxidoreductase, binds to death domains, binds to Fas,DR4 and DR5                |
|            |           | induces apoptosis in host cells                                                 |
| O84624     | CT_619    | interacts with Tsg101 and Hrs (ESCRT-I complex)                                 |
| A0A0F7X663 | CT620     | interacts with Tsg101                                                           |
| O84626     | CT_621    | interacts with Hrs (ESCRT-I complex)                                            |
| O84627     | CT_622    | beneficial for efficient bacterial entry                                        |
| O84673     | CdsF      | needle protein                                                                  |
| O84700     | tmeA      | targets AHNAK and N-WASP, modulation of actin cytoskeleton                      |
| Q9Z754     | CT_711    | localizes to the host cell nucleus                                              |
| O84718     | CT_712    | DUF582-domain protein                                                           |

| Uniprot_ID | gene_name | function                                                                     |
|------------|-----------|------------------------------------------------------------------------------|
| O84742     | CT_737    | histone methyltransferase, methylates host cell core histones H2B, H3 and H4 |
| O84743     | yycJ      | metallo-hydrolase                                                            |
| O84804     | glgA      | glycogen synthase, synthesizes alpha-1,4-glucan                              |
| O84854     | CT_847    | targets host cell GCIP, modulation of host cell growth                       |
| Q822C7     | CT848     | contains a DUF720-domain                                                     |
| O84856     | CT_849    | contains a DUF720-domain                                                     |
| O84858     | CT_850    | targets DYNLT1                                                               |
| A0A0H3MBG9 | copD2     | translocon protein                                                           |
| K0G8L2     | copB2     | translocon protein                                                           |
| O84874     | glgB      | glycogen branching                                                           |
| O84883     | tepP      | interacts with host scaffolding proteins Crk-1 and Crk-2                     |
| Q7NUT1     | cipA      | presumably F-actin binding                                                   |
| Q7NUS8     | cipB      | translocon protein, pore formation in host cell membrane                     |
| Q7NUS9     | cipC      | translocon protein                                                           |
| Q7NUT0     | cipD      | translocon protein                                                           |
| Q7NWF2     | copC      | ADP-riboaxanation, inhibits host cell apoptosis, necroptosis and             |
|            |           | pyroptosis, preferably modifies apoptotic caspases                           |
| Q7P1B7     | copE      | guanine exchange factor, activates Rac1 and Cdc42, induces actin             |
|            |           | rearrangement                                                                |
| Q7NZE8     | сорН      | propable tyrosine-phosphatase                                                |
| A0A2T5NVZ6 | cprI      | T3SS needle protein                                                          |
| Q7NY09     | cteC      | ADP-ribosyltransferase, modifies ubiquitin on residue T66, disrupts          |
|            |           | synthesis of polyubiquitin                                                   |
| Q7NYG6     | spvC/virA | phosphothreonine lyase, most likely targets MAPKs                            |
| D2TKD9     | escF      | needle protein                                                               |
| D2TKE3     | espA      | needle filament protein                                                      |
| D2TKE1     | espB      | translocon protein                                                           |
| D2TKE2     | espD      | translocon protein                                                           |
| D2TKD7     | espF      | induces actin polymerization                                                 |
| D2TKD5     | espG      | induces microtubule depolymerization, blocks WRC-dependent                   |
|            |           | actin-polymerization                                                         |
| D2TKF1     | espH      | putatively inactivates Rho-GTPases, induces cytoskeletal disruption          |
| D2TJZ4     | espI      | disrupts COPII cargo packaging and protein trafficking from golgi            |
|            |           | to ER, targets PDZ-domain proteins                                           |
| D2TRY1     | espJ      | ADP-ribosyltransferase activity, inhibits Csk kinase                         |
| D2TT36     | espL2     | cysteine protease, inhibits necroptosis and nf-kappa-B-signalling,           |
|            |           | induces actin aggregation/bundling, targets RHIM-domain proteins             |
| D2TI21     | espM2     | activates RhoA, triggers phosphorylation of cofilin (ROCK-LIMK-              |
|            |           | cofilin pathway), triggers formation of actin stress fibers                  |
| D2TM85     | espM3     | activates RhoA, triggers phosphorylation of cofilin (ROCK-LIMK-              |
|            |           | cofilin pathway), triggers formation of actin stress fibers                  |
| D2TI15     | espT      | induces formation of lamellipodia and membrane ruffling, activation          |
|            |           | of Rac1 and Cdc42, requires Wave2 and Abi1                                   |
| D2TMV7     | espV      | induces cell rounding                                                        |

| Uniprot_ID | gene_name | function                                                                                                                                                                                                       |
|------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D2TTX7     | espX7     | HECT-like E3 ubiquitin ligase                                                                                                                                                                                  |
| D2TKF8     | espZ      | promotes host cell survival, upregulates phosphorylation of AKT and focal adhesion kinase (FAK) via CD98                                                                                                       |
| D2TKE9     | map       | disrupts mitochondrial membrane potential, involved in formation of actin-rich filopodia, guanine-nucleotide exchange factor for Cdc42, activates ERK an p38                                                   |
| A0A482PDI9 | nleB      | N-acetylglucosamine-transferase, disrupts pro-inflammatory NF-kappa-B signalling, protection from oxidative stress, targets death-domain proteins                                                              |
| D2TK70     | nleC      | zinc protease, disrupts the NF-kappa-B inflammatory pathway                                                                                                                                                    |
| D2TML3     | nleD-1    | zinc protease, cleaves MAPKs, disrupts the NF-kappa-B inflammatory pathway                                                                                                                                     |
| D2TT38     | nleE      | SAM-dependent cystein methyltransferase, targets ubiquitin-chain binding activity of TAB2 and TAB3, methylates cysteine in NpI4-zinc-finger-domain, inhibits phosphorylation of NF-kappa-B inhibitor I-kappa-B |
| D2TRX8     | nleF      | caspase inhibitor, dampens apoptosis and inflammasome activation, disrupts intracellular protein trafficking                                                                                                   |
| D2TK72     | nleG1     | E3-ubiquitin ligase, targets many mitochondrial and some nucleus proteins, capable of autoubiquitination                                                                                                       |
| D2TRY0     | nleG7     | E3 ubiquitin ligase                                                                                                                                                                                            |
| D2TI20     | nleG8     | E3 ubiquitin ligase, contains a PDZ-domain binding motif                                                                                                                                                       |
| D2TRX7     | nleH      | promotes colonization, inhibits phosporylation of RPS3, disrupts NF-kappa-B pathway                                                                                                                            |
| A0A7W3BQ23 | sctI      | T3SS inner rod subunit                                                                                                                                                                                         |
| D2TKE8     | tir       | activates the N-WASP-Arp2/3 actin assembly, induces actin pedestal formation                                                                                                                                   |
| B7UJQ8     | bolA      | transcription factor, negatively regulates flagella transcription, induces biofilm formation                                                                                                                   |
| P0DUW5     | cif       | glutamine deamidase, abolishes activity of CRL complexes by deamidation of Q40 of host NEDD8                                                                                                                   |
| B7UM94     | espA      | T3SS needle filament protein                                                                                                                                                                                   |
| Q05129     | espB      | translocon protein, recruits alpha-catenin to the adherence site, inhibits interaction of myosin and actin                                                                                                     |
| B7UM93     | espD      | translocon protein, involved in pore formation                                                                                                                                                                 |
| Q7DB85     | espF      | induces N-WASP mediated actin nucleation, slows epithelial cell turnover, modifies tight junctions                                                                                                             |
| B7UMC8     | espG      | interferes with the WAVE regulatory complex, blocks ARNO sig-<br>naling, triggers actin stress fibre formation, disrupts host cell mi-<br>crotubules, GAP activity towards Rab1                                |
| B7UH72     | espG2     | disrupts host cell microtubules, alters epithelial paracellular perme-<br>ability, activates RhoA in MDCK monolayer cells, GAP activity<br>towards Rab1                                                        |
| B7UMA2     | espH      | inactivates RhoGEFs, perturbs epithelial desmosomal junctions, involved in depletion of esmoglein-2                                                                                                            |

| Uniprot_ID     | gene_name | function                                                             |
|----------------|-----------|----------------------------------------------------------------------|
| Q8XAJ5         | nleA      | inhibits caspase-1 activation, inhibits function of the COPII com-   |
|                |           | plex, prevents deubiquitination of NLRP3, inhibits secretion of      |
|                |           | IL-1-beta, binds to PDZ-domain proteins                              |
| A0A6M7GZB8     | espJ      | ADP-ribosyltransferase activity, amidates and ADP-ribosylates ki-    |
|                |           | nase Src on on residue E310, suppresses phagocytosis by inhibi-      |
|                |           | tion of SFK-mediated phosphorylation of Fc-gamma-RIIa, ADP-          |
|                |           | ribosylates multiple kinases                                         |
| A0A0H3JP21     | espL2     | cysteine protease activity, enhances activity of host cell annexin   |
|                |           | A2, increases bundling activity of F-actin, cleaves RHIM-domain      |
|                |           | containing proteins                                                  |
| Q8X4Q6         | espM1     | activates the RhoA pathway, represses formation of actin-pedestals,  |
|                |           | induces actin stress fibre formation                                 |
| Q8X4W3         | espM2     | induces mislocalization of tight junctions, activates the RhoA path- |
|                |           | way, represses formation of actin-pedestals                          |
| A0A0H3JFN8     | espO1-1   | inhibits STS-induced apoptosis, regulates IL-22 secretion, impacts   |
|                |           | neutrophil chemotaxis                                                |
| Q5K5L9         | espS      | involved in actin pedestal modulation, interacts with IQGAP1         |
| WP_001119657.1 | espT      | activates Rac1 and Cdc42, induces membrane ruffling                  |
| Q8X9A5         | espW      | triggers formation of membrane ruffles and flower-shaped structures, |
|                |           | activates Rac1, targets the motor protein Kif15                      |
| A0A0H3JC80     | espX2     | SopA-like effector                                                   |
| A0A0H3JDV8     | espX7     | HECT-like E3 ubiquitin ligase, ubiquitylation of JNK kinases, dis-   |
|                |           | ruption of the NF-kabba-B pathway                                    |
| Q8XA11         | espY1     | putatively involved in apoptosis and cell cycle regulation           |
| Q8XE85         | espY3     | induces elongation of actin pedestals                                |
| Q7DB68         | espZ      | promotes host cell survival, upregulates phosphorylation of AKT      |
|                |           | and focal adhesion kinase (FAK) via CD98                             |
| B7USU2         | fliC      | flagella filament protein, induces TLR5-dependent inflammatory       |
|                |           | response                                                             |
| B7UJB3         | ivy       | lysozyme C inhibitor                                                 |
| B7UI23         | lifA      | putative glycosyltransferase, putative cysteine protease, inhibits   |
|                |           | T-cell proliferation                                                 |
| B7UMA0         | map       | disrupts mitochondrial membrane potential, involved in forma-        |
|                |           | tion of actin-rich filopodia, guanine-nucleotide exchange factor     |
|                |           | for Cdc42, activates ERK and p38, involved in hijacking of host      |
|                |           | endosomes                                                            |
| Q8XBX8         | nleB1     | N-actylglucosaminyltransferase activity, modifies death domains      |
|                |           | of target proteins FADD, TRADD, FAS, TNFR1, DR3 and RIPK1,           |
|                |           | intracellularly enhances GshB activity                               |
| Q8X837         | nleB2     | Glycosyltransferase activity, modifies RIPK1 and TNFR1, interacts    |
|                |           | with ensconsin                                                       |
| Q8X834         | nleC      | zinc metalloprotease, cleaves NF-kappa-B subunits, inhibits IL-8     |
|                |           | secretion                                                            |
| A0A0H3JGR6     | nleD      | zinc metalloprotease, cleaves JNK and p38 kinases, inhibits secre-   |
|                |           | tion of proinflammatory cytokines                                    |

| Uniprot_ID | gene_name     | function                                                                                                                                                                                                                              |
|------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B7UI22     | nleE          | SAM-dependent cysteine methyltransferase, targets ubiquitin-chain binding activity of TAB2 and TAB3, methylates cysteine in NpI4-zinc-finger-domain, inhibits phosphorylation of NF-kappa-B inhibitor I-kappa-B p65/RelA              |
| Q8XAL7     | nleF          | inhibits maturation and secretion of IL-18, binds and inhibits cleavage of several caspase, blocks FasL-induced cell death                                                                                                            |
| B7UNX2     | nleG/nleI     | E3 ubiquitin ligase                                                                                                                                                                                                                   |
| ECs_1811   | nleG2-1       | E3 ubiquitin ligase                                                                                                                                                                                                                   |
| Q8X4X1     | nleG2-2       | E3 ubiquitin ligase                                                                                                                                                                                                                   |
| Q8X509     | nleG2-3       | E3 ubiquitin ligase, triggers degradation of hexokinase-2 and SNAP29, directly binds to hexokinase-2, autoubiquitinase activity                                                                                                       |
| Q8X4X3     | nleG5-1       | E3 ubiquitin ligase, targets the MED15 subunit of the mediator complex, autoubiquitinase activity                                                                                                                                     |
| Q8X507     | nleG5-2       | E3 ubiquitin ligase                                                                                                                                                                                                                   |
| Q8X4X2     | nleG6-1       | putative E3 ubiquitin ligase                                                                                                                                                                                                          |
| A0A0H3JE38 | nleG6-2       | E3 ubiquitin ligase, autoubiquitinase activity                                                                                                                                                                                        |
| ECs_3488   | nleG6-3       | putative E3 ubiquitin ligase                                                                                                                                                                                                          |
| B6DZZ5     | nleG7         | E3 ubiquitin ligase, recognizes PDZ-domains                                                                                                                                                                                           |
| Q8XAN6     | nleG/nleG8-1  | E3 ubiquitin ligase, binds to the cell cycle regulator CDC20, interrupts cel cycle progression                                                                                                                                        |
| Q8X9A7     | nleG8-2       | E3 ubiquitin ligase, binds to the cell cycle regulator CDC20                                                                                                                                                                          |
| Q8X831     | nleH1-1/nleH1 | protein kinase, autophosphorylase activity, inhibits phosphorylation of RPS3 by IKK-beta, attenuates nuclear localization of RPS3, inhibits caspase-dependent apoptosis, phosphorylates CRKL, suppresses activation of ERK1/2 and p38 |
| Q8XAL6     | nleH1_2/nleH2 | protein kinase, autophosphorylase activity, inhibits caspase-<br>dependent apoptosis, suppresses caspase-3 and p38                                                                                                                    |
| Q8X482     | espF(U)/tccP  | couples Tir to the host cell actin cytoskeleton, activates and binds to N-WASP                                                                                                                                                        |
| B7UM99     | tir           | induces host actin pedestal formation                                                                                                                                                                                                 |
| Q7DB77     | tir           | induces actin pedestal formation, inhibits phosphorylation of TAK1                                                                                                                                                                    |
| D4I1J6     | avrRpt2       | C70 cystein protease                                                                                                                                                                                                                  |
| O54581     | dspE/dspA     | induces necrosis, induces electrolyte leakage, interacts with host serine/threonine kinases                                                                                                                                           |
| Q9LAW7     | eop1          | putative cystein protease, involved in host-specific virulence                                                                                                                                                                        |
| A0A830ZZY8 | eop2          | contains a pectate lyase domain                                                                                                                                                                                                       |
| E5B7T4     | flgL          | flagellar hook-associated protein                                                                                                                                                                                                     |
| A2I5X7     | eop3/hopX1    | putative cysteine protease, elicits HR response in N.tabacum                                                                                                                                                                          |
| Q46618     | hrpA          | forms the T3SS needle/pilus                                                                                                                                                                                                           |
| D4HVM8     | hrpJ          | involved in regulation of harpin secretion, required for harpin secretion, elicits a HR response                                                                                                                                      |
| D4HVL2     | hrpK          | putative translocator                                                                                                                                                                                                                 |
| Q01099     | hrpN          | forms pores, induces oxidate stress, elicits HR response, induces inhibition of ATP synthesis in chloroplasts, involved in host cell necrosis, promotes translocation of DspA                                                         |

| Uniprot_ID     | gene_name     | function                                                               |
|----------------|---------------|------------------------------------------------------------------------|
| D4HVP9         | hrpW          | putative pectate lyase, contributes to callose accumulation, minor     |
|                |               | effect on pathogenicity                                                |
| D4I2R4         | traF          | putatively involved in plasmid transfer and pilus formation            |
| WP_196766517.1 | hopAY1        | putative cysteine protease                                             |
| Q8VQ16         | avrPphD/hopD1 | involved in gall formation, elicits HR response                        |
| Q9FCZ8         | hrpA          | T3SS needle/pilus protein, forms the T3SS pilus                        |
| PEI06249.1     | hrpK          | involved in gall formation                                             |
| Q9FCY8         | hrpN          | harpin, elicits HR response in host cells                              |
| Q9KH45         | hrpN          | harpin, elicits HR response in host cells                              |
| Q2LDQ5         | hsvB          | putative transcription factor, involved in host specificity determina- |
|                |               | tion                                                                   |
| Q47867         | hsvG          | putative transcription factor, targets the consensus sequence ACAC-    |
|                |               | C/aAA, binds to the promoter region of host protein HsvgT              |
| O85666         | pthG          | induces PIN2 expression, triggers HR response in host cells            |
| Q9FCY7         | wtsE          | perturbs the phenylpropanoid metabolism in maize, induces cell         |
|                |               | death                                                                  |
| Q84H14         | C6H65_01640   | serine protease, targets GTPase RhoA and Rac1                          |
| P13835         | avrB          | induces phosphorylation of RIN4 proteins, phosphorylates RIN4b         |
| Q48B66         | avrB2/avrB2-3 | elicits HR response                                                    |
| Q5D157         | avrB3/avrB4-1 | triggers RPM1-dependent signaling, phosphorylates RIPK and             |
|                |               | RIN4                                                                   |
| Q887C9         | avrE1         | involved in cell lysis and necrosis, linked to downregulation of       |
|                |               | NHL13                                                                  |
| Q7BE94         | avrRpm1       | ADP-ribosyltransferase                                                 |
| Q48B92         | avrRps4       | triggers hypersensitive response in lettuce                            |
| Q6LAD6         | avrRpt2       | cysteine protease                                                      |
| Q9I1S4         | exoY          | nucleotidyl cyclase, binds to F-actin, induces increase of permeabil-  |
|                |               | ity between endothelial monolayers                                     |
| Q886L1         | hopAF1        | targets methylthioadenosine nucleosidases MTN1 and MTN2                |
| Q888W0         | hopAI1        | phospho-threonine lyase, dephosphorylates MPK3,MPK4 and                |
|                |               | MPK6                                                                   |
| Q52430         | hopAR1        | cysteine protease                                                      |
| E5G0U3         | hopAZ1        | involved in host cell cytoskeleton modulation                          |
| Q888Y8         | hopD1/avrD1   | elicits HR response, involved in syringolide production, suppresses    |
|                | _             | ETI response                                                           |
| Q87W42         | hopG1         | induces actin bundling, induces host chlorosis, interacts with mito-   |
|                | -             | chondrial kinesin KIN7D                                                |
| Q8RP09         | hopI1         | induces chloroplast thylakoid remodeling, suppresses SA accumu-        |
|                | •             | lation                                                                 |
| Q88BH0         | hopK1         | triggers HR                                                            |
| Q4ZX47         | hopZ3         | acetyltransferase, disrupts the PTO defense pathway, targets RIN4-     |
| -              | •             | proteins, targets other effectors                                      |
| Q52473         | hrpA1         | pilus-forming protein                                                  |
| Q87W38         | hrpB          | AraC-family transcriptional regulator                                  |
| G3XDD1         | hrpJ          | controls secretion of translocon proteins                              |

