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Abstract

This dissertation investigates the role and integration of the sense of touch in multimodal robot
environments. The objective is to utilize tactile data in different application areas and to in-
vestigate how and where it can be employed in a useful way, always in conjunction with other
modalities.

In the initial phase, tactile data is used to gain deeper insights into the robot’s surrounding
environment. In one experiment, the robot combines tactile information with acoustic data to
classify the contents of different containers. The objective is to investigate whether tactile data
is as effective as acoustic information in achieving a comparable success rate and whether the
combination of both modalities improves the results. Furthermore, the robustness of the classi-
fication in the presence of background noise will be investigated.

In the next step, the sense of touch is combined with proprioceptive data for the purpose
of analyzing the intrinsic state of the robot. In this experiment, the robot is equipped with an
underactuated gripper with an unknown joint state configuration. With the help of tactile sensors
on the phalanges and position data from the motors, it is possible to reliably estimate the state
of the gripper.

Once the robot has gathered information about the environment and its own condition, the
human is integrated into the interaction. The third research phase is concerned with the effective
and simple presentation of tactile data to humans. To this end, a robot-independent teleoperation
system is developed that employs Mixed Reality and Virtual Reality glasses for the control of
arm poses and gripper states and for the provision of feedback. In a study, participants control
a robotic arm, perform manipulation tasks, and receive feedback on tactile data in the form of
visualizations and acoustic signals.

In the final stage of this thesis, a custom haptic display is designed and constructed, which
produces haptic feedback within a Virtual Reality environment. The device is capable of po-
sitioning various objects on a table in a manner that aligns with their virtual representations
within the virtual environment. This enables users to perceive not only the virtual objects but
also to physically interact with them through haptic feedback, thereby enhancing the immersive
experience in Virtual Reality.
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Zusammenfassung

Diese Dissertation untersucht die Rolle und Integration des Tastsinns in multimodalen Roboter-
umgebungen. Ziel ist es, taktile Daten in verschiedenen Anwendungsbereichen zu nutzen und
zu erforschen, wie und wo sie sinnvoll eingesetzt werden können – stets in Kombination mit
anderen Modalitäten.

Im ersten Schritt werden taktile Daten verwendet, um mehr über die Umgebung des Roboters
herauszufinden. In einem Experiment kombiniert der Roboter taktile Informationen mit akustis-
chen Daten, um den Inhalt verschiedener Behälter zu klassifizieren. Der Fokus liegt dabei auf
der Frage, ob taktile Daten eine vergleichbare Erfolgsquote wie akustische Informationen erzie-
len und ob die Kombination beider Modalitäten die Ergebnisse verbessert. Darüber hinaus wird
untersucht, wie robust die Klassifikation gegenüber Störgeräuschen ist.

Im nächsten Schritt wird der Tastsinn mit propriozeptiven Daten kombiniert, um den intrin-
sischen Zustand des Roboters zu analysieren. In diesem Experiment ist der Roboter mit einem
unteraktuierten Greifer ausgestattet, dessen exakte Konfiguration unbekannt ist. Mithilfe tak-
tiler Sensoren an den Fingergliedern und Positionsdaten der Motoren gelingt es, den Zustand
des Greifers zuverlässig zu erfassen.

Nachdem der Roboter Informationen über die Umwelt und seinen eigenen Zustand gesam-
melt hat, wird der Mensch in die Interaktion integriert. Der dritte Forschungsabschnitt unter-
sucht, wie taktile Daten dem Menschen effektiv und einfach präsentiert werden können. Dazu
wird ein roboterunabhängiges Teleoperationssystem entwickelt, das Mixed-Reality- und Virtual-
Reality-Brillen sowohl zur Steuerung von Armpositionen und Greiferzuständen als auch zur
Bereitstellung von Feedback nutzt. In einer Studie steuern Teilnehmende einen Roboterarm,
führen Manipulationsaufgaben aus und erhalten Rückmeldungen zu taktilen Daten in Form von
Visualisierungen und akustischen Signalen.

Im letzten Schritt wird ein haptisches Display entworfen und konstruiert, das haptisches Feed-
back in einer Virtual-Reality-Umgebung bietet. Das Gerät kann verschiedene Objekte auf einem
Tisch so positionieren, dass sie mit den virtuellen Darstellungen in der VR-Umgebung überein-
stimmen. Dadurch können Nutzer die virtuellen Objekte nicht nur sehen, sondern auch physisch
mit der kompletten Hand ertasten, was die realistische Erfahrung in der Virtual Reality erheblich
verbessert.
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1 Introduction

1.1 Motivation

Most people do not realize the importance of the ’sense of touch’ in everyday life. It is only
when the sense of touch is no longer functioning that we become aware of the extent to which it
enables us to interact with our environment, to perceive objects, to operate machines, and even to
perform simple tasks such as getting dressed in the morning. This experience can be replicated
by placing the hands in ice-cold water until they become numb. Even simple actions which were
previously carried out without difficulty, such as operating a smartphone or opening a sweet
wrapper, suddenly become challenging [1]. In 1984, Westling and Johansson [2] conducted an
experiment in which they anesthetized the skin of participants, thereby ensuring the absence of
the sense of touch. They then had the participants perform simple tasks, such as holding objects.
Despite the participants’ ability to utilize all their other senses and observe their actions, it was
observed that the candidates had difficulty in making precise movements and maintaining the
stability of the objects.

The same issue also applies, to a certain extent, to robots. In contrast to humans, robots can
be customized and designed for specific purposes. For example, a robot can be equipped with an
infinite joint for stirring coffee, which is not a feasible feature for a human. The human visual
system comprises two eyes, which enable the perception of space. However, as shown in [2],
this is not stable without the additional input of the sense of touch. A robot can be equipped with
a greater number of visual sensors, including depth cameras, infrared cameras, or laser scanner,
independent of the location as in the robot’s head or in the wrist. With a camera in the wrist,
a grasp can be monitored with millimeter precision. Nevertheless, it may be the case that this
sense is of no benefit, for example due to occlusion. Robots, just like humans, benefit from
the tactile sense in order to sense contacts with greater precision, for example when grasping,
in order to observe features such as pressure, contact point, and slipping. Furthermore, object
characteristics can also be perceived with greater accuracy with the sense of touch, such as
weight, stiffness, or how the surface feels and how it behaves [1].

The significance of tactile sensors in robotics was first acknowledged in the early 1980s [3],
with initial surveys indicating considerable promise for their application in this field [4, 5, 6].
Meanwhile, tactile sensors have reached a point where they integrate multiple sensors to perceive
not only contacts but also other properties, such as temperature or stiffness [7]. The development
of a sensor that is capable of matching human performance in all aspects remains a challenge.
While individual requirements can be met or surpassed, a sensor that outreaches the human sense
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1 Introduction

of touch is not yet developed, to the best of our knowledge. It is unclear whether this will ever
be possible.

When we talk about ’multimodal robot environments’, on the one hand, the environment in
which robots interact is meant. This contains a range of scenarios, including the operation of ser-
vice robots. The robots are required to move around in a domestic environment and interact with
the same objects and tasks as humans do. They must respond to a wide range of stimuli and ful-
fill resulting tasks, including untidy apartments, dirty dishes in the kitchen, meal preparation and
setting the table, and, last but not least, interacting with people or even animals. To accomplish
these tasks, robots must utilize all their senses to perceive the complexity of the environment
and carry out the necessary actions. On the other hand, the term ’multimodal robot environ-
ments’ contains the numerous sensor possibilities that can be integrated into a robotic system,
enabling the perception and interaction with the aforementioned stimulus-rich environment. In
this context, sensors are designed to emulate the functions of human senses, such as cameras,
tactile sensors, and microphones. However, modalities that are not available to humans, such as
laser scans or thermal images, can also be used.

Tactile sensors can assist in perceiving a multimodal environment, whether in the analysis of
objects, grasps, the intrinsic values of the robot, or in interactions with humans or other robots. In
an ideal scenario, this is done together with other modalities. What happens when other senses
are unavailable? Can the robot rely exclusively on its sense of touch in such circumstances?
These are the questions that motivates this thesis and are addressed by scientists in recent years.

1.2 Aim of this Thesis

As we have just seen, tactile sensors have been getting more attention in the field of robotics in
recent years. The value that these sensors offer is recognized by scientists, who are integrating
them into their systems. In the domain of robotics, the applications of these sensors can be
broadly classified into five categories:

1. Grasp and manipulation tasks – Here, tactile sensors are used for two purposes [8].
Firstly perception for action, tactile sensors are used to control the quality of the grasp, in
terms of force applied, contact points, slip detection, or even dexterous manipulation [9,
10]. Secondly, in action for perception to determine the properties of grasped objects,
such as shape, classification, surface properties, stiffness, or temperature [11].

2. Self-perception – Tactile sensors can be used to sense the robot’s proprioception. Further-
more, the sensors can also be used to detect unwanted external factors, such as collisions
with obstacles and the stress placed on individual robot components [12].

3. Feedback – To enable better interaction between humans and robots or robots and robots,
tactile sensors can be used to provide feedback. The robot can do this through direct
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1.3 Fundamental Questions and Contributions

contact with the communication partner, in the form of haptic feedback, or through non-
contact provision of information such as verbal communication or visualization [13]. Fur-
thermore, this is also used for user interfaces, such as teleoperation in surgical applica-
tions.

4. Quality assurance – Tactile sensors can also be used for quality assurance, for example
for material inspection, the measurement of gap dimensions in manufactured products, or
alignment and positioning in manufacturing lines [14].

5. Navigation – Another area is the use of tactile sensors for navigation purposes. However,
it should be noted that these applications primarily use contact or bumper sensors, which
typically incorporate binary sensors. A simple example is the bumper of robot vacuum
cleaners. In such cases, a contact sensor is often sufficient to fulfill the mapping and
localization tasks required for navigation [15].

The aim of this thesis is to explore some of these fields of application and investigate how
tactile sensors can be used in combination with other modalities and whether tactile data can
provide added value to the application or experiment. To narrow the focus a bit, this thesis will
concentrate on the first three categories. The subject area of navigation will be excluded, as
this subject area relates less to tactile sensing and more to methods for mobile robotics as of
navigation, localization, and path planning. However, for the sake of completeness, this topic
should be mentioned. Furthermore, the issue of quality control is not addressed in this work.
While the potential of tactile sensors is significant, they are not currently suited to the existing
robots in our laboratory, but would be an interesting aspect for future work.

This thesis will examine the potential of tactile data in object analysis, with a particular focus
on object content classification (category 1). Furthermore, tactile sensors have been employed
for the purposes of grasp control [9] and slip detection [10] (category 1), as I was involved in
these papers as a co-author, these works are mentioned here but not considered in more detail
in the rest of the work. Tactile sensors are also utilized for proprioception in robotic grippers
(category 2). In order to provide feedback, our robots are integrated into Mixed Reality (MR)
and Virtual Reality (VR) environments. This integration provides visual and acoustic feedback
of tactile readings on the one hand, and direct haptic feedback to the user on the other (both
category 3). The resulting fundamental questions and contributions are explained in more detail
in the following section.

1.3 Fundamental Questions and Contributions

The objective of this work is to utilize the tactile sense in as many areas of the robot’s environ-
ment as possible, both for the robot in isolation and in interaction with humans. This resulted in
the following research areas and fundamental questions we want to address in this thesis:

3



1 Introduction

FQ1 Environmental Sensing – Can tactile sensors add value to the exploration of the envi-
ronment and contribute to its robust recognition? How do they perform in comparison to
and in combination with other modalities?

FQ2 Intrinsic State Analysis – Is it possible to use tactile sensors to infer intrinsic informa-
tion about the robot? In a scenario in which the state of the robot is partially unknown, it
would otherwise have to be equipped with sensors that can measure the joint state. Can
this be compensated by the use of tactile information?

FQ3 Augmenting Human Perception – To what extent can humans be supported in inter-
action scenarios with the robot by communicating tactile information? What is the opti-
mal way of presenting this tactile data and and whether a multimodal approach would be
beneficial?

FQ4 Haptic Feedback – In a human-robot interaction scenario, is it possible to let the robot
provide humans with meaningful haptic feedback to improve usability and the quality of
the experience?

1.4 Structure of this Thesis

The remainder of the thesis is structured as follows:

Chapter 2 introduces the fundamentals of this work. It explains how the human sense of touch
is structured and the most important receptors. The most common tactile sensor tech-
nologies will be introduced, including their functions and applications. In all experiments
and studies, robots are used, which are operated with the Robot Operating System (ROS)
which is introduced. Furthermore, two studies employ the use of Mixed Reality (MR) and
Virtual Reality (VR). The taxonomy of the Virtuality Continuum (VC) is explained, as
well as Unity, the development environment used for the creation of applications for MR
and VR.

Chapter 3 describes the interplay between the tactile and acoustic modality in a classifica-
tion task. A robot classifies the contents of eight visually indistinguishable containers by
grasping and shaking them. The contents are classified on the basis of the vibrations and
acoustic signals generated in the process. The influence of the individual modalities on
the result is determined and evaluated.

Chapter 4 presents an approach for state estimation of a robotic gripper, integrating tactile
sensor data and proprioceptive data from the actuators. The gripper used is underactuated,
thereby the state of the states of the fingers are not known. A neural network is employed
to train a model on previously recorded ground truth training data, enabling the estimation
of the state of the hand from grasping sequences.
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Chapter 5 presents a MR teleoperation approach. Extended Reality (XR) devices are em-
ployed to track the pose of controllers or the user’s hands and transmit this data to the
end effector of the robot to control it remotely. One or two manipulators can be con-
trolled simultaneously to perform collision-free tasks. The performance, usability, and
user experience are being evaluated in a pilot study.

Chapter 6 introduces an Encountered-Type Haptic Display (ETHD), which provides the user
with haptic feedback in VR in order to perceive the virtual world even more realistically
and thus improve immersion. The design and construction of this display is presented and
evaluated in a user study. With this device it is possible to place different objects on a
conventional table for the user to explore.

Chapter 7 provides a summary of the thesis and highlights the key contributions. Furthermore,
ideas for future research questions and experiments are given.

1.5 Publications

The following list of peer-reviewed publications contains the main contributions to this disser-
tation. The first author was responsible for the main research, conceptualization, and writing of
these publications.

• Yannick Jonetzko, Niklas Fiedler, Manfred Eppe, and Jianwei Zhang. "Multimodal Ob-
ject Analysis with Auditory and Tactile Sensing using Recurrent Neural Networks" In:
Cognitive Systems and Signal Processing: 5th International Conference, ICCSIP 2020.
Zhuhai, 2020, pp. 253–265.

In a shaking experiment, we tested to what extent the tactile modality provides added value
to acoustic signals in the classification of pills in visually indistinguishable containers.
Not only the improvement of the accuracy performance was investigated, but also the
robustness against acoustic noise. (Chapter 3)

• Yannick Jonetzko, Judith Hartfill, Niklas Fiedler, Fangwei Zhong, Frank Steinicke, and
Jianwei Zhang. "Evaluating Visual and Auditory Substitution of Tactile Feedback during
Mixed Reality Teleoperation". In: International Conference on Cognitive Computation
and Systems (ICCCS). Beijing, 2022, pp. 331–345.

We present an approach to remotely control robots with XR devices. The possibility of
tracking the user’s hands with these devices and mapping the pose to robot arms is utilized
in order to control them. In a study, the influence of feedback on the measured tactile
signals of the robotic grippers in MR on the performance of teleoperation is investigated,
as well as how the usability and user experience change. (Chapter 5)
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• Yannick Jonetzko, Oscar Ariza, Susanne Schmidt, Niklas Fiedler, and Jianwei Zhang.
"Encountered-Type Tabletop Haptic Display for Objects On-Demand in Virtual Environ-
ments". In: 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO).
Samui, 2023, pp. 1–7.

In this work, we present an Encountered-Type Haptic Display (ETHD) for haptic feedback
in Virtual and Augmented Reality. An X-Y-Z-Yaw plotter is mounted below a regular ta-
ble, equipped with four magnets at the end effector. The mechanism is capable of moving
a magnetic object on the top of the tabletop and place it with an accuracy of 0.5 cm in a
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2.1 Biological Sense of Touch

Before looking into tactile sensors, it is important to understand the various terms of the human
sense of touch. Loomis and Lederman [16] and Klatzky and Lederman [1] distinguish between
cutaneous and kinesthetic senses. The cutaneous sense involves stimuli of the receptors and the
associated nervous system in the skin. In contrast, the kinesthetic sense perceives the static and
dynamic body posture of muscles, tendons, and joints. According to Loomis and Lederman [16],
Klatzky and Lederman [1], and Dahiya et al. [8] these two senses provide the basis for our sense
of touch specified as tactual perception. This tactual perception is divided in tactile, kinesthetic,
and haptic perception. Tactile perception refers to stimulation solely of the cutaneous sense al-
lowing to perceive information like temperature, force, or vibrations. Kinesthetic perception, as
the name suggests, refers to the kinesthetic sense alone, allowing to perceive the body position
and joint torques. This information can be used to collect knowledge about the shape, stiffness,
and weight of objects. The combination of cutaneous and kinesthetic sense forms haptic percep-
tion. A visual graph of the human haptic system can be seen in the left part of Figure 2.1 [17].
When talking about the human sense of touch, most actions fall into this category.

To understand how the human anatomy of the skin, which is responsible for the cutaneous
part of the haptic system, is organized, we can take a look at Figure 2.2 from Dahiya et al. [8].
A cutaneous receptor is a sensory receptor located in the skin all over the body, either in the
dermis or epidermis. These receptors are integral to the somatosensory system. They include
mechanoreceptors, which detect pressure or distortion; nociceptors, responsible for sensing pain;
and thermoreceptors, which respond to temperature changes. We are mainly interested in the
mechanoreceptors, which can be further subdivided into four categories: Pacinian Corpuscle,
Ruffini Corpuscle, Merkel Corpuscle, and Meissner’s Corpuscle. Meissner’s Corpuscles are
characterized by their ability to react to changes in pressure and enabling them to perceive small
vibrations and slips. This quality has led to their classification as Fast Adaptive I (also Rapid
Adaptive I). These corpuscles are exclusively present in the hairless regions of the skin, with
a high density observed in the fingertips. The second type of corpuscle that responds to rapid
changes (Fast Adaptive II or Rapid Adaptive II) in pressure is the Pacinian Corpuscle (also
known as Vater-Pacinian Corpuscle or Lamellar Corpuscle). These are even more sensitive to
vibrations but have large reception fields. They are primarily located in the palms of the hands
and soles of the feet, as well as the proximal phalanges of the fingers and toes. On the other hand,
there are slow adaptive corpuscle. Merkel Corpuscle (also Merkel Cells or Merkel Discs) belong
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Figure 2.1: Haptic-Tactile-Process [17]

to the Slow Adaptive I types and react to static pressure. These cells have a small receptive field,
therefore an accurate spatial acuity, and are sensitive to even minor impacts. They are widely
distributed throughout the body, but are particularly dense in the fingertips. The second category
of slow adaptive cells (Slow Adaptive II), are Ruffini Corpuscles, also referred to as Bulbous
Corpuscles. These receptors are sensitive to static pressure and horizontal stretch. They are
distributed in the fingertips and also in joint capsules, where they register the position of the
joints and the speed of deflection. Consequently, they can also be classified to the kinesthetic
haptic systems.

These categories can also be applied to tactile sensors in robots, where there are sensors with
high resolution, sensors that react to vibrations, and sensors that can measure high forces. As
with humans, there are no sensors that can measure all types of tactile information.

2.2 Tactile Sensor Technologies

Tactile sensors are technologies that are capable of detecting touch, pressure, or vibrations (see
right side of Figure 2.1), among other stimuli, and subsequently converting them into electrical
signals. Such sensors are frequently employed in robotics and automation to identify objects,
ascertain their characteristics, or enable precise interactions.

As previously discussed, the human sense of touch can be divided into four mechanoreceptors
when it comes to perceiving contact. The receptors differ in terms of their response time, spatial
acuity, their ability to discern changes in pressure up to vibrations, and the pressure threshold at
which they become active. These factors and requirements can also be applied to tactile sensors
for the use in robotics. Also the various sensor technologies differ in this context and can be
partially attributed to the receptors. An overview of the advantages and disadvantages of these
technologies are listed in Table 2.1 from [18]. When integrating tactile sensors on robot plat-
forms, however, there are other requirements besides the selection of sensitivity, precision, and
reaction time. Depending on the application, the sensors must be particularly robust or flexi-
ble. Furthermore, the sensors should be energy-efficient, particularly in the context of mobile
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Figure 2.2: This graphic from Dahiya et al. [8] shows the in part (a) the location and classifica-
tion of mechanoreceptors. In (b) the tactile signal transmission is shown from the
fingertip to the brain, and in part (c) the event chain from stimulus to perception.
Furthermore, the graphic shows the tactile receptor types in the skin, and their prop-
erties like spacial acuity, stimuli frequency, and adaptation rate.

platforms. Since tactile sensors are mostly used to interact with the environment, they are of-
ten subject to wear and tear, so ideally the sensors should be cost-efficient, durable, and easy
to maintain. Tactile sensors often react to heat and humidity and provide different values in
different environments. In order to ensure accurate measurement, it is essential to calibrate the
sensors. In their review, Chi et al. [18] provide an overview of the most significant sensor tech-
nologies employed in the field of robotics. Some of these sensor principles are employed in our
own work, and thus they are presented and summarized here.

