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Abstract 

 

Marine Heatwaves (MHWs) in the North Pacific (NP) have attracted widespread attention 

due to their adverse effects. Recent studies have focused on understanding the mechanisms 

driving NP MHWs, particularly during events like the significant 2014-2016 Northeast Pacific 

(NEP) MHWs, to improve early forecasting and reduce their negative effects. This study 

investigates the drivers of MHWs using the Estimating the Circulation and Climate of the 

Ocean technology, which incorporates the Massachusetts Institute of Technology general 

circulation model along with its adjoint model. The adjoint method enables efficient detection 

of causal relationships by tracing observed effects back to potential causes. Two main target 

regions have been selected (145° ~ 160°W, 48° ~ 56°N; 163° ~ 169°E, 52° ~ 56°N) based on 

year-long anomalous warming in the upper 100 m of the ocean to identify the drivers 

influencing the NEP MHWs, Northwest Pacific (NWP) MHWs. For NEP MHWs, atmospheric 

forcing anomalies that occur within three months before an MHW year are particularly critical 

in driving these events. Local turbulent surface heat flux is identified as the main factor, 

responsible for up to 80% of temperature anomalies during MHW years, with air temperature, 

specific humidity, and longwave radiation being significant contributors. Horizontal winds, 

which are associated with a deepened or shallowed mixed layer, are less influential in the NEP, 

where they appear to precondition MHWs through climate oscillations rather than directly 

causing them. In contrast, NWP MHWs are greatly affected by wind-related processes and are 

quite responsive to the background conditions, which do not significantly impact the NEP 

MHWs. In the NWP, both heat flux and wind-induced vertical advection play dominant roles. 

Air temperature, horizontal winds, and radiative flux each contribute approximately 30%, 

while specific humidity, which contributes significantly to the NEP, has the smallest 

contribution (~10%) to the NWP. These complex mechanisms highlight the coupled processes 

and regional specificity in understanding and predicting MHWs across the NP and the globe. 
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Zusammenfassung 

 

Marine Hitzewellen (MHWs) im Nordpazifik (NP) haben aufgrund ihrer negativen 

Auswirkungen große Aufmerksamkeit erregt. Neueste Studien konzentrieren sich darauf, die 

Mechanismen zu verstehen, die die MHWs im NP antreiben, insbesondere während 

Ereignissen wie den bedeutenden Hitzewellen im Nordostpazifik (NEP) von 2014 bis 2016. 

Ziel ist es, die Frühprognose zu verbessern und ihre negativen Effekte zu verringern. Diese 

Studie untersucht die Treiber von MHWs unter Verwendung der Technologie zur Schätzung 

der Zirkulation und des Klimas des Ozeans. Diese umfasst das allgemeine Zirkulationsmodell 

des Massachusetts Institute of Technology sowie dessen adjungiertes Modell. Die adjungierte 

Methode ermöglicht eine effiziente Erkennung kausaler Beziehungen, indem beobachtete 

Effekte auf mögliche Ursachen zurückverfolgt werden. Zwei Hauptzielregionen wurden 

ausgewählt (145° ~ 160°W, 48° ~ 56°N; 163° ~ 169°E, 52° ~ 56°N), basierend auf einjährigen 

anomal warmen Oberflächenschichten bis zu 100 m Tiefe im Ozean. Ziel ist es, die Treiber zu 

identifizieren, die die NEP-MHWs und die MHWs im Nordwestpazifik (NWP) beeinflussen. 

Für NEP-MHWs sind atmosphärische Anomalien, die innerhalb von drei Monaten vor einem 

MHW-Jahr auftreten, besonders entscheidend für die Entstehung dieser Ereignisse. Der lokale 

turbulente Oberflächenwärmefluss wird als Hauptfaktor identifiziert, der bis zu 80 % der 

Temperaturanomalien während der MHW-Jahre verursacht. Lufttemperatur, spezifische 

Feuchtigkeit und langwellige Strahlung leisten dabei signifikante Beiträge. Horizontale Winde, 

die mit einer vertieften oder flacher gewordenen Mischschicht verbunden sind, haben im NEP 

einen geringeren Einfluss. Sie scheinen die MHWs durch Klimaschwankungen 

vorzubedingungen, anstatt sie direkt zu verursachen. Im Gegensatz dazu werden die NWP-

MHWs stark von windbezogenen Prozessen beeinflusst und reagieren stark auf die 

Hintergrundbedingungen, die NEP-MHWs nicht wesentlich beeinflussen. Im NWP spielen 

sowohl der Wärmefluss als auch die windbedingte vertikale Advektion eine dominierende 

Rolle. Lufttemperatur, horizontale Winde und Strahlungsfluss tragen jeweils etwa 30 % bei, 

während die spezifische Feuchtigkeit, die im NEP erheblich beiträgt, den geringsten Einfluss 

(~10 %) auf den NWP hat. Diese komplexen Mechanismen verdeutlichen die gekoppelten 

Prozesse und die regionale Spezifität im Verständnis und in der Vorhersage von MHWs im NP 

und weltweit.  
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Abbreviations 
 

 

AF Atmospheric Forcing 

ECCO Estimating the Circulation and Climate of the Ocean 

ENSO El Niño-Southern Oscillation 

EOF Empirical Orthogonal Function 

ETOPO5 Earth Topography 5-arc-min grid dataset 

GM Gent–McWilliams 

KE Kuroshio Extension 

KOE Kuroshio-Oyashio Extension 

KP Kamchatka Peninsula 

KPP K-Profile Parameterization scheme 

LW Downward Longwave Radiation 

MHW Marine Heatwave 

MITgcm Massachusetts Institute of Technology general circulation model 

NEP Northeast Pacific 

NP North Pacific 

NPGO North Pacific Gyre Oscillation 

NPSH North Pacific Subtropical High 

NWP Northwest Pacific 

PDO Pacific Decadal Oscillation 

PRE Precipitation 

SH Specific Humidity 

SOMs Self-Organizing Maps 

SSH Sea Surface Height 

SSHa Sea Surface Height anomalies 

SSST Sea Subsurface Temperature 

SSSTa Sea Subsurface Temperature anomalies 

SST Sea Surface Temperature 

SSTa Sea Surface Temperature anomalies 

SW Downward Shortwave Radiation 

T2M Air Temperature 

TAF Transformation of Algorithms in Fortran 

U Zonal Wind Velocity 

V Meridional Wind Velocity 

WAF Wave Activity Flux 

WBS Western Bering Sea 
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1 Introduction 

1.1 Motivation 

In the past, heatwaves on land have received more attention due to their immediate effects 

on human society (e.g. wildfires, Jain et al., 2024). There have been numerous land heatwave 

events in recent decades, with the 2003 heatwave being particularly notable due to its severe 

effects (Russo et al., 2015; Christidis et al., 2015; Stott et al., 2004). However, there has been 

an increasing emphasis on marine heatwaves (MHWs) recently owing to their huge impacts on 

the ecosystems (Frölicher & Laufkötter, 2018). MHWs have been linked to adverse effects 

such as coral bleaching (Wyatt et al., 2023), changes in species distributions (Welch et al., 

2023), and negative effects on the health of fish, marine mammals, and other marine organisms 

(Fazli et al., 2025; Joyce et al., 2023; Pearce & Feng, 2013). Additionally, MHWs can 

influence human health (Campbell et al., 2018) and food productivity by affecting the 

reproduction and growth of plankton (Zhan et al., 2024; Chauhan et al., 2023). These 

phenomena also pose risks to infrastructure (Hartog et al., 2023; Smith et al., 2021). 

An MHW event is essentially a phenomenon of abnormally high ocean temperatures, 

including both ocean surface and subsurface layers. The occurrence and intensity of these 

anomalous temperature events have been rising (Mohamed et al., 2022; Perkins & Lewis, 2020; 

Schlegel et al., 2017), as a consequence of climate change (Capotondi et al., 2024; Spillman et 

al., 2021; Intergovernmental Panel on Climate Change (IPCC), 2023). This trend is expected to 

exacerbate further during the coming decades based on the climate projections (Dubey & 

Kumar, 2023; Amaya et al., 2021; Qiu et al., 2021; Hayashida et al., 2020; Plecha & Soares, 

2020; Alexander et al., 2018). Multiple studies have been carried out to determine the drivers 

of MHWs, with heat budget analysis being a commonly employed method (Athanase et al., 

2024; Bian et al., 2023; Wang et al., 2022c). In addition, some researchers employ statistical 

analysis (Zhang et al., 2024a), wave activity flux (WAF, Shi et al., 2024a; Ha et al., 2022), and 

self-organizing maps (SOMs, Oliver et al., 2018; Schlegel et al., 2017) to analyze the potential 

remote drivers and to detect the subsurface MHWs. The first goal of this research is to build on 

existing methods by investigating the potential drivers of these extreme events using a novel 

methodology from a different perspective, and to provide predictive signals or, at the very least, 

enhance the understanding of such phenomena to mitigate their adverse impacts. 
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Among all MHWs, the North Pacific (NP) region is notably affected due to its significant 

impact on ecosystems and their overall functioning (Welch et al., 2023). This area hosts some 

of the most productive marine environments in the world and supports diverse coastal 

communities, making it particularly vulnerable to changes in temperature. Additionally, the NP 

is also critical to global climate systems, mainly due to the interactions that occur between the 

ocean and the atmosphere. For instance, Northeast Pacific (NEP) MHWs can be modulated by 

the Pacific Decadal Oscillation (PDO, Ren et al., 2023). The North Pacific Oscillation can 

further modulate the stratospheric polar vortex, as well as influence the El Niño–Southern 

Oscillation (ENSO) and other climate patterns (Sung, 2025). Yet, the drivers of NP MHWs 

including atmospheric forcing (AF), ocean circulation shifts, and global warming remain 

incompletely understood, limiting the ability to predict. 

However, recent research on MHWs has predominantly concentrated on the NEP (Fig. 1, 

Song et al., 2023b; Ren et al., 2023; Chen et al., 2023; Capotondi et al., 2022; Amaya et al., 

2020), with relatively fewer studies examining the Northwest Pacific (NWP; Noh et al., 2023; 

Li et al., 2023; Du et al., 2022). Most studies targeting the NWP have focused on the South 

China Sea and East Sea (Liu et al., 2022; Oliver et al., 2021; Yao & Wang, 2021). Notably, 

NEP MHWs are interconnected with NWP dynamics, as highlighted by Silva & Anderson 

(2023), who demonstrated that NEP MHWs are linked to Kuroshio Extension (KE) variability 

through atmospheric teleconnections. Also, recent research has primarily focused on surface 

MHWs, while subsurface MHWs are increasingly being recognized for their significant 

ecological and climatic effects (Guo et al., 2024; McAdam et al., 2023; Sun et al., 2023). 

Despite this emerging interest, there are still comparatively fewer studies focusing on the 

physical drivers of subsurface MHWs. Importantly, subsurface MHWs can be more intense and 

long-lasting than surface ones (Fragkopoulou et al., 2023). The secondary objective of this 

study is to examine whether the drivers of MHWs are uniformly consistent across the NP. 

Specifically, this study aims to determine whether the mechanisms underlying long-lasting 

subsurface MHWs in the NWP differ from those in the NEP. Meanwhile, certain residual terms 

in the NWP remain difficult to explain through conventional heat budget analysis (Song et al., 

2024). This study will also explore whether using an adjoint method can provide alternative 

insights into these unresolved phenomena. 
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In addition to the study region analyzed by Song et al. (2024), the year 2022 witnessed 

numerous significant MHWs (Oh et al., 2023; Zhao et al., 2023) within the context of elevated 

warming. According to the annual report from the National Centers for Environmental 

Information (NCEI, 2022a), 2022 exhibited the highest ocean heat content levels in both the 

Southern Pacific Ocean and the NP Ocean since 1955 (Cheng et al., 2023). As mean warming 

contributes to trends in MHWs across approximately two-thirds of the world’s oceans (Oliver, 

2019; Xu et al., 2022), this study will also include a preliminary discussion and outlook of 

potential connections between NP MHWs and elevated warm conditions in the NP. For 

instance, there are notable changes in the dominant modes of sea surface temperature (SST) 

variability (Werb & Rudnick, 2023). It is essential to note that while MHWs are influenced by 

global warming, they also contribute to climate change in turn. 

1.2 Thesis objectives 

In this study, by using an adjoint ocean model, the following two research questions will be 

investigated: 

a. What is the main atmospheric driver for the NEP MHWs? Are the results comparable to 

those obtained through heat budget analysis or other methods? 

b. Are MHW mechanisms in the NWP different from those in the NEP? Can the results 

explain the unresolved residual terms in the previous study? 

1.3 Outline of the thesis 

This dissertation is structured as follows: Following this brief introduction (Chapter 1), 

Chapter 2 provides the background information relevant to the study fields. Chapter 3 describes 

the data sources and methods utilized, including the model setup, adjoint method and its 

validation, contribution analysis, and perturbation experiments. Chapter 4 presents the main 

results in two sections: the first, on NEP MHWs, has been accepted by the Journal of Climate 

for publication, and the second, on NWP MHWs, has been prepared for submission. Chapter 5 

concludes the dissertation, including further discussions of the results and directions for future 

research. 



 

12 | P a g e  
 

 

 

 

 

Fig. 1. An image shows the monthly average sea surface temperature for May 2015. The 

image is taken from NASA Physical Oceanography Distributed Active Archive Center 

(Gentemann et al., 2017).  
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2 Background 
 

2.1 Definition of MHWs 

When discussing MHWs (a term first introduced by Pearce et al., 2011), it refers 

specifically to anomalously high temperatures in the ocean. Defining heatwave events with 

precision across various locations and time scales has been challenging until the introduction of 

percentile-based indices (Perkins & Alexander, 2013; Alexander et al., 2006). Subsequent 

studies have provided more accurate delineations by utilizing particular research occurrences 

as the basis for their definitions (Russo et al., 2015; Stefanon et al., 2012). Hobday et al. (2016, 

2018) further define MHWs as deviations from expected temperatures for distinct locations and 

persist for a certain duration, a definition that has gained broad recognition within the 

community (Fig. 2.1). MHWs can be further categorized into four distinct classes according to 

how much temperatures exceed local climatological averages. 

 

 

Fig. 2.1. Categorization schematic for MHWs. The image is taken from Hobday et al. 

(2018). 
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The most notable MHW is referred to as Blob, a name given by Bond et al. (2015). It was 

first observed in October 2013 (Peterson et al., 2015) and continued to spread throughout 2014 

and 2015 (Fig. 1). This event was characterized by anomalously warm water that dominated 

much of the NEP region off the North American coast. In 2019, Blob 2.0 occurred in the same 

region of the NEP primarily driven by a multi-month reduction in the strength of the North 

Pacific Subtropical High (NPSH, Amaya et al., 2020). The term Southern Blob is also 

employed to refer to the warming of the upper ocean in the subtropical southwest Pacific 

(Garreaud et al., 2021). 

Several studies have investigated the driving mechanism behind seasonal, monthly 

(Capotondi et al., 2022; Chen et al., 2021; Shi et al., 2024a; Silva & Anderson, 2023; Xu et al., 

2022) or daily (Kajtar et al., 2022; Li et al., 2020; Oliver, 2019; Zschenderlein et al., 2019) 

MHWs according to their definitions by using either heat budget analysis or composite and 

statistical analysis. Few studies investigate NEP MHWs over extended time scales, particularly 

regarding the anomalously warm SST observed in 2014, which persisted for more than 2 years 

(Schmeisser et al., 2019). MHWs on long-time scales should not be overlooked, as they can 

last for multiple years and have a lasting impact on marine ecosystems. 

For long-term MHWs, the definition is established by NOAA Physical Sciences Laboratory 

(Jacox et al., 2020, 2022), which states that MHW occurs when SST anomalies (SSTa, with 

respect to the 1991 - 2020 monthly climatology) exceed a specific threshold for every month of 

the year. These thresholds are determined as the 90th percentile of SSTa within a 3-month 

period (for example, for January MHWs, the 90th percentile of all December to February 

SSTa). The threshold may be adjusted to the 95th or 99th percentile, depending on the severity 

of the extreme event being analyzed.  

Sun et al. (2023) demonstrate a significant increase in subsurface MHWs associated with 

subsurface mean-state warming over the past three decades. They emphasize the necessity for 

further research on subsurface MHWs. According to the percentile-based definition, the 

occurrence of subsurface marine heatwaves can be determined using a threshold derived from 

sea subsurface temperature anomalies (SSSTa). 

However, the definitions of MHWs are still being debated (Capotondi et al., 2024), 

particularly regarding the selection of a baseline for establishing climatology and the treatment 

of climate signals. Smith et al. (2025) examine different baseline choices involving a fixed 
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baseline, a shifting baseline, a detrended baseline, and an adaption-adjusted baseline and 

indicate markedly varied trends in the characteristics of MHW in a warming climate in terms 

of different baselines. In this study, the warming trend is not removed, as the detected AF 

inherently includes this warming trend. The effect of global warming on AF is not considered 

separately. The decision to use a fixed or moving baseline, or whether to apply detrending, 

should be tailored to the specific research question (Oliver et al., 2021). For instance, many 

species are at risk from both short-term temperature extremes and prolonged warming trends. 

Adapting to gradual temperature changes may take several generations (Smith et al., 2023). 

Therefore, detrending could underestimate the ecological pressures on these species by 

separating episodic extremes from the ongoing climate changes they must deal with over time. 

 

2.2 Determinants of Temperature 

The ocean occupies approximately seventy percent of the Earth's area and is continuously 

dynamic. Consequently, air-sea interactions play a crucial role in variations in oceanic 

conditions. The temperature within the surface mixed layer (normally the top 200 m), which is 

directly influenced by atmospheric conditions, is often assumed to be mixed and homogeneous 

to a certain degree. This layer is affected by various factors (Fig. 2.2), including surface winds, 

waves, and currents that mix the upper water and facilitate the distribution of heat throughout 

the layer. The ocean absorbs incoming solar energy and subsequently transfers heat and 

moisture to the atmosphere, thereby fueling atmospheric circulation. Once in motion, the 

atmosphere further influences ocean circulation through the exchange of momentum at the air-

sea interface, which generates waves and currents. The NP is influenced by several key ocean 

currents, including the warm Kuroshio Current, cold California, and Oyashio Currents, as well 

as the NP and Alaskan Currents, which together shape its climate, marine ecosystems, and 

weather patterns. 

This research is based on physical oceanography and biological effects (lower right in Fig. 

2.2) are not taken into account. Therefore, AF can be utilized as an external input to an ocean 

model, allowing us to observe how temperature responses to AF change. AF can be simplified 

as the sum of heat flux components, including downward shortwave radiation (SW), downward 
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longwave radiation (LW), sensible heat flux, and latent heat flux, along with wind-induced 

processes (e.g. advection, diffusion, convection), all incorporated within the numerical model. 

 

 

Fig. 2.2. A schematic illustration of various drivers and impacts of MHWs. The image is 

taken from Holbrook et al. (2020). 

 

These processes can be calculated through mixed-layer heat budget analysis (Fig. 2.3, 

Moisan & Niiler, 1998; Oliver et al., 2021). The temporal variation of the vertically averaged 

potential temperature within the mixed layer, referred to as temperature tendency, results from 

a combination of several physical processes. These include air-sea exchanges, advection by 

both mean currents and eddies, as well as horizontal and vertical mixing. Additionally, the 

mixing of deeper water into the mixed layer through entrainment plays a less important role 

which is often considered as part of the residual term. Horizontal advection can influence local 

temperature changes by transporting horizontal flows that occur across a temperature gradient 

and mixing is commonly associated with diffusive flux. The net air-sea heat fluxes are the sum 

of the radiative heat flux (net downward SW + net upward LW) and turbulent heat flux 

(sensible heat flux + latent heat flux). 
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Fig. 2.3. Mixed-layer heat budget analysis equation. The image is taken from Oliver et al. 

(2021). 

 
 
 

2.3 Progress in MHW Research 

The primary focus of MHW research encompasses both surface and subsurface MHWs (Li 

& Hu, 2024), with attention given to their effects, underlying drivers, teleconnections, and 

potential predictive possibility. Numerical ocean models and statistical models are commonly 

employed tools for the study of MHWs. The mixed-layer heat budget analysis is the most 

widely used method to describe the processes that contribute to MHW formation, evolution, 

and decay (Oliver et al., 2021). Additionally, SOMs are also commonly utilized as they 

effectively cluster between atmospheric patterns (e.g. air temperature) and oceanic patterns (e.g. 

MHW), which are distinct yet interconnected (Schlegel et al., 2017). WAF can be used to trace 

the movement of energy and interact with ocean currents to change heat distribution (Ha et al., 

2022; Shi et al., 2024a). Few MHW studies have employed the adjoint method for analysis, 

which is a robust tool for tracing sensitivity within complex systems. 
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a. The impact of MHWs 

 

MHWs have attracted lots of attention owing to their huge impacts on society, the economy, 

ecosystems, and their overall functioning since the extreme event in Western Australia in 2011 

(Smale et al., 2019; Welch et al., 2023; Wernberg, 2021; Wernberg et al., 2016). Holbrook et al. 