| Uniprot_ID  | gene_name    | function                                                              |
|-------------|--------------|-----------------------------------------------------------------------|
| Q9F0B0      | hrpZ/hrpZ1   | harpin                                                                |
| G3XD49      | pcrV         | translocon protein                                                    |
| Q9I324      | popB         | translocon protein                                                    |
| Q9I323      | popD         | translocon protein                                                    |
| G3XCX6      | popN         | gatekeeper protein                                                    |
| P95434      | pscF         | T3SS needle component                                                 |
| Q7ALE9      | hrpY         | needle/pilus protein                                                  |
| Q8XPQ6      | ripAZ1/rip71 | induces cell death                                                    |
| RCFBP_11525 | ripBM        | putative serine/threonine kinase                                      |
| Q8ZMI3      | avrA         | acetyltransferase, inhibits c-Jun, JNK, Ap1 and NF-kappa-B sig-       |
|             |              | nalling, stabilizes tight junction protein ZO-1, deubiquitinates I-   |
|             |              | kappa-B-alpha and beta-catenin                                        |
| A0A0F6B537  | gogA         | zinc metalloprotease, inhibits NF-kappa-B activation                  |
| Q8ZN18      | gogB         | targets the SCF ubiquitin ligase complex, dampens host inflamma-      |
|             |              | tory response                                                         |
| A0A0F6AZI6  | gtgA         | zinc metalloprotease, inhibits NF-kappa-B activation                  |
| A0A0H3N9Y3  | gtgE         | cysteine protease, proteolytically cleaves Rab29, Rab32 and Rab38     |
| A0A0H3NF83  | orgC         | accelerates polymerization of PrgI, assists in needle filament assem- |
|             |              | bly                                                                   |
| A0A0F6AZQ0  | pipA         | zinc metalloprotease, inhibits NF-kappa-B activation                  |
| Q8ZMM8      | pipB2        | targets and activates kinesin-1                                       |
| P41784      | prgI         | T3SS needle filament protein                                          |
| P41785      | prgJ         | T3SS inner rod protein                                                |
| A0A0K0H8V0  | sboA         | putative ubiquitin ligase                                             |
| A0A0K0HD42  | sboC/seoC    | ADP-ribosylates Src and Csk kinases                                   |
| A0A0K0HC32  | sboH         | prevents caspase-3 activation                                         |
| A0A0K0H9B7  | sboI         | putative E3 ubiquitin transferase                                     |
| Q56061      | sifA         | induces aggregation of LAMP-positive compartments, targets the        |
|             |              | BLOC-2 complex, interacts with Rab7                                   |
| POCL52      | sipA         | bundles F-actin, induces membrane ruffling, recruits syntaxin-8 to    |
|             |              | the SCVs, promotes fusion of SCVs with early endosomes                |
| Q56019      | sipB         | translocon protein, forms a translocon pore with SipC, binds and ac-  |
|             |              | tivates caspase-1, mediates rapid pyroptosis and delayed apoptosis    |
|             |              | in macrophages, reduces p65 translocation into the nucleus            |
| POCL47      | sipC         | forms a translocon pore with SipB, binds, bundles and polymerizes     |
|             |              | F-actin, involved in PERP accumulation at the host membrane,          |
|             |              | recruits syntaxin-6                                                   |
| Q56026      | sipD         | needle tip protein, induces apoptosis via caspase-3 activation, re-   |
|             |              | duces p65 translocation into the nucleus                              |
| Q8ZQQ2      | slrP         | E3 ubiquitin ligase, targets and ubiquitinates Trx1, targets the ER   |
|             |              | chapereone ERdj3                                                      |
| Q8ZNR3      | sopA         | HECT-like E3 ubiquitin ligase, disrupts tight junctions, involved in  |
|             |              | PMN migration                                                         |

| Uniprot_ID | gene_name | function                                                                                                                                                                                                                                       |
|------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O30916     | sopB      | phosphoinositide phosphatase, dephosphorylates PI(4,5)P3, perturbs endosome to lysosome trafficking, alters membrange charge of SCVs via reduction of negatively charged lipids, acts as a guanine nucleotide dissociation inhibitor for Cdc42 |
| P40722     | sopD      | can both activate and inactivate Rab8a, GDI activity towards Rab8a, GAP activity towards Rab8a                                                                                                                                                 |
| Q8ZQC8     | sopD2     | GAP activity, binds to annexin A2, targets Rab proteins                                                                                                                                                                                        |
| O52623     | sopE      | GEF activity, disrupts cell polarity, disrupts tight junctions, activates caspase-1, induces formation of lamellipodia and membrane ruffling                                                                                                   |
| Q7CQD4     | sopE2     | GEF activity, induces a proinflammatory response, disrupts tight junctions, induces formation of filopodia, represses serine synthesis                                                                                                         |
| Q8ZPY9     | sopF      | ADP-ribsyltransferase, inhibits autophagy, blocks association of ATG16L1 with the vacuolar ATPase subunit ATP6V0C via ADP-ribosylation, promotes the integrity of the SCV                                                                      |
| P74873     | sptP      | tyrosine phospatase, GTPase-activating (GAP) domain, reverts cytoskeletal changes induced by SopE/SopE2, dephosphorylates the VCP/p97 AAA+ ATPase                                                                                              |
| P0A2M9     | spvC      | phosphothreonine lyase, dephosporylates ERK1/2, p38 and JNK kinases                                                                                                                                                                            |
| P0A2N2     | spvD      | cystein protease, inhibits NF-kappa-B signaling, prevents nuclear accumulation of p65                                                                                                                                                          |
| A0A0H3NPQ1 | srfJ      | putative glycoside hydrolase                                                                                                                                                                                                                   |
| P0CZ04     | spiC      | inhibits endosome-endosome fusion, interferes with intracellular trafficking                                                                                                                                                                   |
| A0A0H3NKW1 | ssaG      | needle filament protein                                                                                                                                                                                                                        |
| H9L496     | ssaI      | inner rod protein                                                                                                                                                                                                                              |
| Q7BVH7     | sseB      | translocon protein                                                                                                                                                                                                                             |
| O84947     | sseC      | translocon protein                                                                                                                                                                                                                             |
| Q9R803     | sseD      | translocon protein                                                                                                                                                                                                                             |
| H9L407     | sseF      | required for juxtanuclear positioning of the SCV, recruits dynein to the SCV, interferes with autophagosome formation, inhibits small GTPase Rab1A                                                                                             |
| H9L486     | sseG      | required for juxtanuclear positioning of the SCV, interferes with autophagosome formation, inhibits small GTPase Rab1A                                                                                                                         |
| A0A0F6AZL3 | sseI      | deamidase activiy, deamidates trimeric G-proteins, binds to IQ-GAP1, inhibits normal cell migration of macrophages and dendritic cells                                                                                                         |
| Q9FD10     | sseJ      | deacylase, phospholipase A and GCAT activity, esterifies cholesterol to cholesterolesters, induces cholesterol accumulation                                                                                                                    |
| Q9L9J3     | sseK1     | glycosyltransferase, inhibits NF-kappa-B activation pathways                                                                                                                                                                                   |
| Q8ZNP4     | sseK2     | glycosyltransferase                                                                                                                                                                                                                            |
| P0DUJ7     | sseK3     | glycosyltransferase, inhibits NF-kappa-B activation                                                                                                                                                                                            |
| Q8ZNG2     | sseL      | deubiquitinase activity, alters host lipid metabolism                                                                                                                                                                                          |
| D0ZVG2     | sspH1     | E3 ubiquitin ligase, inhibits NF-kappa-B activation                                                                                                                                                                                            |

| Uniprot_ID | gene_name        | function                                                                |
|------------|------------------|-------------------------------------------------------------------------|
| P0CE12     | sspH2            | E3 ubiquitin ligase                                                     |
| Q8ZPD7     | steA             | interferes with the NF-kappa-B pathway, prevents dissociation of        |
|            |                  | Cand-1 from cullin-1                                                    |
| Q8ZP57     | steC             | induces ROCK-like F-actin reorganization, kinase activity, phos-        |
|            |                  | phorylates multiple target proteins, controls intracellular replication |
| Q8ZNP2     | steD             | induces ubiquitination of MHCII, targets CD97 for degradation           |
| A0A0F6B506 | sarA             | mimics cytokine receptor signaling (gp130), alters substrate speci-     |
|            |                  | ficity of GSK3, inhibits NF-kappa-B activation                          |
| Q8Z7T2     | sboD/stoD        | U-box E3 ubiquitin ligase                                               |
| P18010     | ipaA             | induces F-actin depolymerization via binding to vinculin, harbors       |
|            |                  | 3 vinculin-binding sites, activates vinculin                            |
| P18011     | ipaB             | translocon protein, involved in secretion control, induces cell cycle   |
|            |                  | arrest, promotes unscheduled APC activation, induces apoptosis          |
| P18012     | ipaC             | translocon protein, forms a complex with IpaB, nucleates actin,         |
|            |                  | triggers src-dependent actin polymerization                             |
| P18013     | ipaD             | needle tip protein, essential for effector secretion, environmental     |
|            |                  | sensor of bile salts, triggers loss of mitochondrial membrane poten-    |
|            |                  | tial, induces apoptotic cell death via caspase activation               |
| A0A0H2UY03 | ipaH_1           | E3 ubiquitin ligase, inhibits PKC-mediated NF-kappa-B activation,       |
|            |                  | targets TRAF2 for degradation                                           |
| Q83R64     | ipaH_4           | putative E3 ubiquitin ligase                                            |
| D2A6P4     | ipaH4/H7, pu-    |                                                                         |
|            | tative NEL E3    |                                                                         |
|            | ubiquitin ligase |                                                                         |
| A0A0H2V170 | ipaH_7           | NEL E3 ubiquitin ligase                                                 |
| A0A0H2USG1 | ipaH1.4          | NEL E3 ubiquitin ligase, inhibits LUBAC signalling                      |
| Q83RJ4     | ipaH3            | NEL E3 ubiquitin ligase                                                 |
| P18009     | ipaH4.5          | NEL E3 ubiquitin ligase, induces NLRP3-mediated inflammasome            |
|            |                  | activation, inhibits the transcriptional activity of NF-kappa-B, dis-   |
|            |                  | rupts MPR trafficking and lysosomal function, inhibits IRF3 sig-        |
|            |                  | nalling                                                                 |
| P18014     | ipaH7.8          | NEL E3 ubiquitin ligase, induces inflammasome activation and            |
|            |                  | pyroptosis, inhibits GSDMD-dependent pyroptosis                         |
| Q8VSC3     | ipaH9.8          | NEL E3 ubiquitin ligase, prevents Nod1-dependent NF-kappa-B             |
|            |                  | $activation, targets\ NEMO/IKBKG\ for\ ubiquitination, downregulates$   |
|            |                  | proinflammatory gene expression, modulates the acute innate imune       |
|            |                  | response                                                                |
| Q54150     | ipaJ             | cysteine protease, cleaves N-myristoylated GTPases, inhibits pro-       |
|            |                  | tein trafficking from Golgi membranes                                   |
| P33548     | ipbB1            | induces membrane ruffling, activates Rac1 via the ELMO-                 |
|            |                  | DOCK180 pathway, Rho GEF for Rac1 and Cdc42, involved in                |
|            |                  | actin cocoon regulation, promotes efficient DMV escape                  |
| Q9AJW7     | ipgB2            | induces stress fibres, activates RhoA signalling, GEF for RhoA,         |
|            |                  | promotes invasion into epithelial cell monolayers                       |

| Uniprot_ID | gene_name    | function                                                                                                                                                                                                                                               |  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Q07566     | ipgD         | inosotol phosphatase activity, dephosphorylates PtdIns(4,5)P2 into PtdIns(5)P, increases cocoon formation, promotes membrane blebbing and cell rounding, recruits Rab11 to the membrane, inhibits migration of activated CD4+ T cells                  |  |
| P33546     | icsB         | 18-carbon fatty acyltransferase activity, binds cholesterol, represses early recruitment of LC3, inhibits autophagy, modifies a number of actin regulating proteins                                                                                    |  |
| Q04640     | mxiC         | negative regulator of T3SS secretion                                                                                                                                                                                                                   |  |
| P0A223     | mxiH         | secreted needle filament protein, induce NLRC4 inflammasome-<br>mediated pyroptosis                                                                                                                                                                    |  |
| P0A225     | mxiI         | inner rod protein, induce NLRC4 inflammasome-mediated pyroptosis                                                                                                                                                                                       |  |
| CAC05784.1 | orf48        | putative TA component                                                                                                                                                                                                                                  |  |
| CAC05854.1 | orf176       | putative antitoxin component                                                                                                                                                                                                                           |  |
| A0A822PPP2 | ERS574920_04 | 342 cysteine protease, induces TOR inhibition hypersensitivy, downreg-<br>ulates IL-8 production, promotes PMN migration, increases host<br>cell proliferation via activation of mTORC1, involved in activation<br>of the MEK/ERK inflammatory pathway |  |
| Q8VSJ7     | ospC1        | ADP-riboxanation activity, prevents apoptosis, inhibits caspase-8 activation, promotes PMN transepithelial migration, inhibits IFN signaling, abolishes STAT1 phosphorylation                                                                          |  |
| Q8VSL8     | ospC2        | ADP-riboxanation activity, required for inflammation, inhibits IFN-gamma 1 signaling                                                                                                                                                                   |  |
| A0A0H2US87 | ospC3        | ADP-riboxanation activity, inhibits caspase-4 dependent inflammatory cell death                                                                                                                                                                        |  |
| A0A822PRD6 | ERS574920_04 | 294 anti-activator role of virulence gene expression                                                                                                                                                                                                   |  |
| Q6XW09     | ospD2        | putative cysteine protease, limits translocation of VirA, controls timing of host cell death                                                                                                                                                           |  |
| Q99Q01     | ospD3        | cysteine protease, prevents pyroptosis and necroptosis, inhibits IL-8 secretion, specifically targets RHIM-domains                                                                                                                                     |  |
| D2AJY3     | ospE1        | inhibits apoptosis, binds to the integrin-linked kinase, interferes with focal adhesion disassembly, promotes bacterial adhesion to host cells                                                                                                         |  |
| Q6BBS0     | ospE2        | binds to the integrin-linked kinase, interferes with focal adhesion disassembly, promotes bacterial adhesion to host cells                                                                                                                             |  |
| Q8VSP9     | ospF         | inactivates MAPK pathways, dephosphorylates ERK1/2, JNK and p38 kinases, required for efficient PMN migration, reprograms host cell gene expression                                                                                                    |  |
| D2AJU3     | ospG         | serine/threonine kinase, inhibits the host inflammatory response, autophosphorylation activity, inhibits NF-kappa-B activation via inhibition of phospho-I-kappa-B-alpha ubiquitination, preferentially binds to ubiquitinated E2 enzymes              |  |
| Q8VSD5     | ospI         | glutamine deamidase activity, deamidates UBC13, blocks TRAF6-dependent NF-kappa-B signaling                                                                                                                                                            |  |