Capacitive – In a capacitive sensor, two electrodes form the plates of a capacitor whose capac-
itance can be measured. This can change, for example, by changing the distance between
the electrodes or if a conductive material comes close to them. One example of capacitive
sensors are touchscreens on smartphones. [19, 20]
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Piezoresistive – The basic principle of piezoresistive sensors is that the acting forces cause a
change in the electrical resistance. One example is that of strain gauges, where a thin con-
ductive metal is applied to a surface in a meandering pattern. This cable is then energized
and the voltage is measured. If the surface deforms, the resistance of the wire changes,
which can be measured. [21, 22, 23]

Piezoelectric – Piezoelectric materials generate voltage when deformed. This effect can be
used to build sensors. Polyvinylidene fluoride (PVDF) and its copolymers are the most
commonly used materials for these tactile sensors, as they are lightweight and easy to
process. However, a significant drawback of these sensors is that they are ineffective at
measuring static forces. Such sensors are often used as pickups in stringed instruments,
given their aptitude for measuring vibrations. [24, 25]

Optical – This category of tactile sensor employs light intensity measurement, using optical
fibers to ascertain pressure strength. One advantage of these sensors is that they exhibit no
interference in arrays. Camera-based sensors also belong to this category, where a small
camera is typically attached behind a deformable material which measures the deforma-
tion during contact. [26, 27]

Inductive – For this type of sensor, a coil is used to generate a magnetic field. Changes in this
magnetic field can be measured in order to draw conclusions about contacts or distances.
One advantage of this technology is that it is capable of measuring distances without
contact. However, a disadvantage is that it only works when used with conductive or
ferromagnetic materials. Such sensors are often used for precise detection and distance
measurement of metallic machine parts. [28]

Magnetic – Magnetic sensors are capable of measuring magnetic fields. This can be achieved
through the use of Hall sensors, which are able to measure the voltage that arises per-
pendicular to a current flow when a magnetic field is present. By molding a magnet in
silicone over such a sensor, a tactile sensor can be constructed. With this sensor, it is
possible to measure shear forces, besides normal forces. Otherwise, this type of sensor
requires a magnetic field in the contact to be measured, but also has the advantage that it
works without contact. [29, 30]

Binary – Binary tactile sensors are very simple and therefore favorable sensors that only mea-
sure whether or not contact is present. A simple example of this principle can be observed
in the end-stop mechanism of 3D printers, where a mechanical switch is activated upon
contact, which then closes a circuit and thus detects the presence of contact. Such sensors
are also frequently used in robotic vacuum cleaners.
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Table 2.1: An overview about advantages and disadvantages about standard tactile technologies
is given in [18]

Transduction Mechanisms Advantages Disadvantages

Capacitive

High sensitivity
High spatial resolution
Large dynamic range

Temperature independent

Stray capacitance
Complex measurement circuit
Cross-talk between elements

Susceptible to noise Hysteresis

Piezoresistive

Simple construction
High spatial resolution

Low cost
Compatible with VLSI

Hysteresis
High power consumption
Lack of reproducibility

Piezoelectric

High frequency response
High accuracy

High sensitivity
High dynamic range

Poor spatial resolution
Charge leakages

Dynamic sensing only

Optical

Good reliability
Wide sensing range
High repeatability

High spatial resolution

Non-conformable
Bulky in size

Susceptible to temperature or misalignment

Inductive

Linear output
High sensitivity

High power output
High dynamic range

Low frequency response
Poor reliability

More power consumption

2.3 ROS

The operation of our robots is based on ROS [31], which is an open-source middleware that
is widely employed within the robotic community. ROS provides a communication structure
between different software components, which are referred to as nodes and modularize the soft-
ware development for robots. Components can thus be developed individually and made easily
accessible to others. The communication is divided into three fundamental concepts. The first
variant is called topics, which offer n to n communication. Messages are sent asynchronously
from a node on topics and other nodes can listen as required. This functionality is employed, for
instance, in the context of sensor data. The sensor is not interested in whether and how many
are listening, the data is provided in one direction to the whole system. A further variant is that
of services, which is a synchronous blocking type of communication. A service is provided by a
server node, a client node can then send a request which is then processed by the server, that an-
swers at some point with a response. In the meantime, the client code is no longer executed. This
type of communication is typically used to change configurations or to trigger one-time actions.
A third method of communication is via actions, which are employed for longer-lasting, inter-
ruptible, or feedback-capable tasks. Actions offer extended functionality compared to services,
as they not only have a request and a response, but can also provide intermediate statuses during
execution. Actions also communicate via a one-to-one connection, whereby the client does not
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block but can asynchronously check the status and request a response. Actions are typically used
for the navigation of mobile platforms or the motion control of robotic arms. The registration of
topics, services, and actions is conducted with the use of designated names, thereby facilitating
the clear assignment of these elements. Communication requests are registered with the master,
which then establishes the connection.

In addition to the aforementioned communication tools, ROS offers a number of other po-
tentially useful applications, including RViz [W1], Gazebo [W2], and Plotjuggler [W3]. Such
tools can be used for the visualization of the entire robot, the plotting of data, and the simulation
of tasks. The modularization facilitates the exchange of information with other groups and the
integration of code on other robots.

ROS has a few shortcomings, it is not real-time capable and can only run on linux operating
systems [32]. The developers of ROS focused these problems by changing the whole architecture
and come up with ROS2 [33]. To accomplish the real-time requirement ROS2 uses the Data
Distribution Service (DDS) [34] for industry-standard real-time communication systems and
end-to-end middleware.

However, given that ROS2 is still a relatively new technology and the robots employed in this
research are operated with ROS1, we will always refer to the first version when we talk about
ROS.

2.4 Unity

In addition to robots and tactile sensors, XR was employed in some of our experiments. The de-
velopment of applications for VR and MR devices can be facilitated through the use of the game
engine Unity [W4], which was used in this thesis. Unity is a robust cross-platform development
environment for the creation of interactive 2D and 3D content, particularly for games, simula-
tions, and VR applications. The user interface is intuitive, the application programming interface
(API) is extensive, and the programming languages supported include C# and JavaScript. Unity
facilitates the integration of animations, physics, lighting, and audio. The resulting applica-
tions can be compiled into standalone programs, enabling their export and execution on external
devices, including smartphones and XR devices, without a connection to a computer. During
development, these applications can also be executed on the PC and transferred to the corre-
sponding device via cable, which significantly simplifies development with XR devices. ROS
cannot be executed directly on XR devices; thus, an interface between these systems is neces-
sary. Initially, scientists have implemented their own interface [35], but around 2018 Bischoff
[W5] provided the first open-source interface called ROS# for the community. Furthermore, this
enabled the importation of Unified Robot Description Formats (URDFs), messages, and services
into Unity, as well as the subscription to and publication on topics. Messages are converted to
and sent in JSON format, this has the disadvantage of slowing down the communication for
large messages. Furthermore, applications for Universal Windows Platform (UWP) and other
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XR environments were not compatible and could only be realized in a circuitous manner. A
few years later, Unity itself implemented an interface, the Unity-Robotics-Hub [W6]. This is
somewhat more lightweight and requires more steps for integration, but communicates directly
with TCP and is therefore significantly faster. Developing with XR devices also works without
any detours.

2.5 Virtuality Continuum

In the field of virtual environments, there are a lot of terms that are often blurred or used incor-
rectly in the literature. An overview of the taxonomy is provided by Milgram and Kishino [36],
the authors present the concept of the Virtuality Continuum (VC), which is shown in Figure 2.3.
It is often not entirely clear which term is the right one for a specific scenario, which is why
some terms are often used analogously to each other. In the following description, the most
important terms are clarified to prevent confusion.

Virtuality Continuum (VC) – This term describes the connection between a completely real
world and a completely virtual world, irrespective of the display devices employed. All
other terms in this list can be situated somewhere on this continuum. [36]

Real Environment – This includes the real world, which consists exclusively of physical ob-
jects. But it also includes videos that are played on conventional video displays. [36]

Virtual Environment (VE) – In comparison to the Real Environment, the Virtual Environ-
ment is the other extreme of the Virtuality Continuum. This is not bound to the display
device but rather describes a world created exclusively through the computer graphics. A
simulation presented on a monitor, for instance, also falls within this category. [36]

Virtual Reality (VR) – In Virtual Reality, the user is completely immersed in a synthetic
world using immersive Head-Mounted Display (HMD) and only interacts with this, no
longer with the real world. [36]

Augmented Reality (AR) – The term Augmented Reality is used when a real environment is
augmented with individual computer-generated objects. This technology is independent
of the displaying device. The user is able to perceive reality on a screen, for example, in a

Figure 2.3: The Virtuality Continuum first introduced by Milgram and Kishino [36].
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video, by wearing a see-through HMD or even a fully immersive HMD in which the real
world is projected. [36]

Augmented Virtuality (AV) – Augmented Virtuality can be defined as a situation in which a
predominantly virtual world is extended by the real world, either visually or through inter-
action. In this case, the user is wearing an immersive HMD. It is notable that this term is
rarely used in the literature, with the broader term Mixed Reality being used instead. [36]

Mixed Reality (MR) – The term Mixed Reality is a broad one, encompassing all combina-
tions of real and virtual environments. Especially in the gray area between Augmented
Reality and Augmented Virtuality, this term is used when a decision is difficult. This term
is completely independent of the displaying device. [36]

Extended Reality (XR) – Extended Reality is often used as an umbrella term for Virtual Re-
ality, Augmented Reality, and Mixed Reality. This includes everything on the scale of the
Virtuality Continuum except for the Real Environment, and, unlike Mixed Reality, also
includes the Virtual Environment. Independent of the device used. [37]
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In this section, the first fundamental question (FQ1) will be addressed, the objective is to use
tactile sensors in order to collect data from the surrounding environment of the robot. In the
following chapter, we will investigate the combination of tactile and audio modalities in a clas-
sification experiment.

People often rely on their visual sense when orientating oneself in the environment or distin-
guishing objects. If this sense is impaired, for example in the absence of light or for blind people,
the other senses become more important and it is crucial that we can rely on them. It is equally
important for robots to utilize different modalities to explore and interact with the environment.
This can also be observed in current research, where the gathering of multimodal information
is becoming increasingly important for the performance of tasks that are more robust than those
performed with just one sense. Nevertheless, the majority of publications on multimodal work
have visual information as one modality (e.g. [38, 39, 40, 41, 42]). In their scenario, Güler
et al. [43] demonstrate that vision and touch are equally effective for recognizing the contents
of milk cartons. This illustrates that there are scenarios in which the robot can rely on its senses
in a complementary manner. Furthermore, they show that multimodal use is even more robust,
particularly in instances where one modality is not functioning optimally. In most cases, tac-
tile sensors are in direct contact with the surface they are supposed to collect information from.
This may be the surface of an object being grasped [44, 45], or in more unusual task, reading
braille [46, 47].

In this work we want to focus on what happens when we cannot use the visual sense, for
example when identifying the contents of visually indistinguishable cans. Furthermore, in such
a scenario, there is no direct contact with the object or objects to be classified. The act of
checking whether a container is empty, whether it is a packet of chewing gum or a carton of
drinks, is a common human practice. However, to find out what is inside, we open the container.
This raises the question of whether it is possible for a robot to perform this task without opening
the container. The obvious idea is to use audio data for this purpose. However, since these are
often noisy in robot environments, particularly from loud fans, the question now arises, to what
extent the multimodal combination together with tactile data helps to enhance classification, or
whether it is even possible to achieve similar results with tactile data alone, as in [43]. This
brings us to the following research question:

Can a combination of tactile and audio data help to explore the environment by classifying
the content of visually indistinguishable containers?
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To answer this question, an experiment was conducted in which our robot grasps and shakes
a series of visually indistinguishable objects with different contents. The used sensor is inspired
by the human finger and is capable of measuring vibrations at over 1000 Hz [48]. In comparison,
the human finger measures vibrations at up to approximately 700 Hz [8]. Furthermore, the cans
are shaken directly in front of a microphone, specifically set up for this purpose, in order to
obtain data that is as noise-free as possible. The noise level will be added at a later stage to
facilitate more effective control. With this setup, training data is collected and neural networks
are used to train uni- and multimodal models.

This chapter is structured as follows. After the introduction, the related work with approaches
similar to ours is presented in Section 3.1. Section 3.2 describes the setup, including the robot
platform, sensors used, and experiment materials. We describe the classification approach in
Section 3.3, followed by the evaluation in Section 3.4 including an experiment, the results, and
the discussion. Section 3.5 summarizes the work in a conclusion and gives ideas for possible
subsequent.

3.1 Related Work

The central objective of this research is to conduct an analysis and classification of objects
within a can or capsule that are not directly accessible. This topic has been explored by nu-
merous authors, who have published a multitude of approaches which include unimodal and
multimodal combinations. Since the focus of our work is on tactile and acoustic classification,
these are also the focal points of our related research. However, there are also approaches that
are based exclusively on the visual modality. These typically employ transparent containers to
identify the content. A popular scenario is the recognition of the fill level of liquids in jars,
for which both conventional computer vision techniques and machine learning approaches are
utilized [49, 50, 51].

More often than the contents of containers, the properties of the objects touched are deter-
mined and analyzed. For example by analyzing audio signals when hitting objects [52, 53],
or with tactile data when stroking surfaces [54, 55]. Other authors have developed multimodal
approaches to classify objects by manipulating them with the robot [56].

3.1.1 Tactile Analysis and Classification

The first comparable experiment in which a robot explores the properties of the contents of an
object using tactile sensors was carried out by Chitta et al. [57] in 2011. In one experiment, they
used a mobile robot, to classify 4 different bottles and determine their internal state, whether
they were open or closed and whether they were filled with liquid. The bottles were placed
between the fingers and the gripper closed without moving the object. Several characteristics are
measured, such as the position of the gripper, the closing speed and the force measured by the
tactile sensor arrays of their robot. They tested a decision tree, a Support Vector Machine (SVM),
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and Neural Networks to classify the objects, with the decision tree performing best at 93.9 %.
It is not clear how important the tactile arrays are for classification. The classification of the
internal state depends strongly on the type of container, ranging from 94.8 % to 32.5 %.

In 2016, Chen, Snyder, and Ramadge [58] conducted an experiment in which they attached
a contact sensor to four different containers and classified 12 different contents, subsequently
approximating the number of these objects. The contact sensor is a contact microphone that was
attached to the outside of the containers and is capable of sampling vibrations at a frequency
of 5 kHz. A linear Support Vector Machine was employed to classify the classes with an ac-
curacy of 94 %. By attaching the sensor directly to the container, they were able to achieve a
high signal resolution with little noise. The selected classes differ significantly in size, weight,
material, and shape (e.g., ball bearing, acrylic piece, rubber ball). In [59], the authors also use a
contact microphone to estimate the amount and flow of granular material using recurrent neural
networks.

Saal, Ting, and Vijayakumar [60] present an approach to determine the viscosity of differ-
ent liquids in a bottle based purely on tactile data by shaking the bottle back and forth with their
robotic hand-arm setup. They vary the shaking frequency and rotation angle to speed up the esti-
mation. The force measurements of a three-finger gripper with 6 tactile sensor arrays and a total
of 486 taxels are used in their approach, the readout frequency is not specified. Using Gaussian
Processess (GPs), they approximate the non-linear function between sensor data, actions, and
viscosity, and adjust the shaking frequency using active learning. The three liquids water (1 cst,
0 (log10)), motor oil (120 cst, 2.07 (log10)), and glycerine (1200 cst, 3.07 (log10)), each 160 g in
identical bottles, are used to train the model. In this work, the content is not classified, instead
the viscosity is approximated. To test the model, a mixture with a viscosity of 1.47 (log10) is
also used and a mean squared error of 0.72 is achieved. Other works that use tactile sensors to
estimate liquids dynamics are [61] and [62]. Similar, but with rigid objects, Sundaralingam and
Hermans [63] learn the dynamics of rigid objects with modifiable center of mass.

In their study, Guo, Huang, and Yuan [64] present an approach for estimating four properties
of enclosed objects in identical containers. The aforementioned properties are content mass,
content volume, particle size, and particle shape. While mass and volume are determined using
a force torque sensor in the wrist, they use a modified GelSight sensor with a high-speed camera
(frame rate of 815 Hz) for the size and shape of the particles. The camera captures the move-
ments of 70 markers on a gel pad that exerts pressure on the container, subsequently averaging
over the 30 highest movements as principle vibration signal. The estimation of the parameters
is conducted through the utilization of Multi-Layer Perception (MLP). In total, 37 different
materials, ranging from fine flour to beans, were used, and the particle size was estimated with
a mean absolute error of 1.1 mm, the particle shape with a mean absolute percentage error of
75.6 %, the weight with an accuracy of 1.8 g, and the volume with 6.1 ml.
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3.1.2 Acoustic Analysis and Classification

One work in which the contents of capsules are classified, which forms the basis for our own
research is the work of Eppe et al. [65]. In their work, they utilize a NICO robot [66] to shake 10
relatively different materials within small capsules and classify them using audio signals, as well
as estimating their weight. In contrast to many other works, including ours, they do not rotate
the capsules to generate sounds, but instead move the arm back and forth in a jerky motion. The
audio data is preprocessed with Mel Frequency Cepstral Coefficients (MFCC), the type is then
classified with Gated Recurrent Units (GRUs) and the weight is estimated with Long Short-Term
Memorys (LSTMs). They achieved a mean absolute error for the estimated weight of 3.51 g and
an accuracy of 91 % for the classification.

In their study, Jin et al. [67] present a method for classifying objects using acoustic signals
in containers in open environments. To this end, the authors present and utilize the kernel k-
nearest neighbor algorithm in an open environment (OSKKNN). Initially, four standard machine
learning methods were evaluated in a closed environment, wherein 20 object classes in three
different containers were classified. Subsequently, the most effective algorithm, kernel k-nearest
neighbor (KKNN), is employed to identify unknown objects, and to subsequently learn and
classify these unknown objects with a second KKNN classifier. In this instance, the authors
use the same 20 object classes, split into 10 known and 10 unknown objects. In the closed
environment experiment, an accuracy of 85.5 % was achieved, while in the open environment, an
accuracy of approximately 83 % was attained. This indicates that the accuracy remains largely
unaffected despite the presence of unknown objects. It is notable that only specific classes
within the dataset are similar, and the extent to which the classification is enhanced by the use
of different containers remains unclear, as they are consistently assigned to a fixed class.

Liquids can also be considered as objects within a container. The estimation of dynamics
has already been described in the preceding section. In their study, Liang et al. [68] present an
approach to determine the fill level when pouring liquids into different containers using acous-
tic signals. They recorded a dataset comprising force and torque values, motion trajectories,
and images as people poured liquids. With recurrent neural networks, they were able to deter-
mine the fill level with an accuracy of less than one millimeter when pouring water. They then
successfully transferred the method to their robot.

3.1.3 Multimodal Analysis and Classification

In 2014, Sinapov, Schenck, and Stoytchev [69] used machine learning to learn object relations
with their robotic arm. They filled identical types of containers in 3 different colors with 4
different objects. In addition, they filled each material in three weight classes, so that a total of
36 containers could be recognized. The aim was not so much to learn every combination, but
rather to learn the relations, for example that container a is heavier than container b or has the
same color. They used three modalities: first, images of the object were taken with a stationary
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camera, then the object was explored with 10 manipulations of the robot using proprioceptive
data from the joints and a microphone to identify further features of the containers. Among
other things, they showed which modality can be used to determine which feature and which
exploration step is best suited for this.

In their work, Spisak, Kerzel, and Wermter [70] utilize three modalities of their robot to
classify containers and their contents, and evaluate the efficacy of different fusing strategies.
The robot is equipped with a fish camera in the head, tactile fingertips and proprioceptive data
from the joints. These modalities are fused in three different approaches, which are evaluated
and compared. In the first approach, three individual classifiers, one for each modality, vote
on the class. In the second approach, the outputs of the classifiers are combined in a dense
layer. In the third approach, all the data are fed together into a network. A Convolutional Neural
Network (CNN) is employed for the visual modality, whereas multiple dense layers are used
for tactile and proprioception. The evaluation contains seven classes, comprising three different
containers that can be either empty or full, with one that can also be half full. With an accuracy
of 90.6 %, the multimodal approach is demonstrated to be the most successful. Furthermore, the
analysis reveals the reasons behind this success and identifies the strengths and weaknesses of
each modality.

Piacenza, Lee, and Isler [71] learn to pour using their robotic arm and a two-finger gripper
with BioTac sensors. Their goal is to eliminate the need for a dedicated force-torque sensor and
instead use the torque values from the joints and the tactile data from the BioTac sensors. They
take the data from 250 pouring motions and train a neural network to determine the amount of
liquid poured. To do this, 19 impedance values from the tactile sensors are fed into encoders
and then into an MLP along with the proprioceptive sensor data from the robot. They compare
the performance of the multimodal approach with tactile and proprioceptive data from each
modality. They achieve an average accuracy of 10 ml deviation from the target.

A work that combines visual and tactile data is that of Güler et al. [43] from 2014. They
use their robotic arm to grasp and squeeze containers with two fingers of their gripper. They
record data from the tactile arrays on the fingers as well as the depth image from a kinect cam-
era. The aim is to classify the contents of identical cardboard containers, which can be water,
yogurt, flour, rice, or an empty container. They compare the four algorithms k-means, Quadratic
Discriminant Analysis (QDA), k-nearest neighbor (kNN), and SVM, with SVM achieving the
highest classification accuracy of 95 %. They also analyze the influence of the two modalities
on the result.

3.2 Setup

The setup used in this work is depicted in Figure 3.1. We use a PR2 [72] platform equipped
with a Dexterous Shadow Hand [W7] and five BioTac [7] tactile sensors to shake the containers
and measure the tactile data. The audio data is recorded with an external microphone, which is
placed on the table in front of the robot to be as close as possible to the sound source.

21



3 Multimodal Classification

(a) (b)

Figure 3.1: The classification setup. (a) The content of an orange medicine container is recog-
nized with the help of sensor data from three tactile BioTac sensors on the Dexterous
Shadow Hand robot gripper and the audio signal from a microphone placed in front
of it. On the right side (b), the movement that the robot makes to generate rattle
sounds and vibrations to recognize the content is shown. The robot hand rotates 180
degrees up and down with a rotation speed of 0.8 which corresponds to one radian
per second.

3.2.1 Robot Platform

The robot platform utilized in this experiment is the mobile two-armed PR2 [72]. The robot is
capable of omnidirectional movement on a planar surface and of performing complex manipu-
lations with its two arms and grippers. Additionally, the robot is equipped with a series of visual
sensors. The robot is designed for the use in service robotics, which encompasses its ability
to interact with the domestic environment and assist with everyday tasks. For this purpose, the
robot’s dimensions are approximately equivalent to those of an adult human in terms of height
and workspace. The abilities of the robot are not explicitly necessary for the experiment; how-
ever, the ability to analyze objects, which is learned by the robot in this work, could be integrated
into larger scenarios. Therefore, it was advantageous for us to have the characteristic noises and
vibrations emitted by the robot in our data. In this particular case, only a rotational movement is
required, which the PR2 is capable of performing with its forearms. The right forearm, which in-
cludes a gripper, has been replaced by a five-finger Dexterous Shadow Hand [W7], allowing the
robot to perform a wider range of fine motor tasks than it could with the standard parallel gripper
on its left arm. With this anthropomorphic hand, which has 20-Degrees of Freedom (DoF), the
robot is able to perform dexterous manipulations and in-hand manipulation [73].
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3.2 Setup

Figure 3.2: A cross-section of the bio-inspired tactile sensor BioTac. The sensor is filled with
a conductive liquid between the rigid core marked with the black line and the outer
silicone cover. The pressure and vibrations generated by contact and used in our
experiment are measured with the sensor marked in blue. [48]

3.2.2 Tactile Sensors

The tactile sensors called BioTac, manufactured by the company SynTouch, can be seen on
the fingertips of the robotic hand in Figure 3.1, as well as the cross-section of a fingertip in
Figure 3.2. The tactile device is inspired by the human fingertip and was presented by Wettels
et al. [7] in 2008. It has been used for various task, like force estimation, slip detection [74],
or tumor localization [75]. The sensor has a bone-like core, a soft skin-like silicone cover, and
a fingernail-like plate on the back that connects the core and cover. The core is equipped with
various sensors and the space in between is filled with a conductive liquid. Different modalities
are combined in the sensor, with which forces, vibrations, and temperatures can be measured.
For this purpose, the finger has a hydro-acoustic pressure sensor at the end of the bone (marked
in blue) to measures the pressure of the liquid. At the tip of the bone there is a thermistor that
measures temperature. There are also 19 sensing electrodes distributed over the tip of the finger
which measure the emitted current from 4 reference electrodes, so that the deformations of the
silicone sheath can be deduced. Since we have no direct contact with the pills to be classified in
the cans, we can ignore the temperature, the deformation of the cover, but also the force exerted
by the fingers. Measuring vibrations with the sensors is essential for this work because the pills
rattle against each other and the container when shaken. In terms of its vibration properties, the
liquid inside the sensor is indistinguishable from water [48]. The analog signal of the pressure
sensor is amplified with a gain of 10 and low-pass filtered with 1040 Hz to measure the absolute
pressure (DC). To extract the vibrations from this signal, it is band-pass filtered between 10 and
1040 Hz with a gain of 99.1, resulting in the dynamic fluid pressure (AC) value. These vibrations
are later used for the classification.
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3 Multimodal Classification

3.2.3 Microphone

A conventional all-purpose condenser microphone from Behringer (Single Diaphragm Con-
denser Microphone B-5) was utilized to record the audio signals. To minimize the presence
of background noise, a cardioid characteristic was selected. This configuration amplifies sound
originating from the front more than sound from the sides, which enables more effective isola-
tion of the sound generated by the pills within the containers. The microphone was positioned
as illustrated in Figure 3.1a and samples the audio signal at a frequency of 44.1 kHz.