(2020) offer a detailed overview of the impacts of MHWs on oceanic and coastal ecosystems 

(Fig. 2.2). Notable effects include coral bleaching, reduced primary production, habitat 

destruction, and loss of biodiversity, among others. The most substantial, prolonged, and 

intense MHW events were found to align with reduced chlorophyll-a concentrations at both 

low and mid-latitudes (Sen Gupta et al., 2020). Beyond that, the intensity of extreme weather 

events, including tropical storms (Choi et al., 2024; Radfar et al., 2024), is rising as a 

consequence of MHWs. MHWs are also linked to severe droughts (Rodrigues et al., 2019), 

extreme sea levels and coastal flooding (Zhou & Wang, 2024). In addition to their impacts on 

ecosystems, fisheries, and climate, MHWs also affect human health (Campbell et al., 2018) and 

infrastructure (Hartog et al., 2023; Smith et al., 2021). 

 
b. The drivers of MHWs 

 

The mechanisms driving MHWs are highly dependent on timescale, geographical location, 

and background state (Fig. 2.4, Holbrook et al., 2019). MHWs with a smaller spatial extent 

occur more often than those covering larger areas (Scannell et al., 2016). For instance, regional 

upper ocean heat content changes over short timescales are primarily influenced by local ocean 

circulation instead of surface heat flux (Kerry et al., 2022). Oliver (2019) suggests changes in 

mean SST rather than changes in variance are the dominant drivers influencing the duration of 

MHW across 2/3 of the ocean and the intensity of MHW across 1/3 of the ocean. However, 

NEP is not present in these regions. It has been established that an increase in the variance of 

SSTa in NEP may be contributing to the rising frequency of extreme events (Xu et al., 2022). 

Additionally, the study by Li et al. (2023) reinforces the idea that the NWP MHW in July 2021 

was governed by the warming mean state. Consequently, MHWs are projected to become more 

frequent, intense, and prolonged in duration (Athanase et al., 2024; Frölicher & Laufkötter, 

2018). 
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The vast majority of MHWs in the NP are governed by an anomalous atmospheric pressure 

system (Sen Gupta et al., 2020), i.e. NPSH. For example, NEP MHWs (Amaya et al., 2020; 

Bond et al., 2015; Chen et al., 2023; Niu et al., 2023); NWP MHWs (Du et al., 2022; Pak et al., 

2022; Song et al., 2023a; Yao et al., 2023; Yao & Wang, 2021). Wind speed is influenced by 

the strength of the pressure gradient; a stronger pressure gradient results in higher wind speeds. 

The persistent NPSH is consistently associated with anomalously weak wind speeds, enhanced 

solar insolation, and decreased oceanic heat loss. 

The high pressure acting on the sea surface restricts the escape of water molecules into the 

atmosphere as vapor, thereby reducing the efficiency of evaporative cooling processes and 

decreasing the air-sea turbulent heat flux. Increased solar insolation will lead to reduced cloud 

cover and higher air temperatures. Weak wind speeds will result in reduced horizontal 

advection and vertical mixing in the upper layer of the ocean, which consequently leads to a 

shallower mixed layer and enhanced surface stratification. A reduction in wind speed may 

result in negative wind stress curls, which are a driving force for ocean currents. These 

negative wind stress curls induce Ekman pumping, or downwelling, causing surface water to 

be pushed downward. This process allows warmer water to enter from the sides, leading to a 

convergence and deepening of the warm surface layer. Increasing wind speed can sometimes 

also cause negative wind stress curls, depending on how the wind varies across different areas. 

If the wind speed rises more quickly in one area than in another, it creates a gradient in wind 

stress, which can lead to a negative curl. 

Both anomalously high and low wind speeds can play a role in the development of MHWs. 

The 2017/18 Tasman MHW was initiated by warm water advection and persisted due to the 

anomalous air-sea heat flux and a shallower mixed layer (Kajtar et al., 2022). Another 

explanation for the 2020 NEP MHW is that it was mainly driven by abnormal southerly winds 

that transported increased humidity to the NEP region. This influx of humid air reduced the 

ocean surface latent heat release (Ge et al., 2023). 

Additionally, several other factors also contribute to MHW dynamics. Bian et al. (2023) 

employ a historical simulation from a global eddy-resolving climate model to illustrate that 

heat flux convergence associated with oceanic mesoscale eddies is a key driver of MHW life 

cycles across the majority of the global ocean, especially for the growth and decay period. 

MHWs in the Barents Sea are significantly influenced by SST-ice feedback, which is 
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predominantly driven by warm surface air and decreasing sea ice (Mohamed et al., 2022). 

When ice melts in the Arctic Ocean, it reduces the thickness of the upper ocean layer, resulting 

in a higher concentration of atmospheric heat within this layer. Consequently, this process 

contributes to the extension and intensification of MHW in the Arctic Ocean (Richaud et al., 

2024). Recent years have seen that MHWs in the NP can also be linked to increasing 

atmospheric concentrations of greenhouse gases (Barkhordarian et al., 2022). In addition to the 

weakened NPSH, the preceding anomalous winter SST can persist into the subsequent spring 

or summer (also known as the ocean memory of winter warming) due to anomalous heat 

content present in the mixed layer of the ocean (Du et al., 2022; Liu et al., 2023). 

Recent studies have highlighted the significance of subsurface MHWs (Capotondi et al., 

2024). A shallow MHW may be restricted within the mixed layer, which can be caused by 

increased surface heat fluxes, oceanic transportation, or reduced mixing induced by winds. 

Alternatively, they can reach a relatively deep layer beneath the mixed layer. MHWs may also 

be reintroduced into a thickening mixed layer, leading to a delay in surface warming. This 

phenomenon is referred to as re-emergence. 

 

Fig. 2.4. A schematic illustration of MHW drivers and their relevant space and time scales. 

The image is taken from Holbrook et al. (2019). 
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c. The teleconnection of MHWs 

 

The key driving processes of MHW are the same as those driving the temperature changes, 

which are summarized in Fig. 2.2 (Holbrook et al., 2020). The enhancement or suppression of 

these physical mechanisms, whether independently or collectively, can promote or inhibit the 

development of MHWs. This is influenced by local air-sea interactions, feedback mechanisms, 

and large-scale climate variability acting both locally and remotely. Essentially, 

teleconnections describe how atmospheric and oceanic phenomena can influence weather 

patterns across large distances. 

The intensity of MHWs can be influenced by local forcing factors, whereas their duration is 

affected by the timing of climate modes, as demonstrated by Capotondi et al. (2022). 

Additionally, Holbrook et al. (2019, 2020) summarized that the frequency, intensity, and 

duration of MHWs can be influenced by climate patterns and teleconnections (Fig. 2.4). For 

example, the intra-seasonal mode Madden–Julian Oscillation (e.g. Liu et al., 2022); the 

interannual mode ENSO (Sen Gupta et al., 2020; Xu et al., 2022) and Indian Ocean Dipole (e.g. 

Li et al., 2024); the decadal mode PDO (Ren et al., 2023) and North Pacific Gyre Oscillation 

(NPGO; e.g. Joh & Di Lorenzo, 2017). Furthermore, the persistence of the NEP MHW can be 

linked to the development of a low-pressure structure occurring one year after wintertime 

variations in the KE (Silva & Anderson, 2023). The extratropic is highly linked to the tropics 

through atmospheric teleconnection (Di Lorenzo et al., 2023). 

Many studies address that the westward-propagating Western Pacific Subtropical High 

influenced by ENSO plays a significant role in the development and persistence of the NWP 

MHWs (e.g. in the South China Sea, Liu et al., 2022; Tan et al., 2022; in the East China Sea, Li 

et al., 2023). Although, as previously stated, Oliver (2019) suggests that NEP is not directly 

influenced by mean warming, it is noted that the low-frequency NP Victoria mode, which is 

enhanced by the warming state, shows a strong correlation with NEP MHWs (Ji et al., 2024). 

Moreover, Arctic warming plays a significant role in increasing NEP MHW days. Strong 

Arctic warming has changed the atmospheric circulation patterns over the NEP and decreased 

the low-level cloud cover from late spring to early summer, leading to more MHW days 

(Coumou et al., 2018; Song et al., 2023b). Although the mean warming is not a teleconnection, 

it has modified the teleconnection patterns. 
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WAF is also a widely used method to track the propagation of wave energy within the 

atmosphere and ocean (Ha et al., 2022). Shi et al. (2024a) employed WAF to illustrate that 

planetary wave trains, triggered by heightened rainfall and latent heat release over the 

Mediterranean Sea, along with decreased rainfall over the North Atlantic, can effectively 

transport wave energy to the NEP. Noh et al. (2023) introduced the Pacific–Japan atmospheric 

teleconnection pattern to explain the anomalous anticyclonic circulation and the corresponding 

northwestward extension of the NPSH over the NWP. Zhao & Yu (2023) emphasize the 

significance of cross-basin connections between the NP and North Atlantic in influencing the 

dynamics of NP MHWs, as inferred from WAF. 

 

d. The predictive skill of MHWs 

 

The ocean undergoes changes over months, years, and even decades, while the atmosphere 

changes much more quickly, within minutes, hours, or days. Consequently, the predictability of 

MHWs depends on the relative strength of atmospheric and oceanic contributions (Holbrook et 

al., 2020):  

(ⅰ) Strong atmospheric and oceanic contributions: MHWs can be forecasted several months 

in advance by local and remote climate forcing; 

(ⅱ) Weak atmospheric and oceanic contributions: Predictability is limited to several days, 

often influenced by transient weather patterns or oceanic eddies; 

(ⅲ) Strong atmospheric and weak oceanic contributions: MHWs typically have a 

predictability lead time of one to two weeks or can be seasonal, due to atmospheric 

preconditioning or teleconnections; 

(ⅳ) Weak atmospheric and strong oceanic contributions: Predictability can range from 

months to years, facilitated by oceanic preconditioning or teleconnections. 

MHWs are significantly influenced by atmospheric conditions that can be predicted, thus 

offering the potential for forecasting MHW events. To achieve a reliable forecast, it is essential 

to understand the relevant physical drivers and the interactions of processes over time (Fig. 2.5, 

Holbrook et al., 2019). MHWs then can be predicted through various methods in terms of 

timescales and types. For example, one approach involves modeling oceanic or atmospheric 
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dynamics to forecast atmospheric blocking patterns or ocean eddies. Another method utilizes 

simulations of coupled ocean-atmosphere dynamics to predict climate modes (e.g. ENSO). 

Additionally, predictions can be made by analyzing wave pathways resulting from wind-driven 

ocean perturbations. 

The coupled NUIST-CFS1.0 (atmospheric component: the European Centre Hamburg 

Atmospheric Model version 4, Roeckner et al., 1996; oceanic component: Ocean Parallélisé 

version 8.2, Madec et al., 1998) hindcasts can provide a forecast of both the spatial distribution 

and temporal changes of total MHW days with a lead time of as much as eight months. Using 

SOMs, Zhao et al. (2022) concluded that Sea Surface Height anomalies (SSHa) can serve as a 

predictive variable within a statistical modeling framework. Capotondi et al. (2022) and Li et al. 

(2020) also confirm that SSHa contributes significantly to the majority of MHW development 

in their target regions. Furthermore, the application of a mesoscale eddy-tracking method 

enables the prediction of individual daily MHWs in eastern Tasmania with an accuracy 

extending up to 7 days. While using North American Multimodel Ensemble models for 

predicting monthly NEP MHW in 2020, the predictive skill is limited to one month (Ge et al., 

2023). The NOAA Physical Sciences Laboratory offers an experimental real-time global 

forecast of MHW on a monthly basis, with predictive capabilities extending up to 11.5 months 

in advance for research purposes (Jacox et al., 2022). 
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Fig. 2.5. A spectrum of MHW prediction timescales and types. The image is taken from 

Holbrook et al. (2020). 
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3 Data and methodology 

3.1 Data Source 

This study utilizes multiple monthly SST datasets (HadiSST v1.1, Rayner et al., 2003; 

OISST v2.1, Huang et al., 2021; ORAS5, Zuo et al., 2019; MODIS-SST, NASA Goddard 

Space Flight Center, 2024; EN4.2.2, Good et al., 2013; details are in Table. 1) to represent 

various regions and to analyze MHWs of differing intensities. MHWs in the NWP exhibit 

higher intensity, necessitating the use of SST products with higher spatial resolution. In 

addition, as highlighted by Zhang et al. (2024b), there is a large spread in MHW assessments 

across various SST products in Asia and the Indo-Pacific region. Therefore, it is important to 

employ multiple datasets to comprehensively evaluate extreme events. 

Both HadiSST and EN4 datasets are from the UK Met Office Hadley Centre. HadiSST 

combines historical ship-based observations and buoys, satellite-derived SST measurements, 

and sea ice concentration data. EN4 offers a three-dimensional perspective of ocean conditions 

by assimilating data from various sources, including Argo floats, conductivity-temperature-

depth instruments, and other sensors, which can profile the water column. MODIS-derived 

SST is a widely used satellite dataset for monitoring global ocean temperatures with high 

spatial and temporal resolution. OISST has a higher resolution than HadiSST but is coarser 

than MODIS, which combines satellite observations, in-situ measurements, and ice data. The 

ORAS5 is a cutting-edge ocean reanalysis dataset including observational data assimilation 

(satellite SST, sea level anomaly, and in-situ profiles). 

AF datasets are derived from the NCEP-NCAR Reanalysis 1 (NCEP-RA1; Kalnay et al., 

1996; Kistler et al., 2001) from 1948 to 2022 and ERA5 hourly averaged data (Hersbach et al., 

2020) from 2008 to 2022 (details are provided in Table. 2). All AF datasets were averaged to a 

monthly resolution, aligning with the timescale of sensitivities derived from the adjoint model. 

This enables the direct calculation of contributions from each forcing and generates 

perturbations in subsequent experiments based on sensitivity solutions that are consistent with 

the timescales of the original forcing fields. Both datasets are utilized to drive the model and 

evaluate its performance. The results presented in this study are based on model runs forced 

with the ERA5 reanalysis. Notably, very similar results were obtained using the NCEP 
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reanalysis, indicating that the findings are robust and not dependent on the specific forcing 

fields employed. ERA5 outperforms NCEP in some cases, likely due to its use of advanced 

assimilation methods (Four-dimensional variational assimilation), while NCEP employs older 

methodologies (3D-Optimum Interpolation). 

 

Dataset Resolution Access 

HadiSST v1.1 1° x 1° at sea surface 
https://www.metoffice.gov.uk/hadob

s/hadisst/ 

OISST v2.1 0.25° x 0.25° at sea surface 
https://www.ncei.noaa.gov/products/

optimum-interpolation-sst 

ORAS5 0.25° x 0.25° with 75 levels 
https://www.ecmwf.int/en/forecasts/

dataset/ocean-reanalysis-system-5 

MODIS-SST 4.6 km x 4.6 km at sea surface 

https://www.cen.uni-

hamburg.de/en/icdc/data/ocean/sst-

modis.html 

EN4.2.2 1° x 1° with 42 levels 
https://www.metoffice.gov.uk/hadob

s/en4/download.html 

Table 1. Monthly SST and SSST datasets used for MHW detection and model evaluation. 

 

 

Dataset Horizontal Resolution Time Resolution Access 

NCEP-RA1 1.875° x 1.875° 6-hour 
https://psl.noaa.gov/data/gridded/dat

a.ncep.reanalysis.html  

ERA5 0.25° x 0.25° 6-hour 
https://www.ecmwf.int/en/forecasts/

dataset/ecmwf-reanalysis-v5 

Table 2. AF datasets used to drive the ocean model and reconstruct ocean temperature 

anomalies based on the adjoint sensitivities. 

 

https://www.metoffice.gov.uk/hadobs/hadisst/
https://www.metoffice.gov.uk/hadobs/hadisst/
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://www.ecmwf.int/en/forecasts/dataset/ocean-reanalysis-system-5
https://www.ecmwf.int/en/forecasts/dataset/ocean-reanalysis-system-5
https://www.cen.uni-hamburg.de/en/icdc/data/ocean/sst-modis.html
https://www.cen.uni-hamburg.de/en/icdc/data/ocean/sst-modis.html
https://www.cen.uni-hamburg.de/en/icdc/data/ocean/sst-modis.html
https://www.metoffice.gov.uk/hadobs/en4/download.html
https://www.metoffice.gov.uk/hadobs/en4/download.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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3.2 MITgcm 

a. Model configuration 

 

In this study, the Estimating the Circulation and Climate of the Ocean (ECCO) technology 

(see online at https://www.ecco-group.org/), consisting of the Massachusetts Institute of 

Technology General Circulation Model (MITgcm) and its adjoint model is applied to study the 

sensitivity of anomalous high temperature to AF and ocean states. The MITgcm is an advanced 

finite volume model that simulates general ocean circulation and includes a model for sea-ice 

dynamics. The model setup employs the Bulk Formula Package to compute the heat and 

freshwater flux instead of utilizing heat and freshwater data to force the model. Details about 

the model are described by Marshall et al. (1997a; b) as well as Adcroft et al. (2004); more 

information can be found online at https://mitgcm.readthedocs.io/. The MITgcm was created to 

enable the automatic generation of tangent linear and adjoint code by using automatic 

differentiation of its source code through the Transformation of Algorithms in Fortran (TAF; 

Giering & Kaminski, 1998; Heimbach et al., 2005). 

All model runs were performed over a quasi-global domain between 80°S and 80°N and 

with a realistic bottom topography based on the Earth Topography 5-arc-min grid (ETOPO5) 

dataset (National Geophysical Data Center, 1993). The ocean resolution in meridional and 

zonal directions is uniformly 2°. In the vertical, the resolution consists of 23 levels that are 

unevenly spaced, with depth ranging from the near-surface (5 m) down to several hundred 

meters in the deep ocean (the top six layers are located within the upper 100 m of the ocean). 

The model setup incorporates components for sea ice dynamics by employing Ice and Sea Ice 

Packages (Heimbach et al., 2010; Hibler, 1980; Losch et al., 2010). Vertical mixing is 

represented by the K-Profile Parameterization scheme (KPP; Large et al., 1994), and the Gent–

McWilliams (GM) eddy parameterization scheme (Gent & Mcwilliams, 1990) was employed 

in the forward model. Due to stability reasons, it had to be excluded from the adjoint code of 

the mixed layer parameterization. The values of key model parameters are summarized in 

Table. 3. 

 

 

https://www.ecco-group.org/
https://mitgcm.readthedocs.io/
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Parameter Symbol Value 

Vertical Laplacian viscosity 𝑣𝑣 10-3 m2s-1 

Horizontal Laplacian viscosity 𝑣ℎ 5×104 m2s-1 

Vertical diffusivity κ𝑣 10-5 m2s-1 

Horizontal diffusivity κℎ 102 m2s-1 

Momentum time step ∆𝑡𝑢,𝑣 3600 s 

Table 3. Model parameters. 

 

 

Instead of forcing the model with heat and freshwater flux, an atmospheric boundary layer 

scheme is employed. This approach enables the calculation of flux terms using AF based on 

bulk formulas (Bryan et al., 1996; Hunke & Lipscomb, 2010): 

𝑄𝑆 = 𝜌𝑎𝐶𝑝𝐶𝑠𝑈10(𝑡𝑠 − 𝑡𝑎),    (3.1a) 

𝑄𝐿 = 𝜌𝑎𝐿𝐸𝐶𝐿𝑈10(𝑞𝑠 − 𝑞𝑎),    (3.1b) 

𝑄𝑙𝑤 = 𝜖𝜎𝑡𝑠
4.     (3.1c) 

𝑄𝑆 is sensible heat flux, 𝑄𝐿 is latent heat flux and 𝑄𝑙𝑤 is up longwave radiation [𝑊/𝑚2], 𝜌𝑎 is 

the density of air [𝑘𝑔/𝑚3], 𝑈10 is 10 m wind speed [m/s], 𝐶𝑝 is the specific heat capacity of air 

[J/kg/K], 𝐶𝑠  and 𝐶𝐿  are sensible/latent heat transfer coefficients, 𝐿𝐸  is the latent heat of 

evaporation [J/kg], 𝑡𝑠  is air temperature measured from space and 𝑡𝑎  is air temperature 

measured from ships, 𝑞𝑠 is specific humidity of air at the sea surface and 𝑞𝑎 is 10 m specific 

humidity of the air. σ is the Stefan–Boltzmann constant, and ϵ is the emissivity. Emissivity is a 

value ranging from zero to one that shows how much less radiation is emitted compared to a 

perfect blackbody. 

Forward simulations were initiated from January-mean monthly climatological temperature 

and salinity fields available from Levitus and Boyer (1994). The initial phase of the 

simulations spanned a 60-year period from 1948 to 2007 forced by AF (Table. 2), establishing 

a baseline for subsequent simulation. The model supports restarts from specific points via the 

use of pickup files. Following the baseline period, the ocean model was forced by realistic 
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monthly mean AF including zonal (U) and meridional wind velocity (V), precipitation (PRE), 

air temperature (T2M), specific humidity (SH), and radiation terms (SW and LW) diagnosed 

from two reanalysis datasets (Fig. 3.1). During this phase, the model was restarted from 2008 

and extended to 2022 by using the corresponding pickup file from 2008. 

 

Fig. 3.1. The 15-year mean (from 2008 to 2022) external forcing fields (from top to bottom: 

T2M; SH; PRE; U; V; LW; SW) based on two datasets. Left: ERA5; right: NCEP-RA1. 
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b. Model evaluation 

 

During a 15-year period, the mean SST state of the two datasets exhibits significant 

agreement, even though the datasets differ in spatial resolution (Fig. 3.2). The model shows 

overall strong performance, effectively capturing both the warmest center and the decreasing 

trend along latitude. However, in the equatorial western Pacific, the model exhibited 

overestimation, particularly in the simulations forced by NCEP-RA1. This may be related to 

the excessive T2M as shown in Fig. 3.1. The mean potential temperature changes with depth 

further supports this observation (Fig. 3.3). Potential temperature in the deeper ocean correlates 

well with ORAS5 reanalysis data; however, SST is overestimated, especially for scenario 

forced by NCEP-RA1. Fortunately, this equatorial region is not the primary focus of this study. 

 

Fig. 3.2. The 15-year mean SST from 2008 to 2022 derived from various datasets. (a) 

HadiSST; (b) OISST; (c) ERA5 forced model outputs; (d) NCEP-RA1 forced model outputs. 
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Fig. 3.3. The global mean potential temperature changes with depth based on three datasets 

(Red: ORAS5; Navy: NCEP-RA1 forced model; Orange: ERA5 forced model). 
 