| Uniprot_ID     | gene_name | function                                                                                          |  |
|----------------|-----------|---------------------------------------------------------------------------------------------------|--|
| A0A3T2V133     | ospZ      | inactivates the TAK/Tab kinase complex, blocks nuclear transloca-<br>tion of p65, methylates TAB3 |  |
| Q7BU69         | virA      | phosphothreonine lyase, interacts with alpha- and beta-tubulins                                   |  |
|                |           | triggers necrosis, induces membrane ruffling, induces calpain acti                                |  |
|                |           | vation, GAP activity towards multiple Rab proteins                                                |  |
| O06662         | vapC/MvpA | antitoxin, cleaves fMet-RNA                                                                       |  |
| D0ZDK2         | escE      | regulates T3SS effector secretion                                                                 |  |
| Q4G4C8         | eseB      | translocon protein, involved in autoaggregation and biofilm forma                                 |  |
|                |           | tion, builds filamentous appendages                                                               |  |
| D0ZDL0         | eseC      | transolcon protein                                                                                |  |
| D0ZDK9         | eseD      | translocon protein                                                                                |  |
| Q4G4D4         | eseG      | disassembles microtubules                                                                         |  |
| D0Z825         | eseH/eseN | phosphotreonine lyase activity, inhibits phosphorylation of ERK1/2                                |  |
|                |           | p38-alpha and JNK                                                                                 |  |
| Q9KI30         | eseH      | contains a E3 ubiquitin ligase domain and 5 LRR repeats                                           |  |
| D0ZDM8         | eseJ      | negatively regulates adherence of bacteria, downregulates bacterial                               |  |
|                |           | type 1 fimbriae, suppresses host cell apoptosis, disrupts endosomal                               |  |
|                |           | maturation and lysosome fusion                                                                    |  |
| C5B8F6         | eseJ      | contains a E3 ubiquitin domain and 12 LRR repeats                                                 |  |
| D0Z7K8         | eseK      | inhibits phosphorylation of p38-alpha, JNK and ERK1/2, inhibits                                   |  |
|                |           | expression of TNF-alpha, promoters bacterial colonization                                         |  |
| WP_107775268.1 | eseK      | binds CD74, contains a E3 ubiquitin ligase domain and 12 LRR                                      |  |
|                |           | repeats                                                                                           |  |
| C5BD28         | eseL      | contains a E3 ubiquitin ligase domain and 6 LRR repeats                                           |  |
| C5BD30         | eseM      | contains a E3 ubiquitin ligase domain and 11 LRR repeats                                          |  |
| C5BA03         | eseN      | inactivates/dephosphorylates ERK1/2, phosphothreonine lyase do-                                   |  |
|                |           | main, binds to th emajor vault protein                                                            |  |
| C5B8P0         | eseO      | contains a Shigella enterotoxin 2 domain and an ankyrin repreat                                   |  |
|                |           | domain                                                                                            |  |
| Q87GH0         | vopA/vopP | acetyltransferase activity                                                                        |  |
| Q87P61         | vopB1     | T3SS1 translocon protein                                                                          |  |
| B9A7Z8         | vopB2     | T3SS2 translocon protein                                                                          |  |
| Q87GF5         | vopD2     | T3SS2 translocon protein                                                                          |  |
| Q87GF5         | VPA1361   | T3SS2 translocon protein                                                                          |  |
| A0A6B3LEM4     | vopE      | modulates the CWI-MAPK pathway, GTPase-activating do                                              |  |
|                |           | main(GAP)                                                                                         |  |
| WP_000920496.1 | vopK      | putative acetyltransferase                                                                        |  |
| Q87GI7         | vopO      | activates the RhoA-ROCK pathway, induces stress fibre formation                                   |  |
| Q87P35         | vopR      | contributes to cell rounding, binds to PIP2                                                       |  |
| Q87GI9         | vopT      | ADP-ribosylase activity, targets Ras                                                              |  |
| Q87GF9         | vopV      | bundles F-actin                                                                                   |  |
| Q87GH1         | vopW      | hydrophilic translocon protein                                                                    |  |
| Q87GH1         | VPA1345   | hydrophilic translocon protein                                                                    |  |
| Q87GI0         | vopZ      | inhibits autophosphorylation of kinase TAK1, prevents activation                                  |  |
|                |           | of MAPK- and NF-kappa-B signaling                                                                 |  |

| Uniprot_ID | gene_name           | function                                                                                                                                                                                           |
|------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q3C000     | avrBs1              | elicits HR response in plants, suppresses activation of the HOG MAPK pathway, induces cell enlargement and ion leakage                                                                             |
| Q3BZN0     | avrBs2              | contains a glycelophodiesterase domain, involved in suppression of<br>the PTI immunity answer                                                                                                      |
| P14727     | avrBs3              | TAL effector, induces chlorosis, induces cell hypertrophy via reg-<br>ulation of cell enlargement, induces ion leakage, binds upa-motif<br>containing DNA                                          |
| Q07061     | avrBs4/avrBs3-<br>2 | TAL effector, activates expression of Bs4C in host plants, induces chlorosis, induces catalase accummulation in peroxisomes, involved in suppression of plant defense responses                    |
| G0T341     | avrBst/xopJ2        | elicits HR response in host plants, acetyltransferase activity, acetylates ACIP1, binds to CaSGT1, reduces phosphorylation of SGT1                                                                 |
| Q8P4H6     | avrXccB             | contains an acetyltransferase domain                                                                                                                                                               |
| Q4UWF4     | xopAC               | uridylates PBL2 and BIK1                                                                                                                                                                           |
| P69979     | yscM/lcrQ           | negatively regulates T3SS effector secretion, binds LcrH                                                                                                                                           |
| P23994     | lcrV                | involved in pore formation, regulates expression of YopB and YopD, induces apoptosis of human T-cells, upregulates IL-10, represses TNF-alpha signalling, binds TLR2 and receptor-bound hIFN-gamma |
| Q8D1P5     | yipA                | forms a complex with YitA, YitB, YitC and YipB                                                                                                                                                     |
| A0A0H2W9Z2 | tccC2;yipB          | forms a complex with YitA, YitB, YitC and YipA                                                                                                                                                     |
| Q8D1P8     | yitA                | forms a complex with YitB, YitC, YipA and YipB                                                                                                                                                     |
| A0A2U2H2J5 | yitB                | forms a complex with YitA, YitC, YipA and YipB                                                                                                                                                     |
| Q8D1P6     | yitC                | forms a complex with YitA, YitB, YipA and YipB                                                                                                                                                     |
| A0A3N4B6U4 | ylrA                | contains E3 ubiquitin ligase domain and an LRR-domain, inhibits growth when expressed in yeast                                                                                                     |
| A0A3G5L8K9 | ylrB                | contains an LRR domain                                                                                                                                                                             |
| A0A380PKG6 | ylrC                | contains an E3 ubiquitin ligase domain and an LRR-domain, inhibits growth when expressed in yeast                                                                                                  |
| Q06114     | yopB                | translocon protein, pore forming protein, triggers Ras-dependent activation of NF-kappa-B                                                                                                          |
| P37132     | yopD                | translocon protein, pore forming protein, negatively regulate yop translation prior to secretion                                                                                                   |
| P31492     | yopE                | induces disruption of cytoskeleton, catalyzes GTP hydrolysis to<br>inhibit Rho GTPase activity, induces inflammasome activation,<br>prevents ROS formation                                         |
| P08538     | yopH                | tyrosine phosphatase, interrupts activating signals for GEFs                                                                                                                                       |
| O68718     | yopJ                | cysteine protease activity, acetyltransferase activity, inhibits caspase-1 dependent response, inhibits NF-kappa-B and JNK signaling                                                               |
| P17778     | yopM                | inhibits pyrin inflammasome activation, phosphorylates 14-3-3 binding sites of PRK kinases                                                                                                         |
| Q663K1     | yopN                | blocks secretion of Yops prior to host cell contact, involved in virulence                                                                                                                         |

| Uniprot_ID | gene_name                | function                                                                                                                                                                                   |
|------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q05608     | ypkA/yopO                | inhibits multiple G-alpha-1 signalling pathways, binds RhoA and Rac1, binds to actin, recruits and phosphorylates actin polymerization regulators                                          |
| P27474     | yopQ/yopK                | inhibits bacterial adherence to the host cell, prevents inflammasome activation, interacts with T3SS translocon pore, controls effector secretion, prevents caspase-1 dependent pyroptosis |
| P68590     | yopR, involved in needle |                                                                                                                                                                                            |
|            | filament poly-           |                                                                                                                                                                                            |
|            | merization,              |                                                                                                                                                                                            |
|            | contributes to           |                                                                                                                                                                                            |
|            | virulence                |                                                                                                                                                                                            |
| Q93RN4     | yopT                     | induces cytoskeleton disruption, triggers dephosphorylation of                                                                                                                             |
|            |                          | pyrin, cleaves the C-terminus of Rho GTPases                                                                                                                                               |
| O85477     | yplA                     | phospholipase PLA2 activity, induces acute inflammation                                                                                                                                    |
| Q01247     | yscF                     | needle filament protein, induces proinflammatory cytokines                                                                                                                                 |
| P69971     | yscI                     | inner rod protein                                                                                                                                                                          |
| P68587     | yscP                     | needle length regulator, substrate specifity switch regulator                                                                                                                              |
| P69986     | yscU                     | dissocation of YscUcc induces Yop secretion upon Ca2+-depletion,                                                                                                                           |
|            |                          | substrate switch regulator, C-terminal secretion signal                                                                                                                                    |
| P61416     | yscX                     | required for Yop secretion, builds a ternary complex with YscY and YscV                                                                                                                    |
| Q8KQ84     | yspB                     | translocon protein                                                                                                                                                                         |
| A1JQ85     | yspC                     | translocon protein                                                                                                                                                                         |
| A0A8B6KWG7 | yspD                     | translocon protein                                                                                                                                                                         |
| A1JI19     | yspE                     | contains an ADP-ribosyltransferase domain                                                                                                                                                  |
| A1JRY1     | yspI                     | directly binds to FAK, inhibits cellular migration, induces cell                                                                                                                           |
|            |                          | paralysis                                                                                                                                                                                  |
| A1JRY5     | yspK                     | serine/threonine kinase, interacts with E2 proteins                                                                                                                                        |
| A0A485DGC3 | sseJ/yspM                | contains a GDSL lipase domain                                                                                                                                                              |
| A1JTB0     | yspP                     | phosphatase activity                                                                                                                                                                       |
| Q6RK53     | dspE                     | elicits HR response in host cells, induces host cell death                                                                                                                                 |
| C4ALD0     | nopA                     | major T3SS needle pilus subunit                                                                                                                                                            |
| M4PUR5     | gunA                     | endo-glycoside hydrolase/cellulase activity                                                                                                                                                |

**Table A.5.: Identified target proteins of T3SS-secreted proteins** This table contains all proteins that have been experimentally validated to be directly interacting, binding or modified by T3SS-secreted proteins.

| target protein | effector<br>(Uniprot/NCBI ID) | effector gene name |
|----------------|-------------------------------|--------------------|
| UBE2L3         | D2AJU3                        | ospG               |
| 14-3-3-beta    | P0DPS6                        | incG               |
| 14-3-3-gamma   | POCE12                        | sspH2              |

T3SE and their targets (continued).

| target          | effector          | effector gene name           |
|-----------------|-------------------|------------------------------|
|                 | (Uniprot/NCBI ID) |                              |
| 1700055N04Rik   | A0A0F6AZI6        | gtgA                         |
| ABCF2           | Q7DB85            | espF                         |
| ABI1            | O84462            | tarP/CT                      |
| ACADM           | D2TK72            | nleG1                        |
| ACBD3           | H9L407, H9L486    | sseF, sseG                   |
| ACIP1           | G0T341            | avrBst/xopJ2                 |
| AHNAK           | O84700            | tmeA                         |
| AIP             | POCE12            | sspH2                        |
| ANXA6           | Q7DB85            | espF                         |
| ARF1            | Q54150            | ipaJ                         |
| ARF3            | Q54150            | ipaJ                         |
| ARF4            | Q54150            | ipaJ                         |
| ARF5            | Q54150            | ipaJ                         |
| ARL1            | Q54150            | ipaJ                         |
| ARL4C           | Q54150            | ipaJ                         |
| ATG1a/AT3G61960 | Q48B92            | avrRps4                      |
| ATP6V0C         | Q8ZPY9            | sopF                         |
| Abhd12          | A0A0F6AZI6        | gtgA                         |
| Abl             | D2TKE8, B7UM99    | tir, tir                     |
| AcsI4           | A0A0F6AZI6        | gtgA                         |
| Aldh3b1         | A0A0F6AZI6        | gtgA                         |
| AnxA2           | Q8ZMM8, Q8ZQC8    | pipB2, sopD2                 |
| AopB            | A4SUG8, A4SUG6    | acrH, aopD                   |
| AopD            | A4SUG8, A4SUG7    | acrH, aopB                   |
| Arf1            | B7UMC8            | espG                         |
| Arf5            | B7UMC8            | espG                         |
| Arf6            | B7UMC8            | espG                         |
| Arg             | D2TKE8, B7UM99    | tir                          |
| AtMPK6          | P0A2M9            | spvC                         |
| AtRIN4          | Q5D157            | avrB4-1                      |
| AtRIPK          | Q5D157<br>Q5D157  | avrB4-1                      |
| Ati2            | A4SUE8            | ati1                         |
| Atp5o           | A0A0F6AZI6        | gtgA                         |
| AvrB3           | Q4ZX47            | hopZ3                        |
| AvrPto1         | Q4ZX47            | hopZ3                        |
| AvrRpm1         | Q4ZX47            | hopZ3                        |
| B4gaint1        | A0A0F6AZI6        | gtgA                         |
| BAG regulator 2 | POCE12            | sspH2                        |
| BASP1           | P33546            | icsB                         |
| BI1             | Q8X831, Q8XAL6    | nleH1-1/nleH1, nleH1_2/nleH2 |
| BIK1            | Q52430, Q4UWF4    | avrPph3, xopAC               |
| BopB            | A0A6N3S484        | bopD                         |
| ВорD            | Q9REZ5,           | bopB, bsp22                  |
| υθη             | A0A5P2MRE5        | 00pB, 03p22                  |

T3SE and their targets (continued).

| target     | effector                  | effector gene name              |
|------------|---------------------------|---------------------------------|
|            | (Uniprot/NCBI ID)         |                                 |
| Btk        | A0A6M7GZB8                | espJ                            |
| BtrS       | A0A6N3S465                | bspR                            |
| Bub3       | P0CE12                    | sspH2                           |
| C8orf71    | Q8X834                    | nleC                            |
| CAPN3      | Q8XA11                    | espY1                           |
| CCDC146    | O84290                    | CT_288                          |
| CD44       | P18011                    | ipaB                            |
| CD74       | WP_107775268.1            | eseK                            |
| CD97       | Q8ZNP2                    | STM2139/steD                    |
| CD98       | D2TKF8, Q7DB68            | espZ, espZ                      |
| CDC20      | Q8XAN6, Q8X9A7            | nleG/nleG8-1, nleG8-2           |
| CDKN2AIPNL | Q8XA11                    | espY1                           |
| CENHP      | A0A6M7GZB8                | espJ                            |
| CEP170     | O84226                    | ipaM                            |
| CERT       | PODJI3                    | incD                            |
| CHMP5      | P33546                    | icsB                            |
| CLK1       | Q8XA11                    | espY1                           |
| CNP        | P33546                    | icsB                            |
| CRIK       | Q9AJW7                    | ipgB2                           |
| CRKL       | Q8X831                    | nleH1-1/nleH1                   |
| CTDSPL2    | Q8X834                    | nleC                            |
| CaADC1     | G0T341                    | xopJ2                           |
| CaALDH1    | G0T341                    | xopJ2                           |
| CaHSP70A   | G0T341                    | xopJ2                           |
| CaSGT1     | G0T341                    | xopJ2                           |
| Cdc42      | Q93Q17, D5LUP3,           | aexT, aexU, bopE, copE, map,    |
|            | Q63K41, Q7P1B7,           | sopB, sopE, sopE2, sptP, ipbB1, |
|            | D2TKE9, B7UMA0,           | ipgB2, yopE, yopT               |
|            | O30916, O52623,           | 19502, 9092, 9091               |
|            | Q7CQD4, P74873,           |                                 |
|            | P33548, Q9AJW7,           |                                 |
|            | P31492, Q93RN4            |                                 |
| CdsF       | O84582, Q9Z798            | copB, copD                      |
| CdsN       | Q9Z798                    | copD                            |
| CopD       | O84673                    | CdsF                            |
| CopN       | Q9Z798                    | copD                            |
| Crk1       | O84883                    | tepP                            |
| Crk2       | O84883                    | tepP                            |
| Csk        | D2TRY1,                   | espJ, espJ, sboC,seoC           |
| CSK        | A0A6M7GZB8,               | сара, сара, зоос,яеос           |
|            | A0A0M7GZB6,<br>A0A0K0HD42 |                                 |
| Cugbp2     | D0ZDK2                    | escE                            |
| Cyc1       | A0A0F6AZI6                | gtgA                            |
| 0,01       | 1101101 011210            | 81811                           |

T3SE and their targets (continued).

| target                  | effector                      |         | effector gene name            |
|-------------------------|-------------------------------|---------|-------------------------------|
|                         | (Uniprot/NCBI                 | ID)     | -                             |
| DIPM1                   | O54581                        |         | dspE/dspA                     |
| DIPM2                   | O54581                        |         | dspE/dspA                     |
| DIPM3                   | O54581                        |         | dspE/dspA                     |
| DIPM4                   | O54581                        |         | dspE/dspA                     |
| DNA                     | O06662                        |         | vapC/MvpA                     |
| DNA((TC)(TC)GCCAG(ACT)) | B7UJQ8                        |         | bolA                          |
| DNA(TATAATTAATAATC-     | Q07061                        |         | avrBs4                        |
| CACTT)                  | <b>C</b> 0.002                |         |                               |
| DNA(TATATAAAC-          | P14727                        |         | avrBs3                        |
| CTNNCCCTCT)             |                               |         |                               |
| DNA/ACACCaAA            | Q47867                        |         | hsvG                          |
| DNAJC14                 | Q8XA11                        |         | espY1                         |
| DR3                     | A0A482PDI9                    |         | nleB                          |
| DR4                     | O84616                        |         | cadD                          |
| DR5                     | O84616                        |         | cadD                          |
| DRG2                    | Q8XBX8                        |         | nleB1                         |
| DSCR4                   | Q8XAJ5                        |         | nleA                          |
| DYNLT1                  | O84858                        |         | CT_850                        |
| Dbl/MCF2                | B7UMA2                        |         | espH                          |
| ELMO1                   | P33548                        |         | ipbB1                         |
| ELMO2                   | P33548                        |         | ipbB1                         |
| ERI3                    | Q8XAL7                        |         | nleF                          |
| ERK1/2                  | C5BA03                        |         | eseN                          |
| ERK2                    | A0A0F6AZL3                    |         | sseI                          |
| ERdj3                   | Q8ZQQ2                        |         | slrP                          |
| EVL                     | Q05608                        |         | ypkA/yopO                     |
| Epb50/NHERF1            | B7UMA0                        |         | map                           |
| EscF                    | B7UM94                        |         | espA                          |
| EseB                    | Q4G4C8, D0ZD                  | OK9     | eseB, eseD                    |
| EseB,EseD               | D0ZDL0                        |         | eseC                          |
| EseC                    | Q4G4C8, D0ZD                  | )K9     | eseB, eseD                    |
| EseD                    | Q4G4C8                        | ,11,    | eseB                          |
| EspA                    | B7UM93                        |         | espD                          |
| EspD                    |                               | Q05129, | espA, eaeB/espB, espD         |
| 2002                    | B7UM93                        | 203125, | espri, edebrespb, espb        |
| Etk                     | D2TKE8                        |         | tir                           |
| Etk/BMX                 | B7UM99                        |         | tir                           |
| ExsC                    | A4SUG4                        |         | exsE                          |
| F-actin                 |                               | O84462, | bipC, tarP, cipA, exoY, sipA, |
| 1 detili                | Q7NUT1,                       | Q9I1S4, | sipC, vopV, ypkA/yopO         |
|                         | _                             | P0CL47, | sipe, top t, jpki i jopo      |
|                         | Q87GF9, Q0560                 |         |                               |
| FADD                    |                               |         | nleB, nleB1, sseK2            |
|                         | A0A482PDI9, Q8XBX8,<br>Q8ZNP4 |         | med, med 1, ssenz             |

