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Abstract

Cooperative spontaneous emission is a prominent example of a quantum many-body effect
in which a group of initially uncorrelated atoms emits radiation coherently in a short, intense
burst of light. This phenomenon can occur when a free-electron laser excites a solid or gaseous
target, creating a population inversion within the atomic system. The excited atoms exchange
spontaneously emitted photons, synchronizing their dipole moments through this interaction.
Consequently, the atoms emit coherently, resulting in a photon avalanche known as superra-
diance. This process generates spatially and temporally coherent pulses with promising appli-
cations, for instance, in spectroscopy, metrology, and the development of high-brightness light
sources.

Observing superradiance typically requires a large number of atoms. Therefore, theoretical
modeling using conventional quantum-mechanical approaches often becomes impractical. This
dissertation presents numerically efficient theoretical frameworks to model collective sponta-
neous emission in such computationally challenging cases. The study focuses on two primary
directions: the adaptation of second quantization to open quantum systems and the formula-
tion of a stochastic approach rooted in the positive P-representation. The developed methods
address compact systems within the Dicke limit and extend to macroscopic pencil-shaped media.

The first part introduces second quantization in Liouville space, formulated for density ma-
trices, facilitating efficient modeling of permutation-invariant systems with incoherent processes.
The second part extends this approach by employing a phase-space description of quantum dy-
namics using stochastic differential equations for efficient, parallelizable sampling. By advancing
the positive P framework, this methodology provides insights into systems where semiclassical
methods are inadequate or traditional quantum-mechanical techniques are computationally in-
feasible.

For numerical illustrations, we examine compact systems of two- and three-level emitters
under the influence of incoherent pumping and decoherence. Additionally, we investigate the
impact of statistical mixing on their emission, revealing a class of many-body steady states. Our
second-quantization approach serves as a benchmark for the stochastic methodology, determining
its effectiveness and delineating its boundary of applicability.

This work also addresses limitations, including numerical instabilities, and proposes avenues
for future research. Applications such as x-ray lasing, demonstrated through amplified sponta-
neous emission in neon, and cavity-mediated collective emission emphasize the importance of
these frameworks in advancing the understanding of cooperative light-matter interactions.
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Zusammenfassung

Kooperative spontane Emission ist ein herausragendes Beispiel fiir einen quantenmechanis-
chen Vielteilcheneffekt, bei dem eine Gruppe zunichst unkorrelierter Atome kohérent einen
kurzen, intensiven Lichtblitz emittieren. Dieses Phidnomen tritt auf, wenn ein Freie-Elektronen-
Laser ein festes oder gasformiges Target anregt und dadurch eine Populationsinversion im atom-
aren System erzeugt. Die angeregten Atome tauschen spontan emittierte Photonen aus und
synchronisieren iiber diese Wechselwirkung ihre Dipolmomente. Infolgedessen senden die Atome
kohérente Strahlung aus, was zu einer Photonenlawine fiihrt, die als Superradianz bekannt ist.
Dieser Prozess erzeugt raumlich und zeitlich kohédrente Pulse mit vielversprechenden Anwen-
dungen, beispielsweise in der Spektroskopie, Metrologie und der Entwicklung hochbrillanter
Lichtquellen.

Die Beobachtung von Superradianz erfordert in der Regel eine grofie Anzahl von Atomen.
Daher wird die theoretische Modellierung mit konventionellen quantenmechanischen Metho-
den oft unpraktikabel. Diese Dissertation stellt numerisch effiziente theoretische Methoden zur
Modellierung der kollektiven spontanen Emission in solchen rechnerisch herausfordernden Fillen
vor. Die Untersuchung konzentriert sich auf zwei Hauptansétze: Die Anpassung der Zweiten
Quantisierung an offene Quantensysteme sowie die Entwicklung eines stochastischen Ansatzes
basierend auf der positiven P-Reprasentation. Die entwickelten Methoden erfassen sowohl kom-
pakte Systeme im Dicke-Grenzfall als auch makroskopische, zylinderférmige Medien.

Der erste Teil fithrt die Zweite Quantisierung im Liouville-Raum ein, formuliert fiir Dichte-
matrizen, was eine effiziente Modellierung permutationsinvarianter Systeme mit inkohdrenten
Prozessen ermoglicht. Der zweite Teil erweitert diesen Ansatz durch eine Phasenraumbeschrei-
bung der Quantendynamik unter Verwendung stochastischer Differentialgleichungen, die ein ef-
fizientes und parallelisierbares Sampling erlauben. Durch die Weiterentwicklung der positiven P-
Représentation liefert diese Methodik neue Erkenntnisse iber Systeme, in denen semi-klassische
Methoden unzureichend sind oder traditionelle quantenmechanische Verfahren rechnerisch nicht
durchfiihrbar sind.

Zur numerischen Veranschaulichung analysieren wir kompakte Systeme von Zwei- und Drei-
Niveau-Emittern unter dem Einfluss inkoharenter Pumpmechanismen und Dekohérenz. Zu-
dem untersuchen wir den Einfluss statistischer Mischung auf ihre Emission, wobei eine Klasse
von Vielteilchen-Gleichgewichtszustdnden identifiziert wird. Unser Ansatz der Zweiten Quan-
tisierung dient als Referenz fiir die stochastische Methodik, bestimmt deren Effektivitdt und
grenzt ihren Anwendungsbereich ab.

Diese Arbeit diskutiert zudem Einschréankungen wie numerische Instabilitdten und schliagt
mogliche Forschungsrichtungen fiir zukiinftige Entwicklungen vor. Anwendungen wie Rontgen-
Lasing, demonstriert durch verstéirkte spontane Emission in Neon, sowie resonatorvermittelte
kollektive Emission unterstreichen die Bedeutung dieser theoretischen Methoden fiir das tiefere
Versténdnis kooperativer Licht-Materie-Wechselwirkungen.
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Introduction

Cooperative spontaneous emission is a phenomenon in which the emission properties of a
group of atoms or molecules differ significantly from those of isolated particles. In typical fluo-
rescence experiments, a dilute gas of excited particles emits photons isotropically, with intensity
decaying exponentially over time. However, as the density of emitters increases, emission occurs
much more rapidly, often in a single, intense burst. In some cases, the geometry of the radiating
medium dictates the directional properties of the emission.

The theoretical work of R. Dicke in 1954 [1] investigated collective interactions between iden-
tical two-level particles confined within a volume much smaller than the resonant wavelength.
Using the formula for electric dipole radiation, which states that radiation intensity is propor-
tional to the mean square of the dipole moment, Dicke analyzed how collective states of particles
influence the emission rate. Dicke found that the emission rate is maximized in symmetric states,
where approximately half of the atoms are excited; these were termed superradiant. These states
can be reached either through excitation or by transitioning down a ladder of states from the
fully excited state. Dicke also examined the directional characteristics of emission in extended
systems and later proposed the concept of the coherence-brightened laser [2].

Superradiance, as introduced by Dicke, exhibits many classical aspects, as highlighted in
Ref. [3]. Its quantum nature lies in the fact that individual atoms, on average, have no dipole
moments, and coherence emerges from quantum fluctuations. Initially uncorrelated emitters
generate spontaneous photons independently. These photons are subsequently absorbed and
re-emitted by other atoms, enhancing decay and leading to the emergence of coherent emission.
Some authors have referred to this process as a photon avalanche [4] or as superfluorescence [5-T7].

Furthermore, Refs. [6,7] distinguish between superfluorescence and superradiance. Accord-
ing to these works, superradiance is an emission process in which emitters start from a strongly
correlated state with a dipole moment created by coherent excitation. In contrast, superfluores-
cence involves initially uncorrelated emitters producing incoherent spontaneous emission, which
eventually phase-lock due to interactions. Additionally, some authors differentiate between co-
operative emission from compact and extended systems [8], both of which are often referred to as
superradiance. In this dissertation, we adopt the terminology used by M. Gross and S. Haroche
in their 1982 essay [9], where superradiance and superfluorescence are used synonymously.

Cooperative emission phenomena are challenging to analyze in detail since numerous factors
shape the process. The dynamics is initiated by creating an active medium with a significant
population inversion. Most experiments realize pencil-shaped geometries, whose dimensions
influence field propagation and can be characterized by the Fresnel number, F' ~ 6c/0p [9].
The angle 0p is the characteristic diffraction angle, given by 0p = Ao/ VS , where S™ is the
cross-sectional area of the sample, L is its length, and Ag is the emission wavelength. The angle
f¢ is the characteristic geometrical angle, given by 0g = VST /L. When F > 1, transverse
field dynamics involves multiple diffraction modes within the geometrical angle. In the opposite
case, when F < 1, the geometrical angle is small compared to the diffraction angle, causing
diverging emission that escapes the active medium due to diffraction.

We can estimate a characteristic superradiant emission time for a sample with ' ~ 1. In this
case, only atoms emitting within the solid angle of Ao ~ )\3 / S+ participate in the cooperative
emission, enhancing the spontaneous decay rate of an isolated atom ~ to approximately ~ x
(nA3L), where n is the concentration of atoms. A realistic analysis should also consider various
dissipation channels that incoherently de-excite atoms and compete with the emission process.



INTRODUCTION

Notably, Dicke superradiance—cooperative emission from compact systems—should not be
confused with the Dicke model [10, 11], which describes the interaction of atoms with a few
quantized field modes in an ideal cavity. The Dicke model is a variant of the Tavis-Cummings
model [12], with some authors distinguishing it by the presence of counter-rotating terms, typ-
ically neglected under the rotating-wave approximation [13]. Since light remains trapped in
the cavity, photons are always present, making the system’s equilibrium properties and phase
transitions a subject of extensive study [10,11,13-15].

This dissertation develops numerically tractable methods to model superradiance in scenarios
where standard quantum-mechanical techniques become impractical. We will focus on compact
systems and propose extensions to macroscopic pencil-shaped media.

The significance of this research is highlighted by the sustained interest in cooperative emis-
sion phenomena from both experimental and theoretical perspectives, tracing its origins to the
pioneering work of R. Dicke in 1954 [1]. Interest in this area gained further momentum in the
1970s, following the first experimental demonstration by N. Skribanowitz, I. P. Herman, J. C.
MacGillivray, and M. S. Feld in 1973 [16]. More recently, renewed attention has been driven by
the development of novel light sources, such as x-ray free-electron lasers, and advances in exper-
imental techniques that enable the precise arrangement of ordered atomic arrays that interact
collectively. The following sections provide a brief overview of key advancements.

Experimental Demonstrations of Superradiance

Early experiments successfully realized pencil-shaped active media, leading to the observation
of superradiance in the axial modes of the sample. In Ref. [16], superradiance was demonstrated
in the rotational transitions of hydrogen fluoride (HF') gas in the far-infrared range, with wave-
lengths between 50 and 250 pum. The observed superradiant emission lasted for hundreds of
nanoseconds and was characterized by a delay before the first emission peak, followed by multi-
ple oscillations or ringings. The authors supported their experimental findings with an analysis
based on the semiclassical Maxwell-Bloch equations [17].

Superradiance was also demonstrated in atomic sodium gas in the near-infrared range [18].
After sodium atoms were excited to the 55/, state, a cascade of transitions was observed at
wavelengths of 3.41 pm, 2.21 pm, and 9.10 pym. The superradiant emission exhibited character-
istics such as delay time and ringing, lasting for tens of nanoseconds.

Additionally, superradiance was observed in the visible lines of europium atoms at a wave-
length of 605.7 nm [19]. In the millimeter-wave range, superradiance was reported, for example,
in Ref. [20], where a sample of Na atoms in a cavity was excited to the 295 5 level. Subse-
quently, superradiance at a wavelength of 1.86 mm was observed (corresponding to the transition
29519 — 28P; /2). The measured evolution of atomic populations agreed with the predictions
of the fundamental Dicke model.

Beyond gaseous media, superradiance also occurs in solids [21]. (Quasi)particles confined
within a specific region of a solid exhibit atomic-like behavior, allowing the application of Dicke’s
concepts. For example, superradiance was observed in molecular centers of O; in KCI [22-24].
The possibility of cooperative emission in molecular aggregates has been explored both theo-
retically [25] and experimentally [26,27]. The main obstacle is the presence of inhomogeneous
broadening, which quenches superradiance.

More recent experimental advancements include the study of cooperative emission in per-
ovskite nanocrystals [28], nitrogen-vacancy centers in nanodiamonds [29], and quantum dots [30—
32]. Furthermore, superradiance has been investigated in distributed systems within nanopho-
tonic waveguides, which mediate long-range interatomic interactions [33]. Superradiance from
Rydberg atoms in free space was reported in Ref. [34].

The development of free-electron lasers has enabled new experimental approaches. Notably,
superradiance has been observed in helium pumped by XUV pulses from a free-electron laser,
resulting in emissions in the visible [35] and far-ultraviolet [36] domains. Evidence of superflu-
orescence in the extreme ultraviolet region of xenon was reported in Ref. [37].

2
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Furthermore, x-ray free-electron lasers can create population inversion through rapid pho-
toionization of inner shells, leading to cooperative K« emission. This mechanism has been
demonstrated, for example, in neon [38], solid copper [39], and solutions of Mn(II) and Mn(VII)
complexes [40]. Initiated by an incoherent x-ray SASE pulse, the superradiant mechanism gen-
erates coherent x-ray pulses with a narrower bandwidth, centered at a frequency determined
by the target material. Free-electron laser and synchrotron pulses also provide opportunities to
explore cooperative emission in nuclei, as discussed in Refs. [41,42].

In summary, the superradiant mechanism has been demonstrated across various systems
and spectral domains, generating coherent, intense pulses. These pulses may be particularly
valuable for spectroscopic purposes in the x-ray domain [43,44], as they offer greater stability
and coherence compared to x-ray SASE light sources. A notable example of a system potentially
capable of producing coherent x-ray pulses is the x-ray laser oscillator [45].

The superradiant mechanism has also been employed to realize a steady-state superradiant
laser [46] and plays a crucial role in developing a continuous-wave superradiant laser [47], both
of which are promising tools for metrology and atomic clocks due to their high coherence.
Additionally, cavity-mediated collective emission offers possibilities for generating multiphoton
quantum states, as discussed in Ref. [48].

Theoretical Research of Superradiance

Theoretical research in this field has made significant progress, analyzing the conditions
necessary for observing superradiance, exploring its evidence in various media, and developing
both phenomenological and first-principles models.

For example, in 1971, R. Bonifacio, P. Schwendimann, and F. Haake presented a theory of
cooperative emission for a pencil-shaped active medium in a low-Q cavity [49,50]. They showed
that cooperative emission could be realistically modeled as a “single-mode” laser when the sample
length is smaller than the maximum distance over which atoms can coherently interact. The
transition to other modes was treated phenomenologically as a dissipation channel. Assuming
instantaneous excitation of the entire sample, they demonstrated that all atoms cooperate when
the sample length is smaller than the so-called cooperation length. This condition ensures
that the pulse envelope varies slowly across the sample, thereby allowing propagation effects to
be neglected. This work links superradiance with laser theory, demonstrating that it can be
practically used to produce laser-like radiation.

F. T. Arrecchi and E. Courtens investigated an extended pencil-shaped active medium in
which propagation effects cannot be neglected [51]. They assumed the entire medium was instan-
taneously excited. The medium was modeled by equations analogous to the Bloch equations [52].
The propagation of emission leads to the concept of limited cooperation, as only a finite num-
ber of atoms can cooperate. The concept of limited cooperation is crucial for understanding
superradiance, as it reflects limitations encountered in practical realizations of the amplification
mechanism. When the sample is not excited instantaneously and the pump is transient, its dura-
tion, attenuation, and propagation restrict the number of atoms that can effectively cooperate.
Cooperation can be further influenced by the sample’s geometry and decoherence channels.

Models for cooperative spontaneous emission have also been constructed from first principles.
Notably, in 1970, R. H. Lehmberg developed a fully quantum-mechanical treatment [53, 54].
Applied to compact systems, a crucial restriction of this model is that the sample length must
be smaller than the emission pulse length, ensuring that all atoms experience the same field and
interact cooperatively. This theory also describes the frequency shifts resulting from interatomic
interactions. The influence of these frequency shifts and the sample’s geometry on superradiance
has been discussed in Refs. [55,56].

In 1974, G. Banfi and R. Bonifacio introduced a first-principles theory [5], deriving the master
equation in the Born-Markov approximation under the assumption that the sample length is
much smaller than the cooperation length. Applied to a pencil-shaped medium, this theory
confirmed the qualitative conclusions of the phenomenological approach from Refs. [49,50].

3
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G. S. Agarwal adopted a different approach in Ref. [57] by reformulating the dynamics
using the Fokker-Planck equation. This formulation was then used to derive a hierarchy of
equations for the expectation values, which required appropriate truncation. Importantly, this
work explores the problem of cooperative emission through a phase-space description.

Recent studies investigate directional superradiance in ultracold gases of dipole-dipole in-
teracting atoms [58] and in ordered structures [59]. Another prominent area is single-photon
superradiance, in which a single excitation is coherently shared by the entire ensemble [60-62].
These systems provide a platform for studying the collective Lamb shift, which is highly sensitive
to atomic spatial arrangement [41,56,63]. Another intriguing direction is the study of super-
radiant mechanisms in free electrons, particularly the role of entanglement in shaping emission
properties [64].

In summary, while a comprehensive review of superradiance is beyond the scope of this
dissertation, existing theoretical work has greatly advanced the field, inspiring both experimental
and conceptual progress. We will now focus on theoretical models of superradiance that allow
for feasible numerical solutions.

When a system has an initial dipole moment or is driven, its dynamics can be described using
semiclassical methods. In this case, the dynamics is governed by a coupled set of Maxwell-Bloch
equations [9,65]. In this framework, atoms are modeled as dipoles that de-excite according to the
pendulum equation [6,7]. However, when superradiance is triggered by spontaneous emission, it
becomes essential to accurately model the initial stage of the process, where the production of
spontaneous photons is critical. This generally requires quantum-mechanical approaches, which
can become increasingly complex depending on the number of emitters. Although complexity
can be reduced if the system exhibits permutation symmetry, incoherent processes may render
standard techniques such as second quantization inapplicable.

Therefore, there is a need for theoretical methods applicable to open systems of identical
emitters that are subject to incoherent processes such as incoherent pumping or incoherent decay.

For instantaneously excited two-level emitters, fluctuations that trigger the collective effect
can be effectively modeled by assuming random initial conditions for their dipole moments [9,66].
While effective in certain cases, this approach may become unreliable when excitation is achieved
through pumping or when incoherent dissipation channels are present.

An alternative method for modeling these fluctuations involves the use of stochastic pro-
cesses. This idea can be traced back to the 1970s when the role of quantum fluctuations in
triggering emission was already recognized [66—68]. For instance, in 1979, D. Polder, M. F. H.
Schuurmans, and Q. H. F. Vrehen [67] introduced a Langevin force to model these fluctuations.
Stochastic sources have also been used to model the effects of spontaneous emission in laser
theory [69].

More recent stochastic approaches build on these early concepts, providing phenomenolog-
ical and numerically efficient frameworks, as detailed in Refs. [70-75]. These studies extend
the semiclassical Maxwell-Bloch equations by adding noise terms designed to approximate spon-
taneous emission. However, these approaches are not derived from first principles and may
introduce inaccuracies. For example, the commonly used method proposed in Ref. [70] can yield
an incorrect temporal profile of spontaneous emission, as noted in Ref. [76].

These inaccuracies highlight the need for developing stochastic methods based on first prin-
ciples, which offer a numerically tractable and reliable solution for many-level atoms subject to
incoherent processes.

Stochastic Methods in Quantum Mechanics

The representation of quantum dynamics using stochastic equations has been widely studied.
A notable example is quantum-state diffusion. In the Markovian approximation, the system’s
dynamics is typically described by a master equation for the density matrix. This density matrix
can be sampled by averaging over a statistical ensemble of state vectors, which are solutions to
the stochastic Schrodinger equation [77-81].
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In non-Markovian regimes, environmental degrees of freedom cannot be averaged out and
replaced with effective dissipation rates. Instead, the influence of the environment is typically
treated stochastically, while the system is described quantum-mechanically [82]. One example is
the coherent-state unraveling approach, in which the bath’s degrees of freedom are expanded in
the multimode coherent-state basis. By treating coherent-state amplitudes as random variables,
it is possible to derive a non-Markovian stochastic Schrodinger equation [82-86].

In these approaches, the system’s state vector is driven by stochastic processes representing
the environment. When the system has a large number of degrees of freedom, this approach may
become impractical. Another stochastic approach to quantum mechanics develops the concept
of quantum noise and quantum Langevin equations [87,88]. While this method is exact and,
in many cases, provides analytical solutions [89], it is numerically challenging to implement for
macroscopically large quantum systems.

Consequently, we opt for methods that describe all degrees of freedom using stochastic variables
determined by conventional stochastic processes, making the problem’s complexity comparable to
that of semiclassical approaches.

Such methods are closely related to the phase-space description of quantum mechanics, where
density matrices are mapped to phase-space distribution functions. This approach replaces
operators with functions, allowing quantum dynamics to be described within a quasi-classical
framework and enabling numerically tractable simulations [90-92]. Two notable examples of
phase-space representations are the Wigner function [93] and the Husimi @Q-representation [94].

In quantum optics, the Glauber-Sudarshan P-representation has received significant atten-
tion [95,96]. In this representation, the expectation values of operators are obtained by integrat-
ing their matrix elements in the coherent-state basis with the P-function. However, since the
P-function can be negative, it cannot be interpreted as a true probability density function [97].

The problem of negativity of the P function was solved in Ref. [97] by introducing a class
of positive P functions, known as the positive P representation. This representation found
numerous applications across quantum optics and related fields [97-102]. In many applications,
positive P functions satisfy a Fokker-Planck equation, allowing the statistical properties of the
phase-space variables to be reproduced through It6 stochastic differential equations [103].

While well-established for bosonic systems, extending the positive P representation to systems
of emitters with incoherent processes remains an open challenge.

Outline of Dissertation

The primary objective of this dissertation is to develop and test methods for modeling super-
radiance in scenarios where traditional approaches become impractical. As discussed in previous
sections, there are two potential research directions:

1. Formulating a method for open quantum systems of emitters that utilizes permutation
symmetry in the presence of incoherent processes.

2. Adapting the positive P framework to describe open quantum systems of emitters. This
adaptation enables a formulation based on the Fokker-Planck equation and associated 1t6
stochastic differential equations, thus providing the potential to describe macroscopically
large systems.

Both objectives point to establishing the method of second quantization of density matrices.
If a system begins in a permutation-invariant state and evolves according to a permutation-
invariant Liouvillian, the density matrix retains its symmetry throughout its evolution [104-107].
Furthermore, by formulating second quantization directly for density matrices, we can adapt the
standard positive P formalism by properly defining generalized coherent states.

While our numerical illustrations primarily focus on systems of identical emitters, we also
explore extensions to non-identical emitters and more realistic, spatially distributed configu-
rations. A key potential application of the developed formalisms is cavity-mediated collective
emission and x-ray superradiance.
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This dissertation is based on two publications, [108] and [109], and naturally divides into
two main parts: Chapter II and Chapter III, each corresponding to a publication. However,
its scope extends beyond these works, incorporating additional applications, extensions, and
deeper discussions. Both chapters conclude with numerical implementations of the developed
frameworks in Julia,' as well as essential benchmarks and discussions.

The final chapter, Chapter IV, provides a comprehensive outlook on potential applications
and reviews unresolved issues that still need to be addressed.

Below is a brief outline of the first three chapters.

Chapter I: Light-Matter Interaction

In the first chapter, we provide basic information on light-matter interaction and superradi-
ance. Readers already familiar with superradiance may choose to skip this chapter.

We begin with Maxwell’s equations, identifying the independent dynamical variables before
proceeding to their quantization. Next, we introduce a fundamental quantum master equation
in the Born-Markov approximation that describes the superradiance of two-level atoms.

As part of our discussion, we review well-established phenomenological approaches. For in-
stance, we examine semiclassical equations with random initial conditions, which are effective for
systems with a large number of particles. Additionally, we introduce the simplest phenomeno-
logical stochastic equations. Both approaches provide accurate expectation values only when
the system is excited instantaneously and consists of a large number of atoms.

However, these phenomenological approaches fail to accurately model systems with an arbi-
trary number of multilevel atoms undergoing incoherent processes. This limitation underscores
the need for the advanced methods developed in the subsequent chapters.

Chapter II: Second Quantization
of Open Quantum Systems in Liouville Space

The foundational framework of this dissertation is presented in Chapter I, where we develop
a formalism for density matrices using the principles of second quantization. Specifically, we
extend the framework of second quantization directly to density matrices, treating them as
supervectors in the extended Liouville-Hilbert space [110, 111].

Our approach is closely related to the methods presented in Refs. [105-107,112], as it intro-
duces an occupation-number representation for density matrices [105-107] and employs bosonic
superoperators to construct generalized Fock states [112]. The results of this work were pub-
lished in Ref. [108]. The key advantage of our framework is its ability to accommodate incoherent
processes while extending the widely used second quantization formalism to density matrices.

To summarize the findings of Chapter II, we draw an analogy with standard second quan-
tization. State vectors are (anti)symmetrized combinations of many-particle tensor product
states:

) ~ > i) ®...®|in)n,

anti)sym.
(anti)sy

where i), denotes the p-th particle in state . These permutation-invariant states are char-
acterized by the occupation numbers n;, which indicate the number of particles occupying
each single-particle state |i). These occupation-number states can be manipulated using either
fermionic or bosonic annihilation and creation operators, b; and IA)I

Density matrices for identical emitters are permutation-invariant; more specifically, they
are symmetric. They are constructed from bra and ket states, p = [¢)(¢], or their statistical
mixtures. Both components can be expanded in terms of many-particle tensor product states:

P L)1 ® ... @ lin) N (in|N-

sym.

LOfficial documentation is available at https://docs. julialang.org.
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Consequently, symmetric density matrices can be parameterized by occupation numbers with
two indices, n;j, indicating the number of particles represented by the operator |i)(j| in the
density matrix expansion.

The corresponding generalized Fock states can be constructed and manipulated using bosonic
superoperators, lA)Z-j and lA);rJ In Chapter II, we employ this formalism to examine the effects
of statistical mixing of emitter states and incoherent processes on their collective emission,
identifying a class of subradiant states across various systems.

While the established formalism reduces the number of basis states from exponential to
polynomial in the number of particles, this remains a significant limitation. Additionally, we
encountered numerical instabilities when solving equations for relatively large particle numbers
(N = 150) using explicit methods. These constraints limit the practical application of this
approach to medium-sized systems. Nevertheless, this framework provides a foundation for the
phase-space description of the dynamics, which is explored in the subsequent chapter.

Chapter I1I: Stochastic Methodology
for Superradiance

This chapter begins by defining generalized coherent states for density matrices using bosonic
superoperators. These states form a basis for the density matrix, with the expansion coefficients
defining a phase-space distribution, denoted by P.

We derive the Fokker-Planck equation for the P function and the corresponding It6 stochastic
differential equations, assuming a model Liouvillian with at most two-particle interactions. This
approach allows us to describe the open system dynamics through stochastic equations. The
deterministic terms characterize semiclassical behavior, while noise-induced correlations capture
quantum effects such as spontaneous emission.

The number of stochastic variables for emitters is independent of the number of particles and
scales as M?, where M is the number of levels. In contrast, the quantum-mechanical method
scales as NM*. As a result, the complexity of the stochastic approach aligns with that of the
semiclassical approach combined with statistical sampling, which can be parallelized. By design,
statistical averages accurately reproduce quantum-mechanical expectation values.

Emitters are described by a stochastic density matrix, which is not necessarily Hermitian in
individual stochastic realizations. This presents a significant issue, as its anti-Hermiticity can
lead to the unbounded growth of the deterministic part of the stochastic equations. Such insta-
bilities are well known within the positive P formalism [103]. To regularize these divergences,
we apply the method of stochastic gauges, which exploits so-called stochastic freedom [100,101].
Our regularization strategy and the benchmarking of this method were published in Ref. [109].

We present a detailed, step-by-step derivation and examine various application cases previ-
ously discussed in Chapter II. By comparing our results with the exact solution, we assess the
effectiveness of the derived stochastic approach and determine its limits of applicability. For
compact systems, the stochastic method performs well as long as the influence of subradiant
states remains weak. However, when these states have a significant impact, the solution becomes
highly unstable, even with the use of stochastic gauges.

We also explore various extensions involving systems that interact with few-mode quantized
fields, non-identical particle systems, and distributed systems where propagation effects are
significant. As an illustration, we present a one-dimensional analysis of x-ray lasing from the
K« transition in neon using experimental parameters from Ref. [38].



Chapter I

Light-matter interaction

This chapter provides a concise overview of electromagnetic field quantization within the
framework of non-relativistic quantum optics, beginning with Maxwell’s equations in Sec. 1.
We identify the independent dynamical variables for a system of non-relativistic charges and the
electromagnetic field, which are heuristically quantized in Sec. 2. Readers familiar with these
concepts may skip ahead to Sec. 2.2, where we analyze the superradiance of two-level atoms.
The analysis includes several semi-phenomenological approaches, such as one based on random
initial conditions (Sec. 2.3) and another employing phenomenological stochastic equations (Sec.
2.4).

1 Classical Picture

We begin by outlining Maxwell’s equations, which govern the evolution of the electromagnetic
field influenced by a system of point charges ¢; in a vacuum. This system is characterized by the
charge density p(r,t) and the current density j(r,t), which are related through the continuity
equation that expresses the principle of local charge conservation:

dp(r,t
L ) (1)
ot
where V denotes the nabla operator, V = e, 8% +ey 8% + e, %.

In Maxwell’s equations, the charge and current densities serve as sources of the electro-
magnetic field. In the CGS (centimeter-gram-second) system, these equations are expressed as
follows:

V - E(r,t) = 4mp(r,t), (Gauss’s law) (I.2a)
V - B(r,t) =0, (Gauss’s law for magnetism) (I.2b)
V x E(r,t) + 16136(;’0 =0, (Faraday’s law) (I.2¢)
c
10E(r,t 4
V x B(r,t) — Cag;) = %j(r,t). (Ampere’s law) (I.2d)

These equations govern the dynamics of the electromagnetic field. The charge and current
densities depend on the positions and velocities of the charges, r;(t) and r;(¢), which influence
the field according to Maxwell’s equations. We assume that the charges move at velocities much
smaller than the speed of light.

To obtain a self-consistent system of equations, Newton’s equations for the charges must be
solved, incorporating the forces exerted by the electromagnetic field. The force acting on the
i-th charge, known as the Lorentz force, is given by:

F(ri,i1,t) = ¢ Bri, t) + L #; x B(r;, 1), (1.3)
C

where ¢; is the charge of the i-th particle. Together, Maxwell’s equations and the Newton-
Lorentz equations form a self-consistent framework that describes the dynamics of the entire

8



LIGHT-MATTER INTERACTION 1. CLASSICAL PICTURE

system. Although the charges do not interact directly, they influence each other indirectly
through the electromagnetic field.

Maxwell’s equations involve two unknown vector fields: the electric field E(r, ¢t) and the mag-
netic field B(r,t). These equations possess a symmetry that reduces the number of independent
variables. Specifically, we can introduce the vector potential A(r,¢) and the scalar potential
(r,t), and express the electric and magnetic fields as follows:

E(r,t) = —Vp(r,t) — lljaAé:’t), (L.4a)

B(r,t) = V x A(r,1). (L4b)

These representations automatically satisfy Gauss’s law for magnetism (I.2b) and Faraday’s law
(I.2¢). Moreover, the potentials A(r,t) and ¢(r,t) are not uniquely defined. The following
transformation, known as a gauge transformation, leaves the electromagnetic field unchanged:

10f(r,t)
c ot
Choosing an appropriate gauge can simplify the equations. However, not all components of the

electromagnetic potentials represent independent dynamical variables, a fact that becomes more
evident in reciprocal space.

Al(r,t) = A(r,t) + V£(r,t), o' (r,t) = o(r,t) (I.5)

1.1 Reciprocal Space

Assuming the fields are confined within a large box of volume V', we express all quantities in
Maxwell’s equations using their Fourier transforms, under the assumption of periodic boundary
conditions:

1 ,
X(r,t) = % ZX(k, t) ek,
k

If the function X represents a physical observable, it must be real-valued, which imposes the
condition X*(k,t) = X(—k,t) on its Fourier components.

The Fourier transform simplifies Maxwell’s equations by converting local spatial derivatives
into algebraic operations in reciprocal space, specifically:

V x X(r,t) — ik x X(k, ), V- X(r,t) — ik - X(k, t).

This transformation decouples the evolution of each Fourier component, making them indepen-
dent of one another. Additionally, the orientation of the vector fields relative to k becomes
significant. Any vector X(k,t) can be decomposed into two orthogonal components:

X(k, t) = Xt (k, t) + X(k, 1),

where X1 (k,t) is the transverse component (orthogonal to k), and Xl/(k,#) is the longitudinal
component (parallel to k).

In real space, the transverse and longitudinal components are computed as integrals involving
transverse and longitudinal delta functions [113]. While this decomposition is geometrically
intuitive in reciprocal space, in real space, the transverse and longitudinal components become
complex, nonlocal functions of the original fields.

Let’s represent the electric and magnetic fields from Egs. (I.4) in reciprocal space. The
magnetic field is purely transverse, while the electric field has both longitudinal and transverse

components:
B(k,t) = ik x AL (k,1), (1.6a)
Lo 10AY(K D)
Bt (k1) =~ = =, (1.6b)
_10Al(k,1)

El(k,t) = —ik o(k, t) . (1.6¢)

ot
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The longitudinal electric field can be derived directly from Gauss’s law (I.2a), which links it to

the charge density:'
4mik

El(k,t) = e P

(k, t). (L.7)

This demonstrates that the longitudinal electric field is fully determined by the charge positions
and does not constitute an independent dynamical variable. Furthermore, Ampere’s law (1.2d)
written for the longitudinal components simplifies to the continuity equation (I.1).

The remaining fields, the magnetic field and the transverse electric field, are governed by the
transverse form of Ampere’s law (1.2d):

ik x B (k, t) — 10E(k,t) _ 4m it

c ot
where j*(k,t) is the transverse part of the current density.2 Notably, the transverse electric and
magnetic fields, as well as the transverse component of the vector potential, are gauge-invariant.

To simplify the equations further, we eliminate the longitudinal vector potential using a
gauge transformation.® This choice, known as the Coulomb gauge, is commonly used in quantum
optics when relativistic effects are negligible. In this gauge, the vector potential becomes purely
transverse. We keep the original notation for the gauge-transformed potentials, A(k,¢) and
o(k,t), where A(k,t) is purely transverse.

Returning to the reciprocal Ampere’s law in Eq. (1.8), we rewrite it in terms of the gauge-
transformed vector potential:

0?A(k,t)
ot?
Here, v = c|k| is the frequency associated with the wave vector k. This equation describes
the dynamics of a driven harmonic oscillator, indicating that each Fourier component of the
transverse vector potential acts as an independent harmonic oscillator. This interpretation will
be further explored in Sec. 1.3.

(k,t), (L8)

+ 12 Ak, t) = dncjt(k,t). (1.9)

1.2 Longitudinal Field Energy

In the Coulomb gauge, the longitudinal electric field is fully determined by the scalar poten-
tial p(k,t). For completeness, we provide the expression for its contribution in real space:

_Vy(r Z T ! rl I (1.10)
~ " |r — ry( |
for r # r;(t). This component of the electric field responds instantaneously to changes in charge
positions, seemingly violating causality. However, the total field also includes a contribution
from the vector potential that cancels the instantaneous part, thereby restoring causality [113].
The contribution of the longitudinal electric field to the electromagnetic field energy depends

on the positions of the charges r; and is given by:

Hiong ({ri}) Z|rqij qz / dk. (L11)
1753

The second term is an infinite Coulomb self-energy, which, in the non-relativistic regime, can be
regularized by introducing a cutoff to the integral [113]. In this dissertation, we omit this term
and consider only the finite contribution, which describes electrostatic interactions between all
charged particles.

'In reciprocal space, the charge density for point charges is given by p( Z gie ki),
2In reciprocal space, the current density for point charges is given by j(k Z qi1i(t ﬂk'ri(t).
3This requires defining the gauge function as:

f(k7 t) = 7’%

10
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1.3 Transverse Field Energy

In the Coulomb gauge, the vector potential is purely transverse and satisfies Eq. (1.9), which
describes a driven harmonic oscillator. In this section, we introduce normal harmonic oscillator
variables, following the approach similar to that described in Ref. [113].

The dynamics can be reformulated as a first-order differential equation. By combining Fara-
day’s law (I.2¢) with Ampere’s law (1.2d) in reciprocal space, we derive the following equation:

dAy(t) . 27,
dt + ZVkAk(t) Ck

where vy, = c|k|. The variables Ay(t) are the following combinations of the transverse electric
and magnetic fields:

ik, b), (L12)

Ay(t) = 20 {Ei(k t)——ka(k t)}

In these expressions, we introduced a phenomenologlcal scaling factor, CY, that does not affect
the dynamics. The variables Ay(t) represent normal harmonic oscillator modes, serving as
independent dynamical variables that fully characterize the physical fields: the transverse electric
field, magnetic field, and vector potential.

Indeed, by combining the normal oscillator variables, we derive the following expressions for the
transverse components of the electric and magnetic fields:

E*(k,t) = iCx Ax(t) —iC* A_x (1),

B(k, {) = ik x [Vi{ck Aw(t) +C A*_k(t)}} .
k
By comparing the expression for the magnetic field with Eq. (I.6a), the term in square brackets is
identified as the transverse vector:
C * *
Alkt) = 2 {Ck Ax(t) + Coc Ai(D)}-

Furthermore, the expression for the transverse electric field coincides with Eq. (I.6b), provided that
Ax(t) satisfy Eq. (1.12).

Each vector Ak(t) lies in the plane orthogonal to the wave vector k, possessing two indepen-
dent degrees of freedom. For each wave vector k, we introduce a basis of polarization vectors
ek ), where A = 1,2, defined by the following relations:

*
ek - e v = 0N, k-exy=0.

In this basis, the normal variables Ay(t) are expressed as:
= e axn(t)
A

The new scalar variables ay »(t) satisfy the following equation, derived from Eq. (I.12):

day A\(t)
dt

This equation can be formally solved and substituted into the expressions for the total electric
and magnetic fields. The resulting solutions, expressed in the retarded time framework, are
known as Jefimenko’s equations [114,115]. These equations can also be derived directly from
Maxwell’s equations without using electromagnetic potentials, ensuring their gauge indepen-
dence.

The contribution of the transverse electric and magnetic fields to the electromagnetic field
energy is described by the following functional of the variables ay ) and ai‘; A\l

. 2 .
= —ivog \(t) + o ep - J(k,1). (I.13)

. Chel
Htrans.({ak,)n ak,A} Z | V k 2 Ok \- (114)

After quantization, the field should be represented by quanta with energy hiy.. Therefore, when
quantizing, we set the scaling coefficient to |Cy|? = 27V hiy as a phenomenological condition.

11



2. QUANTIZED PICTURE LIGHT-MATTER INTERACTION

2 Quantized Picture

We have identified the following independent dynamical variables: the positions and mo-
menta of the charged particles (not velocities, as momenta are conjugate to positions) and the
normal oscillator modes of the electromagnetic field, oy ) and al*; - The free motion of the par-
ticles is quantized by replacing classical dynamical variables p;, r; with the quantum operators
Pi, T3, which satisfy the fundamental canonical commutation relations.

For the quantization of the electromagnetic field, a rigorous approach first requires identifying
the field’s canonical dynamical variables [113,116]. It is necessary to find the Lagrangian that
reproduces the equations of motion. The redundant degrees of freedom are eliminated: the
longitudinal component of the vector potential is removed by fixing the Coulomb gauge, while
the scalar potential depends on the charges’ positions. The Hamiltonian is then derived via the
Legendre transformation.

Assuming a free electromagnetic field, we can identify the following canonically conjugated
variables: the vector potential (generalized position) and, up to a factor of —1/(4mc), the trans-
verse electric field (generalized momentum). By postulating the canonical commutation relations
between these variables in reciprocal space, we obtain the quantized description of the electro-
magnetic field.

As a result of quantization, the classical variables ay ) and o are replaced by operators

ay, ) and &J{( y» Which satisfy the bosonic commutation relations:

[, s ] = Oax duae (L15)

These operators annihilate and create quanta of the field—photons—with energy Ary.. This pro-
vides a heuristic method for transitioning from a classical to a quantum description. Specifically,
in all classical expressions in Sec. 1.3, the classical normal oscillator variables are replaced with
bosonic operators. Returning to Eq. (I.14), we choose the scaling coefficient |Cy|? = 27V vy to
support the interpretation of photons [113].

This approach is not entirely rigorous and introduces some inaccuracies. For example, when
replacing the transverse field energy with the operator

f{trans. = Z th dL,\ &k,)\v (116)
kA

the zero-point energy associated with quantum harmonic oscillators is omitted. However, this
divergent term is often disregarded in practical applications where it has no observable effect.
Nevertheless, changes in the zero-point energy can have physical consequences, such as the
Casimir force; see Ref. [117] for a more detailed discussion. In other respects, this approach
yields results consistent with rigorous quantization.

Let us now introduce the interaction terms. The energy contribution from the longitudinal
electric field in Eq. (I.11) represents the electrostatic interactions between charges. Replacing
the classical charge positions with their quantum operator counterparts yields the following

operator:
A _4iq;
Hlong. Z ‘rz _ I.J|
%#J

To correctly reproduce the quantum analogs of Eq. (I.13) and the Newton-Lorentz equation,
we must start from the classical Hamiltonian for light-matter interaction. For brevity, we present
only the final expressions here. The canonical momenta in the Hamiltonian for free particles are
replaced with the following kinetic momenta:

qi A
pi — Di — Zz A(rz)

After performing this transformation and including the longitudinal field energy, we arrive at
the minimal coupling Hamiltonian, which describes a system of charges interacting with the
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quantized electromagnetic field:

+ ﬁlong. + ﬁtrans.- (117)

This Hamiltonian is written in the Coulomb gauge, which ensures that the vector potential
operator commutes with the particle momentum operators.