 

Taking 2022 and 2014 as examples, these two years are significant MHW years that this 

study focuses on, with the corresponding SSTa displayed in Figs. 3.4 & 3.5. The intensity of 

the SSTa in 2014 is relatively modest, and the results are consistent across various resolutions 

and forcing scenarios. In contrast, the intensity of SSTa in 2022 is notably higher, and low-

resolution products demonstrate inadequate performance. Additionally, both forced models are 

limited in their capacity to simulate extreme events. In comparison, in the NWP region, models 

driven by ERA5 data outperform those driven by NCEP-RA1 data. While in the NEP region, 

the performance is reversed. 
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Fig. 3.4. Annual mean SSTa for 2022, calculated relative to the 15-year mean (2008-2022) 

and derived from various datasets. (a) HadiSST; (b) OISST; (c) ERA5 forced model outputs; 

(d) NCEP-RA1 forced model outputs. 

 
 

 

Fig. 3.5. As Fig. 3.4, but for 2014.  



 

33 | P a g e  
 

3.3 Adjoint Method 

The Adjoint method is widely used in meteorology (Demirdjian et al., 2020; Doyle et al., 

2014; Reynolds et al., 2019; Wilson et al., 2013) and dynamical oceanography due to its direct 

and efficient estimation of sensitivity of model output with respect to input (Errico, 1997; Köhl 

et al., 2007; Köhl & Stammer, 2004; Stammer et al., 2018). The core principle of the adjoint 

method is to calculate the gradient of the objective function. Compared to the mixed-layer heat 

budget analysis, adjoint sensitivity analysis has a clear advantage in that it can illustrate the 

pathways of sensitivity concerning the cost function. In contrast, the mixed-layer heat budget 

analysis is limited to the target region and primarily highlights the local factors driving 

potential temperature changes. Holbrook et al. (2020) suggested the use of the adjoint method 

to explain the fundamental dynamics underlying back-trajectory teleconnections. 

Previous sensitivity studies have employed objective functions such as heat transport 

(Marotzke et al., 1999), freshwater flux (Heimbach & Losch, 2012), stream function (Bugnion 

et al., 2006), surface vorticity (the curl of horizontal velocity, e.g. Zhan et al., 2018), volume 

transport (Czeschel et al., 2012; Losch & Heimbach, 2007; Mazloff, 2012; Wang et al., 2022a; 

Zhang et al., 2012), heat content (Jones et al., 2019) and SSH or SST (Frederikse et al., 2022; 

Gopalakrishnan et al., 2013; Köhl & Vlasenko, 2019; Verdy et al., 2014; Yang et al., 2023; 

Zhang et al., 2011) to quantify the importance of model inputs (e.g. bottom topography; initial 

conditions; boundary conditions; AF) and to estimate the ocean state (Stammer et al., 2002; 

Wang et al., 2022d). It is also commonly used to quantify the contributions from local and 

remote forcing (Boland et al., 2021; Jones et al., 2018; Veneziani et al., 2009; Wang et al., 

2022b). In addition, an adjoint tracer can be used to identify the sources and the pathways of 

the water mass (Fukumori et al., 2004). 

This approach is primarily utilized to conduct sensitivity analysis in this study. A schematic 

representation of the model-adjoint method for estimating sensitivities is presented in Fig. 3.6 

(Hill et al., 2004). 
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Fig. 3.6. A schematic representation of the model-adjoint method for estimating 

sensitivities. The image is taken from Hill et al. (2004). The cost function J is a function of the 

state of the forward model L, which is dependent on the input parameters a and b. The adjoint 

model L* runs backward from changes in the cost function 𝛿J to numerically evaluate its 

sensitivities to the input parameters (
𝜕𝐽

𝜕𝑎
 and 

𝜕𝐽

𝜕𝑏
). a* and b* represent the outputs of the adjoint 

model. 

 

Consider a traditional nonlinear ocean model L, the model equations can be simplistically 

represented as (Wang et al., 2022a): 

𝑦 = 𝐿(𝑥0), 𝑡 ∈ [0, 𝑇]     (3.2) 

where 𝐿 represents the nonlinear forward operator applied to the state vector x at the initial 

time (t=0). For a small perturbation 𝛿𝑥0
 at the initial time, its evolution at the final time (t=T) 

in a nonlinear system can be expressed as: 

𝛿𝑦 = 𝐿(𝑥0 + 𝛿𝑥0
) − 𝐿(𝑥0) = 𝐿*𝛿𝑥0

    (3.3) 

where 𝐿* represents the linearized dynamical operator. Given a function 𝑓(𝑥) that is infinitely 

differentiable at a point s, the Taylor series is defined as: 

𝑓(𝑥) = 𝑓(𝑠) + (𝑥 − 𝑠)
𝑓′(𝑠)

1!
+ (𝑥 − 𝑠)2 𝑓′′(𝑠)

2!
+ (𝑥 − 𝑠)3 𝑓′′′(𝑠)

3!
+. . ., (3.4) 



 

35 | P a g e  
 

Then Eq. 3.3 can be treated as a first-order Taylor series expansion, which acts as a linear 

approximation of the system. The coefficients of this linear model 𝐿* are derived from the 

slopes of the tangents to the trajectories of the state variables within the forward model L. 

Consequently, this approach is often referred to as a tangent linear model. 

The cost function J is computed as a function of the state of the forward model L, which is 

contingent upon not only the initial state vector 𝑥0 but also the input parameters a and b. These 

parameters may represent bottom topography, initial conditions, boundary conditions, and AF. 

The adjoint method operates in a reverse manner on a perturbation of the cost function, 

enabling the numerical evaluation of the sensitivities of the cost function (also known as the 

objective function) with respect to the input parameters. Then the adjoint model yields the 

sensitivities, for example: 

𝑎* (𝒓, 𝑡) = 
𝜕𝐽

𝜕𝑎
(𝒓, 𝑡)     (3.5) 

at each point (𝒓 is the position vector) in the model at time t. The dynamics of the model are 

expressed through the chain rule of partial derivatives. 

In this study, the aim is to investigate the sensitivity of anomalous temperature variation to 

different AF, including U, V, PRE, T2M, SH, and radiation terms (SW, LW). The cost function 

is defined as the volume-mean potential temperature in the selected depth (e.g. upper 100 m) of 

selected study regions in terms of different years, averaged over a certain period (e.g. one-year 

period as annual mean SSST): 

𝐽 =  
1

𝑉∆𝑡
 ∫ ∫ 𝜃(𝒓, 𝑡)𝑑𝑡𝑑𝒓

𝛥𝑡𝑉
    (3.6) 

where 𝑉 is the control volume (e.g. the upper 100 m of the study region), 𝑡 is the time and ∆𝑡 is 

the integration period, 𝜃 is the potential temperature, 𝒓 is the position vector. The sensitivity 

fields are three-dimensional for AF, as they vary with time, longitude, and latitude. For the 

clarity of the results, only sensitivities higher than a certain threshold are considered to avoid 

noise (Veneziani et al., 2009). 

In the following sensitivity analysis, various time periods are used. For clarification, the 

target year will be denoted as ‘Year 0’ or ‘0yr’, and one year before the target year will be 

denoted as ‘Year -1’ or ‘-1yr’. The last month of Year 0 will be denoted as 0mon, while the last 

month of -1yr will be denoted as -12mon (or lead 12month). 
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3.4 Contribution Analysis 

The sensitivity fields associated with different AF exhibit varying units due to the disparate 

nature of the forcing involved. Therefore, the contribution analysis is applied to scale the 

contribution of different AF to the total variation of SSSTa. The linear change in J expected 

from an actual AF anomaly (e.g. Fig. 3.7), also known as the contribution (the scaled 

sensitivity), is calculated (Jones et al., 2019; Verdy et al., 2014; Wang et al., 2022b): 

𝛥𝐽𝑖(𝑥, 𝑦, 𝛥𝑡) =
𝜕𝐽

𝜕𝐹𝑖(𝑥,𝑦,𝛥𝑡)
𝛥𝐹𝑖(𝑥, 𝑦, 𝛥𝑡)    (3.7) 

where 
𝜕𝐽

𝜕𝐹𝑖(𝑥,𝑦,𝛥𝑡)
 is the adjoint sensitivity of SSST with respect to different AF (𝐹𝑖) at lead time 

𝛥𝑡 (𝛥𝑡 = -1mon, -2mon, …, -48mon, …, -3yr, -4yr, …) and location (𝑥, 𝑦) represents a point 

on the grid; 𝛥𝐹𝑖(𝑥, 𝑦, 𝛥𝑡) is the corresponding monthly anomaly of forcing 𝐹𝑖 at lead time 𝛥𝑡 

and location (𝑥, 𝑦) which is calculated relative to the 60-year (1948-2008) mean state including 

a seasonal cycle. The sign of the contribution ∆𝐽 is determined by multiplying the sign of the 

sensitivity field with the sign of the AF anomalies. Both positive and negative anomalies can 

produce a positive contribution, depending on the characteristics of the sensitivity fields. 

Therefore, the contribution pattern can still highlight the regions of the largest sensitivity with 

respect to the cost function, as no contributions are expected when the sensitivity is zero. 

However, the scaled sensitivity fields may not capture the detailed sensitivities, as low AF 

anomalies may result in reduced contribution fields, even when sensitivity is high. 

Building on Eq. 3.7, the cumulative temporal contribution for one forcing in a spatial map 

can be then expressed as: 

𝛥𝐽𝑖(𝑥, 𝑦) = ∑
𝜕𝐽

𝜕𝐹𝑖(𝑥,𝑦,𝛥𝑡)
𝛥𝐹𝑖(𝑥, 𝑦, 𝛥𝑡)𝛥𝑡    (3.8) 

The cumulative spatial contribution at each time step for one forcing in a temporal map can 

be expressed as: 

𝛥𝐽𝑖(𝛥𝑡) = ∑
𝜕𝐽

𝜕𝐹𝑖(𝑥,𝑦,𝛥𝑡)
𝛥𝐹𝑖(𝑥, 𝑦, 𝛥𝑡)𝑥,𝑦    (3.9) 

The total temporal contribution of all grids for all AF can be expressed as: 

𝛥𝐽(𝑥, 𝑦) = ∑ ∑
𝜕𝐽

𝜕𝐹𝑖(𝑥,𝑦,𝛥𝑡)
𝛥𝐹𝑖(𝑥, 𝑦, 𝛥𝑡)𝛥𝑡𝑖    (3.10) 
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The total contribution of all grids at all timesteps for each AF can be expressed as: 

𝛥𝐽(𝑖) = ∑ ∑
𝜕𝐽

𝜕𝐹𝑖(𝑥,𝑦,𝛥𝑡)
𝛥𝐹𝑖(𝑥, 𝑦, 𝛥𝑡)𝛥𝑡𝑥,𝑦    (3.11) 

At this stage, the contributions from different AF can be compared. Then the total 

contribution by aggregating the cumulative contribution of all AF at all timesteps and all grids 

can be compared to the cost function except for some non-linear processes: 

𝐽 ≈ ∑ ∑ ∑ 𝛥𝐽𝑖(𝑥, 𝑦, 𝛥𝑡)𝛥𝑡𝑥,𝑦𝑖     (3.12) 

 

Fig. 3.7. The 2022 annual anomalies of AF in the NP, calculated relative to the 15-year 

mean from 2008-2022 (from top to bottom: T2M; SH; PRE; U; V; LW; SW) based on two 

datasets. Left: ERA5; right: NCEP-RA1. 
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3.5 Perturbation Experiments 

The sensitivities derived from the adjoint model provide a linear approximation of 

nonlinear equations, which works best for small changes and short time periods. To ensure this 

linear assumption is valid, nonlinear forward perturbation experiments are conducted. In these 

experiments, results from simulations with slight changes are compared to those from a control 

simulation, helping to identify the physical processes affected by those perturbations. Adjoint 

sensitivities detect the locations and timing in the model’s input AF leading to specific 

responses in the system. In contrast, a forward perturbation experiment reveals the areas and 

timing of the system's response to a defined perturbation, a process also referred to as response 

analysis. 

Perturbations were computed based on the standard deviation of the AF, following the 

methodologies (Eq. 3.13) outlined by Yang et al. (2023) and Wang et al. (2022a). These 

perturbations were then incorporated into the corresponding original forcing fields. The model 

was subsequently integrated forward in time, and the results were analyzed as anomalies in 

relation to the control run. 

∆𝐹𝑖(𝑥, 𝑦, 𝛥𝑡) = 
𝜕𝐽/𝜕𝐹𝑖|(𝑥,𝑦,𝛥𝑡)

𝑚𝑎𝑥(|𝜕𝐽/𝜕𝐹𝑖|)
·δ 𝐹𝑖𝑠𝑡𝑑

    (3.13) 

where i represents different AF, x and y represent the longitude and the latitude of the model 

grid, respectively; 𝛥𝑡 represents the corresponding month. 𝐹𝑖𝑠𝑡𝑑
 is the standard deviation of 

annual mean AF (Fig. 3.8). To bound the upper magnitude of the perturbation, the adjoint 

sensitivities to different AF were first normalized by their maximum absolute values 

𝜕𝐽/𝜕𝐹𝑖|(𝑥,𝑦,𝛥𝑡)

𝑚𝑎𝑥(|𝜕𝐽/𝜕𝐹𝑖|)
 and then set it to be proportional to the standard deviation of each field multiplied 

by a factor of δ. The choice of δ is a scaling factor that was set to 1.5 for all perturbation 

experiments to yield a sufficiently large but not too large response such that neither the 

assumptions of the underlying tangent linearized equation is violated (Yang et al., 2023) nor 

the noise generated by nonlinear parameterizations such as KPP and GM dominate the signal. 

The perturbations added to the forward model represent an alternative form of scaled 

sensitivity compared to contribution analysis (Eq. 3.7), achieved by multiplying the standard 

deviation rather than utilizing the actual forcing anomalies. However, the perturbations added 
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to different AF cannot be directly compared with one another; instead, they can be compared to 

the original forcing. 

 

Fig. 3.8. The standard deviation of AF between 2008 and 2022 (from top to bottom: T2M; 

SH; PRE; U; V; LW; SW) based on two datasets. Left: ERA5; right: NCEP-RA1. 
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3.6 Adjoint Validation 

Perturbation experiments utilizing identical positive and negative perturbations can be 

employed to evaluate the validity of the adjoint linearity assumption (Jones et al., 2018; Verdy 

et al., 2014; Zhan et al., 2018). When applying a perturbation 𝛥𝐽, the response of the cost 

function can be approximated by Taylor series expansion (Eq. 3.4) as: 

𝛥𝐽 = 𝐽 − 𝐽0 =
𝜕𝐽

𝜕𝐹
(𝐹 − 𝐹0) + 

1

2
 
𝜕2𝐽

𝜕𝐹2
(𝐹 − 𝐹0)

2+. . .,   (3.14) 

where 𝐽0  and 𝐹0  represents reference values from the control run. If a sensitivity-like 

perturbation is introduced, the response can be denoted as 𝛥𝐽+ . Conversely, if a reverse-

sensitivity-like perturbation is introduced, the response can be denoted as 𝛥𝐽− . The linear 

response or the first derivative then can be estimated by: 

𝛥1 =
1

2
(𝛥𝐽+ − 𝛥𝐽−) ≈  

𝜕𝐽

𝜕𝐹
(𝐹 − 𝐹0)    (3.15) 

and the non-linear response or the second derivative can be estimated by: 

𝛥2 =
1

2
(𝛥𝐽+ + 𝛥𝐽−) ≈  

1

2
 
𝜕2𝐽

𝜕𝐹2 (𝐹 − 𝐹0)
2   (3.16) 

Only when 𝛥1 ≫ 𝛥2, 𝛥1 can be an adequate approximation of the linear response. If the two 

responses are comparable in magnitude, a more detailed examination of the higher-order terms 

should be considered. The linearity assumption of the MITgcm for bottom topography 

sensitivity analysis has been validated, with inaccuracies remaining within 30% over a 100-

year timescale and within 5% on an annual scale (Losch & Heimbach, 2007). 

Fig. 3.9 and Fig. 3.10 present an example of a perturbation experiment designed for model 

validation purposes. In this test experiment, a specific grid point situated at 53°N, 164°E is 

focused on for convenience. The standard deviation of the SW at this grid point is 

approximately 80 𝑊/𝑚2  (Fig. 3.8). To investigate the effects of perturbations, a relatively 

modest but sufficient perturbation magnitude is selected. The SW is perturbed uniformly by 

+10 𝑊/𝑚2  (the top panel in Fig. 3.9) and -10 𝑊/𝑚2  (the bottom panel in Fig. 3.9) for a 

duration of 1 month within a 2° x 2° grid box centered at 53°N, 164°E. After the application of 

the perturbations, the forward model is executed for the period spanning from 2008 to 2009. 

The annual mean SST in 2009, relative to the 15-year mean at this target point, is selected as 

the objective function for the comparison. 
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Fig. 3.9. The positive (top, +10 𝑊/𝑚2) and negative (bottom, -10 𝑊/𝑚2) SW perturbation 

added to the forward control run for model validation. 
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The only difference between the perturbed run and the control run lies in the application of 

a SW perturbation for one month at the selected grid point. The sensitivity, defined as the 

partial derivative of SST with respect to SW, can be approximated by the ratio of the change in 

the annual mean SST at this point for the year 2009 to the magnitude of the SW perturbation 

applied. For example, it is evident that applying perturbations in January or February of 2008 

does not result in changes to the objective function (crosses before -15mon in Fig. 3.10). This 

observation indicates that the SST at the selected grid point is not sensitive to the SW 

variations occurring in the early months of 2008; rather it is primarily sensitive to the 

conditions within the target year or several months before the target year. 

For comparison, an adjoint run is conducted with the annual mean SST of 2009 designed as 

the cost function. The sensitivity solutions obtained from the adjoint run closely align with 

those derived from the forward perturbation-based approach. Moreover, the adjoint run 

facilitates the identification of the most sensitive period by executing the adjoint model only 

once, which would otherwise require multiple runs of perturbation experiments. This 

comparison is demonstrated within a simplified scenario focusing on a single grid point. To 

generate a broader spatial sensitivity map, it is necessary to repeat the perturbation experiment 

for each grid box within the model domain. Clearly, this forward perturbation-based sensitivity 

experimentation is computationally intensive and expensive. 

To evaluate the linearity assumption, a negative perturbation was applied to the forward 

forcing field (the bottom panel in Fig. 3.9). The resulting response is depicted in Fig. 3.10 (the 

navy line), illustrating a reverse effect in comparison to the positive perturbation (crosses). 

Subsequently, both the linear and nonlinear responses are calculated (Eq. 3.15 & Eq. 3.16), as 

shown in the figure (the red and orange lines). As anticipated, the SST response to the imposed 

SW is nearly linear throughout the experimental period (the red line). The nonlinear response is 

minimal (the orange line), with only a very small fraction of non-linearity observed in January 

2009 (Lead Month -11). 
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Fig. 3.10. Comparison of adjoint sensitivity (pink dots; unit: ℃/𝑊/𝑚2 ) and SST response 

(℃) calculated from forward perturbation experiments (solid lines and crosses; unit: ℃ ) at 

53°N, 164°E with respect to monthly SW. Crosses show the response of positive perturbation 

and the navy line shows the response of negative perturbation. The red line shows a linear 

response and the orange line shows a non-linear response.  
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4 Results 

4.1 Northeast Pacific Marine Heatwaves Mechanism 

This section is designed to answer the first research question: 

 

What is the main atmospheric driver for the NEP MHWs? 

Are the results comparable to those obtained through heat budget analysis or other methods? 
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4.1.1. NEP MHW Research Region 

By now a classic example of an MHW is the 2014 – 2016 warm event that spread across 

the NEP Ocean —a warm event that researchers coined “the blob” of warm water (Bond et al., 

2015; Chen et al., 2023, Fig. 1). Such anomalously warm surface water frequently returns to 

the NEP region, e.g. during July and August 2019 as shown in Figs. 4.1.1a, b. Although 

extreme events may occur in various locations during certain months, a yearly analysis shows 

that similar locations in the NEP were consistently influenced by MHW during the years 2014 

and 2019 (Figs. 4.1.1c, d). This consistent pattern highlights the persistent impact of MHWs in 

specific regions over time. Therefore, two specific regions within this area (region 1: 145° ~ 

160°W, 48° ~ 56°N; region 2: 130° ~ 145°W, 40° ~ 48°N, white boxes) have been selected as 

the main research focus in the NEP to understand the mechanisms leading to long-lasting 

extreme temperatures there. 

Shown in the lower two panels of Fig. 4.1.1 are time series of annual mean HadiSST 

(Rayner et al., 2003) temperature anomalies for regions 1 and 2, respectively. Using the 

statistics between 1948 and 2022, MHW years detected are 1997, 2005, 2014-16, 2019-20 for 

region 1 and 1958, 1991-92, 2014-16, and 2019-20 for region 2. MHWs were identified in the 

figure using the 90th percentile of annual mean SST as a threshold. In accordance with 

previous findings, the last decade has witnessed a concurrent escalation in both the intensity 

and the frequency of MHWs within the designated study region. The warming trend is not 

removed, as the detected AF inherently includes this warming trend. The effect of global 

warming on AF is not considered separately. 

Also shown in the figure are time series of the PDO index based on NOAA's extended 

reconstruction of SSTs (ERSST, Version 5, Huang et al., 2017), and of the NPGO index based 

on AVISO satellite products (Di Lorenzo et al., 2008). In both regions, curves are highly 

correlated with SST variations in that all identified MHW events occur during high/low 

PDO/NPGO conditions. While the correlation with the PDO is not surprising as it is related to 

a warming of the NEP region and defined by the leading pattern of SSTa, it is especially the 

agreement with NPGO that to some degree suggests an impact of changes in the ocean 

circulation on MHW in this region. The low-frequency behavior of these climate modes 

implies their importance for SST anomalies reaching across a threshold value (Ren et al., 
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2023). The detailed cause for SST spikes to occur in the study regions remains unclear; 

however, they may primarily result from stochastic forcing (Capotondi et al., 2022). 