T3SE and their targets (continued).

| target             | effector            | effector gene name        |  |
|--------------------|---------------------|---------------------------|--|
|                    | (Uniprot/NCBI ID)   |                           |  |
| FAK                | P08538, A1JRY1      | yopH, yspI                |  |
| FAS                | Q8XBX8              | nleB1                     |  |
| FEM1B              | A0A0H3JFN8          | espO1-1                   |  |
| FLII               | O84229              | CT_226                    |  |
| FMNL1              | Q8ZP57              | steC                      |  |
| FMNL2              | Q8ZP57              | steC                      |  |
| FMNL3              | Q8ZP57              | steC                      |  |
| FRMD3              | Q8XAJ5              | nleA                      |  |
| Fas                | O84616              | cadD                      |  |
| Fyb                | P08538              | yopH                      |  |
| G-actin            | P18012, Q05608      | ipaC, ypkA/yopO           |  |
| G-alpha-i2/Gnai2   | A0A0F6AZL3          | sseI                      |  |
| G-alpha-i3/Gnai3   | A0A0F6AZL3          | sseI                      |  |
| G-alpha-q          | Q05608              | ypkA/yopO                 |  |
| GAPDH              | A0A482PDI9, D2TK72, | nleB, nleG1, nleB1, sseK1 |  |
|                    | Q8XBX8, Q9L9J3      |                           |  |
| GCIP               | O84854              | CT_847                    |  |
| GEF-H1             | Q87GI7              | vopO/traA                 |  |
| GLoB               | Q9L9J3              | sseK1                     |  |
| GLoC               | Q9L9J3              | sseK1                     |  |
| GM130              | B7UMC8, B7UH72      | espG, espG2               |  |
| GNG12              | P33546              | icsB                      |  |
| GSDMB              | P18014              | іраН7.8                   |  |
| GSDMD              | P18014              | ipaH7.8                   |  |
| GSK-beta           | A0A0F7WRH6          | CPn_1027                  |  |
| GSK3-alpha         | A0A0F6B506          | sarA                      |  |
| GSK3-beta          | A0A0F6B506          | sarA                      |  |
| Gab1               | P08538              | yopH                      |  |
| Gab2               | P08538              | yopH                      |  |
| Gaint7             | A0A0F6AZI6          | gtgA                      |  |
| Glc1P              | O84297              | mrsA_1                    |  |
| GloA               | Q9L9J3              | sseK1                     |  |
| Gm10250            | A0A0F6AZI6          | gtgA                      |  |
| Gpnmb              | A0A0F6AZI6          | gtgA                      |  |
| GshB               | A0A482PDI9, Q8XBX8  | nleB, nleB1               |  |
| H-Ras              | P33546              | icsB                      |  |
| HAX-1              | A0A0H3JFN8, D2AJY3  | espO1-1, ospE1            |  |
| HIF-1-alpha        | Q8XBX8              | nleB1                     |  |
| ніг-т-аірпа<br>НК2 | Q8X509              | nleG2-3                   |  |
| HMGN2              | _                   | nleG2-3                   |  |
|                    | Q8XAL7<br>D2TRA0    | nleK                      |  |
| HNRNPM             |                     |                           |  |
| HOIL-1L            | A0A0H2USG1          | ipaH1.4                   |  |
| HOIP               | A0A0H2USG1          | ipaH1.4                   |  |
| HP1-gamma/CBX3     | Q8VSP9              | ospF                      |  |

T3SE and their targets (continued).

| target              | effector            | effector gene name         |
|---------------------|---------------------|----------------------------|
| C                   | (Uniprot/NCBI ID)   | C                          |
| HPCAL1              | Q7DB77              | tir                        |
| HPS3                | Q56061              | sifA                       |
| HPS5                | Q56061              | sifA                       |
| HSP27               | Q8ZP57              | steC                       |
| HSPD1               | D2TI15              | espT                       |
| Hadha               | A0A0F6AZI6          | gtgA                       |
| Hck                 | A0A6M7GZB8          | espJ                       |
| HprW                | D4HVM8              | hrpJ                       |
| HrpJ                | Q01099, D4HVP9      | hrpN, hrpW                 |
| HrpN                | D4HVM8              | hrpJ                       |
| Hrs                 | O84624, O84626,     | CT_619, CT_621, CT_711,    |
|                     | Q9Z754, O84718      | CT_712                     |
| Hsd17b12            | A0A0F6AZI6          | gtgA                       |
| Hsp70               | Q8RP09              | hopI1/hopPmaI              |
| IFT20               | A0A6M7GZB8          | espJ                       |
| IKBA/NFKBIA         | Q8ZMI3, Q8ZNG2,     | avrA, sseL, yopJ           |
|                     | O68718              | avii 1, 33cL, yop3         |
| IKK-alpha           | A0A0H3JDV8          | espX7,nleL                 |
| IKK-beta            | A0A0H3JDV8, Q8X831, | espX7,nleL, nleH1-1/nleH1, |
| iiii oota           | Q8XAL6              | nleH1_2/nleH2              |
| ILK                 | A0A0H3JFN8, D2AJY3  | espO1-1, ospE1             |
| INF2                | Q05608              | ypkA/yopO                  |
| IQGAP1              | Q5K5L9, A0A0F6AZL3, | espS/ibE, sseI,            |
| 100/11              | A0A822PPP2, P17778  | ERS574920_04342, yopM      |
| IRSp53              | D2TKE8              | tir                        |
| IRSp53/BAIAP2       | Q8X482, B7UM99,     | espF(U)/tccP, tir, tir     |
| IKSp35/BAIAI 2      | Q7DB77              | espi (O)/teel, til, til    |
| IRTKS               | D2TKE8              | tir                        |
| IRTKS/BAIAP2L1      | Q8X482, B7UM99,     | espF(U)/tccP, tir, tir     |
| IKTKS/B/ II/ II ZET | Q7DB77              | espi (o // teer, tii, tii  |
| IcsA/VirG           | P33546              | icsB                       |
| IpaA                | Q07566              | ipgD                       |
| IpaB                | P18012, P18013      | ipaC, ipaD                 |
| IpaC                | P18011              | ipaB                       |
| Iqgap1              | A0A0F6AZI6          | _                          |
| JNK                 | Q8VSP9              | gtgA<br>ospF               |
|                     |                     | •                          |
| JNK1/MAPK8          | A0A0H3JDV8,         | espX7,nleL, nleD           |
| INIZAMA DZO         | A0A0H3JGR6          | nloD 1 conV7 nloL -1-D     |
| JNK2/MAPK9          | D2TML3,             | nleD-1, espX7, nleL, nleD  |
|                     | A0A0H3JDV8,         |                            |
| INITED IN A POPULO  | A0A0H3JGR6          | W7 -1 I                    |
| JNK3/MAPK10         | A0A0H3JDV8          | espX7, nleL                |
| K-Ras               | P33546              | icsB                       |
| KIN7D               | Q87W42              | hopG1                      |

T3SE and their targets (continued).

| target        | effector          | effector gene name |  |
|---------------|-------------------|--------------------|--|
|               | (Uniprot/NCBI ID) |                    |  |
| Kif15         | Q8X9A5            | espW               |  |
| LARG/ARHGEF12 | B7UMA2            | espH               |  |
| LAT           | P08538            | yopH               |  |
| LDHB          | D2TJZ4            | espI               |  |
| LM04          | Q8XAL7            | nleF               |  |
| LRRC18        | Q8XBX8            | nleB1              |  |
| LRRF1         | O84229            | CT_226             |  |
| LcrG          | P23994            | lcrV               |  |
| LcrH          | P69979            | yscM/lcrQ          |  |
| LcrQ          | P37132            | yopD               |  |
| LcrV          | Q06114, P37132    | yopB, yopD         |  |
| Lrrc59        | A0A0F6AZI6        | gtgA               |  |
| Lyn           | A0A6M7GZB8        | espJ               |  |
| MAD2B/Mad2L2  | P18011            | ipaB               |  |
| MAD2L2        | Q7DB85            | espF               |  |
| MAGI-2        | Q8XAJ5            | nleA               |  |
| MAGI-3        | Q8XAJ5            | nleA               |  |
| MALS3         | Q8XAJ5            | nleA               |  |
| MAP2K4        | O68718            | yopJ               |  |
| MAP2K7        | O68718            | yopJ               |  |
| MAP7          | D2TT36            | espL2              |  |
| MAPK1/ERK2    | Q888W0, Q8VSP9    | hopAI1, ospF       |  |
| MAPK11        | Q8VSP9            | ospF               |  |
| MAPK12        | Q8VSP9            | ospF               |  |
| MAPK13        | Q8VSP9            | ospF               |  |
| MAPK14        | Q8VSP9            | ospF               |  |
| MAPK2/ERK1    | P0A2M9            | spvC               |  |
| MAPK3/ERK1    | P0A2M9, Q8VSP9    | spvC, ospF         |  |
| MARCH8        | Q8ZNP2            | STM2139/steD       |  |
| MARCKS        | P33546            | icsB               |  |
| MARCKSL1      | P33546            | icsB               |  |
| MATN2         | P27474            | yopQ/yopK          |  |
| MC7           | D2TK72            | nleG1              |  |
| MED15         | Q8X4X3            | nleG5-1            |  |
| MEK1          | Q8ZP57            | steC               |  |
| METTL2A       | A0A0H3JGR6        | nleD               |  |
| MHCII         | Q8ZNP2            | STM2139/steD       |  |
|               |                   |                    |  |
| MKK4          | Q8ZMI3            | avrA               |  |
| MKK7          | Q8ZMI3            | avrA               |  |
| MPK3          | Q888W0            | hopAI1             |  |
| MPK4          | Q888W0            | hopAI1             |  |
| MPK6          | Q888W0            | hopAI1             |  |
| MRFAP1L1      | A0A6M7GZB8        | espJ               |  |
| MTN1          | Q886L1            | hopAF1             |  |

T3SE and their targets (continued).

| target   | effector          | effector gene name             |
|----------|-------------------|--------------------------------|
|          | (Uniprot/NCBI ID) |                                |
| MTN2     | Q886L1            | hopAF1                         |
| MVP      | C5BA03            | eseN                           |
| MYPT1    | O84231            | CT_228                         |
| Mena     | Q8X482            | espF(U)/tccP                   |
| Mogs     | A0A0F6AZI6        | gtgA                           |
| MxiA     | Q04640            | mxiC                           |
| MxiC     | P0A225            | mxiI                           |
| MxiE     | A0A822PRD6        | ERS574920_04294                |
| MxiH     | P18013            | ipaD                           |
| MxiI     | Q04640            | mxiC                           |
| N-WASP   | O84700, D2TKD7,   | tmeA, espF, espF, espF(U)/tccP |
|          | Q7DB85, Q8X482    |                                |
| NCALD    | Q7DB77            | tir                            |
| NDP52    | Q9Z868            | CPn_0483/ChlaOTU               |
| NEDD8    | Q63KH5, P0DUW5    | cif, cif                       |
| NEMO     | Q8VSC3            | ipaH9.8                        |
| NHERF1   | Q8XAJ5            | nleA                           |
| NHERF2   | Q8XAJ5, Q8X831    | nleA, nleH1-1/nleH1            |
| NLRP3    | Q8XAJ5, P18009    | nleA, ipaH4.5                  |
| NOD1     | POCE12            | sspH2                          |
| NPC1     | Q9FD10            | sseJ                           |
| NTL9     | Q888Y8            | hopD1                          |
| Nck1     | D2TKE8, B7UM99    | tir, tir                       |
| Nck2     | D2TKE8, B7UM99    | tir, tir                       |
| NleH1    | Q8XAL6            | nleH1_2/nleH2                  |
| NleH2    | Q8X831            | nleH1-1/nleH1                  |
| NopB     | C4ALD0            | nopA                           |
| OSPB     | Q8ZNG2            | sseL                           |
| OSPB1    | Q9FD10            | sseJ                           |
| OrgC     | P41784            | prgI                           |
| P(3,5)P2 | Q8ZPY9            | sopF                           |
| PAK1     | B7UMC8            | espG                           |
| PAK2     | B7UMC8            | espG                           |
| PBL1     | Q52430            | hopAR1                         |
| PBL11    | Q52430            | hopAR1                         |
| PBL2     | Q52430, Q4UWF4    | hopAR1, xopAC/AvrAC            |
| PBL3     | Q52430            | hopAR1                         |
| PBL5     | Q52430            | hopAR1                         |
| PBL7     | Q52430            | hopAR1                         |
| PBL9     | Q52430            | hopAR1                         |
| PBS1     | Q52430            | hopAR1                         |
| PCID2    | Q8XA11            | espY1                          |
| PDE6D    | Q7DB77            | tir                            |
| PDLIM7   | D2AJY3, Q6BBS0    | ospE1, ospE2                   |

T3SE and their targets (continued).

| effector          | effector gene name                                                                                                                                                           |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Uniprot/NCBI ID) |                                                                                                                                                                              |
| B7UMA2            | espH                                                                                                                                                                         |
| D2TKE9            | map                                                                                                                                                                          |
| D2TJZ4            | espI                                                                                                                                                                         |
|                   | espI                                                                                                                                                                         |
|                   | pipB                                                                                                                                                                         |
|                   | nleA                                                                                                                                                                         |
| =                 | nleA                                                                                                                                                                         |
|                   | nleA                                                                                                                                                                         |
| =                 | nleA                                                                                                                                                                         |
| =                 | sipA                                                                                                                                                                         |
|                   | sifA                                                                                                                                                                         |
| _                 | espI, nleG1                                                                                                                                                                  |
|                   | sopF                                                                                                                                                                         |
| =                 | sopF                                                                                                                                                                         |
| •                 | steA                                                                                                                                                                         |
|                   | ipgD                                                                                                                                                                         |
|                   | sopB                                                                                                                                                                         |
|                   | tarP, tir                                                                                                                                                                    |
|                   | tir                                                                                                                                                                          |
|                   | espY1                                                                                                                                                                        |
|                   | vopR                                                                                                                                                                         |
| =                 | nleG1                                                                                                                                                                        |
|                   | sspH1                                                                                                                                                                        |
|                   | уорН                                                                                                                                                                         |
|                   | уорн<br>sifA                                                                                                                                                                 |
|                   | nleB1                                                                                                                                                                        |
|                   |                                                                                                                                                                              |
|                   | yopH<br>wopM                                                                                                                                                                 |
|                   | yopM                                                                                                                                                                         |
|                   | nleG1                                                                                                                                                                        |
|                   | nleA<br>espY1                                                                                                                                                                |
|                   | (Uniprot/NCBI ID)  B7UMA2 D2TKE9 D2TJZ4 |

T3SE and their targets (continued).

| target             | effector            | effector gene name         |
|--------------------|---------------------|----------------------------|
|                    | (Uniprot/NCBI ID)   |                            |
| PSMD10             | B7UI22              | nleE                       |
| PTP4A1             | Q8XAJ5              | nleA                       |
| PipB2              | Q56061              | sifA                       |
| PrgI               | Q56026              | sipD                       |
| Prpf31             | A0A0F6B537          | gogA                       |
| PtdIns(3,4,5)P3    | A4SUE7              | ati2                       |
| PtdIns(4,5)P2      | A4SUE7              | ati2                       |
| PtdIns(4,5)P2/PIP2 | A0A6N3S5J5          | bteA                       |
| Ptges2             | A0A0F6AZI6          | gtgA                       |
| Pyk                | P08538              | уорН                       |
| RACK1              | P27474              | yopQ/yopK                  |
| RB1                | Q8VSP9              | ospF                       |
| RBCK1              | Q05129              | eaeB/espB                  |
| RHoG               | P33546              | icsB                       |
| RIC8A              | A0A6M7GZB8          | espJ                       |
| RICK               | O68718              | yopJ                       |
| RIN4               | D4I1J6, Q6LAD6      | avrRpt2, avrRpt2           |
| AtRIN4             | P13835              | avrB                       |
| GmRIN4A            | P13835              | avrB                       |
| GMRIN4B            | P13835              | avrB                       |
| RIPK1              | D2TT36, A0A482PDI9, | espL2, nleB, espL2, nleB1, |
|                    | A0A0H3JP21, Q8XBX8, | nleB2, ospD3               |
|                    | Q8X837, Q99Q01      |                            |
| RIPK3              | D2TT36, A0A0H3JP21, | espL2, espL2, ospD3        |
|                    | Q99Q01              |                            |
| ROCK1              | Q9AJW7              | ipgB2                      |
| ROCK2              | Q9AJW7              | ipgB2                      |
| RPN13              | P18009              | ipaH4.5                    |
| RPN8               | G0T341              | xopJ2                      |
| RPS3               | D2TRX7, Q8X831,     | nleH, nleH1-1/nleH1,       |
|                    | Q8XAL6, Q8ZNG2      | nleH1_2/nleH2, sseL        |
| RRS1/AT5G45260     | Q48B92              | avrRps4                    |
| RSK1               | P17778              | yopM                       |
| Rab1               | Q9Z7W9, K0GA27,     | CP_0163, cpoS, espG, spG2, |
|                    | B7UMC8, B7UH72,     | virA                       |
|                    | Q7BU69              |                            |
| Rab10              | Q9Z7W9, K0GA27      | CP_0163, cpoS              |
| Rab11              | Q9Z7W9              | CP_0163                    |
| Rab11A             | P33546              | icsB                       |
| Rab11B             | P0DUJ7, P33546      | sseK3, icsB                |
| Rab13              | P33546              | icsB                       |
| Rab14              | K0GA27              | cpoS                       |
| Rab1A              | H9L407, H9L486,     | sseF, sseG, sseK3          |
|                    | P0DUJ7              |                            |