The Schrédinger picture operators for the transverse electric field, magnetic field, and vector
potential retain the same structure as their classical counterparts (see Sec. 1.3), with the dis-
tinction that the normal field modes are now expressed through the bosonic operators. In real
space, the expressions are the following:

A 27rfL

E*(r) = Z VI {exn dxp €57 — e &L/\ e kT (1.18a)
A 2 2h .
B(r) = = Z x {ex ) ax,\ KT 4 ef A alt L\ € Cikery (1.18b)
A 2 2h 1 ,
A(r) = i Z {ek,,\ ax ) ek 4 ex \ aL NG —ikry, (I.18c)

Here, 1 = c|k|; V represents the quantization volume, and ey ) are polarization vectors or-
thogonal to k, with A = 1,2. The total electric field is obtained by adding the operator for the
longitudinal component.

2.1 System of Atoms

Consider a system of N neutral atoms, indexed by pu, where the charges consist of nuclei and
electronic shells. Since the electron-to-proton mass ratio is approximately 5 x 10™%, we assume
that the center of mass of each atom coincides with the position of its nucleus, denoted by R,,.
Furthermore, we neglect the dynamics of the nuclei, treating them as motionless. This implies
that the evolution of the electronic shells occurs with fixed nuclear positions. The relevant
dynamical variables are the internal positions of the electrons relative to their nuclei:

)A(,u,a = f',u,a - R,u,, (119)

where £, , is the position of the a-th electron within the p-th atom, and %X, , denotes the
electron’s position relative to the nucleus of the atom. We assume that the u-th atom contains
Z,, electrons. Additionally, we neglect the A2-term at nuclear positions, focusing solely on the
electronic dynamics.

Next, we apply the dipole approximation, which neglects the spatial variation of the electro-
magnetic field within each atom:

ikipa _ ik-(RuatRu) o oikRy

e ~e
For emission processes, this approximation holds as long as the spatial overlap of the orbitals
involved in transitions is much smaller than the characteristic emission wavelength.

Now, consider the ensemble of atoms as a whole. We assume that the distances between
atoms are much greater than their sizes. For reference, the characteristic linear size of an atom
is approximately ag ~ 10~8 cm. For an atomic gas, this implies that the atomic concentration
must remain well below 1/a3, which is roughly 10** cm™3.

Within each atom, the maximum distance between any electron and its nucleus is much
smaller than the distances between atoms. This allows the electrostatic interaction between
atoms to be expanded as a Taylor series, known as a multipolar expansion. The zero- and
first-order terms correspond to charge-charge and charge-dipole interactions, but these vanish
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since atoms are electrically neutral. The first non-zero contribution arises from the second-order
term, which corresponds to the interaction between atomic dipole moments:

Z, Z,
dy=> efpa+QuRu =) eXpa, (1.20)
a=1 a=1
where ), = —eZ, is the nuclear charge, and e is the electron charge (with e < 0). The

longitudinal energy can then be decomposed into two leading components: the intra-atomic
Coulomb potentials and the dipole-dipole interactions between atoms.”

Under these approximations, it is convenient to express the Hamiltonian in the length gauge,
derived using the Power-Zienau-Woolley transformation [118,119], neglecting additional terms
such as contact interactions and self-energy contributions. The resulting Hamiltonian is:

N N
H= " H,+> il aer— > dy - B(r,), (1.21)
p=1 kA p=1

where, for simplicity, the atomic positions have been re-notated by replacing R,, with Ty, and
the superscript - has been omitted from the transverse electric field operator. The term H rep-
resents the free Hamiltonian of the u-th atom, which includes the kinetic energy of its electrons
and the intra-atomic Coulomb potentials.

To simplify the model, we replace real atoms, which have an infinite number of energy
levels, with effective objects called quantum emitters or pseudospins. Each quantum emitter is
characterized by M distinct energy levels, relevant for the phenomena under consideration. The
free Hamiltonian takes the diagonal form:

M
Hy =" hw; 6y (1.22)
i=1

Here, 6,5 = |i),(j|., where |i),, denotes the i-th state of the p-th emitter, and hw; is the energy
associated with this state. We assume that all emitters share the same energy level structure.

The Hamiltonian in Eq. (I.21) serves as a foundation for describing light-matter interac-
tions. Using the associated Heisenberg equations, one can derive propagation equations for the
radiation field, which can be treated within a semiclassical framework [9,65]. This approach is
widely employed in the modeling of distributed systems and allows for the derivation of analyt-
ical qualitative solutions [65]. However, the semiclassical approach inherently neglects quantum
fluctuations arising from interactions with a vacuum, which are responsible for spontaneous
emission. Consequently, in the absence of external driving and without an initial dipole mo-
ment, the semiclassical theory predicts no dynamics. This underscores the need to incorporate
at least some treatment of quantum fluctuations, if not a fully quantum mechanical approach.

When the system is compact, meaning its linear size is much smaller than any characteristic
emission wavelengths (the Dicke limit [1]), it is more common to exclude the field variables in
the Born-Markov approximation [5,9,120-122]. This approximation assumes that the buildup of
correlations between the atoms and the field can be neglected and that the atom-field correlation
time is negligibly short relative to the atomic system’s evolution time [9].

The Born-Markov quantum master equation for the reduced density matrix of the emitters
is given by:

dp(t) 1

Y L Trpag /0 S [V (8, [V(t - 7). p() © praa(0)]].

4For completeness, the explicit expressions are:

one Kol | 2 A= [Rpa — Xppl [ 2 R} ’
p=1 a=1 a,l;é:bl M,l;é:l
a KFEV

where Ry, = R, — R, and R, = |Ru|.
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Figure I.1: Comparison of the exact solution of Eq. (1.23) with the approximate solutions from

Egs. (1.25) and (1.26) for various values of N. Panels (a)-(c) display L?(t) and L(t)2 based on
the exact solution. Panels (d)-(f) and (g)-(i) show the excited state population and emission
intensity, respectively. Intensities are normalized to the maximum value of the exact solution.

where all operators are written in the interaction picture, and the operator V(t) describes the
light-matter interaction. The density operator pgeq(0) represents the field’s initial state, which

we assume to be the vacuum.
When deriving the master equation, we employ the rotating-wave approximation and dis-

regard the dipole-dipole interactions that have a dephasing effect on the cooperative emis-
sion [123-125]. This approximation holds for atoms within a cavity [20, 126], as non-resonant
interactions are suppressed and the dipole-dipole interaction is modified [127]. The resulting
master equation for two-level emitters is given by [53]:

dp(t L T
Zi) =7J12p(t) Jo1 — %le Ji2 p(t) — g o(t) Jo1 Jra. (1.23)

Here, v = 4wg|d12|?/(3hc?) is the spontaneous decay rate, where wy is the emission frequency,
and dj2 = (1/d|2) is the transition dipole moment. The collective operators are defined as:

N
= Z Op,pq-
pu=1
In the next section, we examine the exact and approximate solutions of this master equation.

2.2 Superradiance in Two-Level Emitters

In the absence of external fields and nonradiative dissipation channels, and assuming all
atoms are instantaneously excited, the density matrix is expressed as a statistical mixture of

Dicke states:
N
=Y pr(t) |L)(L
L=0
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Here, |L) denotes a symmetrized state where L out of N atoms are excited. The coefficient
pr(t) is the probability of finding L atoms excited at time ¢. These probabilities are governed
by the following rate equations:

dpL(t)
dt

= =L pr(t) + vit1 pr+1(1), (1.24)

where v, = 7L (N — L + 1). These equations indicate that the ensemble evolves through
a ladder of Dicke states, starting from the highest state and cascading through transitions
N — (N —-1)— ... — 1— 0, until reaching complete relaxation.

The emission of the first photon occurs at a characteristic rate of vN, which is N times
faster than the decay rate of an isolated atom. The emission of the second photon is governed
by the depopulation rate of the coefficient px_1(t), which is roughly v(N — 1), and so on.

The system of linear equations in Eq. (1.24) contains only N+1 unknown variables. However,
the inclusion of incoherent processes or external driving increases the complexity of the problem
from linear to higher-degree polynomial. For macroscopic ensembles (N > 1), this can become a
significant limitation. These challenges highlight the need for approximate methods that either
yield analytical solutions or maintain complexity independent of N.

The probabilities pr,(t) determine the average number of excited atoms, L(t), through:

N
= Lpi(t)
=0

Assuming the distribution py(t) satisfies L2(t) = mQ for all ¢, a simplified solution can be
derived. In Fig. 1.1 (a)-(c), the averages L2(t) and mz are shown for different values of N
using the exact solution. These averages converge closely only for larger N.

Under this approximation, the mean number of excited atoms is expressed as [9]:

__ N N YN (t — tD)]
Lt — — —tanh| ————~ 1.2
0 ~ 5 — o tanh| T2, (1.25)
where tp = 7 In N/N, and 75, = 1/v. This solution resembles a smooth step function,

transitioning from N to 0 around ¢ ~ tp over a characteristic timescale of 75, /N. The delay
time ¢p defines the interval between instantaneous excitation and the peak emission intensity.
The emission is characterized by the rate of emitted photons per unit time, expressed as:

2 _
I(t) = — dZi) 72[ hﬂ’yN(tth} (1.26)

The total number of emitted photons is found by integrating this intensity over time.

Figures 1.1 (d)-(f) and (g)-(i) compare the excited state population and emission intensity
for different N, using both exact and approximate solutions. For a large number of atoms, the
approximate solution qualitatively resembles the exact solution. However, it predicts shorter
delay times and faster decay, and the approximate intensity curves are narrower than the exact

——2
ones. The approximation L?(t) =~ L(t)" significantly distorts the averages, emphasizing the
importance of fluctuations.

2.3 Tipping Angle Approach

Another approximate approach derives semiclassical equations and reintroduces the effects
of quantum fluctuations via random initial conditions [9]. Using the master equation in Eq.
(1.23), we derive equations for the averages:

1N
Ppq(t NZTT Uqup ]
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which represent a single-particle reduced density matrix. These averages evolve according to the
following equations:

dp11(t A A .
P o poalt) + 3 T [5G0 (0], (1.272)
HFV
dp1a(t A A A N
t 2 2
wFtv
dpai (t . A A N
pfil( ) — _1p21(t) + 1 Z Tr [0'“,21 (UV,22 - Ou,ll) p(t)]v (IQ?C)
t 2 2
wFv
dpas(t A . R
pi;t( ) —p22(t) = D Tr [6u21 60,12 (1)) (I.27d)
wFv

Here, p and v are distinct indices ranging from 1 to V. The first term in each equation represents
spontaneous decay, while the second term captures interparticle interactions.

The equations for pp,(t) contain averages of two-particle operators. Similarly, the equations
for mean two-particle operators include mean three-particle operators, and so forth. Writing
equations for all possible averages quickly becomes intractable as the number of atoms increases.

Alternatively, we can truncate this hierarchy by factorizing the averages beyond a certain
order and proposing an ansatz that expresses higher-order averages in terms of lower-order ones.
This approach simplifies the system and makes it tractable. Let us factorize the second-order
averages for different particles as follows:

Tr [@M’j v,pq f’(t)] ~Tr [&uyij ﬁ(t” Tr [51/7;0(1 ﬁ(t)}, pF v (1.28)

This approximation allows us to derive a closed system of equations while avoiding the exponen-
tial growth in complexity. However, it disregards all quantum correlations between particles.
With this simplification, Egs. (1.27) reduce to:

D) — (1) £ = 1) proft) 1), (1.200)
dpi;t(t) B —%pm(t) - ,Y(NQ_UPu(t) [p22(t) — p11(1)], (1.29b)
dp?dlt(t) - _%pm(t) T ’y(N2— 1)P21(t) [p22(t) — P11 (1)), (1.29¢)
dpift(t) = —p22(t) = ¥(N = 1) p1a(t) p21 (¢). (1.29d)

If the emitters are initially excited without a dipole moment, the coherences remain static, and
the system evolves solely according to the rate equations. To induce non-trivial dynamics, either
an external field must be applied, or the emitters must have an initial nonzero dipole moment.
In both cases, the system’s dynamics is semiclassical.

However, it is possible to phenomenologically reintroduce the effects of quantum fluctuations
lost due to the truncation in Eq. (I.28) without modifying the equations themselves. This is
achieved by appropriately selecting initial conditions for the semiclassical variables [9], assuming
that ppe(0) are treated as random variables.

Random Initial Conditions

Initially, all emitters are excited, forming the Dicke state |N). In this state, the average
collective dipole moment—expressed as a linear combination of J, and J,—is zero.” However,

5 All emitters are identical, meaning that the matrix elements of the dipole moment operator, di; = (i, d,.|5) 4,
are also identical for each emitter. Using this assumption, we can express:

N N 2
Zau = Z Z |00 (il 3) e (Gl = J12 diaz + Jo1 dor = Jo Rediz + J, Imdao,
pn=1

pu=li,j=1
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since Dicke states are eigenstates of the operator J -, other components of the angular momentum
do not have definite values. Individual measurements of these components yield random values,
which average to zero. To estimate their statistical moments, we compute:

N NI K!
NIGE KN e, 0< K <N,
W HEN) ) S (130)

0, K > N.

We can phenomenologically assume that the initial values p;;(0) are random variables, denoted
by pij, selected to reproduce these statistical moments. On average, the coherences pi2 and
p21 remain zero but take nonzero values in individual statistical realizations. This leads to
non-trivial dynamics in Egs. (1.29).

This reformulation alters the interpretation of the variables p;;(t). They correspond to the
single-particle reduced density matrix only after statistical averaging. The averages of many-
particle operators reflect the collective properties of the entire ensemble.

By definition, the random variables p;; must reproduce the expectation value in Eq. (1.30):

N!K!

<51I§ ﬁ21 > = 0K X NQK(N—K)V
0, K > N.

0<K <N,

Here, (...) denotes statistical averaging over the distribution of p;;. Determining this distribution
in general is challenging. However, in the limit as N — oo, the statistical moments simplify to:

e K!
(i3 P21 ) = Oxcrcr 1o (L.31)

A further simplification can be made by assuming that p;; corresponds to a pure state on the
Bloch sphere. In this case, these variables can be parameterized using two angles that define
the orientation of the Bloch vector: the polar angle 6 and the azimuthal angle ¢:

- sinf - sinf .
et e

= — = 0 —cos2€
P12 = B y P21 = 5 y P22 = .

~ )
11 = S1n
P 2

3
We interpret the angles 6 and ¢ as new random variables, with their distribution functions to
be determined shortly.

Averages involving unequal numbers of variables p12 and pa; must vanish. For example, (p12),
(P12 p22), and (p12 p12 p21) are all zero. This condition is satisfied by assuming the azimuthal
angle ¢ is uniformly distributed over the interval from 0 to 2.

Fluctuations in the polar angle 6 correspond to small deviations of the Bloch vector around
the north pole of the sphere, where # = 0. Assuming these fluctuations are sufficiently small,
we can approximate sinf ~ 6. From the statistical moments in Eq. (I.31), we directly obtain:

K
(N/4)K

These moments correspond to the even moments of a random variable that follows a Rayleigh
distribution with a scale parameter \/2/N :

(%) =

o0 NO oy F(l—l—k/?)
(%) = [ door e " Dl

Alternatively, the real and imaginary parts of the coherences can be sampled as Gaussian normal
variables.

where the components of the angular momentum operator are defined as Ju = Jo1 + J12, Jy = —iJo1 + ZJ12, and
J. = Jas — J11. From this expressmn it follows that all powers of the collective dipole moment are proportional
to combinations of Ji2 and J21, as in Eq. (1.30).
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Figure 1.2: Solutions of the semiclassical equations (1.29) with randomly distributed initial
conditions are compared to the exact solutions. Intensities are normalized to the maximum of
the exact solution. Statistical averages were computed using 10° realizations.

In Fig. 1.2, we compare the exact solutions to the solutions of the semiclassical equations
(I.29) with random initial conditions. For a small number of atoms, the discrepancy between
the solutions is substantial. However, as the number of atoms increases to N ~ 10, the curves
converge closely to the exact solution, as demonstrated in panels (b) and (c). Single realizations
are also plotted to illustrate fluctuations around the mean curves.

In summary, fluctuations in the collective Bloch vector are sufficient to initiate the collective
effect. The deviation from the north pole of the Bloch sphere that triggers the process is
commonly referred to as the tipping angle. Experimental efforts have been made to measure
this angle directly. For example, in the study by Q. Vrehen and M. Schuurmans [66], the mean
tipping angle was measured to be on the order of 2/ VN, which aligns well with the theoretical
model presented here.

The tipping angle approach, however, has several limitations. First, it is primarily applicable
to systems with a large number of atoms. Second, it relies on the assumption that the system
becomes fully excited instantaneously, whereas in realistic scenarios, excitation typically occurs
through continuous pumping. Lastly, extending this approach to many-level atoms introduces
additional complexity, requiring more sophisticated distribution models. These constraints mo-
tivate the development of alternative frameworks to describe cooperative emission.

2.4 Phenomenological Stochastic Equations

We have demonstrated that fluctuations in the tipping angle can activate the interaction
terms in the semiclassical equations (1.29). To understand why this mechanism works, it is
essential to examine how these fluctuations influence the equations.

Let us focus on the early stages of the dynamics, where the populations remain nearly
constant. By assuming a fixed population inversion in Eq. (I.29b)—a regime we refer to as
linear—we can compute the average (p12(t) p21(t)) for a large number of atoms:

(p12(t) p21(t)) = expg\,w-

At approximately the delay time tp = 75, In N/N, this average reaches unity, causing the inter-
action term in Eq. (1.29d) to dominate, thereby invalidating the assumption of a linear regime.
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Figure 1.3: Solutions of the stochastic equations in Eq. (1.32) compared to the exact solution for
different numbers of atoms. Intensities are normalized to the maximum of the exact solution.
Statistical averages were computed using 10° stochastic realizations.

For times ¢ < 7 /N, the expression for this average predicts linear growth:

(p12(t) pa1(t)) ~ % + 7t.

The first term originates from the initial conditions and can be seen as a remnant of the tipping
angle approach, vanishing as N — co. Most importantly, there is a linear growth in the second
term, which is activated by the fluctuations in the initial conditions.

Let us consider an alternative approach, where fluctuations in the coherences are introduced
phenomenologically by adding an extra term to the equations for them (1.29b). These additional
terms are modeled as stochastic processes:

dp12(t)
dt

where Z(t) is an undetermined multiplier, and S(¢) is a complex Gaussian white noise process
satisfying (S(t) S*(t')) = o(t — t’), with all other first- and second-order averages equal to zero.

According to Itd’s lemma, these stochastic terms contribute an additional term to the equa-
tion for the composition of the coherences:

d

%[Plz(t) pu(t)] = ... +712()

= T2 S(), d”jllt(t) TS,

To reproduce the initial linear growth, the function |Z(t)|?> must remain near unity during the
early stages and then rapidly drop to zero around the delay time.
A suitable candidate for this function is the excited-state population, which remains nearly

constant at the beginning and then quickly decays to zero. Therefore, our guess for Z(t) is:

Z(t) = 1/ p2(t) .

This approach is phenomenological, and the effectiveness of this choice cannot be guaranteed a
priori. The equations governing the dynamics become:

d’oillt(t) = Yp2a(t) + 7 (N = 1)p1a(t) paa (0), (1.322)
dpilzt(t) _ _gpu(t) + W\fz—l) pra(t) [p22(t) — pur (0] + y/rp2a(t) (1), (132b)
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dpillt@ - _%pﬂ(t) + W\[Q_l) P21 (1) [p2(t) — pr1(8)] + \Jyp(t) S°(0), (1.32¢)
dpz;t(t) = —p22(t) = V(N = 1) pra(t) p2u (1). (L.32d)

Only two variables are independent since p2;1(t) = pis(t) and p11(t) + p22(t) = 1. The initial
conditions p;;(0) are deterministic, with p22(0) = 1 and p12(0) = p21(0) = 0.

Figure 1.3 illustrates the simulation results. Remarkably, the agreement with the exact
solution is excellent in panels (b)-(c) and surpasses the results shown in Fig. 1.2. Notably, in
Fig. 1.3 (a), the excited-state population can dip below zero in individual realizations. For a
small number of atoms (around N = 10, not shown in the figure), even the average probability
can drop below zero.

This approach successfully reproduces the dynamics for instantaneously excited two-level
atoms. The approximation relies heavily on the assumption that the noise terms are significant
only during the initial stage. However, realistic scenarios require the inclusion of pumping, addi-
tional dissipation channels, multiple polarizations, and lasing between multiple levels. Because
these noise terms are introduced heuristically rather than derived from first principles, their
effectiveness in other scenarios is uncertain.

3 Conclusion: Limitations and Outlook

To conclude this chapter, we test the system of phenomenological stochastic equations (1.32)
for incoherently pumped, identical atoms with two lasing transitions and dissipation, as illus-
trated in Fig. 1.4 (a). The atoms begin in the state |0) and are subsequently excited to the state
|2). The excitation process is modeled via the following Lindblad operator:

. Jot) S~ s VP
Losa[p(t)] = 02< ) > {26720 (t) 61,02 — 611,00 A(E) — Pt) Gp00}-
pn=1

Note that this Lindblad operator is symmetrized over the atomic labels, meaning it does not
distinguish between particles. The pump flux Jy(¢) is modeled with a Gaussian envelope:

_ 2
JO(t) = \/%*exp[ - “27_2;())]7

where tg signifies the time of the peak, 7 denotes the pulse duration, and I, corresponds to the
pulse area.

The excited state can relax either through a radiative transition to the state |1), governed
by Eq. (1.23), or via nonradiative decay to the state |3), described by the Lindblad operator:

N
. I VR A AN A
Lo3(p(t)] = 3 2{2%,32 p(t) 623 — G2 p(t) — p(t) 622}
pn=1
This Lindblad operator also preserves permutation symmetry, as it does not distinguish between
particles.

The master equation thus incorporates three contributions:

an(t)

ke Lo [p()] 4 Loz [p(t)] + vJra pt) Jo — %jﬂ Jia p(t) — %ﬁ(t) Jo1 Jia. (1.33)

The Liouvillian is permutation-invariant. As a result, if the system starts in a permutation-
ally invariant state, this symmetry is preserved. However, the presence of Lindblad operators
precludes describing the dynamics solely in terms of fully symmetric Dicke states, even though
permutation symmetry is preserved. This requires the development of a more general method
that accounts for the symmetry while accommodating the dissipative dynamics. Chapter 11 of
the dissertation is devoted to this method.
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Figure 1.4: Panel (a) illustrates the level structure of pumped emitters with dissipation. Panels
(b) and (c¢) compare the solutions of the phenomenological stochastic equations (1.32) with
the exact solutions for N = 10 and N = 10?%, respectively. Intensities are normalized to
the maximum of the exact solution. Statistical averages are calculated using 10° stochastic
realizations. We set the parameters I' = 107, I, = 10, to = 2/, and 7 = 0.5/7.

We derive the semiclassical equations corresponding to the master equation in Eq. (1.33),
and supplement them by the phenomenological noise terms from Egs. (1.32):

dp(c)z[;(t) = ~Jolt) poo(t), (I.34a)
dpillt(t) = yp22(t) + V(N — 1)p12(t) p21(?), (L.34b)
dp;zt _ & ;L D (i) + 7(N2_1) p12(t) [paa(t) — p11(t)] + \/vp22(t) S(t), (L34c)
d”i;f” -1 ; Dot) + ’Y(N;D por(t) [p22(t) — pra()] + \Jye(t) S7(1),  (134d)
dpf;t(t) = Jo(t) poo(t) — (v + T)paz(t) = y(N = 1) pra(t) p2u (¢)- (L.34¢)

and p33(t) =1 — poo(t) — p11(t) — p22(t).

The solutions to these equations are depicted with dashed lines in Fig. 1.4 (b)-(c). For
comparison, we also include the solution obtained using the method introduced in Chapter 111,
which will later be shown to be reliable. These results are represented by semi-transparent lines.
Panels (b) and (c) demonstrate that the phenomenological noise terms yield entirely incorrect
results. For N = 10%, the average excited-state population even drops below zero. In both cases
presented, the qualitative behavior is also incorrect. This issue cannot be easily resolved because
the proposed noise terms were not derived from a systematic approach.

Based on these observations, this dissertation pursues the following goals:

1. Develop an efficient quantum-mechanical approach to solve quantum master equations
with Lindblad operators exactly.

2. Establish a theoretical framework for deriving stochastic differential equations for such
systems from first principles.

The results from Step 1 provide benchmarks for assessing the method developed in Step 2. This
benchmarking is crucial, as the primary motivation for the stochastic approach is its use in cases
where fully quantum-mechanical descriptions are computationally infeasible.
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Chapter 11

Second Quantization of Open
Quantum Systems in Liouville Space

In this chapter, we explore permutation symmetry in Liouville space. While the findings have
been published in Ref. [108], we present the formalism differently here and include additional
examples of its application. This chapter begins with a brief introduction and an explanation
of the motivation behind the research presented in Ref. [108].

In closed quantum systems of identical emitters, the Hilbert space framework and state
vectors are typically sufficient for analysis. However, the inclusion of dissipation requires the
use of the density matrix formalism [128], as open quantum systems cannot be fully described
by standard Heisenberg or Schrodinger equations [129]. When the coupling to the environment
is collective—identical for all emitters—the dynamics can be effectively represented using the
basis of symmetric states [130].

The second quantization formalism offers a convenient means to construct and manipulate
symmetric states, reducing the exponentially growing number of states to a polynomial in the
number of emitters. However, when emitters interact with independent reservoirs—disrupting
the collective nature of dissipation—the standard second-quantization framework becomes in-
applicable.

The basis for identical two-level particles can be parameterized by two quantum numbers:
the total angular momentum J and its projection M (or equivalently, the cooperation number,
r, and m, as described in Ref. [1]). Fully symmetric states correspond to the maximum angular
momentum J = N/2, where N is the number of particles. For collective interactions with the
environment, it suffices to use symmetric states (J = N/2). However, systems with incoherent
processes require the full basis, including antisymmetric states and states with mixed symmetry
[131-135]. Due to the mixed symmetry, the standard second-quantization framework does not
apply to such systems. Moreover, the generalization of the Dicke basis to many-level emitters
is not straightforward.

Our work directly exploits permutation symmetry at the level of Liouville space and density
matrices. Significant progress has already been made in this area. For example, Refs. [105-107]
employed occupation numbers to parameterize a symmetric basis for density matrices. Fur-
thermore, Refs. [112,136] introduced bosonic superoperators in Liouville space via the Jordan-
Schwinger representation [137]. In our study [108], we adopted the apparatus of second quanti-
zation [138], yielding a similar representation applicable to the same class of problems, including
solutions to master equations with Lindblad operators [121,128,139-141].

In contrast to the recent study in Ref. [130], which also examined a system of identical many-
level emitters using a second-quantization approach, our formalism accommodates incoherent
processes and is not confined to the subspace of fully symmetric states.

The quantization of density matrices developed in our work should not be confused with
approaches from Refs. [142-145]. These studies utilized the Fock state basis |n) for represent-
ing density matrices in the basis formed by |n)(m|. This leads to a doubling of the degrees of
freedom, as bra and ket components are independent. However, this approach imposes certain
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symmetry restrictions and can address non-unitary dynamics in the form of collective dissipa-
tion or particle loss. In contrast, our approach applies second quantization directly to density
matrices, preserving the number of emitters and incorporating incoherent processes.

This chapter is organized as follows. In Sec. 1, we present a step-by-step derivation of the
second-quantization representation for density matrices, starting with establishing the isomor-
phism between density matrices and vectors in the extended Liouville-Hilbert space [110,111].
For a concise summary of the essential points, readers may refer to Sec. 1.8.

Section 2 demonstrates the formalism’s application in modeling various systems exhibiting
cooperative emission. Specifically, we investigate two-level emitters (Sec. 2.1 and 2.2), three-
level V' emitters (Sec. 2.3), three-level A emitters (Sec. 2.4), and the Tavis-Cummings model
(Sec. 2.5). These examples explore cases where emitters begin in statistically mixed states, are
excited by incoherent pumping, or undergo incoherent dissipation. In many cases, ensembles
evolve into dark many-body steady states, achieving equilibrium with their environments.

Section 3 outlines a numerical implementation of our formalism in Julia, complete with
code details and performance benchmarks.

In Sec. 4, we provide supplementary sections discussing possible extensions and applications
of the formalism.

The chapter concludes with Sec. 5, where we discuss the limitations of the formalism and
introduce a potential extension toward a phase-space description, which is further elaborated in
Chapter III.

1 General Formalism

We begin by introducing permutation symmetry and the framework of second quantization.
Consider a system of particles, or emitters (e.g., atoms, ions, etc.), that can occupy M distinct
states, as illustrated schematically in Fig. II.1 (a). The notation |i), indicates that the u-th
emitter is in state |i), where i = 1,..., M. These states form the basis of a single-particle Hilbert
space and are assumed to be eigenstates of the corresponding free emitter Hamiltonian (1.22).

The states of N particles are represented by vectors in an N-particle Hilbert space, con-
structed as a tensor product of N single-particle spaces. Consequently, the basis of this space
comprises tensor products of all possible combinations of single-particle states. A general N-
particle state, |¢), can be expressed as a linear combination of these basis states:

) =Y Ci lin)1 ®liz)e @ ... @ [in)n, (IL1)
i
where © = (i1,42,...,ix) is a multi-index. The summation over % is understood as a sum over
all its components i1, 49, ..., iy. The coefficients C; must satisfy normalization.

In general, the state in Eq. (II.1) describes distinguishable particles, as the multi-index
is an ordered sequence where each position specifies the state of a particular emitter. When
emitters are identical, it means that exchanging any pair of them does not alter observable
quantities. For example, this invariance can be ensured if any permutation of particles results
in a global phase shift of the state in Eq. (II.1):

) — € [4), (IL.2)

where ¢ = 0 for symmetric states (bosons) and ¢ = 7 for antisymmetric states (fermions).! This
dissertation does not specifically focus on bosons or fermions. Instead, we examine quantum
emitters, often referred to as pseudospins, for which the collective states can exhibit mixed
symmetry. The symmetry properties of such states cannot generally be characterized by a
simple global phase shift.

!The cases ¢ = 0 and ¢ = 7 imply that a double permutation leaves the state unchanged. However, in two-
dimensional quantum materials, quasiparticles known as anyons [146] exhibit behavior where a double permutation
introduces an uncompensated phase shift. In quantum-statistical terms, these particles obey neither Bose-Einstein
nor Fermi-Dirac statistics. This dissertation does not address such quasiparticles.
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SECOND QUANTIZATION 1. GENERAL FORMALISM

The indistinguishability of particles implies that measurement outcomes must remain un-
changed under particle permutations. Since identical particles cannot be distinguished by any
experiment, only symmetric operators—those invariant under particle label exchange—can rep-
resent observables. Consequently, the measurement outcome of an observable, represented by a
symmetric operator O, must remain invariant under particle exchange:

(¥|Ol) — (Y|Oh).

As a result, the system’s density matrix [¢)(¢| is symmetric. If the system begins in a permu-
tationally invariant state, and this symmetry is preserved over time, then the density matrix
always remains symmetric.

The density matrix formalism is particularly useful for describing quantum systems interact-
ing with their environment under the Markovian approximation. The environment is typically
modeled as a bath with an infinite number of degrees of freedom. Averaging over these degrees
of freedom introduces effective dissipation, rendering the system open. As a result, the state of
an open quantum system is generally not a pure state.

Consider a composite closed quantum system comprising identical emitters and their envi-
ronment. The general state of this system can be seen as an extension of Eq. (II.1):

’1/1’) = ZCi,enV li1)1 @ li2)e ® ... ® |in)N @ |env), (I1.3)

i,env

where |env) denotes the state of the environment, and the summation over “env” accounts for all
environmental degrees of freedom. This expansion suggests that all emitters collectively interact
with the same environment.

In many applications, providing a detailed description of environmental dynamics is either
infeasible or unnecessary. Instead, the environmental degrees of freedom can be excluded by
tracing over them, yielding the reduced density matrix for the emitters:

p = Trenv. [V ) ('] = Cij 61:1j1 G2ings -+ ONyinjn- (IL.4)
i?j
Here, the multi-indices are ¢ = (i1,42,...,in) and j = (j1,J2,...,Jn), and 6,45 = [4).(j|.. The

decomposition coefficients Cj; are averages over the environmental degrees of freedom:

Cij =Y Cienv Cfeny-

env

Under the Markovian approximation, the reduced density matrix can be shown to evolve ac-
cording to a quantum master equation in Lindblad form [128, 139].

We assume that, after averaging over the environmental degrees of freedom, the effective
interaction with the environment does not distinguish between particles, thereby preserving
permutation symmetry. A more general scenario might involve particles interacting with inde-
pendent reservoirs, but if all particles interact identically with their respective environments,
permutation symmetry is restored after averaging.

The density matrix in Eq. (I1.4) generally describes a mixed state, where the ensemble’s
statistical properties are no longer evident. Such a density matrix can represent a statistical
mixture of symmetric and antisymmetric states, making it impossible to assign specific quantum
statistics to the ensemble. For example, consider the following mixed state of two pseudospin-1/2
particles:

[T (A WD QI L [T + D (3 + (T 1) — W) (= 1l

1
2 CRVG) vz 2 2 &

This density matrix is a statistical mixture of the symmetric and antisymmetric states.
Ensembles of N two-level pseudospins are described by angular momentum states |J, M),
which can exhibit mixed statistics. As a result, the dynamics of an open quantum system is
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1. GENERAL FORMALISM SECOND QUANTIZATION

not restricted to a subspace with a specific symmetry, making it impossible to fully describe the
system using only bosonic or fermionic states and operators.

Nevertheless, it has been established that density matrices of identical emitters are always
symmetric. By defining an isomorphism between Liouville space and Hilbert space, density
matrices can be treated as analogous to symmetric state vectors [110, 111]. This approach
allows us to adapt the bosonic second-quantization approach to symmetric density matrices,
resulting in a general theory applicable to open systems of emitters.

The next subsection, Sec. 1.1, reviews the basics of second quantization for bosons in Hilbert
space. Readers already familiar with this material may skip it. The discussion on Liouville-
Hilbert space begins in Sec. 1.2, with a concise summary provided in Sec. 1.8.

1.1 Second Quantization of Bosons in Hilbert Space

When the state vector in Eq. (II.1) describes a system of bosons, the phase shift in Eq. (I1.2)
is zero (¢ = 0). Consequently, the expansion coefficients are symmetric under the exchange of
any two particles:

Ciy.ipriviy = Ciy iy -

These coefficients depend only on the values of the indices i1, ..., i, not their order. Therefore,
the decomposition coefficients can be parameterized by occupation numbers—the number of
particles in each single-particle state.

For any sequence of indices (i1, ...,iy), we count the number of times each state |i) appears,
denoting these counts as n;. The corresponding decomposition coefficient Cj, ;, can then be
parameterized as:

Ciy.in ~ C({ni}),

where {n;} is an ordered set of occupation numbers {ni,na,...,ny }. We also introduce a new
basis of symmetric states parameterized by these numbers, denoted as |[{n;}).
This basis is constructed by starting with an arbitrary product state:

li1) ® ... in)N,

counting the corresponding occupation numbers {n;}, and summing over all possible permuta-
tions of the labels i1,...,iy. After normalization, the resulting superposition becomes [{n;}).
This symmetrization can be conveniently expressed by summing over N additional indices 1,
..., un, which don’t overlap and range between 1 and N:

1 . .
[{ni}) = ML > " im)1® . @ iy )N (IL5)
LT

Any symmetric state vector can be represented in this basis. The total number of basis states
is determined by the number of ways N identical objects (particles) can be distributed among
M bins (states), as illustrated schematically in Fig. 1.1 (b). Each distribution corresponds to
a specific occupation-number state.

After representing symmetric states in the occupation-number basis, we can examine the
action of symmetric operators on these states. Consider a symmetric single-particle operator of
the form:

N
Jpq = Z 6u,pqa (11-6)
pn=1

with 6,p¢ = |P)u(q|u- Let’s find how this operator transforms the basis vectors. When p = ¢,
we have:

Jop 1{ni}) = np [{n}).

This shows that this operator counts the number of particles in state p, and the occupation-
number states are its eigenvectors.
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SECOND QUANTIZATION 1. GENERAL FORMALISM

When the indices are distinct, p # ¢, the collective operator acts as follows:

Jog {ni¥) = \fng(ny +1) [{..,ng —1,...,np +1,...}).

This transformation corresponds to the annihilation of one particle in state ¢ and the creation
of one particle in state p. This interpretation leads to the introduction of bosonic annihilation
and creation operators, b, and b;f), which change occupation numbers according to:

bp l{ni}) = g 1L omp— 1,01, B[ =+ 1 [{omp+ 1,8, (IL7)

and satisfy the commutation relations [b,, 52] = bpq-
As a result, operator qu, when applied to symmetric states, can be bosonized as follows:

by. (IL.8)

This bosonization preserves the commutation relations of qu. Since the total number of particles
N is fixed, the sum 7y + 72 + ... + fapg, where 7, = lA);r, lA)p, is also constant and equals N. In
a sense, such system of identical emitters can be described as M harmonic oscillators sharing
N excitations [130]. This representation is known as the Schwinger representation, and the
corresponding bosonization of symmetric operators as the Jordan-Schwinger transformation [57,
137,147-153|.

It is important to note that this description is complete only if the system’s state remains
within the subspace of symmetric states. If the system is prepared in a statistical mixture of
states with mixed symmetry or undergoes incoherent processes, this representation may fail to
fully capture its dynamics. The formulation of second quantization in Liouville space overcomes
these limitations, as discussed in the next section.

1.2 Occupation-Number Basis in Liouville-Hilbert Space

In this section, we adapt the principles of bosonic second quantization, outlined in the
previous section, to symmetric density matrices.

An analogy with bosons becomes apparent once we establish an isomorphism between the
Liouville space and an extended Hilbert space [110,111]. To clarify this isomorphism, we begin
with the simplest case: a single two-level particle.

For a single two-level particle, the state vectors reside in a two-dimensional Hilbert space
and can be represented as two-component column vectors. In Liouville space—the Cartesian
product of Hilbert space and its dual—the basis consists of 2 x 2 matrices denoted by &;; = |i) (j].

Since finite-dimensional vector spaces of the same dimension are isomorphic, a one-to-one cor-
respondence exists between the space of 2 x 2 matrices in Liouville space and a four-dimensional
vector space. For a single two-level particle, we define a specific vectorization map from the
Liouville space to a four-dimensional vector space as follows:

1 0
. (10 0| . (o1 1|
0'11—(0 O)(—) 0 :|11>>, 012—<0 O)(—) 0 :|12>>,
0 0
0 0
. (oo ol _ . (oo 0| _
021—<1 O)H 1 :‘21», UQQ—(O 1)% 0 _‘22>>.
0 1

The basis vectors in this representation are denoted [ij)) and are commonly referred to as
superkets [110-112, 141, 154].
The scalar product in the space of superkets is defined using the dual space of superbras,
{(pal, as:
(palig)) = Opi 0g;- (I1.9)
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Figure II.1: Symmetric states of ensembles of M-level identical particles, schematically depicted
in panel (a). Panel (b) visualizes the states in Eq. (I1.5), which are constructed by distributing
N identical particles (objects) across M states (bins). Panel (c¢) depicts the superstates in Eq.
(I1.11), where N identical objects (particles) are distributed among M? bins (superstates).

With these constructs, the vector representation of Liouville space can be identified with an
extended Hilbert space [154], which we call the Liouville-Hilbert space.

To generalize this framework to M-level systems, the index range is simply extended to M.
Multi-particle superstates are constructed using a tensor-product basis of superkets, analogous
to state vectors in Hilbert space, as shown in Eq. (IL.1).

The density matrix p from Eq. (I1.4), which describes N identical M-level particles, is
represented as a supervector |p)) in the Liouville-Hilbert space:

)= ZCz‘j lirji)1 ® |iaf2)2 ® ... @ [injN)N- (11.10)

By assumption, the coefficients Cj; are symmetric under the exchange of any two particles. Since
each particle is represented by a pair of indices 77, this symmetry can be expressed as:

Cirji iy iviv ingn = Cirji civio o ipiu - injn -
This property implies that the coefficients Cj; depend only on the number of times each superket

ij)) appears in the expansion. Let n;; denote the number of occurrences of each superket |ij)).
The decomposition coefficients can then be parameterized by these occupation numbers:

Cij ~ p({niz}),

where {n;;} is the ordered set of M? occupation numbers {n11,n12,. .., 7107, 021, - .-, NAIM -

The occupation-number basis, parameterized by the numbers {n;;}, is constructed analo-
gously to Eq. (IL.5). For any sequence of superket indices i1ji, ..., injn, we count how often
each pair ij appears, denoted n;;. The basis element |{n;;})) is then formed by summing over
all tensor-product superstates corresponding to the set {n;;}:

[{nij}) = [ o ® i dun DN (I1.11)
1) N' sznw ﬂl;éz;é#]v#l #1 UNJBN
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This construction can be interpreted as distributing N identical objects among M? bins, as
illustrated in Fig. II.1 (c). The total number of basis superstates corresponds to the number of
possible distributions, given by:

(N + M2 — 1) (N+M?2-1) (1112)

N - ON!/(MZ 1)

This reduction from exponential to polynomial complexity has been explored in numerous studies
[105-107,112,131-133,135].

Any symmetric density matrix can be expressed in the symmetric basis defined in Eq. (I1.11).
In essence, the bosonization strategy outlined in this section extends the results of Sec. 1.1
by treating indices (i) as two-component multi-indices (ij). However, the interpretation of
the expansion coefficients p({n;;}) and the procedure for calculating expectation values differ
significantly, because the density matrix is a statistical object.

1.3 Density Matrix Representation

Expectation values of observables are determined by taking the trace of the product of the
corresponding operator and the density matrix. This process is straightforward when density
matrices are treated as operators in the traditional Hilbert space. However, extending this
operation to the Liouville-Hilbert space requires additional clarification.

In the supervector representation, when a symmetric operator acts on a basis element |{n;;})),
the resulting state can still be expressed within this basis. Consequently, calculating the expec-
tation values of observables reduces to computing the trace of the basis states [{n;;})).