Several studies have investigated the driving mechanism behind monthly or daily MHWs 

by using either heat budget analysis or composite and statistical analysis (Kajtar et al., 2022; Li 

et al., 2020; Oliver, 2019; Zschenderlein et al., 2019). Of those, many show that the extreme 

temperature anomalies are highly related to atmospheric circulation variations such as 

atmospheric blocking events or North Atlantic Oscillation (NAO; Pfahl & Wernli, 2012; 

Scannell et al., 2016; Schaller et al., 2018; Yoon et al., 2020). According to Amaya et al. 

(2020), the 2019 MHW event shown in Fig. 4.1.1a was caused by an unusual and persistent 

weather pattern resulting from a prolonged weakening of the NPSH. Bond et al. (2015) 

reported that the 2014 MHW was caused by reduced heat loss from the ocean to the 

atmosphere and weaker-than-normal cold advection in the upper layer of the ocean, both 

attributed again to an unusually strong and persistent weather pattern featuring higher-than-

normal sea level pressure and involving heat and momentum flux anomalies. Few studies 

investigate NEP MHWs over extended time scales, particularly regarding the anomalously 

warm SST observed in 2014, which persisted for more than 2 years (Schmeisser et al., 2019). 

Fig. 4.1.1 demonstrates that similar locations in the NEP are consistently affected by MHW 

across different years on an annual scale. Accordingly, MHWs also influence annual mean 

temperatures suggesting that the definition of MHWs provided above can also be applied to 

annually averaged temperatures. They appear not only at the surface but also extend to the 

upper 100 m of the ocean. In this section, the aim is to investigate the mechanisms that drive 

these persistent annual MHWs marked in Fig. 4.1.1 and compare them with the existing results 

from other methods. 



 

47 | P a g e  
 

 

Fig. 4.1.1. MODIS SSTa of 2019 (a) July, (b) August relative to a climatological seasonal 

SST cycle from the period 2002-2021 and annual anomaly of 2019 (c) and 2014 (d) relative to 

the 20-year mean. White boxes show two study areas (region 1: 145° ~ 160°W, 48° ~ 56°N; 

region 2: 130° ~ 145°W, 40° ~ 48°N). (e) and (f) Time series of HadiSST annual anomalies 

(Rayner et al., 2003) from 1948 to 2022 averaged over regions 1 and 2, respectively (blue 

lines). Superimposed are the PDO (orange dots) and NPGO (green dashed line) time series. 

Red dashed lines show the 90th percentile MHW index; vertical grey lines mark seven MHW 

events. Correlations between SST and PDO are 0.53 and 0.31 for regions 1 and 2, and SST and 

NPGO are correlated at 0.52 and -0.64 levels, respectively. 
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4.1.2. NEP MHW Model Set-up 

Before conducting the adjoint experiment, the model’s performance in the selected regions 

of the NEP is further validated. Fig. 4.1.2 depicts the simulated temporal evolution of area 

mean potential temperature within the two target regions from 1948 to 2017 to provide a 

climatology baseline for comparison. Despite an apparent 0.25 ℃ temperature bias, the model 

effectively captures the amplitude of observed interannual variability and demonstrates a 

robust alignment with the trend of mean temperature evolution. The 70-year model time series 

displays a remarkable agreement with observations which demonstrates the model’s ability to 

reproduce the observed MHW events. The correlation coefficients of two time series between 

the model and reanalysis are around 0.95 and two-tailed p-values are far less than 0.05 (the 

degrees of freedom number is 68), i.e., a statistically significant correlation exists between the 

model and observations. 

Employing the annual MHW index definition, both the model and observations identify the 

same MHW years during the 70 years (1948-2017), specifically 1957, 1984, 1993, 1997, 2004-

05 and 2014-16 for study region 1 and 1958, 1986, 1991-92, 2005 and 2014-16 for study 

region 2. Notably, the results are slightly different from Fig. 4.1.1 because the model time 

period is different, and therefore the heatwave index (90th percentile of data) also differs. 

After validation, a set of adjoint sensitivity experiments to examine the sensitivity of 

anomalous warming of NEP to AF anomalies was performed. The cost function is defined as 

the temperature field in the upper 100 m, of region 1 and region 2, respectively, averaged over 

a one-year period (Eq. 3.6). 

Restarting from the specific years of the forward run illustrated in Fig. 4.1.2, respective 

sensitivity runs were performed for all warm years and several normal years during 1988-2017. 

In each case, four-year-long forward and backward runs were conducted. Two primary adjoint 

experiments are targeting the year 2014 as the MHW year for region 1 (EXP1) and region 2 

(EXP2). To examine how the evolution of sensitivity depends on the oceanic background state, 

several supplementary experiments are carried out based on the MHW index of each target 

region (vertical lines shown in Fig. 4.1.2; e.g. setting the normal year 2007/2013 as the target 

year; setting MHW year 1997/2005/2015 as the target year). The adjoint model was run 

backward to calculate the adjoint sensitivities of the annual mean and volume-mean potential 

temperature to a set of independent parameters, including ocean temperature and salinity as 
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well as wind velocity, PRE, T2M, SH, and radiation. The analysis reveals that the sensitivity 

before -4yr is notably weak. 

Upon analyzing the adjoint sensitivity outcomes, it was observed that the results of all 

experiments exhibited substantial similarity. Sensitive areas do not change much with the 

different target years.  Results set the normal year 2007 as the target year (Fig. 4.1.3) which 

shows a similar pattern with setting MHW year 2014 (Fig. 4.1.4). The slight differences in the 

distribution patterns are due to the different maximum values of the normalization. 

Additionally, the sensitivity with respect to T2M and SH in 2007 exhibits a similar distribution. 

Consequently, only the sensitivity fields derived from the adjoint experiment targeting the 

MHW year 2014 are presented for the following analysis. 

 

 

Fig. 4.1.2. Time series of mean potential temperature in (top) regions 1 and (bottom) region 

2 from 1948 to 2017. The orange and blue lines represent the annual mean model and HadiSST 

fields, respectively. Red dashed lines show the MHW index for the forward model; the grey 

vertical line shows the resulting MHW events.  
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Fig. 4.1.3. Evolution of the adjoint sensitivity (from top to bottom, backward in time) with 

respect to T2M (left) and SH (right) based on the experiment setting 2007 (non-MHW year) as 

the target year. In each panel, sensitivities are normalized by their approximately maximum 

magnitude, as labeled in the titles of each panel. The black box indicates the respective target 

research region.  
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4.1.3. NEP MHW Sensitivities 

a. Adjoint Sensitivity Pattern 

Based on the sensitivity fields of EXP1 for region 1 and EXP2 for region 2, Figs. 4.1.4 - 

4.1.10 showcase the adjoint sensitivities of the cost function (Eq. 3.6) with respect to five 

different parameters (potential temperature, salinity, PRE, U, and V) at various time lags 

during the 4-year period. In each case, a positive (negative) sensitivity implies that positive 

perturbations at that location and at the shown time will induce a positive (negative) change in 

heat content in the NEP target region during the target year. 

Fig. 4.1.4 shows adjoint sensitivity fields of the cost function with respect to the initial 

condition of potential temperature at the surface, separately for region 1 and region 2. The 

displayed pattern represents also those obtained for individual heat flux components (T2M, SH, 

LW, and SW). Any positive perturbation will enhance the annual mean upper ocean heat 

content through changes in the sensible heat flux and latent heat flux (together called turbulent 

surface heat fluxes) as specified by bulk formula package (Eq. 3.1a, b) in MITgcm. Near-

surface heat content changes can be driven locally through local surface forcing; they can also 

be driven remotely by heating the water that later gets advected into the target region. Changes 

in the heat content in the target region can also be driven dynamically by altering the heat 

advection through flow field changes and its heat convergence. 

The propagation of heat content sensitivities of regions 1 and 2 (Fig. 4.1.4) are mainly 

confined to midlatitudes north of 40°N of the NP as one would expect given the pattern of the 

NP circulation. Sensitivities from both regions consistently show positive values within the 

target region across most time lags, confirming that a persistent local surface heat flux forcing 

distributed over four years will lead to enhanced temperatures in the target region during the 

target year. Along these lines, during the target year, the sensitivities are confined locally to the 

target region, indicating the predominant importance of local warming. However, toward 

earlier years, the sensitivities shift horizontally, spreading across a broader region with 

maximum values occurring more toward the west – upstream – of the target area, highlighting 

the increasing importance of regional/remote influences (preconditioning) from those earlier 

times. As an example, during -2yr (2012) and -3yr (2011), sensitivity fields of both target 

regions expand towards the middle of the NP and display a banded distribution. In that sense, 
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the far-field sensitivity of both regions is comparable and indicates that the heat content of both 

regions is sensitive to surface heating anomalies of the central Pacific but with opposite signs 

in certain areas (also in certain months, examples can be seen from Fig. 4.1.3) leading to 

density gradients and associated thermal wind flow field changes. 

Marotzke et al. (1999) split the sensitivity into dynamic velocity-related (density-related) 

and kinematic (advected temperature-related) components: 

(
𝜕𝑄

𝜕𝑇
)
𝜌

= (
𝜕𝑄

𝜕𝑇
)
𝑆
+ 𝛼𝜌 (

𝜕𝑄

𝜕𝜌
)
𝑇

= (
𝜕𝑄

𝜕𝑇
)
𝑆
+

𝛼

𝛽
(
𝜕𝑄

𝜕𝑆
)
𝑇
   (4.1.1) 

In this equation Eq. 4.1.1, Q denotes heat transport, while T and S represent the initial 

temperature and salinity, respectively. 𝜌 represents density; and 𝛼 and 𝛽 are the thermal and 

haline expansion coefficients, respectively. If the sensitivity fields of temperature and salinity 

are of opposite signs (and correct magnitude), the effect is purely dynamical, otherwise it is a 

combination of dynamical and kinematic. More details can be found in Marotzke et al. (1999). 

Along these lines, the sensitivity to SST changes (Fig. 4.1.4) is a mix of kinematic and 

dynamic signals. The dynamic part is basically illustrated by the salinity sensitivity (Fig. 4.1.5) 

showing a dipolar, i.e., density gradient-related distribution, which promotes anomalous 

northward advection into the target region during the target year. During the years before the 

pattern shifts to a northeastward advection towards a region that is increasingly shifted 

westward of the target region. That means in the years before anomalous advection will heat a 

region of water that will get advected into the target region. It is notable that the salinity 

sensitivity pattern mirrors those of precipitation (Fig. 4.1.6). In the same vein, in the deeper 

ocean, the pattern of sensitivities from temperature (Fig. 4.1.7) and salinity (Fig. 4.1.8) match 

nearly perfectly with opposite sign, which indicates that the mechanism is purely dynamical, 

that is, only density and consequently velocity is to be changed to influence the heat transport. 
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Fig. 4.1.4. Evolution of the adjoint sensitivity (from top to bottom, backward in time) with 

respect to the initial condition of potential temperature at the surface based on EXP1 (left 

column; for region 1) and EXP2 (right column; for region 2). In each panel, sensitivities are 

normalized by their approximately maximum magnitude, as labeled in the titles of each panel. 

The black box indicates the respective target research region. 
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Fig. 4.1.5. As Fig. 4.1.4, but with respect to the initial condition of salinity at the surface. 
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Fig. 4.1.6. As Fig. 4.1.4, but with respect to precipitation. 
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Fig. 4.1.7. As Fig. 4.1.4 but at a depth of 1335 m. 
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Fig. 4.1.8. As Fig .4.1.5 but at a depth of 1335 m. 
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As discussed before, the sensitivity of SH is quite similar to that of both T2M and potential 

temperature (Fig. 4.1.4), as well as to that observed in 2007 (Fig. 4.1.3). This results in a 

comparable level of contribution from both the latent heat flux (Eq. 3.1b) and the sensible heat 

flux (Eq. 3.1a). At high latitudes, anomalies in the latent heat flux and sensible heat flux are of 

similar magnitude since cold air holds less moisture and small changes in temperature can only 

lead to small changes in specific humidity. Also, at middle to high latitudes, the sensible heat 

flux and latent heat flux are more dependent on temperature and humidity anomalies, while in 

the tropics and subtropics, they are primarily associated with wind speed anomalies 

(Alexander, 2010). 

Fig. 4.1.9 shows the adjoint sensitivities of the cost function with respect to zonal wind 

velocity (∂J/∂u) at various time lags during the 4-year period. The figure reveals pronounced 

sensitivities of the heat content in region 1 to U. Similarly, large sensitivities to V (Fig. 4.1.10) 

are found which together would change the wind stress curl. Among horizontal winds, V exerts 

less influence compared to U. However, the sensitivity fields indicate that the NEP is sensitive 

to the region along the western coast of the Americas to a certain degree. 

But in more general terms impacts from wind velocity on the heat content of the target 

regions can come through several pathways: horizontally one expects an impact on surface 

momentum fluxes and respective dynamical responses of the flow field, primarily Ekman 

currents, involving changing currents and advective pattern. Typically, this is driven by the 

wind stress curl altering the Ekman transports and the large-scale Sverdrup-type circulation. 

Although, there are potentially also implicit influences acting in the vertical, involving changes 

of the vertical mixing, entrainment or detrainment and associated mixed layer depth changes, 

those are not part of the sensitivity calculation since the adjoint code of the mixed layer 

parameterization had to be excluded for stability reasons. Changes in the wind speed will also 

impact surface turbulent heat fluxes (Eq. 3.1), which are being changed by a combination of 

the sensitivities of the T2M, SH, and wind sensitivities. 
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Fig. 4.1.9. As Fig. 4.1.4 but with respect to U. 
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Fig. 4.1.10. As Fig. 4.1.4, but with respect to V. 

 
 
 
 



 

61 | P a g e  
 

b. NEP Sensitivity Mechanism 

Adjoint sensitivity patterns such as those shown above illustrate optimal perturbation 

patterns of control parameters that – in this case - lead to heat content changes in the NEP. 

However, how these sensitivities accomplish the changes in the heat content in the target 

regions is not immediately obvious but needs further investigation. 

Previous studies suggested that an important preconditioning for MHW to occur is the 

existence of atmospheric circulation anomalies that induce warm air advection which in turn 

drives temperature anomalies in the ocean (Pfahl & Wernli, 2012). Persistent high-pressure 

systems usually also bring calm winds that are not nearly strong enough to stir the ocean and 

cause the rise of the mixed layer interface and slow down wind-driven currents. According to 

Bond et al. (2015), the mechanisms contributing to specifically the 2014-2016 MHW in the 

NEP were reduced heat loss from the ocean, reduced advection of cold water into the region 

through reduced Ekman transports, and finally lowered mixed layer depth. All these 

mechanisms were linked to an unusually strong and lasting weather pattern characterized by 

above-normal sea-level pressure. Similar mechanisms were invoked to cause the 2019 MHW 

in approximately the same region involving an unusual and persistent weather pattern that 

resulted from a prolonged weakening of the NPSH (Amaya et al., 2020) and an MHW that was 

close in magnitude to the 2014-2016 event. 

1) CONTRIBUTION ANALYSIS 

The adjoint sensitivities show how different AF can lead in principle to the heat content 

changes in the target region. To quantify how different AF affects in practice the total variation 

of SST and find out the dominant drivers, the linear change in J expected from an actual AF 

anomaly is calculated (Eq. 3.7). In this study lead time 𝛥𝑡 is chosen to be 4-year because the 

sensitivity observed in the period before this time is notably weak. As the adjoint sensitivities 

appear to be independent of the actual ocean state, they can be shifted in time by full years. 

This is consistent with previous findings from Wang et al. (2022b). 

By omitting the summation over space in Eq. 3.8, one can visualize in one spatial map how 

at each location all AF contributes to the cost function response (top row in Fig. 4.1.11). While 

changing the summation over time into a cumulative sum and omitting the summation over 

forcing type yields in one temporal map the contribution of each month (in a cumulative sense) 
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and forcing type to the response (bottom row in Fig. 4.1.11), and in turn, estimate the linear 

contribution of actual AF anomalies. As sensitivity fields appear to be similar in all adjoint 

experiments, independent of the actual target year. The sensitivities of 2014 are used for the 

following analysis.  

A contribution analysis can verify the usefulness of the sensitivity fields: the cost function 

change is reconstructed reasonably well. The reconstructed response in target region 1 is 

stronger and that of target region 2 weaker than the actual response (compare the actual 

response displayed as a blue bar with the final total response in the bottom row of Fig. 4.1.11). 

The deviation in the range 0.1-0.2 ℃, in principle, can result from the linearization employed 

by reconstructing the response via Eq. 3.12. The contributions from all AF anomalies are from 

rather local areas within the target area as the top row shows. On the other hand, it confirms 

that T2M and SH play important roles as atmospheric drivers of NEP MHWs through 

contribution analysis (bottom row in Fig. 4.1.11): the drivers of MHWs with different 

intensities are not different in the two target regions. In most experiments, LW emerges as the 

third most significant AF for warming which is significantly influenced by clouds and 

greenhouse gases, including water vapor. Horizontal winds and downward SW act essentially 

as a dampening factor for the upper 100 m warming; PRE, on the other hand, can be 

disregarded. The rapid growth period is from lead 15month to lead 10month (EXP1) and from 

lead 15month to lead 8month (EXP2). The total contribution peaks at lead 11month for both, 

contributed by SH, T2M, and downward LW (middle and bottom rows in Fig. 4.1.11). From 

this contribution analysis, it can be concluded that for the annual mean MHW observed in 

2014, the most sensitive period occurred from October 2013, which is three months prior to the 

target year. 
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Fig. 4.1.11. (Top row) Total contributions of all AF anomalies by region to the cost 

function response (𝐽(𝑥, 𝑦)). Note, that the distribution indicates in which region the forcing 

anomaly contributes but not where the response will take place. (Middle row) The contribution 

to the response by each AF in regions 1 and 2. The black line shows how all AF anomalies 

build up the total response, and the other different colors indicate the contributions of 

individual AF anomalies. The Gray dashed line shows the period of rapid growth. (Bottom 

row) Time evolution of the cumulative contributions to cost function response in regions 1 and 

2 by the different actual AF anomalies (𝛿𝐹𝑖(𝛥𝑡)). The blue bars show the 2014 observed 

annual mean potential temperature anomalies of the upper 100 m in the target region.  
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2) PERTURBATION EXPERIMENTS 

To explore the mechanisms that can lead to heat content changes based on both the 

sensitivities shown above and the dominant drivers from the contribution analysis, several 

perturbation experiments have been conducted by adding sensitivity-based perturbations to AF 

fields during various lead months and at different locations targeting responses in region 1. 

Since T2M and SH are the two dominant factors, and since the sensitivities and the 

contribution to both are very similar, only T2M is shown as an example. The sensitivity-based 

perturbation fields for T2M and horizontal wind are added to the original forcing of the 

forward model, which are calculated according to Eq. 3.13: 

∆𝑇2𝑀(𝑥, 𝑦, 𝑡) = 
𝜕𝐽/𝜕𝑎𝑡𝑒𝑚𝑝|(𝑥,𝑦,𝑡)

𝑚𝑎𝑥(|𝜕𝐽/𝜕𝑎𝑡𝑒𝑚𝑝|)
·δ·𝑇2𝑀𝑠𝑡𝑑(𝑥, 𝑦)   (4.1.2a) 

(∆𝑢(𝑥, 𝑦, 𝑡), ∆𝑣(𝑥, 𝑦, 𝑡)) = (
𝜕𝐽/𝜕𝑢|(𝑥,𝑦,𝑡)

𝑚𝑎𝑥(|𝜕𝐽/𝜕𝑢|)
·δ·𝑢𝑠𝑡𝑑(𝑥, 𝑦),

𝜕𝐽/𝜕𝑣|(𝑥,𝑦,𝑡)

𝑚𝑎𝑥(|𝜕𝐽/𝜕𝑣|)
·δ·𝑣𝑠𝑡𝑑(𝑥, 𝑦)) (4.1.2b) 

The resulting perturbations are added to the respective forcing fields over a 4-year period and 

the model is integrated forward; results are analyzed as anomalies with respect to the control 

run. 

Fig. 4.1.12 shows the annual mean potential temperature anomalies resulting from 

perturbations of the T2M and the horizontal wind (U and V) in the top 160 m. In both cases, 

the impact of perturbation before -3yr is very small and almost neglectable. Thus, only results 

after -2yr are presented. Both the T2M perturbation experiment and the horizontal wind 

perturbation experiment show the expected local heating in the upper 100 m in the target 

region after a 4-year run, even though there is some noise in the western Pacific which may be 

due to chaos. The temperature signal during the target year at the sea surface caused by T2M 

perturbation (~0.44℃) is almost 2 times the signal caused by the horizontal wind velocity 

(~0.27℃). Unlike the T2M perturbation experiment, for which the heating in the target region 

is local and constrained to the top 100 m (consistent with the cost function definition), the 

horizontal wind perturbation experiment shows an upward vertical propagation from regions 

further south (around 30°N at -2yr) of the deeper ocean. 
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Fig. 4.1.12. 3-D temporal evolution of annually averaged potential temperature anomalies 

(perturbation run – control run) for experiment perturbed by T2M (left) and horizontal wind 

velocity (right), respectively (from bottom to top, forward in time). Absolute values less than 

0.02 in magnitude are not shown.  
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Associated changes in SSH are shown in Fig. 4.1.13. Adding perturbations to T2M didn’t 

significantly change SSH of target region 1; only during -1yr and the target year (Year 0) 

notable positive steric SSHa are confirming that in this case, the essential heat uptake takes 

place locally in the target year through altered air-sea fluxes (SSHa in the far-field of the 

Kuroshio are likely to be a result of chaos). In contrast, adding perturbation by horizontal wind 

velocity leads to substantial changes in the near-surface geostrophic flow field reflected in the 

SSH gradients reaching across the basin, and revealing a mid-latitude gyre scale pattern. 