T3SE and their targets (continued).

| target    | effector            | effector gene name        |
|-----------|---------------------|---------------------------|
|           | (Uniprot/NCBI ID)   |                           |
| Rab22A    | P33546              | icsB                      |
| Rab23     | P33546              | icsB                      |
| Rab29     | A0A0H3N9Y3,         | gtgE, sopD2               |
|           | Q8ZQC8              |                           |
| Rab31     | P18009              | ipaH4.5                   |
| Rab32     | A0A0H3N9Y3,         | gtgE, sopD2               |
|           | Q8ZQC8              |                           |
| Rab33     | Q7BU69              | virA                      |
| Rab34     | K0GA27, P33546      | cpoS, icsB                |
| Rab35     | K0GA27, P33546,     | cpoS, icsB, virA          |
|           | Q7BU69              |                           |
| Rab37     | Q7BU69              | virA                      |
| Rab38     | A0A0H3N9Y3,         | gtgE, sopD2               |
|           | Q8ZQC8              |                           |
| Rab4      | K0GA27              | CT229/cpoS                |
| Rab5      | O52623              | sopE                      |
| Rab5A     | P0DUJ7              | sseK3                     |
| Rab5B     | P0DUJ7              | sseK3                     |
| Rab5C     | P0DUJ7              | sseK3                     |
| Rab6      | K0GA27, Q7BU69      | cpoS, virA                |
| Rab8      | K0GA27, Q8ZQC8      | cpoS, sopD2               |
| Rab8A     | P40722, P33546      | sopD, icsB                |
| Rac       | Q93RN4              | yopT                      |
| Rac1      | Q93Q17, D5LUP3,     | aexT, aexU, bopE, copE,   |
|           | Q63K41, Q7P1B7,     | C6H65_01640, sopE, sptP,  |
|           | Q84H14, O52623,     | ipbB1, ipgB2, icsB, yopE, |
|           | P74873, P33548,     | ypkA/yopO                 |
|           | Q9AJW7, P33546,     |                           |
|           | P31492, Q05608      |                           |
| Rac2      | P31492, Q05608      | yopE, ypkA/yopO           |
| RalA      | P33546              | icsB                      |
| RalB      | P33546              | icsB                      |
| Ras       | Q87GI9              | VPA1327/vopT              |
| RelB      | Q8X834, A0A0F6B537, | nleC, gogA, gtgA, pipA    |
|           | A0A0F6AZI6,         |                           |
|           | A0A0F6AZQ0          |                           |
| RhoA      | Q93Q17, D5LUP3,     | aexT, aexU, espM2,        |
|           | Q8X4W3, Q84H14,     | C6H65_01640, ipgB2, icsB, |
|           | Q9AJW7, P33546,     | yopE, ypkA/yopO, yopT     |
|           | P31492, Q05608,     |                           |
|           | Q93RN4              |                           |
| RhoA(GDP) | Q56061              | sifA                      |
| RhoA(GTP) | Q9FD10              | sseJ                      |
| RhoC      | Q9FD10, P33546      | sseJ, icsB                |

T3SE and their targets (continued).

| effector          | effector gene name                                                                                                                                                                                                                                                     |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (Uniprot/NCBI ID) |                                                                                                                                                                                                                                                                        |  |
| P31492, Q93RN4    | yopE, yopT                                                                                                                                                                                                                                                             |  |
| A0A0F6AZI6        | gtgA                                                                                                                                                                                                                                                                   |  |
| Q8ZNG2            | sseL                                                                                                                                                                                                                                                                   |  |
| Q8XAJ5            | nleA                                                                                                                                                                                                                                                                   |  |
| Q8XAJ5            | nleA                                                                                                                                                                                                                                                                   |  |
| P33546            | icsB                                                                                                                                                                                                                                                                   |  |
| D2TK72            | nleG1                                                                                                                                                                                                                                                                  |  |
| O84462            | tarP                                                                                                                                                                                                                                                                   |  |
| B7UM99, Q7DB77    | tir                                                                                                                                                                                                                                                                    |  |
| B7UM99            | tir                                                                                                                                                                                                                                                                    |  |
| P08538            | yopH                                                                                                                                                                                                                                                                   |  |
| Q56061            | sifA                                                                                                                                                                                                                                                                   |  |
| D2TK72            | nleG1                                                                                                                                                                                                                                                                  |  |
| D2TK72            | nleG1                                                                                                                                                                                                                                                                  |  |
| P08538            | уорН                                                                                                                                                                                                                                                                   |  |
| POCL52            | sipA                                                                                                                                                                                                                                                                   |  |
| D2TKD7            | espF                                                                                                                                                                                                                                                                   |  |
| Q8XAJ5            | nleA                                                                                                                                                                                                                                                                   |  |
| D2TKD7, Q7DB85    | espF, espF                                                                                                                                                                                                                                                             |  |
| P0DJI4            | incE                                                                                                                                                                                                                                                                   |  |
| P0DJI4            | incE                                                                                                                                                                                                                                                                   |  |
| D2TKD7, Q7DB85    | espF, espF                                                                                                                                                                                                                                                             |  |
| A0A0F6B506        | sarA                                                                                                                                                                                                                                                                   |  |
| O68718            | yopJ                                                                                                                                                                                                                                                                   |  |
| Q05129, Q7DB77    | espB, tir                                                                                                                                                                                                                                                              |  |
| Q8XAJ5            | nleA                                                                                                                                                                                                                                                                   |  |
| Q8XAJ5            | nleA                                                                                                                                                                                                                                                                   |  |
| Q8XAJ5            | nleA                                                                                                                                                                                                                                                                   |  |
|                   | nleA                                                                                                                                                                                                                                                                   |  |
|                   | tir                                                                                                                                                                                                                                                                    |  |
| _                 | gtgA                                                                                                                                                                                                                                                                   |  |
|                   | tir                                                                                                                                                                                                                                                                    |  |
|                   | sipC, sipD                                                                                                                                                                                                                                                             |  |
|                   | sipB                                                                                                                                                                                                                                                                   |  |
| _                 | prgI, sipB                                                                                                                                                                                                                                                             |  |
| =                 | gogB                                                                                                                                                                                                                                                                   |  |
| _                 | hopZ3                                                                                                                                                                                                                                                                  |  |
| _                 | hopZ3                                                                                                                                                                                                                                                                  |  |
|                   | hopZ3                                                                                                                                                                                                                                                                  |  |
| _                 | hopZ3                                                                                                                                                                                                                                                                  |  |
|                   | hopZ3                                                                                                                                                                                                                                                                  |  |
|                   | gtgA                                                                                                                                                                                                                                                                   |  |
|                   | gtgA<br>gtgA                                                                                                                                                                                                                                                           |  |
| 1101101 011210    | 5.51.                                                                                                                                                                                                                                                                  |  |
|                   | (Uniprot/NCBI ID)  P31492, Q93RN4 A0A0F6AZI6 Q8ZNG2 Q8XAJ5 Q8XAJ5 P33546 D2TK72 O84462 B7UM99, Q7DB77 B7UM99 P08538 Q56061 D2TK72 D2TK72 P08538 P0CL52 D2TKD7 Q8XAJ5 D2TKD7 Q8XAJ5 D2TKD7, Q7DB85 P0DJI4 P0DJI4 D2TKD7, Q7DB85 A0A0F6B506 O68718 Q05129, Q7DB77 Q8XAJ5 |  |

T3SE and their targets (continued).

| target         | effector            | effector gene name           |
|----------------|---------------------|------------------------------|
|                | (Uniprot/NCBI ID)   |                              |
| SnRK1          | G0T341              | xopJ2                        |
| Spa47          | Q04640              | mxiC                         |
| Src            | A0A6M7GZB8,         | espJ, sboC,seoC              |
|                | A0A0K0HD42          |                              |
| SsaE           | Q7BVH7              | sseB                         |
| SsaM           | POCZ04              | spiC                         |
| SseF           | H9L486              | sseG                         |
| SseG           | H9L407              | sseF                         |
| Ssr1           | A0A0F6AZI6          | gtgA                         |
| Ste7           | Q8VSC3              | ipaH9.8                      |
| SycN/YscB      | Q663K1              | yopN                         |
| Syk            | A0A6M7GZB8          | espJ                         |
| Syn13          | POCL52              | sipA                         |
| Syn6           | POCL47              | sipC                         |
| Syn7           | POCL52              | sipA                         |
| Syn8           | POCL52              | sipA                         |
| TAB2           | D2TT38, B7UI22,     | nleE, nleE, ospZ             |
|                | A0A3T2V133          |                              |
| TAB3           | D2TT38, B7UI22,     | nleE, nleE, ospZ             |
|                | A0A3T2V133          |                              |
| TAK1           | O68718              | yopJ                         |
| TBCB           | Q9L9J3, P0DUJ7      | sseK1, sseK3                 |
| TBK1           | P18009              | ipaH4.5                      |
| TC0F1          | Q8XAJ5              | nleA                         |
| TIM17B         | Q7DB68              | espZ                         |
| TIM17b         | D2TKF8              | espZ                         |
| TLR2           | P23994              | lcrV                         |
| TMEM127        | Q8ZNP2              | steD                         |
| TNFR1          | A0A482PDI9, Q8X837  | nleB, nleB2                  |
| TNFRSF1A/TNFR1 | Q8XBX8              | nleB1                        |
| TNFRSF25/DR3   | Q8XBX8              | nleB1                        |
| TNIP1          | Q8VSC3              | ipaH9.8                      |
| TRADD          | A0A482PDI9, Q8XBX8, | nleB, nleB1, sseK3           |
|                | P0DUJ7              |                              |
| TRAF2          | A0A0H3JDV8,         | espX7,nleL, ipaH_1/ipaH0722, |
|                | A0A0H2UY03, O68718  | yopJ                         |
| TRAF5          | A0A0H3JDV8          | espX7,nleL                   |
| TRAF6          | A0A0H3JDV8, O68718  | espX7,nleL, yopJ             |
| TRIF           | D2TT36, A0A0H3JP21  | espL2, espL2                 |
| TRIM32         | P0DUJ7              | sseK3                        |
| TRIM56         | Q8ZNR3              | sopA                         |
| TRIM65         | Q8ZNR3              | sopA                         |
| TRIP6          | A0A0F6AZL3          | sseI                         |
| TRNT1          | Q8XAL7              | nleF                         |

T3SE and their targets (continued).

| target        | effector            | effector gene name          |
|---------------|---------------------|-----------------------------|
|               | (Uniprot/NCBI ID)   |                             |
| TUFM          | D2TK72              | nleG1                       |
| TassC         | P0CZ04              | spiC                        |
| Tco98p        | A0A822PPP2          | ERS574920_04342             |
| Tec           | A0A6M7GZB8          | espJ                        |
| Tmp21         | D2TRX8, Q8XAL7      | nleF, nleF                  |
| Toca/1        | P33546              | icsB                        |
| Trx1          | Q8ZQQ2              | slrP                        |
| Tsg101        | O84624, A0A0F7X663  | CT_619, CT620               |
| TyeA          | Q663K1              | yopN                        |
| U2AF35        | Q8VSC3              | ipaH9.8                     |
| UBE2D1        | Q8X509, D2AJU3      | nleG2-3, ospG               |
| UBE2D1/UBCH5A | Q8ZNR3, Q83R64,     | sopA, ipaH_4/ipah1880,      |
|               | D2A6P4, A0A0H2V170, | ipaH2022/ipaH2202/ipaH4/H7, |
|               | Q83RJ4, P18009      | ipaH_7, ipaH3, ipaH4.5      |
| UBE2D2        | Q8X509, Q8X4X3,     | nleG2-3, nleG5-1, nleG6-2,  |
|               | A0A0H3JE38,         | ipaH1.4, ipaH9.8, ospG      |
|               | A0A0H2USG1,         | 1 / 1                       |
|               | Q8VSC3, D2AJU3      |                             |
| UBE2D2/UBCH4  | P18009              | ipaH4.5                     |
| UBE2D2/UBCH5B | A0A0H2USG1, Q83RJ4, | ipaH1.4, ipaH3, ipaH7.8     |
|               | P18014              | r , , r , , r               |
| UBE2D3        | Q8X509, P18014,     | nleG2-3, ipaH7.8, ospG      |
|               | D2AJU3              | , r ,                       |
| UBE2D3/UBCH5C | Q8ZNR3, P0CE12,     | sopA, sspH2, ipaH3          |
|               | Q83RJ4              | r y r y r                   |
| UBE2D4        | Q8X509              | nleG2-3                     |
| UBE2E1        | Q8Z7T2, D2AJU3      | sboD/stoD, ospG             |
| UBE2E1/UBCH6  | P18009              | ipaH4.5                     |
| UBE2E2        | Q8X509, D2AJU3      | nleG2-3, ospG               |
| UBE2E3        | Q8X509              | nleG2-3                     |
| UBE2K         | D2AJU3              | ospG                        |
| UBE2L3/UBCH7  | Q8ZNR3              | sopA                        |
| UBE2L6        | D2AJU3              | ospG                        |
| UBE2N         | D2AJU3              | ospG                        |
| UBE2N/UBC13   | Q8VSD5              | ORF169b/ospI                |
| UDP-Glc       | O84804, Q8X837      | glgA, nleB2                 |
| UDP-GlcNAc    | B7UI23, P0DUJ7      | lifA, sseK3                 |
| UFC1          | Q8XAL6              | nleH1_2/nleH2               |
| UQCR2         | D2TK72              | nleG1                       |
| Usmg5         | A0A0F6AZI6          | gtgA                        |
| VAMP3         | Q9Z8A1, P0DPS6      | CPn_0442/(CT006), incG      |
| VAMP7         | P0CI27              | incA                        |
| VAMP8         | P0CI27, P33546      | incA, icsB                  |
| VAPA          | Q9Z8A0              | IncV                        |

T3SE and their targets (continued).

| target           | effector                               | effector gene name              |
|------------------|----------------------------------------|---------------------------------|
|                  | (Uniprot/NCBI ID)                      |                                 |
| VAPB             | Q9Z8A0                                 | IncV                            |
| VASP             | Q8X482, Q05608                         | espF(U)/tccP, ypkA/yopO         |
| VAV              | P08538                                 | yopH                            |
| VAV1/Cdc24       | Q8ZP57                                 | steC                            |
| VAV2             | O84462                                 | tarP                            |
| VCP/p97          | P74873                                 | sptP                            |
| VapB             | O06662                                 | vapC/MvpA                       |
| WASP             | Q05608                                 | ypkA/yopO                       |
| WIP              | Q05608                                 | ypkA/yopO                       |
| WIP1             | Q9FCY7                                 | wtsE                            |
| WIP2             | Q9FCY7                                 | wtsE                            |
| WIPF1            | D2TKD7                                 | espF                            |
| WRKY33/AT2G38470 | Q48B92                                 | avrRps4                         |
| WRKY41/AT4G11070 | Q48B92                                 | avrRps4                         |
| WRKY60/AT2G25000 | Q48B92                                 | avrRps4                         |
| WRKY70/AT3G56400 | Q48B92                                 | avrRps4                         |
| XPO2             | P0A2N2                                 | vsdE/spvD                       |
| YKT6             | P33546                                 | icsB                            |
| YajL             | Q9L9J3                                 | sseK1                           |
| Yes1             | A0A6M7GZB8                             | espJ                            |
| YipA             | A0A0H2W9Z2,                            | tccC2/yipB, tcaA1/yitA, tcbA/y- |
|                  | Q8D1P8, A0A2U2H2J5,                    | itB, tcaC1/yitC                 |
|                  | Q8D1P6                                 | 112, 64017,110                  |
| YipB             | Q8D1P5, Q8D1P8,                        | tccC1/yipA, tcaA1/yitA, tcbA/y- |
| 1.172            | A0A2U2H2J5, Q8D1P6                     | itB, tcaC1/yitC                 |
| YitA             | Q8D1P5,                                | tccC1/yipA, tccC2/yipB, tcbA/y- |
| 11//1            | A0A0H2W9Z2,                            | itB, tcaC1/yitC                 |
|                  | A0A2U2H2J5, Q8D1P6                     | ns, each fic                    |
| YitB             | Q8D1P5,                                | tccC1/yipA, tccC2/yipB,         |
| TILD             | A0A0H2W9Z2,                            | tcaA1/yitA, tcaC1/yitC          |
|                  | Q8D1P8, Q8D1P6                         | tear (17 yil) i, teac 17 yile   |
| YitC             | Q8D1P5,                                | tccC1/yipA, tccC2/yipB,         |
| The              | A0A0H2W9Z2,                            | tcaA1/yitA, tcbA/yitB           |
|                  | Q8D1P8, A0A2U2H2J5                     | teantytta, teonytti             |
| Yme1I1           | A0A0F6AZI6                             | gtgA                            |
| YopB             | P23994, P37132, P27474                 | lcrV, yopD, yopQ/yopK           |
| YopD             | P23994, 137132, 127474 P23994, Q06114, | lcrV, yopB, yopQ/yopK           |
| Торъ             | P27474 Q00114,                         | ici v, yopb, yopQ/yopk          |
| VonN             | P69971                                 | veol                            |
| YopN<br>YscF     | P23994, P69971                         | yscI<br>lerV yseI               |
| YscI             | Q01247                                 | lcrV, yscI                      |
| YscO             | P68587                                 | yscF                            |
|                  |                                        | yscP                            |
| YscU<br>VocV     | P68587                                 | yscP                            |
| YscV             | P61416                                 | yscX                            |

T3SE and their targets (continued).