3.2.4 Pill Container

The containers for this experiment should have specific properties. Firstly, they should be vi-
sually indistinguishable, as no image data is to be used. They should also not be flexible so
that information about pill properties can not be accessed by pressing them. We decided to
3D print the containers, and, to give them a meaningful appearance and stay in the pill con-
text, we made them look like medicine boxes. The base is printed in translucent orange, the
lid in white (see Figure 3.3). The boxes have a thickness of 2.5 mm with a 20 mm radius and a
height of 80 mm. We used an Fused Deposition Modeling (FDM) printer with translucent orange
Polylactic Acid (PLA) plastic for the container and white PLA for the lid.

Figure 3.3: The 3D printed containers used in the experiment, with a thickness of 2.5 mm with a
20 mm radius and a height of 80 mm.

3.2.5 Pill Classes

In order to test the robot’s ability to identify objects, an experiment was designed with eight
different classes of objects. To ensure the robot would not be able to identify the content too
easily, objects with similar properties were selected. Given our decision to utilize containers
similar to medical cans in terms of their visual appearance, we also want to stay in this category
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when selecting the contents. Tablets often have a distinctive shape, comparable dimensions, and
consistent characteristics, as they are typically consumed in their entirety without mastication. In
order to avoid the classification of real medications, a selection of food supplements and sweets
similar to tablets was made. Table 3.1 illustrates the eight selected classes, with a weight per pill
ranging from 0.31 g (B-Complex) to 2.2 g (Calcium). The tablets are between 8 and 20 mm in
length or diameter.

3.3 Approach

We use a deep learning approach for the classification of pills within containers, utilizing both
acoustic and tactile data. The classification process can be divided into several steps: Initially,
information relevant to the classification is selected or filtered from the raw signals. In the second
stage, the data undergoes preprocessing to ensure that the neural network is not overwhelmed
by an excess of irrelevant information. Subsequently, Recurrent Neural Networks (RNNs) are
employed to determine the contents of the containers, while the robot shakes the sample during
the experimental procedure.

3.3.1 Sample Selection

In order to classify the pill type as robustly as possible, the raw audio and tactile signals are
filtered automatically before the classification. During the shaking motion, a lot of unwanted
data is recorded which provide no added value for the recognition. The recording can be roughly
divided into three phases: the first phase involves the abrupt acceleration and deceleration of the
rotational movement of the robot hand, resulting in unwanted vibrations and unusable data.
During the second phase, the arm rotates, but the pills in the can do not produce any noise or
vibrations because they are still too stable. The last phase is the one we want to filter and use for
our classification. Here the pills fall around in the container and generate data.

Table 3.1: Pill classes included in the data set and used in the experiment

Magnesium Calcium B-Complex Big Mints Chew Small Mints Vitamin B Candy

Weight per pill 1.27g 2.2g 0.31g 1.2g 1.13g 0.5g 0.55g 0.6g

Sa
m

pl
e

co
un

t

One pill 166 99 104 110 118 137 126 137

Small amount 228 405 222 212 299 218 260 391

Half full 239 407 232 413 251 293 290 336

Full 237 184 242 215 243 296 304 174

Overall 820 1095 800 950 911 944 980 1008
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3 Multimodal Classification

In Figure 3.4 the raw tactile and audio signals of a shaking movement are plotted. The bottom
graph shows the joint position of the forearm rotation. The movement starts with a 180 degree
lifting rotation which takes 4.5 seconds followed by the lowering of the object which takes the
same amount of time (the motion is also depicted in Figure 3.1b). To extract the relevant data
of the third phase from the signals, two filters are applied. In the first filter, the signals of the
first phase that are noisy due to the jerk of the abrupt change in speed are extracted. Only the
data within the joint position range of -1 to 1.5 radians is passed on. All filtered values are
marked red. It is noticeable that mainly the tactile data is affected by the jerk. The arm could
also be accelerated and decelerated slowly, but this would only disturb the signal in a different
way, so we decided to make an abrupt, clearly recognizable break instead. The second phase
states that data in which the pills do not move produce neither sound nor vibrations and are
therefore useless for classification. To filter these silent data, we look at short time windows
of 0.2 seconds of the audio signal and determine the maximum amplitude. If this is below a
threshold, the data is not used further (see yellow regions in Figure 3.4). All remaining values
contain useful features for the classification and are colored green.

Figure 3.4: The top plot shows the raw tactile signal from 10 Big Mint pills shaken at an angular
velocity of 0.8 radian per second. In the middle the raw audio data and in the lower
plot the current joint position of the forearm, each for an entire shaking sequence.
The audio data clearly shows the point in time at which the contents of the container
produce sound. In the first filter step, data is filtered during the direction change
of the rotation. This data contains only noise and cannot be used for analysis. The
removed data is marked in red. In the second step, the signal strength is used for
filtering. All data below a threshold is filtered as it does not contain any useful
information for classification. The filtered areas are marked in yellow. The green
areas show the extracted data after all filters have been applied.
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3.3 Approach

3.3.2 Mel Frequency Cepstral Coefficients

The raw audio signals are not suitable for being fed directly into the network. For a compact
representation of the frequency spectrum, MFCC [76] are often used for speech recognition or to
analyze music. They could also be used for music synthesis [77] and, as in our case, for acoustic
classification [65, 78]. To convert the raw audio signal into meaningful data, multiple steps are
applied. In the first step, the signal is divided into equal time windows. A Fourier transfor-
mation [79] is then applied to these windows, which describes how often different frequencies
are present in the original signal. In the second step, the powers of the resulting spectrum are
mapped in overlapping windows to the mel scale [80], which is a perceptual scale of pitches
where listeners perceive each interval as being equally spaced. Frequencies (Hz) are mapped to
mels here. Afterwards, the logs of the powers at each mel frequency is taken. In the last step,
a discrete cosine transform is applied to the mel log powers. In the resulting spectrum shown
in Figure 3.5, the amplitudes are the MFCC. During these steps there are some parameters that
can be adjusted. The most important are the window length, the window step size, the number
of resulting mel coefficients, low and high frequency filters, and some more, which were not
important in our case and were left at the default values of the python library used. We used
MFCC for both the audio and tactile signals and determined the appropriate parameters with
Tree-Parzen-based hyperparameter optimization [81].

The audio signal was recorded at a frequency of 44.1 kHz. The optimal results were obtained
with a window size of 0.03, a step size of 0.02, and 21 resulting Mel coefficients.

The vibrations were recorded at a frequency of 1000 Hz with the tactile sensor. The high
frequency allows for the utilization of audio processing techniques. In preliminary experiments,
it was determined that applying MFCC to the data prior to its entry into the network resulted in
enhanced classification accuracy in comparison to the raw values and is therefore suitable for
our application. The optimal results were obtained with a window size of 0.04, a step size of
0.04, and 9 resulting Mel coefficients. Moreover, the frequency spectrum was reduced to a range
of 4 to 440 Hz, as this achieved better results.

3.3.3 Network Architecture

For our approach, three neural networks are needed. One for the unimodal acoustic approach,
one for the unimodal tactile approach, and one for the multimodal audio and tactile approach.
Since our goal is to investigate whether tactile information adds value to the pure acoustic signal
in order to increase the robustness of the classification, and not to optimize the classification
accuracy per se, a simple network architecture is chosen that works for both the unimodal and,
with slight modifications, the multimodal approach. We have followed the architecture of Eppe
et al. [65] and used their approach also for the tactile signal, as the vibration signal from the
BioTac sensors behaves similar to an audio signal. As described in the previous section, MFCC
are applied to the raw signal streams to extract processable information from the enormous
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Figure 3.5: The resulting MFCC spectrum of an audio signal of a complete unfiltered shake
sequence. A window length of 0.03 s, a step size of 0.02 s and 21 resulting Mel
coefficients were used for this spectrum.

amount of data. Networks that are particularly well suited for the classification and regression
of audio data are Recurrent Neural Network (RNN), as they can process input sequences or
continuous streams [77, 82, 83]. Another advantage of these networks is that the sequences can
be of different lengths. This means that one type of pill is recognized with high confidence after
a short time, while others are only reliably classified after a few shakes. Both cases with the
same network. Eppe et al. [65] have investigated that LSTM [84] and GRU [85] perform better
than Simple Recurrent Networks (SRN) on similar data. In preliminary experiments, we found
that in our case LSTM achieve better results than GRU and decided on this architecture.

In the first layer of our unimodal networks we use MFCC for preprocessing the data. Subse-
quently, two consecutive LSTMs form the next layers, as these have achieved the best classifica-
tion results for all modalities in our experiments. Both layers use a Rectified Linear Unit (ReLU)
activation function. For training we also applied a dropout after the LSTM layers. In the last
layer we use a fully connected layer and apply a softmax activation to classify the data. The
network architecture can be applied to both modalities due to the analogous properties of acous-
tic and tactile signals (see Figure 3.6a). The unimodal networks diverge only in their respective
MFCC, as mentioned before, parameters and the number of nodes in the LSTMs. We have opti-
mized the parameters of the networks with hyperparameter optimization [81], separately for the
modalities. In regard to the audio-based classifier, the optimal results were obtained with 400
hidden units in the initial LSTM, 90 hidden units in the subsequent one, and a dropout rate of
0.34. In the tactile version, the optimal values for the first and second LSTM hidden units were
found to be 180 and 90, respectively. The highest classification accuracy was achieved with a
dropout rate of 0.7.
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For the multimodal network, the audio and tactile data must sooner or later be brought together
in the network. Given the differences in sample rate, frequency range, and sequence size due to
the MFCC parameters, we have decided to initially integrate the data in the fully connected layer.
However, we intend to maintain the network structure and number of hidden units consistent
with the unimodal architecture (see Figure 3.6b). The fully connected layer for the multimodal
case is configured in a manner analogous to that of the unimodal architecture. The models
were implemented with Keras [W8] and trained with the adam optimizer [86], a learning rate
of 0.001, and the default momentum parameters of β1=0.9, β2=0.99 of the Keras deep learning
framework.

Signal MFCC LSTM LSTM Fully Connected

(a) Unimodal Network

Tactile
Signal MFCC LSTM LSTM

Audio
Signal MFCC LSTM LSTM

Fully Connected

(b) Multimodal Network

Figure 3.6: The network architecture of the unimodal network is shown in (a) and that of the
multimodal network in (b). The unimodal networks mainly differ from each other
in the MFCC parameters, the number of coefficients fed into the network, and the
length of the sequences fed into the pipeline. The multimodal network combines the
unimodal networks for audio- and tactile-based classification by concatenating the
last output of the recurrent layers and feeding it into a fully connected layer. In the
last fully connected layer of both architectures, a softmax activation is applied.

3.4 Evaluation

3.4.1 Experiment

To evaluate our method and answer the research questions, a dataset was recorded in which the
robot shake 8 containers filled with the pills shown and presented in Table 3.1 and Section 3.2.5.
To record the data, the robot arm is straightened out pointing to the microphone as shown in
Figure 3.1a. The container is grasped in a tripod grasp with the thumb, index, and ring finger, and
is firmly placed by a supervisor, before the shaking movement and the data recording starts. In
this way, only the fingertips come into contact with the container, thus reducing the transmission
of vibrations generated by the robot. The applied force and finger joint states remain constant
during all sample recordings to generate homogeneous data. For one sample, the robot rotates its
forearm for 180 degrees, as shown in Figure 3.1b, beginning with lifting the object, pausing for
a short time, and lowering the object again. Each container is shaken 12 times, then changing
the rotation velocity from 0.8 to 1.0 radian per second, and shaken 12 more times. For each
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pill class, 4 different amounts of pills are recorded resulting in 96 samples per pill class. This
results in a total of 768 samples for the 8 classes shown in Table 3.1. In addition to the raw
tactile and audio data, the joint position of the forearm, the class type, the number of pills, and
the rotation speed are stored in each sample. The dataset was not recorded under any specific
circumstances, besides the sounds of the robot, there were other environmental noises such as
running computers and sounds from outside. Most of the sounds were produced by the robot
itself.

3.4.2 Results

To evaluate our classification approach and test the robustness of it, a dataset of 8 pill classes was
recorded, each with four different amounts of pills in the container. A total of 7508 samples in
768 shaking movements were recorded. To train our networks, we split the data in 80 % training
and 20 % testing samples.

To test the robustness of our approach, the microphone was not placed on the robot but directly
in front of the sample to minimize ego and ambient noise. In real applications, more noise is to
be expected as the microphone is attached directly to the robot. The noise was added to the audio
signal afterwards. This only applies to the audio signal, there was no way to reduce or separate
the noise for the tactile part. To determine the effect of the robot’s ego noises on classification
accuracy, we recorded them separately and added a noise amplification factor to our raw audio
signals. This noise gain ratio was increased in 0.05 steps between 0 and 1, and the models were
trained and tested separately for each case. The results are shown in Figure 3.7. As the noise
has no influence on the tactile model, only one evaluation step was carried out with the tactile
architecture. Ten iterations of training and testing were carried out in each evaluation step. In
addition to the mean accuracies of the audio (blue), tactile (yellow), and multimodal (green)
models, the 25- and 75-percentiles are also shown in the graph. The best classification accuracy
in the test split of the data set was 56.06 % for tactile-only data, 89.1 % for acoustic-only data
and 91.23 % for multimodal input. As the noise increases, the test accuracy for the audio and
multimodal models decreases to the point where the audio model is only guessing, with a noise
gain of 0.55. The multimodal model relies only on the tactile data from a noise factor of 0.5.

To evaluate the performance of the algorithms, a confusion matrix is shown in Table 3.2. It
shows the classification results for a noise ratio of 0.3. This factor represents a more realistic
scenario than without noise and is also a value at which the tactile signal has a significant in-
fluence on the classification results. The rows in the matrices indicate the actual pill class, the
columns the predicted pill class. The table therefore indicates how often a type was correctly
classified and, if not, with which class it was confused. For this noise ratio, the accuracy for the
audio network is 58.75 %, for the tactile network it is 51.25 %, and for the multimodal network
71.63 %. In section (a), the audio part, it is clear to see that the distribution of confusions is
even, regardless of the pill type. Whereas in the tactile model (b), some pills are more likely to
be misrecognized, especially Candy and Small Mints, and therefore a more accumulated inse-
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curity. In contrast, the accuracy of the multimodal-based counterpart has a significantly higher
accuracy of 71.63 % (see Table 3.2 (c)). The confusion matrices reveal no significant within-pair
confusion, suggesting that all models are generally effective at distinguishing between different
classes.
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Figure 3.7: The graph shows the classification accuracies of the respective networks. The audio
network in blue, the tactile network in yellow and the multimodal network in green.
To test the robustness of the models, the added noise on the audio signal is increased
on the x-axis.

Table 3.2: Confusion matrices for all three models at a noise ratio of 0.3
(a) Audio only ∅58.75% (b) Tactile only ∅51.25% (c) Multimodal ∅71.63%
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Magnesium 0.42 0.21 0.02 0.19 0.03 0.01 0.05 0.07 0.49 0.07 0.13 0.09 0.05 0.14 0.0 0.01 0.7 0.08 0.09 0.07 0.04 0.0 0.01 0.02

Calcium 0.1 0.68 0.0 0.06 0.0 0.01 0.03 0.12 0.12 0.46 0.02 0.15 0.1 0.06 0.01 0.09 0.15 0.72 0.01 0.02 0.0 0.0 0.01 0.09

B-Complex 0.07 0.02 0.61 0.01 0.0 0.18 0.09 0.01 0.03 0.0 0.66 0.03 0.03 0.24 0.02 0.0 0.08 0.01 0.62 0.05 0.03 0.12 0.09 0.0

Big Mints 0.11 0.05 0.1 0.5 0.05 0.03 0.05 0.11 0.02 0.05 0.03 0.44 0.08 0.23 0.09 0.08 0.05 0.06 0.04 0.56 0.12 0.05 0.09 0.04

Chew 0.14 0.05 0.0 0.14 0.51 0.0 0.06 0.09 0.08 0.11 0.04 0.12 0.35 0.18 0.07 0.05 0.07 0.03 0.02 0.1 0.68 0.02 0.02 0.07

Small Mints 0.01 0.02 0.07 0.02 0.01 0.83 0.02 0.03 0.05 0.02 0.12 0.07 0.06 0.63 0.03 0.02 0.0 0.01 0.02 0.01 0.01 0.92 0.03 0.01

Vitamin B 0.08 0.09 0.05 0.06 0.0 0.07 0.47 0.18 0.0 0.0 0.05 0.05 0.05 0.19 0.63 0.01 0.0 0.0 0.04 0.08 0.06 0.01 0.74 0.08

Candy 0.06 0.11 0.02 0.05 0.02 0.03 0.04 0.68 0.02 0.04 0.02 0.19 0.17 0.11 0.01 0.44 0.0 0.03 0.0 0.04 0.03 0.02 0.09 0.79
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3 Multimodal Classification

3.4.3 Discussion

In order to answer the research question of whether tactile information in conjunction with
acoustic signals in a multimodal network can provide added value and contribute to robustness
in classification, a shaking experiment was conducted with different pills in identical containers.
Figure 3.7 illustrates that with minimal noise, a multimodal network exhibited only marginally
better than a unimodal audio model, with accuracy rates of 91.23 % and 89.1 %, respectively.
However, when noise levels were elevated, the performance of the unimodal network declined
to a significantly greater extent than that of the multimodal network. This indicates that the
tactile data may offer additional value, which is not present in the audio data.

To verify this assertion, one may consult the convolution matrix presented in Table 3.2. The
most compelling evidence in support of this hypothesis is Vitamin B. This particular pill is often
confused by the audio network, whereas it is consistently identified by the tactile network. The
audio network, in particular, identifies the pill as Candy, which is not the case in the other
network. This discrepancy can be attributed to the material of the pills. While the majority
of pills are rather hard, Vitamin B has a soft hull, resulting in a quieter noise when shaken.
The increasing noise level presents a challenge for acoustic recognition, this does not affect the
vibrations resulting in a robust tactile classification. The multimodal network takes advantage of
this and uses the information from both modalities for even more robust detection of Vitamin B.
With Candy and Magnesium, it is evident that the different unimodal networks confuse the pills
with different other pills. The overall recognition of these pills is rather poor in both networks,
especially for Magnesium, but, on the other hand for the multimodal network comparatively
high.

Our research question can therefore be answered by stating that multimodal classification with
acoustic and tactile signals in a noise-free space brings a small but not significant improvement
compared to unimodal acoustic recognition. However, as soon as the ambient noise becomes
stronger, information can be obtained from the tactile data that is not contained in the audio data
and thus contributes to the robustness of the multimodal network and improves the classification
accuracy by up to 30 % (with a noise gain factor of 0.5 in our experiment).

3.5 Conclusion

This work demonstrates the efficacy of employing tactile sensors to improve the accuracy and
robustness of multimodal classification systems to learn more about the environment of the robot
and analyze characteristics of grasped objects and thus provides an answer to the first fundamen-
tal question (FQ1). Moreover, the objective is to highlight the impact of multimodal usage with
regard to the audio and tactile modalities. Our findings indicate that such an approach can en-
hance the precision of classification outcomes under optimal conditions while also improving the
adaptability of the multimodal system to noisy signals. This shows, that the tactile data provides
the network with supplementary information that is not available from the other modality.
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3.5 Conclusion

Our work is based on the research conducted by Eppe et al. [65], who employed a deep
learning approach to achieve the classification of optically identical capsules based solely on the
acoustic modality. The aforementioned work and the work of Chen, Snyder, and Ramadge [58]
both achieve slightly higher accuracy in their classification, but they employed a greater variety
of materials in their experiments, which are easier to distinguish, and they recorded a markedly
larger amount of data. Our findings indicate that our approach could be a valuable addition to
both existing methods.

Other properties, such as the weight of the entire contents, the number and size of the indi-
vidual objects, or even the material and hardness, could be determined using similar approaches
to analyze the object. However, this approach is constrained by the capabilities of certain tactile
sensors which are able to perceive vibrations. A classic tactile array will not achieve satisfy-
ing results in this context, as these typically lack the capacity to measure vibrations. Another
possibility for future work would be the use of interactive sensing, which means that the robot
would learn movements that would enable it to determine the content more quickly and robustly.
The specific movements would likely be contingent upon the pill’s characteristics and could
potentially be learned through reinforcement learning [87, 88].
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We have successfully demonstrated that tactile data can be utilized for classification and pro-
vide added value in a multimodal setup together with audio data, in which the robot collects
information about its environment. In the next step, we aim to investigate the extent to which
tactile data can be used to gather information about the intrinsic state of the robot, to investigate
the second fundamental question (FQ2). In the following work we want to combine the tactile
modality together with proprioceptive information in form of motor states and use regression to
to estimate the current joint state of the robotic gripper during grasping motions.

For some robotic scenarios, it is sufficient to simply grasp an object and place it roughly at
another location. In these cases, the priority is to ensure that the object is securely and stably
gripped. For other applications, it is necessary to grasp with precision, cautiously, or at a specific
location. For both cases, there are grippers designed specifically to address these needs, but there
are also grippers that aim to cover all possible scenarios. Other important design considerations
include the cost, robustness, accuracy, and complexity of the gripper.

Robot hands like the Shadow Dexterous Hand [W7] can grasp very precisely, perform in-hand
manipulations, and monitor their own state accurately. However, they are expensive, fragile,
and complex to control, making them unsuitable for widespread use. In contrast, simple and
inexpensive grippers, are often not equipped with enough sensors to measure their own state
and perform precise grasps or manipulations. The qb SoftHand, for example, is very robust and
adapts to the objects it grasps [89, 90]. However, achieving precise grasping or determining joint
angles is very difficult for this gripper, which is generally a challenge in soft robotics.