During the target Year 0 positive SSHa are dominated by the warming in the target region and 

negative anomalies in the regions that have provided the heat. There is some alignment with 

the subpolar and subtropical gyres suggesting a weakening of the gyres associated with the 

MHW event. Years prior to this are dominated by the spinup of the gyre-like anomalies and 

revealing also a northward current anomaly near 150°W that could contribute to the heating in 

the target region. The figure confirms that the horizontal wind can be a driver to the heating of 

the target region through the advection of heat, although it is not a main driving factor for the 

2014 upper 100 m MHW. 

Figs. 4.1.12 & 4.1.13 show the responses to adding either T2M perturbations or horizontal 

wind perturbations. To analyze the complete mechanisms involved in the warming and to 

compare them to literature results, a final run was performed in which all forcing perturbations 

according to Eq. 3.13 were added simultaneously to the respective forcing fields over a 4-year 

period prior to 2014. From the results, after subtracting the trajectory of the control run, various 

terms driving the heat content budget in the target regions are analyzed. Fig. 4.1.14 shows the 

resulting net surface heat flux anomalies, wind stress curl anomalies, and advective flux 

anomalies by subtracting the control run from the perturbation run. Positive values indicate 

heat flux entering the ocean. The downward SW acts as a damping term to the NEP MHW 

from the contribution analysis for the year 2014 (Fig. 4.1.11). The net surface heat flux 

behaves positively in Year 0 after the addition of the perturbation. In other words, the turbulent 

heat flux plays a crucial role in heating the target region for MHW year 2014. Negative wind 

stress curl pushes water downward (Ekman pumping) so that warm surface water enters from 

the side leading to a deepening of the warm surface layer. The total advective flux anomaly in 

the target region is positive in the target year, with positive horizontal advective flux 

propagating from west to east. Additionally, the presence of negative vertical advective flux 

indicates downward movement within the target region. This finding is consistent with the 
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work of Bond et al. (2015), which suggests that the anomalous advection can drive interannual 

temperature anomalies. 

 

Fig. 4.1.13. Temporal evolution of annually averaged SSHa (perturbation run – control run) 

for experiment perturbed by T2M (left) and horizontal wind (right), respectively (from bottom 

to upper, forward in time). 
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Fig. 4.1.14. Temporal evolution of annually averaged (first row) net surface heat flux, 

(second row) wind stress curl, (third row) horizontal advective flux (𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
) and (fourth 

row) vertical advective flux anomalies ( 𝜔
𝜕𝜃

𝜕𝑧
) of potential temperature at the surface 

(perturbation run – control run) for the experiment perturbed by all AF (from left to right, 

forward in time). 
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4.1.4. NEP MHW Reconstruction 

To validate the adjoint sensitivity results, SST anomalies were reconstructed (hind-cast) for 

the entire period 1990 through 2022, following the approach used above by defining the cost 

function as 2014 SST and rerunning the sensitivity experiment, again using the resulting 

sensitivities from 2014 and incorporating all actual AF anomalies. The results (Fig. 4.1.15) 

effectively produce a hindcast that captures a substantial portion of the variability of SSTa. The 

correlation coefficient between the reconstruction and reanalysis for the whole period is 0.87 

for region 1 and 0.93 for region 2 and the two-tailed p-value is also far less than 0.05 indicating 

the correlation is statistically significant (the year 2014 was excluded to conduct an out-of-

sample test; the results for 2014 can be seen in Fig. 4.1.11). The dashed yellow line represents 

the HadiSST anomalies for the respective region, while the orange line depicts the 

reconstruction of mean temperature anomalies using the sensitivity pattern derived from the 4-

year periods. The reconstruction is successful not only for the recent decades but also for the 

entire period, with the exception of some cooling years around the 1970s, where 

underestimation is observed. Although the reconstruction tends to slightly underestimate the 

cooling in the NEP for certain years, it performs well during years of extreme heating. 

Bars in Fig. 4.1.15 depict the contributions from different AF to the respective SSTa and 

confirm that in the majority of warming events SH and T2M are the main drivers, contributing 

almost the same amount to the final response. In other words, latent heat flux (Eq. 3.1b) and 

sensible heat flux (Eq. 3.1a) are the most important drivers of NEP MHWs, especially the 

latent heat flux which at the end is being changed by a combination of the sensitivities of the 

T2M, SH, as well as wind sensitivities. LW is also the third important driver of SSTa. In 

contrast, horizontal wind velocity contributes relatively more to cooling events. Precipitation 

can be ignored due to the negligible contribution on a longer time scale. 
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Fig. 4.1.15. Reconstruction of SSTa at NEP from 1990 to 2022 (top: region 1; bottom: 

region 2). Dashed yellow lines show the HadiSST reanalysis; orange lines represent the 

reconstructions using the first 4-yr mean sensitivity patterns of all adjoint experiments and all 

AF. Color bars show different contributions from AF (blue: SH; green: T2M; purple: U; red: 

V; brown: SW; navy: LW; pink: PRE). During the correlation analysis, the year 2014 was 

excluded to conduct an out-of-sample test. 
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To compare the relative importance of different AF contributions between MHW and non-

MHW years, the percentage contributions of T2M, SH, LW, and U and their probability 

distribution function (Fig. 4.1.16) are calculated based on their absolute values from Fig. 

4.1.15. For MHW years, T2M, SH, and LW are undoubtedly the most important contributors to 

enhanced temperatures (always 20%-35% of total contribution), which push them into the 

upper 60th percentile, while U shows lower contributions mostly (except for one case) in the 

lower 40th percentile. For other years, T2M, SH, and LW contribute 10%-20% in general. 

Together with U, these four factors impact the temperature in the NEP region by more than 

50%. During MHW years, they typically account for up to 80%-90% of the warming. 

For some non-MHW years, T2M and SH sometimes only contribute 10% (e.g. 1995, 2001). 

At the same time U contributes more, i.e., enhanced wind stress plays a more important role 

when the turbulent heat flux contributes less. Apart from that, U dominates the cooling event in 

some cases. Between 2006 and 2012, the target region experienced a period of cooling (Fig. 

4.1.15) which U takes up around 40%-60% of total cooling (up to 80% in 2006). And when the 

target region is relatively warm, U always contributes only nearly 10%-20%. The contribution 

of SH is slightly larger than that of T2M. As a result, it can be inferred that air-sea heat flux 

plays the dominant role in driving MHWs, surpassing the temperature advection effects. 
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Fig. 4.1.16. (Top) The percentage contribution of T2M (green), SH (blue), LW (navy), U 

(purple), and the sum of them (orange) to temperature changes in region 1. The grey vertical 

dashed line shows MHW years. (Bottom) The probability distribution function of the 

percentage contribution (x-axis) of T2M, SH, LW, and U. Bigger dots indicate the MHW 

years. 
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4.1.5. NEP MHW Forecast Potential 

Several studies have attempted to forecast MHWs using a variety of methods, including 

climate modeling (Jacox et al., 2022), machine learning (Giamalaki et al., 2022), and 

potentially the winter SST persistence. To explore the forecast potential of NEP MHWs using 

adjoint sensitivities, Fig. 4.1.17 shows the correlation coefficient between the reconstructions 

using different sensitivity periods and the HadiSST reanalysis data. All reconstructions using 

AF that start from lead 18month and ending after lead 15month successfully capture most 

heatwaves, with correlation coefficients exceeding 0.5. Sensitivity intervals spanning from -

18mon (6-month prior to the target year) to -12mon (1-month prior to the target year) allow 

predicting the NEP MHW before the beginning of the MHW year with the skill level of 0.65. 

 

Fig. 4.1.17. The correlation coefficient between the reconstructions using different 

sensitivity periods and the HadiSST reanalysis data for all combinations of start (y-axis) and 

end month (x-axis). Numbers in boxes indicate those correlation coefficients that are 

significantly different from 0 (p≤0.05). 
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To compare the adjoint method with statistical methods, further regression and correlation 

analysis are conducted. Using the modeled monthly mean SST in region 1, a regression 

analysis is performed with the lagged monthly mean AF (ranging from lag 0month to lag 

36month). Results related to lag 0month are shown in Fig. 4.1.18. Similar conclusions can be 

drawn from the regression analysis indicating that T2M, SH, LW, and horizontal winds exhibit 

high correlations with the cost function. For instance, when examining T2M, a relatively high 

correlation can be observed extending back up to -12mon or even longer, suggesting a strong 

relationship between region 1 and the equatorial ENSO region. However, the region exhibiting 

high correlation is substantially broader than the sensitive region identified by the adjoint 

method, suggesting it is challenging to identify the precise timing and location of sensitivity 

contributing to the target warming based solely on this kind of regression analysis. Utilizing 

perturbation experiments together with regression analysis may help identify the most sensitive 

areas and periods corresponding to the cost function; however, this approach appears to be less 

efficient than adjoint studies. Additionally, it is important to note that statistical methods, while 

useful for identifying correlations, may still lack physical explanations. 

SST persistence is considered more effective for making predictions, as the primary 

conclusion suggests that local effects predominantly influence target warming. Table. 4.1.1 

presents a comparison of the correlations between the annual mean SST and the seasonal mean 

SST occurring in different time lags, which can be used to predict or reconstruct the annual 

mean SST in region 1. Utilizing December SST to predict the mean SST of the next year is a 

more straightforward approach, and the predictive skill (0.62) is relatively high, nearly 

matching that of the adjoint method shown in Fig. 4.1.17 (-48mon ~ -12mon: 0.66). The 

advantage of forecasts based on the adjoint sensitivity is that their skill and lead time are likely 

to improve when applying the prediction of the AF. Moreover, extending the period of data 

does not enhance the skill of persistence methods; the highest correlation observed (0.69) 

occurs when using the mean temperature from the last three months of the previous year and 

the first three months of the target year. However, extending the period of data can improve the 

skill of the adjoint method (e.g. 0.8 from -48mon to -9mon, Fig. 4.1.17). 
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Fig. 4.1.18. Regression analysis between modeled monthly mean SST in region 1 and the 

monthly mean ERA5 AF data (From left to right, from top to bottom: T2M; LW; SW; SH; U, 

V, and PRE). The red areas indicate a positive correlation between the cost function and the 

respective AF, while the blue areas indicate a negative correlation. Darker shades represent 

stronger correlations. ‘/’ marks statistical significance. 
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Data period Correlation with HadiSST 

Annual mean SST from the previous year 0.56 

Monthly mean SST from the previous year December 0.62 

Seasonal mean SST from the previous year (OND) 0.52 

Seasonal mean SST from the previous year (JAS) 0.44 

Seasonal mean SST from the previous year (AMJ) 0.52 

Seasonal mean SST from the previous year (JFM) 0.47 

Seasonal mean SST from the previous year (OND) and the 

current year (JFM) 
0.69 

Table 4.1.1. Comparisons of the correlation between the annual mean SST and the monthly 

mean or seasonal mean SST occurring in different time lags in target region 1. SST data are 

based on HadiSST datasets from 1948 to 2022. The numbers shown in the table are correlation 

coefficients. OND represents October, November, and December; JAS represents July, August, 

and September; AMJ represents April, May, and June; JFM represents January, February, and 

March.  
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4.1.6. NEP Monthly MHWs 

Several studies have specifically analyzed the drivers of MHWs that occurred in February 

2014 (Bond et al., 2015; Chen et al., 2023). To compare the results obtained through the 

adjoint method with existing findings, additional adjoint experiments were conducted. In these 

experiments, the February monthly mean potential temperature in the upper 100 m for the year 

2014 was set as the cost function. This approach allowed us to investigate the drivers of 

monthly MHWs more effectively. The same contribution analysis was also conducted to 

compare the contributions from the different AF (Fig. 4.1.19). 

The contributions made by various AF to the 2014 February MHW yield findings 

consistent with those of Chen et al. (2023). Anomalous warm T2M plays a more significant 

role. While prior research, such as that by Bond et al. (2015), attributes the formation primarily 

to anomalous air-sea heat flux and horizontal advection resulting from reduced wind 

conditions, our study indicates that turbulent heat flux has a more pronounced impact on its 

formation. U may play a preconditioning role, as remote contributions were observed starting 

in September 2012. This phenomenon primarily influences subsurface warming (top panel in 

Fig. 4.1.19). The effect of horizontal winds on the surface MHW is negative (bottom panel in 

Fig. 4.1.19).  

Overall, AF has a larger impact on surface warming than on subsurface warming due to the 

direct heat exchange. LW, T2M, and SH are the three dominant AF, which aligns with the 

annual MHW analysis above. The turbulent heat flux, in conjunction with SH and T2M, is the 

primary driver of both monthly and annual MHW in the NEP. The influence of LW can be 

attributed to cloud effects, according to the findings of Schmeisser et al. (2019). Additionally, 

the most sensitive period also aligns with the annual MHW analysis, indicating that 

atmospheric conditions began to influence the cost function starting in the winter of 2013. 
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Fig. 4.1.19. Time evolution of the cumulative contributions to February SSTa (bottom) and 

February SSSTa (in the upper 100 m, top panel) in 2014 in region 1 by the different actual AF 

anomalies (purple: V; green: U; pink: LW; grey: SW; red: T2M; blue: SH). 

 

In addition to focusing on interannual and monthly scales, the entire reconstruction (Fig. 

4.1.15) can also be broken down for analysis at the seasonal scale, as illustrated in Fig. 4.1.20. 

This figure corresponds to contributions which were separated over eight seasons leading up to 

the target year. The results are consistent with the previous findings, indicating that the winter 

preceding the target year is critical for the initiation of an MHW event, especially when the 

mixed layer is typically deeper but becomes shallower under certain atmospheric conditions 

(e.g. high-pressure system). When examining contributions in the seasonal context, an unusual 

contribution from V was observed in the spring of 2019 (yellow lines). Typically, V 

contributes negatively in this region when turbulent heat flux contributions are significant, and 

its role in spring varies between the two target regions. This discrepancy warrants further 

investigation. In addition to contribution analysis, the seasonal mean potential temperature can 

be set as the cost function in future adjoint studies. Further refinement of the model setup will 

be necessary for conducting seasonal studies. 
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Fig. 4.1.20. Same as Fig. 4.1.15 but separating contributions over eight seasons prior to the 

target year. Vertical yellow lines show the spring of 2019.  
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4.1.7. NEP MHW Discussion 

For a complex nonlinear and coupled oceanic and atmospheric dynamical system, 

predicting when and where forcing anomalies might produce an extreme response poses a 

challenge in climate science. Acquiring improved insight into the temporal and spatial 

distributions of the systems' sensitivity to internal or external forcing anomalies or internal 

feedback mechanisms is therefore key to understanding the physical processes of the system 

required for improving and providing reliable forecasts. 

This section showcased adjoint sensitivity computations as a tool for identifying physical 

pathways connecting NEP MHW within a target region to AF anomalies. Using the adjoint 

sensitivities identified AF as the main cause for MHW to occur, offering predictive potential 6-

month in advance for annual MHW to occur. Utilizing atmospheric conditions from the total of 

36 months preceding the target year demonstrates marginally improved predictive skill 

compared to persistence theory. Employing a 2-degree resolution model, 4 years of AF 

preceding the MHW proved to be reasonable for skillful reconstructing hindcasts of MHW 

occurrences, even in instances where nonlinear processes cannot be explicitly accounted for 

(Zhang et al., 2009). Furthermore, the implementation of real-time forecasting, utilizing 

optimal sensitivity fields and AF predictions (e.g. sourced from the European Center for 

Medium-Range Weather Forecasts) to do prediction of the next year, is deemed to be feasible 

and straightforward. The lead time can be further enhanced by applying more advanced AF 

forecasts. 

In conclusion, T2M and SH are the dominant AF for NEP MHWs in the adjoint model 

setup. These findings are in agreement with prior studies that underscore the pivotal role of 

anomalous T2M and SH or air-sea heat flux in the formation of NEP MHWs (Bond et al., 

2015; Chen et al., 2023; Chen et al., 2021; Ge et al., 2023; Holbrook et al., 2019; 

Zschenderlein et al., 2019). Also, the sensitivity distribution confirms that the NEP MHWs are 

sensitive to atmospheric variability at the tail end of the Kuroshio Extension region (Silva & 

Anderson, 2023). Local anomalous air-sea heat flux is found to be the dominant driver for NEP 

MHW events to occur, induced by increased T2M and anomalous atmospheric moisture 

content. U is found to be not a dominant driver for extreme warming of the target region. 

Although it may contribute to warming in principle by altering surface turbulent heat fluxes, it 

appears to be more important during cooling events as it leads to a deepening of the surface 
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mixed layer. Furthermore, LW plays a significant role in this study, ranking as the third most 

important factor. This finding supports previous studies (Kuroda & Setou, 2021; Schmeisser et 

al., 2019; Zhao & Yu, 2023) that may challenge conventional beliefs. 

It is notable that while results presented in this study are based on model runs forced with 

the ERA5 reanalysis, very similar results were obtained using the NCEP/NCAR reanalysis, 

making results independent of the specific reanalysis used. 

As discussed by those previous authors (Bond et al., 2015), a potential mechanism for 

generating MHWs is that an anomalous high-pressure system resulting from the reduced 

Aleutian Low weakened the intensity of surface winds and increased the T2M. Therefore, heat 

losses were minimized, and the horizontal movement of cold water along with wind-driven 

vertical mixing in the ocean was weakened in the NEP region (Chen et al., 2023). The 

increased T2M is linked to an anomalous high-pressure system. Thereby it comes to another 

question: what are the drivers of the high-pressure system itself? This can be explored using a 

fully coupled atmosphere-ocean model in the future. Specifically, the strong MHW that 

occurred in 2020 was caused by below-normal latent heat release at the ocean surface (Ge et 

al., 2023). The findings in this study are consistent with these hypotheses, albeit the fact that 

mixed layer mixing and deepening processes are not considered explicitly. 

A few investigations have proposed that tropical teleconnections may have a part in driving 

persistent MHW occurrences within the NEP region (Capotondi et al., 2022; Di Lorenzo & 

Mantua, 2016; Xu et al., 2022). In particular, Capotondi et al. (2022) find a strong connection 

between the NEP MHW development and evolution and a mode of variability at the decadal 

timescale (named North Pacific – Central Pacific mode), which may be related to the NPGO. 

Yang and Oh (2020) discussed the impact of ENSO and PDO on the SST variability of the 

NEP. While ENSO indeed exerts an impact on the NEP region, including heightened 

temperatures that surpass the norm (Lin & Qian, 2019), it does not appear to be the dominant 

driver for an extreme MHW event. This discrepancy may stem from the limitation of the 

ocean-only model or potential mismatches in temporal scales. Most of these studies emphasize 

that NEP MHWs tend to develop before El Niño events, and can help with the MHW 

persistence after the development. However, the exact role of ENSO, whether causal or just 

coincidental, is still under discussion. This study found that NPGO may be a more relevant 

index to NEP MHWs than other modes. The SSH fields, altered by wind-induced perturbations 
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similar to sensitivity variations, exhibit a response resembling the NPGO-like pattern to some 

extent. Overall, ocean circulation is less important compared to AF as during MHW years the 

ocean mostly acts by locally accumulating the heat entering through the surface. 

A comprehensive exploration of all these mechanisms could be studied within a more 

complex atmosphere-ocean coupled system. Furthermore, the application of the T2M-based 

heatwave index within the adjoint methodology holds promise for conducting analyses of land 

heatwaves, potentially yielding enhanced insights into the underlying dynamics of all kinds of 

heatwave phenomena. It is notable, however, that the adjoint method has its own limitations. 

The adjoint model, based on a linear approximation of a forward model trajectory, is restricted 

to a time window where this linearity is valid. Some non-linear processes are neglected when 

conducting adjoint analysis. Therefore, it is of importance to check that linearity holds well for 

the research question of interest and test the validation of the adjoint model before any 

compelling conclusions can be confidently drawn. 
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4.1.8. NEP MHW Summary 

In this section, to explore the potential mechanisms of the classic example of the MHW that 

occurred from 2014 to 2016, which spread across the NEP Ocean, the mean top 100 m 

potential temperature during different target years was set as the objective function, separately 

for the two target regions (145° ~ 160°W, 48° ~ 56°N) and (130° ~ 145°W, 40° ~ 48°N). 

Resulting adjoint sensitivities show that during MHW years, local turbulent surface heat flux is 

the dominant driver, with T2M, SH, and LW leading to up to 80% of the temperature anomaly 

of the NEP; during normal years this is only about 60%. In contrast, increased wind typically 

does not lead to an MHW occurrence as it is connected with the mixed layer deepening. This 

study finds the horizontal temperature advection, i.e., the impact of the basin-wide ocean 

circulation, to be less important during a MHW year; but it could act as a preconditioning of 

MHW through its role in climate oscillations. Contribution analysis shows that AF anomalies 

occurring within 3 months (from October to December) prior to an MHW year play a critical 

role in driving the MHW. The reconstruction using various sensitivity periods suggests that the 

leading 6-month atmospheric conditions should have potential predictive skills for the next 

year. Reconstruction that includes leading 36-month atmospheric conditions performs better 

than persistence.  
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4.2 Northwest Pacific Marine Heatwaves Mechanism 

This section is designed to answer the second research question: 

 

Are MHW mechanisms in the NWP different from those in the NEP? 

Can the results explain the unresolved residual terms in the previous study? 

 

 

 

 

 

 

 

 

 

 

 

 

 

This section has been prepared for publication after the submission of this thesis as: 

Xiaoxue Wang, Armin Köhl and Detlef Stammer. Potential Drivers of Northwest Pacific 

Marine Heatwaves Inferred from Adjoint Sensitivities. 