| target              | effector           | effector gene name            |
|---------------------|--------------------|-------------------------------|
|                     | (Uniprot/NCBI ID)  |                               |
| YscY                | P61416             | yscX                          |
| YspB                | A0A8B6KWG7         | yspD                          |
| YspD                | Q8KQ84             | yspB                          |
| ZBP1                | D2TT36, A0A0H3JP21 | espL2, espL2                  |
| ZNF626              | Q8X482             | espF(U)/tccP                  |
| ZNHIT1              | Q8XA11             | espY1                         |
| ZNRF2               | Q54150             | ipaJ                          |
| ZRANB3              | A0A3T2V133         | ospZ                          |
| actin               | Q93Q17, Q87GE5     | aexT, vopL                    |
| alpha-actinin       | B7UM99             | tir                           |
| alpha-catenin       | Q05129             | espB                          |
| alpha-tubulin       | D2TKD5, B7UMC8,    | espG, espG, espG2, virA, eseG |
|                     | B7UH72, Q7BU69,    |                               |
|                     | Q4G4D4             |                               |
| annexin A2/ANXA2    | A0A0H3JP21         | espL2                         |
| annexin-2           | D2TT36             | espL2                         |
| beclin-1            | Q8ZMI3             | avrA                          |
| beta-4-integrin     | D5LUP3             | aexU                          |
| beta-catenin/CTNNB1 | Q8ZMI3             | avrA                          |
| beta-tubulin        | Q7BU69             | virA                          |
| c-Fyn               | D2TKE8, B7UM99     | tir                           |
| c-Rel               | Q8X834             | nleC                          |
| c-Src               | B7UM99             | tir                           |
| cAMP                | Q9I1S4             | exoY                          |
| cGMP                | Q9I1S4             | exoY                          |
| calcium pectate     | D4HVP9             | hrpW                          |
| calmodulin          | Q7NWF2, Q8VSJ7,    | copC, ospC1, ospC2, ospC3     |
|                     | Q8VSL8, A0A0H2US87 |                               |
| calpastatin         | Q7BU69             | virA                          |
| caprin2             | A0A0F7WRH6         | CPn_1027                      |
| cardiolipin         | Q3BY51             | xopB                          |
| caspase-1           | Q56019, P18011,    | sipB, ipaB, yopM              |
|                     | P17778             |                               |
| caspase-11          | D2TRX8             | nleF                          |
| caspase-3           | Q7NWF2, Q56061     | copC, sifA                    |
| caspase-4           | D2TRX8, Q8XAL7,    | nleF, nleF, ospC3             |
|                     | A0A0H2US87         |                               |
| caspase-7           | Q7NWF2             | copC                          |
| caspase-8           | Q7NWF2, D2TRX8,    | copC, nleF, nleF              |
|                     | Q8XAL7             |                               |
| caspase-9           | Q7NWF2, D2TRX8,    | copC, nleF, nleF              |
| -                   | Q8XAL7             | -                             |
| H2B (histone)       | O84742             | CT_737                        |
| H3 (histone)        | O84742             |                               |

T3SE and their targets (continued).

| target                  | effector                          | effector gene name      |
|-------------------------|-----------------------------------|-------------------------|
|                         | (Uniprot/NCBI ID)                 |                         |
| H4 (histone)            | O84742                            | CT_737                  |
| cellulose               | A0A562K8J2                        | gunA2                   |
| chicken lysozyme C      | B7UJB3                            | ivy                     |
| cholesterol             | Q63K42, Q9FD10,<br>P18011, P33546 | bopA, sseJ, ipaB, icsB  |
| chromatin               | Q8VSP9                            | ospF                    |
| cofilin                 | D2TI21, D2TM85,<br>Q05608         | espM2, espM3, ypkA/yopO |
| cortactin               | Q8X482, Q7DB77                    | espF(U)/tccP, tir       |
| cullin-1                | Q8ZPD7                            | steA                    |
| cyclophilin             | D4I1J6                            | avrRpt2                 |
| deoxycholate            | Q56026, P18013                    | sipD, ipaD              |
| ensconsin/MAP7          | Q8XBX8, Q8X837                    | nleB1, nleB2            |
| fMet-RNA                | O06662                            | vapC                    |
| filamin                 | A0A0F6AZL3, P0CE12                | sseI, sspH2             |
| gelsolin                | Q05608                            | ypkA/yopO               |
| glomulin                | P18014                            | ipaH7.8                 |
| glucan                  | O84874                            | glgB                    |
| glycogen                | O84046, O84089,                   | glgX, malQ, glgP        |
| 5-1008011               | O84250                            | 8.8, 6, 8.8.            |
| hFBXO22                 | Q8ZN18                            | gogB                    |
| hGBP1                   | Q8VSC3                            | іраН9.8                 |
| hGBP2                   | Q8VSC3                            | іраН9.8                 |
| hGBP4                   | Q8VSC3                            | іраН9.8                 |
| hGBP6                   | Q8VSC3                            | іраН9.8                 |
| hIFN-gamma              | P23994                            | lcrV                    |
| hNAIP                   | A0A2T5NVZ6                        | cprI                    |
| hNAIP1                  | P0A223                            | mxiH                    |
| hNAIP2                  | P41785, P0A225                    | prgJ, mxiI              |
| hSGT1                   | P0CE12                            | sspH2                   |
| human lysozyme C        | B7UJB3                            | ivy                     |
| importin-alpha 1        | Q07061                            | avrBs4                  |
| importin-alpha 1/CalMP- | P14727                            | avrBs3                  |
| alpha1                  | 114/2/                            | avibs5                  |
| importin-alpha 1/KPNA2  | Q8VSP9                            | ospF                    |
| importin-alpha 2/CalMP- | P14727                            | avrBs3                  |
| alpha2                  | 114/2/                            | avibs5                  |
| inositolhexakisphos-    | A0A822PPP2                        | ERS574920_04342         |
| phate/IP6               | 110/10221112                      | DIGG / 1/20_01312       |
| intimin                 | B7UM99, Q7DB77                    | tir                     |
| kinesin-1               | Q8ZMM8, Q56061                    | pipB2, sifA             |
| kinesin-3               | Q56061                            | sifA                    |
| mDia1/DIAPH1            | Q9AJW7, Q05608                    | ipgB2, ypkA/yopO        |
| mFADD                   | Q9L9J3                            | sseK1                   |

T3SE and their targets (continued).

| target                 | effector            | effector gene name              |  |
|------------------------|---------------------|---------------------------------|--|
|                        | (Uniprot/NCBI ID)   |                                 |  |
| mGBP10                 | Q8VSC3              | іраН9.8                         |  |
| mGBP11                 | Q8VSC3              | іраН9.8                         |  |
| mGBP2                  | Q8VSC3              | ipaH9.8                         |  |
| mGBP3                  | Q8VSC3              | ipaH9.8                         |  |
| mGBP6                  | Q8VSC3              | ipaH9.8                         |  |
| mGBP7                  | Q8VSC3              | ipaH9.8                         |  |
| mGBP9                  | Q8VSC3              | ipaH9.8                         |  |
| mTNFR11mTRAILR         | P0DUJ7              | sseK3                           |  |
| mTRADD                 | Q9L9J3              | sseK1                           |  |
| mouse caspase-11       | A0A0H2US87          | ospC3                           |  |
| mouse-GLMN/Q8BZM1      | P18014              | іраН7.8                         |  |
| mouse-NLRP1B           | P18014              | іраН7.8                         |  |
| myosin-10              | Q05129              | espB                            |  |
| myosin-1a,myosin-2     | Q05129              | espB                            |  |
| myosin-1c              | Q05129              | espB                            |  |
| myosin-5               | Q05129              | espB                            |  |
| myosin-6               | Q05129              | espB                            |  |
| nopB                   | A0A6F8NWU7          | nopA                            |  |
| nopX                   | A0A6F8NWU7          | nopA                            |  |
| nucleid acids          | A0A2U3QA97          | ernA                            |  |
| p130Cas                | P08538              | уорН                            |  |
| p155-RhoGEF/ARHGEF1    | B7UMA2              | espH                            |  |
| p300                   | Q8X834              | nleC                            |  |
| p300 acetyltransferase | D2TK70              | nleC                            |  |
| p38, p38-beta          | A0A0H3JGR6, P0A2M9, | nleD, spvC, nleD-1              |  |
|                        | D2TML3              |                                 |  |
| p50/NFKB1              | Q8X834              | nleC                            |  |
| p63-RhoGEF/ARHGEF25    | B7UMA2              | espH                            |  |
| p65(RelA)              | A0A0F6B537,         | gogA, gtgA, pipA, ipaH4.5, nleC |  |
|                        | A0A0F6AZI6,         |                                 |  |
|                        | A0A0F6AZQ0, D2TK70, |                                 |  |
|                        | P18009, Q8X834      |                                 |  |
| p85:Lck                | P08538              | yopH                            |  |
| paxilin                | P08538              | уорН                            |  |
| phospholipids          | O85477              | yplA                            |  |
| preferredoxin          | O54581              | dspE/dspA                       |  |
| prgI                   | A0A0H3NF83          | orgC                            |  |
| profilin               | P0CE12              | sspH2                           |  |
| snapin                 | Q9Z8P7              | incB                            |  |
| talin-1                | Q8ZNG2, P18010      | sseL, ipaA                      |  |

T3SE and their targets (continued).

| target     | effector<br>(Uniprot/NCBI ID) | effector gene name            |
|------------|-------------------------------|-------------------------------|
| ubiquitin  | Q7NY09, D2TTX7,               | cteC, espX7,nleL, nleG7,      |
|            | D2TRY0, D2TI20,               | nleG8, sopA, sseL, sboD/stoD, |
|            | Q8ZNR3, Q8ZNG2,               | ipaH_1/ipaH0722, ipaH_4/i-    |
|            | Q8Z7T2, A0A0H2UY03,           | pah1880, ipaH2022/ipaH2202/i- |
|            | Q83R64, D2A6P4,               | paH4/H7, ipaH_7, ipaH1.4,     |
|            | A0A0H2V170,                   | ipaH3/IpaH1383, ipaH4.5,      |
|            | A0A0H2USG1, Q83RJ4,           | ipaH7.8, ipaH9.8, ospG        |
|            | P18009, P18014,               |                               |
|            | Q8VSC3, D2AJU3                |                               |
| vinculin   | P18010                        | ipaA                          |
| xyloglucan | M4PUR5                        | nopAA/gunA                    |

**Table A.7.: Identified localizations of T3SS-secreted proteins** Main localizations are marked in **bold**.

| localization                           | frequency |
|----------------------------------------|-----------|
| unspecified                            | 253       |
| unknown                                | 159       |
| host cell cytoplasm                    | 55        |
| host cell cytosol                      | 44        |
| host cell cytoskeleton                 | 13        |
| host cell actin pedestals              | 7         |
| host cell focal adhesions              | 4         |
| Salmonella-induced filaments (Sif)     | 3         |
| host cell microtubules                 | 2         |
| host cell filopodia                    | 1         |
| host cell actin stress fibres          | 1         |
| host cell actin pedestals              | 1         |
| host cell wall                         | 1         |
| host cell membrane                     | 83        |
| host cell lipid rafts                  | 3         |
| proximal to host cell membrane         | 3         |
| host cell GM1-enriched lipid rafts     | 1         |
| host cell caveolae                     | 1         |
| proximal to the host cell membrane     | 1         |
| host cell nucleus                      | 43        |
| host cell perinuclear region           | 4         |
| host cell perinuclear vesicles         | 1         |
| proximal to host cell nuclear membrane | 1         |
| host cell golgi apparatus              | 11        |
| host cell cis-golgi network            | 3         |

## Identified localization of T3SS-secreted proteins (continued)

| localization                                | frequency |
|---------------------------------------------|-----------|
| host cell golgi membrane                    | 3         |
| host cell mitochondrion                     | 15        |
| host cell endoplasmic reticulum             | 6         |
| host cell endosome                          | 5         |
| host cell chloroplast                       | 3         |
| T3SS apparatus                              | 42        |
| T3SS needle tip                             | 8         |
| flagellar apparatus                         | 1         |
| extracellular space                         | 13        |
| bacteria-associated                         | 4         |
| proximal to bacteria                        | 1         |
| Yersinia outer membrane                     | 2         |
| bacterial outer membrane                    | 2         |
| bacterial periplasm                         | 1         |
| lipid droplets                              | 2         |
| Salmonella-containing vacuole (SCV)         | 13        |
| inclusion membrane                          | 30        |
| inclusion lumen                             | 14        |
| near inclusion membrane                     | 4         |
| inclusion membrane microdomains             | 3         |
| host cell membrane-trafficking organelles   | 2         |
| Shigella-containing vacuole (SCV)           | 1         |
| Edwardsiella-containing vacuole (ECV)       | 1         |
| inclusion lumen                             | 2         |
| periphal at inclusion membrane              | 1         |
| intrainclusion                              | 1         |
| reticulate bodies at the inclusion membrane | 1         |
| plasma membrane-associated vesicles         | 1         |

## **Bibliography**

- (1) Diseases, G. 2.; Collaborators, I. *Lancet (London, England)* **2020**, *396*, 1204–1222, ppublish.
- (2) Collaborators, G. B. D. 2. A. R. *Lancet (London, England)* **2022**, *400*, 2221–2248, ppublish.
- (3) Collaborators, A. R. Lancet (London, England) 2022, 399, 629–655, ppublish.
- (4) De Kraker, M. E. A.; Stewardson, A. J.; Harbarth, S. *PLoS medicine* **2016**, *13*, e1002184, epublish.
- (5) Asokan, G. V.; Ramadhan, T.; Ahmed, E.; Sanad, H. *Oman medical journal* **2019**, *34*, 184–193, ppublish.
- (6) Galdiero, S.; Falanga, A.; Cantisani, M.; Tarallo, R.; Della Pepa, M. E.; D'Oriano, V.; Galdiero, M. *Current protein & peptide science* **2012**, *13*, 843–854, ppublish.
- (7) Nikaido, H.; Pagès, J.-M. FEMS microbiology reviews 2012, 36, 340–363, ppublish.
- (8) Green, E. R.; Mecsas, J. *Microbiology spectrum* **2016**, *4*, DOI: 10.1128/microbiolspec. VMBF-0012-2015, ppublish.
- (9) Beckwith, J. Research in microbiology **2013**, 164, 497–504, ppublish.
- (10) Orfanoudaki, G.; Economou, A. *Molecular & cellular proteomics : MCP* **2014**, *13*, 3674–3687, ppublish.
- (11) Monteferrante, C. G.; Miethke, M.; van der Ploeg, R.; Glasner, C.; van Dijl, J. M. *The Journal of biological chemistry* **2012**, 287, 29789–29800, ppublish.
- (12) Simone, D.; Bay, D. C.; Leach, T.; Turner, R. J. *PloS one* **2013**, *8*, e78742, epublish.
- (13) Sitsel, O.; Wang, Z.; Janning, P.; Kroczek, L.; Wagner, T.; Raunser, S. *Nature microbiology* **2024**, *9*, 390–404, ppublish.
- (14) Lasica, A. M.; Ksiazek, M.; Madej, M.; Potempa, J. Frontiers in cellular and infection microbiology **2017**, 7, 215, epublish.
- (15) Sana, T. G.; Voulhoux, R.; Monack, D. M.; Ize, B.; Bleves, S. *Frontiers in cellular and infection microbiology* **2019**, *9*, 473, epublish.
- (16) Arechaga, I.; Cascales, E. Frontiers in microbiology **2022**, 13, 917591, epublish.
- (17) Famelis, N.; Rivera-Calzada, A.; Degliesposti, G.; Wingender, M.; Mietrach, N.; Skehel, J. M.; Fernandez-Leiro, R.; Böttcher, B.; Schlosser, A.; Llorca, O.; Geibel, S. *Nature* **2019**, *576*, 321–325, ppublish.

- (18) Bunduc, C. M.; Fahrenkamp, D.; Wald, J.; Ummels, R.; Bitter, W.; Houben, E. N. G.; Marlovits, T. C. *Nature* **2021**, *593*, 445–448, ppublish.
- (19) Russell, A. B.; Hood, R. D.; Bui, N. K.; LeRoux, M.; Vollmer, W.; Mougous, J. D. *Nature* **2011**, *475*, 343–347, epublish.
- (20) Morgan, J. L. W.; Acheson, J. F.; Zimmer, J. *Structure (London, England : 1993)* **2017**, *25*, 522–529, ppublish.
- (21) Alvarez-Martinez, C. E.; Christie, P. J. *Microbiology and molecular biology reviews* : *MMBR* **2009**, *73*, 775–808, ppublish.
- (22) Lawley, T. D.; Klimke, W. A.; Gubbins, M. J.; Frost, L. S. *FEMS microbiology letters* **2003**, 224, 1–15, ppublish.
- (23) Fronzes, R.; Christie, P. J.; Waksman, G. *Nature reviews. Microbiology* **2009**, *7*, 703–714, ppublish.
- (24) Guglielmini, J.; de la Cruz, F.; Rocha, E. P. C. *Molecular biology and evolution* **2013**, *30*, 315–331, ppublish.
- (25) MacIntyre, D. L.; Miyata, S. T.; Kitaoka, M.; Pukatzki, S. *Proceedings of the National Academy of Sciences of the United States of America* **2010**, *107*, 19520–19524, ppublish.
- (26) Schwarz, S.; West, T. E.; Boyer, F.; Chiang, W.-C.; Carl, M. A.; Hood, R. D.; Rohmer, L.; Tolker-Nielsen, T.; Skerrett, S. J.; Mougous, J. D. *PLoS pathogens* **2010**, *6*, e1001068, epublish.
- (27) Wenren, L. M.; Sullivan, N. L.; Cardarelli, L.; Septer, A. N.; Gibbs, K. A. *mBio* **2013**, *4*, DOI: 10.1128/mBio.00374-13, epublish.
- (28) Isberg, R. R.; O'Connor, T. J.; Heidtman, M. *Nature reviews. Microbiology* **2009**, 7, 13–24, ppublish.
- (29) Pallen, M. J.; Beatson, S. A.; Bailey, C. M. *FEMS microbiology reviews* **2005**, *29*, 201–229, ppublish.
- (30) Goldberg, T.; Rost, B.; Bromberg, Y. Scientific reports 2016, 6, 34516, epublish.
- (31) Burkinshaw, B. J.; Strynadka, N. C. J. *Biochimica et biophysica acta* **2014**, *1843*, 1649–1663, ppublish.
- (32) Stringlis, I. A.; Zamioudis, C.; Berendsen, R. L.; Bakker, P. A. H. M.; Pieterse, C. M. J. *Frontiers in microbiology* **2019**, *10*, 1631, epublish.
- (33) Abrusci, P.; McDowell, M. A.; Lea, S. M.; Johnson, S. *Current opinion in structural biology* **2014**, *25*, 111–117, ppublish.
- (34) Hu, Y.; Huang, H.; Cheng, X.; Shu, X.; White, A. P.; Stavrinides, J.; Köster, W.; Zhu, G.; Zhao, Z.; Wang, Y. *Environmental microbiology* **2017**, *19*, 3879–3895, ppublish.