In this work we will look at a gripper that is built for robust industrial applications and also for
research scenarios. The underactuated 3-Finger Adaptive Robot Gripper built by Robotiq [W9]
(see Figure 4.1) is, on the one hand, very robust and adapts to objects, is comparatively inex-
pensive and widely used, but on the other hand has only few sensors to analyze a grasp. In the
following work the joint positions of this gripper during grasps are evaluated.

There are various approaches or sensors to determine the position of a motor or rotation. The
most common ones are encoders and resolvers. In general, an encoder operates by detecting
changes in the distance or position of a moving part and converting these changes into an elec-
trical signal that can then be interpreted by a control system [92]. A resolver is an electrical
transformer that measures the inductive coupling between two copper windings with an rotating
conductive metal in between. The rotating metal piece changes the amplitude of the voltage,
which is used to measure the angle of rotation [93, 94]. Another type of sensor is a potentiome-
ter [95], which outputs a resistance value depending on its absolute position. These sensors are
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Figure 4.1: The Robotiq 3-Finger Adaptive Robot Gripper with named fingers and pha-
lanxes. [91]

very affordable but cannot measure continuous joints. Hall effect sensors can also be used to
measure joint angles. To do this, the magnetic field of a magnet attached to the axis of rotation
is measured [96, 97]. The sensors presented so far typically need to be placed directly on or
around the rotating axis. In common stepper or servo motors, these sensors are already built-in.
Retrofitting them, for example, to measure a non-actuated joint, is often not trivial, especially
in the case of robot grippers. Particularly when grippers are designed for human environments,
having multiple fingers closely running past each other, there is little space available around the
rotation axes. One approach that does not allow the motor position to be read out directly, but
does not have the problem of having to be placed directly or close to the axis of rotation is the
use of Inertial Measurement Unit (IMU) sensors. Due to their drift, they are not particularly
suitable for traditional motor position determination, but they are useful for measuring the angle
between two links [98]. Visual tracking systems are also frequently used, but are more suit-
able for laboratory conditions or under restricted movements like [12] or [73]. Under realistic
conditions, visual tracking system have problems with occlusion.

Franchi and Hauser [12] use contact information to determine joint angles of the same gripper
used in the work at hand. The approach is based on mathematical analyses and reaches its
limits as soon as dynamics occur on the grasped object. Furthermore, it is only implemented
in simulation. As we successfully integrated tactile arrays on the fingertips of our gripper [23,
22], we have decided to investigate to what extend it is possible to use this sensor technology
to estimate the joint positions. A deep learning approach is applied to learn the behavior of the
fingers and estimate the joint positions. The approach is also applied to the real robot hand and
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evaluated with different objects.
This chapter is structured as follows: In Section 4.1 the work related to this approach is

presented. Section 4.2 presents the used gripper, the custom contact sensors, and the tracking
system to determine ground truth values. In the succeeding section we describe our deep learning
approaches, the basic function of the analytical baseline method, and conduct an experiment in
Section 4.4, in which 20 different objects are grasped. In Section 4.5 the results are presented
and discussed in Section 4.6. Finally, Section 4.7 concludes this chapter.

4.1 Related Work

In 2019, Sintov et al. [99] published a paper in which they presented a transition model for their
underactuated gripper. The gripper is composed of two fingers, each of which is equipped with
two compliant joints with springs. A tendon through the entire length of the finger controls
them. Similar to our work, they use fiducial markers to measure the ground truth of the joints.
Using Gaussian Processes (GP) and Neural Networks, they learn the state of the gripper based
on trajectory sequences. As input, they consider the angle of the actuators and their load, along
with the positions of the objects, which are exclusively cylinders. The outcome enables the
gripper to move the cylinder between the fingers and learn how to move the object along paths
using in-hand manipulation.

Similar to the previously mentioned paper, Van Hoof et al. [100] also learn how to manipulate
cylinders with an underactuated gripper with two-jointed fingers. The cylinder is positioned on
a plane and contacted from both sides by the fingertips of the gripper, which are then moved
back and forth. In contrast to the previous work, no state model of the hand is learned here, but
the movements. Reinforcement learning is utilized to learn movement models, which are then
used to fulfill the intended task. This is achieved by employing the motor values and tactile data
from sensors at the fingertips. Other works that learn in-hand movements instead of state models
are [101, 102, 103]

Soft grippers are a cheap and popular way of producing robust grippers. Matsuno, Wang, and
Hirai [104] present a soft gripper, with flexible 3D-printed fingers with air chambers on the back.
When filled with air pressure, the finger bends in order to adapt to the objects to be grasped. With
such a gripper, fragile objects can be gripped robustly without hesitation. However, determining
the state of such a finger is not trivial as it has way more Degrees of Freedom then a rigid one.
By utilizing electro-conductive yarn on the back of the finger, which alters the resistance when
the finger is bent, it is possible to estimate the state of the finger. With the change in resistance,
the diameter of the object can be determined, which results in conclusions about the bending
state of the finger. Similar works with soft grippers are [105, 106, 107].

Another field of research is the determination of the object pose in the hand, which is not only
a problem for underactuated, but also for fully actuated or anthropomorphic robotic hands [108,
109]. An approach using a gripper with a similar design to that employed in previous related
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work and the gripper we use is that of Azulay, Ben-David, and Sintov [110]. They use kinesthetic
features in the form of actuators angle and tendon torque, together with tactile data, to estimate
the pose of the object in an initial model. Subsequently, they learn a transition model to perform
in-hand manipulations. Another publication about object pose estimation with underactuated
grippers is [111].

To the best of our knowledge, Franchi and Hauser [12] present the only work that estimates
the finger states of a Robotiq 3-Finger Gripper, which is the same gripper used in our work.
Their approach is based entirely on the mathematical analysis of the behavior of the fingers.
Later in this chapter, in Section 4.3.1, the approach is discussed in more detail and compared to
our neural network approach. One limitation of this work is that the evaluation was conducted
exclusively on static objects, which does not reflect the complexities encountered when work-
ing with real-world objects. Additionally, the approach was used to simulate the gripper. An
additional example of a mathematical approach to determining the state of a gripper is [112].

4.2 Hardware Setup

4.2.1 3-Finger Adaptive Gripper

The gripper used in this setup is a 3-Finger Adaptive Gripper from Robotiq [W9]. The gripper
is designed to be robust and precise for advanced manufacturing and robotic research. With its
adaptive three fingers, it enclosures objects more then a simple parallel or two finger gripper and
therefore provides a more stable grasp in general.

A picture of the gripper is shown in Figure 4.2. The gripper has three fingers, two of them
close in parallel (finger B and C), the other one closes from the opposite direction (finger A).
Each finger has three joints, mechanically coupled on the backside to close adaptively. Each
finger is controlled by one motor located in the lowest joint. The range of motion and axis of
rotation of the motor are depicted in Figure 4.3. When the finger closes, joint 1 closes first, joint
3 opens, and joint 2 remains unchanged. As soon as joint 1 has reached its limit of movement,
joint 2 begins to close, while joint 3 remains unchanged as it is at its negative limit in this case.
If joint 2 also reaches its limit, only joint 3 closes. This behavior changes when an object is
touched on any finger segment. The motor is differentiated with an 8 bit integer value and can
therefore move to theoretical position values between 0 and 255. The actual value range is
between 6 (fully open) and 240 (closed). A fourth motor between finger B and C controls a
scissor movement of these two finger. It can spread the fingers and close them till they touch.
With these movement options, the gripper can be used in different modes. In basic mode, fingers
B and C are parallel and all three fingers close together, the scissor motor remains unchanged.
In wide mode and pinch mode, the gripper behaves in the same way, except that fingers B and
C are spread or the tips of the fingers touch, respectively. The last mode is called scissor mode
where only the forth motor is controlled to open and close finger B and C to each other. It is also
possible to control all motors individually in order to control the hand as desired.
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Figure 4.2: The experiment setup to record training and test data. Our gripper is equipped with
9 tactile sensors including AprilTags to measure the ground truth joint states, one
at each phalanx. An additional tag is attached to the side of the palm to measure
the first joints. Two cameras are positioned at an angle on the side of the gripper to
monitor the tags.

Besides the four motor position values, the hand provides several other measurements. The
general status of the gripper, if it is in movement, or if one, two, or all fingers have stopped.
Additionally, a value representing instantaneous current consumption which only strikes if a lot
of force is applied, which usually is only the case when the hand is about to stop, and an object
detection value.

4.2.2 Contact Sensor

To solve the task, contact sensors can be used as the approaches are on the one side only inter-
ested in binary contact or no contact information for the baseline, or force values for the deep
learning approach. In this work we use our own custom built contact sensor described in [23]
and [22]. Instead of building tactile arrays for all links, we decided to build simpler one sin-
gle taxel per phalanx sensors as only one microcontroller to read all 9 sensors is needed. The
sensors are integrated together with the fiducial markers on custom designed finger pads (see
Figure 4.4).

The resistance-based contact sensor is build from several layers (see Figure 4.5). The bottom
layer of a plastic foil as shown in the picture is left out, as the aluminum foil is glued directly
to the adapter which serves as supply. On top of it, the piezoresistive velostat foil is placed
followed by the sensing aluminum tape layer. To cover this, a layer of transparent adhesive tape
is stuck over it and folded over at the sides so that all layers are attached to the adapter. The last
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Figure 4.3: The motion angles of the three joints. The displayed pose represents the zero position
of the fingers. In green are the direction of motion and axis of rotation of the motor
with position g depicted. [12]

layer is a 1 mm thick silicone mat, which serves to protect the sensor, make it more robust, and
distribute the applied pressure.

When pressure is applied to the sensor, the resistance of the velostat foil changes which is
measured by a microcontroller. The sensor is incorporated into a voltage divider alongside a
10 kΩ resistor in the readout circuit. Consequently, the voltage output from the divider corre-
sponds to the level of pressure. The output is measured with a rate of 50 Hz and a resolution of
10 bit by an analog to digital converter in the microcontroller. At the beginning of each grasp,
the readout is zeroed and normalized between 0 and 1. Preliminary tests have shown that a good
threshold value for detecting static contacts is 0.7. When only one finger is touching the object
and thus moving it, the value is usually lower then 0.4.

4.2.3 Visual Tracking

To measure the ground truth joint angles of each finger, we decided to use a visual tracking
system as it can be integrated quickly and easily, and also be removed if required. A fiducial
marker was attached to each phalanx and the palm of the gripper as shown in Figure 4.2 and
Figure 4.6. Since the original pads and fingertips were replaced and redesigned anyway with the
new contact sensors, the tags were integrated directly into the new pads (see Figure 4.4). The
tags are observed from the side by two conventional usb cameras with a frame rate of 30 Hz, a
resolution of 720p, and a distance of 50 cm. To reduce occlusion, extensions have been added
to finger B and the fingertip of finger A. These extensions would make a permanent use of
the tracking system not feasible, as they would significantly restrict the range of movement and
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Figure 4.4: Custom designed and built finger pads for the proximal and middle phalanx and
a fingertip for the distal one. Each peace is 3D-printed and equipped with custom-
built contact sensor and AprilTag to track the position. The tag holders are of varying
lengths to minimize occlusions.

Figure 4.5: Layers of the custom built tactile sensor used for the contact sensor at hand. [22]

make collision-free movements difficult. In addition, the markers are observed from fixed angles
and optimal tracking only works in this position when the arm is not moving.

The fiducial marker system used is AprilTag 3 [113] with the tag family 36h11. All tags
are placed in a plane with the z-axes pointing out from the markers. With the dot product it is
possible to calculate the angle between the x- or alternatively the y-axes between two tags, then
the angle of position 0 is subtracted to get the current angle of a joint. With an accuracy of 0.3
degree, the angle between two links can be calculated.

4.3 Approach

Our aim is to be able to determine the joint states of the finger joints. To achieve this goal, it is
necessary to integrate additional hardware on the robot. One approach is the use of Hall effect
sensors as shown by Kargov et al. [114]. Here, a magnet is mounted on the rotating axis and the
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Figure 4.6: An exemplary grasp with the Robotiq gripper. The fingers adapt to the object when
closing and enclose it. The pictures show from left to right the fully opened state,
the first contact with the object, the adaptive behavior in the middle of the grasp, and
the final grasp.

magnetic field is read without contact by a Hall effect sensor and the joint position is determined.
Other hardware solutions can also be used, as in the work of Seel, Raisch, and Schauer [115],
who use IMUs to determine the angle of a human knee, this can also be transferred to a robot.
The disadvantage of these approaches is the considerable hardware outlay. As the space in
front of, behind, and next to the individual phalanges is limited, it is not easy to integrate such
solutions retrospectively. The advantage is that the joint position can be determined at any time.
Visual tracking of the hand is also possible, Andrychowicz et al. [73] used a PhaseSpace system
to track the fingertip positions of their shadow hand to estimate the hand state. The disadvantage
is, as already mentioned in our visual based ground truth generation, that the visual markers are
often obscured when the robot is not at a fixed position.

Another approach, implemented by Franchi and Hauser [12] is the use of contact information,
in their case only in simulation. Contact sensors are often already present on grippers or are
integrated anyway to obtain more information about the grasp. Depending on the sensor, they
are very flat and take up little space. The disadvantage of contact sensors is that the joint position
cannot be read out directly, but must be estimated from the context of the grasp.

We decided to use contact sensors as the fingertips were already equipped with tactile sensor
arrays in previous work [23, 22]. The objective is to find out how accurately the joints of the
hand can be predicted with contact sensors on all phalanges. Franchi and Hauser [12] did this
in simulation with an analytical approach in which they set up a mathematical model for the
fingers (see Section 4.3.1). In their approach, there is only one model which is applied to all
fingers, without considering the other two fingers. In practice, this has the disadvantage that
it only calculates the joint states correctly for static objects. As soon as the object moves, the
calculation leads to incorrect joint states. To capture this nonlinear behavior of the fingers, a
deep learning approach is utilized in the work at hand. On one hand, the fingers are considered
separately, similar to the analytical baseline approach. On the other hand, we aim to collectively
learn all fingers simultaneously to account for mutual influences. This leads to the following
two research questions:
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1. Can a newly designed recurrent neural network approach outperform the existing baseline
for state estimation and compensate object movements?

2. Does an approach that takes all fingers into account at the same time perform better than
not differentiating between the fingers?

4.3.1 Baseline - Mathematical Analytical Approach

Franchi and Hauser [12] show, it is possible to calculate the state of the hand as long as the
grasped object is static. The authors divide the closing movement of the hand into four phases
to calculate the relative change of the joint states from step to step (see Table 4.1). A phase
transition is determined by whether a finger segment is in contact with an object (cn) or reaches
its limit (ln). The full state tuple has all six limit and contact information (c1,c2,c3, l1, l2, l3).
In the first phase (1) neither a contact nor a limit at any joints occur. In 1’, the fingertip hits
its negative limit and does not open any further. For the next phase (2), the first phalanx is in
contact or in a limit. Again, 2’ determines that the fingertip is in its negative limit, however, this
limit can be discontinued again. In phase three (3), the middle phalanx is in contact or limit. If
the hand closed this far, it is not possible, that the fingertip will stay in the negative limit except
for an immediate contact and therefore change to phase (4), which determines the final sate of
the hand as no joint will change anymore. Phases can also be skipped, for example, if the first
contact occurs at the fingertip. While it is theoretically possible to return to a previous phase, it
is not the case in reality, as the formulas only cover closing motions.

The three joint angle changes are calculated depending on the current phase with the following
equations:

f1(x,u) = m1u, with m1 = Θ1,max/140
f2(x,u) = m2u, with m2 = Θ2,max/100
f3(x,u) = m3(g)u, with m3(g) = Θ3,min +(Θ3,max −Θ3,min)/(255−g)

The changes in g from one time step to the next are described with u ∈ [−1,1], while 1 is a
closing and −1 an opening motor step. A full state machine is shown in their paper [12].

Table 4.1: Analytical joint state calculation [12]
Phase State tuples ∆Θ1 ∆Θ2 ∆Θ3 ∆g
1 (0,0,0,0,0,0) f1(x,u) 0 − f1(x,u) u
1’ (0,0,0,0,0,-1) f1(x,u) 0 0 u
2 (1,0,0,0,0,0),(0,0,0,1,0,0) 0 f2(x,u) − f2(x,u) u
2’ (1,0,0,0,0,-1),(0,0,0,1,0,-1) 0 f2(x,u) 0 u
3 (·,1,0,·,0,0),(·,0,0,·,1,0) 0 0 f3(x,u) u
4 (·,·,1,·,·,0), (·,·,0,·,·,1) 0 0 0 u
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4.3.2 Recurrent Neural Network Approach

Without a contact, the state of the hand is known at every possible point in time, i.e. at every
motor position g. However, as soon as contact is made with an object, this linear behavior
changes and the state dependents on the previous step, g-1 or g+1. RNNs are designed for
such cases and map temporal or state dependencies and learn on sequential information. The
most common RNNs are LSTMs [116] and GRUs [85]. LSTM networks performed better in
preliminary tests, which is why GRUs ar not considered any further at this point.

Equal Finger Network

As the baseline approach does not differentiate between finger A, B, and C we wanted to build
a network using the same information, to see if it outperforms this approach. This network
therefore receives sequences of one motor position and three contact values as input and outputs
three joint angles. The model is trained with the sequences of all fingers. During data record-
ing we do not distinguish between the fingers which means one grasp produces three sample
sequences. Using Optuna [117] for hyperparameter tuning, the parameters of the network are
optimized. The parameters to be determined are the number of LSTM layers, LSTM neurons,
optional linear layers after the LSTM, activation functions, learning rate, and weight decay. The
hyperparameter optimization found the following parameters to be most effective: 148 neurons
in one LSTM layer and a hyperbolic tangent (tanh) activation function. It was trained with an
adam optimizer for 1000 epochs, a learning rate of 0.002, and a weight decay of 0.00001.

Entire Hand Network

In order to learn influences between the fingers during dynamic object movements, the fingers
are now considered individually. This means that three motor positions and nine contact values
are entered sequentially into the network with an output of nine joint positions. For the data
recording it means, that one grasp produces one sample sequence. Just as for the other network,
hyperparameter tuning is used to determine the best parameters, again with Optuna [117]. The
parameters to be determined are again the number of LSTM layers, LSTM neurons, optional
linear layers after the LSTM, activation functions, learning rate, and weight decay. The hyper-
parameter optimization found the following parameters to be most effective: 37 neurons in one
LSTM layer and a tanh activation function followed by one linear layer with 184 neurons and
a ReLU activation. It was trained with an adam optimizer for 1000 epochs, a learning rate of
0.0009, and a weight decay of 0.00002.

4.4 Experiments

To test and evaluate the three approaches against each other, we grabbed different objects and
compared the resulting movements and final grasps with the ground truth data from our AprilTag
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Figure 4.7: 20 objects varying in size, shape, weight, and stiffness were used to record the dataset
for the experiment. Some of the objects are from the YCB object set [118].

setup. The used experiment setup is shown in Figure 4.2, the arm is fixed in the shown posi-
tion approximately 15 cm above the table and will not move during data collection to produce
comparable training data. In total, 20 different objects were grasped with the gripper, which
are shown in Figure 4.7. Some of the objects are from the YCB object set [118] and differ in
shapes, sizes, and stiffness. The objects are placed by hand on the table within the fingers and
moved slightly between the grasps. Each object was grasped three times, resulting in a total of
60 grasps, which means 60 sequences for the entire hand and 180 for the equal finger network.

In Figure 4.6 an exemplary grasp is shown. The hand begins in a fully opened position and
closes all fingers with the same speed. As soon as the first contacts are made, the adaptive
behavior of the hand begins and the fingers wrap around the object, which is shown in the center
pictures. In the right photo, the grasp is finished and neither the fingers nor the object is moving
anymore. One grasping sequence contains exactly this movement, from a fully opened gripper
till the end of the grasp.

During data recording the fingers are closed slower than usually to increase the tag detection
accuracy. As the neural networks recurrent dependency is the state rather than the time in our
case, the closing speed does not matter. The recording of a sequence is stopped when the last
finger stopped moving, meaning they are in a limit or in contact. When a marker is occluded
and not correctly detected anymore, the sample collection for this finger is terminated and will
not be continued if the tags are detected again.

The recorded data is used for all three approaches. In the case of the deep learning ones, the
dataset is split into training (80 %) and test (20 %) set.
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(a) Pringles can

(b) Ground truth (c) Analytical

(d) Equal Finger RNN (e) Entire Hand RNN

Figure 4.8: Estimation results of the end state of grasping a Pringles can.

4.5 Results

With the recorded dataset described in Section 4.4 the three approaches are evaluated.

Figure 4.8 depicts the visualizations of the state estimations of the individual methods for
a Pringles can. Additionally, the figure presents an image of the real robot with ground truth
markers attached, along with the visualization of this ground truth data. Visualizations of the
grasps of other objects are shown in the appendix in Chapter 8.

For the results in Table 4.2, the average difference between the ground truth and the estimated
joint position for all motor positions in all grasps are listed. To get a better understanding of the
individual joints, the errors are listed individually and overall. Since the most interesting part of
the state estimation is the final state, as this can be used for further applications rather than the
complete movement, both results are listed. The average error or accuracy is given in radians. It
is noticeable that joint 1 between the palm and the proximal phalanx has the highest accuracy for
all approaches, followed by joint 2 between proximal and middle, and joint 3 between middle
and distal to be the least accurate, independent of the full movement and end state. The baseline
approach reaches an overall accuracy of 0.142 radian (0.248 end state), the equal finger approach
reaches 0.089 radian (0.133 end state), and the entire hand network has the most accurate results
with 0.04 radian (0.079 end state).

These results are consistent with the boxplots in Figure 4.9 for the full closing movement and
Figure 4.10 for the end state error. The plots show the median value as horizontal red line within
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Table 4.2: Joint state estimation accuracies in radians
Whole closing motion Joint 1 Joint 2 Joint 3 Overall
Analytical 0.084 0.145 0.196 0.142
RNN equal finger 0.057 0.093 0.117 0.089
RNN entire hand 0.026 0.048 0.047 0.040
End state
Analytical 0.140 0.275 0.329 0.248
RNN equal finger 0.088 0.149 0.163 0.133
RNN entire hand 0.045 0.085 0.107 0.079

the box, the box itself indicates the 25th and 75th percentiles, and the lines show the interquartile
range times 1.5. The distribution of errors is significantly higher with the analytical approach
than with the other two, both for the entire movement and for the final state. In the most extreme
case for joint 3 at over 45 degrees (0.8 radian). The plots also show that the distribution is
significantly lower for the entire hand. It is striking that the deviation for joint 3 in the entire
hand network is smaller than for joint 2, but only for the full movement.

Figure 4.11 gives more information about when errors occur, the graph shows the amount of
deviation according to the motor position g. At the beginning of the movements the error is
very small in all three cases and increases more and more. It can be seen, that the deep learning
approaches are much more accurate than the analytical approach. Again, the three joints are
plotted separately, red shows joint 1, green joint 2, and blue indicates joint 3.