The format and contents have been slightly adjusted to suit this thesis. 

All relevant references and additional information are compiled at the end of this thesis. 
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4.2.1. NWP MHW Research Region 

While MHWs in the NEP have drawn significant attention due to their severe ecological 

consequences, the NWP exhibits MHWs of notably higher intensity, with SSTa reaching up to 

5 ~ 6 °C (Sen Gupta et al., 2020). A striking example of an NWP MHW occurred during the 

summer of 2022 when extreme ocean surface temperature anomalies of approximately 5 ~ 6 °C 

above normal were recorded near the Kamchatka Peninsula (KP). According to the National 

Centers for Environmental Information (NCEI, 2022b), July 2022 was recorded as the sixth 

warmest July within the 143-year record (1880-2022). Under this warming condition, the 

record-breaking MHW around the KP persisted over the whole year with annual mean SST 

anomalies of 1.5 to 2 °C (Fig. 4.2.1a). Even after detrending to remove long-term warming 

influences, summer MHWs retained unprecedented duration and intensity. Typically, MHWs 

in this area last less than one month. However, in 2022, the MHW persisted for 12 months, 

with a particular instance reaching 14 months, making the longest duration since 1990 (NOAA 

Physical Sciences Laboratory, 2024). The extreme warming was not only confined to the 

surface but extended also the subsurface to depth levels of at least 100 m (Figs. 4.2.1b - d). The 

associated subsurface warming anomalies of about 0.9 °C were found to be nearly twice the 

magnitude of historical extremes (Fig. 4.2.1c). Subsurface MHWs have attracted increasing 

focus because of their ecological and climatic impacts (Guo et al., 2024; McAdam et al., 2023; 

Sun et al., 2023) but remain fewer studies in terms of physical drivers than surface MHWs. In 

this study, the term SSSTa actually refers to the near-surface temperature anomaly in the upper 

100 m, including both surface and subsurface temperatures. 

A heat budget analysis by Song et al. (2024) suggests that increased SW was the primary 

driver behind the July 2022 MHW in the NWP. This contrasts previous findings for NEP 

MHWs, for which local air-sea turbulent heat fluxes were reported as the primary atmospheric 

driver (Bond et al., 2015; Chen et al., 2023; Chen et al., 2021; Ge et al., 2023; Holbrook et al., 

2019). In addition, momentum flux can also serve as a crucial driver depending on the specific 

region (Holbrook et al., 2019). Capotondi et al. (2022) demonstrated that while the duration of 

MHWs can be regulated by the timing of climate modes (e.g. El Niño-Southern Oscillation), 

their intensity is influenced by the local forcing. 

Building on previous findings, the same adjoint sensitivity method used in the last section 

to study MHWs in the NEP is applied here, to study now mechanisms behind long-lasting 
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MHWs occurring in the NWP with emphasis on the 2022 annual mean subsurface extreme. As 

the study region, the area (R1) 163° ~ 169°E, 52° ~ 56°N, 0-100 m (yellow box in Fig. 4.2.1), 

which was selected based on the warming pattern shown in Fig. 4.2.1. The subsurface MHWs 

are defined as periods when the potential temperature exceeds the monthly climatological 90th 

percentile based on monthly subsurface data from 2008 to 2022 following conventions. The 

warming trend is not removed, following the approach of Scannell et al. (2020), because the 

atmospheric conditions used to drive the model contain the influence of warming and it is not 

obvious how to remove the changes related to warming from the atmospheric conditions. It is 

noticeable that the selected region was also part of the region investigated by Song et al. 

(2024). The new findings about MHW forcing in the NWP will be compared with those 

obtained for the NEP. 

 

 

Fig. 4.2.1. (a) Annual mean OISST (Huang et al., 2021) SSTa and (b) EN4 (Good et al., 

2013) SSSTa (in the upper 100 m) of 2022 relative to the average over the period 2008-2022. 

(c) Depth-year cross-section of monthly mean SSSTa and (d) Depth-latitude cross-section of 

the annual mean SSSTa for 2022, based on the EN4 dataset. Yellow boxes show our study area 

(R1: 163° ~ 169°E, 52° ~ 56°N, 0-100 m) and the vertical yellow line in (c) show our target 

year 2022. 
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4.2.2. NWP MHW Model Set-up 

In this NWP section, experiments were primarily conducted over the past 15 years, from 

2008 to 2022, using the same model configuration as in the first section. As such, the AF 

anomalies are determined in relation to the average values obtained from the period from 2008 

to 2022. 

To evaluate the model’s performance in simulating near-surface temperature anomalies in 

the NWP, time series of annual mean potential temperature anomalies averaged over the top 

100 m in the target region are shown in Fig. 4.2.2 for the period 2008 to 2022. These anomalies 

can be compared with observations based on EN4 (Good et al., 2013) upper-ocean temperature 

estimates and ORAS5 (Climate Data Store, 2025) global ocean reanalysis data which 

incorporate satellite data as part of its assimilation process. During the shown period, SSSTa 

shows a strong warming trend in the target region. EN4’s reliance on sparse in-situ data near 

the KP limits its capacity to resolve extreme events in detail, thereby underestimating the peak 

temperatures suggested by SST observations. As highlighted by Zhang et al. (2024b), there is a 

large spread also in MHW assessments across various SST products in Asia and the Indo-

Pacific region. Therefore, it is important to employ multiple datasets to comprehensively 

evaluate extreme events and reduce uncertainty. 

A visual comparison suggests that the model successfully reproduces the annual warming 

trend of the upper 100 m, despite its limited ability to resolve finer spatial patterns (Fig. 4.2.2). 

The simulated annual mean SSSTa exhibit statistically significant correlations with 

observational datasets against EN4 (solid orange line, 0.83) and ORAS5 (solid red line, 0.91). 

In particular, the model successfully simulates the pronounced warming observed in 2022. The 

mean potential temperature anomalies averaged over the upper 100 m (SSSTa) from the model 

outputs (e.g. R1: 0.82 ℃ in 2022) remain comparable to the EN4 observations (e.g. R1: 0.64 

℃ in 2022). While the model underestimates temperatures in 2016 and overestimates over the 

past five years, it reproduces the triphasic (high-low-high) temperature distribution pattern 

observed in EN4 observational data between 2018 and 2022. 

Given this alignment, the year 2022 is selected as the main target MHW year for analyzing 

the primary drivers of the record-breaking MHWs. Additionally, the year 2018 will be 

considered as a reference year for comparative analysis, enabling an investigation into potential 

differences between the MHW year and non-MHW year. The cost function in this section is 
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defined as the temperature field in the upper 100 m of the target region (163° ~ 169°E, 52° ~ 

56°N), averaged over a one-year period (Eq. 3.6) and one-month period for monthly MHW 

cases. The definition is consistent with the cost function used in the NEP. The period of the 

cost function is selected without considering detrending, as the AF utilized includes inherent 

trends. Contribution analysis (Eq. 3.7) and perturbation experiments (Eq. 3.13) are also applied 

subsequently to scale the contribution of different AF to the total variation of SSSTs in the 

NWP. 

 

 

Fig. 4.2.2. Time series of annual mean SSSTa (averaged over the upper 100 m) from 2008 

to 2022 in R1 based on different datasets. The dashed green line represents SSSTa from ERA5 

forced forward model outputs, the solid red line represents ORAS5 fields and the orange line 

represents EN4 observations. The correlation coefficient associated with the model and EN4 

data is 0.83, while the correlation coefficient associated with the model and the ORAS5 dataset 

is 0.91.  
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4.2.3. NWP MHW Sensitivities 

a. Adjoint Sensitivity Pattern  

The sensitivity of ocean conditions to AF was assessed through two adjoint experiments, 

using annual mean SSST (Eq. 3.6) as the cost function for the MHW year 2022 (main 

experiment) and 2018 (reference experiment). Shown in Fig. 4.2.3 are the resulting SW 

sensitivity fields from both experiments. Because the sensitivity fields related to heat flux 

components are all consistently positive throughout the year, only the annual mean sensitivities 

are displayed. Amplitudes below a certain threshold (Veneziani et al., 2009) are excluded from 

the figure to highlight the significant signals. Positive sensitivity values (purple shading) 

indicate that any positive perturbation will enhance the annual mean potential temperature in 

the target region. It is noted that other heat flux components (T2M, SH, LW) are not shown as 

they exhibited spatially consistent patterns. 

Fig. 4.2.3 reveals that surface heat flux primarily contributes locally to warming during 

each target year, with peak sensitivities occurring in both cases during the target year itself and 

-1yr. The larger sensitivity of the MHW year to surface heat flux (0.00037 ℃/W/m2) compared 

to the reference year (0.00033 ℃/W/m2) indicates an important role of heat flux terms in 

influencing NWP warming. Sensitivities decrease for time periods prior to -1yr (Figs. 4.2.3e-

h). Notably in the Western Bering Sea (WBS) region, the 2018 experiment (maximum 

sensitivity 0.000077 ℃/W/m2) exhibits higher sensitivity compared to the 2022 experiment 

(maximum sensitivity 0.000057 ℃/W/m2) before -2yr, particularly in the region to the right of 

the target box (Figs. 4.2.3f, h). The presence of a relatively higher sensitivity center is also 

observed in experiments from other reference years (e.g. maximum sensitivity 0.0001 ℃/W/m2 

for 2014 and 0.000074 ℃/W/m2 for 2015). However, the sensitivity observed before -2yr is 

generally too small to cause a significant change when compared to the local effects during the 

period near the target year. These findings are different from the distributions of heat flux 

components associated with NEP MHWs, where for individual heat flux components, the 

spatial sensitivity distribution remains consistent across different years. This allows for the use 

of a fixed sensitivity field to reconstruct MHW in the NEP, while employing the 2018 

sensitivity field to reconstruct 2022 MHW in the NWP will lead to an underestimation of the 

contributions, which will be discussed later. Overall, near-surface temperature changes in the 
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target box are sensitive to the heat flux conditions in the local area and the WBS, with the 

MHW year showing a larger sensitivity to local heat flux exchanges rather than remote effects. 

 

Fig. 4.2.3. Evolution of the adjoint sensitivity of annual mean SSST in 2022 (left panel) 

and in 2018 (right panel) with respect to SW for R1 (from top to bottom backward in time). 

The yellow box indicates the target research region. To compare the magnitude of two years, 

the maximum values of sensitivities are shown in the subtitle of each panel.  
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To further investigate the most sensitive period, the time evolution of the maximum 

sensitivity with respect to T2M is presented in Fig. 4.2.4. The most striking difference between 

the MHW year 2022 (blue line in Fig. 4.2.4a) and reference year 2018 (green line in Fig. 

4.2.4a) is the nearly tripled sensitivity of 2022-MHW to T2M during the preceding winter. 

Additionally, while the annual MHW shows increased sensitivity to T2M in the summertime, 

this sensitivity is only half the size compared to the preceding winter, indicating the significant 

role of winter ocean memory. This is also consistent with the SW sensitivity shown in Fig. 

4.2.3, where maximum sensitivity occurred during -1yr (Fig. 4.2.3a vs Fig. 4.2.3c). 

Furthermore, as previously discussed, the sensitivity of 2018 prior to -1yr is larger than that of 

2022 (as indicated by the green line at time point -1/1, -2/2), although the overall magnitude 

remains substantially lower. 

The year 2022 is identified as the MHW year because each month is identified as MHW 

month according to the definition. However, the summer MHW in 2022 was observed to be 

more intense than the winter MHW (Fig. 4.2.1c), and some propagation signal was detected 

from the surface to the subsurface, particularly in the late summer. To investigate the 

underlying different sensitivities in terms of different seasons, the sensitivities of both SST and 

SSST in July and December with respect to AF were further analyzed. The most sensitive areas 

in terms of monthly MHWs remain consistent with those presented in Fig. 4.2.3. However, 

there are variations in the periods of relatively higher sensitivity. Therefore, shown here are 

additionally the maximum sensitivity of monthly mean SST and monthly mean SSST in the 

respective region with respect to the T2M for July and December in 2022 and in 2018 as 

examples (Figs. 4.2.4b, c). Please note that for convenience, Jul-MHW and Dec-MHW refer to 

monthly MHW, while 2022-MHW denotes annual MHW. 

To understand why July 2022 was particularly extreme, it is first compared to July 2018 

(orange line in Fig. 4.2.4b), noting July 2022 exhibits twice the maximum sensitivity to T2M 

(red line in Fig. 4.2.4b). This increased sensitivity is evident in two distinct time periods: one is 

the immediate time effect, during which the ocean’s response to sensible heat flux was 

significantly stronger in July 2022. The other way is the delayed effect from the preceding 

winter, whereby higher-than-normal winter T2M caused subsurface water to become warmer 

than average by reducing surface cooling and facilitating the mixing of residual heat from the 

surface into the subsurface. This warmer water, which was stored below the winter mixed layer 
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during the previous winter and trapped during the summer due to strong stratification, returned 

to the upper ocean in the following winter, creating a ‘re-emergence’ effect. According to the 

sensitivity distribution (Fig. 4.2.3), the region is susceptible to anomalous warming from 

regions west of the target area, indicating a certain degree of heat propagation. Furthermore, 

the short-term effect in July is consistently stronger than the delayed effect from the preceding 

winter. Interestingly, the magnitude of sensitivity with respect to winter T2M in relation to 

July-MHW is comparable to that of annual MHW (Fig. 4.2.4a). In other words, the winter 

preconditions leading to both monthly MHW and annual MHW are similar; however, the July-

MHW is more reliant on the summer heat flux. 

Surface MHWs and subsurface MHWs also respond differently to the winter preconditions. 

In MHW year 2022, SSTa were primarily susceptible to immediate T2M anomalies in their 

concurrent month, with minimal influence from prior winter conditions (dashed lines in Fig. 

4.2.4c). In contrast, the SSSTa exhibited strong ties to T2M from past winters – even as far 

back as winter 2020 – due to the ocean’s multi-year thermal memory, where heat trapped in the 

deeper layer during winter mixing is capped by the summer stratification (solid lines in Fig. 

4.2.4c). Therefore, the role of ocean memory should receive greater attention when analyzing 

subsurface events. 

Overall, monthly MHWs and surface MHWs are predominantly driven by the concurrent 

month with significant contributions from the previous winter only if caped layers are included 

in the analysis. In contrast, annual subsurface MHWs are heavily influenced by heat 

accumulation from prior winters, with a more integrating effect over the rest of the year. 
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Fig. 4.2.4. The time evolution of the maximum sensitivity of the cost function with respect 

to T2M. (a) The cost function is annual subsurface MHW (SSST) in 2022 (blue) and 2018 

(green); (b) the cost function is monthly subsurface MHW (SSST) in July 2022 (red) and 2018 

(orange); (c) the cost function is July surface MHW (SST, dashed red), July subsurface MHW 

(SSST, solid red), December surface MHW (SST, dashed black) and December subsurface 

MHW (SSST, solid black) in 2022. For instance, the time point ‘-3/12’ refers to December 

occurring three years prior to the year of the cost function. 
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Besides surface heat flux, momentum flux also plays a role in shaping SSST anomalies of 

an MHW. However, sensitivities to horizontal winds exhibit significant variability over time 

across different years, and presenting the annual mean may obscure some of the propagation 

signals, rendering annual mean sensitivity meaningless. Shown in Figs 4.2.5, 4.2.6 are 

therefore monthly mean sensitivities with respect to V and U, respectively. The red shows an 

increase in the cost function corresponding to an enhanced westerly/southerly wind anomaly or 

a reduced easterly/northerly wind anomaly. 

For meridional winds, both the 2018 and 2022 target years exhibit a tripolar sensitivity 

pattern east of the target area between -48mon and -12mon, marked by alternating negative-

positive-negative signals. This spatially oscillating wave-like pattern is likely generated by 

upwelling and downwelling, which result in vorticity anomalies that can propagate slowly 

westward as Rossby waves. The key difference between the two years is that the 2022-

experiment displays stronger positive sensitivity (0.00182 ℃/m/s) within the target region and 

extends to the WBS, occurring at lead 12month (Fig. 4.2.5a). In contrast, the 2018-experiment 

is mainly influenced by locally negative sensitivity throughout the entire period, with a 

significantly lower value (-0.0021 ℃/m/s) also occurring at lead 12 month (Fig. 4.2.5b). 

Overall, the reference year 2018 is more sensitive to V, while MHW year 2022 demonstrates 

relatively weaker sensitivity to V at almost all times except for -12mon. This means that only 

increased southerly winds or decreased northerly winds occurring in -12mon are likely 

important factors contributing to MHWs. 

Zonal wind sensitivities reveal obvious interannual contrasts between two target years 

which behave differently from V. In 2022, there was dominant positive sensitivity along the 

coast around -12mon, with both broader distribution and a higher magnitude (0.00125 ℃/m/s) 

compared to negative sensitivity (-0.0009 ℃/m/s, Fig. 4.2.6a). This indicates that enhanced 

westerly winds may significantly contribute to MHW. When the westerly winds strengthen 

with a latitudinal gradient, they can induce Ekman pumping and suction in the target region, 

thereby bringing up the heat stored below the mixed layer and redistributing it, as discussed in 

Fig. 4.2.4. Conversely, the 2018-experiment exhibits comparable values of negative sensitivity 

within the target region and positive sensitivity to the south of the defined area (Fig. 4.2.6b), 

indicating a localized circulation pattern around the target region. Prior to -24mon, tripolar 

sensitivity distributions emerge in both experiments, with 2018 demonstrating stronger positive 



 

95 | P a g e  
 

sensitivity than 2022, especially in the WBS region. These tripolar distributions are likely 

linked to the cooler Bering Sea Gyre to the north and the warmer Western Subarctic Gyre to 

the south of the Aleutian Islands. A propagation signal is observed from negative sensitivity in 

both cases, particularly evident in -24mon of the 2022-MHW. This suggests that the enhanced 

easterly winds can also contribute to warming in the target region through their propagating 

effect. 

Overall, the horizontal wind sensitivity fields indicate that the most sensitive regions for 

driving changes in SSST in the target are found in the WBS region and the region south of the 

Aleutian Islands. Additionally, the 2022-MHW is less influenced by remote V but is to some 

extent sensitive to the enhanced remote easterly winds. Both locally increased westerly and 

southerly winds in the target year could be a driver for subsequent MHWs through Ekman 

upwelling or downwelling. The marked interannual variability in sensitivity pattern 

underscores the dependence of MHW drivers on the background ocean state, which is a 

distinction from the sensitivity of the NEP region to the ocean state. 
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Fig. 4.2.5. Same as Fig. 4.2.3, but with respect to V at certain months (a, b: -12mon; c, d: -

24mon; e, f: -36mon; g, h: -48mon). To compare the magnitude of two years, the maximum 

and minimum values of sensitivities are shown in the subtitle of each panel. 
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Fig. 4.2.6. Same as Fig. 4.2.5, but with respect to U at certain months. 
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b. AF Contribution Pattern 

While the above sensitivity pattern identifies the most sensitive regions and periods for 

generating temperature anomalies in the target region, quantifying the relative roles of 

individual AF based on only the adjoint sensitivities is not possible for concrete events. To 

address this question, a contributions analysis is used to standardize the relative effects of AF 

anomalies and to facilitate a quantitative comparison. Using Eq. 3.7, adjoint sensitivity fields 

are multiplied with the actual AF anomalies to estimate temperature changes attributable to 

each AF. This approach allows the assessment of contributions across different months and 

years, facilitating the identification of the most relevant periods, areas, and the key drivers 

responsible for generating MHWs. Moreover, the resulting contribution pattern highlights the 

regions with the largest influence on the cost function. 

For the adjoint experiment with the 2022 annual mean SSST as the cost function, the 

backward run is conducted over a 15-year period, running from 2022 to 2008. As sensitivities 

rapidly decline with integration time, only the contribution from the leading 3 years and their 

cumulative contribution in R1 are contributing substantially and are displayed in Fig. 4.2.7. 

The figure illustrates the annual spatial evolution from aggregated monthly contributions (Eq. 

3.8), with percentage contributions indicated in the titles, while Fig. 4.2.8 presents the monthly 

temporal evolution from spatial aggregation (Eq. 3.9). Red and blue shading represent warming 

and cooling contributions, respectively. Discrepancies between summed annual contributions 

(first three columns) and cumulative totals (last column) arise from the influences of the year 

preceding the -2yr, which are excluded from the figure for clarity. Contributions prior to -1yr 

are negligible for all forcing except horizontal wind. The contribution of precipitation for 2022 

(less than 1%) is omitted due to minimal impact. 

The contribution analysis reveals that with a total contribution of 29% to the warming event 

in R1, the horizontal wind is the primary contributor with the U contributing 14% and the V 

15%. T2M directly follows accounting for approximately 28% of the total warming, with its 

largest impact occurring between -1yr and 0yr, and nearly one-fourth of this contribution 

derived from the winter preceding the target year. Contribution from SW, and LW closely 

follow at levels of about 18% and 15%, respectively. The combined contributions from six AF 

(SW, LW, U, V, T2M, and SH) account for about 80% of the total between -1yr (2021) and 0yr 

(2022). During the target year, U has a negative local impact but a positive influence east of the 
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target area. Positive contribution induced by enhanced westerly winds from the WBS region 

dominates at -1yr. Overall, there is a net positive contribution (green line in Fig. 4.2.8a) from 

both remote and local effects by U. 

V primarily contributes during the year preceding the target year (-1yr), exhibiting a 

positive influence specifically to the east of the target region. The total wind contribution of 

30% highlights the importance of induced processes most likely related to wave propagation of 

upwelling and downwelling signals in the NWP, contrasting with the NEP MHWs and 

contradicting some previous findings in NWP. 