The superstates [{n;;})) are constructed from superkets (Eq. (II.11)), which are vectorized
representations of the o-operators. Assuming the trace should be independent of the represen-
tation, we have:

T [Jif)] = Tr 635 = (jlé) = &
Thus, the trace of a many-particle tensor-product superstate is zero if at least one superket
7)) has distinct indices, i # j. Similarly, the trace of [{n;;})) is zero if any n;; # 0 for ¢ # j.
Otherwise, if all numbers with distinct indices are zero, the trace is:

N!
[T i’

This factor appears in all expectation value calculations. To simplify expressions, we incorporate
its inverse into the expansion of density matrices in the occupation-number basis:

Tl““{’fl”}»] = (all Nit; = 0). (11.13)

o) = 30\ ) s . (IL.14)
{nij} ’

The sum is taken over all possible sets of occupation numbers that sum to N. This representation
is analogous to that found in Refs. [105-107], which also incorporate this multinomial factor for
numerical convenience and more compact expressions.

In this representation, the trace of the density matrix simplifies to the sum of its decompo-

sition coefficients:
Tr[p)] =D p({nii}) =1,
{na}

where the summation includes only “diagonal” occupations with n;.; = 0. Such sets are denoted
as {ni; }. Coefficients p({n;;}) represent the joint probabilities of finding n;; particles in state |1),
ngg in state |2), and so forth. While the trace of a density matrix is always one, some applications
introduce incomplete density matrices—where not all states are accounted for explicitly. In such
cases, their trace may be less than one. However, in this dissertation, we do not consider such
cases.
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1. GENERAL FORMALISM SECOND QUANTIZATION

Not every supervector expressed in the form of Eq. (I1.14) corresponds to a physical density
matrix. For a supervector to qualify as a density matrix, it must meet additional criteria.

First, it must represent a Hermitian operator. In the occupation-number representation, this
requirement translates to:

p*({nij}) = p({ni}),
where {n;;} denotes the set {m;;}, with m;; = nj;. This constraint reduces the number of basis

elements required to construct physical states. For instance, the total number of basis elements
for two-level emitters, as specified in (I1.12), is:

(N+ DN +2)(N+3) N3
3! 30

When the Hermiticity condition is considered, this number decreases to:

(N +2)(N +4)(2N + 3) 1N3
4! T

which is about half of the original number of basis elements. Here, [A/B] denotes the integer
division of A by B.

Furthermore, physical density matrices must have non-negative eigenvalues. Determining
these eigenvalues within the Liouville-Hilbert space is not straightforward. To avoid possible
complications, we assume the system begins in a physical state and evolves according to master
equations that maintain the positive semidefiniteness of the density matrix.

1.4 Examples of States

Let us examine a few examples of quantum states and their representations as given by Eq.
(I1.14), starting with a density matrix describing uncorrelated emitters sharing the same state:

- ﬁ{ f: Ppq 6%1)(1}- (IL.15)

p=1"p,g=1

The parameters p,, must satisfy the following conditions: p;, = pgp, >°; pii = 1, and the matrix
formed by p,; must have non-negative eigenvalues. These conditions ensure that p,, represents
a single-particle reduced density matrix. Using the multinomial theorem, we can derive the
occupation-number representation (I1.14) for this state:

plfnssh) = 1 TT 2 (IL16)

p,g=1 Mpg!

which resembles a multinomial distribution parameterized by ppq.

To illustrate states with a non-trivial tensor structure, consider the Dicke states of two-level
emitters, denoted by |L). The state |L) is symmetric, with L atoms in the excited state and
N — L atoms in the ground state. The corresponding density matrix is denoted by |L)) = |L)(L|.
In the occupation-number representation, this density matrix is expressed as:

=>. pr({nij}) [{ni;}))-
{niz}

The coefficients pr,({n;;}) are given by:

(N — L) L!
)
ni1!ni2! nai! nao!

pr({ni}) = (IL.17)

with the following two constraints: nos — nij; = 2L — N and nis = na9j. These coefficients are
zero unless both conditions are satisfied.
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1.5 Operators in Liouville-Hilbert space

At the beginning of Sec. 1.3, we briefly mentioned that symmetric operators possess a
matrix representation in the Liouville-Hilbert space. The algebraic structure of operators acting
on supervectors requires additional discussion.

Consider a single two-level particle. In Hilbert space, the algebra of operators is formed by
the o-operators, represented as 2 x 2 matrices. These operators act on 2 x 2 density matrices
or two-dimensional state vectors. However, in the Liouville-Hilbert space, density matrices are
represented as 4-dimensional supervectors. Consequently, the o-operators must be represented
not as 2 x 2 matrices but as 4 x 4 matrices.

Let us find the representation of the o-operators in the Liouville-Hilbert space. To under-
stand how they transform superkets, consider the following expression:

Opg Gij = Oqi Opj-

We interpret the left-hand side as the action of the operator &,, on the basis element |ij)), which
results in the transformed basis element |pj)) on the right-hand side:

Gpq |i7)) = dqi [PJ)-
Here, the operator 6,4 acts as a 4 x 4 matrix on a 4-component supervector. For simplicity, we
use the same notation for 7,4, relying on context to specify its algebraic properties.

From this, we can explicitly derive the matrix representation of each o-operator in the
Liouville-Hilbert space:

611 lp) = 1P) G12|p) =

621 |p) = 1P))s G622 |p)) =

o | OO0 OO+~ o
S|l OO OO | o o
S| OO OO o O
S| OO OO o o
S| OO0 OO o o
oo OO o

_ o oo OOk O

oOR OO0 OO o -

0 0 0 0]0

Vertical and horizontal lines have been added to highlight the block structure of these matrices.
The matrix representations above can be generalized to an M-level particle. Since the
operator &,, transforms any supervector |qt)) into |pt)), we can express this transformation as:

M
Gpg o) =D Ipth {atlp)- (I1.18a)
t=1

The sum on the right-hand side defines the representation of this operator in the Liouville-Hilbert
space.
Note that the operators considered in Eq. (I1.18a) act only on the ket side of density matrices,

¢
specifically on the first index of the superkets, |¢7)).

To act on the bra side of density matrices, |i)(j|, operators should be applied from the
right. However, in supervector representation, all operators are conventionally applied from the
left. Therefore, both bra and ket sides should be accessible from the left, meaning right-acting
operators in Liouville space correspond to left-acting operators in Liouville-Hilbert space.

We denote an operator acting from the right with a superscript T:

pOre < G, |p)-

!
Operators with the superscript T affect the second index of supervectors, 67, |ij)). Applying such
an operator to the superket basis yields:

O li7)) = Oj [iL))-
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When the second index of the superket is k, it is transformed to ¢, while the first index remains
unchanged. This gives the following representation for these operators:

L 1P Z |s0) (sk|p))- (I1.18Db)

Up to this point, we have discussed operators acting either from the left or from the right.
However, operators can also be applied simultaneously from both sides. For example, consider
the following transformation:

Gpg POkt < Gpg Gy |P))-

This transformation converts the supervector |¢k)) into |pf)), allowing us to formulate the fol-
lowing representation:

Gpq G |P)) = IpL) (aklp))- (IL.18c)

Summing over k = ¢ or p = q results in Eqgs. (I1.18a) and (II.18b), respectively.

The generalization to N particles is straightforward. Similar to symmetric operators in
Hilbert space, any collective superoperator is constructed by symmetrizing over particle labels.
For instance, the symmetrized form of the operator in Eq. (I1.18¢) for N particles is given by:

N
> Gupg & e (I1.19)
p=1

Summing over k = £ or p = ¢ yields the collective operator applied from the left or the right,
respectively.

1.6 Bosonic Superoperators

Now, let us examine how symmetric superoperators transform the occupation-number basis,
specifically how they modify the occupation numbers n;;. Consider the collective operator from
Eq. (II.19) with p = ¢ and k = ¢. It turns out that the supervectors |{n;;})) are eigenstates of

such operators:
N

> Guw g, {nig 1) = i [{ni ).

When this superoperator has distinct pairs of indices, p # ¢ and k # ¢, its action alters the
occupation numbers as follows:

N

> Gupa e Hnigh) = \nge(npe + 1) [ onge = 1o ompe +1,. 1),

specifically, one particle in state |gk)) is annihilated, while one particle in |pf)) is created. The
superoperators in Eq. (I1.19) have been used in Refs. [105-107], where they are denoted as F’;g,
to modify the occupation numbers for density matrices.

Drawing an analogy with bosonization in Hilbert space (see Egs. (I1.7)), we introduce

annihilation and creation superoperators, b pg and bpq, defined by the relations:

qu [{nii}) = VTpq I{-- - mpg —1,.. 1), (I1.20a)
bYy [{nii ) = \frpg + 1 |{e . mpg + 1, 1), (I1.20b)

with commutation relations [bw, bpq] = 0;p0;q. Analogous bosonic superoperators with double
indices were introduced in Ref. [112] as a Jordan-Schwinger representation of the operators in

Eq. (I1.19), preserving their commutation relations.
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All symmetric operators that act on symmetric density matrices can be expressed in terms
of these bosonic superoperators. For instance, the collective operator (I1.19) becomes:

N
Z g ‘ﬂme lp)) = b;:z bak |p))- (I1.21)
pn=1

By summing over the indices k = £ or p = ¢, we obtain the following representations for collective
operators applied from the left and the right:

M
Tpq |P)) Z 7 bt [0)), =30, b 1)) (I1.22)

s=1

The total number of bosonic superoperators is M?. Since the number of particles N is
fixed, the sum of all operators f;; = BL lA)ij remains constant and equals N. Effectively, after
bosonization, an ensemble of N identical M-level particles is described as a system of M?
harmonic oscillators collectively sharing N excitations.

The occupation-number basis can be constructed by applying creation superoperators to the
vacuum superstate, denoted by |vac)):

M (AT )”pq

{nij})) = Z T [vac)),

where the numbers n,, are taken from the set {n;;}. The vacuum superstate does not corre-
spond to any physical system but serves as a foundation for constructing physical states. For
instance, density matrices of fermions, which are symmetric, can be constructed using creation
superoperators. As shown in Sec. 4.1, a collective fermionic state can be generated by applying
a determinant of creation superoperators to the vacuum superstate.

Using the vacuum superstate, we can construct a basis for any number of particles, naturally
leading to the concept of a Fock space for density matrices. This Fock space differs, however,
from the Liouville-Fock space commonly discussed in the context of second quantization [142—
145]. In these references, bosonic and fermionic systems are second quantized in Hilbert space,
and density matrices are then expressed using Fock states. In contrast, our method applies
second quantization directly within the Liouville-Hilbert space, bypassing the intermediate step
of second quantization in Hilbert space.

1.7 Representation of Many-Particle Operators

So far, we have considered only one-particle symmetric operators of the form given in Eq.
(I1.19). In general, a K-particle operator involves symmetrization over K particle labels. For
simplicity, we will discuss operators applied from the left side only.

A symmetric K-particle operator, O ), can be expressed as:

A K N N
K) = Z O](Jq) Z Opi,piqr -+ Opk,prqK: (11.23)
Pq K1 Ak

Here, p = (p1,...,px) and ¢ = (q1,- .., qx) are K-element multi-indices, with K < N. The
matrix elements (’);,ff) are identical for any selection of K distinct particle labels.

When the operator in Eq. (I1.23) is applied to a symmetric density matrix |p)), it can be
expressed using bosonic superoperators as follows:

é(K)V) ZOpq Z pity ApKth(htl (;(IKtK o), (IL.24)

where t = (t1,...,tx), and the bosonic superoperators are arranged in normal order.

Notably, there is an alternative interpretation of operators. Symmetric operators in the Liou-
ville space can also be treated as supervectors in the Liouville-Hilbert space. This representation
is discussed in Sec. 4.2.
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1.8 Summary

In summary, we utilized the fact that density matrices for identical particles are always
symmetric and constructed a second-quantized representation for such density matrices.

First, we established a one-to-one correspondence between density matrices, p, and super-
vectors, |p)), by leveraging the isomorphism between the vector space of d x d matrices and
the space of d?-dimensional vectors (Sections 1.2 and 1.5). We then introduced the occupation-
number basis through an analogy with second quantization in Hilbert space. In Hilbert space,
particles can occupy M states, |i),, with occupation numbers n; representing the occupancy of
each state (Sec. 1.1). For density matrices, however, each particle is represented by a bra and a
ket, |7),(j|u, leading to occupation numbers with two indices, n;; (Sec. 1.2, Eq. (I1.11)). These
numbers parameterize the basis for symmetric density matrices, [{n;;}):

p—|p) = Z p({nij}) {nij 1),
{niz}

where the multinomial prefactor is chosen for convenience (Sec. 1.3 and Sec. 1.4, Eq. (IL.14)).
The summation is over all occupation-number sets whose elements sum to V.

Since symmetric operators do not distinguish between particles, their action on symmetric
density matrices can be expressed as changes in occupation numbers (Sec. 1.6). These trans-
formations can be conveniently written using bosonic superoperators, IA)Z-j and lA);-rj, which satisfy

the commutation relations [IA)U, B}L)q] = 0;p 0j4 and are defined by (Eq. (I11.20)):

bpq {nis 1) = VVitpg 1{-- s 1tpg — 1,3,
B;Taq {nij}) = \/rpg +1 . mpg + 1, 3)).

These operators enable the bosonization of superoperators acting on the density matrix. For
example, the bosonized form of a general one-particle symmetric superoperator is (Eq. (11.21)):

N

> G1upg e < b1y b ),
pn=1

where 6, = |i),(j|u (Sections 1.6 and 1.7). The application of this formalism to cooperative
emission will be explored in Sec. 2.

The framework can be generalized to systems with local symmetry. Consider a medium
of emitters divided into smaller subregions, each sufficiently small for particles within it to be
indistinguishable. By performing second quantization independently for each subregion, the oc-
cupation numbers and bosonic superoperators acquire additional indices to label the subregions.
Similarly, the theory can be applied to a Bose-Hubbard model, where particles are localized at
lattice sites and may hop between them. Both generalizations will be discussed in Sec. 4.3.

Although bosonic superoperators formally alter the particle number, conservation of the total
particle number implies that annihilation operators always appear paired with creation opera-
tors. However, unpaired annihilation operators can still have physical significance, particularly
in excluding particles by tracing out their degrees of freedom. When applied to a symmetric
density matrix, the following operator:

A M

T= Z

VN +1 i=

traces out a single particle, yielding a reduced density matrix with one particle excluded. This
operator provides a convenient tool for analyzing the structure of the density matrix and probing

correlations between particles. A detailed discussion, along with examples, will be presented in
Sec. 4.4.
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2 Applications

We now demonstrate how the derived formalism can be applied to solve quantum master
equations. Typically, the density matrix satisfies a master equation of the form:

ap(t)

0 = L[p0), (IL25)

where L£]...] denotes the Liouville operator. We do not represent it as a standard operator
applied from the left, as it generally involves operators acting simultaneously from both the left
and the right. The Liouvillian comprises a unitary part, represented by the Hamiltonian, and
a non-unitary dissipative part. Under the Markovian approximation, incoherent processes are
described by the general Lindblad operator:

M
. T S JUN
Lincoh. [p(t)] = E : l]pq § {Qo'u ij P Uu,qp - 5ip [U/hqj p(t) + p(t) Uu,qj] }’ (11'26)
1,3,0,q=1 p=1

where I';;,, represents interaction rates with the environment.

We assume the Liouvillian is symmetric and conserves the number of particles, meaning it
commutes with both particle permutation and particle number operators. Consequently, it can
be bosonized following Sections 1.6 and 1.7. After bosonization, the Liouvillian £][...] becomes
a superoperator £ acting on |p)) from the left. For example, the Lindbladian in Eq. (I1.26) is
bosonized as follows:

M M

A T, VA

Lincon |p(®)) = 3= {2}, bjg — 8ip Y (Bl by + Bl big) } (1))
1,7,p,q=1 t=1

The density matrix is expressed as in Eq. (I1.14), with time-dependent expansion coefficients
p({ni;},t). The quantum master equation generates a system of linear differential equations for
these coeflicients:

ILi,; !

{n”} t)
=2\ o

{n}

<({nm}\ﬁ {ni; 1) p({niz} 1) - (I1.27)

In other words, the equations are determined by the matrix elements of the Liouvillian in the
occupation-number basis.

The master equation for collective emission of two-level atoms, discussed in Eq. (1.23) of
Chapter I, was derived within the Born-Markov approximation. Similarly, a master equation
can be derived for multilevel atoms with a two-band level structure, where the radiative states
are divided into upper and lower states. The energy separation between bands is much larger
than separations within each band, leading to nearly equal transition energies.

We introduce a characteristic radiative decay rate, v, and account for polarization effects
using effective transition dipole moments, d;;. The magnitude of these vectors scales the corre-
sponding decay rate. For example, for the e — ¢ transition the rate is 7|ng|2.

In this notation, the Born-Markov equation for collective emission from emitters with a
two-band structure is [109]:

/\ /\

Ecoll P =—1 wz p

l\D\Q

[13( ) p(t), 15(—)]

l\D\Q

[P, () PO, (I1.28)

where “coll.” stands for collective, hw; is the energy of the i-th atomic state, and P& are the
positive- and negative-frequency components of the collective polarization operator:

M M
=3 die; Jyj, PO =% "dis; Jy. (I1.29)
i,j=1 i,j=1
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The summations are restricted by the conditions in the subscripts of the dipole moments.
Although the field appears absent in the master equation, its properties are encoded in
the atomic variables. For example, the electric field operator is directly related to the atomic
polarization operator:
EE L pE).

Up to a multiplier, the emission intensity along the ey-axis is given by:

M
L= (PP =30 di2) 4y (B, b +Z A d (b1 B b by (IL.30)
i’j’qzl 7.]7pq 1

Summing over all polarization components yields the total intensity.
The bosonized Liouvillian for the master equation in Eq. (I1.28) is:

M
< > 7 7 7 7
Lot = _Zzlw,j Rij + 7y Z 1 d: J da>p {2}, bjq — i 1 (b5, byt +bf; bg) }
t=
7.] ?.]7pq (11'31)
< > 7T 7 7T T 17
+y Z d; J dg>p ZI{ZbT bl bjs brg — bl L, by by —bij bl i biq }-
%,7,P,q=1 s,t=

Here, f;; = b bzy The first term represents free oscillations, with w;; = w; — w;. The second
term descrlbes spontaneous decay. The last term accounts for interactions between atoms, which
vanish if N = 1.

In subsequent sections, we analyze collective emission in two-level atoms, systems with pump-
ing, and three-level atoms (V' and A configurations). Additionally, in Sec. 3, we provide an
example of a numerical implementation.

2.1 Cooperative Emission of Two-Level Atoms

We begin with the simplest model: two-level atoms interacting collectively with a common
environment. By rearranging terms in Eq. (I1.31) and assuming |di2|? = 1, we derive the
collective Liouvillian for two-level atoms:?

Leoll, = —iwa1 (fiz1 — A1g) — Yoy — %(ﬁm + f12) (11 + Nz + 1) (11.32)

+7(f1g + Ao + 1) 511 bog — ’Y(i);g - 311) 5];1 bo1 bya + 531 EIQ bao (522 - 311)-

The second and third terms determine the decay rate of the coefficient p({n;;},t). The fourth
term describes population increase, while the last two terms capture the interplay between
coherences (n12 and ny1) and populations (n1; and ngz) due to atomic interactions.

Notably, the numbers n15 and ns; change simultaneously, preserving nijs — nej. In fact, the
Liouvillian commutes with the corresponding operator:

[Leolt., P12 — fig1] = 0,

indicating that this quantity is an integral of motion.

The density matrix at ¢ = 0 can be represented as a sum of contributions with different values
of n12 — n9;. Because the master equation is linear, each contribution evolves independently,
allowing for parallelization. However, processes such as interactions with an external classical
field or the inclusion of counter-rotating terms can disrupt the conservation of 719 — 7i91.

2The corresponding master equation in the occupation-number representation is given by:
p({n11,n12, n21,n22},t) = { — iwa1(n21 — N12) — YN22 — %(nm + ni2) (n11 + na2 + 1)}0({7111,71127 N21, M2z}, t)
+y(n22 + 1)(n12 + n21 + 1) p({n11 — 1, n12, n21,no22 + 1}, t)

+v(n12 + 1)(n21 + 1){p({n11 —2,n12 + 1,n21 + 1,n22}, 1) — p({n11 — 1, mi2 + 1,m21 + 1,122 — 1},75)}

+y(n22 + 1){(n22 +2) p({ni1,m12 — L,m21 — L,noe + 2}, t) — (11 + 1) p({n11 + 1,n12 — 1,m21 — 1, ma0 + 1},15)}-
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Initial Conditions

We consider the following initial state for the atoms, which is a specific case of Eq. (I1.15):
N

2

p(0) = ][ { Pq &Mq}, (11.33)
p=1 *g=1

where p1 + p2 = 1, and py, p2 > 0. This state is pure only if p; = 0 or p; = 1. Otherwise, each

atom is described by a mixed density matrix with no off-diagonal elements. This mixed state

can be prepared as a statistical combination of the following pure states:

N
T {vor W+ vz e [2),
pn=1

where ¢,, are independent random phases uniformly distributed between 0 and 27. These phases
determine the azimuthal orientation of each atom’s Bloch vector. Averaging over ¢, eliminates
off-diagonal matrix elements, resulting in the mixed state in Eq. (I1.33). Importantly, this mixed
state cannot be expressed as a combination of fully symmetric states from Eq. (IL.5).

In the occupation-number representation, the initial state in Eq. (I1.33) is described by the

coeflicients: A
p({n11,0,0,n22},0) = ——— py'*! py™, (I1.34)
nii1-Noo:
where n11+n99 = IV, and all other coefficients are zero. This state is characterized by a zero value
of the integral of motion 7115 — fi21, which is conserved during the evolution. Consequently, only
the decomposition coefficients p({ni1, ni2, no1,n2at,t) with nios = ngy = ¢ evolve non-trivially.

Compared to Eq. (I1.12), this reduces the number of unknown variables by one power of N:*

(N +2)2 1 N2
4 2 21”7

where [a/b] denotes integer division of a by b.

Observables of Two-Level Atoms

To visualize the atomic properties, we will present plots of the populations of atomic states,
pq(t), calculated as follows:

1
pq(t) = N Z Ngq p({nllaoaoanZ})t)v (1135a)

n11,M22
ni1+nge=N

where ¢ = 1 (ground state) or ¢ = 2 (excited state).
We will also present plots of the normalized emission intensity. Since only a single transition
is involved, the general expression in Eq. (I1.30) simplifies to:

T = (fza) + (bly bl brz bon).
In terms of time-dependent decomposition coefficients, the intensity is expressed as:

I(t) = Np2(t) + Y p({n11, 1,1, n22},1). (I1.35b)

n11,m22
ni11+n22+2=N

This expression represents the normalized negative rate of relaxation of the atomic ensemble, in
accordance with the energy conservation law:

_ N dpa(t)
voodt

The calculation of the emission spectral line shape is discussed in the supplementary section,
specifically in Sec. 4.2.

I(t) =

3The corresponding sequence 1,2,4,6,9,12,16,20, ... appears in other mathematical tasks; see, for example,
https://oeis.org/A002620.
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Figure I1.2: Dynamics of an ensemble of N two-level atoms, initially prepared in the mixed
state in Eq. (I1.33) with (a) p; = 0.0, po = 1.0; (b) p1 = 0.5, p2 = 0.5; and (c) p; = 0.8,
p2 = 0.2; calculated for different particle numbers N. Panel (d) presents the spectral line shape
for varying initial excited-state populations for N = 100, normalized to the overall maximum.
Panel (e) shows the same plot normalized for each row (for each ps). Panel (f) displays the
emission intensity for different values of ps, normalized row-wise, with the dashed line marking
the peak position; panel (g) shows the same plot normalized to the overall maximum. Panel (h)
shows the normalized emission intensities for po = 1.0, 0.8, and 0.5.

Results

When the system begins in a fully excited state (po = 1, p1 = 0), the master equation
describes the phenomenon of superradiance. Figure I1.2 (a) illustrates the evolution of the
excited-state population for N = 1, 10, 100. The case with N = 100 decays significantly faster,
demonstrating a strong cooperative effect. This scenario can be effectively modeled using tra-
ditional Hilbert space techniques, which offer greater computational efficiency.

For mixed initial states, traditional Hilbert space techniques are not applicable. Figures I1.2
(b) and (c) show the populations for N = 1, 10, 100, with initial conditions p; = 0.5 (p2 = 0.5)
and p; = 0.8 (p2 = 0.2), respectively. A single atom still relaxes exponentially to the ground
state. However, an ensemble with many atoms reaches the steady state in which the excited-state
population remains nonzero, pgss) > 0, with (ss) denoting the steady state.

Figure 11.2 (d) shows the spectral line shape for N = 100 atoms with varying initial condi-
tions. In Fig. I1.2 (e), the spectrum is normalized for each row (for each value of py), revealing
line narrowing as ps decreases.

Figures 11.2 (f) and (g) depict the intensity curves for the same parameters. A reduction in
p2 shifts the emission peak, as marked by the vertical dashed line. In panel (f), the intensity is
normalized row-wise, while in panel (g) it is normalized to the overall maximum. For clarity,
Figure 11.2 (h) highlights the intensities for selected values of ps.

During our numerical studies, we observed instability when employing explicit integration
methods for N 2 150, as shown in Fig. I1.3. Although implicit methods improve stability, they
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Figure I1.3: Solutions for different values of N using the Tsit5 method [155] with a maximum
step size constrained by At™#*. For N > 180, the solution becomes unstable for any A¢™#*.

become computationally impractical for large V.
Let us examine the final state of the ensemble. The emission intensity approaches zero as
t — oo. Substituting this limit into Eq. (I1.35b), we find

0= Npgss) + Z p(ss)({nn, 1, 1,n22}).
n11,N22
ni11+no2=N—-2

Since the steady-state excited population pgss) is nonzero, the second term on the right-hand
side must also be nonzero and negative. This indicates the existence of non-vanishing atomic
correlations, described by p(*)({n11,1,1,n}). Furthermore, as intensity-intensity correlations
vanish when ¢ — oo, higher-order atomic correlations, such as p(**)({n11,2,2,n2}), must also
exist, and so forth.

We derived an analytical expression for the steady-state density matrix, represented as a
power series in the parameter pips:

[V/2]
(ss) _ (n1 —np +1)N! Ly W (nn+l—k -
1Y ({TLll,E,E,nQQ}) n22! (nll + /! + 1)‘€| knz22+g ) (pl pQ) k— Tigy — / . ( 36&)

Here, [N/2] denotes integer division of N by 2. The sum over k can be evaluated analytically.
When ni; > noo, the density matrix takes the form:

(n11 — Nn9g + 1) N "2

ni1—n22—K K
naa! (n11 + €+ 1)1 KZ::O b1 b2

P(ss) ({n11,4,0,n9}) = (—1)€(p1p2)n22+z

(I1.36D)

For ni1 < nog, the coefficients are zero.

The steady-state density matrix depends solely on the product pip2, indicating that inter-
changing the initial populations does not affect the final state. For example, a system prepared
with p; = 0.2 (p2 = 0.8) evolves into the same final state as one initialized with p; = 0.8
(p2 = 0.2). In this sense, the specific case p; = pa = 0.5 is particularly symmetric, leading to a

simplified form of the density matrix:
(—1)Z (n11 — N9y + 1)2 N!
2N no! (n11 + £+ 1)!6!7

pU) ({n11, 0,6, n22}) = p1 = pa = 0.5, (I1.36¢)

when ni1 > nos, and zero otherwise.
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Using the density matrix from Eq. (I1.36a), we derive an analytical expression for the steady-
state excited population:

[N/2]
ss N —-2k+1
Py = > Crot (prp2)" —————,
k=1 N

where Cy, = (2k)!/(k! (k + 1)!) are the Catalan numbers. For a large number of atoms, this
expression approaches min(py,p2). This implies that if the system starts with po < 1/2, the
change in populations is negligible, meaning a full suppression of relaxation. This population
trapping results from a balance between emission and absorption due to the special initial state.
However, in realistic systems, dissipation and dipole-dipole interactions disrupt this balance,
causing the ensemble to eventually relax.

Discussion on Steady States

The density matrix in Eq. (I1.36a) is a non-trivial eigenstate of the Liouvillian Leon. with
zero eigenvalue. It is also an eigenstate of the lowering operator with zero value, Jio | p(ss)» =0,
linking it to dark states [156]. This indicates that this state is decoupled from the environment
and resides in the decoherence-free subspace [157].

The steady-state density matrix in Eq. (I1.36a) is complex and challenging to analyze di-
rectly. However, it simplifies significantly in the case of two atoms. To clarify the analysis, we
use the angular momentum basis, which consists of four states: the triplet states |0), |1+), and
|2); and the singlet state |1_):

1)1 ®[2)2 %21 @ [1)2
V2 ’

Expanding the initial state from Eq. (I1.33) in this basis yields the statistical mixture:

L) (L [+ 1) (3|
2

The antisymmetric state |1_) does not participate in collective emission, while the symmetric
states fully relax. As a result, the final state in Eq. (II.36a) is a statistical mixture of the fully
relaxed state |0) and the antisymmetric state |1_):

PO = (1= p1pa) |0) (0] + prp2 |1-)(1_|.

The symmetry properties of the initial state enable destructive interference in atom-atom in-
teractions, which leads to the emergence of this steady state and links it to the phenomenon of
superradiance [158-160].

10) = 1)1 ® [1)2, 1x) = 12) = 12)1 ®[2)e.

p(0) = pi [0)(0] + 2p1p2 +p312)(2]-

For a system of N two-level atoms, the initial state represents a statistical mixture of states
N N

with different total angular momenta J = 5,5 — 1, ... , and their projections. These states
define orthogonal subspaces in the N-particle Hilbert space [1]. It can be conjectured that during
evolution, all contributions that couple to the field relax to the lowest energy state within their
respective subspaces, leading to the steady state in Eq. (I1.36a).

Although a detailed description of the entire process is complex, we can show that the
final state contains only the lowest state from the subspace with J = % by computing the

corresponding projection:

N
(LIp™) = b0 >_ py " pi.
K=0
As expected, the only contribution comes from the fully relaxed state with L = 0. Here, |L))
denotes the Dicke state with L excited atoms (see Sec. 1.4). Interestingly, this projection
matches that of the initial density matrix onto the subspace with J = % By calculating the
projection
(Llp(0)) = pY " p,

and summing over L from 0 to N, we recover the same result.
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Figure I1.4: Dynamics of an ensemble of N = 100 atoms with the level structure depicted in

(a). Neutral atoms are ionized by a photon flux with the Gaussian temporal envelope Jy(t) =
_(t—to)2

I,e” 27 /V2n7? | with parameters I, = 10, to = 2/v, 7 = 0.5/7. (b) Without the Auger
effect, a pronounced emission burst is observed. (c¢) With fast Auger decay (I' = 5v), the burst
is significantly suppressed.

2.2 Incoherently Pumped Two-Level Emitters

In realistic scenarios, excitation of the ensemble is not instantaneous. The system’s initial
state may be prepared through continuous incoherent pumping, as in x-ray lasing experiments
[38,161]. A pump pulse ionizes inner-shell electrons, opening a lasing transition in the ionized
atoms, see Fig. 11.4 (a) for a level structure. Ref. [108] demonstrated that incoherently pumped
two-level atoms reach a steady state after emission.

The ensemble relaxes to the ground state via emission, while incoherent pumping maintains
the population of the excited state without inducing coherences. This highlights the similarity
with steady states discussed in the previous section. However, continuous pumping results in
more complex states, for which we were unable to derive analytical expressions.

When modeling photoionization, we neglect plasma effects and assume no depletion of the
pump. Under these conditions, ionization can be described using a simple Lindblad operator.
Atoms in the neutral state, denoted by |0), are ionized by an incoming pump pulse, modeled as
a photon flux with a time envelope Jy(t). The Lindbladian for this process is:

Los2[p(t)] =

Jo(6) S s i
5 > {2620 A(t) 611,00 — G100 A(t) — A(1) 800}
p=1

(11.37)
Loz |p(t)) = Jo(£)(by boo — fi00)p(1))).

This operator describes the transition from the neutral state |0) to the ionized excited state |2).

Since there are no coherences between the neutral and ionized states, the neutral state
is described by a single occupation number ngg, while ngi, nig, nog and nge remain zero. The
density matrix is therefore expanded over the sets {noo, n11, n12, n21, N2z} with n1a = ng; because
the Liouvillian still commutes with 719 — fi9;. The basis size scales as:*

(N+2)(N+4) (2N +3)] 1N?
4! 2 3!’

reflecting that there are only three independent occupation numbers.

The radiative transition 2 — 1 may correspond, for example, to the emission of a K« line
as an electron from a higher orbital fills an inner-shell vacancy. However, Auger-Meitner decay
often competes with this radiative process, releasing energy via the autoionization of a second
electron. The system then transitions to a doubly ionized state, denoted by |3). Neglecting
plasma effects, we assume only the excited state relaxes via Auger-Meitner decay, described by

4The corresponding sequence 1,3,7,13, 22,34, 50, 70, ... is described in https://oeis.org/A173196.
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the Lindblad operator with rate I':

A TS, VNN
Lo3[pt)] = 3 2{2%,32 p(t) Gu23 — Guo p(t) — p(t) Gp2et,
p=1

, (I1.38)

R | RPN . .
Lasslp(®)) = 5 {2bL3 oy — D" (ar + u2) Y (1))).
t=1
The doubly ionized state is described by a single occupation number ng3, with no coherences
between this state and others. Thus, the density matrix is expanded in an extended basis
{noo, n11, 12, N21, N22, 33} With n1s = ng;. This increases the basis size scaling to:°

(N +2) (N+4)(N2+6N+6)} 1Nt
48 2 417
since there are now four independent occupation numbers.
The full master equation includes three terms:

Lp(t)) = (Losa + Loz + Leon)|p(t)),

where Lo, is given in Eq. (I1.32). We model the pump flux as a Gaussian pulse. Figure I1.4
(b) illustrates the dynamics for N = 100 atoms without Auger-Meitner decay. The ensemble
reaches a steady state with a nonzero excited-state population. The emission intensity shows
a pronounced peak followed by a “shoulder.” During the shoulder formation, the population
inversion ps(t) — pi1(t) remains nearly constant. Including Auger decay (I' = 5v) disrupts the
balance and significantly suppresses emission intensity, as shown in Fig. 1.4 (c).

2.3 Three-Level Systems: V-Type

Up to this point, we have focused on models with lasing between two levels. However, our
approach generalizes naturally to energy structures with multiple levels. In this section, we
examine a V-type configuration with two excited states, |2) and |3), and a single ground state,
|1), as depicted in Fig. I1.5 (a). The energy gap between the excited states A is assumed to be
much smaller than the center frequency, A < wy.

Fluorescence from emitters with this level structure can exhibit quantum beating—a funda-
mental phenomenon observed across various spectral ranges [162—166]. In the context of collec-
tive emission, quantum beating combines with superfluorescence behavior [167,168]. Here, we
study superfluorescence in a gas placed in a magnetic field, which induces the Zeeman splitting
A of the upper states, similar to the experimental situation in Ref. [165].

We consider transitions 2 — 1 and 3 — 1, with orthogonal transition dipole moments of
slightly different magnitudes:

1
d31 = ﬁ(ex Zey>,
= doy .
dy = —=(e; + iey),
21 \/5‘( T y)
where @31]2 = 1 and |do1|? = 0.75. Transitions between the excited states are forbidden:

d3y = da3 = 0. Assuming each atom is initially prepared in a coherent superposition of the
excited states:
12— B)u

V2o
quantum beats can be observed in the intensity of both the 2- and y-components of the field [169].

Experimentally, this can be achieved by applying a magnetic field and using a pump polarized
in a plane orthogonal to the field’s orientation, as demonstrated in Ref. [165].

(11.39)

5The corresponding sequence 1,4, 11, 24,46, 80, 130, 200, . . . is described in https://oeis.org/AB01752.
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Figure I1.5: Quantum beats in V-type systems, depicted in panel (a), calculated for N = 2
(b) and N = 20 (c) atoms. In both cases, A = 15v. Panels show populations and normalized
intensities of both polarization components. For N = 2 (b), intensity curves are also shown
on a logarithmic scale in the inset. Intensity components are normalized to the maximum full

intensity. Panels (d) and (e) depict non-trivial two-particle correlators. Panel (f) depicts three-
particle correlator and its factorization.

The collective Liouvillian in Eq. (I1.31) for V systems has the following integrals of motion:

flg — Mol + Nige — Nigg = const,
fl13 — Nig1 + Nog — Mg = const,
fl19 — N9l + N3 — N3] = const.

Only two expressions are independent. These conserved quantities are lost if counter-rotating
terms or external classical driving are introduced.

For the initial state in Eq. (I1.39), there are no coherences between the ground and excited
states, leading to non-trivial dynamics only for decomposition coefficients where nio — noy +
ni3 — ng1 = 0. However, coherences between the excited states are present, and the second
integral of motion can still be utilized through parallelization. The decomposition of the initial
state can be grouped by different values of nio — na; 4+ n3e — na3, with states in different groups

evolving independently. This enables parallel computation and overall reduces the number of
independent basis states from approximately N8/8! to N6/6!.

Pure Initial State: Quantum Beats

In Fig. 11.5 (b, ¢), we present the populations and emission intensities for N = 2 (b) and
N = 20 (c) atoms, initially prepared in the pure state in Eq. (I1.39).
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Figure I1.6: Dynamics of an ensemble of N = 20 atoms with a V-type level configuration. Each
atom is initially prepared in the mixed state in Eq. (I1.42). Panel (a) shows the populations and
normalized intensity components. The area under the full intensity curve is approximately 13.1
before normalization. Panel (b) depicts non-trivial two-particle correlators. Panel (c) illustrates

the dynamics of three-particle correlator. The labels x10™" indicate the corresponding values
should be multiplied by these factors.

Quantum beats are observed in the intensity components, with the modulation frequency
determined by the energy difference between the excited states. For N = 20 in panel (c), there
are fewer oscillations, as collective processes enhance the decay rate by approximately a factor
of N, making the decay time comparable to the oscillation period.

To analyze interatomic correlations, we introduce the following notation for two-particle

correlators: Z
<&u1 ji&uz qp> A
’ ' T
Pij Pra N(N —1) N(N—-1) '

For ¢ # j and p # ¢, contributions come only from occupation-number sets where n;4; = n,2, =
1, with all other non-diagonal numbers being zero.

Figure I1.5 (d) shows different two-particle correlators for N = 20. The correlator (pa3 p32),
which describes coherence between the excited states, starts at a nonzero value (determined by
the initial conditions) and gradually decays to zero as the system relaxes. Correlators (pi3 ps1)
and (pa3 ps2), which contribute to the emission intensity, start from zero and rise to peak values
before relaxation.

In Fig. IL.5 (e), we plot the real and imaginary parts of (p31 p12). Both components oscillate
at a frequency determined by the energy gap between the excited states.

Figure IL.5 (f) shows a three-particle correlator, calculated as:

D (0w 320w 08)
(pst piz pog) = L2212E _ (b3g b3y by b31 1o bas) (IL41)
N(N —1)(N —2) N(N —1)(N —2)
Such correlators are often factorized in semiclassical and approximate approaches [76]. However,
in the absence of initial coherence, any factorization of this operator results in zero. For com-
parison, we also plot the factorized correlator (psi p12){p23). Here, the mean coherence (pa3) is
defined analogously to other expectation values:

Gp,32 o n
o= £ _ i)
N N
While the factorized correlator does not exactly replicate the original, it qualitatively captures
similar behavior.
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Figure I1.7: Dynamics of an ensemble of N = 20 atoms with a V-type level configuration. Each
atom starts from the additional level |0), and is then excited by the Gaussian pulse according to
Eq. (I1.44), with Jy(t) chosen as in Fig. 11.4. Panel (a) displays the populations and normalized
intensity of the xz-component. The area under the full intensity curve is approximately 11.2
before normalization. Panel (b) depicts non-trivial two-particle correlators. Panel (c) illustrates
the dynamics of the three-particle correlator. The labels x10™" indicate the corresponding
values should be multiplied by these factors.

Mixed Initial State: Steady States

Quantum beats arise due to an initially nonzero coherence between the excited states. In
the absence of initial coherence, as in the mixed state:

2002l , 1303l
2 2

(I1.42)

quantum beats vanish, as illustrated in Fig. I1.6 (a). The intensities of both polarization com-
ponents evolve identically. Notably, the system reaches a steady state, as in previous sections.
Figure 11.6 (b) shows two-particle correlators. The steady-state correlators describing tran-

sitions between the ground and excited states are negative: <pg3 (Ss)> < 0 and <p§§s) plss )> <0.

The steady-state correlator for the excited states is positive: <p§35) p(ss)> > 0. The correlator
(p31 p12) shows no dynamics and is not included in the figure.

The three-particle correlator {ps1 p12 p23) remains negative throughout the entire evolution,
eventually reaching a nonzero negative value, as shown in Fig. I1.6 (¢). Any attempt to factorize
this correlator results in zero, highlighting the importance of many-particle correlations. The
fact that excited states are not empty after the evolution in the absence of initial coherence was
also noted in Ref. [170].

Numerical analysis indicates that the decomposition coefficients p({n;;},t), where any oc-
cupation number involving the ground state is zero (namely ni; = 0 and nj; = 0), exhibit
non-trivial dynamics only when ns3 = ngs = 0. In a sense, this indicates the absence of direct
correlations between the excited states.

Furthermore, all previously mentioned conserved quantities are zero for the initial state in
Eq. (I1.42):

ni12 — n21 + n3g — ngg = 0, (I1.43a)
n13 — n31 + naz — n3p = 0, (I1.43Db)
n12 — n21 + niz — n31 = 0. (I1.43c)

Defining nis — noy = A/, it follows from the first and third relations that neg — ngs = Af and
n31 — n13 = Af. Hence, only four independent variables exist among n,;, with the absolute
difference between any pair n;.; and n;4; being the same.
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The steady-state density matrix can be derived analytically when the transition dipole mo-
ments have identical magnitudes (|di2|? = |di3]? = 1) and the excited states are equally popu-
lated initially, as in Eq. (11.42).

The steady-state density matrix is nonzero when ni; > nag + nss + nos + n32 and occupation
numbers satisfy all three conditions in Eqgs. (I1.43). It is expressed as:

_1)l12+l13+AL
oo (i) = T
(b12 + b1z + A0 Lag! ALl (nag + lia + loz + AL)! (n33 + l13 + la3 + AL)!
l13! 0121 AL (lag + AL)! nag! (1o + AL)! la3! nas! (€13 + AL)! Lag!
(n11 — nog — 2023 — n3g — AL+ 1)2N!
(nag + ng3 + 12 + €13 + 20o3 + 2A0 + 1) (nqg + l1o + l13 + AL+ 1)1

X

Here, Al = ‘nlg — n21| = ‘n13 — n31] = |n23 — n32‘, 512 = min(mg, ngl), 513 = min(nlg, n31), and
l33 = min(neg, n32). All terms in the second line represent multinomial distributions. Notably,
there is asymmetry between different coherences: f15 and f13 directly affect the sign of the
matrix elements, while f53 does not.