To understand when the errors occur, an exemplary grasp is plotted in Figure 4.12, divided
into the three fingers and the three joints, with the same color scheme as before. The joint states
are plotted in the upper graphs and the corresponding contact values are plotted in the lower
graphs over the motor position g. In addition, the lines in the upper part are divided into ground
truth as a continuous line, analytical estimation as a dotted line, and the results of the network
for the entire hand as a dashed line. The results of the equal finger network have been omitted
to maintain clarity. It can be seen that the lines deviate from the ground truth state as soon as
contacts occur.

4.6 Discussion

In the first research question we wanted to find out if a neural network approach can outperform
the existing analytical approach and compensate object movements. The results presented in
Section 4.5 have shown that both deep learning approaches perform better than the baseline.
The reason for this can be seen in Figure 4.12, as long as no contact appears, all estimations
perform equally well. When a phalanx contact occurs, the finger position for the analytical
way will not change anymore even though, the real joints still move due to object movement.
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Figure 4.9: Each boxplot show the joint state error distribution in radians for the three joints
during the full closing trajectory. The left one shows the results from the analytical
method, the middle one from the RNN approach treating all finger the same way,
and on the right side the RNN approach using the entire hand.
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Figure 4.10: Each boxplot show the joint state error distribution in radians for the three joints
for the last state when the grasp is complete. The left one shows the results from
the analytical method, the middle one from the RNN approach treating all finger
the same way, and on the right side the RNN approach using the entire hand.
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Figure 4.11: The deviation of the joints from the ground truth distributed over the motor position
g of the entire dataset. Blue indicates the fingertip, green the middle, and red the
proximal joint. The left one shows the results from the analytical method, the
middle one from the RNN approach treating all finger the same way, and on the
right side the RNN approach using the entire hand.
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Figure 4.12: In the upper graphs, the states of all 9 finger joints are plotted during one exemplary
grasp of the wooden block. The ground truth data is plotted as solid line, the analyt-
ical method as dotted line, and the RNN approach for the entire hand with a dashed
line. In the lower plots, the normalized contact readings of the respective finger are
shown. Blue indicates the fingertip, green the middle, and red the proximal joint.
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The other two approaches are more stable there and behave more like the ground truth curve.
This is also the reason why the error in Figure 4.11 increases a lot for the analytical approach.
Another problem is the different forces acting on the object, as soon as all fingers have contact
with the object and exert forces from two sides. The object moves in the hand and the adaptive
fingers react to these forces and object movements. This behavior is not covered in the analytical
approach, but is learned in the deep learning methods. As expected, the model for the entire hand
is even more robust here. In-hand movements occur for almost all objects, which increases the
error for the baseline.

Regarding the second research question we wanted to investigate the difference between the
two neural networks. Since the networks hardly differ architecturally, but in one case only
receive information from one finger, while in the other case they receive all values, it is obvious
that this information provides added value in determining the joint states.

For further applications like grasp analysis and evaluation, the end state is of greater interest
than the entire movement, especially the accurate starting phase without a contact is negligible.
As depicted in Figure 4.11, it becomes apparent that the analytical method exhibits high levels of
inaccuracy towards the end. Furthermore, Figure 4.10 illustrates the discrepancy in final states,
emphasizing a notable deviation from the true state. In comparison, the recurrent neural network
method, which takes the entire hand into account, is more accurate and is therefore suitable for
further applications.

The results have shown that the errors increase significantly from joint 1 to joint 3 (see Fig-
ure 4.9 and Figure 4.10). To explain the behavior of the individual joint errors, one can examine
the range of motion. The fingers behave adaptively due to the coupling mechanism behind them.
This adaptive free space is noticeable smaller for joint 1 compared to joint 2 and 3, whereby
joint 3 can change the most. This implies that solely from the motor position, one can predict
the location of joint 1 more accurately than joints 2 and 3.

With an average accuracy of 0.04 radians (2.29 degrees) and an average end-state accuracy of
0.079 radians (4.53 degrees), the state of the hand can still be determined very accurately.

4.7 Conclusion

On our way to utilizing tactile data in the robotic environment, we have seen that tactile sensors
can be used to learn more about the environment or more precisely about characteristics of
grasped objects (see Chapter 3). In this chapter, we wanted to use tactile data to learn more
about the internal state of the robot and investigate the second fundamental question (FQ2).
With a new deep learning approach, we have shown that the state of an underactuated gripper
can be determined only with the use of contact sensors and one motor position. The baseline for
this work was presented by Franchi and Hauser [12]. The authors used mathematical analysis to
determine the condition of the hand. However, this method reaches its limits as soon as gripped
objects move. With our RNN approach, we were able to robustly determine the state of the hand
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even under these circumstances. Furthermore, we have shown that it is advantageous to consider
all three fingers together rather than individually. The best results achieved had an accuracy of
0.040 radians or 2.29 degrees with the entire hand model for the full motion and 0.079 radians
or 4.53 degrees for the end state.

In the next step, the results of this research can be used to analyze and evaluate grasps. Other
works have used similar approaches to perform in-hand manipulation of objects [100, 110].
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So far, tactile sensors have been used to collect intrinsic and extrinsic information with the
robot independently of the human. In one case tactile data was used together with audio and
in the other case together with proprioceptive data to see whether a multimodal advantage can
be achieved. In the next step, we want to involve the human and communicate the tactile data
measured by the robot with visual and acoustic cues, to address the third fundamental question
(FQ3) to augment the human perception.

In 1954, Goertz and Thompson [119] presented one of the first approaches to remote control
a robot. Since then, the field has evolved with new robots, new interfaces, and new applications.
In 1994, the first 6-DoF robot that could be remotely controlled via a desktop application over
the internet was introduced by Goldberg et al. [120] allowing to grasp and manipulate objects
with a robot at another laboratory, in another country, and even in space. An early overview on
the topic is presented in [121].

Mastery of teleoperation typically needs a period of training. This is particularly the case in
environments where mistakes cannot be tolerated, such as in surgical tasks. Especially in this
context, it is important to implement simple interfaces [122, 123]. But it is also advantageous
for other applications to keep the system as simple as possible, especially for non-expert users.

A further challenge is to track the user’s movements. This can be achieved through the use
of hardware such as IMUs or LEDs, which are attached to key points on the user’s body and
thus enable to track it [124, 125]. Alternatively, via tracking gloves, some of which are able
to provide additional feedback [126]. These approaches have the disadvantage that it takes a
long time to prepare the user to put on the devices and that movements are sometimes restricted.
An advantage is that movements can often be transferred one-to-one to the robot. XR devices
usually come with integrated hand or controller tracking, enabling interaction with the virtual
world. This data can also be used for teleoperation, albeit with limitations. For instance, while
a 6-DoF pose per hand and the pose of the head can be obtained, information about the entire
arm and body are missing. On the other hand, these devices can be set up and ready for use in a
matter of seconds.

A non-trivial modality for teleoperation, especially in combination with XR devices, is haptic.
The transmission of vibration or small deformations via small wearables is possible for haptic
feedback; however, these often reduces the immersion and make tracking with XR devices more
difficult [127]. Another form of contact less haptic feedback is via ultrasound, but this can also
restrict the range of movement and requires an extra device [128].

In the following chapter we present our MR teleoperation approach. The objective is to imple-
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ment real-time teleoperation for one or two robot arms simultaneously. The system should be as
free as possible from hardware dependencies in order to facilitate the integration of new robots
and to enable the replacement of the XR device, for example to utilize only the tracking, to pro-
vide virtual augmentations in AR or to switch completely to VR. Furthermore, it is our intention
to present tactile information from the robot to the user, without any additional hardware other
than the XR display, in form of visual and acoustic cues through the HMD. The contribution of
this work is as follows:

• Development of an MR-based real-time teleoperation system combining XR devices with
arbitrary robot arms

• Visual and auditory feedback of tactile readings during MR teleoperation

• Evaluation of the teleoperation system regarding the user experience and usability

The rest of this chapter is organized as follows. Section 5.1 provides an overview of related
work on teleoperation and feedback methods in XR. The teleoperation approach is presented
in Section 5.2 including the robot setup, tracking, and jogging of the robot. We then evaluate
our system in a user study in Section 5.3, describe the results in Section 5.4, followed by the
discussion. Section 5.5 offers a summary of this part and suggestions for subsequent work.

5.1 Related Work

The work related to our approach can be divided into two parts, on the one hand implementations
of XR teleoperation approaches, on the other hand feedback in Virtual Environments.

5.1.1 Teleoperation with Extended Reality

The benefit of teleoperation in virtual environments is, that the devices typically provide input
options, such as controllers or hand tracking. The poses and interaction possibilities provided
can be optimally employed for teleoperation without the necessity to wear an elaborate tracking
suit or similar beforehand. There is no consensus among scientists who integrate XR devices
with robots regarding the use of the terms VR, AR, and MR. This often makes it difficult to
compare the approaches they take. In this related work, we use the taxonomy as presented
in Section 2.5. Consequently, some authors refer to their work as VR teleoperation, but it is
described here as MR.

In 2024, Cheng et al. [129] presented a teleoperation approach with active visual feedback.
Meaning that the user in MR is able to control the robot’s head through their own head move-
ment, thereby enabling active visual exploration of the robot’s environment. The robot is equipped
with a stereo camera whose two camera perspectives are displayed directly in the VR glasses, al-
lowing the user to see through the eyes of the robot. A closed-loop inverse kinematics algorithm,
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based on Pinocchio, calculates the joint angles for the robot’s arms from the user’s hand pose.
The authors utilize the system for imitation learning. A few years earlier, Zhang et al. [130]
presented a comparable setup for complex manipulation tasks with imitation learning. In their
MR teleoperation application, they present the robot’s environment to the user with point clouds
from a depth camera instead of a stereo camera.

In their study, Penco et al. [131] present a system through which they teleoperate a humanoid
robot with assistive autonomy in MR. This implies that, on the one hand, they can plan move-
ments with a virtual robot before they are optimized and executed, and on the other hand, they
can also perform direct teleoperation with probabilistic movement primitives. With their hu-
manoids they can open doors and box against a punching bag. Other works that teleoperate
humanoids with MR are [132, 133, 134, 135].

Not only the direct teleoperation of robots is being researched, but also alternative interactive
interfaces in AR to control the robot. This can be achieved, for example, by setting a target
position, visualizing the planned trajectory, and then executing the movement [35, 136, 137].

5.1.2 Feedback Methods in Extended Environments

In their work, Chan et al. [138] present a combination of direct and pre-planned teleoperation.
Users are able to specify a path for the robot to follow. Subsequently, the planned trajectory can
be traversed manually via a gesture. The user is provided with feedback on the force applied at
the end effector during the movement. Two distinct feedback methodologies for this force are
evaluated in a study. One is a visual arrow above the gripper that changes in size, and the other is
haptic vibrations on the forearm. They achieve superior outcomes with the haptic feedback and
attribute this to a cognitive overload with visual feedback. Other studies have reached a different
conclusion, with better results achieved through the use of multimodal feedback [139, 140, 141,
142].

An earlier attempt to provide feedback in a desktop VR experiment was conducted by Herbst
and Stark [140] in 2005. The researchers employed a data glove that provided vibration feedback
at the fingertips, in conjunction with a hand tracking device for control, to enable participants
to manipulate virtual boxes within the study. Using different modalities (visual, acoustic, and
haptic), they provide feedback on force magnitude so that the candidates can sort the blocks by
weight or push the block with the least friction off a stack. The combination of two modalities
has been found to result in an increase in performance, in terms of both execution time and
the number of transitions. However, the combination of all three modalities has been found to
provide no further increase.

One use case of VR and haptic feedback that has attracted considerable attention from the
research community is surgical procedures. In their work, Zhou et al. [143] show the impact
of haptic feedback to surgeons and how important it is to be able to handle this feedback when
training new surgeons. They present this concept through a study in which they conduct surgical
operations in a simulator, with and without haptic feedback. Other works in the field of feedback
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in surgery are [144, 145, 146].
One effective yet complex method of providing proprioceptive feedback is through the use

of exoskeletons. A full-body exoskeleton for teleoperation is proposed by Ishiguro et al. [135],
with a particular emphasis on locomotion and arm movements. Electromotors with encoders in
the joints are used not only to measure and transmit joint positions, but also to provide force
feedback from the remote-controlled robot. Other works in which exoskeletons are used in
virtual environments for feedback are [147, 148, 149, 150].

5.2 Teleoperation Approach

This chapter describes our teleoperation approach as shown in the process graph in Figure 5.1.
The user’s arm and hand movements are tracked, the target poses for the arms and grippers are
determined, converted into movements, and then sent to the robot’s corresponding controllers.
If the user is in a extended environment, the robot is visualized accordingly and, if available,
tactile information is provided. Figure 5.2 shows a user teleoperating the PR2’s left arm wearing
a HoloLens 2 head mounted display which tracks the hand and visualizes the tactile data of the
robot. In the following sections, we take a closer look at the individual parts and describe the
connections between them in order to successfully implement the teleoperation.

5.2.1 Pose Tracking

In our approach, we control the 6-DoF end effector pose of robot manipulators. In order to trans-
fer the user’s movement to the robot, a tracking system that can both capture the movement of the
arms and provide a way to interact with the grippers is needed. Possible commercial solutions
include the use of data gloves, external visual tracking systems such as PhaseSpace Motion Cap-
ture [W10] or OptiTrack tracking system [W11]. Some HMDs, such as the HoloLens 2 [W12]
or Meta Quest 2 [W13], also offer solutions for tracking the user’s hands to interact with the
virtual environment. In the case of the Quest 2, controllers can also be used as an alternative
to hand tracking. The presented approach offers both, controller control and hand tracking for
teleoperation.

Hand Tracking

For both, the HoloLens 2 and the Meta Quest 2, there are toolkits available that provide hand
tracking. In the case of the HoloLens, the relevant toolkit is the Mixed Reality Toolkit [W14].
For the Quest it is the Meta XR All-in-One SDK (UPM) [W15], whereby in our experiments
we use the predecessor Oculus Integration SDK [W16]. Both SDKs provide between 24 and 26
joints per hand, which are largely similar. The joints of the HoloLens tracking can be observed
in Figure 5.3a. To guarantee smooth and natural teleoperation, none of the frames proved to
be suitable. The finger joints move and rotate too much to use them for controlling the arm.
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Figure 5.1: The teleoperation process graph from hand tracking to arm movements and control
of simple parallel grippers. An interface for possible control of a 5-finger robotic
hand is also implemented.

Figure 5.2: On the left side of the graphic, the user remotely controls the robot’s left arm and
performs a stacking task. The position of the right hand and the distance between
the thumb and index finger are transmitted to the gripper. The right side of the image
shows the user’s view through the HoloLens 2, with the ball providing information
on the target position and the arrows providing feedback on the tactile values of the
fingertips.
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The wrist frame offers greater stability, although it also feels unnatural during teleoperation,
independent of the SDK. In order to enable stable teleoperation, it is necessary to use multiple
frames of the hand. As shown in Figure 5.3a, a triangle is constructed between the fingertips of
the index finger and thumb and the wrist. The position that is transmitted to the tool frame of
the end effector is centered between the fingertips, while the orientation results from the straight
line between this center point and the wrist for the forward direction and the line between the
tips for the rotation. The distance between the fingers is also utilized to open and close the
gripper. Additionally, the system provides the transfer of the full hand’s state to 5-finger hands.
However, this is not implemented in the present work. To start the teleoperation, the remaining
three fingers (middle, ring, and little) must be closed. Conversely, to terminate the teleoperation,
these fingers are opened again.

(a) (b)

Figure 5.3: On the left (a) the 25 joints tracked by HoloLens 2 are shown [W17]. The triangle
between IndexTip, ThumbTip and Wrist is used to determine the position and orienta-
tion of the target pose for teleoperation. The right side (b) shows the Quest controller
for the teleoperation controller mode [W18]. The teleoperation frame is located in
the center of the button area.

Controller

The advantages of controller control are that the tracking of position and orientation are more
accurate for fine manipulation tasks. Furthermore, the tracked pose is much more reliable and
stable and does not require further stabilization as with hand tracking. In the case of the Meta
Quest 2 [W18], infrared LEDs in the controller ring are recognized by the four cameras in the
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HMD and the position and orientation are calculated. As long as these are not occluded, the
tracking works quite accurately. To activate the arm teleoperation, the button designated as A, or
button one, is employed, whereby the arm only moves when the button is pressed. Furthermore,
the primary index trigger is used to to open and close the parallel gripper (see Figure 5.3b).
A further feature, which was only introduced after the user study, is a reduction in the speed
of the arm when the primary hand trigger is pressed. In this mode, it is easier to perform
fine manipulations, as the robot arm only moves and rotates at half the original speed. More
sophisticated robot hands can only be used to a limited extent in controller mode. In the case of
a five-finger hand, only a pinch grasp with index finger and thumb or power grasps are used.

5.2.2 Robot

In this work, we focus on the teleoperation of robotic arms, regardless of whether they are
mounted on a mobile platform or stationary ones. It is recommended that the robotic arms have at
least 6-DoF, as this allows the independent control of position and orientation of the end effector
in Euclidean space and can therefore map all dimensions. Our approach has been integrated and
tested in both simulation and on real robots. Figure 5.4 depicts the robots employed in this work:
a UR5 equipped with a 3-Finger Robotiq gripper on top and a two-armed PR2. Both robots were
tested in simulation (on the left) and on the real hardware (on the right). As all interfaces are
independent of the actual robot, it is straightforward to exchange the platform. The prerequisites
are that the robot is operated with ROS, that there is a trajectory controller that moves the arm,
and a gripper controller that manages the gripper (see Figure 5.1 Robot). More sophisticated
grippers, such as the Shadow Hand, can be abstracted as parallel grippers. In a two arm setup,
both arms can be controlled at the same time, or individually (see Figure 5.5).

5.2.3 Extended Environment

In our experimental setup, the extended environment serves as the counterpart to the robot. In the
course of our experiment and user study, MR is used with the HoloLens 2 [W12]. However, the
system is also integrated and tested on the Meta Quest 2 [W13]. With regard to the development
with HMDs, the game engine Unity3D [W4] is used, which is compatible with both devices.
Furthermore, there are also SDKs for hand tracking. It is noteworthy that the software is capable
of supporting a multitude of Virtual and Augmented Reality glasses, and can therefore be easily
integrated. Since this part is important for our experiment, but not essential for the teleoperation
approach, it is colored red in Figure 5.1, which should indicate that it is optional. As long as
there is another interface for hand or controller tracking.

Bridge between virtual environment and robot

As robot and VR device operate in different environments, a bridge between ROS and Unity is
necessary. Two prominent systems exist for this purpose: ROS# [W5], which provides a number
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Figure 5.4: The presented teleoperation system is platform independent and has been tested,
among others, on a UR5 with a Robotiq gripper (top row) and both arms of a PR2
(bottom row). The system is suitable for both simulation (left column) and real robot
systems (right column).

of libraries and tools for the communication between ROS and .NET applications. On the other
hand, Unity itself offers a few more slimmer packages for communication [W6]. Furthermore,
both packages also work with HMDs. ROS# was developed slightly earlier and thus employed
in our user study. After Unity introduced their software, we tested it and switched because it is
not only slimmer, but also have a better performance due to the direct TCP communication. Both
versions provide the option of importing robot URDFs, ROS messages, services, and actions,
thereby making the development with both environments easier.

5.2.4 Registration

In the context of Virtual Reality, where there is no interaction with the physical elements of the
real world, it is not necessary to know the location of the user or the HMD within the room.
But, in the case of MR, in which virtual objects are blended into the real world, the device
must perceive the real world in order to display these objects realistically. To achieve this, the
HoloLens uses depth sensors to perceive the surrounding environment and determine its position
within it. One step further, it is necessary to know where objects in the real world are located
in order to integrate them into the virtual world, consequently, both worlds need to be aligned.
In our case, we want to display visual markers on the robot, therefore, it is essential to know
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Figure 5.5: The teleoperation approach in a dual arm scenario with the Meta Quest 2.

the robot’s location. To address the issue of registration, one potential solution is to place an
anchor in the environment that can be detected by both the HMD and the robot. This anchor can
then be used to determine the spatial relationship between the two worlds. An AprilTag [113]
is employed as the anchor, which is fixed within the room and is identified by both the glasses
and the robot. AprilTags are fiducial markers whose position and orientation can be determined
by conventional computer vision. This enables the calculation of the transformation from robot
to marker and from marker to glasses, thus also determining the transformation from robot to
glasses. The accuracy of the tags at the size and distance we use was determined by Kalaitzakis
et al. [151] to be 2 cm, which is sufficient for our scenario. However, since the calculation of
the transform on the HoloLens significantly limited the performance of the glasses at the time of
the experiment, the two worlds are only synchronized with each other at the beginning and not
continuously.

5.2.5 Jogging

Jogging a robot means that the robot moves a short distance and rotation. By repeating this
movement, the robot can be guided to specific positions and orientations. Most industrial robots
offer this movement option on their control panels to move the individual joints of the robot
either in joint space or the end effector position in Euclidean space. The jog_control [W19]
package was taken as the basis for our jogging approach and extended so that absolute poses
could be approached in space, rather than jogging or rotating the end effector in specific direc-
tions. The robot is given a 6-DoF pose, which should be reached with the end effector. When
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using a VR device for the teleoperation, the target position is indicated with a small semitrans-
parent sphere (see Figure 5.2). A linear movement of the end effector is calculated by means of
interpolation between the current pose of the robot and the target pose. The inverse kinematic of
these points is then calculated with the help of BioIK [152]. As this type of teleoperation only
controls the pose of the end effector, it is possible to specify constraints such as the position of
the elbow. For example, in scenarios involving two arms, the elbow should, if possible, behave
in such a way that it does not point in the direction of the other arm. The position of the hand
is mapped in a one-to-one relationship with that of the robot, such that a movement of 10 cm by
the hand is reflected in a corresponding movement of 10 cm by the robot. In order to prevent
the robot from making any unforeseen movements and to allow the user to readjust their hands,
the position of the hand at which the teleoperation was started is taken as the reference point. If
the user interrupts the control, this reference point is reset as soon as the teleoperation is started
again.

5.2.6 Tactile sensing

To communicate tactile information to the user, tactile sensors on the robot fingers are necessary.
In the following user study, a PR2 with tactile arrays on each of its parallel grippers is used. With
22 taxels, 15 of which are on the inner contact surface, the applied force is measured. Therefor,
the work of Romano et al. [153] is used to estimate the normal forces. These forces can be
visualized via a HMD, or acoustically via loudspeakers.

5.3 User Study

The objective of the user study is to evaluate the usability and performance of the system, as well
as the use of visual and acoustic substitutions of tactile data, both uni- and multimodal. Given
the circumstances of the ongoing covid19 pandemic, the study was conducted as a pilot with a
limited number of participants, due to the restrictions on access to the laboratory facilities. The
participants were asked to perform a simple manipulation task under different conditions. With
this experiment, following questions should be answered:

1. Does the communication of tactile feedback through visual and auditory cues to the user
improve the quantitative performance of a teleoperation task?