Although the cost function is defined using annual-mean and volume-mean potential 

temperature, which is a single numerical value, the total contribution map (Fig. 4.2.7-27) can 

still identify when and where remote contributions from horizontal winds occur. This is due to 

the ocean-physics-based nature of the adjoint method, which allows for an accurate 

representation of linear dynamical ocean processes across different years. For instance, the 

reference year 2018 identifies distinct mechanisms influencing cost function variations (Fig. 

4.2.8b), with U significantly driving warming, while V and SW suppress it, highlighting a key 

difference compared to 2022. These findings differ from the results by Song et al. (2024), who 

indicated SW as the key driver of the 2022 July warming. For the annual mean event, winds 

play the dominant role followed by T2M explaining together about 2/3 of the signal only 

followed by SW in the third place. The key difference is the different time scales of the event, 

monthly versus annual, and that the subsurface warming up to 100 m depth was also 

considered. LW consistently contributes positively to warming in both years, supporting the 

findings of Zhao & Yu (2023) regarding the significance of LW. 

The forcing contributions over the year can be further separated into different seasons, 

allowing for quantification of contributions during specific periods (Fig. 4.2.8c). As previously 

discussed, U (green line) exhibits a negative contribution in the target year. In contrast, prior to 

the target year, U consistently provides a positive contribution, beginning three years before 

the target year, with a significant peak in positive contribution observed during the two winters 

prior to the target years. V (purple line) has a less pronounced remote influence compared to U. 

Specifically, V contributes positively only from the summer of -1yr to the spring of the target 

year. T2M (red line) and SH (blue line) exhibit similar patterns, beginning their contributions 

at the same time as V. However, T2M contributes twice as much as SH during this period. The 
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staggered influence of SW (grey line) and LW (pink line) reflects their distinct seasonal roles 

in modulating ocean heat budget. SW begins contributing to warming from the spring of -1yr 

and reaches its peak during the two summers of the preceding two years (2021 and 2022). In 

contrast, the contribution of LW peaks between these two summers is likely due to the 

increased cloud cover during the winter months based on total cloud cover data from ERA-5 

reanalysis. 

 

Fig. 4.2.7. Evolution of the annual contribution to 2022 warming calculated by Eq. 3.8 (the 

contribution is summed annually in time) with respect to different AF (from top to bottom: 

T2M, SH, U, V, SW, LW, and total) for R1 (from left to right, forward in time, the last column 

shows the total of 3 years). The numbers in the subtitle show the percentage contribution by 

each AF. The red shows a positive contribution (warming) and the blue shows a negative 

contribution (cooling). 
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Fig. 4.2.8. Temporal evolution of the monthly cumulative contribution to (a) 2022 warming 

and (b) 2018 warming calculated by Eq. 3.9 (the contribution is summed in space) for R1. 

Different colors indicate different AF (purple: V; green: U; pink: LW; grey: SW; red: T2M; 

blue: SH). (c) As shown in (a) and (b), but the contributions are represented as absolute values 

accumulated in a seasonal context. For instance, time span -3JFM corresponds to the 

contributions made during the first three months (January, February, and March) of the -3yr, 

and time span 0OND corresponds to the contributions made during the last three months 

(October, November, and December) in the target year 2022 (filled by grey). The black line 

indicates the baseline zero. 

 

SSST anomalies in 2022 can be reconstructed by aggregating all the cumulative 

contributions of all AF (Eq. 3.12). The total contribution of R1 is 0.38 ℃ in total and 0.3 ℃ for 

the leading 2-year (including 2021 and 2022). This reconstructed contribution appears 

underestimated compared to the forward run (0.82 ℃, Fig. 4.2.2). However, for NEP MHW 

cases, reconstructions demonstrate better accuracy with minimal discrepancies (Fig. 4.1.15), as 

non-linear processes and mixing had limited impact on the NEP MHW. In contrast, NWP 

mechanisms are more complicated, with varying sensitivity fields across target years (Figs. 
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4.2.3, 4.2.5-4.2.6). To further validate the contribution analysis, reconstructed data were 

established from 2011 to 2022 utilizing sensitivity fields from various adjoint runs (Fig. 4.2.9), 

excluding precipitation due to its minimal impact. Throughout the reconstruction period, V 

emerged as a significant driver of the 2016-2017 cooling event, a role that also differs from 

that observed in the NEP, where U serves as the primary of cooling. Additionally, SH is 

identified as the least impactful AF in shaping the temperature distribution within the NWP 

target region. Notably, 2022 is the only year in which all AF contributed positively, with T2M 

contributing much greater than other years. 

The linearized reconstruction exhibits significant discrepancies when compared to the 

forward run (solid orange line). Two possible explanations for this discrepancy: one is the 

linear nature of the adjoint model, which cannot effectively capture nonlinear processes; the 

other one is the exclusion of vertical mixing processes in the backward run due to stability 

concerns with the adjoint code for KPP mixed layer parameterization. This observation 

indirectly reflects that mixing may play a crucial role in the selected region within the NWP, 

especially in the recent several years. An additional reconstruction of the SSTa in the same 

region was performed by using the same period of AF and the sensitivity fields of surface 

MHW (SST), instead of the upper 100 m surface MHW (SSST). This reconstruction shows 

improved agreement with the forward run, exhibiting minimal discrepancy. This suggests that 

mixing is important for the mixed layer but less significant for surface temperature variations 

in this region, which aligns with the previous discussion (Fig. 4.2.4) indicating that surface 

MHWs are less affected by the deeper mixed layer than subsurface MHWs. Although the 

contribution of mixing cannot be calculated directly in this experiment, the preliminary 

conclusion is consistent with previous studies indicating that vertical diffusion in the mixed 

layer is a significant factor influencing Bering Sea temperatures in both winter and summer 

(Hayden & O’Neill, 2023). Therefore, through this imperfect reconstruction, it can be 

concluded that subsurface MHWs are more influenced by wind-induced mixing processes than 

surface MHWs, in addition to the winter ocean memory previously demonstrated (Fig. 4.2.4). 

In summary, the contribution analysis indicates significant interannual and regional 

variability in the mechanisms driving NWP MHWs, with horizontal wind-driven processes 

emerging as a key distinguishing role from NEP MHWs. While SW may be the dominant 

factor for the July 2022 monthly MHW event, it is not the most important contributor to the 
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annual event. In the record-breaking 2022 NWP MHW, all AF positively contribute to 

warming. Turbulent heat flux – encompassing contributions from T2M and SH – is more 

influential than radiative flux (SW and LW) in both NEP and NWP MHWs. In contrast to the 

NEP, where sensible heat flux and latent heat flux contribute equally, the 2022 NWP MHW is 

more heavily influenced by sensible heat flux. Additionally, the accurate reconstruction in the 

NEP enables annual MHW predictions up to 3-6 months in advance. In contrast, unresolved 

mixing processes when employing adjoint methods complicate the prediction in the NWP. 

Nevertheless, the strong correlation (0.92) between the reconstruction and ORAS5 reanalysis 

data (solid navy line) facilitates the identification of the dominant drivers qualitatively, 

warranting further validation through perturbation experiments. 

 
 

 
 

Fig. 4.2.9. Reconstruction of SSSTa at NWP target region from 2011 to 2022. Solid lines 

show the ORAS5 reanalysis (navy), EN4 observations (brown) and the model forward run 

(orange); the dashed orange line represents the reconstruction using the first 4-yr mean 

sensitivity patterns of all adjoint experiments and all AF. Color bars show different 

contributions from AF (red: T2M; blue: SH; green: U; purple: V; grey: SW; pink: LW). 

Correlation coefficients between the reconstruction and different datasets: ORAS5 (0.92) 

shows a strong relationship, while EN4 (0.69) shows a moderate relationship.  
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4.2.4. NWP MHW Perturbation Experiments 

The adjoint sensitivity pattern reveals the optimal perturbation of control parameters 

leading to SSST changes in the target regions. To understand how the optimal drivers 

identified from the sensitivities influence the ocean state given realistic AF variability, the 

sensitivity fields were multiplied with the standard deviations of AF to generate the 

perturbations (Eq. 3.13). These perturbations were then applied in forward model runs, 

enabling a direct evaluation of their impact on the ocean state by comparing them to the 

original control run. Initially, the perturbation fields were generated based on sensitivity 

patterns (e.g. Figs. 4.2.3, 4.2.5-4.2.6) from the 2022 adjoint experiment. Then they were 

subsequently applied, both simultaneously (adding T2M, SH, U, V, LW, and SW together) and 

separately, to the respective forcing fields over a 5-year period preceding 2022 and preceding 

2018. Applying the same perturbation to different years (2014 to 2018 and 2018 to 2022) 

results in different warming scenarios, indicating how SSST changes are sensitive to the 

background ocean conditions, as suggested by the sensitivities. Specifically, applying the same 

U perturbation before 2022 led to a warming effect that was twice as strong as when the same 

perturbation was applied before 2018. This suggests that the ocean state in 2022 is particularly 

favorable for U to induce warming. However, it should be noted that the perturbations applied 

are based on the 2022-experiment and they are not the only patterns that can influence the cost 

function changes. 

Given the importance of U and their differing sensitivity distributions between the two 

experiments for the target year and -1yr (Fig. 4.2.6), U perturbation experiments are primarily 

focused on by separately introducing positive and negative perturbations according to their 

responsive regions. While wind stress causes ocean currents, what is important is the horizontal 

gradient across distances, not just absolute strength (Hu et al., 2015). Therefore, wind stress 

curl is highlighted in Fig. 4.2.10. Specifically, the left column shows the changes in wind stress 

curl compared to the control run, resulting from the addition of all AF perturbations (U, V, 

T2M, SH, SW, LW) to the original forcing field. The middle column illustrates the addition of 

enhanced westerly winds to the WBS region and the area south of the box, as depicted in Fig. 

4.2.6. Meanwhile, the right column presents the effects of enhanced easterly winds to the east 

of the box, along the Aleutian Islands. 
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The negative wind stress curl in the target year mainly corresponds to the enhanced easterly 

winds (left column vs right column). Such curls induce Ekman pumping, pushing water 

downward and allowing warmer surface water to enter from the sides, deepening the warm 

surface layer and resulting in a positive SSHa (Fig. 4.2.11). Propagation signals are also 

detected in both the wind stress curls fields and the SSHa fields from Year -2 to Year 0. 

Enhanced easterly winds result in classic Rossby wave excitation, leading to a clear westward 

propagation of SSH. The propagation speed is estimated to be 1.1 cm/s from the figure, which 

is consistent with the typical Rossby phase speed observed in mid-latitudes. However, the 

impact of enhanced easterly winds is actually less than one-third of the impact of enhanced 

westerly winds. 

Enhanced westerly perturbations create a more complex scenario, characterized by a less 

significant propagating signal and greater warming in the target region. Before the target year, 

enhanced westerlies cause a quadrupole wind stress curl pattern to shift to a dipole pattern 

around the target region. This leads to increased Ekman pumping and suction, while SSH 

changes remain small. This is primarily because the main warming occurs in the subsurface 

layers rather than at the surface (Fig. 4.2.12). During Year -1 and Year 0, upwelling is 

dominant in the target box (middle column in Fig. 4.2.10) with a clear upward warming 

movement (Fig. 4.2.12), leading to noticeable warming at the surface. As previously discussed, 

the heat stored below the mixed layer is an important precondition for subsequent MHW re-

surfacing through upwelling processes. Additionally, during Year -1, anomalous westerlies are 

already present in the NP (north of 50°N) according to original forcing data. The introduction 

of enhanced westerly perturbations could further increase wind-driven turbulence, potentially 

increasing vertical mixing and thereby amplifying the warming effect. 

It should be noted that the results of perturbation experiments may not exactly match those 

of the contribution analysis. The perturbation fields are calculated from the standard deviation 

of AF which does not reflect the actual forcing fields in the target year. It can help confirm that 

the sensitivities are valid and suggest possible warming mechanisms. Also, as noted before, the 

adjoint run excludes non-linear and vertical mixing processes that are incorporated in the 

forward model. Therefore, the horizontal winds could play a more significant role when 

considering the full impact of wind-induced mixing processes. 
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Fig. 4.2.10. (Left column) Time evolution of wind stress curl changes (perturbation run – 

control run) from -2yr to 0yr (from bottom to top, 0yr is the target year), derived from 

perturbation experiments that incorporate all perturbations (U, V, T2M, SH, SW, LW) added to 

the original forcing fields from 2018 to 2022. The perturbation fields are calculated based on 

the 2022 sensitivity solutions and the standard deviation of all AF (Eq. 3.13). (Middle column) 

As in the left column, but only enhanced westerly winds are added as the perturbation. (Right 

column) As in the left column, but only enhanced easterly winds are added as the perturbation. 

 
 

 

Fig. 4.2.11. As Fig. 4.2.10, but for SSH changes. 
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Fig. 4.2.12. Time evolution (from right to left: -2yr to 0yr, 0yr is our target year) of 

potential temperature changes (perturbation run – control run) at different depths (first row: at 

the surface; second row: 20 m; third row: 35 m; fourth row: 100 m) for the experiment using 

enhanced westerly winds perturbation fields calculated by 2022 sensitivity solutions and the 

standard deviation of U (Eq. 3.13). 
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4.2.5. NWP Surface MHW in July 2022 

The year-long subsurface MHW was specifically investigated first, emphasizing the role of 

horizontal wind patterns, particularly U, in sustaining the event. However, for comparative 

context, a short-lived surface MHW in July 2022 was also analyzed. The cost function is 

thereby defined as the month mean SST of 2022 July. The target region is indicated by the 

yellow box in Fig. 4.2.13a which follows the region chosen by Song et al. (2024). The areas 

most sensitive to heat flux terms are localized within the selected box, while regions to the east 

of the KP in the WBS exhibit lower sensitivity. This pattern is similar to that of the annual 

subsurface MHW (Fig. 4.2.3). The difference is that monthly MHWs have a shorter response 

time to AF. The intensity of sensitivity peaks during the leading three months and weakens 

over longer periods. During -21mon (October), a small sensitivity center is observed in the 

WBS, exhibiting stronger sensitivity compared to the previous months. This observation aligns 

with Fig. 4.2.4, which indicates that July MHWs exhibit relatively higher sensitivity to the 

preceding winters. The sensitivity fields of other AF are not presented, as there is consistency 

in the identification of the most sensitive regions. 

The same contribution analysis was applied to evaluate differing contributions made by 

various AF (Fig. 4.2.14). This also facilitates a direct comparison with findings from the heat 

budget analysis conducted by Song et al. (2024). As they suggested, SW (Fig. 4.2.14c) serves 

as a significant contributor to the overall warming; however, it is not the sole factor, as T2M 

contributes at a comparable level to SW (Fig. 4.2.14a). SW exhibits immediate, notable 

impacts during the target month and one month before, likely linked to synoptic-scale 

atmospheric conditions and enhanced solar heating. However, T2M emerges as the dominant 

cumulative driver, reflecting its persistent influence on ocean-atmosphere heat exchange by 

sensible heat flux. SH contributes less than both SW and T2M, predominantly in regions where 

T2M is the dominant factor, indicating the role of turbulent heat flux and this lower 

contribution of SH compared to T2M is consistent with previous results of annual MHW. 

Contributions of LW and V are minimal and can be considered negligible. U component 

exhibits both warming and cooling effects (Fig. 4.2.14e). Notably, there is a significant 

warming contribution in regions where subsurface MHWs have been identified, highlighting 

the influence of wind-driven oceanic processes. While averaging across the entire region may 
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lead to a cancellation of opposing contributions, the role of the zonal wind should not be 

overlooked. 

 

 

Fig. 4.2.13. Evolution of the adjoint sensitivity of July SST in 2022 with respect to SW 

(from top left to bottom right backward in time). The yellow box in (a) indicates the target 

research region. 
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Fig. 4.2.14. The total contribution to 2022 July warming calculated by Eq. 3.8 (the 

contributions are summed over a total time span of 36 preceding months) with respect to 

different AF (a) T2M, (b) SH, (c) SW, (d) LW, (e) U, and (f)V. The red shows a positive 

contribution (warming) and the blue shows a negative contribution (cooling). 
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Overall, for the July 2022 surface MHW, both surface heat flux and zonal winds are 

identified as effective contributors. Although the mixing processes are excluded from the 

analysis, U still plays a significant role. Not considering mixing may also explain the large 

residual term in Song et al. (2024) since they only consider the advection term (𝑽 ∙⃗⃗ ⃗⃗ 𝛁𝑻), while 

the vertical mixing term (e.g. vertical eddy diffusivity 𝐾𝑍
𝜕2𝑻

𝜕𝑧2; Vijith et al., 2020; Yang et al., 

2024) is part of the residual. Vertical mixing serves as significant as heat flux and horizontal 

advection in local processes (Holbrook et al., 2020). 

Moreover, their target region should be distinctly separated into two areas for analysis, as 

the contribution distribution reveals different mechanisms across the entire region. The region 

to the left of the KP is shown to experience high-pressure conditions with upper-level 

convergence, along with anomalously high net shortwave radiation and low cloud cover. In 

contrast, the region to the right of the KP is not significantly influenced by this high-pressure 

system and is more likely situated between an atmospheric ridge and trough with less net 

shortwave radiation and low cloud cover. The different mechanisms are observed not only at 

the surface but also in the subsurface. An additional region west of the KP (146° ~ 150°E, 52° 

~ 56°N) was analyzed as a supporting experiment (Fig. 4.2.15). The contribution analysis for 

this region shows that heat flux terms dominate the warming with horizontal winds exerting a 

negative influence. Oceanic processes appear to play a less important role in this region 

compared to R1 for generating warming. The differences observed suggest that the 

mechanisms driving MHWs vary significantly based on the location and duration. 

Understanding these location-specific mechanisms is crucial for improving predictive 

capability. Given the complex ocean-land interactions and eddy-scale processes in the region to 

the left of the KP (L’Her et al., 2021), the entire area should be analyzed separately. 
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Fig. 4.2.15. As Fig. 4.2.7 and Fig. 4.2.8a, but for the region west of the KP (146° ~ 150°E, 

52° ~ 56°N).  
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4.2.6. NWP MHW Discussion 

The second study investigates the drivers of prolonged subsurface MHWs, which can be 

more intense and long-lasting than surface MHWs (Fragkopoulou et al., 2023). Through 

contribution analysis (multiplying sensitivities with forcing anomalies), the dominant factors 

driving MHWs in 2022 were identified, with horizontal winds, and T2M emerging as the 

primary influences. Additionally, winter memory also played a significant role in NWP 

subsurface MHWs. Perturbation experiments were further employed to validate the linear 

adjoint method and to explore the detailed mechanisms associated with U anomalies. 

Adjoint sensitivities highlight the WBS region and the region south of the Aleutian Islands 

as the region most responsive to horizontal winds in driving the annual MHW in the target 

region. Heat flux terms exert a more localized influence, with signals showing slight westward 

propagation, with its strongest impact occurring between the winter prior to the target year and 

the target year itself. In contrast, zonal wind effects are detectable up to three years in advance. 

Contribution analysis confirms that SW significantly contributed to the 2022 warming, whereas 

it had a negative influence in 2018. While SW has been widely recognized as a key driver of 

MHWs in the NP (Liu et al., 2023; Pak et al., 2022), the findings indicate that SW primarily 

dominates during summer, whereas LW exerts a stronger influence in winter. Overall, T2M 

emerges as the cumulative driver due to its sustained impact on ocean-atmosphere heat 

exchange.  

Perturbation experiments further validate the sensitivity analysis, revealing the distinct role 

of zonal winds. Enhanced easterly winds to the east of the target region, which excite Rossby 

wave propagation, have a weaker impact than the enhanced westerly winds along the coast of 

the KP. Conversely, enhanced westerly winds (with magnitudes varying with latitude), 

superimposed on the mean westerly background, strengthen Ekman transport, leading to 

divergence, which can drive upwelling, bringing subsurface warming to the surface through 

vertical advection. For example, the unprecedented low levels of sea ice in the Bering Sea 

during the winter of 2017–2018 (Duffy-Anderson et al., 2019) resulted in record-high ocean 

temperatures in 2019 on the southern Bering shelf (Stabeno et al., 2019). This anomalous 

warming likely preconditioned the subsequent subsurface MHWs. 

The first section of this study identified local air-sea turbulent heat flux as the main driver 

for NEP MHWs, which is consistent with findings from other studies (Chen et al., 2021; Ge et 
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al., 2023). The second study reveals that the mechanisms of annual NWP MHWs and annual 

NEP MHWs vary significantly by location and background state. SH is a major driver in the 

NEP but has a minor impact on the NWP. While other AF contributes in different ways, the 

role of LW is similar in both NEP and NWP. Several prior studies have also acknowledged the 

critical contribution of anomalous LW in MHW formation (Kuroda & Setou, 2021; Schmeisser 

et al., 2019; Zhao & Yu, 2023), including a strong connection with rising greenhouse gas levels 

(Barkhordarian et al., 2022). Low-than-normal wind speeds have been identified as a major 

driver of MHWs by many studies (Oliver et al., 2021; Sen Gupta et al., 2020; Travkin et al., 

2024) due to their reduced mixing effects. In contrast, the role of increasing wind speeds is 

seldom addressed (Gröger et al., 2024). This study could serve as an example to illustrate the 

re-emergence of MHWs (Alexander et al., 1999; Capotondi et al., 2024) through the vertical 

advection of stored ocean heat. 

NEP MHWs highly correlate with the NPGO, while several NWP MHWs are more likely 

related to low PDO and ENSO conditions. NEP MHWs that began in 2014 led to a 

fundamental change in the PDO (Werb & Rudnick, 2023), suggesting a potential influence on 

the subsequent NWP MHWs. For example, the westward-flowing Aleutian Current (a 

continuation of the Alaska Current) south of the Aleutian Island can bring warmer water from 

NEP MHWs into the NWP region. For the 2022 NWP case, results show that horizontal wind, 

especially U, significantly influences NWP MHWs, whereas wind is less critical in the NEP. 