Setting all occupation numbers with distinct indices to zero gives the diagonal elements of
the density matrix:

1 (n11 —n2e —nag + 1) N!
2N (ngy 4 nsz + 1)! (nyy + 1)

P () =

where n11 > n9g +n33. The excited states enter this expression only as the sum ngo + ngs. This
expression resembles the steady-state solution found for two-level systems in Eq. (I1.36¢) with
{=0.

If the occupation numbers involving one of the excited states, e.g., state 3, are set to zero,
the density matrix remains nonzero for nis = ns; = £12 and ny1 > noa:

1 (=1)42 (ng; —nga + 1)2 N!
(noa + 12+ 1) 2N ngol (ngg + o + 1)1 o)

p({ni1, 412,0, l12,122,0,0,0,0}) =

which, up to a factor of (ng2 + f12 + 1)1, reproduces Eq. (I1.36¢).

The similarity to two-level systems offers insights into the symmetry properties of the steady
states discussed here. The initial state in Eq. (I1.42) may also be represented as a statistical
mixture of states with different symmetries. While more complex due to the three levels, parts
of the steady-state density matrix involving an excited state and the ground state share the
mixed symmetry structure observed in two-level systems.

Incoherently Pumped V-Systems

Let us consider the scenario where the ensemble is not excited instantaneously. Instead, each
atom starts in the ground state |0) and transitions to the excited states via incoherent pumping.
The population transfer from the state |0) to the mixture of excited states (I1.42) is modeled
using the Lindblad operator:

Jo(t) & o . I
Lo—o )3 [ = Oi Z 20-/14,60 P(t) Op,0e — Opu,00 p(t) - ,O(t) O',u,OO}’
n=1le=23 (11.44)
(t)

5 (3; boo + b33 boo — 2700)|p(1)))-

é

Los2s|pt) =

The results are presented in Fig. I1.7. A comparison of panels (a), (b), and (c) with the
corresponding panels in Fig. I1.6 reveals only quantitative differences; the overall qualitative
behavior remains similar. Since both polarization components of the emission evolve identically,
only one is displayed.
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Mixed initial conditions (N = 20)
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Figure I1.8: Dynamics of an ensemble of N = 20 atoms with a V-type level structure with the
additional dissipation channel described by Eq. (I1.45) with I"' = +. In the upper row (a)-(c),
atoms start from the state in Eq. (I1.42). In the lower row (d)-(f), atoms are incoherently
excited according to Eq. (I1.44), with Jy(¢) as in Fig. II1.4. Panels (a) and (d) display the
populations and normalized intensities of the xz-component. The area under the full intensity
curve is approximately 7.6 (a) and 5.0 (d) before normalization. Panels (b) and (e) show the
dynamics of two-particle correlators, while panels (c¢) and (f) depict three-particle correlator.
The labels x10™"™ indicate the corresponding values should be multiplied by these factors.

Inclusion of Dissipation

Introducing an additional dissipation channel disrupts the equilibrium of the steady state,
causing the ensemble to release energy.

We incorporate dissipation channels from both excited states to the ground state, correspond-
ing to the transitions 3 — 1 and 2 — 1. Both decays take place with a rate I'. These channels
describe nonradiative decay and do not contribute to spontaneous emission. The corresponding
Lindblad operator, similar to Eq. (I1.38), is given by:

3
Lesilp(®) = 5{25& bee — D (et + fue) Hp(t)),  e=1,2. (11.45)
t=1

In the numerical analysis, we set I' = 7. The results are presented in Fig. I1.8. Panels (a),
(b), and (c) illustrate the dynamics of the ensemble initially prepared in the mixed state in Eq.
(I1.42). In contrast to Fig. IL.6, all correlators decay to zero, indicating the breakdown of the
steady state. Again, only one of the polarization components is displayed due to their identical
evolution.

Panels (d), (e), and (f) of Fig. 1.8 show the dynamics when the ensemble is incoherently
excited according to Eq. (I1.44). In contrast to Fig. I1.7, dissipation introduces several quali-
tative differences. In panel (e), the correlator between the excited states (p23 p32) now exhibits
negative values. Additionally, the three-particle correlator in panel (f) exhibits positive values.
All correlators eventually decay to zero.
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Figure I1.9: Dynamics of an ensemble of atoms with a A-type level configuration, depicted in
panel (a). Panels (b) and (c) display the populations and emission intensities of both polarization
components, for N =2 (b) and N = 20 (c). Intensities are normalized to the maximum of full
intensity. Panels (d) and (e) show non-trivial two-particle and three-particle correlators for

N = 20.

2.4 Three-Level Systems: A-Type
Another possible configuration for three-level atoms is the A configuration, where a single
excited state can relax into one of two ground states, as shown in Fig. I1.9 (a). Unlike V

systems, A systems do not exhibit quantum beats in the intensity components [119].
In this section, we analyze an ensemble of atoms with a A configuration and orthogonal

_ d3o .
ds; = ﬁ ﬁ(ex +iey).

transition dipole moments:
Transitions between the ground states are forbidden. Similar to the V' systems discussed earlier,

831

(el, — z'ey), 832 =

we assume slightly different transition rates, namely |d3;|?> = 1 and |d32|? = 0.75.
The Liouvillian in Eq. (I1.31) for A systems has the same integrals of motion as the V'

systems:

f12 — o1 + fgg — g3 = const,

f13 — 31 + Mg — figa = const,

19 — Ni91 + N3 — N3] = const.

Only two of these relations are independent. For an initial state with no coherences, all these
quantities are zero, leaving only six independent occupation numbers. Consequently, the com-

putational complexity is reduced from approximately N®/8! to N°/6!.
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Mixed initial conditions (N = 20)
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Figure I1.10: Dynamics of the ensemble of N = 20 atoms with a A-type level configuration. In
the upper row (a)-(c), atoms start from the mixed state in Eq. (I1.47). In the lower row (d)-(f),
atoms are incoherently excited according to Eq. (I1.48) with Jy(t) as in Fig. II1.4. Panels (a) and
(d) display populations and normalized intensities. The area under the full intensity curve is
approximately 7.7 (a) and 18.7 (d) before normalization. Panels (b) and (e) show the dynamics
of the two-particle correlators, while panels (c) and (f) depict the three-particle correlator. The
labels x10~" indicate the corresponding values should be multiplied by these factors.

Figures I1.9 (b) and (c) illustrate the evolution of populations and intensity components for
N =2 and N = 20 atoms. Both polarization components evolve identically, with no beatings
observed. Due to the distinct dipole moments of the transitions 3 — 2 and 3 — 1, the final
populations of the ground states are not equal.

Panel (d) shows non-trivial two-particle correlators for N = 20. In the final state, the
correlator (p12 p21) is nonzero, reflecting correlations between the ground states. While general
analytical expressions are challenging to derive, some analytical expressions can be found when
the transition dipole moments are equal, |d31|? = |ds2|> = 1. In this case, the final state is
described by the following density matrix:

1 (ni1+ 0! (nee+£)!
) ({n11,4€,0,£,n9,0,0,0,0}) = 1
p ({ 117 ) 7 227 ) ) ) }) N+ 1 nll!e!e! n22!
where nq1 + 2¢ + nog = N. If this condition is not met, the decomposition coefficients are zero.
Setting ¢ = 0 gives diagonal matrix elements, each equal to 1/(N + 1).
This steady state is a statistical mixture of fully symmetric states, where atoms are dis-
tributed among the ground states:

1 N
A(ss) _ -
P = 1 LE ‘ |L> <L|, (11.46)

where |L) denotes the state with N — L atoms in the first ground state and L atoms in the
second ground state. This structure reflects a simple fact: if L atoms transition to state |2), the
remaining atoms relax into state |1).
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Mixed initial conditions (N = 20)
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Figure II.11: Dynamics of an ensemble of N = 20 atoms with a A-type level configuration
with the additional dissipation channel described by Eq. (11.49) with I' = ~. In the top row
(a)-(c), atoms start from the mixed state in Eq. (I1.47). In the lower row (d)-(f), atoms are
incoherently excited according to Eq. (I1.48) with Jy(t) as in Fig. I1.4. Panels (a) and (d) display
populations and normalized intensities. The area under the full intensity curve is approximately
3.9 (a) and 8.6 (d) before normalization. Panels (b) and (e) show the dynamics of two-particle
correlators, while panels (¢) and (f) depict three-particle correlator. The labels x10~" indicate
the corresponding values should be multiplied by these factors.

It is worth noting that the analogy with Dicke states is purely mathematical. The equal
population of each Dicke state suggests that the relaxations of individual atoms are not inde-
pendent. Independent relaxation would make it highly improbable for all atoms to decay into
the same ground state—this probability is 1/2V for independent transitions. If the transitions
have different decay rates, the system favors the faster decay channel, breaking the symmetry
between the ground states.

Mixed Initial State

In this subsection, we investigate the effects of statistical mixing of the initial state. We
assume that each atom is initially prepared in the following mixed state:

Dl + 20l | 13063l )
4 2
Here, the ground states are equally populated with probabilities p; = ps = 0.25, and the rest of
the probability remains in the excited state, pg = 0.5.
Numerical simulations show that the ensemble does not relax to the ground states but
reaches a steady state with some population remaining in the excited state, as illustrated in

Fig. 11.10 (a). This steady state exhibits nonzero two- particle correlations. As shown in panel

(b), correlators involving the excited state <p13 pgsls)> and <p23 p32 )> are negative, while the

ground state correlator <p§2 ) p21 )> remains positive. Additionally, the three-particle correlator

<p31 p12 p23 )> shown in panel (c), evolves to a positive value.
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Incoherently Pumped A-Systems

To study the effect of continuous incoherent pumping, we introduce an additional state |0),
as done for V systems from the previous section. The excited state is populated according to
the Lindbladian:

Loz |p(t)) = Jo(t) (b boo — 7oo) (L)) (IL.48)

The results are shown in Fig. 11.10 (d)-(f). The system evolves into a steady state with nonzero
two-particle (e) and three-particle (f) correlators. Qualitatively, the dynamics in panels (d) and
(e) is similar to the case of statistically mixed state in Fig. I1.10 (a) and (b). However, the
three-particle correlator in panel (f) has negative values.

Inclusion of Dissipation

When analyzing V' systems, we examined the effects of dissipation. Dissipation disrupted
the formation of steady states, driving the ensemble to relax to the ground state and introducing
several qualitative changes to the dynamics.

We conduct the same analysis for A systems, incorporating nonradiative decay from the
excited state to the ground states at a rate I'. The corresponding Lindbladian operators are

given by
3

Lssg lp(t)) = 2{2329 bss — (st + ius) Hp(t))), (I1.49)
t=1
where g = 1,2. As aresult, the excited state is depleted at a total rate of 2I", while the coherences
between the excited and ground states are damped at a rate of I". For the numerical examples
presented, we set I' = ~.

Figures I1.11 (a)-(c) illustrate the dynamics when the system is prepared in the mixed state in
Eq. (IL.47). Notably, the correlators (pi3 p31) and (pa3 p32) decay to zero (b), as does the three-
particle correlator (c¢). However, the correlator between the ground states, <p12 p21> stabilizes
at a constant negative value instead of decaying to zero. In contrast, without dissipation, this
correlator remained positive.

Panels (d)-(f) of the same figure depict the dynamics when the system is incoherently
pumped, following Eq. (I1.48). Similarly, the correlator between the ground states does not
decay to zero but instead reaches a positive value (e).

In both scenarios, the steady states involve only the ground states. Formation of these steady
states can be disrupted by direct damping of the coherences between the ground states.

2.5 Interaction with a Single-Mode Field

In previous examples, we averaged over the electromagnetic field degrees of freedom in the
Born-Markov approximation. However, in certain physical situations, these approximations
break down. For instance, in the presence of a cavity, the interaction between an atomic ensemble
and the resonant modes of the electromagnetic field can be studied. If the light does not rapidly
escape the cavity, allowing the ensemble to exchange excitations with the field, memory effects
become significant, requiring the retention of photonic degrees of freedom. This section discusses
key aspects of applying our formalism to such contexts, focusing on how the statistical mixing
of the initial states of two-level emitters influences their interaction with a cavity mode.

The interaction of two-level emitters with a single-mode field, in the rotating-wave approxi-
mation, is governed by the Tavis-Cummings Hamiltonian [10, 12,13, 15]:

V=nhg(Jya+alJ). (I1.50)
This Hamiltonian leads to the quantum master equation with the following Liouvillian:

LIp0] = +[7(0), V1. (1151)
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Figure 11.12: Excited-state population in a compact system of N = 20 atoms, initially prepared
in a mixed state (I1.33), calculated for different initial conditions and initial field states: (a)
vacuum state; (b) Fock state with n,, = 10 photons; (c) coherent state with (npn) = 10.

All operators are expressed in the interaction picture. The interaction term is time-independent
because the cavity mode is assumed to be resonant with the atomic transition.

The composite density matrix encompasses both atomic and photonic degrees of freedom,
residing in a space that is the direct product of the Liouville-Hilbert space for atoms and the
Fock space for photons. Basis vectors for this composite space are:

[{ni;})) ® Inc){nrl, (11.52)

where |m) denotes the photon Fock state with m quanta. We can compactly denote this basis as
[{nij,nr,nr})), enabling density matrices to be treated as supervectors in the extended space.

The Liouvillian for the Tavis-Cummings model can now be bosonized, yielding the superop-
erator L: )

Llp(t)) = ig y_{a' bly by — al b, bar + b]y bia a7 — bl by a}|o(2)).
t=1

Here, the superscript T on the photonic annihilation and creation operators indicates that these
operators act on the bra side, specifically modifying the number ng. This Liouvillian possesses
two integrals of motion:

(g2 — fin1) + (Ar + Ng) = const,

(2 — fig1) + (Ar — i) = const,

as these operators commute with the Liouvillian. Here, 77, = af 4 and g = (&T &)T. As before,
the initial state can be divided into distinct groups based on these conserved quantities, allowing
for independent evolution and parallelization. Note that dissipation, such as photon leakage from
the cavity, may violate the first relation.

We assume the atoms are initially in the statistically mixed state from Eq. (I1.33). Figure
I1.12 shows the excited-state population after tracing over the photonic degrees of freedom. For
interaction with the vacuum state in panel (a), instead of vacuum Rabi oscillations [171], the
dynamics resemble a collapse phenomenon. Injecting np,. = 10 photons in a Fock state results
in more pronounced collapse-revival dynamics for p; = 0.2 (p2 = 0.8), as shown in Fig. I1.12 (b).
The revival effect is weaker and collapse occurs earlier when the field is initially in the coherent
state with (npn.) = 10, as shown in Fig. 11.12 (c).

In summary, when the emitters start from a statistically mixed state, collapse-revival dy-
namics is observed, even when the field is initially in a vacuum or a Fock state.
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3 Numerical Implementation

This section outlines the numerical implementation for solving the quantum master equation
within our formalism. Readers who are not interested in the numerical aspects may skip to Sec.
4, where we discuss possible extensions of the formalism.

The basis vectors are parameterized by M? occupation numbers, resulting in a state space
that scales polynomially with N. This introduces two primary objectives:

1. Establishing a vectorized representation of the occupation-number basis.

2. Efficiently solving a system of linear ordinary differential equations with a sparse coefficient
matrix, and computing selected observables.

To achieve the first objective, we must define a one-to-one mapping between occupation-number
sets and integers. In subsequent sections, we focus on implementation for two—leyel atoms (as
discussed in Sec. 2.1) and propose a numerical implementation in Julia v1.8.5.°

3.1 Occupation-Number Basis

Occupation-number sets can be represented as tuples and mapped to integers using dictio-
naries. These tuples, composed of occupation numbers, serve as dictionary keys and are assigned
a unique integer value.

In Sec. 2.1, we discussed the cooperative emission of two-level atoms initially prepared in
the state described by Eq. (I1.33). In this case, the dynamics is fully captured using occupation-
number sets of the form {ni1,¢, ¢, noo}.

The first two numbers in the set fully determine the state since noo = N —ni1—2¢. Therefore,
tuples of type NTuple{2, Int16} are suitable as dictionary keys. The Int16 type is chosen to
minimize memory usage since N is not expected to be large (N ~ 100). The following structure
can be employed to map occupation-number sets to integers and vice versa:

mutable struct TLS

N :: Intl6

dim :: Int32

sets :: Vector{NTuple{2, NTuple{2, Int163}}}
dict :: Dict{NTuple{2, Int16}, Int32}

Pii :: Vector{Int32}

p12p21 :: Vector{Int32}
function TLS(N)

self = new()

self.N = Int16(N)

self.dim = Int32(0)

self.sets = NTuple{2, NTuple{2, Int16}3}[]
self.dict = Dict{NTuple{2, Int16}, Int323}()
self.pii = Int32[]

self.pi2p21 = Int32[]

for ni: in Int16(0):self.N
for 2 in Int16(0):Int16((self.N-n11)+2)
self.dim += 1
nz2 = Int16(self.N-n11-2-2)
push!(self.sets, ((n11,2),(£,n22)))
self.dict[(ni1,2)] = self.dim
if £ ==0
push!(self.pii, self.dim)
elseif ¢ == 1
push!(self.p12p21, self.dim)
end
end
end
return self
end
end

A new object of type TLS can be created using the following snippet:

50fficial documentation is available at https://docs. julialang.org.
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N = 2003 # number of atoms
OccupationNumbers = TLS(N)

For reference, creating the object with N = 200 takes about 265 microseconds, with total
allocations of around 541 kilobytes, as measured by BenchmarkTools. jl. The total size of the
OccupationNumbers object is 231 kilobytes. To access the specific occupation number n;; from
the set indexed by item, one can use the command OccupationNumbers.sets[item][i][J].

The OccupationNumbers object contains six fields:

1. OccupationNumbers.N: the number of atoms N.

2. OccupationNumbers.dim: the number of generated occupation-number sets.

3. OccupationNumbers.sets: an array containing all generated occupation-number sets.
4. OccupationNumbers.dict: a dictionary mapping each set to a unique integer.

5. OccupationNumbers.psi: integers corresponding to sets of the form {nj1,0,0,n22}.

6. OccupationNumbers.pi2p21: integers corresponding to sets of the form {ni1,1,1,n22}.

The last two fields are particularly important for computing expectation values.
To check if a specific key exists in the dictionary, the get method can be used. The efficiency
of this operation can be benchmarked with the following code:

using BenchmarkTools

key (Int16(136),Int16(10));

dict deepcopy(OccupationNumbers.dict);
default = Int32(0);

@benchmark item = get($dict, $key, $default)

The third argument of the get method specifies the value to return if the key is not found in
the dictionary. We use the Int32 type to match the dictionary’s entry format. The @benchmark
macro reports an execution time of approximately 5.3 nanoseconds, with no additional memory
allocations. For N = 200, the returned value of item is 9123, and accessing OccupationNumbers.
sets[9123] yields the tuple ((136, 10), (10, 44)).

In the subsequent sections, occupation-number sets will be represented as matrices to facili-
tate the generation of the coefficient matrix for the differential equations. To support this, two
supplementary functions are introduced.

The first function copies the values of a given tuple from OccupationNumbers.sets into a
matrix:

function tupletomatrix!(matrix, set)
@inbounds for i in eachindex(set), j in eachindex(set)
matrix[i,j] = set[i][]]
end
return nothing
end

Benchmarking this function shows no additional memory allocations, with an execution time of
around 2.2 nanoseconds.

The second function converts a matrix of occupation numbers into a corresponding tuple
formatted as a dictionary key:

function matrixtokey(matrix)
return NTuple{2, Int16}(transpose(matrix))
end
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This function also creates no additional memory allocations and executes in approximately 2.5
nanoseconds.

3.2 Parameters

We define all parameters involved in the master equation, particularly the effective dipole
moments Hij and the transition frequencies w;;. The dipole moments contribute to the master
equation via scalar products, which are precomputed and stored in the following form:

o

o ij'dqp
Yijqp = 9 ’

represented in the code as y[i,J,q,p]. All parameters, including the OccupationNumbers struc-
ture and initial conditions, are collected into a named tuple parameters:

using Einsum, Parameters

M = 25

n® = 1;

d = zeros(Float64,M,M,n%);
w = zeros(Float64,M,M);
df[2,1,1] = 1.0;

df1,2,1] = conj(d[2,1,1]);
@einsum v[i,j,q,p] := d[i,j,a]xd[q,p,a]/2;

p1 = 0.2; # initial ground state population

p2 = 1.0-p13; # initial excited state population
parameters = (; OccupationNumbers, M, n®, d, w, V, P1, P2);

number of levels involved in emission

number of polarizations

dipole moments; third index is a polarization axis
transition frequencies; in our case not important
dipole moment has only x-component

H OH B o

The parameters p; and ps represent the initial populations of the ground and excited states,
respectively, and will be used to construct the initial density matrix.

3.3 Initial Density Matrix

The initial density matrix is defined in Eq. (I1.34). To avoid unnecessary calculations of
factorials, we notice that for ny; > 1 these coeflicients can be computed recursively:

noo + 1
p({n11,0,0,N —nq11},0) = %Q;T p({n11 —1,0,0,N —ny1 +1},0).

To prevent division by zero, we should first verify that ps is nonzero. The following function
efficiently generates the initial density matrix in the occupation-number basis:

function initialconditions(parameters)
@unpack p1, p2 = parameters
@unpack N, dict, dim = parameters.OccupationNumbers
po = zeros(Float64, dim)
if p1 == 1.0
item = dict[Int16.((N,0))]
po[item] += 1.0
elseif p, == 1.0
item = dict[Int16.((0,0))]
po[item] += 1.0
else
item = dict[Int16.((0,0))]
po[item] += p2”N
for ni1 in 1:N
item = dict[Int16.((n11,0))]
item’ = dict[Int16.((n11-1,0))]
po[item] += po[item’ J*p1/p2%(N-n11+1)/n11
end
end
return po
end
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Applying the @benchmark macro to the initialconditions function yields an average execution
time of around 12 microseconds and 82 kilobytes of allocations, which is mostly the size of the
created pe object.

3.4 Set of Linear Differential Equations

For two-level atoms, the equation for the expansion coefficient p({n;;},t) (provided in the
footnote following Eq. (I1.32)), has at most six terms on the right-hand side. The number
of terms does not depend on N, while the number of variables grows as a polynomial of N.
Consequently, directly implementing the differential equations as a matrix-vector product:

dmz
E : aij zj(t

is inefficient due to the sparsity of the coefficient matrix a;;.

Instead, we optimize the computation by exploiting sparsity. For each row ¢, we define two
sets: a set b;, containing the column indices j such that a;; # 0, and a set ¢; of corresponding
nonzero values:

bi = {jlaj2a"'7jka"'}a C; = {aijlaaij27~ ey Qg y e }

In this notation, b;[k] = ji and ¢;[k] = a;;, # 0.
Using these two sets, the differential equations are expressed as:

en(b)
de Z (I1.53)

where len(b;) is the number of nonzero entries in row i. This approach significantly reduces
the number of operations. In particular, in the case of two-level atoms, instead of handling
matrices of size proportional to N2 x N2, we now work with two lists, each containing a number
of elements proportional to N2.

Now, let’s discuss how to determine the elements of {b;} and {¢;} for the general master
equation (I1.31). The equation for the decomposition coefficient p({n;;},t) is determined by the
matrix elements of the Liouvillian, as given by Eq. (I1.27), which is:

{nw} t) Z I1; i, n’
{ni;} IT; AL

(<{nu}|ﬁcon [{ni;}) p({ni;}. 1)

analogous to a;;

The sets {n;;} and {n;J} are mapped to the integers ¢ and j using the dictionary. Accordingly,
p({nij},t) corresponds to x;(t), while p({n;;},t) corresponds to z;(t).

Let’s consider a specific contribution to the equation for p({n;;},t), for example, the follow-
ing:

({nw}t 1 Z Z<]

dt
,J,p,q=1

M
%D ({na b BL By by g [ {05 }) p({mig} 1) +
s,t=1
The combination of bosonic superoperators induces different changes on the set {n;j}, depend-
ing on the indices. Consider the case when t = j and s = ¢. The combination of bosonic

superoperators then becomes blq b]p b b]q7 and the corresponding term is given by:
HZ'<j 'aq>p

5 (njq + 1) (njg+2)p({...,nig—1,...,n5p — 1,...,njg +2,...},1).
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As we can see, when a creation operator is applied, it decreases the corresponding occupation
number in the density matrix argument, leaving the coefficient in front unchanged. Conversely,
applying an annihilation operator increases the corresponding occupation number and introduces
a coefficient based on this updated value. Following these simple rules, we can determine {m;;}
and the associated multiplier for any term.

3.5 Generating Coefficient Matrix

In our implementation, the sets {b;} and {¢;} are represented by the arrays indices and
values. Both arrays contain OccupationNumbers.dim elements, where each element is a list:

[Int32[] for _ in 1:OccupationNumbers.dim];
[Float64[] for _ in 1:OccupationNumbers.dim];

indices
values

The elements indices[i][k] and values[i][k] correspond to b;[k] and ¢;[k], respectively. To fill
these arrays for a given ¢, we need to identify all variables that contribute to the equation for
$i(t).

Suppose we identify a contribution from a specific occupation-number set, represented by
the dictionary key, denoted by key, with a corresponding value, denoted by value. We then
use the function pushvalues! to store the position and value in the lists indices and values,
respectively:

function pushvalues!(indices, values, value, dict, key)
if value !'= 0.0
index = get(dict, key, Int32(0))
if index != 0
index’ = findfirst(isequal(index), indices)
if isnothing(index”)
push!(indices, index)
push!(values, value)
else
values[index’'] += value
end
end
end
return nothing
end

The function first verifies that value is nonzero. It then checks if key exists in the dictionary
dict. If it does, the corresponding entry index is retrieved. Next, the function determines
whether index is already in the incoming list indices. If it is, the existing value is updated by
adding the incoming value. Otherwise, the new elements are appended to the lists using the
push! method.

Let’s consider the equation for the variable p({n;;},t). In the code, the occupation-number
set {n;;} is stored in a matrix denoted by n. To determine all contributions, we implement the
summations according to the master equation (II.31) and analyze each term individually.

When a specific combination of bosonic superoperators is encountered, the entries of the
n matrix are modified following the rules outlined in the previous section. Additionally, a
local variable value is introduced and updated whenever any occupation number increases.
These modifications to n result in a modified matrix of occupation numbers, corresponding to
the set {m;;} in the notation used above. Using the matrixtokey(n) function, we obtain the
corresponding tuple, which is then passed as key to the pushvalues! function, along with the
other necessary arguments.

Once these steps are completed, the n matrix is restored to its original form and is used to
compute the remaining terms. The fillrow! function completes this process for a single row
(indexed by i, corresponding to the occupation-number set n;;):
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function fillrow!(indices, values, n, parameters)
@unpack M, w, y = parameters
@unpack N, dict = parameters.OccupationNumbers
@inbounds for i in 1:M, p in 1:M
# uncomment if frequencies are relevant

# additionally change the type of pe and values to ComplexF64

# value = -imxw[i,p]*float(n[i,p])
# pushvalues!(indices, values, value, dict,
for j in i+1:M
for q in i+1:M
nlq,p] -= 1; n[j,p] += 1
value = -vy[i,],q,i]*float(n[Jj,p])
pushvalues!(indices, values, value,
nla,p] += 15 n[j,p] -= 1

nlp,3i] -= 15 nlp,q] += 1
value = -y[i,j,q,1i]%float(n[p,q])
pushvalues!(indices, values, value,
nlp,j] += 15 nlp,q] -= 1
end
for g in p+1:M
n[i’p] -=1; n[j!Q] += 1
value = 2%v[i,],q,p]*float(n[J,qal)
pushvalues!(indices, values, value,
n[iyp] += 15 n[st] -=1
for s in 1:M, t in 1:M
n[i,s] -= 15 n[t,p] -= 15 n[j,s] += 1
value = float(n[],s])
n(t,q] += 1
value %= 2xy[i,Jj,q,p]*float(n[t,q])
pushvalues!(indices, values, value,
n[i,s] += 13 n[t5p] += 13 n[j15] -=

n[Qst] -= 15 n[i,s] -= 15 n[p!t] += 1
value = float(n[p,t])

n(j,s] += 1

value %= -v[i,],q,pl*float(n[Jj,s])

pushvalues!(indices, values, value,
n[q’t] += 13 n[i,S] += 15 n[pyt] -=

n[s,j] -= 15 n[t,p] -= 15 n[s,i] += 1
value = float(n[s,i])
n[t,q] += 1
value %= -v[i,],q,p]*float(n[t,q])
pushvalues!(indices, values, value,
n[s,j] += 15 n[t,p] += 15 n[s,i] -=
end
end
end
end
return nothing
end

This function fills the sets b; and ¢; for a single value of 1.

function fillmatrix!(indices, values, container, parameters)
@unpack dim, sets = parameters.OccupationNumbers
@inbounds for item in 1:dim
empty!(indices[item])
empty!(values[item])
tupletomatrix!(container, sets[item])

matrixtokey(n))

dict, matrixtokey(n))

dict, matrixtokey(n))

dict, matrixtokey(n))

dict, matrixtokey(n))
15 n[t,q] -= 1

dict, matrixtokey(n))
13 n[j,s] -=1

dict, matrixtokey(n))
13 n[t’q] -=1

The complete lists are filled by the function fillmatrix!, which is defined below:

fillrow!(indices[item], values[item], container, parameters)

end

return nothing
end
indices = [Int32[] for _ in 1:OccupationNumbers.dim];
values = [Float64[] for _ in 1:OccupationNumbers.dim];
container = Matrix{Int16}(undef, 2, 2);

fillmatrix!(indices, values, container, parameters);
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Here, we use the auxiliary object container to store the occupation-number sets in matrix
form. Benchmarking shows that the execution takes approximately 3.65 milliseconds with no
additional memory allocations. The combined size of the generated arrays indices and values
is 1.7 megabytes.

For each basis element, there are at most 17 dictionary lookups. Assuming an average lookup
time of 5.3 nanoseconds and multiplying this by 17 and OccupationNumbers.dim, we estimate the
overall lookup time to be 0.92 milliseconds. The code also performs nearly the same number
of matrix-to-tuple conversions, amounting to 0.43 milliseconds. Benchmarking the function
findfirst! shows a search time of 4.7 nanoseconds, leading to a total of 0.82 milliseconds.
Converting occupation-number tuples to matrix form adds 0.02 milliseconds. Altogether, these
operations total 2.19 milliseconds.

The remaining execution time is due to the push! method, which runs about 6 times per
basis element.

3.6 Solution of Differential Equations

We employ the DifferentialEquations.jl library for solving differential equations [155],"
adhering to its conventions.

The right-hand side of the differential equations can be implemented via the rhs! function,
defined as follows:

function sparseproduct!(dx, x, indices, values)
@inbounds for item in 1:lastindex(dx)
subindices = view(indices[item], :)
subvalues = view(values[item], :)
for item’ in 1:lastindex(subindices)
dx[item] += subvalues[item’ ]Jxx[subindices[item’]]
end
end
return nothing
end

function rhs!(dx, x, parameters, time)

@. dx = 0.0
indices = parameters[1]
values = parameters[2]

sparseproduct!(dx, x, indices, values)
return nothing
end

The first argument, dx, stores the right-hand side, while x contains the variables. The function
sparseproduct! numerically implements the product in Eq. (I1.53). To assess the efficiency
of rhs!, we benchmark its application to the initial density matrix. The execution time is
approximately 54 microseconds, with no additional memory allocation.

We additionally define a named tuple called parameters_ode containing the information re-
quired to integrate the differential equations:

T 5 0,28 # last time point

Nt = 150; # number of points to save

grid® = range(0.0, T, N');

At™e* = T/1000; # upper limit for the time stepsize

parameters_ode = (; T, N, grid®, At™@X, indices, values);

Since the number of variables grows polynomially with N, storing the entire density matrix
at each time step becomes inefficient. Instead, we specify which elements to extract at each step
and define a function to compute specific observables.

We focus on two observables: (1) the populations of the emitters’ states, computed according

"Documentation is available at https://docs.sciml.ai/DiffEgDocs/stable/.
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to Eq. (II.35a), and (2) the emission intensity, defined by Eq. (I1.35b), which additionally
requires elements from the list OccupationNumbers.pi2p21.

To implement this, we use the tools provided by the DiffEqCallbacks. jl library.® First, we
define the object saved_values, which specifies the data type for storage:

using OrdinaryDiffEq, DiffEqCallbacks
saved_values = SavedValues(Float64, Tuple{Float64, Float64, Float64});

At each step, data is saved as a tuple containing the ground state population, excited state
population, and intensity.
The following function extracts data from the solution at a given time ¢:

cb = SavingCallback((u, t, integrator) ->

begin
@unpack N, sets, pii, p12p21 = integrator.p[3]
p1 = 0.0
p2 = 0.0
1° = 0.0

@inbounds for item in pii
ni: = sets[item][1][1]
n,2 = sets[item][2][2]
p1 += u[item]*n11/N
p2 += u[item]*nz,/N

end

@inbounds for item in pi2p21
I += uf[item]

end

19 += Nxp2

return (p:, p2, 1I%)

end, saved_values, saveat = parameters_ode.grid®);

We use the adaptive step size method Tsit5 to solve differential equations [155]. The function
solve_ode! function solves the equations:

using RecursiveArrayTools

function solve_ode!(saving_tools, parameters_ode, parameters)
@unpack T, N*, At™@X, indices, values = parameters_ode
@unpack OccupationNumbers = parameters
results, saved_values, cb = saving_tools
parameters_rhs = (indices, values, OccupationNumbers)
tspan = (0.0, T)
ud = initialconditions(parameters)
prob = ODEProblem(rhs!, u@, tspan, parameters_rhs)

solve(prob, Tsit5(), adaptive=true, callback=cb, dtmax=At™2*, save_everystep
=false, save_start=false, save_end=false)

p1, P2, 19 = results.x

@inbounds for time in 1:Nt
pi[time] = saved_values.saveval[time][1]
p2[time] = saved_values.saveval[time][2]
I1°[time] = saved_values.saveval[time][3]

end

return nothing

end

p: = zeros(Float64, parameters_ode.Nt); # array for ground state population
p2 = zeros(Float64, parameters_ode.N®); # array for excited state population
1° = zeros(Float64, parameters_ode.N%); # array for intensity

results = ArrayPartition(pi, p2, I19);

saving_tools = (results, saved_values, cb);
solve_ode! (saving_tools, parameters_ode, parameters);

8Documentation is available at https://docs.sciml.ai/DiffEqCallbacks/stable/.
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Benchmarking the solve_ode! function provides the following estimates: the mean evaluation
time is approximately 418 milliseconds, with total memory allocations of around 1.4 megabytes.
For the given parameters, the rhs! function was called 6543 times. Multiplying this by the
average execution time of 54 microseconds, the total time spent on calling rhs! amounts to
about 353 milliseconds. This suggests that most of the solve_ode! execution time is spent on
repeated right-hand side evaluations.

For completeness, we provide the code snippet for plotting the observables:

using Plots
P11, P22, 1% = Tesults.x

plot(grid®, [p1, p2])
plot(grid®, I°)

For a system with N = 200 atoms, the total execution time is approximately (440 + 19)
milliseconds, with a memory allocation reaching 7.5 megabytes. For N = 100, these charac-
teristics reduce to (105 £ 4) milliseconds and 2.6 megabytes. For N = 50 atoms, they further
reduce to (29 £ 1) milliseconds and 1.1 megabytes. This reduction in execution time by a factor
of approximately 4, when decreasing the number of atoms by a factor of 2, agrees with the
expected complexity scaling of N2.

4 Supplementary Sections

This section includes additional topics that, while not essential to the main flow of the text,
are still valuable as they demonstrate further applications of the formalism. Readers interested
in these extensions will find discussions on constructing fermionic density matrices (Sec. 4.1),
treating operators as supervectors (Sec. 4.2), extending the theory to systems with local sym-
metry or the Bose-Hubbard models (Sec. 4.3), and analyzing the interparticle correlations (Sec.

4.4). Those not interested in these topics may proceed directly to the conclusion in Sec. 5.

4.1 Fermionic Density Matrices

This section presents an example of constructing collective antisymmetric states, useful in
applications involving electronic shells. This possibility was briefly mentioned at the end of Sec.
1.6, when the vacuum superstate was introduced.

The Pauli exclusion principle requires that the number of available states, M, must exceed
the number of particles, V. The antisymmetric state of N fermions occupying N distinct states

i1,1%9,...,1y can be expressed as a Slater determinant:
|i1>1 |i1>2 e ‘Z.1>N
. . 1 lig)1 ligye ... |i2)n 1
21,...,1N>A:m :m Z €p1..pN |p1>1®---®‘pN>N-
P1;--5PN
e{it,in}

lin)t lin)2 ... liN)N

Here, the determinant is expanded using the Leibniz formula, with the antisymmetric Levi-
Civita symbol €;,4,..i, = 1. The indices py,...,py take distinct values from the set {i1,...,in}.
The subscript A denotes “antisymmetric.”

A general pure state is a superposition of the states |i1,...,inx)a. Correspondingly, den-
sity matrices are linear combinations of operators |i1,...,ix)4 (ji1,...,J~n|4, Which can also be
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expressed using the Levi-Civita symbol:

) . . . 1 N .
|Zla s aZN>A <]1a s v]N|A = NI Z Z €p1..on €q1..qn 91,p1g1 -+ - ON,pngn =

.plyypN ql’qu
€{ir,..in} €(1,-0N)

Permuting any pair of particles on the right-hand side changes the sign twice, maintaining sym-
metry. Consequently, symmetrizing over particle labels only yields a factor of N!. The resulting
symmetrized combination of o-operators can be constructed by applying creation superoperators
to the vacuum superstate:

L

1 . .
T | _
NI/NT Z Z €p1..pn €q1gn bp1q1 ... b,quN [vac)) = ...
P1,--sPN qi,.-,dN
€{it,nin} €{j1,in}

In this representation, one sum is redundant because summing over the g-indices yields identical
terms for any selection of p-indices. This is due to the exchange symmetry of bosonic superop-
erators, allowing them to be freely permuted. The first sum merely contributes a factor of N!,
resulting in:

1 /\_'. /\_i.
= > e b, ...b |vac)).
SNTT q1---9N “i1q1 INGN
N q1,-5qN
e{j1,in’

The right-hand side has a determinant structure. By applying the Leibniz formula once more,
we obtain the following representation:

ot ot ot
bijy  big, oo by
7t gT IA)T
) ) ) ) 1 1251 ioje 0 Yiggn
T1yeenyt ey — vac)). 11.54
1 N)a (i Jn|a | o | |vac)) (I1.54)
Al o Al
binviv binis o binin

A general fermionic density matrix is a linear combination of such superstates.

4.2 Observables as Supervectors

At the end of Sec. 1.7, we mentioned an alternative interpretation of superoperators as
supervectors in the Liouville-Hilbert space [110, 111, 154]. In this section, we expand on this
concept and demonstrate how to derive the occupation-number representation of symmetric
superoperators.

The trace of an operator O acting on a density matrix p can be understood as an inner
product in the Liouville-Hilbert space [110,111,154]:

(©) =T [0 5] = (plO). (IL55)

Here, |O)) denotes the supervector corresponding to the operator O. Such a supervector exists
because every operator in the Liouville space has a corresponding representation in the Liouville-
Hilbert space. This section focuses on identifying the rules for determining the components of
these supervectors in the occupation-number basis.

Consider a general K-particle operator defined in Eq. (I1.23):

A K A 5
O = Z OI(’Q : Z Opi,p1gr + -+ Opk prqx:
0} H1F - F UK
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This operator has the same structure as the density matrix in Eq. (I1.4), except that it is
not normalized and seemingly involves only K particles. The remaining N — K particles are
represented by identity operators. By explicitly inserting these identity operators, the right-
hand side transforms into an N-particle symmetric operator, which can then be expressed in
the occupation-number basis, analogous to density matrices.

We propose the following representation for symmetric operators in the occupation-number
basis:

=2 n O({rpg}) Hrnpa 1) (IL56)

{npq} U
This representation compensates for the multinomial factor present in the density matrices in Eq.
(I1.14) when calculating expectation values. The expansion coefficients O({n,,}) are nonzero
only for sets summing up to N. The expectation value of this operator is then determined by
combining its supervector components with those of the density matrix:

=" p({ngp}) OUnpg}), (IL57)
{npq}

where the transposed set {ng,} defines a new set {my,} such that my,, = ngp.

The main task is to determine the supervector components O({n,,}). While symmetric K-
particle operators can be complemented to N-particle operators by inserting identity operators,
this approach is cumbersome.

Instead, we derive K-particle operators as derivatives of a properly defined N-particle oper-
ator parameterized by M? variables {\;;}. This characteristic functional is given by:

F({Ag}) = H { Z \ij 6, U} (I1.58)

pn=1 ~1i75=1

For a given set of variables {\;;}, this functional resembles the density matrix of uncorrelated
particles in Eq. (II.15). However, the A-parameters do not have a physical interpretation and
are independent of each other.

Taking derivative of the functional (II.58) with respect to any A-parameter selects the cor-
responding symmetrized combination of g-operators. For example:

N N M
Gf {AU} Z - H { Z Aij &m’j}‘
Opq P ig=1
o

Setting A;; = d;;, the product of operators over v # 1 simplifies to an identity operator. This
yields the symmetric one-particle operator Jp,:

i OF ({Xij})
pq a/\pq

Aijzdij
To construct a general K-particle operator, we differentiate the functional K times:

Z OK) I F({Ni;})

I1.59
P4 ONprgs -+ - O ’ (IL.59)

Apg=0pq

PK4IK

where p = (p1,...,px) and ¢ = (q1, ..., qK)-
The key property of the functional is its similarity to density matrices. Using this analogy,

we find the corresponding supervector representation |F({\;;}))) as in Eq. (I1.56):

IF({ A D) Z F({Aij,nij}) {nij 1),

{nis} ”
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with the decomposition coefficients given by:
F({Aijinigh) = T Nij)™.