2. Is the new MR robot setup applicable for teleoperation tasks regarding the usability for
non-expert users?

5.3.1 Experiment Setup

The teleoperation approach presented is independent of the input device and also of the remote-
controlled robot. The setup configuration used in this study is pictured in Figure 5.2. In the user
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study, participants were prompted to remotely control the left arm of the PR2, as this component
is both robust and not too complex. The mobile platform and height-adjustable torso enabled the
robot to be placed in the center of the room, thereby facilitating greater flexibility for users in
moving around the robot to optimize their positioning for teleoperation. Furthermore, the robot
is equipped with tactile arrays on the fingertips, the functionality of which has been analyzed in
other works. The HoloLens 2 was selected as the tracking device, as it enables users to receive
immediate feedback from the actual robot through MR, allowing them to observe its behavior.
Additionally, there are pre-existing solutions for hand tracking for this device, as detailed in
Section 5.2.1. A table is set up in front of the robot, which is also used for registration by
markers on top of the table (see Section 5.2.4). The cups are placed at the edge of the table to
facilitate gripping from the side without collision.

5.3.2 Tasks

To evaluate the system, the candidates are given the task of stacking five cups with the remote-
controlled robot. In Figure 5.6a, these five cups are lined up next to each other; they are to
be picked up one after the other in the red area by the robot’s left gripper and placed on the
right unmarked cup. As little force as possible should be used to avoid destroying the cups.
Furthermore, the participants were also instructed to be as fast and precise as possible. In order
not to make the task too challenging, the cups were always placed in a row next to each other
so that they could be easily grasped from the side. With this scenario we can measure whether
different amounts of force are used with the different conditions and how fast the participants
are. A cup is considered as lost as soon as it slips out of the gripper and falls over. If the
cup subsequently lands in the same initial position, it can be grasped once more. Once all four
marked cups have either been stacked or fallen over, the task is considered complete, and the
next condition is set up. The three cups on the right side of Figure 5.6b are used in the tasks.
They have different degrees of stability and size, in the experiment, we want to test whether
these properties have an influence on the performance. The hardness of the cups decreases from
left to right.

5.3.3 Conditions

In all conditions, the position of the jogging target is indicated by a semi-transparent sphere on
the wrist. Furthermore, the tactile data from the gripper sensors is visualized or displayed in
different ways:

Color (C)

The ball used to indicate the target position changes its color depending on the force applied.
Prior to contact, the sphere is white (0 N). As soon as a contact is made, the color changes
proportionally to green until a force of 5 N is reached. At this point, the color transitions to
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(a)

(b)

Figure 5.6: The top picture (a) shows the user study task, where participants are asked to pick up
the cups in the red area and place them one by one on the unmarked cup on the right.
They should do this as quickly as possible without destroying the cups. The different
cups are shown at the bottom (b). The left cup is only used in the warm-up phase,
the other three have different strengths to measure their influence on performance.

yellow with a full saturation at 7.5 N and subsequently changes to red at 10 N. The color does
not change beyond this point. See Figure 5.7a.

Size (S)

Arrows are visualized next to the fingers to represent the measured force with a size-changing
indicator (see Figure 5.7b). In the absence of contact, these arrows have a small size, as il-
lustrated in the left image of the graphic. As soon as force is applied, these arrows expand in
proportion to the magnitude of the force, reaching their maximum size at 10 N. To ensure com-
parability across conditions, both arrows are presented with the same size, which corresponds to
the average force value.

Text (T)

The measured force is visualized in the form of a text above the gripper (see Figure 5.7c). This
text corresponds to the applied force in Newtons, again with a maximum value of 10 N.

Audio (A)

In order to provide the user with tactile feedback in the form of audio signals, a sine tone is
played via the internal loudspeakers of the HMD as soon as contact is made. This sine tone
begins at a frequency of 200 Hz (>0 N) and is increased to 600 Hz in proportion to the maximum
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(a)

(b) (c)

Figure 5.7: The three virtual replacements of tactile feedback. (a) shows the measured force as
different colors of the position ball, (b) changes the size of the arrows, and (c) shows
the measured force as text above the gripper.

force of 10 N. As soon as more force is applied, the 600 Hz is played as a beep, similar to a
variometer.

5.3.4 Measurements

As the system mainly aims at a good user experience, the subjective perception of the partic-
ipants as well as the objective performance of the candidates during the teleoperation is mea-
sured. To evaluate the objective factors, the following variables were measured: execution time,
average applied force, and success rate. The time taken for the execution time was recorded, be-
ginning with the first active movement and concluding with either the stacking of the last cup or
the cup fallen over. The average force was calculated from all tactile measurements that detected
contact on both tactile arrays. The success rate was determined by the number of cups that were
successfully stacked, with a maximum value of 4.

In order to evaluate users’ subjective perceptions, they were asked to complete various ques-
tionnaires. One is the NASA Task Load Index (NASA TLX) [154], which can be used to as-
sess the perceived workload. To evaluate the usability of the approach, the System Usability
Scale (SUS) [155] was employed, which is an established method for quantitatively analyzing
usability. Simulator sickness is a common issue in XR experiments, the Simulator Sickness
Questionnaire (SSQ) [156] was utilized to assess this problem. Additionally, we employ the
AttrackDiff2 [157] Questionnaire to measure the perceived Hedonic and Pragmatic Quality. A
custom questionnaire to enquire about the various substitutions was used. These are the ques-
tions and statements with the possible answers in brackets:
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• Which condition did you like best? (8 conditions)

• Which condition was the easiest for you? (8 conditions)

• The arrows were distracting. (5-point Likert scale)

• The sphere was distracting. (5-point Likert scale)

• The number was distracting. (5-point Likert scale)

• The sound was distracting. (5-point Likert scale)

• Which visualization was more helpful? (5-point Likert scale, three questions with the
combinations of the visual substitutions)

• The sound was helpful. (5-point Likert scale)

• The information from the tactile sensors helped me a lot. (5-point Likert scale)

• Which kind of cup was the easiest for you? (Three cups and no difference)

5.3.5 Conduct

Participants

The study was conducted during the ongoing corona pandemic, which resulted in restricted
access to offices and laboratories. Consequently, only a pilot study with five participants was
feasible. The participants ranged in age from 23 to 57 years (M = 34.4, SD = 13.18) and were
employees of the working group. All participants had normal or corrected-to-normal eyesight
and none had equilibrium issues. Of the five participants, three had prior experience with AR
headsets and three had experience with hand tracking.

Procedure

Before the participants took part in the study, all devices were disinfected and cleaned, the
specified safety distance was maintained, and the participants and the supervisor wore masks
throughout the experiment. At the beginning of the experiment, the participants were informed
of the experiment’s structure and provided with an overview of the experimental setup and the
tasks they would be performing. Subsequently, the participants completed the initial question-
naire, comprising a demographic section and the first part of the SSQ, on a computer provided
for this purpose. Prior to completing the actual task, participants were given a brief period
of familiarization. This allowed them to get used to the Head-Mounted Display and familiar-
ize themselves with the robot’s behavior during teleoperation. They were informed about the
interaction possibilities. Using a cup that was not provided in the experiment (Red cup in Fig-
ure 5.6b), the participants were able to practice grasping and lifting objects without receiving
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any feedback on the tactile data. Following the warm-up phase, the participants were presented
with the actual experiment, which was divided into three phases, with a short break allowed
between each phase. The combination of eight conditions and three cups meant that the partici-
pants were required to stack the cups eight times in each phase. The sequence was randomized
to ensure that neither the cups nor the conditions remained the same from one trial to the next.
Following the completion of the three phases, participants were asked to complete the remaining
questionnaires. In total, the participants wore the HMD for approximately 45 minutes; including
questionnaires and preparation, one session lasted around 60 minutes.

5.4 Results

5.4.1 Quantitative Results

The average execution time and success rate are presented in Table 5.1. The values obtained from
all participants are then aggregated and averaged across the conditions. The results demonstrate
that the candidates were notably slower when presented with the colored ball or the arrows,
both in uni- and multimodal in conjunction with audio feedback. The recorded times ranged
from 120.2 seconds to 127.2 seconds. The fastest times were 104.6 seconds in the absence of
any feedback and 102.7 seconds when the audio were combined with the text over the gripper.
With only text and only audio, the test subjects completed the task in 112.2 and 111.2 seconds,
respectively. The mean execution time for all conditions and all cups is 118.2 seconds, with cup
1 taking 118.2 seconds, cup 2 taking 115.2 seconds, and cup 3 taking 112.9 seconds.

With regard to the success rate, there were no significant differences; the participants per-
formed best when they were presented with the arrows in combination with audio, with a suc-
cess rate of 91.6 %. Conversely, the lowest success rate was observed with the colored ball, at
83.3 %. On average, participants successfully stacked 87.1 % of the cups. The different cups
had no influence on the success rate.

Figure 5.8 illustrates the average force applied across all cups. It is evident that a greater
force is applied without any feedback on the tactile readings. The remaining conditions have
a minimal variation, regardless of the type of feedback employed, whether visual, acoustic or
multimodal combinations. Figure 5.9 shows the average force applied to the three cups. It can
be observed that an average of 4.5 N was applied to cup 1, 5.1 N to cup 2 and 3.0 N to cup 3,
showing a notable difference.

Table 5.1: Average Execution Time & Success Rate
No C S T A C+A S+A T+A

time 104.6 s 120.2 s 127.2 s 112.2 s 111.2 s 120.8 s 125.7 s 102.7 s
rate 88.3 % 83.3 % 85 % 88.3 % 86.6 % 85 % 91.6 % 88.3 %

67



5 Mixed Reality Teleoperation

No C S T A C+A S+A T+A
Condition

0

2

4

6

Av
er

ag
e 

ap
pl

ie
d 

fo
rc

e 
(N

)

Figure 5.8: The bars show the average force applied by all users during the experiment. Where
No is no feedback on the tactile data, C is the colored sphere, S is the resized arrows,
T is the text above the gripper, and A is the audio feedback, plus the results of the
three multimodal combinations.

5.4.2 Qualitative Results

Table 5.2 presents the findings of the NASA TLX questionnaire. The score is expressed on a
scale of 0 to 100, with 100 representing the highest level of load. The result is divided into
six distinct scales, as illustrated in the table. Notably, the values for overall performance and
frustration level are particularly low. The overall workload is 56.1. The simulator sickness
questionnaire showed that the value before the experiment was 153.38 (SD= 85.8) and 228.17
(SD= 171.62) after the experiment. This increase was to be expected. Furthermore, the SUS
mean score was 77 (SD= 13.04), which is above the average score of 69.5 [158]. Figure 5.10
provides a summary of the results from the AttrakDiff2 questionnaire. This questionnaire is
based on a model that divides attractiveness into two main components: Pragmatic Quality (PQ)
and Hedonic Quality (HQ). The PQ dimension indicates how well a product supports the user in
accomplishing tasks, while the HQ dimension captures the extent to which a product appeals to
or resonates with the user on an identity level. Participants gave positive ratings for the system’s
attractiveness across both dimensions.

The evaluation of the custom questionnaire indicate that the participants prefer multimodal
feedback to individual substitutions. The combination of arrows and audio (S+A) was the most
preferred option, with three participants indicating a preference for this over the color-changing
ball and audio (C+A), which was favored by two participants. This was also the outcome of
the comparison between the visual feedback methods. These were compared individually on
a 5-point Likert scale. The responses were transformed into a scoring system, whereby the
visualizations were assigned no points if the vote was neutral and 1 or 2 points depending on
how strongly the tendency was towards this method. In total, the color (C) feedback received
14 points, the arrows (S) 10, and the text (T) 1 point. This confirms the preference for color and
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Figure 5.9: The bars show the average force applied by all users to the different cups during the
experiment. Where Cup 1 is the white, most rigid cup, Cup 2 the brown, and Cup 3
is the softest blue one.

size. In response to the question of which feedback was most helpful, two individuals selected
S+A, two selected C+A, and one selected S. Four people indicated that the substitutions were
not particularly distracting, with a mean value of 1.2 on a scale of 0 to 4. One subject indicated
a high value, which suggests the presence of personal preferences. The result to the question of
whether the tactile feedback was particularly helpful in the task was mixed with a mean value
of 2.4 on a 5-point Likert scale. With the last question we asked about the different cups, three
people said that cup 1 was the easiest to handle, two said that it was cup 2.

5.5 Discussion

The objective of the first research question (see Section 5.3) is to answer whether providing
information regarding the tactile data of the robot gripper results in quantifiable performance
enhancements of the teleoperation. The performance of the system is evaluated based on three

Table 5.2: NASA TLX scores.
M SD

Mental Demand 56.7 25.28
Physical Demand 53.4 13.94
Temporal Demand 53.4 18.26
Overall Performance 26.67 9.13
Effort 60.0 19.00
Frustration Level 40.0 22.36
Overall Workload 56.1 11.35
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Figure 5.10: The graph shows the result of the AttrakDiff2 questionnaire, with the top graph
showing the percentages of Hedonic Quality (HQ) and the bottom graph showing
Pragmatic Quality (PQ) on a 5-point Likert scale.

key metrics: execution time, force applied to the object, and success rate. The time taken by the
candidates to complete the task was comparatively longer when they were required to use either
the arrows (S) or the colored ball (C) as a condition. This can be attributed to the phenomenon
of perceptual overload, whereby too much information can cause an overload and therefore a
reduction in the execution time [159], as both conditions were visualized nearby the robotic
gripper and therefore in the visual region of interest. Users indicated that the text was not a
favorite condition and that they probably paid less attention to it. Consequently, they were
better able to concentrate on speed under this condition. It can be inferred that users were also
less distracted by audio feedback and were therefore better able to concentrate on the task. A
comparison of the force exerted in each condition reveals that less force was applied to the
objects when the users had feedback on the tactile data, indicating that the tactile feedback
was beneficial. However, which feedback condition did not have a significant impact on the
results. One potential reason for this is that the task was too challenging, and the force exerted
was not the primary focus. Additionally, no notable differences were observed in the success
rate. With the different cups, the influence of the hardness of objects on the teleoperation was
measured. Although the participants indicated that the softest cup was the most difficult to
handle, it required the least force. This can be attributed to the fact that the participants had to
be more careful, otherwise the cup would be crushed. The cups had no significant influence on
the other measurements relating to success rate and execution time.

Regarding the qualitative evaluation of our study, the questionnaires showed that our system
is both user-friendly and accepted by the users and is considered suitable for teleoperation tasks.
This is supported by the above average SUS and AttrackDiff2 results. Users indicated that they
preferred the visual feedback close to the gripper, even though the qualitative results showed
that performance was worse with this feedback. If the focus of teleoperation is purely on perfor-
mance, such distracting visualizations should be avoided in favor of an unused modality, such
as audio in this case. If the focus is purely on user experience and usability, visual feedback is
a good option, and, if possible in a (redundant) multi- over unimodal way. Overall, this pilot
study does not provide precise results, but it does show first important trends, as all users were
very satisfied with the system and stated that the teleoperation was easy and intuitive to use,
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especially as all participants were inexperienced in this area and had little or no experience with
teleoperation or virtual environments. These results also answer our second research question
that our MR setup is suitable for teleoperation even if the users are inexperienced.

5.6 Conclusion

In this work, we have shown that tactile data can be used to support humans in teleoperation
tasks, improve performance, and enhance user experience and usability. Therefore the third fun-
damental question (FQ3) could be positively answered, as the system show a positive influence
using tactile feedback for augmented perception. The presented system is independent of both
the input device and the robot to be controlled and let users remotely control robots in real-time.
The hardware can be exchanged rapidly and effortlessly, as long as it meets the criteria for sup-
porting ROS on the robot side and Unity on the XR display. The pose of the robot end effector
is controlled by the pose of the user’s hand or a controller. The same applies to the gripper of
the robot.

In a pilot user study, we demonstrate, using the example of a 7-DoF robot arm on the PR2
platform, that the system can be operated by non-expert users to perform precise manipulation
tasks, as evidenced by a success rate of 87.1 %. The objective was to demonstrate that the
performance of the system and its usability could be enhanced by the presentation of tactile
data. The results indicate that there is an improvement in the quantitative performance in certain
areas, such as the reduction of the average force applied. However, there is also a deterioration in
performance due to the provision of too much information, which primarily affects the execution
time. Nevertheless, both unimodal and multimodal feedback have been shown to enhance the
usability and user experience, whereby the users preferred multimodal feedback.

To enhance the functionality of our system, the control of 5-finger hands can be integrated in
future work. The majority of current XR devices offer robust 5-finger tracking capabilities. With
the appropriate mapping, the state of users hands can then be transferred to more sophisticated
robotic hands. Furthermore, the system presents the potential for autonomous, side-by-side col-
laboration between humans and machines, including temporary teleoperation and autonomous
behavior of the robot.
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In the final experiment in this thesis, we intend to use the robot to provide haptic feedback and
to answer the last fundamental question (FQ4). Up to this point, the attention has been primarily
directed towards the tactile sensors and the robot itself. However, in this chapter, the focus will
shift towards the human aspect, with the aim of creating a comprehensive and engaging tactile
and haptic experience. We already dealt with Extended Reality (XR) in this thesis, and this
chapter will also deal with the combination of robots and, in this case, Virtual Reality (VR). The
objective is to enhance the sense of immersion in VR with a device designed and constructed for
this purpose, thereby creating an even more realistic impression of the virtual environment.

An example of haptic interaction in VR and AR scenarios, which is also frequently used
in academic studies, is the act of pressing a virtual button [160]. For commercially available
XR devices like the Meta Quest 2, when a button is pressed, the user receives audio feedback
in the form of a clicking sound or, in the case of controller usage, in the form of additional
vibrations, which are less reminiscent of pressing a button. Additionally, the button also changes
visually, so that the user’s virtual hand presses the button down. There is a lot of research
into improving this type of feedback in human-computer interaction scenarios, with the aim of
improving the quality of the VR experience (further presented in Section 6.1). Approaches that
provide the user with haptic feedback can be broadly classified under the term Encountered-Type
Haptic Display (ETHD). The device presents a surface to the user to encounter within a specific
workspace. A tracking system is utilized to capture human movements, enabling the precise
positioning of haptic surfaces at appropriate locations. By the use of virtual environments, the
presence of the haptic device can be obscured, enabling the illusion of realistically touching
surfaces or objects in VR. Mercado, Marchal, and Lécuyer [13, p.2] defines ETHDs as follows:

“In the context of human interaction with a virtual or remote environment, an Encountered-
Type Haptic Display is a device capable of placing a part of itself or in its entirety in an
encountered location that allows the user to have the sensation of voluntarily eliciting
haptic feedback with that environment at a proper time and location.”

This definition also includes wearable devices, in which the to encountered surface is not in
constant contact with the user. The limitations of these devices, with the exception of wear-
able technology, are that they only provide feedback in form of a single point of contact [161].
Consequently, more complex shapes can only be explored to a limited extent or not at all.

We want to address this issue by presenting the user with physical 3D models of the virtual
objects. Therefore we design and construct an inconspicuous table, on which objects can be
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moved and rotated with a plotter-like mechanism beneath the tabletop. The characteristics of the
haptic display will be evaluated through a series of experiments. Furthermore, the usability and
user experience will be investigated in a user study.

The main contribution of this work can be summarized as follows:

• Design and construction of an Encountered-Type Haptic Display for human-computer in-
teraction scenarios in Virtual and Augmented Reality with a three-dimensional movement
(x, y, and rotation) of arbitrary objects on a tabletop

• Utilization of Hall effect sensors for wireless position and interaction detection of objects
on the table surface

The remainder of this chapter is structured as follows. Section 6.1 provides an overview
of existing related work on ETHDs and magnetic control. The subsequent chapter outlines
the design of our table. Section 6.3 evaluates the technical possibilities and Section 6.4 the
subjective quality of the device in a user study. Finally, a summary of the results is presented
and suggestions for potential ideas for future research.

6.1 Related Work

This section will summarize two related topics. The first will investigate approaches to inte-
grate haptic feedback in the form of ETHDs. The second will analyze the literature that uses
comparable hardware approaches to ours, namely magnetic control.

6.1.1 Encountered-Type Haptic Displays

ETHDs can be categorized in different ways, depending on their underlying technology in
grounded and ungrounded devices. Grounded displays have a fixed workspace as the robotic
devices are firmly positioned on the ground, like robotic arms or fixed platforms, as the device
presented in this chapter.

Mercado, Marchai, and Lécuyer [162] employ a UR5 robot equipped with various end effec-
tors in conjunction with an HTC Vive HMD. They use the system to create the illusion of a
large flat surface. Usually a large surface is achieved by interrupting the contact and displacing
the end effector. The authors investigate the extent to which a constant contact with the surface
is achievable during interaction. To prevent users from reaching into empty space and to pro-
vide cues for interaction, a circle with a diameter of 5 cm was visualized indicating the contact
area. Its position and color indicated when and where a contact with the surface was possible.
During an experiment, five different interaction techniques to move the interaction area where
tested in which three had intermitted contacts and two continuous contacts. Furthermore, the
participants were asked to color three shapes on the surface with their index fingertip. The study
demonstrated that both, user experience and performance for interaction techniques involving
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interruptions were better. Reasons for this included easier control and inadvertent interactions
during the coloring task. More examples of robotic arm approaches can be found in [163, 164,
165, 166, 167, 168, 169, 170, 171].

Furumoto et al. [172] presented the concept of a midair balloon interface, which is an example
for a fixed platform. They create acoustic radiation forces using Airborne Ultrasound Phased
Arrays (AUPA) [173] to exert forces on solid objects. For their setup, they positioned 11 AUPA
devices spherically with a diameter of 528 mm, allowing interaction access to the balloon while
still enabling efficient three-dimensional movements. In [174] they showed, that the device can
be used in virtual environments with a prototype scenario. More devices are presented in [175,
176, 177, 178, 179, 180, 181].

In contrast, ungrounded devices are not fixed to a specific location but can move within space.
Examples of these include mobile platforms, Unmanned Aerial Vehicles (UAV), or wearable
devices.

A common approach for haptic feedback with mobile devices is by attaching adjustable haptic
surfaces to mobile robots [182, 183]. This provides the opportunity to utilize multiple robots to
offer feedback at more than one contact point and even use swarm intelligence. Some research
has also led to the development of displays that can alter their shape, such as pin arrays, in order
to exhibit different shapes [184, 185]. Suzuki et al. [186] presents an approach with tabletop-size
mobile robots with height and orientation changeable surfaces. The system is easily scaleable
to provide multi point feedback or larger areas. Furthermore, objects can be attached to the
surface to present perfectly shaped feedback in virtual environments. Kim and Follmer [187]
use a swarm of small wheeled robots to indicate haptic patterns to the users hands and arms.
With their robots, they generate both tactile and kinesthetic feedback depending on the applied
force. Possible scenarios for the swarm robots are indicating notifications, directional cues, or
remote social touch. To track arm motions, they used a wristband in their experiments.