NEP MHWs rely more on the persistence of the weather system and ocean memory, allowing 

for predictions in that region. In contrast, NWP MHWs are more complex to forecast. Besides 

the influences of heat flux and ocean memory, there are various processes driven by wind-

induced oceanic vertical advection (upwelling) and potential vertical mixing. However, wind 

anomalies in the WBS and the westward-extending Aleutian Current should be given greater 

attention, as the adjoint sensitivities demonstrate significant influence in these regions. 

A key limitation of this study is that vertical mixing processes cannot be directly quantified 

using the adjoint method. Additionally, the current 2-degree model resolution lacks precision 

for analyzing monthly extremes. Further work should focus on incorporating daily AF or 

improving the model resolution to better capture short-term MHW variability.  
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4.2.7. NWP MHW Summary 

In this section, the study extends previous research on MHWs in the NWP region. To shed 

new light on the mechanisms underlying MHWs in the NWP, the adjoint sensitivity of the 

volume-averaged potential temperature of the NWP target regions (i.e. 163° ~ 169°E, 52° ~ 

56°N, 0-100 m) at different target years including the MHW year 2022 and the reference year 

2018 and different target months including July and December, are investigated. Adjoint 

sensitivities and contribution analysis show that in the target region surface heat flux and the 

effect of wind stress are both important for generating a MHW in the NWP, especially the 

wind pattern in the WBS. For MHW year 2022, the period that exhibits the highest impact on 

the generation of an MHW occurs 1 year before the target year, contributing up to 80% of the 

total warming. The results confirm the importance of SW in generating the MHW in 2022, 

while it has a negative contribution in 2018. It is found that LW plays a similar role as SW; SH 

contributes the least in NWP, in contrast to the NEP where it serves as the most significant 

driver. Results thereby reveal that NEP and NWP MHWs are distinct, indicating that the 

mechanisms driving MHWs are highly dependent on location. In short, NEP MHWs are 

primarily driven by factors modulating the heat flux, whereas NWP MHWs are influenced by 

both heat flux and wind-driven oceanic heat convergence. Heat flux terms primarily affect 

local conditions during the target year, whereas U influences are observed to extend from the 

preceding three years. Enhanced westerlies appear to exhibit a larger influence compared to 

enhanced easterlies. 
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5 Conclusion and discussion 
 

5.1 Summary 

MHWs have garnered significant attention in research efforts in recent times, particularly 

in the NEP region, due to their profound effects on ocean ecosystems, climate variability, and 

atmospheric circulation patterns. However, most studies have focused on short-term MHWs 

using heat budget analysis and statistical methods, leaving long-lasting MHWs poorly 

understood. This study was driven by the necessity to comprehend the underlying physical 

processes governing these long-lasting extreme ocean warming events and their interaction 

with AF. 

Therefore, this thesis employed the ECCO technology, which integrates the MITgcm and 

its adjoint model to investigate the potential drivers of MHWs in the NP and addressed the 

following key research questions: (1) What are the primary drivers of MHWs in the NEP and 

NWP, and how do they differ? (2) Can the results be compared to those obtained from other 

methods and help resolve previously unsolved problems? In brief, the sensitivity fields of the 

cost function concerning various AF are derived from the adjoint model simulations. These 

fields are combined with the actual anomalies in AF to conduct a contribution analysis aimed 

at quantifying the dominant drivers of MHWs. Additionally, perturbation experiments are 

performed to validate the adjoint solutions through complete non-linear forward model runs. 

Question 1: What are the primary drivers of MHWs in the NEP and NWP, and how do they 

differ? 

The study explores the mechanisms driving MHWs in both the NEP and NWP, 

highlighting the regional differences in AF influences. In the NEP, MHWs are primarily driven 

by local turbulent heat fluxes, with T2M, SH, and LW collectively accounting for up to 80% of 

the temperature anomaly during MHW years. Horizontal winds are generally not a significant 

driver of MHW in the NEP region. AF anomalies occurring 3 to 6 months before an MHW 

event emerge as critical predictors, with extended reconstructions showing that incorporating 

leading 36-month atmospheric conditions improves predictive skill beyond the persistence 

method. 
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In contrast, the NWP MHWs are influenced by both wind-driven processes and heat fluxes, 

particularly in regions like the WBS. In the 2022 MHW event, horizontal wind and T2M were 

the leading drivers of the MHW, each contributing approximately 30% to total warming, which 

is equivalent to the combined effects of LW and SW. However, SH played a minimal role—a 

stark contrast to the NEP, where it is a primary driver. Horizontal wind patterns, especially 

enhanced westerly anomalies, significantly influence MHW formation in the NWP through 

oceanic heat convergence. U influences can persist for up to three years before an MHW event 

due to the ocean’s multi-year memory, which facilitates heat storage and subsequent heat re-

emergence. 

Ocean winter memory is crucial for both regions, and subsurface MHWs deserve more 

attention, as the heat stored in deeper layers can serve as an important predictive signal for 

upcoming extreme warming events. The study of the NWP MHWs also provides valuable 

insights into the mechanisms driving the MHW re-emergence, which are influenced by heat 

flux, wind patterns, ocean circulation, and seasonal cycle variations, among other factors. 

Question 2: Can the results be compared to those obtained from other methods and help 

resolve previously unsolved problems? 

A key contribution of this study is the introduction of a novel approach to identifying 

physically explainable dominant drivers of long-lasting subsurface MHWs. In contrast to 

conventional statistic-based approaches, this method facilitates a more direct evaluation of the 

causal link between AF and ocean temperature anomalies. Additionally, adjoint methods reveal 

a clear temporal evolution of the drivers, whereas heat budget analysis provides instantaneous 

or time-averaged snapshots that fail to identify preconditioning events or time-lagged drivers. 

Overall, the identified driver (i.e., local turbulent heat flux) for NEP MHWs in this adjoint 

sensitivity study is consistent with many previous studies. This not only strengthens the 

understanding of the driving mechanisms but also identifies key influential periods and areas 

related to the physical processes, thereby providing potential signals for MHW predictions. The 

driver identified for the monthly MHWs in the NWP is not consistent with previous studies. As 

the mixing processes cannot be quantified in the current model setup, the exact contribution of 

the larger residual term in other studies remains unconfirmed. However, this study presents 

several possibilities to explain it and offers suggestions for the direction of subsequent research 

to address this issue. 
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5.2 Discussion 

Although this study effectively examines the key drivers of MHWs in the NP and their 

evolution using a physical ocean model, it remains an ocean-only model. Therefore, 

understanding how the identified drivers interact with the complex coupled climate systems is 

essential. This understanding will enable more accurate predictions by focusing on the most 

influential factors during their most influential period. The following discussion addresses how 

various factors influence different regions and the potential for making predictions by applying 

identified drivers. Additionally, the limitations of the ocean model are also discussed. 

The role of turbulent heat flux: NP MHWs are both influenced by air-sea turbulent heat 

flux (sensible and latent heat flux). Their effects are as follows: Sensible heat flux is the 

transfer of heat caused by temperature differences. In the NEP, an anomalous high-pressure 

system typically prevails in the summertime (Amaya et al., 2020; Bond et al., 2015; Di 

Lorenzo & Mantua, 2016), inhibiting low-cloud formation because the sinking air warms and 

dries the atmosphere, creating a stable environment and preventing the rising motion needed 

for condense. Clear skies lead to more solar radiation reaching the surface, warming the water. 

The increased SST directly heats the air above the ocean, reducing the temperature gradient 

between the air and the ocean. Additionally, a small fraction (~20%) of solar radiation directly 

heats the air to reduce the gradient. As a result, the rate of sensible heat loss from the ocean is 

diminished. This also holds for the latent heat flux representing heat exchange from 

evaporation. Typically, the ocean cools through evaporation, which absorbs heat as water 

transitions from liquid to vapor. However, as near-surface air becomes more humid, the 

humidity difference between the ocean and the air decreases, reducing evaporation and causing 

warming. Additionally, under high-pressure conditions, where winds tend to be weak, less 

movement keeps the humidity gradient small and further reduces latent heat exchange. During 

winter, weaker-than-normal winds in MHW years can limit ocean mixing with deeper layers, 

trapping heat in the upper ocean. This results in a lower temperature gradient compared to a 

normal winter (Bond et al., 2015), reducing turbulent heat loss. Unlike NEP, SH contributes 

less than T2M in the NWP. This is because the T2M anomaly, which exceeds about three 

standard deviations, is larger than the SH anomaly, which only exceeds approximately two 

standard deviations. Winds play a lesser role at middle to high latitudes, where sensible and 
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latent heat flux are more influenced by temperature and humidity anomalies, whereas in the 

tropics and subtropics, they are primarily linked to wind speed anomalies (Alexander, 2010). 

However, the inconsistency in the distribution of T2M and SH anomalies contributing to the 

NWP MHW requires further research. 

The role of horizontal winds: NWP MHWs are more related to wind-induced vertical 

advection (upwelling) and wind-driven Rossby wave propagation. The selected region in this 

study is highly sensitive to the WBS conditions and the region south of the Aleutian Islands. 

When strengthened westerly winds occur to the east of the KP and in the WBS, they can induce 

divergence due to Ekman transport and result in upwelling. Typically, this upwelling brings 

cold bottom water to the surface (Zhabin et al., 2022) unless the subsurface waters are warmer 

than normal; in that case, the warm water will be upwelled instead. Therefore, the winter heat 

storage below the mixed layer is a crucial driver for MHW formation. Additionally, if the 

Alaska Coastal Current south of the Aleutian Islands is warmer, the resulting temperature 

anomaly can propagate westward to the target region through Rossby wave dynamics, even if 

the currents are weakened. This is due to Rossby waves transmitting thermocline adjustments 

through upwelling and downwelling (Pinault, 2022) rather than moving warm water physically. 

This can build a potential link between NWP MHWs and NEP MHWs, as NEP MHWs 

significantly influence the Alaska Current region (Di Lorenzo & Mantua, 2016; Rallu De 

Malibran et al., 2024). 

The role of radiative flux: Throughout the study, the observed influence of SW was less 

significant than initially hypothesized. Conversely, LW was found to exert a more substantial 

impact within the NP region. This phenomenon may be attributable to the annual timescale 

employed in the study. On a short-term temporal scale, such as a daily timeframe, the presence 

of cloud cover significantly influences the solar radiation incident upon the ocean surface. 

Seasonal variations in albedo, driven by the melting and refreezing of sea ice as a consequence 

of SW, can also significantly impact temperature dynamics. However, within the context of the 

study area, the influence of sea ice is comparatively minimal. In this study, the primary focus is 

on the annual scale, particularly regarding the long-lasting phenomenon known as the ‘blob’ 

and year-long subsurface MHW in the NWP. Therefore, the role of SW is not as important for 

long-term MHWs as it is for short-term MHWs (Bailey et al., 2025; Song et al., 2024; Wang et 

al., 2023b). 
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The predictability and the application: NEP MHWs are potentially predictable due to 

their consistent sensitivity to AF across years. This discussion emphasizes the use of observed 

AF data or reanalysis data for MHW prediction. While employing atmospheric forecast data 

can extend MHW prediction lead time, such products often depend on SST data. Relying on 

SST-based AF forecasts to subsequently predict MHW creates circular dependencies, thereby 

undermining reliability. If predictions are made at the beginning of the target year, an accuracy 

rate of 66% can be achieved using sensitivity solutions and corresponding AF. This approach 

outperforms persistence-based forecasting methods, which rely on December ocean 

temperatures for predictions and achieve an accuracy of only 62%. However, NWP MHWs 

predictions are more challenging due to variations in sensitivity distribution across different 

years. Nonetheless, there are still predictive signals worth exploring, and these approaches can 

also be applied to other regions. In general, the prediction focuses on the following aspects: 

First, it is important to identify the areas of highest sensitivity (e.g. zonal wind anomalies in the 

WBS for the NWP MHWs and local turbulent heat flux changes in the NEP MHWs) and the 

critical periods (e.g. preceding winters for the NWP MHWs and preceding 3 months for the 

NEP MHWs) of AF that contribute to MHW in the target region. Next, attention should shift to 

heat sources and transport mechanisms. For instance, the heat source may involve determining 

whether incoming heat flux is increasing due to higher solar radiation under clear skies, if 

outgoing heat flux is decreasing due to a reduced air-sea temperature/humidity gradient (e.g. 

NEP MHWs), or if warmer subsurface waters are hidden beneath the mixed layer (e.g. NWP 

MHWs). Regarding transport, factors such as wind-induced advection through ocean currents, 

wind-driven Ekman upwelling or downwelling, wind-induced turbulence mixing, and wind-

excited Rossby wave propagation should also be considered. Other influencing factors also 

exist but are not detailed here. 

The limitation of the numerical model and the adjoint method: The forward model with 

a 2-degree resolution has inherent limitations in simulating extremely abnormal high 

temperatures. When used for a backward adjoint run, it may weaken the contributions from AF 

and miss certain small-scale processes leading to extreme warming. Contribution analysis is 

based on real-world anomalies but ignores nonlinearity and mixing processes in the current 

setup. Based on this study, the adjoint method is especially useful in the NEP (compared to the 

NWP) and at the surface (compared to the subsurface), where wind-induced mixing and 

nonlinear processes are less significant. Furthermore, an ocean-only model allows us only to 
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identify dominant AF as external drivers, limiting our ability to determine the causes of 

atmospheric anomalies. Thus, it is challenging to conclude whether MHWs are linked to 

climate change or climate modes. Future research should utilize atmosphere-ocean coupled 

models or alternative methods to investigate the causes of atmospheric anomalies. 

Alternatively, since T2M is important for both study regions, the atmospheric model with 

adjoint may also be introduced by setting anomalously high air temperatures as the cost 

function to identify the underlying drivers. 

5.3 Outlook 

The ocean-only model in this study uses bulk formulas to compute air-sea exchanges based 

on AF which contains the effect of climate change (e.g. global warming trends) and natural 

variability (e.g. ENSO-driven wind anomalies). These interconnected factors cannot be 

separated in the forcing fields, which restricts the model’s ability to detect how MHWs might 

influence or be affected by atmospheric teleconnections and remote interactions. For example, 

the NEP MHWs are often associated with phases of the PDO or NPGO, whereas those in the 

NWP rely on the background ocean state. However, this study could not clarify the origins of 

anomalous heat flux and wind patterns during MHWs, nor does it determine the exact role of 

global warming in increasing their frequency or intensity. Future studies could focus on 

diagnosing the drivers of anomalous atmospheric conditions, such as enhanced westerlies or 

prolonged high-pressure systems, and exploring whether these extreme conditions are linked to 

the changing climate. Employing a coupled atmosphere-ocean model could bridge these gaps 

by resolving interactions between tropical and midlatitude processes through atmospheric 

teleconnections, which would facilitate a more comprehensive understanding of their influence 

on MHWs. 

The extreme atmospheric conditions: The formation of NWP MHW can be attributed, to 

some extent, to both anomalous high westerly winds and warmer-than-normal subsurface 

ocean conditions. It was discovered in the research that in December 2021, there were 

exceptionally strong westerly winds in the WBS and the target region in the NWP, along with 

anomalous high easterly winds in the central NP. This was accompanied by surface divergence 

and convergence at 250 hPa, indicating the presence of an unusual downdraft caused by a high-

pressure system. Furthermore, the winter NPSH in December 2021 was also observed as the 
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strongest since 1949. Additionally, the first "triple-dip" La Niña events of the twenty-first 

century between 2020 and 2022 resulted in elevated risks due to the extended periods of the 

extremes (Johnson et al., 2023). These extreme conditions may be closely related to significant 

warming in the NP and need further exploration. 

The changing climate: It is evident that the NP has been warming in recent years; 

however, it remains unclear whether this warming is leading to an increase in MHWs or if the 

MHWs themselves are contributing to the warming. A hiatus period occurred of ongoing 

global warming between 1998 and 2013 (Trenberth & Fasullo, 2013). Since then, recent years 

have witnessed alterations in the NP climate pattern, including accelerated warming starting 

from 2014. The climatology of surface winds, particularly the zonal winds, indicates a 

significant intensification of the subtropical westerly winds since the mid-1980s (Joh et al., 

2021). The intensification of atmospheric circulation patterns (Heede & Fedorov, 2023) and 

trade winds have contributed to a reduction in the rate of surface warming in the tropical 

Pacific Ocean (Latif et al., 2023). During the period from 1993 to 2022, there has been a 

sustained enhancement of the upper-ocean circulation in the equatorial Pacific region (Tuchen 

et al., 2024). Alizadeh and Babaei (2023) indicate that both the intensity and the meridional 

position of the NP jet display a distinct seasonal cycle, with a significant latitudinal variability 

observed in spring compared to other seasons. The distribution of jets is responsible for the 

increasing frequency and intensity of MHWs, which may be both a cause and a consequence of 

blocking events (Rousi et al., 2022). Furthermore, the behavior of the jet stream and the NP 

Oscillation can be attributed to Arctic warming (Song et al., 2023b). Both the major ocean 

gyres (Yang et al., 2020) and the KE have shifted northward since 1993, primarily due to 

changes in wind stress curl (Kawakami et al., 2023; Navarra & Di Lorenzo, 2021). In addition 

to the northward shift, KE has also experienced an increase in temperature (Qiao et al., 2024; 

Shi et al., 2024b) and strength (Zhang et al., 2020). While Ren et al. (2023) suggested that the 

PDO modulated MHWs in the NEP over the past decades, Werb & Rudnick (2023) proposed 

that NEP MHWs that began in 2014 had led to a fundamental change in the PDO. Focusing on 

the dominant mode of SST from 2013 to 2023, the PDO pattern has already tilted to some 

extent (Fig. 6.1a). However, during the period from 2014 to 2023, when MHWs became more 

frequent, the dominant mode was no longer PDO-like (Fig. 6.1b). Therefore, caution should be 

exercised when discussing the relationship between MHWs and changing climate modes. 
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Fig. 6.1. PDO spatial pattern calculated as the first Empirical Orthogonal Function (EOF) 

mode of detrended HadiSST from (a) 1870 to 2023 (black lines) and 2013 to 2023 (shading) 

(b) 2014 to 2023 (shading). 

 

The hypothesis for NP MHW teleconnection: Based on the results of this study and 

previous studies, the potential NP MHW mechanisms are hypothesized in Fig. 6.2. Both 2013-

15 and 2019-20 NEP MHWs are associated with La Niña events (2010-11 strong La Niña; 

2011-12 moderate La Niña; 2017-18 weak La Niña, Boening et al., 2012; Wang et al., 2023a) 

that occurred approximately two years prior. During La Niña conditions, there is a significant 

decrease in SST in the equatorial Pacific Ocean (blue shading). The cooler SST in the central 

and eastern Pacific creates a greater temperature gradient, which strengthens the trade winds 

(colorful arrows) and in turn enhances the Walker Circulation and Kuroshio Currents (black 

arrows, Kuo & Tseng, 2021). The Kuroshio-Oyashio Extension (KOE, the region resembles 

KE but is named differently) also serves as a key oceanic frontal zone in the NP, facilitating 

significant air-sea heat and moisture exchanges (Joh et al., 2023; Qiu, 2002). Recent studies 

have suggested the relationship between the KOE and the NEP MHWs (Silva & Anderson, 

2023), as well as the Pacific Decadal Precession (Anderson et al., 2016; Schneider et al., 2002; 

Silva & Anderson, 2024). This study indicated that NEP MHWs are somewhat sensitive to air-

sea heat and moisture exchanges in that region. 

The cooling in the central and eastern Pacific also strengthens the equator-to-pole 

temperature gradients, which enhances the Polar Jet Stream and induces a southward shift of 

the jet (colorful lines with arrows). The anomalous convergence of the Polar Jet in the NEP 
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leads to the development of an anomalous high-pressure system (black dashed lines). This 

high-pressure system inhibits cloud formation, resulting in clear skies that allow solar radiation 

to directly heat the air. Subsequently, the anomalous T2M (red shading) and SH (a similar 

distribution with the T2M since warmer air can hold more moisture), also referred to as the 

turbulent heat flux, together contribute to the development of NEP MHWs. NEP MHWs can 

potentially lead to elevated ocean heat content in the NP (e.g. 2017; 2022) and also influence 

the PDO pattern. Additionally, the warmest ocean conditions in the NP in 2022 were likely 

dominated by the highest high-pressure and lowest zonal wind on record. Reduced wind stress 

weakens Ekman transport and vertical mixing, trapping heat in the upper ocean and creating a 

warm pool. This ocean condition also contributed to NWP MHWs in 2022 by upwelling 

preconditioned subsurface heat. The warmest ocean conditions in the NP further increase the 

temperature gradient, which helps maintain La Niña events and contributes to a PDO-like 

pattern, leading to the occurrence of a triple-year La Niña event. There may be a positive 

feedback relationship between La Niña events and MHW in the NP to some extent; however, 

further analysis is needed to confirm this hypothesis. 

 

Fig. 6.2. Illustration of the annual MHW cycle (Data shown are anomalous fields based on 

the 2019/20 case study. The cycle also holds for 2013-15 NEP MHWs). Blue shading indicates 

the anomalous cooling of HadiSST (Rayner et al., 2003) in the equatorial eastern Pacific, 

which represents La Niña conditions in 2017. Colorful arrows indicate the anomalously strong 

easterly trade winds (NCEP-RA1; Kalnay et al., 1996) of 2017 in the equatorial western 

Pacific. Black arrows indicate the anomalous Kuroshio Currents (ORAS5; Climate Data Store, 

2025) in 2017. The red shading indicates the anomalous warming of T2M (NCEP-RA1) in 

2020. Colorful lines with arrows indicate the Polar Jet Stream at 250 hPa (NCEP-RA1) in 

2020. The dashed black lines show the anomalous geopotential height at 500 hPa (NCEP-RA1) 

in 2020.  
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