This expression represents a product of all A-coefficients, where the power of each \;; is deter-
mined by the occupation numbers n;;.

Returning to Eq. (I1.59), we replace the operators O%) and F({)\;;}) with their supervector
counterparts. The resulting expression can be seen as the definition of the supervector |(’)(K ) ",
corresponding to the symmetric operator OF);

Yo aKI}"({/\u})»

1160

pq Xij=6;j

Then, the supervector components are found by applying the same differentiating operator to

F({Xigs nijb):

oK F({Nij,ni
K) {n ZOpq { J .7})

(IL61)
8)\171 q1 - 8)\771( 9K

p.q Aij=0i;

This expression can be used to find the expectation value of the operator, following Eq. (I1.57).

Two-Time Correlation Functions

The theory developed in this section can be used to compute a special class of averages,
particularly two-time correlation functions of the following structure:

X(t,7) = (ATt +7)B(t)) = Te [AT U(7) B p(t)],

where A and B are operators associated with the system of particles, and U (7) is the evolution
operator governed by the equation:

U (t A A
WO _ o), 00 =1,
dt
where the Liouvillian £][...] also governs the evolution of the density matrix.

Examining the two-time correlator, we interpret it as an inner product in the Liouville-
Hilbert space. By properly inserting and rearranging the evolution operators, we can rewrite
the correlator as follows:

X(t,7) = (A(T)|Blp(1))). (I1.62)

Here, the supervector |A(7))), representing the operator A, evolves according to the adjoint
master equation [128]:
dAm) _ LIA(T)). (I1.63)
dr
The solution to this equation represents a time-dependent object used to compute the specific
correlation function. Notably, in the absence of dissipation, Eq. (I1.63) reduces to the Heisenberg
equation.

For two-level atoms, spectral line shapes are presented in Fig. I1.2(d, e). The spectrum
is obtained by averaging the Fourier transforms of the electric field. In the time domain, this
average corresponds to a two-time correlation function. Specifically, for two-level atoms, the
spectral line shape can be expressed as [119]:

S(w) NRe/ dt/ dr X(t,7)e %7,
0 0
where X (t,7) is the two-time correlation function, given by:
X(t,7) = (Jar(t +7) Jia(t)) = (Sr2(7)] izl p(1))-
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Figure I1.13: Schematic representation of systems involving M-level emitters to which the de-
veloped formalism applies. (a) A compact system containing N particles confined to a region
with a spatial size L, much smaller than any characteristic wavelength A\g. (b) An extended,
pencil-shaped medium subdivided into smaller subregions €21, {29, and so on, each with di-
mensions much smaller than the characteristic wavelength, enabling local quantization. (c¢) A
Bose-Hubbard model with multiple lattice sites, where particles can hop between sites while
potentially altering their internal states.

The supervector |J12(7))) evolves over time according to the adjoint master equation (II.63),
with the initial condition:

[J120)) = >

n11,n22
ni1+n2e=N-1

j [{n11,1,0,m22}),

nll‘n

which is a direct consequence of expressions derived in this section.

4.3 Coarse-Grained Description and Bose-Hubbard Model

Up to this point, our focus has been on ensembles with global permutation symmetry, where
particles are treated as indistinguishable (Fig. II.13 (a)). However, this framework can be
extended to systems exhibiting local permutation symmetry, such as spatially extended systems.

In light-matter interactions, a pencil-shaped medium can be divided into smaller subregions,
each with dimensions smaller than the characteristic emission wavelength. Within each subre-
gion, particles are indistinguishable, and second quantization can be applied independently in
each of them. A similar approach to quantization in Hilbert space was previously discussed for
two-level systems (see Ref. [57]).

Consider a sample divided into small subregions, denoted as Qi, Qs, ..., Qq,..., as illus-
trated in Fig. I1.13 (b). By independently quantizing each subregion, we define local bosonic
superoperators characterized by the commutation relations:

I:I;avij7 Bc st] = 0qc Ois 5]15 (11.64)

The subscripts a and ¢ denote specific subregions ), and €2.. This expression indicates that
superoperators for different subregions commute with each other.
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Local operators for the subregion (), are defined by summing single-particle operators over
all emitters confined within §2,. These local operators are bosonized as follows:

> Gpupg Okt < By bagr 0. (I1.65)
HEQq

Local occupation numbers {n, p, } are introduced for each subregion €2,. The occupation-number
basis is then parameterized by these local occupation numbers:

Dapg - Napgs 1) = /Papg -2 7apg — 1,1,

QMHHmWWHMZM%m+1H”mWﬁJW}»

We assume the number of emitters in €2,, denoted by N,, remains constant. The total
number of states in the occupation-number basis is then:

N, + M? — N, +M? —1)!
H( N 1) - Y=o (160

a

When all particles are confined within a single subregion, the polynomial dependence from Eq.
(I1.12) is recovered. In the opposite case, where there are N subregions, each containing only a
single particle (N, = 1), the number of states grows exponentially as M2V,

However, the scaling in Eq. (I1.66) is too rapid for practical numerical studies of realistic
systems. For instance, with just five subregions containing N two-level atoms, the number of
basis vectors scales approximately as N1°/65.

The assumption of particle conservation within each subregion can be relaxed. The additional
local index a can be used to distinguish different sites, as in the Bose-Hubbard model. In this
model, N identical particles, each with M internal degrees of freedom, can localize at any of K
sites. Particles may hop between these sites, changing their internal states, as illustrated in Fig.
I1.13 (c).

The notation |a;), represents the u-th emitter in the internal state |i), localized at the a-th
site, with indicesi =1,...M anda = 1,..., K. A particle hopping from site a to ¢ and changing
its internal state from |i) to |j) is described by the following transition operator:

|cj>u (ai|u‘

If inter-site hopping is forbidden, the previously described local superoperators suffice for
modeling. When hopping is allowed, new bosonic superoperators bg,.; and bzi ¢; must be intro-
duced, satisfying the commutation relations:

[baicja bzsdt] = 5ab 6cd 51'5 5jt7
with corresponding occupation numbers denoted by {7, }. The number of basis elements is
then:

N +M2K2 -1 NM2K2—1
N T OrKZ 1)

For a single internal state (M = 1) and three sites (K = 3), the number of basis elements grows
approximately as N®/8!, significantly constraining the feasibility of a direct numerical solution.

Nevertheless, both frameworks from this section can be integrated with computational meth-
ods like tensor-network states [172,173], or stochastic methods, as will be discussed in Chapter
IIT (specifically, Sec. 3.5).

4.4 Partial Trace Operator

Our formalism has been primarily employed to derive a minimal set of equations governing
the dynamics of emitters. However, its applicability extends further. Once a density matrix is
determined, either analytically or numerically, its structure can be examined. For instance, if
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the density matrix has a separable tensor product structure, as in Eq. (I1.15), tracing out the
degrees of freedom of any particle does not affect the state of the others.

This brings us to the concept of quantum entanglement, widely recognized for its applica-
tions in quantum information science [174]. Entanglement is well understood for distinguishable
particles: when two entangled particles can be individually addressed in an experiment, a mea-
surement upon one particle influences the state of the other. However, the concept of quantum
entanglement becomes more contentious when applied to identical particles [175,176]. Due to
(anti)-symmetrization, the states of identical particles have inseparable structures, leading to
their formal classification as entangled. Yet, because identical particles cannot be individually
addressed, this interpretation of entanglement remains debated.

Some authors define the entanglement of identical operators as correlations that extend
beyond those arising solely from (anti)-symmetrization [177]. A more practical approach seeks
to project these correlations onto distinguishable degrees of freedom [178,179]. The goal of this
section is not to establish criteria for identifying entanglement but rather to propose a tool for
analyzing the structure of a given density matrix.

The presence of correlations implies that measurements upon one particle affect the others.
A theoretical method for probing these correlations is to take a partial trace over one or more
particles. Since the particles are identical, the outcome is independent of which particles are
traced out.

Taking a partial trace effectively reduces the number of particles in the system. To construct
a linear operator T that excludes a particle from the density matrix, it must be proportional
to annihilation superoperators. Supervectors |i # j)) do not contribute to the trace, as their
trace is zero. Consequently, the partial trace operator must be proportional to annihilation
superoperators with matching indices, specifically T~ > IA)u

The partial trace must preserve both the norm and the probabilistic interpretation of the
resulting density matrix. When the annihilation superoperator bi; is applied, it introduces a
factor of \/n;;. To give a probabilistic meaning to this factor, it should be divided by the
square root of the total number of particles before taking the trace, yielding the square root
of the probability of finding a particle in state |ii)). These heuristic considerations lead to the

definition of the operator:
M

1 ~
— S b (IL.67)
=1

VN +1 i

Applying this operator K times traces out K particles from the state. This can be rigorously
derived by explicitly computing the partial trace of a density matrix in the occupation-number
basis, using the representation of basis vectors in Eq. (I1.11).

For uncorrelated particles, as described in Eq. (IL.15), let us denote the state by pn to
emphasize the number of particles. Then, applying the partial trace K < N times results in the
same state but with NV — K particles:

T =

TX|pn) = lon—x))-

An illustrative example of a non-trivial state with an inseparable structure is the Dicke state
of two-level atoms, |Ly)), where L out of N atoms are excited (Sec. 1.4). Tracing out K < N
particles from this state yields the following statistical mixture:
. NIy
TRILN) =)~
= (¥

The same result was obtained in Ref. [180]. Notably, the coefficients in this sum resemble a hy-
pergeometric distribution. If a discrete random variable x follows a hypergeometric distribution,
the probability of x = £ is given by:

() (4/0)
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Here, N is the population size (number of particles), L is the number of “success” states in the
population (number of excited atoms before tracing), K is the number of “draws” (number of
excluded particles), and £ is the number of observed successes. These coefficients also appear in
the bipartitions of Dicke states [181,182] and serve as Schmidt decomposition coefficients.

To analyze the structure of a symmetric density matrix, one can follow a straightforward
procedure. The purity of the quantum state is determined by the norm of the density matrix in
the Liouville-Hilbert space:

e [5%] = {(plo)-

If this norm equals one, the state is pure. By applying the partial trace operator, the reduced
density matrix T'|p)) is obtained. The norm of the reduced density matrix determines the purity
of the resulting quantum state:

(Pl T Tp).

If this value is less than one, it implies that tracing out a particle results in a statistical mixture,
revealing an inseparable tensor structure in the original pure density matrix. For example,
Dicke states produce statistical mixtures upon tracing out particles, as shown in Eq. (I1.68). In
contrast, for the density matrix of uncorrelated particles in Eq. (I1.15), where p,, represent a
pure state, the resulting state always has a unit norm.

If the original density matrix is statistically mixed, identifying purely quantum correlations
becomes problematic, making this criterion unreliable.

Let’s consider the density matrices defined in Eq. (I1.15) for general values of p,,. Tracing
out K particle results in the density matrix |pny_x)). The logarithm of the norm of this density
matrix, divided by the number of remaining particles, is invariant with respect to the total
number of particles:

M
In [(on—xloNv-x)]
N_ K = pij pji
ij=1

This invariance allows for identifying such structures. However, the density matrices defined in
Eq. (I1.15) do not encompass all mixed states of uncorrelated particles, which may be generated
by alternative mixing protocols, such as general diagonal symmetric states [183]. Depending on
the specific context, the procedure may require further refinement.

5 Conclusion

In conclusion, we have developed the second-quantized representation of density matrices in
Liouville space, as summarized in Sec. 1.8. This framework was applied in Sec. 2 to analyze
collective emission in two- and three-level systems of identical emitters prepared in statistically
mixed states or excited by incoherent pumping.

We investigated the effects of statistical mixing on collective emission, identified a class of
dark many-body steady states, and characterized their properties. By deriving some analytical
solutions, we established a relationship between the behavior of correlators and the symmetry
properties of the states.

A numerical implementation of the formalism is detailed in Sec. 3, with potential extensions
discussed in Sec. 4.

As for limitations, the polynomial scaling of the number of basis states still constrains the
feasibility of a direct numerical implementation. Additionally, we encountered numerical insta-
bilities, as illustrated in Fig. II.3. The formalism offers limited advantages when applied to
spatially extended systems or Bose-Hubbard models.

A possible extension of the formalism may help overcome these limitations. By leveraging
bosonic superoperators, we can define an analogue of the coherent-state basis and represent the
density matrix in this basis. This approach enables a phase-space description of the dynam-
ics, which can be efficiently sampled using stochastic differential equations. The next chapter
explores this possibility in depth.
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Chapter 111

Stochastic Methodology for
Superradiance

In Chapter 11, we focused on medium-sized quantum systems with around 100 atoms. How-
ever, for larger systems (typically N > 103), the polynomial growth in the number of basis
elements becomes a significant limitation. Additionally, when using explicit methods to solve
large systems of differential equations, we encounter numerical instabilities, as shown in Fig.
I1.3. Despite its efficacy, the method is limited to ensembles with N < 150 atoms.

Phase-space techniques have the potential to overcome this limitation. The quantum master
equation can be converted into a Fokker-Planck equation for a positive P function [97,99, 122].
This approach is well-suited for systems of bosons, where the density matrix is represented as a
combination of the following projection operators in the coherent state basis [99]:

R ) il
Ao, al) = o) (IIL.1)
and can be extended to two-level systems [98, 184-188] by introducing spin-coherent states
[189-192]. Here, o and af are independent complex variables, representing the eigenvalues of
the annihilation operator, ala) = a|a).
The projection operators in Eq. (II1.1) convert bosonic operators into c-numbers, leading to
the following property:
Tr [a' 4 A(e, o] = afa. (I11.2)

In other words, the coherent ket maps the annihilation operator @ to the number «, and the
coherent bra maps the creation operator a' to the number af. This holds for any normal-ordered
combination of bosonic operators.

The density matrix can be expressed as the following superposition of the operators A:

pt) = /dQOé/dQOéT P(a, ol t) A(a, o), (I11.3)

where the integration runs over the entire complex plane for a and af. Notably, af # a*;
equating them yields the Glauber-Sudarshan representation [95,96]. The expectation value of
any normal-ordered combination of bosonic operators can then be calculated using integrals
with the P function:

/dza/d%fr ol ol .. aP(a,al,t)
Trlatal...apt)] =

an/dQOzT P(a,al,t)

This implies that the P function can be interpreted as a probability density function. Addition-

ally, this formalism can be used to construct many-time correlators, as shown in Ref. [193].
We can derive a partial differential equation for the P function from the master equation

for the density matrix. If the quantum master equation contains no terms with more than two
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annihilation or creation operators, the resulting equation for the P function takes the form of a
Fokker-Planck equation.

This approach is known as the positive P representation, where P is positive, and the
corresponding Fokker-Planck equation has a positive semidefinite diffusion matrix [97,103]. In
this framework, averages obtained using the P function can be computed using a Monte Carlo
approach by solving It6 stochastic differential equations for the dynamical variables.

In this chapter, we extend the positive P formalism to open quantum systems of /N identical
M-level emitters. Our formalism of second quantization in Chapter II reformulates the dynamics
in terms of M? harmonic oscillators, represented by M? pairs of bosonic superoperators. There-
fore, we can adapt the positive P formalism with minimal adjustments. The following sections
provide a step-by-step derivation and detailed discussion of the method, with a summary in Sec.
1.8.

1 General Formalism

Our goal is to construct a representation in Liouville-Hilbert space analogous to Eq. (II1.3).
The projection operators in Eq. (III.1) consist of coherent-state bra and ket vectors. However,
in Liouville-Hilbert space, only superkets exist, meaning that the corresponding “projection” su-
peroperator must be represented as a supervector. After bosonization, we have M? annihilation
superoperators BU We now aim to construct a coherent-state analogue for these superoperators.

For many-mode bosonic fields, each bosonic operator ay is associated with a distinct eigen-
value ay. Similarly, we assume that each bosonic superoperator lA)ij is associated with a parameter
Bij, giving a total of M 2 independent parameters.

We denote the supervector analogue of the A-projection operator as |A({f;}))), where {8;;}
represents the set of parameters introduced above. The following ansatz is proposed for the

density matrix:
M

o) = [T1(85) P80 IACB D), (111.4)
ij=1
where the integration runs over M? independent complex numbers Bij-

The supervector |A({S;;}))) should satisfy an analogous property to Eq. (I11.2), where oper-
ators are translated into numbers. For emitters, the relevant operators include o-operators and
bosonic superoperators. For example, applying the collective operator jqp from Eq. (I1.6) to the
supervector [A({8;;}))) and bosonizing it according to Eq. (I11.22) yields:

Tr [Jop [A{B )] = T [b, bpg IN{Bis 1)) (TIL.5)

Our objective is to find A-supervectors such that the right-hand side simplifies to 5.

A supervector, created by applying a standard displacement operator to the vacuum super-
state, does not satisfy the desired property, as discussed in Sec. 5.1. To achieve the desired
outcome, the displacement operator must be slightly modified, yielding the following expression:

IA{Bi 1)) = exp{ Z Bpp + F Z Brq pq:| [vac)). (I11.6)

pql

The first term in the exponent ensures that this supervector has a unit trace. This differs from

the conventional displacement operator by the additional factor of N~1/2 where N = 2i bU bi;

is the particle number operator. The properties of these supervectors are analyzed in Sec. 5.1.
The supervector in Eq. (II1.6) does not directly map bosonic superoperators to numbers.

Instead, it transforms the following combinations of these operators with N+1/2:

quf K IAGB D) = gAY,
0
F by 10831 = (55 + O ACB 1)
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The first line shows that 3,, directly corresponds to the annihilation superoperator qu. The
second line, after tracing, reduces to d,4, revealing that there are no separate phase-space vari-
ables for the creation superoperators. Typically, annihilation @ and creation a operators are
associated with independent complex variables a and af, doubling the number of phase-space
variables. However, in our supervector formulation, bosonic superoperators qu and IA)Lq are
represented solely by the numbers S3,,.’

Incorporating factors of NEY2 Joes not alter the quantum master equation, as long as the
number of emitters is fixed. Additionally, any bosonized symmetric operator contains equal
numbers of annihilation and creation superoperators, according to Eq. (I1.24), thereby ensuring
the conservation of the number of emitters. This allows the inclusion of factors N*1/2 directly
in bosonized expressions of symmetric operators. As a result, Eq. (IIL.5) simplifies to:

T [y N85 1)) = T [y g VA1) = B (11L.7)

The quantum master equation for the density matrix can be transformed into a partial
differential equation for the function P({f;;},t) by applying the following replacement rules:

qu VI 100) — Bog P({Bs ). 1), (IT1.82)
0
S halott) — (00— 55— P81 1) (IT1.8)

Before applying these rules, the associated Liouvillian must first be bosonized and expressed in
normal order. When the Liouvillian includes terms with at most two creation or two annihilation
superoperators, the equation for the P-function takes the form of a Fokker-Planck equation.

Using the ansatz for the density matrix in Eq. (II1.4), we can relate quantum-mechanical
expectation values to statistical averages computed with the P-function:

M
/H (dQﬂij) Bplth s /BquK P({Bij}, t)
STt [Gpraup - G A = —L : (IIL9)
A L @8) PUBsY.0

ij=1

where K < N. Note that the indices of the g-variables on the right-hand side are in reverse
order relative to those of the og-operators on the left-hand side. The interpretation of many-time
correlators follows the general principles of the positive P formalism, as described in Ref. [193].

These results form the basis for further investigations. In the next section, we derive the
Fokker-Planck equation corresponding to a model Liouvillian that includes terms quadratic and
quartic in bosonic superoperators.

1.1 Fokker-Planck Equation

We now apply the principles from the previous section to a model Liouvillian and derive
the corresponding Fokker-Planck equation. Our focus will be on a class of Liouvillians that
include symmetric one-particle and two-particle operators. After bosonization, these Liouvillians
comprise terms that are quadratic and quartic in bosonic superoperators. When expressed in
normal order, the bosonized Liouvillian takes the form:

A rs 7t rsr s AT
L= Z'gpq bqurs + Z pap'q’ pq pq' brs br 's!
P,q,T,8 P,q,7,8
p',q ' s

"Mathematically, this arises from the structure of Liouville-Hilbert space, where both the bra and ket compo-
nents of density matrices can be accessed through superoperators acting from the left. One could consider that
the phase space is already extended as variables ;; are indexed by pairs of indices.
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The placement of the indices (upper and lower) is chosen for convenience and does not imply
tensorial properties. The first term, which is quadratic, can describe the Lindblad operators
in Eq. (I1.26) or free oscillations. The quartic term represents two-particle interactions and
vanishes when there is only one emitter. It is important to note that the bosonized Liouvillian
no longer explicitly encodes the number of emitters; this information is specified solely through
the initial conditions.

This Liouvillian defines the quantum master equation (I1.25) for the density matrix. It
should conserve probability, meaning that the density matrix should always have a unit trace.
This leads to the following constraints on the Liouvillian coefficients:

> 2y =0, > Lo =0
p p.q

We represent the density matrix as in Eq. (II1.4) and apply the replacement rules from Eqgs.
(IT1.8) to transform the quantum master equation into a partial differential equation for the P
function. This yields the following Fokker-Planck equation:

OP({5).1) _
RS

O [{tu {5 + 3 Do (B DY P55},

1 0?2
NI o [Py (1831 PUB 1 0] (1L102)

The first-order derivatives represent the drift terms, while the second-order derivatives corre-
spond to the diffusion terms. The functions 7%,,({f;;}) define the linear components of the drift
as:

9Ppq

pg({Bij}) = D L34 Brs- (I11.10b)

8
This linear contribution originates from the quadratic term of the Liouvillian. The drift function
also includes a quadratically nonlinear component, determined by the diffusion matrix elements.
The diffusion matrix is given by:

Dpapq ({Bis}) = Z ( ;;15’; + 3,3”2’};2 ) Brs Brrsts (II1.10c¢)
r,s,r’ s’
which satisfies Zpgprq ({5ij}) = Pprqrpg({5ij})- This matrix is determined by the quartic compo-
nent of the Liouvillian.

1.2 1It6 Stochastic Differential Equations

The P-function describes the statistical properties of phase-space variables. Averages com-
puted using this function can be found using a Monte Carlo approach by generating stochastic
trajectories in phase space [88,122]. These trajectories are found as solutions to It6 stochas-
tic differential equations for the dynamical variables. For the Fokker-Planck equation in Eq.
(III.10a), the stochastic equations are:

dPpg(t) _
dt

pq({ﬂw + Z 9 pgnn {52J( )}) + qu({ﬁij(t)}7 t)- (IH.lla)

Here, the deterministic part stems from the drift terms in the Fokker-Planck equation. The
terms Fpq({fi;},t) represent stochastic processes, with zero means and correlation properties
defined by the diffusion matrix in Eq. (II1.10c¢):

(Fpg({Bis},t) Fprg ({81}, 1) = Dpaprar ({Big}) 6(t = ). (ITL.11D)

The right-hand side is quadratically nonlinear in {3;;}. Depending on the structure of the tensor
on the right-hand side of Eq. (II1.10c¢), it can be decomposed into a sum of lower-order tensors

as follows:
@pqp q ({ﬁl] Z { Z %pgr)'s ﬂ?”s Z P q g B?" s/ } (III]_].C)
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(a)

where %Bpqrs are coefficients determined by the Liouvillian. This decomposition enables the
representation of stochastic processes in terms of elementary noise terms:

Fpq({Bis},1) Z Sa(t) Z %,Sf;}s Brs: (II1.11d)

where S, (t) are independent Gaussian white noise processes with zero means and delta-correlated
second moments:

(Sa(t)Ss(t)) = dap o(t —1').

When Eq. (III.11c) holds, the noise terms in Eq. (II1.11d) exhibit the correlation properties in
Eq. (IIL.11b). In this way, we formulate a noise representation that is linear in {f;;}.

The decomposition presented in Eq. (IIL.11c) is not universally guaranteed, nor can we
provide general expressions. However, in the specific context of our physical problems, this
representation does apply. For the quantum master equation in Eq. (I1.31), the coefficients of
the quartic contributions are proportional to scalar products of dipole moments. These products
can be decomposed into component-wise sums, yielding expressions similar to Eq. (IT1I.11c). We
expect the minimum number of noise terms S, (¢) to be determined by the number of polarization
components of the dipole moments.

Stochastic differential equations are solved by generating multiple realizations of the noise
processes and initial conditions, followed by averaging the resulting trajectories. In theory,
correct expectation values are obtained as the number of realizations approaches infinity. How-
ever, in practice, numerical implementation is limited to a finite number of realizations, raising
convergence issues that we will address later.

The expectation value in Eq. (II1.9) can now be calculated by directly averaging over the
stochastic realizations:

S T [ < Guncascon O] = Borar (0) - Brcare (1)) (11112
H1F - UK

where K < N. The statistical average on the right-hand side is understood as the following
limit:

1 Niraj.
2 B @) - B (®) = (B (8) - Bprcaic (1)),
traj. 1

as the number of trajectories Nir,j. tends to infinity. The superscript (") distinguishes differ-

ent stochastic realizations, and 61(32) (t) are solutions of the stochastic equations for a specific
realization of the noise processes and initial conditions.

In principle, we can average combinations of stochastic variables even when their number
exceeds the number of emitters, namely K > N. Although such averages lack physical meaning,
they may still exhibit non-trivial dynamics and nonzero values, potentially distorting the physical
expectation values. Indeed, we can derive a hierarchy of equations for the expectation values,
similar to those in Eq. (1.27). The equation for the average of K stochastic variables typically
depends on the averages of K + 1 variables. When formulating the equation for an average of
N variables, all expectation values involving N + 1 variables should be set to zero.

However, the stochastic equations we derived contain no information about the number of
emitters. This information is encoded solely in the initial conditions, as the ensemble is prepared
in a state with a specific number of emitters. Accurately specifying the initial conditions is
therefore crucial to exclude contributions from nonphysical expectation values.

1.3 Initial Conditions for Stochastic Variables

At t = 0, the statistical properties of the phase-space variables are characterized by the
function P({f;;},0), indicating that the initial conditions for the stochastic variables are gener-
ally non-deterministic. According to Eq. (II1.12), the average of any combination of stochastic
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variables corresponds to the expectation value of a specific symmetric operator, which can be
bosonized via Eq. (I1.24). Denoting the initial density matrix as |po)), we write:

</8P1Q1 (0) te 5PKQK (0>> =Tr [621q1 e BZKQK Bplth e l;pK‘IK ‘/00»]7 (IH'IBa)

where K < N. This average can be computed directly when the density matrix is represented
in the occupation-number basis as in Eq. (I1.14), with decomposition coefficients po({n;;}).>
Assuming the particles are initially in the uncorrelated state described by Eq. (I1.15), the
average in Eq. (II1.13a) becomes:

N!
<Bp1<11 (O) ce 5PKQK (O)> = m Ppig1r -+ Pprars (IH~13b)

where K < N. Otherwise, when K > N, applying K annihilation superoperators to a state of
N emitters destroys the state, resulting in zero.

The expression in Eq. (I11.13b) defines statistical moments for the distribution P({f;;},0),
thereby establishing the initial statistics of the stochastic variables. Notably, all moments higher
than N vanish. A similar expression for the initial conditions was derived in Ref. [194].

Following Ref. [194], we introduce a new statistical object, denoted as 1, which possesses ex-
actly N nonzero statistical moments determined by Eq. (II1.13b). To incorporate the properties
of this object into the stochastic variables, we apply the following change of variables:

Bpq(t) = N By (t)n. (I11.14)

To reproduce the averages at t = 0 in Eq. (II1.13b), the statistical moments of  must be:

N
N 0<K<N,
)y =< (N - K)INK? == = (IIL.15)

0, K > N.

Here, the brackets (...) denote an average over the distribution of 1. Then, the left-hand side
of Eq. (III.13b) becomes:

(Borar (0) - Bpreare (0)) = N () B 0, (0) ... By (0).

Due to properties of 7, this expression nullifies when K > N. The primed variables at t = 0 are
deterministic numbers, £,,(0) = ppq, and the function P({f;;},0), reformulated in terms of the

primed variables ﬁ”, is proportional to a product of delta functions:

{52]} 0 H6 Pq ppq

Thus, the initial distribution is now entirely represented by the n-object.
The connection between averages of unprimed and primed variables is given by:

<Bp1q1 (t) e BPKQK (t)>stoch.+17 = NK <nK ﬁzglql (t) s 51;;((1[( (t)>st0ch.+n’ (11116)

where the averaging is performed over both realizations of 1 and stochastic processes. The
variables ﬁi’j(t) still depend on 7, which explicitly appears in their equations, particularly in

2The result is:
M

<Bp1q1 (0) ... Boxax (0 Z po({ni;}) H (npq — kpq)
{nij} p,q=1
Nzt =kizt;
where K < N. Here, kpq denotes the frequency of each pair of indices p, ¢ in the combination of stochastic
variables in Eq. (III.13a). For example, in (812(0) B22(0) B22(0) B21(0)), the counts are ki1 =0, k12 =1, ko1 =1,
and k22 = 2. The summation on the right-hand side runs over all sets summing up to N, where the numbers with

distinct indices np-4 coincide with the respective counts k,-4, and the diagonal occupations satisfy npp > kpp.
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the nonlinear drift term. Averaging over n nullifies expectation values involving more than N
variables.

In the limit of a large number of emitters, all statistical moments of the n-object approach one,
making it effectively deterministic. Consequently, in such ensembles, the statistical properties
of n can either be neglected or treated as a small correction. Thus, stochastic equations (IT1.11)
remain unchanged.

Conversely, when N = 1, the quartic term in the Liouvillian vanishes, eliminating both
diffusion and nonlinear drift components in the corresponding Fokker-Planck equation. The
dynamics is then governed solely by equations derived from the quadratic component of the
Liouvillian. Applying stochastic equations (II1.11) in this case would introduce artifacts, as the
noise terms become redundant.

In the general case, where IV is not necessarily large, the n-object poses a challenge because
it cannot be sampled like a conventional random variable. Although the initial conditions are
deterministic, the equations for the variables ,Bi’j (t) still depend on 7. One possible solution
is to introduce a hierarchy of stochastic variables for different orders of n up to N. However,
this approach results in a linear increase in the number of variables with N, which limits the
feasibility of numerical solutions.

An alternative approach involves modifying the P-function to introduce new stochastic vari-
ables independent of 1. This modification allows for explicit averaging over 7 in Eq. (II1.16),
thereby eliminating its influence. This method will be explored in the next section.

1.4 Stochastic Variables for N Emitters

To summarize, directly implementing the n-object, which has only N nonzero statistical
moments defined in Eq. (II1.15), is challenging and demands additional computational effort.
This highlights the need to derive stochastic equations for new stochastic variables that are
entirely independent of 7.

If stochastic equations (III.11) had no nonlinear drift components, one could simply divide
both sides by n after the change of variables in Eq. (II1.14), and then average over it in Eq.
(IT1.16). The nonlinear drift components arise from the quartic term in the Liouvillian, which
contributes through the Kronecker deltas in the replacement rule (II1.8b). These Kronecker

deltas, in turn, originate from the normalization factor e~ 2P in the definition of the A-
supervectors in Eq. (I11.6).

If we extract this normalization factor from the A-supervector and incorporate it into the
definition of the P-function, the replacement rule for creation superoperators in Eq. (II1.8)
would change. Specifically, each creation superoperator is replaced by a derivative with respect
to the corresponding phase-space variable, without the Kronecker delta term. This modification
affects only the drift functions, leaving the diffusion matrix unchanged. In this representation,
there are no nonlinear drift components, thus allowing the equations to be divided by 7.

In Sec. 5.2, we provide a detailed analysis of non-normalized A-supervectors. As noted
above, the exclusion of the normalization factor can be interpreted as a redefinition of the
probability density function. For instance, a similar transformation plays a pivotal role in
the quantum-state diffusion formalism, where it shifts the noise terms—the so-called Girsanov
transformation [83]. Furthermore, this transformation serves as a specific example of stochastic
gauge freedom [100,101].

In Sec. 5.3, we outline the steps required to eliminate the n-object in the “non-normalized”
representation. The process begins with a change of variables as in Eq. (II1.14), which removes
71 from both the equations and the initial conditions. This allows averaging over 7 in the expres-
sions for expectation values. However, the resulting representation has several inconveniences,
such as cumbersome expressions for averages. These issues are addressed in the same section by
performing a second transformation of the P-function.’

As a result, we derive a new set of stochastic variables, pp,(t), which are entirely independent

3This idea of eliminating 1 was proposed by Stasis Chuchurka.
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of n and satisfy the following It6 stochastic equations:

900 _ (D) + (V= 1S Ty ()

+ Fpq({pij(t)}, 1) — ppql(t ZFSS ({pi;(0)}, 1), (IIL17a)

where the stochastic processes F({p;;},t) keep their original correlation properties from Eq.
(ITI.11b) but are now parameterized by the new variables:

< pq({Pw} t) F, e ({Pw} t )> = qup/q’({pij}) o6(t — t/)' (II1.17b)

Comparing these new equations with the original ones in Egs. (II1.11), several differences become
apparent. First, the multiplier of the nonlinear term is now (N — 1), reflecting that it describes
two-particle interactions, which vanish for a single particle. Second, there is an additional noise
contribution represented by the last term, which is quadratically nonlinear in the stochastic
variables.

The nonlinear noise contribution ensures that the sum of the “diagonal” stochastic variables
equals one for each realization. Using equations (II1.17a), we derive:

DY o] = [ X 0] 3 B0 ).

At t = 0, the expression under the derivative is zero, namely 1 — 3" p,(0) = 0, and this term
appears as a multiplier on the right-hand side. In the It6 formalism, such a multiplier remains
zero since the coefficients of the noise terms are evaluated at the preceding time step. Conse-
quently, the stochastic variables are normalized at every time step, ensuring that Y, p.r(t) =1
for each realization, effectively reducing the number of independent variables by one.

The relationship between statistical averages and quantum-mechanical expectation values is
given by:

(N — K)! R R
<pp1¢h (t) - Prrax (t)> - T Z TI‘ O'M17£I1p1 < Oug qrpK p(t)], (111'17C)

P17 FRK

when K < N. Otherwise, the averages are nonphysical and have no influence on the dynamics.
At time t = 0, stochastic variables py,(t) are deterministic numbers p,, originating from the

initial density matrix in Eq. (IL.15):
op0(0) = ppas (I11.17d)

requiring no additional statistical sampling or computational effort.

It is important to note, however, that for individual realizations, the variables p,q(t) do not
form a physical density matrix. These variables are generally complex-valued and do not satisfy
the Hermiticity condition before averaging, namely p; (t) Z pgp(t) for t > 0 (but (pj,(t)) =
(pgp(t))). They become meaningful only after averaging over a sufficiently large number of
stochastic realizations. Given these properties, we refer to pp,(t) as a stochastic density matriz,
emphasizing that physically meaningful results are obtained only after statistical averaging.

The same set of equations can be derived through an alternative approach. Starting with
the density matrix in Eq. (II.15) and allowing the coefficients p;; to evolve over time, one can
obtain equations for these time-dependent variables directly from the quantum master equation.
However, the resulting equations lack quantum correlations since all particles in state (I1.15) are
uncorrelated. We introduce noise terms specifically designed to restore the neglected quantum
correlations, yielding the same set of stochastic differential equations [109, 195]. While this
alternative approach requires fewer derivation steps, the formalism used in this dissertation has
the advantage of being integrated into the positive P formalism, ensuring both a probabilistic
interpretation and a consistent correspondence between quantum and statistical averages.
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1.5 Stochastic Differential Equations for Light-Matter Interaction

The previous sections established a general theory for systems of N identical emitters. Here,
we apply this framework to the Born-Markov master equation presented in Eq. (I1.31). This
equation is reformulated as a Fokker-Planck equation of the form in Eq. (III.10a), with the
following diffusion matrix:

M

@pqp’q’({ﬁij}) = % Z {ap<r /qu : (/Bp’r’ ar’>q’ - ap’>r’ /Br’q’)

ror'=1
+ /Bpr ar>q ’ (ap’<r’ /Br’q’ - /Bp’r’ ar’<q’) + /Bp’r’ ar’>q’ : (ap<r ﬁrq - Bpr a1ﬂ<q>
+ ap’<r’ Br’q’ : (/Bpr a7">q - ap>r /BTq)}-

These matrix elements also make a nonlinear contribution to the drift. The linear component
of the drift is given by:

M
%q({/ﬁm}) = _iwpq/qu + % Z {267‘8 (ap<7" : ds>q) - (dp>7" . dr<s) ﬁsq - /Bp’r (dr>s . ds<q)}‘

r,s=1

As before, the notation p > ¢ (p < ¢) in the subscripts of the dipole moments signifies that the
associated summation runs over all indices p, ¢ such that p > ¢q (p < q).

Following Sec. 1.4, we transform the variables fpq(t) to ppe(t), which satisfy the following
It6 stochastic equations:

dppq(t) :
th = —iWpq Ppq(t)

M
+% Z {20r5(t) (dp<r - ds>q) = (dp>r - drcs) psq(t) — ppr(t) (dr>s - ds<q)}

r,s=1
M
+7(NQ_1) PH(t) - Zl{ppr(t) disyg — dpsr prg(t)} ([I1.18a)
M
+7(]V2_1) 'P(*) (t) . Z{Hp<r prq(t) _ ppr(t) a?“<q}
r=1

M
+Fpq({pig (1)}, 1) — ppa(t) Y Fos({pij(t)},1).
s=1

Initially, the ensemble is in the state (I1.15), where all particles are uncorrelated, and the initial
conditions are pp(0) = ppq. The polarization fields P™H)(t) are defined analogously to their
quantum-mechanical counterparts in Eq. (11.29):

M M
P =" dicjpji(t), PO =" disjpiilt).

i,j=1 i,j=1

All terms in Eq. (II1.18a) except the last line correspond to the semiclassical Maxwell-Bloch
equations. Quantum effects, such as spontaneous emission, are captured by the noise terms
F,q({pij},t), whose correlation properties are determined by the diffusion matrix of the Fokker-
Planck equation.

The noise terms can be expressed via Gaussian white noise vectors, f(t), £7(¢), g(t), and
g'(t), as follows:

M
’)/ J— — —
qu({pij}v t) = \ 9 Z {(dp<7“ Prq = Ppr dr<q) - £(t) + ppr dr>q - fT(t)
r=1
+ (ppr ar>q - ap>r ,Orq) : g(t) + ap<r Prq gT(t)}' (HLle)
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The components of the noise vectors have the following correlation properties:

@D @) 1O )y = (g (1) 'OV (#)) = 6,5 (¢ — 1), (IT1.18c¢)

and all other first- and second-order correlators are zero. The pairs f(t), ff(¢) and g(t), gt (t) are
statistically independent of each other.
The quadratically nonlinear noise term can be expressed via the polarization fields:

~ ZFSS ({ps(010) = 0/ 3 (POW £+ PO g0}, (ML184)

As previously demonstrated, the presence of these noise terms ensures that the trace of the
stochastic density matrix equals one for each realization, namely Y, p.-(t) = 1.

During numerical simulations, we may encounter unstable realizations that reach numerical
infinity. Such divergences emerge because individual realizations of the stochastic density matrix
violate the Hermiticity condition, pyq(t) Z p,(t). Additionally, the polarization fields are also
not conjugates, [P (#)]" # P (1).

If the initial density matrix is Hermitian, the solution to deterministic equations remains
within the Bloch sphere. However, anti-Hermitian components introduced by noise can push
the solution into a hyperboloid extending to infinity, leading to unbounded realizations. This
can be easily confirmed by solving the deterministic equations with anti-Hermitian initial con-
ditions. For two-level atoms, this condition is pj5(0) = —p21(0). Although the system starts in
a Hermitian density matrix, stochastic differential equations do not preserve Hermiticity. Over
time, the stochastic density matrix accumulates anti-Hermitian components through random
fluctuations, which may ultimately lead to divergence. These issues are examined in greater
detail in the next section, beginning with a simplified discussion focused on two-level emitters.

1.6 Equations for Two-Level Emitters

For two-level emitters, there is a single transition characterized by the transition dipole
moments dio and dg;. For simplicity, we assume these dipole moments have a unit magnitude
and are polarized along the x-axis. As a result, the z-components of the noise terms take part
in the system’s dynamics. These projections are denoted as f(t), f1(t), g(t), and gt (¢).

Free oscillation terms are eliminated by absorbing them into the stochastic variables, which
now represent the envelopes. The deterministic part of Egs. (I11.18a) becomes:

dpizlt(t) =7p22(t) + (N = 1) pra(t) pu(t) + ... (ITL.19)
dpi;t(t) - _% pra(t) + wﬂm(f) [p22(t) — p11 ()] + ... (I11.19b)
dpiilt(t) - _% palt) + W\fg_l)ﬂzl(t) [p22(t) — pra(t)] + ... (IIL.19¢)
dpi;t(t) = —p22(t) = v(N = 1) pr2(t) p21(t) — ... (I11.19d)

Note that these equations coincide with the semiclassical equations derived in Eq. (I1.29). The
noise components of the equations are given by:

T

T
) ity f“ me)y VAt h(r), (1.191)

il
D) b i N \/7/)11( )5 — (om0, (11.19¢)

dpili(t):"‘_fp21 \(F T pia(t) \F — /T pa(t) h(D). (IT1.19h)
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Figure III.1: The solution of stochastic equations (I11.19) (dashed lines) compared with the exact
solution (semi-transparent lines) for N = 20 identical two-level atoms. The initial non-diagonal
density matrix elements are zero, p12(0) = p21(0) = 0, and the populations are p;1(0) = p; and
p22(0) = p2. Intensities are normalized to the maximum of the exact solution. For each plot, we
average over 10° stochastic realizations.

Here, the function h(¢) denotes the following noise term:

£ (¢ f(t
h(t) = p1a(t) \/(22 + p2a(t) © ¢)
which appears after the elimination of the n-object. This contribution ensures that pii(t) +
p22(t) = 1 for each realization.
The functions f(¢), f7(t), g(t), and gf(¢) are independent Gaussian white noise processes with
the following correlation properties:

(f (1) = (e() '(¢")) = 8(t = 1), (T11.19j)

and all other first- and second-order correlators are zero. We can choose the noise terms to satisfy
g*(t) = g'(t) and £*(t) = {7(). Notably, the noise components of our stochastic equations differ
significantly from the phenomenological equations in Eq. (1.32).