- (35) Deng, W.; Marshall, N. C.; Rowland, J. L.; McCoy, J. M.; Worrall, L. J.; Santos, A. S.; Strynadka, N. C. J.; Finlay, B. B. *Nature reviews. Microbiology* **2017**, *15*, 323–337, ppublish.
- (36) Cascales, E. *Cell* **2017**, *168*, 949–951, ppublish.
- (37) Hu, B.; Lara-Tejero, M.; Kong, Q.; Galán, J. E.; Liu, J. *Cell* **2017**, *168*, 1065–1074.e10, ppublish.
- (38) Wimmi, S.; Balinovic, A.; Brianceau, C.; Pintor, K.; Vielhauer, J.; Turkowyd, B.; Helbig, C.; Fleck, M.; Langenfeld, K.; Kahnt, J.; Glatter, T.; Endesfelder, U.; Diepold, A. *Nature microbiology* **2024**, *9*, 185–199, ppublish.
- (39) Miletic, S.; Fahrenkamp, D.; Goessweiner-Mohr, N.; Wald, J.; Pantel, M.; Vesper, O.; Kotov, V.; Marlovits, T. C. *Nature communications* **2021**, *12*, 1546, epublish.
- (40) Bergeron, J. R. C.; Worrall, L. J.; Sgourakis, N. G.; DiMaio, F.; Pfuetzner, R. A.; Felise, H. B.; Vuckovic, M.; Yu, A. C.; Miller, S. I.; Baker, D.; Strynadka, N. C. J. *PLoS pathogens* **2013**, *9*, e1003307, ppublish.
- (41) Galán, J. E.; Waksman, G. Cell **2018**, 172, 1306–1318, ppublish.
- (42) Schraidt, O.; Marlovits, T. C. *Science (New York, N.Y.)* **2011**, *331*, 1192–1195, ppublish.
- (43) Lara-Tejero, M.; Galán, J. E. *EcoSal Plus* **2019**, *8*, DOI: 10.1128/ecosalplus. ESP-0039-2018, ppublish.
- (44) Lefebre, M. D.; Galán, J. E. *Proceedings of the National Academy of Sciences of the United States of America* **2014**, *111*, 817–822, ppublish.
- (45) Rathinavelan, T.; Lara-Tejero, M.; Lefebre, M.; Chatterjee, S.; McShan, A. C.; Guo, D.-C.; Tang, C.; Galan, J. E.; De Guzman, R. N. *Journal of molecular biology* **2014**, *426*, 2958–2969, ppublish.
- (46) Diepold, A.; Wagner, S. FEMS microbiology reviews 2014, 38, 802–822, ppublish.
- (47) Kuhlen, L.; Johnson, S.; Zeitler, A.; Bäurle, S.; Deme, J. C.; Caesar, J. J. E.; Debo, R.; Fisher, J.; Wagner, S.; Lea, S. M. *Nature communications* **2020**, *11*, 1296, epublish.
- (48) Inoue, Y.; Ogawa, Y.; Kinoshita, M.; Terahara, N.; Shimada, M.; Kodera, N.; Ando, T.; Namba, K.; Kitao, A.; Imada, K.; Minamino, T. Structure (London, England: 1993) 2019, 27, 965–976.e6, ppublish.
- (49) Diepold, A.; Kudryashev, M.; Delalez, N. J.; Berry, R. M.; Armitage, J. P. *PLoS biology* **2015**, *13*, e1002039, epublish.
- (50) Bernal, I.; Börnicke, J.; Heidemann, J.; Svergun, D.; Horstmann, J. A.; Erhardt, M.; Tuukkanen, A.; Uetrecht, C.; Kolbe, M. *Journal of molecular biology* **2019**, *431*, 3787–3803, ppublish.

- (51) Tachiyama, S.; Chang, Y.; Muthuramalingam, M.; Hu, B.; Barta, M. L.; Picking, W. L.; Liu, J.; Picking, W. D. *The Journal of biological chemistry* 2019, 294, 19184–19196, ppublish.
- (52) Ernst, N. H.; Reeves, A. Z.; Ramseyer, J. E.; Lesser, C. F. *mBio* **2018**, *9*, DOI: 10.1128/mBio.01050-18, epublish.
- (53) Spaeth, K. E.; Chen, Y.-S.; Valdivia, R. H. *PLoS pathogens* **2009**, *5*, e1000579, ppublish.
- (54) Majewski, D. D.; Worrall, L. J.; Hong, C.; Atkinson, C. E.; Vuckovic, M.; Watanabe, N.; Yu, Z.; Strynadka, N. C. J. *Nature communications* 2019, 10, 626, epublish.
- (55) Jensen, J. L.; Yamini, S.; Rietsch, A.; Spiller, B. W. *PLoS pathogens* **2020**, *16*, e1008923, epublish.
- (56) Hu, B.; Morado, D. R.; Margolin, W.; Rohde, J. R.; Arizmendi, O.; Picking, W. L.; Picking, W. D.; Liu, J. *Proceedings of the National Academy of Sciences of the United States of America* **2015**, *112*, 1047–1052, ppublish.
- (57) Akeda, Y.; Galán, J. E. *Nature* **2005**, *437*, 911–915, ppublish.
- (58) Galán, J. E.; Wolf-Watz, H. *Nature* **2006**, 444, 567–573, ppublish.
- (59) Erhardt, M.; Mertens, M. E.; Fabiani, F. D.; Hughes, K. T. *PLoS genetics* **2014**, *10*, e1004800, epublish.
- (60) Minamino, T.; Namba, K. *Nature* **2008**, *451*, 485–488, ppublish.
- (61) Minamino, T.; Kinoshita, M.; Namba, K. *Frontiers in microbiology* **2022**, *13*, 864178, epublish.
- (62) Wilharm, G.; Dittmann, S.; Schmid, A.; Heesemann, J. *International journal of medical microbiology: IJMM* **2007**, 297, 27–36, ppublish.
- (63) Paul, K.; Erhardt, M.; Hirano, T.; Blair, D. F.; Hughes, K. T. *Nature* **2008**, *451*, 489–492, ppublish.
- (64) Diepold, A.; Amstutz, M.; Abel, S.; Sorg, I.; Jenal, U.; Cornelis, G. R. *The EMBO journal* **2010**, *29*, 1928–1940, ppublish.
- (65) Marlovits, T. C.; Kubori, T.; Lara-Tejero, M.; Thomas, D.; Unger, V. M.; Galán,
   J. E. *Nature* 2006, 441, 637–640, ppublish.
- (66) Journet, L.; Agrain, C.; Broz, P.; Cornelis, G. R. *Science (New York, N.Y.)* **2003**, *302*, 1757–1760, ppublish.
- (67) Shaulov, L.; Gershberg, J.; Deng, W.; Finlay, B. B.; Sal-Man, N. *mBio* **2017**, 8, DOI: 10.1128/mBio.01733-16, epublish.
- (68) Ho, O.; Rogne, P.; Edgren, T.; Wolf-Watz, H.; Login, F. H.; Wolf-Watz, M. *The Journal of biological chemistry* **2017**, *292*, 3299–3311, ppublish.

- (69) Monjarás Feria, J. V.; Lefebre, M. D.; Stierhof, Y.-D.; Galán, J. E.; Wagner, S. *mBio* **2015**, *6*, e01459–e01415, epublish.
- (70) Ngo, T.-D.; Perdu, C.; Jneid, B.; Ragno, M.; Novion Ducassou, J.; Kraut, A.; Couté, Y.; Stopford, C.; Attrée, I.; Rietsch, A.; Faudry, E. *Journal of molecular biology* **2020**, *432*, 166690, ppublish.
- (71) Yu, X.-J.; Grabe, G. J.; Liu, M.; Mota, L. J.; Holden, D. W. *mBio* **2018**, *9*, DOI: 10.1128/mBio.01149-18, epublish.
- (72) Shen, D.-K.; Blocker, A. J. *PloS one* **2016**, *11*, e0155141, epublish.
- (73) Büttner, D. *Microbiology and molecular biology reviews : MMBR* **2012**, *76*, 262–310, ppublish.
- (74) Dean, P. *FEMS microbiology reviews* **2011**, *35*, 1100–1125, ppublish.
- (75) Kaniga, K.; Uralil, J.; Bliska, J. B.; Galán, J. E. *Molecular microbiology* **1996**, *21*, 633–641, ppublish.
- (76) Stavrinides, J.; Ma, W.; Guttman, D. S. *PLoS pathogens* **2006**, 2, e104, ppublish.
- (77) Delevoye, C.; Nilges, M.; Dehoux, P.; Paumet, F.; Perrinet, S.; Dautry-Varsat, A.; Subtil, A. *PLoS pathogens* **2008**, *4*, e1000022, epublish.
- (78) Gibbs, K. D.; Washington, E. J.; Jaslow, S. L.; Bourgeois, J. S.; Foster, M. W.; Guo, R.; Brennan, R. G.; Ko, D. C. *Cell host & microbe* **2020**, *27*, 129–139.e4, ppublish.
- (79) Xing, Q.; Shi, K.; Portaliou, A.; Rossi, P.; Economou, A.; Kalodimos, C. G. *Nature communications* **2018**, *9*, 1773, epublish.
- (80) Allison, S. E.; Tuinema, B. R.; Everson, E. S.; Sugiman-Marangos, S.; Zhang, K.; Junop, M. S.; Coombes, B. K. *The Journal of biological chemistry* **2014**, 289, 23734–23744, ppublish.
- (81) LeBlanc, M.-A.; Fink, M. R.; Perkins, T. T.; Sousa, M. C. *Proceedings of the National Academy of Sciences of the United States of America* **2021**, *118*, DOI: 10.1073/pnas.2019566118, ppublish.
- (82) Lara-Tejero, M.; Kato, J.; Wagner, S.; Liu, X.; Galán, J. E. *Science (New York, N.Y.)* **2011**, *331*, 1188–1191, ppublish.
- (83) Schlumberger, M. C.; Müller, A. J.; Ehrbar, K.; Winnen, B.; Duss, I.; Stecher, B.; Hardt, W.-D. *Proceedings of the National Academy of Sciences of the United States of America* **2005**, *102*, 12548–12553, ppublish.
- (84) Van Engelenburg, S. B.; Palmer, A. E. *Chemistry & biology* **2008**, *15*, 619–628, ppublish.
- (85) Kubori, T.; Galán, J. E. Cell **2003**, 115, 333–342, ppublish.

- (86) Letzelter, M.; Sorg, I.; Mota, L. J.; Meyer, S.; Stalder, J.; Feldman, M.; Kuhn, M.; Callebaut, I.; Cornelis, G. R. *The EMBO journal* **2006**, *25*, 3223–3233, ppublish.
- (87) Lee, S. H.; Galán, J. E. *Molecular microbiology* **2004**, *51*, 483–495, ppublish.
- (88) Bagos, P. G.; Nikolaou, E. P.; Liakopoulos, T. D.; Tsirigos, K. D. *Bioinformatics* (Oxford, England) **2010**, 26, 2811–2817, ppublish.
- (89) Spitz, O.; Erenburg, I. N.; Beer, T.; Kanonenberg, K.; Holland, I. B.; Schmitt, L. *Microbiology spectrum* **2019**, *7*, DOI: 10.1128/microbiolspec.PSIB-0003-2018, ppublish.
- (90) Delepelaire, P. Biochimica et biophysica acta 2004, 1694, 149–161, ppublish.
- (91) Schesser, K.; Frithz-Lindsten, E.; Wolf-Watz, H. *Journal of bacteriology* **1996**, *178*, 7227–7233, ppublish.
- (92) Sory, M. P.; Boland, A.; Lambermont, I.; Cornelis, G. R. *Proceedings of the National Academy of Sciences of the United States of America* **1995**, 92, 11998–12002, ppublish.
- (93) Anderson, D. M.; Schneewind, O. *Science (New York, N.Y.)* **1997**, 278, 1140–1143, ppublish.
- (94) Anderson, D. M.; Schneewind, O. *Molecular microbiology* **1999**, *31*, 1139–1148, ppublish.
- (95) Ramamurthi, K. S.; Schneewind, O. *Journal of bacteriology* **2002**, *184*, 3321–3328, ppublish.
- (96) Ramamurthi, K. S.; Schneewind, O. *Molecular microbiology* **2003**, *50*, 1189–1198, ppublish.
- (97) Lloyd, S. A.; Norman, M.; Rosqvist, R.; Wolf-Watz, H. *Molecular microbiology* **2001**, *39*, 520–531, ppublish.
- (98) Karavolos, M. H.; Roe, A. J.; Wilson, M.; Henderson, J.; Lee, J. J.; Gally, D. L.; Khan, C. M. A. *Journal of bacteriology* **2005**, *187*, 1559–1567, ppublish.
- (99) Amer, A. A. A.; Åhlund, M. K.; Bröms, J. E.; Forsberg, Å.; Francis, M. S. *Journal of bacteriology* **2011**, *193*, 6683–6700, ppublish.
- (100) Niemann, G. S.; Brown, R. N.; Mushamiri, I. T.; Nguyen, N. T.; Taiwo, R.; Stufkens, A.; Smith, R. D.; Adkins, J. N.; McDermott, J. E.; Heffron, F. *Journal of bacteriol-ogy* **2013**, *195*, 2119–2125, ppublish.
- (101) Arnold, R.; Brandmaier, S.; Kleine, F.; Tischler, P.; Heinz, E.; Behrens, S.; Niinikoski, A.; Mewes, H.-W.; Horn, M.; Rattei, T. *PLoS pathogens* **2009**, *5*, e1000376, ppublish.
- (102) Pais, S. V.; Milho, C.; Almeida, F.; Mota, L. J. *PloS one* **2013**, 8, e56292, ppublish.

- (103) Da Cunha, M.; Milho, C.; Almeida, F.; Pais, S. V.; Borges, V.; Maurício, R.; Borrego, M. J.; Gomes, J. P.; Mota, L. J. *BMC microbiology* **2014**, *14*, 40, epublish.
- (104) Zhou, X.; Nydam, S. D.; Christensen, J. E.; Konkel, M. E.; Orfe, L.; Friel, P.; Call, D. R. *Applied and environmental microbiology* **2012**, *78*, 3492–3494, ppublish.
- (105) Miao, E. A.; Miller, S. I. *Proceedings of the National Academy of Sciences of the United States of America* **2000**, *97*, 7539–7544, ppublish.
- (106) Lloyd, S. A.; Sjöström, M.; Andersson, S.; Wolf-Watz, H. *Molecular microbiology* **2002**, *43*, 51–59, ppublish.
- (107) Buchko, G. W.; Niemann, G.; Baker, E. S.; Belov, M. E.; Smith, R. D.; Heffron, F.; Adkins, J. N.; McDermott, J. E. *Molecular bioSystems* **2010**, *6*, 2448–2458, ppublish.
- (108) Bard, J. A. M.; Goodall, E. A.; Greene, E. R.; Jonsson, E.; Dong, K. C.; Martin, A. *Annual review of biochemistry* **2018**, *87*, 697–724, ppublish.
- (109) Wang, Y.; Sun, M.; Bao, H.; White, A. P. *PloS one* **2013**, *8*, e58173, ppublish.
- (110) Löwer, M.; Schneider, G. *PloS one* **2009**, *4*, e5917, epublish.
- (111) Xue, L.; Tang, B.; Chen, W.; Luo, J. *Bioinformatics (Oxford, England)* **2019**, *35*, 2051–2057, ppublish.
- (112) Winnen, B.; Schlumberger, M. C.; Sturm, A.; Schüpbach, K.; Siebenmann, S.; Jenny, P.; Hardt, W.-D. *PloS one* **2008**, *3*, e2178, epublish.
- (113) Sorg, I.; Wagner, S.; Amstutz, M.; Müller, S. A.; Broz, P.; Lussi, Y.; Engel, A.; Cornelis, G. R. *The EMBO journal* **2007**, *26*, 3015–3024, ppublish.
- (114) Login, F. H.; Wolf-Watz, H. *The Journal of biological chemistry* **2015**, 290, 26282–26291, ppublish.
- (115) Deng, W.; Yu, H. B.; Li, Y.; Finlay, B. B. *Journal of bacteriology* **2015**, *197*, 1263–1275, ppublish.
- (116) Mills, E.; Baruch, K.; Aviv, G.; Nitzan, M.; Rosenshine, I. *mBio* **2013**, *4*, DOI: 10.1128/mBio.00303-13, epublish.
- (117) Mills, E.; Baruch, K.; Charpentier, X.; Kobi, S.; Rosenshine, I. *Cell host & microbe* **2008**, *3*, 104–113, ppublish.
- (118) Serapio-Palacios, A.; Finlay, B. B. *Current opinion in microbiology* **2020**, *54*, 67–76, ppublish.
- (119) Coburn, B.; Grassl, G. A.; Finlay, B. B. *Immunology and cell biology* **2007**, *85*, 112–118, ppublish.
- (120) Bao, H.; Wang, S.; Zhao, J.-H.; Liu, S.-L. *Microbiological research* **2020**, *241*, 126591, ppublish.