An example for UAVs is presented by Abtahi et al. [188], for their setup, they encased a
quadcopter with aluminum mesh to enable safe interaction with the device. The drone can land
at any location to provide dynamic passive haptic feedback in the form of a box on-demand.
Furthermore, they attached different textures and physical objects to the drone to be encountered
by the human at arbitrary positions mid-air. Such devices can also be used to simulate weight,
surface stiffness, and lateral force [189]. More examples of Unmanned Aerial Vehicles are [190,
191, 192].

Another category of ungrounded ETHDs are wearable devices such as the device developed
by Ariza Nunez et al. [160]. This device comprises a mechanical thimble that can provide haptic
feedback through tapping at the fingertip and vibration. In addition, electrodes on the forearm
are used to provide proprioceptive feedback through electrical tendon stimulation in order to
obtain a sensation of stiffness, contact and activation. The setup is evaluated in a study wherein
participants are instructed to press virtual buttons. Other works with wearable devices includes,
for example [193, 194, 195].
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6.1.2 Magnetic Control

Magnetic control is more commonly used in a different dimension than in our work, namely for
nanoparticle manipulation [196, 197]. For an overview of this topic, see the review by Abedini-
Nassab, Pouryosef Miandoab, and Şaşmaz [198]. In particular, three methods are presented
with which the particles are manipulated. The first is with electromagnets or permanent mag-
nets, which are often used to mix or separate liquids, as the hardware is too large for precise
manipulation of nanoparticles [199, 200]. To precisely manipulate particles, embedded micro-
wires or micro-coils are often used [201], which is the second method, or the third with magnetic
film [202]. However, the hardware for the last two methods is significantly more complex.

Another example where magnetic control is used is in arc welding. Nomura, Morisaki, and
Hirata [203] have presented an approach in which four permanent magnets are used to turn
the typically round cross-section of the arc plasma into an elliptical shape which significantly
improves the welding quality. This is just one example of many, as magnetic control is very
popular in welding, as this review shows [204].

Mahoney and Abbott [205] attached a permanent magnet to their 6-DoF robotic arm, enabling
the control of a capsule endoscope within a liquid-filled stomach. They developed a method to
use this setup to control the position of the capsule in three dimensions and the orientation in
two. They have distances of around 25 cm between the magnet and capsule to keep them in
equilibrium. Other research that uses magnetic control for endoscopy are [206, 207, 208]

The hardware that is probably closest to ours is the commercially available Atari Pong ta-
ble [W20]. It is a mechanical reproduction of the 1970s arcade game. A two-axis system is em-
ployed to move a magnet underneath a glass plate, thereby moving the ball on the top in two di-
mensions. Four magnets are attached to the square ball in a 2x2 matrix, the magnets are polarized
crosswise to make the ball more stable. Furthermore, a layer of Polytetrafluoroethylene (PTFE)
tape is applied beneath the ball. With this configuration, the ball is capable of reaching speeds of
up to 1.58 m/s. In contrast to our approach, the system has two fewer Degrees of Freedom and
lacks the ability to detach the object. Additionally, the system does not gather any information
about the object, as there is no interaction intended.

6.2 Encountered-Type Haptic Display

6.2.1 Requirements

In a typical scenario the user is situated within a Virtual or Augmented Reality environment
and interacts with the virtual objects that are present in their immediate vicinity. It should be
possible for the user to make physical contact with these objects and perceive their dimensions
to be accurate in relation to the virtual object, and furthermore, to explore them in a manner that
is both intuitive and realistic. These physical feedback objects have to be placed by the haptic
display within reach of the user and at the right time, so that the user does not reach into the void.
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Furthermore, it should also be possible to present different physical objects, in the best case
arbitrary of size, shape, and stiffness. The device should be designed unobtrusive in a way that
it can be used for AR, ensuring the maintenance of the illusion of a realistic environment. For
instance, the presence of a robot arm in front of the user would immediately disrupt the illusion.
This also means that the user should not be provided with a feedback glove or exoskeleton.

Figure 6.1: The Encountered-Type Haptic Display during the Whac-A-Mole user study. The user
is wearing a Meta Quest VR Headset and gets haptic feedback with the ETHD at the
intended position. The participants were supposed to perceive the table as a normal
table, which is why any motors visible on the sides were inconspicuously concealed.

6.2.2 Design

Given that a typical robotic arm, drone, exoskeleton, glove, or similar robots and devices are
unsuitable due to their direct exposure to the user, we decided to modify an everyday object to a
haptic display, but keeping appearance. The selected item is a table. This attracts little attention
at first, but still offers the possibility of discreetly attaching a mechanism beneath the table top.
As illustrated in Figure 6.1, the table appears to be a conventional table, yet it is equipped with
a 3-axes system under the tabletop shown in Figure 6.2. The end effector, which is equipped
with permanent magnets, is capable of moving along two axes, enabling the manipulation of
attached objects along the table surface. An additional axis enables the magnets to be lowered
from the tabletop, thus allowing the manipulation of different objects by detaching and attaching.
Furthermore, this axis is capable of being rotated, thus enabling the object to be rotated on the
other side of the surface. With this configuration, manipulations in four dimensions beneath the
table and three dimensions above are achieved. As the table surface is too thick, a hole is sawn
out in the center and a thinner plate is placed over it. The size of the hole also determines the
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size of the workspace in which the objects can be placed. This workspace can be scaled by
using a larger table and longer axes. Furthermore, the entire structure should minimally extend
downwards allowing users to sit at the table without restriction. We have raised the table slightly
for people with long legs. The used hardware is described in more detail in the following section,
followed by the software used.

Figure 6.2: Hardware design of the haptic display. The left picture shows the top of the table
without an attached surface. The hole has the maximum size possible with this table,
the remaining edge is necessary to attach the plotter mechanism. In the right picture,
the table is shown from below. Two motors in the top corners move the y-axis, while
the motor for the x-axis moves on the y-guides. In the end effector, a fourth servo
and a stepper motor are attached to control z- and yaw-axis. The controller board is
attached in the upper left corner.

Hardware

Figure 6.2 illustrates the fully assembled Encountered-Type Haptic Display (ETHD) from both,
an overhead and a lateral perspective, in each case without the thin surface. This table was
chosen as it has no struts under the tabletop, but instead a frame along the edges. Overall its
dimensions are 80 cm in length, 50 cm in width, and 74 cm in height. The table top is made of
pressed wood and is 2.5 cm thick, thereby elements can simply be screwed in. For a tabletop
with this thickness, the use of an electromagnet would be impractical as a magnet strong enough
to create a magnetic field that overcomes this distance would be too large. Instead, a 56.3 x 36 cm
hole was cut into the plate and a 5 mm thin sheet of PTFE was laid over the entire surface of
the table. This is the maximum hole size we could cut in order to be able to attach all the
components. The aforementioned hole size yields to a workspace of 47.2 x 26 cm, within which
objects can be placed. Furthermore, this approach allows for the additional saving of 2.5 cm of
downward expansion. For the y-axis, two 40 cm long metal shafts with a diameter of 1 cm were
attached as far out as possible beneath the table top. The mount for these guides was custom
designed and 3D printed and is shown in Figure 6.4a. For the x-axis, two mounts were printed
(see Figure 6.4d and Figure 6.4e), ball bearings are attached to them to slide over the y-axis, one
on each side. Between these two mountings there are two further metal guides with a diameter
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of 1 cm and a length of 60 cm parallel to each other with a center distance of 3 cm between
them. The custom designed end effector, shown in Figure 6.3 on the left side, runs on these two
guides, once again using two ball bearings. The y-axis is driven by two motors that are fixed to
the wooden tabletop. Each motor drives a belt that is attached to the x-axis mounts, which can
be tensioned via a screw on the opposite pulleys. With regard to the x-axis, a motor is attached
to one mount and a pulley to the other. This can be moved using a belt that runs underneath
the parallel rails and is fixed to the end effector. The electronic cables are guided in a channel
along this axis so that they do not hang down and do not contact the user. The custom end
effector combines two axes of movement. On the one hand, a servo motor moves the axis which
is orthogonal to the surface up and down, and on the other hand, this axis can rotate by a stepper
motor. The designed models are shown in Figure 6.4. The missing part in this kinematic chain,
where the magnets are attached, is shown in Figure 6.3 on the right side. These magnets must
be lowered from the table’s surface for the detachment of objects, yet they offer the potential
for the rotation of objects on the table through the application of four magnetic fields. We have
obtained the most effective results with the use of 8x3 mm cylindrical magnets attached to the
tool, as illustrated in Figure 6.3 on the right side. Four Hall effect sensors [96], positioned at
90-degree angles to one another, have been integrated into the center of the tool. These sensors
are used to measure the magnetic field of a reference magnet, which is positioned centrally in the
object above the table. The data gathered from this measurement is then used to get information
about the object. The three stepper motors, the servo motor, and two end stops, one for the x-
and y-axis to calibrate the system, are driven by a Bigtreetech SKR mini E3 V2.0 board, with
integrated motor drivers. The data from the Hall effect sensors is read out with another Arduino
Nano board at 400 Hz per sensor. The hardware specification including the accuracy findings
from our experiment in Section 6.3 is shown in Table 6.1.
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Figure 6.3: The custom build end effector of the ETHD. The left picture shows the combina-
tion of a servo motor for the yaw-rotation and a stepper motor for up and down
z-movements, to attach and detach objects. To estimate the position of a reference
magnet within the object on top of the table, four Hall effect sensors are placed in
the center of the tool (right picture).

Table 6.1: Hardware Specification

Parameter Specification

Table Size (H×W×D) 74 cm×50 cm×80 cm
Workspace 47.2 cm×26 cm
Payload 210 g
Speed 66 cm/s
Object Estimation Accuracy 0.5 mm
Power Supply 12 V
Motors 4 Stepper, 1 Servo Motor
Control Type Belt-driven
Surface Thickness 5 mm
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6.2 Encountered-Type Haptic Display

(a) Guide holder (b) Motor holder

(c) Pulley holder (d) x-axis holder

(e) x-axis holder with motor connection (f) End effector

(g) Motor shaft extension for the end effector (h) Tool

Figure 6.4: The models are produced via 3D printing and subsequently assembled on a tabletop
for the construction of the haptic display. (a) The guide holder is required for the
mounting of the y-axis guides. The motor holder (b) and pulley holder (c) serve to
tension the belt, which is responsible for enabling the y-axis movement. The x-axis
is formed by the two holders (d) and (e), which feature a motor connection, and two
metal guides. The end effector (f), a shaft extension (g) for the rotary motor, and a
tool (h) in which the magnets are located.
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Software

Given the analogous architectural configuration of our system and that of a 3D printer, it is
reasonable to check whether the same software can be used. The mainboard mentioned in Sec-
tion 6.2.2 has been designed for 3D printer and also supports the use of the open-source Mar-
lin [W21] firmware. This firmware takes over the complete control of 3D printer, encompassing,
for example, the movement of the nozzle, extrusion of the filament, temperature control of the
print bed, or fans. As the software is open-source, it is also possible to integrate custom com-
ponents. Communication with the firmware or with the printer then takes place via G-codes.
These G-codes can be used to control the individual components of the system, such as the
aforementioned movements of the end effector. These codes are typically generated by a slicing
program that creates print paths from a 3D model. These slicers then generate a list of contigu-
ous G-code commands, which are then processed by the printer in a sequential manner. One
disadvantage for our system is that it is not designed to react in real-time and interactively to the
current movement, i.e. a movement command across the table cannot be interrupted. However,
since the table is supposed to react to spontaneous movements of the user, we have to gener-
ate this behavior. One potential solution is the command M410 Quickstop, which can interrupt
such movements. However, after the command is called, the motors lose their position due to
the abrupt stop and require recalibration, which is not a viable option. To enable interactive
reaction to changes, movements are interpolated and the corresponding G-code commands are
sent individually. In this way, movements can be interrupted and updated. In order to ensure
compatibility with our robots, a ROS interface for the generation of the G-code used for the
setup has been implemented. Furthermore, as already described in the previous chapters, the
Unity-Robotics-Hub enables the communication with Unity in order to be able to communicate
with the table not only from a computer, but also directly from the virtual environment. Conse-
quently, the positions can be controlled directly with a pose message via a topic. The generated
code is transmitted to the ETHD at a rate of 100 Hz.

Simulation

The entire system is simulated within the Gazebo environment, providing a platform for testing
and validating the setup in the absence of physical hardware (see Figure 6.5). The simulation
environment was mainly used to test the VR application. The interfaces are identical to those
of the actual hardware, with simple pose messages, the end effector can be moved and, conse-
quently, also the object on the table. However, the simulation has limitations, as it was only
employed for testing purposes. The behavior of the object does not precisely mirror that of the
real-world counterpart, without the dragging effect due to friction. Additionally, the processes
of attaching and detaching are not provided. To change the object, the simulation environment
must be restarted.
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Figure 6.5: Gazebo simulation of the Encountered-Type Haptic Display (ETHD).

6.3 Technical Evaluation

6.3.1 Payload, Velocity, and Magnet Size

In order to find the maximum weight that the end effector is capable of moving and the maxi-
mum speed at which it can travel without losing the object, an experiment was conducted. In this
experiment, as illustrated in Figure 6.6, a square container was 3D printed with a mass of 20 g
when empty. The container is placed on a small square plate in which the magnets are located.
The plate can be replaced, allowing the magnets to be exchanged in order to identify the optimal
magnet size. Below the table, the tool can be changed, again, to find the ideal magnet size. No
Hall sensors are used in this experiment. The experiment consists of two steps. In the first step,
the container is moved across the table in a square trajectory three times, with the speed in-
creasing after each round. If the container successfully completes all three rounds without being
separated from the end effector, the weight in the container is increased. Conversely, as soon as
the container fails to complete one of the three rounds, the run is no longer considered successful
and the maximum payload is reached. In the next step, the speed is slowly increased for the last
successful weight in order to find the maximum velocity. These two steps are carried out for
different magnet combinations. The magnets that we tested were of the following dimensions:
6x3 mm (diameter x height), 8x3 mm, 8x4 mm, and 10x3 mm. The speeds at which they were
tested were 10 m/s, 20 m/s and 40 m/s.
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Figure 6.6: The 3D printed container for the payload and velocity experiment.

6.3.2 Friction Compensation

In a world without friction, the object would always sit perfectly above the tool, the mechanism
could carry more weight, and move at a faster pace. Unfortunately, since this is not the case,
we have to take friction into account. In the preceding section, an analysis was conducted to
determine the maximum weight that can be moved and the fastest rate of movement that the end
effector can achieve. Furthermore, the object is dragged by the friction during movement, which
means that it is not directly above the tool, but a few millimeters behind it. In this context, two
distinct types of friction are distinguished. The first is static friction, which occurs when the
object is at rest. Only when this is overcome the object begin to move and slide over the contact
surface. Kinetic friction, on the other hand, occurs during movement. The extent to which the
object lags behind the tool depends on the magnitude of the kinetic friction. As soon as the
device stops, the object also stops, and the static friction returns. In a first experiment, we want
to find out how large the displacement between the object and the tool is, after the movement
has stopped. Therefore, different combinations of magnets are tested to find the best one, also
taking into account the results from the payload and velocity experiment. To enable more precise
positioning, the four Hall effect sensors will be used to track the position of the object and to
correct the approach to achieve a higher positioning accuracy. This will be investigated in a
second experiment.

Experiment 1

The objective of this experiment is to investigate the impact of different magnet dimensions on
the friction and repetition accuracy. Magnets of the size of 6x3 mm (diameter x height), 8x3 mm,
8x4 mm, and 10x3 mm are tested in different combinations between the object and the tool. A
small squared object with an AprilTag [113] on the surface is used as the object, which is tracked
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by a calibrated camera. With the tag, the current 6D pose of the object can be determined. This
object is used to randomly approach 20 equally distributed points within the workspace in order
to determine the repetition accuracy. Each point is approached 20 times, resulting in a total of
400 samples. When a position is approached, a short pause is made to ensure that the recognized
tag is stable in the image.

Experiment 2

In order to enhance the precision of the ETHD’s positioning, Hall Effect sensors are used to
track the reference magnet within the object. If these sensors are precisely assembled, it is theo-
retically possible to use a simple mathematical analysis to determine the position of a reference
magnet. However, since four sensors were constructed by hand into a 3D-printed object, this is
no longer a trivial task. Nevertheless, it is a task that can be accomplished with a neural network.
The four raw sensor values are therefore fed into the neural network shown in Figure 6.7. Three
fully connected layers, the first one with 10 neurons, the second with 20, and the third again
with 10 are used, all with ReLU activation. With hyper-parameter optimization the following
parameters for the network were determined: Mean Squared Error as loss function together with
the adam optimizer, a learning rate of 0.0001, weight decay of 0.07, and a batch size of 5.

In order to create the training data set, a sample object was fixed on the table surface and the
tool was positioned exactly underneath it, as the starting reference position. The magnets in the
tool and in the object have dimensions of 8x3 mm, the same applies for the reference magnet.
The decision in favor of these magnets is explained in more detail in Section 6.3.6. The end
effector then scanned a square area of 10 mm around this point in a grid pattern and recorded a
total of 24000 training sample tuples of ground truth position and sensor values.

4 10 20 10 2

Input

Hall
readings

FC
FC

FC
Output

x, y

Figure 6.7: The neural network architecture used for the position estimation of a reference mag-
net on top of the table. The readings of four Hall sensors in the center of the tool
below the table were used as input, as output the x-y-coordinates of the magnet rela-
tive to the tool. The three fully connected hidden layers have 10, 20, and 10 neurons
all with a ReLU activation function.
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6.3.3 Object Recovery

The display has been designed with the intention of interactions within virtual environments,
whereby the user is able to interact with and manipulate the objects present on the table. Such
interactions may, for instance, consist of briefly pressing the object, or the user may pick up the
object and place it in a different position. It can also happen that the object is accidentally moved
during the interaction. Furthermore, due to too much friction, the object may stuck without any
external impact. However, this is only a minor problem, as long as the maximum speed is
maintained. A recovery mode has been implemented to prevent the experiment from having to
be interrupted or the immersive illusion from being destroyed. The recovery process is based on
conventional computer vision techniques. A camera is positioned to observe the entire surface
of the table. If required, it can be placed inconspicuously in the room. Initially, the tabletop is
filtered out of the image, as it is white and stands out well against the background, simple edge
detection can be used here. It is assumed that the four edges forming the largest trapezoid in
the image represent the table surface (green lines in Figure 6.8). The intersections (red dots)
indicate the corners. The table surface is now converted into a grayscale image in which clusters
are searched for. The center of each cluster serves as a reference point for the objects, which are
then mapped together with the table surface onto a two-dimensional plane (blue dots as corners,
green dot as object). If an object’s position does not align with the known positions, the object
is considered to have moved and can be returned to its original location. Even if the recognized
position is not very precise, it is sufficient to be correctly attached by the magnets in the end
effector. This type of recovery was sufficient for our scenario. However, for experiments of
greater complexity, it may be more appropriate and robust to train a neural network.

Figure 6.8: The position of objects is monitored continuously. If a user relocates an object,
this is identified and the position can be corrected. Conventional image processing
techniques are employed to recognize the table and object.
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6.3.4 Interaction Detection

In human-robot interaction scenarios, whether in VR, AR, or without a virtual environment, the
detection of interactions is crucial. This includes detecting if the object has been taken away and
if the object has been touched. For the first part, we can look at the Hall effect values without
any deep learning approach. The four sensor values are normalized between 0 and 1. As the
noise from the sensors is low enough, it can be assumed that the object is above the tool even
if there is a minimal deflection. Using a threshold of 0.03 proves to be a suitable value. Below
this value, it can be assumed that there is no magnet above the tool. Regarding the second part,
when a person touches the object, the friction compensated position can be used. If the estimated
position doesn’t match the measured one, the object has been touched.

6.3.5 Results

Payload, Velocity, and Magnet Size

Table 6.2 and Table 6.3 show the results of the first experiment to find the maximum payload and
velocity, as well as the optimal magnet size combination. The results indicate that the smaller
magnets, with dimensions of 6x3 mm, are insufficient in providing enough force to maintain the
connection, regardless of whether they are used in the tool or the object. Even at low weights,
friction prevails and the object is quickly lost. Also the combination with larger magnets proved
to be ineffective. The maximum weight that can be achieved with these magnets in the tool is
55 g; when they are used in the object, a maximum of 115 g is achieved. With magnets that are
too large, the force is so high that the motors do not manage to overcome the static friction and
the end effector no longer moves at all. This happens with the combination of 8x4 mm with
10x3 mm magnets. The best result in terms of payload is 235 g overall. This result is achieved
with different combinations of magnets, including 8x3 mm with 8x4 mm, 8x4 mm with 8x4 mm,
and 10x3 mm with 8x3 mm. The highest speed at which the object is reliably transported is
66 m/s with the magnet combination of 8x3 mm with 8x3 mm. However, these speeds are also
almost reached with the other combinations of 8x3 mm, 8x4 mm, and 10x3 mm.

Table 6.2: Maximum payload of the haptic display

Object

6×3 mm 8×3 mm 8×4 mm 10×3 mm

To
ol

6×3 mm 20 g 35 g 55 g 35 g

8×3 mm 105 g 210 g 235 g 205 g

8×4 mm 115 g 225 g 235 g stuck

10×3 mm 115 g 235 g stuck stuck
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Table 6.3: Maximum velocity of the haptic display

Object

6×3 mm 8×3 mm 8×4 mm 10×3 mm

To
ol

6×3 mm 40 m/s 45 m/s 50 m/s 50 m/s

8×3 mm 50 m/s 66 m/s 61 m/s 65 m/s

8×4 mm 53 m/s 60 m/s 64 m/s stuck

10×3 mm 45 m/s 63 m/s stuck stuck

Table 6.4: Repetition accuracy of the table

Object

6×3 mm 8×3 mm 8×4 mm 10×3 mm

To
ol

6×3 mm 1.21 1.1 1.36 1.24

8×3 mm 1.18 1.17 1.39 1.39

8×4 mm 1.3 1.44 1.96 2.11

10×3 mm 1.36 1.59 1.89 2.01

Friction Compensation

To compensate the friction, we conducted two experiments. The results of the first experiment
are shown in Table 6.4. It is evident that the friction increases with larger magnets, resulting
in a corresponding increase in the inaccuracy of the repetition accuracy. The combination of
6x3 mm in the tool and 8x3 mm in the object yields the most accurate positioning, with a standard
deviation of 1.1 mm. In contrast, the combination of 8x4 mm in the tool and 10x3 mm in the
object exhibits the least accurate positioning, with a deviation of 2.11 mm.

In the second experiment, the objective is to use Hall effect sensors to enhance the precision
of the object’s positioning by estimating its location. In order to achieve this, a training set was
recorded to train the neural network. The values of the data set are shown in Figure 6.9. The
color of a data point indicates the degree of deflection of the sensor at that position. For training,
the data is split into 70 % training data and 30 % test data, the network was trained in 100 epochs.
This approach resulted in a test accuracy of 0.5 mm, which is less than half the initial positioning
accuracy of 1.17 mm.