Numerical simulations of Egs. (II1.19) reveal that some trajectories are unstable, which
distorts statistical averages. Figure (I11.1) shows solutions for N = 20 two-level atoms with the
initial conditions:

, I11.19i
5 ( )

p11(0) = p1, p22(0) = p2,

and p12(0) = p21(0) = 0. In panel (a), where all atoms are initially excited (p2 = 1), the
average excited-state population nearly matches the exact solution. However, the intensity
curve contains spikes that persist even after averaging—a sign of instabilities.

Panel (b), which has a positive initial population inversion but not fully excited atoms
(p2 = 0.75), shows more frequent intensity spikes, and the excited-state population deviates sig-
nificantly from the exact solution. In panel (c), where both states are initially equally populated
(p2 = 0.5), the excited-state population deviates substantially, and the intensity curve appears
predominantly noisy. Panel (d), with a negative initial population inversion (p; = 0.25), shows
only minor deviations in the excited-state population, though the intensity curve still features
noticeable spikes.

In the next section, we analyze the origin of these divergences and outline a regularization
strategy for superradiance in compact systems, as published in Ref. [109].
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1.7 Diverging Trajectories and Stochastic Gauges

Numerical analysis reveals that diverging trajectories are characterized by an anti-conjugate
relationship between coherences, pi,(t) = —pa1(t). This is possible because equations for pia(t)
and po; (t) have independent noise terms. When coherences are anti-conjugates, the deterministic
parts of Eqgs. (II1.19) may explode.

The analytical form of these diverging solutions can be derived by neglecting the noise terms
and assuming large density matrix elements. Under this approximation, the spontaneous decay
terms can be disregarded. The resulting equations yield the following singular solution:

2 1

s I11.20

p22(t) — p11(t) v(N —1) t—tsing.’ ( X
ie'? 1

- ’ 111.20b

p12(t) YN = 1) t — tomg, | )
o1 1

Soa(t) = ie (II1.20c¢)

fY(N - 1) t— tsing. .

Here, ¢ is an arbitrary real number, and fg,e depends on system parameters and may vary
between realizations. The coherences satisfy the anti-conjugate condition, p5(t) = —pai(t).

Such stability issues in the positive P-representation are well-known across various systems
[103]. Diverging solutions, also called movable singularities, cause spikes in averages, as shown
in Fig. I11.1. These instabilities motivated the development of stochastic gauges [100, 101].

The term “stochastic gauge” typically refers to transformations applied to the P-function or
stochastic differential equations that preserve expectation values. Since the P-function is not
uniquely defined, different distributions can yield the same expectation values. In fact, we used
such transformations when eliminating the n-object in Sec. 5.3.

Another symmetry is connected to the representation of the noise terms, which is also not
unique. The representation in Eq. (II1.18b) is merely one possible ansatz that reproduces
the correct correlation properties dictated by the diffusion matrix. Any representation that
reproduces these correlation properties should yield identical expectation values.

While gauges theoretically do not affect expectation values, obtaining exact results requires
an infinite number of trajectories, as indicated by Eq. (II1.12). Numerical simulations are
restricted to a finite number of trajectories. As a result, gauges can either accelerate convergence,
slow it down, or even introduce new instabilities. In essence, specific gauges prioritize certain
expected system behaviors, serving as an initial guess for each realization. If this guess is
successful, significantly fewer trajectories are needed to reach convergence.

The next two subsections outline two types of gauges used to stabilize the equations (I11.18a):
the drift gauge and the diffusion gauge [100,101]. Both gauges are designed to favor realizations
where the stochastic density matrix is close to being Hermitian while reducing the accumulation
of anti-Hermitian components.

Stochastic Drift Gauges

Drift gauges modify the deterministic components of stochastic equations by introducing
an additional stochastic variable called the weight function, which assigns a weight to each
realization [100,101]. A brief explanation of this technique is provided in Sec. 5.4.

The weight function has an exponential form:

Qt) = eCot)

where Cy(t) is a new stochastic variable. The equation for Cp(t) determines changes in the drift
functions of the original equations: the drift of p;;(t) is subtracted with a correlator between
noise terms for p;;(t) and Cy(t).

The weight function () appears in expressions for averages. Let p;;(t) be the solution to
the modified equations, and p;j (t) be the solution to the original equations. Their averages are
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related by:
(Pp1gr () - Pprear () Q1))
(Q(1)

The left-hand side connects to quantum-mechanical expectation values as in Eq. (II1.17c).
Importantly, the introduction of Q(t) does not affect the initial conditions of the stochastic
variables pp,(t), as the initial condition Cp(0) = 0 ensures that Q(0) = 1.

In Ref. [109], we propose a modification to the drift terms of Egs. (III.18a) that prevents the
unbounded growth of the deterministic components. Specifically, we alter the nonlinear drift
terms by replacing the polarization fields as follows:

P - PR
. |

Here, 6(t) acts as a switch function, taking only two values: 0 (gauge off) and 1 (gauge on).
When the drift gauge is applied, the polarization fields in the equations are transformed as:

() (¢ F*
PR+ [PEO]
o(t)=1 2

(B (8) o Pyar (1)) = (ITL.21)

PE() — PE (1) —0(t)

(111.22)

PE (1)

ensuring that only the Hermitian components of P& contribute to the equations. Conse-
quently, the emitters interact with a Hermitian electric field, preventing unbounded growth of
the deterministic part. Indeed, for an anti-Hermitian stochastic density matrix, the gauged
polarization fields vanish, precluding the emergence of diverging solutions of type (II11.20).

It is important to emphasize that the drift gauge modifies only the drift functions, without
altering the definition of the physical field or its intensity. The only change is the inclusion of
the weight function in the averages, as described in Eq. (II1.21).

To implement the modification from Eq. (I11.22), Cy(¢) must satisfy the following equation:

dCo(t)
dt

— 0(t) (N — 1)

x @{P“(t) —Q[P“) OF 41y P20 —2[P<><t>]*

gl (t)} . (T11.23)

The factors multiplying noise terms on the right-hand side are the anti-Hermitian components of
the polarization fields. When the polarization fields are Hermitian, the right-hand side is zero,
implying that the weight function remains static and no gauge is applied. However, as soon
as the anti-Hermitian part becomes nonzero, the weight function exhibits non-trivial dynamics,
which in turn leads to modifications of the polarization fields within the equations for pp,(t).

The non-Hermitian components in Eq. (II1.23) are scaled by (N —1), potentially introducing
instability as the number of emitters increases. These issues will be discussed in Sections 3.2 and
3.4, where we additionally analyze the conditions for safely neglecting (¢) without significant
loss of accuracy.

Finally, we need to define the switch function 6(t). Continuous application of the gauge
often destabilizes €(¢) and distorts statistical averages (Sec. 3.4). Therefore, the drift gauge
should be activated only when necessary. Unfortunately, there is no universal criterion. In this
dissertation and in Ref. [109], the drift gauge is applied during field amplification, because it
may potentially increase anti-Hermitian components. Thus, the switch function is defined as:

(9(75) — {1’ any Re[pee(t) - ng(tﬂ 2 O’

(I11.24)
0, otherwise,

where e represents any excited state and g represents any ground state, such that d., # 0. In
other words, the drift gauge is activated when there is a positive population inversion between
lasing energy levels.

We additionally employ another type of gauge, which alters the noise representation and
suppresses the accumulation of anti-Hermitian components. This is discussed in the following
subsection.
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Stochastic Diffusion Gauges

Returning to stochastic equations (II1.18a), the stochastic processes Fp,({p;j},t) are repre-
sented using elementary Gaussian white noise terms, as defined in Eq. (II1.18b). This represen-
tation ensures that Fp,({p;;},t) have correlation properties from Eq. (II1.18c). As long as these
correlations are preserved, the noise terms theoretically produce identical expectation values,
independent of their specific representation [100, 101].

We consider the following transformations for the noise vector components:

F ) = Fu() 1), F0) = FL ) 1@ @), (I11.252)
g(t) = Ga(t) g (1), g1 (1) = GZL (1) g @ (1), (I11.25D)

The transformed noise terms, indicated with tildes, satisfy the same correlator in Eq. (II1.18c¢)
and, therefore, yield the same statistical averages. In general, the functions F, and G also
depend on the stochastic variables ppq(t).

Our aim is to define F,, and G, such that the growth of the non-Hermitian components of
the polarization fields is minimized. This is achieved by minimizing the average growth of the
anti-Hermitian component in the stochastic polarization fields:

([PD®) - PO,

This functional depends on F, and G, with the density matrix elements treated as fixed pa-
rameters. The noise terms vanish due to averaging.
The optimal functions F(t) and Gg(t) should satisfy:

IR AU OES IO RIOT +|Pge (1) - PO 0Py @)
|Fa(t)|* = - , (I11.26a)
o { [P0 (#) - P@ OF + B 0) - Y 1)}
P(EQ) - Pa P(ee P ) P(+) 2
Ga(t)]* = Za {5 G5O + P () F2 ) f or) (IT1.26b)
o {IPE (1) - P@'e OF + B (0) - PEV (1))

The form of Fg and Gg is obtained by taking the fourth root and ignoring phase factors. The

auxiliary tensors Pc(féq) (t) are defined as follows:*

B
P(gg Z dl>] p]] d§ lz’ Z dz>] ,0]] d‘gliz7 (IIIQGC)
( ] ] '=1 7]7] '—1
Py (8) (e) (4 (8)
g Z dl<] p.]] d]’<1;7 POZ Z d2<j 10]] d] I>q* (III26d)
7] ] '=1 ,] ] '—1

From this point, we distinguish between the ungauged and gauged stochastic equations.
The ungauged equations correspond to the original form in Eq. (II1.18a). The gauged stochastic
equations incorporate modifications to the drift and noise terms as described in the last two
subsections, and are solved alongside Eq. (I11.23). The weight function is then used to compute
statistical averages, as given by Eq. (I11.21).

1.8 Summary

In summary, we employed the formalism developed in Chapter II to formulate a coherent-
state representation of density matrices within the Liouville-Hilbert space. This formulation is

“In two-band level structures, where intraband transitions are forbidden, P, eg)( t) and P(i,g;) (t) are zero. For

two-level emitters, tensors P(igg)( t) and P(iee)( t) coincide with p11(t) and poo(t), respectively.
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based on the supervectors |A({8;;}))), providing the following ansatz for the density matrix:

M

Ip(t)) = /H(d2/8ij)P({/8ij}vt) IA({Bi 1)),

ij=1

where the integration runs over M? complex variables {;;}. The supervector |A({5;;}))) defined
as (Eq. (II1.6))

AB ) = exp]| - 23111 x/;ﬁ S 8, B | Ivac).

3,7=1

serves as an analogue to coherent states in the Liouville-Hilbert space. The properties of these
supervectors are discussed in detail in Sec. 5.1.

The quantum master equation for the density matrix can be reformulated as an equation for
the distribution P({f;;},t) by applying the following replacement rules (Eq. (II1.8)):

b VI 19(0)) —> By P({Bis}. 1),

0
¢FW<»e@q%)<%w>

The factors involving NEY2 cannot be neglected, and do not introduce complications, provided
the quantum master equation conserves the total number of emitters.

In Sec. 1.1, we derived the Fokker-Planck equation corresponding to a model Liouvillian in-
corporating one- and two-particle collective operators. Subsequently, in Sec. 1.2, we formulated
the It6 stochastic equations for the variables 3,4(t).

These stochastic variables exhibit non-trivial statistics, as expectation values involving more
variables than the number of particles must vanish (Sec. 1.3). We address this in Sec. 1.4
by introducing normalized stochastic variables for N emitters, ppe(t). These variables already
incorporate the desired statistical properties and require no additional statistical sampling.

In Sec. 1.5, we applied the derived framework to light-matter interactions, obtaining the
corresponding set of Itd stochastic equations (Egs. (II1.18)). The specific case for two-level
atoms is analyzed in Sec. 1.6. Notably, the deterministic terms in the equations align with
the well-known semiclassical Maxwell-Bloch equations, while the noise terms capture quantum
effects, thus reintroducing quantum fluctuations into the semiclassical dynamics.

However, the derived stochastic equations allow for solutions that diverge as 1/(t—tsing.) (Sec.
1.7). These equations do not preserve the Hermiticity of the stochastic density matrix, meaning
Ppq(t) # pgp(t). Noise terms can cause the stochastic density matrix to become anti-Hermitian,
leading to unbounded growth of the deterministic part of the equations.

In the same section, we discussed two types of stochastic gauges [100,101] designed to stabilize
the equations [109]. One is the drift gauge, which modifies the deterministic terms by enforcing
Hermiticity in the polarization fields (Eq. (I11.22)), thereby preventing unbounded growth. This
technique introduces a weight function, Q(t) (see Eq. (II1.23) and its discussion). The other
is the diffusion gauge, which rescales noise terms following Eq. (II1.25), ensuring that gauged
noise terms favor Hermitian realizations of stochastic density matrices.

In the next section, we will numerically analyze the performance of gauged equations in
examples from Chapter II. This allows us to directly compare the statistical averages with the
exact solution. In Sec. 3, we will discuss the outcomes of this analysis, including any challenges
encountered during the simulations.

Furthermore, in Sec. 2.5, we will demonstrate how to extend the formalism to systems
interacting with quantized fields. In Sec. 3.5, we will explore its application to systems with
non-identical particles or spatially distributed configurations. As a practical example, Sec. 3.6
includes plots illustrating lasing from the K« transition in neon [38].
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Figure II1.2: Solutions of the gauged stochastic equations. Semi-transparent lines show the
exact solutions, and opaque lines depict stochastic averages. The intensities in panels (d), (e),
and (f) are normalized to the maximum of the exact solution in each respective panel. The
subplots below each row display the absolute difference between the statistical averages and the
quantum expectation values on a logarithmic scale. For each plot, 10° realizations were sampled.
In panels (a) and (d), for N = 2,3,4, we excluded 22,4, 3 unstable trajectories, respectively.

2 Applications

In this section, we evaluate the performance of the developed formalism by applying it to
examples with accessible exact solutions. By revisiting the models examined in Chapter II,
we aim to assess the applicability and effectiveness of the derived stochastic equations. Unless
stated otherwise, p,q(t) denotes a solution of the gauged stochastic equations.

Let us first establish the relationship between observables and statistical averages. Average
populations of atomic levels are given by:

v [& <qu(t) Q(t))
pQ( ”ZlT qup( )] <Q(t)> '

In compact systems, field properties can be expressed through atomic variables. Except for an
insignificant factor, the intensity of emission polarized along the e, axis is given by Eq. (I1.30).
Within the stochastic framework, the intensity is calculated as:

(@) {Pia(t) (1)) L () @) (opa(t) pji(t) Q)
=N ]Zq: 1dz<g g T(t» +N(N — 1)”2[; il,q ae) <Qj(t)> . (IIL.27)

The total intensity is the sum of all these components.
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Figure II1.3: Convergence of stochastic averages (dashed lines) to the exact solution (semi-
transparent lines) for different numbers of atoms N and varying numbers of stochastic trajecto-
ries. Observables shown are the probability of finding an excited atom (a)-(c) and the intensity
of the emitted field (d)-(f). Intensities are normalized to the maximum value of the exact solu-
tion. Dotted lines represent the imaginary parts of the corresponding quantities.

Details of the numerical implementation are provided in Sec. 4. We employ the Tsit5 algo-
rithm [155] combined with the Euler-Maruyama method for solving the equations, constraining
the maximum step size to 7/10%, where T is the final time point of the simulation. Unstable
realizations are excluded if they meet either of the following conditions: the weight function
Qt) = e€0(t) exceeds e, or the absolute value of any stochastic density matrix element exceeds
100. The impact of excluding these trajectories is discussed in Sec. 3.2.

2.1 Cooperative Emission of Two-Level Atoms

As a first illustration, we revisit the example of identical two-level atoms collectively in-
teracting with a bath of harmonic oscillators—a basic model of superradiance. As previously
noted, the original stochastic equations (II1.18a) exhibit divergent solutions, as shown in Fig.
[I1.1. To regularize the equations, we employ the modifications detailed in Sec. 1.7.

For an initially fully excited ensemble, the phenomenon of superradiance is observed. Figure
II1.2 depicts the excited-state populations (a)-(c) and emission intensities (d)-(f) for varying
atom numbers N. Each plot is supplemented by the absolute difference between stochastic
averages and quantum-mechanical expectation values.
Discrepancies between stochastic and quantum expectation values remain below 1%. Panels
(a) and (d) demonstrate that the differences are more pronounced for smaller N, likely due to
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Figure I11.4: The excited state population and emission intensity plotted for different numbers of
atoms NN and varying initial conditions. The semi-transparent lines show the exact solution, and
the opaque lines depict the stochastic averages. The absolute differences between these values
are indicated by gray dotted lines. Some differences are labeled with x10~!, x1072, x1073 to
indicate that the corresponding values should be multiplied by these factors. We sampled 10°
trajectories, excluding the following numbers of unstable realizations: (a) 131; (b) 178; (¢) 170;
(d) 32; (e) 109; (f) 40; (g) 0; (h) 17; and (i) 0.

the nonlinear noise term, which can become comparable to the deterministic part for small N.

In Fig. I11.2, we used 10° stochastic realizations for averaging. However, far fewer trajectories
are typically needed to achieve convergence of selected observables. Figure II1.3 illustrates the
populations (a)-(c) and emission intensities (d)-(f) for varying numbers of stochastic realizations
and atoms. For qualitative analysis, averaging over 10? trajectories is sufficient, while 103
provides relatively accurate averages. In addition to direct comparisons with exact solutions, we
employ an additional convergence criterion: the imaginary parts of observables should vanish
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after averaging. For individual trajectories, the imaginary parts are comparable in magnitude to
the real parts, making single realizations physically meaningless. Statistical averages accurately
represent observables only after averaging over a significant number of trajectories.

Subradiance

To study the influence of subradiant states, we assume initial conditions as given in Eq.
(I1.33). In terms of stochastic variables, these become:

p11(0) = p1, p22(0) = pa, (I11.28)

with zero coherences. Calculations from the previous chapter indicate that the ensemble reaches
a steady state with a nonzero probability of finding an excited atom. In this steady state, the
field intensity (II1.27) is zero, leading to the following condition (for the ungauged variables):

<Pg828)> + (N -1) <P12 (SS)> =0,

where (ss) stands for steady state. This implies that <p12 p21 )> < 0, which can only be
satisfied if the coherences tend to be anti-Hermitian at the level of single stochastic realizations.
This indicates that such realizations are statistically significant, and using gauges designed
to minimize the influence of anti-Hermitian components may distort the resulting expectation
values. However, as demonstrated in Fig. I11.1, without gauges the solution is highly unstable.

Figure I11.4 shows that subradiance is not fully captured by the gauged stochastic equations.
For two atoms, shown in panels (a)-(c), the excited-state population does not converge to the
correct curve, and the intensity is unstable. The situation improves with larger numbers of
atoms. For N = 20, the case with p; = 0.25 (p2 = 0.75) in panel (d) is well reproduced,
without the spikes in intensities observed in Fig. II1.1 (b). Furthermore, for N = 200, the curve
corresponding to a negative population inversion p; = 0.75 (p2 = 0.25) in panel (i) approaches
the exact solution.

In contrast, the case where p; = p» = 0.5 consistently performs poorly, exhibiting larger
deviations from the exact solutions and more unstable realizations, regardless of the number of
atoms. The steady-state density matrix, described by Eq. (I1.36a), depends on the parameter
(p1p2). When either population is close to 0 or 1, the state is closer to a pure state, with more
population concentrated in the ground state. However, as (p; p2) increases, a larger fraction of
the population becomes trapped in the excited state. Higher values of this parameter result in
stronger population trapping effects, amplifying the influence of subradiant states. This explains
the problematic behavior observed for p; = p» = 0.5 across all atom numbers, as shown in Figs.
II1.4 (b), (e), and (h).

2.2 Incoherently Pumped Two-Level Emitters

In realistic scenarios, the excitation of the ensemble is not instantaneous. Instead, the
system’s initial state may be prepared through continuous incoherent pumping, as in x-ray
lasing experiments [38,161]. In such cases, a pump pulse ionizes atoms in their neutral state,
initiating a lasing transition in the ionized atoms. Figure II1.5 (a) provides a schematic of the
level structure. The dynamics of this system was examined in the previous chapter, specifically in
Sec. 2.2. Here, we assess the performance of the stochastic formalism under the same conditions.

The non-ionized state is represented by an additional stochastic variable, denoted as poo(t).
This state is coupled to the excited state exclusively via incoherent pumping, as described in
Eq. (I1.37). The pumping process introduces an additional term to the equation for peg(t):

dpaa(t
pdt( ) T poot),
while the evolution of the new variable pgo(t) is governed by the following stochastic equation:

0lL) — —Jo(0) poo(t) ~ ponlt \f POW-0+POW o) )
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Figure II1.5: Panel (a) illustrates the level structure of pumped two-level atoms. Panels (b) and
(c) compare the statistical averages (opaque lines) with the exact solution (semi-transparent
lines) for N = 10 and N = 100, respectively. Pump pulse has a Gaussian envelope: Jy(t) =
I, exp [ (- to } /V2r72 | with parameters I, = 10, to = 2.0/7, and 7 = 0.5/~. We sampled 10°

trajectories, excludmg 199 unstable realizations in (b) and 3871 in (c).
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Figure I11.6: Regularization of the system from Fig. III.5 for different values of I'. Semi-
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Figure II11.7: N = 100 pumped two-level atoms. For each plot, we sampled 10° trajectories,

and neglected the following numbers of unstable realizations. No gauges: (a) 438; (b) 207; and

(c) 111. Only diffusion gauge: (d) 753; (e) 217; and (f) 57. Only drift gauge: with weight (g)

11734; (h) 3812; (i) 907; and without weight (j) 2. Both gauges: (m) 3926; (n) 474; and (o) 22.
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Here, Jy(t) represents the temporal profile of the pump pulse, consistent with Eq. (I1.37). We
use the same Gaussian pump profile as specified in the caption of Fig. I1.4.

The computed stochastic averages are shown in Figs. IIL.5 (b) and (c). In panel (b), for
N = 10, we encounter the same issue with steady states as observed in Fig. I11.4, where the final
states are inaccurately captured. The populations fail to maintain constant values, deviating
from the exact solution, while the intensities exhibit spikes at later times.

This issue persists in panel (¢) for N = 100 atoms, with a significant increase in the number
of unstable trajectories. We attribute these issues to the presence of subradiant states. Notably,
the stationary population of the excited state is considerably higher for N = 100, reflecting a
stronger population trapping effect.

Introducing additional dissipation channels can disrupt the formation of such steady states.
In the previous chapter, we considered Auger-Meitner decay of the excited state. Here, we
examine a different dissipation channel: incoherent decay to the ground state 2 — 1 at a rate
I'. This decay modifies the stochastic equations as follows:

pillt( ) .+ Tpoa(t), pz( - -~ o)
dpai(t) r dpia(t) _ L
7 _...—2021(15)7 dt _.,,—2,012(15).

Such losses may stem from isotropic spontaneous emission in directions where amplification is
absent due to the sample’s geometry.

Figure I11.6 demonstrates the effect of dissipation on the discrepancies observed in Figs.
ITIL1.5 (b, ¢). Increasing the dissipation rate I" from 0.1 to 0.3 leads to noticeable improvements
in convergence. Higher decay rates reduce the number of unstable realizations and improve
the agreement between statistical averages and the exact solution. Our observations suggest
that systems with a larger number of atoms may require higher dissipation rates for effective
regularization. For studied parameters, dissipation at a rate comparable to spontaneous emission
suffices to stabilize the system.

Comparing Solutions of Gauged and Ungauged Equations

We solve the equations using both types of gauges—drift and diffusion—and average the
trajectories with a weight function. It is important to analyze how gauging impacts averaging
by comparing results obtained without gauges, with only drift or diffusion gauges, and with
and without the weight function. Figure II1.7 presents this analysis for N = 100 incoherently
pumped atoms across varying dissipation rates I'.

Panels (a)-(c) depict solutions without any gauges. In panel (a), where I' = 0, stochastic
averages deviate significantly from the exact solution. Increasing the dissipation rate to I' = 0.3~
and I' = 0.8y in panels (b) and (c), respectively, shows minimal improvement.

Panels (d)-(f) display results with only the diffusion gauge applied. Notably, in panel (f)
(I' = 0.8), the solution is closer to the exact solution compared to panel (c).

Panels (g)-(i) illustrate averages computed using only the drift gauge. In this case, the
intensity curves align more closely with the exact solution than in previous scenarios. However,
the weight function introduces instability, leading to a higher occurrence of unstable realizations.
Panels (j)-(1) show averages where the weight function is omitted, yielding nonphysical intensities
that often become negative.

Finally, panels (m)-(o) present results with both types of gauges applied. These demonstrate
improved stability compared to using only the drift gauge, with fewer unstable trajectories. Pan-
els (p)-(r) show averages computed without the weight function. Importantly, when dissipation
is sufficiently strong, as in panel (r), neglecting the weight function has minimal effect, and the
solution remains close to the exact result.
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Figure II1.8: Quantum beats in V' systems, illustrated in panel (a), calculated for N = 2 (b) and
N =20 (c) atoms. In both cases, A = 15v. For the intensity curves in panel (b), the inset pro-
vides the same plots on a logarithmic scale. The intensities of different polarization components
are normalized to the maximum total exact intensity. For N = 20, two- and three-particle cor-
relators are shown in panels (d)-(f). Semi-transparent lines represent the exact solutions, while

opaque lines indicate stochastic averages. We sampled 10° trajectories, neglecting 47 unstable
realizations in panel (b).

2.3 Three-Level Systems: V-Type

To demonstrate that the stochastic formalism accurately captures multi-level effects, we
analyze a V-type level configuration consisting of two excited states and a single ground state,
as illustrated in Fig. II1.8 (a). The energy gap between the excited states, A, is much smaller
than the center frequency (A < wp). We assume orthogonal dipole moments for the transitions:

=1 ds dy
ds =

o (ex —iey), do1 = 75 (e tiey),

with slightly different magnitudes, |d31]/?> = 1 and |d1|* = 0.75. Assuming that each emitter is
prepared in a coherent superposition of excited states, as described in Eq. (I1.39), quantum beats

are observed, as shown in Fig. I1.5. Within the stochastic framework, this state is represented
by:

p22(0) = p33(0) = 0.5, p23(0) = p32(0) = —0.5,
and all other variables are zero.

As shown in Figs. IIL1.8 (b) and (c), the stochastic equations accurately reproduce the
quantum beats. For N = 2 in panel (b), intensity curves are also presented on a logarithmic
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Figure II1.9: Dynamics of N = 20 atoms with a V level structure and additional dissipation
channels, as described in Eq. (II1.31). Atoms start from the mixed state (II1.30). The semi-
transparent lines show the exact solution, and the opaque lines depict the stochastic averages.
Intensities are normalized to the maximum total intensity. The two-particle correlators are
normalized to the maximum of exact (p13 p31); the three-particle correlators are normalized to
the maximum. We neglected (a) 436; (b) 161; (c) 67 unstable realizations.
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scale in the top-right inset. While low-amplitude oscillations are not fully captured, and small
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spikes are observed, these spikes disappear for N = 20 in panel (¢). Furthermore, the two-
particle correlators shown in panels (d) and (e) and the three-particle correlator in panel (f) are
accurately reproduced.

Mixed Initial State

We next consider a system starting from a statistically mixed state with no initial coherences.
Unlike the previous example, where the observed quantum beats could also be predicted using
a semiclassical approach, the dynamics here is initiated spontaneously, driven solely by noise
terms.

We assume both excited states are equally populated, as described in Eq. (I1.42). In terms
of stochastic variables, this state is represented by:

p22(0) = p33(0) = 0.5, (I11.30)

and the rest of variables are zero. In this scenario, there are no quantum beats in the intensity,
and the system evolves into a steady state.

The solution of the stochastic equations shown in Fig. II1.9 (a) reveals convergence issues,
with all averages deviating from the exact solution after approximately ~t ~ 0.75, when the
system reaches a steady state. Since both polarization components evolve identically, we depict
only the z-component, I,(t).

We regularize instabilities by introducing additional damping of excited states at a rate I':

dp11(t)

=...+T ce(t I11.31
n T pel) (IT1.312)
dpee(t
peel®) _ ), (IIL.31b)
dt
where e = 2,3. The coherences decay as follows:
dple(t) _ I
praial ey §p18(t), (IT1.31c)
dpel(t) r
=...— —pe1(t), I11.31d
dt 20 1(t) ( )
dp"’z;t?m == Tpejey(t). (II1.31e)

Setting I' = 0.2 in Fig. I11.9 (b) achieves a good agreement for both populations and intensities.
However, the two- and three-particle correlators still do not converge. Increasing the rate to
I' = 0.4y in panel (c) brings them closer to the exact solution. For comparison, the same
averages based on the ungauged equations are shown in Fig. II1.10. Without gauging, two- and
three-particle correlators are less stable and have many spikes.

Incoherent Pumping

To simulate the effect of non-instantaneous excitation through incoherent pumping, we as-
sume that the atoms start from the additional state described by poo(t), as in Sec. 2.2. The
atoms are then incoherently pumped to the excited states according to the Lindbladian in Eq.
(I1.44). The corresponding terms in the stochastic equations are:

dpee (t) Jo (t)

=... =2 111.32
dt + 9 pOO(t)a € >37 ( 3 )

while poo(t) satisfies Eq. (II1.29). The pump profile Jy(t) is the same Gaussian pulse as in Fig.
I11.5.

The simulations in Fig. III.11 (a) show more pronounced convergence issues than the scenario
where atoms begin in a statistically mixed state. All averages exhibit instability and fail to
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Figure I11.13: Lasing from an ensemble of atoms with a A-level structure, illustrated in panel
The energy gap between ground states A is much smaller than the center frequency wy.

(a).
Panels (b) and (c¢) depict the evolution of populations and intensity components for N = 2 and
N = 20 atoms, respectively. Intensities are normalized to the maximum total exact intensity.

Semi-transparent lines show the exact solution, while opaque lines depict stochastic averages
Panels (d) and (e) display two- and three-particle correlators. We sampled 10° trajectories,

excluding (a) 470 and (b) 2325 unstable realizations.
Since more population is trapped in the

converge as the system approaches a steady state.
excited states compared to the case of an initially mixed state, we attribute the severity of

discrepancies to a stronger influence of subradiant states.
Following Egs. (II1.31), we introduce additional nonradiative decay for the excited states.

In Fig. IIL.11 (b), we set I' = 0.4y, which successfully stabilizes the populations, intensities,
However, the three-particle correlator remains highly unstable.

and two-particle correlators.

Increasing the dissipation rate to I' = 0.8 in panel (c) improves convergence, but the instability
persists at later time moments. For comparison, the averages based on the ungauged equations
are shown in Fig. I11.12. Notably, the solutions are less stable without gauging, even for I' = 0.8~

in panel (c).
In summary, stabilizing higher-order correlators may require higher dissipation rates; with

sufficiently strong damping, all observables can be accurately reproduced.
In the absence of initial coherences, the entire dynamics is initiated spontaneously and driven

by noise terms. The fact that the three-particle correlator < 031 P12 p23> remains close to the exact
solution is important, as any factorization of this correlator would yield zero. This demonstrates

that the formalism extends beyond semiclassical models and, when properly regularized, fully
captures the quantum inherent in many-body correlations.
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Figure II1.14: Results for N = 20 from Fig. I11.13 (c¢)-(e). Panels (a)-(c) show averages from the
gauged stochastic equations without the weight function. Panels (d)-(f) depict averages from

the ungauged stochastic equations.

2.4 Three-Level Systems: A-Type

Semiclassical models and stochastic electrodynamics can also predict quantum beats in V-
systems [119]. However, certain models mistakenly predict quantum beats in A-systems [119,
196], which involve one excited state, |3), and two ground states, |1) and |2), as depicted in Fig.

IT1.13 (a).
We analyze the A-configuration with orthogonal transition dipole moments, expressed as:

d31 = il;%(ex — iey), d32 = il;;(ex + iey).
The dipole moment magnitudes are slightly different, with |ds1|> = 1 and |d32|? = 0.75. Transi-
tions between the ground states are forbidden.

Our equations predict no intensity beats, consistent with quantum-mechanical expectations.
Figure I11.13 presents the populations and intensities for N = 2 (b) and N = 20 (c¢) atoms. Both
polarization components of the emission have identical profiles, exhibiting no quantum beats.
For N = 2 in panel (b), there are instabilities when the system relaxes to the ground states,
where no dynamics should occur. These instabilities are attributed to nonlinear noise terms.

For N = 20 in panel (c), there is a noticeable systematic discrepancy in the populations.
Panel (d) illustrates two-particle correlators, showing a significant deviation of the correlator
involving ground states {p12 p21) from the exact solution. Similarly, the three-particle correlator
in panel (e) deviates slightly from the exact solution. This discrepancy arises from unnecessary
gauging.

In the previous chapter, we established that the system’s final state is a steady state described
in Eq. (I1.46). As the system evolves into this steady state, the resulting non-trivial dynamics
may introduce fluctuations that amplify the anti-Hermitian components of pp,(t), destabilizing

the weight function.
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Figure II1.15: Dynamics of N = 20 atoms with a A-level structure and additional dissipation
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Figure II1.16: Same as Fig. I11.15, but for the ungauged stochastic equations. In panel (a), we
excluded 6 unstable trajectories.
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Figure II1.17: Dynamics of N = 20 atoms with a A-level structure and additional dissipation
channels (see Egs. (II1.34)). Atoms are incoherently excited according to Eq (II1.35). Semi-
transparent lines represent the exact solution, while opaque lines show stochastic averages.
Intensities are normalized to the maximum total exact intensity. Two-particle correlators are
normalized to the maximum of (pi2 p21); three-particle correlators are normalized to the maxi-
mum. We excluded (a) 1545; (b) 331; (c) 150 unstable realizations.
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Figure II1.18: Same as Fig. II1.17, but for the ungauged stochastic equations. In panel (a), we
excluded 4 unstable realizations.
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To demonstrate that the weight function is a source of the observed instabilities, we present
two sets of averages in Fig. II1.14. The top row (a)-(c) shows averages derived from the gauged
stochastic equations without the weight function, achieving a good agreement with the exact
solution. The bottom row (d)-(f) displays results without any gauging applied, which also align
closely with the exact solution.

Mixed Initial State

As in the previous section, we consider an ensemble prepared in a mixed state without
coherences, where the initial level populations are:

p11(0) = p22(0) = 0.25, p33(0) = 0.5, (I11.33a)

with all other matrix elements being zero. The solution reveals that the ensemble does not fully
relax to the ground states but evolves into a steady state, with some population remaining in the
excited state, as shown in Fig. II1.15 (a). As the system reaches this steady state, populations
deviate from the exact solution. Additionally, intensities exhibit small spikes, and two- and
three-particle correlators are unstable.

To address these instabilities, we introduce additional damping of the excited state to the
ground states (3 — 1,2) at a rate I':

dpgg (t) dps3(t)

gt + Tp3s(1), dt p33(t), ( a)
dpgs(t dpsq(t

where g = 1,2. Therefore, the excited state is depopulated at a rate of 2I'. By setting I' = 0.4y
in Fig. I11.15 (b), we achieve population dynamics consistent with the exact solution. Increasing
I" to 0.8y in panel (c) stabilizes the intensity curve, though the three-particle correlator remains
unstable. The two-particle correlator <p12 p21> continues to show instability, similar to Fig.
II1.13 (d).

For comparison, we present averages from the ungauged equations in Fig. I11.16. Notably,
the solution for I = 0.8y in panel (c) is more stable than the gauged counterpart. In panels (a)
and (b), the ungauged averages are generally less stable than those from the gauged equations.

Incoherent Pumping

The same instability issues arise when the ensemble is incoherently excited. In this case, the
atoms start from an additional level, described by poo(t), and are incoherently pumped to the
excited state following the Lindbladian in Eq. (I1.48). This pumping introduces an additional
term in the equations:

dp33(t)
dt

where pgo(t) evolves according to Eq. (I11.29). We assume the same Gaussian pump profile Jy(t)
as in Fig. II1.5. The simulation results are shown in Fig. I11.17.

Panel (a) illustrates the case without additional damping. As the system reaches the steady
state, populations deviate slightly from the exact solution. Furthermore, the correlator (pi2 p21)
and the three-particle correlator exhibit instability.

By increasing the dissipation rate, as shown in panels (b) and (c), the agreement between the
populations and intensities and the exact solution improves. However, the correlator {p12 p21)
and the three-particle correlator remain problematic.

In Fig. II1.18, we present averages obtained from the ungauged stochastic equations. Panels
(a) and (b) display less stability compared to the gauged equations. However, the case with
stronger dissipation in panel (c¢) shows improved stability, with the exception of the three-particle
correlator. This suggests that the gauging approach could be further refined and implies that
the issues observed in Fig. I11.17 (¢) may be due to the unnecessary application of gauges.

=...+ J[)(t) poo(t), (HI.35)
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To summarize, A systems exhibit more instability-related issues compared to two-level and
V-systems. A possible explanation is that the ensemble evolves into a steady state, even with
additional dissipation, characterized by:

(o3 p57) #0, (I11.36)

where ss indicates the steady state. This non-trivial dynamics can result in slow convergence
for certain correlators, as seen in the numerical examples. The coherences between the ground
states, pg, g, (t), are not directly damped. Effective regularization might require either stronger
decoherence to suppress the buildup of the steady state, or the introduction of an additional
dissipation channel for the variables pg, 44, ().

2.5 Interaction with a Quantized Field

As demonstrated in the previous examples, the effectiveness of the formalism is constrained
by convergence issues. In this section, we examine a particularly challenging case—the interac-
tion between emitters and a limited number of quantized field modes, known as the spin-boson
interaction [186]. Specifically, we derive the stochastic equations governing this model.

The field modes are represented by bosonic operators {ay, &}}, with the P-function dependent

on the corresponding variables {ay, a}}. The ansatz for the density matrix must incorporate
contributions from both photons (see Eq. (II1.3)) and emitters (see Eq. (I11.4)). This is achieved
by forming the tensor product of these basis elements, expressed formally as:

[TAs(ar. al) @ A8, 1.
f

Here, /AXf denotes the projector from Eq. (II1.3), acting within the subspace of the f-th field
mode. The density matrix is expressed in this basis, with the P-function depending on all
parameters {oy, a}, Bij}-

Starting from the general Hamiltonian described in Egs. (1.21)-(1.22), which models a system
of emitters interacting with the electromagnetic field, we simplify by omitting the phase factors
e'®Tu  This simplification assumes the atomic ensemble is compact.

Subsequently, we perform second quantization, reformulating the master equation solely in
terms of bosonic superoperators. After applying normal ordering and using the replacement
rules in Eq. (II1.8), we obtain the following equation for the P-function:’

- (- i TN
ot = ) o8 { — iwpq Bpg — h D (Exnacr+ELrayy) D (Bordrg — dpr Brg) } P
p,q=1"1"P4 Y 2
ng,\
_ Z aak Z dji fij } P = Z {“/k ak AT Z dj; Bij} P
?J 1 ’] 1
+ZZ { lgli)\%d 6 a ng)\ Zﬁ }
pamticn OPpa " Oen 1o T Ba T pr drg

where P = P({ax , OJL v Bijtit), and Ex y = i/ 2mhiy [V ex » ek,

The associated stochastic variables Bpq(t) have non-trivial statistics at ¢ = 0, characterized
by the n-object in Eq. (II1.15). The initial state of the field can be represented as a superposition
of coherent states.

Removing the n-object from the Fokker-Planck equation is not straightforward due to the
field drift term, which depends on atomic variables. This term arises from the normalization

5For the field variables, we use the following replacement rules:

A A~ N « o}
k) p — ax P, QL,AP—> (O‘li,k_ 8akA)P7

ﬁdL,A ” O‘L,A P, plaxx — (ak,)\ —
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factor e~ 2o: Pt in Eq. (II1.6). By following the steps in Sec. 5.3, we employ a non-normalized
representation to eliminate the n-object. As a result, we obtain normalized stochastic variables
for N emitters, p,q(t), which satisfy the following stochastic equations:

dppe(t) _
Zi —iWpg Ppq(t Z{va" dyg — dpr prg(t)}
(I11.37a)
M M
+ Z Ppr(t) drq ) fT(t) + Z dpr Prq(t) ppq Z d]z Pz] {fT(t) + g]L (t)}
r=1 r=1 i,7=1

The last term is a stochastic process with a quadratic nonlinearity, which ensures that the
normalization condition >, pss(t) = 1 is maintained. The stochastic analogue of the electric
field is given by:

1) = > {Eka aiea) + Efy af, (0}

The field variables oy x(t) and ole( 1 (t) satisfy stochastic equations resembling the classical
equations in Eq. (I.13), but with added noise terms:

day A\(t) i€ k A

dt = —ivg CVk,)\( {N Z d]z pz] ( )}7 (IH'?’?b)
3,j=1
dol | (t E
doge \(1) _ = i ol () — ! “ {NZ dji pi;(t) + £(1)}. (II1.37c)
dt =1

The noise terms f(t), fT(t), g(t), and g'(t) are three-dimensional vectors of independent Gaussian
white noise processes. The only non-trivial correlation properties are:

O D)) = (5(0) 8 OF)) = bas ot — 1), (1mL.374)

and all other first- and second-order correlators are zero. The pairs f(t), f1(¢) and g(t), gf(t) are
statistically independent of each other.

Finally, the relationship between stochastic averages and quantum-mechanical expectation
values is given by:

<a;r<1,/\1 (t) O‘Lg,/\g (t) - Okg A3 (t) -« Pprqa (t) - Pprar (t)>

(N-K)! .+ . ) ) . X
== [af, 3, Gy - ks -+ D Gpnupn -+ Ousesqreps ()], (ITL37e)
' e

for K < N. Here, the bosonic operators are arranged in normal order.

The total number of stochastic variables equals twice the number of field modes plus M?
atomic variables. At most, six independent complex-valued noise terms must be sampled.
Although this formalism offers potential computational advantages over traditional quantum-
mechanical methods, its applicability is limited by diverging trajectories.

In the next subsection, we investigate the interaction between two-level emitters and a single-
mode quantized field.