- (121) Agbor, T. A.; McCormick, B. A. *Cellular microbiology* **2011**, *13*, 1858–1869, ppublish.
- (122) Yu, X.-J.; Liu, M.; Holden, D. W. *mBio* **2016**, 7, DOI: 10.1128/mBio.00474-16, epublish.
- (123) Liu, J.; Guo, J.-T.; Li, Y.-G.; Johnston, R. N.; Liu, G.-R.; Liu, S.-L. *Journal of basic microbiology* **2013**, *53*, 600–607, ppublish.
- (124) Wang, R. F.; Kushner, S. R. Gene 1991, 100, 195–199, ppublish.
- (125) Nyerges, Á.; Csörgő, B.; Nagy, I.; Bálint, B.; Bihari, P.; Lázár, V.; Apjok, G.; Umenhoffer, K.; Bogos, B.; Pósfai, G.; Pál, C. *Proceedings of the National Academy of Sciences of the United States of America* **2016**, *113*, 2502–2507, ppublish.
- (126) Wannier, T. M.; Nyerges, A.; Kuchwara, H. M.; Czikkely, M.; Balogh, D.; Filsinger, G. T.; Borders, N. C.; Gregg, C. J.; Lajoie, M. J.; Rios, X.; Pál, C.; Church, G. M. Proceedings of the National Academy of Sciences of the United States of America 2020, 117, 13689–13698, ppublish.
- (127) Hoffmann, C.; Galle, M.; Dilling, S.; Käppeli, R.; Müller, A. J.; Songhet, P.; Beyaert, R.; Hardt, W.-D. *PloS one* **2010**, *5*, e12477, epublish.
- (128) Sukhan, A.; Kubori, T.; Wilson, J.; Galán, J. E. *Journal of bacteriology* **2001**, *183*, 1159–1167, ppublish.
- (129) Hoiseth, S. K.; Stocker, B. A. *Nature* **1981**, 291, 238–239, ppublish.
- (130) Chen, J.; Li, Y.; Zhang, K.; Wang, H. Genome announcements **2018**, 6, DOI: 10.1128/genomeA.00097-18, epublish.
- (131) Korbie, D. J.; Mattick, J. S. *Nature protocols* **2008**, *3*, 1452–1456, ppublish.
- (132) Kaniga, K.; Trollinger, D.; Galán, J. E. *Journal of bacteriology* **1995**, *177*, 7078–7085, ppublish.
- (133) Michiels, T.; Cornelis, G. R. *Journal of bacteriology* **1991**, *173*, 1677–1685, ppublish.
- (134) Ménard, R.; Sansonetti, P.; Parsot, C. *The EMBO journal* **1994**, *13*, 5293–5302, ppublish.
- (135) Kim, J. S.; Jang, J. I.; Eom, J. S.; Oh, C. H.; Kim, H. G.; Kim, B. H.; Bang, I. S.; Bang, S. H.; Park, Y. K. *Microbiology (Reading, England)* **2013**, *159*, 446–461, ppublish.
- (136) Button, J. E.; Galán, J. E. *Molecular microbiology* **2011**, *81*, 1474–1483, ppublish.
- (137) Bajaj, V.; Lucas, R. L.; Hwang, C.; Lee, C. A. *Molecular microbiology* **1996**, *22*, 703–714, ppublish.
- (138) Lostroh, C. P.; Lee, C. A. *Journal of bacteriology* **2001**, *183*, 4876–4885, ppublish.

- (139) Lorenz, R.; Bernhart, S. H.; Höner Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P. F.; Hofacker, I. L. *Algorithms for molecular biology : AMB* **2011**, *6*, 26, epublish.
- (140) Takaya, A.; Tomoyasu, T.; Matsui, H.; Yamamoto, T. *Infection and immunity* **2004**, 72, 1364–1373, ppublish.
- (141) Westerhausen, S.; Nowak, M.; Torres-Vargas, C. E.; Bilitewski, U.; Bohn, E.; Grin, I.; Wagner, S. *Molecular microbiology* **2020**, *113*, 1240–1254, ppublish.
- (142) England, C. G.; Ehlerding, E. B.; Cai, W. *Bioconjugate chemistry* **2016**, *27*, 1175–1187, ppublish.
- (143) Promega Nano-Glo Luciferase Assay System, Instructions for Use of Products N1110, N1120, N1130 and N1150, Promega Corporation: 2022.
- (144) Fan, F. J.; Shi, Y. Bioorganic & medicinal chemistry 2022, 72, 117003, ppublish.
- (145) Budach, L.; Feuerpfeil, M.; Ihde, N.; Nathansen, A.; Noack, N.; Patzlaff, H.; Naumann, F.; Harmouch, H. *arXiv preprint arXiv:2207.14529* **2022**.
- (146) Dong, X.; Lu, X.; Zhang, Z. *Database: the journal of biological databases and curation* **2015**, 2015, bav064, epublish.
- (147) An, Y.; Wang, J.; Li, C.; Revote, J.; Zhang, Y.; Naderer, T.; Hayashida, M.; Akutsu, T.; Webb, G. I.; Lithgow, T.; Song, J. *Scientific reports* **2017**, *7*, 41031, epublish.
- (148) Wang, J.; Li, J.; Yang, B.; Xie, R.; Marquez-Lago, T. T.; Leier, A.; Hayashida, M.; Akutsu, T.; Zhang, Y.; Chou, K.-C.; Selkrig, J.; Zhou, T.; Song, J.; Lithgow, T. *Bioinformatics (Oxford, England)* **2019**, *35*, 2017–2028, ppublish.
- (149) Li, J.; Wei, L.; Guo, F.; Zou, Q. *Briefings in bioinformatics* **2021**, 22, 1918–1928, ppublish.
- (150) National Library of Medicine (US) National Center for Biotechnology Information, [Identical Protein Groups https://www.ncbi.nlm.nih.gov/ipg/(accessed 12/29/2023).
- (151) Eichinger, V.; Nussbaumer, T.; Platzer, A.; Jehl, M.-A.; Arnold, R.; Rattei, T. *Nucleic acids research* **2016**, *44*, D669–D674, ppublish.
- (152) Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. *Bioinformatics (Oxford, England)* **2012**, 28, 3150–3152, ppublish.
- (153) Chan, Y.-C.; Wu, H.-P.; Chuang, D.-Y. BMC microbiology 2009, 9, 181, epublish.
- (154) Christensen, J. E.; Pacheco, S. A.; Konkel, M. E. *Molecular microbiology* **2009**, *73*, 650–662, ppublish.
- (155) Boureau, T.; ElMaarouf-Bouteau, H.; Garnier, A.; Brisset, M.-N.; Perino, C.; Pucheu, I.; Barny, M.-A. *Molecular plant-microbe interactions : MPMI* **2006**, *19*, 16–24, ppublish.

- (156) Vanden Bergh, P.; Heller, M.; Braga-Lagache, S.; Frey, J. *Proteome science* **2013**, *11*, 42, epublish.
- (157) Nissinen, R. M.; Ytterberg, A. J.; Bogdanove, A. J.; VAN Wijk, K. J.; Beer, S. V. *Molecular plant pathology* **2007**, *8*, 55–67, ppublish.
- (158) Deng, W.; de Hoog, C. L.; Yu, H. B.; Li, Y.; Croxen, M. A.; Thomas, N. A.; Puente, J. L.; Foster, L. J.; Finlay, B. B. *The Journal of biological chemistry* **2010**, 285, 6790–6800, ppublish.
- (159) Deng, W.; Yu, H. B.; de Hoog, C. L.; Stoynov, N.; Li, Y.; Foster, L. J.; Finlay, B. B. *Molecular & cellular proteomics : MCP* **2012**, *11*, 692–709, ppublish.
- (160) Liu, X.; Lu, L.; Liu, X.; Liu, X.; Pan, C.; Feng, E.; Wang, D.; Niu, C.; Zhu, L.; Wang, H. *Journal of microbiology and biotechnology* **2017**, 27, 171–178, ppublish.
- (161) Lonjon, F.; Turner, M.; Henry, C.; Rengel, D.; Lohou, D.; van de Kerkhove, Q.; Cazalé, A.-C.; Peeters, N.; Genin, S.; Vailleau, F. *Molecular & cellular proteomics* : *MCP* **2016**, *15*, 598–613, ppublish.
- (162) Lampaki, D.; Diepold, A.; Glatter, T. *Journal of proteome research* **2020**, *19*, 543–553, ppublish.
- (163) Schumacher, J.; Waite, C. J.; Bennett, M. H.; Perez, M. F.; Shethi, K.; Buck, M. *Frontiers in plant science* **2014**, *5*, 242, epublish.
- (164) Pinaud, L.; Ferrari, M. L.; Friedman, R.; Jehmlich, N.; von Bergen, M.; Phalipon, A.; Sansonetti, P. J.; Campbell-Valois, F.-X. *PloS one* **2017**, *12*, e0186920, epublish.
- (165) Dallaire-Dufresne, S.; Barbeau, X.; Sarty, D.; Tanaka, K. H.; Denoncourt, A. M.; Lagüe, P.; Reith, M. E.; Charette, S. J. *Microbiology (Reading, England)* **2013**, *159*, 1937–1945, ppublish.
- (166) Kühn, S.; Bergqvist, J.; Gil, M.; Valenzuela, C.; Barrio, L.; Lebreton, S.; Zurzolo, C.; Enninga, J. *Cell reports* **2020**, *31*, 107638, ppublish.
- (167) Gehre, L.; Gorgette, O.; Perrinet, S.; Prevost, M.-C.; Ducatez, M.; Giebel, A. M.; Nelson, D. E.; Ball, S. G.; Subtil, A. *eLife* **2016**, *5*, e12552, epublish.
- (168) Cassady-Cain, R. L.; Blackburn, E. A.; Alsarraf, H.; Dedic, E.; Bease, A. G.; Böttcher, B.; Jørgensen, R.; Wear, M.; Stevens, M. P. *The Journal of biological chemistry* **2016**, *291*, 5803–5816, ppublish.
- (169) Li, S.; Zhang, L.; Yao, Q.; Li, L.; Dong, N.; Rong, J.; Gao, W.; Ding, X.; Sun, L.; Chen, X.; Chen, S.; Shao, F. *Nature* **2013**, *501*, 242–246, ppublish.
- (170) Newson, J. P. M.; Scott, N. E.; Yeuk Wah Chung, I.; Wong Fok Lung, T.; Giogha, C.; Gan, J.; Wang, N.; Strugnell, R. A.; Brown, N. F.; Cygler, M.; Pearson, J. S.; Hartland, E. L. *Molecular & cellular proteomics : MCP* **2019**, *18*, 1138–1156, ppublish.

- (171) El Qaidi, S.; Scott, N. E.; Hardwidge, P. R. Scientific reports **2021**, 11, 3834, epublish.
- (172) Dressaire, C.; Moreira, R. N.; Barahona, S.; Alves de Matos, A. P.; Arraiano, C. M. *mBio* **2015**, *6*, e02352–e02314, epublish.
- (173) Niebuhr, K.; Giuriato, S.; Pedron, T.; Philpott, D. J.; Gaits, F.; Sable, J.; Sheetz, M. P.; Parsot, C.; Sansonetti, P. J.; Payrastre, B. *The EMBO journal* 2002, 21, 5069–5078, ppublish.
- (174) Parsot, C. Current opinion in microbiology 2009, 12, 110–116, ppublish.
- (175) Steele-Mortimer, O. Current opinion in microbiology 2008, 11, 38–45, ppublish.
- (176) Hui, X.; Chen, Z.; Lin, M.; Zhang, J.; Hu, Y.; Zeng, Y.; Cheng, X.; Ou-Yang, L.; Sun, M.-A.; White, A. P.; Wang, Y. *mSystems* **2020**, *5*, DOI: 10.1128/mSystems. 00288-20, epublish.
- (177) Hochreiter, S.; Schmidhuber, J. Neural Computation 1997, 9, 1735–1780.
- (178) Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate, 2016.
- (179) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł. u.; Polosukhin, I. In *Advances in Neural Information Processing Systems*, ed. by Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Curran Associates, Inc.: 2017; Vol. 30.
- (180) Weininger, D. *Journal of Chemical Information and Computer Sciences* **1988**, 28, 31–36.
- (181) Bonidia, R. P.; Sampaio, L. D. H.; Domingues, D. S.; Paschoal, A. R.; Lopes, F. M.; de Carvalho, A. C. P. L. F.; Sanches, D. S. *Briefings in bioinformatics* **2021**, 22, DOI: 10.1093/bib/bbab011, ppublish.
- (182) Marsella, L.; Sirocco, F.; Trovato, A.; Seno, F.; Tosatto, S. C. E. *Bioinformatics* (*Oxford, England*) **2009**, *25*, i289–i295, ppublish.
- (183) Li, J.; Li, Z.; Luo, J.; Yao, Y. *Computational and mathematical methods in medicine* **2020**, *2020*, 3974598, epublish.
- (184) Jing, R.; Wen, T.; Liao, C.; Xue, L.; Liu, F.; Yu, L.; Luo, J. *NAR genomics and bioinformatics* **2021**, *3*, lqab086, epublish.
- (185) Ahuja, U.; Shokeen, B.; Cheng, N.; Cho, Y.; Blum, C.; Coppola, G.; Miller, J. F. *Proceedings of the National Academy of Sciences of the United States of America* **2016**, *113*, 2341–2348, ppublish.
- (186) Francis, M. S.; Wolf-Watz, H.; Forsberg, A. *Current opinion in microbiology* **2002**, *5*, 166–172, ppublish.
- (187) Jackson, M. W.; Silva-Herzog, E.; Plano, G. V. *Molecular microbiology* **2004**, *54*, 1364–1378, ppublish.

- (188) Kopaskie, K. S.; Ligtenberg, K. G.; Schneewind, O. *The Journal of biological chemistry* **2013**, 288, 35478–35488, ppublish.
- (189) Auweter, S. D.; Bhavsar, A. P.; de Hoog, C. L.; Li, Y.; Chan, Y. A.; van der Heijden, J.; Lowden, M. J.; Coombes, B. K.; Rogers, L. D.; Stoynov, N.; Foster, L. J.; Finlay, B. B. *The Journal of biological chemistry* **2011**, 286, 24023–24035, ppublish.
- (190) Allombert, J.; Vianney, A.; Charpentier, X. *Methods in molecular biology (Clifton, N.J.)* **2017**, *1615*, 489–499, ppublish.
- (191) Chakravarthy, S.; Huot, B.; Kvitko, B. H. *Methods in molecular biology (Clifton, N.J.)* **2017**, *1615*, 473–487, ppublish.
- (192) Qureshi, S. A. *BioTechniques* **2007**, *42*, 91–96, ppublish.
- (193) Boute, N.; Lowe, P.; Berger, S.; Malissard, M.; Robert, A.; Tesar, M. *Frontiers in pharmacology* **2016**, *7*, 27, epublish.
- (194) Nyerges, Á. et al. *Proceedings of the National Academy of Sciences of the United States of America* **2018**, *115*, E5726–E5735, ppublish.
- (195) Sanders, B. R.; Townsend, S. E.; Ford, M. L.; Graves, J. L.; Thomas, M. D. *Journal of microbiological methods* **2023**, *204*, 106627, ppublish.
- (196) Ellermeier, C. D.; Ellermeier, J. R.; Slauch, J. M. *Molecular microbiology* **2005**, *57*, 691–705, ppublish.
- (197) Kim, K.; Golubeva, Y. A.; Vanderpool, C. K.; Slauch, J. M. *Molecular microbiology* **2019**, *111*, 570–587, ppublish.
- (198) Cheng, S.; Wang, L.; Liu, Q.; Qi, L.; Yu, K.; Wang, Z.; Wu, M.; Liu, Y.; Fu, J.; Hu, M.; Li, M.; Zhou, D.; Liu, X. Molecular & cellular proteomics : MCP 2017, 16, 2219–2228, ppublish.
- (199) Sarrion-Perdigones, A.; Chang, L.; Gonzalez, Y.; Gallego-Flores, T.; Young, D. W.; Venken, K. J. T. *Nature communications* **2019**, *10*, 5710, epublish.
- (200) Dehoux, P.; Flores, R.; Dauga, C.; Zhong, G.; Subtil, A. *BMC genomics* **2011**, *12*, 109, epublish.
- (201) Goodman, D. B.; Church, G. M.; Kosuri, S. *Science (New York, N.Y.)* **2013**, *342*, 475–479, ppublish.
- (202) Tay, D. M. M.; Govindarajan, K. R.; Khan, A. M.; Ong, T. Y. R.; Samad, H. M.; Soh, W. W.; Tong, M.; Zhang, F.; Tan, T. W. *BMC bioinformatics* **2010**, *11 Suppl* 7, S4, epublish.
- (203) Yu, L.; Liu, F.; Li, Y.; Luo, J.; Jing, R. *Frontiers in microbiology* **2021**, *12*, 605782, epublish.
- (204) Wang, J.; Li, J.; Hou, Y.; Dai, W.; Xie, R.; Marquez-Lago, T. T.; Leier, A.; Zhou, T.; Torres, V.; Hay, I.; Stubenrauch, C.; Zhang, Y.; Song, J.; Lithgow, T. *Nucleic acids research* **2021**, *49*, D651–D659, ppublish.

## **Dedication**

Für Nala und Janina.

## Acknowledgements

First, I would like to thank Thomas Marlovits for giving me the opportunity to work on this exciting project, that allowed me to get to know a wide array of scientific disciplines from experimental lab work to the computational development of machine learning pipelines. It helped me refine my strengths and work on my weaknesses.

I would also like to thank Oliver Vesper for his ongoing support in this project, his vast experience and knowledge especially in wet-lab related topics was crucial to advance this project.

A special thank you goes to Barbara Grueter, who not only supported me tremendously by conducting many of the quantification assays but who always had an open ear for me and provided invaluable mental support. With her work during her masters thesis Jiline Ahrendt also contributed to this project. Finally, I would also like to thank past and present members of the Marlovits AG for their unobstructed view on things, helpful ideas and suggestions, as well as encouragements when needed. Thank you!

## **Eidesstattliche Versicherung**

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe. Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe. Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.