6.3.6 Discussion

The experiments were conducted in order to explore the possibilities and technical limits of our
ETHD. It is crucial to select an appropriate combination of magnets in the tool and the object
in order to be able to carry objects quickly, precisely, and as heavy as possible. Although the
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Figure 6.9: The graphic shows training data for the object positioning network. Each diagram
shows the recorded training samples of one Hall sensor. One sample contains the x-y
position of the reference magnet, and the Hall readout normalized between 0 and 1
mapped to the color space from black to red.

smallest magnets in our tests with 6x3 mm can be positioned quite precisely, they can hardly
be transported as the connection quickly loosens both at low weights and at low speeds. With
magnets that are too large, the attraction between the object and the tool is so high that the static
friction is challenging or impossible to overcome and also leads to inaccurate positioning. As it
is not possible to achieve the maximum value in all areas with any combination, a compromise
is necessary. It was determined that the optimal choice for both the tool and the object are the
8x3 mm magnets, as this configuration allows for the highest speed, an acceptable level of ac-
curacy, and a relatively high weight. Furthermore, the positioning accuracy has been enhanced
through friction compensation. The position of the object is determined by the neural network
model, and the target position of the end effector can be adjusted accordingly to achieve a po-
sitioning accuracy of 0.5 mm. Furthermore, we can achieve a speed of 66 m/s at which objects
are reliably transported without the connection loosening. If the connection get lost, it can be
quickly restored with the presented recovery process. A user study was conducted to assess the
usability and user experience, as detailed in the subsequent chapter.

6.4 User Study

The haptic display is designed to be used in Virtual and Augmented Reality scenarios. To eval-
uate the usability, the user experience, and the haptic experience, a user study was conducted.
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Furthermore, maintaining the illusion of interacting in a realistic environment where everything
behaves naturally is crucial for a good experience. It is therefore important that the haptic
feedback is in alignment with the visual representation, otherwise this could cause a break in
presence [209, 210]. An object placed incorrectly or with a wrong timing would lead to a dis-
crepancy between the real and virtual world when the user reaches into the void. To prevent this
and to evaluate the table, we came up with the following two research questions:

1. How much time does the display have to position an object on the table before the user
encounters it?

2. Does the haptic display offer a satisfying user experience and usability?

The objective of the initial research question is to find the velocity at which a user interacts
with the table, the amount of time required for the table to position an object at a target location,
and the available time for an object placement before the user encounters it. Furthermore, the
distance that the object is capable of moving within the workspace is to be determined in order
check the coverage.

In the following sections further details on the setup, task, implementation of the study will
be described, as well as the results to answer the research questions.

6.4.1 Setup

For this VR user study, the Meta Quest 2 is integrated with the haptic display. The software for
the Meta Quest was developed using Unity [W4]. As previously outlined in Section 6.2.2, the
use of ROS to generate and transmit G-code commands to the table enables communication via
the Unity-Robotics-Hub [W6], as in the previous XR experiments. The ETHD is placed within a
standard office setting, with a conventional office chair positioned in front of the table, on which
the user is seated during the experiment (as illustrated in Figure 6.1). The setup does not indicate
that this is not a conventional desk. In VR, the user observes a simplified environment, rather
than the actual office. However, the table is displayed in front of the user, whose position still
needs to be registered at the start of the experiment (see Section 6.4.1). Behind the table is a large
panel on which the user is shown instructions. Additionally, the user sees virtual representations
of their hands. The setup also includes a physical button as shown in Figure 6.10, this button is
connected to Wi-Fi and ROS and publishes on a topic as soon as it is pressed or released. This
button is equipped with magnets and can be positioned on the table.

Registration

In other experiments, AprilTags have been used to overlay the real and virtual worlds. In order
to maintain the table’s inconspicuousness in this scenario, the user have to register the physical
table in the virtual world. A supervisor could do this before the experiment, but by putting the
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Figure 6.10: Whac-A-Mole user study setup in the real world (left) and in VR (right). The user
is presented with 15 virtual buttons on a virtual table. To get haptic feedback for all
of these buttons, the table substitutes each of them by moving one physical button
at the desired position.

VR display up and down, the positioning could get lost. The procedure is as follows: The users
explore the table in front of them and feel its position and dimensions. They see the virtual table,
but it does not match the one they feel. The user needs to place the tip of the left index finger
on the front left corner and perform a pinch gesture with the other hand. In this gesture, the tips
of the index finger and thumb touch. Subsequently, the subject touches the right front corner
with the tip of the right index finger and performs a pinch gesture with the left hand. Upon
completion of this action, the virtual table is transformed, with the front corners situated at the
positions of the saved index fingertips. It should be noted that the virtual table may exhibit a
slight discrepancy in dimensions, either narrower or wider than the actual table. However, this
discrepancy is not perceptible. The virtual table is now aligned with the real table.

6.4.2 Task

During the experiment the participants play two rounds of the arcade game Whac-A-Mole. The
task in this funfair game is to hit mechanical moles popping out of a box with holes with a
hammer and put them back into their hole. The challenge of the game is not knowing which
hole the next mole will come out of and hitting it as quickly as possible. A variant of this game
replaces the holes and mechanical animals with buttons that are pressed with the hand instead
of a hammer. This variant has been recreated in the context of the experiment. The participants
are presented with 15 virtual buttons arranged in three rows of five buttons each, located on the
virtual table in front of them. All buttons are gray. If they become illuminated in red, the user
is prompted to press the button. Only one button is illuminated at a time and remains so for a
period of five seconds or until it is pressed. In the course of the experiment, the calculated time
available for placing the button was not subjected to live testing. Instead, the next virtual button
was only activated once the physical button had reached the target position and when the user
returned their hands to a blue area between the table and his body. The game ends when the user
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pressed the button 100 times. The experiment is conducted in two conditions: one in which the
user presses the button with the flat hand, and the other in which the user presses the button with
the index finger only. After the user has pressed 50 buttons, a short pause is initiated, and the
user continues with another 50 presses with the other condition. Which condition comes first
is decided at random. The participants were not asked to be particularly fast or to use only one
particular hand in order to be able to test the influence of these factors on the given research
question later on without consciously influencing them.

Figure 6.11: The five phases of a movement according to Nieuwenhuizen et al. [211] (graphic
taken from the paper). The first latency phase indicates the reaction time of the test
subject. First short movements are detected in a short initiation phase. The main
part of the distance is covered in the ballistic phase, which is the fastest phase and
ends imprecisely near the object before being refined in the subsequent correction
phase until the target is reached. In the final verification phase, there is no further
movement, it simply lasts until the task is completed.

6.4.3 Measurements

With this experiment we want to measure how fast the users move there arms in order to deter-
mine the optimal time for placing an object in a designated location without the user becoming
aware that the object was absent from the location seconds before. Secondly, the aim is to gain
insight into the participants’ subjective perception of the user experience and the usability of the
table. In order to get a deeper understanding of arm movements, a closer look at the work of
Nieuwenhuizen et al. [211] is taken. Their publication is about phases of movements, which can
be observed in Figure 6.11. The process of an arm movement begins with the latency phase,
which reflects the user’s reaction, followed by an initiation phase, which contains small move-
ments before the actual main phase, the ballistic phase. The ballistic phase represents the largest
movement and is characterized by a rapid yet imprecise approach towards the target. This is fol-
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lowed by the correction phase, during which slower but more precise movements are employed
to compensate for the initial inaccuracy. In the subsequent verification phase, no further move-
ment takes place, this phase ends as soon as the task is recognized as complete. The objective of
this study is to investigate the presence of these phases in our scenario and how much time each
phase takes.

Furthermore, subjective factors should be analyzed with a series of questionnaires that the
users fill out before and after the experiment. A variety of standardized questionnaires for VR
will be employed, in addition to customized one. A demographic questionnaire is used to as-
certain information about the participants. To find out whether the system is prone to simulator
sickness, the Simulator Sickness Questionnaire (SSQ) [156] is used. The NASA TLX [154] is
used to determine the level of workload required to operate the system. To quantify the sense of
presence we use the Igroup Presence Questionnaire (IPQ) [212], which enables us to measure
the extent to which the participants really had the feeling of being in the virtual environment
without the illusion being destroyed. The User Experience Questionnaire (UEQ-S) [213] and
SUS[155] questionnaires will be used to evaluate the usability and user experience of the haptic
display. With a custom questionnaire we asked about the haptic experience specifically about the
table. At the latest, the participants will become aware that they have not physically interacted
with the virtual objects, but rather with physical objects on the table. The following statements
will be rated on a 5-point Likert scale:

• The haptic pressing behavior of the physical buttons matched the virtual ones

• The shape of the physical buttons and the virtual ones matched

• The position of the physical buttons and the virtual ones matched

6.4.4 Conduct

Participants

For the user study, 12 participants could be recruited overall, 10 with an age between 25 and 34
years, one person between 35 and 44, and one between 55 and 64. In terms of gender, 9 people
said they are male, two are female, and one person did not want to disclose their gender. The
majority of participants (11 out of 12) indicated infrequent VR use, occurring once every quarter
or less, while only one participant reported using VR on a weekly basis. In order to participate
in the study, no visual impairment must be present.

Procedure

When participants enter the laboratory, the table is positioned directly in front of them. Due to its
appearance as a regular table, it doesn’t particularly stand out. Initially, participants are required
to sign a consent form and receive a brief introduction to the experiment’s procedure. Before

93



6 Haptic Feedback

commencing, they must fill out the demographic questionnaire and the SSQ questionnaire at a
designated computer. Subsequently, they are seated on the long side of the table and put on the
VR glasses and headphones, in order to avoid being distracted by the noise emanating from the
table. On the panel, users see instructions to register the position of the table and the VR display.
Following this, they are presented with a sample button for exploration, followed by placing their
hands in the home area. The actual experiment begins afterward. Participants play two rounds of
Whac-A-Mole. Half of the participants start with 50 flat presses followed by 50 fingertip presses,
while the others follow the opposite sequence. After the experiment, participants complete the
remaining questionnaires and can choose to be briefed on the objectives and research questions
if interested.
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Figure 6.12: Three exemplary velocity plots with colored latency (blue), ballistic (green), and
correction (red) phase. An initiation or verification phase can not be observed in
the data. All plots are right handed movements (r) in the fingertip (t) condition.

6.4.5 Results

Quantitative Results

A total of 996 usable movements were recorded from the 12 participants, with 759 performed
with the right hand and 237 with the left. For the unusable movements, the starting point was
not recognized correctly or the button was not pressed. This data was omitted as it falsifies the
result. Of these movements, 503 were performed with the fingertip and 493 with the flat hand.
The movements have been divided into phases similar to that employed by Nieuwenhuizen et
al. [211]. Figure 6.12 illustrates the velocities of three sample movements, all of which were
recorded with the right hand and pressed with the fingertip. Only three instead of five phases
are recognizable in our case. It is not possible to identify the initiation or verification phases in
the data set. Table 6.5 provides a more detailed account of these three phases, it presents the
mean durations of the individual phases. As expected, the user’s reaction is comparable in both
conditions with an average of 385 ms. For precise movements, the average ballistic phase is
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440 ms, while for less precise movements, as by the flat hand, it is 417 ms. The correction phase
is also significantly shorter, at 42 ms, compared to 98 ms for precise movements. In total, users
require an average of 884 ms to complete their movements. However, as it is the fastest move-
ment that should be taken into account, they are listed in Table 6.6. The minimum reaction time
was 210 ms, for the ballistic phase it was 111 ms, and for the correction phase it was 14 ms. The
fastest movement in total took only 477 ms, which corresponds to almost half a second. A more
detailed illustration of the shortest movements can be found in Figure 6.13, which depicts the
fastest durations for the 15 buttons. As expected, the nearer buttons were reached with consider-
ably greater speed than the more distant ones. The fastest movements at the front were between
477 ms and 550 ms, whereas the ones at the back took up to 700 ms. Given the maximum speed
of the table of 66 m/s, this equates to a distance of approximately 31 cm in the front section and
46 cm in the rear section, which is sufficient to cover the majority of the workspace.

Table 6.5: Average Duration of Movement Phases
Tip Flat Overall

Latency phase 381 ms 389 ms 385 ms
Ballistic phase 440 ms 417 ms 429 ms
Correction phase 98 ms 42 ms 70 ms
All phases 920 ms 848 ms 884 ms

Table 6.6: Minimum Duration of Movement Phases
Tip Flat

Latency phase 213 ms 210 ms
Ballistic phase 113 ms 111 ms
Correction phase 13 ms 14 ms
All phases 488 ms 477 ms

Qualitative Results

The SSQ was completed by the participants both before and after the experiment to monitor
the change in 16 symptoms. The before values were subtracted from the after values, resulting
in the following summarized values for Disorientation (M = 2.320,SD = 17.641), Oculomotor
Disturbance (M = 0.000,SD = 9.142), Nausea (M =−3.975,SD = 6.378), and a Total Simula-
tor Sickness score (M = −0.935,SD = 5.319). These results demonstrate that our system does
not lead to simulator sickness.

The results of the NASA TLX indicate that the task was neither Mentally Demanding (M =

12.083,SD = 15.733) nor Frustrating (M = 7.917,SD = 7.217). The participants felt that their
Performance (M = 9.167,SD = 8.747) was very good. Due to the fast arm movements, the
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Figure 6.13: The movement duration distribution over the workspace, which is colored.

values for Physical Demand (M = 20.417,SD = 18.885), temporal demand and required Effort
(M = 22.917,SD = 16.714) were slightly higher.

The results of the IPQ evaluation showed that Spatial Presence achieved a high average
score of 4.617 (SD = 0.936). Additionally, the Sense of Being There was also rated highly
(4.833,SD = 1.115). Users therefore had the feeling of being present in the virtual world. The
ratings for Involvement (M = 3.792,SD = 1.044) and Experienced Realism (M = 2.833,SD =

1.002) were slightly lower.
The Pragmatic and Hedonic Quality of the system were evaluated using the UEQ-S. Prag-

matic Quality refers to the extent to which the system enables the user to accomplish the desired
task. Our system achieved a very good result in this assessment (M = 1.917,SD = 0.779).
The Hedonic Quality, which indicates to the user’s enjoyment of the system, was rated as good
(M = 1.354,SD = 1.105). This places our system in the top 10 % for Pragmatic Quality and
in the top 25 % for Hedonic Quality, according to a benchmark data set [214]. With the SUS
questionnaire, we reached a mean value of 84.167 (SD = 9.673) for the overall usability.

The objective of the custom questionnaire was to ascertain the realism of the behavior between
the virtual and physical buttons. A 5-point Likert scale was used for each question. The par-
ticipants rated the question about the pressing behavior with a 4.417 (SD = 0.900), the shapes
of the two buttons fitting together with a 4.833 (SD = 0.389), and the position with a 4.167
(SD = 0.937). Overall, the rating for the behavior of the button was therefore very good.

6.4.6 Discussion

The objective of the user study was to address two research questions. With the first question,
we wanted to find out how much time is available to place an object and how large the resulting
coverage in our workspace is. The findings indicated that more than half of the table can be
covered without the user noticing a mismatch between the two environments. For tasks requiring
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greater precision, more time is available for object placement. Furthermore, the movement
phases were examined. In contrast to the findings of Nieuwenhuizen et al. [211], only three
of the five suggested phases were identified. The simple explanation for the missing validation
phase is that it is very short in this context, as the button press immediately completing the task.
In such instances, there is quasi-instantaneous validation. Regarding the initiation phase, the
respective movement might be so minimal it is not discernible in the data, becoming obscured
by the surrounding noise.

The second research question focused on the subjective quality of the system. This was ana-
lyzed on the basis of the questionnaires collected. The participants rated the system an excellent
Pragmatic Quality and a good Hedonic Quality. In addition, the system obtained a good score
on the SUS, which indicates that the usability and user experience of the system is very good.
However, the scores for involvement and experienced realism were slightly lower, which can be
attributed to the simplified environment. It is likely that these scores would have been higher in a
replica of the complete office. The custom questionnaire also yielded positive results, indicating
that our haptic feedback approach is perceived as highly realistic. Users reported that they felt
able to interact with the virtual objects.

6.5 Conclusion

In the last step of this thesis, we examined the potential of robot-mediated haptic feedback and
how this can be used meaningful in a way, that humans can benefit from it, and thus answering
the last fundamental question (FQ4) on how a robot can be used to provide haptic feedback.
To this end, an ETHD has been designed and constructed that enables the provision of haptic
feedback to users in Virtual and Augmented Reality environments. This is achieved through the
manipulation of physically movable objects on the table surface. As an illustration, the substitu-
tion of 15 virtual buttons with only one physical one, as demonstrated in the user study, allows
users to perceive the ability to interact with all the buttons. This method enables to improve
the virtual experience and make it appear even more realistic. The table is capable of placing
objects within a workspace of 47.2 x 26 cm, irrespective of their shape or size. The mechanism
comprises a four-dimensional axis system situated beneath the table, which is capable of moving
objects across the surface of the table via a magnetic connection. It is important that the table
is not recognized as an ETHD by the user, thus enabling the usage in potential AR scenarios. If
the workspace is not sufficient, it is possible to build a scaled version under a larger table. With
Hall sensors in the end effector we are able to recognize interactions and place objects with a
precision of 0.5 mm by compensating for friction. It may also be possible to make virtual avatars
appear more realistic using this technology. For example, by moving a cup of coffee on the table
in an AR scenario. Furthermore, it may be possible to artificially enlarge the workspace of the
table by using hand redirection [215, 216, 217]. The extent to which this can be achieved is a
topic for future research.
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In this work, a wide range of scenarios have been covered to demonstrate the integration of
tactile sensors for the collection of information about robots and their multimodal environments.
In order to provide a compact overview of the work, we can respond to the fundamental questions
posed in Section 1.3 and summarize the main contributions as follows:

Environmental Sensing

The study to answer the first fundamental question (FQ1), about the possibilities of improv-
ing environmental sensing through tactile sensors demonstrates that the combination of tactile
and audio data enables the classification of the content of visually indistinguishable containers
with greater accuracy than a unimodal audio network. Moreover, our findings indicate that the
multimodal network classification is significantly more robust when tactile data is integrated.
Conversely, the classification accuracy of a purely tactile network in a realistic robot scenario
with vibration noise is just over 55 percent (for 8 classes). To achieve more precise classifica-
tion, it is necessary to either reduce the noise of the robot setup or use specialized tactile sensors
attached to the container itself. In conclusion, the integration of tactile data enhances the ability
to explore the environment, particularly when combined with other modalities.

Intrinsic State Analysis

The objective of this experiment was to investigate to what extent it is possible to make state-
ments about the internal state of the robot with tactile data (FQ2). An underactuated gripper,
for which the state of the fingers is unknown, was equipped with tactile contact sensors on the
individual phalanges. These sensors enable the estimation of the current joint states of the fin-
gers by feeding sequences of data together with the motor state of a grasping movement through
a previously trained neural network. The results of this experiment demonstrate that no special
sensors are required on the phalanges to measure the joint states; instead, the tactile data can be
employed for this purpose.

Augmented Human Perception

The goal of this research is to find out whether humans can be supported by the provision of
tactile data measured by the robot (FQ3). To this end, a teleoperation experiment has been
conducted in which the user is equipped with a Mixed Reality Head-Mounted Display and is
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able to teleoperate the robot without the need for additional equipment. The user’s hands are
tracked by the HMD and transferred to the robot. In a user study, the candidates were presented
with the tactile readings of the robots gripper in the form of various visual and acoustic cues on
the MR device. The results of different manipulation tasks demonstrated that the performance
was enhanced in some areas. However, it was observed that in certain instances, the human
operator may become overwhelmed by an excess of stimuli, which could potentially lead to a
reduction in performance, particularly in terms of execution time.

Haptic Feedback

In the final fundamental question (FQ4), we aim to take a further step by providing the human
sense of touch with haptic feedback from the robot. To this end, an ETHD was constructed that
enables to move objects on a table in a mechanical manner and place them on demand within the
workspace on the tabletop. The haptic display was evaluated in a user study in which participants
play a VR version of Whac-A-Mole with buttons. By moving objects on the table, the display
gave users the impression of interacting with 15 virtual buttons, despite only one physical button
being present on the table. This enhanced the realism of the user experience in VR.

The fundamental questions were successfully processed and answered. In all areas, there was
added value in using tactile data, and in most cases it was advantageous to use tactile data in
combination with other modalities. With robots, this was to be expected, as we assume that
more modalities generally mean more information and therefore better results. In instances
where human participants were involved, the results did not always improved with the use of
more modalities. As Sigrist et al. [159] has already demonstrated, an excess of stimuli can
overwhelm individuals, thereby reducing performance. This phenomenon was also observed in
our studies.

7.1 Future Work

Looking at the application categories from Section 1.2, three of the five categories were cov-
ered. One interesting area is that of quality control, which has not been addressed in this thesis.
However, it is a topic of great relevance in industrial contexts. As example, there is a growing
interest in the implementation of quality control in manufacturing lines using tactile sensors.
The increasing availability of affordable robotic manipulators is making it increasingly feasible
to automate manufacturing lines. Tactile sensors have the potential to play a major role in this
automation process, this could be a topic for future work.

A potential next step of the research would be to combine several categories. In the first
experiment, described in Chapter 3, the use of tactile data in object analysis was investigated.
This experiment, along with the subsequent one in Chapter 4, demonstrated that the integration
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of tactile data with other modalities brings an advantage. In the next step, this knowledge can
be used to record data with the teleoperation setup in order to teach the robot to autonomously
grasp objects with learning by demonstration. At the same time, the tactile data can be employed
to apply a stable grasp and collect information about the grasped object for subsequent analy-
sis. Furthermore, the efficiency of providing tactile information to the user during the learning
process can be evaluated.

A significant area of research that has emerged in recent years is that of large language model
(LLM) first mentioned in [218]. These artificial intelligence systems have been trained on large
amounts of text data in order to generate natural language. The applications of these LLMs
are diverse, encompassing fields such as chatbots, programming, and content generation. With
vision language models (VLMs), these models have been extended to process and generate
images and videos [219]. These models can now also be used in robotics, firstly to communicate
with the robot, and secondly to enable the robot to perceive and understand its environment
without being focused on a specific context. This is possible because these models understand
far more than just the experiment for which they are being used. The subsequent stage is the
development of multimodal language models, which integrate data from a range of modalities
beyond text and vision, including audio and tactile information [220]. Further research could
investigate this field, exploring both the possibilities and limits of such technology.
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(a) Ball

(b) Ground truth (c) Analytical

(d) Equal Finger RNN (e) Entire Hand RNN

Figure 8.1: Estimation results of the end state of grasping a ball.
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(a) Drill

(b) Ground truth (c) Analytical

(d) Equal Finger RNN (e) Entire Hand RNN

Figure 8.2: Estimation results of the end state of grasping a drill.

(a) Spray

(b) Ground truth (c) Analytical

(d) Equal Finger RNN (e) Entire Hand RNN

Figure 8.3: Estimation results of the end state of grasping a spray.
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(a) Wooden block

(b) Ground truth (c) Analytical

(d) Equal Finger RNN (e) Entire Hand RNN

Figure 8.4: Estimation results of the end state of grasping a wooden block.
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