Tavis-Cummings Model

As an illustration, we consider a compact system of two-level atoms interacting with a single-
mode field resonant with the atomic transition. Neglecting counter-rotating terms, the resulting
equations describe the Tavis-Cummings model, governed by the effective interaction Hamiltonian
in Eq. (I1.50). The cavity mode is assumed to have a single polarization. Only the projections

of the noise terms onto this polarization axis contribute to the dynamics. These projections are
denoted as f(t), £7(t), g(t), and gf(¢).
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After eliminating the free-oscillating components, we obtain the following equations for the
stochastic density matrix:

W) _ () praf) — i (1) por(7) + pro(7) £1(7) + por(7) & (7) — o (P) (7). (IIL38a)
dpiff” = —ial(7) [p22(7) = p11(7)] + p22(7) &' (7) = p1a(7) (), (IIL.38b)
WD) _ jo(r) [poa() — o ()] + poo() £7(7) — pn () (), (I1L350)
WT) _ ia(r) puo(r) + ial () par(7) — poo() (), (111.35)

where 7 = tg is the dimensionless time, g is the Rabi frequency from the Hamiltonian in Eq.
(I1.50), and h(7) denotes the noise process given by:

b(r) = p1a(7) £1(7) + p2u(7) & (7).

This noise appears after the elimination of the n-object.
The electromagnetic field is characterized by two variables, a(7) and af(7), which evolve
according to the stochastic equations:
da(T)

daT(T)
) _ N _
I iNp21 () —ig(7), T

The noise terms in these equations have the following correlation properties:

({(r)1(r") = (g(r) &'()) = 8(7 — 7",

with all other first- and second-order correlators being zero.

A numerical implementation of these equations reveals that a significant portion of sampled
trajectories diverges as the system evolves toward a quasi-stationary state. Unfortunately, we
were unable to identify an effective gauge to stabilize the equations [197]. This dissertation
focuses exclusively on the ungauged stochastic equations, without employing any stabilization
gauges.

Figure I11.19 illustrates three distinct regimes of the Tavis-Cummings model with N = 50
atoms, initially prepared in the ground state, and the field starting in a coherent state with the
mean photon number (npy, ). In this figure, we exclude trajectories when they reach numerical
infinity.

Panel (a) illustrates a case where the initial mean photon number is much smaller than
the number of atoms, (npn.) = 5. The stochastic equations accurately reproduce the first few
Rabi oscillations. However, as the simulation progresses, unstable trajectories emerge. The
upper plot shows an exponential decrease in the number of trajectories: out of the initial 10°
realizations, only about 64% remain stable at the final time point. The population inversion
exhibits numerous spikes, while the mean photon number in the lower plot deviates significantly
from the exact solution.

Panel (b) considers a case where the initial mean photon number matches the number of
atoms, (nph.) = 50. By the end of the simulation, only 27% of the sampled trajectories remain
stable, again showing exponential decrease. The population inversion is highly unstable, and
the mean photon number significantly diverges from the exact solution.

Panel (c) depicts the regime where the initial mean photon number exceeds the number of
atoms, (nph.) = 500. Here, 44% of trajectories remain stable by the end of simulation.

In all regimes, as the system approaches the collapse, the number of stable trajectories
decreases exponentially, resulting in a clear deviation of the Rabi oscillations from the exact
solution. Computation for later time points reveals that stochastic equations fail to reproduce
the revival effect.

In Figure I11.20, the same averages are shown, with realizations excluded when the absolute
value of any stochastic variable exceeds 103. This figure illustrates that while omitting unstable
realizations smooths the curves visually, it does not enhance the accuracy of the results.

= iNpi2(7T) + if(7). (III.38e)
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Figure II1.19: Tavis-Cummings model with N = 50 atoms. Field is initially in a coherent state
with a mean photon number (ny, ). Atoms start from the ground state. Semi-transparent lines
show the exact solution, and opaque lines depict stochastic averages. Unstable realizations are
omitted when any stochastic variable reaches numerical infinity. The top row shows the number
of realizations (on a logarithmic scale) used for averaging; the middle row shows the average
population inversion ([p22(7) — p11(7)]); and the bottom row shows the mean photon number

(al(r) a(r)).
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Figure II1.20: Same as Fig. 111.20, but realizations are omitted when the absolute value of any
stochastic variable exceeds 103.
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Numerical investigations reveal that unstable realizations are characterized by the anti-
Hermiticity of both the field variables and the stochastic density matrix. Any gauge that we tried
led to an extremely unstable weight function that had to be discarded. We also experimented
with modifying the drift functions to enforce Hermiticity, as was done in the superradiance
problem. While this modification stabilized the solutions, the resulting averages deviated sig-
nificantly from the exact solution, even without the weight function.

Diverging Solutions

As in the case of superradiance, it is possible to derive an analytical expression for diverging
solutions. Previously, we explicitly obtained such solutions for two-level emitters in Eq. (I11.20).
Similarly, by neglecting the noise terms in Egs. (II1.38) and seeking unstable solutions of the
form 1/(7 — Tsing.)¥, we find that the field variables can be expressed as follows:

_ '
alr) = ——, (I11.39a)
T — Tsing.
and &f (1) = —a*(7). Here, ¢ is an arbitrary real number, and Tsing. 1S @ singularity point that

depends on the system’s parameters and initial conditions. The corresponding stochastic density
matrix is given by:

o) = ()~ pu(r) = o (1139b)
o(T) = ——+———, 2(T) — (1) = =, .

pl N (7_ - 7—sing.)z P P N (T - 7_sing.)Q

satisfying po1(7) = —pi5(7). Thus, all stochastic variables are anti-Hermitian. As noted pre-

viously, within the context of the positive P representation, diverging solutions are known as
movable singularities [100,101]. We attribute at least some of the unstable trajectories observed
in Fig. I11.20 to these diverging solutions.

However, not all unstable trajectories can be explained by the solutions in Eq. (I11.39), as
another type of instability exists within the system. The nature of this instability will become
clearer when we analyze the Jaynes-Cummings model, which does not exhibit solutions with
poles.

Jaynes-Cummings Model

The Jaynes-Cummings model is a specific case of the Tavis-Cummings model involving a
single two-level atom.

When N = 1, the n-object can be directly eliminated from the original equations for j,4(%).
These variables are linear in 7, while the field variables do not depend on it. Consequently, the
deterministic parts of the field equations vanish, leading to the following equations:

da(T)
dr

ol (1
= —ig(7), d d7(' ) = (7).

The equations for the stochastic density matrix are as follows:

WD) _ io(r) prs(r) — i (7) o () + pra(r) £1() + poa (7)1 (7).
2T it (2) loma(r) — pis (7)) + poo() &1 (7).

W) _ (1) foma(r) — pua(7)] + pa(7) £1(7),

P2T) _ _io(r) prafr) + i () por (7).

As observed, no additional noise terms appear in these equations. Therefore, the trace of the
stochastic density matrix is not preserved for individual realizations.
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Figure I11.21: Results of modeling the Jaynes-Cummings model using stochastic equations (solid

lines) are compared with the exact solution (semi-transparent lines). The field is prepared in

a coherent state with a mean photon number (n,,.). Atoms start from the ground state. The

top row shows the population inversion ([p22(7) — p11(7)]) averaged over 10° realizations, the
bottom row—over 10° realizations.

In the Jaynes-Cummings model, there is no drift term for the field variables. The interaction
between the field and the atom occurs exclusively through the noise terms. As a result, the
deterministic equations do not permit diverging solutions of the form given in Eq. (I11.39).

In Fig. II1.21, we present the solutions of the equations for various initial mean photon
numbers. In all cases, no diverging trajectories were encountered. However, the solutions still
oscillate rapidly, exhibiting exponentially increasing amplitudes. Increasing the number of tra-
jectories from 10% (a)-(c) to 108 (d)-(f) does not improve the situation.

While no diverging trajectories were observed, the solutions still exhibit instability in the
form of rapid oscillations with frequent sign changes. This instability arises from a violation of
the conjugation between the field variables. To better understand this behavior, we simplify the
equations by neglecting noise terms and assuming the field variables to be constant and nonzero:
a(t) = « and of(t) =~ af. Under these approximations, we can solve the resulting deterministic
equations analytically:

T —
pr2(7) = —iy/ @ ron 5 P1 sin(2Vata 1),
«
p21(7) =14/ % b2 gpl sin(2Vata ),
«

p22(1) — p11(7) = (p2 — p1) cos(2Vata 1),

where p; and po represent the initial populations of the ground and excited states, respectively.

We assume that the field variables slightly deviate from the conjugation relation, specifically
afa = |A|?/4 €% where ¢ is a small real parameter. This allows us to expand the exponential
in a Taylor series as e'® ~ 1 +1i¢. Consequently, the trigonometric functions in the solutions can
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be approximated as follows:

oAl

€7¢|A|T i|A i1A
sin(2Vatar) v elAlT _ & -ildlr,
21 21
—¢lAlr B|A|T
e . e .
cos(2Vata ) ~ — eildlr 4 & —ilAlr,

Depending on the sign of ¢, one term in these expressions oscillates rapidly with exponentially
increasing amplitude as 7 approaches infinity. This behavior can explain the rapid oscillations
observed in Fig. IT1.21.

Although the phase mismatch ¢ averages to zero, its value is random in individual realiza-
tions. Even a slight deviation from the conjugation between the field variables can lead to the
observed oscillations. Averaging out these oscillations requires an exponentially large number of
trajectories, theoretically approaching infinity. As demonstrated in Fig. II1.21, increasing the
number of trajectories by an order of magnitude does not significantly improve convergence.

This highlights that stabilizing the Tavis-Cummings model is particularly challenging, as it
involves two distinct types of instabilities that, unfortunately, we were unable to resolve [197].
Nevertheless, the formalism may still prove valuable when applied to the Tavis-Cummings model
with strong dissipation.

Dissipative Tavis-Cummings Model

When modeling superradiance, we introduced additional damping of the excited states to sta-
bilize trajectories. In cavities, dissipation can be accounted for either by damping the stochastic
density matrix or by introducing photon leakage at a rate k.

Cavity losses can be modeled using the following Lindblad operator:

Lioss[6(0)] = S{2ap(t)a" — alap(t) — p(t)a'a}.

In terms of the stochastic variables, this Lindbladian introduces additional drift terms to the
field variables:
dalt) _  _Eow, do'(t) _  _Eoip.
dt 2 dt 2

Numerical analysis suggests that strong dissipation, on the order of a few Rabi frequencies g,
is necessary for regularization. However, under such conditions, the noise terms may become
negligible, especially when the system’s dynamics is primarily driven by the deterministic part.

To ensure the noise terms are significant, we assume the field is initially in the vacuum state
with all atoms excited. In this case, the entire dynamics is triggered by the noise terms, which
describe the emission of the first photons.

The simulation results are shown in Figs. I11.22 (a)-(c) for different cavity loss rates. Setting
K to the Rabi frequency ¢ in panel (a) does not improve convergence. Doubling the rate in panel
(b) also fails to enhance stability. However, in the strong-dissipation regime, k = 4¢, the selected
observables closely match the exact solution, with only a slight deviation observed around the
second Rabi oscillation.

Another way to introduce dissipation is by including the nonradiative decay of atoms:

dp11(t dp1a(t
0 - o), P2l _ D)
dpa(t) gl dpaa(t)

dr —---—51121(?5)7 7t = ... —yp2(t).

For effective regularization, v should also be on the order of a few Rabi frequencies. Figures
II1.22 (d) and (e) illustrate the differences between stochastic averages and the exact solution for
various values of k and ~y. As the total dissipation rate x4+ = increases, this difference gradually
decreases, reaching acceptable values around 4g. This suggests that the current formalism is
unable to fully describe the strong-coupling regime.
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Figure I11.22: Dissipative Tavis-Cummings model with N = 20 atoms. Panels (a)-(c) show the
excited state population and mean photon number for varying cavity loss rates k. We sampled
10° realizations, with (a) 61%; (b) 87%; and (c) 99% remaining until the end of the computation.
The bottom panels (d) and (e) display the maximum differences in the excited state population
and the mean photon number between the exact solution and statistical averages, across a range

of cavity loss rates k and decoherence rates . Additionally, when k > ¢, we regularize the
equations by dividing g (¢), f7(¢) by /s, and multiplying g(t),f(t) by /.

3 Discussion

In this section, we analyze the results of our numerical studies. Section 3.1 compares the com-
putational effort required to solve the stochastic differential equations with that of a quantum-
mechanical treatment. Another important question is the emergence of different types of in-
stabilities. In all numerical examples, unstable realizations—characterized by large values of
the stochastic density matrix or the weight function—are excluded. The implications of omit-

ting these trajectories are discussed in Sections 3.2 and 3.3. Section 3.4 focuses on the weight
function, formulating conditions under which it can be disregarded.

The conditions for disregarding the weight function are crucial, as they enable the description
of realistic systems. In Sec. 3.5, we demonstrate the derivation of stochastic equations for non-
identical particles and extend the approach to continuous variables. By transitioning to these
variables, we can analyze spatially distributed systems and account for field propagation effects.
In Sec. 3.6, we apply our stochastic formalism to one-dimensional treatment of K« lasing in
neon. Finally, in Sec. 3.7, we conclude by formulating the applicability limits of our methodology.

107



3. DISCUSSION STOCHASTIC METHODOLOGY

Master . . .
System Section Figure equation N“?nber of . MdSte‘r eqthlon . Slngle'trdje.ctory
. emitters N  integration time, ms integration time, ms
complexity

V.4 (d 20 34 15+ 2

Two-level systems 2.1 @ ~ N?%/2!
V4 (g) 200 3 600 15+ 2
- Iv.6 10 56 16 £ 1

Pumped two-level 9.9 (c) ~ N¥/3!
systems V.6 (f) 100 115 000 16 + 2
V.8 (b) 2 5 27 £ 2

V systems 2.3 ~ N%/6!
V.8 (¢) 20 53 000 27+ 1
IV.13 (b) 2 4 27+ 1

A systems 2.4 ~ N%/6!
IV.13 (c) 20 35 000 27+ 1
IV.11 (¢)* 2 7 28 £1

Pumped V systems 2.3 (c) ~ N7/
IV.11 (c) 20 178 000 28 £ 2
V.17 (¢)* 2 6 28 £ 2

Pumped A systems 24 © ~NT/7!

IV.17 (c) 20 203 000 28 £ 2

Table III.1: Comparison of computational effort between stochastic and quantum-mechanical
methods. The computational time for solving the master equation is averaged over 10 runs. The
time to integrate a single stochastic trajectory is estimated from more than 100 realizations. An
asterisk (*) preceding a figure number in the third column indicates that simulations were
performed under identical conditions but with a different number of atoms.

3.1 Computational Effort

We compared the computational time required to solve stochastic equations with that needed
for solving the quantum master equation using the method from Chapter II. Table III.1 shows
that the average time required to integrate a single stochastic trajectory does not significantly
vary across different models and is independent of N. In contrast, the complexity of solving the
quantum master equation scales polynomially with N. Thus, the effectiveness of the stochastic
method depends on the number of trajectories required for convergence.

Figure I11.3 demonstrates convergence for two-level atoms, indicating that approximately 103
trajectories are necessary to achieve accurate averages. However, as N increases, the number
of trajectories needed for convergence may rise due to instabilities, which are discussed in sub-
sequent sections. A similar convergence analysis was conducted for pumped V and A systems.
Figure I11.23 presents the results for pumped V systems, while Fig. 111.24 depicts pumped A
systems. In both cases, good agreement is achieved with approximately 103 trajectories. Since
exact solutions are unavailable for N = 200, statistical averages were compared to those from
10° trajectories.

For the Tavis-Cummings model, solving the quantum master equation for N = 50, as shown
in Fig. II1.22 (c), takes roughly two minutes. By comparison, integrating a single stochastic
trajectory takes only about two milliseconds. Notably, generating plots for N = 100 incoherently
pumped two-level atoms with Auger-Meitner decay, as in Fig. 1.4 (c), requires several hours
due to the number of equations approaching 2 x 105, By comparison, a single trajectory requires
only 16 milliseconds to integrate, with convergence achieved after averaging 103-10* realizations.

In all cases, parallelized computation of approximately 103-10% trajectories significantly out-
performs solving the quantum master equation for larger N. Convergence, however, depends
on the presence of instabilities, which we begin discussing in the next section.

3.2 Instabilities: small N

Instabilities were consistently observed for systems with a small number of particles. These
instabilities stem from the nonlinear noise term introduced after eliminating the n-object. For
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Figure I11.23: Convergence of expectation values for pumped V systems, using the same param-
eters as in Fig. III.11, for different values of N and I'. For N = 2 and N = 20, the results
are compared with the exact solution (semi-transparent lines). For N = 200, the comparison is
made using the average computed from 10° trajectories (semi-transparent lines). Dotted lines
correspond to the imaginary parts of the respective averages.

reference, this term is denoted as h(t) in Eqgs. (II1.19). Due to its nonlinearity, this term can
amplify any fluctuation in the noise processes, leading to unstable behavior. Such instabilities
are evident in Fig. 111.2 (d), Fig. II1.8 (b), and Fig. III.13 (b). A potential solution to mitigate
this issue is monitoring the dynamics of the nonlinear noise term and imposing a threshold
to limit its growth. For simplicity, this dissertation adopts a more pragmatic approach: any
realization in which any element of the stochastic density matrix exceeds 100 is excluded.

3.3 Instabilities: weight function

For systems with larger IV, the primary source of instabilities becomes the Weight function.
Although the drift gauge effectively prevents diverging solutions of the form 1/(t — tgn,.), anti-
Hermitian components still contribute to the weight function equation via Eq. (I11.23). These
components are multiplied by (N — 1) and subsequently exponentiated to compute the weight
function, Q(t) = ¢“°®. As a result, even minor fluctuations can cause a rapid increase in the
weight function. This issue is particularly pronounced in steady states, which are often char-

(s3)

acterized by anti-Hermitian realizations where <p£;j pﬁél> < 0. In all simulations, trajectories
where the weight function exceeded e® were excluded.

Figure I11.25 shows the percentage of unstable realizations—those where the weight function
exceeds e’ or any density matrix element exceeds 100—out of a total of 10° realizations. Panels
(a)-(c) present results for different systems: (a) pumped two-level systems, (b) pumped V
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Figure II1.24: Same as Fig. 111.23, but for the pumped A systems, using the same parameters
as in Fig. TI1.17.

systems, and (¢) pumped A systems, each analyzed for various dissipation rates. The observed
trends are similar across all systems: for each value of I', the number of unstable trajectories
remains relatively low up to a critical IV, after which it rises sharply. Higher dissipation rates,
however, significantly reduce the number of unstable realizations. Our analysis reveals that a
lower percentage of unstable trajectories correlates with more accurate results.

It is important to compare the effects of excluding unstable realizations from the ungauged
equations with those of removing trajectories with unstable weights from the gauged equations.
Excluding unstable realizations from the ungauged equations can lead to incorrect and non-
physical results.

Figure I11.26 provides this comparison. Panels (a) to (e) focus on incoherently pumped two-
level systems from Fig. I11.6 (f) with N = 100. In panel (a), averages from the gauged equations
without excluding unstable realizations closely match the exact solution until instabilities arise.
By removing just 0.5% of trajectories with unstable weights, panel (b) displays smooth curves
that align well with the exact solution.

For the ungauged equations, panel (c) shows averages without excluding diverging real-
izations. These results deviate significantly from the exact solution, with the intensity curve
appearing more unstable than in panel (a). Despite all density matrix elements remaining below
100, removing a few unstable realizations (where elements exceed 10), as shown in panel (d),
does not improve accuracy. Further filtering (removing elements exceeding 1) in panel (e) yields
a completely incorrect intensity profile.

Panels (f) to (j) explore a system with N = 1000 atoms and a dissipation rate I' = 0.8~.
Although the exact solution is unavailable, we can still compare the averages obtained from the
gauged and ungauged equations.

110



STOCHASTIC METHODOLOGY 3. DISCUSSION

2 80% Pumped two-level systems Pumped V' systems Pumped A systems
2 —— Without T
N —- I'=02y
8 o ® , ® e ©
Y | A
E 400(/’
5
5 //
£20% 1
: ys
S -
d;_ 0 i ——‘—’ cmranIle "" il ] ] ] ]
10! 102 10° 10! 102 10 10t

Number of atoms, IV

Figure II1.25: Number of unstable realizations, where the weight function exceeds e or density
matrix elements exceed 100 in absolute value, for various systems and various dissipation rates:
(a) pumped two-level systems (Fig. II1.6); (b) pumped V systems (Fig. II1.11); (c) pumped A
systems (Fig. I11.17).

Panel (f) shows the averages from the gauged equations without excluding any realizations.
In this panel, noticeable spikes appear in both intensity and populations. By excluding 1.75% of
the trajectories with unstable weights, panel (g) shows smoother and more physically meaningful
results.

Panel (h) presents averages from the ungauged equations. While the population curves
appear smoother than in panel (f), they differ significantly from those in panel (g), with a larger
gap between excited and ground state populations. The intensity curve is unstable, despite
no density matrix element exceeding 100. In panel (i), excluding a few diverging realizations
(where density matrix elements exceed 10) has little effect on the population curves and does not
visibly stabilize the intensity. Panel (j) demonstrates that further filtering (removing elements
exceeding 1) introduces non-physical negative intensities.

In conclusion, removing trajectories with unstable weights from the gauged equations yields
more accurate and physically meaningful results compared to excluding diverging trajectories
from the ungauged equations. This highlights the advantages of using gauges, despite the
instability of the weight function. In certain cases, the weight function can be disregarded
entirely, a topic we will address in the next section.

3.4 Importance of Gauging and Weight Function

Let us revisit Figure 111.7, which examines N = 100 incoherently pumped two-level atoms.
Panels (a) to (c) display averages computed without gauges, revealing instability and deviations
from the exact solution. In contrast, averages from the gauged equations in panels (n) to (o) are
accurate. Notably, panel (r) shows that even without the weight function in averaging, gauged
equations closely match the exact solution.

For V systems, comparisons between Figures I11.9 (with gauges) and I11.10 (without gauges),
as well as Figures IT1.11 (with gauges) and I11.12 (without gauges), indicate that applying gauges
significantly enhances stability and convergence. Additional simulations reveal that the weight
can be omitted for I' = 0.8y without notably altering averages.

In A systems, however, gauging introduces complexity. Comparing Figures I11.13 and I11.14
shows that gauging may reduce the accuracy of certain averages. Moreover, Figures I11.15 (with
gauges) and I11.16 (without gauges), alongside I11.17 (with gauges) and II1.18 (without gauges),
suggest that if dissipation is sufficiently strong, gauging becomes unnecessary and even impedes
convergence. Neglecting the weight function does not improve the accuracy. These observations
suggest that the current gauging criterion, defined by Eq. (II1.24), leads to unnecessary gauging
and should be optimized, if feasible.
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Figure I11.26: Dynamics of N = 100 incoherently pumped two-level atoms, with a nonradiative
decay rate I' = 0.3y (a)-(e); and N = 1000 atoms with I" = 0.8y (f)-(j). The pumping envelope
is the same as in Fig. II1.5. The dashed lines depict stochastic averages. In panels (a)-(e), the
exact solution is shown by the semi-transparent line. For panels (f)-(j), the exact solution is not
available.

Neglecting Weight Function

Let’s explore conditions under which the importance of the weight function diminishes.
Empirical evidence suggests three prerequisites for safely neglecting the weight function: (1)
application of the diffusion gauge, (2) non-constant application of the drift gauge, and (3)
sufficiently strong dissipation to suppress steady-state formation. Our results indicate that the
dissipation rate should be comparable to the spontaneous decay rate. The number of unstable
realizations reflects the steady state’s prominence.

When the drift gauge is applied constantly, the weight function remains significant at all
times, increasing the likelihood of unstable realizations. Figure [11.27 analyzes the dynamics of
N = 100 incoherently pumped two-level systems with I' = 0.8y. The gray-shaded regions in
panels (a) to (d) denote the probability of applying the drift gauge. In panels (a) and (c), the
gauging criterion follows Eq. (II1.24), and the gray-shaded area represents the mean value of
(0(t)). In panels (b) and (d), the drift gauge is applied constantly, meaning the probability is
always one. Panel (e) illustrates the averages without applying any gauges.

Panel (a) of Fig. I11.27 demonstrates excellent agreement with the exact solution, with only
a few unstable realizations omitted. These averages are computed with the weight function, and
the drift gauge is applied according to Eq. (I11.24). Panel (c) displays the averages calculated
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Figure II1.27: Dynamics of N = 100 incoherently pumped two-level atoms with a nonradiative
decay rate of I' = 0.8~. Semi-transparent lines show the exact solution, and opaque lines depict
stochastic averages. In panels (a) and (c), the drift gauge is applied only when the population
inversion is positive, whereas in panels (b) and (d) it is applied constantly. Panel (e) shows
averages from the ungauged equations. Gray-filled areas show the gauging frequency.

without the weight function. Neglecting the weight function has minors effect on intensity, which
vanish at higher dissipation rates. In contrast, the ungauged equations yield incorrect averages,
as seen in panel (e).

When the drift gauge is applied constantly, there are significantly more unstable realizations,
as evidenced in panel (b) of Fig. II1.27. In this panel, trajectories are excluded if any density
matrix element exceeds 100. The weight function, being highly unstable, is not used as a basis
for omission: for 90% of realizations, it surpasses e'?. The populations deviate significantly from
the exact solution, and the intensity has many spikes. Neglecting the weight function in panel
(d) offers no improvement, as the intensity drops below zero.

This section highlights that, while the weight function can induce instability, it can be
regularized by selectively omitting certain trajectories, unlike ungauged equations. Furthermore,
in many cases, the weight function can be disregarded. Selective gauge application without the
weight function has been utilized in Ref. [195], which explored x-ray superfluorescence under

the paraxial approximation by solving three-dimensional coupled Maxwell-Bloch equations for
continuous variables.

3.5 Stochastic Maxwell-Bloch Equations

The numerical examples discussed so far have focused on cooperative emission in small sys-
tems, where all particles interact cooperatively, and propagation effects are neglected. However,
stochastic equations (I11.37) can be extended to spatially distributed systems, where the prop-
agation effects are crucial. This extension allows for the derivation of stochastic Maxwell-Bloch
equations, describing both the atomic medium’s evolution and the radiation’s propagation.

We consider systems described by the Hamiltonian in Eq. (I.21), where r, denotes the
position of the p-th emitter. In general, the ensemble cannot be treated as compact. Thus, as a
first step, we adopt the local quantization strategy from Sec. 4.3 of Chapter II. In this approach,
the sample is divided into subregions €21, €)s, ..., each small enough to treat the particles within
as identical (Fig. I1.13 (b)). We then perform second quantization independently for each
subregion, introducing a set of local bosonic superoperators, ZA)a,ij and IA)EU

Using these local bosonic superoperators, we construct the generalized A-supervector for
distributed systems. Previously, the entire ensemble was described by phase-space variables
{Bi;}. In distributed systems, phase-space variables gain an additional index to distinguish them,
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{Ba,ij}. The generalized A-supervector is then constructed as a product of the supervectors in
Eq. (IT1.6) for all subregions:

‘ {Ba zy} Hexp( Zﬁa i T N 1/2 Z Ba i az]) |Vac>> (11140)

3,j=1

where N, = i a ij Da,ij is the particle number operator for subregion 2,. This supervector
has a unit trace and possesses the following property:

Tr [ Z 6#1741171 Z &#2,112172 s |A({Ba,z‘j})>>} = 61,P1q1 52,p2q2 R

1€ p12€Q2

The density matrix is represented using these supervectors, similar to the ansatz in Eq. (I11.4).
The associated P-distribution takes all phase-space variables {f3,;} as arguments. The field
variables are included as outlined in Sec. 2.5 of this chapter.

Following the methodology for deriving equations for identical particles in Eqs. (II1.18a)
and (II1.37), we obtain equations for the stochastic variables pg,q(t), describing particles in
subregion €2,:

dpa,pq(t) .
% = _prq pa,pq(t) ra; Z{pa,pr 7" dpr pa,rq(t)}

M M
+ Z papr(t) drg - £1() + Z dpr Pa,rq(t) - 8 (t) — papalt Z dji pa,ij( ) - {£5(t) + gl(t)}.
r=1 r=1 1,j=1

Applying the rotating-wave approximation eliminates counter-rotating terms, restricting the
dipole moment indices and retaining only terms with either positive or negative-frequency field
components, as in Eqgs. (II1.18). The last term guarantees that the stochastic density matrix
remains normalized for each realization, }; paii(t) = 1. The vector r, is the radius vector
pointing to the center of subregion €.

The stochastic counterpart of the electric field, £(r,t), is defined as follows:

27Th * —ik-r
E(r,t) = Z\/Vk {ern aua(t) €5 —ef \ of (1) e},

which resembles the electric field operator in Eq. (I.18a). In the equations above, &(r,,t)
represents the field at 2, created by all subregions, including €, itself. Addressing self-action
typically requires the Weisskopf-Wigner approach, which introduces incoherent terms in pg pq(t)
that account for decoherence [195,198].

The field stochastic variables oy x(t) and aTk 5 (t) satisfy the following stochastic equations,
which resemble classical equations (I.13): 7

dak,)\(t) . 27 e —ikr
at ~iaa(t) + Ty kAT Z{N Z dgp Papq(t) + 8alt)} e ™™,

p,q=1

da;r()\(t) . 27T1/k dor
W = ka‘LA(t) + 5% €K, - Z{N Z dyp Papq(t) + fal(t )} kTa,
p,g=1

These equations include the noise terms f,(t) and g,(t), which couple to fi(¢) and gi (¢) in the
atomic equation through the correlation properties:

@17 W)) = (50 87 (1)) = bas b 3t ~ 1), (I41)

a

and all other first- and second-order correlators are zero. Such correlations indicate that the
noise terms from different subregions are statistically independent. The number of independent
noise terms grows linearly with the number of subregions.
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Continuous Variables

To describe a continuous medium of emitters (e.g., a gaseous medium), we assume that the
volume of each subregion approaches zero, while their number tends to infinity. In this limit,
the discrete parameters r, transition to a continuous variable r. The collective variable pq pq(t),
representing IV, particles within subregion €2,, transforms directly into the continuous stochastic
variable pp,(r,t), which characterizes particles in the vicinity of r.

For the field equations, this limit primarily affects the summation over a. Consider the
deterministic part of the summation:

ik-r Na ik-r
Z Napapqg(t) ekre = Z Avaﬁpa,pq(t) e*ikre,

where AV, is the volume of subregion ,. As AV, — 0 and N, — 0, while the number of
subregions approaches infinity, the summation becomes an integral, and N,/AV, converges to
the concentration of emitters n(r):

N, , .
Z AV, Wﬂa,pq(w etk — /dr n(r) qu(I? t) ek,

For the noise terms, an uncompensated factor of AV, remains, as there is no particle number
to absorb it. However, this factor can be incorporated into the correlation properties of the noise
terms, leading to a modification of Eq. (III.41) as follows:

5ab
AV,

E@ D) = (2 (1) ) (#)) = dap 1w 3t~ 1),
As AV, — 0, the noise terms become continuous functions of r, and the factor d,,/AV, converges
to a spatial delta function:

E@ e, ) 1O 1)) = (g (r,8) g P (' 1)) = Gug d(x — ') 5(t — ). (111.42)

Thus, summations over a transition into integrals over dr with continuous noise terms, complet-
ing the shift to continuous variables.

Notably, equations for oy x(t) and alT( () naturally lead to Maxwell’s equations for the
stochastic electric and magnetic fields, where continuous noise terms define stochastic polariza-
tion and magnetization fields. Together with the equations for the stochastic density matrix,
these form a coupled set of stochastic Maxwell-Bloch equations. These aspects are discussed
in detail in Refs. [195, 198]. Ref. [195] describes the general equations and their specific ap-
plication to the paraxial geometry, while Ref. [198] additionally explores the transition to a
one-dimensional treatment. Both approaches introduce the retarded time framework, which
involves subtleties not covered in this dissertation.

The next section demonstrates an application of the formulated framework to collective
emission in neon gas.

3.6 X-Ray Lasing in Neon

In this subsection, we present the equations governing lasing from the K« transition in
neon, using parameters similar to those experimentally realized in Ref. [38]. In that study, x-ray
amplified emission from neon gas was observed following photoionization by an XFEL pulse
tuned to a photon energy of 960 eV. The photoionization cross section of the 1s shell is 09 = 0.3
Mb, while that of the 2p shell is much smaller, o; = 0.0084 Mb. A vacancy created in the 1s
shell can be filled by an electron from the 2p shell, accompanied by the emission of a photon
with an energy of 849 eV.

The effective timescale of spontaneous emission is 7y, = 320 fs. Alternatively, the system
may relax via the Auger-Meitner effect, leading to the autoionization of a second electron. This
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competing process occurs on a much faster timescale, Tpyger = 2.4 fs. A sketch of the energy
level structure is shown in Fig. I11.28 (a).

The neon gas is contained in an 18 mm-long cell, with a concentration of n = 1.6 x 10
cm~3. The pump cross-section has a radius of approximately 2 pm (FWHM), creating an active
medium with about N ~ 3 x 10'? atoms. This setup has a pencil-shaped geometry characterized
by a Fresnel number of F' ~ 0.5.

In our analysis, we neglect plasma and recombination effects and focus on the effective two-
level scheme shown in Fig. I11.28 (a). Given the large number of atoms in the active medium,
we disregard the statistical properties of the n-object in Eq. (III.15), meaning our equations will
not include a nonlinear noise term.

Additionally, we restrict our analysis to a one-dimensional treatment, focusing only on the
field component that propagates parallel to the axis of the sample. Since population inversion
is generated by the pump, which travels together with the emission, only the mode along the
sample experiences significant amplification, allowing us to neglect the back-propagating waves.

Self-Consistent Set of Equations

The field is characterized by a single carrier frequency corresponding to 849 eV and a single
polarization axis. Consequently, only the projections of the noise terms along this axis con-
tribute to the dynamics. These noise terms are denoted by f(z,t), £7(z,t), g(z,t), and gf(z,t).
Additionally, we decompose the stochastic electric field into its positive and negative frequency
components:

5(2’25) _ 5(+)(z,t) e—iwo(t—z/c) + 5(_)(Z,t) eiwo(t—z/c)’

where z denotes the coordinate along the sample.

For simplicity, we assume that the transition dipole moments d;2 and ds; are real-valued and
equal dy. It is convenient to describe the field in terms of the Rabi frequencies in the retarded
time framework:

QF) (z,7) = d—i_LOS(i) (2,7 +z/c),

where 7 = t — z/c is the retarded time. The propagation of the emission can be described by
the following equations [195, 198]:

o) (z,7) _ 3iN3y

5% o (=) gz 7] (I11.43a)
o0 (z,7) 3iNd
5, = gy Lz T) +i(z 7)) (IIL.43D)

Here, Ao = 1.46 nm is the carrier wavelength, and v = 1/7y, is spontaneous decay rate. The
numerical coefficient in front of the brackets relates to the emission solid angle Ao = 3\%/(87S+),
where S is the sample’s cross-sectional area. For the given parameters, Ao ~ 1078,

The x-ray pump pulse is modeled as a photon flux, denoted by Jy(z,7). At the entrance of
the sample (z = 0), the pulse has a Gaussian temporal profile described by:

)

(7—70)2}

N,
Jo(0.7) = L exp| — 575

V2rAT?

where AT = 40/v/81In2 fs is the pulse duration, and the pulse is centered at 79 = 50 fs. The
pulse energy is 0.24 mJ, corresponding to N, = 1.56 X 10'2 photons. The attenuation of the
pump pulse as it propagates through the medium is described by:

8J0(Z, T)
0z

where poo(z, 7) represents the population of the neutral ground state. The neutral ground state
is depleted by the photon flux according to:

= —n(o1 + 02) poo(2, T) Jo(z, T),

3000(27 7')

or = —(01+ 02) poo(z,7) Jo(2, 7).
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Figure I11.28: X-ray lasing from the K« transition in neon, with the effective level structure
depicted in panel (a). Panels (b) and (c) illustrate the evolution of the spectral line shape, with
the integral over photon energies giving the total number of emitted photons. Panels (d) and
(e) display the emission intensity, with the integral over time giving the total number of emitted
photons. Panel (f) shows the gain curve, representing [d7 I(z,7), on a logarithmic scale. The
presented plots are based on 10* realizations, sampled within a few minutes.

These equations do not contain any stochastic components. If we had accounted for the n-object,
the equation for pgo(z,t) would have gained a nonlinear noise term, as in Eq. (II1.29).

The equations for the stochastic density matrix can be conveniently divided into three distinct
group of terms. The first group describes the rate equations:

0 )
/715(:‘7') = yp22(2,7) + o1poo(z,7) Jo(z,7) — ...
P I

pIQa(Z,T) :_(Fy—i_ )pIQ(zﬂT)+"'

; 2
8p21(277') _ 7(7+F) —
5 = 5 pa1(z,7) — ...

0 ;
pmafT) = —(v+7T) paz(z,7) + 02p00(2,7) Jo(2,7) + ...

where I' = 1/7pyger s the characteristic decay rate due to the Auger-Meitner effect, and v is
spontaneous decay rate. These equations also account for population increase via photoioniza-
tion.

The next group of terms describes the interaction with the fields Q) (z, 7):

80118(:77') = =i (2, 7) pra(z, 1) + Q) (2, 7) par(z,7) + ...
apma(:ﬂ') = 4+ (2, 7) [paa(z, ) — pralz, 7)) + - ..
3,0218(:,7') = .. —iQF) (2, 7) [paa(z, 7) — pr1lz, T)] + . ..
8p228(j’7) = i (2, 7) pra(z,7) — i) (2, 7) par (2, 7).
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This part has the structure of the semiclassical Bloch equations [9,65]. In the absence of noise
terms, the dynamics is purely semiclassical, meaning there is no evolution without external
driving or nonzero initial dipole moment. However, including the following noise terms—coupled
with the field equations—adds the effect of spontaneous emission into the system:

OA’Plg(fﬂ') =t (e ) (1) + o2 (2,7) 81 (2 7).
Op2 ) _ (o) gl (27,

or
8[)21(2,7) _ f
Oner) _ e il(er).

The equation for pes(z,7) contains no stochastic terms. These noise terms couple to the field
equations through the relations:

<fT(Z’ T) f(zl7 Tl)> = <gT(Z7 T) g(Z/’ 7-/)> = 5(2 - Z/) (5(7' — 7'/)7

and all other first- and second-order correlators are zero. We adopt a representation where
£l(z,7) = £(,7) and g1 (z,7) = g"(2,7):
Finally, the doubly ionized state, represented by ps3(z,7), is governed by:

3[’33(2, T)

57 = Tpaa(z, 7).

Stochastic Gauges

To prevent the unbounded growth of the deterministic component of the atomic equations,
we apply the drift gauge as described in Eq. (II1.22). Specifically, we ensure the coherences on
the right-hand side of the field equations (II1.43) remain Hermitian:

pl?(zv T) B p;l (Z, T)
2 )

p21(z,7) = pia(z,7)
2 )

p12(z,7) = p12(z,7) — 0(t)

p21(2,7) = pa1(z,7) — 0O()

where 60(t) is defined in Eq. (II1.24). Due to the large number of particles, the weight function
becomes highly unstable in each realization and must therefore be disregarded. As discussed in
Sec. 3.4, this simplification is valid when the influence of dark states is negligible. In distributed
systems, such dark states do not exist, since the emitted field propagates through the sample
without allowing particles to interact with their own emission.

To reduce errors introduced by neglecting the weight function, we apply the diffusion gauge,

as described in Eq. (I11.25). Here, the gauging functions can be chosen to coincide, F(z,7) =
G(z,7), and are defined as follows:

F(Z 7_) — 8 |p22(Z,7')| ]
7 B3N8y |p22(z, ) — p1a(z, )|

1

We refer to the equations incorporating the drift gauge and noise terms scaled as described
above as the gauged equations.

Results

The solution to the gauged equations without a weight function is shown in Fig. II1.28.
Panel (a) illustrates the evolution of the spectral line shape as the radiation propagates through
the sample, while panel (c) shows the spectral profile at the sample’s exit. The line width is
approximately 0.21 eV, in satisfactory agreement with the upper state’s lifetime.

Panel (d) demonstrates the evolution of emission intensity, with its time integral yielding
the number of emitted photons. The characteristic emission profile at the sample’s end is shown
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in panel (e), with a full width at half maximum (FWHM) of 8 fs. The total number of emitted
photons is approximately 1.23 x 10'%. Comparing this to the photon count in the pump pulse
(1.56 x 10'2) gives a conversion efficiency of about 1%.

The pumping induces a maximum population inversion of AP = 0.048. Consequently, the
gain length, which characterizes the field amplification [198], is given by

Ly = ?S(APn/\%),l

and is approximately 0.7 mm for the given parameters. We will use this parameter to characterize
the gain curve, which is defined as the number of emitted photons as a function of propagation
distance. Mathematically, it is found as a time integral of the emission intensity, [d7 I(z,7). The
gain curve, shown in panel (f) on a logarithmic scale, indicates that the exponential gain region
extends to approximately z = 7 mm, or 10L,. After that, amplification slows and reaches
saturation around z = 9 mm (12.9L,), as the pump pulse becomes significantly attenuated,
preventing further generation of population inversion.

In our numerical analysis, we omitted the weight function and the nonlinear noise term.
As demonstrated in Ref. [198], the model for noise terms significantly impacts the initial stage
of the process, during which spontaneous photons are produced. For instance, the applied
simplifications may lead to an underestimation of the number of spontaneous photons. This,
in turn, influences the point at which the field reaches saturation and the subsequent Rabi
oscillations, assuming the field is sufficiently intense to induce them. Nevertheless, the overall
qualitative behavior remains largely unchanged.

3.7 Conclusion

In conclusion, we have comprehensively analyzed the derived framework across various sys-
tems. Our numerical analysis demonstrates good agreement with exact solutions in cases where
the influence of dark many-body states—identified and discussed in Chapter II—is minimal.
These dark states arise only in compact systems, where they are characterized by non-vanishing
correlations between particles. Within the stochastic framework, such correlations may desta-
bilize stochastic trajectories. We found that introducing regularization via stochastic gauges
and additional nonradiative dissipation channels effectively stabilizes trajectories, provided the
dissipation rates are comparable to the spontaneous decay rate. The computational advantages
over the method in Chapter II are discussed in Sec. 3.1. The stochastic framework is signifi-
cantly faster, with a computational complexity comparable to that of a semiclassical problem,
requiring statistical sampling of approximately 103-10% trajectories to achieve convergence.

We emphasized the critical role of stochastic gauges in regularizing the equations. Although
the weight function can introduce instability (Sec. 3.2), post-selecting realizations and discard-
ing those with unstable weights yielded accurate results. Furthermore, we identified specific
conditions under which the weight function can be omitted (Sec. 3.4): sufficiently strong dis-
sipation, infrequent application of the drift gauge according to Eq. (I11.24), and the use of the
diffusion gauge, as outlined in Eq. (II1.25). This approach was later applied to treat a realistic
system in Sec. 3.6.

We also examined the non-Markovian dynamics of systems of emitters interacting with
quantized fields (Sec. 2.5). Unfortunately, we could not stabilize the equations for the Tavis-
Cummings model in the strong-coupling regime.

The application of the framework to non-identical particles and extended systems using
continuous variables was addressed in Sec. 3.5. In Sec. 3.6 we presented results for the one-
dimensional treatment of lasing in neon. However, in this study, we neglected the weight function
and nonlinear noise terms in order to stabilize trajectories, which introduced distortions in the
predictions. For a refined stochastic theory free from divergences, we refer readers to Ref. [198],
which treats noise terms as small perturbations to dynamics dominated by dissipation and
stimulated emission. This extension lies beyond the scope of this dissertation and will not be
discussed further.
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4 Numerical Implementation

In this section, we discuss the numerical solution of stochastic differential equations and
provide a code example implemented in Julia v1.8.5. Readers who are not interested in the
numerical aspects may proceed to Sec. 5.

4.1 Stochastic Differential Equations on a Grid

Let us discuss the interpretation of stochastic differential equations on a grid, using the simple
example of a particle moving in a gas. We observe the particle at regular time intervals, with
step size At. As the particle moves through the gas, collisions with gas molecules cause random
fluctuations in its velocity. These fluctuations are modeled as Gaussian random variables.

It is well-established that the stochastic contribution scales as VVAt. However, let’s first
consider the scenario where the stochastic component contributes at the same order as the
deterministic component, specifically on the order of At. The change in the particle’s position
between times t; and t;_1 can be estimated as:

x(tr) — x(t_1) = (¥ + V22 Si)At, (111.44)

where x(t) is the particle’s position, 2 is the diffusion coefficient, and ¥ is the drift velocity in
the absence of collisions. The vector of random variables S consists of three components, each
following a standard normal distribution:

() =0,
(S = G Gar

where a, o represent spatial axes (z,y,2), and k, k¥’ distinguish time points. Expanding Eq.
(II1.44) iteratively from x(0) gives:

x(ty) = x(0) + {k¥ + V22 (S1 +Sa 4 ... + Sp) AL

Since the sum of k£ independent normally distributed random variables is also normally dis-
tributed, with a variance scaled by k, we introduce a new random variable S, whose components
are independent standard Gaussian random variables, with (S) = 0 and (S Sg/) = Oggr. This
allows us to rewrite the expression for x(tx) as:

x(t) = x(0) + (1/ + \/? s) kAL

As we take the limit At — 0 and k — oo, while keeping their product constant such that
kAt = t, the stochastic contribution vanishes and the solution becomes purely deterministic:

x(t) = x(0) + 7t.

This implies that the interpretation of the stochastic differential equations in Eq. (I11.44) fails
to capture any stochastic behavior. Consequently, the assumption that stochastic fluctuations
contribute at the same order as the deterministic part (on the order of At) is incorrect [199].

The presence of the factor vk in the stochastic term suggests that its contribution should
be on the order of v/At, ensuring that the effect of stochastic fluctuations does not vanish as
At — 0. This adjustment modifies the scheme proposed in Eq. (I11.44) as follows:

x(ty) — x(tg—1) = VAL + S V29 At . (I11.45)
Then, the approximate solution for time ¢; becomes:

x(tp) = x(0) + ¥ kAt + SV2Z kAt
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where S is a vector of standard normal Gaussian random variables. In the limit as At — 0,
k — oo, and kAt = t, we find:

x(t) =x(0) + ¥t + SV29t.

After averaging this solution, the noise contribution vanishes, and the particle moves with a
constant velocity ¥ on average. The mean square displacement, however, includes an additional
term:

([x(t) — x(0)]*) = ¥t + 671t

In the absence of drift, when ¥ = 0, we recover the well-known result from random-walk theory:
the mean square displacement grows linearly with time.

This analysis uses simplified stochastic differential equations with additive noise, where both
drift and diffusion are independent of stochastic variables. When modeling light-matter inter-
actions, the situation becomes more complex: drift terms depend on stochastic variables, and
noise terms are multiplicative (Eqgs. (III.18a)).

Consider the stochastic variables x1(t), z2(t), ... governed by the following set of stochastic
differential equations [200]:
day(t) = p({wi(t)}) dt + > B ({2i(t)}) W (1), (IL.46)

where W (¥ (t) are independent Wiener processes. The increments of these Wiener processes can
be formally written as:

W (1) = W (t + dt) — WO (t) = S VL.

Here, S@ are independent random variables following standard normal Gaussian distribution,
(8()y = 0 and (8(® 8y = §,5. When numerically solving these equations on a grid, these
random variables are independently sampled at each time step. The factor v/dt formally reflects
that the variance of each Wiener process increment is proportional to dt.

There are important nuances regarding the fact that the result of integrating Eqs. (I11.46)
depends on the time points at which the function %’,(ga) ({zi(t)}) is evaluated [199,201]. Through-
out this dissertation, we adopt the It6 interpretation, where the functions multiplying the noise
terms are evaluated at the preceding time step.

4.2 Algorithm for Solving Stochastic Differential Equations

The leading contribution to discretized equations comes from noise terms, proportional to
VAt The deterministic component can be integrated separately from the noise terms using
higher-order methods. This separation does not affect the solution, as the numerical scheme
still converges to the same set of equations in the limit as At — 0.

Let {z;(t;)} denote the solution at time t = t;. We propose the following algorithm to
advance the solution to time t;y1, with a step tp41 — tx = At:

1. First, we integrate only the deterministic part of the equations:

dzy(t) = o ({zi(1)})dt.

As a result, we obtain the updated values {Z;(tx11)}. These intermediate values do not
approximate the solution to the stochastic differential equations, as they lack the necessary
stochastic components.

2. We sample the variables ng_?l and add the stochastic increments to {Z;(tx11)} in Itd sense,

which results in the updated values {z;(tx+1)}:
wy(th1) = Tyltnen) + D0 B ({zi(ti)}) Sy VAL,
The values {x;(tx4+1)} are then used to advance the solution to the next time step.
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Although a higher-order method can be used to integrate the deterministic part, it does not
increase the overall order of the scheme, which remains dominated by the stochastic term and
is still O(v/At). However, employing a higher-order method for the deterministic component
helps reduce accumulated errors specific to that part of the calculation.

The first step of this algorithm can be implemented using the DifferentialEquations li-
brary [155]. For the second step, the DiffEqCallbacks library is particularly useful. The
FunctionCallingCallback feature allows users to define a function that executes at the end
of each integration step. Through this interface, the deterministic part can be solved using any
appropriate method, and at the end of each step, the callback function is invoked to add the
stochastic components to the solution.

We present the numerical implementation of solving stochastic equations (II1.18), with the
drift term modified according to Eq. (II1.22), and the noise terms rescaled as in Eq. (II1.25).
These equations are solved in conjunction with the equation for the variable Cy(), given in Eq.
(T11.23).

4.3 Parameters

First, we need to initialize all input data and store it in the object called parameters. This in-
cludes defining parameters such as dipole moments Hij, transition frequencies w;;, initial density
matrix, and decay rates. The following code snippet demonstrates how to set up the parameters
used for the calculations in Fig. II1.13 (c), where we illustrate the evolution of N = 20 atoms
with A-type level configuration:

using Parameters
function generate_parameters()

N = 20 # number of atoms

M =3 # number of states

n® = 2 # number of involved polarizations

d = zeros(ComplexF64,M,M,n®) # dipole moments

w = zeros(Float64,M,M) # transition frequencies

# Constructing the A system

ground = (1,2) # manifold of ground states

excited = (3) # manifold of excited states

Wo = 0.0 # center frequency, eliminated in RWA

A = 15 # frequency gap between lower states, in units of y
w[2,1] = A

W[3,1] = wo+A/2

w[3,2] = we-A/2

@. d[3,1,:]1 = [1,-in]/V(2);
Q. d[sazs:] = [11 1’“]/\/(2)*\/(0‘75);
for g in ground, e in excited
wlg,e] = -wle,g]
@. dlg,e,:] = conj(d[e,g,:])
end
# initializing the initial density matrix
pr = 0.0 # initial population of the state |1)

p2 = 0.0 # initial population of the state [2)
ps = 1.0 # initial population of the state |3)
po = zeros(ComplexF64,M,M)

po[1,1] += pa

pe[2,2] += p2

pe[3,3] += ps

parameters_draft = (; N, M, n®, ground, excited, w, d, po)
# filling the decay matrix

y = zeros(ComplexF64,M,M,M,M)

fill_rate_matrix!(y, parameters_draft)

# time grid parameters

T = 1l # final time point
Nt = 200 # number of points to save
grid® = range(0.0, T, N%)
At™@x = T/10000 # maximum allowed time step
parameters_draft = (; parameters_draft..., y, T, N%, grid®, Atm™@x)
return parameters_draft
end
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Within this function, we call fill_rate_matrix!, which calculates the coefficients for the
incoherent part of the stochastic equations, corresponding to the second line in Eq. (IT1.18a):

dppq(t) T & =~ = - = — =
o =t 5 2 {200() (dper - ding) = (dpsr - drcs) Pog(t) = ppr(t) (drss - docg) } + -

r,s=1

This contribution can be represented as >, s Ypgrs Prs (t). The fill_rate_matrix! function stores
the coefficients 7pqrs in the matrix v:

function fill_rate_matrix!(y, parameters)
@unpack M, n®, d = parameters
@ vy = 0.0
@inbounds for p in 1:M, g in 1:M, v in 1:M, s in 1:M
if s>q && p<r
for a in 1:n°
v[p,q,r,s] A= d[s,q,oc]*d[p,r,oc]
end
end
if p>r && r<s
for a in 1:n°
vlp,a,s,a] -= d[p,r,a]xd[r,s,a]/2
end
end
if r>s && s<q
for a in 1:n°
vlp,q,p,7] -= d[r,s,a]«d[s,q,a]/2
end
end
end
end

The function fill_rate_matrix! executes in approximately 235 nanoseconds without any addi-
tional memory allocations. It can be also adapted to incorporate nonradiative decay rates. The
parameters are generated by the following line:

parameters = generate_parameters();

Next, we need to define a function that generates initial conditions for both the stochastic
density matrix ppq(t) and the variable Cy(t), which determines the weight function as Q(t) =
e©o(t) | Tnitial density matrix is represented by parameters.po, while Cy(0) = 0. The following
function generates ArrayPartition of the initial objects based on the given parameters:

using RecursiveArrayTools

function initial_conditions(parameters)

@unpack M, po = parameters

pi" = zeros(ComplexF64,M,M)

pin 4= po

Co = zeros(ComplexF64,1)

return ArrayPartition(reshape(pin, MA2), Co)
end

This function executes in approximately 132 nanoseconds and uses 368 bytes of memory, with
most of the space occupied by the generated object. We explicitly vectorize the density matrix
with reshape(p*", MA2) to ensure that all variables have the same data type, which is important
for performance of DifferentialEquations. jL.

4.4 Drift Function

In this section, we discuss the implementation of the function responsible for generating the
drift components of the stochastic equations (II11.18a) with the modification as in Eq. (I11.22).
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We begin by defining a structure that stores containers for repeated use in calculations:

mutable struct Drift

n® :: Int64

P* :: Array{ComplexF64,1}
P- :: Array{ComplexF64,1}
6 :: Bool

function Drift(parameters)
@unpack n® = parameters
self = new()
self.n® = n°
self.P* = zeros(ComplexF64,n®)
self.P~ = zeros(ComplexF64,n?)
self.6 = false
return self

end

end

The structure contains several fields:
1. n® represents the number of polarizations used in generating the structure.
2. P* and P~ are vectors used for storing the gauged polarization fields (Eq. (II1.22)).
3. 6 is a boolean variable, playing the role of 6(¢) in Eq. (II1.24).

Next, we define a function associated with this structure that has access to all its fields, and
calculates the drift of the gauged equations:

function (self::Drift)(dx, x, parameters, time)
@unpack n®, P*, P-, 6 = self
@unpack N, M, d, w, ground, excited, y = parameters
p = reshape(view( x.x[1],:),M,M) # pointer to stochastic density matrix
dp = reshape(view(dx.x[1],:),M,M) # pointer to its derivative
dCe = view(dx.x[2],:) # pointer to derivative of Co
@. dCe = 0.0 # weight has no drift

@inbounds for o in 1:n® # calculating gauged polarizations times (N-1)/2
P*[a] = 0.0; P [a] = 0.0
for g in ground, e in excited
P*[a] += 0.5%(N-1)xd[g,e,a]*(p[e,g]-0.50%(p[e,g]-conj(p[g,e])))
P-[a] += 0.5%(N-1)xd[e,g,a]*(p[g,e]-0.5%0%(p[g,e]-conj(ple,g])))
end
end

@inbounds for p in 1:M, g in 1:M # generating unitary part of equations
dplp,q] = -imxw[p,ql*p[p,ql
for r in 1:M
if p>r
for a in 1:n®
dp[p,q] -= P*[alxd[p,r,a]l*p[T,q]
end
elseif p<r
for a in 1:n®
dp[p,q] += P-[a]xd[p,r,a]l*p[T,q]
end
end
if r>q
for a in 1:n®
dp[p,q] += P*[al*p[p,r]xd[T,q,a]
end
elseif r<q
for a in 1:n®
dp[p,q] -= P~[al*p[p,r]xd[r,q,a]
end
end
end
end
@einsum dp[p,q] += v[p,q,T,s]*p[T,s] # incoherent part of equations
return nothing
end
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This drift function is generated by running:

drift! = Drift(parameters)

When applied to the initial conditions, this function executes in 245 nanoseconds without allo-
cating any additional memory.

4.5 Noise Function

The next step is implementing a function that adds the stochastic components. Similar to
how we handled the drift function, we first define a structure to allocate all the necessary arrays
for the calculations:

mutable struct Noise

n® :: Int64

f :: Array{ComplexF64,1}
g :: Array{ComplexF64,1}
f* :: Array{ComplexF64,1}
g* :: Array{ComplexF64,1}
F :: Array{Float64,1}

G :: Array{Float64,1}

pee :: Matrix{ComplexF64}

pee :: Matrix{ComplexF64}

function Noise(parameters)
@unpack n® = parameters

self = new()

self.n® = n°

self.f = zeros(ComplexF64,n®)
self.g = zeros(ComplexF64,n?)
self.f* = zeros(ComplexF64,n?)
self.g* = zeros(ComplexF64,n?)
self.F = ones(Float64,n?)
self.G = ones(Float64,n?)

self.Pe® = zeros(ComplexF64,n%,n?)
self.P&8 = zeros(ComplexF64,n%,n?)
return self
end
end

The fields in this structure serve the following purposes:
1. n° is the number of polarizations used in generating the structure.

2. f, f*, g, and g* are containers for the elementary noise terms f, ff, g, and gf.

3. F, G, P¢8 and Pe¢ are containers for the diffusion gauge functions F,, G, Pc(x%g), and Pt(xeﬂe)
defined in Eqgs. (II11.26).

In our numerical implementation, the noise terms f(t), f7(t), g(t), and g'(¢), which satisfy
the correlation properties in Eq. (II1.18¢), are sampled as follows:

S (1) + iS5V (1)
vz
8§ (1) + 485 (1) _sPw —isi )
V2 ’ V2 ’

Here, the variables Sg“) (t) are independent, real-valued standard Gaussian random variables
with the following correlation properties:

_ st st
vz

£ @) =

g () =

(8(t)) =0, (S 1) S () = bap s St — 1),
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It is straightforward to verify that these definitions ensure that the noise terms satisfy the
correlation properties in Eq. (II1.18c). Notably, in this representation, we have f*(t) = ff(¢)
and g (t) = g1 ().

These noise terms must be rescaled in accordance with Eqs. (II1.25) and (II1.26). We
implement the following function to compute F, and G, at the current time step based on the
stochastic density matrix p from the previous step:

function get_diffusion_functions!(containers, p, parameters)
F, G, P*, P, P88  Pee = containers
@unpack n?, d, excited, ground = parameters
@inbounds for a in 1:n¢
P*[a] = 0.0; P [a] = 0.0; @. P%8[a,:] = 0.0; @. P°°[a,:] = 0.0
for g in ground, e in excited
P*[a] += d[g,e,a]xp[e,g]
P-[a] += d[e,g,a]*p[g,e]
end
for g in 1:n°
for g in ground, e in excited
for g’ in ground
Pee[a,B] += d[e,g,a]*p[g,g  I*d[g",e,B]
end
for e’ in excited
Peea,B] += d[g;e’a]*p[eie,]*d[e,5g’B]
end
end
end
end
@einsum F[B] = abs(Pe°¢[a,B]-P*[a]xP-[B])A2
@einsum F[B] += abs(P-[a]*P-[B])A2
@einsum F[B] /= abs(Pe°[B,a]-P&&[a,B])"2
@ F=vH(F))
@einsum G[B] = abs(Pee¢[B,a]-P*[B]*P [a])r2
@einsum G[B] += abs(P*[a]xP*[B])A2
@einsum G[B] /= abs(P°°[a,B]-PEE[B,a])"2
@ G =v({/(6))
val = 0.0
@inbounds for a in 1:n®
val += abs(F[a])+abs(G[a])+1/abs(F[a])+1/abs(G[a])
end
return val
end

This function returns val, which is the sum of the absolute values of all components of the
gauging functions and their inverses. If val is Nal or exceeds 10°, all noise terms will be nullified.
However, based on our experience, this condition has never occurred.

After calculating these functions, we rescale the noise terms according to Eq. (I11.25) to
obtain the gauged noise terms, denoted with tildes, which then enter the noise part of Egs.
(II1.18) and (III.23). Note that in the noise representation in Eq. (III.18b), each noise term is
divided by a factor of v/2'. To reduce the number of operators in our code, we incorporate this
factor directly into the definitions of the noise terms. Consequently, the objects f, f*, g, and g*
actually correspond to f(t)/v2, f1(t)/v2), g(t)/v/2', and gf(t)/v/2".

Below, we will define the function associated with the Noise structure, which adds stochastic
components to the solution. This function takes three arguments: solution at the current
point u, time t, and integrator. The properties of the integrator object can be found in
the DifferentialEquations. jl library documentation.

The function begins by calculating the diffusion gauging functions and sampling the gauged
noise terms. After that, the solution at the current step is updated with the stochastic compo-
nents. Importantly, all coefficients multiplying the noise terms are computed at the previous
time step, following It6 interpretation. Finally, the function generates the equation for the
variable Cy(t) (Eq. (I11.23)) and verifies whether the drift needs to be gauged at the next step,
according to the criterion in Eq. (III.24). The implementation of this noise function is shown
below:
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function (self::Noise)(u, t, integrator)
@unpack N, M, d, excited, ground = integrator.p
@unpack ne, f, g, f*, g*, F, G, Pe¢, P88 = self
@unpack P*, P~ = integrator.f.f # accessing containers of the drift
p = reshape(view(integrator.uprev.x[1],:),M,M) # p from the previous step
val = get_diffusion_functions!((F, G, P*, P-, P&&, Pe¢)  p, integrator.p)
if val > 1e5 || isnan(val)
return nothing
end

At = integrator.t-integrator.tprev
@inbounds for a in 1:n°¢

fla]l = (randn()+imxrandn())/2%/(At)*F[a]

gla] = (randn()+imxrandn())/2%/(At)*G[a]

f*la] = conj(f[al)/F[a]*2; g*[a] = conj(gla])/G[a]r2
end

p = reshape(view(integrator.u.x[1],:),M,M) # p from the current step
@inbounds for p in 1:M, g in 1:M
for v in 1:M
if r>p
for a in 1:n°
plp,al += d[p,r,al*plr,ql*(flal+g*[a])
end
elseif r<p
for a in 1:n®
plp,al -= dlp,r,a]«plr,ql*gla]
end
end
if r>q
for a in 1:n°
plp,al += plp,rl*d[r,q,alx(glal+f*[a])
end
elseif r<q
for a in 1:n®
plp,al -= plp,rI*d[r,q,a]*f[a]
end
end
end
end
h =0.0
for a in 1:n®
h += P [a]xf*[a]+P*[a]*xg*[a]
end
@. p -= pxh

# generating equation for Co
@unpack 6 = integrator.f.f
if e
Co = view(integrator.u.x[2],:)
ACo = 0.0
@inbounds for a in 1:n®
ACo += (P~[a]-conj(P*[a]))*f*[al+(P*[a]-conj(P-[a]))*g*[a]
end
@. Co += 0.5%(N-1)%ACo
end

# verifying if the drift gauge is required for the next step
6 = false
@inbounds for g in ground, e in excited
6 =6 || (real(ple,e]l-ple,g])>0.0)
end
integrator.f.f.6 = 6
return nothing
end

The noise function is generated by running:

noise! = Noise(parameters);

The performance of this function estimates as 388 nanoseconds.
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4.6 Single Trajectory Integration

Finally, we define the function used for integrating multiple stochastic realizations:

function integrate_trajectory(prob, noise_cb, trajectory_number)
@unpack At™@*, grid® = prob.p
output = []
for _ in 1:trajectory_number
data = solve(prob, Tsit5(), adaptive=true, dtmax=At™2*, saveat=grid®,
callback=noise_cb)
push!(output, data.u)
end
return output
end

This function is called in the following snippet:

using OrdinaryDiffEq, Einsum, DiffEqCallbacks

@unpack T = parameters;

uo = initial_conditions(parameters);

tspan = (0,T)

prob = ODEProblem(drift!, uQ, tspan, parameters);
noise_cb = FunctionCallingCallback(noise!);

trajectory_number = 1;
output = integrate_trajectory(prob, noise_cb, trajectory_number);

The object output is a list containing data for all trajectories, which should be processed further
by averaging the selected observables. Since working with stochastic variables is intuitive—
unlike the complexity of our second-quantization formalism from Chapter [I—we do not include
the details of this processing step, as it is relatively straightforward.

The performance of the presented code is summarized in Table [I1.1 and discussed in Sec.
3.1 for all models considered in Sec. 2.

5 Supplementary Sections

This appendix provides technical calculations and detailed discussions supplementing the
main text. In Sec. 5.1, we explore the properties of the A-supervectors introduced in Eq. (I11.6).
The following section, Sec. 5.2, analyzes a representation where the normalization coefficient of
the A-supervector is absorbed into the P-function. In Sec. 5.3, we use this representation to
eliminate the n-object defined in Eq. (II1.15) from the equations. Finally, Sec. 5.4 examines
aspects of stochastic drift gauges, which were used in Sec. 1.7.

Readers uninterested in these supplementary discussions may proceed directly to the final
chapter, “Conclusion and Outlook,” in Chapter I'V.

5.1 Properties of the A-Supervectors

At the beginning of this chapter, we introduced the P-representation for supervectors, defin-
ing the supervector |A({8;;}))) in Eq. (I11.6) as the basis for this representation. In this section,
we study their properties in more detail.

Let’s expand the exponential as a Taylor series and derive the representation of the A su-
pervector in the occupation-number basis:

o) o i'! M » N5
A == 5 5 e [H (% ]r{nm}».
Ziyjrxj:N
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This supervector represents a statistical mixture of states with all possible particle numbers,
including the vacuum superstate. Each term in the summation over N represents a state of N
uncorrelated particles, as in Eq. (I1.16). Coefficients {f;;} play a role analogous to coefficients
{pi;} that parameterize the density matrix. However, unlike {p;;}, coefficients {3;;} are all
independent and do not describe a physical density matrix. In this sense, this supervector is
similar to the functional in Eq. (I1.58), which we used to construct observables.

The quantity formally referred to as the mean number of particles in this state is determined
by the following trace:

T [N A{B )] = 3 B

However, this is not a strict physical particle number, as it can generally take complex val-
ues. Notably, the normalization coefficient e~ 2B in Eq. (II1.6) can be interpreted as the
exponential of the negative of the “mean number of particles.”

Remarkably, the vector |A({5;;}))) is an eigenstate of the operator TN, where T is defined
in Eq. (I1.67). The corresponding eigenvalue is the “mean number of particles.”

Applying the bosonic superoperators combined with the factors of NEY2 results in the
following expressions:

ooV 5 IAUBS DY = Bra U85, 2Bl I8 = (5 + 55 )IAUBS D,

These expressions lead directly to the replacement rules provided in Eq. (II1.8). Neglecting the
factors of N¥1/2 changes these properties, for example:

bpa (LB 1)) = —22 A ({83 })),

VN +1

and the trace of this expression will no longer simply result in 3,4, as in Eq. (IIL.7).

Standard Displacement Operator

Let us explore an alternative definition for the A-supervectors. Specifically, we can construct
them without the additional factors of N ~/2, similar to the traditional non-normalized coherent
states in Hilbert space:

M
A1) = exo| 3 iy b | Ivac). (1L47)
i,j=1
Using basis of these supervectors as an ansatz for the density matrix has the advantage of
yielding simple expressions under the action of bosonic superoperators:
0
aqu

However, computing expectation values requires evaluating the trace of these supervectors, which
has the following cumbersome form:

bpg A8 1)) = By AL 1), b, IA({Bi 1)) = =— [A{ B 1)) (I11.48)

~ 0 N
CICUEIEDY (Bu + oz jﬁ”m | (IT1.49)

This function of {f;;} appears in all expressions for averages as an additional weight function.
The series on the right-hand side requires an extra 1/v/N! factor to converge to the exponential
function. In fact, if we introduce this factor into definition (I11.47), the original supervectors
from Eq. (II1.6) are recovered, up to normalization:

1

_ M
T A = xp[zﬁ} AL D)
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This suggests that the originally proposed ansatz in Eq. (II1.6) is a properly normalized, gener-
alized coherent state expansion.

One might consider incorporating the normalization in Eq. (I11.49) directly into the definition
in Eq. (I11.47). While this simplifies the expressions for averages, it complicates the application
of bosonic superoperators, specifically:

o RUAD) _,  AUAD) 1150,
T[AGBIN] e A8 )]

oIR8 :{ o, TV tl\A<{5ij}>>>]} IR
"R D T AN S T A D))

With these transformations, deriving a simple Fokker-Planck equation becomes problematic.
This highlights that the supervector in Eq. (II1.6) provides an elegant and straightforward
approach for deriving the Fokker-Planck equation and finding observables.

(I11.51)

5.2 Non-Normalized A-Supervectors

As discussed in the main text, the normalization coeflicient e™ 225 in Eq. (II1.6) introduces
Kronecker deltas into the replacement rules in Eq. (II1.8). Without normalization, the creation
superoperators generate only the derivatives of the P-function. In this section, we investigate
the properties of the non-normalized A supervectors.

We neglect the normalization coefficient e™ 22:Bii and replace it with e ™"V, where 7 is defined
in Eq. (IT1.15). This choice aligns with the variable transformation in Eq. (III.14), where all
variables are linear in n. Simply removing the normalization might lead to issues, as discussed
later in this section.

The definition for the new A-supervectors is the following:

M
Jlﬁ > Bij BL} vac) = e NI B A, (IL52)
ij=1

where the second equality establishes the connection to the original supervectors in Eq. (II1.6).
We propose the following ansatz for the density matrix:

N ({8})) = exp| - n +

M

o) = [ TI85) P/ ({85}, 0) IN (8- (11L.53)

,j=1

The new probability density function P’ is related to the original one in a manner similar to the
connection between the A-supervectors.
The following replacement rules hold for the P’ function:

oo VI 19(0)) —> By /({131 1), jﬁ Bl 1o(6)) — —8gpq P({Bi}0):

These replacement rules lead to a Fokker-Planck equation similar to the original one in Eq.
(III.10a), but without the nonlinear drift term:

OPUBGHY _ 5™ [cha((55) P81}, )

p,q
1 0?2

+ 2,,,(%;@, DBy OBy [@pqpfq/ ({Bi;}) P'({Bi;} t)} . (IIL54)

Although the nonlinear drift contribution seems absent, its effect is actually reintroduced through
an additional weighting function when averaging, arising from the trace of the A’-supervectors.
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Let us calculate expectation values using the P’ function. Referring to the relation between
stochastic averages and quantum-mechanical expectation values in Eq. (II1.9), we obtain the
following relation:

Z Tr [6u1,q1p1 e Ougaxpi ﬁ(t)]

B FlK
M
/H (d2/8ij) Bpl‘ll ﬂpK‘ZK e_nN—’—Ei P Pl({ﬂij}’t)
ij=1
— i . (IIL.55)
/H (d2Bi3) e N+ 2B P35} )
ij=1

Next, we perform a change of variables as outlined in Eq. (II1.14), reformulating the P’ function
in terms of the transformed variables. After this step, all statistical properties at ¢t = 0 are
explicitly embedded in 1. Consequently, it becomes necessary to include averaging over 1, which
effectively replaces the averaging over the initial conditions. The explicit expression for the
transformed average is provided in the next section; see Eq. (I11.58).
Let’s examine averaging over 7. When we substitute 3;; with nN 3/

of the following form: ij>
<€inw(1—2i /3;,-)> - [1 4 (1 _ Zﬂi’i)}]-v

When the primed variables are close to a physical density matrix, the sum Y, 8/, approaches
unity, causing this average to approach unity as well. However, if we omit the factor of e~V in
Eq. (II1.52), this average becomes:

<63F77N Ziﬁz‘/i> — (1 - ZIBZ’J{V

we encounter averages

which can be close to zero, potentially leading to division by zero when normalizing expectation
values. Therefore, the inclusion of the factor e is not merely a cosmetic adjustment, but
helps to avoid such complications.

5.3 Elimination of 7

In this section, we outline the steps required to eliminate 7 from both the initial conditions
and the stochastic equations. The approach uses the representation of the non-normalized A-
supervectors in Eq. (I11.52) and the associated Fokker-Planck equation in Eq. (I11.54).

We start by changing variables as described in Eq. (I11.14):

Bpg = NN By (I11.56)

This transformation redefines the function P’ in terms of the new variables Béq, but we keep
the same notation, P’ = P'({8/;},t). At time ¢ = 0, this function becomes independent of the
n-object, and the variables 3/, (0) are deterministic numbers.

The Fokker-Planck equation for the new function P’ has the same structure as Eq. (I11.54).
The corresponding It stochastic equations are given by:

dﬁfft(t) = g ({B1;(1)}) + Fpa({B7;(D)}), (ITL57)

which are entirely free of 5. Thus, the function P’({$;;},t) is independent of 7.
The n-object reemerges during the calculation of averages. Revisiting the average in Eq.
(IT1.55), we change the variables as in Eq. (II1.56) and reformulate the P-function in terms of
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the primed variables:

Z Tr [6M17q1p1 o Oprcarpx ﬁ(tﬂ

P17 FUK
M
JIL@50) B - B (0¥ MO0 PG50
= NK 2% , (IIL.58)
/ I @) (e 0-Z0) P
4,j=1

where (...), denotes averaging over the n-object, whose statistical moments are defined in Eq.
(IT1.15). We can explicitly average over 7, yielding:

Z Tr [6u1,q1p1 o Opgearpi ﬁ(t)]
1 F R

w ! I (2 ) g gl SN PG
- (N_'K)! ti=l . (IIL59)
/H 28’ 8l) Nan B! P81 1)

1,=1

Note that averaging out 7 did not affect P'({8/;},?) or the associated Fokker-Planck equation.
Equation (IT1.59) shows that quantum expectation values are represented by the variables
Bl-’j / >°: Bf;. However, this change of variables cannot be directly implemented, as the weighting

function e 22 A4 () depends only on the primed variables.

The weight ™ I3~ B4® introduces further challenges. It increases computational complexity
when calculating averages and may affect convergence, as it reintroduces the nonlinear drift
term via statistical correlations. To eliminate this weight, we incorporate it into the probability
density function, defining a new function P”:

P"({B},1) = NI 2B P({]}, 1), (ITL.60)

which removes the weighting function from Eq. (I11.59). This transformation modifies the
properties of the stochastic variables, which are now governed by equations associated with the
new function P”. To reflect this change, we denote new variables as pj;.

From the definition of P"({p{;},t), we derive the corresponding Fokker-Planck equation:

PPN 5 0 o)+ 20y 5 Tl )P U110

sssn

28’8

pqpq qu

[ Doapq {935 1) P ({03}, t)}

Compared to the original Fokker-Planck equation in Eq. (III.10a), the nonlinear drift term
reappears in a modified form, while the other terms remain unchanged. The corresponding It
stochastic equations are:

d /
Pal) _ o oty +

N
ﬁ Z -@pqnn({p;j )} + qu({/’;j (t)},1).
slFss n
These equations retain the structure of Eqs. (III1.11), but with a modified nonlinear drift term.
Quantum expectation values are found as averages over statistical realizations of p;,q(t):

N! Poias ) Phrear (1)
Z Tr [6uqap - - Opscanpi P()] = < L ... KK >
b b _ ' ] ,“ ' /“

M1 FEUK (N K) E i pu(t) E i P (t)
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This formulation motivates the following final change of variables:

o) = L0
P Y pls(t)
To derive equations for the new variables p,,(t), we employ It6’s lemma, which states that

the total time derivative of a function ®({p;;(t)},t) of stochastic variables gains an additional
term due to correlations between them:

(I11.61)

82
/ appqapp q

do (I)dppq 1
dt Zap RIS

q 2,409

Dpap'a’- (IIL.62)

Applying It6’s lemma to the variables pp,(t) in Eq. (II11.61), we derive the following stochastic
equations:

dppq(t)

208 — ({1 + (N = 1) S Fygmn ({015 (6)})

+ qu({Pij( — ppg(t Z Fis( {sz b ).

These equations are discussed in the main text, see Eq. (III.17a) and subsequent discussion.
This completes the process of eliminating the n-object and deriving the stochastic variables for
N particles.

Notably, the appearance of additional noise terms changes the diffusion matrix of the Fokker-
Planck equation, which now becomes:

Dpap'q = Z (5np Ogt — One ppq)gpqp’q’ (5n’p’ Ogrer — Oprer pp/q’)-

1 pr
nmn' Ll

5.4 Stochastic Drift Gauges

In this section, we discuss stochastic drift gauges from the perspective of the Fokker-Planck
equation [101]. We begin with the probability density function P({z;},t), which satisfies the
Fokker-Planck equation:

PR = 5 0 (ol P 0] + 5 5 5225 [t PG} 0]

where Zpq({zi}) = Zgp({xi}). The concept of stochastic drift gauges involves modifying the
drift components and introducing a weight function to compensate for these changes. Since we
are only concerned with averages, these modifications are designed to leave expectation values
unaffected.

We introduce a new function P({z;, Cy},t), which includes an additional variable Cjy and
relates to the original function via the integral over Cy with the weight e©0

P({z:),1) = / d2Cy €% P({x;,Co), t). (ITL.63)

By construction, the average of any function f({z;}), independent of Cj, remains unchanged
regardless of the probability density function used:

/H 2) f({z:}) P({wi},1) /d200/H ) €% f({ai}) P({xi, Co}, 1)
/H x;) P({x;},t) - /dQCO/H x;) ec0 P({z;,Cp},t) .

In stochastic equations, the factor 0 assigns specific weights to trajectories.
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To ensure identical expectation values for P({z;},t) and P({z;, Co},t), the latter must sat-
isfy a specific Fokker-Planck equation, which permits freedom in choosing the diffusion matrix
elements, Z,({z;}), between z; and Cy. These functions should be independent of Cy. Then,
the Fokker-Planck equation for P({z;,Cp},t) has the form:

OPUai ok ) _ > aa [{n{x:}) — Zp({x:})} P({s, Co}.1)]

9
~ 60 [ (@) Pt o} )
82

= > r,0m, |Zna{:}) P({wi, Co}, 0] + > 5y om, |Zy({a:}) P({x:, Co}. 1)
2
+5 5637 Pz o)1)

where 2({z;}) = —24/({x;}). The functions Z,({z;}), which modify the drift of the original
variables {z;}, are freely chosen. The functions Z({z;}) and .7 ({x;}) are derived from the noise
terms in the equation for Cp(t).

The original stochastic equations associated with P({x;},t) are:

dzp(t)
dt

= ({zi())) + Fy{zi(0)), 1), (I1L.64)

where noise terms satisfy (Fj,({;},t) Fyy ({z},t")) = Dpp ({xi}) 6(t —t'). When transitioning to
the new function P({xz},Cp},t), the equations transform into:

dx;,(t) (! , ,
20 (0N ~ Zo{0) + B({al0)},1), (10 650)
T _ o (4(0))) + P00}, (11L65b)
with noise correlations:
(Fy (i}, 0) By (), 1)) = Ty ({21 800 — 1), (1L 650)
(F (1) Fy(fag), 1)) = Fy({al}) ot 1), (I1L650)
(Ul ) P, 1) = 24/ ({21) 60— ). (11L650)

The averages using old and new variables are connected as:

.’L'/ eCO(t)
(f{z()})) = Ul gé?o}(t)» >, (I11.65¢)

where the brackets (...) denote averaging over the respective stochastic realizations.
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Chapter IV

Conclusion and Outlook

In this dissertation, we developed and tested two theoretical frameworks for modeling coop-
erative emission in many-body quantum systems. The first, based on the second quantization
of density matrices in Liouville space, provides a computationally efficient method for study-
ing permutation-invariant systems with incoherent processes, enabling the analysis of small to
medium-sized quantum systems.

Building on this foundation, the second framework extends the positive P representation
to open systems of emitters. By describing the dynamics in terms of phase-space variables, it
removes the dependence of computational complexity on the number of emitters. This approach
enables the sampling of quantum expectation values through stochastic trajectories, making it
well-suited for analyzing macroscopic, realistic systems.

A key limitation of the stochastic approach is its numerical stability. Noise terms are effec-
tive when they act as triggers and push the system toward a predominantly semiclassical regime.
However, if the noise terms have a dominating effect, they can destabilize the equations, lead-
ing to incorrect averages. As a result, while the mapping between quantum and stochastic
descriptions is theoretically exact, the stochastic framework is not exact in practice.

Several opportunities to extend our second-quantization framework are discussed through-
out the main text. In Sec. 4.1 of Chapter 11, we show how fermionic states can be constructed
using bosonic superoperators. Sec. 4.4 illustrates how the framework can be used in analyzing
correlations within ensembles of identical particles, offering a potential tool for quantum in-
formation applications. Additionally, Sec. 4.3 extends the formalism to non-identical particles
and Bose-Hubbard models. While the framework provides limited computational advantages in
these cases, it can be combined with other approaches, such as tensor networks [172,173], or
integrated with stochastic methods, as discussed in Chapter I11.

The extension of the stochastic method to spatially distributed systems is discussed in Secs.
3.5 and 3.6 of Chapter III. However, the solution is inexact due to the extreme instability of the
weight function, which was omitted from our calculations. This omission may introduce errors
in the initial stages of the process, where spontaneous emission plays a defining role. These
issues become more pronounced in multi-color processes, as stabilizing the fields for different
carrier frequencies is necessary. Neglecting the weight function in such cases leads to greater
inaccuracies. Nonetheless, for two-band level structures, Ref. [198] presents a refined approach
that provides a perturbative treatment of the noise terms. This method avoids instabilities and
produces reliable results when the noise terms are small compared to the dissipation rates or
stimulated emission.

A possible improvement to the stochastic approach involves finding an appropriate gauge
to stabilize trajectories when encountering subradiant states within compact systems. These
steady states, which represent many-body dark states, are of significant interest in quantum
information applications due to their long-lived nature [157,202]. Moreover, this class of steady
states can potentially be exploited to engineer non-stationary dynamics [156]. While the second-
quantization method reliably captures subradiance, the stochastic equations we analyzed fail in
this challenging regime.
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CONCLUSION AND OUTLOOK

For similar reasons, stochastic equations for systems of emitters interacting with a few quan-
tized cavity modes achieve stability only in cavities with high loss rates. This creates an op-
portunity to analyze open Dicke models within the stochastic approach. However, capturing
strong-coupling effects requires a more effective regularization, which remains an open question
in terms of both existence and practical implementation.

Exploring alternative phase-space representations is an intriguing avenue for future research.
Identifying a suitable unity expansion within the Liouville-Hilbert space would enable the con-
struction of various representations for the density matrix supervector, analogous to conventional
phase-space distribution functions. Investigating the potential advantages and challenges of such
representations could provide valuable insights. However, this research lies beyond the scope of
this dissertation.

In all applications of the stochastic methodology, we have assumed fully factorized initial
conditions. This means that, at the initial moment, all emitters are uncorrelated, the field
modes are uncorrelated, and no correlations exist between the emitters and the fields. If the
initial state includes correlations (e.g., non-classical states), the method must be generalized to
account for them. This generalization would require determining appropriate distributions for
the initial states and developing efficient sampling techniques.

Beyond the examples discussed in this dissertation, our stochastic method holds promise for
modeling non-Markovian dynamics in high-dimensional systems, for example, as in Ref. [203].
The method significantly reduces the number of degrees of freedom, enabling parallelized compu-
tation. Unlike existing approaches to solving non-Markovian stochastic Schréodinger equations,
which typically model the bath stochastically, our method reformulates all degrees of freedom
through stochastic sampling. However, challenges related to unstable realizations may still arise.

While we have primarily focused on superradiance, subradiance, and cavity dynamics, it
would be intriguing to model quantum systems strongly driven by quantum light sources, in-
vestigate other nonlinear x-ray phenomena such as collective electronic Raman scattering in
molecules, and explore practical applications like pulse shaping or light generation through non-
linear crystals. Additionally, it would be interesting to determine whether these methods can
offer new insights into Bose-Einstein condensates, which have already been extensively studied
using stochastic equations [102].

Overall, this work represents a significant effort in analyzing and developing broadly appli-
cable methods. In its current form, it can be used to model superradiance and cavity-mediated
dynamics, enabling, for example, the simulation of superradiant lasing operating in various
regimes. Its applicability extends to ensembles of dipole-dipole interacting emitters arranged in
arrays or lattices, as well as single-photon superradiance.

We hope these methods will be useful in many problems beyond those addressed in this
dissertation, and we wish good luck and inspiration to those striving to break the curse of
dimensionality and regularize stochastic trajectories.
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